CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

C^nadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibiograpnically unique, which may alter any of the images in the reproduction, or which may signlficantiy change the usual method of filming are checked beiow.

Coioured covers /

Couverture de couleurCovers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée etou pelliculée
Cover title missing / Le titre de couverture manque

Coioured maps / Cartes géographiques en couleur
Coloured Ink (i.e. other than blue or black) /
Encre de couleur (l.e. autre que bleue ou noire)
\square Coloured plates and/or illustrations /
Planches et/ou illusirations en couleur
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible

Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lul a été possible de se procurer. Les détails de cet exemplalre qui sont peut-être unlques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans ia méthode normale de filmage sont Indlqués ci-dessous.

Coloured pages / Pages de couieur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées eVou pelliculées

Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / TransparenceQuality of print varies /
Qualité inégale de l'impressionIncludes supplementary material /
Comprend du matérlel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possible.

Additional comments / Pagination is as follows: p. [1], 091-0112.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Legislative Library Victoria

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, ur the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, eic., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Legislative Library Victoria

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire tilmé. et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprlmée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qul comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiére page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent étre filmés à des taux de réduction différents. Lorsque le document est trop grand pour étre reproduit en un seul cliché, il est filmé a partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

[REPRINTED WITHOLT CHANGD OF PAGING FROM THE RKPORT OF THE BEITISH COLLAFBIA COMMIS8IONER OF FISIIERIES, 1017.]

THE NATIVB OYETER OF HRITISII COLUMBIA. (Oftara lerida, Carpentiar.)

By Jonepz Stayromb, M.A., Pi.D., Montreaz.

Yethod of Cultune.

The oyater is one of our natural resonicen, and as such has been brongbt into exiatence by natural causes and perpetnated noder natnral conditions. It has Ilkewiso been lifolted by satural forces to clrcummerlbed areas and restrieted numbers, and its struggie for oxistenee has cettied down Into a reciprocal give and take between Itnelf and the other members of Its ifmited world. Against theme it is fitted by natnre to defend Itself, since the mortality hrought abont by adverse climatic, phymical, chemical, or bloiogical eiements is offert by muceessful detence and fertility of reproduction.

When snch a naturai prodnct is discovered and appeais to the wants of civilised man there is converged upon it a atrain so sudden and vast as to snrpass all innocent and naprepared defence. Man, by his calculating and inventive genlus, both by whoiesale mechanical meizure from the natnral areas and by effective transport iniand far beyond the orisinal dietriontion. imposes a demand upon the natural product which is not only milditonal to the original demand, bnt is overwhelmingiy greater in amount. The oyster-finhery, like every other fashery that has been exploited by man, is forced soon to reapond hy snch decided tailing-ofis in nnmberi an to ronme tears of depietion and anal extinction. To permit it to readjnst itself natnrally wonid require restriction of the fishery almost to the point of prohibition, in which case, as a natural resource, it would cense to he of any economic vaine.

The only way to turn the natnral supply of oystere to almont ifmitiess vaine an a national asset is by artinclal cultivation. That is what has been done In agricultnre, forestry, and the ilke, where the natnral prodiction breame too meagre for human requirements. We need not oniy to conserve the original stock, but to lucrease its productivity in order to keep pace with growing demands. This offers scope for man's inteliectnal and constructive activitie in furnishIng practical and prodnctive methods of culture.

The importance of method in oynter-cuitnre can hardly be orerestimated. Everybody has had anficient contact with some employment or mode of Itveilbood to recognise the advantagen of methodical over methodies procedine. From the most commonplace elementary dnty of the Individual to the mont complacly elaborated and correfated operation of great organizations there should be that relation betwern proposed action and dealred remult which is indicated by the terms "method" and "symtion." The managers of every businems or protemslon draw on thelr accutuulated stock of personal experlence and acquired knowledge in forecasting a pinn of action, and even aspistants and cmplosees are selected or rejested according to their ablity or Inablity to work fowands a required end. Since this is true for long-establithed and welltented ocenpatlons of the masses, It must be acknowledged as all the more nrgent in a parruit (snch as oynter-culture) where the accumulation of Information is in the hands of relatively fow people, the operations at timen exposed to nnnsually great dificultles, and the remult not lmmediateif or distinctly exhiblted.

Methods are estimated by resnits, and in conseqnence are spoken of as goot or bad. Bnt a complete method of oyster-cultnre is not a slmple thing; it is composed of many separate acts of which each may be regnrded as a monthed in ltself and its advautages welghed. It may happen that the end-resnit depends empecially npon the resuit of a single actlon. Sneh a critical analysis is not often thought ont, hnt more commonly people rush ahead and snm np the whole as a sort of get-rlch-qnick bnsiness or as a tailnre. Mnch depends upon the application of the method. A good method in poor hands may be no noore prodnetive than a poor method in good hands. Yet a rigid foilowing to the letter of a hilnd rule is not advocated for all placess allke, bnt rather the intelligent adaptation of a good general method to the special conditions of the locality.

Methods of oyster-culture have originated in different conntries and at different times. There is nothing remarkable abont an Indepeadent orlgin in countriem far distant and having no commnnication with each other. The accideutal observation of oysters on anchors, ropen,
or hulis of shlpa, on luoym, pllem, or lower timberm of wharves, or on otber ntructurve, is safielont to angsent the patting-out of molid bodles for the purpone of caiching apat and orisimaling experfmonta that develop Into a maten. In olden tinem much a method was passed on from father to mon from generillon to generntion, and in laser timen by hitotorical tranamiasion.

Italy has had a method of oyster-culture since abont 100 s.c. According to Pliny, the artifial proparailon of ofuters wal frat carrled out. In the salt wator of lake Aremas hy Sergins Orata, a Roman kulehl, who moon made a fortune thereby. On one occaslon, hecoming Invoived in a lawnait for treapaas, his connmel, lanclus Cranaus, deelased that if expelled from the lake his cilent would arow oysterm on the roof of hle bonmo-no doubt a groal exagreration for tho time, bnt a remark that wonld canse little menyrive at the prewent day.

Bingland as a home for native oysteri in great guantlty and auperfor quallty wat errouently reterred to ing eariy Roman authors; it has been even blnted ihat it was the oyater that attracted Caesar to the consts of Britaln.

France, Holiand, and Belsinm have, slnce the middie of last century, developed the mont painstaking nethods of modern times, and some other conntries of wentern Europe have llkewico carried on cultnro of the common Firpopean apeeles (Oatrea edulfo).

Japan for mome iwo hnndred yearm ham attained to conslderahle succem with a different specien (O. cucwllata).

The l'uited States began the cultiration of the common oyste: of tho Atlantle Coart of Amerlea (O. virginiana) Indenendenilf of Finropean countries and a few yearn before the modorn methods were inniltnted in France. The oyster-fishery in now the most important finhory of the Unlted States and greater than that of all otber conntries comblned. Seed-oynters are ablpped to the I'nefic Coast and planted In suitalie bags of Callopnia, Oreson, and Wablington. The common oyster of the Pacife Coant of America (O. Iwrida) has also been cultivated in more recent time.

Canada posmenses naircal beds of the same two apecies as the Unlted Staten, and of late ycarn has made some progresm in their cultiration. Intenalve culture in all the more necevany here because of the more northeriy ponilion, the restricted areas, an; the mparse seeding of the natural beds. The high attalnment of the Industry in the Unlted Statem should apur Canada to great efforts in developing thls fortnnate natnrai possemion. The coasts pt Eartern Now Bruaswlek, of Prince Edward Island, and of Fasteru Nova Scotim have many warm ahallowwater bays adapted to the rejulrements of the euntern apecies, 80° well known to the fresh-oyter trade, and need from these reglons as well as from Fantern states grows raplaly to markotable slzo In Britlsh Colnmbla waters. The enutern oyater is already caitlvated at Creacent in Bonndary Bay, at Ladysmith In Oyster Marbonr, at Horwenhoe Bay near hy, and at Esquimalt. The western oyster is cultivated at Cremeent and at Iadymmith.

In the early daym people were content to gain a ready and comfortahle Ilvelibood, and enituro was paraned on a smali scaie and generally in a half-hearted apirt. Progrew was slow. A feellng of satisfacion with existing conditions, the self-assurance that accompanies ilttie experlence, and the asmamption of special knowledge, set rlewa, and ummproved machinmy were nome of the retarding canses

With the progreas of lime, the growth of popalation, Increared demand, the developy ni of a commercial split, desire for wealth, competitlon, Inventment, formation of companies, etc, oyster-cuitnre, ilke other means of prodnction, came to be applied more earneutly. Calculation, adaptation, lmprovement, addilons, Inventlons, vere made and information sónght from other districts and other conntrles. Aiong with a general advance in education, the improvement of Implements, machinery, and Iransport did much to orercome prejndices. A deeper Incight and a hroader comprehension were galned, and men began to awaken to the posalbilitles of future developments and to cultirate a spirit of enterprise in great nudertaklaga.

The Anherman, cultuilist, and capliallst have done mnch in the carrying-ont of methods when once Institnted, bnt the direction of the most important adrances has alway: been indicated hy the iralned Investigntor. The rontine work of mechanical operatlona can be applied by the masses, hnt the grasping of complex prohlems and the methods for thelr analyale can be handied only by men accustomed to research and that have the leisure to think. It reqnires the marahalling of all related sonrces of knowledge as well as the power of their application. Methods must conform to the mode of development, the structure and manner of life of the oynter, must take account of the phyalcal conditions of the environment, mast be applica'se from locul iesource,
and muat be kept abreant with the advanen In knowided and the improvement of macmusery. Now methode or now adaptations may be teuted by inezpenalve " $>\mathrm{p}$ perimenta on a mall sealo: experimente giring the bent remelticen be fippiled on a large scale.

Anzection of locahtr.

Before zolng to expense in greparation for oyater-culture it in well to make aure of anw primary emantialn with regard to locallty, ifte, acsemiblilty, market, tranaport, and the like It mast be underntnod, of conrse, that it la Farely posalble to obtaln everything that is denirable In a sinsle location. But some thingm can be done without, even though incourenicat, while oikers cannot be dispensed with at nil. A good deal repends upou the kind of editure it in proposed to carry on and whether such work is or han been conducted in the dilatrict bofore.

If there are or ever have been r-tural oyater-beds or seattered oyaters in the roglon, one may feel aure that the physlen! reorirementa are at leant somowhere noar the mark. If theso aro no oyaters but other blvalres ilit unually accompany oyaters, the condilions may still bo anficiently aultatle for some phasen of cullure. In any eame it is heat to examine with regard to the four primary ementials referred to in the rection on environment (1015)-vis, renwater (sailnity), heat (temperature), hottom (iybatratum), and food (nourfabment)-la order to declde whether or not oysterm are likely to ho able to live at the place auder condderation. In this connection it mast also be remembe:rd that planted oyaters can often live where reprow duction wonld be Impowible, and if the complete procese or all the procenes of cuiture are to be pnrsued It is necensary to be atili more carefol abont the aelection of a locallty. The extent of the variation in malinity and in cemperature, the amount of fuctuation in rioe and fall of Ides, the depth of water, currents, fresh water, fints, benchen, and exposure art some of tho maln thingm.

