IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences
Corporation
 (716) 872.4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may aiter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coioured covers/
Couverture de couleur

Covers damaged/

Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/.
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couieur (i.e. autre que bleue ou noire)Coloured piates and/or illustrations/
Planches et/ou iliustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfiimé le meilileur exemplaire qu'il lui a été possibie de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou peliliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages datached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

inciudes supplementary material/
Comprend du matériel suppiémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible imaga/
Les pages totaiement ou partiellement obscurcies par un feuillet d'errate, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last racorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impress!on, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supériaur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

TRAVELSIN
NORTH AMERICA.IN THE YEARS 1841-2:
WITH
GEOLOGICAL OBSERVATIONS0 N
THE UNITED STATES, rANADA, AND NOVA SCOTIA.
BY CIIARLES LYELL, ESQ., F.R.S.AUTHOR OF TEE PRINCIPLES OF OEOLOGY.
in two volunes.
YOL. Il.
NEW YORK:
1850.

1

CONTENTS OF VOLUME II.

CHAPTER XIV.
Dr. Channing.-Agitation in Rhode Island.-Armed Convention -Sail through Amboy Straits.-Journey to Philadelphia and Baltimore.-Harper's Ferry.-Passage over the Alleghanies by National Ruad.-Parallel Ridges.-Absenco of Drift.-Structure and Origin of Appalachians.-Theory of Subsidence and Contraction of Subterranean Fluid.-Kentucky Farmers.-Emigrants.-Cumberland Coal Field.-Clay with Stigmaria.-Marine Shells in Coal-Measures near Frostburg.-Wide Geographical Distribution of Fossil Coal Plants.

CHAPTER XV.

Alleghany Mountains.-Union.-Horizontal Coal Formation.Brownsville on the Monongahela.-Facilities of Working Coal.-Navigable Rivers.-Great Future Resources of the Country.-Pittsburg.-Illinois Coal Field.-Fossil Indian Corr.-Indian Mounds near Wheeling.-General Harrison on their high Antiquity.-Dr. Morton on the aboriginal In-dians.-Remarks on the Civilisation of the Mexicans and other Tribes.-Marietta.-Silicified Trees or Psarolites of Ohio.-Coal of Pomeroy.-New Settlements.-Cincinnati..

CHAPTER XVI.

Succession of Strata on the Ohio between Pomeroy and Cin-cinnati.-Return up the Ohio to Rockville.-Waverley Sand-stone.-Cliff Limestone.-Denudation.-Blue Limestone of Cincinnati.-Lower Silurian Fossils.-Limiteu Proportion of Silurian Species common to Europe and America.-Great Development of Brachiopoda.-Deep Sea Formations.-Rarity of Silurian Land Plants.--Silurian Fossil Fish

CHAPTER XVII.

Allurial Terraces at Cincinnati, and their Origın.-Bones of the Elephant and Mastodon.-Excursion to the Swamps of Big Bone Lick, in Kentucky.-Noble Forest.—Salt Springs. - Buffalo Trals.-Numerous Bones of Extinct Animais.Associated Freshwater and Landshells.-Relative Age of Northern Drift, and Deposits with Bones of Mastodon on the Ohio

CHAPTER XVIII.

Cincinnati--Journey across Ohio to Cleveland.-New Clearings - Rapid progress of the State sinee the year 1800.-Increase of Population in the United States.-Political Dis-cussions.-German and Irish Settlers.-Stump OratoryPresidential Elections.--Relative Value of Labour and Land.

CHAPTER XIX.

Cleveland.-Ridges of Land and Gravel along the Southern coast of Lake Erie.-Their Origin.-Fredonia; streets lighted with natural Gas.-Falls of Niagara.-Burning Spriug.Passing behind the Falls.-Daguerreotype of the Falls.Boulder Formation of Whirlpool, and Valley of St. David's. -Glacial polishing and Furrows.-Influence of Icebergs on Drift.

CHAPTER XX.

Mirage on Lake Ontario.-Toronto.-Excursion with Mr. Roy to examine the Parallel Ridges between Lakes Ontario and Simcoe.-Correspondence of Level in their Basc-lines over wide Areas.-Origin of the Ridges.-Lacustrine Theory.Hypothesis of Sand-banks formed under Water.-Rapid Progress of the Colony.-British Settlers unable to speak English.

CHAPTER XXI.
Kingston.-Montreal.-French Population and Language.Quebec. - Soldiers. - Deserters. - Three Rivers. - Scoteh Emigrants.-Distinctness of French and British Canadians. -Large Military Force.-American Sympathizers.-Geolological Survey.-Aualogy in Structure of Canada and Scan-linavia.-Section at Falls of Montmorency.-Uncomfurtable
position of lowest Fossiliferous Sandstone to Gneiss.-Supposed Monument of the Commencement of the Organic World.-To what extent the Granitic Rocks are primary. Difficulty of establishing the Date of Metamorphic Action.Two Sources of popular error respecting the more abundant production of Hypugene Rocks at Remote Periods.

CHAPTER XXII.

Glacial Furrows in the Valley of the St. Lawrence.-Action of packed ice in the Canadian Rivers.- Boulder Formation with and without Shells.-Gannanoqui.-Mountain ol Montreal.Recent Shells in Drift more than 500 feet above the Sea.Lake St. Peter.-Falls of Maskinongé.-Deposit of Shells at Beaufort near Quebec.-Agreement with Swedish Fossils.Shells in Boulder Formatiou of Lake Champlain.-Burlington, Vermont.-Fossils of Dritt imply a colder climate.Scenery of Lake Champlain.-Organic Remains of lowest Silurian Sandstone.-Lingula.-Vermont Mountains.-Inns and Boarding-houses.-Return to Roston.

CHAPTER XXIII.

Halifax.-Glacial Furrows in Nova Scotia.-Difference of Climate of Halifax and Windsor.-Tracts covered with Kal-mia.-Linnæa borealis.-High tides of the Bay of Fundy. The Bore-Recent deposits of Red Mud hardened in the Sun.-Fossil Showers of Liain.-Footprints of Birds, and casts of the same.-Cracks caused by Shrinkage.--Submerged Frost.-Recent Glacial Furrows at Cape Blomidon.-Loaded Ice.-Ice-ruts in Mud.

CHAPTER XXIV

Coal Formation of Nova Scotia.-Productive Coal-Measures. Erect Fossil Trees in the Cliffs of the Bay of Fundy.-Section from Minudie to the South Joggins.-Ten buried Forests, one above the other.-Connection of upright Trees with Seams of Coal.-Stigmaria.-Sigillaria.-Evidence of Repeated Submergence of dry Land.-Theory to explain the Evenness of the Ancient Surface.-Pictou Coal Field.-Bed of Erect Calamites, cumpared to those of St. Etienne, in France.-List of Species of Nova Scotia Coal-plants.-Fourfifth of these Fossils identified with European Species.Carboniferous Flora of the United States.................... . 1

CHAPTER XXV.
Lower Carboniferous or Gypsiferous Formation of Nova Sco-tia.-Why formerly considered as newer than the productivo Coal.-Determination of its true age.-Sections near Wind-oor.-Supposed Reptilian Footsteps.—Section on the Shu-benacadie.-Large Masses of Gypsum.-Their Origin -Volcanic Action contemporaneous with Nova Scutia Coal Measures.-Limestone with Marine Shells.-Table of Organic Remains of the Carboniferous Limestone of Nova Scotia and Island of Cape Breton

172

CHAPTER XXVI.

Prngress and Resources of Nova Scotia.-Highland Settlers.Timber Duties.-Cobequid Hills.-Conflagration of Forests. -Albion Mines.-Humming Birds.-Estuary of the Shu-benacadie.-Stakes cut by Beavers.-Promotion of Science. Social Equality.-Nova Scotians "going home."-Return to England

JOURNAL
 of A
 TOUR IN NORTH AMERICA,

IN 1841-2.

CifAPTER XIV.

Dr. Channing.-Agitation in Rhode Island.-Arned C'onven-tion.-Sail through Amboy Straits.-Journey to Philadele phia and Baltimore.-Harpcr's Ferry.-Passage over the Alleghanies by National Road.-Parallel Ridges.-Absence of Drift.-Structure and Origin of Appalachians.—Theory of Subsidence and Contraction of Subierranean Fluid.Kentucky Farmers.-Emigrants.-Cumberland Coal Field.— Clay with Stigmaria.-Marine Shells in Coal Measures near Frostburg.- Wide Geographical Distribution of Fossil Coal Plants.

April 17, 1842.-During my stay at Boston, I was fortunate enough to hear Dr. Channing preach one of the last sermons he delivered from the pulpit. His declining health had prevented him from doing regular duty of late years; but there seemed no reason to anticipate that he would so soon be taken away from a community over which he exerted a great and salutary influence. His sermon was less impressive than I had expected, and fell short of the high conception I had formed of him from his YOL. II.
writings ; but this I imputed entirely to his want of physical strength, and the weak state of his voice. I had afterwards the pleasure of conversing freely with him at a small dinner party on various subjects in which he was interested; among others, the bearing of geological discoveries, respecting the carth's antiquity and the extinct races of animals, on the Mosaic account of the history of man and the creation. I was struck with the lively interest he took in the political affairs of Rhode Island,-a neighbouring State, containing about 110,000 inhabitants, and now convulsed by a revolutionary movement in favor of an extension of the suffrage. The sympathies of Dr. Channing appeared to lean strongly to the popular party, which, in his opinion, had grievances to complain of, however much, by their violent proceedings, they had put themselves in the wrong.

As some alarmists assured me that the railway to Providence, by which I intended to pass southwards in a few days," was commanded by the camnon of the insurgents," my curiosity was awakened to inquire into this affair, the details of which were not uninstructive, as giving a curious insight into the character of the New England people, and showing their respect for law and order, even when their passions are highly excited. I found that Rhode Island was still, in the year 1842, governed according to a charter granted by Charles II. in the year 1663, no alteration having been made in the qualifications of voters at the period when the sovereignty was transferred from the crown of Great Britain to the freeholders of Rhode Island. Although the State
has been flourishing, and is entirely free from debt, a large majority of the people have, for the last forty years, called loudly on the privileged landholders to give up their exclusive right of voting, and to extend the suffrage to all the adult males, in accordance with the system established in all the neighbouring States. The dispute turned mainly on a question of a very abstract nature for the comprehension of the muititude, though in reality one of great constitutional importance; namely, whether the change should be made according to the forms prescribed in the charter of 1663 , or might be effected by the people in its capacity of sovercign, without regard to any established forms. The latter method was advocated by the democratic leaders as most flattering to the people, and with such success that they organized a formidable association in opposition to the government. Their demands did not differ very materially from those which the legislature was willing to concede, except that the democrats claimed the suffirage, not only for every American-born citizen, but also for the new-comers, or the settlers of a few years' standing. Both parties agreed to exclude the free blacks. At length, as their wishes were not complied with, the "Suffiage Convention" resolved to intimidate their opponents by a military enrolment and drilling, and were soon joined by several companies of militia.

