Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagee
Covers restored and/or laminated /
Couverture restauree et/ou pelliculée

Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Additional comments /
Commentaires supplémentaires:

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquées
Pages detached / Pages détachees
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials /
Comprend du matériel supplémentaire

\square
Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été numérisées.

TIIE

CANADTATM QUARTEREE

AGRICULTURAL\&INDUSTRIAL

DEDICATMD TO THETAKMERSOF CANADA.

By WILLIAM EVANS,
author of the treatise on "aghcultume:" de.
[AUGUST, 1sss.-Vor. I.-No. e.]

NIONTEEAI:

PRINTEDBYCAMPBELL ABECKET: mum's muthdiag place mabmes.
1838.
Bibliothèque, Le Séminaire de
The limportance of A griculture, sed 73

1) rabininar... 76
Aharption of Nutriment by Plants. 84
Neat Cathe: fluir Mamatement, Eoc S'
Comparative Mopits of Sbort Moms and Merefords in Dugland.. 90
The Compmative Advantare ot Eeeding Cattle with Grain, or with Oil Cake 92
Calros. il.
Tnsects ingimious to Arriculture. 94
Aqrientenal Sueleties. 103
Now Smoth Willes is it is 110
Sydury, Nuw Subth Wales Market Prients 112
 113
14-ни, and Flas. ib.
 114
Orofarts 115
Silimioits. 116
Mangel Wurzat if.
Fixtmet from Roget's Brilkewater Treatine 15\%
Emigration to Detish Noeth Amertica $1 \pm$
Rtheation ih.
Applicalion or Gapital to Agricaltumal Promenction. 124.
Mechhiandots:-
Vixhatt From the Menomin ne Latien Donaparte. 1玉
'l'rade :unl Novigalion. 125
 10)
limprovarnut in Sherp il.
Aurisulture in Sweden. is.
Winare in Scmmlitavia $13 i$
Tumporoment of'Time. 132
 in.
Farming in the Ohles 'lime. 133
lanter and Cheres expmeted from IIalamd 134
Axtichtamal leport for The ani Thy [it.

ADVERTISEMENT.

Thit Papriatie of this Magazine begs lawe very repertfully to state, that tion phblimatin of this wark was mblertaken from nu other motive than a desire to

 W"hother the work is calculated to tessist in proflucing the obiects be professes to
 sinimble expure most be incoured in puldishing, he would hope that if the work iv considured wathy of ancoumagement, it will, al lerest, recoive suflicient support.

 baral Phbications mate than perhaps it was prudent for him tobave done.

AGRICULTURAL AND INDUSTRIAL

No. 2.
AUGUST, 1838.
Von. 1

THE IMPORTANCE OF $\Lambda G R I C U L T U R E$, S.

Fon several years past the author has unceasingly endeavoured to attract the attention of the Canadian community to the importance of A'griculture He has also attempted to prove that the profession of agriculture is not atless honorable and dignified one; than any other that a man can be employed in. With thie same views, he now submits the following article partly copied from the Connecticut: Observer; making such omissions, alterations; aind additions; as he thouglit: was necessary to suit it to the circumstances of this commiunity, as British subjects; and members of the great British family. - The profession of "agriculture, is justly entitled to stand in the highest grade of dignity in every: country, and more particularly in Britush America. Agricuiture must be the basis: of all the industrial interests in these provinces. It is: the only producer of the material of wealth:s All others are but employed in working some cliangeaupon this material, in transforming and lshaping it to the conveniences of civilized lifere Enumerate these farts that are ipracticed here: :and elsewhere-the hatter; the
clothier, the manufacturer of woollens and of cottons, of iron, of leatlier in all its' yarieties, the tailor, the cord: wainer; the miller; the paper-maker, the printer cven, could not carry on the purposes of their respective callings a single day were the materials which they derive from agriculture to beentirely withdrawn ; whiléagriculture rude indeed, but still agricul: ture in some sort, could sübsist with littléaid from these or any arts: It is dependant indeed on other:arts for its: successful prosecution, but not for its very existence: Commerce is but'an interchange of the produce of agriculture, wrought, it may be, into ten thiousand forms, but still owing theiroriginal existence, and deriving their seminal principle from the soil: In the bosom of the earth they were nurtured, and by the ministering hand of agriculture they were fostered into maturity and perfection.: Even the canyass: which whirens the ocean; and the keel.whicli ploughs its waves; owe their being to the same influences: The earth is the common nother of mankind-the gieatw nurturer sof
 The profession tof agricultureilis.
more favourable to the entire development of the human faculties, to the unfolding and perfecting of this physical, this-intellectual, this moral and immortal being which God has given us, than any other employment. It has more to do with nature in her freshuess, and less to do with contaminations and corruptions of artificial life. It imparts vigour to the body and to the mind-it leaves the soul free from feverish excitements, to imbibe as it were with its growth the lessons which nature teaches; in 'fine, it is capable of ministering the most successfully of all arts, and of all occupations to health, to intelligence and to virtue. It creates, as it were, the elements of individual and of national prosperity, it secures independance to the citizen, and independance to the state: as it was the first, so it is the chief, the most important, the most entirely; furdamental of all the mere carthly occupations allotted to man. Insitself embracing, was it does, such high interests, it is full of dignity. Oh ; too thappy agriculturist, exclaimed the Roman poet, if they only knew their ownblessings! How ennobling; how full of dignity, might we exolaim, are the pursuits of agriculture, if they were but duly appreciated It There has been, we think, atendency in the public mind to depreciate these pursuits.r Thist tendency has been owing in no small degree to the attraction of ostentatious wealth, to the eager spirit of gain, to the desire of sudden riches, that are more frequently obtained by other pursuits; than by agriculture, to the tundue homage that has been paid to other professions and other arts. Far be it from us to say anything in disparagement of:any: useful profession.: As between:all sciences there is a kind of relationship, a bond of affinity, so between:all usefulgartsithereizis: a similar connection. A gricultmre: is alliedstonthem all jubtishetis allied
to them rather as a parent than a sister art: But if there be any one cause which has operated more than others to depress agriculture in public sentiment, to assign her a lower place in the scale of dignity, it is that agriculturists themselves have not properly appreciated their own yocation: They seem not to have been impressed with a just sense of the rank and character which it might attain : they seem not to have felt its capabilities, to have been inspired with the force of its own genious. Regarding it as the primeval occupation of man, the source of uselul arts, as necessarily embracing among its followers the great body of the inhabitants of almost every state, as in itself eminently suited to the development of the faculties of man, they would surely entertain for themselves and for their calling in life the highest respect. This self-iespect; this just appreciation of their dignity, would be rendered manifest by the position they would assume and maintain in society, by an sappropriate exterior, of manners, and of dress, by an arrangement in, their dwellings their grounds, their farms, in all that which regards their externals condition, charicterized by order, bby neatness, by tpropriety; especially would it be rendered manifest by a prevailing, spirit of improvement, by a thirst for knowledge; by systems of education fitted to impart a very high degree of intelligence by physical, by intellectual, and by moral culture- The sentiment certainly prevails, in, some degree; and to some extent, that any thing is good enough for the farmer It pervades the minds even of farmers themselves. Are the manners rough and uncouth, it 6 is said, they are the manners of a farmer Is the dress slovenly tand unbecoming, disfiguring the human form which God made to: wears: a nobleaspect, we are apt to regard it
as a thing of little consequence-because they are the manners and dress of one whotills the earth: Is their education scanty; it is education enough for one who is called to follow the plough. This: feeling ought by no means to be cherislied. We do not indeed expect, nor do we by any means desire, to find among the hardy: ycomanry of our country, habits, manners, and modes of clress, such as are found in courtly circles. We hope not to see thic fornis which prevail in cities introduced among them. But we do hope to find every thing bespeaking a proper self-respect..: We do desire to see an exterjor indicating that the mind is penetrated with a sense of the high purposes which its professo: is called lupon to fulfil. We fervently wish to behold a manly assertion of their: claims to high regaid, exhibiting, not lby envies and jealousies to wards other classes of useful and honourable individuals, but by a dignified and manly deportment, by a demonstration of superior character and intelligeńce, by a language, and by manners, and by habits worthy of highcminded men-in" firie, by a full : development and reduction to : use :and enjoyment of all the capabilities which the profession of agriculture :so' cminently: atiords. There is ino want of diguity in agriculture. Of the vocation itself we have nothing to complain. But we have somewhat against agriculturists (they will excuse our freedoni), that they do not sufficiently sustain the dignity of their vocation, that they do not fill up the measure of its high capacities, that they do not sufficiently manifest their sense of its advantages and of its worth, that they do not make science and knowledge tributary as they might to agricultural labour, to the improvement of tlieir circumstances in life, of their condition as intelligent, moral, and accountable beings.: We do not
say: that they fall below other classes of the community in any: of these respects, we insinuate no comparison between them and others, rather we compare themselves as they are, with themselves as they might be; and as we fondly hope they will one day become.

What other country presents a theatre like ours for the pursuits of agriculture, not as a system of perpetual and interminable drudgery, of drudgery performed, as. in other countries; at the will and under the supervision of others, but as an lionorable profession-a prolession, if rightly conducted, affording leisure for the improvement of the mind, for the cultivation of the social affections, and thus of the modes of social intercourse. Aprofession requiring inteligence, skill, and holding out to labour, perforned under the guidance of intelligence and"skill, the most ample rewards: In other countries the soil is owned by a few nien, who are lords of the mostiextensive estates, transmitted unbroken from age to age, by inheritance, while the great body: of agriculturists are only tenants, and are seldomiproprietors of one acre: of land Under such circumstances they camot feel the same desire for inprovement and advancement that you should feel, proprietors as you are of the soil you cultivate, and for which no demands are made upon you for rent or taxes in any shape Your position is indeed the most favourable one that can well be conceived.

With a soil abundantly fruitful, and divided into freeholds of moderate size, of which our agriculturists are generally: the absolute owners, they ought to be moved by all the motives which can influence the mind of man, by their: attachments to their houses, by their love of country in which they are so highly favoured, and by the prospect which they behold before them of indefinite:adyanceninerit
in their external condition as well as in character and knowledge. Add to thoseinspiring motives; that their countryscalls upon them in common with citizens of other classes, to sustain a part in public life, to acquit themselves as legislators' in! behalf: of the interest in which they have:so thigh a staker What more do we iwant, of worldly advantages ; and what condition of life so favourable to the cultivation of religious charac--ter as that afforded, by the peaceable pursuits of agriculture? It is a condition comparatively: free from the cates and temptations which choke the growth of ireligion, There is something, too, in its very nature caleulated to inspirea sense of religious dependance, and to elevate the soul with sentinents of devotion and agratitude The husbandman may well perceive the intimacy and constancy of the connection bewween Divine Providence and the:condition of his life. The, operations of nature, as witnessed in the cultivation of the soil, appear as it were anore immediate display of the Divine beneficence, or a more immediate withholding of the Divine bounty. God causeth the sun to shine. He giveth the former and the latter rain i-he causeth the grass to grow for the cattle-he giveth bread to cheer: man's heart- he is the Lord of the harvest-and he too hideth his countenance, and bringeth blighting and famine. All nature is but an exhibition of his goodness, or an intimation of his displeasure s in the FHow desirable it would be were our agniculturists duly to appreciate their idvantages, and make a proper use of them. If they did, they wonld soon fiud themselves in the way to greater prosperity, and greater dignity than usually falls to the lot of the same class of men in other countries. Happily for us, the great obstacle to agricultural improvement and prosperity; the want of general
education among the agricaltural class, is now likely to be removed. We have the assurance of His Excellency the Governor: General; that general education will be provided for And now, if all classes would unite, forget all past animosities, from whatever cause they may have originated, and be unanimous in promoting by every lawful means, the general interests of the inhabitants of these fine Provinces, we might look forward ; with confidence to better, more prosperous, and more happy times:
All who sincerely desire these favourable results are bound to give their humble aid in support of the measures which His Excellency the Governor General may see expedient to introduce for the peace, good government, and prosperity of the Canadas. We should remember that His Excellency: has no, interest in the measures that may be adopted, or the ordinances tiat may be enacted, but the general good of this community; and we have already sufficient assurance that His Excellency will understand perfectly what will be good for us all, to encourage us all, to give him our full confidence and support This is the bounden duty, as much as it is the interest; of all lovers of their country, and of all truly loyal subjects of our youthful Queen.

DRAINING.

The following remarks on Draining are from the Perny, Cyclopadia, and by the Author:-

As a certain quantity of moisture is essential tovegetation, so is an exeess of it highly detrimental. In the removal of this excess consists the art of draining. Water may render land umproductive by covering it entively or partially, forming lakes or bugs; or there may be an excess of moisture diffused through the soil
and stagnating in it, by which the fibres ol the roots of all plants which are not aquatic, are iujured; if not destroyed.
\therefore From these difterent couses of in - fertility arise thiree different branches of the art of draining, whicli require to be separately noticerlona d; sh . 1. To drain land which is flooded, or rendered marshy by water coming over it from a higher level, and having no aclequate outlet below.t:- de: 2.: To drain land where springs rise to the surface, and where there are no natural channels'for the water to, run:off.
3. To drain land which is wet from its impervious nature; and where the evaporation is not sufficient to carry off all the water supplied by snow or rain.:
\therefore The first branch includes all those extensive operations where large tracts of land are reclained by means of embankments, canals, sluices; and mills to raise the water; or where deep cuits or tunnels are made through hills which formed a natural dam :or barrier to the water. i Such works are generally undertaken by associations under the sanction of the Government, or by the Government itself; few individuals being possessed of sufficient capital, or having the power to oblige all those, whose interests are affected by the draining of the land, to give their consent and :afford assistance. In Britain there is no difficully in obtaining the sanction of the Legislature to any undertaking which appears likely to be of public benefit. In every session of Parliament acts aie passed, giving certain powers' and privileges to companies and iiidividuals, in order to cuable them to put into cxecution extensive plans of draining. T'That extensive draining in the counties of Northampton, H Hutingdon, $:$ Canibridge; Lincoln, Norfolk; and Suffolk; which is known by the name of the Bedford Level; was confided to
the management of a chartered corporation, with considerable powers, as early as the middie of the seventeenth century; and by this means an immense extent of land has been rendered highly productive, i which before was nothing but one continued marsh or fen:
\cdots In the valleys of the Jura, in: the canton of Neufchatel-in Switzerland, which are noted for theirsindustry and prosperity, extensive lakes and marshes have been completely laid dry, by making a tunnel through the solid rock, and forming an outlet for the waters. The greater part: of the Netherlands, 'and Holland, have been reclaimed from the sea, and from rivers which. flowed over thems and they are now as productive lands as any onearth:
of Cairada veryilittle drainingi has yet been effected; and in consequence some of theibest situated lands:are allowed to remain waste, thatiwould not require a large expenditure to drain them perfectly. The principal obstacle is, the want of power to oblige all those whose interests wonld be: affected by the draining of the land, to give their consent, and afford assistance:- In some particular cases, were a proper application to be made now to the Government, perhaps the necessary powersimight be obtained. It is only where ontlets require to be cut, that would drain large tracts of land; or where small rivers requite to be straightened and deepened, that the interference of the Government could be applied for. Butin such cases, were the Goverument to girant the necesary powers, it would sreatly pronote inprovement, and prove highly advantageous to the industrious agriculturists. 1% ? $\%$.
In liilly countries it-sometimes

[^0]happens that the waters, which rum down the slopes of the hills, collect in the bottom' where there is no outiet, and where the soil is impervious. In that case it may sometimes be laid dry by cutting a sufficient chaninel all round, to intercept the waters as they flow down, and to carryithem over or through the lowest part of the surrounding barrier. If there are no very abundant springs in the bottom, a few ditches and ponds will suffice to dry the soil by evaporation from the surface. This principle might be applied with great advantage, in many cases, where the water could not be drained out of considerable hollows, if it were allowed to run into them.

When there are different levels at which the water is pent up, the draining should always be begun at the highest, because it may, happen that when this is laid dry, the lower may not have a great excess of water.
Indraining a great extent of land, it is often necessary to widen, straighten, and deepen rivers, and alter their course; and not unfrequently the water cannot be let off without being carried, by means of tunnels, under the bed of some river or canal, the level of which is above that of the land. In more confined operations cast-iron pipes are often a cheap and easy means of effecting this. They may be bent in a curve, so as not to impede the course of the river, or the navigation of a canal.

Tlie draining of land, which is rendered wet by spring arising from under the soil, is a branch of more general application. The principles. on which the operations are carried on, apply as well to a small field as to the greatest extent of land: The object is to find the readiest channels by which the superfluous water may be carried off; and for this purpose an accurate knowledge of the strata through which the springs run is in-
dispensable.: It would be useless labour merely to let the water run into drains after it had sprung through the soil and appears at the surface, as ignorant men frequently attempt to do, and thus cary it off after it has already soaked the soil. But the origin of the spring must, if possible, be detected; and one single drain or ditch, judicionsly disposed, may lay a great extent of land dry if it cuts off the spring before they run into the soil. Abundant springs, which flow continually, generally proceed from the out breaking of some porous stratum in which the waters were confined, or through natural erevices in rocks, or impervious earth A knowledge of the geology of the country will greatly assist in tracing this, and the springs may be cut of with greater certainty Butit is not these main springs which give the grentest trouble to an experienced drainer, it is the various land springs, which are sometimes the branches of the former, and often orignal and independant springs, arising from sudden variations in the soil and subsoil.

In England, it is found that in one situation boring, will bring water, and in another it will take it off. This principle being vell understood will greatly facilitate all draining of springs. Wherever water spings there must be a pervious and impervious stratum to cause it, and the water either runs over the impervious surface, or rises through the crevices in it. When the line of the springs is found, the obvious remedy is to cut a channel with a sufficient declivity to take off the water in a direction across this line, and sunk through the porous soil at the surface into the lower impervious earth. The place for this channel is where the porous soil is the shallowest above the breaking out, so as to require the least depth of drain; but the solid stratum must be reached, or the
draining will be imperfect. It was by attending to all these circumstances that Elkington acquired his celebrity in draining, and that he has been considered as the father of the system. It_{t} is, however, of much earlier invention, and is too obvious not to have struck any one who seriously, considered the subject. In the practical application of the principle, great ingenuity and skill may be displayed, and the desired effeet may be produced more or less completely.:

When the drains cannot be carried to a sufficient depth to take the water out of the porous; stratum saturated with it, it is often useful to bore numerous holes with an auger in the botton of the drain through the stiffer soil, and, according to the principle explained, the water will either rise through these bores into the drains and be carried off, and the natural springs will be dried up, or it will sink down through them if it is aboye.
If the surface of peat mosses be properly dried, dressed with lime, and consolidated with earth and gravel, they will soon become productive. If the soil, whatever be its nature, can be drained to a certain depth, it is of no consequence what water may be lodged below it. It is only when it rises so as to stagnate about the roots of plants, that it is hurtful. Land may be draitied so much as to be deteriorated.
When a single large and deep drain will produce the desired effect, it is much better: thap when there are several smaller, as large drains are more easily ikept open, and last longer than smaller; but this is only the case in tapping main springs, for if the water, is , diffused through the surrounding soil, numerous small drains are more effective; ;but as soon as there ; is a suffigient: body of water collected, the smaller drains should run into larger; and these into main
drains, which should all, as far as practicable, unite in one principal outlet, by which neans there will be less chance of their being choked up. When the water comes in by the side of the drains, loose stones might be laid in them to a little above the lime where the water comes in, and they may then be covered with earth rammed in tight.

The third branch in the art of draining is the removal of water from impervious soils which lie flat, or in hollows, where the water from rain; snow, or dews, which canuot sink into the soil on:account of its impervious nature, and which cannot be carried off by evaporation, runs along the surface and stagnates in every depression. It requires much skill and practice to lay out the drains, so as to produce the greatest effect at the least expense. There is often a layer of light earth immediately, over a substratum of clay, and after: continued rains this soil becomes filled with water like a sponge, and no healthful veretation can take place. As under-drains will not answer for draining these kind of lands in Canada, because the soil continues frozen over them for weeks perliaps, in the spring, when aboveall other seasons it is required that they should be in full operation to discharge the superfluous water. Open drains must be made in the nost suitable situations, and if the land is ploughed into well formed ridges, the furrows betwcen the ridges may answer ali the purposes of under drains, and conves the surfice water into the main drains.

Though much of the lands of Canada are very level, yet in the most level field, there is generally an inclination in some direction. It is necessary to ascertain in what direction the greatest fall may be had, and to cut the drains so as to obtain the full benefit of the fall. Drains cannot always be in a straight: line; unless the ground be perfectly: eyen-

They should, however, never have sudden turns, buit be bent'gradially where the direction is changed. The outlets of all drains should be care:fully kept clear, for wherever water remains in a drain, it will soon derange or choke itt Cross drains shotld be so armaged or turned, that Lie routlet shallmeet the main drain at an obtuse angle towards the lower part" where "the ${ }^{j}$ water runs to. A drain brought at right angles'into a ditel must necessarily'soon be choked by the deposition of sand and earth at its mouth.
The following is an article on the snme'subject fiom the Quarterly: Journall of Agriculture :At the conclusion of our last: thoughts on draining (vol. vii. p. 533 .) is expressed a sentiment which cannot be too emphatically impressed on the minds both of landlords and tenants, that draining is the first step towards the improvement of the soil, which, if neglected, and the soil permitted to remain, not only in its natural, but in a half cultivatedstate all other means of fertilizing itiwill only prove comparatively abortive in their application Were draining thoroughly effected, all the present undrained but improveable soil of the country would be rendered capuble of recei ving all the benefits cderivable fiom numerous inditect modes'of fertilizing it. These various modes of fertilizing soil, were enumerated to be ploughing' dung, lime, and bone-dust, and thesésubjectswere recominended as interesting topics of enquiry for another paper It is our purpose now to prosecute that enquiry -1st, Ploughing:- In ploughing undrained land', particularly land resting on a wet'subsoil, the attention of the ploughiman is constantly exercised, otherwise the plough may be thrown ou't at one place; andsdip deeper a't another, without? any apparent cause forthe diversity ofits action.? There is, however, a paramount cause for it.