One of the first queations to arise ls whether the bualness can be mado remaneratire. To Judse thly refnites a conslderation both of tho probublo productivenens and expense of working. The fret mast take into accoant the poanlblitty of mecuring anflicient area to bo worked and the chance of extenston In order to keep pace with a srowing trade. The sccond deale with such things as manner of working the beis, whether at low the on exposed fats or at other tlmen by means of tongs or dredre; accemalbility of the beds; proximity of a contlurons market; means of tranaport by trall, rallway, or bont; posslbilty of hiring help; sites for howee, wharf, and other necessltiem convenlent to both beds aud abjpping-staticu; menns of living' "provialomIng and of procuring utensils and constructlon materialm. The lest location are ti romeming more then one kind of regular commenleatiou with large cltles, so that enmpeth, will keep down rates and orders may be alled often and promptly and without de'ay in tra. ais. On the other hand, on acconnt of the manner in which the oyater procumes 1t: food, ogster-boda abouid be kept ont of the way of drainage and mewage from large centree of popjlation and from wantes from mannfactorles, mills, and the ilke.

Gorbanment Erantentol.

It neede scarcely to be mentlontl that the manction of Govemment is required to right of usage of a bay or portion of a bay or other body of navigable water for mpectal purposen. Buch right refers only to the purpose for which granted and ahould not Interfere with the rights of others in legitimate narlgation, fishing, etc.; nelther mhould otherw interfere with the rights of the cultnriat or damage or remove any of his property. It must be underatood that progerts on or under nea-water or exposed at low tidew cau be perwonal and private in the same sence as property on land, and as such is subject to protection aecording to law.

Appamatos and Conimuction-woze.

Even the slmplest kind of calture on a small scale requiren some apparatus and constructionwork. It is surprising how little suffices at some places. It may be well to not procure or construct much at the start untll it le fonnd by practleal carrying-ont of the procemes what will be most convenlent and eficient for the locality. A strong, somerihat ahallow motor-hoat with some deck-apace, a dost, a wharf or lauding, a house, are most likely to be needed. Instend of several large scows some companlen mike use of a larger number of much smaller "bstteaux" that can be left anchored on different bed ready for loading, and because of thefr narrownem and polnted fore eud are not so likely to drag anchor in a storm or be swamped and may be
towed with greater speed. Depending on the manner of working the beds, additional boats, scows, floats, buildinga, and dredges, tongs, rakes, forkn, hand harrows, wire shovels and palls, sorting-knives, etc., will he reqnired, and sacks or boxes for shipping.

Operitions of Cultuae

The operations bearlug most directly npon the cult ivation of oysters may he primarily separated into two groups-the first dealling with the simple proress of planting and growing-ap of seed oysters ohtained from dealers n: make a business of supplying seed, the second dealling with the more difficult special processes of raising one's own seed. The eultnrist who wants to reap the greatest benefit from his knowledge and inlour should do loth.

Raigino Oysters from Puacilaged Seed.

In order to keep this set of operations more disthetly separate from others, we may select the pianting and growlag ln Rritish Columbla of seed-oysters obtalned from Prince Edward Isiand or Conaectlent or other Province or State in the East. This is what cuiturists generaily set out to do, because the work is more ensily aud surely performed and resnits are sooner vinible In the prodnetion of grown oysters ready for market.

Buying Seed-oysters.-Seed, as referred to in oyster-culture, does not have the same meaning as' in grain-culture. Seed-oyst(crs are not a definite stage in the life of oysters as grains of wheat are \ln the life of wheat-plants. Such oysters may he any stage between the youngent spat and the grown oyster. They eorrespond, therefore, more closely with young fruit-trees obtained, from a nursery and are not all of the same age, size, or appearance. They are already oysters (not eggs or seeds) and only descrve the name of seed in the sense that they are the startlag-polnt of cultiration ly many culturists.

The value of seed depends primarily upon the nnmber of ifing oysters it contains as compared with useless mattor like dead sheils, stones, sponges, etc. It may even carry over cuemicg. parasites, or other nndesirable animals. If it is in the rough state as seraped from the heds where it was produced it will contala a greater proportion of rubbish than if it has leen more or less culled. The larger the oysters the more valuahie they are counted, because the more capable of withstandlug ehange of conditions and attacks of enemies and the sooner they grow lito marketalle slzes. On the nther hand, the smaller they are the greater the number in n hushel and the greater the gain if they succeed in growing to maturity. Another consideratiou is the locenlity from which olitained and the cllmate to which accustomed.

The price may vary from aliont 10 cents to more thau $\$ 1$ a hushei.- What is called "spat" by the oystermen, young seed set in the sumuer of one ycar and offered for saie (as seed) in the spring of the followlag year. requires 8,000 to 10,000 to fill a saek of three busheis. "Two-year-olds," belonging to the same set lut sold a year later, go about 5,000 to a sack.

Transport.-Thls may he by toat or by traln or part of the way by each, and transfer may be reculred by wagons. Handling should he redtced to the minimuu and performed with care. The seed should not be kept out of the wster longer than necessary. It should be shipped while the weather is conl. It should not le left exposed on a wharf or slde-tracked in a car. It shouid be kept cool and molst with lee, but not frozen. and there shonld be no sudden or extreme ehange. If possihle, the car sloould lie ventliated, the lnfooving air passing over ice, and the sacks, made of loose, ojen materlal. pscked so as to allow the air to pass among them.

From Bridgenort, Conn., to Crescent, B.C., a car-load, all the way hy rail, consisted of :175 sacks at \$3.र0 a sack 61250 Frelght, $31,800 \mathrm{lb}$. 57150
Ice 1200

Totai
$\$ 1,18600$
It wili be seen that for such a distance the transport costs ahont as much as the seed itselfauother reason why it is of advantage to liuy clean seed. The time required was seventeen days and the oysters were received in very good condition-miy a few having dried badiy by having the thin edge of the shell broken throngh contnct, welght, or rough handilag, so that they were unahie to retain their jnices.

IIaving been Informed heforphand of the time of arrival, everything wan ready to set the seed into the sea-water without delay.

Planting.-The sacks were slld down a trough-ilke Incine of pinnks reaching from the car to a scow, on to which the seed was cmptied and the loose sacks were dipped into the sea-water and spread over the oynters to protect them from the snn. The scow was then towed by motorboat at high water to the pinnting-gronnd, already staked out at low tide, and the seed ecattered by men with shovels (Fig. 1) as the scow was slowiy moved back and forth over the bed.

The gronnd selected is on what hns been calied the "eastern bed" in the last report, situated south and east of the channel of the Serpentine River where it makes a semicircuiar curve to pass between eantern and western beds ou its way to join with the channel of the Nicomekl River. The area that can be ueed is npwards of haif a mlie broad and covered with 8 or 10 feet of water at high spring tide, bnt exposed for about five honrs at the corresponding iow tide. The space required for a car-load of seed is a surprisingiy small patch, so that there is room for a good deal of melection even within the ilmits of the eastern bed. There are parts higher aud first cxposed, somewhat sandy and withont eel-grass, and parts that are iower or on which the water lies longer, inclined to be unddy and to some extent covered with cel-grass. The car-ioad referred to was put down on such a piace as the last, where one sinks a iftie in waikiug. but it is firm underneath and can hardly be said to ever dry off.

The speclfic gravity of the water above this bed rarels falls below 1.016 and in geveraliy between this and 1.020 . The fresh water of the Serpentine spreads ont over the bed at high and faling tide, but when the flats begin to be exposed it comes to be confined to the channel. At rising tide, when the water of the channel begins to overflow, mixed frewh and sea water is brought back over the bed. The fresh water of the Nicomeki is carried off withont affecting the bed at failing tide, bnt some of it may be bronght back at rising tide. Ordinarily the water from both rivers is not suffieient to lower the salinity to a greater degree than that mentioned. At times fresh water from the Fraser River is tnrned by tide and wind iuto the bay and lowers the S.G. to 1.012, 1.010, and even 1.008. This happened iu Jnly of 1013 and 1916, but not in 1914 and 1015.

The temperature of the high-tide water above the bed seidom reaches $15^{\circ} \mathrm{C}$. before the first, second, or third week of May. Shallow layers left in hollows on the flats for several hours during low water, river-water coming down a warm valiey or channel-water draining of lats, and the shallow edges of tldal water on beaches may attain to this temperature a week or two eariler. A degree of $20^{\circ} \mathrm{C}$. in the high-tide water over the bed is touched very rarely-about once in a snmmer, althongh $19^{\circ} \mathrm{C}$. Is attained several times. The great unass of the tidal water is heid at 16 to 18° C., bnt thin layers left mtranded and exposed to the snn for hoors during faling and rising tide may reach 25°, even 29° C. for an interval.

Separating.-After the seed has grown for a year it will be fonnd to be largely componed of bunches of abont haif a dozen oysters with the hinge ends grown together and stuck in the mnd, while the opening ends of the sheils polnt upwards and diverge from one another. It in guite piain that the ossters in a bunch were originnily heid together by the same plere of cultch, althongh they may have grown to each other more securely since, aud that the npward divergent extension was due especiaily to an effort on tiue part of the growing oysters to separate as mnch as possible and get to free water and food. If left in this state they will continne to grow long and narrow or some of them will die. It is part. of the work of the cuiturist to break these bnnches apart into their separate oysters and to distribute the oysters over the beds' thinly (Fig. 2), so that each has roolu to grow in breadth and thickness as well as in length withont Interfering in feeding, resplration, and excretion. Where the oysters are too thickly plauted some of them should be enrried to npots where there are few or none. This can be done during the long low-water periods of spring tides.

Growing.-The seed grows to good-sised oysters in two or three years from the time of planting, depending upon the size started with and the rate of growth-the latter again being largely dne to locailty (temperatnre, salinity, food, etc.), but aiso to individuality aud attention. They do not all grow at the same rate-even oysters lying slde by mlde in eqnal condiftions aiffer in size and shape. They have their diferences of constitution and appetite as well an in other respects. Some weaken or die from hereditary causes, some happen accideuts, while others are partly starved or smothered. The death-rate is nsnalis low for the arst year, but increases rapidiy with the second and third years. There is an adrantage in noing them as fast as they grow to sufficient alze.

Harvesting.-In gathering the oysters for market, if there is mnch variation in size the larger may be picked hy hand, leaving the rest for further growth. They are carrled in wire palis and ioaded on to a near-by scow. If the greater nnmber are marketabie a speedier way is to rake all the oysters (Fig. 3) into Ilttle heaps, then rake the heaps on to hand-barrows, each of which is carried hy two men and cmptied on to the scow. As oysters are not cultivated In deep water in this country, there is no need of using tongs or dredges, except perhaps rareiy as a means of procuring oysters at high tide when the collected stock has run ont.

Sorting.-This can be performed as the oysters are pleked, or may be dose on the scow during the period of high water, when the nndersized and small oysters may be thrown hack on to the hed at once. Bnt is is generally more satisfactory to tow the loaded scow (Fig. 4) to the wharf, where sorting and trimming can be carried on irrespective of tide and weather. The farge oysters have the nndersized and small ones pried off by a strong oyster-knife, the harnacles chopped off by a heary hutcher or carving knife, or they may be otherwise cleaned and washed. They are then shovelled into a large float heside the wharf or scow, where the tidewater can flow over them and keep them fresh for market. The undersized and small oysters are taken hack and repianted either together or, better, in assorted slzes on some portion of the bed for further growth.