The governor of Rhode Island was so much alarmed as to call on the President of the United States to afford him aid, which was declined on the ground that no overt act of violence had been committed. The insurgents then elected a separate
senate and house of representatives, and one Dorr as governor of the State, who proceeded to Washing. ton, and had an interview with the President of the United States and with several members of congress. Meanwhile mil.tary preparations were making on both sides. A second appeal was made in vain by the State of Rhode Island for aid from the federel governmert at Washington. Meetings of sympathizers were held at New York to co-operate w.th the popular party, who had now obtained some pieces of cannon, and attempted to get posscssion of the arsenal at Providence. On this occasion. however, the State government calied out the militia, who mustered in great force, and, after a bloodless affray, the popular party, which had already dwindled down to a few hundreds, deserted their leader, Dorr. This champion made his escape, but was soon after taken, tried for high treason, and condemned to imprisonment. Before the conclusion of th's affiar the govcrument at Washington signified their readiness to furnish the required troops, but their offer of aid came late, and the assistance was no longer needed.

The firmness of the Rhode Istand legislature under the threats of the armed populace at home, and, what was more form'dable, of the sympathizers from without, and the respect shown to const tut:onal forms by the mass of the people in the midst of this excitement, are circumstances highly creditable to the majority of the citizens. It remains to be seen whether an extension of the suffrage, which was afterwards granted, will promote or impede the cans? of freedom and good goverument in this small State.

May 2, 1842.-We now set out on a tour to the
valley of the Ohio and the country west of the Alleghany mountains, taking the railway to Providener, and a steam-boat from thence to New York. Atterwards we went to Phladelpha by Amboy, passing through the beautiful strait which separates the mainland of New Jersey from Staten Island. This winding channel is, in parts, only half a mle, and cven less, in width, with many elegant villas and country houses on Staten Island. Its banks are often well-wooded, and it resembles a river, or Homer's description of the broad Hellespont, which, as Gibbon observes: the poct had evidently likened to a river, and not to an arm of the sea.

The trees in New England are now only beginning (in the first week of May) to unfold their leaves, after an unusually m.ld winter. They remain leafl ss for nearly seven months in the year, although in latitude 42° and 43° N., corresponding geogratphically to Southem Italy. In New Jersey the scarlet maple is patting forth its young leaves; the horsechestuuts and lime-trees are in bloom; the lilacs flowering in the gardens, and the Judas tree conspicuous with its purplish piuk blossom. The dogwood also abounds in the forests, with such a display of white fluwers as to take the place of our hawthorn.

We reached Philadelphia without fatigue in less than twenty-two hours, a distance of 300 miles from Boston, having slept on board the steam-boat between Stonington (Connecticut) and New York. We proceeded from Philadelphia to Baltimore, and from thence ascended the beautiful valley of the Patajsco, for 60 miles, to Frederick. Between Baltimore and Frederick, I passed over highly in. 2^{*}
clined strata of gneiss, mica schist, and other me. tamorphic rocks, which began to be covered at Frederick, and between that and the first ridge of the Alleghany hills, with uneonformable beds of the New Red Sandstone, dipping gently to the southwest, or towards the mountains. We continued chicfly on this red sandstone between Frederick and Harper's Ferry, and then entered again upon mica schist and chlerite slate.

At Harper's Ferry, in Virginia, the Potomac, about fitty miles above Washington, is joined by the Shenandoah, a river as large as itself, and after uniting, they issue through a transverse gorge in the mountains. This gorge interested me from its exact resemblance to the Lehigh Gap, before described, in Pennsylvania, by which the Delaware flows out from the h.lly country. The scenery of Harper's Ferry has been overpraised, but is very picturesque.

I had hired a carriage at Frederick to carry me to Harper's Ferry, and thence to Hagerstown, on the main road across the mountains. When I paid the driver, he told me that one of my dollar notes was bad, "a mere personal note." I asked him to explain, when he told me that he had issued such notes himself. "A friend of mine at Baltimore," he said, " who kept an oyster store, once proposed to me to sign twenty-five such notes, promising that if I would eat out their value in oysters, he would circulate them. They all passed, and we never heard of them again." I asked how he reconciled this transaction to his conscience? He replied, that their currency was in a very unsound state, all the banks having suspended. cash payment, and their only hope was that matters
would soon become so bad that they must begin to mend. In short, it appeared that he and his friend had done their best to hasten on so desirable a crisis.

The next day two Marylanders, one of them the driver of the stage coach, declared that if the State should impose a property tax, they would resist payment. As funds are now wanted to pay the dividends on the public debt, the open avowal of such opinions in a country where all have votes, sounded in my cars as of ominous import.

In our passage over the Alleghanies, we now followed what is called the National Road to Cumberland and Frostburg, crossing a great succession of parallel ridges, long and unbroken, with narrow intervening valleys, the whole clothed with wood, chiefly oak. The dogwood, with its white flowers, was very conspicuous. The north-western slopes of the hills were covered with the azalea in full flower, of every shade, from a pale pink to a deep crimson. They are called here the wild honeysuckle. Had not my attention been engrossed with the examination of the geological structure of the numerous parallel chains, the seenery would have been very monotonous, the outline of each long ridge being so even and unbroken, and there being so great a want in this chain of a dominant ridge. There is a remarkable absence of ponds or lakes among these mountains, nor do we see any of those broad, dead flats so common in other chains, especially the Pyrenees, which seem to in dieate the place of ancient lakes filled up with sediment. Another peculiarity, also, of a negative kind, is the entire absence of the boulder formation, or drift with transported blocks, which forms so
marked a feature in the hills and valleys of New England.

I have before spoken briefly of the structure of the Alleghamies (p.92) and their geological conformation, as explained by the Professors W. B. and H. D. Rogers. The accompanying map (pl. ©) will serve to give the reader some idea of the manner in which the parallel belts, or long narrow zones of disturbed strata of different ages, break out at the surfice alougg the line of this mountain chain, so as to be represented by numerous stripes of colour, running in a general direction from N. E. to S. W. It will be scen that the inferior or older groups of the Silurian series range chiefly along the eastern or south-castern flank of the Appalachians, while the newer groups of the same series, together with the Devonian or carboniferous formations, make their appearance as we proceed further westward. After having found fossils in such abundance in the corresponding Siluriar, rocks of New York, I was struck with their absence, or much greater rarity, in the inclined strata of these mountains, especially in the oldest limestones, or those corresponding in age to "the Trenton group." I have before endeavoured to give, at p. 92, an ideal section of the structure of the Appalachian chain, in accordance with the views of the Professors Rogers, and have described the numerous arches and tronghs, or parallel, anticlinal, and synclinal bends into which the strata are folded. Between these and the external geographical features of the country there is a manifest connection; nevertheless, it is necessary to bear in mind that the present outline of the hills has been due to changes long subsequent to the era
when the rocks acquired their prencipal flexures and fractures. These changes have cons.sted of the denuding operations of the sea, which probably took place, in great part at least, during those movements of elevation which, after the period of the New Red Sandstone, uplifted the Appalachian strata to their present level above the occan.

To those who are not aceustomed to reflect on the long succession of natural events, often differing from each other greatly in kind, which have concurred to produce a single geological phenomenon, such as a mountain chain, it will always appear very paradoxical that the structure of such a chain is attributed in great part to the sinking, rather than to the forcing upwards, of a portion of the earth's crust. I shall add, therefore, a few words to the brief remarks before advanced ($\mathbf{p} .98$), in favour of the theory which attributes the folding of strata such as those of the Alleghanies to subsidence. This hypothesis is simply a modification of one very popular with the earlier geologists, who ascribed the fractured condition of the most ancient rocks to the shrinking of the supposed original fluid nucleus of the planet, it b:ing assumed that the earth passed gradually from a state of fusion by heat to a solid condition. It was truly remarked, that during the process of congelation and contraction, the incumbent strata, or those first solidified, would sink and accommodate themselves to a narrower area, namely, the circumfer nce of a spheroid of smaller diameter, and, according to their different degrees of pliability or hardness, the beds would be bent or broken.

When this theory was first propounded, all the
disturbances of the rocks were referred to a remote geological era, and supposed to have been nearly simultaneous. We have now ascertained that, on the contrary, they have been produced at a great varicty of successive epochs, and that some mountain chains are very modern in the earth's history in comparison with others. Nevertheless, the hypothes's may in a limited sense be quite sound, for we may imagine one part after another of the subjacent nucleus, underlying the thin coating or crust which we explore geologically, to be melted by volcanic heat, and, after expansion, to cool and become again consolidated and collapse. The rocks would undergo some disturbance when they were first uplifted, but when the heat was withdrawn, and contraction took place, there would be a still greater amount of dislocation, crumpling, and folding of the beds. All the elaborate mechanical explanations resorted to in illustration of the doctrine of a general contraction, and a diminution in the size of the entire planet, may be applicable to the phenomena of strata, whether in plains or mountains, which have at successive periods become contorted within limited areas. We have only to substitute the partial liquefaction of the interior of the earth at moderate depths for the primitive fusion of the entire incandescent nucleus, and to suppose that each lical development of subterranean heat was followed by refrigeration, and we then discover a cause fully adequate to produce the fracture, plication, and lateral pressure of rocks, at as many successive periods of the past, as the facts now established in geology require.

