IMAGE EVALUATION TEST TARGET (MT-3)

6

Photographic
Sciences
Corporation

23 WEST MAN STREET

 WEBSTER, N.Y. 14580

CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

[^0]The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/ .
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que'certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'íl lui a été possible de se procurer. Les détails dé cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuveht exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de coulaur
Pages damaged/
Pages endommagées
*。
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discolọured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/.
Qualité inégale dę l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:
Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de départ de la livraison
Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Text ifthographed.
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers aré filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the lasi page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en. papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniére page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. tous les autres exemplaires originaux sont filmés ep commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniére page qui comporte une telle empreinte.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \longrightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trep grand pour être reproduit en un séul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche ä droite, et de haut en bas, en prenant le nombre d'images ńécessaire. Les diagrammes suivants illustrent la méthode.

RHOTOGRAPHIC SURVEYING

TOPÖGRAPHER ANO ASSISTANT SHOWINQ EQUIPMENT AND MODE OF OARAYINO INSTRUMENTE.

HROTOGRAPHIC SURVEYING

INCLUDING

THE ELEMENTS OF

Descriptive Geometry AND

Perspective
E.DEMMXIE
-SURVEYOR GENERAL OF CANADA
......ntars mo.

Isithographet at the Gurvey Dffice

1889

TA593
D48
1087
foe
"PREFACE

When the surveys of Dominion Lands were extended to the Rocky Mountains, region, it was found that. the methods hitherto emploỳed were inadequáte. The operations in the prairies consisted merely in defining the boundaries of the townships and sections: these lines form a network over the land by means of which the topographical features, always scarce in the k kairies, are sufficiently well determined for general purposes.

In passing to the mountains, the conditions are entirely different; the topographical features are weil marked and numerous, and the survey of the section lines is always difficult, often impossible and in mos't cases useless. The proper administration of the country required a tolerably accurate map:means had to be found of executing it rapidly and at a ?
moderate cost.
The ordinary mèthods of topos saphical surveying were too slow and expensive for the purpose; rapid surveys based on a triangulation and on sketches were tried and proved ineffectual, then photography was resorted to and the results have been all that could be desired.

The application of photography to surveying is ag old as the art itself. Arago, in presenting Daguerre's discovery, pointed out its application to surveying, but it was not until twenty-five years later that Laussedat gave in the "Mémorial de l'Officier du Génie" a full exposition of the method. His work was so complete that little has been added to it since.

In Germany, the principal exponent of the system has been an architect, Meydenbauer; his investigations were continued by Dörgens, Stolze, Vogel, Jordan and others.

In Italy, the celetrated Engineer Porro, to whom so many remarkable inventions are due, was the first to give his attention to the process:his ideas were followed by others and ultimately brought out the

Ordnance photographic surveys of the present day. To Major General Annibale Ferrero, present Director of the Geographical Mili.tary, Institutesis due the credit of initiating, these surveys: their oxecution was entrugted to Engineér.L.Pio Paganini, with a staff of able assistants. The work of the Institute is very remarkable and deserves careful stwaty.

Notwithstanding the number of those who have writtien on the method, the great advantages assigned to $i t$ and the numerous experimental surveys executed, there are but two examples of its actual emplóy= ment for proactical purpores: the Italian and the Oanadian Surveys. In France, whore it originated, it has been completely abandoned, at least ostensibly: the Germans use it for making plans of buildings, for which it is admirably adepted, but their topographical surveys have "been marely experimental.

The failure is due to several causes. In the first place, the scales employed $1 / 5000$ to $1 / 1000$, are too large. On these scales, such objects as tables and chairs in a room could be shown on the plan, still no one would think of taking photographs of a

PREPACE
room for making a plan of it. Smaller scales are not generally required in Europe, because good maps on these scales are already in existence.

On the other hand, the possibilities of. the method have been overwestimated:it has been asserted that it would apply to almost any country; in reality there are but two classes of surveys to which it is well adapted, and they are the surveys in a mountainous country and the secret surveys. The Italian and Canadian Surveys are of the former description: the latter are in all probability extensively practised, although little is heard about them.

The authors who have written on the subject had in view aurveys on a large scale, executed with great precision. The Canadian Surveye are quitedifferent: they are on a small scale and the rapidity of execution is such that the more precise processes are not always available. The object of these notes is to show the amount of information which can be extracted from a photograph under various circumstances and the numerous processes at the disposal of the surveyor. The resources of photography in that
respect, are unequalled by any other surveying method. Consideratle space has been devoted to perspective instruments; as now constructed, they are useless for purposes of topographical surveying, but there is no reason why they should not be made sufficiently precise, all that is required being more perfect workmanship. Fifarchitectural, surveys they may probably be employed with advantage.

In order to demonstrate more completely the me-. thop, a few explanations are given on secret and balloon surveying: although the subject is of no practical interest for Canadian surveyors, a knowledge of everything pertaining to photographic surveying cannot fail to prove useful to those engaged on photographic surveys.

A complete description of all the instruments invented and of the investigations of the various authors being given in the excellent work of Lieut. Henry A.Reed, U.S.A. "Photography applied to surveying", it has not been thought necessary to go again over the same ground.

The Canadian Photographic Surveys were commenc-

PREPACE
ed in $188^{\prime \prime}$ and cover now over one thousand square miles: they are by far the most extensive ever made. For this reason, if for no other, it is hoped that the exposition of their mode of execution will prove acceptable to those interested in the development of the science of surveying.

While this was being printed three new books on the same subject were published in Italy, France and Germany:they are a great advance in the treatment of the subject and show that the method is slowly but surely gaining ground among practical men.

1 have received much valuable assistance from Messrs O.J.Klotz, Dominion Topographical Surveyor and W.F.King, Chief Inspector of Surveys who kindly undertook to revise the proofs. I am indebted to them for many corrections and important changes in the text. Q
E.Deville.

BIBLIOGRAPHY OF PHOTOGRAPHIC SURVEYING

Il Politecnico, Vols. X and $X I, M i l a n o$.
Application de la photographie à la topographie Militaire, s. Paté, 1862.

Bulletin de la Société de Géographie de Paris,Dec. 1862.

Mémorial de l'Officier du génie, Nos. 17 and 22, 1864 and 1874.

Photographisches Archiv. Sept. 1865.
Application de la photographie aux levés militaires, A. Jouart, 1886.

Zoitschrift für Bauwesen, 1887 .
Archiv' für die Offiziere des K.preuss. Artillerie und Ingenieur Corps, Jahrg. 32, Band 63,1868.

La photographie appliquée aux études géographiques, Jules Girard, 1872.

De la photographie et de ses applioations aux besoins de]'armée, FI. Dumas, 1872.

Deutsche Bauzeitung, 1878.
Phot figraphische Mittheilungen, Nos 24,89,293,296,313, 318.

La photographie dans les armées, Alfred Hanot, 1875. Zeitschrift für Vermessungawesen, H.2,B.V,1876,H.23 \& $24, \mathrm{~B}, 16,1887$.

Journal für die reine und angewandte Mathematik, B. 95 . La photographie appliquée au lever des plans,J. Bornecque, 1886 .

Das Licht, S.T.Stein. Photogrammetrie V.Stolze, Heft 5 1887.

La photographie sans objectif R.Colson, 1887.
Photography applied to surveying. Lieut Henry A. Reed, U.S.A. 1888.

Les Mondes (Paris)
La Nature (Paris)
La Révue d'Artillerie. (Paris)
Bulletin de la Société Francaise de Photographie (Paris)
RECENTLY PUBLISHED
La fototopografia in Italia, per Luigi Pio Paganini Ingegnere dell'istitutc geografico militare, 1889.

Les levers photographiques et la photographie en voyage, par le Dr.Gustave Le Bon 1889.

Die Photogramotrie oder Bilamesskunst von Dr.C. Kорре. 1889.

CHAPTER I.

1. DEFINITIONS, PLANES OF PROJECTION. The object of descriptive geometry is to represent bodies and to solve problems on ficures in space by means of their projections on certain planes called "Planes of projection
2. GROUND LINE. Por this purpose, two planes intersecting each other are employed:they divide space into four solid angles. Usually, one of the planes is vertical and the other one horizontal; their line of intersection is called "Ground line" and is denoted by the letters XY.
3. RRPRESENTATION OF A POINT. Let XAY,, Fig.I, be the vertical plane, XBY the horizontal or ground
plane and P a point in space: From P, draw the perpendiculars $\mathrm{P} p, \mathrm{P}^{\prime}$ to the ground and vertical planes; p is the horizontal projection of the point P and ρ^{\prime} its vertical projection.

$$
\text { Fig. } 1
$$

Let the vertical plane be revolved round the line $X Y$ as an axis, until it coincides with the ground plane; the point p^{\prime} will fall at a point $p^{\prime \prime}$ such that the line $p p^{\prime \prime}$ will be per pendicular to XY?

For let a plane be drawn through $P p$. and $P_{p^{\prime}}$; it is perpendicular to the ground plane as containing Pp_{p} and perpendicular to the vertical plane as containing $P_{p^{\prime}}$; but when a plane is perpendicular to two other planes,it is perpendicular to their intersection, therefore the plane $p \mathrm{P} \mu^{\prime}$ is perpendicular to $X Y$, and its traces op and op on the ground and vertical planes, are also perpendicular to XY, since a line perpendicular to a plane is perfendicular to all the lines passing through its foot in the plane.

But op' being perpendicular to $X Y$, op* mast also be perpendicular to XY; it follows that pop" is a
straight line perpendicular to $X Y$. The ground plane will then be as shown in Fig.2, op being the distance of the point P from the ground plane and op its distance from the vertical plane; both points μ and p^{\prime} are on the same perpendicular to the ground line, as .
$X \quad$ io explained above.

It is usual to represent points in space by capital letters, the horizontal projections by italic letters and the vertical projectlions by the same italic letters accented.

It has been shown that the two projections of a point are on a perpendicular to the ground line. Inversely, any two points on a perpendicular to the ground line are the projections of point of space. For let the part of Pig. 2 above the ground line be revolved round the line $X Y$ until its plane be vertical as in Fig.1. Through p draw a parallel to.. op' and through μ^{\prime} a parallel to op: they will meet in a point P.

But op is perpendicular to $X Y$ by hypothesis and it is also perpendicular to op, since pop' is the
angle of the vertical and ground planes; therefore op' is perpendicular to the ground plane, because it is perpendictilar to two lines in that plane. It follows that oP, parallel to op' is perpendicular to the same plane. In the same mannen it may be shown that $p^{\prime} P$ is perpendicular to the vertical plane:Therefore p and p^{\prime} are the horizontal and vertical projections of the point P.

Fig. 3
Fig. 3 shows the representation of a point in various positions.
(1) is a point in front of the vertical plane and above the ground plane.
(2) is in front of the vertical plane and below the ground plane.
(3) is behind the vertical plane and below the ground plane.
(4) is behind the vertical plane and above the ground plane.
(5) is in the ground plane in front of the ground line.
(6) is also in the ground plane but behind the ground line.
(7) is in the vertical plane above the ground line. (8) is also in the vertical plane but below the ground'line.
(9) is on the ground line. .
4. REPRESENTATION OF A STRAIGHT LINE. If perpendiculars be drawn to a plane from every point of a straight line, the locus of the feet of the perpendiculars is a straight line and is the orthogonal projection of the first one.

The projection of a straight line may also be defined as the intersection of one of the planes of projection by a second plane perpendicular to the first one and containing the given line. This second plane is called the projecting plane.

A stigight line ig perfectly defined, by its projections, because it is the intersection of the.
two projecting planes. . There is however an exception when the given line is contained in a plane perpendicular to the ground line; the two projecting planes Coincide and the projections of the line are not sufficient to define it:the traces mast be given.

The "traces" of a line are the points where it intersects the planes of projection. These points are easily found by noting that the vertical trace, (Fig.4) being in the vertical plane, its horizontal projection must be on the ground line, but it is also on the horizontal projection, $a b$, of the given line, therefore it must be at the intersection of the lat-

Fig. 4
trace is obtained by erecting at d^{\prime} a perpendicular did to the ground line; d is the horizontal trace.

Inversely, the projections of a iline may be obtained from the traces. By drawing a perpendicular from the vertidal trace, c^{\prime} Fig. 4 , to the ground line, a point c of the horizontal projection is obtained, which jpined to the horizontal trace, d, gives the horizontal projection, cd . The vertical projection is obtained in a similar manner by finding the vertical projection \dot{Z}^{\prime} of the horizontal trace d_{m}, and joining $c^{\prime} d^{\prime \prime}$ Joining cid.

A straight line is defined by the projections of two of its.pointe. Let $a a^{\prime}, b b^{\prime}$, Figo 4 , be the points. The projections of the line wi be $a^{\prime} b ; a b$.

A straight line may occupy various positions with reference to the planes of projection; these positions are illustrated below.
b' Fig. 5 shows a line intersecting x ${ }^{Y}$. the vertical plane at b^{\prime}, above the ground line and the ground plane at a' - a

$$
\text { Fig. } 5
$$

$$
a, \text { in front of the vertical plane. }
$$

Pig. $8^{\prime \prime}$ The vertical trace, b^{\prime}, is $\mathrm{x} \frac{6}{u^{\prime}} \mathrm{y}$ below the ground Ine; the horizontal trace, $a, i s$ in front of $1 t$. The portion Pig. 6 of the line between the traces is in the lower front dinedral angle.

Figo7 The vertical
trace, b^{\prime} is below the ground
line; the horizontal trace, a
is behind it.

Fig.8. The vertfatai trace, b^{\prime}, is above the ground " line; the horizontal trace, a is behind it.

Fig.9. Line parallel to the vertical plane, with horizontal trace at a. In this case, the projecting plane through $a b$, is parallel to the vertical plane, therefore itstentoctionth the ground plane, $a b$, is parallel to the ground line.

Fig 10. Horizontal line
intersecting the vertical plane at a^{\prime}. The projecting

Fig. 10
plane through, $a^{\prime} b^{\prime}$ is parallel
to the ground plane, therefore its intersection with the vertical plane, a/f is parallel to the ground line:

Fig. 11. any line in a plane perpen-
dicular to the ground line. The horizontal and vertical projections o tncide and are on a perpendicular to the

> Fig.il
ground line. As explained above, line in this case is not defined by its projectial, which do not change, whatever may be the direction the line in the projecting plane, but when the traces are given, the line is defined.

Figil2. Line perpendicular to the vertical plane at ' a '. The vertical projection is a point, a^{\prime} 'since any perpendicular to the vertical plane from
Fig. 12 a point of the given line will intersect the plane at a^{\prime}. The horizontal projection, ab, is a line perpendicular to the ground line, because the projecting plane is perpendicular to the two planes of projection and therrefore is perpendicular to their intersection XY. There is no horizontal trace

DESCRIPTIVE GEOMETRY

Line perpendicular to the ground plane at a. The perpendicular to the ground plane from any point of the givers 1.ine will intersect the plane at a, *hich is the horizontal projection

Fig. 23 , If the 'line. The vertical projection $a^{\prime} /$ ', is perpendicular to the ground line, because the projecting plane, being perpendicular to both planes of projection, is perpendicular to their intersection. the ground line.

Figol4. Line paraliel
to the ground line. In this case, each of the projecting planes is parallel to the ground line, therefore their intersections with the corresponding planes of projection are also parallel to the ground line.
6^{\prime}

Fig. 15

Pig. 15. Line intersecting the ground line. The point of intersection, a, is at the same time the horizontal and the vertical trace of the line and both projections intersect theres

When a line is in the ground plane, its horizontal projection is the line itself and its vertical projection is the ground line.

When a line is in the vertical plane, its vertical projection is the line itself and its horizon tal projection is the ground line.

The ground line is its own horizontal projection and its own vertical projection. 5. THMUG A GIVEN POINT, DRAW A PARALLEL TO A GIVEN LINE When two lines are parallel, their projections of same denomination are also parallel, because their projecting planes being perpendicular to the same plane of projection and passing through parallel lines, are themselves parallel to each other and therefore their intersections with the plane of projection are parallel lines.
It follows that when a
parallel to a line ab, $a^{\prime} b^{\prime}$, Fig. 18
through c^{\prime} a parallel to $a^{\prime} b^{\prime}$ then $c d^{\prime} c^{\prime} d^{\prime} i s$ parallel to $a b, a^{\prime} b^{\prime}$.

When two lines all, $x^{\prime} b^{\prime} ; c d, c^{\prime} d^{\prime}$ (Fig.17) intersect

It follows that when the points p and p^{\prime} are not on the same perpendicular to the ground line, the lines ah, ab'; ad, cide not intersect, that is to say they are not contained in one plane.
6. REPRESENTATION OF A PLANE. A plane is repre sented by its traces on the planes of projection, that is to say by its intersections with the said planes: These traces meet in a point α, Fig. 18, of the ground line, which is the point where the plane outs it. The vertical trace of the plane is $\alpha \mathrm{P}^{\prime}$, the horizontal trace is $x P$

When the plane is vertical, its trace $\alpha \mathrm{P}^{\prime}$, Fig. 19
on the vertical plane
being the intersection

It may be shown
in the same way that the horizontal trace aP,Fig. 20, of a plane perpendicular to the
vertical plane,is a
Fig. 20
line perpendicular to*
the ground line.

The plane may be parallel to the vertical plane, in which case the vertical trace disappears. The

When the plane is parallel to the ground line,
X

ρ^{\prime}	Q^{\prime}
1	Q^{Y}

Fig. 23
A plane P α P',Fig. 24 , perpendicular to the ground line, has its traces perpendicular to it. The ground line being

$$
\text { Fig. } 24
$$

perpendicular to the plane, is perpendicular to all the lines passing through a in that plane and therefore is perpendicular to the "traces $\alpha P, \alpha P_{0}$.

Two parallel planes have their traces parallel, because the traces are then the intersections of two parallel planes by a third one.
7. LINE CONTAINED IN A PLANE. A line contained in a plane, has its traces on the traces of the plane, since any point of the planes of projection not on the traces is outside of the given plane. Hence follows an easy method to find a line contained in a plane $P P^{\prime}$, Fig. 25 , when one of its projections $a b$,is " given. The point a where the horizontal projection of the line intersects the horizontal trace $a \operatorname{P}$ of the plane, is the trace of the line. Its vertical projection a^{\prime} is a point of the vertical projection of the line. But the point of intersection, \bar{b}, of $a b$ with the ground line is the projection of a point of the line $A B$

DESCRIPTIVE GROMETRY
contained in the vertical plane, that is, the projection of the vertical trace of $A B$; then if at b a perpendicular $b b^{\prime}$ be erected to $X Y$,its intersection b^{\prime} with αP^{\prime} will be the vertical trace of $A B$ and the vertical projection will be obtained by joining $a^{\prime} b^{\prime}$
8. POINT IN A PLANE. When a point M is contained in a plane PaP', Fig. 26, one of the projections, m, of the point is sufficient to define it.

- Tö find the other projec-

Fig.26.
tion, mi, of M, let a horizontal line be drawn through M in the plane PaP', its horizontal projection is a line ma parallel to αP,its vertical trace is at the intersection a^{\prime} of the vertical trace of the plane PaP'with a perpendicular at a to the ground line andits vertical projection is a line a'm' parallei to XY. The vertical projection of M is then found by drawing through in a perpendicular to $X Y$ and producing it to its intersection with a'm'. The point $m m$ being on the line am, $a^{\prime \prime} m^{\prime}$, is in the plane Porp.

It is not necessary that the line drawn through M be horizontal;any other line might be employed,but it is more convenient to use a line parallel either to the vertical or to the ground plane.
9. THROUGH A POINT, TO DRAW A PLANE PARALLEL TO ANOTHER PLANE, Lèt a point mmípig.27, and a plane PAP' be given; through $/ \prime \prime \prime \prime \prime$, it is required to draw a plane parallel to PrP'。 Through $m m$, draw a line parallel to $\mathrm{P} \alpha$, its horizontal projection will be a parallel through m to $P x$ and its vertical projection a parallel through m to the
$\%$ ground line (5 5). Find the x vertical trace a^{\prime} by erecting at a perpendicular to the ground line and producing it to its intersection with $m^{\prime} \boldsymbol{m}^{\prime}$.
Fig. 27 Then through a^{\prime} draw $3 Q^{\prime}$ parallel to $X P^{\prime}$ and through β draw βQ parallel to $x P$ The plane $Q B Q^{\prime}$ is parallel to the plane $P \propto P^{\prime}$ and it contains the point mmi, since it contains the line rerx, mía'. 10.- LINE PERPENDICULAR TO A PLANE. Let the line ma, m', FiE 28, be perpendicular to the plane $P \propto P$ ': the
projecting plane MA mais perpendicular to the ground plane:it is also perpendicular to the plane PrP', since it contains a line MA perpendicular to this plane; therefore it is perpendicular to the intersection αP of these two planes and inversely the intersection αP is perpendicular to the projecting plane. But being perpendicular to the plane,it is perpendicular to all lines passing through a and contained in the plane, therefore $\alpha \mathrm{P}$ is perpendicular to am .

In the same manner it may be shown that $b^{\prime} m^{\prime}$ is perpendicular to a P^{\prime}.

So when through a point $m m^{\prime}$, it is required to draw a line perpendicular to a plane, perpendiculars ma, and m'b' to the traces of the plane are drawn through the projections m and m^{\prime} of the point.

To draw through a given line a plane perpendicular to a given plane, a line perpendicular to the plane is drawn as explained above from any point of the
given line and then a plane is drawn through the two lines by joining the traces of same denomination of the lines.

- When it is required to draw through a given point a plane perpendicular to a given line,perpendiculars to the projections of the line are drawn from any point of the ground line:they represent the traces of a plane perpendicular to the given line and there remains only to draw a plane parallel to the first one and passing through the given point as explained in $\oint 9$ 。 11. REVQLVING A PLANE UPON ONE OF THE PLANES OF PROJECTION. For making constructions in a plane other than one of the projection planes,it is often convenient to revolve the plane round one of its traces upon the ground or vertical planes; the construction is then effected and if necessary, the plane is revolved back to its original position.

The problem can always be reduced to finding the position of a point M of a plane PaP', Pig.29, after this plane has been brought into coincidence with one of the planes of projection, the ground plane for instance, by a revolution round its horizontal
h Prom the point ru, draw a perpendicular mk to the trace αP of the $p \neq a n e$ and join $M K$ and $M \dot{m}$ the plane $M K m$ is perpendicular to the ground plane as containing $M m$ hence it contains the Stertical line at K to which ${ }_{0}{ }_{0} K$ is perpendicular. But a'K is also, by construction, perpendicular Km, therefore it is perpendicular to the plane $m \mathrm{KM}$ and to KM which is in this plane. Consequently when the plans is revolved round its trace, M will fall on a perpendicular $K M_{1}$. to αP.

Let us suppose now that the triangle MKM be revolvsd round $K m$ on to the ground plane; the angle $K m$ being a right angle, the side muwill fall in $m m$, parallel to ap; mm,which is the height of M above the horizontal plane, is equal to $h \mathrm{~m}^{\prime}$. It is therefore easy to construct the triangle and by taking KM , equal to Km , the position of M , is, obtained。

The constrúction lines on the figure have for object merely to show that $m \mathrm{~m}$, is made equal to $\mathrm{hm} \mathrm{m}^{\prime}$, KM, equal to $K n y$ and that the point $m m^{\prime}$ lies in the plane $\mathrm{PaP}^{\prime}(\$ 8)$ 。

A similar construction would be employed to revolve a plane upon the vertical plane.

It may be observed that the angle $m \mathrm{Km}, \mathrm{n}$, is the angle of the given plane with the ground plane.

The position of a line revolved upon the horizontal plane is determined by finding the positions of two of its points;its traces for instance. Let $a b, a b$, Fig. 30, be the line
$\cdots{ }^{\prime}$. and $P a P^{\prime}$ the plane From \bar{b} draw a perpendicular $b K$ to ap. The same demonstration as in the case of Fig. 29 will show that αP is perpendicular $t q$ the line $k b^{\prime}$, in space, therefore $b^{\text {in }}$ in
r. Fig. 30 its revolution rourd αp
will fall on $K b$ produced, and $K B$, will be eaual to:
$K b^{\prime}$. But $K b^{\prime}$ is the hypothermase of the right angle triangle K 66 ; which can be constructed at $K b \sigma_{1}$; by making KB , equal, to K b the position of ${ }^{\prime \prime} \mathrm{B}$, is obtained. Now it must be observed that the position of the horizontal trace a of the given line has not changed; therefore this line after its revolution will fall in $a B_{1}$.

Here again the angle $3 \mathrm{~K} b$, is the angle of the given plane with the ground plane and the construetion indicated affords a ample method of finding it.

The line αP is the position of the vertical trace after the revolution of the plane; the angle PaP, is the angle formed in space by the traces of the plane, and αB, is equal to αb^{\prime}. Hence the following construction to find the revolved line, when $o d$ is within the limits of the drawing.

Draw 6 K perpendicular to $a r$ and instead of constructing the triangle $k 3 b$, describe a oircle with α as a center añ $a b^{\prime}$ as radius. Join to athe point of intersection B of the circle with $\overline{B K}$ produced; B, a is the revolved line, and αp_{1} the revolved trace of the plane Pap'.

To revolve a plane back into its original position, inverse constructions are employed. Let it be required for instance, to find the projections of the point \dot{M}, Pig. 29 , when the plane $P Q P$ is revoived back to PoP'. . The angle of $P \times P^{\prime}$ with the ground plane is first determined by the construction given above: then from M, a perpendicular is drawn to αP and at the point of intersection K, an angle $m K m$ is constructed equal to the inclination of the given plane on the ground plane. $K m$ is taken equal to $K M$, and from n a perpendicular m, m is drawn to M, m; n is the horizontal projec ι ion of M, and $m m$, its height above the ground plane, from which the vertical projection is easily found.

A line is, revolved back into its original position by repeating in inverse order the construc.. tions given for revolving it upon the projection plane. Let $a B_{1}$, Pig. 30 , be the line:from B_{1} and a draw the perpendiculars B, b and $a a^{\prime}$ to αP and $X Y$ respectively. at b erect a perpendicular $6 \ddot{b}^{\prime}$ to $X Y$, produce it to its intersection b^{\prime} with $\triangle P^{\prime}$ and join ab, $a^{\prime} b$ ', Which are the projections required.

The constructions arc simplified when the vertical träce nas been revolved on the ground plane. Let it be required to find the position of the point $m m^{\prime}$, Pig. 3l, on the plane $P \times P^{\prime}$ revolved in $P \times P$, upon the ground plane. From m draw a perpendicular m n to $A_{P: i t}$ has been shown that the point M of space in revolving round $x P$, will fall upon this line。 Through $m m^{\prime}$ and in the plane $P * P$ draw a line αb, $a^{\prime} b^{\prime}$. cutting the two traces of the plane (97); on α take $r A$, equal to αx^{\prime} and join $A B^{\circ}$ As explained above, A, 3 is, in the plane PaP, the 7.ine represented in projection at $a b, a^{\prime} b^{\prime}$, and the. point required, m, mast be
on this line. But it has already been shown that it is on the line $m n$; therefore it is at the intersection of these two lines, in M,

To revolve back this point into its original position, a line A, B cutting the traces αP and $a p$ is drawn through M; $a a^{\prime}$ is taken equal to αA, and
perpendiculars áá and $b b^{\prime}$ are drawn from u^{\prime} and b to the ground line; $c t$ and $c^{\prime} b^{\prime}$ are the projections of the line $B A$, when revolved back to its original place. A perpendicular to $x P$ is next drawn from M, its intersection with $a b$ gives the horizontal projection m of the point M : the vertical projection is obtained by drawing through m a perpendicular to the ground line and producing to its intersection m ' with $a^{\prime} b^{\prime}$

Instead of the line $a b, a^{\prime} b$ ', a parallel to the vertical plane may be employed. Let $m m^{\prime}$, Figo32, be the point, Pap' the given plane and P×P, the same plane revolved upon the ground plane. From ind draw a perpendicular $m n$ to $a p$: the point M, will fall on this line. Then through imm; draw $a b, a^{\prime} b_{r}^{\prime}$ parallel to the vertical trace αP^{\prime} of the plans $(\$ 5)$. When PxP^{\prime} is revolved, this line will still remain parallel to αP^{\prime} and as its trace a, does not move, the line will
fall in $A B$, parallel to $x P_{1}$ so the point M, will be on $a B_{1}$, but this point is also on $m m$, therefore it is at the intersection M, of $m n$ and $a B_{1}$.

To find the projections of the point M of space when it is given revolved on the ground plane in M, draw through M, a parallel $a B$, to the trace αP and a perpendicular $M, n v$ to a P. Through a draw ab parallel to the ground line;it is the horizontal projection of a line paraliel to the vertioal plane and passing through the point M. But the horizontal projection m of M is also on the line M, m, therefore it is at the intersection of M, m and $a b$.

The vertical projection $m m^{\prime}$ of M is on the perpendicular $m m^{\prime}$ drawn through m to the ground line; it is also on the vertical projection $a^{\prime} b^{\prime}$ of the parallel to the vertical plane, which is obtained by drawing from a a perpendicular aá to $X Y$ and through a^{\prime} a parallel to the trace αP^{\prime}. The intersection of $a^{\prime} b^{\prime}$ and $m m^{\prime}$ gives the vertical projection mof M.

The constructions are still further simplified When the given plane is perpendicular to one of the
planes of projection.
Let PaP'Fig. 33, be a plane perpendicular to the ground plane and $m m^{\prime}$ a point of the plane. The point

M in apace is on the vertical line passing through m. which line is in the plane $P \alpha P^{\prime}$ and is , perpendicular to the horizontal M, line $x P$. Therefore, when $P a P^{\prime}$ is Fig. 33 revolved round $a P$, the line $m m$ will still remain perpendicular to αP and the point M will fall in M, at a distance $m M$ from αP equal to the height of M above the ground plane. But this height is $h r^{\prime}$; therefore to determine the point M_{1}, draw at m perpendicular to αP and take $m \bar{M}$, equal to $h m^{\prime}$.

Instead of revolving the plane round α p,it may be revolved round αP^{\prime} on the vertical plane. The point M will then describe in space an arc of circle of which the vertical projection is the line $m^{\prime} M_{2}$ parallel to $X Y$ and the horizontal projection an arc of circle $m t$, with α as a center and $a m$ as radius. When the plane $P \alpha P^{\prime}$ coincides with the vertical plane,
the point M of the plane must be somewhere on the line $m^{\prime} M_{\nu}$ and its horizontal projection ist. Then if a perpendicular to $X Y$ be erected at t and produced to ite intersection M_{2} with $m^{\prime} M_{2}, M_{3}{ }^{\prime}$ will be the required point.

To find the projections of the point M whose position M_{1} revolved on the ground plane is giver, draw from M a perpendicular $M_{1} m$ to αP and from m a perpendicular $m m^{\prime}$ to XY ; take $/ 2 \mathrm{~m}^{\prime}$ equal to m M , height of the point M above the ground plane; m, m are the projections of the point.