Shipping.-The oysters may he shipped to markets in sacks or in hoxes. The iatter are preferahle; they are more easliy handied, the oysters do not Jam so hadly and get their edges broken, and they look tastier. The hoxes are made of thin, dry lumber (not too closely nalied together) of a size to hoid 25 dozen packed oysters. The name of the company or the trade-name of the oyster may he printed on the ends of the hoxes and the address to which consigned may be convenlentiy written by coarse hlue pencll on the top or side. The best shipping arrangements should be made to protect from the sun and to hasten delivers-whether hy wagon, auto-truck, rallwas-car, metor-hoat, or steamhoat.

Marketing.-Orders come from fish and meat markets, fish and meat retail stores, restanrants, ${ }^{-1}$ and hotels. When once introduced the business is ilkely to hold from year to jear and even advertise itself and grow. At first some advertising, canvassing, correspondence, or sending of samples may he necessary.

Raibino Oysters from Collected Sebp.

Another way of starting with seed-oysters is to collect seed from natnral oyster-beds and transter it to one's own beds. To the culturist in British Coinmhia the great naturai oyster-beds or reefs of the Atiantic Coast are too far distant to be pricticabie, and the only thing for him to do is to bny from a seed-collector there, as has been already considered.

With regard to the native oyster in British Colnmbla, there are no great natural beds and any small and thinly seeded lieds that do exist would soou be exhansted if there were any drain made on them. Moreover, It would take a great deal of work for the small amount of seed that could be collected. Their value lies in being there, ilttie as they are, as an indication of snitahie environment and a starter for cnitural operations.

To transpiant the native oyster to other paits of a hay or to other hays for fnrther growth it is necessary to plek or rake them aud transfer by boat or otherwise in a similiar way to what has heen described for the eastern oyster, except that for small quanilities and short distances some of the precautlons are not necessary. There is no hasiness in the snpply of seed-oysters on the Pacific Coast and it is not possible to buy them in car-ioads. The cuitnrist has to gather them himself or hire it done, a few sacks at a time.

Raisino One's Own Seed.

In procuring his own seed there are open to the cuitnrist the same methods as are made une of hy the seed-prodncer who provides seed for sale-viz., the coliecting of naturai seed from favourahle natural heds and the raising of seed by cultural methods. Since, as hai just been stated, the natural beds of the Atlantic oyster are too far away to he practicabie and the natural stocis of the native oyster is too IImited to furnish a continual anppig, the only alternative is to hny seed of the former and to ralse seed of the latter. In order to keep the operations separate we may now select the method of raising seed of the native British Columbian oyster in home waterm.

1. In an Oyster-bay.-If the culturist is operating in a bay more or less natnrally seeded with native orsters the beginning is aiready made for him. The oysters there have been perpetuated in successive generations for nnknown time, and an examiuation will show that the existing indivldnais can be classified into severai generations. From the largest and oldest adulta it is an easy nuatter to select sizes descending to those smaller and younger ones whleh the oystermen might call "seed," and contlnne to the still smailer and younger stages which they wonld call "spat." If close inspection is made there may be fonnd specimens so small as to be almont luvisible to the nnalded eye-the spat of the zoologist.

Spat on Natural Marine Objects.- It is not only possible to find spat on adult and seed oysters, but to find them on other shells, such as clams, cockles, mussels, whelks, even on gravel, stones, rocks, and other uatnral bodies.

Vatural Culteh.-Since all snch hard bodies offer anchoring-poluts, that are selzed npon by larve to save themseives from sinking into the mnd or from drifting away by currents, they fong ago came to be known to fishermen as "cultch" (clutch). Empty shelis of dead anlmals are jnst as good or even better for the pnrpose than the shelis of llving mollnses; in fact, the greater part of naturally occurring cuitch ls composed of the empty sheils of oysters that have llved on the surface and of ciams that have inrrowed into the hottom bnt whose shelis have come to be wasbed bare after death.

Artificially Supplicd Cultch.-Of the spat that becomes fixed to natural cultch comparatively few grow up to maturity, so that the uatnral accumulation of cultch is slow. The deficiency may be made good by the cuitnrlst who can gather oyster, clam, or other shells wherever they are to be procured and scatter them on his bed among the living oysters. The spat collected by elther the naturaily occurring or the artlicially suppiled cultch can be used as seed for transplantation.
2. In an Oystcricss Bay.-If there are no native oysters in the bay and the cultnrist has good reason to belleve that they conld live and propagate there, he has to begin by procuring uative oysters from some other bay (preferably of the same region) and planting them out on his own beds. Any sta se of spat or seed or grown oyster wlil do, bnt the yonnger they are the longer It will take them to grow to matnrity and become breeding oysters. The present object is not to grow pianted seed to oysters for the market, hnt to grow : to breeding oysters with a view to deveioping a stock. For thls parpose the full-grown oysters are best, since they will be ready to spawn in the first season and wlil produce the greatest amonnt of spawn, Such oystere are what practical oystermen call "spawners." They are also seed-oysters in the sense that they are the starting elements of productlon in a fresh area. If there are yonng oysters and spat mixed with them it will not be objectionable, since these will grow np to increase the spawn at well as to lncrease the cultch. Thls iast is a very lmportant polnt. Next after haviug oysters in a bay the cuiturist nust see to it that there ls cuitch.

Where there ls no cultch there can be no natnraily occurring or artificlally propagated oysterm because there can be no naturally deposlted spat from which oysters can grow up. In every bay or in some part of every bay there is almost sure to be sometbing in the form of cuitch even if it Is oniy an isointed stone or clam-shell. Bnt it takes a long time for uature to build np au oysterbed from such a start. Thls ls one reason why our oyster-bays are so thinly seeded with oysters. Another reason lo that so few eggs are successful In developing to the spatting stage. Betore spat can be deposited there must be these two conditions present at the same tlme and place-viz., the presence of the young of the oyster at the spattlng stage and the presence of cuitch on which to set. The greater the number of the young the greater ls the chance for each plece of cultch to recelve one or more spat: the greater the number of pleces of cuinas the greater is the chance for each of the roung to find one of them. These two condlitions operate together-each a correlative and a necessity for the other. A stone or a clam-shell may catch a spat which may grow and sooner or fater become adnlt and give origin to nnmerons young. Several of these may be deposited on tbe original plece of cultch or on the parent shell, and hy thelr nnmber as well as by thelr growth increase the surface of the cultch, or by breaking apart increase the number of pleces of cuitch. In such a way a bed may be orlginated and extended. Under the beat conditions it is a slow process, for each generation requires time to develop to maturity before it cau take part In the process of reprodnctlon. Moreover, the increase is not so fast nor so sure as the mathematical calculation might lead to suppose, for the spat and oysters are subject to many and powerful agents of destruction which keep reducing thelr nambers.

It is in the power of the culturist to do unch to lncrease both the numier of the young and the amonnt of the cuitch and in so dolng to assist and hasten natnral processes. Of the two, he can do iy far the most in the supply of cultch. In a natural oyster-bay the scarcity of oysters is c.vidently not so uuch due to want of young as to lack of cultch. The very preseuce of oysters shows that there has heen Ω succession of generations each of which must have produced great unmbers of young. Tbe natural eapacity for lacrease of young is greater than for increase of cultch. The natural lncrease of young is anmual, that of cultch requires several years to become effectlise and may be destroyed in the meantime. New cultch overlles old, often without Increaslng its surface, and old coltch in tho form of shells is contin ally wasting away.

Whether a bay contalns a few thluly dispersed, naturally occurring oysters, or whether it has had a few oysters native to the coast artlicially deposited in lt, the operations of the cultnrist are the same. Increase in the number of orsters can only be brought about by lucrease in the numher of spat, and spat must have cultch. The cultch formed hy the shells of the llving oysters is not enongh. The cuitch added ly the natural accumulation of shells of clams, cockles, mussels, etc., is too slow. The cniturist is losing time hy walting. This is one reason why it is adrisable to hegin growlug transplanted eastern oysters. Thelr shells are an Important contrlbution to tbe stock of cultch. Besldes, they soon grow to marketahle size and help to pay expenses as well as make n start \ln procurlng a market.

An oyster-liay and an oysteriess hay may be consldered as extremes between whlch there may fali lays that aceording to size and structure would need to be managed in one way or the other. Fxtensluns from the sldes of oyster-beds, provided they are furnished whith cultch, will become automaticaily seeded with oysters. Similariy, an artlficlally prepared new bed within reasonalle distance from a prosperous old bed wiil also become seeded, provided thal currents flow frou the seeded to the unseeded hed. A hay may he so large and the tidal movements so modified ly isiands or reefs that one part e? it is as effectlvely separated from another as if it werc in reallty in a separate bay. In such a case a new bed will have to be planted not only with culteh, lat also with living oysters (spawners).

Egos, Embayos, and Labit. .ot practicable as Serd.

In the foregoing pages has heen considered the method of ralsing spat for seed. This is the method, It might lie sald the historle methorl, of the culturlsts. Loug before the complete lifehistory of the oyster came to he known, long hefore even Isolated stages of the developing oyster were known. It was already known that yong oysters could at thes he ohtained liy putting out solld olyjects for thair reception. The yomingest stages of these young oysters were nst seen and the culturists knew nothing about them. It was orly after the cultch had heen in the water some time that the spat could be seen and their further frowth followed into recognlable oysters. Since ail the stuges lu the life-history of the oyster have come to be kuova, the question arlses, "Why not begln with a younger stage than the spat-why not, in fact, hegin with the egg ins is done in breeding joultry, flshes. and lobsters?"

This is not practicahie. As has leen seen from the experiments of inst jear's report, it is not a diflleuit matter to jurocure eggs of the castern oyster and sperin for their fertlization aud to derelop the young from the egg throngh the emiryo to the larin. But lt lecomes very difficult or Imbossilie to develop it to late larval slages such as immediately precede the younsest spat, In faet, I do not heilere It has ever heen accomplished. There are statements in the literature, it Is truc, that would Indicate it had been done, int it is not hard to show tbat they were mistakes dating from a.time when the full development was not known.

For the western oyster it is not difficult to get egga, eublyos, or young larve from the mother-oyster and they may be kept for several days, hut the saue difficulty arlses as with the eastern oystor. The later stages of the larve of elther oyster, right up to the spatting stage, can be readily captured in the sea-wator abcit its natural beds by ineans of a plankton-net, and may lie kept In beakers of sca-water for several days, hut they will die rather than hecome fixed and metamorphosed into spat. Artlficial methous have not yet been ahle to initate in a small way, not to say limprose on, natural methods at thls perlod. The reason is not hard to find; it is due to the diffentty of keeping larve confined in small vessels of water so as not to be lost and at the same time supplying them with .nltalle food, keep the water rera, ed, and effect the remoral of their cxcreta without introducing undesirable animals and plants that may multiply In orerwhelming numhers to the disad vantage or destructlon of the oyster larve. It is not hard
to belleve that lt will yet be possible to overcome these dificultles and to cultivate food \ln sultable kind, quantlty, and purlty, elther in the same vessels with the oyster larve or in geparate vessels from whlch the larvee may be fed. A clear perception of the regniren ents is an important step towards the achlevement. It would seem, however, that there is ilttle to be galned in extracting larre from the water to be kept and attended for a hrlef perlod and then returned to the wea. All the cggs, emhryos, or larve that cnltnrista could collect from oysters or from the sea, even If they could be kept allve for a time and again tnrned out Into the water, wonld he an almost negilglble number conipared wlth what are naturally poured into the sea withont the help of man.