Nearly all mountain chains can now be shown to
have been, like the Appalachians, of later date than the creation of organic beings. We also know that, at each geological period characterized by the appearance of distinct races of living beings, the earth's surfuce, although for the most part tranquil, has been in some regions the theatre of volcanic eruptions. It is very probable that the Silurian, Devonian, and carboniferous strata, which enter into the composition of the Appalachians, underwent the principal movements of upheaval and subsidence to which their prevailing structure is due, at a time when they were still submerged bencath that ocean in which they were originally formed,-for that they were at first marine deposits is testified by their imbedded corals and shells. It is therefore certain that they have undergone some elevation before they arrived at their present position. But we cannot infer from this fact that movements of elevation rather than of subsidence have been most effective in impressing upon them their present structure. The reader will observe, in the section at p. 92, vol. i., that nearly horizontal beds of Newer Red Sandstone (No. 4, fig. 5) rest unconformably on the inclined strata of the Alleghanies. Hence he will perceive that the last series of movements which upraised this continent, was quite distinct from those prior movements, which threw the ancient strata (Nos. 5, 6, 7, fig. 5) into their inclined and curved position.

Having one day entered a stage coach in our passage over these mountains, I conversed with two Kentucky farmers returning in high spirits from Baltimore, where they had sold all their mules and cattle for good prices. They were carrying back their
money in heavy bags of specie, paper dollars being no longer worthy of trust. They said their crops of grain had been so heavy for several seasons, that it would have cost too much to drag it over the hills to a market $\mathbf{4 0 0}$ miles distant, so they had "given it legs by turning it into mules." - I asked why not horses. They said mules were nearly as serviceable, and longer lived, coming in for a share of the longevity of the ass. During several days of travelling in public conveyances on this line of route, we met with persons in all ranks of life, but with no instance of rude or coarse manners.

Entering a cottage at Frostburg, we talked with the mother of the family, surrounded by her children and grandehildren. She appeared prosperous, had left Ireland forty years before, at the age of seventeen, yet could not speak of the old country without emotion, saying, " she should die happy could she but once more see the Cove of Cork." Her children will be more fortunate, as their carly associations are all American.

We passed many waggons of emigrants from Pennsylvania, of German origin, each encumbered with a huge heavy mahogany press, or "schrank," which had once, perhaps, come from Westphalia. These antique pieces of furniture might well contain the penates of these poor people, or be themselves their household gods, as they seem to be as religiously preserved. Our companions, the two farmers from Kentucky before mentioned, shook their heads, remarking, " that most of them would go back again to Pennsylvania, after spending all their money in the West ; for the old people will pine for their former
homes, and persuade the younger ones to return with them."

I found some of the iron mines near Frostburg in a bankrupt state, and met a long train of luggage waggons conveying the families of the work-pcople to new settlements in the West. The disappointed speculators are clamouring for a tarifl to prote et their trade against English competition. When I urged the usual arguments in favour of free trade, I was amused to perceive how the class interests of my new companions had overcome the usual love of equality, which displays itself in the citzens of the United States. One of the superintendents of the mines expressed surprise that I should have gone through so many States, and not grown tired of the dull medioerity of ineome which mere land under the custom of equal division among children produced! "Why limit our civilisation and refinement to small farmers, who expend their surpius gains in tobacco and lawsuits, and can never makic ample fortunes, such as spring from manufacturing and commercial industry?"

The iron and coal mines near Frostburg are well worthy of examination. The principal coal seam is ten feet thick, besides six feet of incumbent and less pure carbonaceous matter, the coal bituminous, though containing less volatile matter (oxygen, hydrogen, and nitrogen), than farther west on the Ohio. According to the analysis of my friend Dr. Percy, the quantity of gaseous matter, as compared to the carbon and ash, is only in the proportion of $9 \frac{1}{2}$ per cent. in the specimens of coal which I obtained here from the best seam, whereas the proportion was exactly twice rol. II.
as great in the coal afterwards examined by me farther west at Pomcroy on the Ohio, confirming the theory first advanced by Mr. H. D. Rogers, of the progrossive debituminization of coal as we advance from west to east, or from the horizontal coal fields in the plains of the Ohio to the anthracite of Pennsylvania. (See above, pp. 89 and 249, vol. i.)

The coal measures of this part of Maryland are usually called the Cumberland coal field, from Fort Cumberland, famous for the wars of the English with the French and Indians, in which General Wash ngton took part, befire the American Revolut on. The carboniferous strata consisting, as usual, of shale, grit, sandstone, limestone, argillaceous iron ore, and coal, are arranged geologically in a trough, about twentyfive miles long, from north to south, and from three to four miles broad. Professor Silliman and his son, who surveyed them, have aptly compured the shape of the successive beds to a great number of canoes placed one within another. The entire th ckness of the coal measures is about 1500 feet, including the fundamental quartzose sandstone, called by the miners here, as in England, the millstone grit, which is about forty feet thick, and contains small pebbles, sometimes as big as nuts. These pebbles, therefore, are very diminutive in comparison with those before mentioned as occurring in the same rock in the anthracite basins of north-eastern Pennsylvania, where some of them were stated to be as large as a hen's egg. The conglomerate of that region, it will be remembered, was 1500 feet in thickness, instead of forty feet as at Frostburg, showing the reduction of size in
the formations of mechanical origin as we proceed westward. (See above, pp. 84 and 86, vul. i.)

The seams of coal at Frostburg are numerous, there being three workable, besides nine or ten smaller beds. Under several of these, I found clays with Stigmaria, usually, as elsewhere, unaccompanied by any other fossil plants. At one spot, however, on the north-eastern confines of the coal basin, about fifty feet above the millstone grit, I saw a bed of coal, four feet thick, resting on a blue clay containing St gmaria. This clay was twenty feet thick, and as usual without slaty texture, and the rootlets, commonly called leaves, radiated in all directions from the stems of the Stigmaria. Dispersed plent.fully through the same clay, 1 found the leaves of two species of Pecopteris, and an Asterophyllite, the only instance, in several hundreds which I examined in the United States, where ferns and other coal plants were associated with the Stigmaria, imbedded in its natural position, and not having been drifted.

Higher in the serics, but still 300 feet below the principal coal seam, an interesting example occurs of a black shale full of marine shells, resting on a seam of coal about three feet thick. When we have once embraced the doctrine of the origin of pure coal from terrestrial plants, which grew like peat in the spots where we now find them. the contact of an incumbent regular bed of black bituminous slate, ten or twelve feet thick, abounding in sea shells perfectly preserved, is highly interesting. Captain George Green, superintendent of the mines here, kindly presented me with a collection of these shells, which are referable to no less than seventeen species. Some are identical with,
and almost all the rest have a near aflinity to, species fomm in the Glasgow and other British coal measures. Among the rest is Bellerophon Urii, and two others of the same genus; E'nomphalus carbonarius, several species of Nucula, one of Loxonema, and a Producta, allied to P. scabricula.

Among the plans oceurring usually in the shaly roof or ceiling of the coall, are many identical with European species, such as Calamites dubius and C. nodosus, Pecopteris arborescens, and two other species in ironstone shale, both in fruct.fication; also Lepidodendron tetragonmm, L. aculeatum, Neuropteris cordata, N. sigantea, sigillaria reniformis, C'antupteris, Stigmaria, Asterophyllites tubereulata, A. foliosa, aud many others.

I have alluded to two species of ferns (Pecopteris) in fruetification. One of these, abundant in the Jack Porter mine, appears to agree with the European Hemitelites Trevirani of Güppert. It agrees in its venation and the position of its sori with the recent subgenus Goniopteris. When we consider how rapidly the fructification decays on the back of the leaves of ferns. it is wonderful to see them thus petrified. The resemblance, moreover, of some of the common Aınerican and European coal plants, such as Pecopteris lonchitica, and P. Serlii, to ferns now living, such as Pteris caudata, and P. aquilina, is well worthy of notice. The leaves would be undistinguishable if the veins in the fossil species were not finer, eloser together, and more perpendicular to the mid-rib, than in the recent ferns.

The specific agreement of so many of the American coal plants with European fossils implies a
greater uniformity in the carboniferous flora, throughout a large part of the globe, than appears to have prevailed in the co-existing comblownged fana, so far as it is knowe at present. Those Einglsh naturalists who assisted me in maming by American plants, came to the op nion that two thirds of them are the same as species well known in the coal measwes on the other side of the Atlantic. M. Adolpho Brongniart informs me that he has arrived at the same result, the general aceuracy of which eannot, I think, be impugned by question ng the botanical determinations arrived at from such characters, as the venations of fern leaves, or the markings left by the attachment of fronds on the bark of such trees as Sigillaria and Lepidodendren. If the prevailing vegetation of two distant parts of the globe were now to become fossil, the more common species would nowhere present so uniform a character, it we confined our comparison simply to corresponding organs, namely, the leaves, bark, fruits, the internal woody fibre, whether cellular or vascular, ind the roots, if, indeed, the Stigmiurie be of that nature. As to the ferns, it should not be forgotten, that, although in the existing state of the globe, they are less cosmopolite than lichens and mosses, there are some of them, nevertheless, which have an extremely wide range, such as Didymochlena sinuosa, common to Brazil, Jiva, and Manilla; and Polypodium incanum, to Brazil and the Cape of Good Hope. The recent ferns of North America, according to Pursh's Flora, are sixtynine in number, of which fifteen, according to the same authority, are natives of Europe. It is also worth remarking, that very few of the genera of liv-
ing ferns are confined to one particular country, or even to one ecntinent. The larger genera appear to have species in nearly all the regions of the world. except the colder lat tudes. The mere generic resomblance, therefore, of the fossil ferns of North America and Europ, would not have been ramarkble, as indicating a different geographical distribution from that now prevailing.

While at Frostburg, I rode one day on horseback, with Captain Green, superintendent of some of the mines there, and followed the course of Jenning's Run, returning by Cumberland. In this route, we saw a fine section of the coal measures, the underlying grit or conglomerate, and a great thickness (5000 or 6000 feet) of still older Devonian and upper Silurian strata. In those ridges, along the crest of which the yellow and white quartzose carboniferous grit crops out, the monotonous outline was occasionally broken by outliers of the rock twenty feet and upwards in height, remaining in situ with their perpendicular sides and sharp aingles (see fig. 7), and show-

Outlier of quartzose grit $\mathbf{2 0}$ feet high.
ing clearly that large portions of the strata had been removed from the tops of the hills as well as from the valleys.

I was surprised, in the course of our ride along the bottom of a wooded valley, to find the air infected far and wide with a fetid odour, which, my companion informed me, procceded from a skunk. The animal, he supposed, might be half a mile or more to wind ward of our path.

CIHAPTER XV.