The texture of soll, however homod gencous it may appear at the surface, greatly varies where the soil rests on a wet subsoil, in being consolidated at one place, and loose at another and of course in being hard and soft at different places: The hard portions become dry by the expulsion of water, by the compression of the soil, and the porous portions remain constant ieceptacles of superfuous vater. Small stones become firmly imbedded in the hard portions of the soil, and are loose, and apt to be puslied before the plougli in the soft portions. The plough througli these alternate changes of hard and soft, wet and dry, portions of the soil, requires the utmost attention in its guidance; the hand and the eye of the ploughman being constantly in requisition, diur ing the operation, to prevent the plough being thrown out or burying itself Buit oven with attention, such ploughing is unequally executed and therefore unsatisfactoryshmilst the disagreeable nature of the work tends to latigue the body, and irritate the mind of the ploughnan, and the unsteady draught occasioned by the unequal state of the soil, jades the Jorsesmore severely than the extent of the work performed Great disconifort bothto men and horses, attends ploughing soil in such a state, at any season, and it is onlyless irksome than the danger which bothrun of injuring their health, tague and consumption affect the men, whilst cholicand inflammation of the bowels not unfrequently cut short the existence of the horse that this is no exaggerated result can be attested by allifarmers'of wet land: But the evils of wet land ure not confined to the annoyance of men and horses; they obviouslyitaffect the state if the cultivated soil, the nature of work; and the condition of crops Withregard to wetness affecting the state of cultivated soil, whatever labor and nanure: may be bestowedlupon it, it
always seems poor, hungry, weeping, and is apt to become foul with the strong ramifications of semi-aquatic plants, thruading themselves in all direcions througln it. Being inelastic, its surface is casily permanently imprinted with the hoofs of anmals, and consequently, casily poached. Of the nature of the work on soil, in that condition, the furrow-slice in breaking up lea, is not easily laid over with the ear of the mouldboard, its under edge adhering tenaciously to the subsoil, the vegetable matter in the soil becoming, in fact, a kind of incipient peat. When the furrow slice camot be easily laid over, the slices never clap close together: The harrows rather make scratches over the furrow slices than cut them in pieces and blend them together, and the roller compresses such land so as to deprive the sown crops of the power olspreading their roots in it. As to the cffects of wet land on crops, they consist of stinted growth of straw, or should a flush of vegetation be at any time encouraged by the state of the weather, the grain in both cises is lear, thick-skinned, and light. The grass too is short, wiry, and inclined to acidity, instead of being macilaginous and saccharine in quality and taste, or rather the finer ghases disappear and coarse semi-aquatic kinds occuyy their places.

Thoroughly drained land, on the other hand, can be easily worked with all the common implements. Being all alike dry, its texture becomes uniform; and being so, the plongl passes through it with a uniform freedom; and where ordinary-sized stones obstruct its course, he plouph can easily dislodire then. The plough by its own eravity tends to raise a deep furrow, and the furrow on its part, though heavy, crumbles down and yitlds to the presure of the mouldboard, forming a friable, mellow, rich-looking mould, not unlike, the granular texture of raw sugar: The
harrows, instead of being held back and starting forward, swim smoothly along, raking the soil into a smooth uniform surface, entirely cbliterating the prints of footmarks. The toller compresses the surface of the soil, and leaves what is below it in a soft state for the expansion of the roots of plants. All implements are much easier drawn, and held or driven on drained land; and hence all theoperations on it can be exccuted less laborionsly, and, of course, moire économically and satisfactorily than on undrained. Much lias of late - been said of deep-ploughing in connexion with drained land. Deepploughing we conceive to' be a safe practice under every circumstance. It acts as draining to wet land, which of course must be very temporary in its effects. Its efficacy can only be fully developed on land that has been drained. There it fornis one indispensable supplement to draning. It opens an easy access for light and air to the roots of plants, and facilitates their combined beneficial influences on the ingredients in the soil which goto support vegetation. These are all natural consequences of deep plonghing in the ordinary state of land; but these consequences will only be permanently observed and felt on thoroughly drained land. It matters not in what manner the soil is deeply stirred, the benefits of it will be; derived in any case. The common plough with four horses, or a plough made little stronger for the purpose, will stir the soil that is thoroughly drained, deep enough for the rumination of the roots of all plants raised in agriculture- Such a plough is uqually efficient as any subsuil pluugh. A soil thus stired one foot indepth will afford sufficient scope for the roots of most cultivated plants, and even fusiform roots will penetrate beyond that depth in a subsoil that has been thorouglly drained. It matters little, we conceive, whethera
drained subsoil is bronght up by the ploughor no We are sureit can do nôharm when hrought up, for it caii be made the medium of convey ing notirislinent to phatits as well as the upper soil: Both' may be blended together for the common olject; aid in a short time, neither cau be distinguished from the other. By this property of drainedlind, we anticipate a general and increased improvement in soil, stich an' expansion, in short, of its capalailities as to yield more abuidant crops with the ordinary quantiom of labor and nainure.
2. Diung- -The baneful effects of undrained land on farm-yard and other matter cominonly called manure, are most obvious: The perceptible dampness in undrained soil, dissolves the soluble portion of farm-yard manure, which', by its gravity, descends beyond the reach of the rootlets of Young plants; Whilt the strawy portion remains undecomposed for a length of time. This statement may account for the in variable languid vegetation of plants' while young in undräined land di dfér the straw has been decomposed, and vegetation been forced by the advancement of the season, the plants derive notrishment not only from the decomposed straw, but probibly also from thie soluble matter which lad previously desceided thithigh the danp soil: Vegetition is thus promoted in suin mer, but it is generally too late for tliat season' to foster the plaints to full maturity. The lateness and immatuirity of crops on wet land may this be explained. The fact is, wet land cannot be put in heart with manime to a sifficient dëgree to force veretation withoit the assistance of the seasur, These effects on manure Will be similar, whetlier the manire hat been applied broailcast or in drills; bitt as the drill system ${ }^{\text {ti }}$ deposites manite in larger masses on the same extent of ground the effectst will always be found to be comparatively
less prejudicial to drilled than to broatcast crops. As an intance in pinint, potatoes cannot be successfully raised on wet land, when the nianure is spread broadcast on the grouthe in autumn or early in spring. Before sueli a practice can sueceed, the land misis' be' in heart. Bit even in'drills; on "wet land, the manure will be decontiposed in different degrees and at different times. Thedriest portion of the soil will first and most effectit ally decompose the manure, the Hárdest next in degree and time; and the wettest will retain it in a state of maceration, as'long as the water' is unevaporated by drought: Besides manure remaining inert in wet lañd; it also remains inert in such land rendered diy by dronghtu In that predicanient the manire becomes desicated; undeconiposed, and easily separated from the soil, which becomes like a sterile powder, and reinains so until the return of rain. Were the rain to fall in moderate quanitities, the deconiposilion of the manure would be rapidly hastened in the warm soil, but if in inordinate quantities', its "decomposition cwould be retarded as eftectually' as by the drought, although in this case it would be dissipated before décomposition. Nothing can so convincingly prove the beinefits of draining in immediately securing the ferility of maniure to the soil, than in contemplating the baneful effects" of too much drought or "moisture" on manure. And to render the proof the stronger, we have only to contrast these effects with the effect of druinied laid on manure. The nioment that manure is deposited in a proper state, that is in a state of humidity in drained land; its juice are absorbed by the dry soil, and retaine there as in a wet spoinge half squézede Thee sträwy portion being thus deprived of moisturre by absorption, and still surrou'nded with comparatively dry soil"whicl retains heat within' iteelf, and readily absorbes
more from the air, it is readily decompnsed, and soon becomes intimately blended with the soil. Food in a semi-moist state is thus placed near and ready prepared for the tende: spongioles of plants to exist upon; and supposing the weather no better: but only equal to that we have supposed in the case of the manure deposited in undrained: land, the progress of vegetation will completely outstrip that in the latter. -1,
3. Lime Many farmers consider lime manure, and talk of it as such, but it cannot be: a manure, that is food for plaints, in the caustic state in which it is desired to be applied to land, however : it may be changed in its nature by admixture with the soil or exposure to the air Caustic lime would sonn. destroy vegetable life. Instead of itself being a manure, ${ }^{\text {t }}$ ratlier converts other substances inso manure which would otherwise have remained in an inert state. It acts ou vegetable matter on all soils, and, by deconposition, renders that matter fit food for plants. This is, its chemical mode of action. It also acts mechanically, by separating the particles of adlesive soils by desication; but it is not probable that it acts chemically on the, earthly portions of any soil. Corfounding these properties of the action of lime, when applied to soil, with one another, miglit lead us to form erroneous conclusions regarding them. When, fur instance, we observe lime to act with effect on vegetablematter lying inert in soils, we might conclude that, it would be applied with best effect to wet land, in which vegelable; matter is most abundaitly found to be inert. When lime is tound to pulverize and to dry clay soil become hard and cloddy with moisture, we might conclude that wet clays would derive most benefit from lime. Both these conclusions would be decidedly erroneous. Because, alhough lime readily decompeses vegetable matter in soil, it
only decomposes it advantageously in dry, soil, or soil rendered dry by draining, the noisture in wet land mendering the lime effete before it has time to act chenically on the regetable matter in the soil; and lime only acts beneficially on drained soil, that contains excess of vegetable matter. Many dry soils, and particularly wet soils when drained, contaín excess of vegetable matter, which matter, although encnuraging a flush of vegetation, is deficient of silica to harden the straw and fill the grain. Caustic lime converts a portion of this soft vegetable matter into silica, whist it converts another portion of it into a pabulum, by which yegetation is powerfully supported. In like manner, the application of lime to wet clays would be to convert them in o mortar, which would harden the soil in drought that was intended to be pulverized. Even in the case of top dressing grass with lime, which is an excellent practice when performed aright, pasture in a constantly swampy state can derive no benefit from it. Before the application of lime therefore, in any circumstances, land should be thoroughly drained.
4. Bone-dust.-The extraordinary nower of cruslied bones, when mixed with the soil, to promote yegetation, has riot yet been satisfactorily explained. The finer the bone-bust, and the more intimately it is mixed with the soil, the moreactive is the veretation. That the bone is chemically decomposed, in its union with the soil is obvious. Lift up a handfil of earth in whicl bone-dust has buen mixed for some days, and it will be found to be saturated with a rich oily substance, which nakes the earth adiere together into a ball when sqeezed in the haid; and this eflect will be observed although the bones should have been boiled previously to being crushed into dust. It is hardly conceivable, a priori, that"so small a quantity of any subgtences as
of the bone-dust when used, should be able to produce"so sensible" a change on the soil immediately in contact with it. We camot positively assert which of the ingredients of the bone-dust it is that constitutes the food of plants, for although the circumstance of boiled cribhed bones being as good nianure as those in a raw state, would support the belief that it is not the oily matter in bone whicli constitutes the manure, yet the fact that boiled crushed hones render the soil apparently as rich with oil as raw, forbids us from asserting that the phosphate of lime alone constitutes the food of plants in bones. But whatever the chemicilaction of bonedutt on soil may: be, we can assert with confidence, that bone-dust will impart io richness to any kind of soil, unless the soil is either naturally dry; or has been draited; aind when soil does require draining, the more thoroughly it is drained, the greater effect will bone-dust have upon it as a manure:
We thus see, that unless land be thorouighly drained, all the adventi tious substances which are employed to render it fertile, camot impart their fullest benefits to it. Since this is the case, it is lamentable to think What vast quantitics of manure, which take much time to collect, and nuch money to purchase, is yearly wasted oin undrained land! How huch more proluce might not these quantities of manire antually raise; were they applied to land rendered fit to receive them by thorough draining!

The following article from Roget's Bridgencter Treatise, on the Absorption of Nutriment by Plants, is so very interesting to Agriculturists; that it is given entire :-
ABSORPMON:OF NUTRIMENT BY PLANTS.
The greater number of ellular plants absorb water with-nearly equal faci-
ity froin every part of their surface: Tlis is the case with the Algae, for instance, which are aquatic plants: In"Lichens, on the other hand, absorption takes place more pintially; bit the particular parts of the surface where it oceurs are not constantly. the same and appear to be determined more by meclanical canses thail any peculiarity of structure: some, however, are found to be provided in certain parts of the surface with stomata, which De Candolle supposes may act as sucking orifices. Many musinooms appear to be capable of absorbing fluids from all parts of their surfaces indiseriminately; and some species" agnin, are furnished at their brise with ri lind of radical:fibrils for that purpose.

In plamts having a vascular structure, which is the case iii by far the greater number, the roots are the special organs to which this office of absorbing nourislment is assigned; but it occasionally happens: that, under certain eireumstances, the leares, or the stems of plants, are found to absorb moisture, which they have been supposed to do by the stomati interspersed on their surface: This, however, is not thicir natural action : and they assume it only in forced sitnations, when they procure no water by means of the roots; cither from having been deprived of these orgams, or from their being left totally Mry. This, a branch separated from the trunk, may be preserved from withering for a long time, if the leaves be immersed in water, and when the soil has been parched by'a long drought, the drooping plants will be very quickly revired by a shower of rain, or by artificial watering, eveii before any moisture cai be supposed to have penetrated to the roots.
It is by the extremities of the roots alone, or rather by the spongioles which are there situated that absorption takes place; for the surfuce of
the root, being covered in every other part by a layer of epidermis, is capable of performing this office. It was long ago rematiked by Duhamel, that trees exhanst the soil only in those parts which surround the extremities of the roots; but the fact that absorption is effected only at those points has been placed beyoud a doubt by the direct experiments of Semnebier, who, taking two carrots of equal size, immersed in water the whole root of the one while only the extrenity of the other was made to dip into the water; and foind that equal quantities were absorbed in both eases; while on immersing the whole surface of another carrot in the fliuid, with the exception: of the extremity fof the root, which was raised so as to be above the surface, no absorption whatever took place. Plants having a finsform or spindleshaped root; such as the carrot and the radish, are the best'for these experiments.

In the natural progress of growth; the roots are constantly shooting forsards in the direction they have first taken, whether horizontally; or vertically, or at any other inclination. This they continually arrive at iew portion of soil of which the mutritive matter has not yet been exhaisted: and as a constant relation is preserved between their lateral extension and the horizontal spreading of the branches, the greater pirt of the rain which falls upon the tree, is made to drop from the leaves at the exact distance from the trumk, where, after it has soaked thiongh the carth, it will be received by the extremities of the roots, and reidily sucked in by the spongioles: We haveherea striking instance of that beantiful correspondence which las been established between processes belonging to different departments of nature, and which are made to concur in the production of remote effects, that could never have been accomplished with-
oat these preconcerted and hirmoniious adjustmentson - The spongioles, or absorbing extrenities of the roots, are constructed of ordinary cellular or spongy tissue; and they imbibe the fluids which are in contact with them, pairtly by a capillary action, and partly also by what has been termed athygroscopic power.:. But though these principles miny snfficiently account for the simple entrance of the fluids; they are inaderpute to capplain its continued ascent through the substance of the root, or along the stem of the plant. The most probable explanation of this phenomenon is, that the progressive movement of the fluid is produced by. alternate contractions and dilations of the cells themselves which compose the texture of the plant; the actions being themselves referable to the vitality of the orgins.

The absorbent power of the spongioles is limited by the diameterof their pores, so that fluids, which are of too glutinous a consistence to patss readily through them, are liable to obstruct or entirely:block up these passages. Thus, if the spongioles be sur rounded by a thick solution" of gum, or even of sugar; its pores will be clogged up, scarcely any portion of the fluid will be absorbed, and the plant will wither and perish; but if the same liquids be more Jargely diluted, the watery poition will find its way through the spongrioles, and become available for the sustenance of the plant, while the greater part of the thicker material will be:left behind. The same ap:" parent power of selection is exhibited when the saline solutions of certain stiength are presented to the roots; the water of the solution, with only a small proportion of the salts being taken up, aud the remaining part of the : flaid being found to be more strongly inpregnated with the salts than before this absorption had taken place. 'It would 'ippear;' however,
that this is: merely the result of a mechanical operation; and that it fumishes no evidence of any discriminating faculty in the spongiole; for it is foumd that provided the material presented be: in a state of perfect solution and limpidity, it is sucked in with equal avidity, whether its qualities be deleterious or salubrious. Solutions of sulphiur of copper, which is a dendly poison, are absorbed in large quantities by the roots of plants, which are immersed in them; and water, whicl drains from a bed of manure, and is conseguently loaded with carbonaceons particles, proves exceedingly iniunims when armitted into the system of the plant, from the excess of nutriment it contains. But in the ordinary course of vegetation, no danger can arise from this general power of absorption, since the fluids which nature supplies are always such as are suitable to the organs that are to receive then.
mTlie fluid, which is taken up by the roots, and which, as we have seen, consist chiefly of water, holding in solution atmospleric aix, together with various saline and earthy ingtedients necessairy for the nourishment of the :plant, is: in a perfectly crude state. It inses in the stem of the plant, undergoing scarcely any perceptible change in its ascent, and is in this, state conducted to the leaves; where it is to experience various important modifications. By caising the roots to imbibe coloured lifuids, the general course of the sap has been traced with tolerable accuracy, and it is found to traverse principally the; ligincous substance of the steni; in trees its passage is chiefly through the alburnum, or more recently formed wood, and not through the baik, as was at one time belieyed.
The course of the sap, however, varies under different circumstances, and at different': epochs of vegetation. At the period when the young buds are preparing for their development,
which usually takes place when the genial warmth of spring has penetrated beyond the surface, and expanded the fibres and vessels, of the plant, there arises an urgent demand for nourishment, which the roots:are actively employed in supplying. As the leaves are not yet completed, the sap is at first applied to purposes some what different from those it is destined tof fulfil'at a more advanced period, when it has to nourish the filly expanded organs; this fluid has accordingly reeeived a distinct appellation, being termed the nursling sup. Instead of rising through the alburnum, the nursling sap ascends through the innermost circle of wood, or that which is immediately contiguous to the pith, and is thence transnitted, by unknown chamels, throigh the several", layers of wood, till it reaches the buds which it is to supply with nourishment.e During this circuitous passage, it probalbly undergoes a certain degree of elaboration, fitting it for the office which it has to perform ; it apparently combines with some nutriment, which had been previonsly deposited in, the plant, andi which it t_{t} again dissolves; and thus becoming assimilated, is in a_{i} state proper to be incorporated with the new organization that is developing. This nursing sap, provided for the nourishment of the young buds, has been compared to the mill of animals, which is prepared for, a similar parpose at those times only , when mutriment is required for the rearing of their young.
Several opiinions lave been entertained with regard to the channels through, which the sap is conveyed in its ascent along the stem, and in its passage to its ultimate destination. Many observations tend to shew that in ordinary circumstances, it is not transmitted through any: of the dis; tinguishable vessels of the plant;: for most, of these, in their ${ }_{i}$ natural state, are found to contain only air The
sap must, thérefore, either traverse the cells themse'yes, or pass along the intercellular spaces. That the latter is 'the course it takes,' is the opinion of De Candolle, who adduces a variety of arguments in its support: The sap, he observes, is found to rise equally well in plants whose structiure is wholly cellular;'; a fact ' which proves the ressels are not, in all cases, necessary for its conveyance. In many instances the sap is known to deviate from its usual rectilinear path, and to pursue a circintous course, very dillerent from that of any of the known ressels of the plant. The di fision of the sap in difterent directions, and its stibsidance in the lowest parts, on certain occasions, are facts irreconcilable with the supposition that it is confined in these vessels.

Numerous experiments have been made to discover the velocity with which the sap rises in plants, and the force it exerts in its ascent. Those of Hales are well known ; by lopping off the top of a young rine, and applying to the truncated extremity a glass tube, which, closed round it, he found that the fluid in the tube rose to a height; which, taken into account the specific gravity of the fluid, was equivalent to a perpendicular column of water of more than forty-three feet; and, consequently, exerted a force of propultion cousiderably greater than the pressure of an additional atmosphere. The velocity, as well as the force, of ascent, must; however; be: liable to great variation ; being much influenced by evaporation and other clanges; which the sap undergoes in the leaves. V arious opimions have been enter:tained as to the agency by which the motion of the sap is effected; but although it seems tikely to be resolved into the vital movements of the cellilar structure already mentioned, the question is still enveloped in consider: able ohscurity There is certainly no evidence to prove that it has any
analogy to a amuscular power; and the simplest stipposition we can make. is, that these actions take place by mems' of a contractile property: be= longing to the vegetable tissue, and exerted, undericertain circumstances; and in conformity to certain laws, which we have not yet decided fin determining.

NEAT CATTLE
\because their manageinent, \&c: \%i!
The following is an extract from an article in the Penny Cyclopedia; on the "Cow,"; with additions by the author:-

When only one or two cois are kept, especially when they are to be maintained on a linited portion of pasture, it is of great importance that a good cloice be made wien they are purchased or reared. Some breeds, no doubt, are mucl superior to others; but as a gencral rule, there is a better chance of having a profitable cow, if she be reared on the land on which she is to be kept: When the common breed of the country is decidedly interior it may be profitable to bring a cow from a distance, in which case it slould be from some district: of which the pisture is rather iiferior to that to which she is brought, or at least not better. The best breeds ate foind in the richest pastures, but they do not thrive on worse: On poor land a small active cow will pick 'up her food and kéep in condition, where a fine large cow would starve, or at least fall off rapilly. Where the pastures fire poor but extensive', 'cows' give little milk; and the number' which can be kept minst make up for the produce of each: Wheie, on the other hand, cows are stalled; as in Flanders; and fed on artificial foodibrought to them. in sufficient quantitÿ," large bulky cows give the best return for the food; 'at least: this seems to be the opinion of the Flemish farmers iu. general:

The Devon cow of pure breed will, in Englands: yicld : abont twelve quarts of milk per day for twenty weeks after calving; but the average produce per cow of a whole dairy through the year will not be more than half this quantity, even if all the cows are good, It is found that cight quarts of milk, of the jure Devon breed of cows will produce one poumd of butter, while. it will take twelve quarts of milk of the mixed breed to produce the same quantity: The milk of Canadian cows, of pure breed, is equally productive of butter as that of the Jevon, and will generally yield as much butter from eight quarts of milk as the milk of harge cows will from twelve, fed on the, same kind of pasture.

In France, where the cows are led along the roads to pick upe the herbage growing loy the road-side, or are tethered on a small portion of clover or lucern, a small lean cow: is pre: ferred; and in general the cows commonly met with, and which, are bred in each district, seem the best adapted for the node in which they are fed. Winatever be the breed or quality of a cow, she should always have plenty of food, withont which no considerable prodnce in milk ean be expected: This food should be succulent as well as nourishing, or else fat, will be produced instead of milk. A cow well fed may be safely; milked till within a:month of Jer calving. It is better she should be let dry before the inew milk begins to spring in her, udder. A little attention will readily prevent her liecoming dry too soon, or being milked too long 4 Feifers with the first calf, should be allowed to go dry sooner than old cows ; because their growth would be impeded, by, the double drain of the mill and the calf. It is, best to let a lieiters ge to the bull when natave mrompts, her to it; provided she besnot less than,from fifteen to eighteen months old: for
if they are thwarted in their first heat, they are apt to become irregular ever after ; and it is advantageous for a cow to calve regularly at the same season of the ycar. The best time is May, when the grass begins to be sutuculent. In some countries; such as Switzerlund, the;covs calve regularly in April or May, and are then sent to the pastmres anong the monntains. The ealf is killed almost immediately, unless it, be reared for stock, veal being of little, value.