Seed ar Eastean Ofstei not orioinaten in the Weet.

While the, eastern oyster in all slzes from the youngest "seed" ("spat") up is capmble of llving, growing, and spawning in western waters, and while fertlization, megmentation, and developuent may proceed for an interval, there is no seed produced and the stock of the eastern oyster cannot be replenished by breeding on the planted beds, but has to he kept up by repeated shipments of seed from the East.

Woak on Orgters.
The work of the cuiturint has to deal first wlth the oyste" and second with the environment. The work on the orster ls not confined to the adult, but lnclndes the developing stages as well. Thls is where all former work in culture has falled to produce the best res alts. Men worked with only the marketable oyster in thelr minds and did not consider how the marketahle oyster comes to be such. They did not stop to think whether more can be accomplished hy providing for the eggs and young stages than for the adnlts. The best method mnst take account of all stages of developnient and begin to provide for the egg and the larva as well p.s for the spat and the adult. To do this we need to know these stages of the developing orster and to know where and when they are llkely to ocenr and what conditions of environment they require. It was for this purpose that I made the special luvestigations and wrote the fiunr preceding reports on Embryology, Anutomy and Physiolós; Environment, and Cultural Experimenta.

Egg.-The egg, as the first stage, is especlally to be guarded. It ls had polles to nermit wholesale loss of eggs and afterwards hecome oversolicitous for the few sncvlvors that have passed luto succeedling stages. Medlnm- or average-sized western oysters spawn ahont $1,000,000$ eggs at one tlme. Where there are many spawning oysters on a hed there mnst he countless nnmbers of eggs spawned. Yet \ln a state of nature there is little, it any, lncrease \ln the nnmber of oysters to be seen from sear to year. The nnmber of eggs that develop successfully into adults agrees pretty well with the number of deaths of adults. There in a tremendons loss from what may be called the accidents of life. Natnre seeks compensatlon throngh riumhers. Artificial propagation should proft from the lesson and reek to increase the nuniver of eggs s_{1} awned. To this end lt will not do to keep selling off all the adnlt and well-grown o, aters. A good proportlon should be held for breeding purposes. The numher of egm prodnced lncreases zajld! with the lncreaslug slze of the oyster. The largest and oldest oysters are :- far the hest eggproducers.

At thls polnt it may le mentloned that there is a notable difference in the number of eggs spawned hy our tro specles of oysters and In the mauner of treating their egga. Whereas the eggs of the western specles are to he counted jy hundreds of thousands, those of the easteru oyster are to be enumerated in nillions. But the western oyster makes up for what it lacks in numbers by a greater parental care. Whlle the $16,000,000$ or more minnte eggs of onr large Atlantlc osster ooze ont or are sqnirted out of the parent lnto the sea-water and sink to the hottom about or in the nelghbourhood of the spawners, the $1, \mathrm{C} 0,000$ or so of the cumparatively large eggs of our swall Pacife oyster are retained for npwards of two weeks in the mantle of the parent, where they escape many of the exlgencies of life to whleh the corresponding stages of the eastern oyster are subjected. The reproductive elements of the Atlantic oyster, when discharged from the parent, are minnte helphess eggs, entirely at the mercy of thelr environment; hnt from the Paclic mother-oyster lssue larve provided with focomotory swloning organs, protectlve shells, sense-organs, etc. In the former there ls all the more need for the spawners to he left or placed in snltahle locations as regards snbstratnm. If the eggs settle on to soft mnd or shiftling sand, at least a latge proportion of thea ls llkely to be lost. Hard bottom of rock, gravel, or clay is bent for this purpose. Another reguifement is the ahsence of strong currents
that would wash the eggs away from the good bottorc. Both of these conditions are aiso conduelre to successfui fertllization where, as in the Atlantic speclex, the eggs may be extruded from the parent hefore being fertilized. In the Pacific oyster the eggs are fertilzed after leaving the oviduct but while lying in the auprabranchlai, intralameliar, and infrabranchlal cavities by means of sperms from other oysters brought ly the respiratory currents. In the Atiantic species, whilie some eggs no doubt meet with sperin in the same way, it is ilkely that, on acconnt of the rapld jassage to the outnide, mont of them first come in contact with sperm after complete extrusion. To facilitate this chance not oniy is the character of the substratum of consequeace, but the presence of somewhat qulet water and the number and proximity of maie spawners. If the ireeding oysters are thinly senttered there may be an advantage in enilecting them more in clusters to assist in fertilization. Muddy water should be avoided, for eggs may be crushed or smothered ly even a thin layer of depusit.

A cnuse of more rapld destructiou of eggs exists in exposnre. Where they ile below low-tide mark in a continuous mass of water they are toierably safe. But where they are snpported on grounds that are left luare iy the faling tide they may be exposed to a scorching sun or a shower of rain or a cold atmospinere. As the great masses of oysters occur naturaily or are cultivated on grounds just above or heiow the low-tide ilne, steps shouid be taken to guard agalnst overeaposure. The sjawners shouid be piaced in the best positions from the standpoint of the egg. lielow low-water line, In the more quiet piaces of channeis and sioughs, in the sheets of water retainel in tbe hollows of flats, where the watęr is held back by eel-grass, in coves and lagoons may he mentioned. Even parts of exposed flats may be made safe for this purpose iny belng inciosed in shaliow dykes that retain a few inches of water during the period of iow tide. Of course, sueh places must be selected as are not overflown with river-water, following the receding salt water.

Larve.-Since successful eggs deveiop into iarve it may be Jndged that areas seiected for eggs must also bave reference to the needs of iarva. In generai this will be the case, but it must aiso be remembered that eggs are quiescent whlle larve are active swinmers. Althongh they do not swim great distauces, they serve to keep suspended for periods in water that by tidal or other currents may be carried and distributed far from the grounds on which the epawners nind eggs were deposited. From the standpoint of the cuiturist this is the great drawback of the larral stage. Iie may have succeeded in ohtaining and guarding a iarge deposit of eggs only to hare the succeeding larve carried off and seattered over other more unsultabie grounds or lost in deep water. Every falifig tide carries suspended larve seaward to be deposited and settied in ali kinds of piaces. Fvery rising thle carries inrre to higher ievels of flats and beaches to be exposed at the next low tlde or to suffer from the effects of fresh water. The ceaseless effects ip thes keeps reducing the number of larre in the region of the original spawners. Tbero is uu practieal way of herding the original stock. They are too smail to he conflued by anytbing of the nature of wire netting. Materials such as used for piankton-nets are too perishable. Netthg of even large mesh offers such resistance to flowing water as to he immediately rent. Floating timier and seaveeds cir and increase the pressure. The oniy thing to be done appears to be to prepare for a heary loss iarva by preserving vast numbers of eggs. The more egys there are preserved the more larve there will be lost, hut also the more there wlli be sared. The wiole stock of larvie does not rise in swimming movenent at one time. Some are iying on the bottom, some are swimming at different jevels between the inttom and top, some are rishing and some failing at every mouent. This much may be observed from the experiments with inrve in giass beakers and from the plankton collections taken at high and low water and at rising and falling thes. I bave sometimes thought that the iarvie can distingulsh falling from rising tlde nnd that they govern themselves accordingiy. Larve taken from a western oyster fresh from the flats aud placed in a beaker of fresh sen-water seem to rise in greater nambers at the time of rising tide and to settie in greater numbers at the time of falling tide for several days after belug removed from the sea to the beaker. Piankton during rising and falling tides often appear to rerify this thought, but the collections mast be taken where sediment does not interfere. There is no question but the larve have it in their power to drop to the bottom to avold belng drifted out by falling tide and to arise when they feel the fresh, cool water of the rising tide, but whether they have sntifelent Intelligenee or instinct to for fo it is diffecit to deelde. Of this mnch, however, we can be sure, tbat the larve are most pientiful near the centres of thelr origln and become fetrer and more scattered in proportion to the distance from these centres.

This gives us a clue as to where to plant mpawners in urder to ohtain a atock of larve-even though somewhat of a foating popnlation. They may be put in lagoons and coves where there is a greater distance to be drifted out to sea or more obstructions to distrihution hy the tides, in slonghs and pools where there is snficient water at low tide to keep them from drying ont, on low parts of gats where they will be protected hy water beld hack by matted eel-grass, or at low-tide mark where at least some of them will survive the free larval period. Where there is no natural area or where this is too small it may be possible 10 construct an artifcial one, such as a pond or a dyked-In area. As a preparation for the close of the larvai perlod there mrost he an abundance of cultch elther naturaily occurring or artificially snpplied.

Spat.-As soon as the larve are grown to full slee and have become fixed to cnitch there is no more chance of drifting to dentruction, and the care of the cuitnrist is for the most part turin in new directions and along surer ilnes. The full-grown larve have elther been sared hy successful fixation or they have gone lost. It is the attached spat we have now to deal wlth. The expert is soon able to form a pretty safe jndgment as to the value of the "catch," hut the rank and file will need to wait a few weeks before the resnlt is plainly exposed. Dariny thim time the minute spat are growing larger and becoming more visihle, and the observant ofsterman can form concluslons as to the nnmber and closeness of the "set" on his ryitch and whether to leave It undistnribed or to remove it to safer piaces.

The disadvantages to which the spat are most liable are sediment, drying, frost, and crowdlng. It must be remembered that spat are unable to creep out of any' deposit of sand, mud, or weeds, and from their small size and tender structure are easliy covered and crushed or smothered. There is sure to be warm weather succeeding the set and before winter, and those uncovered hy the tlde are at first jnst as llatile to be dried np and kllied hy the hot snn or dried out hy a warm atmosphere as are the farve. A ilttle later in place of heat there is the question of frost. Frost and lee are destructive-the first from the formation of crystals in the soft parts of the spat, rending the timenes, the latter from welght or grinding movements. Cultch with Its set of spat that is aiready in safe places needs no Im. Ilate attention, hut that In !ess favourable places should be looked after at the first opportnalty. At this perlod the culturist can emplos his time to more advintage in rescuing unfortunately placed spat than in any other way. Ife cannot have another like opportunity for a year-and a year's growth of the thousands of spat he may save is an lmportant item, not to mention the addition to bis futnre breeding stock. After overcoming all the risks to this polnt it is too had to allow spat to be destroyed in masses for want of attention at thls time. Cnfavourahly dirp- sed cultch that ls sufficiently well dotted with spat should be transferred to better places below low-tide level, In sloughs, In dykes, etc. During the cold part of the antumn, winter, and spring the spat do not grow much, hut they thicken their shelis and hecome better protected against accidents. By the time the warm weather of the succeeding apring and summer sets in many of them may be crowding one another for space aind food, bnt they are still too swall to separate from the cultch and the latter is still too hard and strong to permit of hreaking in pleces in order to rellern the pressure of srowth of the spat. The crowding Individnals will begin to enrve and direrge rrom one another and to bend away from the cultch, so that with the rapld growth of the summer there will be left only a comparatively small surface of attachment to the original cultch. The culturlst can decide when It will be best and when he can best spare the time to hreak apart the growling hnnches and spread them over more gronnd. He can also judge hy the growth Whether they are In good locations as regards food-supply or if they had hetter be removed to richer feeding-grounds. Generally speaking, the loc̣allties having a hlackish mud bottom and in or near beds of eel-grass can supply a greater amount of food than those on harder and lightercolonred grounds. The black mud is itself especlally dne to plant and animal decay and is an Indleation of the ahnndance of organle matter that can elther serve for food or can eupport foodsnpplying organisms. Spat that have already grown somewhat can hardly sink into the mud by thelr own welght, aud, besides, thelr rapld growth will help to leep thelr edges ahove the surface.