Alleghany .Mfountains.-Union.-Horizontal Coal Formation.Brownsville on the Monongahela.-Facilities of working Coal. -N'avigable Rivers.-Great future Resourses of the Country.Pittsburg -Illinois Coul Field.-Fossil Indian Corn.-Indian Monnds near Wheeling.-General Harrison on their ligh Antiquity.-Dr. Morton on the aboriginal Indiuns.-Remarks on the Civilisation of the Mexicans and other Tribes.-Mari-etta.-Silicified Trees or Psarolites of Ohio.-Coal of Pome-roy.-New Settlements.-Cincinnati.

After leaving the small mining village of Frostburg, which is about 1500 feet above the level of the sea, we continued to ascend and deseend a succession of steep ridges till we came to the summit level, where the climate was sensibly colder, and the oals and other trees still leafless. At Smithfield we crossed a river flowing westward, or towards the Monongahela and Gulf of Mexico, and soon afterwards passed the grave of General Braddock, and followed the line of his disastrous march towards Fort Duquesne, now Pittsburg.

At length we reached Laurel Hill, so called from its rhododendrons, the last of the great parallel ridges of the Alleghanies. From this height we looked down upon a splendid prospect, the low undulating country to the west, appearing spread out far and wide before us, and glowing with the rays of the scting sun. At our feet lay the small town of Union, its s'te being marked by a th'n cloud of smoke, which pleased us by recalling to our minds a familiar feature in the English landscape, not seen in our toun
through the regions where they burn anthracite, to the east of the Alleghanies.

After enjoying the view for some time we began to descend rapidly, and at every step saw the forest, so leafless and wintry a few hours before, recover its folage, till the trees and the climate spoke again of spring. I had passed several times over the Pyrenees and the Alps, and witnessed the changes of vegetation between the opposite flanks, or between the summits and base of those mountains; but this was the first time I had crossed a great natural barrier, and found on the other side people speaking the same language, and having precisely the same laws and political institutions.

The parallel ridges before alluded to, between Frostburg and Union, were formed partly of red sandstones (Old Red), but chicfly of white grit, the lowest member of the carboniferous group, each flexure or arch opening out and flattening as we went westward, in the manner explained in my description of the section at page 92, Vol. I., the strata at the same time becoming more and more horizontal.

At the town of Union, which may be said to lie at the western foot of the mountains, I had an opportunity of seeing coal exposed to visw in an open quarry of building stone. The coal seam was three and a half feet thick, with an intervening layer, as usual, between it and the freestone of dark slate or shale, four feet thick. When traced farther, the shale thimed out gradually, and in a neighbouring quarry, about thirty yards distant, it gave place to the yellow micaceous sandstone, which then formed the roof of
the coal. These sandstone roofs are comparatively rare in America, as in Europe.

From Union, we went to Brownsville on the Monongahela, a large tributary of the Ohio, where the country consists of coal measures, like those at Union, both evidently belong.ng to the same series as those more bent and curved beds at Frostburg before described. I was truly astonished, now that I had entered the hydrographical basin of the Ohio, at beholding the richness of the seams of coal, which appear everywhere on the flanks of the hills and at the bottom of the valleys, and which are accessible in a degree I never witnessed elsewhere. The time has not yet arrived, the soil being still densely covered with the primeval forest, and manufacturing industry in its infancy, when the full value of this inexhaustible supply of cheap fuel can be appreciated; but the resources which it will one day afford to a region capable, by its agricultural produce alone, of supporting a large population, are truiy magnificent. In order to estimate the natural advantages of such a region, we must reflect how three great navigable rivers, such as the Monongahela, Alleghany, and Ohio, intersect it, and lay open on their banks the level seams of coal. I found at Brownsville a bed ten feet thick of good bituminous coal, commonly called the Pittsburg seam, breaking out in the river cliffs near the water's edge. I made a hasty sketch of its appearance from the bridge, looking down the river, in which the reader will see (a, Pl. VI.) the eoal, ten feet thick, covered by carbonaccous shate (b), and this again by micaccous sundstone(c). Horizontal galleries may be driven every where at very slight at beich apat the le in a has not d with y in its austible but the region upporteut. In such a vigable yy, and nks the le a bed mononly he river y sketch own the VI.) the hale (b), Iorizonry slight

expense, and so worked as to drain themselves, while the ears, laden with conl and attached to each other, glide down. as shown in the plate, on a railway, so as to deliver their burden into barges moored to the river's bank. The same seam is seen at a distance, on the right bank (at a). and may be followed the whole way to Pittsburg, fifty miles distant. As it is nearly horizontal, while the river descends it crops out at a continually increasing, but never at an inconvenient, height above the Monongahela. Below the great bed of coal at Brownsville is a fire-clay eighteen inches thick, and, below this, several beds of limestone, below which again are other seams. I have also shown in my sketch another layer of workable coal (at d, d), which breaks out on the slope of the hills at a greater height. Almost every proprietor can open a coal-pit on his own land, and, the stratification being very regular, they may calculate with precision the depth at which the coal may be won.

So great are the facilities for procuring this excellent fuel, that already it is found profitable to convey it in flat-bottomed boats for the use of steamships at New Orlcans. 1,100 milcs distant, in spite of the dense forests bordering the intermediate river-plains, where timber may be obtained at the cost of felling it. But no idea can be formed of the importance of these American coal-seams, until we reflect on the prodigious area over which they are continuous. The boundaries of the Pittsburg seam have been determined with considerable accuracy by the Professors Rogers in Pennsylvania, Virginia, and Ohio, and they have found the elliptical area which it occupies to be

225 miles in its longest diameter, while its maximum breadth is about one hundred miles, its superficial extent being about fourteen thousand square miles.*

In the accompanying map (Il. 11.), the reader will see a sketch of the outline of what has been called the Appalachian coal-ficld, the vast area of which was before alluded to at p. 88, Vol. I., as extending for a distance of 720 miles from N. E. to S. W., its greatest width being about 180 miles. This out. line must be regarded as giving a mere approximation to its true limits, but when the State Survers of Pennsylvania and Virginia are published, the ex. tent of this great coal-field will be most aceurately delineated. While alluding to the vast area of these carboniferous formations in the United States, so rich in productive coal, I may call attention to the Illinois coal-field, the area of which has been also laid down on the map (Pl. II.), reduced from a large map of the Western States executcd by Mr. Dile Owen of Indiana, and of which he has liberally given me the free use for the present publication. That coal field, comprehending parts of Illinois, Indiana, and Kentucky, is not much inferior in dimensions to the whole of England, and consists of horizontal strata. with numerous rich seams of bituminous coal. Its position relatively to the Appalachian coal-field may be seen in the western part of the section at page 92 , Vol. I. \dagger

At the edge of the left bank of the Monongahela, we collected shells of many species of freshwater

[^0]muscles (Unio), and were mach interested in finding them all different from those which we had previ usly met with in the Comecticut, Dolaware, and oher castern rivers. We had now in fact entereal an entirely new zoological province, so far as concholory was concerned.

May 15, 1842.-We embarked at Brownsville for Pittsburg in a long narrow steamer, which drew only cighteen inches water, and had a single paddle behind like the overshot wheel of a mill. It threw up a shower of spayy like a fountain, which had a picturesque effect. The iron works of the machin ry and the furnace were all exposed to view, and the engineers were on deck in a place cooled by the free circulation of air.

The wooded hills rise to the height of from $\mathbf{3 0 0}$ to 45) feet above the river between Brownsville and Pittsburg. (See Pl. VI.) The latter place is situated at the junction of the Alleghany and Monong:hela rivers, which after their union form the Ohio. It is a most flour.shing town, and we counted twentytwo large steamboats anchored off the wharfs. From the summit of the hill, 460 feet high, on the left bink of the Monongahelit, we had a fine view of Pittsburg, partialiy concealed by the smoke of its namerous factories. A great many fine bridges span the two broad rivers above their junction. lat the same hill, I saw a fine section of the horizontal coal-measures. Far below the principal seam, and near the level of the river, there is a bed of coal a few inches thick, resting on clay. Upon this coal are layers of shale and limestone, in which I found the sume Bellerophon allied to, or identical with, B. Urii, and the
same Leptcena sarcinulata, Spirifer, allied to S. Ur:ii, and other sluells, which oceur at Frostburg, together with Encrinns, and a small coral.

The steamboats on the Ohio camot be depended upon for punctual departure at the appointed hour like those of the Hudson or Delaware. I therefore took places in a coach for Wheeling, and crossed a low and nearly level country, where I was struck with the absence of drift and boulders, so common in the north. The carbon.ferous stratil were exposed on the banks of every small streamlet, and not comceated by any superficial covering. On reaching one of those innumerable towns to which, as if for the sake of confusion, the name of Washington has been given, I received the agrecable intelligence that, instead of travelling to Wheeling before sunset, I must wait till another mail came up in the middle of the night. I was very indignant at this breach of promise, but was soon appeased by the grood-natured landlord and postmaster, who addressed me by the conc.liatory appellat.on of "Major," and assured me that the new post-oftice regulation was as inconvenient to him as it could possibly be to us.

The next day we embarked at Wheeling on the Ohio for Marietta. I had been requested by my geological friends, when at Phladelphia, to make inquiries respecting some Indian corn said to have been found fossil at some depth in a stratified deposit near Fish Creek, a tributary of the Ohio, and presumed to be of high antiquity. Λ proprietor who had res.ded twenty-six years near the spot, assured me that the corn occurred in an island in the river, at the depth of no more than two feet below the
surface of the alluvial soil. It conssted of parched corn, such as the hadians often buriod when alamed. and in the present year the Oho had risen s, high as to inundats the very spot, and thow down several fresh layers of mad upon the site of the corn.