Where cows are allowed to be in the open air, with proper shelter from stormy and wet weather, they are subject to few diseases They mist be carefilly looked to at the time of calving, but except inturgent cases; nature must be allowed to perform her own offee. A little, common sense and experience will soon teach the possessor of a cow to assist nature, if absolutely necessary; and in case of dificulties the safest way is to call in an experienced person. Drinks a and medicines should be avoided; a little wam water, with some barley-menl mixed with it," is the most comfortable drink for, a cow after calving The calf, and not the cow; should have the first, milk, which natire has intended to purge its intestines of a glutinons substance which is always fomen in the unborn calf. A yery common disease, with cows is a disordered function of the liver producing ayellowish tint in the eyes, and sometimes in the skin. A gentle purge, consisting of half a pound, of glauber salts, an onnce of ginger, and two ounces of treacle, with two quarts of boiling : vater poured over them, may be: given when it is milk-warm, and repeated every other day; keeping the cow warm if in winter by a cloth over the loins. This will in general restore her health. The'symptoms of a diseased liver or lings, ins a cowe are leainness, with a,staxing coat, a husky, cough with loss of appetite, a diff-
culty of benthing, and a great diminution in the secretion of the mills. When a mileh-cow is considerably diseased in the liver or lungs, it wilt be best to dry her atonee, and fatten her if she will put up flesh.

Nothing is more prepulicial than the ideat that medicines are necessiry: to keep cows in health, and the practice of keyping advertised medicines at hand to give to me anime whenefor it is fancied to be ill, is , reey detrimental to their health.: Attention to food and exercise, giving the first regularly and in moderate quantities at a time, and allowing the cow. to use her oven judgment as to the latter, are the great secerets of henth; and a healthy young cour reared at: home, or pirtectised of a consciontions dealer, will probally live to old age withont ever havilig had any discoseA cow is old and miproftitable when she reiches firelve or fourteen yeus. She shotid then be sold fat, aid replaced by a young one.

Iu a late description of the Agricutture of Buekinghanshive, the fullowing remarts on the feeduig of cattle in that Conty, may be interesting to fice reader:-
"The latge Hereford oxen are preferred for srazing where the land is very goon, fiom the notion that a large ox is more profitable than a smatler. A large ox when fit has; nu doubt, nure flesh, in proportion to the houe, and ofal, than at sinaller, supposius both equally fat and wellslaped; but if is by no means proved that this flesh is produced ly the same proportion of foot. A small ox will faten on iuferior phestute, and in a much shorter time than a latger. The retarin is equally quick and more certan, and there are experienced men who mantain that a small North Deron or Seotel Highlaid ox will give a better average profit on his cost mad food, in a given time, than the larger breeds The small Scotch oxen, which fattena so readily in

Euglish pastures, alyays bring the best price iil the mathet, aind theire, is nover any dificulty iit disposing of, them.

The difference in the price of prine large ozen and prine small Scotel oxen in the Suithfied market, is, alvays from a half-pemy, to a pemy per lh, for the whole curcase, in favone of the smath:

In order to kiow by experience: what breed of cattle is most profitable, i is rery advantageons to weigh. them oceasionlly, and note theirincrease: Experience has showit tlie, propurtion betwect tic saleable dumters and the ofth, in diferent: states of fathess ; and tibles have been constructed by which the net, weight is fonud by mere inspection. Multiplying the tive weiglit by 0,605 , gives a near aproximation to the net dond weight of an ox moderitely fat and of a good breed. Whecin ant: ox is fit, lis weight may be very. nearly guessed by measuring lis, girth inmediately bolind lis fore legs, and the leigth from the tip of the shoulder to the perpendienime line which tonches the linder parts, or to a wall against which the mimal is. backed. The square of the girth in inchos and decinals is multiplied by the lougth, mid thic produce multiplied by the decimat, 238 . This gives the weight of the fon quiters in stones of 14 1bs. This jule is foride. ed on the supposition that there is a extain poportion between die net weight of the quarters mad that of a cylinder, the cincumference of which is the girth, and the axis the length taken as above. The proportion lits beci ascertaned ly obser vation, and by repeated compatison The meat surenent will at all erents matiente the proportioned hurense during the period of fattening.

Good water is most essential to the health of catile, and that: which has been some time exposed to the air seenis the best far them. When

90. Comparative Merits of Short Horns and Herefords.

they are fatted in stalls on dry food, they should always have a trough of water within reach. A piece of rock-salt to lick, or some salt given with their food, is highly conducive to their health, and will restore their appetite when it begins to flag. Rubbing the hide with a wisp of straw or a strong brush, as is done to horses, may appear a useless labour, but it is' well known that there is no better substitnte for the exercise which is essential to leailth. When labour is not regarded, as is always the case when the owner of the eattle attends upon them liniself, the curry-comb and the brush are in regular use, and the advantage is not denied.
In those countries where the farmer is allowed to distil a spivit from his grain, it is a great adrautage to an agricultiual establishment to have a distillery attached to it, especially in a remote situation, and not ouly is the fattening of cattle on the refuse of the distillery a source of profit, but the manure extende fertility around. The prodice in spirit and an cattle is casily trasported to a great distance, and alnost thie whole of what is produced by the land returns to it in the shape of manure. The same may be said of the manifactire of sugar from the beet-ioot; which has been lately so much extended in the North of France. It can never be too much impressed apon the minds of agricultivists, that without dung their is no corn ; without cattle there is no dung. Every: means should therefore be used to encourage the breeding and feeding of cattle, and none can be more effectual than to show that the profits of a fam are always proportioned to the quantity of cattle kept, and the abundance of foo provided for them."

In Canada the stock of cattle might be greatly and profitably increased, and an mbuntance of food provided
for them, by adopting a judicious system of husbandry, and observing a dne proportion between the number of cattle kept, and the land occupied as arable, meadow, and pasture. Unless there is a due proportion of cattle Keptitupon every farm, it is inpossible that they can be profitably cultivated, and preserved in the state of fertility that is necessary to ensure the production of crops that will pay the farmer. On fiums that are situated near our cities, where large funatities of manure may be obtained, it may not be necessary to keep a full stock of cattle. In such situations, the prodnce might be nearly all sold, provided the farmer carts manne from the city to keep up the fertility of the soil.

ON THE CONPARATIVE MERITS OF SHORT HORNS AND HEREFORDS IN ENGLAND.
The following extract of a letter, which appeared in the Mark-Lane Eapress in Marcl list, may be interesting to Canadian stock farmers:-
"I wish, as R.S. made no scriple of using other people's names in his letter, and among the number mine, he liad favoured us with his own, it would, in my opinion, have been more in kecping with plain fair dealing. I like to know my man, by name at any rate, and it is rarely indeed that I give myself the tronble to notice any letter, on any subject, however personal its contents may be, umless it has the antlior's name to it: In this instance, lowever, I an tempted to deviate, considering, as I do, that the subject is one of considerable mational importance.
"It appears, Sir, to be the opinion of R. S. that the best standard to test the merits of different breeds of cattle; is to be effected by offering such premiums as will iuduce persons to send to various agricultural meetings throughout the comitry, a num-
ber of enomonsly fatted amimals, and to which ever sort a competent judge, or judges, award the prizes so offered, is a sufficient test, in his mind, of the utility to propagate. So far, however, is this mode of showing stock from being in accordance with my views on the subject, or having a tendency even to lead us to those correct and beneficial conclusions, so desinable for both breeders and feeders to arrive att, that I deem the 'Smithfield Cattle Show, constitnted as it now is, a perfect delusion, calculated to produce, and has produced, to my own knowledge, loss, instead of benefit, to very many individuals. How, Sir, is it possible for any man acting as a judge on such occasions, however competent he may be to decide which is the best ox, \&c., viz.: whichi has paid the most money for the food it has consmined, when he has no satisfactory data to guide him? And this is never given; we have therefore here, as in numberless other shows, a costly pageant, roid of utility. A great deal has been said and written by the advocates of shorthorns, to induce the public to believe that these cattle will mature earlier than any othici sort, and this seems to be the opinion of R. S. to substantiate which he cites, as an example, the three years and six months old heifer, that took the gold medal at the last Chistmas Cattle Show in London. The idea I believe sto be perfectly fallacious, and would have only existed in the minds of those who, either from prejudice or some other canse, had not taken the pains to arrive at more correct conclusions. As I have often seen Herefords as fat at two years old, as beef for beneficial purposes ever ought to be made, and much riper than 1 ever saw a short-horn of the same age, fatted in a similar mamer-namely, on hay and green vegetable food only, I am quite as great an advocate for breeding those animals that
have an inclination to mature early; as R. S. or any other person, but: I fully conem in the observations made by your Herefordshire correspondent, in the P.S. to his letter, that it is worse than folly, in any one, for the purpose of making an ox or stecr is fat at an carly age as his nature will admit, to expend upon:lim double his worth; and without such expenditure, or very near it, it cannot be done, let the sort be what they may. This I ascertained by dear bought experience, nearly forty years ago, since which I have scen nothing to justify a change of such opinion, but on the contrary, very much to confirm it, though for more than twentyfive years past I have been intimately acquainted with the improved shorthorns, but more particularly so the last ten or twelve years, during which time I have endeavoured, in various ways, to induce them who propagate them to test their merits in a tair, legitimate feed mamer, against Herefords.
" That my stecrs will meet with their equals in short-horns, in the London show-yard; I never doubted; how could I, knowing as I well do, those petted creatures never appear there till they have been for two or chree years in the hands of a slilful man-cook, and at 'valet-de-chambre;' who had, during that time, invented, concocted, and administered to their aristocratic appetites, every delicacy and comfort that art could invent; not in a common feeding-pen, but in a suite of apartments savouring, at times, more of c Ean de Cologne, than of the vulgar odour of a Buckinghainshire gragier's feeding-stall."
Poole, House, Upton-on-Severn,
March 8, 1838.

Johr Price.

To force, by extriordiniry feeding, animals of any breed, for show, at a cost they never can repay, tends only to lead farmers into error that must be injurious to them; and the above letter is given to provent such a practice in Cauada.

THE COMLPARATIVE ADVANTAGE
OOF FEDDING CATTLE WYTH GRAIN, OR WITH OLL CAKE.
Aus) (Froman Euglish paper)
" If the firmer was a friend to limself, the preferable mode of fattening was to feed the mimal with the good and clean produce of his own firm. When in the English markets, boans caibe purchased at 15 s., and barley at 13s. per coomb, of 4 bushels, it is recommended decidedly to feed with faim prodnce. It is the opinion of eminent feeders of eattle, that to feed a beast for a prize, corn is preferable to oil-cake; for independently of the cheapness of the one, the exact composition, of the oil-cake sold in England was not known ; and besides, feeding stock with corn was bencficial $]_{j}$ to the famer, as it was creating a manket for his own pro"duce."
A farmer states firther:-
©I gave my feeding lensts ground corn for several years with suceess, particularly bean meal; I also used banley and wheat, meal, which, when I gave to them withont alarge proportion of bean meal, disagreed with them, cuasing then to scour; butthree years ago, having a (puntity of inferior barley, and no beans, I determined to try whether, the boiling of the barley would prevent the effects the meal produced on the bowels. The trial was so successfil that I contimued feeding with boiled barley ever since ; , and this year I have six beasts feeding on boiled barley superiot to any I have seen in the neighbouhood fed on oil-cake $:$ and so convinced waş a friend who saw them very lately, of the superion coudition of mine to his, which are feeding on oil-cake, that he expressed his intention of immediately following iny example.

The method of boiling the barley is as afollows :-To two parts of water aild one of barley; then lobil it 'slowly; when it" boils add no more
fuel, but let it xeman in the ressel closely covered; at the end of fortyeight hours take iti out to cool, and if properly done, it will: have imbibed all the water, every corn will be burst and in a jelly-like state; this mix with chatf; and afterwards give hay to assist rominatioin. My six beasts, each weighing from 50 to 60 stone (14 llose to the stone) consime two bushels of batey per day, worth at: market 3s per bushel. The icost of boiling, now coals are selling at ls. 6 d . per cwt., is 1 gd. per lonshel."

There is no doult lont Camadian agriculturists will find theiralvintage in adoping the plan of feedingi cattile on some of their inferior gratin. If Whent cmot be grown to advantage, we will not be able to find a minket for all the batley and oats that may be grown, muless we manafacture some of it into butchers' meat, by feeding cattle with it.

CALVES.

The rearing and fattening of calves is a very important part of rumal aconomy, and on the cure with which this is ilone depends mucle of the profit of grass-land in particular situations: In the dairy districts the milk is so valnable, that calves are got rid of as soon as possible. In some comtrics they are killed when onlya few days old, and the flesh is of little value, heing very soft and tasteless. : In others the flesli of very young calves is considered miwholesome and penalties have been imposed on those who kill a calf before a certain age This is the case in France and Switzerland, where ten days is the carliest time at- which a calf is permitted to be killed for: sale.

Wealth and luxury have introduced a very different mode of proceeding in EIngland. Calves are asuckled with great care, and allowed; to take as much milk as they canswallow, in order to make them fat, and their
flesh white and delicate. The price at which a fitt calf is sold, when from cight to twelve weeks old, is often much greater than he would fetch at twelve months old, if rened in the common way.

It is chiefly in the neighbourhood of large towns in the British Isles, that the practice of fattening calves is profitable. And there are calif-dealers who bity calves in the dairy districts, and sell them to those who fitten them near towns. When the calf begins to thrive on the milk which he sucks from the cow, or that is given to him warm, nothing more is necessury thim to keep him extremely clem: and dry, to give lim plenty of air, but not mnch light, and never to disturb him between meals, which are generally twice a day, at the usual time of milking the cows. If one cow does hot give sulficient milk for the calf, when it begins to get large, it ought to get mill fiom another cow.

The calf-pens shonld be made Jike narrow stalls, each for the accommodation of only one calf, just wide enough to allow him to lie down, but, not to tum about and lick himself, which, if it become a habit, will much retard his progress of fattening. The lottom of the pen may lo pared with bricks, and washed clem morning and evening; or, if boarded, the bourds should be about six inches from the ground, with holes bored in them: to let the urine drain through. A piece of chalk, or powdered lime stone is put in a small trough, which the calf licks, and, thus corrects the acielity which is apt to be gencrated in the stomach. When the calves are taken out of their stalls to suck the cows, they should not be allowed to play instead of sucling. If they appear not to hawe much appetite, a little salt may berubbed into their mouth, and they may occasionilly hive a maw erg put down their theont. $:$ At five or : Six w weeks old, if lept: so long,: a
small bumlle of sweet hay might be lumg ap before the calf, and it will pick a little of it; and by thms exciting the silliva the digestion will be assisted. It is only by minute attiention that the fattening of calves can be made more profitable that the making. of butter or cheese:- When it is woll managed in. England, and the price of veal, is about one halt the price of butter by the pound, it is thought to be advamtageons to fitten calves, but otherwise making butter is considered more protitable. When a calf gets large, and passes the age of cight, wedks, it takes a much greater quantity, of mills in comparison to what it did proviously, to that age, to produce the sane increase of flesh; and-it isigenemally pradent to sell them at the age of cight weoks. \boldsymbol{A} calf well fattened, whose fone quarters will weigh fiom 120 to 144 lbs ., will nlways sell better in the English market than one that is larger. The difference in the price is generally one pemy in the pound, and sonetimes over that. To know the weight of the fom quarters of a calf when killed, take the live weight and multiply it by 0,6 . Thus if a live calf weighs 200 pounds, his four quarters when killed will; weigh 120 lbs: 200 - $0,6=120$.

When calyes are intended to be reared for graving or for the dairy, the most perfect ones should be chosen. They shonld be allowed to suck the mother three or four days, but no move, and then be tanght to drink milk out of a pail. The is soon accomplished by gentleness and cure. Should there be any difficulty, in teaching; him to suck with the hand in the usual way, a wisp of twisted straw is put. into the pail and one end of it in his month. It is suid that this seldom fails to bring him to drink. When the ealf is a week old, skimmed milk whick; has leen boileditind allowed to cool again, so as to be. milk-warm, may be given him. After a time this may: be dilutediwith; water,
and a little meal stirred into it; or some thin gruel may be made to which skimmed nilk is added. Carrots and turnips make excellent food for calves, if boiled with cut hay and given wam, In this way calves might be reared on very little milk, till they can live on grass alone. The diseases of calves are chiefly scouring and constipation: for the first, if the calves are strong, the following receipt is recommended as likely to remove the complaint:-prepared chall four ounces, crubs' eyes two onnces, white powder of burned bones two onnces. These ingredients are pulverized and well mixed; and a large table-spoonful of the powder is given in a pint of now milk evory night and morning before the calf is fed, until the purging coases. For costiveness the following is a good and safe remedy:-castor-oil one ounce, prepared kali half a drachm, ginger in powder one tea-spoonfil. Mix these for a dose, and give it in half a pint of warm milk.

nssects

INJURIOUS TO AGRICULTURE:
In Canada Inseots, above all other animals, are by far the most injurions to agriculturists; not only from their prodigious numbers, but from their attading the produce of the earth in all its stages of growth and maturity, It would, therefore, be very advantageous to persous engaged in agricultural pursuits to acquire as much knowledge as possible of those msects that are more particularly injurious to hime In Kirby and Spence's Introduction to Entomology, vol. 1, and in the LinnTransactions, vol. 4 and 5 , there is mucli valuable information respecting insects, including those that are the most injurious to the Canadian farmer.

It would occupy many pages to go into a minute description of the
various insects that occasionally damate the seed and crops in this Province For the present, the author will give a few extracts from works lately published on Entomology, that may be interesting to farmers.

And 1st. The Plysiology of Insects.

Iusects are distinguished from worms, by always having feet in their perfect state, as the beetle, butterfly, Sc. Worms erial upon their bellies and have no feet, as the earth-worm, slug, suail, Ste The genematy of insects have only six feet; lite some few have a great many more.

Nearly all insects are oviporous; that is, produced from the egg. These egess are seldom found singly; theyr are small in size and do not grow: The egrs of some species are hatched in a few days, while those of others remain doring the winter, and the young do not come forth until the season at which the leaves of the plants upon which they feod begin to expand.

The second state of the insect is called the larve, in systematic language, and is known to the valgar by varions names. Caterpillars are thoselarvo which are exposed, and feed upon leaves and plants, as the caterpillar of the common cabbage butterfy: The larvo of beetles usually live in the earth, in the trunks of trees, or on the substance on which they feed; they are generally of a whitish colour, thite and clumsy in form, and are called grul)s. The larve of the common cockchaffer, and of the mut-beetles, are of this description; while the name of maggots is usually given to the larva of flies, bees, ants, Sc., all of which live in the some confined state as those of beetles. It is in this stage of existence the insects are most voracious, and consequently most destructive to plants.
When the larva has attained to its fiell size, it changes into the pupa or
chrysalis, state. This is done in different situations, according to the tribes to which they belong. The cluysallis of butterflies are naked, and either suspended or attached to trees, brinches; walls, Ace. Those of moths are either concealed in a case like the coecoon of the silk worm, or the caterpillar undergoes its change in the earth. The period in which insects remain in this state varies according to the species; but in most cases they are inactive and torpid.

The imago, or perfect insect, is produced fiom the chrysalis, and is the only state in which all its parts and members are fully developed. The appoazmee and economy of perfect insects, in general, is totally diferent from those of the learee and pupae, and it is only in its final state of existence that they are furnished with wings, either four or two in number. The females of the glowworm, and of some few moths, are apterons, while many beetles (ill. though furnished with hard winged cases) are destitute of real wings.

The duration of insects is extremely variable; the greatest proportion appear to be annuals emerging from the egg, and passug through the three stages of their existence within the space of a yeat. But there are a great mumber of species, particularly among the beetlos, which pass three, and even four years in the caterpillar state; and instances are on record of bectles remaining in timber from ten to fitteen yenrs. The greatest proportion of moths are biemial, passing the winter in the chrysulis state, and closing their existence in the succeeding stmmer. The transitory life of the Ephemerit is proverbial ; the perfect insect exists but for a day, and seems bom only to continue its species; yet in the larva state it enjoys a life of one, two, or even threc years.
2. Clussification of Insects.

Macleary observes that insects may
be divided into two groupes: 1. $A p$-: terous Insects, having either no metanorphosies, or only that kind of it the tendency of which is confined to the inerease of the number of fect; these, as the name implies, are destitute of wings. 2.: True Insects, or those whose metimnorphosies have a tendency to give wings to the perfect or inage state, bit never more than six feet.

True Insects are again devisiable into two priniary grons; the first of these are organized for mastication, in their perfect state, and the second are orgmized for suction alone. Each of these divisions contain five separate orders.

Thic Masticating Tisects are furnished with jaws of a horny or inembranacions sulstance, infinitely diversified in their form and structure. It is not necessary to notice the several orders into which they are divided. It will be sufficient to describe those that are particilarly injurious to the agriculturist.
lst. Coleoptera.-This well defined and extensive order comprehends all insects known by the name of beetles. They have two wings, coniccaled bencath a pair of hard wiug-cases, which meet close together in a straight line down the back. There are many tribes of these insects, which, both in their larve and perfect state, are extensively injurious to man.
21. Orthöptera.-The true wings are but two, very large when expauded, and fold length-ways when, at rest, and are covered with wingcases, of a thin tougl substance. The leading characters of this order are exemplified in the blatta, or cockroach; the pest of tropical countries, and frequently tronblesome in our kitchens and larders.

The Suctorial Insects contain five orders. In their larve state, they are mostly furnished with strong and well defined jaws,and feed voraciously
upon animal and regetable bodies; yet, from the perfect insect being supported by dsuction alone, it is obvious that in ithis state they cen do no injury to the agriculturist.:
1: Lepidöptere.-The wings :are four, thin, membranaceons, and covered with'ar: fine powdery substance, whiclp, by the magnifyng 'glas, is shown to consist of minute scales, lying one upon another, like those in fishes. imsthe = buttertly and mainth tribes are'examples of these insects, the larve of which are called caterpillars. ?:
:2. Diptera:-The wings are two, clear: and trimsparent, like those of the common hense-fly. The order, is wery mumerous, iand contains many insects which are injurions to vegetables' ast lavere, and troublesome to min in a winged state; as the great whane-fly, wheat-fly; cranc-fyy, su.
f 3 .Hemipteru:- Insects of this order: are :finished with two folded wiigs,' coreredi by"wing-cases, also crossing over cach other, of a semi-: corncoust snbistänce; and which are likewise useful as forgans of flight: The warious'insects commoily called field-bugs, which : emit'a stromg and disagreeable smell when handled, are all "urraiged mader this order.
\because : 4 . Homoptërle.-These insects resemble the last'; 'luat the body', instead of being: depressed :and flat, is convex and thick; the wings, :also, instead of folding over each:other,' embrace the isides of thie body. . The froghopper, in its-perfect or wingel state, se-n grood example of these insects. The haryaresides in a drop of froth of its own making, and is then com-monly- known in . Bugland as the cuckloo-spit iisect: by teeding upon the sisty it causes dhe lenves to curl upp:and the growth of young plants. is thus materially clicelked.