The projections of M_{2} are found by drawing through M_{z} a parallel $M_{2} r^{\prime}$ to $X Y$, which is the vertical projection of the arc of circle described by M_{2} when revolved back to $i^{3} t s$ original position; take am equal to the distance $M_{2} y$ of M_{z} from the trace $* P^{\prime}$ and through m draw the perpendicular $m m$ 'to $X Y$ m / m^{\prime} are the projections of the point.
12. INTERSECTION OF TWO PLANES. Let $P \propto P^{\prime}$ and $Q \beta Q^{\prime}$, Fig. 34 , be two planes: the points M and N where the traces of the planes meet, are the traces of the line of intersection of the planes. The projections

INTERSECTIONS
41 $M N, m^{\prime} N$ of the intersection are found as explained in

94 by letting fall the perpendiculars Mm: and $N / 1$ to the ground Line and joining $\mathrm{M} n, m^{\prime} \mathrm{N}$.
13. THE" INTERSECTING PLANES ARE BOTH PARALIEL TO THE GROUND LINE. Let $P Q, P^{\prime} Q^{\prime}, R S, R^{\prime} S^{\prime}, F i g \cdot 35$, be the traces. of two intersecting planes parallel to the ground line:the construction given in $\oint 12$ does not apply and recourse must be had to an auxiliary plane. Draw a plane TOT' perpendicular to the ground line. The line of intersection of the two given planes is parallel to the ground line and so are its projections. If the projections m and m^{\prime} of the point M where this line interFig. 35 ' sects the plane TOT' were iknown, the projections of the line itself would be obtained at once by drawing through m and m parallels to the

To obtain M, let us revolve T_{0} around $0 T$ upon the ground plane: the intersection of TOT' and ' $P Q P^{\prime} Q^{\prime}$; of which the traces are c and d^{\prime}, will fall in $c D_{1}$; OD being equal to Od: Similarly the intersection of TOT' and RS R' ' will fall in $a B_{1}, O B_{1}$ being equai to $0 b^{\prime}$ and the point M will come in M, at the intersection of $c \mathrm{D}$, and $a \mathrm{~B}$, . From M, draw a perpendicular to OT; the point of intersection m is the horizontal projection of M. Thé vertical projection is obtained by making $0 m^{\prime}$ equal to $n=M$, this being the height of M above the ground plane. Then through m and m ' draw the parallels ef, e'f', to the ground line; they are the projections of the line of intersection. 14. THE INTERSECTING PLANES CUT THE GROUND LINE AT THE SAME POINT. Let P $\alpha P^{\prime}, Q_{Q} Q^{\prime}$, Fig. 36 , be two intersect.ing planes cutting the ground line at or Draw a plane TOT' perpendicular to this line; α is a point of the line of intersection of the planes and if the projections m and m of "the point M where this line cuts the plane TOT were known, the projections of the intersection would be obtained by joining ain and αm^{\prime}.

Let us revolve the plane TOT' around OT: the intersection of TOT' and Par', of which a and b^{\prime} are the 2

$$
\begin{aligned}
& \text { traces,will fall in } a B_{1}, O B \text {, } \\
& \text { being equal to } O b^{\prime} \text {. Similarly the } \\
& \text { intersection of TOT' and } Q a Q^{\prime} w i l l \\
& \text { fall in } C D, O D \text { being equal to } \\
& O d^{\prime} \text {, and } M \text { will come in } M, \text { at the } \\
& \text { intersection of } a B, \text { and } C D \text {. }
\end{aligned}
$$ From M, draw a perpendicular M, m Fig. 38 , to OT, the point m is the horizontal projection of M. The vertical projection m^{\prime} is obtained by making 0 m equal to $m M_{f}$. Then draw αm and αm^{\prime} which are the projections of the intersection.

15. INTERSECTION OF TWO PLANES, ONE OF WHICH IS HORIZONTAL OR PARALLEL TO THE VERTICAL PLANE. When one * the planes is horizontal, the intersection is parallel to the Y horizontal trace of the other plane:its vertical projection is the trace $Q^{\prime} R^{\prime}$, of the horizontal

Fig. 37 plane (Fig. 37) and the horizontal
projection a parallel \mathscr{F}^{\prime} to $\times P$.
In the case of a plane parallel to the vertical
plane (Fig.38), the
horizontal projection
of the intersection is
the trace QR of the
vertical plane. The

vertical projection
is a parallej $y^{\prime} s^{\prime}$ to the vertical trace αP^{\prime} of the other plane.

16: PLANES PERPENDICULAR TO ONE OF THE PLANES OF PROJECTION. When the two planes are both perpendicular to one of the planes of projection, their intersection is also perpendicular to this plane and its projection on it is the point where the traces of the planes meet. The projection on the other plane is a perpendicular to the ground line passing through the above point.
17. INTERSECTION OF A LINE AND A PLANE. To find the intersection of a line and a plane, another line intersecting the first one is drawn in the plane; the point required is the intersection of the two lines. ahb', for instance,may be employed.

To obtain the projections of this intersection, draw the perpendicular $b h^{\prime \prime}$ and $c r^{\prime}$ to

$$
\text { Fig. } 39
$$

$$
\text { perpendicular } b J^{\prime \prime} \text { and } c r^{\prime} \text { to }
$$ the ground line and join $c^{\prime} 7 \prime \prime ;\left(b, c^{\prime} b^{\prime \prime}\right.$ is the intersection. It meets the line $a b, a^{\prime} b^{\prime}$ at mun' which is the point where the line cuts the plane PaP'. 18. INTERSECTION OF THREE PLANES. The intersection of three planes may be found either by constructing the line of intersection of two of the planes and then determining the point where this line cuts the third plane or by constructing the lines of intersection of one of the planes with each of the others: the point where the two lines meet is the point of intersection of the three planes.

19. PHROUGH A POINT, TO DRAW A STRAIGHT LINE WHICH WILL MEET TWO GIVEN LINES. To draw through a point
a straight line which will meet two given lines not in the same plane, a plane is passed through the point and one of the lines. The point where the second line pierces the plane is ascertained ($\$ 17$) and by joining this point of intersection to the given point, the line required is obtained.
 two points; to obtain their distance, one of the projecting planes of the line $A B$ may be revolved about its trace upon the corresponding projection plane.

Let us revolve, for instance
 $A B a b$ around, $a b$. The point A will fall in/A on a perpendicular $a A$, to $a b$, the line $a A$, being the height of A above the ground plane, that is the distance rá. Similarly B will fall in B,

$$
\text { Fig. } 40
$$

on a perpendicular 6 B , to $a b$, and at a distance from b equal to $s b^{\prime}$. The required distance of the points is $A_{1} B_{1}$.

The construction may be somewhat simplifiod by observing that if a line be drawn through a parallel
to A, B, its length $a c$ is equal to A, B; therefore instead of constructing the trapezoid $i A, B, B, i t$ will be sufficient to erect a'perpendicular to $a /$ at " and to lay off on it a distance Jo equal to the difference between $s b^{\prime}$ and $r a^{\prime}$.
21. to lay off a given length on a line. The construction given in $\$ 20$ may be omployed for laying off a given length on a line AB (Fig. 40). Tarn the projecting plane on the line ab as an axis and lay off the required length A, D, on A, B. Then revolve the projecting plane back to its natural position: the horizontal projection of D. will be at d, foot of the perpendicular drawn from D, to $a b$, and its vertical projection will be at, A^{\prime}, intersection of $a^{\prime} b^{\prime}$ by a perpendicular through d to the ground line. 22. DISTANCE FROM A POINT TO A LINE. The distance from a poínt to a straight line is obtained by passing a plane through the line and the point, and revolving it upon one of the planes of projection. Let $a b, a^{\prime} b$ ', be the line and mm' the point (Figo41). Through menc deaw a parallel ad, cat to ab, $a^{\prime} b^{\prime}$ the line "ac is the horizontal trace of the plane
containing the two parallel lines. Revolve this plane

i

b
Fig. 41
around its trace //e, until it coincides with the ground plane (811)。

Let $\sim B$, and M, be the revolved positions of r/' and M. From M, let fall a perpendicular M, K to $x B$; it is the distance required.
23. DISTANCE FROM A POINT TO A PLANE. The digtance from a point to a plane may be obtained by dropping a perpendicular from the point to the plane (\$10), finding the point where it pierces the plane ($\delta 17$) and determining the distance of the two points.

It is more convenient to pass through the point a plane perpendicular to one of the traces of the given plane. This auxiliary plane, being perpendicular to the other one, contains the perpendicular from the point to the given plane:by revolving it around its trace upon one of the planes of projection, the following simple construction gives at once the solution of the problem.

Let $P \alpha P^{\prime}, F i g .42$, be the plane and mme the point. Through $m m^{\prime}$ pass the plane $Q \beta Q^{\prime}$ perpendicular to ar P^{\prime} and revolve it around " βQ upon the ground plane. The point A describes the arc of circle $A A$, and $B A$, is the intersection of the two planes revolved upon the

Fig. 42 ground plane.

The point M is on a parallel to $\mathcal{B Q}$ passing through m '. In revolving the auxiliary plane, m^{\prime} describes the arc of circle $m^{\prime} c$ and the line $m^{\prime} M$ falls in $c M_{1}$, still parallel to βQ. The point M remaining during the revolution of the plane at a constant distance from the vertical, plane, will fall on a parallel to the ground line passing through m; therefore $M_{\text {, }}$ will come at the intersection of $c M$ and $m \mathbb{M}$. There remains only to let fall a perpendicular from M to $B A_{1}$: it is the distance required.
24. DISTANCE OF TWO PARAIJEL PLANES. The distance of two parallel planes may be obtained by intersecting
them by a third plane perpendicular to both and revolving it upon one of the planes of projection.

Let PaP, $Q \beta Q^{\prime}$ Fig. 43

be the parallel planes.
Draw a plane ROR' perpendicular to the vertical
traces and revolve it upon the ground plane around $O R$ as an axis. *ig. 43 The points R^{\prime} and S^{\prime} de$\because \quad$ scribe the arcs of circle R'R, "SS, : the lines RR, and SS, being the intersections of the given planes by the auxiliary one. These lines are parallel and their distance is the distance of the planes.
25. DISTANCE OF TWO STRAIGHT LINES. Let $A B$ and $C D$ Fig-44 be two straight lines not contained in one plane;it is required to find their shortest distance. This distance is the perpendicular to both lines. Through any point of $A B$, A for instance, draw a parallel $A F$ to $C D$ and from a point G of $C D, l e t$ fall a perpendicular GH on the plane BAF. Through the foot of GH in: the plane BAF, draw a parallel HK to AF and

ANGLES

through K another parallel KM to HG . the line KM is perpendicular to both lines.

Although presenting no difficulty the construction requires many lines and is omFig. 44 itted here.
28. ANGLE OF A LINE WITH THE PLANES OF PROJECTION. Letit be required to find the angles formed by the line $a b, a b$, Pig. 45 , with the planes of projection. The angle of the line.
 with the ground plane is the same as with the line $a b$, since the plane linb is perpendicular to the ground plane. This angle can be obtained by revolving the triangle $b^{\prime} b a$ around $b^{\prime} b$ as an axis upon the vertical plane. The vertex a describes the arc of circle ac and the triangle comes in $b \overline{\text { o }}$ a the angle at c being the angle of the line with the ground plane. D 2

Similarly the angle with the vertical plane is obtained by revolving the triangle aab upon the ground piane around ard' as an axis. 'The vertex $万^{\prime}$ comes in α, the angle aila' teing the angle of the line with the vertical plane.

When the line is contained in a plane perpendicular to the ground line, such as ab', Fig.46; the angles are-found by revolving the plane upon one of the planes of projection, the ground plane for instance: the C b^{\prime} vertical trace, b^{\prime} describes the $X y^{\prime \prime} Y$ arc of circle $B^{\prime} B$ and the revolved position of the line is $\alpha B, \alpha$ and B are the angles with the ground and vertical
Fig. 46 planes respectively.
In the case of a line parallel to one of the planes of projection, the angle of the line with the other plane is the angle of its projection with the ground line.
27. ANGLE OF TWO LINES. To find the angle formed by two intersecting lines, their plane is revolved
about its trace upon one of the planes of projection. Let $a b, a b$; $c d$, c'd', Fig. 47 , be the lines. The horizontal. trace of their plane is the line ac passing through the traces;it forms with the two lines a triangle $a M c$, in which M is the angle to be found. Revolve this triangle around ac. upon the ground plane; the point M will move in the plane perpendicular to ar whose horizontal trace is the perpendicular $m n$ to as; it will thereFig. 47 fore fall in M, somewhere on $m n$ produced. The distance $n M$ is the same as the distance from $"$ to M and the latter is thd hypothenuse of the right angle triangle Mmm: But the side Mm of this triangle is the height of M above the ground line and the triangle can be constructed by erecting at m a perpendicular to $m m$ and laying off int equal to $m i^{\prime}, M$ is then determiner by making $n M$, equal tout. Joining M, a and M, r, the angle required is $a M r$.

It may happen that the trases of the lines are outside of the drawing, and that the trace of their plane can not be obtained as explained above. In that case, the lines are cut by an auxiliary horizontal plane on which the construction of Fig. 47 is effected.

When the lines are parallel to one of the planes of projection their angle is the angle of their projections on that plane.
28. ANGLES OF A PLANE WITH THB PIANES OF PROJECTION. The angles of plane with the planes of projection are obtained by cu'ting it by auxiliary planes perpendicular to the traces. Let PoP', Fig. 48, be the plane. Draw a plane TOT'per-
 pendicular to aP:its intersections with the planes of projection and the given plane form a right angled triangle TOT' in which the angle at T is the angle of PaP'with the ground plane. Fig. 48
$O T^{\prime}$ as an axis upon the vertical plane: T describes an arc of circle TT, of which 0 is the center and the triangle comes in TOT, the angle T, being the angle of $P \propto P^{\prime}$ with the ground plane.

Similarly, the angle with the vertical plane is obtained by drawing the plane SOS' perpendicular to αP^{\prime} and revolving the triangie sos' upon the ground plane in SOS, . The angle at S, is the 'angle of PorP' with the vertical plane.

The line T'T is the line of greatest deçlivity of the $p l a n e$ PaP' any other line contained in the plane pap and not paralied to TT "formis with the ground plane an angle smaller than T'ro. 29. ANGLR OF TWO PLANES. Let POP', Q βQ^{\prime}, Fig. 49, be two planes', of which it ís required to find the angle. Their intersection is projected horizontally in $a b$. Cut the planes by another one perpendicular to both; it is perpendicular to theis intersection and consequently the horizontal trace od is perpondiaular to $a b$. The intersections of this plane with the two givy en planes form with the trace co a triangle in which the angle opposite cd is the angle of the two planes.

$$
\mathrm{d} 2
$$

The intersection of the auxiliary plane with "ablabor is the perpen
2.
in it passing through its foot K. The same intersec tion is also perpendicular to the intersection ab, of the two given planes, because $a b^{\prime}$ being perpendicular to the auxiliary plane, is perpendicular to all lines contained in that plane by which,it is intersected.
\therefore. Now revolve the triangle abb" about its side $a b$ upon the ground plane. The angle at b being a right angle, the point b will fall in B, on a perpendicular to rh at \bar{b}, \bar{B}, being equal to $\overline{b / \prime}$. Join $B a$ and let fall on it from K a perpendicular KH , this is the height of the triangle formed by cat
and the intersections of the two given planes by the auxiliary plane. Then revolve this triangle around cd upon the ground plane;its vertex will fall on the line $a b$, at a distance $K \neq$ equal to $K H$, join he, hed and c Fud is the angle required.

When the "planes are in such a position as to make the above construction inconvenient, they may be replaced by parallel planes, whose positions are selected at pleasure. This may be doneyfor instance, When the planes cut the ground line at the same point or when their traces do not meet within the limits of the drawing.

When the planes are both parallel to the ground line, the construction is the same as in Fig. 35; $\alpha \mathrm{M}_{\mathrm{c}}, \boldsymbol{c}$ is the angle of the planes.
30. THROUGH A GIVEN LINE IN A PLANE TO DRAW ANOTHER PLANE MAKING A CERTAIN ANGLE WITH THE GIVEN PLANE. The converse problem consists in drawing through a given line of a plane, another plane making with the first one a given angle. The construction is the same as in Fig. 49 , but is inverted. The given line is the intersection of the two planes:the triangle chat
is constructed by means of the line KH_{r} and the angle h, it gives a point d of the horizontal trace of the plane required. Another point of the trace is found at a, then join ad, produce to β and join βb^{\prime} : the required plane is a $a \beta b^{\circ}$.
31. ANGLE OF A LINE WITH A PLANE. The angle of a line with a plane is the complement of the angle of the line with a perpendicular to the plane. So in order to find the first angle, a perpendicular may be erected to the plane through a point of the given line (8) ; the angle of the two lines is then determined (27).
32. METHOD OF ROTATIONS. The method of rotations is a process employed in Descriptive Geometry for facilitating the solution of problems. It consists in rotating the whole system of the projections or only part of it, around an axia perpendicular to one of the planea of projection, until the syatem assumes a position favourable to the solution of the problem. 83. ROTATION OF A POINT, Let it be required to rotate a point mm', Fig. 50, through an angle a, around a vertical axis ω, $x^{\prime} b^{\prime}$. The projection mill describe an arc of circle $m m$, with center at a and subtending an angle equal to ω. But the $m^{\prime} \operatorname{mp}^{b^{\prime}} \quad$ point M, during its motion remains at the same distance from the ground plane; therefore its vertical projection, m^{\prime}, travels on a parallel m'm', to the ground line. So when the point $m v$ has described the arc ω, the point m is in m^{\prime}, at the intersection of the perpendioular to the ground line through m_{1} with the parallel to the same line through m^{\prime}.
34. ROTATION OF A LINE. Let $a b, a^{\prime} b^{\prime}$, Fig. 51 , be a straight line to be rotated around a vertical axis c cid antil parallel to the vertical plane. From c

Big. 51
let fall the perpendicular $c m$ on $a b$, and rotate the projecting, plane containing $a b$. around the axis. The point m will describe an arc of circie and stop at m, on the pernandicular to
the ground line drawn throagh c. The projecting plane will then be parallel to the vertical plane and so will the lines ab and $A B$. The new postion of ah is obtained by drawing through m, a parallel ry, to the ground line and making $a_{1} m_{1}=a m, \quad b_{1} m, b m$. In their motion around the axis, the height above the ground plane of the points A and B of the given line does not change; the vertical projection ' x^{\prime} of A, will thorefore move on the ground line and the projection b^{\prime} on a parallel $b^{\prime} b_{\prime}^{\prime}$ to the ground line. But a_{1}^{\prime}, the new vertical projection of A, must be on the perpendicular through $\mu_{\text {; }}$ to the ground line and since it is also on the ground line, it must be at their intersection in al. Similarly, f_{1}^{\prime} must be on the perpendicular $b^{\prime} b_{1}^{\prime}$ to the ground line and also on the parallel $b^{\prime} l, l_{1}^{\prime}$, therefore it must be at their intersec\rightarrow tion b_{\prime}^{\prime}. The rotated vertical projection is then $a_{i}^{\prime} b_{\prime}^{\prime}$ 35. ROTATION OF A PLANE. A plane may be rotated by turning three of its points, not on a straight line (§ 33), or a point and straight line, both in the plane, or two of its lines (§ 34). The following method is a simple one.

ROTATIONS

P α P', Fig. 52 , is a plane to be rotated until perpendicular to the vertical plane, about a vertical axis of which the horizontal trace is at c. From c let fall a perpendicular $c d$ on αP and rotate αP until cat is parallel to the ground line: αP will then be perpendicular to $X Y$. It is the rotated horizontal trace of the plane.

Now draw any horizontal
line $g h, g^{\prime \prime}$, in the plane Pap';produce cal to its intersection f with $g h$ and rotate the line $g h, g^{\prime} h^{\prime}$, through the same angle, ω, as the trace αP of the plane.

Fig. 52 The point f of $a b$ will describe the arc of circle f_{f}, and stop on cat, produced. The rotated 'horizontal projection will then be a line gh, perpendicular to XY.

To obtain the vertical projection, it must be observed that the height of $g h, g^{\prime h}$ ', above the ground plane is $\mathscr{I G}^{\prime}$ and that it does not change during the rotation. The vertical trace g^{\prime} will then move on
the parallel $g^{\prime} h^{\prime}$ to $X Y$, and will stop at the intersection of $g^{\prime} h^{\prime}$ and $g_{i} l_{i}$ produced, since. $g_{i} H_{i}$ is perpendicular to $X Y$.

The rotated line $y_{i} k_{1} y_{1}^{\prime}$, is still parallel to the ground plane and is now contained in a plane perpendicular to the vertical plane; therefore it is itself perpendicular to the vertical plane. Its vertical projection is the point g_{\prime}^{\prime}, which is also its trace and consequently a point of the vertical trace of the rotated plane. But α, is another point of the new vertical trace, therefore the rotated plane is $P_{1}, \alpha, P_{1}^{\prime}$

The angle g_{1}, g_{1}^{\prime} is the inclination of the roo:ated plane on the ground plane: this inclination is the same before and after rotation.

The plane might now be brought parallel to the ground plane by a second rotation about an axis perpendicular to the vertical plane.
36. DISTANCE OF TWO POINTS. As an application of this method, the determination of the distance of two "points may be given.

- Let a $a^{\prime}, b 3$, Fig 53 , be the points. Rotate the
vertical projecting plane containing a and b around the vertical line through a until it is parallel to

the vertical plane. The point Z describes an arc of circle $b b$ and stops at b, on the parallel reb to $X Y ; b^{\prime}$ moves on a parfiliel to $X Y$ and stops at 6 : at the intersection of Fig. 53 ' the parallel $b^{\prime} b$ ' and the perpendicular $b_{1} b_{1}^{\prime}$, to the ground line. The rotated line is now parallel to the vertical plane;it is therefore equal to its vertical projection $a^{\prime} b_{1}^{\prime}$. The inclination of the line on the ground plane is that of the vertical projedigh on the ground line.

Another solution of this problem is given in $\$ 20$. 37. SOLUTION OF SPHERICAL TRIANGLES. A spherical triangle may be assimilated to a trihedral angle by supposing the vertex of the angle to be at the center of the sphere. The sides of the spherical triangle are then subtended by the plane angles of the faces of the trihedral angle and the angles of the triangle are the same as the dihedral angles of the trihedral angle.

As usual, the sides of the spherical triangle are designated by $a, 7$ and c, the opposite angles being A, B, and C.
38. GIVEN THREE SIDES TO FLND THE ANGLES. The three sides of the triangle correspond to the three faces of the trihedral angle. Develop them on the ground plane, placing one of the edges, 0Q, Fig. 54, perpendicular to the ground line and revolving the faces a and c about the edges $O Q$ and $O R$, upon the Fig. 54 , ground plane. The intersection of the trinedral angle by the vertical plane forms a pyrarid of which 0 is the vertex and $O Q R$ one of the faces in its natural position. Since $0 Q$ is perpendicular to the vertical plane, the planes of the two faces intertecting along $O Q$ are also perpendicular to the vertical plane, thetefore $0 \hat{Q}$, is one of the faces of the pyramid, revolved upon the ground plane about $O Q$, and $O P$ is the third edge of the pyramid, the vertical trace of which is on the arc of circle described from Q as a center with $Q P$ as radins.

The third edge of the pyramid is also shown in OP, which must be taken equal to OP ; P_{z}, like P, is the vertical trace of the third edge $O P$ revolved upon the ground plane. Let now the face c be revolved back to its natural position, by turning it about OR: the horizontal projection of P_{2} will move on the perperpendicular $P_{2} m i l e t$ fall from P_{2} on $O R$, and when P_{3} comes to its original place in the vertical plane, its horizontal projection will have moved along $P_{2} m$ up to its intersection p with the ground line. The vertical trace P will therefore be on the perpendicular μ P to the ground line, but being also on the arc of circle P, P,it is at their intersection.

Having now obtained the trace P of the edge $O P$ on the vertical plane, the dihedral angle C is found at once in $P Q R$, since both faces are pendendicular to the vertical plane.

Gerierally, only one-angle is required:irt mekine; the construction, the edge corregponding to this anfsle
is placed perpendicular to the ground line.
Should the other angles be wanted, A could be obtained from the triangle $p m P$ revolved around $\mathrm{P} p$ on the vertical plane; Pmp is the angle A of the spherical triangle. B is constructed as explained in $\$ 29$ or by any other method.
39. GIVEN TWO SIDES AND THE INCLUDED ANGLE, TO FIND THE REMAINING SIDE AND ANGLES. Let a, b and C, be given; required c, A and B.

Place the intersection of a and \bar{b} in 0Q, Fig. 54: perpendicular to $X Y$, and the face B on the ground plane; draw $Q P$ making the angle $P Q Y$ equal to $C: Q P$ is the vertical trace of the face a. Make the angle QOP, equal to a : QOP is the face a of the trinedral angle revolved about $O Q$ on the ground plane. Taking QP equal to $Q P$, the point P is the vertical trace of the third edge of the trinedral angle,

To obtain c, let fall from P and p the perpendiculars $P \not \subset$ and μm to $X Y$ and $O R$ respectively. Revolve about $\mathrm{P} \mu$ on the vertical plane the triangle formed in space by $P \mu$ and $p m: P m, p$ is the angle A. Then produce $p m$ and take $m p_{2}$ equal to $m p: j o i n$
OP_{2} : ROP_{2} is c. B is obtained as explained in $\mathrm{S}^{\text {\% }} 38$ 40. GIVEN TWO ANGLES AND THE SIDE OPPCSITE ONE OF 'THEM, TO-FIND THE REMAINING SIDES AND ANGLE Let a, A, and B be giten:required C, b and c.

- Place the face c on the ground plane and the intersection of a and c in $0 P, F i g, 55$, perpendicular to the ground line. Through P draw $P Q$ making with $X Y$ the angle $B ; P Q$ is the vertical trace of the face a, singe a and c are both perpendicular to the vertical plane. Draw $O Q$, making the angle a with $O P$; $P O Q$, is the face a of the trihedral angle revolved upon the ground plane about of as in axis, Q, is the re-
radius, describe the arc of circle $m m_{1}$ ard through 0 draw the tangent $O R$ to the circle. The angle of the plane ORQ with the ground plane is equal to A, therefore $R O Q$ is the face b of the trihedral angle and, POR is the face c.
(1) and the angle C are obtained as in former cases.

41: GIVEN TWO SIDES AND THE ANGLE OPPOSITE ONE OF THEM, TO FIND THE REMAINING SIDE 'AND ANGLES. Let a. 3 and B be given: required A, C and c.

Place the face a on the ground plane with the intersection of a and B in OP,Fig. 56; perpendicular to $X Y$. Make $P O R$ and $P O Q$, equal to a and 7 respectively: $P O Q$; is the face B of the trinedral angle revolved about $O P$ on the ground plane, therefore the

horizontal trace is a line Pm perpendicular ta $O R$ and its vertical trace the perpendicular PS to XY. The intersections of thfs plane with the two planes of projection and the plane of the face c, form in space a triangle SPm in which P is a right angle and m is the angle B. Revolfing this triangle about SP upon the vertical plane, in SP m_{1}, the point S is obtained. But S is a point of the vertical plane of projection and is also a point of the plane of the face a, therefore it is a point of the trace of the last plane. Joining then RS, the intersection of this line with the circle Q, Q is the vertical trace of the edge of the trihedral angle opposite to a.
A, C and c are now congtructed as in former caseg.
42. OTHER CASES--SUPPLEMENTTARY TRIANGLES. The other cases of sphericai trigngles are generally solved by the use of the supplementary trianglefor trifachal angles. The direct.solution, although posisity is not so convenient. The angles $A_{i} ; B_{1}, C_{1}$, of the supplementary triangle are the supplements of the sides a, b, c, of the other triang $\frac{1,}{}$ and the sides $a, b, c, ;$

4

DESCRIPTIVE GEOMETRY

of the supplementary triangle are tho splendent of the angles A, B, C, of the other one

From any point 0, Fig oh, in the interior of the trihedral angle, let fain Perpend curare
OS, Ot, oven the faces. The angle of OT and $O V$ is the supplement of the angle of the planes to which they are perpendicular.

Fig. Sf? But the angle of the planes is the angle B of the trihedral angle; therefore $T O V$ or ${ }^{-1} b$, is equal to $180^{\circ}-B$. similarly: $\quad T O S=c_{1}=180^{\circ}-\mathrm{C}$

$$
\mathrm{SOV}=a_{1}=180^{\circ}-\mathrm{A} .
$$

The plane TOV containing perpendiculars to a and O, is perpendicular to both; the the it is perpendicular tgytheir intersection go h conversely
 isperpendicular to TOS and DP to NaAN N Wherefore the angle of $D Q$ and $D R$ or a, is the support of the

SPHERICAL TRIANGLES

angle formed by VOT and TOS or A, ;

$$
A=180^{\circ}-x .
$$

In the same manner, it may be shown that:
and

$$
\begin{aligned}
& B_{1}=180^{\circ}-b \\
& C_{1}=180^{\circ}-c
\end{aligned}
$$

Hence the trihedrai angle QTSV is the supplementary angle of $D P Q R$.
43. REDUCTION OF AN ANGLB TO THE HORIZON. The reduction of an angle to the horizon is an application of the solution of spherical triangles. When an angle is observed between two points which are not in the horizontal plane of the observer, the observed angle requires a correction to reduce it to the angle formed by the projections of the points on the ground plane. 'For that purpose the observer measures the angular elevations or depressions of thepoints. passing through the observer and one of the points. Assume any point pig. Fis, as the place of observation and draw through it the iinea PA and PB, making with the ground ane angles equal to the elevations or dopressions and and $^{\text {and }} A$ and
hedral angle in which the
faces are $00^{\circ}-\alpha, \quad 90^{\circ}-3$, and the observed angle. A pyramid is cut off this trihedral angle by the ground.plane, the base of the pyramid being the triangle $\rho \mathrm{AB}$, in which $p \mathrm{~A}$ and $\rho \mathrm{B}$
Fig. 58 are two sides and $\mathcal{\rho}$ the observed angle reduced to the horizon. The thipre side may be found by revolving the face $A P B$ of the pyramid around AP, upon the vertical plane. Thifface will come in APB_{3}, the angle at P being the observed angle and

$$
P B_{z}=P B=P B_{1}
$$

We have now the third side of the triangle A B :hence describing arcs of circles from p and A as centers with $A B$ and $p B$, as. radius respectively, their intersection is the point B and $A p B$ is the required anglo.

PERSPECTIVE

44．Perspective is that part of Geometry which treats
 objects placed beyond it．Generally this surface is a vertical plane；it is called＂picture plane＂The fig a uses drawn on it，according to the rules of perspect－ ives，produce on the eye as far 1 form is concerned， the same impression as the objects themselves seen in their actual places．
Suppose a transparent plane surface，such as
glass，placed between the eye and the objects to be represented．If the outlines of the objects seen through the glass could be traced on it，the image f a． thus formed ．

of spage u thes ray pierces the picture plane in a second point, which is called the "perspective" of the first one.

The visual rays from the eye to all the points 9 a straight line form a plane whose intersection wifh the picture plane is the perspective of the line. Consequently, the perspective of a straight line is another straight line.

When the line is a curve, the visual rays to its variou points form a conic surface whose vertex is at the eye and whose intersection with the picture plane is the perspective of the curve. A surface of the same neture formed by "the visual rays targent to the vishble outline of an object: the perspective of the object is the intersaction of this surface by the picture plane

45 DEFINITIONS. the ground plan" is the horizontal projection of the objects to be represented; thus for the perspective of a landscape, the ground plan is the topographical plan of the ground;for a
building ($A B C D, F i g .59)$.
The "ground plane" is the plane on which the ground plan is placed (Xs Y, Fig. 59). For a landscape, it may be, for instance, the horizontal plane passing through the datum point of the topographical plan and for a building the b 1
f Any horizontal plane may, however, be used as ground plane, provided its altitude be taken into account: the ground plan does not change, whatever the altitude may be.

The "elevation" is the vertical projection of an object: the elevations of a building are those plans of the building which show the front, rear, or sides.

The "picture plane", as already explained, is the plane on which the perspective is drawn (FFXY,Fig.59). Generally, it is vertical and placed between the eye and the object to be represented, but none of these rules is absolute. Perspectives are sometimes drawn on planes which are not vertical and objects are represented which are between the picture plane and the eye: Such a position of objects is the rule and not the exception, in perspectives used for surveying,

PERSPECTIVE

when they are taken as ropresentations not of the ground itself, but of a model of it reduced to the scale of the map. This convention will be found further on. Objects are aven represented which are behind the observer, the origin of light, for instancs in the construction of shadows, but this is merely a"geometrical conception to which the usual definition of a perspective does not apply.

The "ground line" is the intersection of the ground and picture planes (XY, Fig. 59).

The "station" is the point supposed to be occupied by the eye of the observer. (S,Fig.59)

The "foot

Fig. 59
of the station" is the point where the vertiçal of the station pierces the ground plane (s, Fig. 59).

The "principal point" is the foot of the perpendicular drawn from the station to the picture plane;
it is shown in, P,Fig. 59.
The "distance line" is the line between the station and the principal point (SP, Fig. 59). Its length is the distance from the station or from the foot of the station to the picture plane.