Five miles below Whecling, on the left bank of the Ohio, is a terrace of stratified sud and gravel, hawing its surfate about seventr-five fiet above the Ohio. On this termace is seen a large had an momad. On our arriving at Marieta, I learnt from Dr. 11.1dreth that skeletons had been f,und in it at various depths, together with pipe-heads and other ornamients. Their workmanship implies a more advanced state of the arts than that attained by the rude hidians who inhabited this fertile valley when it was first discovered by the white man. There are many other similar mounds in the valless of the Ohio and its tributaries, but no tradition conceming their origin. One of these, near Marietta, in which human boncs were dug up, must be more than cight centuries old, for Dr. Hildreth counted eight hundred rings of ambual growth in a tree which grew upon it. But, however high may be the histor cal antiquity of the
on the by my 0 make o have ratificd nio, and or who assured e river, ow the mounds, they stand on alluvial terraces which are evidently of a very modern geological date. In America, as in Europe, the oldest monuments of human labour are as things of yesterday in comparison with the effects of physical causes which were in operation after the exsting continents had aequired the leading features of hill and valley, river and liake, which now belong to them. Dr. Lecke of Ciucimati has shown that one of the earth-works, enclosing about one hundred acres on the great 4*

Miami, although nearly entire, has been overflowed in a lew phaces, and partially obliterated. He infers from this and wher facts, that these mounds exfonding to high-water mark, and lable to be oceeasionally submerged, were constructed when the streams had already reached their present levels, or, in other words, their channels have not been deepened in the last 1000 or $\mathbf{2 0 0 0}$ years.*

The arguments for assigning a very remote period to the hadian antiquities above alluded to, have been stated with great foree and clearness by General Harrison, late President of the United States, who was practically versed in wooderaft, and all that relates to the clearing of new lands. In his esssy on the aborigines of the Ohio valley, \dagger he states, that some of these earth-works are not mere mounds, but extens ve lines of embankment. varying from a few feet to ninety feet in altitude, and enclosing areas of frem one to several hundred acres.
"Their s.tes," he says, " present precisely the same appearance as the circumjacent forest. "You find on them all that beautiful variety of trees which give such unrivalled richness to our forests. This is particularly the case on the fifteen acres ineluded within the walls of the work at the mouth of the great Mami, and the relative proportions of the different kinds of timber are abont the same."

He then goes on to observe that if you cut down the wood on any piece of wild land, and abandon it to nature, the trees do not grow up as before, but

[^1]one or two, ar at most three species get possession of the whole ground, such for example as the yellow locust, or the black and white walnut. The process by which the forest recovers its original state is extremely slow. "On a farm of my own," says he, "at the end of fifty years, so little progress had been made, as to show that ten times that period would be necessary to effect its complete assimilation. When those kinds of timber which first establish themselves have for a long time remained undisputed masters of the soil, they at length die by disease, or are thinned by the lightning or tempest. The soil has no longer a preference for them, and by a natural rotation of crops other species succeed, till at length the more homogeneous growth ceases, and the denuded tract is again clothed with it variety of wood." As the sites of the earthworks command extensive views, it is reasonable to infer that no trees were suffered by the Indians to spring up upon them or in the immediate neighbourhood, and as no difference could be detected in the mixture of trees upon and near the mounds, from the state of the surrounding forest, General Harrison concludes that several generations of trees had succeeded each other, before the present trees began to grow, and that the mounds were probably as ancient at last as the Christian wra. The rich valley of the Ohio, when first discovered by Europeans, was thinly poopled by rude tribes of Indian hunters. In what manner, then, could they have conquered and driven out that more civilized race which evidently preceded them? Harrison suggests that a great flood, like those which occurred in 1793 and 1832 after heavy rain, when
the Ohio was unusually blocked up with ice, may have swept off Indian towns and vil ages, ald catis. d the terrified occupants to remore. The flood would be construed by their superstition into a waming from heaven to seek a residence upon some smalle r streams; and before the remembrance of this fearful calamity had been efficed from their imaginations, the deserted region would, from its groat fertility, becone an unusual resort of game. It would then be a common hunting ground fir the hostile trebes of the north and south, and consequently a great arena for battle. In this state it continued when first visited by the whites.

Dr. Morton, in his luminous and philosophical essay on the aboriginal race of America, seems to have proved that all the d ff rent tr.bes. except the Esquimaux, are of one race, and that this race is peculiar and distinct from all others.* The physical characteristics of the Fuegins, the Indians of the tropical plains, those of the Rocky Mountains, and of the great valley of the Mississipp:, are the sime, not only in regard to feature and external lincaments, but also in osteological structure. Alter comparing nearly 400 crania derived from tribes inhouiting almost every region of both Americas, Dr. Mor.on has found the same peculiar shape pervading all, " the squared or rounded head, the flattened or vertical occiput, the high check bones, the ponderous maxillx, the large quadrangular orbits, and the low receding forehead." The oldest skulls from the cemeteries of Peru, the tombs of Mexico, or the

[^2]mounds of the Mississippi and Ohio, agree with each other, and are of the same type as the heads of the most savage existing tribes. If we next turn to their arts and inventions, we find that a cance excavated from a single log was the principal vessel in use throughout the New World at the perod of its discovery, the same primitive model existing among the Fuegians, the predatory Caribs, and the more advanced Mexicans and Peruvians.

But although the various tribes remained in general as stationary in all mattere requiring intellectual effort, as in their nautical contrivances, we behold with surprise certain points, of which Mexico was the most remarkable, where an indigenous and peculiar civilsation had been developed, and had reached a high degree of perfection. However much we may admire their architecture, their picture-writing, and historical records, it is their astronomical science in particular, as Mr. Prescott observes, which was disproportioned to their advancement in other walks of civil sation.* They had fixed the true length of the tropical year with a precision unknown to the great philosophers of ant quity, which could ouly be the result of a long series of nice and patient observations. By intercalating a certain number of days into the year at the expiration of every fifty-two years, they had even anticipated the Gregorian reform, so that their calendar at the time of the conquest was more correct than that of the Europeans. To ascribe the civilisation of the Toltecs to an Asiatic origin, while it is admitted that there was no correspondence or

[^3]relationship between their language and that of any known As.atic nation, appears to me a baseless hypothesis, however true it may be that the aboriginal Amer:caus had in the course of ages derived some hints from foreign sources. They could only have taken advantage of such aid, conjoctural as it is, and withont proof, if they were already in a highly progressive state; , and if such assistance be deemed sufficient to invalidate their title to an independent civilisation, $\mathrm{n} n$ race of mankind can ever make good their clain to such in honor.

If, then, a large continent can be inhabited by hundreds of tribes, all belonging to the same race, and nearly all remaining for centuries in a state of apparently hopeless barbarism, while two or three of them make a start in their social condition, and in the arts and sciences; if these same nations, when brought into contact with Europeans, relapse and retrograde until they are scarcely distinguishable in intelleetual ramk from the rude hunter tribes descended from a common stock; what caution ought we not to observe when speculating on the inherent eapacites of any other great member of the human family? The negro, for example, may have remained stationary in all hitherto explored parts of the African cutinent, and may even have become more barbarrous when brought within the influence of the white man, and yet may possess within his bosom the germ of a civiiis.tion as active and refined as that of the golden age of Tezenco.

In proportion as the Ohio falls gradually in level after its inundations, it leaves a great succession of steps cut in its mud banks, each from four to ten
inclies above the other. I was informed that the action of the waves raised by the steamboats causes this undermining of the bank. It appeared to me an exact miniature representation of the form in which the waves of the sea have denuded the land on the sides

Fig. 8.

Form of mud-barks of the Ohio River.
of some valleys in the limestone districts of Sieily and other countrics bordering the Mediterranean.

When at Marietta, I examined, with Dr. Hildreth, some of the uppermost beds of the coal-measures, consisting of red shale, in which impressions of ferns, especially Pecopteris cyathaa Brongn., or a species closely allied to it, abound. From a locality in this part of Ohio, which I did not visit, but which must belong to the newest division of the carboniferous strata, the trunks of silicified trees have been procured in abundance, with one of which Dr. Hildreth presented me, and which Mr. R. Brown has since as certained to belong to the genus Psaronius of Cotta. These stems, usually called Psarolites, have also been described by M. Ad. Brongniart as composed of two dist.nct parts, an outer zone, consisting of a great number of nearly cylindrical bundles of vessels, supposed to have been roots which proceeded from
the stem near its base, and an inner part or axis. In the exterior portion, the fossil air-roots have a vascular tissue, but there is often a delicate cellular tissue interposed between them. In the axis, on the other hand, or central part of the stem, the vessels form zigzag or wavy bands, resembling those of ferns. These flexuous and vermiform bands are ontirely composed of barred or scalariform vessels quite similar to those of ferns and Lycopodia. M. Adolphe Brongniart, therefore, considers the psarolites to have been the bases of the trunks of lycopodiaceous trees; but other eminent botanists incline rather to the opinion that they were true arborescent ferns.

I have cxamined at Autun, in France, the spot where more than one species of this genus occurs. The geological position of the fossls, as well as the associated plants and ichthyol tes, imply that the beds containing them belong to the uppermost coal measures. The same appears to hold truc of the stratia at Chemnitz in Saxony, from which Cotta procured several species, as also in regard to the only other places in Europe where psarolites have been met with, namely, Neu Paka in Bohemia, and Ilmenau in Saxe Weimar. Some species are common tu each of the spots above enumerated; but the Amer can fossil appears to have been distinct from all, and is remarkable for the small size of the outer zone of roots when compared to the central axis. The latter is often no more than two inches in diameter, while the whole trunk is fourteen inches. My friend Mr. Robert Brown possesses a psarolite which he received from the northern part of Brazil.

May 21).—From Marietta we descended the river,
about a hundred miles, to Pomeror, where I entered a coal mine which hed been worked horizontaily in the face of a cliff on the right bank of the Ohio. The coal was bituminous, and I have already mentioncd (p. 248, Vol. I.) that Dr. Perey has found the portion of volatile ingredients (hydrogen, oxygen, and nitrogen) to constitute nineteen par cent. of the whole mass, which, except a slight quantity of ash, is all carbon.* In appearance, the coal greatly rescmbles charcoal, and, although very pure, its structure displays, in a remakable manner, the vegetable orgen of the mass. In the roof or ceiling of the gallery were seen flattened stoms of C'alamites Suchowii and C. dubius, matted fogt ther. in the same manner as I have seen the se speces occurring in the shals of un English coal mines, especially in Northumbenand and Durham. 'The leaves, also, of fins. Pecopteris arborescens, P'. plumosa, Neuropteris cordata, Cyclopteris dilatatu, besides Asteroplayllites foliosa, Flabellaria, and other plants, were spread ont on the flat surface of the shale. 'The Sig llarix are particularly abundant in the Ohio eral-fiell, and about halt of those which I obtained are decidedly identical with Europeran species.