13. Insects injurious. lo, Live Stock.

The Horse.-The principal foes to this' aninnal are the horse-bee and
gatilfy. :The first deposits its eggs on such: parts of the body as aue liable to be licked: by : the tongue; : and the animal, unconscions of what: it is $:$ doing, , thus: conveys its : enemy. into the stomach; the young lavere: are there : nowirished,... and llecomes whitish rongh maggots, which , are known by the name of bots. They: attain theie: full size abont the later: end of May, and are woided. by the anns from that time whtil the end of, Jume. "On dropping to the gromd, they find out-some : convenient' retreat, where they chamge into ar chrysalis; ; andin six or seven week: the Hy appears. \because The female is distinguished from the male s, by the lengthened shape of her body. The inside of the knee is chiefly selecterl for dejositing her' egge, which will: frequently anomit to fow or five hriudred on one harse... In other species, the gad-fly is still more troublesome; : it deposits its eggs upon the lijes, and culuses excessive: and distressing uncasiness to the animal. \cdot A:Mhr. Clark; who has in-, vestigated the listory of these insects, observes that in ordinary , cases it is hot improbable that they are bencficial to our cattle, by acting as perpetual stimuli, or blister's ; yet, when they exceed certain limits, they produce' disease, .and sometinies , deatli. The prevention of bots may.be effected by wateling the aminal at: the season when the female deposits her: eggs (usually:in Angust and Scptember), and should the horse appear minch agiated in its pasture, , there will be good reason to suspect hat it has' been attacked, by the; fly; . the eggs may then be removed by the lorish and curry-comb, or by it pair of scissors.

Morned Catte' are likewise subject to the atticeles of at peciliar speceies of gad-fly,' which cuases them great terror and distress. The larvio is smooth anid fiat: and the clurysalis opens. by a lid when the insect
emerges from it. , When this insect appears among the herd in England, they exlibit great agitation; and with their tails erect, gallop about and utter loud lowings. The eggs are deposited within the skin of the animal, and in a wound made by a tube resembling an auger, with which the female is provided. These flies only attack yomig and healthy subjects; but, independently of the terror they create, do "not appear, to occasion any material injury-

Sheep are also infested by another species of gad-fly, which deposits its egrgs in the inner margin of their nostrils. The moment the fly tonches this part of the shecp, they shatse their. heids, and strike the ground violently with their fore feet; at the same time holding their noses close, to the earth, they run away, looking about them on every side to see if the fly pursues; they will sometimes crowd together in a wet or dusty road with their noses close to the ground. The larvae are white, flat on one side and convex on the other; they inhabit the carities of the maxillary sinuses, mad crawl, when the animal is dead, into those of the horns and fiontal sinuses; when full grown, thiey fall throügh the nostrils, and chunge to a chrysulis; which produces the fly in about two months. "Swine; pigeons, and all kinds of poultry are subject to fleas and lice of various kinds, but seldom to such'a degree as to occasion death.

4. Insects injurious to Vegetables.

The ravages of insects upon plants commence from the time the seed is committed to the ground, and continue until the produce is gathered into the barn: These various injuries, in one shape or another; are annually experienced; and many of them, we have greatreason to appre-hend, will hereafter increase to an alarming extent:" Farmers have: a prejudice against birds'in consequìerice of the grain they destroy in the hai--
vest; but it is very probable that Providence has kindly given us these: birds to keep the insect tribes within dne limits; and it may be the interest of the agriculturist to protect birds; rather than destroy them, though they may consume some of his grinin.

Whedt, in every state, is subject to many insect depredators. A small grub, (by some mistaken for the wire-; worm) eats into the young plant about an inch below. its surfice, de-' vours the central past, and thus causes its immediate death.' " The wire-wom is, also most destructive to the wheat-plants in the spring; particularly if the soil is loose, and very fertile. 'In IEngland;' wheat' is' sometimes attacked by a fy, which makes al lodgement in the heart of the principal' stem just above 'the root, giving the crop at first a mosit unpromising appearance, but ultimately it proves that the plant, instead of being injured, derives gireat benefit from this circumstance; for; the main-stem perishing, the root (which was not hurt) threw ont frésh shoots on every' side, so as to yield a more abundant crop than in' other fields where the insect hatd not beent: When first obseired in England, this insect cansed great alarm among agricultmists, who thought it might prore the Hessian fly: The Hessian fly has appeared in Cänada occasionalify, but within the last feiv years it has not cansed any material. injury to the wheat crop. When the wheat blossoms, it becones exposed to the attack of a small onange: coloured "gnat,' which deposits its eggs in the centre of the flower ; the lirve or grub devours the pollen, and thus prevents the impregration of the givin. This latter' insect hais' been particularly destructive to the wheat crop in Lower Canada for the 'last fou years, and is generally known äs the " wheat-fly: "Its' history" and economy has been ably:investigated by Marsham and the Rev. Mr. Kirby;

The mjiury first appears in the ear, several ot which, on being opened, will be found to contain amorangecoloured, powders in this, are concenled very minute larye, which, on their being magnified, are seen to be thick at one end extending and contracting themselves at pleasure, and frequently jumping talf an inch at one spring ; they take their station in the longitudinal furrow of the grain, and by sucking its milky juice causes it to slixink up, and become what the farmers in England call pungled st the last sown wheat (fan sown in England) is always most infected. In, the beginuing of Jume (in the latter end of June in Canadi), the perfect insect may be scen in' innumerable multitndes, flying in the erening in all directions over the Wheat-field, but during the day not one is to be perceived. The female lays lier egss by mems of a rectractile tule, which incloses a very long and acute sting rescmbling a hair, but this can only be distiutetly seen when the inseet is magnified. The whontfy would soon become a formidable enemy to manlind, were not jts race exposed to an invetcrate foe scarcely larger than thenselves'; this is the Tolncumon Tipulue, the female of which earefilly searches out thio grubs of the whent-fy, and deposits in eacli one of lier eggs, these are hatched, and ultinitely the larye, deyours the body which gave it life. One Tchneumon will thus cause the death of may dozen, mend prevent the future multiplication of thousands. It is: very doubtily wiether the Ichneumon destroys many of the lay y of the Wheat-fly im Cuada The only palliative that has been recommended for stonping the progress of this insect has orignated in MrKirly ; this consumate naturalist thinks much benefit would be dërived by funigating the wheat with tobacco and sulphü, when the wind is in a favourable quarter, this must be
done as soon as the ear bogins, to, sliont from the leafy stalk.

To those who laye not seen the whient-fly, the following description of it, is given by the Rey. ML. Kindy: may be interesting - - , ph
"Tipula tritioi- This little fy is about one-twolfth of m inch in: length, and of a reddish yellow. colour; the wings are nill-white and exhibit the prismatic colours in: cortain lights; the eyes are black. This insect, which is commonly known as the wheat-fly, may be obseryed sometimes hi Hie greatest abuidance, flying about wheat-fields in the month of June. It generally makes its appearance about seven or eight o'cock in the evening, yet in the moning not a single one, is to be scen mon the wing; they do not, lowever, quit the ficle which is the secne of their, employment, for upor shaking the stalks of the wheat, or otherwise disturbing them, they will fly about near the groum in great mumbers. I found: their station of repose to be upon the lower pait of the cnlm with their heads mp wards", M: Kirby states firther that it is about eight o'clock in the crening that they deposit their egss; and that he lad seen truelve specineas this occupied at the same tine on a siugle ear, and olscryes that these flies are sometimes so numerons, that were all to lay their eggs, one thate of the gram would be destroyed. In Camadi, very frecuently, mine-tenthe of the crop is destroyed by this fly. Mi. Kinly says, "I have secu, more than once, scren or eiglt florets in an ear, inhabited by the lirves, and sometimes so many as thirty in in sugle floret, seldom less than eight or nine, med yet lave scarecly ever found moxe tham one pupa in an ear, and had to: exanine sercral to meet with that. Tlie pupa that I have observed have generally been somewhat attached to the grain, and, what is worthy of notice, I never obseryed them within
these florets where the larvo had taken up their residence; they seem inviaiably to chose for their habitations in their immediate state, one where the grain is uninjured, to which they may ntach themselves." This account agrees perfectly with - thie habits of the wheat-fly in Canadat The only difference is, that the injury to the crop here is gencrally much more extensive than it ever has been in Britain.

One canse of this is, that the fall sown wheat in Dhrgland is gencrally in ear before the fly appears there. It is only immediately after the ear is shot out, while soft and tender, that the fly can deposit its eggs within the glomes that cover the germen or florets. This same caise may save the fall sown wheat in Upper Canada; that is generally in car carly in Junc. We have never observed the wheat-fly:make its appearance in Lower Canada before the 25 th of June, and conld we have our wheat fully shot out in ear; a few days pretious to that, it might escape injury. Previous to this year the wheat wis the only grain that suffered much by the fly; but this year, the rye and the barley has been very nuch injured indeed we have seen ears of barley that had not one grain left. It is probable that we must contrive to sow our barley in future at such a tine that it will come into ear before the 25 th of June, or after the 15 th or 20 th of July: The fly disappears about the later period: It is dangerons to have our wheat or bavley yery late; but there appears to be no:remedy against the ravages of the fly: but by having the grain cone into cai at a time they are not present to injure it. If the fly is reproduced from the larve, they wonld soon become extinct if they had only the barley to feed upon, because the larver cannot escape from under the rind of the barley grain, as they do from the glomes of the wheat grain,
and, therefore, theymust perish there.
We have scen the liarvo or pupa fall to the gromd from the wheat, but whether they remain there, and reproduce the fly in the succeeding spring, is a matter we have not been able to ascortain, though we believe it to be so. Last year, immediately before the larve or magrots disappeared from the wheat, we cxamined then with a microscope, and found many of them in the act of casting of the old skin, and when they had effected this, they appeared of a brighter colom; and larger size. ${ }^{\circ}$ In the year 1835, we had a crop of wheat greatly injured by the fly. In the fill the wheat stubble was ploughed; and in the succeeding spring, potatoes were planted in the land. In the latter end of June, the fly appeared in myriads, flying about the potatoe plants, though no wheat was near the place. It would appear from this circumstance probable, that the larve or pupa remains in the soil during the winter, and produces the fly in the spring.

Many persons have confounded the larve of the whent-fly with the corn-wheevil, and have attributed to the latter insect the injury done to the wheat crops in Canada for the last four years. . The com-weevil is, however, altogether a different insect, as the following description of it will show.:
The corn-weeyil (Calatidna, granaria), which commits ?so much havoc in English granaries, is about the sixth of ani inch long, or rather: less; of a pitchy: red colour ; the thorax is coarsely punctured, and the wing-cases are deeply striated; the strim are minutely punctured; the legs and attennae are red.

This little insect bores a hole into the grain with its proboscis, in which an egg is deposited; the egg turns: to a little grub or larvo, which de-vours the whole of the inside of the: grain, leaving the husk entire. This:
guantity of food is just sufficient to mature the grub; it then turns to the pupa, and afterwards to the weevil, which easily breaks through the husk, and is then at liberty to produce as its parent did. When wheat is suspected to contain these little weevils or their grubs, that which is affected mary be easily discovered by throwing the whole into water, that which is good will sink, while the rest will float. This insect will never injure grain, except when it is stored in gramarics.
Rye is subject to the attacks of a small fly which introduces its eggs into the lieart of the shoots, and oecusions considerable loss in the crop in England. No remedy has yet been proposed for this pest, which, if not extensive, may be checked by placking the injured ears and burning them: The wheat-fly injures this grainin Canada.
Barleij is less subject to insect foes in the progress of its growth than whent. The wheat-fly attacks it, zind does it some injury, and this year to a great extent. The wire-worm sometimes cuts the young plants of barley Helow the surface of the soil, and destroys a large portion of the plants on lands that are loose and fertile.
Oats are not subject to many diseases, buit like other grain are subject to be destroyed by the universal devastator, the wire-worm.
,The diseases of Peas are mildew and blight oceasionally : its insect cnemies, however, are formidable; particularly the plantlouse, one species of which is peculiar to this plant: Beans are exposed to the same injury from another species of plant louse, of a black colour, which begins at the top of the plant, and multiplies downwards: In both cases the most effectual remedy is to top the plants at an eurly period of the einfection, and buun the parts so gathered; this plan is likewise advantageous, as it improves both the quantity and
quality of the crop. The earlier peas and beans are sown, the better chance they stand of escaping this pest; or if a small quantity of quick-lime is sprinkled upon them when they are a. few inches high, experience has shown that the plants remain uninjured, while the insect is totally destroyed.

Turaips are subject to several peculiar diseases, and we the food of many noxions insects. On the first appearance of the leaves, a host of little jumping beetles attack and devour them. Danger is also caused by a little weeril which pierces a hole in the cuticle. Watering with lime water is suid to check both these evils: Tobacco water is also recommended.

The Hop is also liable to many external and internal diseases; by the first term may be understood injuries cansed by insects, while those which belong to the vegetable are internal. When the plant first emerges from the ground, they are infested by a small beetle, vulgarly called the flea. In a more advanced state the tops and branches are devoured by the hop A phis, better known by the name of the green fly, while tht the: same time the roots are subject to the attack of the caterpillar of a singula species of moth; named by collectors the ghost. The vegetable diseases incident to the hop are the honey-dew, the mould; the blight, and the fire-blast, all of which take place at different times, though mostly when the plant is full grown.
As iremedy against the insect called the flea (which properly is a beetle of a species closely allied to that which infects young turnips) it is recommended to dust the young plants with pulyerized quick-lime, on the first symptom of their: being attacked by this insect. The same renedy is recommended against the green fly. Suden and violent slowers of rain, or strong wind, will destroy millions of them, and vast
quantities of them are devoured in England by small birds. The moth or ghost mist be destroyed; and may be done by attracting" them to a candle and lantern carricd over the hop-field at uight, when they may be readily destroyed by a person accustomed to catchi insects. it it said that this method is frequently adopted in England, and that one active person may clear a large plantation of this moth in a few evenings.

Meadows and Pastures are often destroyed to a very great extent by the lavee or grub of the cock-chaffer or brown-beetle.

The eggs of this devastator are white, and are deposited in the ground, where they soon change into a soft whitish grub with a red head, and about an inch and a laiff long. In this state it continues four years, during which time it conmits most destructive ravages on the roots, not only of grass, but of all other plants; and potatoes in particular. In some scasons, whole acres of grass land is rendered unproductive; all verdure is lost, and the turf will roll upatmost with as much ease as if it had been cut with a spade. The whole of this injury being carried on under ground, adnits neither of preventive or palliative measure : but the destruction to be expected from the perfect insect may be prevented. If the dried and withered turf is now removed, the soil underneath will appear turned into a soft mould for an inchein depth, like the bed of a garden; in this will be found the grubs; lying on their backs in a curved position, and wast quantities may be gathered and given to pigs and poultry. a: When fill growns the laure dig'in the earth to the almost incredible depth of five or six feet, spin a smooth case, and then change into a chrysalis. In this inactive form they remain until the following spring. The, perfect insect then comes from the ground, and comnences an im-
mediate attack upon the leaves of all trees. Their numbers are sometimes. so inmense, that were not the follow-: ing account fully authenticated, one minht doubt its correctness:-
In 1688 , the cock-chafter appeared on the hedges and trees in the county of Galway in clusters of thousands, clinging to each other's backs in the mamer of ibees when they swarm. During the day they remaned quiet, but towads evening the whole were. in motion, and the lumming noise of their wings scemed like distant drums. Their nimbers were so prodigions, that for the square of three miles, they darkened the air; and the noise: they made in devouring the leaves was so lond as to hive been compared to the distant sawing of timber. In a very short time the leaves of all the trees for mury miles were destroyed, leaving the whole country, in the middle of summer; as naked and desolate as it would have been in winter. Swine and poultry devoured them in vast quautities; they waited under the trees for the clusters drop-; ping; and lecame fat upon this unusual. food; even the lower orders of the people, from these insects having eaten up the produce of the earth, adopted a: mode of dressing them, and using them as food. ' 'Towards the end of summer they are said to have suddenly disappeared, and we have no account of their having begin seen in any considerable numbers the following year--PhilosophicalTran-sactions:-

This account is introduced in order to show that insects may appear occasionally in prodigious numbers in a district or country; and having remained for a season or more, may again disappear altogether as unaccountably as wis their first appearance. It is to be hoped that the wheat-fly may leave us in the same manner, as no remedy against their ravages is at present in the power of man.

Mcabbages, fruit, and forest-trees are subject to be injured by caterpillars, tand other insects.- The best mode of \because destroying caterpillars on fruit trees or cabbages; is by handpicking. Other remodies are recommended, suche as dusting the treos witht. pulverized: quick-lime with a haid machune; called a lime-dister. Cabbages maiy be dusted in the same way:pIt:is also recommended to bore a small hole in the trunk of the apple tree infected with caterpillars, fill it with sulphine'; and stop up the hole with a tight plug. . It is said that in twelve hours after the sulplime: is prit into the tree, there will not one caterpillar: remain upon't.

The A'phides, or Plant Lice, next to locusts, are the most miversal: devastators of the vegetable world; almost every: plant has peculiar species; their fecondity is so prodigious; that Reammur has calculated the in : five generations one A'phis may be the progenitor of $5,094,900$;000 descendants ; and it is supposed that in one year there maybe twenty gencrations! Phose which attack the different kinds of grain seldon multiply so fast as to be very injurious but thiose peculiav to pulse inerense rapidly, and take such possession, that the plants aie greatly injured, and frechently destroyed before the seeds are matured'; and this often happens without: the: farmer's knowingt the true cause of damage to his crop:

The only check to the multiplying of these insects is that : of their being in their larve state, the favourite food of sparrows and other simall: birds; who destroy myriads of them: T3ut the most destructive foe of the phantjouse is the lady-bird or lindy-cow (Coccinella) which, in to larye state, feeds entirely upon: these insects. The application of powdered quick:lime to crops of peas or beans in:fected'with the plant-louse is recom: meided, or to top off the infected
slionts: before the insect is greatly multiplied, is nlso a good planmans. The wire-worm is a mime that has been given without discrimination to ${ }^{-}$ the larve or grubs of vaious insects, totally. different froni cacli other; hence it is, that' much confusion and contradiction will be found respecting it in agricultural books. The true wire-worm is the grub of a small bectle (Dlater segetis), aid it derives its name from its slender form, and uncommon hardness. -It lives in the larva state nearly five years; during which time it is supported by devouring the roots of wheat, rye barley; oats, and guas, which it attacks indiscriminately, and canses ammally a large, diminution : of produce; it abourds cliefly: in new broken-up land, and is paiticularly destructive to gurdens recently converted from pasture had. In the larve state it may be decoyed by offering it more tempting food; but:no method has yot been devised for destroying the perfect insect.: Large premiums are offered in England for the discovery. of an effectual yemedy against the ravages of the wite-worm:

The Giub is a general mame for several larye of crane fliess: (Tipūlado , called, by comitrypeople in England long-legs, or gattei longlegs:
One of the most destructive of these insects to the roots of grass and granis the Tipula:Oleracen.ti. The larre burows manong the roots and feeds ingon the filies.' In many parts of England it cuts off alarge portion of the wheat crop, especially if sown upon clover-lays: It is equallyidestructive to the wheat crops in!Cuada. Reamme says, that sometimes in France; particulatly in marshy lands; the grass of whole districts have been so destroyed by:it, as not to produce the food necessary for the maintenance of the cattle. No remedy has yet been discovered for this evil, nor is the insect killed bylime, even when
applied in , much larger doses than usual:

The operations for; destroying insects, or counteracting their injurious effects are varions, but it rarely happens that insects can be exterminated by any art of man, even from one district; ; the numbers may be diminished, but the species will still remain, although in such small numbers that their operations may not be very injurious Insects may be injured by watering the plauts upon which they feed with tobaceo or lime-water, or by scattering upon the leaves powder: ed quick-line, soot, ashes, barley awns, Ece The smell of tar is particularly offensive to insects, and the effects pioduced by the fimes of tobacco, sulphur, urine, Sce are well known. Hot water, heated to 120 or: 130 degrees will not injure phants, and will destroy insects. Thie late Sir Joseph Banks recommended placing slices of potatoes or turnips where vermin abounded, as at trap for them; the vermin will collect upon the slices during the night; and by examining them in the morning vast numbers may be destroyed. The slices of potatoes or turnips are put on skewers and buried lighty ly under the surface of the soil. This is a remedy that cannot often be tried on a large scele in Canada. It might answer very well in gardeits, and would compent sate for the trouble.

Earth-worms are not injurious to the agriculturist. On the contrary; where they abound, they, are highly. uscful. Without, worms, the eurth would soon become hard, cold, incapable of receiving moisture, or of giving nourishment; to froots; they arc in; fact great promoters to veretation, sby boring, perforating, and loosening the soil bencath and by manuring it abo e with their excrement, which is thrown up into lumps called worm casts.

The foregoing article on "Insects injuriois to Agriculture," has been
selected, in a great measure, from several anthors who have written on the subject, partienlarly Kirby: and Loudon... Within the last three or four years, insects and their: larya, have uecome more than usual injurious to Canadian farmers; and this year particulanly so; It is very probuble that insects may also be the cmuse of producing the diy-rot in seed potatoes, becanse we have found the decayed seed fall of small maggots. There is, fortunately, a remedy for the dry-rot, in planting whole potatocs that are sound; butagainst the wheat insect there is none certain, except in the interposition of a good Providence to remove the plague altogether from our comentry it it

AGRICULTURAE SOCLETESS.

 (2, It has, been lately proposed in England to form. "A National Agricultural Institution,", to be established in London, and to comprise a/ complete Agricultural Library, a musemm for specimens of seeds, plants, \&c.; for models of implements; and, in all cises , where it, can be effected, for the implements aud machines themselves togetior with the means of tryiug then; to engage the superintendance of men eminent in the respective branches of science; to collect renorts on foreign agriculture; to correspond with other societios both at home aud abroad; to, refer, as in the French Institution, aud the British Association, papers oviprofessed discoverics of aclenowledged inportince; to select committees to iilvestigate and report; to amass statistical information interesting to agriculture, to ofter, premiums for inventions, bearing some proportionite value to the expenses to be incurred; or, in certain cises, defixaying the cost of experinents, observations, and reports-a course pursued by the British Association; and above all, to communicate to the agricul?tural classes throughout the Kingdom, by means of cheap publications, nll matters of moment, which shanl have' bèen submitted to competent authorities of the Society, and which shall have stood the test of fair, rigid, and impartial experiment:
It was expected thitit the resident yeomainy throughout England, who would be induced to contribute thieir assistance, both by subscription and experience, and who, by adopting rarious proposed improvements, would, as "it were, conveit the district, containing probably many vaiieties of soils, and different nodes of culture, into a large experimental farm.

Mr. Handly, M.'P., in a letter to Earl Spencer, says,". What has been the course adopted by our enterprizing manufacturers? Had tliey been satisfied "with the inventions' which chance or the intelligence of their artisans might liave disco ofered, in vain' would they' have striggled for the proud ascendancy which they now hold in the scale of the namufactireing world. How truly has it been said, that a Manchester manuificturer', who has been absent from Englaind for the last seven years, would be ruined, if on lis return now, he endeavoured, with his former procosses, to compete with the almost daily improvements of his indefatigable and intelligent rivals. How many thous: and acres:of land would the bleaching operations of Manchester alone require; what enormous capital would lie stretched for weeks unprodiective on the sward, and how impossible would it have been to hive completed the accumulated orders froni foreign customers', liad not chemistry furnisheda clèéip and rapid substitite? How much" of scientific résearch must have beer cmployed to unite, for the ingenious purposes," "the' prodnct of all climes, as lias been so forcibly demonstrated in the case of the commonest printed calico, which the
talented author of a recent pampilet; observes, ' combines the united products of the four quarters of the earth :-the cotton of America, the indigo of Asia, the gum of Africa, and the madder of Europe, all brouglit from remote regions to produce a rustic's gown piece ! How widely different--observes Mr: Handley-the picture which agriculture presents! Since the introduction of the turnip as a field-crop, upwards of a century ago, we look in vain for any improved practice that may be viewed as' an epoch in the cultivation of the soil; and we are still so far in ignorance that we do not yet know with accuracy in what the food of plants consists.