The "horizon plane" is the horizontal plane passing through the station. It contains the distance line and cuts the picture plane on a horizontal line passing through the principal point and called "Horizon line" ($\mathrm{HH}, \mathrm{Fig} 59$). The distance between the horizon line or the principal point and the ground line is equal to the altitude of the station.

The "principal plane" is the vertical plane perpendicular to the picture plane and passing through the station (SNQ, Fig. 59). It contains the foot of the station, the principal point and the distance line. F) The "principal line" is the intersection of the principal and picture planes (QN, Fig. 59). It is perpendicular to the ground and horizon lines and intersects the latter at the principal point.

A "front plane" is a plane parallel to the picture plane.

A "front line" is any line contained in a front plane, therefore any line parallel to the picture plane.

In Fig. 60, these points, lines and planes are reprosented by- their orthogonal projections: the ground plane is taken for horizontal plane and the picture planesant for vertical plane $s s^{\prime}$ is

Fig. 60 the station, s the foot of this station, s^{\prime} or P the principal point HH^{\prime} the hortzon line, $s p, s^{\prime}$ the distance line and sp N the pronsipal plane.
46. P'ERSPECTIVE OF A POINT IN THE GROUND PLANE Let XIs. Fig h 61, be the ground plane, XXN the picture plane,

$$
S \text { the station and } M \text { a point }
$$

$$
\therefore \text { in the ground plane "The }
$$ perspective of M on the picture plane is the point where the straight line $S M$

Fig.81 \quad pierces the picture plane,

horizontal trace. Thus we have the first relation between a point of the ground plane and its perspect. live, they are the traces of the visual ray on the ground and picture planes respectively.

第
Figob2 represents in
" orthogonal projection the
"construction of Fig o $61 ; s^{\prime}$
$X \ldots, y$ is the station; M the point of the ground plane sa, mosh, the visual ray and ω she Fig. 62 perspective of 4 . The points M and μ are the traces of sa, $m^{\prime} s^{\prime}$. \%
47. PERSPECTIVE OF A LINE IN THE GROUND 重LANE It has been shown in 843 that the perspective of a straight line in the intersection with the picture plane of the plane contain$\pi \prime \cdots$ ing the taction and that given line:
A.
\therefore Draw al plane through the straight line $A B$ and the station $\$$ Fig obis The intersection α of this
plane with the picture plane is the perspective of $A B$. Thus we have this relation between a straight line in the ground plane and its perspective: they are the traces on the ground and picture plares, of the plane. containing the station and the line itse?f.

In orthogonal projection, the line being in the ground plane, the horizontal projection is the line itself, $A B$, Fig. 84, the vertical projection is the ground line. To Fig. 64 draw a plane through the station $s P$, and the line $A B$, draw through $s P$ a parallel to $A B ;$ the horizontal projection is a parallel to $A B$ through s, and the vertical projection a parallel through P to the ground line. The vertical trace is at c^{\prime}, the intersection of $c^{\prime} p$ with the perpendicular cc' to the ground line. The horizontal trace of the plane containing $s P$ and $A B$ is the line $A B$ itself.since it is in the frotind plane. The vertical trace passes through C^{\prime}, the trace of the line sc, Pr', which is contained in the plane;it must also pass
through A, therefore the vertical trace is the line Ac'. Hence $A C^{\prime}$ is the perspective of $A B$. 48. PERSPECTIVE OF A POINT NOT IN THE GROUND PLANE. The construction given in $\oint 45$ does not change, when

Fig. 85 the point to be placed in perspective is not in the ground plane. A line is still drawn through the station sP,Fig. 55 and the point mon'. The vertical trace μ..
is the perspective of mm"
The horizontal racé "a of the visual ray is the perspective of the point mm' on the ground plane; hence it may be stated as a general rule, that the perspectives of a point on the fround and picture planes are the traces of the lirm joining the station to the point
49. PERSPECTIVE OF A LINE NOT IN THF (iROUND P Let $a b, a^{\prime} b^{\prime}$, Fig $U C$, be a line not in the ground.plene: to obtain its perspective a plane must be passed through the station. $s P$ and the line $a b, r^{\prime} b^{\prime} ;$ the ixtersection of this plane with the picture plane
that is the vertical trace of the plane, is the perspective of the line.

Through s P,
draw a parallel
sd, $\mathrm{P} a^{\prime}$ to $a b, a^{\prime} b^{\prime}$; both lines are con-

Fig. 88
tained in the plane
to be drawn, therefore the traces of the plane are the lines $a c, d^{\prime} b^{\prime}$ joining the traces of same denomination of the parallels; and $d i b$ ', the vertical trace of the plane,is the perspective of $a \bar{b}, a^{\prime} b^{\prime \prime}$.

Let us now consider another line, of, éf parallel to ro, $x^{\prime} b^{\prime}$; the plane passing through ef, eff and the station, $s P$,must agaln contain the parallel sa, $P A^{\prime}$, through the station; therefore the vertical trace of the plane, which is the perspective of of "ef; is the line f'd joining the vertical traces of the two parallels. Hence the porspective of any line parallel to $a b, a^{\prime} b^{\prime}$ will pass through the point a^{\prime}. This result could be foreseen, because when a system of parallels
has to be placed in perspective, all thé planes serving to project them on the "picture plane have a common line of intersection, parallel to the general direction of the system and passing through the station. Its trace on the picture plane must therefore be the Common point of intersection of the perspectives. This point is called the "Vanishing point" of the parallei lines, becaus it represents the parts of the lines which are at infinity; the perspective ends or vanishes at that point.

Thê horizontal traces of the planes áre the perspectives of the parallel lines or the ground plane. Like the perspectives of the pioture plane. they all meet in a common point, which is the horizontal. trace of the parallel line through the station: it is the vanishing point of the perspectives of the ground plane. Therefore it is soen that when a plane is drawn through the station and a line in spady whe traces of the plane on the picture and ground planes are the perspectives of the line on those planes. 50. POSITIONS OF THE VANISHING POINT. A horizontal line has its vanishing paint on the horizon line ?
because the parallel drawn through the station, being horizontal, is all contained in the horizon plane and has ite vertical trace on the horizon line.

Perpendiculare to the picture plane being parallel to the distance line have for vanishing point tha fortical trace of the distance line which is the principal point of the perspective.

The vanishing points of horizontal lines making an angle of 45° with the distance line are called "distance points" (D', Fig. 67): their distance from the principal point is equal to the distance line, because a horizóntal line inclined at 45° with $S P$, forms, an isosceles triangle $S P D$ in which $S P=P D$.

Lines in the principal
plane have their vanishing
 point on the principal line، Two of these lines form angles of 45° with the distance line. Pig. 87 one above, and the other below the horizon. Their vanishing points are known as
"upper and lower distance points"; they are also at the same diatance from the principal point as the

Lines parallel to the picture plane have no vanishing point. It will be shown later on that their perspectives are parallel to the lines themselves and

$\$$

 pass a plane TVZ parallel to traces of all the lines drawf through the station parallel to QRMifit is therefore the locus of "the van- Fig. 88
a

\int ishing points of parallels to the plane QRM. This trace $V Z$ will be called the "vanishing line" of the plane ORM or of any other plane parallel to it (l).
(1) The term "vanishing line" is usually applied to the perspectives of parallel lines:admitting that the expression "yanishing point" is a proper one, the line VZ cannot be called otherwise than "vanishing line". The term is used here with that acceptation only.

The horizontal trace VT is in lyke manner the vanishing line of the perspectives on the ground plane.
52. LINES OR FIGURES IN FRONT PLANES. The perspective of a straight line contained in a front plane is another straight line parallel to the first one. For the plane containing the station and the given line being cut by two parallel planes, the picture and front planes, the intersections are parallel lines. But these intersections are the line itself and its perspective, therefore the perspective is parallal to the given line.

pr rand of which the polygon of the front plane is the base and the perspective a section by a plane parallel "to the base. It is shown in Geometry that when a pyramid is cut by a plane parallel to the base, the section is a figure similar to the base. The front plane being parallel to the picture plane, the perspective must be similar to the original? figure.

It follows that a curve in the front plane is represented by a similar curve in perspective, because such a line can be assimilatéd to a polygon with a great number of sides.

When the front plane is beyond the picture plane,桼
as in Fig. 69, the perspective is smaller than the or-. iginal figure; it is larger when the front plane is between the station and the picture plane, but in either case it is an exact representation of the figure itself, on a different scale. This scale, or the proportion be ween the perspective and the original figure, is called the "scale of the front plane" it is the proportion of the distance line to the distrance between sit station and the front plane.

A straight fine parallel to the picture plane is spective by a line parallel to itself, therefore parallel lines which are also parallel.to the picture plane have parallel lines for perspectives and have no varishing point. The parallel to the given lines pasing through the station, hoing parallel to the picture plane has no trace or it.

Vertical jines are parallel to the picture plane and appegr in perspective as parallels to the principal line.
ortal innes parallel to the picture plane. fare ind ${ }^{3}$ rspective paralini to the horizon line. 53. MFASURING LINF:S AND MEASURING POINTS. Let PP: Fig. 70, be the picture plane, S the station and $A B a$

point is anothor one.
Through V,draw VM equal to VS and through A the line $A D$ parallel to VM. Take a point C of $A B$ and join CS, the intersection γ with VA is the perspective of C. Join $M \gamma$ producefto its intersection C_{4} with $A D$.

VS and $A B$ being parallel to each other, the triangles $V \gamma S$ and $A \gamma C$ give the" proportion:

$$
\begin{equation*}
\frac{V S}{A C}=\frac{V \gamma}{A \gamma} \tag{1}
\end{equation*}
$$

The triangles $V M \gamma$ and $A C \gamma$ are also similar, $Y M$ being parallel to $A C$, therefore:

$$
\begin{equation*}
\frac{V \gamma}{A \gamma}=\frac{V M}{A C_{i}} \tag{2}
\end{equation*}
$$

Hence from (1) and (2):

$$
\frac{V S}{A C}=\frac{V M}{A C}
$$

But by construction

$$
V M=V S
$$

therefore

$$
A C=A C_{1}
$$

The line $A C$, represented in perspective at $A \gamma$, is equal to the line $A C$,

Fig.71 shows the picture plane with the same

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

90
PERSPECTIVE
letters as Pig.70. The part of the line seen in perspective at $A \gamma$ is equal to $A C$. On AC, take another point $D, j o i n$ to M, and call δ the intersection with $V A$. The line seen in A δ is equal to $A D$, therefore the part seen in $\gamma \delta$ is equal to $G D$.
The line $A D$ is called
the "measuring line" of AV,
because it serves to measure
the length of the line in
portion of its perspective
AV; mas the "measuring

VM was not drawn in any particular direction, therefore the direction of the measuring line, parallel to VK, is indeterminate. It is usual to make it parallel to the horizon line.

The position of the measuring point depends only on the vanishing point, therefore the same measuring point may serve for all lines parallel to tine same direction.

The same measuring linfowill serve for all lines
having their vertical traces on it. Should the line VM be drawn parallel to the vertical trace of a plane, this trace would be measuring line for all lines contained in the plane.

If the measuring line is taken parallel to the horizon, the measuring point of any horizontal line is on the horizon line, since the vanishing point is on that line. All lines in the same horizontal plane have then for measuring line the vertical trace of the plane, and lines in the ground plane have the ground line.

There is no measuring line or point for lines in a front plane, because they have no vertical trace or vanishing point; the scale of the front plane has to be employed when the length of such a line is wanted.

The distance points are measuring points for lines parallel to the distance line.
54. REDUCTION OF A PERSPECTIVE TO SCALR. Hitherto, it has been assumed that in the constructions, the real dimensions of the figures were employed. It would be quite impracticable to do so in the

92 PERSPECTIVE
generality of cases; the dimensions must be reduced to a certain scale in order not to exceed the limits of the paper.

A change in the position of the measuring line permits the use of reduced distances. Let V, M, and $A C$, Fig.72, be the vanishing and $+1$ measuring points and the measuring line of the perspective AV. The part of the line seen in $\beta \gamma$ is equal to BC. Through a point $a /$ of $A V$, draw the parallel ac to AC and let us us

Fig. 72

the proportion of the scale to be employed. Thus if Va be made the one thousandth part of VA, the distances will be obtained on a scale of $\frac{1}{1000}$. M is the measuring point and $a c$ the measuring line, of a line having V for vanishing point and a for trace on the picture plane; the new line is therefore parallel.to the line joining V to the station and to the original line seen in perspective, but its distance from the station has been reduced to the scale adopted.

Hence, to obtain the length reduced to a line seen in perspective, reduce to scale the distance of the line from the station, moving it parallel to itself in the plane containing the otation.

The same conclusion is arrived at in a more direct manner otherwise; A figure ABCD, Fig. 73 , forms with the visual rays
 joining it to the station, a pyramid, the intersection of which by the picture plane is the perspective $\alpha \beta \gamma \delta$.

Fig. 73
Let the pyramid be
cut by a plane parallel to the base $A B C D$: the intersection A, B, C, D, is similar to $A B C D$, the proportion being $\frac{S A}{S A}$. The lines A, B, B, C, \ldots. . . measured by means of their perspectives $\alpha, \beta, \beta \gamma \ldots$.... will therefore be the lines $A B, B C, \ldots .$. reduced to the scale $\frac{S A}{S A}$ The same demonstration applies to any system of figures, whenever every point of the system has been moved in a straight line towards the station, so as to reduce its distance from the station in the proportion of the scale given. Hence we deduce the following important rule:-

To lay off dimensions reduced to scale or to measure them from a perspective, assume that the system formed by the station and the original figures or objects, had been reduced to scale when the perspective was executed.
55. TO PLACE IN PERSPECTIVE A POJ̧NT OF THE GROUND PLANE .
lst. By means of the principal point and a distance point.

Let M, Fig. 74, be the point, XY the ground line, P and D the principal and distance points, the picture
plane "being revolved upon the horizontal plane. Draw
MA'at an angle of 45° and
MB perpendicular to the
ground line. The perspec-
tive of AM is the line AD
joining the trace on the
princifal point is PB , therefore the perspective of M is at μ.

2nd. By means of the distance of the point from the ground line.

Draw MB perpendicular to $X Y$ and take $A B$ equal to MB. Join $A D$ and PB.

3rd. By means of the station and principal point.
Join the foot of the station S, Pig.75, to the point M. The line $s M$ is the horizontal trace of the vertical plane containing M and the station,which plane cuts the picture plane on a line AC perpendicular to $X Y$. From M draw the perpendicular MB to the ground line;it is represented in perspective

PERSPECTIVE

by PB, therefore μ the intersection of $A C$ and $P B$ is

Fig. 75

Fig. 78
the perspective of M. 4th. By means of the projection on the principal plane.

Revolve the principal plane around its trace $s p$, Fig. 78, upon the ground plane: the station will come in S_{1} on a perpendicular to $s p, s S_{1}$ being equal to the altitude of the station. Draw Mmi perpendicular to $s m^{\prime}$ and join $S_{1} m^{\prime}$: it is the projection on the principal plane of the visual ray from the station to the point M, and its intersection ω_{1} with $p Y$ is the projection of the perspective of M revolved upon the ground plane. Join $s M$ and at m erect a perpendicular $m \mu$ to the ground line: the perspective of M is on that perpendicular at a distance $m \mu$ equal to $p \mu$, .

When a great number of points have to be placed in perspective,this last method is very convenient. In practice the perspective is not constructed on the ground plan itself, as the operations would become confused: the plan and perspective are kept separate. Let ABCD, Pig.77, be the ground plan, $X_{z} Y_{2}$ the ground line, and $S_{2} p_{z}$ the trace of the principal plane. Join s_{z} to A, B, C, and D.

On the paper which is to serve for the perspective, draw the ground line $X Y$ and take a point p as indagection of the principal plane. Take on the edge of a piece of paper the disPig. 77 tances from p_{2} to α_{s}, β_{3}, γ_{3}, δ_{3}, and carry them on $X Y$ in $\alpha_{z}, \beta_{z}, \gamma_{z}, \delta_{z} ;$ at the last mentioned points erect perpendiculars to the ground line.

At another place draw a line S, B, to represent the intersection of the ground and principal planes:
place the station S, at its height \hbar above the ground plane, take s, y equal to the distance line and draw the trace of the picture plane, $p_{1} \beta_{1}$, perpendicular to s, B,

On the odge of a piece of paper, take the distances of A, B, C, D, from the ground line $X_{e} Y_{z}$ and carry them on $P_{1} B$. Join S, to A, B, C, D. Again take on the edge of a piece of paper the distances of $\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}$ from μ_{1} and "lay them on the perpendiculars $\alpha_{\varepsilon} \alpha, \beta_{2} \beta, \gamma_{2} \gamma, \delta_{\varepsilon} \delta$. This gives a $\beta \gamma \delta$ as the perspective of $A B C D$.
56. TO PLACE IN PERSPECTIVE A LINE OR FIGURE OF THE GROUND PLANE. A line of the ground plane may be placed in perspective by determining the perspectives of two of its points.

When the vanishing point. is known, only one ad ditional point is required to define the perspective.

With a figure composed of straight lines, the perspectives of the points of intersection are fixed and joined together by straight lines.

The perspective of a curve is found from the perspectives of a sufficient number of points or by tangents to the curve.
57. TO PLACE IN PERSPECTIVE A POINT OUTSIDE OF THE GROUND PLANE. When a point is not in the ground plane, the perspective of its horizontal projection is first found: the height of the paint above or below the ground plane is hext reduced to the scone of the front plane and laid on the vertical of the perapsat ive previously found

Let $\min _{0}$. Fig, 78, be the projection of sthe point on the ground plane and B the perspective of m, obtained as in 8 55. From m let fall the perpendicular $m A$ on $X Y$ and take Am'equal to the height of the point. Join m^{\prime} to the principal point, P; Pm' is the perspective of a perpendicular to the picture $p l a n e$ from M, therefore the perspective of M must be on $\mathrm{P} m^{\prime}$. But the given point M is on the ver-. tical line passing through m whose perspective is the perpendicular $B \mu$ to the ground line, therefore the perspective of the point M is at the intersection
μ of the two lines.
Comparing Fig. 78 to Pif. 65, 148 , it will be seen that the-construction is precisely the same, although made on different principles.
58. TO PLACE IN PERSPECTIVE A LINE OUTSIDE OP THR GROUND PLANE. When a line is in a horizontal plane, that plene may be taken temporarily as ground plane and ohanged when the perspective has been obtained.

If in any other plane, the perspective may be found by means of the vanishing point and horizontal trace. The latter is placed in perspective as explained in $\$ 55$.and joined to the vahishing point.

For lines in front planes, one point of the ling is placed in perspective and through it, a parallel to the line is drawn.
59. THE DISTANÇE LINE'IS AN AXIS OF' SYMMETRY OF THE PERSPECTIVE. A perspective is symmetrical with reference to the distance line, all points of the picture plane at the same distance from the principal point having the same goometrical properties. Therefore any plane perpendicular to the picture plane may be taken as ground plane, or any line through the
principal point as norizon line. So wnon figures are contained in a plane perpendicular to the picture plarie the ir perspectives can be obtained by taking the plane of the figures for ground plane' and its vertjcal trace for ground line.
80. GIVEN THE HEIGHTS OF TWO POINTS AND THEIR PERSPEĆTIVES, TO PIND THR VANISHING POINT AND TRACE ON PICTURE PLANE OF THE LİNE JOINING THE GIVEN POINTS. Lét 'HH' and P,fig, $79, b$ be horizon line and principal point, x and β two points of the perspective. Draw V. EF parallel to the horizon lịne iat a distance equal to A line at distance equal to trace of the horizontal plane containing the point of space oorresponding to α. Fig. 78

The perspective of the - perpendicular to the pictưre plane passing, through α is Pa :its vertical trace is C. Draw $C D$ perpendic -- ular to the horizon line and equal to the height of β above the plane of α, D is a point of the picture plane at the same height as β, and $P D$ is the
perspective of the porpendicular to the pioture plane passing through D^{\prime}; $P D$ is in the same vertical plane as PC and if produced will meet the vertical of α seen in perspective at $\alpha \dot{B}$. The point of intersection A is at the game height as D and β, therefore $A \beta$ is a horizontal line and its vanishing point is on the horizon line at G. But $A \beta$ and $\alpha \beta$ are in the same vertical plane having for vertical trace the perpendicular GV to the horizon line, therefore the vanishing point of $\alpha \beta$ is at its intersection V with GV.

To find the trace, draw through D the parallel $D L$ to the horizon line:it is the trace on the picture plane of the horizontal plane containing AG, and the trace of AG is at its intersection L with DL. But AG and αV being in the same vertical plane, the trace of αV is in M, on the perpendicular $L M$ to the horizon line. ical plane as $A G$ and $a V$: consequently its trace is K, on $L M$ producod. But αG is in the horizontal plane whose trace is $E F$, therefore K is the intersection of αG and $E T$. 61. TO FIND THR INTBRSECTIONS OF A VERTICAL LINE BY A SBRIES OF HORIZONTAL PLANES Let HH' and FG.Fig. 80, be the horizon and principal lines of a perspective, μ a point of the perspective $\eta \theta$ of a vertical line, of which the altitude is known. Take PM equal to this altitude:M will be the point of the picture plane

VE to $\eta \theta$; these lines are the perspectives of horizontal lines parallel to $\mu \mathrm{M}$ and contained in the horizontal planes. Their intersections $\alpha, \dot{\beta}, \gamma, \delta, \varepsilon$, with the perspective of the vertical are the points required.

This construction is employed for determining the intersections of a vertical line by contour planes: the equidistance is marked on the edge of a piece of paper which is pinned along GF so that P corresponds
to the altitude of the station. A straight edge is placed on μ and the point of same height of the equidistance scale, then a pin is planted at V and the straight edge moved through each of the points AB..... B.always keeping it in contact with the pin. Another solution consists in projecting the vertical line and its perspective on the principal plane

Fig. 81

Let SP,Fig 81 be the
digtance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizonLet SP, Fig 81 be the
distance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizonLet SP, Fig 81 be the
distance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizonLet SP, Fig 81 be the
distance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizonLet SP, Fig 81 be the
distance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizonLet SP, Fig 81 be the
distance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizonLet SP, Fig 81 be the
distance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizonLet SP, Fig 81 be the
distance line, $\eta \theta$ the
principal line and FG the
intersection of the front
plane containing the vert-
ical line, by the principal
plane. Mark on PG the in-
tersections of the horizon(1) tal planes: join to S and produce to $\eta \theta$ the intersections are the projections on the principal plane of the points required.

In practice, the construction is made on the perspective: $\eta \theta$ Fig. 82 , being the perspective of the vertical line, NM is taken on the horizon line equal to the distance line and $N Q$ equal to the distance of the vertical line from the
"picture" plane. At Q a per-
pendicular is erected to $H H^{\prime}$
and the equidistance scale
pinned alongside, so that Q
shall correspond to the
altitude of the station.
The construction is complet.
ed as in Fig. 81.

Contour planes being equidistant, the divisions $\alpha\{, \beta \gamma \ldots \ldots .$. of the perspective are equal:it would therefore be sufficient to find the length of one division and to carry it on the perspective of the vertical line.
62. TO MARK ON THE PERSPRCTIVE OF ANY LINE OR CURVE CONTAINED IN A VERTICAL PLANE, THE INTERSECTIONS BY A SERIES OF HORIZONTAL PLANES. Let $\mu \delta$, Pig. 83, be the perspective of a line contained in a vertical plane: that plane contains the vertical seen in perspective at δm, perpendicular to the horizon line. Mark the points of division A, B, C of δM by the
horizontal planes, (81) and join μ to the point of the perspective δM of same altitude. This being the perspective of a horizontal line,its vanishing point
is V. Join V to A, B, C : these lines are parallel to $\dot{M} \mu$, therefore they are in the plane $\mu \mathrm{M} \delta$ and will interFi.g 83 sect the line seen in perspective at $\mu \delta$, but they are also oontained in the. horizontal planes, hence α, β, γ, are the points required.

Instead of dividing first the vertical line δm the trace on the picture plane and vanishing point of (μ may be determined as in 80 and the points of intersection marked at once on the line $\mu \delta$ by placing the equidistance scale on the perpendicular to the horizon line passing through the vertical trace and foining the points of division to the vanishing point.

Whon the horizontal projection of the line is known, the vanishing point and trace can be obtained at once. Let α, β, Fig. 84, be the perspective of the line, $a b$ its horizontal proiection, H^{\prime} the horizon and XY the ground line. The

Fig. 84 intersection of the ground plane by the vertical plane containing the line seen at $\alpha \beta$ is $a b$; the trace on the picture plane of this intersection is at E, where $a b$ produced meets XY. Through the foot of the station s, draw sv parallel to $a b$ and $v V$ perpendicular to $X Y$ meeting the horizon line in V. V is the vanishing point of parallels to $a b$. But the intersections of the horizontal planes by the plane of $\alpha \beta$ being parallel to a, b, V is their vanishing point; and since they are all in the same vertical plane, their traces are on the vertical $E D$ of the picture plane. Hence the equidistance scale is to be placed along ED, taking care that the point If of the scale corresponds to the altitude of the ground plane; the divisions of the scale are

6'3. TO MARK ON THE PERSPECTIVE THE INTERSECTIONS OF A, PLANE, LINE OR CURVE BY A SERIES OF HORIZONTAL PLANES, The intersections of a plane by a series of horizontal planes are horizontal lines parallel to the trace on the ground plane, of the plane intersected; the *anishing point of these lines is the point of intersection of the horizon line by a parallel to this trace, drawn through the station.

Let $\alpha /$, Fig.35, be the perspective of a line or curve in the plane POP', $X Y$ the ground line and HH^{\prime} the horizon line. Through the foot of the station

	s drav svoparallel to OP
	and erect the perpendicular
	vV to the ground line
$x-1 r \quad r^{1 \alpha} \quad r$	meeting the horizon line in
	V : V is the vanishing point
= in ?	of horizontal lines in the
	plane POP', and consequently,
Fig. 85	of the intersections of that

innes on the picture plane are on $O P^{\prime}$ and the vertical distance between them is that of the horizontal planes:therefore place at 0 , on a perpendicular to the ground line, the distances of the horizontal planes or the scale of equidistance, draw parallels to the ground line through the divisions A, B, C of the scale and join $A^{\prime}, B^{\prime}, C$ ', to the vanishing point. These lines are the perspectives of the intersections of the plan POP' by the horizontal planes.
64. INTERSECTIONS OF A PRISM, PYRAMID OR CONIC SURPACE BY A SERIES OF HORIZONTAL PLANES. The intersections of a prism or pyramid by a series of horizontal planes can be drawn on the perspective by determining the intersections of the edges of the prism or pyramid by the planes and joining the corresponding points: by straight lines

A similar process can be applied to a conic surface by using generatrices instead of edges, and also by employing tangents to the intersections, paraliel to the tangents drawn to the curve of the ground plane forming the base of the cone.
65. TO PLACE A POINT OF THB GROUND PLANE BY MEANS OF

ITS PERSPECTIVE. To restore a figure by means of its perspective is the converse of perspective. Let us consider first the case of a point of the ground plane:its place can be found by inverting any of the constructions given in $\oint 55$.

For instance, in Fig. 74 , the perspective μ of the point is joined to the principal and distance points, P and D. At B a perpendicular BM is erected to the ground line and at A a line AM is drawn at an angle of 45° with the ground line.M is the point of the ground plane.

In Fig. 75, join $P \mu$ and draw μ and BM perpendicular to the ground line. Join $S A$ and produce to the intersection with $B M$.

In Pig. 78, pre is taken equal to the distance μm of the perspective μ from the ground line and μ_{1} is joined to the station S, revolved on the ground plane. The foot of the station, $\varepsilon, 18$ foined to the foot of the perpendicular" μm to the ground line and the point M is at the intersection of sm produced, by the parallel to the ground line through mi.'

When a number of points have to be placed, the constructions are inade as in Fig .77 , but in inverse order. The perspective $\alpha \beta \gamma \delta$ is given: the distances $p \alpha_{2}, p \beta_{2}, \ldots \ldots . .$. are carried on $X_{2} Y_{2}: \quad \alpha \alpha_{2}, \beta \beta_{2} \ldots$. on prof. Then s_{2} is joined to $\alpha_{3} \beta, \ldots .$. and on these * lines produced the points A, B, C, D, are so placed that their distances from the ground line are equal to $\mu_{1} \mathrm{~A}_{1}, \quad p_{1} \mathrm{~B}_{1}, \quad p_{1} \mathrm{C}_{1}, \quad \mu_{1} \mathrm{D}_{1}$.
86. TO PILACE A LINE ON THE GROUND PLANE BY MRANS OF ITS PERSPFCIIVE The trace of a lino on the picture plane is the point where its perspective intersects the ground line: the point is common to the perspeclive and to the line $(\beta$, Fig. 88)

The vanishing point, V, is the intersection of the perspective by the horizon line;it gives the direction of the line of the ground plane.
 pendicular. Vo to $X Y$ and join $r s$. Through β, draw Ba parallel to suv; it is required line.

Wide a front line a
Fig. 86 point of the line is fixed
by one oi the methods of $\$ 65$ and a parallel to the ground line drawn through the point.
67. TO' URAW A PIGURB ON THE GROUND PLANE BY MEANS OF ITS PERSPECTIVE. A figure of the ground plane may be constructed by means of its porspective as described in 65 , each of the summits of the figure being determinod separately.

It may also be constructed by determining each of the lines forming the figure, as in 988

An irregular figure is onclosed between straight lines and rrawn at sight.

A corivenient method is that known as the method of squares" The ground plane is divided into squares by lines parallel and perpendicular to the ground line;the network of squares is projected on the perspective and the figure drawn at sight in the corresponding squares.

To construct the perspective of the squares, the distances of the parallel lines are marked on the. ground line in $A, B, C, D, E, P i g .87$, the perspectives of the perpendiculars to the ground line are obtained by joining these points to the principal point P. The principal plane is next plotted separately, $\circ L S K$ being its trace on the

Groused Perm

Perspective

Fig. 88
ground plane, S the station and $p P^{\prime}$ the trace of the picture plane. Mark the intersections $F_{1} ; G_{1}, H_{1}, K_{\text {, }}$ of $s K_{,}$ by, the lines parallel to the ground line, join to S, and A carry, to $P p$ the distances of μ_{1} from $\mathrm{F}_{2}, \mathrm{G}_{2}, \mathrm{H}_{2} \mathrm{OR}_{2}$: through the points so obtaine, F, G, H, K, draw parallely to the ground line, which will complete the perspoctive of the squares. It is not necessary that the sides of the squares be parallel or perpendicular B to the ground line. Any other direction may be adopted, as, for instance, north and south, and east and west in the case
of tepheraphtcal perspoctives

Tho varishing, points V and $V, F i f, 88$, of these
lines aro found as usual by drawing throuph the 3 tation parallels to their directions, to the intersection with the horizon lino.

The points of intersection with the ground lino of the horth and south lines, which will be supposed to vanish at Fiare taken from the ground plan, carriod to the ground line of the perspective, in A, B, C, D, E, F, and joined to Vithis gives thequerspective of one set of parallel lines. The othor set is obtained by a similar process, carrying the points $G, H_{,}, K_{1}, L_{1}$, from the ground plan to the perspective and joining to the "anishing point V,
 from the perspective to the ground plan. 88. VANISG The direction of a point of
 join the foot of the station to the projection of the perspective on the ground line. Were the distance of the point determined, it could be, located at once.

INVERSZ PROBLWM OF PBRSPECTIVR

"This is done by means of the "vanishing acale".
Fif. 88, represents the principal plane; P\% and
 A S the
the picture and ground planes and S the station at a 1 igight M above the ground plane. On ptand on ach aide of μ, mark equal distances, 100,200, otc: they represent the intersections of μA by parallels to the ground line. Join these points to S : the perspectives of the above parallels. will be parallels to the rround line passing through the points of division of $\mu \mathrm{P}$. Suppose now that the distance of a point of the perspective from the groqund line found equal to prre: then the point of the perspective is on a parallel to the ground line

Fig. 89
of the perspective is on a
parallel to the ground line
passing through m. But this
line is the perspective of
a parallel to the ground
line passing through m, there-
fore the point to be found,
being on that parallel, is
at the distance $p M$ from the ground line, M and m corresponding to the same divisions of the scales H 2

2

0

$p \mathrm{P}$ and $\rho \mathrm{A}$, the distance of the point is obtained at once by reading the division of ρA corresponding to $p m$.