We were forthnate, when at Pomeroy, to fall in with some New England settlers, who were nearly related to several of our most valued friends at Boston. Their description of what they had gone through since they first founded this flourishing colony in the wilderness, reminded us of that entertaining volume recently published in the United States, called

[^4]"A New Home: Who'll Follow?" It is not the trees and their rank growth on the uncleared land, nor the wild animals, which are the most uncongenial neighbours to persons of superiour education and refinement in a new settlement. To enjoy facilities, therefore, of communicating rapidly with the civilized Eastern States by founding their new town on the banks of a great navigable river, or close to some main road in the interior, is a privilege truly enviable. I remember wondering, when I first read Homer's graphic sketch of the advantages of wealth, that he should have placed his rich man's mansion on the road side-

To an Englishman, the poet's notion seemed very un-aristocratic, for we are almost irresistibly reminded of the large sums which an Engl sh country gentleman would expend in urder to remove the high road to a respectful distance. Probably the present condition of Ohio, rather than that of a county of parks and mansions like Surrey, was the model most frequently present to the minds of the migratory Grceks of the Homeric age.

From Pomeroy, a large steamboat carricd us more than 200 miles in about fifteen hours, down the broad, wind ng stream, past many a well-wooded island, to Cincinnati, where we were struck with the appearance of commercial activity, the numerous wharfs and steamboats, the wide streets and handsome buildings.

CHAP'TER XVI.

Abstract

Succession of Strata on the Ohio between Pomeroy and Cincin. nati.-Return up the Ohis to Roclville.-Waverley Sand-stone.-Cliff Limestone.-Denudation.-Blue Limestone of Cincinnati-LLower Silurian Fossils.-Limited Proportion of Silurian Species common to Europe and America.-Great De. velopment of Brachiopoda.-Deep Sea Formations.-Rarity of Silurian Land Plants.-Silurian Fossil Fish.

Between the western extremity of the Appalachian coal ficld and Cincennati, as will be seen by referring to the section given at p. 92, Vol. I., the different formations, from the Devonian to the Lower Silurian inclusive, come up to the surfice in succession, being well exposed in the eliffs or stecp slopes of the h Ils which bound the Ohio valley. I have already mentioned a fine scam of coal at Pomeroy, beneath which, farther to the westward, the lower coalmeasures are seen, and at length at Portsmouth, the infer:or conglomerate or millstone grit, next to which, the formation, called by the Ohio geolog'sts the Waverley sandstone, the equivalent of the Devonian formation (No. 9, in the large map, Pl. II.) makes its appearance. To this sandstone, the Upper Silarian slates and limestones (Nos. 10, 11, and 13 of the map) succeed in the descending order, and lastly, at Cincinnati, the Lower Stlurian groups (Nos. 14 and 15 of the map) are exhib.ted in the hills, and in the bed of the Ohio at low water.

Having, when I came down the Ohio, made the
last part of my journey in the dark, I re-ascended the river for a hundred miles, in company with Dr. Locke, a geologist lately engaged in the State survey of Ohio, and who liberally devoted his time to aid me in my inquiries. I was desirous of seeing the rocks corresponding to the Old Red sandstone before mentinned, and with this view we landed at Rockville, about eighteen miles below Portsmouth, and examined the Waverley sandstone at that place. Retain.ng in my mind a perfect recollection of the aspect of the depos ts intervening in the State of New York, between the Coal and the Upper Silurian groups, at the distances of 400 and 500 miles, I was struck with their extraordnary decrease in volume, the absence of some formations, and the complete identity of those sets of stratia which remained. I have before alluded to the gradual thinning out of the coarse sedmentary rocks, both in the Silurian and Carboniferous scries of the U.S., as we proceed westward, and the increased thickness of many of the calcareous formations. The Waverley sandstone of Rockville has been recognized by Mr. Hall as the representative of the Chemung and Portage groups of the New York Reports. It contains here many ripple-marked flags with partings of shale. The surfaces of the slabs of sundstone display the festoon-shaped fucoid, called here Fucnides cauda galli, from its resemblance to a cock's tail. I saw some single individuals of this plant extending through layers eight inches thick. There were no assoc:ated shells; but in some of the uppermost strata of the series we found spirifers and other brachiopods, with many encrinites.

Between Rockville and Cincinnati the bituminous shales corresponding to the Hamilton group (or No. 10 of the large map) are seen, and below them what is called the "Clifl limestone," which is considered, and, I believe correctly, by Mr. Hall, as the representative both of the Helderberg and Niagara limestones of New York. Among the characteristic shells, I observed the Pentamerus oblongus, so abondant in the Clinton group of New York, a shell cons.dered by Messrs. Murchison and De Verneul to mark the line of separation between the Upper and Lower Silurian rocks of Europe.
In discussing with Dr. Locke the probability of the former continuity of the Illinois and Appalachian coal-ficlds (see the section, Vol. I. page 32), and the possible extension of the strata (Nos. 5, 6, and part of 7 of that sect.on, or $9,10,11$, and 13 of the large map) over that flat dome on the middle part of which Cincinnati is built, we endeavoured to calculate the height which the central area would have attained, if the formations supposed to have been removed by denudation were again restorcd. In that case the thickness of the strata of coal, subjacent conglomerate, Devonian and Upper Silurian beds, which must have been carried away, could not, if we estimate their development from the mean of their aggregate dimensions on the east and west of Cincinnati, have been less than 2000 fect. The tops of the hills near Cincimnati, composed of the blue limestone, are about 1400 fect above the level of the sea. If, then, the formations presumed to have been destroyed by denudation were replaced, the height of the dome
would be about 3500 feet, or exceeding the average clevation of the Alleghany Mountains.

The thinning out and disappearance of the mudstones and sandstones of the more eastern States, causing limestones, such as the Helderberg and Nitgara, so widely separated in New York, to unite and form single and indivisible masses in Ohio, affords no argument aga nst the classitication of the New York geologists. Their grouping of the subordinate members of the Devonian and S.lurian systems has been bassd on sound principles; on mixed geographical, lithological, and paleontological considerations; and the analogy of European geology teaches us that minor subdivisions, however useful and importint with:n certain limits, are never applicable to countries exiremely remote from each other, or to areas of indefinite extent.

The rock forming the hills and table lands around Cincinnati, called the blue limestone, has been commonly referred to the age of the Trenton limestone of New York (No. 15, map, Il. II.), but is considered by Messrs. Conrad and Hall, and I believe with good reason, as comprehending also the Hudson River group (No. 14 of map). It seems impossible, however, to scparate these divisions in Ohio, so that the district coloured blue (No. 15) may be regarded as agreeing with Nos. 14 and 15 in other parts of my map. Several of the fossils which I collected at Cincinnati, the encrinites and Aviculæ (of the subgenus Pterinea) in particular, agree with those which I afterwards procured near Toronto, on the northern shores of Lake Ontario.

After seeing at Cincinnati several fine collections

Char. xvi. PO:NIIA OF BldE LIMESTONE.
of recent and fossil shells in the cabinets of Messrs. Buchanan, Anthony; and Clark, I examined with care the quarries of blue limestone and marl in the suburbs. The organic remains here are remarkably well preserved for so ancient a rock, especially those occurring in a compact argillaceous blue limestone, not unlike the lias of Europe. Its deposition appears to have gone on very tranquilly, as the Lingula has be n met with in its natural and erect position, as if enclosed in mud when al.ve, or still standing on its peduncle. Crustaceans of the genus T'rinucleus are found spread out in great numbers on layers of the solid marl, as also another kind of trilobite, called Paradoxides, equally characteristic of the Lower Silurian system of Eurnpe. The large Isotelus gigas, three or four inches long, a form represented, in the Lower Silurian of Northern Europe, by the Asaphi with eight abdom nal articulations, deserves also to be mentioned, and a species of graptolite. I obtained also Spirifer lynx in great abundance, a shell which Messrs. Murchison and De Verneuil regard as very characteristic of the lowest Silurian beds of Russia and Sweden. Among the mollusca, I may also mention Leptena sericea, Orthis striatula, Bellerophon bilobatus, Aveculce of the subgenus Pterinea, Cypricardia, Orthoceras, and others. There were also some beaut.ful forms of Crinoidea, or stone-lilies, and many corals, which Mr . Lonsdale informs me differ considerably from those hitherto known in Britain, a circumstance probably arising from the small development of coralline limestones in the Lower Silurian strata of our island. Several species
of the new genus Stenopora of Lonsfale are remark. ably abundant.

In regard to the proport on of species common to the Silutian beds of Europe and America, whetien of the lower or upper division. I may confidently athirm, that it is not greater than a naturalist would have antic pated, from the analogy of the laws governing the d.strbution of living invertebrate an:mals. A contrary opiaion has prevaled very w dely, it being rashly assumed, that at remote epochs the maj nity of species were far more cosmopolite than in modern times.

The recent researches of Messrs. Murchison and De Verneuil point to the conelusion that the foss l shel's, corals, and trilobites of the Shlurian system of Scandinavia, and Russia, resemble greatly those of the British Isles ; yet nearly half the specits which they collected there were different from ours, and the departure from a common type was far more consp'cuous in the Lower Silurian fossils of Britain and Russ.a, than in those of the upper division. When the same fossils of Northern Europe were compared by M. de Verneuil with those brought by me from America, the distinctness was obvious'y much greater, alihough the representation of generic forms, whether in the organic remains of the upper or lower Silurian strata, was most clear and satisfactory.

On both sides of the Atlantic, these ancient marine formations are characterized by a prod gious development of one peculiar fam:ly of mollusca, called brachiopoda (palliobranchiata)-shells, which, as they inhabit deep water, are little known, and have re-
ceived no common name in our language. They are represented by the living genera Terebratula, Orthis, Lingula, Orbicula, and Crania. The existence of Orihis, a form till lately supp sed to be extinct, has bien made known to us by the researches of Phil ppi in the Mediterransan. Some other generia may hereafier be detected by deep dredging, for we learn from Professor E. Forbes, that at the depth of 100 fathoms in the Mediterranean the profusion of individuals of certain speces of Terebratula is extremely great. Nevertheless it may be safely assumed, that the present seas, as well as the tertiary strata of the epochs immediately preceding our own, exh.bit a smaller variety in the forms of this tribe of mollusea than the Silurian rocks in which they seem to have attained their maximum of development. The oldest known fossiliferous period was in fuct the age of brachiopods; as the carboniferous period was that of ferns, and the oolitic that of reptiles.