To what are we to attribute the great comparative pre-eininence of Britain over other countries? Why; most' justly, to agricilture and our commercial operations. We, however, consider the former of by far the greatest importance to us, as upon it we tire solely dependant for ${ }^{\text {tr }}$ our very existence- deriviig from it, as we do, that without which we could not possibly subsist, and as it is a nation's only true riches. In thus attaching so much importanee to that delighlitful and healthfiful occupation, in which the fariners of Eng-: land are so uscfully engaged we are firmly of opinion, that every person will coincide in onir observations, for it is well known to all that the greatest importance lias been justly attached in all ares of the world, to that subline (for sublime it miy with evident propriety be designated) employment: To such a height, indeed, " was this opinion carried at one period of the Clusistian era, and even anticedent to it's that even the princes and other nobles of the land, in many parts of the known world (especially in Italy, which produced most excellent and philathropic chazacters, whose agricultural maxims are deserving of the eulogy and attention of all), person-
ally. superintended the farm labours, and even themselves were known to work in the fields, and handle the plough. This very laudable, and, in every respect, praiseworthy regard for agriculture, and those engaged in it, we feel most happy in being enabled to assert, is not:obliterated from the nobles of the present age, we finding them taking so much general, and so lively an interest in the welfare and happiness of the tillers of England's soil. 'One good action,' it hats been asserted, ' is worth a dozen speeches,' to this truism we beg to attest our humble opinion, and so, in fiect, appears to be the opinion of the higher classes."

On the 9th of May a numerous mecting was held at the FreeMason's Tavern, London, consisting of the first men in Euglaind of all shades of political opinions, for the pupose of forming a new Agrienltural Society, to be called " The English Agricultural Society," the distinguisling feature of which is the exclusion of polities from its proceedings. The room was crowded to excess with noblemen and gentlemen. The Society was formed, and a coinmittee named to frame rules and regulations for the government of the Society, who were to make their report on the 27 th Junc, to a gencral meeting of members to meet again on that day at the Free-Mason's Tavern to receive it. Several other Societies have been formed in England lately for the improvement of agriculture in all its branches.

The Yorkslire Agricultural Society encourage the improvement of machinery, in all its departments, as applicable to arriculture, the improvenent of ploughing and other agricultural operations; irrigation, draining, and increasing the fertility of the soil by judicious admixtures; the coonomical rearing, feeding, and fattening of live stocl; ; and, in a word, all the details of agriculture, and all
the means by which the cost of farming can be diminished, and its produce increased, is to be the objects which they will have constantly in view The competitors for premiums for well cultivated furms, must be prepared to show il writing, to the judges who may be appointed to decide these premiums, the quality of the soil, the mode of cultivation adopted for the last five years, detailing the course of crops, and description of manure applied, the estimated amount in bishicls of the corn crops, the estimated weight of the green crops, and the details of any peculiar improvement which lave brouglit the land to its present state of fertility.

The tenant who, within the last five years, shall have drained in the most effectinal, judicions, and coonomical manner, the largest duatity of land in proportion to his ocenpation. The claimaits shall detail the expenses incurred. For a detailed report of the best mode of cultivation upon which a farm of strong land has been actually managed.' Detailed reports of the expenses incurred.

Preminus are offered for a report of the natural listory of the wireworm, and the best means to be adopted to avoid its ravages. Facts of actunl experience must be stated as to the mamer of cliecking their ravages. For the invention and improvement of such agricultural implements as may appear to deserve reward; nlso, for new or improved varieties of agricultural roots, grain, and other seeds, Sc.

These details are given in order to show what are the oljects of Agricultural Socictics in a country where the importance of arriculture is more justly estimated than it is with us, though the English community are not so exclusively dependant upon its produce as the Canadian community are.

Who would expect that the pro-
fitable improvenent of Canadian agriculture is to be effected by paying a few premimis at Cattle Shows to some of our most wealthy and favourably circumstanced farmers, who may exlibit choice animals at these shows? General improvement will never be prodiect by auy such menns. If the improvement of agriculture is desirable, crery county in the Province should have an Agricultumal Society established by law; and thoongh these County Societies, information and instriction, on the arious braiches of husbandxy, might be conveyed to every parish in the counties, by neans of Parish Committees, composed of the most intelligent farmers in ench parish, chosen by the parishioners. The useful education of the pople, and the im provement, of our: agriculture are of infinitely more consequence to the inhabitants of Canada, than all these political matters that have distracted the country for maily years past; and the Canadian community have suffered more injury at thousmal fold, from the want of echeation, and the due improvement of agrienlture, than from all the gricyances that they were ever suhjected to from the govemment. The general and profitable improvement of agriculture cannot be accomplished, without the education of the agricultinal class; but education and agricultimal improvenent may proceed very well together. The tmuan prodnction from our oceupied lands, might casily and certainly be augmented to double what it is now, by better draining, better ploughing, aud more judicious management.

There is perhaps $4,000,000$ acres of land in cultivation at present in Upper and Lower Camada. On the most moderate estinate; this land might be made to yield a prothice that would be worth five or six dollars per acre annually more than it does now. This would augment
the ammal agricultural prodice of the Caundas $£ 6,000,000$. How greatly bencficial would such an increase prove to this community? How much it would cnlarge the means of cinjoyment to the agricultural class, enable them to extend the cultivation and improvement of waste land, the produce from whicli would still more augment the general resources of the country. The merchant, the manuficturer, indeed every portion of the Canadian community must profit by a large production annually created here; that was not previously in existence: This estimate of the possible increase of production is not made withont due consideration, and any competent farmer that has seen much of the Canadas, must be convinced that the estimate is not over what it ought to be.

If the due inprovement of our agriculture would be capable of producing the farourable results we have stated, unguestionably it must be a matter of paramount importance to produce this improvenent if possible. The education of the people is the first step towards it: But as this will require many years to make it genernl, there ate other means that might be adapted immediately, that would have a very bencficial influence.

In the British Isles, the extensive landed proprietors are sufficiently interested in the prosperity of agriciltare to provide for its improvement. Here it is difterent. We have no extensive landed proprietors that can feel the same interest in the prosperity of agriculture that is felt in Englund by the same class, because there income from land here does not depcin upon whether the occupiers or caltivators of land obrains a iarge or a smill produce from it. We thercfore require the interposition of the government to offer encourarement for the inprovement of Canadian agriculture, or we need not hope to
see it much improved in our time. This might be effected without any great, expenditure, and with a certain - prospect of the expenditure being amply refunded, by the vastly augmented means of the people to purchase and consume taxable commodities.

The well instructed famer, cultivating his own estate, for his own profit, camot require pecuniary rewards from public funds to encourage him to do that which he is convinced it is his interest to do. FIe finds sufficient reward in the large produce lie obtains from lis lands by his agricultural skill and good management, over what his uninstructed neighbour can raise, from, perhaps, the very same sort of soil. Honorary rewards should satisfy those who have been so fortmate as to acquire a knowledge of their profession in the British Isles, where: the science and practice of agriculture is certainly better understood than in any other country on carth. It is for the uninstructed farmer that it is necessary to provide instruction and encouragement, and we: submit that it would be anecessary and expedient application of a portion of the public funds to provide this instruction and encouragement throughout the Canadns.
It may bo the opinion of many that this matter migliti very safely be left in the hands of the agricultural class, witlout the interference of the Goveriment; and that to appropriate a sum of money to be distributed by Agricultural Sucieties, where they may:happen to be organized, would be all that the Government need or ought to do. This plan has been alrcarly tried, and we have sulficient proof throughout the country of its fialure, : even \cdots where Agrienltaral Societies have been formed. In miore than half the comnties of Lower Canadaan Agricultual Society vever was formed, though noney was ap-.
propriated for each county, and was left for several years unexpended; and ultimately was paid back to the Receiver-Gencral. From past experience, therefore, we may be convinced, that more effectual measures must be adopted in fiture for the general improvement of ouragriculture, if improvement is desinable, .

We have already stated the necessity that exists for the judicious education of the numa population; and we may hope that forty or fitty years hence almost every landed proprietor and farmer in the Canadas, will have received a sulficient educa-tion. When that time arrives, the improvement of husbaudry may be left altogether in the hands of the. Agriculturists For the present, however, something is required to be done, or the produce from the cultivated lands of Canada will be diminished every yenr, and in a feiv years they will become so exhimsted that, it will be difficult to restore them to their primitive fertility It is possible: that a large portion of these lands may, from this calle, be sold, and get into other hands that will manage them better than their presentowners. This is a result that, for sike of the present inhabit ts, is to be cleplored, but cannot be arerted, imless a better: and more judicious system of agricul-. tural mamagement is adopted without. delay. How this may be effectually introduced is the question: :

The organization of a General Board of Agriculture in each Pro-: vince wonld, we feel convinced, produce much grood, provided the Board was composed of nien who understood the theory and practice of ag. riculture, and who would not be: influenced by any other motives than a' sincere desire to promote the general ${ }^{\text {; }}$ improvement of agriculture, and the: prosperity of the conitry. The following outline of a plan for orgamizing such a:Board, was suggested to the author, hy havig seen a report:
made by the Committee on Agriculture for the State of New York, assembled in Albany in February last: There shall be organized a Próvincial Board of Agriculture to consist of three or five members, who shall be appointed by the Governor, and shall hold their office, for at least five years, and shall receive, while necessarily employed in the duties of their office, the same compensation as Members of the House of "Assembly did reccive.. They may choose a Secretary, if deemed necessary; and shall hold quaterly meetings in Lower Canada, at Quebee and Montreal alternately; aid may also meet at such other times and phaces as may be found expedicnt to fulfil the dutics enjoined upon them by their office:

There sliall be assigned for the meetings of the said Board of Agricilture, and as a museum for models, geological specimens, and agricultural productions, suitiable apartments, both in Quebec and Montreal ; which musenim shall be kept in order by the Secretary, or by some person appointed by the Board, and shall at all time be open and acecssible to the public without clarge.

It shall be the duty of the Provincial Board of Agriculture to examine all reports and returns made by the Presidents of the County Agricultural : Societies, and Boards of Agriculture; to select for publication such of them, und such other essays as they may judge advisable; and shall amnually priblish a volume, to be distribited in the several comties of the Province by the Comuty Agricultural Societies. And they shall examine, when in session, and determine by practical experiment on the merits of all new farm implements or machinery offered for their examination, and they: may award discretionary preminms upon all such. as may be found trinly meritorions and deserving of public patronage,
provided the whole anount expended in any one year shall not exceed - ; and provided further, that no such premium shall be delivered to the person chaming the same until he las deposited with the Board a model of his implement, macline, or improvement.
There shall be deposited in the room assigned to the Board, specimens of choice and rare agricultural productions, models of implements, drawings of choice animals, books, and all other articles which may be presented to the museun, a registry of all which shall be made by the Secretary, and open to the public inspection.
The Board of Agriculture shall report amually to the Governor in the month of Junuary, a statement of their expenditures and of their proceedings during the previous year; and also all matters that they may deen calculated to promote the improvement of agriculture and of domestic industry.
That the Board of Agriculture, constituted as aforesaid, shall have the authority, at their discretion, to award premiums for the production of extraordinary and valnable crops of grain, roots, or any other agricultural or horticultural productions or honsehold manufactures, which, in their view shall, by suth encouragement, add to the productive wealth of: the country, not exceeding, however, a fixed amount, which shall be placed at their disposal.

The mode of organizing County Agricultural Societies might be as at present, namely, that all subscribers should be members.' The members to elect ammally such and so many officers as they may deem proper; none of whom should receive any einolument from lis office, It would be the duty of such officers ammally. to regulate and award premiums on such articles, productions, and improvements as they may dem best
calculated to promote the agricultural and houselold manufacturing interests of the Province; having especial reference to the nett profits which accrue, or are likely to accuc, from the mode of rasing the crop, or the animals, or the fabrication: of the articles of houselold, or Canadian manufacture, with the intention that the rewards shall be given for the most: economical or profitable mode of competition.

It should be a part of the duty of the Board of Agriculture to see that judicious rules and regulations should be established by the County Societies in the distribition of premiums. And in order to secure publice conifidence in such Socicties; without which their proceedings will be viewed with jealousy and distrust, and produce very little benefit; it would be expedient that the officers ammally elected, and the awarding committees, should forego preminms while in office. It would furthier be necessary to prevent an individual from receiving more than one premitum at any anniversary mecting, or more tham one preminm on the sameanimal. This would give a wider circulation to preminms and to encouragement. It would also be right to provide, that before any premime shall be paid, the person claming the same shall deliver in writing, to the President of the Society, an accurate description of the process in preprering the soil, including the quantity and quality of manure applied, in raising the crop, or feeding the animal, as the case may be-the expense and produce of the crop, or increase in value of the animal; with a view of showing accinately the profit of cultivating the crop; or of feeding or fittening the inimal.

That the several Presidents of the County Agricinltiaral Socicties which may be formed, and who may receive public money to expend, shall innually; in the month of December, transinit
all such reports or returns, as they shall be required to demand or receive; to the Secretary of the Provincial Board of Agriculture, together with an abstract: of their proceedings, oxlibiting a detailed account of the expenditure of all monies which shall come into their hands, and stating to whom and for what purpose paid, with the vonehers there'for.

The above is respectfully submitted for consideration. That an urgent necessity exists for the introduction of some new and effectual means to promote the improvement of Camadim agricniture, there can be no doubt. And if His Excellency the Governor Gencral should adopt the means that, will produce the required improvement, it will not be the least of the benefits his Lordship will con-: fer on the Canadian community:

It is not by cattle shows that the general improvement of our agriculture will be effected. The Camadian farmer must first be instructed to drain, plough, and cleain his land pro-: perly, and to crop it judicionsly, before he can have a stock of cattle fit to exhibit as a competitior for preniums. Instruction and encouragement shouild be brought to the most remote log-) house in Canadar It is those poor: fammers who are settled at a distance from our cities that most require:instruction and encouragement. If a portion of the public funds should be granted to advance agricnltural improvenent, it will be of the greatest conseguence that it should be expendded in such amamer as to encourage ic better system of agricultional management among those who now understand it very imperfectly either: in theory or practice ; and we hiimbly: conceive that under the superintendof a Board of Agricultuie,' this result: will inost cortainly and effectially be: attained:

We cannot conclade this article withouttexpressing our surprise and regret that the improvement and
prosperity of Canadian agriculture: should appear to be a matter of perfect indifference to the better informediportion of this community generally, with a very few exceptions. -This statement would not be made had we noticonstant opportunities, during a long residence in Canada, of knowing that it is correct. And we make the statement; now only to show the necessity that exists for; the interference of the Government in this all-important subject, than which no other is of equal consequence to the Canadian people, whether they may think so or not. The matter has been left in the people's own hands a sufficiently long: time to have afforded ample opportunity to show some progress in agricultural improvement, and certainly they cannot boast much of what they have effected in that way, or of the exertions that have been used, by any portion of them, to chcourage inprovement. Whe would, therefore, most respectfully submit the subject to the consideration of his Excellency the Governor General, and it is with this aview that this article has been written. From past experience, we could not:hope to attract much attention in any other quarter to a subject, that has been so long neglected by even those who had it in their power to have acted, differently.
ars rem (To be continued.)
NEW SOUTH WALES AS ITIS.

- Honart, Town, October 8, 1837. My Dear Sir,-I have delayed writing, to you, thus long in order that I might be able to $;$ state facts frompersonal observation, and give you, myozon opinion upon this coun-
1 try in preference to that of other people, which I find very difficult to come by; and after you have been at infinite pains to collect ideas and experience of others, I have in variably. found their, statements in direct opnosition to my own senses, and in
most: instances perfectly useless to a new settler, or as they call us, view; chons... A fter a tedious and uninteresting passage, we arrived here on: the 6th of December, having sailed: from Portsmouth on the 12th of: August: my family bore the disagreenbles of such a loug voyage: much better thans I anticipated, and: all: landed-in good health and spirits: I was so very fortunate as to meet with a very good mercantile engagement befure we left the ship, and where I still continue. I at once took a cottage outside the town with four rooms, kitchen, and garden of about an acre, well stocked with good fruit, : but no vegetables, the place. having , been sometime unoccupied and suffered to rum wild. I had the: whole dugsup for a fallow, after which I undertook to cultivate it myself, rising before daybreak and;woking, hard till breakfast, and after Ireturned from the office resumed my task claily till dusk, which produced good appetite, sound sleep, and ex-: cellent health. The soil is various: and not good, requiring much manure, and I have very little to give to it: but my crop of every thing promiseswell. I keep two goats which supply, us with milk, and pigs for bacon and porkers, one of the latter I have killed a week ago, and shall slaughter: another in three weeks; as, feed is: very dear, these pigs cost me eight: pence per lb.; but they keep me (at. this scarce season of the year) out: of the butcher's shop, where I should: have to pay lod. per pound for beef: not good, and 8d. per pound for seraggy mutton. As the spring ad-: vances meat becomes better and: cheaper, and in early summer is most. excellent. The farmers confine themselves, almost exclusively to: grazing sheep and cattle; in consequence cultivation is most shanefully neglected, . both, as to extent and: management. They say money is: more easily earned by growing wool
than cultivating grain, turnips, \&c., ultimately this evil will produce its own remedy, one step to wards which is the great fall of wool in our market. Although turnips succeed admirably when sown in proper season, there is very little, stale fed meat produced. I know of nothing that would pay so well, as really good beef would sell in any quantity at this moment to the butchers at 10s. 6d. per stone of 14 lb b., and they would retail it at LOd. to ls. per lb. Tallow always sells well, and the hides find a good market. Good land is not in abundance in this Istand, and you rarely meet with ten acres of equal quality. The black soil is extremely productive of grail, and the sandy soil on the const produces most delightful potatoes. The bread, potatoes, and mutton in summer are the best I ever eat. It has himherto been the custom here to grow wheat in successive crops as long as the land will-produce any; some land that I have seen has stoorl this for nearly twenty years, and does not yet appear exhausted; then let it lay in wild oats, and self-sown indigenous grans which they yearly mow and call it hay, frequently selling it for $£ 5$, £6, and $£ 7$ per ton. Some farmers sow rye grass with barley or oats, which they cut sometimes green, and at others when nearly ripe, or in the milky state, and make into hay. Falluws are very warely seen. The effect of a summer fallow is astonishing: The farmers sell all hay aid straw at the nearest towns, and never take manure in retirn; you will readily conceive that this system cannot last long; farms to sell and let are plentifil in the market at moderate terms. A good farmer, wih a capital of $£ 600$ to $£ 1000$, would do much better here than at hone with three times that capital, that is, if he could be industrious, sober, and economical; dairy farming pays admirably; butter averages
from 2s. to 3 s .6 d . per 1 lb ; poultry and eggiare always dear. At present this Colony is suffering and is smarting under the severe check given to it. by the refusal of Government to give grants of land to emigrants. They must ultimately resort to this system, or the Colony cannot go forward, it must and will retrograde. The whale fisilery is a most important brancli of trade and a great source of wealth. This season is said to be more than usually productive; if oil maintains its price in Emope it will enrich the speculators. Ordinary clerks need not come to this place to seek employment, the market is over stucked already. Linen-drapers are much wanted, and I imagine a dozen good hands would find instant employment; wages, $£ 40$, - 50 , to £SO a-year, with bed and board; I knon one or two instances where a much higher salary is paid to men who thoroughly understand the trade and are good shop men; idlers, spendthrifts, and drunkards find no encouragement here. Mechanics of all descriptions are liere in abundance. What appears to me to be most wanted is the small industrious farmer, such as once existed in England, and could rear a family in industry and decency upon 20 to 40 acres of land. This is a most excellent town, containing from 15,000 to 17,000 inhabitants, it far exceeded my expectations; and considering that 35 years ago the whole was a forest, is really a miracle The harbour, or cove, is spacious and beautiful. The river Derwent from the new wharf to Kangaroo Point, is three miles across. The utmost rise of tide is about five feet at full and change of moon: Fish is scarce, and gencrally of inferior quality, except crane fish, which is plentiful, good, and reasonable in price. There is not a native singing bird in this Island: quails are abundant and good; kangaroo scarce, dear, and coarre:

Groceries generally of bad quality, and not cheap according to quality, tea, 1 s .6 d : coffee, 11 d . per lb, both abominable. Sugar, 4 d d to 5 d .; tolerable; loäf sugar, 11 dl to 1 s ; dried fruit dear and bad: Clothes dear: Shoes good and moderate. House rent much lower than it was a few years ago, I pay $£ 30$ per annuin, taxes none, unless you think proper to tas yourself by drinking spirits or wine. The police is most efficient, and I believe property and person to be more: secure here than in any town of equal magnitude in England; the town is ill supplied with very impure water. Filters very uṣeful; I luckily brought a good one with me, which was a great luxury on the passage, and most useful here Climate very changeable, but salubrious. We have summer in the valley, and upon Mount Wellington (distant about seven miles to the summit) winter. Wood dear, and not generally a grod quality. Coals, Fort-Arthur, delivered at 15 s . per ton, sometimes very good, and occasionally very bad'; they give very little smoke or fame, burning very much like coke. The Sydney, coal are dear, 44 se to 80. per ton, according to season and supply; they are much tike the Newcastle coal, blaze brightly and cake together: Sharks abound on the coast and in the river, some of them of enormous size. I have seen the head of one sufficiently capacious to take in a man at a single gulp. The houses are all covered with shingles, which, from exposure to the weather; become blue, and look quite as, handsome as the best :slate in England. Servants are of the very, ¿worst description, and I an told that' - assigned servants are preferable to such as have been sent out by the Emigrant Committee The generality of convicts here are decidedly better off than English labourers: they are well clothed and fed for little work. Slugs rise here innumerable,
a horrible scourge to vegetation, and some seasons destroy the crops. I find hot lime a certain cure for this vermin. The turnip-fly, precisely the same insect as you have in England, commits similar ravages upon turnips, and after we are rid of them come the grasshopper, a still more formidable enemy, if the turnips be not well into the rough leaf. During the summer this country is subject to occasional hot winds, a kind of sirocee; which does immense damage to grain and fiuit, hundreds of acres of wheat were blighted by one of these winds last January, and it made a clear sweep of such gooseberries, currants, and rasberries as I had not taken the precaution th cover. This was the most severe one that has been experienced in this colony. When exposed to it, it was like facing the atmosphere of a furnace, and really intolerable, fortunately it only lasted a few hours. The prevailing winds here are from the north. In summer we have almost claily four or five hours south wind; or as they callit, the sea breeze, which is most pleasant and refreshing : where I now sit writing this epistle I have a view of a'garden close at hand with almond, pear, and plume trees in full blossom, and in the distance, Mount Wellington covered with snow. Here it is warm as your June, and there cold as December. The two extremes not being over four miles distant as the crow flies, and a walk: of about seven miles. The valleys abound with beautiful and fragrant flowers, amongst which is the gonguil in full blow; roses, sweet-briar, stocks, and geraniums have been impoited, and thrive beautifully. We are ten hours earlier than you: it is now two, P.M., and midnight in London. T.