The scale constructed as above on $p P$ is called a vanishing scale; when the distance line is constant, the scale is the same for all planes at the same altitude below the station.
69. USE OF THE MEASURING LINE. Sometimes the greater part of an irregular figure may be enclosed between two parallel lines,as in Figi90. A point V is taken on the horizon line such that two lines drâwn from it will enclose the figure $a \beta \gamma \delta \varepsilon$ as
well as possible. These
lines are the perspectives of two parallel lines in the ground plane and their vanishing point is V. Draw these parallels on the ground plan in $F F_{1}$ and G, D_{1} and place on the perspec-tive the measuring point by taking VM equal to the distance of V from the station. corresponding to various points of the irregular figure and transfer them in A, B, C, D, E, , to the ground plan. Draw the intermediate parts of the figure at sight.

Should two parallel lines prove insufficient, the number can be increased.

The method of squares, the vanishing scale and the measuring line can be employed for finding the perspective from the ground plan. The operations are the converse of the preoeding ones and require no further explanation.
70. PRECISION OF THE METHOD. Let $S s$ and M,Fig. 91, represent the vertical plane passing through the station and a point of the ground plane, $S m$ and μA, the traces of the horizon and picture planes and μ the perspective of M. Draw $M m$ perpendicular to Sm : it is the height, h, of the atation above the ground plane.

The similar triangles $S A \mu$ and $S m M$ give:

$$
\frac{S m}{m M}=\frac{S A}{A \mu}
$$

or

$$
\begin{equation*}
\frac{y}{h}=\frac{l}{x} \tag{1}
\end{equation*}
$$

To find the effect on the distance y from the station to M of an error $d x$ in the perspective, the equation (1) must be differentiated, considering x and Y as variables; this gives:

$$
\begin{equation*}
d y=-\frac{y}{x} d x=-\frac{y^{2}}{n l} d x \tag{2}
\end{equation*}
$$

So the error in the position of M caused by an error in the: perspective increases as the square of the distance:therefore the
method must not be employed
for points or figares at too Fig. 91
great a distance from the
station.
The error decreases as the height of the station increases: thus if the height be doubled, the error will be reduced to one half. Hence perspectives intended for the reproduction of figures in the ground plane should be taken from as great a hoight as posaible.

The error decreases also as l increases, or as the size of the perspective increases. 71. TO DETERMINE FROM THE PERSPECTIVE,THE PROJECTIONS OF A POINT NOT IN THE GROUND PLANE,BUT OF WHICH THE HEIGHT IS KNOWN. The perspective of a point is not sufficient to determine its position:other data must be furnished, such as the traces of a plane containing it,its distance,or its height above the ground plane.

μ	
R :	$\because!!\prime T$
X -	- . -l
	m
s	
Fig. 92	

> If the height be known, draw a parallel RT, fig. 92 , to the ground line representing the trace on the picture plane of the horizontal plane containing the point. The projections of the visual ray joining the station to the point are sm, $\mathrm{P} \mu(\$ 47$):it pierces the horizontal plane RT in m, m^{\prime}, and as the point to be found is in that plane and on the line $s m, P \mu$, it is their point of intersection, mm'.

The construction is not always possible. For instance RT may pass through P:this means that the point h 2
is in the horizon plane, in whioh case it cannot be looated by means of its perspective.
$P \mu$ may coincide, or very nearly,with $P s$, and the construction become impossible or uncertain. The visual ray joining the station to the point is then projected on the principal and ground planes instead of of the picture and ground planes: the different steps are precisely the same in both methods.
72. TO CONSTRUCT FROM ITS PERSPECTIVE A FIGURE IN ANY HORIZONTAL PLANE. The methods given in $\$ 65,66$, and 67 apply to figures in any horizontal plane,by using the planes of the figures as ground planes;all that is required being to shift the ground line on the perspective to its proper position.
73. TO FIND THE TRACES AND VANISHING POINT OF A LINE GIVEN BY ITS HORIZONTAL PROJECTION AND PERSPECTIVE. Before proceeding to consider figures in various planes, it is neceseary to show how the plane of a figure and the traces of straight lines can be determined.

Let α / β and $a b$, Fig.93, represent the perspective and horizontal projeotion of a line. At b erect
a perpendicular to the ground line: the triace of the line on the picture plane must be on that perpendicular and also on $\alpha \beta$, therefore it is at their intersection 3 . The vanishing point
Fig. 93
is the trace of a parallel to the line, drawn through the station: the horizontal projection of this parallel is $s v$, drawn through the foot of the station parallel to $a b$ and its trace is on the perpendicular $v V$ to the ground line. But this trace is the vanishing point of $\alpha \beta$, therefore it is at the intersection of $v V$ and $a \beta$ produced.

The vertical projection passes through the trace V and the principal point P;producing it to the intersection with $X Y$ and ereating the perpendicular V, V, to $X Y$, the trace on the ground plane is found at V, .

The line-joining V, to a is the perspective on the ground plane of the given line (88) whose trace is the intersection of αV and $a b$.

The trace on the ground plane may also be found by revolving the projecting plane of ab around its vertical trace $3, \beta$, Fig. 94 , upon the picture plane. Draw the horizon line $\mathrm{P} d$: the trace of the given line on thie horizon plane is seen in γ on the perspective: its horizontal projection is at the intersection C of ' $a b$ by the line joining the foot of the station to the foot f of the perpendicular γf to $X Y$. When the projecting plane revolves, c describes the arc of circle $c c_{1}$ with \bar{b} as a center: the point of the given line corresponding to γ maves in the horizon plane, therefore it will come in γ_{1} on the horizon line at the intersection wioh the perpendicular c, γ, to $X Y$. The revolved line is $\beta \alpha, \alpha$ and - the revolved trace on the ground plane is a_{1} :Revoiving a, back to $a b$, the trace is obtained in c.

The angle formed in α_{1} by the revolved line and $X Y$ is the angle of the line with the ground plane.

A third method consists in determining from the perspective the heights of two points of the given line, as will be explained later on. " /

The projecting plane of the line is revolved on the ground plane around the hor-

Fig. 95
izontal projection rab, Fig. 95. The points A and B fall in A, and B, the perpendiculars $\subset A$, and $b B$, to crl being the heights of A and B above the ground plane. A, B, is the revolved line and c its trace on the ground plane. The revolved trace on the picture plane is at the intersection of A, B produced with the perpendicular $d D$, to cal: it is revolved back to the picture plane by erecting a perpendicular $d r l^{\prime}$ to $X Y$ and describing an arc of circle with d as center and $d D$ as radius. 74. GIVEN THE SLOPE OF A LINE AND THE HORIZONTAL PROJECTION OF ONE OF ITS POINTS, TO FIND THE HORIZONTAL PROJBCTION AND TRACES OF THE LINE. Let a, Fig. 98, be the horizontal profection of a point of the
line seen in perspective in $\alpha \beta, \cdots \mathcal{S}$ the foot of the station and $X Y$ the ground line. Join sa., produce
to m and erect the perpendicular moc to $X Y: \alpha$ and a are the perspective and projection of the same point, A, of the given line. Draw the horizon Fig. 96 line HH': δ is the perspective of the trace of the given line on the horizon plane. Revolve the projecting plane of the line around the vertical of a until parallel to the vertical plane:the point A of the given line, being on the vertical of a, does not move, and its perspective remains in α. The perspeotive δ of the trace on the horizon plane moves on the horizon line:when the projecting plane is parallel to the vertical plane, the perspective of the revolved line is parallel to the line itself and may be drawn in $\alpha \delta_{1}$, since the angle $a \delta_{1} H$ is given. The trace of the projecting plane on the ground plane
has come in ad. parallel to the ground line. The point d_{1} of the horizontal projection corresponding to δ_{1} of the revolved perspective is obtained by letting fall $\delta, 0$ perpendicular to $X Y$ and joining $s 0$. Revolving back the projecting plane to its original position, δ comes in δ and the corresponding point of the horizontal projection must be on the line $s n$, joining the foot of the station to the intersection n. with the ground line of a perpendicular from δ. But this corresponding point is the new position of d_{1}, and d_{1} moves on an arc circle with a as center, therefore d_{1} comes in d and d_{a} is the harizontal projection of the given line.

The vertical trace is found at c^{\prime} by the usual construction: the vertical projection and horizontal trace may be determined as in $\$ 75$ or the triangle formed by $c c^{\prime}, c b$ and the given line may be revolved around $c C^{\prime}$ on the vertical plane. The axis $c c^{\prime}$ does not move, $c l$ falls on the ground line and the hypothenuse $c^{\prime} l_{1}$, becomes parallel to $\alpha \delta$. Revolving the triangle back to its original position, B_{1} comes in B, which is the trace, on the ground plane,
of the given line. Having now the two traces, the "t ... vertical projection can be drawn by the usual construction.
75. TO FIND THE TRACES OF THE PLANE CONTAINING THREF, GIVEN POINTS OR ${ }^{\text {GTWO GIVEN LINES. Whether two lines }}$ or three points be given, the problem consisting in passing a plane through them is the same and consists.". in finding the traces of the given lines or of those joining the given points. The traces of same denomination are joined by straight lines which of the traces of the required plane.

The traces of the

Fig. 97
lines are obtained by any of the processes of 860,73 or 74 .

In Fig. 97, the heights of the three points A, B and C are supposed to be known
and the traces are determined by revolving the projecting planes on the ground plane around the horizontal projections $a b$ and $b c:(\$ 73)$. QOR is

the required plane.

Sometimes the traces of the plane are required on the picture and principal plane. Revolve the principal plane around its irace R p, Fig. 98 , on the picture plane, the front part of the principal plane turning to the left. The station will come in S .

Let $\alpha, \beta, \gamma, \cdots$ be the perspectives of three points, of which the projections on the ground plane are given, $a_{\text {a }}$ and c the traces on the picture and principal planes of the horizontal projection corresponding t.) $\alpha, \beta ; d$ and b those corresponding to $\alpha \gamma$.

Produce $\alpha \beta$ to the intersection f with the principal line; f is the perspective of the trace on the principal plane, of the line of space corresponding to the perspective $\alpha \beta$, therefore the trace on the revolved prineipal plane is on $S f$. But the
trace is on the vertical of c, therefore it is at c^{\prime}. The trace of the other line is found in a simiAter manner at d^{\prime} and the trace of the plane containing the two lines is $c^{\prime} d^{\prime}$.

The traces of the two lines on the picture plane are obtained in a^{\prime} and b^{\prime} as in 873 and joined to give the trace of their plane on the picture plane. The result is the plane QRT.
78. GIVEN THE LINB OF GREATEST SLOPB, TO PIND THE TRACES OF THE PLANE. The line of greatest slope of a plane is perpendicular to the trace on the ground plane. Hence to draw the traces of the plane, find those of the line and through the ground plane trace a,

齐 s

Fig. 99

Fig.99,draw aQ perpendicular to the horizontal projection, $a b$, of the line: it is the ground plane trace of the requirad plane. The trace of the plane on the picture plane is obtained by joining Q to the vertical trace, j, of the line.

In Fif. 99 , the line of greatest slope is supposed . given by its horizontal projeťtion, $a b$, and its perspective 1$\}$: The tracēs are found by the method in $\$ 73$. Should the line be known by the hoikhts and perspectives of two of its points or by the heights and horizontal projections, or by its slope, the traces could be determined by the methods given in 500,73 and 74.
77. CHANGE OF GROUND PLANE. A change in the ground. plane does not produce any change in the points or lines of the ground plan: the traces of plaries are displaced but remain parallel to the original trace. Fig. 100 shows the ground line moved from XY to

Fig. 100
X, Y, ; the left hand
figure contains
the projections
of a point, of a
line, and the
traces of a plane before the change of ground plane.

In the first place, it may be observed that there
$\%$
*

致安: $=0$
(n)
θ
$r x$
o
$=$
is no change in the vertical plane, beyond moving the ground line from $X Y$ to X, Y,

In the ground plane, the projections of the point, m, and of the line, rb, remain the same, but the trace of the line is now in c instead of b. The new trace is obtained by producirg the vertical projection, $a^{\prime} b^{\prime}$, across the old ground line, $X Y$, to the new one, erecting the perpendicular $c^{\prime} c$ and producing col to its intersection with $c c^{\prime}$.

The trace of the plane has been noved from $0 T$ to $0, T$, .To find the new one, produce the vertical trace O^{\prime} R across the old ground line $X Y$ to the new one, X, Y, and through the point of intersection, 0 , draw $0, T$ parallel to OT.
78. TO FIND THE HGRIZONTAL PROJECTION OF A FIGURE PROM ITS PERSPECTIVE WHEN THE FIGURE IS CONTAINED IN A PLANF PERPENDICULAR TO THE PRINCIPAL PLANE, Take for vertical plane of projection the principal plane and let QZ Fig. 101. be the trace of the plane containing the figure. Take for ground plane the horizontal plane passing through the point of intersection of QZ with the trace $Q R$ of the picture plane,XY will
be the ground line. Let S be the station, s the foot of the station, n, n^{\prime}, a point or the given figure and m, n^{\prime}, its perspective. The given plane, being perpendiouler to the principal plane, the vertical projection of any point of the

Fig. 102 former is on the trace QZ. The picture plane, RQT,is perpendicular to both planes of projection, therefore the projections of any point of the picture plane are on its traces.

Produce $Q 2$ to the intersection A with the vertical of the siation and take $S S$, equat to $s A, S$, being above or below S according as A is beldw or above s. Join S, m^{\prime} and produce to the intersection b with the ground line: join $S n^{\prime}$ and N'b. The Line $S n^{\prime}$ passes through m^{\prime}, since m^{\prime} is the perspective of n^{\prime}.

The similar triangles $n^{\prime} m^{\prime} Q$, n'SA give:-

$$
\frac{Q m^{\prime}}{S A}=\frac{n^{\prime} Q}{n^{\prime} \mathrm{A}}
$$

From the triangles $A Q m^{\prime}$, os S, we have:

$$
\frac{Q W}{s S}=\frac{6 Q}{\delta S}
$$

But

$$
\mathrm{SA}=s \mathrm{~S},
$$

Tnerefore:

$$
\begin{aligned}
& \frac{n^{\prime} Q}{n^{\prime} \mathrm{A}}=\frac{b Q}{6 s} \\
& \frac{n^{\prime} \mathrm{Q}}{Q \mathrm{~A}}=\frac{6 Q}{s Q}
\end{aligned}
$$

Hence the triangles $n^{\prime} \not Q Q$, QSA are similar, as having one angle equal and the sides about it proportional, consequently $b n^{\prime}$ is parallel to $s A$ or perpendicular to $X Y$ and the point n is the trace on the ground plane of the visial ray $s n, S, b$. Were the eye placed in S_{1} the point of the ground plane which would be found to correspond to mwe of the perspective is the horizontal projection of the point of the plane $Q Z$. Should the new station S, be used in connection with the perspective of a figure in the plane Q Z, the result obtained, when constructing the corresponding figure of the ground plane would be the horizontal projection of the figure in the plane $Q \mathbb{Z}$. Therefore to obtain
 the horizontal projection of a figure in a plane per pendicular to the principal

Fig. 102 plane, take for ground line the
trace $X Y, F i g .102$, of the given plane on the picture plane, find the heieght of the station above the point of intersection of its vertical by the fiven plane (§ 75) use it as height of the new station and draw the horizon line H, H_{\prime}^{\prime} on the perspective at that height above the ground line. The figure constructed from the perspective by any of the methods of $\$ 65$, 68,67 will be the horizontal projection of the figure in space.

It has been shown that the perspective is the same as if the horizontal projection had been seen from the station S instead of observing the original figure (Fig, 101), from S, consequently, the precision * of the result $(\$ 70)$ is increased in the proportion of $\frac{s S_{\text {, }}}{s S}$ by the inclination of the plane of the figure. Were the plane falling instead of rising in front of the observer, $s S_{1}$ would be smaller than $s S$ and the precision would be decreased.

Hence a perspective taken for the purpose of constructing a figure in an inclined plane should always be taken in the diraction of the rising plane; thus a river at the bottom of a sloping valley should be taken looking up the valley. 79. TO FIND FROM ITS PFRSPFCTIVE THE HORIZONTAL PROJECTION OF A FIGURE IN A PLANE PERPENDICULAR TO THE PICTURE PLANE. The method of squares of 67 * can be applied to a figure in any inclined plane, by conoeiving vertical planes containing the sides of the squares. The intersections of these planes by the inclined plane form a series of parallelograms corresponding to the squares of the ground plane.

* Let QR, Fig. 103, be the trace on the picture plane of a plane perpendicular to it,XY the ground line, P the principal point, and $a b c a$ one of the squares of the ground plan. The projecting planes of $a b$ and
cd cut the trace $Q R$
in med n. Through
the station, S, draw a
parallel to the inter-
section of the pro-
jecting planos with
the plane QR:the hor-
izontal projection st

Fig. 103
is parallel to $a b$ and
cd; the vertical projection passes through P and is parallel to $Q R$, since all lines in the $p l a n e ~ Q R$ are projected vertically on QP. At t erect the perpendicular $t V$ to the ground Line:V is the vanishing point of the intersections of the projecting planes with the plane $Q R$ and the lines $V m$ and $V n$ are the perspectives of these intersections. The distance $m n^{\prime}$ can be carried on $Q R$ and as many parallels placed in-perspective as necessary.

The same operation is repeated for ad and $b c$, and the 'figure $\alpha \beta \gamma \gamma^{\prime}$ obtained. on the perapective corresponds to the square alicd.

Ancther process consists in constructing the figure in the inclined plane by one of the methods of $\{65.66,67$,using the pláne of the figure as ground plane (858).

Let $Q R$ Fig. 104 be the trace of the plane of the figure on the picture plane, HH^{\prime} the horizon line and P the principal point.

To construct the figure in the plane $Q R$, that
line is taken as ground line: the new horizon line is a parallel H, H^{\prime} to $Q R$ through the principal point.

The height of the station is the distance of these two lines, Pp, The line which
will appear as the projec-s
tion of the principal line on the constructed figure will be the perpendicular
to the picture plane at n_{1}.
On the real ground plane,
the distance between the two projections of the principal line will be equal to pp.

Having obtained the figure in the plane 0 , let us now take for ground plane the horizontal plane of p_{1}, the ground line being. $X Y$.

line as A is from $Q R$, but the distance of the projec.. ; tion, from s, ℓ is equal to m m multiplied by the cosine of the inclination ω of the plane $Q R$, for let a^{\prime}, Fig.l04, be, the vertical projection of A and the right angle triangle $p_{\text {, }}$ a'n gives:

$$
p_{1} n=p_{1} a^{\prime} r_{\text {as. }} \omega .
$$

Therefore if Am, Fig. lo5, be drawn parallel to $Q R$, am taken equal to Am cos. ω and the same operation repeated for B, C, and D, the resulting figure abod is the ground plan of $A B C D$.

The ground plan may be obtained in another way, for,join s, A :the intersection α with $Q R$ is the projection on $O R$ of the point of the perspective corresponding to A. Take $\dot{s}_{1} p^{\prime}$ equal to $s_{1} p_{1}$ sec. ω and through p^{\prime} draw Q, R parallel to $Q R$;join s, a. The simflar triangles $s, p, \alpha, s m A, g i v e:$

From the similar triangles $s, \mu^{\prime} \alpha_{n}, s, m e \mathrm{~A}$, we have:

$$
\frac{s_{1} p^{\prime}}{p^{2} x_{1}}=\frac{s_{1} m_{l}}{m_{11}} \quad-(2)
$$

Dividing (1 (by $i=2$), replacing. s, μ° and mu by s, μ_{1} sec. ω and $m A$ cos.c respectively, we 1 ind :

This means that if the perspective be moved in $Q_{R_{f}}$, the directions obtained from the perspective for the different points of the plane $Q R$ will be the directions of the horizontal projections of these points. Therefore to construct the horizontal projection of the figure seen in perspective, find the distances of the various points of the figure from the picture plane by means of a vanishing scale (\$68) made with Pp, Fig. I04, as height of the station and the real distance line. Then find the directions of the projections, using $Q R$ as ground line and a distance line increased in the proportion $\frac{1}{\cos \omega}$. The figure constructed with the above distances and directions will be the horizontal projection of the figure in the plane QR.
80. CHANGE OF GROUND PLANE, AND-DISTANCE LINE. Let A, Pig. 106, be a point of a figure in a plane perpendicular to the picture plane and β its perspective. Take the plane of the figure as ground plane and let $\Psi \mathcal{A}$, be the trace of the assumed principal plane. Revolve the principal plane around its trace on the
ground planc:the station will come in S, b and b^{\prime} are the projections of a and a^{\prime} the projection of A on the assumed principal
 plane. Move the perspective to $b_{1} V_{1}^{\prime}$ so that $s_{1} p^{\prime} \frac{\alpha p}{\cos \cdot \omega}$, ω being the angie of the assumed and real ground Fig. 106 planes;it has been shown that $S_{1} b_{1}$ is the direction of the projection a of A on the real ground plane supposed to be revolved around δ, β on the assumed ground plane. The visual ray, however, does not pierce the ground plane in a_{y}, its projection on the principal plane having been changed from $S b^{\prime}$ to $S b_{1}^{\prime}$ by the displacement of the perspective. But join $S p^{\prime}$ and take as new ground plane the plane passing through $c: s^{\prime} a_{\prime}^{\prime}$ will be the trace of the assumed principal plane on the netaground plane and α_{i}^{\prime} the projection of the trace of the visual ray on the last plane. Consequently the trace of the visual ray is at the intersection of S, W with the perpendicular drawn from α_{1}^{\prime} to s, a^{\prime}.

Similar triangles rive the following proportions:
or

$$
\frac{\mu^{\prime} e^{\prime}}{b^{\prime} b_{1}^{\prime}}=\frac{d r_{1}^{\prime}}{T_{1}^{\prime} b_{i}^{\prime}}
$$

and

$$
p^{\prime} r^{\prime}=d a_{1}^{\prime}
$$

$\mu^{\prime} a^{\prime}$ being equal to $d a_{\prime}^{\prime}$ the figure $\mu^{\prime} \prime c^{\prime}, a^{\prime}$ is a parallelogram and $a_{1}^{\prime} a^{\prime}$ is perpendicular to s, a^{\prime}, therefore the visual ray will pierce the new ground plane in, 'a.

Hence, if the perspective be moved from p, to μ^{\prime} and s'cx, taken as ground plane, the perspective viewed from the station will correspond on the assumed ground plane to the projection of the figure on the real ground plane:this projection can consequently be constructed, by the methods of $\$ 65,66,67$.

Fig. 106 gives the proportion:

$$
\frac{S s^{\prime}}{S s_{1}}=\frac{s^{\prime} c}{s_{1} \cdot p^{\prime}}=\cos \cdot u^{\prime}
$$

or

$$
S s^{\prime}=S s, \operatorname{Cos} \omega
$$

The heights $S s^{\prime}, S s$, of the station above the various ground planes being the same as the distance of the principal point from the corresponding ground lines, the few ground and distance lines can be found
as follows:
Let $Q R, F i g .107$ be the trace on the picture plane of the plane containing the fig-

楼
 ure. From the principal point P, let fall $\mathrm{P} p$, perpendicular to $Q R$ and draw $P p$ and $p \mu$ perpendicular and paraliel to the real horizon line HH^{\prime}. T'ake Pd equal Fig. 107 to $P p$ and draw $Z R$, parallel to QR:it is the ground line to be used in the construction, because

$$
\mathrm{P} d=\mathrm{P} p, \mathrm{Cos} . \omega
$$

At the distance point, erect $D D$, perpendicular ${ }^{\circ}$ to HH^{\prime} and draw $P \mathrm{D}$, parallel to $\mathrm{QR} ; \mathrm{PD}_{1 \text {. }}$ is the length to be used as distance line.

The height of the station P/C used for the construction is always smaller than the real height Pp " Qbove the plane of the figure, therefore the precision of the construction is less than if the figure had been in a horizontal plane.
81. FROM THE PERSERCTIVF OF A FIGURE IN ANY GIVEN PLANE, TO CONSTRUCT THE HORIZONTAL PROJECTION OF THE'

FIGURE. The method of squares can be again employod in this case Let $Q O F$, Fip. 108 , be the traces of the plane of the figure on the ground and picture planes, and alird one of the squares of the ground plan. The projecting plane of arl intersects the traces of $Q O R$ in Q and L : the vertical projection of

vertical trace, V, is the vanishing point of the intersection of QOR with the projecting plane of ad. The perspective of this intersection is VL: the perspectives of the intersection of the projecting plane of $c b$ is $V K$ and all the lines required may be drawn in perspective by carrying the distance LK on the trace $O R$ and joining the points of division to V.

The perspectives of the interscctions with the plane QOR, of the projectirig planes of $a b$ and $c d$ ure obtained in a similer manner by drawing through the station a parallel to al, n^{\prime}, for instadee, and joining the vanishing point V^{\prime} to R and T. The resulting figure $\alpha \beta \gamma \delta^{\prime}$ corresponds, on the perspective, to the square abcel of the ground plan.

It is also possible to construct a vanishing scale ($\$ 88$) so as to find the distances of the various pointe from the picture plane.

Throlxh the station, a plane is drawn perpendicular to the vertical trace of the given plane:the intersections of the latter with the picture plane and the station point are placed in their actual positions'and the vanishing scale is constructed by measuring the equal distances from the trace of the picture plane.
82. CHANGE OF STATION, GROUND AND PICTURE PLANE. The same result is arrived at by changes in the relative positions of the station, perspective and ground plane.

Let QR,Fig. 109, be the trace on the principal plane,of the plane containing the figure, which we

$$
\downarrow
$$

永
will call A. Take for ground plane the horizontal

	plane passing through the
	intersection p of this
$\boldsymbol{A}^{\prime} \quad, \ldots \quad, H_{n}$	trace with the principal
12	line and suppose the princi-
[n	pal plane revolved around
	its trace $s p$ on the ground
$\text { Fig. } 109$	plane.

Let S be the station

and $\mu \mu^{\prime}$ x.the perspective of the point $m m^{\prime}$, in the plane $A \because$ Take $S S$, equal to $Q S$ and suppose that S, be used as station in connection with a new plane passing through $s p$ and the trace on the picture plane of the plane A. Call this plane B. The visual ray from the new station tu μ, μ^{\prime}, will be projected

Cut the planes A and B by a third parallel to 'the principal plane and passing through the pointmm'.

The horizontal projection of both intersections is min, parallel to $s \boldsymbol{N}$. The projection on the principal plane of the intersection with plane A is min' parallel to $Q R$, and the intersection with plane B is
projected in n parallel to sp.-
Join $s \mu^{\prime}$ produce to m^{\prime}, produce $S_{1} \mu^{\prime}$ to its intersection with n'a; min' and n'a to their intersection with S, ?. Join mia. The similar triangles give:

$$
\begin{align*}
& \frac{n^{\prime} \mu^{\prime}}{S D}=\frac{m^{\prime} \mu^{\prime}}{m^{\prime} S} \tag{1}\\
& \frac{n^{\prime} \mu^{\prime}}{S_{1} E}=\frac{a \mu^{\prime}}{a S_{1}^{\prime}} \tag{2}
\end{align*}
$$

But

$$
\mathrm{SD}=\mathrm{SE}+\mathrm{FD}=\mathrm{SF}+s 0=\mathrm{SF}+\mathrm{S}, \mathrm{~S}=\mathrm{S}, \mathrm{E}
$$

hence the first terms of (1) and (2) are identical and we have:

$$
\quad \frac{m^{\prime} \mu^{\prime}}{m^{\prime} S}=\frac{a \mu^{\prime}}{a S_{,}^{\prime}}
$$

which is transformed into:

$$
\frac{m^{\prime} \mu^{\prime}}{\mu^{\prime} S}=\frac{a \mu^{\prime}}{\mu^{\prime} S_{1}}
$$

The triangles $S S, \mu^{\prime}$ and $a m^{\prime} \mu^{\prime}$ having one angle equal and the two sides about it proportional, are similar and nía is parallel to $S S_{1}$. Consequently a is on the perpendicular minto $s p$.

The line $s m, S_{1} \alpha$ is the visual ray from the new etation through the point $\mu \mu$ of the perspective: $m n, a n \prime$, is a line of the plane B. These two
lines intersect since the intersections m and a of their projections are on the same perpendicular to the ground line and the point of intersection is the trace of the visual ray on the plane B since the Iine.mn, an' is in that plane. The same point is also the trace on the plane B of the vertical from mon'. Therefore if verticals be let fall from all the points of the figure in plane A,their traces on plane B will form a new figure which will correspond to the perspective viewed from S_{1}.

The problem is thus reduced to construct from its perspective the horizontal projection of algure contained in a plane perpendicular to the picture plane, which is done by a change of ground and picture planes ($\$ 78^{\circ}$). The process now involves changes of station, ground plane, picture plane and trace of principal plane as follows:-

Let QP,Fig. 110, be the principal IIne. Revolve the Pig. 110 principal plane on the picture plane around $Q P$, the front part of the principal plane being turned to the left;the station comes in S, and NS, is the vertical of the station Let $T Q R$ be the plane containing the figure seen in perspective. Draw $Q s$ perpendicular to $Q P$, and take $S S$, equal to $s T$. Draw S, P paraliel to $s Q$. The point P_{1} is to be used as principal point of the perspectidnt

Draw P, p perpendicular to $Q R, \mu p$, parallel to $s Q$ and take P, d equal to P, p. Through d draw Q, R, parallel to $Q R$;it is the assumed ground line. Produce $Q R$ to $N: Q N$ is the length to be assumed as distance line.

On the constructed figure, the perpendicular to the picture plane at p will appear as trace of the principal plane on the ground plane.

The traces of the plane containing the figqre are found as in $\delta 73$.
83. REFLECTED IMAGES. The case of horizontal reflecting surfaces is the only one that will be considered.

When a perspective containa the direct and
reflected images of the same point, the point can be located in space, provided the altitude of the station above the reflectirg surfacs be known.

Take for ground. plane the reflectifig surface and revolve the principal lane on it, around its trace. Let a, α^{\prime}, Fig. 111, be the point in space, x, α^{\prime} its perspective and $\alpha \alpha_{1}^{\prime}$ the perspective of its reflected imace. The horizontal: projection is the same fur both images.because the reflecting surface being horizontal, the direct and reflected visual reys are ir the same vertical plane having for trace sa.

- Let $s a, S O a^{\prime}$, be the reflected visual rayiaccording to the laws of reflection, the direction of SO is the same as if a^{\prime} were placed at a distance equal to ca' below the reflecting surfare and on the same vertical.

Produce $a^{\prime} 0$ to $s, c h$ being equal to $c a^{\prime}, s \mathrm{~s}$. is equal to $s S_{1}$. Hence, to find the position in space of a, a^{\prime}, take $s \mathrm{~S}$ equal to s : join $\mathrm{S} \alpha^{\prime}, \mathrm{S} x^{\prime}$, and $S, 0$; the point of intersection of $S \alpha^{\prime}$ and $S, 0$ is the vertical projection of the point of space.

Join so und produce to the intersection with $a^{\prime} a$, perpendicular to the ground line; $a a^{\prime}$ is the required point.
not only the position ω, of
the point on the ground
plane, but also its height

Pig. 111
The middle of the ver tical between the direct and reflected images corresponds to a, the horizontal projection of the point on the ground plane This shows that when the shore of a lake, for iństance, is indistinct on a perspective,it would be incorrect to take for shore line, the middle line befeen objects and their images in the lake, because this would give for distance of the shore that of the objects them. selves.
84. SHADOWS. The subject or shadows is an important branch of perspective, but only those cast by the sun need be considerod here.

Let α and β, FiG. 112, be the perspectives of two points A and B, m and n thejr shadows. The line
joining A to its shadow is the direction of the sun and $s 0$ is the line joining B its own shadow; therefore these lines are parallels and their vanishing point is V , at the intersection of $m \alpha$ and $n \beta$. * A line drawn from the station to the sun is pariallel to the first two, because it is also the direction of the sun; thereforel V is its trace on the picture plane or the perspective of the sun.