The great number of crustaceans of the extinct family called Trilosites, is also another feature of the formations older than the carboniferous, and especially of the Silurian rocks. No country is richer in fiss.ls of this class than the United States; and Mr. Conrad has given a table of distinct genera of trilobites, which characterize his Upper, Middle, and Lower Silurian formations of New York, each of which larger divisions he considers to be quite as distinct as the Devonian, and as capable of being classed as an independent group by reference to orginic remains.*

[^5]There are some negative characters showing a resemblance between the most ancient of the foss.iiferous rocks yet known in Europe and Amsrica, which deserve not.ce, although they belong to a perfaetly different order from those before mentiond, as deduced from the analogy of organ:c forms. Of these points of agreement, the most remarkable are the absence or extreme rarity of land plants and vertebrate animals. That the vegetable world had already been called into existence is proved by the presence of various forms of fucoids, which are plentifully distributed through every part of the series. Some of the slabs of the lowest Silurian slates of Wales are covered with sea-weeds of such genera as are plainly indicative, like the brachiopoda, of deep water. There is, indeed, every reason to conclude that the Silurian deposits generally were formed far from land, which would alone explain the extreme scarcity of teriestrial plants; for how seldom do we meet with wood or fruits floating in mid ocean; and, if they are sometimes carried there by currents, how rarcly can we expect them to sink to the bottom precisely ii: those places where, before decay, they may become enveloped and permanently presurved in sediment.

A few examples, however, of Devonian and Silurian land plants have been brought to light in the course of the New York survey. One of these was shown me by Mr. Vanuxem, and has been figured in his final Report, p. 157. It appeared to me more allied to the Lepidodendron than any fossil genus hitherto described. Its position is in the Hamilton or Upper Silurian group, in which we find a great
varicty of trilobites, Spiriferæ, and other brachiopoda and corals, all agreeing perfectly w.th European Upper Silurian types. Other plants allied to these, and ferns, have been met with in the lowest Devonian or Chemung strata of the State of New Yoik (the olive slate of Penusylvania and Virg nia), associated with fussil shells, very closely allied to the Silurian.* These exceptions to the g(neral rule have been found in those eastern parts of the United States where the Devonian and Silurian sandstones and mudstones are of the greatest thickness, and which we may therefore presume to have orig.nated nearest to the lands then exposed to denudation. The neighbouring continent of that remote epoch may probably have occupied the space now covered by the Athantic, and there may have been another in the Pac:fic, while the lands now existing were then the site of decp oceans.

The greater the lapse of ages which s parates the origin of a given set of strata from our own times, the greater is the probability that our acquaintance with those strata will relate chicfly to pelagic deposits, or those formed in deep seas, and far frum land. It must require a long continuance of subterranean movements, and a frequent shifting of the principal areas of upheaval, before extensive tracts of the bed of deep oceans, such as the Atlantic and Pacific, can be converted into continents. On the other hand, we may presume that the estuary, littoral, and larustrine strata of such remote ages, being at first of small horizontal extent, as compared to the con-

[^6]temporaneous coral reefs and fine sedimentary dcposits of the ocean, would have become in great part submerged, or covered by newer formations, or destroyed by denudation, during that immense interval of time which separates their origin from our own period.

In regard to the rarity of marine vertebrate animals in the oldest rocks, it may perhaps be no greater than is observed in strata of more modern date, formed in seas of equal depth, or at points as remote from the land. Many years have not elapsed since the Old Red sandstone was thought to be barren of ichthyolites; but now, in addition to the numerous genera found in Scotland by Mr. Hugh Miller, and those deseribed by M. Agassiz, the last-mentioned zoologist has amounced that nine genera of sharks of the division Cestracion occur in the Devoni:n beds of Russia, examined by Messrs. Murchison and De Verneu'l. The appearance of fish so highly organized in some of the oldest formations, is strongly opposed to the theory of progressive development advocated by some writers, and imagined by them to derive support from recent geological discoveries.

In Engl:md, the remains of fish have long been known in the highest beds of the Upper Silurian, and they have lately been found as far down as the Wenlock limestone. The New York surveyors have met with them in more than one member of the Helder berg series (No. 11, Map. pl. II.) Long ichthyodorulites, or spines of the dorsal fins of fishes, have been obtained, for example, from the Corniferous limestone. But the lowest rock in which they have been traced in America is, I believe, the Clinton group, which
may be cons dered the hottom of the Upper, or top of the Lower, Silurian serics. Mr. H. D. Rogers informs me, that he and his brother have traced the scales of fish through strata of this series from the south-western part of Varginia to the north branch of the Susquehanna, in Pennsylvania.

Professor E. Forbes, after acquiring much experience, by dredging in the Mediterranean, of the fauna which characterizes the sea at different depths, has inferred that the Silurian seas in those areas hitherto examined were at first very deep and tranquil, although in parts they afterwards grew shallower. The following are the principal grounds of this con-clusion:-first, the small size of the greater number of conchifera; secondly, the paucity of pectinibranchiata (or spiral univalves); thirdly, the great number of floaters, such as Bellerophon, Orthoceras, \&c.; fourthly, the abundance of brachiopoda; fifthly, the absence or great rarity of fossil fish; sixthly, the deep-water forms of most of the sea-weeds; and seventhly, the absence of land plants.

CHAPTER XVII.

Alluvial Terraces at Cincinnati, and their Origin.-Bones of the Elephant and Mastodon.-Excursion to the Swamps of Big Bone Lick, in Kentucky.-Noble Forcst.-Salt Springs.Buffalo Trails.-Numerous Bones of extinct Animals.-Associated Freshwater and Land Shells.-Relative Age of North. ern Drift, and Deposits with Boncs of Mastodon on the Ohio

The Ohio river at Cincinnati, and immediately above and below it, is bounded on its right bank by two terraces, on which the city is built; the streets in the upper and lower part of it standing on different levels. These terraces are composed of sand, gravel, and loam, such as the river, if blocked up by some barrier, might now be supposed to sweep down in its current, and deposit in a lake. The upper terrace, b (fig. 9), is bounded by steep hills of ancient fossiliferous rocks. A, the blue, Lower Silurian limestone, mentioned in the last chapter, in horizontal stratification. The higher terrace, b, is about 60 feet above the lower, , and this again about 60 feet above low water in the Ohio, d. The geologists here are convinced that the inferior terrace, c, is of newer origin than b, as shown in the section (fig. 9), and proved by excavations, not exposed at the time of my visit.

In sinking a well through c, at the distance of 300 yards from the Ohio, and at the depth of 50 feet from the surface, they found, at e, pieces of wood and many walnuts in a bed of silt.

Near the edge of the higher terrace, in digg:ng a gravel-pit, which I saw open at the end of Sixth

Fig. 9.
Cincinnati.

A. Blue limestnne (Lower Sifurian).
b. Upper teriase. c. Lower terrace.
e. Fussil wood and nuts, \&ce., found here in silt.
street, they discovered lately the teeth of the Elephas primigenius, the same extinct species which is met w th in very analogous situations on the banks of the Thames, and the same which was found preserved entire with its flesh in the ice of Siberia. Above the stratum from which the tooth was obtained, I observed about six fect of gravel covered by ten feet of fine yellow loam, and below it were alternations of gravel, loam, and sand, for 20 feet. But I searched in vain for any accompanying fossil shells. These, however, have been found in a similar situation at Mill Creek, near Cinoinnati; a place where soveral tecth of mastodons have been met with. They belong to the genera Melania, Lymnaea, Amnicola, Succinea, Physa, Planorbis, Paludina, Cyclas, Helix, and Pupa, all of recent species, and nearly all known to inhabit the immediate neighbourhood. I was also informed that, near Wheeling, a bed of freshwater shells, one foot thick, of the genus Unio, is exposed at the height of 120 feet above the mean level of the Ohio. The remains of the common Amrrican mastodon (M. gigantous) have also been found at several points in the strata in the uppor terrace, both above and below Cincinnati.

Upon the whole it appears, that the strata of loam, clay, and gravel. forming the elevated terraces on bolls sdes of the Ohio and its tributaries, and which we know to have remaned matiered from the era of the Indian mounds and earthworks, originated subvequently to the priod of the existing mollusca, but when several quadrupeds now extinct inhabited th's cont nent. The lower parts bsth of the larger and smaller valleys appear to have been filled u_{j} with a flaviatile depost, through which the streams hive subsequently cot broad and deep channts. These phenomena very closely resemble those presented by the loess, or ancent river-s.It of the Rhine and its tributaries, and the theory which I formerly suggested to aceomt for the position of the Rhenish lows (atso charerd with recent land and freshwater shells, and oceasionally with the remains of the extenct elephamt) may be applice:ble to the American deposts.

1 imagined first a gradual movement of depression, like that now in progress on the west coast of Greenland, to lessen the full of the waters. or the height of the land r batisely to the ocem. In consequence of the land being thus lowered, the bottoms of the main and lateral valleys become filled up with fluviat le sediment, containing terrestrial and freshwater shells, in the same manner as deltas are formed where rivers meet the sea, the salt-water being excluded, in spite of continued subsidence, by the acemmutation of alluvial matter, brought down incessantly from the land above. Afterwards, I suppose an upward movement gralually to restore the country to its former level, and, during this upheaval, the rivers remove a large part of the accumulated mud, sand, and gravel. I
have already shown that on the coast of Georgia and South Carolina (see Vol. I.. p. 16i), in the United States, we have positive proofs of modem oscillations of level, smilar to those here assumed.
'Two days afier I reached Cincinnati, I set out. in company with two naturalists of that eity, Mr. Buchanan and Mr. J. G. Anthony, who kindly offered to be my guides, in an excurs on to a place of great geological colebrity in the ne ghbouring State of Kentucky, called Big Bone Lick, where the bones of mastodons and many other extinct quadrupeds had been dur up in extraordinary abundance. Having crossed the river from Cincinnati, we passed through a forest far more magnificent for the saze and variety of its trees than any we had before secn. The tulip-tree (Liliodendion tulipiferum) the buckeye, a kind of horse-chestnut, the shagbark heckory, the becel, the oak, the elm, the chestnut, the locust-tree, the sugar-maple, and the willow, were in perfection bat no coniferous trees,--none of the long-leaved pines of the Southern Atlantic border, now the e:press, cedar, and hembek of other States. '1hese forests, where there is no undergrowth, are ealled "wond pastures." Originally the cane covered the ground, but when it was eaten down by the catile. no new crop could get up, and it was replaced by grass alme.