Sydney, New Soutri Wales, Market Prices, October. 12, 1837.-Whent has sustained little variation in price; Sydney qualities
are noted: worth 6s. to Ss.; Derwent qualities, 7 ss to 9 s 6d., making a general average of 7 s . $10 \frac{1}{2} \mathrm{~d}$. per bushel.: Fine flour remains at 23s. per 100 lbs ; but in consequence of. the great stock of inferior wheat on hand, the price of second flour has been reduced to 15 s., and ration flour to 13s. per 100 lbs . Hobart Town wheat is noted.at 8 s .3 d . to 9 si ; Launcestor do. 7s. 9d. to 8s. 3d.; English Barley, 4 s. to 5 s . 6d.; Cape wheat 57 s . per quarter; oats, New South Wales, 3s. 6d. to.4s. ; Derwent, Ss. to 9s. per bushel, maize, 3s. 3d. to 3 s .6 d .

PRESERVATION OF GRANV.

The apparatus lately invented by M. Vallery for the preservation of grain, has been examined by a Conmittee of the French Academy of Sciences, and met with approbation: M. Vallery's objects have been, first; to be able to make a given space coutain four times as mach corn as it would hold according to the usual method of packing. Secondly, to stir the gruin with the most perfect facility without requiring an entrance into the apparatus. Thirdly, to pass a current of air across the mass of corn while it is in motion, and make every grain feel-its influence: Fourthly, to preserve the grain from rats; \&c., and also from insects. Fifthly, to prevent insects which have been driven out, from returning to the corn. Sixthly, to keep the corn in a perfectly healthy state. Seventhly, to preserve the corn in the dampest periods, and even to dry it when it has been accidentally wet with water. Eighthly, to restore the skin of old corn to such a degree of softness as will make it proper for grinding, by a current of dry air through it; and, lastly, to preserye small as well as large portions with the greatest economy. The apparatus intended by M. Vallery to fulfil these condisions, is a hollow cylinder of wood,
turning horizontally on its axis. The grain, when put into it, does not,entirely fill the cylioder, that it may likewise turn upon itself. A ventilator with centre fugal force, is placed at one of the extremities, and this ventilator, by aspiring the ail contained with the grain in the cylinder, forces the external air through it. The action of the ventilator is combined with the rotation of the cylinder, and the successive movement of all the grain facilitates a tho ough action of air into every portion. The ribs of the cylinder are piered with holes, which not only give en-: trance to air, but serve as issues for: the insects wich are disturved by the notion of the grain; a light roof of cunvas covers the whole, in order to prevent any insects from falling into the apparatus from the roof, when. it happens to be at rest. The experiments already made with this machinery have proved its eflicacy, and the Committee sum up their conclusions by saying that this moveable, isolated, and ventilated gimary, frees the com from the insects contained in it at the time of stowing it away, entively shields the grain from after destruction by opposing an insumountable burier to fiesh insects, prevents fermentation by the current of air which visits every portion, is capable of imparting humidity when it is ton dry and, by making it sufficiently dry, renders it capable of being packed in a smaller space.

HENTP AND FLAX.

In Dorsetshire, hemp is cultivated to some extent in the richest soils; which contain a considerable proportion of sand, and are too light for beans. The land is prepared "by ploughing it three times; first, before winter, when it is richly dunged; and next in spring, when it is well harrowed. : The direction of the second ploughing is across the former

Spring Tares or Vetches.

furrows, whenever it can be conveniently done. The third ploughing is in May, when the ground is laid as level and smooth as possible, by means of the heary hoe or hack. Two bushels of seed are then sown evenly over it, and slightly harrowed in., A slight rolling of the ground, if it is very loose, finishes the operation. Hemp completely keeps down weeds by the shade of its leaves; and the land, if very richly manured for this crop, is in good order after for any other which may suit it. *An acre of good lienip produces 500 lbs . of fibre, a mideling crop is 600 lbs., and a poor one, 450 lbs . The chaff of the hemp makes an excellent manure.
In Canada the land cultivated for hemp could not be left in' a perfectly flat state as in England; it would require to be ridged up as for any other erop. There can be no doubt that hemp might be grown in perfection in Canada by proper cultivation. It is, however, useless for the farmer to attempt to cillivate it until there are mills erected for dressing and preparing it for exportation. Were he to grow hemp now, when there is not a millsin the Province to scparate the fibre from the wood or chaff, the crop would be lost to him. It is matter of astonishment, that there is not so much of public or individual enterprize, or spirit of improvement to be found in Canada as to make the experiment of erecting even one mill for the dressing of hemp and flax; though neither the expense or the risk would be very considerable. .

- Flax is cuiltivated in some counties in England in the sound deep looms which have been gradually enriched by manuring the precedings crops. If the dung were not thoroughly incorporated in the soil. it would make the flax coarse and uneven. The soil must be pulverized to a considerable depth, and must also be frec from weeds. Two bushels of seed
are sown on the acre. The best seed comes from-Riga, The time of sowing in the British Isles is generally about the middle of April. Clover seed is sometimes sown among it, and succeeds very well. It is necessary to hand-weed the crop if any weeds should appear: after the flax and clover cover the ground they will keep down all weeds. The produce on good soil in England is from six to eight bushels of sced, each bushel of which is said to yield one gallon and a half of oil : and from 600 to 900 lbs. of flax fit for spinning. There is very little doubt that flax might be produced in Canada in equal perfection to what it is in the British Isles, by proper cultivation and subsequent good management. The fibre, the oil expressed from the seed, and the oil-cake for the feeding of cattle, would altogether make flax a profitable crop.

The same circumstance that would prevent the cultivation of hemp, naimely, the want of dressing machin-: ery, will, in a great degree, be an equal bar to the cultivation of flas. Hand-dressing is too great a waste of labour in such a country as this, and we need not expect to grow much flax until machinery is provided for dressing it. We did expect that before this time the necessary machinery: would have been fully prepared for work in the neighbourhood of Montreal. Perhaps if the farmers were to unite and pledge themselves to cultivate sufficient flax to give employment to a mill, that we might, at least, have one, very soon in the County of Montreal. If they can have accommodation on these terms; let the blame not attach to them for wanting it.

spring tares or vetcines.

In Dorsetshire, farmers have a practice which deserves notice, it is the following:-After the clover is
fed of early by sheep, the land is then ploughed about the end of May, or beginning of June, and sown with rape and spring tares, which give an abundant produce in Autumn, on which the sheep are folded, and the land is thus well prepared for wheat. A bushel of tares or vitches, and two quarts of rape-seed is sown on the acre. The crop is fed oft by the beginning of October.

In Canada, land that is ploughed in the fall, intended for summer fallow the next year, might, in spring, be sown with tares and rape-seed that would afford in July, August, and September, a consiclerable quantity of provender for stock," when the pastures may be very poor. The land might be cleaned off in the latter end of September, manured if necessary, and ploughed and prepared for a spring crop. The tares and rape would not impoverish the soil much, and if they covered the ground well they would effectually prevent the growth of weeds.

This practice might be introduced without any difficulty, and we have no doubt that farmers would find it profitable, provided the tares and rape were sown in time, and fed, off judiciously loy stock, so as to allow the land to be ploughed and prepared in the fall for the succeeding spring sowing. If tares were sown alone without rape, they might be cut when green, and dried and preserved for winter food for stock. In good weather they might be sufficiently and readily dried to keep perfectly safe. We might thus arld very considerably to our stock of winter and summer food for cattle, and at the same time keep our land cleaner, and in higher fertility than we do now, and without any greatly increased expenditure. Such experiments is this will be safe for the farmer, though yet untried in Canada.

ORCHARDS.

A great cause of the degeneracy of orchards is the planting of young trees on the exact spot where the old trees liave decayed. Although fruit trees do not require so frequent change as herbaccous plants or shrubs, they no doubt exhaust the soil in the immediate neighbourhood of the stem, as may be observed by examining the roots, which continually spread outwards for nourislment. As a quick hedge. will not grow in the bank from which an old hedge has been grubbed up, however rich and mellow the soil may appear, so a tree will not thrive on the spot where another has stood for ycars, unless the soil be renovated by an abundance of lime or fresh mould. Hence new orchards planted in a good deep soil where none existed before, will produce far more abundant fruit than if the trees had been planted in old orchard grounds; and the principle of change of crop extends to fruit trees as well as to herbs.: In the Canadian forest the trees that are produced naturally, decay after they have been at maturity and fall to the ground, and there furnish, in due time, soil to produce new trees. There is nothing taken from the forest tiee, as there is from the fruit trees in an orchard; all the leaves that are annually produced fall to the ground, and decay about the roots; and ultimately the tree itself returns to the earth which produced it, and again supplies the soil with almost all the ingredients it had taken from it during the progress of its growth. It is from this cause that forest trees are not found to degenerate in successive generations. The soil is constantly kept up to its original state of fertility, and must constantly be gaining something rather than losing. A tree that is planted by man, and when at maturity is cut down and carried away, the spot that produced. it must lose some
of its fertility, and will require a new supply of manure before it will again be fit to produce a tree in the same perfection as the one cut down and carried away.

SAINFOIN.

SAINFOIN does not produce much the first year after it is sown, and consequently many farmers sow hopclover with it, which, being an annual, gives a produce the first year, and fills the intervals of the sainfoin, which is in perfection the second. The land which has borne sainfoin for some years is not sown agrain with the same crop till after an interval of ten or twelve years at least.
We have no doubt that in many situations in Canada, suitable soil would be found for producing sainfoin :in perfection, and by, all the accounts we have of it from countries where it is extensivels cultivated, there is not any herbage plant that would be more valuable to the farmer. When shall we see the useful plants of other countries introduced in Canadian agriculture, and experiments farly made with them to test their suitableness to our soil and climate?

MIANGEL WURTZEL.

The following observations on the cultivation, preservation, and use of this root is from an English paper:-
"Those who have not a depth of mould free from couch, and a good supply of manure, had better not attempt the cultivation of mangel. It will grow on soils where swedes will not grow. Mangel improves by keeping. For lambing ewes in the spring it is invaluable, filling them with more milk than turnips would do. It should be drilled or dibbled about one inch deep. Soak the seed till it sprouts. I dibble in single seeds 84 inches apart, in a hole made
by a boy pressing down, by a handle about four feet long, a piece of wood sixteen inches long, and about four feet broad, with three pegs in, seven inches asunder, to make three holes an inch deep, one seed put in each hole, (two if the seed does not appear good) and rake the holes in. When taken up at the latter end of October, strip off every leaf, and throw into firrows, two rows pull up by hand, the other with double-mould-board-plough, with shell-board off. Dig pits two or three feet deep and twelve wide; in these the roots are stacked, and ridged up to the height of ten or twelve feet from the surface of the earth; faggots should be set upright about every two yards in the centre of the pit, and continued to the roof, all along which faggots shonld lie, by this contrivance the heat is carried off, and rotting prevented; cover up with dry straw or haulm, then cover with mould, allowing a little time for the heat to escape before completely covering the top for winter store."

This mode of preserving mangel may answer very well in England, but it is doubtful if they could be preserved so in Canada.

It was found in process of manufacturing white beet-root for sugar in England, that the sugar could not be extracted from it after the spring monthis had commenced, and whilst the vegetative process was going on in the roots; but from that period the fatlening property is increased, and continues to increase even up to the middle of the ensuing summer, and if stored in a cool situation, arrd air and light be excluded, they may be easily kept throughout the succeeding winter. Another beneficial application may be made for fattening pigs by boiling it with a small quantity of meal of linseed, in the proportion of one quart to a cwt., or by further adding meal of corn, \&c.

The manufacture of sugar from
beet is said not to succeed well in England, though it is successfully naanuactured in France. The difference of climate, or some defect in the process of manufactine, must be the cause. It may be neeessary that the beet from which sugar is manufactured should be grown in a warmer climate than Eugland. The Canadian climate probably is suitable for producing beet that will yield sugar in profitable proportion.

We have seen several samples of raw and refined beet sugar of most excellent. quality, with Mr. Robert Handyside, who lately visited the beet sugar manufactories at Aris, in France, and obtained the samples on the spot. Mr. Handyside's report is most favourable of the complete success of the manufacture. It was stated to that gentleman that the profits of the farmer who cultivated the beet, and of the manufacturer who extracted the sugar from it, was amply satisfactory.
The beet, after the sugar has been extracted, affords excellent fond for the feeding of stock, and the manure made by this stock greatly enntributes to keeping up the fertility of the soil in which the beet is cultivated.

It would be well to make a fair experiment of this manufacture in Lower Canada, particularly if we are unsuccessful in growing wheat. It would afford employment for labour -it would be occupying some of our soil with a green crop that is always necessary to be cultivated in a good system of husbandry-it would give us a home manufactured article of indispensable necessity-and it wrould leave us an excellent food for feeding cattle, an object of great importance to the Canadian farmer. To attain all these advantages would be of some consequence to us, and we should endeavour to ascertain whether it is possible for us to have them. An experiment might be made without
incurring any great risk or large expenditure.

The agricultural class in Canada will have to exert themselves, if they desire to be prosperous, and attain to that rank in this community which they ouglit to hold. There is nothing to prevent their prosperity, their respectability, and their influence in society, if they will only make a proper use of the advantages that are in their power.

FROM ROGET'S BRIDGEWATER: TREATISE.

As the art of the husbandman is exercised chiefly to procure sustenance and comfort for the human body, and to afford pleasure and delight to the senses, it would be perfectly reasonable that he should desire to know as much as possible of this wonderful machine, the human body, for which his whole temporal care, while living, is occupied. It was not intended to devote this work exclusively to subjects connected with agricultural improvement. We hope, therefore, that it will not be deemed mis-placed to introduce here a fow pages from the work of a highly gifted author, Dr. Roget; "On the Power, Wisdom, and Goodnes of God, as Manifested in the Creation.": We have made our selections from the chapter "On the Comparative Physiology of the Nervous System," and that part which refers to the Functions of the Braii--Perception of Animals--the Sensorial Func-tions-and Intellectual Faculties of Man.
"Physiologists have in all ages sought for an elucidation of the functions of the brain by the accurate examination of its structure, which evidently consists of a congeries of medullary fibres, arranged in the most intricate manner. Great pains have been bestowed in unravelling the tissue of these fibres, in the hope
of discovering some clue to the perplexing labyrinth of its organization; but nearly all that has been learned from the laborious inquiry is that the fibres of the brain are continuous with those which compose the columns of the spinal marrow; that they pass, in their course, through nasses of nervous matter; which appear to be analogous to ganglia; and that their remote extremities extend to the surface of the convolutions of the brain and cerebellum, which are composed of a softer and more transparent gray matter, termed the cortical or cincritious sulbstance of the brain.

- It is a remarkable fact, that in vertebrated animals all the organs which are subservient to the sensorial functions are double, those on one side being exactly similar to those on the other. We see this in the eyes, the ears, the limbs; and all the other instruments of volimtary motion; and in like manner the parts of the nervous system which are connected with these functions are all double, and arranged symmetrically on the two sides of the body. The same law of symmetry extends to the brain; every part of that organ which is found on one side is repeated on the other; so that, strictly speaking, we have two brains, as well as two optic nerves and two eyes. But in order that the two sets of fibres may co-operate, and constitute a single organ of sensation, corresponding with our consciousness of individuality, it was necessary that a free communication should be established between the parts on both sides. For this purpose there is provided a set of medullary fibres, passing directly acioss from one side of the brain to the other; these constitute what are called the commissures of the brain.

The question, however, still recurs: - What relation does all this artificial intertexture and accumulation of fibres bear to the mental
operations of which we are conscious, such as memory, abstraction, judgment, imagination, volition? Are these localities set apart for our different:ideas in the store-house of the cerebral hemispheres, and are they associated by the material channels of comnunicating fibres? Are the mental phenomena the effects, as vas formerly supposed, of a subtle fluid, or animal spirits, circulating with great velocity along invisible canals in the nervous substance? or shall we, with Hartley, suppose them to be the results of vibrations and vibratizencles, agitating in snccession the finer threads of which this mystic web has been constructed? But a little reflection will convince us that these, and all other mechanical hypotheses, which the most fanciful imagination can devise, make not the smallest approach to a solution of the difficulty; for they, in fact, do not touch the real subject to be explained, namely, how the affections of a material substance can be influenced by an immaterial agent. All that we have been able to accomplish has been to trace the impressions from the organ of sense along the communicating nerve to the sensorium; beyond this the clue is lost, and we can follow the process no farther.

The exact locality of the sensorium has been engerly souglit for by physiologists in every age. It would appear, from the results of the most recent enquiries, that it certainly does not extend to the whole mass of the brain, but has its seat more especially in the lower part or basis of that organ. It differs, however, in its locality, in different classes of animals. In man, and the mammalia which approach the nearest to him in their structure, it occupies some part of the region of the medullaoblongata, probably the spot where most of the nerves of sense are observed to terminatc. In the lower anmals it is not confined to this re-
gion, but extends to the upper part of the spinal marrow. As we descend to the inferior orders of the animal kingdom, we find it more and more extensively diffused over the spinal marrow; and in the invertebrata the several ganglia appear to be endowed with the sensorial property; but, becoming less and less concentrated in single masses, the character of individuality ceases to attach to the sensorial phenomena; until, in Zoophytes, we shall lose all traces of ganglia and of nervous filaments, and every part appears to possess an inherent power of exciting sensation, as well as performing muscular contraction.

Beyond this point we can derive no farther aid from anatomy, since the intellectual operations of which we are conscious bear no conceivable analogy with any of the configurations or actions of material substance. Although the brain is constructed with evident design, and composed of a number of curiously wrought parts, we are utterly unable to penctrate the intention with which they are:formed, or to perceive the slightest correspondence' which their configuration can have with the functions they respectively perform.

The map of regions which modern phrenologists have traced on the surface of the head, and which they suppose to have a relation to different faculties and propensities, does not agree either with the natural divisions of the brain or with the metaphysical classifications of mental phenomena. Experiments and pathological observations, however, seem to show that the liemispheres of the brain are the chief instruments by which the intellectual operations are carried on; that the central parts, such as the optic lobes and the medulla oblongata, are those principally concerned in sensation, and that the cerebellum is the chief sensorial agent in voluntary motion.

Of the perceptions of the lower: animals, and of the laws which they: obey, our knowledge must, of neces-i sity, be extremely imperfect, since it must be derived from a comparison. with the results of our own sensitive powers, which may differ very essentially from those of the subjects of our observation. The same kind of. organ which, in ourselves, conveys certain definite feelings, may, when. modified in other animals, be the source of very different kinds of sensations and perceptions, of which our minds have not the power to form any adequate conception. Many of the qualities of surrounding bodies, which escape our more obtuse senses, may be distinctly perceived, in all their gradations, by particular tribes: of animals, furnished with more deli-cate organs. Many quadrupeds and birds possess power of vision incomparably more extensive than our own ; in acuteness of hearing, we are excelled by a great number of animals, and in delicacy of taste and smell, thereare few quadrupeds which do not far surpass us. The organ of smell, in particular, is often spread over a vast extent of surface, in a cavity; occupying the greates part of the head; so that the perceptions of this sense must be infinitely diversified.

The wonderful acuteness and power of discrimination which many animals exercise in the discovery and selestion of their food, has often suggested the existence of new senses, difierent from those which we possess, and conveying peculiar and unknown powers of perception. An organ which appears to perform some sensitive function of this kind, has been discovered in a great number of quadrupeds by Jacobson.: In the human skeleton there exists a small perforation in the roof of the mouth, just behind the sockets of the incisor teeth, forming a communication with the under and fore part of the nostrils. This canal is perceptible only
in the dried bones; 'for, in the living body, it is completely closed by the membrane lining the mouth,' which sends a prolongation into it ; but in quadrupeds this passage is pervious even during life, and is sometimes of considerable widthe, Jacobson found; on examining this structure with attention, that the canal led to two glandular organs of an oblong shape, and enclosed in cartilagious tubes ; each gland has in its centre a cavity which commanicates above with the general cavity of the nostrils. : These organs lie concealed in a hollow groove within the bone, where they are carefully protected from injury ; and they receive a great number of nerves and blood vessels, resembling in this respect the organs of the senses. Their structure is the same in all quadrupeds in which they have been examined; but they are largest in the family of the Rodentia, and next in that of the Ruminamitia; in the horse, they are still very large, but the duct is mot pervious; while, in carnivorous quadrupeds, they are on a smaller scale. In monkeys they may still be traced, although extremely small, appearing to form a link in the cliain of gradation connecting this tribe with the human race in whom every vestige of these organs has disappeared, excepting the aperture in the bones already noticed. Any use that can be attributed to these singularly constructed organs must evidently be quite conjectural. The ample supply of nerves which they receive would indicate their performing some sensitive function ; and their situation would point them out as fiting them for the appreciation of objects presented to the mouth to be used as food; hence it is probable that the perceptions they convey have a close affinity with those of smell and taste.
Confining our inquiries, then, to the more intelligible intellectual phenomena displayed by the higher
animals, we readily tráce a gradation which corresponds with the developement of the central nervous organ, or brain:- That the comparison may: be fuirly made, however; it is necessary to distinguish those actions which are the result of the exercise of the intellectual faculties, from those which are called instinctive, arid are referible to other sources. Innumerable are the occasions in which the actions of animals appear to be guided by a degree of sagacity not derivable from experience, and apparently implying a fore-knowledge of events, which neither experience nor reflection could have led them to anticipate. We camot sufficiently admire the provident care clisplayed by nature in the preservation both of the individual and of the species which she has entrusted, not to the slow and uncertain calculations of prudence, but to innate faculties, prompting, by an unerring impulse, to the performance of actions required for those ends. We see animals providing against the approach of winter, the effects of which they have never experienced, and employing various means of defence againist enemies they have never seen. The parent consults the welfare of the offipring slie is destined never to behold; and the young discovers and pursues without a givide the species of food which is best adapted to its nature All these unexplained, and, perlaps, inexplainable facts, ive must content ourselves with classing under the head of instinct, a name which is, in fact, but the expression of our ignorance of the nature of that agency, of which we cannot but admire the ultimate effects, while we search in vain for the efficient cause.