Adulf.-SInce the spat passes lnsenslbly Into the adult withont any chang of hahits, mnch of the preceding treatment is applicable to the aduit also. There comes a time when it ls necessary to break apart the hnnches of oysters that have grown up from the more or less thickly cinstered spat on single pleces of cultch. If left as they are the ofsters of a hunch have to grow up side by slde and will become long and milm and pertaps somewhat warped for

Inek of space. The food that comen their way has to le divided ap among the individuals of n huneh and the chnneen are against every oyster gettlag its full share, with the result that growth is unequal and some may be starved. The larger and faster-growing indirlduals may even grow over the amaller ones ln sueh a way as to hold thelr vaives elosed so they cannot feed. When a buneh la ly lng \ln sand or mud some of tho under oysters may be huried and suffoented. There will he much rariation in slze, shape, appearance, and condition of the oysters, so they will present an uneren sample. As soon as the culturist fiads thls atate of thinge arising he whould go over the hed and break the huneher apart, diatrinuting the oysters so as to allow each proper space and a filr chance fur fool. At the same tlme ho should thin uit the more thiekly elustered spots and transplant part to thlnly planted patehes, to the edges of the bed, or to other areas.

In transplanting at this stage the oysters are of a sufficient size to lle on some mud luotoms whlthout belng lost. When lying flat an oyster will rarely sink. As is well known, mud botoms occasion rapld growth. Even a moderate amonnt of decaylng weeds will elther furnish food direct or will snpply microscopic organisms. sueh as lincterin, that may elther serve as food for the oyster or Its develophig young or for stlll other organismis that In thelr turn come to the oyster. Where wreds are so plentiful as to form matted, rotting masses over the oysters the latter will be killed; but where llving weeds atralghten up lin the rlsing tldo nid permit fresh sea-water to come ln contact with the oysters they are an advantage in many ways, protectlug the oysters both at high and low the, absorhing enrion dioxlde, and llberating oxygen, and glving attachment to hosts of dintoms that form the ehlef food of the oyster. Where weeds fall over and cover aysters during low the, it is true, they tend to amother the oysters, hut it is only for au lnterval when the oystera. If left uneovered, would have to elose their shells and remain in a state of defenee, whlle the weeds hold back some wnter, keeplng the oysters molst and protectIng agalnst sun and dry air. Eel-grass is linhle to he ent off by the sharp edges of the oysters and may be earried away by the tide or partly left to decay on the grounds, J have known a bed of eel-grass on whieh oysturs had been planted to he stripped In one year. lcaving the oysters exposed at low the, silting up and not dolng well. whlle heyond the oysters the eel-grass still renialued.

Ossters are likely to he better for removal to new places, unless the latter are altogether mifavourable. Llike people, they enjoy a change. In faet, the mere handing of them on the same bed does them gooil. If sunk somewhat in the soft bottom, or lying on the flat slde, or on elige, or with the broad end stieling in the mud, a change to a fresh position will he welcome. The best position is lying fint with the deep (left) valve undernenth, hat. of course, it cannot be expected to place every oyster separately, Any change of positlon, ehnnge of bed, chnnge of water. or change of tood ls likely to henefit 'sm. They mnst not. however, he put where they will he overwhelmed with drift or sedment, or where too much exposed to sun, alr, frost. fresh water, or water of too little salinity.

In conecting for the market large oysters may be pleked out at low the. leaving small ones for firther growth. Or they may he all raked in henps and earried by hand-harrows to a scow, on which men may work at sorting during high tlde. Or the seow may he towed to wharf and the sorthig take place with more conifort. In any case not only should the small free oysters be sared and replanted, but the small oystera and spat attaehed to the shells of the marketable oysters should be ehpped off and returned to the water. They should not be kept long out of the water. Oysters procured by tongs or dredges ean be treated in a slmil-r manaer. Unlens the bed is pirposely cleaned off for rephanting there should be left senttered old oysters to serve as spawners. All empty shells and half-shells or shells of other molluscs should be left on the bed or, better, takeu ashore and eleansed in sun and alr to he nsed as cultch.

Work on Environment.

Onr first knowledge of the proper environment of the oyster is ohtalned by ohservation of the best natural oyster areas eompared with non-oyster-produelng areas (report for 1915). Verlfications and additlons to thls knowledge nre made by experlmenting with oysters in different localitles or under different conditlous to ind what kind of a location or what condition is most succesaful (report for 1016). The knowledge may then he applied in converting poor areas and oysteriess grounds into good oyster-prodneing areas. This is not always possitie, hut, unless the locallty is altogether unfncourable, a good deal may be accomplished. It is more llkely to
lif successfui on a coant or in a dintrict where there are aiready nome oystern or where oystem formerly existed than In flncen where oysters never have occurred. In the frat case the temperature, silinity, depth of water, and nature of the bottom are more likely to be favourable, wherens in the inst ense the jhymleal conditlons may be quite incapable of adaptation. Old oynter-grounds may freynently le extended at the slden or slmilar grounds may be selected and imprured in other jarts of the bny or In other haye. It is a clear gain if noccopled arens can lee adnated and reudered productive.
liaving selected a jlot, the surfnce should be leveiled in order to prevent oysters from being rolled luto hollows by the tides and being covered with drift. Soft spots mey be mixed with sand or gravel to glve a unlformity of surfnce and keep tidal corrents from cutting it into chanuels or hollows. A sulstratum of deep, noft mud may have the surface slmllarly stiffened to prevent oysters from sinking into it. At pinces where eel-grasm grows too ahundantly and too long it miny le cut nud sent adrift with the thile. A mowlug-machine has been invented that can be attuched to the front of a scow and have the cuttligg part iowered to suit tho depth of the water. The kulf. is drivell hy a smnll engine on the scow and the fatter is propelied or pulied along a roje that may be changed in powition to cut successive swaths.

At some places varlous kluds of animals jurey upon oysters with considerable destruction and weed to he coubated ly the cuiturist. One of the most destructive is the starish, which sometlines migrates in great numbers on to the oyster-heds. A starfish creeps over an oyster, fastens its numerous sucker-feet-some on one rnire and some on the other-and exerts snch a constant pull that in time the oyster tires and anlows its sheil to gape. when the starfish presses nu ann between the vaives and eventuaily hrings its mouth with its everted stomach in contact with the soft flesh of the oyster. Small loose oysters may be swailowed whole and amali attached ones may be corered and sucked to leath. At no place on our coast have I fonnd startish in grent abnudance on oyster-heds, hut 1 have been told they are more pientiful now than a few ycars ngo oll the Irluce Edward Island beds. Starfish cannot withstand any great admixture of fresh whter or a great degree of warath, so that shailew water and exposed fats are unfavonrahle to thelr presence. They may he pliked np at low tide and earried ashore. On deejer heis they may le taken on tangies or hy n dredge and almilarly treated.

Whelks, drills, or horers nlso do damage. lint never to an alarming degree aioug onr coast. They helong to the head-hearing moiluses with protruslbie probosels and rasplng tongue hy means of whlch they drlll round holes through oyster or other sheils and suck the soft flesh. At places they may neenr in minches on a water-sonked log, a sea weed, or the hody of a dead fikh, and may be scooped up and taken ashore. Where they are pientifui, as on parts of the coast. of the Trilted states, a sort of dredge ls used hnving a slantlug sieve throngh which the whelks can fall hito a collectlig-chainher while loose oysters and most other iarger animals pass over the sleve and are left behind.

Many other animals work smail damage, but small and constant iosses amount to conslderable in the nggrepate. Sea-anemones, hrittilestars, worms, crabs, fish, hlrds, and seals can all do some lnjury to mmaller or larger oysters, whlle eggs and larree may fall prey to great numbers of other anlmals that live by sweeping great quantities of the minntest organisms Into their mouths. These aniuals are too small, too moch hid, or too scattered to be effectively attacked by man without aiso doing injury to oysters. The only thing that can le done is to connt on them and to ralse such gnaniltles of oysters thnt there will be plenty ieft after the toil is taken.

At low tide the best parts of natural oyster-grounds or pianted beds or prospected areas may be stakel out so that the tops of the stakes can be seen ahore high water, when scows loaded with oysters, shella, gravel, working implements, etc., may he left anchored or removed as required and planting. dredging, or other work done. Exposure of beds at low thde faclitates satisfuctory olscrvatlon of the distrihution of the oysters, thelr condition as regards substratum, sediment. Irift. undermining, healthfuiness, growth, fattening, and inany other things. The cnlturist will find pienty to occupy his time, attentlon, grasp of conditions, inventlon, and appllcation of methods.

Constructlon-work such as depositing of gravei to prevent erosion and cutting of channels, the building of dykes to retaiu water and prevent exposure of oysters or their yonng to alr; sun, and frost during the periods of low tide, the coliecting of sheils from nnused arcas and the depositing of them on the oyster-beds to improve the surface and Increase the amount of cultebthese are some of the thinga to be attended to. The many possiblities in physical conditions and
outlay of the plant make it dimeult to foremee all that may be reqnired, but the intelligent and practical cultnriat will moon recoguize from revults what hle particular case reqnires.

Wonk on Ceztcr.

The importance of culteb can bardly beovereatimated. Without cultch oynter-culture conslats of Ilttle more than bolding guantiles of oysters over In a more or leas affe and convenlent place a walting a good market price. They may be bonght when the depiand is low and oysters cheap; they may be transplanted when work is slack and least expenive; and they may be sold when they will net a pront. During the tlme of bolding thero may be some growth, bat there will aiso be mone loss. Extenslon of the time of storing and contribution of better attention may result ingreater growth and more profft. A tresh ntock has to be bonght, ahipped, bandiod, and enred for in the same manner. While both meller and bnyer may make some galn, there is no increame In numikers of oysters and ilttle increase in the amount of food-anpply to the country. Any galn there is arlaes from speculation rather than from production. To lncrenee the prodnctlon other and hetter methodn of handing oysters must be used, and of thewe the employment of cultch easlly ocenplew first place.