From V let fall $V V$ perpendicular to $X Y$; sv is, on the ground plane, the

s

Fig. 112
direction of the sun. On the horizon line, take CF equal to s, r and join FV: FVC represents, revolved on the picture plane around VC, the triangle having its ver- tex at the station and VC as opposite side. Therefore VFC is the altitude of the suh. Having the sun's altitude, the azimuth of the line sy of the ground plan can be calculated, provided the latitude and approximate time are known.

Fig. 112 represents the sun in front of the
observer. When it is behind, the line between the atation and the sun does not pierce the picture plane: it has to be produced to intersect it below the horizon line. The trace of this line on the picture plane V,Fig. 113,is still considered as the perspective of the sun:it is obtained in the same manner as when the sun is in front and all demonstrations apply to one case as well as to the other.

The calculation of the azimuth can be made by the method given in $\oint 37$ for the solution of spherical triangles.
find the altitude
CFV of the sun by the construction given above,make BVC equal to the colatitude of the place and FVM, to the polar distance of the sun. Take VM equal to VB and from C and F Fig. 113
as centers with CE and FM respectively as
radii, doscribe arcs of circle. Join their point of intersection, gre to C, and GCF is the azimuth of the sun.

When the perspective has been taken in the morming, plot the angle Z on the left of in vso, and the line $0 s$ is the north and south line of the ground plan.

In the afternoon, the angle 2 should be plotted on the right of $s r$. The rules are reversed when the perspective of the sun is above the horizon line. 85. HEIGHTS. In general, one perspective is not sufficient to determine the height of a point, although there are exceptions as for instance, points on the horizon line which are at the same height as the station.

The horizontal projection of the point being known, the height above the ground plane is measured with divided into equal parts (§ 80).

Por instance α and a, Fig. 114, being the perspective and horizontal projection of a point, and s the foot of the station, draw aF parallel to $X Y$.

This height being a fourth proportional to three known lines, can be found with an ordinary sector.

Take with a pair of compasses the distance from α to XY, place one of the points on the division p of the gector (Fig. 115) which expresses the length of the distance line, and open the sector until the second point of the compasses coincides with the corresponding division of the other branch, $s p$ and $s \mathrm{~B}$ being equal. Now take $\int_{F^{\prime}}^{p} \quad \begin{array}{ll}p & \text { with the compasses the dis- } \\ \text { tance from a to XY. (Fig. }\end{array}$ 114) and place one of the points in p (Fig.115). The other point being
Fig. 115 placed on $s p$, will
coincide with a division of the scale, E for instance; then turn round the compasses and take the distance from E to the same division of the scale $s B$ it is the height of the point above the ground plane.
-
CHAPTER III

PERSPECTIVF INSTRUMENTS

86. Many instruments have been devised for producing at once a perspective, either by mechanical or optical means.

One of the simplest forms is probably the wire grating represented in
,

4

Fig. 116

Fig. 116. Wires are
stretched on a frame so as to divide it into small squares. The

Prame is placed in
front of the object or view to be reproduced
and the draughtsman looks through an eye-hole in a fixed position. Dividing his paper into squaros in the samo manncr as the frame, he is able to reproduce the outlines of the subject by drawing his lines through the squares of tho papor cororestonding to those of the frame. The distance from the frame to the eye-hole is the distance line of the pergpective when the squares of the paper are equal to those of the frame.
87. DIAGRAPH.

While for artistic purposes, the grating is quite sufficient, there is some uncertainty in drawing the figures of the corresponding squares. To obviate this defect, it has been imagined to follow the outlines of the subject witin a pointer moved by the hand, as in Fig. 117.

A drawing board, on which is stretched a piece of paper,is placed in an upright position in front of the subject of the perspective. It is provided witr a straight edee, supported at both ends by coris fat.tached to a counterpojse at the back of the board. The straigut eafe may-be moveri uf una do:n or right end left, but owing to the mode of suspaneion, is
always parallel to the sers diecetion. The midale of

the straight edge"carries a renitl resting on the paper and the ent has a polinter carresponding to the eye-hole of the instrument. The draughtsinan takes the pencil with the hand and equang his cye at the eye-hole, he follows with the pointer the outlines of the subject, by moving the straight edge in the proper direction. The pericil reproducing exactly the motion of the pointer, describes the perspective on the drawing board,

The plane" in which the pointer moves is the picture plane, the eye-hole is the station and its
shortest distance from the pointer is the distance line.

The upright position of the drawing board is 4 inconvenientitin a modification of the same instrument called "Diagraph", the paper is placed horizontally and the motion of the pointer is transmitted to the "pencil by a cord and pulley.

None of these instruments, however, have come into general use.
88. CAMERA LUCIDA. The camera lucida consists essentially of a four sided prism having a right angle, two angles of $67^{\circ} 30^{\prime}$ and one angle of 135° (Fig. 118). The eye is placed directily above the edge of the prism so that the pupil receives at the same time the rays of

light emitted by
objects placed
in front and
those coming from the surface
of the paper. It
is therefore
possible to follow with a pencil on the paper the outlines of the subject, the point of the pencil being seen directly and the subject by a double reflection. The position of the eye must not fary during the operation: to secure this, the upper face of the prism is covered by a metal plate with a smalj hole cut in the edge, through which the draughtsman has to look.

With the form of instrument just described, the eye receives simultaneously impressions from objects placed at different distances; the pencil is quite close while the subject of the perspective is generally far away. The eye cannot accommodate itself to both distances at the same time; one of the images is always more or less confused and the work is very trying to the eyes.

In the more refined instruments, the upper surface of the prism is ground in the form of a concave lens, giving to the reflected rays the same convergence as if emitted by an object twelve inches away. The paper being placed at the same distance below the prism, the pencil and the subject-appear now at the same distance and can be seen simultaneously
without any effort.
The center of the pupil, a, Fig. 118 ,is the station point of the perspective drawn in P, and the heipht of a above the plane of P is the distance line. But, the subject if looked at directly from a would not appear as represented;it would be necessary - to move the eye to b, virtual image of a with reference to the two reflecting surfaces of the prism. (A well constructed camera lucida is provided with colored glasses, to equalize the brightness of the images.
89. CAMERA OBSCURA. A camera obscura,in its simplest form, is a box hermetically closed to extraneous light, except that coming through a lens placed on one of the sides. The opposite side of the box being in the focal'plane of the leng, an image is formed on it of the distant objects situated in front of the lens.

Making abstraction of the errors introduced by lenses, the image of the camera obscura is a true perspective, for it is the same as would be drawn on a picture rlane placed in front of the lens at a
distance equal to the focal length.
Let 0 , Fig. 119, be the optical center of the lens ark $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$, three

Fig. L1, O
rays of light coming from three dis2 tant points of space. The images of the points will form a triangle $A B C$ on the focal plane R of
the camera. The same rays of light will form, by their intersection with a plane Q parallel to R and at the same distance from 0 , another triangle $a b c$. in which every side is equal and parallel to the corresponding side of $A B C$, therefore $a b c=A B C$.

The same demonstration applies to any other triangle and as a figure can always be decomposed into a number of triangles, any figure obtained on the plane R will be the same is on the plane Q reversed. But the I'igure on Q is the perspective seen from the station 0 on the picture plane Q, therefore the image of the camera obscura is the perspective seen from
the optical center of the lens on a picture plane placed at the first focus. The focal length of the lens is the digtance line.

Before the invention of photography the canera obscura was used for drawing perspectives and various forms were devisol to adapt it to that purpose.

One form consists of a prism

ABC,Fig. 120, with two spherical faces $A B$ and $B C$, and a plane reflocting face AC. The parallel P

Fig. 120
subject are brought to a focus by the two spherical faces $A B$ and $B C$, while they are reflected at right angles by the face $A C$.

The prism is placed on the top of a tripod which supports a drawing board at the proper height to. receive the image formed at the focus of the object * glass. The tripod is then covered with a. black cloth to shut oft extraneous light and enable the draughtsmand ${ }^{\circ}$ see tho image projected on the paper and follow it with a pencil.

The point, of the pencil being between the lens and the paper, casts a shadow just at the point where the image is wanted. The instrument shown in Fig. 121 is not open to the same objection and requires, neither tripod,drawing board nor even a black cloth. It is merely a box with a lens in front and a mirror . In $P Q$ inclined at 45° to the axis of the box. The image formed by the lens is reflected by the mirror on a ground glass placed in $A B$. Being inverted a second time by the reflection, it appears now upright: The lid which covers the Bround glass when not in use, is open at an angle of about 45° with the ground glass and cutsfoff sufficient light for the image to be visible. In these condtions, the incow ts not bright enough to work on paper and has to be traced on the ground glass, but with a black cloth covering the box and the head of the draughtsman, it
is possible to work through thin paper.
90. PERSPFACTOGRAPH. The perspectograph is the K 2
invention of Hermann Ritfra a german Architegt（1 its object being to draw a ferdpective fom the plak of the subject and not from the sulpject owself．The lines of uhe plans arefollowed with a treger ard the perspectiveredradnoty a pencil cerried gy foctior

As construthed ond efispröcer \＆cie（Frankfort （on－the－Maify），it 18 arge instruant made partly of wopd，pattly of metal，well adapted for drawinf peri spectures of builaings from an architect＇s plans，but useless for rewing a topographical plan from a per－ spective゙．

For surveying purposes，the instrument should be of small size，made entirely of metal；all the parts．＂ should be fitted with precision It should work easily and the demount of dead motion should be as small as㬱。 possible．

Cont Although in its present form it cannot ployed in connection wi

（1）Perspectograph，von Hermann Ritter，Architekt Frankfurt a．M．Druck von J．Maubach \＆Co．

PLITE II.

\rightarrow ?
Photographic surveving.
theory is given at length:with some slight modifications,it is applicable to any other perspective ihstrument.

However perfect án instrument may be, it always introduces in the final result some errors of its own due to dead motion, to imperfections in the adjustments, and to the slight errors unavoidable in the determination of the constants. Whenever the precision of the survey requires it, a geometrical cortruction should be employed, and the use of perspective whaments should be restricted to reconnaissance or rough surveys, in which rapidity is more important than per-fect-accuracy. we have:

$$
\frac{s S_{1}}{0 \mu_{1}}=\frac{M s}{\cdot \overline{M O}}
$$

Hence,

$$
\frac{s S}{\sigma \mu}=\frac{s S}{\partial \mu}
$$

But, by construction, $s S$ is equal to $s S$, therefore

$$
\sigma \mu=\sigma \mu_{1}
$$

This property furnishes a new method for constructing aperspectfye. Take on the ground plan, Fig. 123, $s S$, parallel to the ground line and equal to the

the point 0 of the ground plan. At 0^{\prime} erect $o^{\prime} \mu$ perPendictuar to $X^{\prime} Y^{\prime}$ and equal to $0 \mu_{1 .} ; \mu$ is the perspex-为蛙tive of M. Owing to the position of the figure, the
perspective appears upside down.
The perspective of another point, N, of the ground plan is obtained in a similar manner, by taking $0^{\prime} Q^{\prime}$ equal to $O Q$ and Q Q equal to $Q r_{1}$.

This is done mechanically by the penspectograph: $s M$ and S, M, Fig. 124 , ere two wooden arms jointed in M and carrying the tracer. They slide through four adjustable pieces; $s, S, 0$ and μ, s and S, can be adapted to any part of a rule RT, s is fixed at the point of the ground plan representing the foot of the station and the rule or slide $R T$ is firmly fixed to the drawwig "board, parallel to the ground line. The" second piece. $S_{\text {, }}$, is placed at a distance of s equal to the height of the station and fixed in that position. The third piece, 0, is fixed to fred which moves

Fig. 124
in the groove of a slide XY and carries a pantograph system with axis at D fixed to the rod, so that the distance from 0 to D is invariable while the
instrument is in use. When the arm $s M$ is moved, s being a fixed point, 0 follows the motion of the arm and carries with it along the groove $X Y$ the moveable rod and the pantograph system.

The fourth piece μ, is connected with the joint A of the pantograph system, so that the distance μA is invariable during the operation;it is also bound to slide on the moveable rod.

The pantograph system,is composed of four straight arms, $\mathrm{AB}, \mathrm{AC}, \mathrm{F} \mu$ and $\mathrm{F} \mu^{\prime}$, and two arms CDE and "BDG, bent at right angles in D. They are joined in A, B, C, D, E, F and G, the sides of the parallelograms $A B D C$ and DGFE being all equal. The arms $\mathrm{F} \mu$ and $\mathrm{F} \mu^{\prime}$ are double the length of one side of the parallelograms and the pencil which is to describe the perspective may be placed either in μ or μ^{\prime}.

The sum of the four angles at D is equal to four right angles: two of these angles, $C D E$ and $B D G$, being right angles, the sum of the two remaining ones must be equal to two right angles, that is, $C D B+\dot{E D G}=180^{\circ}$

But in a parallelogram the sum of two adjacent angles

PERSPECTOGRAPH

 is equal to two right angles, that is,hence,

$$
C D R+D C A=180^{\circ}
$$

$$
\cdot x^{4}+4
$$

$$
\underset{A}{\mathrm{~F} I) G}=D C A .
$$

Therefore the two parallelograms are equiangular and their sides being equal, the parallelograms are equal, but not placed in the same direction. The diagonal DA of one is equal to the diagonal GE of the other, and $B C$ is equal to $D F$.

The line $\mu \mu^{\prime}$ is parallel to. GE because $F \mu$ is equal to $\mathrm{F} \mathrm{i}^{\prime}$; it is therefore perpendicular to XY since the diagonals of a rhombus intersect at right angles, and it passes through D, because Fl is equal and parallel to GD. We have also

$$
\mathrm{D} \mu=\mathrm{GF}=\mathrm{DA}
$$

It is now easy to understand the working of the instrument 为 $^{\text {and }}$

The slide XY is placed on the ground line or rather on the line representing the trace of the picture plane on the ground plan. When the tracer in M is moved on a parallel to $X Y$, the arm $M s$ carries with it the moveable rod and the pantograph system

attached. The distance from 0 to $\mu_{1,}$ does not vary, since the si:nilar triargles $M s S_{1}$ and $M O \mu$, always give the sant proportion between 0μ, and the constant leneth $s \mathrm{~S}$, . The distance from μ, to A and from 0 to D being invariable, and 0μ being constant, $A D$ and consequently $D \mu$ do not'change, and the pencil in μ describes a parallel to $X Y$ it is the perspective of a line of the "ground plane, parallel to the "picture plane.

When the tracer is moved away from $X Y$, in the direction of $M s$, thée points O and D do not change, but ou, is lenethened and u, moves towards the right carrying with it the joint A end increasing the diopgonal DA to the same extent astori, $D \mu$ bethe equal to DA, will also-bouk cisely the same distance as μ. moved, "owards σ^{\prime}.

The construction thus effected mechanicalify is the same as in Fifel23. "The sround line on theaper. apective. X', is thefline which Would be describedion the pencil in μ, if the tracer M ciopld be brourht to the center of the groove and moved on $X Y$: $0^{\prime \prime}$ and

PERSPECTOGRAPH
Drawing the tracer away from $X Y$, but in the direction $s M$, ψ_{1}, separates from 0 , and μ moves down by the same quantity, from its former position O^{\prime} on the round line, ó μ being perpendicular to $X^{\prime} Y^{\prime}$ ana

$$
\sigma^{\prime} \mu=0 \mu_{1}
$$

Now if M be placed on any other point of the ground plaf, the perpendicular $D \mu$ to $X^{\prime} Y^{\prime}$ will be carried away the sane distance as the point 0 , and μ will be at s distance from X'Y equal to the new value of 0μ,

The perspective is upside down, the draughtsman having to place himself near m for guiding the tracer.
' The end μ ' of the arm $F \mu^{\prime}$ describes the symmetrical figure of the perspective, or the image which would be seen in a mirror, but were the fixed point " S, placed on the left of $s, \mu_{\dot{j}}$ would describe the true perspective, the direction of the mations of " μ and $\mu^{\prime \prime}$ being reversed. The ends μ^{\prime} and μ^{\prime} of the arms of the pantograph system are both fitted to receive the pencil which can be changed from one end to the ofther as required.

The instrument set as in Fig. 124 can only work on points or figures beyond the pieture plane:it

* 172
 PERSPECTIVE

possible to place the slide $X \hat{Y}$ on the other side of RT, so as to work on points betweer the picture plane and the station, but the obliquity of the arms prevents them from sliding freely and the working of the instrument is unsatisfactory.

It may happen that with a high station and points at the extreme rirht or left of the station (it would be the extreme left on the figure) the obliquity of the arm S, M becomes too great to work. S, must then be changed from one side of s touthe other, (from the right to the left of s on the figure) and the perspective from one side of the ground ine to the other. The pencil is at the same time changed to the opposite arm of the pantograph system.

The sliding rod $X Y$ may be reversed end for end in its groove, the pantugraph system coming on the opposite side of the movable arm Mis. The pencil does not require to be changed, but the arm bearing it, μ for instance, instead of being between $R T$ and $X Y$;will now be on the other side of $X Y$.

A scale must be drawn on RT, the zero correspond-
ing to the pointer carried by the sliding piece s : the graduation extends to right and $l_{\theta f t}$ and the pointer of the sliding piece S, is set opfosite the division corresponding to the height of the station above the ground plane.

The distance between RT and $X Y$ is equal to the distance line of the perspective.

In the case of figures in planes which are not perpendicular to the principal plane, it has been shown that the solution of problems involves changes in the distance line: the edges of be, drawing bodrd must therefor' carry graduations permitting to move $X Y$ by any given quantity, keeping it parallel to RT

The different pieces of the instrument are adjustable and must first be placed in proper position for the work in hand. This done, the slide RT is firmly fixed to the drawing, board and $X Y$ flaced parallel to RT. There remains now to draw the scales and determine the position of the various lines and points on which resta the construction of the perspective Hitherto itinhas been assumed that the points's, $S_{\text {, }}$ 0. H; etenvere mathematical points and that their
distances could be measured directly, but there is nothing on the instrument to define their exact position and no such measures could be taken with precision, consequently these quantities or the constants of the instrument, have to be determined indirectly, 91. TO DRAW THF TRACE OF THE PRINCIPAL FHANE ON THE DRAWING BOARD. It is assumed that the grooves in the sides RT and $X Y$ are parallel to their edges and that the sliding motion in these grooves is also parallel to the same direction. This assumption is practically correct.

Place S, above s (Fige 125) and draw a perpendicular MM, to RT, which,if produced would pass as nearly as possible through s. Should
this line pass exactly through s, it would be the trace of the principal plane on the ground plane, and
" were the tracer M maved along the line from M "to M, the polnt of the slide XY" would not move. To ascertain whether 0 has moved or not,mark the position
of 4 when the tracer is in M, then place the tracer in M_{1} and $1 f$. μ has moved to the right, in μ_{1}, this shows that MA'is too much to the left. Should MO and M, 0 be equal respectively to one half and twice the distance 1 the, the error in the position of MM, would be equal to three times the displacement of μ, but It is sufficient to estimate the quantity by which MM, has to be displaced and to repeat the trial two or three times. The motion of $0 . i s$ indicated by the displacement of μ to the right or to the left:a motion of μ perpendicularly to $X Y$ indicates meredy that S, is not precisely over
92. TQ FIND THE DISTANCE FROM THE STATION TO \triangle FRONT LINE OF THE GROUND PLANE. The trace of the principal plane on the * plane on the drawing board being now determined, the ground plan coula be placed in its proper position on the board, were it possible to megsure oxactly the distance, from the point. s of the instmunent to a, front line $A B$, Fig. 126, of the "drawing board. This determination is made as follows:- Draw a second line CD parallel to AB;plade the two lang amms ore above the other and brinentre tracer to M:mark the
position of μ. Then carry the tracer to $C D$ and follow the line until

tance d between $A B$ and $C D$, a simple proportion gives the distance x from s to AB :

$$
x=d \frac{\mathrm{MM}_{1}}{\substack{\mathrm{~N}_{1}-\\ \vdots \\ i=1}}
$$

The two lines and the points NN, must be taken as far apart as the instrument will allow.

Having the distance of the front line $A B$, other front lines at fixed distances from the foot of the scation are permanently marked on the drawing board.

The ground plan can now be placed on the board by putting the trace of the principal plane in coineidence with the line drawn on the board and placing
a front "line of which the distance is known upon the corresponding one of the drawing board.
93. TO FIND THE DISTANCE BETWEEN THE TWO SLIDES. The distance between the two slides is equal to the distance" line of the perspective:it must be indicated by a scale on the edge of the drawing board. In order to locate the zero. of the graduation the precise distance has to "be determined in one position of the instrument.

Draw a front line $A B$;

 Fig. 127. Put the tracer - first in A and then in B, making in each case the positions μ andy hecupied Pig. 127 by the pencil. Let d be the distance between the slides and m the distance from soto AB : we have:

$$
\frac{d}{m 2}=\frac{000}{A B}
$$

$A B$ being a front line, its perspective $\mu \mu$ is parallel to $X Y$ and equal to 00 , consequently:

The three lengths which form the second term, can be measured and the value of d calculated.
94. TO DRAW THE GRADUATION FOR THE HEIGHT OF THE STATION. The height of the station is represented on the instrument by $s \mathrm{~S}$, (Fig. 124). It is necessary to determine this distance for one position oi s and S, in order to draw the graduation for setting" S, to , any required height:

Place the tracer M on the trace of the principal plane at a distance $M S$ equal to one and a half times $s O$ and note the place occupied by the pencil μ. In this position of the instrument we have

$$
0 \mu_{1}=\frac{1}{3} s s_{1}->
$$

Then place the tracer M still on the trace of the principal plane but at a distance $M S$ equal to three times so:we have

$$
o \mu_{1}=\frac{2}{3} s s_{1}
$$

The change in the value of 0μ, is thus equal to one third of the height of the station; but this change is represented by the displacement of the pencil μ, which gan be measured with a scale. Three times this displacement is tho height of the station.

The tracer, instead of being placed at the distances from the foôt of the station given above, may be set at any distance which may be convenient; the fraction of the neirht of the station obtained will. be differont, but the process is the same. 95. TO DRA H TIIE HORIZON,GROUND AND PRINCIPAL LINES ON THE PRRSPECHIVE. The principal line is the perspective of the trace of the principal plane on the ground plane, The latter has been marked on the board $\left(\$ 89^{\prime}\right)$: ollowing it with the tracer, the pencil describes tié princip'al line.

The tronid line canot drawn directly, because the tracer would haxc to be carried along the front slide and the construction of the instmament does not permit it. The difficulty is overcome by drawing the nerspective of a front line between the ground and torizon line:

Let Fig. 128 représent the principal plane and M trace of a front line Fig. 128

180

of the station equal to twice the distance itne. The similar triangles SsM, M/M give

$$
\mu p=S . s \frac{\mu \mathrm{M}}{s \mathrm{M}}=\frac{1}{\nabla_{\sim}^{2}} \mathrm{~S}_{p}
$$

$S \dot{s}$ 'is equal to the height $P X$ of the princtipal point above the ground line, therefore,

$$
i^{\prime \prime} \prime=\frac{1}{2} \mathrm{P} p
$$

Following then with the tracer the front line drawn on the board at a distance from the station equal to twice the scribe a horizort 4 , widway between the ground and horizon lines. One half the heightt of the station is now measured on each side of the line so obtainod - and parallels drawn to it. The line nearest to the front slide is the ground line, the other one is the horizon line.

Processes similar to those given for the perspectograph can be employed for the other perspective instruments.

With the camera lucida; however, particular attention must be paid to the fact that the station is not the same for the direct and refleoted rays $\$(88)$.

Although the fact has no importance when drawing the perspective of repote objects,it woura if not allowed for, cause considarable errors when the subject and the perspective are both cle to the station. 90. CENTROLINEAD. In addition to the instruments already described, others have been devised merely' to facilitater the construction of perspectives. They are not properly speaking, perspective instruments, since they do noti erable the draughtgman to draw the perspective directiy.

The vanishịng point of aline nearly parallel to the picture plane being at a great distance from the principal point, nay rall outside of the paper, in which case special constructions are necessary to draw a line which,if produced, would pass through the point. The "centrólinead" permits to draw a line vanishing at any point, no matter how far from the principal point. It consists of a straight edge, (Fig.129) with two arms whose inclination to the straight edge can be varied at pleasure. Two studs six or eight inches apart, are fixed to the edge of the drawing board. The arms of the centrolinead being placed

IMAGE EVALUATION TEST TARGET (MT-3)
0

contact with the studs the various directions of the

Fig. 129
straight edge intersect at a common point.
Let $O C, F i g .130$, be the straight edge, $O A$ and $O B$
the arms, A and B the studs. Through A, O and $B, p a s s$ a circle: the arms being fixed in a certain position, the angle 0 is constant

Fig. 130
and is bound to move on
the circumference of the
circle whenever the position of the centrolincad is changed, as from OC to $O^{\prime} C^{\prime}$.
Produce $O C$ and $O^{\prime} C^{\prime}$ to -
their second intersection with the circumference:they mast cut it at the same point V, because the angle $A O V$ being invariable must always subtond the same arc $A V$, no matter on what point of the circumference the apex O may be. Consequentiy the straight \&dge will draw all the lines vanishing at V.

The centrolinead is employed only for horizontal lines, whose vanishing point is on the horizon line. The studs A and B are placed on $t^{\prime} h e$ same perpendicular to the horizon line and at equal distances from it;it follows that the horizon line HH^{\prime} is a diameter of the circle, ard,

$$
V A=V B
$$

The arms are equally inclined to the straight adge. The line $O C$ bisecting the angle $A O B$ must pass through V which is the middle of the subtended arc BVA.

The distance of the vanishing point, V, can be varied either by changing the positions of the studs or the inclination of the arms. Increasing the distance $A B$ between the studs, the size of the circle is increased in the same proportion and V moved to the left.

It is not usual to disturb the studs, the changes in the distance of the vanishing point being obtained by altering the inclination of the arms of the centrolinead. Were the arms perpendicular to the stralght edge, the vanishing point would be at infinitum and the instrument would describe parallels 4 to the horizon line.

Closing the arms gradually, V comes nearer to $A B$; when $A O B$ becomes a right angle, the intersection of $A B$ and $H H^{\prime}$ being the centre of the circle the distance of V from $A B$ is one half of the latter.

Closing again the arms, V continues to move towards $A B$ without over reaching it.

In reality, the studs are not mathematical points, but cylinders: the direction of the straight edge is, however, the same as if the arms rested against the axes of the oylinders.

The dipeotion of the vanishing point may be given by a line of the ground plan or by a line of the perspective. In either case, the arms of the centrolinead have to be set to correspond to the vanishing point.

In the first case, revolve the picture plane on the horizon plane around the horizon line as an axis.

The station comes in S,Fig.

Fig. 131

131,SP is the distance
line, A and B the two studs.

Let $S V$ be the direction, of the given line on the
ground plan,V is its van-
ishing point. Through A, B and V,pass a circle; the centrolinead should be set so that the straight edge being on DH^{\prime}, the arms should be on DA and DB.

Join VB; the angle VDB, incilnation of the arm on the straight edge, is equal' to "the angle VBA, because they subtend equal ares. Join CS and BS, and draw Mc. and cv parallel to AB and HH^{\prime}; join $b v$. By reason of the similarity of triangles, $b v$ is parallel to VB and the angle

$$
v b c=\mathrm{VBC}
$$

Therefore place the straight edge on MB, the axis of rotation on h, and adjust the left arm of the centrolinead to coincide with $\overline{b r}$. The other arm may.
be set by placing the straight edge on $v b$, the axis on b and adjusting the arm to coincide with $b \mathrm{~m}$,or better by placing the straight edge on the horizon line, the arm already adjusted in contact with the stud B and moving the other arm until it comes in contact with the stud A.

The lines BS,CS,MC and $c V$, are drawn once for all, br need not be drawn, so that the only line to be marked is SV, direction of the given line on the ground plan.

When the given line belongs to the perspective the constraction must be

Fig. 132
slightly modified. VE,Fig. 132, being the given line, take any point, F , on the horizon line, join FE and FB , and draw C M parallel to $A B$. Through e, draw ev parallel
to EV and join $\mathrm{V} b$. On account of the similarity of triangles, $V b$ is parallel to $V B$ and the angle $v b c$ is equal to VBA, inclination of the arm on the straight edge of the centrolinead.

FB and $\subset \mathrm{M}^{\text {a }}$ are drawn once for all but FE and ve have to be marked for every given line: that is, two lines instead of one by the former construction. Centrolineads are usually sold in pairs,one to work on the right of the principal point and one for the left.
97. PERSPECTOMETER. In $\oint 65$, a method has been given for transferring a figure from the perspective to the ground plane by means of squares formed of lines parallel and perpendicular to the ground line. The "perspectometer" has for object to dispense with the construction of the squares' perspective.

On a piece of transparent material, glass, horn or celluloid, draw two 'parallel lines $A B, D D^{\prime \prime}$ ',

Fig. 133
(Fig. 133°) and a
common perpendicular $\mathrm{P} \mathcal{P}$. Take $\mathrm{DP}, \mathrm{PD}^{\prime}, \quad p \mathrm{~A}$ and $p B$ equal to the distance line and from p, lay on $A B$ equal distances
 $\dot{m}^{\prime}, n^{\prime}$. part of those lines intersect $A D$ and BD^{\prime} at. $r, t, r, t^{\prime}, \ldots$. The corresponding points are joined together by lines which are parallel to $A B$ and $D D^{\prime}$.

The instrument is now placed on a perspective, with P on the principal point and DD^{\prime} on the horizon line. The ground line will fall in XY,for instancé: It is divided into equal parts by the lines converging in P and the figure of the perspectometer is the perspective of a network of squares in the ground plane, having the equal parts of $X Y$ as sides. By referring to $\$ 85, i t$ will be seen that the construction is precisely the same in both cases.

This instrument is useful for restoring from the perspective a figure of the ground plan. By placing it on the perspective the squares covering the figure are at once apparent and only those required are drawn on the ground plan.

The side of the squares is equal to the length intercepted on the ground line between two of the converging lines:this distance is laid on the ground plan from the trace of the principal plane and par- allels drawn to the trace through the points of division.

The front line nearest to the ground line is laid on the ground plan either by estimating its distance from the ground line or by constructing it. The estimation is made by noting the fraction of a square's side which represents the distance from the ground line.

Figures in planes inclined to the horizon but perpendicular to the picture plane are transferred to the ground plan by placing the centre of the perspectometer on the principal point and, the parallel. lines in the direction of the trace of the inc wed plane on the picture plane. The trapezoids of the instrument are the perspectives of squares in the © inclined plane, which squares are projected as rectangles on the ground plane (§77). The longest sides of the rectangles are perpendicular to the picture plane and equal to the length intercepted between two converging lines of the instrument on the trace of the inclined plane. The shortest sides are the projections on the ground line of these inter-
copted lengths.
The rectangles are constructed on the ground plan and the transfer made from the perspective as in the preceding case.

When the plane containing the figure is inclined to the picture and ground planes, the principal point must first be displaced on the principal line so as to project the figure on a plane perpendicular to the picture plane and having the same trace as the given plane, ($\oint 80$): the problem is now the same as the last one.

The perspectometer can only serve for perspectives having the same distance line, such as photographs of distant objects taken with the same lens; every distance line requires a new instrument. The Width $P p$ should be equal to the height of the horizon line above the foot of the picture; the length DD^{\prime} need not be larger than the picture, the distance points being placed on the figure merely for the purpose of demonstration.

The length of the equal parts of $A B$ should be such that the divisions of the lowest ground line employed be not too large for the degree of accuracy required. These divisions are the sides of the squares or rectangles of the ground plan and the larger their size, the less accuraty will the transfer of the figure be.

The instrument can be made by drawing it on large scale on paper, and taking a reduced negative from which a positive is made on a transparency plate. The transparency is bleached in bichloride of mercury and varnished:the lines originally black, are now white on clear glass.
98. DRAWING THE dROUND PLAN WITH THE CAMERA LUCIDA. The distinction betwen the'picture and ground planes is purely conventional; the picture plane may be taken for ground plane and the ground plane for picture plane. If α be the perspective of the figure A of the ground plane, inversely A is the perspective of the figure α of the picture plane. Consequently any perspective instrument can be employed to draw the ground plan from the perspective, by a change in the setting of the instrument, the distance line being. now what was formerly the height of the station and
inversely the new height of the station being the former distance line.