In all the inferior orders of the animal creation, where instincts are multiplied while the indications of intellect are feeble, the organ which performs the office of the brain is comparatively small. The sensitive
existence of these animals appears to be circumscribed within the perceptions of the moment, and their voluntary actions have reference chiefly to objects which are present to the sense. In proportion as the intellectual faculties of animals are multiplied, and embrace a wider sphere, addition: al magnitude and complication of structure are given to the nervous substance which is the organ of those faculties. The, greater the pover of combining ideas, and of retaining them in memory, the greater dojwe find the developement of the cerebral hemispheres. These parts of the brain are comparatively small, as we have seen, in fishes, reptiles, and the greater, number of birds; but in the mammalia they are expanded in a degree nearly proportional to the extent of memory, sagacity, and docility. In, man, in whom all the faculties of sense and intellect are so harmoniously combined, the brain is not only the largest in; size, but beyond all comparison the most complicated in its structure.*

A large brain has been bestowed on man evidently with the design that the should exercise superior powers of intellect ; the great distinguishing features of which are the; capacity for retaining an immense variety of impressions, and the strength, the e, extent, and vastrange; of the associating principle, which combines them into. groups, iand forms them into abstract ideas. Y Yet the lower animals ialso possess their share of memory, and of reason; they are capable of acquiring knowledgeifiom experience; and, on some rare occasions, of devising expedients for accomplishing particular ends. But still this knowledge, and these .efforts of intellect are confined with-

[^1]in very narrow limits; for nature has assigned boundaries to the advancement of the lower animals which they can never pass. If one favoured individual be selected for a special education, some additional share of intelligence may, perlaps, with infinite pains be infused, Wut the im_{-} provement perishes with that individual, and is wholly lost to the race. 3y far the greater portion of that knowledge which it imports then to possess is the gift of nature, who has wisely implanted such instinctive impulses as are necessary for their preservation. Man, also, is born with instincts, but they are few innumber, compared with those of the lower animals; and, unless cultivated and improved by education, would, of themselves, produce but inconsiderable results. That of which the effects are most conspicuous, and which is the foundation of all that is noble and exalted in our nature, is the instinct of sympathy. The affections of the lower animals, even between individuals of the same species, are observable only in a few instances; for in general they are indifferent to each others joys or sufferings, and regardless of the treatment experienced by their companions. The attachment, indeed, of the mother to her offspring as long as its wants and feelleness require her aid and protection, is as poverful in the lower animals, as in the human species; but its duration, in the former case, is confined, even in the most social thibes, to the period of helplessness and the animal instinct is not succeeded, as in man, by the continued intercourse of affection and kind offices, and those endearing relations of kindred, which are the sources of the purest happiness of human life.

While naturue has apparently frowned on the bith of man, and brought him into the world weak, naked, and defenceless, unprovided with the means of subsintance, and exposed on
every side to destruction, she has, in reality , implanted in him the geim ó future greatnés. The helplessness of the infant calls forthe the tering care and tenderest affections of the mother, and lays the deep foundations of the social union? The latent energies of his niind and body are successively, though slowly, developed ${ }^{\text {sed }}$ While the vital organs are actively" "ngaged in" the execution of their different offices; while the digestive apparatus is' exercising it's powerful chemistry, while myriads of minute arteries, veins, and absorbents are indefatigable at work in building ind inodelling this complex frame, the sentient principle is no less assiduously and no less: inces santly employed. From the ehriest dawn of sensation it is-ever busy in arranging, in combining, and in strengthening the impressions it receives. Wonderful as is the formition of the bodily fabric, and difficult as it is to collect its history still more marvellous is the progressive construction of the human mind, and still more ardtous the task of tracing the finer threads which connect the délicate web of its ideas, which fix its feeting perceptions, and which establish the vast system of its associations, and of following the long series of gradations by which its affections are expanded, purified, and exalted, and the soul prepared for its Sigher destination in future stage of existénce.

- Here, inded, we percelve a remarkable inter uption to that regulay gradation Which we have traced in all other parts of the animal series; for betiveén man and the most' sagacious of the brutes there intervenes an immense chasm, of which we can hardly estimate the nagnitude The functions which are purely vital, and are necessary for even the lovest dégree of sensitive existence, are possessed equally by all animals in the distribution of the faculties of
mere sensation a greater inequality maybe perceived; the intellectual faculties, again, are of a refined and nobler character, and being less essential to animalilife, are dealt out by nature with a more sparing and partial hand: Between the two extremities of the scale we find an infinite number of intermediate degrees.: The more exalted faculties are possessed exclusively by man, and constitute the source of the inmense superiority he enjoys over the brute creation, which so frecjuently excels him in the perfection of subordinate powers. In strength and swiftness lie is surpassed by many quadrupeds: In vain may lie wish for the power of flight possessed by the numerous inhabitants of aire the may envy that range of sight which enables the bird to discern from a lieight at which it is itself invisible to our eyes the minutest objects on the surface of the earth, He may regret the dullness of his own senses, when he adverts to the exquisite scent of the hound, or the acute Jearing of the bat: While the delicate perceptions of the lower animals teach them to seek the food which is salutary, and avoid that which is injurious, manalone seems stintedin his powers of discrimination, and is compelled to gather instruction from a painful and liazardous experience. But if niture has created him thus'apparently helpless, and denied him those instincts: with which'she has so liberally furnished the rest of her offspring, it was fonly? to confer -upon hime gifts of infinitely higher value.! While in acuteness of sense he is? surpassed by inferior animals, in the powers of intellect he stands unrivalled. In the fidelity and tenacity with which impressions are retained in his memory, in the facility and strength with which they are associated, in grasp of comprehension, in extent of reasoning, in capacity of progressive improvement, he leaves

Emigration to Biritish North America.-Educ̈ation. 123

all other animals at an immeasurable distance behind. IFle alone enjoys ini perfection the gift of iutterance; the alone is able to clothe his tliouglts: in words: in himalone do we find implanted the desire of examining every department of nature; and the power of extending his: views beyond the confines of this globe. On him alone have the high privileges been: bestowed of recognising and of ador-, ing the power, the wisdom, and the goodness of the Author of: the: Uni-verse, from whom his being has enanated, to whom he owes all the blessings which attend it, and by whom: he has ibeen taught; to :: look forward to brighter: skies and to purei and more exalted conditions of existence: Heir to this high destination, man discards all alliance withe the beasts that perish; confiding in the assurance that the dissolution of his: earthly frame destroys not: the germ of itimmortality i which has been implanted within him, and by the developement' of which the great scheme of Providence here commenced, will be carried on, in a future state of being, to its final and perfect con-: summation.

 TO, BIRTISI NORTIX AMMERICA. A When the last number of this work wäs published, we did intend to discuss this subject filly in the present number: Circumstances have since occurred, however, that prevents us: from" doing as we then proposed. His Excellency the Governor Gene ral has lately issued a "Commission ofreInquiry:for Crown Lands and Enipiation;": and the Commissioners we believe are now occupied in this inquiry: While the subjectis in such competent hands,' it would be great presumption in us'to offer any opinion: In former publications, particularly the Supplement to our Trea:tise:on A griculture, we did submit,
as an agriculturist; our opinion on the: present mode of disposing of the! Wild Lands of the Crown, their settlement. \&c. What we advanced on that occasion must suffice for the present: We may rest satisfied; that the matter is under consideration with those who will make a wise and judicious report on the subject. For our own part we must say that the Commission iwe refer to, rand ithe © Commissin of Inquiry on Education,", has given us moregratification and more pleasing anticipations for the future happiness, and prosperity of Canada, than lany act of the Government during our residence :in the country. We hope we may: be pardoned fors thus expressing our satisfaction on theseisubjects.

EDUCATMON:
Education was a subject we proposed to have considered in this number of the Magazine. D' The same. cause which prevents us from offering any observations on'Emigration, or the settlement of the Wild Lands; will also prevent our interfering with education for the present. We have; already published a small' manual on education. The Conimissioners that have been appointed are much more competent to do justice to the sub-: ject than we could pretend to be: The general and the judicious'education of the Canadian people, and par:ticularly thé ägricultural class, will; in a few years hence, produce ${ }^{\text {more }}$ benefieial results than any other. measure that can be introduced; because the complete isuccess of all other measures will in a great degrec depend apont the people being edu:catedin properly: To weducate the people property; however, would rod quire the establishment of a systein' very different from any that was here-: tofore observed in the cominon: schools in Canada, and a very superior? class of school-masters to thiosc who
haver been generally employed hither-: to in the common schools.

 APPLICATION, OF:, CAPITAI TO. , AGRICOLTURALIPRODUCTION:(n, An lnos CONTINUED.

- We have endeavoured to show the great want there is of additional capital to be employed the improvement of agriculture, in order to increase its production to what it is capable of. We see no probability: that the required additional:capital will be furnished :by any :moneylending establishment :at present in Lower Canada. Bánking establishments might afford considerable aid to agriculture, but it sliould be in the way of granting cash credits, as is done by Joint Stock, Banks in the British Isles. $:$ No other mode of accommodation ' would ; be suitable for the farmer.
If we had Offices of Registry, and we. may hope to have them soon, there is abundance of unemployed capital in England that might, to a certain extent, be safely and profitably invested in banking in this; Province.: : Banks commencing business with real capital in specie lodged in. their vaults, might do as safe and pro-: fitable a business with the agricultural class, as with any: other classem:
If a bankigrants a credit, or discounts a bill, they issue their own notes, and receive the full interest on the amount, and for the full time, the accommodation is given. Though their notes should return; to them the next day, yet they have received in-, terest for their ${ }^{\prime}$ capital for all the time it is out of their hands. It is by no means probable that any bank entitled to the public confidence, would be called upon constantly to pay their notes in specie the moment they were issued. The people would find it their interest to support the banks, and give circulation to their notes,
while theyi continue to: transacti business with them. But suppose cash was :demanded for their notes soon after they; were issued, those who were indebted to the ilbank should discharge their debts in specie, when there was no bank: notes in circulalation to pay with, and hence specie must return to the banks. All that is :necessary to successful and profitable banking would be, that banks should possess real capital when they commence: business, and, of course, observe the necessary:. caution in granting accommodation to their customers.
In commercial transactions in Canada,: bills of exchange and promissory notes are passed from the retail slop-keeper to the importing merchant. These bills and notes find their way to the banks. From what funds are these bills and notes ultimately paid? It must: be chicfly from funds produced in Canada, and paid by those who purchase and consume imported goods:.. And who are the, producers? The agricultural elass, chiefly; for there are no:manufacturers. It is clear, then, that the funds for the payment of a; large proportion of the bills and notes that are at present discounted at our banks must be derived directly and indirectly': from a' produce raised or obtained from : the lands of Canada. We are inot to estimate the benefit ; which the agricultural class is to commerce and tiade, by the amount. which they actually purchase: of foreign commodities, but by the value of the produce which they raise from their lands and sell. If this produce is large, though the agriculturist may not expend all he can spare on the purchase of foreign commodities, yet he will pay: it away for labour to those who will purcliase foreign goods. He can only consume a certain portion of it, all that remains will pass into other hands, and increase the general stock of working
capital.s:The sale sand transfer' of imported goods, from hand to hand, creates ino capital,:and can never make funds to pay for iniported goods: It is; only by the sale of these goods to the actual consumer; who has an equivalent to exchange for them, that the real funds can be provided. It is from the soil of Canada that these real funds must be chiefly obtained, and to employ capital to produce: these: funds in abundance, must be bencficial to this community. In an agricultural country that has only a scanty:annual produce, the in-: habitant : must necessarily be poor. They! have only the amount which they obtain from their lands to expend fors their comfort and enjoyment, and if that amount be small, their: com fort and enjoyment must be: in proportion.
If these facts be admitted, and we do not see how they can be disputed; it is the agricultural class that must now be depended upon for the success of banking, as well as of commerce.
Again : If: it be the agricuitural class that: now produce, in a great measure, the means that must directly and indirectly enable the merchant to make returns for his importations, it must be for the advantage of : the merchant, : as: well :" as :the farmer, that this produce should be abundant and excellent:! And if the agricultural class, at present, indirectly supply the mieans for the payment of bills negociated by others, it what would:prevent them'from being able to : pay: advances made byr banks directly to themselves, : particularly when this; accommodation' would en' able them to augment their produce. perhaps to a much greaterivalue than the amount of the loan they received.

Gold, silver, or bank notes, are: of no value in themselves, but as they afford the means of purchasing things that are valuable. We employ labour with either of them in the improve-:
'ment and cultivation of awastelpiece of land; and; we make it pioduce things that are valuable; and that can never again lie annihilated, except so much of:it as is consumed in food by those employed in the cultivation and managements of the land.

It is thus that real capital is created by the surplus that is obtain-: ed from the: land over what is consumed in food by those who cultivate it, and capital cannot be otherwise created in Canada at present.
\rightarrow In some provinces of the Russian Empire Loan Companies are éstablished, who grant loans to proprietors of'the soil, some at an interest of five, and others at six, per cent, annually. The principle, in some instances, never can be demanded; in others it can; after a lapse of a few years; be demanded in instalments of a certainproportion of the sum advanced. In either cases the proprietor cannot be deprived of his lands. If the interest is allowed to go into arrears, the land can be taken possession of by the Company until the proceeds obtained from it pays up the interest due; the proprictor then gets iback his land. It is said:that these Loan Companies haves produced immense :inprovement in:! the countries where they: have been established. It icannot fail to be so, when loans are granted on such liberal terms: Land that would remain idle and profitles's to its owner for years; for the want of capital to improve and cultivate it,"can", by imeans of, a loan of this kind, be at:ionce brought into a productive: state, and may remain ever after, yielding a valuable annual product, and be; constantly: augmenting the gross capital of the country, as :well as the capital of the individual,
Theremay be an objection to this: mode ofloan, that it brings the borrower into a state of dependance It is better, however, that he should be in this state, which in reality is not one of dependance, than to ber in

126 Application of Capital to. Agicicultural. Production.

poverty, in consequence of the want of capital? to stimprove and: cultivate his; own estate that; is: lying waste, and yielding no fivalunble :produceLet us suppose: that previous to his having; received ia: loan he might have' been able to raise, from the part of his land oin cultivation, an annual produce of two hundred pounds value After he had receivedialoan of serlaps two, or three, :or five hundred pounds, which he had judiciously expended ini improving and cultivating his land that had previously seen swaste; he had raised an annual produce worth five hundred pounds from: his estate, would not the circumstances of this man be greatly; benefited? c Most certainly; and not only himself, but the community $\%$ to which he belonged would be benefited.at When his produce was only two hundred pounds, he had no inore to expend upon himself or others. When it: was increased, he had five hundred pounds: value, to expend for his bene-: fit; :and that of others. \%isi we
IMThe increase of the husbandman's produce from the soil constitutes his income; and is much more beneficial to: the , community : to which the belongs in ia country like this, than the; increase of the profits of the merchantcan be to the samedcommunity ; because, the : increased income of: the former: coinsists of a new produce created that:was:not ibefore in exist-ence, while the increased income of, the latter, consists of profits; made on: the purchase and sale of commodities already in existence, and does not increase the produce created for the

sWeado not; make these icomparisons with a view: to depreciate commerce and trade ; on the contrary, no mantocati:estimate them more highly than we dowBut our object sisto show, the true value of prosper-: ous agricuture to this country; which very few: happear willing to acknow- Jedge; tif they properly understand i .
the present banking establishiments of Lower Canada have beenininstituted: by commercial: men, for their own convenience, and we cannot complain that they should appropriate all the advantages to themselves. 4 We only wish that agriculturists liad the same advantages; andititis our desire to prove,' that! these advantages might bei safely, and profitally extended to them, under proper regulations of banking We are aware that, in the: British Isles, banking accommodation: has been productive: of some evil to agriculturists during : the :last: war. It encouraged them to pay high rents for:lands;: and at the general peace the value of stock and grain :was so much reduced, that it lbrought ruin on thousinds of farmers: :There is no danger of similar: results where. There is no rent to pay, and he must: be:a very bad farmer, whoion cleared land,:that is his: own estate, will not: be able.to traise crops, and keep stock, that will repay the expenditure upon them:and a: fair:profiter:In. England capital is so abundant, that there cannot:be anys want of itifin agriculture.: The great landed:proprietors will never allow their : tenants: who occupy their lands to want capital to: cultivate: and farni them successfully, because the payment of their rents and taves depend upon their possessing sufficient working capital. Here we have"no wealthy class, who are interested in the same way in the prosperity: of agriculture; as the English landed: proprietors:" We - have, however, lands that are free :from rentiand taxes, and these advantages ought to procure:us others that are wanting to us; to enable is to make a profitable use of those we do possess.
$:$ Our motive in writing this article, was to show first that there is a wanti of additional capital to be employed in agriculture, to insure its profitable: improvement; and next, that there is': ample tencourageincnt to introduce: capitaly to be thus cmiployedis, We
may have failed in proving satisfactorily the latter proposition to those who have capital to invest. If so, it must be owing to our inability to discuss the subject, and do it justice.
We will: conclude for the present by stating, that we confidently hope to see very soon, the class to which - we are proud to belong, in the full enjoyment of equal advantages with other classes: And if privileged Banks are established for the convenience and benefit of one class of this commu-nity-; we trust that similar privileges will be sought, and granted to institutions that 'nay be established for the convenience and benefit of another class-the agricultural-who are, and must be, the chief producers of what constitutes the wealth: and resoures of the inhabitants of Mer Majesties dominions in North America:

As to any danger existing from the political state of the country, to the investing of capital in Canada, we would say there is none: On the contrary, we would confidently hope that this country will shortly be in a more : healthy and prosperous state, and more firmly established as a part of the British Empire, than she ever has been hitherto. There are measures about to be adopted, that cannot fail to produce favourable: resultsresults that must convince the inhabitants of these provinces; that their best interests will depend upon their continued connection with Britain-

MISCELEANEOUS ARTICLES.

2, Until my residence in England, there still remained in me agreat deal of the old republican, and public liberty appeared to me to be almost incompatible with royalty. $:$ But in England I have been convinced that
a monarchy really constitutional is requisite for a great people', as much; and nore, perhapss thantany othei form of government. We see here the best of republics, not in ayprogramme, but in facts: and manuers. The legislative power wisely divided amongst three authorities, who exercise without obstacle their own prerogatives :- the executive power having all the authority to do'good, and not having; and not seeking to do evil. The judiciary power is so completely independenty that the most obscure individual, as well :as the richest lord; as the most illustrious or the most humble exile of the' continent, reposes equally in security, beneath the guarantee of the jury, that no sacriligious attack can tairnish, and beneath the inviolability of the domicle, thatino wretch can violate. Themelectives chamber, named \cdot by eight hundred thousand electors over a population of twenty-five millions, which, without being the iuniversal suffrage, appionches five times nearer to it ithan we (the Trench) do; isince we ought to have in that proportion more than a million of electors !. The chamber of peers, in fine; is accessible to every citizen, and too powerful and too enlightened to yield to the seductions of couirts or the clamors of the multitude:: These hereditary magistmates have been for above a century and a:half the defenders of the charterp the : immortalcworkiof their ancestors; their tutelaryssupreniacy will long continue to be the palladium of British liberties.al Provided -they never cease to oppose animmoveable resistance to the overfowing torrent of demagogical opinions, that a social overthrow can alone satisfy.:. Provided they do not.abandon their ground to defend themselves feebly against that of their adversaries. Provided they follow always the high state reason which judges, in the first place, of the effect of a new law upon the whole of the con-
stitution, instead of considering solely the : absolute perfection : of, theory, illusory! enough sometimes to insinuate into the political -body a mortal germ of dissolution,: seductive appearance of, salutary amelioration. Provided, above all, that they do not arrive, some day, even to suffer them to drag in the dirt the patrician togo, or at least cease to have the same respect for it as for the royal mantle and the elective chamber ; for, (if by timidity, by indifterence, or by a false popularity, to provoke or contribute to the profanation of one of the three fundamental authorities, would that be walking in the road to a wise reform? Would it not rather be completely turning the back upon old England to follow the errors of a democracy without controul ?Would it not be denying that charter, ias yet without; a rival in the ancient world, and whose vital strength resides in the equal inclependence, the equal respectability; the equal inviolability of the King, the Lords, and Commons. Nothing is perfect on earth, either ini men or in laws. : But where, when : shall we approach nearer to perfection ?":
If Luciens Bonaparte, in concluding his first volume wishes that ; the French Throne might be surrounded with democratic and aristocratic institutions, wisely balanced;-that; is a: icomplete elective ${ }^{\prime}$ representation, and a hereditary, magistrature, powerfully conservative. And he believed that a mixed Government so constituted, is the only ione where constitutional liberty "s can live and prosper in the midst of the: iniquities and passions inseperable from humanity:" TRADE AND NAVGATION

The, annual accounts of imports and exports, customs duties, the number and tounage of vessels, δ c. which were recenty presented to Parliament by Her Majesty's com-
mand, are;just printed.: We propose to notice the principal points in each.

The first is, "c, An account of the imports of the principal articles; of foreign and colonial merchandise, of the consumption of such articles, and of the customs duties received thereon, in the year ended 5 th January, 1838, compared with the imports, consumption, and receipts of the preceding year; ended 5 5th :January, 1837.: While there is a decrease in the quantity of coffee imported, from: the British possessions in America and Africa, of $3,600,000$ lbs. there is an increase in the imports of this article from India, of 6,000,000 lbs. ; so that the total imports of coffee in 1837 exceed those: of 1836, by 2,346,193 Ibs. There appears an increase; compared with 1837, of $1,500,000$ lbs. in the quantity of coffee entered for home consumption. Of wheal the imports in 1836 .were 168,647 quarters, of which 19,554 , quarters were entered for home consumption; and the duty paid was $£ 5603$. In 1837, the imports of ; wheat were $4 \cdot 55,828$ quarters, of which 232,993 quarters swere entered for home consumption; duty, paid : $£ 303,179$ Of the silh manufactures of Europe, the following are the quantities imported in the

Of bandannoes and other silk handkerchiefs, the manufactures of India, there were imported in 1836, 351,066 pieces, in 1837, 560,398 pieces. There appears to be some diminution in the import, of spirits The total imports of 1836 , including rum, brandy, and geneva, were $7,4,86,535$ gallons; in 1837, 6,991,730 gallons. Of sugar the imports from the British possessions in America have
decreased, as compared with those of 1836, nearly 300,000 cwt. the gross amount of duty received being increased nearly $£ 300,000$; while the imports from our East Indian possessions have largely increased in quantity, those of 1836 being 152,229 cwt. and those of 1837, 296,677 cwt. There is on the total imports of sugar a considerable decrease, however; the quantity in 1836 being $4,649,161$ cwt. and in 1837, $4,4,51,4.74$ cwt. There is a larger quantity entered for home consumption, and the gross duty received in 1837 was $£ 5,270,117$, while that of 1836 was only $\pm 4,754,958$. Of tea, the imports in 1836 were $49,307,701$ lbs. $;$ in $1837,36,765,735$ lbs. The quantity entered for home consumption in 1836 was 49,841,507. lbs. ; in 1837, it was $31,872,516 \mathrm{lbs}$. The duty in 1836 was $\pm 4,728,600$; in 1837, $£ 3,319,665$. There is an increase in the imports of Cape and French wines, and a still greater decrease in " other sorts," the total decrease being nearly $1,500,000$ gallons. - Of cotton, we need only notice the totals:-Imports in 1836, 406,959,057 lbs. ; 1837, $407,268,952$ lbs. Entered for home consumption in 1836, $370,951,194 \mathrm{lbs}$. ; in 1837, 378,019,680 lbs. ; gross duty receiv. ed, $1838, £ 431,398$. ; in $1837, £^{15151,-}$ 71 S.