In places where oystern live and reproduce natnraliy, and in places where oysters can be tramplinnted and live and reproduce, the natural rocks; stones, gravel, whells, and other bard objects may serve as natural cuitch. Hut theme are generally too mach seatiered, or are tos fow, or are in wrong pinces to serve the cnitnrist. Rocks and stonew are too permanent and the oysters that become fixed to them are elther too dificult to separate or are not of anmelent numbers and size to he worth while collecting. These oysters, however, aerre a good pnrpose In supplying eggs and keeplng np the succession of generations. Patches of gravel and of shells nre often too few or are in poor locatlons. Where practicahle, stones and shells may be removed to better places. Ilcaps of stonea were nsed in the anclent methods of Italy; hnt whells are Ilghter to bandle and are easler from which to remove the oysters. The aggregation of oynters In the brush of fallen treen, the logs of wharves, the stakes, posts, or mpars that mark ont channels, the bottoms of boats, etc., is sufficlent to suggest the patting-ont of inmber for the collection of oysters. Hit Inmber 18 expensive and not durable, and becomes corered with searveeds, hydrolds, barnacles, and other marine plants and anlmals. Many other materials hnve been experimented witb, snch as earthenware, scrap-tin, leather, canvan, netting, etc.; but even if theae were sntisfactory thes are too expensive (excepting the small gnantitiew discarded from their proper use). Old netting that is tarred bas nhown Itself better than the untarred. Tarred brush, wark, shlngles, plc., bave been ur d. In Italy bnodies of fagsots (famelnes) hare lieen much euployed; In Japan untrim: : stems of bamboo; In France, Belglum, and Holland spilt drain-plpes. These can be bnilt up crossways so as to allow the sea-water (with the oyster larve) to perforate the plies and present an extensive and sultavie surface. The ruunded surfaces are placed upwards no as to shed the sediment whlle the hollow, under surfaces are kelt clean and fresh. The practlce of dipping in cement to give an artifial coating of ac sultable smoothness or ronghness has also nade beadway. Thia faciltaten the chlppling-ofr of the spat oysters when they are belng thlnned out. In the United States many tests have leen i ide of the foregolug and other methods, but all forms of artiflal cultch bave galned ilttle favour.

Shells are the most natural and liest cnltch. In places along beaches and on flat the bottom Is white with them. Shell-heaps are to he fonnd along shore where Indians formerly camped. Certaia caunerles forow out great heap; of shells as waste. In some places snch shells have been used in making roads, Shucking-houses are sometimes glad to get rid of them. These are opportunltles for the oyster-cultnrist. Where they occur sucb shells can be procured more convenlently and cheaper than any other form of cultcb. Beslden, in ease and cleanliness of indileg. In extent and sultableness of surface, and in their gradnal decay and the readiness lih which the attached orsters become naturally or artiliclally separated, they can hardly be surpassed. The shells of oysters, clams, scallops, mussels, cockles, whelks, abaiones, or other molluscs are all good, but those of oysters are best and most likely to be procurable In greatest abuadance.

Old natural beule on the east coast oflen corer many acres of bottom, consisting of shells infitrated with sedment several feet in depth. In Prince Edward Island great quantities of these shells nsed to be dredged up In winter throngh holes cut \ln the lee, by means of huge
framework mupporting a beam aud dredge wirked by hortes; and the shells with thoir coutalued vedment and disfutegracod shelf-matter were drawn away and left to moften aud rot lu hoaps on the iand, to the afterwards used as a fertilier. Thli was rich ln lime, but did not come up to expectatlons in enrichlus the soll and increadis the crops. Bowlden, the method of procuring It Injured the heds by dentroylug their coutinulty, cuttlue great treaches throush them aud permiling the edgen to :all In. IAviug oyaters from the warface were taken amous the, rent or were burled by collapme "the banke, aud' mud wha atrred up to eottie upon and cover otherm. The harder shelle could have been nuch more proftably used as cultch, but the farmers who took awsy the mo-culled "munci-mud" were uot generally oynter-aishers, aud there was no luclinatiou to work elther for the good of the oysters or for the oyster-fishermen. It in only lu recent yearm that clalma cau be obtained to pirvate use of portlous of oyster areas, wo that a man may reap the benefls of his owu Improvements.

In the West there are no such beds, but what are called oyster-beds are no more thau dimennected single layers of more or lean separate and free oynters ecattered over llmited portlous of beaches or fats. On account of the small alre, thinnems, aud softness of the shells they do not last many years as cultch before they are completely broken op or crumhled away. Hut they are very efficieut whlle they do last, for the apat collected by them in soou liberated by decay of the cultch, obviating much of the necenity of golug over them to break apart the hnnches. Cultch collected from this source doen not accumulato very fast. A greater mass can be more easily ohtalned by raking ap clam and cockieshells where they keep working out of the mud, sand, or gravel bottom.

On account of the large sise, thlcknew, and hardnem of the eastern oyster-shell, It in a good thing to hrigg eastera oysters to the Went and plant them out to yrow for a year or two before gending to msrket. There will not he so many llving ogiters at the end of the perlod an at the beginning, hat the growth may more than make ap for the lom, and at the ame tlme the bell. of thome that dle will add to the cultch on the beds.

Easlern oysters marketed in the West are all sold complete-lu the shell, the shell going with the meat and belng carried off the beds and indeed away from the premises. In anmilar manner they are retailed in the shell aud become distrihnted in amall quautitem. They are genetally merred on the halp-shell, but if any are shelled to be need otherwise the shelln are thrown out, are carried away in the garbage, or form anch small quautitien as to be not worth the tronble of the culturist to have hanted up and returned. Wewtern-oynter ahells are eanler to procure in this way ou account of thelr being more ofteu shelled in quantity at defulte places. When bonght hack by the culturist they make excellent cultch. They are clenn, wo that all the surface is avallable for spat; they are not so- large as to have vast numbers of apat axed to one plece; they moften and break up easlly, freelng the spat from undue crowfing.

In collecting oysters for market, sorting, breaking apart bunches, thinuing out, traunplanting, and wuch operations, there occur numerous empty shells and separate valres of oysters, as well as some of othor mollusicm, and if all these are taken care of they soon accumulate to great heaps. Depeuding on the manner of working the beds, these may be wholly or in part left on the beds or agyregated at the wharf. Those collected at the whart could be returned to the beds Irregularly, at the convenlence of the culturist, or could be kept in store for a moro definite occaslon. The ofsterman who engages in the Indnstry solely for the proft from handilng more or less grown forelgn oysters will perhaps regard thee beups as so much dead low-indleating the bardships of hls bnslness. I have known of masses of such shells having been wasted to no hetter purpose than fillug in a gully. This is still worse than in making a road-bed or in baralng to llme. The shells left on the beds or returned to the beds not only lmprove the surface, but thelr decay ndds to the avallahle calcinm carbonate required for the whells of growing oyslers. The cnlturist who ls eugaged in the indnstry to satisfy both mentai and bodily needs of employment, and at the man time to make the bent use of every advantage that occnrs, will preserve all shells for use as cnitch, and in dolng so will accompilsh the beforementloned purposes as well. To this end it becomen necessary to decide whether it is better to leare the shells on lhe heds or to take them ashore to be returned at a sultable iater occasion.

In natural oyster districta oysterx have been present for unteld ages, and yet at most plaees the surface sheils arallable as cnitch cont lnue to be limited in quantly. The naturai accumulation of cultch is a siow process. It depeuds npon the capacity for groduction by the species and the capacity for destruction hy the environment. Sheils that have lieen bnrled under succeediag
layern, an In the areat oymter-loank of eantein watere, or that have been covered with aceummiated earlh, as in Indian aheli-henjm, have been fongent prewerred, becane remored to the greatent extent from the action of the elementm. The molvent action of water and the corromivo action of alr, and the alternaliona between wet und dry and heat and cold, are chiefly inatrumental In the deens of uheils. On wenteru heim the ientruction moon inalancem up the proinction. The cultariat eannot bole to mintain n atock except ly continualiy coliceting and premerving shelia. They ase iem prone to derny on the land than on flaty, but there is another and a better reaton for retain!ug them on the inni-vis., that it improvem thair effectivenen.

Oyaler-culturinta who have given attention to this polnt cannot have falled to ohaerre that enlteh which has beput kept out of the wnter anml cleansed in more sneceasful than that which bas remained in the watur frou yeus to yenr. My own olmerrntions of the several handrede of tons uf alifila pianted at Cremenit during the four mummers I was there were perfectiy convincing. The scoren of experluients I set partly for thin purpone and partiy for other parposen veriberl aver and over the correctnems of the conclanion. Day after day for long periods i have put out preparinl sheiln in elnaed wire enmes und examined the enleh of npat and compared with the enteh on ofd ahelim lylug alout the mane placen. When the former caught fow to many opat the latter caught none to onis an occaalional one.

The reasons for this difrorence nre not bnril to find. It is melferident that it in not dur to the iarree, for they are equaily plentiful about all the whelis. It is only uecemary to compare the surfacen of the freah nud of the old eultch or to note the changen that come over freah eniteh an It atnya in the waler from day to day. The goom cultch consisted of abells melegted from the surface of heajs of shella that had heen expomed for uonths to the air, mun, and rainm, and han lieconie ifulfe clenn and white. The old ahells with whleh tloy were compared and inin in the whter for indefinite perions anl were dincoloured, sllms, nid dirty. The changey that cone over frewhly deposited clean ahelis nre largely depmodent upon the locality, the temperuture and wallulty of the water, and the amount of sediment i suspension. It is generaliy possible to uote n ilffereuce in a single tile or a singie diny, hat in two or three diays the difference becomen markerf. A fine dust-like deponil may lie firnt olmerved: tisen a somewhat nlimy aurface which soon shown apeck nnd jatehen of organle matter that gre fixed to the surface and do not wanh off liy uoving the whell through the water; ther accumulate a greater deroalt and increase In slze und number untll n grent part or the whole of the whell is covered and dirty. If lantead of shells strligs of alane are uned the surfince can he examined with a microscone and the nature of the deposits r.fomizel. The orgaile matters are minute, separate, or colonial plant! or andmals or exnd: from them causing the mlimy surface aud the retention of silt.

When single of ahelln are ciropped into the water separately they fall with the eonvex surface dow ards nud ennenvily mpwards. A good portion of the tader eide resta on or locomen pressed Into the sulstratum and the concavity soon comes to be partly filled with medinuent. The onis portlons left exposal are the upper and lower margins and eiges of the shell. which are thenmelves sulject to the organic depositn alrendy referred to. This in why so many shells are found whin spat clnstered round the margius. The at first complete and sultable surfaces of the shelis are ilable to be soon reduced to narrow rins of a lems snitable surfuce. At nome places this can happen In a few days: at others it may take as mapy weekm. This is why prepared enlleh, if put down.nt the proper time, is more effelent thnn old eultelt. Shells that fall withont interference light on the convex surface, only part of whleh, touches. and all the rest of both surfaees are at first free nad sultabie to extch spat. Spht that hecomen attached in the centre of the conenve surface may lie aftewwards covered with nediment and smothered or slarred. When shells are shovelled irom a seow into the water at hlgh tide they may, in falling through the water. Interfere with ne another or he affected by a current, so that some of them will light with the hollow slde downwards. If they fall ou hard luttoni the greater part of the mider surface is likely to be atill necesalble to larva nod offers very patisfactory condilions. The worst chnace is that depositing sediment may rise round the edges, cilting off communication with the ontside. The upper side is also favourable hecuase of its rounded surface allowing the sediment to wilp off. But both surfaces are exposed to organle growths. Some of the densest clnsters of spat are to be found on the insides of cockle-shella where the valves have beeu retnlued intact nnd so closely ntting that one at first wouders how' the apat got inside, which becomes plain rben it is remembered that it is not the spat but the minnte larvi that searches cut the pluce for fixation.