With the camera lueida, the prism must be fixed permanently so that the height of the virtual station S'P, Fig. 134 , above the plane on which the perspective is placed, be equal to the distance line of the perspective (886°). As long as the latter does not

Fig. 134
change, the prism
must remain in
the same pori-
lion. The per-
spective is
placed in $\mathrm{HH}^{\prime} \mathrm{XY}$,
-in such a manner
that the line
S' joining the
virtual station
to the principal point of the perspective be perpendicular to, the plane of the table or drawing board. The ground plan is on a platform $s X, Y$, parallel to the plane of the table, and which can be moved up and down. It mast be so placed that the perpendicular

Ss from the, ral atation to the platiorm, be equal to "the height of the gtation: s is the foot of the station gnd the ground line is sumewhere in X, Y; .
'The eye looks by reflection at the perspective, and sees directily the pencil on the platform. * The determination of the constants is made by methods similar to those of the perspectograph (90 , 91,02,93).

The camera lucida permits so draw the groundi plan, oither within or beyond the ground linc:it is a very serious advantage. Againstit is the want of 븡 precision due to the size of the notera in the mount-1 ing of the prism, and the resulting disflacements of the eye.
99. DRAWING THE GROUN) PLAN WITH THE CAMEFA OBSCURA. In order to transfer a figure from the forspoctato the ground.plane, the camera obscura would have to be sct as in. Fig. 135, the perspective $H^{\prime} X^{\prime} Y^{\prime}$ being placed vertical and the ground plan horizontal "in $s A D$. The distance from the ontical center of the lens, s, to the perspective should be equal to the distance line and the height of S above the piane $s A D$, equal to
the height of othe station. The difficulty is that

lens of proper focus and a pin hole diaphragm, to obtain fair definition withirı a limited apace $A B C D$, but it is doubtful whether the process would prove practical.
100. DRAWING THE GROUND PLAN WITH THE PERSPECTOGRAPH. In order to draw the ground plan from the perspective *ith the perspectograph, the distance between RT and XY (Fig. 124 .) must be equal to the height of the station, and sg.pto the distance line. The principal point of the perspective must be placed in s, the horizon line under RT and the ground line under XY. The instrument thus arranged would not work with the perspectives used in surveying, it could not even be
set, the obliquity of the arms being too great. It may, however, be employed to transfer a figure of the per spoctive to other planes thar the pround plane, as for instance to obtain the olevation of a building from the perspective of the facade; the method is fully described in Ritter's pamphlet (1).

In other cases, and particuly for topographical purposes, the pencil must be placed in M and the tracer in μ. The perspective is placed under μ, with the ground and principal lines on the lines previously marked on the drawing board ($\$ 92$). Taking M with the hand, the arms are moved so as to follow the lines of the perspective with the tracer μ. The operation being precisely the same as for drawing the perspective from the ground plan (888) it is evident that the pencil in m will now reproduce the ground plan. The use of the instrument in this manner is at first a little difficult, owing to the point M being guided Dy the hand while the perspective has to be traced with μ, whose motion is entirely different; some .
(1) See note, page 158.

$$
\text { M } 2
$$

prectice is wanted before being able to nande it successfully.

A certain amount of dead motion is inevitable in an instrument of this
 $X Y$ and RT. In order to Fig. 136 avoid the errors which this would introduce, the pencil M should always be moved in the same direction, away from XY for instance. When the draughtsman comes to a part of a line or curve which is directed towards XY, he should lift the pencil,push M back to the other end of dhe clurve and trace it in the opposite direction.

The position of the horizon line HH^{\prime} of the perspective,Fig.l36, varies every time the distance from s to S, is changed, for it corresponds to the tracer μ when M is at infinitum and the two arms parallel: μ_{1} would then be in N. Now change the height of the
station from S, to $S_{i} ; N$ comes in Q carrying with it the joint A of the pantograph system to which it is rigidly fixod, DA is increased by $N Q$ and μ moves daun the same quantity. So the horizon line is displaced towards the front of the drawing board the same distance as the station is moved up. The ground line is not affected. The instrument is provided with means of adjustment for the distance from A to μ, , these two points being connected by an iron rod sliding in a ring at A, to which it can be fixed by a clamping screw. A graduation placed along side the rod permits to add to $A \mu$ the increase. in the height of the station, in which case the horizon line of the perspective does not move and both the perspective and the ground plan occupy invariable positions on the drawing board, no matter what ground plane may be used.

When the distance line is changed, as for figures in inclined planes, the simplest manner to place the perspective on the board is to put the pencil in M on the trace of the principal plane (Fig. 136.), M0 being equal to os ; then slide the perspective under the tracer until the latter is on a point midway between
the ground and horizon lines. The principal line of the perspective must of course, coincide with the line previoucilv drawn on the drawing board. 101. CHANGE OF SCALE. The perspectograph set as in Pig. 124, will only work on points beyond the picture. plane. It is possible,by placing the slide $X Y$ on the other side of RT, to reach within the picture plane, but the instrument does not work well. It is preferable to use it as set in Fig. 124 and to resort to a change of scale when figures within the picture plane are to be operated upon.

Let $s X Y$ and $X Y X, Y$,

Fig. 137, be the ground and picture planes. Take a new ground plane, $s_{1} X, Y_{1}$, at a distance $s s$, below the other plane equal to the height of the station
S.s, the figures obtained on the new plane from the perspective,will be on a scale double of the former scale, (\$53). The new ground line X, Y, corresponds to the front line $A B$ of the plane $s X Y$,midway between
the foot of the station, s, and the picture plane, so that it will now be possible to work with the ferspectograph on the part of the ground plane comprised between $A B$ and $X Y$, but the result has "to be reduced to half size.

By doublimg again the scale, one half of the space between $A B$ and s, will be covered; the result must be reduced four times.

In practice the draughtsman would commence oy working on the figures beyond the picture plane. After transferring them to the ground plan, he would move S, , Fig. 124 so as to double $s S$, and draw a new ground line on the perspective, by doubling the distance of the first one from the principal point. He would then place the perspective in proper position for the new ground line and continue to operate the instrument as before.

The restored ground plan is drawn on cross section paper, having squares of four sizes, distinguished by lines of different intensitics. The largest squares are divided into four smaller ones and the latter are also divided into four. The sides m 2
of the squares are even divisions of the scale. When the scale is increased two or four times, the reduction of the figures is made at sicht by transforring the figures from one set of squares to the other. Pront lines have been marked on the drawing board at ever distances from the foot of the station. The cross section paper is pinned to the board with some of its lines.upon the front lines of the board and a perpendicular to the former on the trace of the principal plane.

Tre distance from the foot of the station is marked on one of the front lines of the papor forming the sides of the squares: this distance, with the trace of the principal plane permita to transfer to the general ground plan the portion of it which has been obtained by the perspectograph.

When the scale is changed, the distance of the front lines should be modified accordingly. Thus if the scale be doưbled, the front line marked 10 on the drawing board will correspond to a real distance of 5 and should be so marked on the paper.

CHAPTER IV

FIELD INSTRUMENTS
102. ALTAZIMUTH. The instruments used in the field on Canadian Photographic surveys consists of an altazimuth and a camera.

The altazimuth is represented in full size on Plate IV:it is made by Steinheil Söhne of Munich. Its peculiarity is the telescope, which is horizontal and has a reflecting prism in front of the object glass. This disposition, which has been adopted by several makers for small instruments, presents two important advantages: the apparatus is very compact and the great distance between the bearings of the telescope is favourable to the precision of the results.

The weight of the instrument is 2 lbs 10 oz;with box complete $5 \frac{1}{2}$ lbs. The horizontal cirele has a diameter of 8 centimeters and the vertical circle 7 centimeters, each being read to onc minute by two verniers. The vertical sircle is fixed to the telescope with which it revolves.

The telescope rests in the $Y^{\prime} s$ on four agate points, set on the top of brass screws with-stop nuts, which permit to adjust the axis. The object glass is a "triple" one, being composed of a crown lens between two flints: it has an aperture of 20.3 millimeters. and a focus of 8.1 centimeters. The magnifying power is about 7:the definition is remarkably good.

The right angle prism in front of the object glass, reflects the rays of light by the hypothenuse face, which is inclined at 45° on the two other faces. The hypothenuse is of course polished glass,with the exception of a ring not covered by the mounting, where the glass is ground. By placing a lamp in the direction of the telescope's axis, the diffused light admitted through the ring gives a very good illumin-. ation for the wires. The slow motion to the vertical

circle and telescope, 13 given by an ondess screw, which cen rbe liftad out of bearing for rapid motions. Tho telescope may be revolved end for end in its Y ': : the vorniers of the vereical ctrele not being attach ed to the circle, there are two pairs of them, one for each aide. There are two levels, one for the horizontal circle and a striding levolsathe usual coloured and reading glasses are provided.

The dofect of this instrument sumich is common to nearly all those of the same class, consists in its numerous adjustments. They are particyparly objectionable for surveys in a mountainous country where occasional rough ugage is unavoidable. It is much to be desired that the makers should supply small. instrments whout any adjustments; they could be made sufficiently accurate for ordinary work, and for precise operations, a surveyor does not trust to his adjustments in any case, but determines the errore of the instrument and applies the corresponding corrections to the observations.
103. ADJUSTMENTS. This altazimuth being of an unusull fattern, it may not be out of place to describe
its adjuatmentm.
The vermiers of t vertical oircle can be moved up and down by neans of acrows: they must first bo placed in the middle of their courge and the telescopo raised or lowercd by its supporting screws until the vortical circle reads at the same time 0° and 180°. The s@mè supporting screws will displace the telescope to the right or left and caro must be takon that the verniers impinge equally on the graduation.

The level of the horizontal circlo ifs adjusted as in other instruments.

The noxt point is to ascertain whether the two collars of the telagcope have the same diameter and, if not, to determine the diflerence.
'With the striding
level, level the upper face . "单 "... A /
部
in : not buqual, the lower face $A B$ will be inclined to
the horizon and the inclina-
, ton of the telescope's axis will bo ore inly that of $A B$.

- Reyerse the telescope in its γ^{\prime} att bo up or face
 hyde that of $A B$. The striding level being set on (T) Will be out by a certain number of divisions which 18 the measure of the inclination of C'D'. Oric half that quantity is the angle of the two faces of the telescope or more precisely, the angle of the cone da: termined by the two collars.

Then level the vertical sixis of the instrument by the ordinary methods, and withe the supporting screws of the telescope, move the latter until the striding level indicates for the upper face CD, an inclination equal. to the angle of the two faces: the lower face $A B$ is then horizontal. The inclination of the optical axis is one half that of the upper face: it will be the same when the telescope is reversed, but in the opposite direction. Ir adjusting the supporting screws, it is necessary to pay particular attention to the verniers and to see that they overlap \because equally on the graduation of the virile.

By

8

2
3

$$
x^{2-2} y^{-1}
$$

Coys.

The wires are now placed in focus for distant objects and the draw tube of the telescope fixed permanently by the screw provided for the purpose.

The prism is then taken of'f, the telescope set on a distant object and turnex round in its bearings. The wires must be adjusted until their intersection remains constantly on the same point while the telescope offects a complete revolution. The optical axis then coincides with the axis of figure of the telescope and the point sighted upon is on the samen level as the instrunent, if the collars of the telescope have the same diameter; if not, the altitude. of the point is equal to the inclination of the optical axia, which has been measured.

Now replace the prism in front of the object glass, set the telescope on a distant point and reverse it in its bearings. The vertical wire will probably not cover again the same point:correct one half of the difference by the adjusting screws of the prism and repeat the operation until the point is bisected by the vertical wire both before and after reversal. The line of sight is then perpendicular
to the axis of the telescope.
The next adjustment is that of the verniers. Set the telescope on the point used in adjusting the wires and which is in the horizon of the instrument. The readings of the verniers should be 0° and 180° : move them until they read accordingly and turm the instrument 180° in azimuth. Setting again the telescope 'on the same point, the readings should be 180° and 0° if the circle were exactly centered on the axis of figure of the telescope. This being seldom the case, the line $0^{\circ} 180^{\circ}$ which before reversal coincides with the line $A B$, Fig.

Fig. 139 139, joining the $0^{\prime} s$ of the verniers, will be in $A^{\prime} B^{\prime}$ after reversal. The vernier A will read for instance $179^{\circ} 50^{\circ}$ and $B, 0^{\circ} 10^{\prime}$. The verniers must be moved over half the difference:in the present case they should be made to read $179^{\circ} 55^{\prime}$ and $0^{\circ} 05^{\prime}$. After turning the instrument 180° in azimuth, they will show the same figures, 80 that the altitude of a point will be given
at once by taking the mean of the two vernier readings in one position of the telescope.

The point sighted upon was taken in the horizon of the instrunent:any other point may be employed,its correct altitude boing determined by the mean of the two altityges obtained by observing in one position of the instrument, turning it 180° in azimuth and observing again. Instead of setting the verniers to 0° and 180° in the first instance, they are set to the correct altitude and the adjustment is completed in the same manner as before.
104. TRIFOD. The tripod is a sliding one:it draws to a length of 38 inches which experience has shown to be sufficient in a mountainous country:it weighs $31 / 2$ lbs and when packed is $201 / 2$ inches long. It was adouted at first in the absence of anything better, the intention being to replace it as soon as a proper one could be procured. Contrary to expectations, it has proved 30 steady that $i t$ was decided to keep it.

The tripod serves for the altazimuth and the camera, both instruments boing secured by the same screw with spiral spring, which forms part of the
tripod head. Three small levelling screws passing through the head permit to level the camera.

Both instruments being very light,steadiness is secured by a net between the tripod legs, on which a heavy stone is placed. With this device, not only are the observations and photographs better, but there is no risk of the instrument being blown away during one of those wind blasts so frequent in the mountains.
105. USE OF ALTAZIMUTH. The instmuent being set up and levelled, the surveyor sits opposite one of the verniers of the horizontal circle, his assistant sitting at the other vernier. Turning the prism of the telescope to the right, he commences by observing the points immediately behind him. For doing so he bends to the left and looks through the telescope whose axis is directed towards the right. Without leaving his seat he reads the two verniers of the vertical circle, the vernier of the horizontal circle and enters the readings in his book. The assistant reads his vernier and notes it in his own book.

The same operation is repeated for every point

FIELD INSTRUEENTS

on the right of the surveyor, until those immediately in front are reached. For observing them, the surveyor bends to the right and looks towards his left.

The prism of the telescope is now turned towards the left and all the points on that side observed in the same manner as those on the right. The surveyor thus completes a series of readings around the whole horizon, 180° being with prism to right and 180° with prism to left. The instrument is then turned 180° in azimuth, the eye piece of the telescope being on the side of the assistant, who observes to the right and left as did the surveyor before and enters in his book the readings of the vertical circle and of his vernier of the horizontal circle. The surveyor merely takes the reading of the vernier of the horizontal circle in front of him.

Two complete series of readings around the horizon have now been obtained, one with priam to right and one with prism to left and during the whole time, neither the surveyor nor the assistant has left his seat. Should more precise observations be wanter, the same operations may be repeated after reversing

the telescope in its $Y^{\prime} s$.
After completing the observations, the surveyor and his assistant compare notes:every point having been observed and every reading taken, independently by gurveyor and assistant, any error is discovered at once and rectified on the spot. 108. CAMRRAS. A large mumber of cameras adapted -to surveying, have been constructed;although same of " them are very ingenious, they have not come into管

 ctmera combined, the object being to measure with the - Tteleacope and graduated circles not only the angles required in ordinary surveying, but also the direction of the principal point of the perapective. The vertical circle and telescope are on the side of the instrument, and the camera which is of metal and has the form of a pyramid, is in the center above the horizontal circle. It can be detached from the altazimuth when not in use.

The German pattern, Pig.140,is due to Dr.Meydenbauer:it is also a metal camera, in the form of a pyramid, set on a graduated circle with levelling screws. The views embrace an angle a little over $B 0^{\circ}$ and the mode of using it consists in turning the camera precisely 80° in azimuth, after each view, by means of the graduation, so as to obtain a complete panorama with six views. It is. intended to be employed alone, all angles required for plotting the plan'being taken from the photographs.

This instrument was. devised and employed principally for making plans of buildings, for whioh it may be well adapted. For topographical purposes, a separate instrument for measuring angles is a necessity, 80 Dr.Meydenbauer's camera could not be used alone, as Pig. 140
oircle of the camera becomes useless and only adds to the bulk and weight. Great superiority is claimed for the metal camera over a wooden one, on account of its greater precision. Without entering into a discussion on the comparative merits of wood and metal for instruments of precision, it may be stated that a camera of seasoned mahogany, well bound with brass, will for topographical purposes, give all the accuracy that photography applied in a practical way,is able to give.

The possibility of taking a complete panorama with six views does not prevent any important advantage. On the Canadian Surveys, seldom more than two or three views, together embracing an angle of 120° to 180°, are taken from one station, or are found to be useful.

A surveying camera merely requires to be simple, strong, and without any adjustments liable to get out of order, except the means of setting the sensitized plate vertical, which is a necessary condition to obtain correct perspectives. Any camera falfilling these requirements is adapted to surveying.

FIELD INSTRUKENTS

107. LENSES. The choice of the lens is of great - k importance;no satisfactory ${ }^{h}$ results can be expected $\stackrel{r}{r}$ with an imperfect instrument.

There are several kinds of lenses employed for landscape photography; siome consist of a aingle achromatic lens and others of two combinations, either similar or not.

The single or landscape lens does not give correct perspectives:if,for instance, parallel and perpendicular lines be ruled on a sheet of paper aco aid to divide it into squares and a photograph taken with the paper parallel to the sensitized plate, the image does not consist of squares, but is a figure either apindle or barrel-shaped, according as the diaphragm, is behind or in front of the lens: In photographing a subject with suoh a lens, the only vertical lines rep: resented by straight lines, are those in the principal plane; the perspeetives of other verticals are ourves Fig. 141 . more and more inclined as
CAMERA
the distance from the principal point increases. An
essential condition of a correct perspective is that
all vertical lines be represented in the perspective
by parallels to the principal line, therefore the
photographs taken with an ordinary landscape lens are
not suited to surveying.

Pig. 141 represents an ordinary landscape lens with rotating diaphragm.

Mr.Dálimeyer has brought out lately a landscape lens which he calls "rectilinear". It is probable, however, that the distortion is merely reduced without having disappeared entirely. The landscape lens has over all others the great advantage of a smaller number of reflecting surfaces and mininum thickness of glass:less light being absorbed by the glass and lost by reflection, the images are so much brighter. It would be the best lens for surveying purposes, if it could be made absolutely reotilinear but that does not seem possible.

The lens most generally employed is a combination of two similar lenses between whioh the diaphragm is placed. It has received different names n 2
from the makers, such as the "Rapid Rectilinear" of Dallmeyer, "Rapide Rectilinéaire" or "Aplanétique" of Français and Hermagis, "Aplanat" of Steinheil, "Euryscope" etc., but all these lonses are construated on the same plan, although there are differences in the curves and kinds of glass employed. To understand how the distortion is corrected, the double combination may be supposed to consist of two single landscape lenses, between which the diaphragm is placed. The front lons, having the diaphragm behind causes a spindle-shaped distortion which is counterbalanced by the barrel-shaped distortion due to-the back lens having its disphragm in front. This must be taken only as a rough explanation of the lens;a double combination does not consist of two landscape lenses, and the correction of the distortion is obtained by calculating the curvature to be given to the lenses in order to produce the effect desired.

In the "rapid" variety of this form, the distancebetween the two combinations is about equal to their diameter, the diaphragm being placed in the middle.

CAMERA

This arrangement permits the use of a large aperture, the lens bering what is callcd a-"rapid" one. The definition, good at the centre, decreases rapidly towards the margin of the plate and can only be improved by the Fig. 142 use of small diaphragms.

Any point near the centre of the plate receives the light coming through the whole of the lens' opening, but owing to the great distance between the two combinations, part of the light is intercepted by the *. mounting when the point is near the edge of the plate. The result is a rapid decrease in the brightness of the image from the centre to the edge, which can be improved only by the use of smaller stops.

Fig. 142 represents Henry Hermagis' "Rapide Rectilinéaire" lens vith attached diaphragms.

In other lenses constructed on the same plan, the distance between the two combinations is reduced more or less: they are designated under the general name of "Wide Angle" lenses. The diaphragms beling

9
. 2
a
$x=2$

close to the lenses, their diameter has to be reduced, "
80 this form is slower than the rapid rectilinear. On the "ther hand the dimimution of the distande between the two combinations causes a more uniform distribution of the 'light over the plate, the brightness of the image not chang-

Pig. 143 ing so rapidly as in the rapid rectilinear. The definition keeps good at a greater distance from the centre:if a rapid reotilinear and a wide angle be stopped down to the same aperture, it will be found that the latter will give good definition over a larger area than the former;it will cover a larger plate, hence the name of vide angle.

Fig. 143. represents Dallmeyer's wide angle lens with rotating diaphrage.

Comparing the defects and advantages of the various lenses, the wide angle is indicated as the lens for surveying purpospe Rapidity is unvocessary but uniform illumination and definition, in which the

CAMESRA

219
wide angle excels, are important. A well constructed wide angle lens is practically free from distortion. A simple way of testing it consists in dividing a sheet of peper into squares by parallel and perpendicular lines. Place it parallel to the ground glass of the camera and take a photograph: the result will show at once whether there is distortion. With a good lens no error should be seen without a microscope: the measurements and constructions on the photographs which will be described later on being all made with the naked eye, it follows that the distortions due to such a lens may be neglected.

The terms of "back focus" and "equivalent focus" are often found in manufacturers' catalogues and in books relating to photography. The back focus" is the distance from the flange to the focal plane:it has no particular meaning beyond expressing the $/$. length to which a camera must extend to be used with a certain lens.

The "equivalent focus" is the focal length of the ingle lens which would give the same image as the lens referred to. It is seldam given acourately
in the catalogues. To find it, draw a geometrical figure such as a square or triangle, on a plane parallel to the ground glass, focus and move the camera until the image seen on the glass is equal to the figure itself:mark the position on the bed of the camera. Then focus on very distant objects and mark the new position; the distance between the two marks on the camera bed is the "equivalent focal length" of the lens.

In elementary text books on optical matters, several processes are given for measuring the focal length, which rest on the assumption of an optical centre through which all rays of light pass without being refracted. For instance it is suggested to measure the distance between a figure and its image when both are equal and to divide by four:this method depends on the hypothesis of the optical centre. It must not be forgotten that there is no such point, that it is merely a convenient hypothesis for facilitating demonstrations or explanations and that any method depending upon it gives only an approximate result. In every lens or combination of lenses, there
are two points called "nodal points" such that any incident ray of light passing through one of the nodal points will emerge from the lens in a direction parallel to the incident ray and passing through the other nodal point.

The equivalent focal length is the distance between the second nodal point and the focal plane.

The brightness of the image varies proportionally to the size of the lens or to the square of its diameter. The larger the aperture, the more light is admitted. It varies also invergely as the square of the focal length: thus if the focal length be doubled, the aperture ronaining the same,an equal quantity of light is admitted but is distributed over an area four times larger, the brightness of the image being reduced in the same proportion.

Representing the aperture by a and the focus by f, the brightness of the image is therefore proportional to

$$
\frac{a^{2}}{f^{2}}
$$

This fraction is the measure of the rapidity of a lens or of itf capacity to produce a certain lu-
minous effect such as the impression of a photographic plate. The aperture referred to is the effective aperture of the-lens which may be mach smaller than the diameter of the lens.

It is customary to express the aperture as a fraction $\frac{f}{x}$ of the focal length: then $\frac{f}{x}$ is the rapidity and the exposure of a sensitized plate must be proportional to x^{2}.

The use of stops or diaphragas is equivalent to a diminution of the aperture and consequentiy, of the rapidity. It must be supposed that the effective aperture is equal to the opening in the stop:it depends entirely on the position of the stop with reference to the lens.

The following process due to Steinheil, permits to measure the effective aperture. Focus on a distant object and replace the ground glass by a screen with a hole $1 / 8$ inch in diameter, on the optical axis. Put a light close to and behind the hole;covering the lens with a piece of ground glasis, an illuminated circle will be seen which represents the effective opening. 108. CAMRRA OF CANADIAN SURVEYS. The camera omploy-
ed on the Canadian Surveys (Plate V) is merely a rectangular box of mahogany firmly bound in brass, one face having a hole for the lens and the opposite one being left open to receive the plate holder. The size is the English half plate, $43 / 4 \times 61 / 2$ inches. The box is constructed with great care, the faces being perfectly plane and as nearly parallel and perpendicular to each other as they. can be made.

It is fixed to the tripod by the screw in the tripod-head:nuts in which that screw fitg,are encased in two of the faces of the camera, which may thus be placed with longest dimension either horizontal or upright.

The opposite faces are arranged to receive two levels at right angles: they rest on the' face itself and can be changed from one to the other according to the face which is uppermost at the time.

A diaphragm in the middle of the box, cuts off the part of the light admitted through the lens which does not contribute to the formation of the image.

Pour fine combs, one sighth of an inch ide, are fixed to the camera immediately in front of the
middle of the slides of the plate:they serve to fix the position of the horizon and principal lines. The combs being fixed to the camera and not inside. the . A holder, are about one quarter of an inch in front of the plate: the distance being short and small stops used in the lens, the images of the combs come out sharp on the plate although not in contact with. it.

A hood with sun shade can be adapted, to the lens, for cutting off the light not required for the image and protecting it from the direct rays of the sun.

The lens is a Dallmeyer wide angle, No. I. Aviof 5% inch focus:with the half plate employed, it gives an angle of 45° in one direction and 60° in the other.

Three levelling screws, forming part of the head of the tripod, serve to level the camera. Once levelled, it may be turned around, the screw fixing it to the tripod acting as an axis;it remains tolerably level during the revolution.

Two lines marked on each of the faces receiying the levels, indicate the angle embraced by the instrument and enable the surveyor to see what he is taking without the usenof the ground glass and black cloth.

camera: the sensitized plate must be vertical. The levels being on the upper face, the box must have been made with sufficient precision to ensure the verticality of the plate when the camera's upper face is horizontal.

The verticality can be verified with a plumb line or with a level mounted like a builder's level.

The following process is more precise. Put a piece of plate glass or a good mirror in the holder, in the place occupied by the sensitized plate, and open the back slide. Set up the altazimuth near the back of the camera, fix the telescope to an altitudd of 0° and by turning it round, find a point on the same level as the telescope and which can be seen by reflexion in the plate glass of the canera. Then turn the instrument round the vertical axis until the reflected point is seen. If at the intersection of the wires, the plate is vertical.

For let A Fig. 144 be the projection of the instrument on the principal plane, M the projection of the point and $B C$ the trace of the reflecting surface of the glasseplate; A and M being on the same level,

CAMERA 6

 227 $A M$ is horizontal. When the telescope is turned towards

Fig. 144
> the glass plate, the horizon-
> tal line $A D$ is the prajec-
> tion of the telescope's optical axis:should $C B$ bé ver- tical or in other words should the plate be vertical,
a ray of light emitted by the point M and falling in D would be reflected in the direction DA of the optical axis.

Should the top of the plate be inclined backwards, as in figure, MD will be reflected in DF and the point Mwill cease to be seen on the horizontal thread of the telescope. In order to bring it there, it will. be necessary to raise the telescope so as to look in : the direction $A G: M$ will show above the horizon. Should the plate incline in the opposite direction the telescope would have to be lowered to set it on the reflected point; m would show below the horizon.

Were the plate found to be inclined, the level perpendicular to it shonla be adjusted until the change of inclination of the camera brings the plate 02
vertical.

The holderg should all be exactly alike, so that the plates may be at the same distance from the lens. Measuring with a scale from the flange of the lens to plates in the holderg will show whether this condition has been fulfilled by the maker.

The plate should be in the focal plane of the lens: the test is made in the usual wey with a ground glass:- If not satisfactory various expedients may be resorted to for moving the lens until proper definition is obtained.

The principal point and the horizon and principal lines ocoupy the same position on all the photographs taken with the surveying camers:with the distance line, they are the constants of the camera.

The distance line is the equivalent fooal length of the lens or,more precisely, the distance from the second nodal point to the sensitized surface of the plate.

The principal point is the foot of the perpendicular let fall from the second nodal point to the surface of the sensitized plate: the horizon and
principal lines are the horizortal and vertical lines passing through the principal point.

There are several methods for determining the focal length directly, but unless it be intended to plot from the negatives, the determination should be made from a print similar to those employed for the construction of the plan.

A print is seldom equal in size to the negative: either it contracts in drying or expands in mounting. When the contraction or expansion is uniform in all directions, the figure of the print 1 s simplar to the negative and therefore corresponds to the perspective on a plane parallel to the real picture plane, for all perspectives on parallel pioture planes are similar. The real picture plane to which the negative corresponds, is the first focal plane of the lens or more accurately, a plane parallel to the sensitized plate at the same distance in front of the first nodal point as the plate is from the second nodal point. A contracted print corresponds to a picture plane nearer. to the lens and consequently to a shorter distance
line:an expanded print to a more remote picture plane 0
裉
and longer distance line.

The constants of the perspective required for the construction of the plan, are those which apply to the prints and therefore should be obtained from them; those ascertained directiy would be erroneous if applied to the prints.

The determination is made on a view containing gome well defined points near the horizon. After taking the view the camera is replaced by the altazimuth and the bearings and altitudes of the points measured. The distance line, which is the focal length of the lens, is elready approximately known;with this

Fig. 145
value, and the altitudes of the points, the heights
of the perspectives $\alpha, \beta, \gamma,($ Fig.145) above or below the horizon line can be calculated. Laying them in an approximately vertical direc- tion in $x a, \beta b, \gamma^{\prime} \ldots \ldots . .$. , determines an approximate horizon line HH^{\prime}.

The horizontal angles between α, β and γ or what is the same, between $a /, 7$ and c, have been measured from the station. About a and b, describe a circle containing the angle measured detween them; also about Z and c, a circle containing tric angle between the two points. The intersection of the two circies represents the station in the horizon plane, supposed to be revolved on the picture plane around the horizon line as an axis. A pernendicular SP to the hotizon line is the distande live and P is the principal point. The perpendicular $\alpha^{p} R$ to the norizon line is the principal line.

The distance line and airection of the vertical which were assumed, can now be rectified, and if necessary, a new construction made which will pive more precise values. 0 ther points must also be employed so as to check the result obtained from the first three.

A convenient method for making this determination consists in drawing from a point S, Fic. 146 the directions of all the points observed, then on the edge of a sheet of paper made perfectly straight, mayk the projections $\{a, b, c, \ldots . .($ (Fig. 145) of the fergrec-

Fig. 146

FIELD INSTRUMENTS
five on the horizon line. Apply the sheet of paper
on the lines drawn from S,
(Fig.146) and move the paper until each of the points $a, b, c, \ldots . . c o i n c i d e s$ with the line representing its direotion. Mark the position of the extremities of the
paper's edge and draw a
line through them. This line is the trace of the picture plane on the horizon plane, S being the station.

Instead of constructing the distance line, the polar coordinates $\quad \partial S=\rho$ and $\omega b S=\omega$ of the staion S (Fig.147) may be calculated. The triangle all gives:

$\rho=m \frac{\sin (M+\omega)}{\sin M}$ (1)
This is the equation in polar co-ordinates, of the circle described about a

$$
\text { Pig. } 147
$$

and " and containing the angle M, the origin of the
co-ordinates being at b.
Similarly, the triangle bces gives:

$$
\begin{equation*}
\rho=n \frac{\sin \cdot(\omega-N)}{\sin \cdot \mathbf{N}} \tag{2}
\end{equation*}
$$

which is the equation of the circle about b and c.
The point of intersection is found by making (1) equal to (2), whioh after reduction, gives:

$$
\text { Ton: } \omega=\frac{m+n}{\frac{n}{\tan \cdot \mathrm{~N}}-\frac{m_{L}}{\tan \cdot \mathrm{M}}}
$$

The value of ω obtained from this last equation, is employed with (1) or (2), to obtain ρ.