The second of these papers exhibits the exports of foreign and colonial merchandise from the United Kingdom in the years 1836 and 1837.

The third is " an account of the (declared value of the) exports of the principal articles of British and Irish produce and manufactures" in the same two years. We subjoin it entire:-

tals :-Copper and Br	1,072,314	32
Lead	$23,4,981$ 61.847	1, 156,009
Tha Plates	36681813	31,433
Snlt ${ }_{\text {Silk }}$	173,923	-
Styrar lefiner	698,100	
Wool Stucepr or Lamb	78	190,677 $4,903,313$

Total of the foregoing neticles, $2 \overline{46,463,599} 3 \overline{36,421,120}$
The fourth exhibits the produce of the customs duties in the United Kingdom in 1836 and 1837. In the former the gross receipt was $£ 23,795-$ 295 ; the net receipt, $£ 22,857,590$. In 1837, the gross receipt was $\mathbf{f 2 2}$,786,908 , and the net receipt, ± 21, 943,089 . The difference between the gross and net receipts arises chielly from the drawbacks and bounties on British refined sugar and other articles.

The account No. 5 exhibits the number and tomage of British and foreign vessels entered inwards and cleared outwards, exclusively of vess sels in ballast, and those employed in the coasting trade. : Of those belonging to the United Kingdom and its depenclencies, there were entered inwers, in 1836, 11,644 ships, of $2,250,173$ tonnage; in $1857,12,252$ ships, tonnage $9,346,300$. Cleared outwards, $1836,10,216$ slips, of $1,828,501$ tonnage; in 1837, 10,614 ships, $1,861,121$ tonnage. The totals of all nations entered inwards were, in 1836, 17,603 ships, 3,132,367 tonnage; and in 1837,18,113 ships, 3,215,529 tomnage. Cleared outwards in 1836; 14,654 ships, $2,495,517$ tonnage; in $1837,15,526$ ships 2,578,018 tonnage.

The siath account shows the number and tonnage of vessels employed in the coasting trade of this kingdom. In 1836 there were entered inwards 123,795 ships, $10,337,545$ tonnage; in $1837,128,011$ ships, $10,409,370$ tonnage: Cleared outwards in 1836, 133,341 ships, $10,702,690$ tonnage; in :1837, 138,796 ships, $10,001,187$ tonnage.

IIVERPOOL.

PROGRESS OF IMPROVEMENX IN TIE
:TRADE OF LIVEMPOJL.

1813 to 1817 inclusiv	Vossels, Tons.
1818 . 1822 -	4,159,791
1823 , 1827	48,9.17.....5,809.18.4
1828 :, 1832.	.58,765, \ldots, $7.7,243.525$
1833 " 1837	. $70,31688,958,35.4$

Incrense of
", 2d over 1 st five years, $7,3961-24:$ 895,801. 1-27

", 4th", 34. \therefore ", 9,818 1-20 1,374,341-23 Increase on 25 years. 1812 to $181837,10,139$, or 226 per cent, 1,512 , 166 or 333 per cent.
1812, entered 4,599 vessels, averaging 17 tons cach. $1837,{ }^{\prime 15,033}$. ${ }^{\prime}$

Improvement. in Sheer.-It is really surprising the improvement that has taken place during the last few years in the management of sheep; and if a:farmer of the last gencration were to come again, he would be quite at a loss to know how to act, and, would, we think, cut buta sorry figure in our day. The first and greatest improvement in the dipping of the sheep in autumn, whereby all the vermin are destroyed, and the pont animals can lie down, in quiet without doing as they used to do, namely, by rubbing down the liurdles, or lying down and kicking, and gnawing the greater part of the wool from off their backs. Formerly it was a rare thing on the chalky soils of this country to see a flock of sheep without torn coats, and now it is a rare thing to see any part of the coat torn or displaced. If you go to the fold of a spirited farmer, in this our day, you will perceive one trough with salt for them to lick to keep them healthy, and another trough well supplied with water, and most likely you will perceive a number of other troughs filled with chaff cut entirely from hay ; and some proud and high keepers are not content even with this, but they even mix with the said cut hay large quantities of malt dust, pollard, bran, and even oats, peas, beans, barleymeal, and vetehes, and every thing else, that
can be thought; of; and then you see seyeral women, and boys, and even men, pulling up the turnips, and scraping off the dirt, and others busy with a machine cutting them in slices. In the spring also you will find provided for the flocks large pieces of vetches, rye, winter barley; winter oats, trifolium, Italian rye grass, and many other things which the farmer of the last generation never even heard the name of; the last, though not the least, you will find in every village, and in alnost every field, rape, the plant so highly extolled by shepherds, and yet so greatly dreaded. It is uniyersally acknowledged, that nothing will thrive a sheep like rape, not even corn, but that its blowing quality is so dangerous that the shep-: lierd and master are both extremely anxious during the time that their sheep have the same for food, and with every care there will be a few losses. It is considered that the cultivation of rape has increased tenfold within these ten years, and the threshers speak in praise of this phait, for they all know that no wheat yields so well as that grown after rape.- Berks Agricultural Report.:

Agriculture in Sweden.-The entire soil of the kinglom is portioned into divisions called liemmans, or small districts of indefinite extent, containing woods, lakes, arable pasture lauds. This territorial arrangement is attributed to Sten Sture, although it is probably of Gothic origin, and was applied to the domains of the Crown, of which; the peasants: were merely the cultivators, and could be removed at pleasure.: Some important alterations were introduced by Charles XI., and in 1723 the states decided that the farmers might become proprietors by .paying a sum equal to six years' rent. The leaseholders of these royal domains 'were obliged to contribute, not only to the support of the troops, but of the cler-
gy' and civil officers. The whole number of hemmans is: 65,265 , and the average extent nineteen square miles to each; 50,000 of them belong to private individuals, $4,04!5$ are assigned to the army, 359 to the Crowns: 3 个4 to the universities and academies, and 27 to hospitals and different public institutions. It rarely happens that aisingle family possesses an entire division; more frequently it is parcelled out among a great many; in lots scarcely sufficient to accommodate the increasing number of children, to exereise one plough, or pastuicera few cows and slieep. In Dalecarlia this process of dismemberment is carried so firr, that properties are broken down into fractional parts of acres and roods, not worth two or three rix-dohars, a state of things hostile to all improvement, and the source of much poverty and distress to the country. In consequence, the produce of their scanty haivests was long insufficient for the sulsistence of the inhabitants, who were compelled to purchase forcign grain to a considerable extent, and even, in the northern districts; to grind the bark of the fir to eke out the stinted supply of their inatural food. Every: year it becane necessary to import. from Dintric or Holland to the extent: of $£ 400,000$ sterling. The commercial scale in this respect has of lite completely turned in favour of Sweden:- Numerous societies have been instituted for the encouragement of agricultural enterprise. Government has zealonsly seconded the exertions of private individuals; and the King has set a personal example to his subjects, in purchasing experimental farms (particularly that of Engetlofta, near Helsinborg), that he miglit exhibit the developemeni of the art on the most approved principles. The nobility, by their fortunate prefeience of rural pursuits, have also contributed powerfully; to the diffision of the same habits among
the inferior orders. Since 1803 upwards of 6000 farms have been created out of large tracts of Crown lands previously lying waste. The: result has been of immense value to the agricultural prosperity of Sweden. Instead of depending upon foreign: supplies of grain, she affords abundant provision, for the inhabitants, and amnually: exports a considerable surplus: . In 1829 the deficient harvest. of France was recrinted from the produce of Scandinavia; and in 1830 : the'ports of Malino, Landserona, and Wisby alone sent to England 32,500 tons of oats, and 3000 of barley.Edinhurgh Cabinet Library.

Winter in Scandinavia.-The winters are long and severe, lasting from November to April or May, and sometimes extending their dreary reign over the half of June. Frost and snow commence in November, when the whole earth is enveloped with a white mantel. The lakes and rivers are converted into solid ice. The clouds of vapour sent up by the dashing eataracts return in:showers. of silvery said, reflecting in the solar rays all the prisnatic hues of the rainbow. The trees and objects: in the fields are fringed with hoary ormaments; carriages pass noiselessly over layers of snow in the streets; and the houses, decked in the fantastic embroidery ofshiningicicles, resemble enchanted palaces. To protect their apartments against this intensity of cold, the inhabitants use stoves, which are ingeniously contrived to diffise a large degree of heat with a small. quantity of fuel. They also fortify their persons with a double or triple supply of apparel, consisting of furs, pelisses; gloves, galoches, jack soots lined with flamel,, and other requisites, which extend a'Swedish wardrobe to an inconvenient size. In Jamtland and around Tornea, the climate is so rigorous that the lakes sometimes remained congealed during the whole
year, and the natives are obliged to cut their crops green, before they are buried under wreaths of snow: Over all Scandinavia, the dreary season of nature is the most favourable part of the year for the activity for commercial transactions, and the mutual intercourse of the inhabitants. The merchants find a path to distant markets across the solid gulfs, and over hardened snows, which no other process could render accessible. Pleasures and amusements are kept up in constant succession. In the environs of the towns, the plains and borders of the lakes are converted into frozen race-courses, where the elegance and richness of the sledges, the splendour of the harnessing, and the beauty of the horses, fleet as the wind, and making the air resound with the clear tinkling of their little bells, present a scene surpassing in gaiety and animation the more brilliant assemblages that crowd the public promenades in softer climes. Military bands often accompany these lively fètes; and the contest is occasionally prolonged by torch-light, which gives a picturesque effect to the trains of joyous carriages, moving with great velocity over the whitened fields.

Improvement of Thme-"Tragments of time, like pieces of money, individually of trifling value, long saved, and well improved, at length amount to great and useful increase. Let the thrifty of time, and desirous of improvement, be persuaded to lose no hour, any more than the covetous of money can be prevailed not to lose any opportunity of saving or accumulating. Let small and select reading be employed, where leisure admits not of larger. Let close and cogent reflection supply the place of deep thought, where that is admissible. Let every hour, and every occurrence, add to the stock of knowledge already acquired. From
every lapse of time; however small, and every accident, however uninteresting, let something be learntsome store laid up for future use."

Many persons will endeavour to excuse themselves for not reading, by telling you " they have not time to read; but were you able to observe those people constantly, you would probably find that they wasted many hours in the week, in which they were not employed usefully, either for themselves, their families, or for their country. The common excuse that is given, the want of time, for leaving undone any thing we ought to have done, is generally not a sound or a just excuse. Poverty, and other unfavorable circumstances, may prevent many from learning to read in their youth, and all such are precluded from this pleasing and profitable employment all their lives. But for those who have been taught to read when young, if they neglect to improve themselves in after life by reading, it will be rather from the mis-application of time, than from the want of it, that they do not read. Every man and woman that is properly brought up, will in general find through life, sufficient opportunity to perform all the duties of their stations, and spare some time for reading, and obtaining useful and entertaining knowledge. Indeed, without some reading and study, it is clifficult to conceive how human beings can have any real enjoyment in this life, or be in a proper state of preparation for the enjoyments of a life of happiness and glory with the angels and saints in a future state of existence.

CROPS, AND PRICES OF AGRICUTURAL PRODUCE IN ENG. LAND.
By the latest accounts from England it appears that the prospect of he wheat crop is not flattering: All
other grain crops are said to be good. Appies are reported to be a failure. Pastures not good, and beef and mutton rather a high price in the London markets. We do not think it necessary to state the prices of butcher's meat in the Smithfield market. The reported prices on the 2d of July difter very little from those given in the last number of this Magazine. They are from a farthing to a half-penny per lb. lower for both beef and mutton. The Liverpool prices of grain on the $3 d$ of. July was reported as follows:-

The price of flax in the English market in February last was from $£ 3710$ s. to $£ 45$ the ton for foreign flax. For. tow, £23 to $£ 27$. Hemp from $£ 33$ to $£ 35$ per ton.

Electoral Saxony wool, from 4s. to 5s.2d. perlb. Australian, Bohemian, and German wools, 3s. 2d. to 4s. do. second do., 2s. to 3s. ; inferior, 1s. 6d. to 2s. German lamb, 2s. to 3 s . per lb. Hungarian wool, 2s. to 3s. German and Spanish crop, from 2 s . to 3 s .

Cattle bones, $£ 5$ to $£ 6$ per ton. Linseed Cakes, English, per ton, $£ 10$ 10s.; foreign, £8 to £9. Rape Cakes, foreign, £5 5s. per ton.

Farming in the Olden Trie.From an ancient Latin tract, supposed to have been written about the latter end of the thirteenth century,
and which, though chiefly: a treatise on law, yet contains many passages relating to rural economy, we learn that husbandry was conducted with. more regard to precision than might be thought consistent with the rude habits of the times. It points out the several duties of the steward, the bailiff, and the labourers, from which it appears that even in that age, when education was so rare, the farm accounts on large properties were kept with scrupulous accuracy; and it gives many directions respecting the tillage of land and management of cattle, that are not unapplicable to the practice of the present day. Yet the learned author estimates the possible returns from the soil so low as to inform us that unless an acre of wheat yielded three times the seed sown, the farmer will be a loser, if corn were not unusually dear. His calculation is as follows:-

Three	$\text { s. } d .$
Ifurowing.........	01
Two bushels of se	10
Weeding	0 012
Reaping.	0.5
Carying...	0 1

which is about the value of six bushels of wheat at the time he wrote, and exclusively of rent, of whicli nothing is said. But Sir John Cullom and Sir F. M. Eden, who have devoted much attention to the subject, assume the average crop to have been about twelve bushels; and the former remarks, that, "supposing 4s. 6d. to be about the mean price of the quaiter of wheat, and fourpence the year's rent of an acre of land, the disproportion between the produce of the land and its rent is almost incredible; and if an acre in general produce only a quarter and a half, or twelve bushels, it would, if the ground was cropped only two years together, give the husbandman thirteen times the rent of his land, one year with another:
a profit which the best farmer in the present state of improved agriculture can rarely reach;" for a very good reason that tlie rents are generally much higher than they ought to be.
 UEXPORTED FROMIHOLTAND:

Fhere is a vast increase in the shipping and in the exports from Holland since the separation of that country from Belgitum. The above is a proof of it. The value of cheese and butter exported annually from Holland cannot be much short of $£ 1,000,000$, a very large amount in deed for this description of agricultural produce.

AGRICULTUFAL, REPORT FOR JUNE AND JULY

The ..months .. of June and July were 'very favourable to vegetation. Wheat, though generally sown late, adyanced rapidly in growth, and at the beginning of July, had a promising appearance, when it vas attacked, by the fly as it came into ear, and throughout a large poition of the District of Montreal, all that was in ear previous to the 15 th of July, is nearly destroyed. There are some fields of wheat that was not fully in ear on the 15 th; that have, in a great measure, escaped the fly, and nay yield a fair produce, if the season is dry and favourable. There is, however, a considerable risk that the crop of wheat that is so late will be, if it is not already, injured by nildew or rust: "Wheat that hiw grown rapid: ly, and is at this moment green and luxuriant is yery liable to mildew in damp warm weather, or even from; heary dews. It is this risk that will' alwasmakelate sowing of this graina'
precarious experiment for the farmer in Canada. To sow wheat in drills about nine or twelve inclies apart, would, we are convinced, be a good plan. It'would enable the farmer to keep the crop clean and give a free circulation of air, that, perhaps, would be the means of checking the fy, as well as preventing mildew. Indeed we have no doubt that it wonld greatly diminish the number of the wheat-fly; and their power to do injury. Of course the land that woild have a drilled ciop of wheat could not be sown down with grass or clover seds. This is an experiment that it is our duty to make at the first oppórtunity:

So long since as 1835, we stated in an Agricultural Report, that there was a speciés of wheat in England known as the "Cone Rivet, Anti-fly, or German Thickset Wheat," that was proof against the ravages of the fly. It certainly does not show that there is much interest felt in the success and prosperity of agriculture that no exertions have been made to import some of this wheat for seed, though since that period many cargoes of foreign wheat have been imported for consumption here. This circum-; stance, with many others, proves the necessity that exists, that some effectual measures should be adopted for the better care and encouragement of Canadian agriculture than has hitherto been bestowed upon it.Our wheat crops have been almost a failure for the last three years, and yet no steps have been taken to introduce a new seed that is reported would be proof against the insect that clestroys our wheat. ' There may be other varieties, also, that on trial might be found to resist the fly better than those we have. The stronger and coarser the ear of wheat, the less liable it will be to injury, as the fly canuot so easily deposit its eggs or larver within the glums. Unquestionably it is a matter of some
importance to ascertain whether, by a change of seed, or other means, we can successfully grow wheat in Lower Canada.

Barley hais been greatly injured by the wheat-fly, much more so than is suspected. Many ears that appears to have the full number of grains, it will be found on close inspection, that several of these grains are only empty huslss, and that the inside or kernel, is destroyed by the larve of the fy. We have seen in some fields, many ears entirely destroyed, particularly where the field was sheltered, and had not a free circulation of air. Indeed, we regret to state, that from the injury that barley has sustained this year in many places, we very much fear that it will be as precarions to cultivate as wheat, unless sown at such a time that it will come into car too early, or too late for the fly, that is, before the 21st of June, or after the 15th of July. After the latter day the danger is past. The fly appears only for the purpose of depositing its eggs; it is only for that it comes into existence, and when it has accomplished that, it is no longer to be found. There is not one to be seen in a ficld, after the crop gets into that forward state that the grain is not fit to feed its larye. While it is in existence, its only employment is to steal up late in the evening from its place of repose or concealment during the day, and deposit its egegs in the ear of wheat or barley, and when this is done, without any further apparent enjoyment of its existence, the insect dies.

We have observed, that the stronger ears of barley are not so much injured by the fly, as the ordinary or smaller curs. Perhaps if there was as much whent. sown this year as usual, the barley would have suffered less. There is no doubt they would have deposited their eggs in the former rather than in the latter, if growing in the same field or neigh-
bourhood. We had satisfactory proof of this in other years.
Rye is not: much sown in this neighbourhood. We have been told, that where it is cultivated, it has suffered great injury from the wheat fy: this year. We would suppose our information was correct, as the grain is more suitable to receive the eggs or larve of the fly, than the grain of barley.

Onts look well where sown on thin lands that are even moderately fertile. They are a useful and certain crop when properlycultivated, and they do not require such carefnl cultivation as other grain.- To drain the land sufficiently; plough it well, and sow in proper time, will insure a good crop, on any soil that is not completely exhausted. There is no erop that is more slovenly cultivated, or done less justice to generally in Lower Canada, than oats. Probably it will be more carefully cultivated, if the farmers find they will have to make use of oat-meal as their food, instead of the flour of wheat. There is a vast difference in the quality and quantity of oat-meal made from early sown oats that ripens perfectly; and that made from late oats, that does not ripen propery or come to maturity:

Peas are generally excellent: on suitable soils, so far ns we had an opportunity of secing them. Buckwheat is sown extensively this year, and looks well. If the fall is favourable it will prove to be a good crop.

Indian corn is not much cultivated in this neighbourhond. $:$ We would suppose this a favourable year for it.

By the reports we have from the District of Quebec, and from Upper Canada, it does not appear that the crops, in either places, have suffered by the wheat-fy: We may hope, therefore, that the plague is confined chiefly to the District of Montreal and Three Rivers.
There is a report from Hamilton, Upper Canada, that "the wheat is
suffering considerably from the effects of a small worm of about $\frac{3}{4}$ of an inch long." We believe there must be some mistake. We have never seen a worm of that large size attack wheat in the ear. We fear it is none other but the worm produced from the wheat-fiy; the size of which has has not been correctly given.

The late rains have considerably broken down the barley that was nearly ripe, and other grain crops that were heavy. The crops that are so broken down, if in a green state, will never conie to the most perfect state of maturity; and the barley that is ripe, or nearly so, it will be difficult to harvest, and impossible to prevent wasting.

Potatoes have partially failed by the dry-rot in the seed, throughout a large section of this district. We have seen some fields where the seed will not be obtained from the crop. Where seed has to be planted a second time the crop is seldom good, yery productive, or fit to keep. : We have a remedy for this evil in future, that is to plant whole potatoes. The farmer who neglects to do this, and who is disappointed in his crop by dry-rot in the cut seed, can only blane himself. Turnips are, we believe, nearly a total failure. Even on new land that had ashes upon it, the turnip-fly has destroyed the plants as they came up.

Hay las been abundant on all lands that were sufficiently fertile to produce it. Last spring was cold and late, and the provender for cattle was all consumed before the pastures had sufficient feed for the cattle. The consequence was, that the meadows were pastured to the end of May. This checked their growth very considerably, and where the land was not so fertile as to produce a rapid growth after they were preserved, they did not yield a heavy crop of hay. Clay lands that are not properly drained, when they are ex-
posed to the heat of a Canadian summer before they are covered with sufficient grass to save them, becomes hard, and incapable of producing a large crop of hay. It is from these causes that the crop of hay is not so great; generally, as we might expect in such a year as this.

Pastures in favourable situations are good, but on dry exposed lands that were in tillage last year, and left for pasture without grass seed of any kind sown upon them, do not produce much grass for stock, and we could not expect they would with such management. The late rains will improve pastures, and forward the growth of the aftermath on meadows that have been cut.

The dairy produce is abundant, and brings a fair price for the farmer and the purchaser.
Butchers' meat is higher than it generally is at this season of the year. The consumption is larger, and will be likely to increase. The farmer has every reasonable encouragement this year to feed cattle for the market. There is scarcely a doubt that there will be a fair demand for beef and mutton throughout the year.

Apples will not be a plentiful crop. On some orchards there is scarcely any fruit. This is a crop, however, that the farmer does not depend much upon for profit in this country.

Upon the whole; the prospects of the farmer are not so flattering as we were led to hope they would be at the latter end of June, particularly as regards wheat, barley; and potatoes, throughout a large portion of this Province. The other crops are fair, and if we have a favourable harvesting time, we may realize a produce altogether, with the exception of the deficiency of wheat, that will suffice for the consumption of all who have their present residence in Lower Canada. The Canadian market prices will be given in our next.
Cote St. Paul, Augiest 6,1838 .

[^0]: * The tuthor, in the Supplement, to his Treatise on Agriculture hns sultinitted some remarks on the sulhject of drainime the public wild lands, by the application of a part of the funds derived from their sitle, in order to fucilitnte their settlement, nud the general improvement of tha country the begs to refer to that work, prges 180 ti. 19 t .

[^1]: * All the parta metivith in the lrain' of anjmals exist niso in the bratinofman; while severg of those found in man are either extrencly small, or fltogether nbsent; in the brains: of the lower animals, Soemmerring has entmerated no less than fifteen - mnterial anatomical differences betwoen the human brain and that of the ape.