From the jreceding conelderntions it follown that the work on culteh should conmiot of coilecting shelle from all pomilile sourem (even to haylag thoms), proending them out on hard grouml (or lumber platforin), and shovelling them over once in a whlle to fet the dried mud fall out of them and expose all ourfacen untll they are clean, dry, and white. In thlo condition they ean te held In readinewi for tho proper thase to plant. The planting itnelf ia beet earried out, like the jlanting of seed-nyters, hy being seattered at high the from acow as it is belng fowed luack nind forward over the bed.

The time to plant celeth.

The lmportance of cultch has been airendy laminted on. Rut thle presupposen a proper banaling of the cuitch. To he succenful, It munt be good culteh, it muit be put. down in a wultable jlace, It must le suread In an approved manner, and, dibove ail, It must be planted at a well-judged time.

The more or lemaceldeutal ohourrations that orisinally mumented the posilhillty of oyster. enlture conid have no reference to such apecial poluts. Oyters larme enongh or plentiful enough to atract the attention of men engaged In other pursulte were already too old to furmish a clue the to their'origin. An unnsed hoat, an anchor, a failen tree, or mome sach object with apat nttachel may have firwt nerved to linilt the tlue to within a few months. It might even have lrem ohserved that mat dal not como isto existence in the winter, but in the warm meason of the year.

Io follow the wuliject more cioneiy required progreas in the knowledge of the developing yonng, the small size of whlcil rendered thin louponslile before the microwcope camo into use. The egr wan frat olswerved in 10mo. Isolated meraps of luformation were added by a long list of notel zoologistm, hut enpeelaily iy Brach (1000). Leevenhook (1006), Banter (1750), Home (1820), Dnralne (1Nis), Incarc-Duthiers (1854). Coste (1801), De la Blanehêre (1804), GwynJeffreym (18M7), Nanndern (1873), Salensky (14*3), MOblu\# (1877), Bouchon-Brandeley (1882), Horst (1893, 1854). Ilubrecht (1853), Huxiey (1883), Iloek (1884), all working on the European ofater. The American mpeclen wan eapeclaliy lnvestigatel by Brooks (1870), Jyder (1881), Ilice (18*3), Winulow (1884), Jackmon (1888), Nelmon (1888-1915). Inited gtates Investigatom have been prone to belleve that the straight-Inge inrva becomen transformed intn the sput, and many expensive experiments hnve been carrled out and falied because of thla mistake. Even Nelson, whoso work began in 1888 and contluued to 1010 , did not begin to get .way from thls ldea untll 1007, and he ajpears to have been stili nader ita spell when ho wrote isi very lant report, where he states: "The Canadian oyster-anat, at the tlme of fixation to cultio, ia a fourth larger than the spat In the corremponding stnge of developiuent in New Jersey waters."
"The Canadian oynter-sjnt, at the time of faxation to culteh, is n fourth farger than tho sput in the correrfonding atage of development in New. Jersey waters."

As the syat at the time of fixation has the same slze and organization as the larva immediately liefere fixation, it wouid follow that the fail-grown New Jersey larva is a fifth smaller than the fatiprown Canadian larva-snd the isrva or spat of Es units length In Canada wonid correnpond tith a larva or apmt of 44 units length in N . Trrmey. I have elsewhere shown ("The Canadian (uystry " and other reports) that the commo for fixation of the eastern oyster of Canada is in units ($=0.379 \mathrm{~mm}$.) and 1 it the weatern circtumataice in suggestive that the New Jer. of Canada ts 37 units $(=0.205 \mathrm{~mm})$. The nortiorn Cunalan, and, in fact Neleon mahe ofnter may be a diferent speclea from the more nortorm Canadian, nad, In fact. Nelson mahers the statemant: "It is still somewhat douhtful whuther the Canadian osster may not be a distinct variety, hreeding true to its kind." Bnt there is another aiternative which seems to have escaped Nelson--vis., that the larve of the same apecles might zot at different agem and sizes is northeri and southern climates.
1.A looking through Nelson's former pubilcatlons for some reference to measurements of New Tersey larve, I fiad (1807): "The actuai size of the larval whell at timea of aettlng is onefiftleth of an inch in fength " $(=0.5 \mathrm{~mm}$.). Mensuremente of "newly attzched spat" of his Mate 11. when divided by thelr stated magnlfications give 0.5 and $6.42 \mathrm{cmm.}$, whlek are larger than Nelson's own mensurements of the largeat Canadian harpe ($\mathbf{4 0 0}$ microns $=0.4 \mathrm{~mm}$.). According to his own digures. I do not nee how it is posilhle to make the statement about the relative simes of New Jeriey and Canadlun spat, unless in his latest paper he meant to retract his eariier meanarements as belar lasecurate. My own fargent measureinent of a Oanadian larva is 0.388 mm . in length and I find ao constant or nuticeabie difference in larve of the same apecien at the extremeis of northern and sonthern distrihution, either on the Atlantic or on the Pacific.

The bearing of the suhject upon some phases of culture and of tramoplantation Induced me to write to the Unlted States Burenu of Finheries, asking if tt were powsilise for one of thetr inventigatorm
to procire and mond me sampies of piantion taken above oyster-beds and of young spat. The bivnkton was not successfui, hut the spat were satisfactory. Comparing them with some of my own from eastern Cinada, I fiad they ngree in every respect.

The fuli-grown iarva of the Atiantic oyster wns first discovered and deacribed hy the writer In 1904. Its external features, size, shape, asymmetry, high nmhos, Internai structure, foot, gils, and many other organs were then comprehended for the first time in the history of the subject. It the same tiue the other phases of the iife of the iarra-riz., the place and time at which it is to be found and the mamer in waich it may be ohtained, as weli as the bearing up the suliject of orster-cuiture-were refcrred to. These have ail heen further eiaborated in my later works, so that it would now be possihic to write a more complete and comprehensive account of the ilfe-history of the oyster than has ever hitherto ifeen presented.

The lucific oyster agrees in ail essentiai features with the Atiantic species. All ines of research-emhryology, anatomy and physioiogy, environment, culture-have been investigated iy the writer and have received equal attention. Before 1911 there was nothiug known of it but its external features and its distribution, and these oniy very imperfectiy. Ail the rest has leen written by myself.

The final appication of the knowiedge gained from hoth species, so far as oyster-cuiture is conecrued. centres in the intelligent use of cuitci, or. to he still more precise, in the proper time to niant euiteh. This point. although Insisted on in severai of my eariler works, has not yet ${ }^{\text {. }}$ received the attention that is its due. It tnkes a iong time for wost scientific fucts, principies, or methods to fliter down among the masses.

In the northern part of British Coiumhia I met a man working in a salmon-eannery who toid me he ind fonaeriy been employed by an oyster company at Whitstahle. Engiand, and that he knew " all about the oyster." So insistant was he in repeating the statemeat thai I ventured to asi: "Perlhus you won't mind telling me how long it takes an oyster-egr to become a spat?" He was somewhat staggerefl, hut repied: "Oh. I don't kanw anything about that."

At Wiliapn Marbour (Shoalwater Bay). Washiagton, ia talking to a culturist from the East, I was nskel a similar question, nnd upon its heing noswered he appeared bewidered, and sald: "Well. that is very different from what we have niways heard."

A seed-oyster producer of New York, after having written many timea, ealied on me. In discussing the points about which he was particularly interested he herame frank in expressing his views-one of whirh was that "The professors have never done anything for oyster-cuiture and do not attack the probiems tint occur at the great oyster centres." I did aot waste time to disiliusion litu. Iny man in a receptive mond and seeking for information should be heiped. hut one so hadiy informed and decided in his views is beyoud hope. I might have naswered: "On the contrary. zowlogists hare done nearly everyt ing that has heen done: oyster fishermen, growers, nad handiern would woper have got the information; Brooks. Nelson, and others have certainly worked at the beat centres; but it is uct necessary to even do this; where nature unassisted produces a lavish suppiy there is littie credit to he taken by the ruiturist; if good results can be ohtained in poor centres it is a sure procif of the vaiue of the method."

Whea I first weat to Crescent aad a notice of my purpose had got into the papers I was homburied with letters askiag for "private tips." These were not from oyster-culturists and I did not nnswer them. I am not concerned with greedy money-grahbers who are iooking for unfair advantagea. I cure only for the suhject-the gaining of correct information. the improvement of the industry, the furnighing of a iarger foud-suppiy. I write for the masses; it is their priviege to make use of or to reject my methods.

From the ohservation that smali oysters are soumetimes found attached to hard objects in the water of shailow bays and estuaries it is lut n short step to the putting-out of cuitch for tlie puriose of coilecting spat. There is iftie use of pianting cuitch in autumu. winter, or eariy spring-it does not eatch spint then. There has grown up a practice among c;ster-cuiturists of putting out cuifeh at eertain thmes in much the same way as farmers piant seeds or sow grain at certain times. Seels pianted too soon wight rot liefore the proper conditlons for their germination arrived, whif if pianted too iate the growth might not reach maturity before the coid weather interfered. In the ease of the oyster the egg and succeeding stages (which correspond to the seeds of piants) are not matured and extruded into the water until the warm weather arrires. If they were under the control of man he wouid no doubt make mistakes and liring about spawning at wrong times. hat forturateis they are under the control of naturai forces. That which is under the controi of man is the power of putting out cuitch at the proper time to accommodnte the developing oyster. If cuitch is put out too soon it is liaine to sink into the soft suistr. t tim. to lecome covered with sediment, to be orergrown with piant or animal colonies, and to hecome conted with an organic slime. To such as extent may one or more of simeh processes take piace that the araliaine exposed surface is wuch restricted and the effiener
of the cnltch reduced to only a small fraction of what it was originally. The longer the cultch is in the wnter the more this is the case. It is of great advantage to delay plauting culteh until the very beginning of the tlme when it will be useful. To determine this tlme is the problem.

The time to put out cultch has been and still is largely judged by the results of previons plantlings-l.e., by experlence. A fort of enstomary tlme-about the last of June or frst of July-has been arrived at. But this is not equally good for all places. It may be a little late for places to the south or somewhat early for those to the north. Then, again, it is not equally good for nll yenrs, for the warm weather of one summer may be conslderably earller than for another. There are other things that may interfere, snch as sudden changes of temperature or a heavy fall of ruin. It $1 s$ useful to have In mind some approximately correct time as a reminder that certaln preparatlons should be commenced, but the actnal tlme canuot be foretold with accuracy for any conslderable perlod In advance. It has to be determined for each year and, in fuct, for each locallty, except where places are uear together and under like condltions.

Another way of obtalning lnformation about the time to put out cultch is to open oysters from the to time to find out if they are becoming rlcher in colour and core swollen with reproductlo: mafter. When ova or sperm are approaching ripeness some my be squeezed from the reproductlve openings hy lightly stroking the slde of the abdomen. If the cells cllng to one another la masses they are not yet rlpe, but if they separnte into indirlduals they may be fully mature. 'To be stlll more certaln they may be examined with a microscope and a fertlization experiment may be nerformed.