The diatance line is equal to
-

$$
\text { Psirv. } \omega
$$

and the principal point is at a distance from , equal to

$$
\rho \cos \omega
$$

- The horizon and principal lines pass through certain points of the comb marks which are in the middle of the sides of the photograph, having been improssed there by the cambs fixed to the camera,a short distance in front of the plate. These points are noted and will serve in future for drawing the - two lines without any new determination.

CHAP'TER V

PHOTOGRAPHIC OPERATIONS

111. DRY "PLATES. The views employed in photographic surveying are those of distant objects:they are the most difficult to obtain by photography. The foreground is easily obtained clear, bright and full of detail, while the distance will come out fogged and indistinct,unless the best plates be omployed and skill exercised in the exposure and development. The difficulty is due to the blue haze interposed between the lens and the distant points:blue being a very actinia color, a slight haze unperceptible to the eye, has a most damaging effect on the negative.

It is impossible to give precise directions concorning the kind of plate to used:photography is progressing so rapidly that in a short time the directions would become obsolete.

A collodion orthochromatic emulsion has, it is said, been discovered recently:if reliable, it would be, the best for surveying purposes. The blue mist would not so much affect an orthochromatic emulsion as an ordinary one and the collodion ought to yield fine negatives for enlarging.

Of the plates now on the market, the most suitable are probably the gelatino-bromide orthoohromatic dry plates. The ordinary gelatino-bromite plate is most sensitive to blue and violet ray's, and little affected by green, yellow and red. A special treatment of the emulsion or plate makes it more uniformly sensitive to all colors; the plate is then said to be "orthochromatic" but the full effect of the treatment requires the use of a yellow or orange transparent screen somewhere in front of the plate. By the process to which it has been submitted the plate has become more sensitive to green, yellow and red rays;
the colored soreen, in cutting off a large proportion of the blue and violet rays, increages the effect and finally, the different colors are rendered in nearly their true values.g

Among the ordinary plates, the siow ones will to give the best results. They should be thickly and evenly coated and allow a very great*latitude of exposure. Except the borders covered by the holder, which should be perfectly clear, very little clear glass should appear in the finished negative:a plate in which patches of clear glass are seen yields hard negatives without detail in the shadows. The gradation of the half-tones should be contimuous, from neariy opaque black to nearly elear glass. The plates must keep well, and be easy to develop without accident. These qualities are found in several of the slow plates now on the market:with a long exposure and a careful, well restrained development, they will be found to work fairly well.

During the last few years, a great number of films of various kinds have made their appearance. In a mountainous country, nothing better could be desired;
large sizes could be used without increasing the weight to be carried and without the risk of breakage. Unfortunately, there are serious objections. In the first place, no film has yet been produced which may be pronounced equal to a good glass plate and geveral require after, treatments whioh wake the process long, tedious and liable to accidents. Then they are more or less aubject to contraction or expansion:as long as it is uniform, it does not affect the accuracy of the viewe and their fitness for surveying, but it is not certain that this uniformity exists and the least distortion is sufficient to cause their rejection.

The packages of plates received from the manufacturer, are tranaported in tin boxes hermetioally closed: the boxes are always kept lockod.

A chinese lantern made of ruby fabric,is used for ohanging the plates. This is done at night in the surveyor's tent. Should the moon throw too mach light, a few blankets thrown on the the tent,make it safe onough. The old plates are taken out and repleced in the original packages; the now plates are marked, introduced in the holders and dusted with a wide camel's

PHOTOGRAPHIC OPERATIONS

hair brush. The holders are kept sorupulously free from dust inside; otherwise the constant motion would bring it on the plate and cause pinholes.

Before introducing a plate in the holder, the numbers of the dozen and of the holder ara, inscribed in pencil in one of the comers. Pigares writion with a soft pencil on the film are quite plain after development and have no chemical effect.
112. EXPOSURR. The length of exposure ia influenced by four calases:

1. The rapidity of the lens.
2. The rapidity of the plate.
3. The strength of the light.
4. The nature of the subject.

The first two causes are constant and their effoct may be determined once for all.

The rapldity of the lens is the square of the fraction 'f which expresses the ratio of the aperture to the food length. The lens and stop used being always the same, the rapidity is constant.

When ordered, it should be specified that the plates are to be of one emulsion: their rapidity will
be uniform at first and will change but little after. wards.

Having ascertained by experiment the time of exposure required for a certain subject and with a certain light, it may be assumed that the aame exposure will suit any similar subject with a light of equal intensity.

The atrength of the light is measured by instruments called photometers. One of the simplest conBists of a piece of sensitized paper on the surface of a tinted caydboard, the tint being that acquired by the sensitized paper after some oxposure to light. The photometer being exposed to diffuged light, the sensitized paper wil acquire the same tint as the cardboard after a certain number of seconds: this mamber indicates the strength of the light and it is assumed that the exposure of a dry plate should be proportional to it. This is not strictly true', the sensitive surfaces not being of the same kind, but it is sufficiently acourate in practice.

Decoudun's photometer consists of a screen of graduated opacity interposed between the eye and the
ground glass of the comera. By inoreasing the opacity, a time comes when no light is seen: the opacity then indicates the brightness of the image. The great advantage of this photometer is that it measures at the sane time the influence of the last two causes of uncertainty in the time of exposure, the strength of the light and the nature of the subject. It is open to two objeotions. In the first place the eye is inflacnced by the light itself and what appears opaque at one time would be translucent under other conditions without any change in the brightness of the image. In the second place the instrument measures the intensity of the luminous rays and indicates a londer exposure for blue than for yellow light while the reverse should be the case. However, the instrament may render good service, particularly with orthochromatic pletes.

The nature of the subject varies little in photographie surveying;it is always a distant landscape. The exposure should be timed for the shodows, and those are more or less dense. A deep valley in the shade will require a longer exposure than a wide one.

The color of the surface is an important factor: wooded tracts requiring a very long exposure. Bare rocks are generally of a light color and when at a distance impress the plate quickly:tke color being light, its kind does not seem to make much difference in the time of exposure.

In case of doubt,it is safer to err on the side. of over exposure:with the proper kind of slow plate, and careful development, a fiair result can be obtained from a very much over exposed plate.

After exposure, the plates are forwarded to the Head Office, where they are developed. Accompanying them, are the notes of the surveyor giving the time of exposure for each plate, the strength of the light, whether clear or cloudy weather, the direction of the sun, either in front or behind, the nature of the subject, whether bright or dark and such other information as may help the photographer in the development. 113. DEVELOPMENT Every photographer has his own favourite developer:it is the best so far as he is concerned. Being used to handle it, he knows how to modify its strength to suit the various conditions
of the plate, and will obtain with it, results superior to those which any other formula would fi ve nim. A good plate should work well with any formula and thete is no reason why the photographer should not use his own developer.

Nefatives intended for enlarging should be cloar fron: stain; although it may be removed by clearing solutions, the additional manipulations are objectionable. For this reason, hydrochinone was adopted as developing agent. The developer is composed as fol lows:

Sulphite of soda (crystals) B
Hydrochinone 1.2
Caustic Soda
0.8

Water
92.

To which is added bromide of potassium according to the appearance of the plate.

The negatives, if sufficiently oxposed and brought out without forcing,will be composed of pure blacks and whites without any coloration. They are fixed and washed as usual and arc wiped before drying, in order to remove any deposit which may have formed on the
film during the various opetations to which the plate was submitted. The number of the plate already inscribed in pencil is now written in irk in the margin BO as to print with the subjact. The plates are kept and stored in envelogmtaproperly numbered and classiffied.
114. ENLARGING.
 contact printing or by enlarging. Contact printing undouotedly gives the finest prints, whilc details are sometimes lost in the process of enlargement. on the other hand, measurements are taken direct on an enlargement with a precision which would require the use of a microscope on the contact print; the enlargement also affords room for the contuction lines which would soon become confusing on the smaller print.

In so far as the perspective is concerned, an enlargement is the figure which would be obtained on a plane parallel to the picture plane but at a greater distance from the station: thus if a perspective be enlarged-twice, it will correspond to a picture plane with a distance line double of the
real one.

In the same manner a photograph enlarged twice is the same as one taken direct with a lens having a focal length double that of the lens employed. It is convenient to enlarge in a proportion which will make the distance line an even length: for instance with the negatives taken in the camera described above, the enlargement makes the distance line one foot, which represents 20000 feet on the ground plan (scale $\frac{1}{20000}$):

Positive bromide paper is employed and the enlargement made with a copying lens, in order to secure good detail. The prints are developed in the usual manner, washed and dried and are then clasgified in scrap books, with pages properly numbered.

The esgential condition for a correct enlargement is that the negative be parallel to the easel or board on which the sensitized paper is stretched. The apparatua should be put up 80 as to fulfil this condition:if not, it may be realized as follows:-

Expose a plate tq light and develop it completely dark. With a fine point, draw a square or rectangle
on the film and introduce the plate in the enlarging camera. The image received on the easel should be another square or a rectangle similar to the one described on the film; the direction andinclination of the easel must be modified until similarity in the figures is attained.

The easel should be mounted on rails, permitting to displace it without changing its direction.

The apparatus may be set by trial to any desired degree of enlargement, but it is more precise and probably shorter to calculate the positions of the lens and easel.

Let N_{1} and N_{z} Fig. 148 be the nodal points of the lens, P_{1} and P_{2} two conjugate foci and E, F_{z} the corresponding focal lengths. Designating the enlargement by α we have: $\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{F}_{1}}=a$
α can be measured direct-
ly; for instance with the
darkened plate employed
for setting the easel parallel to the negative,by measuring the side of the square or rectangle on the film and on the image.

A trial in another position of the easel will
give:

$$
\frac{F_{2}^{\prime}}{F_{\prime}^{\prime \prime}}=\alpha^{\prime}
$$

The extension of the camera is marked on its bed at each trial: the distance between the marks represents the displacement M of the lens,

$$
M=F_{1}^{\prime}-F_{1}
$$

The two positions of the easel have also been marked:
its displacement, N, is composed of two parts, one due to the change of F_{2} and the other to the displacement of the lens: therefore:

$$
N=F_{z}-F_{z}^{\prime}-M
$$

We have now four equations with four unknown quantities:deducing their values we find:

$$
\begin{aligned}
& F_{1}=\frac{N+\left(1+\alpha^{\prime}\right) M}{\alpha-a^{\prime}} \\
& F_{2}=\alpha \frac{N+\left(1+\alpha^{\prime}\right) M}{\alpha-\alpha^{\prime}}
\end{aligned}
$$

With these two values, the distance of the principal focus is calculated by the formula of conjugate foci

$$
\frac{1}{F_{1}}+\frac{1}{F_{2}}=\frac{1}{f}
$$

To enlarge n times, we must have

$$
\frac{f_{2}}{f_{1}^{\prime}}=n
$$

But we have also:

$$
\frac{1}{f_{2}}+\frac{1}{f_{1}}=\frac{1}{f}
$$

Therefore:

$$
\begin{aligned}
& f_{2}=(n+1) f \\
& f_{1}=\frac{n+1}{n} f
\end{aligned}
$$

The lens has to be moved a distance of

$$
f_{1}-F_{1}=\frac{n+1}{n} f-F_{1}
$$

This is done by measuring this distance from the mark on the bed of the camera indicating the first position of the lens.

The displacement of the easel, should be:

$$
F_{2}-f_{2}-f_{1}+F_{1}=F_{1}+F_{2}-\frac{(n+1)^{2}}{n} f .
$$

Various devices have been proposed to correct the oprors due to the distortion of the paper in printing: they generally consist in the impression of a network of squares on the image.

$$
\text { p } 2
$$

The impression can be made on the negative itself; for instance a ruled glass plate may be introduced in the holder over the sensitized plate, the ruled lines being photographed with the subject.

It would be very inconvenient to carry out such an arrangement;provided"a small stop be employed; the same result is attained by means of a net fixed to the camera immediately in front of the holder. Hair has been proposed for the network, but it is too much affected by moisture and is too liable to break to be of much service. A ruled glass plate is probably pre. ferable.

The lines may also be impressed either before or after the exposure on the subject, an additional exposure being given under a ruled plate having cfear lines ruled on a nonmactinic background, such as collodion mixed with aurine. The lines on the print will show white.

Instead of having the network on the negative, it may be impressed on the print by exposure under a plate similar to the last one.

解为
All these methods do not suppress distortion:
they merely permit to make accurate measurements on the photograph: they would be of little or no use for correcting the errors caused by distortion in most of the construction based on the laws of perspective.,

The process employed at the office of the United States Coast and Geodetic Survey for furnishing accurate photographic copies of maps to the engravers, would be preferable.

The print is made a little smaller than the proper size, and while wet,is placed in a frame where it is held by clips. The print is stretched until brought to the proper size and figure, by means of adjusting screws acting on the clips:it is left to dry in that position and pasted on strong 4ardboard before being removed from the frame.

With prints made on petavy bromide paper, the contraction being tolerably uniform, all hese methods of correction which introduce a great complication in the plotting, of the plan,may be dispensed with. Moreover, "there are other means of counteracting the effect of distortion which will be exposed further on.

The ordinary albumen paper being thin, in more

(4)
 PHOTOGRAPHIC OPERATIONS

liable to distortion than the heavy bromide paper; for that reason the latter appears preferable for contact prints.

CHAPTER VI

FIELD WORK

115. TRIANGULATION. The triangulation may be executed at the same time as the topographical survey, but it is preferable to have some of the principal points located in advance by a primary triangulation.

* The subject is fully treated in the standard work g on surveythisery little requires to be added整 here: However, there exists some misconception as to蝟 the order to be followed in the operations:a few words of explanation may prove useful.

A survey must be considered as consisting of two wo et operations. One hex for object the representaty of the shape or form of the ground,
the other the determination of its absolute dimensions. A perfect plan or triangulation can be made without the measure of any base or length: the plan will exhibit the various features of the ground in their exact proportions, but no absolute dimension can be measured on it until the scale of the plan has been determined. This is done by measuring on the ground one of the dimensions represented on the plan:so the object of the measure of a base is to fix the scale. of the survey.

To execute a triangulation, the surveyor is recommended to commence by measuring a base and to make it the side of a triangle, on which he will build others of increasing dimensions. There is a certain logical sequence in the order followed, but in strict theory, the order is immaterial, the triangulation may be executed first and when completed, connected with a base by triangles decreasing in size as they come near the base.

In practice, the case is different:there are several advantages in executing the triangulation before the measure of the base.

The choice of a base must fulfil several conditions: the ground must be tolerably level and free of obstacles, and the direction, length and position of the base must be such as' to permit a good connection by triangles of proper shape, with the main triangulation. The surveyor can make a better choice after he has been over the whole ground than on his arrival, when he has seen little of it. Having established the main triangles, he will also know best to connect them with a base. In a mountainous country the principal summits of the triangulation are fixed by nature and cannot be changed while the position or direction of a base may generally be modified to some extent. Were the base measured first,it might be found not to connect properly with the mainh angles.

The secondary triangulation is the work of the topographequand the construction of signals on the secondary ${ }^{3}$ points should be his first act on arriving on the ground.

Shotid the time at his disposal allow, he will not commence the survey proper untiligall signals

254
have been established, otherwome may have to measure angles between points not very well defined. In such a case, the closing error of a triangle is assumed to be due to the want of definition of the points.

Let A, B and f represent the angles of a trio. angle, whose summits have been occupied in the order given. At A_{y}, the surveyor observes the angle between B and C,where there are no signals. He puts up a, signal at A and moves to B. In measuring the angle between A and C, he has A signal at A and none at C. Placing a signal at B, he measures the third angle C between two signals.

Call α the closing error of the triangle and ε^{\prime} the probable error of a sight on a po tit without signal. The probable errors of the angles are: 4

Tho corrections' applied to the angles must be proportional to the probable error of each; they are:
for $A_{1} \frac{\alpha}{1+\sqrt{\frac{1}{2}}}$
for $B, \quad \frac{\alpha}{1+\sqrt{2}}$

- $\quad \mathrm{C}_{1}$

0
The closing error must not exceed a certain limit fixed by the degree of precision of the survey:when the limit is exceeded, the stations must be re-occupied, commencing at the mos't doubtful one.

The stations of the primary triangulation are the last ones to be occupied when they have been established by a previous survey.
"To have a correct idea of the work he is doing, the surveyor must make in the field a rough plot of his triangulation, on which he marks all the stations gecupied. It will show him the weak pointis of the survey and permit him to plan his operations with more assurance.

The object of the secondary triangulation is to fix the camera stations:its summits must be selected for that purpose only. All the topographical details of the plan are drawn from the camera stations. 116. CAMERA STATIONS. A camera station is fixed oither by angles taken from the station on the triangulation points or by angles taken from the latter
or by both. It is more easy and more accurate to plot a station by means of angles taken from/the triangulation points than by the angles measured at the - *部 station, therefore the camera stations should if pos-. sible, be occupied before the triangulation summits:
there are, however, other considerations which may prevent it.

Camera stations must be chosen in view of the construction of the plan by the method of intersections:other methods are to be employed only when this one fails or when the data collected on the ground are insufficient to furnish a sufficient number of intergections.

A mark or signal of some kind should be left at each station;it does not require to be very elaborate, a pole or a few stones are sufficient. Angles on this signal are measured from the triangulation points, in order to place the station on the plan.

It will seldom happen that the camera is set up precisely at a triangulation point. Generaily it will be advisable to move a few feet in one direction or another, for including in the view a certain part of

```
the landscape. Whenever there is any advantage in
```

displacing the camera the surveyor should not hesitate
to do so. The distanc fixom the triangulation point measured with a light tape and an angle read on the instrument locate the camera station.

For the same reason,it is not necessary that several views be taken from each station: every view should be takon from the point where it is best for the construction of the plan. The greater number of stations gives very little extra work either in taking the angles for fixing their positions or in plotting them.

In Eencral, views taken from a great altitude and overlooking the country are desirable,but there are numerous exceptions.

Sometimes difficulties may exist in obtaining two views which ${ }^{\text {ritarnish }}$ intersections over a certain part of the ground. In such a case, the method of vertical intersections may bo employed, views being taken from different altitudes. Provided the difference of altitude is large enough and the points to be determined not too far, the precision is the
same as with horizontal intersections.
It would be desirable to have the views of the same part of the ground taken at the same time of day. The shadows cast being identical, it is more easy to recognize the different points. It would be well also, to avoid views taken looking towards the sun; they are flat and lack detail. But the surveyor has other considerations to take into account; he will seldom be able to choose his own time to ocoupy a station or take a photograph. He will often have to take views against the sun or dispense with them altogether. With care in cutting off" the sky and giving along exposure, he may still obtain results remarkably good. Yoder the circumstances.

The identification of points, even under different lighting, does not offer any seriouts difficulties.

The number of photographs must, be sufficiently, large to cover the ground completely:an additional view causes very little "extra work, either in printing or plotting and may often save much trouble. The surveyar should, not hesitate to take one whenever hef

- finds a place where it may be yseful.

Two or three points in each view must be observed with the altazimuth, the altitudes and horizontal angles between them being noted. The altitudes serve to rectify the horizon line on the photograph in case the camera should bo slightly out of level and the horizontal angles permit to counteract the distortion of the print by altering the focal length to correspond.

The notes of observations on triangulation points are kept in the usual manner for such work:
points of theviews are better inscribed on sketches
\because Made on the spot. WThe sketches permit to identify
points with more certainty than a mere designation by a letter or figure.

CHAPTER VII

PLOTTING THB SURVEY
117. SCALE OF PLAN. The minutes of the Canadian Surveys are plotted on a scale of $\frac{1}{20000}$; they are afterwards reduced for publication to $\frac{1}{40000}$. The equidistance is 200 feet.

The convention already adopted in Perspective ($\$ 54$) mast be reaalled here: the angles measured and the photographs taken must be assumed to have been measured and taken on a model of the ground already reduced to scale.

That the perspectives obtained from any point of suach a model will be the same as those taken from

the similar point of the ground has already been

 shown (854); the same rule applies to photographs, in theory at least.The angles measured are also the same as on the ground, for any triangle ABC,Fig. 149, of the ground is represented on the model by a similar triangle $a b c$. The altazimuth set in α will give between b and c the same angle as it would Between B and C,if set at A.
Fig. 149
Thus if the pilán be required on scale of $\frac{1}{20000}$
the model will be assumed to have been reduced to that scale and the problem consists in making a plan fyll size by means of angles and photographs obtained on the model.

No change being made to the camera, the focal length preserves the same value;if one foot, it will cover on the model a distance corresponding to twenty thousand feet on the ground.

The plan and the model being both reduced to the
scale of $\frac{1}{20000}$, it is clear that if thisfscale be used to measure an actual dimension on either, the result is the number expressing the corresponding actial dimension on the ground. If a division of the scąle be called a"scale foot", a dimension of the ground is expressed in real feet by the san number which expresses in "scale feet" the corresponding dimension of the modef or plan. A distance of a mile contains 5280 real feet on the ground and is represented on the model by 5280 "scale feet

The focal length of one foot mentioned above would be a focal length of 20,000 nscale feets

It follows that although the problem consistsin representing a model fuli size, the scale may be employed to measure the actual dimensions, the value of one division being considered as an arbitrary unit.

In other words, a liliputian surveyor must be imagined operating in a liliputian country of which he wants to make a plan full size. "His canera is of enomous dimensions, bearing to him the same proportion as a camera several miles long mould to an
ordinary man.
Of course, all the constructions used in plotting the plan can be demonstrated* without auch an hypothesis, but the explanations would not be so simple and it wpuld not be so easy to grasp "the whole subject.
118. PLOTTING THE TRIANGULATION. The primaryentriangulation is assumed to have been previously calculated: the primary stations can therefore be plotted at once by their co-ordinates.

The angles of the secondary triangles are now calculated, and the corrections indicated by the closing errors, applied. Some of these triangles have common sides with the primary triangulation: they are calculated firgt. With the values found for their sides, the adjoining triangles are calculated and so on, until the lengths of all sides have been obtained.

With these values, the differences of lat ude and departure from overy sumuit of the gecondary trianpulation to the nearest primary atation are calculated. Unlese the primary triangles be very large,
the secondary stations can be plotted on the plan by their latitudes and departures without any appreciable error.

The camera stations are next placed by the angles observed upon them from the triangulation poiftex. Theae angles are plotted with a vernier pro-为 tractor or by means of a table of chords;either mestran thod is accurate enough for the purpose

As long as a sufficient number of readings have been taken on a camera station from triangulation points,no difficulty is experienced in placing the station:it is not so when only a limited number of readinge or none at all are available. There are two cases to consider.

Case I. The camera station has been observed from one or more triangula${ }^{B}$ ", tion points. The camera station M Pig. 150, having been observed from the triangulation point A,triPig. 150 angles may be formed with M, A and other triangulation
points observed both from A and M, such as B. In the triangle $M A B$, the angles at M and A have been observed and:

$$
B=-180^{\circ}-(A+M) .
$$

Similar calculations being made for other triangulation poínts will give the direction of the station as seen from these points: the ploting is done as if the station had been observed from every such point.

Case II. The camera station has not been observed from any triangulation point. In this case the station must be placed by the angles which have been observed from Tit. This can be done either by describing through the points observed, circles containing the angles between them, or bl the use of a station pointer. The first method ed constructions and is not very accuratd and the station pointer can serve only for three points at a time. The following process will be found rapid and accurate when many points have been observed from the station.

On a piece of tracing paper; take a point to represent the camera station and draw the directions
of all the points observed. Put the tracing paper upon the plan and try to bring every one of the dia rections drawn to pass through the corresponding point of the plan. The camera station is then in its place.

From the foregoing,it is clear that the surveyor should endeavour to obtain at least one direction from a triangulation point on every caméra station: the plotting is less laborious and the result more * accurate.

The use of photographs for placing camera stations must be avoided, the precision is not sufPicient.
119. PLOTTING THE TRACES OF THE PICTURE AND PRINCIPAL PLANBS. The horizon and principal lines are drawn on the photographs through the proper points of the comb marks (108); the horizon line,however, -norn
is checked by the altitudes observed in the same manner as it was placed on the first printiwhen determining the constantg (\& 108:).

The traces of the principal and picture planes are now "drawn on the plan, Every" photograph" contains
at least one and terally several points of which the directions have been observed and marked on the plan. Find the distance $S a$, F'g. 151, from the station
to the projection of such a point α of the photograph on the horizon line; PS is taken on the principal line equal to the

Fig. 151 focal length and P'a equal to $\times a^{\prime}$. The whole of this construction made on the "photograph board which will be mentioned further on.

On the line S, A of the plan'representing the direction of α, take from the station S_{1} the distance $S_{1} a_{1}$ equal to $S a:$ from a as eeritre with αa^{\prime} as radius describe an are of circle and draw $S_{1} p$ tangent to it:it is the trace of the principal plane. The trace of the picture plane is the perpendicular $\gamma^{\text {to }} S, p$ passing through

Instead of making the construction on the
photograph board, it can be made on the plan. On S, A take S, B (Fig.152) equal
 to the focal length, erect: BC perpendicular to S, A and equal to aci (Fig.151). Join S, C and take S, p equal.

Fig. 152 to the focal length: at p erect a perpendicular to S, C;it is the trace of the picture plane and S, C is the trace of the prigh idel plane.

The first methedratereferable, because it does not require so many construction lines on the plan.

The trace of the principal plane is marked only Where it intersects the picture trace so as not to confuse the plan.

When the directions of several points of the photograph are shown on the plan, either because the directions were observed from the station or inversely because the station was observed from the points,
it is better to proceed in the same manner as in $\int 108$ when finding the constants. Mark on the edge of a band of paper the projections of the points'
images on the horizon line and try by moving tho paper on the plan to place every mark in ooincidence with the corresponding direotion of the pian; the edge of the paper will then be the trace of the picture plane. The advantage of this met od is that a uniform contraction or expansion of the print does not apfect the accuracy of the plotting. Bven with two directions only show on the plan, it is advisable to employ the same process, but the two lines not being sufficient to determine the trace of the picture plane, the edge of the paper mast be kept perpendicular to the trace of the principal plane drawn as if there were no distortion. This is equivalent to assuming that the contraction or expansion is uniform all over the print.

The effect of distortion may also be corrected to a certain extent by modifying the focal Yength employed. It has been shown (1 114) that an enlargement or reduction of the perspoctive is equivalent to an enlgrgement or reduction of the distance line. Aesuming the contraction or expansion of a print to be uniform, the effect on the perspective is the scune as if a shorter or longer focal lergeth had beer used.

0

The correct length is found as follows.
On the trial print (108) measure the distance between the two comb marks of the horizon line; call it a and let f be the focal length found. Then if the distance of the comb marks be measured on another photograph and found to differ from a, designating by a^{\prime} this new distance, the enlargement or reduction of the new photograph compared to the trial print is

and we have the proportion:

$$
\frac{a^{\prime}}{a}=\frac{f^{\prime}}{f}
$$

from which the correct focal length f^{\prime} is deduced.
Should the distortion of the prints be such as to roquire frequent corrections to the focal length, it might be well to make a scale which applied to the measure of the distance of the comb marks, would give at once the focal length. For instance suppose $i c$ and \mathcal{f} to be 25,000 and 20,000 feet respectively, on the scale of the plan. Draw a line equal to 25,000 feet and divide it into 20,000 parts: this scale
applied to the trial print for measuring the distance of the comb marks, reads 20,000 which is the value of the focal length. Appilied to any other photoEraph it will similarly give the correct focal length,

Wet paper expands more in the direction of its length than in the perpendicular direction. In the case of prints showing an appreciable difference in the rates of expansion or contraction measured on the horizon and principal, lines, different focal lengths might be employed, one for the horizon line for plotting the points by intersections, the other corresponding to the principal line, for measuring heights.

In practice,it is found that none of these modes of correction are required when bromide prints on good heavy paper are used, provided they be all treated alike and dried under similar conditions.
120. PLOTTING THE INTERSECTIONS. After drawing on the plan the traces of the principal and picture planes, the draughtaman takes two photographs covering the same ground and marks by a dot and number in red ink the corresponding points of each. The points are chosen on those lines which define best the surface,
such as ridfes, ravines, stréams, crestis, chaliges of slope etc. He marks on the edge of a band of paper the distance of each point of one of the photographs from the principal line and adjusts the paper on the trace of the picture plane previously drawn on the plan, holding it by paper weights:he repeats the same operation for the other photograph. Inserting a fine needle at each station, he fastens to it a black silk thread connected at the other end by a fine rubber band to a small paper weight. Holding the weight in one hand, he moves the thread until it coincides with one of the marks on the edge of the band of pr corresponding to the station and he deposits the weight on the plan, giving sufficient tension to the rubber to keep the thread taut. Doing the same thing at the other station, the intersection of the two threads indicates the position on the plan of the point of the photographs.

When the bands of paper overlap, as in Fig. 153, the portion $C D$ of the picture trace $P Q$ is marked on the band $M N$ which is underneath; the band $P Q$ is placed in proper position and the marks on its edge trans-
ferred to the line $C D$. The band $P Q$ is now placed under $M N$, the marks on the

Fig. 153

Pig. 154
latter along on serving the same purpose as those of $P Q$. The station may be too close to the edge of the plan for plotting the trace of the picture plane, as for instance A, Fig. 154, the picture trice falling in QR, outside of the plan. In this case the trace AC of the principal plane is produced to B, a distance
equal to the focal length and $M N$ is drawn perpendicular to $B C$ or parallel to $Q R$. The line $M N$ occupies with reference to" $Q R$ the same position as the focal plane of the camera does to the picture plane of the perspective. The direction of a point of the photograph projected in N on the picture trace,is found by joining NA and produciug to the opposite side of A.

274

PLOTTING THE SURVEY
The first two intersections should be checked either by a third one or otherwise. They may, for instance be checked by determining the heignt of the point froin the two photographs:unless correctly plotted, the two heights obtained will not agree. This check, however, does not indicate slight errors.

The check may also be a line drawn by means of the perspectograph or perspectometer and on winich the point is situated such as the shore of a lake or of a river, but the best check is a third intersecion. * The number of every point is inscribed in pencil on the plan.
121. PLOTTING WITH THE PERSPECTOGRAPH. To draw with the perspectograph the plan of a figure which appears on a photograph, the figure
 must be beyond the picture plane ($\$ 98$) or below the ground line on the photograph. Thus the lake $A B$ (Fig. 155), being below the Fig. 155 ground line $X Y$ of the photograph cannot be drawn with-
out a charge of ground plane, such that the new ground line $X Y^{\prime}$ be below the lake $A B$. It has been explained that this is done by doubling the height of the. station until the ground line is brought into correct position (\$ 98)."

The slide $X Y$ of the perspectograph, Fig. 158 is adjusted by the scales drawn in X and Y on the drawing board, to a distance from RT equal to the focal length.

After adjusting S i ine pencil is brought over a point, M, of the trace $G H$ of the principal plane at a distance $s \mathrm{M}$ from s equal to twice the focal length.

Fig. 156
The photograph is pinned under the tracer, the horizon line $H H^{\prime}$ over the corresponding line $A B$ of the board and the principal line over EF:the iron rod connecting V and 2 is then adjusted so as to

276
PLOTTING THR SURVEY
bring the tracer μ midway between the horizon and ground lines.

The cross section paper is pinned to the board, one of its lines coinciaing with the trace of the principai plane GH, arid cther lines with the frunt lines $A B$ and CD, drawr at known distances from the faot of the station s.

There will be no difficuity in tracing with the point μ the part of the photograph which on the figure is on the right of the principal line, but it may happen that in moving μ to the left, the obliquity of the arm $M S$ be such as to prevent the free play of the instrument. It should then be reveford, the slide $X Y$ being changed end for end, the photograph transferred from EP to KL , the cross section pater rio moved so as to bring on the trace $N Q$ of the principal plane the line of the paper which was formerly over GH, and the point S placed to the left of $s ; \mu$ beinga now between the two slides RT and XY, the tracer has to be ohanged to the opposite arm.

The perspectograph can be so adjusted that the trace of the principal plane is the same in both
positions of the instrument, it being sufficient not to move s, when inverting the arms and slide $X Y$ the cross section papor then does not require to be displaced.

Having obtained the plan of the figare shown on the photograph, the reduction to the proper scale is made at sight on the cross section paper, and transferred to the general plan. The transfer should be checked by points previously established by intersections.