Observation of the actunl process of sparning can be seldom carried out. It is not a sufficleutiy consplcuous phenomenon to he depeuded upon as an indication of the tlme of ripeness and may sllp by without being noticed. I have seen both Atlantic and Pacific oysters in the act of spawnlug. In the first the very small eggs (or sperm) are expelled with a squirting nolse and con be seen as a little white cloud in the water, dlspersing ns it settles to the bottom. Wheu the ossters are lying on the warm flats lnstead of being covered with water, the squirt cau be heard und seeu and the spawn remains as a white deposit on the oyster or other uear objects. This phenomenon 1s, as stated, rarely to be observed, but what enn be noted is the occurrence of tbln, dark-coloured, spent individnals, that have spnwned out, lncreasing in numbers, whlle the plump, fresh, henithy Individuals, that have not jet spawned, are decreasing in numbers. In the I'nclfic specles the much larger and hearler eggs drop into the gill-cavities and mautlechamber, where they lle for some days undergolng development, and only pass to the outsldo wb.n they have attalned to some stage of the strnight-hinge larva. Thls is an advantage that the western oyster offers over the eastern, for on opening them the culturist can easily recognize the soup-llke spawn lylng about the gills. It varies in colour from white through grey to brown, according to the age. The young white eggs are quite motlonless, but the late grey or brown larve arc active swinimers, best seen under a lens or microscope.

As long as it was belleved that eggs become spnwned, fertilized, developed, and set as spat In a few hours (or days), the time of spawning could be accepted as near enough to the time of spatting to he used as a slgn for the planting of culteh. As already mentloned, the writer showed that thls was a mistake and that it required a mouth instend of a few hours for the process. The elahorate experiments of Ryder, as well ns the sinpler ones of Rlce, Winslow, Nelson, and others in the United States, could hardly have succeeded uginat such miscalculation. Any results that were ohtained were due to other (earller) eggs than those counted on. Cultch put out a month in advance of the tlme when the soung oysters will be ready to make nse of It will become greatly reduced in efficlency in the meantlme. There is no nse of going to the expense of thie, lahour, or money in collectlng, preparing, nid cleansing cultch for thnt purpose. Resldes, many things can happen the developing young in thls perlod. Of the myriads of eggs spawned at the beginulng of the period there may be very few larve to represent them towards the end of the perlod. Records of prevlous plantings, evidence from the appearauces of the oysters, ripenlng of eggs, spawning. fertilzatlon, hegluning of development, are all helpfui as blts of information, bnt they are ail too sar anterlor to the settlug of the spat to be depended nion. It is evident something more is renuired.

The only accurate, strictly sclentific, and satisfactory method of acquir'ng the knowledge of when to plant cultch is the plankton unethod. It begins where the other ciethods lenve of and continues the following-up of the joung thronghout the perlod of time that eiapses between sparring and spatting-l.e., throughout the month required for the development to the fuli-grown
larva. It suppiles the information of where the young are and what they are dolng dnring this perlod. For the eastern oyster all stages of development leptween the egg and the spat are in the water ahout the parent oysters. For the western oyster the eggs and yonnger stages of development are retained in the mautle-cavity of the mother for about half the perlod, and the later stages from the stralghthinge to the full-grown umbo stage of the lurva, are free in the water ahove oyster-heds. The free-llving larvir of hoth specles cun only he ohtalned for observatlon hy some adaptation of the plankton method such as was first apmlled hy myself. All the Ilterature of thls sulject, whth the exception of the little that has lieen copled by others without acknowledgment, has ben' written hy myself. It Includes the facts of thelr existence, their appearance, measurements, shape, and orgailzation, the distinctlons from other hlvalve-larve and other plankion organlsms, the the of year, place of occurrence, nenner of life, rate of growth, age, when and at what slze full-growu-In fact, all that seems useful to know about when, where, and how to procure, ohserve, and lacognize the larve.

Up to the tlme of the earilest spawning and for one or two :Teqs afterwards there are no shell-bearing oyster larve In the water and consequently none In plankton collectlons. Ahout two weeks after finawning has heg. : there appear little stralght-hinge oyster larve in the catches. From thls the onwards there come te de several slzes; the earllest have grown older and larger and other broods of younger and smaller larra lare come sit. The oldest grow to a limit in slze heyond whleh there are no representatives in the planktun collections. They elther hecome set as spat or ther perish for lack of cultch or from other causes. In good places it is posslile to go on taking plankton with oyster larvap of varlous sizes in it for two or three months. As soou as one brood grows up nod disappears a now brood ordinarlly takes its place, so that the collectlons preserve a certain unlformity of appearance, althongh it ls not from the same larvie or the same broods. Rut the hroods are not equal in mumbers of lndivlduals. The first that come on are few because they are from eges that were gimwned at the heginning of the warm weather, when only those oysters were ready to spawn that were in most favourahle places. A llttle later a unch greater number of oysters would he ready to spawn at one tlme. If the cultnrist has kept in toueh with the conditions of the oysters on the heds he will know when the greatest amount of spawning has taken place aild at what time to expect the largest swarms of larsar. Ills plankton catches should as ree with and verify thls Information and show when there will be the greatest number of full-grown larsal In the water ready to set as spat. This is the time to plant cultch. As soon as the first of these larve attaln to the maxinum slze the prejared shells should be distrliuted so as to offer a vast and sultahle surface for attachment at a tlme when the masses nre ripe for fixatlon. Good, fresh, clean, white shells put ont at the the when there is an abudance of full-grown osster larve in the water searchlng for places for attachment cannot fall to eatch a good set of apat.

This is the lnformation tu hilh all my oiservations of structure, development, hahlts, and surroundugs converge. as well as to which all my experiments polnt-when to hring together these two most lmportant factors of abmadance of full-grown larser and abundance of sultahle cultch. The successful capture of immense num prs of spat is mi ouls the cheapest way of olitaining one's own seed, but is the most satlsfying intellectual and prectical achlerement within the grasp of the culturlst.

All the information galned from former experience, from the examination of ripening oysters, from the ohservation of the process of spawning, from the finding of spe whed-ont individuals, from the protaring of older and younger broods of larve in the planktou collect ons. even from the putting-ont of a few shells to see If nceaslonal speelmens of spat ca?: he secured from the earllest brods of larve; all this luformatlon tits together as one plece arri joints to one con-cluslon-the proper time to plant prepared enltel. If this occasion is allowed to pnas hy nnused the inbour of galning the information as well ns of procuring, preparing, and planting of the cultch is largely lost. Culteh is of no use miess it is planted. If put out late it may still securi a falr althongh not so great a set. It is not posslble to eatch too many spat. If not captured In thls way they will Inerltahly he lost. There mas he more attached to some pleces of cultch thnn cau find room to grow, but other pleces will not he orerstocked. The loss from the many aceldents to whleh they are exposed will not fall to thin them out in the end.

There is another reason why it is advisable to get the cultch into the water for the frst large swarm of larve. Early spat are llkely to have adrantuges over late ones in the fact that they have before then a longer perlod of warm weather and ahundant food and will be
larger, stronger, and better protected to withstand the approaching winter. But it may not be good policy to plant shells fur the very first swarms of larve becanse of their small numbers. The culturist needs to know his grounds as well as to know his oysters. If the locailty is one that rapidly reduces the efficlency of cuitch there is ali the more necessity to play for the quick eapture of a great number of sipat-l.e., to put out the shelis to accommodate the iargest brood. If, on the other hand, cultch does not become very rapldiy conted it may be safe to risk the chances of ohtaining smali contributions from successive broods. When once in the water shelis are likely to recelve fresh additions of spat as long as there are any larvee left. The cuitch supplled for the iargest brood also has this advantage.

It may appear that since farvec are in the water for solong a period there need be no concern about putting out cuitch to suit the requirements of the first or any other large brood-that the continual accesslon of oceasional spat from smail broods whii total a falr set in the end. But this reasoning is not safe. The study of plankton coliections shows that the totai number of Inrsie in the water from time to time is snbject to great fluctuation, as is aiso the totai number of full-grown larvar. It is the latter the culturist should connt on in putthg out shells. There are tlmes when for dsys there are scarcely any to be found, and if cuitch happens to be put out at snch a time there will be next to no spat secured and the cnitch will be deteriorating while the younger 1 oods are growing up to the spatting stage. The cause for the fuctnation may have existed a month previonsiy, when the eggs were spawned, or may have happened at any time during the previous month, when great numbers of larvie have been destroyed. A cold spell of weather, a protracted.rain, or a scarcity of food may have operated to prevent the ripening of eggs, the spawning, the fertlization, or the development.

There is stlll left one nethorl of Judging the time to piant culteh, and that is to keep watch on old shells , $!$, better, to put ont a few good shells and examine them for spat. Of course, this method f , onen to the objection that the first good fall of spat may be past before the eulturlst bee. ses aware of the presence of spat and before he has the bulk of his cuitch planted. The method. however, can be used in combination with the other methods to advantage, in that whlle the fullogrown larve are still few in numbers the coltnrist may capture oceasional spat and even reco,nize an increasing number which will add to his assurance that he is on the right road.

Special. Work.

The enlturlat who is in eontact with the same areas from year to year is in the best position to detect and follow up the spechal problems of the district. He should becol:e witerested in the subjeet in other than finsnclal aspects. He may not be able to apply the sust techulcal methods and reach the most accurate couclusions, but he will soon discover whether he is inereasing the profuction or not. Mechanleal repetitlou of a set course of action is uot likely to limprove his methods. It is inulte unnecessary to rixk any suggested change on a large scale. I small, perhaps somewhat isolated, area may be set apart for an experiment. He shonid aim at finding the best grounds for spatting, for growing, for fattening, for keeping over winter, etc. He could make observations on the rate of development and rate of growth, the conditions under which diseoloured oysters (blaek, green, red) are produced, and the local cquses of death anong the oysters.

A subjeet of great importance is that of food. The contents of the stomachs of oysters may lie withurawn by means of a pipette and examined nider a microseope to see the kinds and quantities of food-organisms that have heen swaliowed. Search can be made on eel-grass and other seaweeds and in plankton collections for the satne organisms in order to learn where they are produced. These places shonld then be tried hy pianting oysters on them and noting the growth.

Different conditions of the bottom and of the water may be tested; continuous submersion or periodical exposure, stagnant or flowing water, graveily or muddy snhstratum, sloughs, pooin, lagoons, artificial ponds, dyked areas, sailnity, temperature, etc.

Oysters transplanted from other districts should be oloserved with a view to determining the best sources from whleh to draw. Observations having an apparent iocal vaiue may be found ly comparison to possess a broader slgnificance.

Trade and Commerce

There is no need to dwell here on such subjects as finding a market, sorting to a nilformity with the sample, the use of trade-names, catering to the tastes of the people, greening, bleaching, freshening, etc., that hardly fall within the scope of this work.

Fig. : Thlaning ot. at low thde.

Fig. : Prollowing mather orxtors.

Fig. f. Towing to wharf at high the.