The use of the instrument is possible every time the plane of a figure can be determined, as for instance a lake, a river, a contour the or the of a mountain. Slight differences of level do not affect the result when the height of the station is great.

The instrument could also be used for figures in inclined planes such as a river with a rapid slope, the outline of a stratification plane which has not been distorted, a road or a railway.
122. HBIGHTS. The heights of the points fixed by intersections are found as explained in $\{85$. The
distance from the point to the horizon line is taken with a pair of compasses on the photograph, qne of the points of the compasses is placed on the division A of the sector, (Fig. 157), OA being equal to the focal

$$
\text { Fig. } 157
$$

length. The sector is then opened until the other point coincides with the corresponding division B of the other arm. With the same compasses the distance on the plan from the point to the picture line is taken, one leg of the compasses being placed in A on the sector, the other one will oome somewhere in C, the compasses are then turned round on C and brought on the division D of the other arm corresponding to C. The line $C D$ is the height of the point above or below the horizon plane, which means the height above or below the station.

Another method consista in making use of an angular scale as Fig. 158. Take S SP equal to the focal $^{\text {a }}$ length;erect the perpendicular $P A$ to $S P$ and divide
both into equal parts. Join to S the points of di-
vision of PA and
disaw parallels to PA.
pointance from the of the perspec-
tive to the horizon line:transfer it to P_{μ} and suppose that it is found to correspond to the "]ine $S \mu$ passing through the point 9 of the craduation of $P A$. Take with the same compasses the distance on the plan fryme horizontal projection of the point to the picture line and transfer it to P, to the right or left of \dot{P} according as the point of the plan is beyond or within the picture line. Then take with the compasses the distance on a parallel $m B$ to $P A$, between m and the point M where the line $M B$ is interseoted by $\$ \mu$ corresponding to 9 of the graduation. This distance $m \mathrm{M}$ is the height of the point above or below the station.

A scale is now pinnod somewhere; perpendicularly. to a line $A B$, the diviston ${ }^{\prime \prime} C$ of the scale corresponding to $A B$ beingethe height of the station. The compasses are taken off the sector, and one of the legs being setuin C, the other leg coincides with a division D of the scale, above or below C, which is the height of the point above the datum plane. This height is entered in pencil on the plan, enclosed in a circle, to distinguish it from the number of the "station. It is checked by ${ }^{*}$ second photograph and when the discrepancy between the two heights is within the limits of error admissible, the mean is entered in red ink on the plan and the pencil. figures erased.

A difference in the heights obtained from the two photographs indicates that the two points identified do not represent the same point of the ground or that an error has been made either in plotting it.or in finding its height.

VERTICAL INTERSECTIONS
A the er d intersection disuses of the first two ζ, \square alternatives and a new measurement of the heiffht dhows whether any error has been mede. - LEs. VEP'TTCAL INTERSPOTIONS. , Tr tro'methou ot' 1. Horizontal intersections tho base lino is projected on the horizontal plan: in this method it is projectod on a vertical patine. The difference oftaltitude of the two. stations must therefore be considerablio.

The principal plane of one of tret photographs is taken as vertical plane of projection: the ground plane is the horizontal plane containing one of the stations. In Fig. 180 , the ground line is the trace of the principal plane of the photograph taken from the station A; the ground.
 plane is the horizontal plane of the station B. On the ground plan, a and B are the two statons', CD and BF their picture traces. The Fig. 160 station A on the ventical plane is on the

PLOTTING THE SURVEY

perpendicular $a A$ to $X Y$ equal l to the height of A above B. A point such as β plotted by the method of horizontal intersections, would not be accurately fixed because the angle: of the directions $a D$ and $B F$ is. too small.

Project the visual rays from A and B on the vertical plane: the visual ray from A is a line $A Q$ passing through the projection Q of the point's image on the principal line. It is drawn by taking $C Q$ equal to the height on the photograph of the point above the ground line, and joining AQ.

The vertical projection of the visual ray from B is a line b^{\prime} 'R passing through the vertical projections of the station $\%^{\prime}$ and of the point's image R, on the second photograph. To find R, let fall FG perpendicular to $X Y$ and produce to $R, G R$ being equal to the height on the photograph of the point's image above the horizon line.

The intersection of $A Q$ and $J^{\prime} R$ is the vertical. projection p^{\prime} of the point. Letting fall the perpendicular $p^{\prime} o$ to $X Y$ and producing, determines the position p of. the point on the ground plan.

The construction gives not only the point on the ground plan but also its height op'. This process is the best one for plotting a narrow valley between two high walls:it has however the disadvantage of requiring a complicated construction.
124. PHOTOGRAPH BOARD. So many construction lines are employed on the photographs that it is advisable to have a photograph board on which part of the lines are drawn before hand, once for all.

It consists of an ordinary drawing board, cofered with strong drawing paper. Two lines at right angles, DD^{\prime} and SS^{\prime} Fig.l61, represent the horizon and principal lines; $P D, P D^{\prime} P S$ and $P S^{\prime}$ are each equal to the focal length, so that D, D^{\prime}, S and S^{\prime} are the left, right,lower and upper distance points respectively.

The photograph is pinned in the centre of the board, the principal line coinciding with SS^{\prime} and the horizon line with DD^{\prime}. Four sealos,forming the sides of a square OTVZ, are drawn in the centre, the side of the square being a little larger than the length of a photograph.

They answer various purposes as, for instance,
drawing parallels to the horizon or principal lines py laying a straight edge on the corresponding graduations of the scale or marking the ground line by joining the graduations of tho vertical scales representing the height of the station.

At a suitable distance from the distance point D a perpendicular $Q R$ is drawn on which are marked by means of a table of tangents, the angles formod with
DQ by lines

Fig. 161
drawn from D. This scale is employed for measuring the altitudes or azimuthal angles of points of the photograph as will be explained later, on ($\oint 125$). From S as a center with $S P$ as radius, an arc of circle $P L$ is described and divided into equel parts. Through the points of division, and between PL and PD'ilines
are dram converging to S. Parallels MN to the principal line are also drawn sufficientiy close together. All these lines are used in connection with the scale of degrees and minutes $Q R$.

The studs of the centrolineads are fixed in A, B, C and E; the lines $A B$ and $C E, j o i n i n g$ their centres and those required for adjusting the centrolineads are drawn and used as explained in $§ 96$.
A.square FGKH is constructed on the four distance points.
125. CONSTRUĊTION OF THE TRACES OF A FIGURE'S PLANE.

When a figure is in an inclined plans,it is necessary to have the traces of the plane on the principal and picture planes for using a perspective instrument on the photograph.

Two cases are met with in practice: the plane is given by the line of greatest slope or by three points.

Case I. The line of greatest slope may be an inclined road or the middle of a straight valley in which a river ${ }^{\text {ch }}$ lows with a rapid current. On the plan, this line is represented by a line ab, Pig.162, the
altitude of a being known.
Pin the photograph to the board and take for ground plane the plane of a : draw the ground line $X Y$.

On the plan draw a0 perpendicular to $a b$ and

Fig. 182
produce it until it
intersects the principal line $S_{1} p$ and picture trace X, Y.

On the photograph
take $p E$ equal to p, b;
at E erect a perpen-
dicular to. $X Y$ and pro-
duce it to the inter-.
section β with the
perspective of the
line of greatest slope.
Take $p N$ equal to $p, 0$
and join $N \beta: i t$ is the
trace of the required plane on the picture plane.
Take $P Q$ equal to $\mathcal{P}_{\mathcal{F}} L$ and j oin $M Q: i t$ is the trace of the required plane on the principal plane, supposed to be revolved around SS^{\prime} on the picture
plane, the station falling in D. Produce $M Q$ to $R: D R$ is the vertical distance of the station above the plane $R M \beta$. The new horizon and ground lines are now drawn as in§ 82,.

Case II. Take for ground plane the plane containing one of the points, a, for instance (Fig. 163): and draw the ground line $X Y$ on the photograph. Join a. on the plan to the two remaining points and produce to the intersections E and F with the picture trace.

Take $p \mathrm{~K}$ equal to $p_{\mathrm{p}} \mathrm{E}$ and erect KL perpendicular
to $X Y:$ join the per-
spectives α and β of the points shown in a and b on the plan and produce to the intersection with KL. Take p T equal to p_{1} F,erect TN perpendicular to $X Y$ and produce to the intersection N with the line joining the per-
spectives α and γ.
Join NL:it is the trace of the required plane on the picture plane.

Produce LN to 0 and take $p_{1} G$ equal to $p o ; j o i n$ $\boldsymbol{A G}$ and take p_{Q} equal to $P_{1} H$. The. Inne $M Q$ is the trace of the required plane on the principal plane supposed revolved around SS' $^{\prime}$ on the picture plande, the station being in D. Here also, $D R$ is the vertical height. of the atation above the plane of the three given points. The new horizon and ground lines are constructed as previously explained. 126. CONTOUR LINES. A sufficient number of heights havine been determined, the contour lines are drawn by estimation between the points established. In a rolling country, a limited number of points would permit to draw the contour lines with precision but in a rocky region the inflexions of the surface are so abrupt and frequent that it is utterly impossible to plot enough points to represent the surface accurately. The photographs are of great assistance to the draughtsman; having them under his eye, he is able to modify his curves so as to represent the least in-
equalities of the ground.
Instead of drawing the contour lines at once on the plan, the drainghtymar may commence by sketching them on the photograph in the same way as he would on the plan. Every point plottea has been marked on the photograph and the altitudes may be taken from the plan. By adopting this course, he is able to follow very closely the inequalities of the surface." The curves serve to guide the draughtisman in drawing those of the plan or they may, be transferred by the perspectograph or the perspectnmeter.

As long as a sufficient number of points is obtained by intersections, there is no difficulty in drawing the contour lines, but it may happen in a rapid survey, that the points are too few and too far apart for defining the surface. It is then necessary to resort to less accurate methode.

A mountain ridge which appears in $\alpha \beta$ on a photograph (Fig.164,) can be divided by the contour planes, by assuming that it is contained in a vertical plane. The construction, which has been explained in ; 62 is carried out as follows:-

On the plan produce the projection ad of the ridee, to the intersection F with the picture trace
and draw throurh the
$\begin{cases}\because & \text { station S, C parallel } \\ & \text { to ab. }\end{cases}$

Having pinned the
photograph to the photograph board, take. from the principal point on the hortzon line PV equal to p, c and $P G$ equal to pF. At G, place the scale of equidistances perpendicular to the horizon line, the division G corresponding to the height of the station, and join the marks of the scale to the vanishing point V.

Having now the points of intergection of the ridge by the contour planes, their distances from the principal fine are marked on the edge of a band of paper and their directions plotted in the usual way. These directions produced. to $\alpha \beta$ give the inter-
sections of the contour lines.
When the mountain has rounded forms and no well defined ridge, the vis-
ible outline mast be
assumed to be contain-
ed a vertical plane
perpendicular to the
of thection of the middle
struction is made by
drawing, on the photo-
graph board, sv perpen-
dicular to the direction SM of the middle of the outline (Fig. 165). On the plan, μ, M, is taken equal to $P M$ and from the projection a of the summit of the mountain, a perpendicular ab is let fall on S, M, which represents the projection of the visible outline:it is produced to the intersection N with the picture trace, $P Q$ is taken equal to p, N and the scale of equidistance placed at Q perpendicular the horizo line. The points of division are joined to V, produced to $\alpha \beta$ and the.
plotting done as in the precoding case, or the directions of the intersections of $x_{j} \beta$ by the contour planes may simply be plotted and the contour lines drawn tangent to these directions.

The horizon line contains the perspectives of all the points at the height of the station:it is the perspective of a contour line when the height is that of a contour plane.

Full details on the plotting of contour lines being given in the text books on surveying, it is not necossary to repeat them here. The main point is to understand thoroughly the mode of formation of the surface and its variations under different circumstances: the surveyor should pay particular attention to the subject,making a special study of it. Without this knowledge, the proper representation of the ground would requira the plotting of a very large number of points.
127. PHOTOGRAPH PROTRACTOR. The angle between a point of the photograph and the principal and horizon lines, that is the altitude or azimuthal angle,is sometimes wanted.

Fig. 166
the projection, a, of the point on the horizon line. If required in degrees and minutes, the distance $P C$ is transferred to the principal line in PG;D is joined to G A * and produced to the scale of degrees af minutes BC where the graduation K in- dicates the value of the azimathal angle.

Were many such angles to be measured, the horizoontal scales $T V$ and $0 Z$ (Pig. 160) might be divided into degreses and minutes by means of a table of tangents, using as radius the focal length SM . A straight edge placed on a point of the photograph and passing through the corresponding graduations of TV and $0 Z$ would at once give the azimuthal angle of the point.

The altitude is the angle S, Fig. 163, of the *right arigle triangle having for sides $s a$ and $a \alpha$.

To construct it, take DF equal to $S a /$, draw FE parallel and equa tor α, join, DE and produce to the scale of degrees and minutes $B C$. This construction ig facilitated by the lines proviously drawn on the board. With a pair of oompasses take the distance from a the the principal line, carry it from $P(F j g .180$) in the dircetion P^{\prime} and from the point so obtained take the distance to the arc ML, measuring it in the direction of the radii marked on the boerd:this is the distance PF. (Fig. 166). Then with thadk carry roa to FB which is done by using the parallol lines $4 N$ of Fig . 180. The construction is now completed as alroady explained:
protractor may be constructed to measure these angles:it consists of a plate of transparefthoumpial en which are lines parallel to the principhuchine. containing the paints of same azimuth and curves of the poin tof same altitude. 4.
 the angles in's and drawing parallels to the principal line through the points of intersection with the horizon line.

Denotirg by $/ /$ the altitude of a point a and taking the horizon and principal lines as axes of oom ordinates, the equation of the ourve of altitude h is:

$$
y^{2}=\left(x^{2}+f^{2}\right) \tan ^{3} \cdot h
$$

This is an hyperbola of which the principal and horizon lines are the transverse and conjugate axes and the centre $1 s$ the principal point. One of the branches contians the points above the horizon and the other branch the points of same altitude below the horizon. The asymptotes are lines intersecting at the principal point and making angles equal to h with the horizon line.

This hyperbola is the intersection by the picture plane of the cone of visual rays forming the angle h with the horizon.

The curves of equal altitude may be calculated

Pig. 167
by the formula of the hyperbola or they may be plotted by pointe, reversing the construction given above for finding the altitude of α , (Fig. 186). The complete.
protractor is shown in Fig. 167: the angular distance between the lines depends on the degree of precision required.

The instrument may be made, like the perspectometor, by drawing it on paper on a large scale, photographing and making a transparency which is bleached "in.bichloride of mercury.
128. PRRCISION OF THE METHOD OF PHOTOGRAPHIC SURVEYING. The precision of a survey executed by the methods exposed, when all the points are established by intersections,is the same as that of a plan plotted with a very good protractor or made with the plane table. There is however this difference, the number of points plotted by photography is greater than by the other methods.

Points plotted by means of their altitude below the station are far less accurate, their positions being given by the intersection of the visual ray *ith the ground plane, the angle of intersection being

* equal to the angle with the horizom plane or to the angle of depression of the point. With the camera employed, embracing 60°, this ancle is always less than 30° and even that is seldom obtained in practice,a declivity of 30° being almost a precipice. Therefore the intersection is always a poor one and the uncertainty becomes considerable with points near the horizon.

With perspective instmonts, doing mechanically the same construction, the results are still less precise,being affected by the instrumental errors.

On the other hand, it must not be forgotien that when these. methods are employed, the ordinary topographer would fall back on sketching; the results furnished by photography therefore are infinitely more precise.

CHAPTER VIII

PHOTOGRAPHS ON INCLINED PLATES

\qquad
129. Hitherto it has been assumed that the photographs used for the survey were taken on plates perfoctly vertical. There are several cases in which this condition cannot be fulfilled:the camera may be an ordinary one, without any means of adjusting the plate, or the photographs may have been taken merely as illustrations, their employment for the construction of the plan being decided afterwards.

There are two classes of surveys in which the plates are always inclined. The first are secret surveys, the views boing taken with a camera concealed
about the person or otherwise. The scope of these surveys is very limited; the photographs, being instantaneous,lack detail in the distance and unless . objects present great contrasts of light and shade, their images are blurred, and confuse as soon as the distance attains a few hundred yards. Improvements in dry plates. will no doubt remove this difficulty to some extent, but it will never disappear completely. Another cause of trouble is the small size of the camera and plates: the views, being instantaneous, stand very little enlargement and the measurements* are in consequence not very accurate.

The other class of surveys comprises those made from balloons. It is very doubtful whether the method will ever be found practical and prove of more than theoretical interest. It requires the consideration of an entircly new system of survey by means of photographs taken on plstes placed horizontally or nearly so.
130. PLCTTING THE DIRECTIONS OP POINTS OF THB PHO-

TOGRAPHS. When the photographic plate is not
vertical, the corresponding picture plane of the
perspective, which is parallel to the plate is pierced by the vertical of the station. This trace is the vanishing point of all the vertical lines, which having ceased to be front lines, are no longer represented by parallels to themselves.

Let ABCD Fig. 168,

be a photograph on an inclined plate, P being the principal point and HH^{\prime} the horizon line. The perpendicular $V \pi$ drawn through the principal point to the horizon line,is the principal line.

Fig. 168
Revolve the principal plane on the
picture plane around the principal line as an axis: the station falle in S, on a perpendicular P, to $V P$, PS, beirg equal to the focal length.

Join S, T and S, v the first line is the revolved horizontal line from the station to the pleture plane;
S, V is the revolved vertical of the station and V the vanishing point of vertical lines.

Revolve now the horizon plane on the picture plane around the horizon line. The station comes in S, on the principal line produced, at a distance πS equal to πS.

To find the horizontal direction of a point μ of the photograph, äraw the perspective of its vertical line by joining it to V. The intersection n with the horizon line is the perspective of the trace in the horizon plane of the vertical of the point and $S n$. is its direction.

Comparing this construction with the one for vertical plates, we see that the same methods may be employed provided π be used as principal point, πS_{1} as focal length and that every point of the photograph be first projected on the horizon line by joining it to V, before measuring its distance from the principal line. The points such as n can be marked on a band of paper and used as in the case of vertica: plates.

With a plate nearly vertical, V is at g great
distance from P, and the perspectives of the vertical lines have to be drawn with the centrolinead.
131. DRTERMINATION OF HEIGHTS. Let m Fif. 188 be on the ground plan the point seen at μ on the photograph. Project on the principal plane the triangle formed by the visual ray, its projection on the horizon and the line $n \mu$. On the revolved principal plane, the projection of the visual ray is $S_{1} n^{\prime}, \mu n^{\prime}$. being perpendicular to $V \pi$; the projection of m is F which is revolved to G and the perpendicular $G K$ to. S, π is the projection of the vertical of the point or its height above the horizon plane.

Various devices may be imagined for constructing expeditiously the heights of a number of points.

* 132. DETERMINATION OF THE HORIZON LINE AND VANISHING POINT OF VERTICALS. In order to make use of a photograph for plotting the plan, the horizon and prin-- cipal lines and the vanishing point of verticals must be marked on the photograph.

It is assumed that the camera is availaile either before or after the survey, for experimenting upon and that the focal length and principal point ing instmument, the determination of the corizon line presents no difficulty. Assume a vanishiris coint of vertical lines V,Fig.l89, and join it to a point μ of the photograph of which the zenith distance 1 s known. Througin the prin-

\&

Fig. 169
cipal point, draw PE perpendicular to $V \mu$ and PS perpondicular to PE. and equal to the focal length. Erect EG perpendicular to ES, take EF equal to R μ join $S F$
and make the angle PSG equal to the altitude of μ; $P G$ is the distance measured on $V \mu$ from μ to the horizon line.

- Taking μn equal to $F G$ determines one point n of horizon line. A similar construction repeated on another point of the photograph will furmish a second

304 PHOTOGRAPHS ON INCLINED PLATES

 point of the horizon line.This first result will probably be inaccurate because the position of the vanishing point V is only approximate. A new vanishing point mast therefore be fixed by means of the horizon line just obtained, and the construction explained above is repeated. The second horizon line found will likely be sufficiently precise;if not the construction must be made a third .time.

In secret survevs, measured angles are seldom available, but it is casy to devise an attachment of the same kind as some hand levels, which will mark the horizon line on the plate when the photograph is taken.

Failing this, the horizon line must be furmished by the subject. When the view includes buildings, the vanishing point of verticals is given at once by producing to their intersection the vertical lines of the buildings. This point V,Fig. 170 is joined to the principal point, P , and PS is made perpen-
Fig. 170 dicular to $V P$ arid equal to the
focal length. Drawing $S T$ perpendicular to $S V$. the perpendicular $H H^{\prime}$ to $V \pi$ is the horizon iine.

Horizontal lines vanish on the horizon lina, therefore if the horizontal lines of two faces of a building be produced to their intersection, the line joining the two vanishing points is the horizon line.

If two intersecting horizontal lines appear on the photograph as a straight line, the latter is the horizon line.

Although angles cannot be measured,it may be possible to ascertain the points of the view which are at the same altitude as the observer:these. foin= ed together give the horizon line.
133. TRANSFERRING THE PERSPECTIVE TO A VERTICAL PLANE. Instead of using exact copies of the neg:atives for plotting the plan, the copies or enlargements can be made in such a way that the perspective is restored to a vertical plane.

Have a copying or enlarging camera OCD, Fig. 1^{171} movable on horizontal axis passing through the first nodal point 0 and parallel to the negative.

Take an experimental negative with the field

 camera the plate being yertical; dram "or it the horizon and principal lines, place it in the holder of the copying samera, and mark the points of the holder correspunding to the horizon and princip:al lines. After inserting the lolder, the camera is move until(he plate CD is verti-
marked on it in such manner that the marks will appear on the prints.

For copying a negative taken in an inclined poaition, the horizon and principal lines are drawn on it, also a parajiel to the korizon throufh the principal point. The negative is placed in the holder with the principal line on the proper marks
a.r the horizont:i line of the principal point on the merks arrerporsing to the horizon line of the experjaental plate. The camera is moved up or down until the image of the negative's horizon line π coincides with the horizon fine Q previously marked on the screen:in this position the perspective is the same as it would have been on a verticial picture plane. For, the inclination of the camera*is the same as when the negative was taken:any point N^{\prime} of the latter would have photographed in N on a vertical plate and given the same image N on the screen.

With a lons of sufficiently long focus and photographs taken nearly vertical, as is generally the case, the displacement of the camera will be tou small to affect the definition on the screen.

- The holder must be provided with mearis of adjusting the negative; the principal point must always ocoupy the same position, the plate pivoting around it.

The horizon and principal lites are indicated on: the print by the marks fixed to the screen:the principal point has been displaced in copying and is now
on the horizon line.
The change of picture plane can also be effected with the perspectograph, but the use of the instrument is not to be recommended when the change can be made so simply by the photographic process.
134. PHOTOGRAPHS ON HORTZONTAL PLATES. Photographs on horizontal plates might be obtalned by an arrangement similar to the one described in $\$ 99$,with a pinhole stop in the lens: they are also taken from a balloon with an ordinary camera, but the plates are only approximately horizontal.

The picture and ground planes being parallel, the figures of one are similar to those of the other:

thus the photograph $\alpha \beta$ Pig. 172 of a lake $A B$ is also its plan and only requires to be reduced to the, proper scale. The reduction is given by the proportion between the distances S
and $S P$ from the station to the ground and picture planes. When the height of the station and the focal
length are equal, the photograph is a full size plan. principal point P of the photograph is placed on the foot of the station 's, and a line of known direction, such as P, on the eorresponding line of the plan sA. To find the direction of any other point $B, i t s$ perspective.B is joined to the principal point P : this line coincides with $s \mathrm{~B}$ on the plan.

The height of a point is found by taking $S P$, Fig. 173, equal to the focal length and $S s$ equal to the height of the station, drawipg $P \alpha$ and $s a$ perpendicular to SP, Pa being equal to the Fig. 173 distance of the point's perspective from the principal point and sa equal to the distance on the plan from the station to the point. Join Sa; the parallel ad to SP is the height of the point above the ground plane.

A photograph taken from a balloon cannot be perfectly horizontal; to make use of it for plotting the

$$
b^{1}
$$

$$
\therefore
$$

数
\％
 station on the picture plane must be known.

$$
\text { The directions or the principal line } s \text { f and } f
$$ the perpendicular to it, $A B$, are the same on the plan and on the photograph; they are differont for all other lines.

Fig. 174
To find the direction or the ground plan of a point μ of the perspective, Araw PS perpendicular to the principal line and equal to the focal length, foin $S s$ and take $S C$ equal to the distance from μ to $A B$. Draw μA and $C D$ parallel to $P s$ and take $A \mu^{\prime}$ equal to $\mathrm{SD} ; \quad s \mu^{\prime}$ is the direction of the point on the ground plan, for $A \mu$ forms with its horizontal projection a right angle triangle in which the angle A is the inclination of the plate to the horizon, which triangle is constructea in $S C D$, therefore $A \mu$,' which is made equal to $S D$ ts the horizontal projection of $A \mu, \mu^{\prime}$ is the trace, on the ground plane, of the vertical of μ and the vertical plane passing
through s and the point μ of the photograph must cut the ground plane along s μ^{\prime}.

A much better way to employ these photographs would be to restore them to a horizontal plane in printing, by the process of $\delta 131$,using $P s$ and $A B$ in the same manner as the principal and horizon lines of the vertical photograph.

The great difficulty in balloon surveying. will be to determine the trace of the vertical of the station on the picture plane, or the foot of the station on the ground plan. The oscillations of the balloon prevent the use of any kind of level inside of the camera and instrumental measurements of angles are open to the same objection. The angles might, however be measured by two observers located on the ground.

In a view containing vertical lines, their vanishing point gives at once the trace of the vertical of the station;for a photograph taken a short distance above buildings, this mode of determinitig the trace would be very good.

Balloon surveying would only be adapted to

312 PHOTOGRAPHS ON INCLINED PLATES military purposes, although the advocates of the process are confident that it will eventually take the place of all other surveying methods.

CONTENTS

Page

Preface. 5
Bibliography of Photographic Surveying 11
CHAPTER I
DESCRIPTIVE GEOMETRY

1. Definitions, planes of projection. 13
2. Gound line 13
3. Representation of a point 23
4. Representation of a straight line 17
5. Through a given point, draw a parallel to a
given line 23
6. Representation of a plane 24
7. Line contained in a plane 27
8. Point in a plane. 28
9. Through a point, to draw a plane parallel to
another plane. 29
10. Line perpendicular to a plane
11. Revolving a plane upor one of the planes of projection 31
12. Intersection of two planes 40
13. The intersecting planes are both parallel to the ground line

-

14. The intersecting planes cut the ground line

$$
\text { at the same point } 42
$$

15. Intersections of two planes, one of which is horizontal or parallel to the vertical
plante
16. Planes perpendicular to one of the planes of
projections
17. Intersection of a line and a plane 44
18. Intersection of three pjanes 45
19. Through a point, to draw a straight line which will meet two given lines45
20. Distance of two points 46
21. To lay off a given length on a line 47
22. Distance from a point to a line 47
23. Distance from a point to a plane 48
CONTENTS315
Parc
24. Distance of two parallel plares 48
25. Distance of two straight lines 50
26. Angle of a line with the planes of pro- jection 51
27. Angle of two lines 52
28. Angles of a plane with the planes of pro-
jection 54
29. Angle of two planes 55
30. Thrcugh a given line in a pione to draw an- other plane making a certain angle with the given plane 57
31. Angle of a line with a plane 58
32. Method of rotation: 58
33. Rotation of a foint 58
34. Rotation of a line 59
35. Rotation of a plane 60
36. Distance of two points 62
37. Solution of spherical triangles 63
38. Given three sides to find the angles 6439. Given two sides and the included angle, to
find the remaining side and angle 66
F.90
39. Vanishing line $\because 5$
40. Lines or figures iń frorit planes 80
41. Messuring ines and measuring points 38
42. Reduction of a perapective to scal? 31.
43. To place in perapective a point of the
ground plano 94
44. To place in perspective a line or figure of
the ground plane 99
45. To place in perspective a point outside.of.
the ground plane 9058. To place in perspective a line outside ofthe ground plane 10059. The distance line is an axis of symmetry of
the perspective 10060. Given the heights of two points and theirperspectives, to find the vanishing pointand trace on picture plane of the jinejoining the given points 102
46. To find the intersections of a vertical lineby a series of horizontal planes. $\ldots .106$
47. To mark on the penspective of any line or

Page

> curve contained in ta vortical plane, the intersections by a series of horizontal planes
63. To mark on the perspective the intersections of a plane, line or curve by a series of horizontal planes 108
64. Interscctions of a prism, pyramid or conicsurface by a series of horizontal planes 10985. To place a point of the ground plane bymeans of its perspective 11066. To place a line on the ground plane bymeans of its perspective 11167. To draw a ficure on the grourd plane by.means of its perspective112
68. Vanishing scale 114
69. Use of the measuring linc 116
70. Precision of the method 11771. To determine from the perspective, the pro-jections of a point not in the groundplane, but of which the height is known . . 119
72. To construct from its perspective a figure
in any horizontal plane 120
73. To find the traces arid varishing point of a line fiven by its horizontal projection and perspective. 120
74. Given the slope of a line and the horizontal projection of one of its points, to find

- the horizontal projection and traces of the line 123

75. To find the traces of the plane containing

K three given points or two given Lines. . . 126
76. Given the line of greatect slope, to find the traces of the planc. 128
77. Change of cround plane 129
78. To find the horizontal projection of a figure from its perspective when the figure is containged in a plane perpendicular to the principal plane130
79. To find from its perspective the horizontal projection of a figure in a plane perpendicular to the picture planc. 134
80. Change of ground plane and distance linc . . 138

Page

81. From the perspective of a ligure in any given plene, to construct the horizontal projection of the figure I42
82. Chance of station, eround and picture plane . $14^{i} 3$
83. Reflected images. 147
84. Shadows, 149
85. Heights. 152

CHAPTER III

PFRRSPECTIVE INSTRUMENTS
\qquad
86. Simplest form of parspective instrument . . 155
'87. Diagraph 156
88. Camera lucida 158
89. Camera obscura 160
90. Perspectograph 163
91. To draw the trace of the principal plane on the drawing board 174
92. To find the distance from the station to a
. front line of the ground plane 175
93. To find the distanco between the two slides 177

6 nomqunter

94. To draw the graduation for the nelght o: the station.
95. To draw the horizon, ground and principal
lines on the perspective .179
96. Centrolinead 18°
97. Perspectometer .187

9 98. Drawing the ground plan with the camera

```
\[
.191
\]
```

lucida
99. Drawing the ground plan with the camera obscura. 193
100. Drawing the ground plan with the perspectograph.
101. Change of scale. 188

CHAPTER IV

FIFLD INSTRUMENTS

102. Altazimuth 201
103. Adjústments. 203
104. Tripod 208
105. Use of altazimuth. 209Page
106. Cameras 211
107. Lenses. 214
108. Camera of Canadian Surveys. 222
109. Use of camera 225
110. Adjustments and determination of constants
of the camera 225
b
CHAPTER V
PHOTOGRAPHIC OPERATIONS
111. Dry plates. 234
112. Exposure 238
113. Development 241
114. Enlarging 243

CHAPTER VI
FIELD WORK
115. Triangulation251
116. Camera stations 255

CHAPTTR VII

PLOTTING THE SURVEY
4
117. Scale of plan 280
118. Plotting the triangulation. 283
119. Plotting the traces of the picture and principal planes. 288
120. Plotting the intersections. 271
121. Plotting with the perspectorraph. 274
122. Heights 277
123. Vertical intersections. 281
124. Photograph board. 283
125. Construction of the tracer of a figure's plane 285
126. Contour lines 288
227. Photograph protractor 292
128. Precision of the method of photographic surveying 298

CHÁP'TER VIII

PHOTOGRAPHS ON INCLINRD PLATES

129. Obseivations. . 298
130. Plotting tre directions of points of the

$$
\text { photographs } 299
$$

13,1. Determination of heights.
132. Determination of the horizon line and
vanishing point of verticals. 302
133. Transferring the perspective to a vertical
plane 305
134. Photographs on horizontal plates 308

yon
Page

[^0]: Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