Big Bone Lick is distant from Cincinnati about twenty-three miles in a S.W. direction. The interren'ing country is composed of the blue argillaceous limestone and marl before mentioned, the heds of whech are nearly horzontal, and form flat table-lands intersected by valleys of moderate depth. In one of
these, watered by the Big Bone Creek, oceur the boggy grounds and springs called Licks. The term Lick is applied throughont North America to those marshy swamps where saline springs break out, and :which are frequented by deer, buffilo, and other wild animals for the sake of the salt, whether dissolved in the water, or thrown down by evaporation in the sammer season, so as to enerust the surface of the marsh. Cattle and wild beasts devour this inerustation greedily, and burrow into the clay impregnated w.th salt, in order to lick the mud. Bartram, the botanist, tells us, that in his time (1790) he visted Buffilo Lick in Georgia, forming part of a cane swamp, in which the head branches of the Ogeechee river take their rise. The lick consisted of " whitecoloured tenacious fattish clay, which all kinds of cattle lick into great hollows, pursuing the delicious ven.". "I could discover nothing saline in its taste, but an insipid sweetness. Horned cattle, horses, and deer are immoderately fond of it, insomuch that their excrem'nt, which almost totally covers the earth to s me distance romd this place, appears to be perfeet elily, which, when dried by the sun and air, is almost as hard as brick." (Travels in N. and S. Carolina, \&c., p. 39.)

The celebrated bog of Kentucky is situated in a nearly level plain, in a valley bounded by gentle shipes, which lead up to the table-liands before mentioned. 'The general course of the meandering stream which flows through the plain, is from east to west. 'Ihere are two springs on the southern or left bank, rising from marshe, and two on the opposite bank, the most western of which, called the Gum Lick, is
at the point where a small tributary joins the principal stream. The quaking bogs on this side are now more than fifteen acres in extent, but all the marshes were formerly larger before the surrounding forest was partially cleared away. The removal of tall trees has allowed the sun's rays to penetrate freely to the soil, and dry up part of the morass.

Within the memory of persons now living, the wild bisons or bullaloes crowded to these springs, but they have retreated for many years, and are now as unknown to the inhabitants as the mastodon itself. Mr. Phinnel, the proprietor of the land, called our attention to two buffalo paths or trails still cxtant in the woods here, both leading directly to the springs. One of these in particular, which first strikes off in a northerly direction from the Gum Lick, is afterwards traced eastward through the forest for several miles. It was three or four yards wide, only partially overgrown with grass, and, sixty years ago, was as bare, hard, and well trodden as a high road.

The bog in the spots where the salt springs rise is so soft, that a man may force a pole down into it many yards perpendicularly. It may readily be supposed, therefore, that horses, cows, and other quadrupeds, are now occasionally lost here; and that a much greater number of wild animals were mired formerly. It is well known that, during great droughts in the Pampas of South America, the horses, cattle, and deer throng to the rivers in such numbers that the foremost of the crowd are pushed into the stream by the pressure of others behind, and are sometimes carried away by thousands and
drowned.* In their eagerness to drink the saline waters and lick the salt, the heary mastodn as and elephants scem in like mamer to have pressed upen each otur, anc sunk in these soft quigmires of Kentucky.

The grater proportion both of the entire skeletons of extinct animals, and the separate bones, have been taken up from black mud, about twelve fect below the level of the creck. It is supposed that the bones of mastodons found here could not have belonged to less than one hundred distinct individuals, those of the fossil elephant (E. primigenius), to twenty, besides which, a few bones of a stag, horse, megalonyx, and bison, are stated to have been obtained. Whether the common bison, the rema us of which I saw in great numbers in a superficial stratum recently cut open in the river's bank, has ever been seen in such a situation as to prove it to have been contemporancous with the extinct mastodon, I was unable to ascertain. In regard to the horse, it may probably have differed from our Equus caballus as much as the zebra or wild ass, in the same manner as that found at Newberne in North Carolina appears to have done. (See p. 131.) The greatest depth of the black mud has not been ascertained; it is composed chicfly of clay, with a mixture of calcarcous matter and sand, and contains 5 parts in 100 of sulphate of lime, with some animal matter. (Cuvier, Oss. Foss., tom. i., p. 216.) Layers of gravel occur in the midst of it at various depths.

[^7]In some places it rests upon the biue limestone. The only teeth which I mysell procur d from collectors on the spot, besides those of the butfilo, were recognized by Mr. Owen as belonging to extremely young mastodons. From the place where they were found. and the rolled state of some of the accompanying bones, I suspected that they had been washed out of the so.l of the bogs above by the river, which often changes its course after floods.

Mr. Cooper of New York, who has g.ven the fillest account of the fissils of this place, says, that the remains of reeds and freshwater mollusea accompany the bones; but he names no spectes of shells. Mr. Anthony and I were therefore dlligent in our search for shells in pits which happened to have been recently laid open by collectors of fossil bones ; and we soon obtained a sinall Ancylus and Cyclas. Afterwards, in the most eastern marsh, in the middle of which a powerful spring throws up berch nuts and shells from the mul below, we f.und two species of Melania known as recent, Physa heterostropha, Cyclas similis, C. dubia? (and another species, not known to naturalists here), Pisidiam (supp sed to agree with one from Lake Erie), Ancylus (not known), and fragraents of Unio; also the following land sh lis ;-Helix solitaria (with bands of colour not effaced), H. alternatu, H. clansa, H. fruterna, and Pupa armifera. As new terrestral and freshwater shells are occasionally added to the recent American fauna. I think it very probable that all the fourtecn species which we met with, and which, l believe, co-existed with the mastodon, are still living, though
perhops no: all of them in the immediate ne:ghbourhood.

It is impossible to view this plain, without at once concluding that it has remained unchanged in ill its principal features from the period when the extinct quadrupeds inhabited the bunks of the Ohio and its tributaries. But one phenomenon perplexed us mach, and for a time scemed quite unintelligible. On parts of the bogegy grounds, a superficial covering of yellow loan was incumbent on the dark-coloured mud, containing the fossil bones. This partial covering of yellow sandy clay was at some points no less than fifteen or twenty feet thick. Mr. Bullock passed through it when he dug for fossil remains on the left bank of the creck, and he came down to the borgy grounds with bones below. We first resorted to the hypothes.s that the valley might have been dammed up by a temporary barrier, and converted into a lake; but we afterwards learnt, that although the Ohio is seven miles distant by the windings of the creek, there being a slight descent the whole way, yet that great river has been known to rise so high as to flow up the valley of Big Bone Creek, and, so late as 1824, to enter the second story of a house built near the springs. The level of the Licks above the Ohio is about fifty feet, the distance in a straight line being only three miles. At Cincinnati the river has been known to rise sixty fect above its summer level, and in the course of ages it may occasionally have risen higher. It may be unnecessary, theretore, to refer to the general subsidence before alluded to (probably an event of a much older date), in order to account for the patches of superficial silt last described.

After spending the day in exploring the Licka, we were hospitably received at the house of a Kentucky proprietor a few miles distant, whose zeal for furming and introducing cattle of the "true Durham breed," had not prevented him from cultivating a beautiful flower garden. We were regaled the next morning at breakfast with an excellent dish of broiled squirrels. There are seasons when the grey squirrel swarms here in such numbers, as to strip the trees of their foliage, and the sportsmen revenge themselves after the manner of the Hottentots, when they eat the locusts which have consumed every green thing in Southern Africa.

We then returned by another route through the splendid forest, and re-crossed the Ohio. The weather was cool, and we saw no fire-flies, although I had seen many a few days before, sparkling as they flitted over the marshy grounds bordering the Ohio, in my excursion up the river to Rockville.

Among the inquiries which can hardly fail to awaken the curiosity of a geologist who explores this region, one of the most natural relates to the relative age of the northern drift, and the deposits containing the remains of the mastodon and clephant, whether at Big Bonc Lick, or in the higher terrace (b, fig. 9) at Cincinnati. In my journey, some days afterwards, from the Ohio river to Cleveland on Lake Erie, I had not proceeded twenty-five miles to the northward before I again found myself in a country covered with northern drift, of which I had lost sight for many weeks previously. The first patches which I observed werc about five miles N.E. of the town of Lebanon, after which I saw it in great
abundance at Springfield, with large blocks and boulders of gneiss, reddish syen.te, quartzite, and hornblende rock, all of which must have come from the north side of Lake Erie. The Ohio river, therefore, in the north latitude 40° and 41°, seems to mark the southerin limit of the drift in this part of North America, although some scattered blocks have gone farther, and reached Kentucky.

I was also told that a boulder of gneiss, twelve feet in diameter, has been found resting on the upper terrace (b, fig. 9), four miles north of Cincinnati, and that fragments of granite, in a similar situation, have been met w.th at that city itself. These may possibly have been brought into their present position s.nce the period of the deposition of the principal mass of northern drift; for, although I could not obtain sufficient data for forming an accurate opinion as to the relative age of the drift, and the beds containing the bones of mastodon and elephant, whether in the upper terrace above alluded io, or in the lichs of Kentucky, I incline to believe the dxift, as a whole, to be the older of the two formations. The swamps of the Big Bone Licks have the same intimate relation to the present superficial geography of the district, as have those marshes and alluvial deposits before described in New York, as containing the remains of mastodon and recent shells, which are decidedly more modern than the drift and its crratic blocks. (Vol. I., pp. 18, 20, and 54.)

CHAPTER XVIII.

Cincinnati--Journey across Ohio to Cleveland.--New Clearo ings.-Rapid Progress of the State since the year 1800.Increase of Population in the United States.-Political Dis-cussions.-German and Irish Settlers.-Stump Oratory.Presideniial Elections.-Relative Value of Labour and Land.

The pork aristocracy of Cincinnati does not mean those innumerable pigs which walk at large about the strects, as if they owned the town, but a class of rich merchants, who have made their fortunes by killing annually, salting, and exporting, about 200,000 swine. There are, besides these, other wealthy proprictors, who have speculated successfully in land, which often rises rap.dly in value as the population increases. The general civilisation and refinement of the cilizens is far greater than might have been looked for in a Slate foimded so recently, owing to the great number of families which have come directly from the highly educated part of New England, and have settled here.

As to the free hogs before mentioned, which roam about the handsome streets, they belong to no one in particular, and any citizen is at liberty to take them up, fatten, and kill them. When they increase too fast, the town council interferes, and sells off some of their number. It is a favorite amusement of the boys to ride upon the pigs, and we were shown one sagacious old hog, who was in the habit of lying down as soon as a boy came in sight.

May 29th.-We left Cincinnati for Cleveland on Lake Erie, a distance of 250 miles, and our line of route took us through the eentre of the State of Ohio, by Springfield, Columbus, Mount Vernon, and Wooster, at all which places we slept, reaching Cleveland on the fifth day.

In our passage through Ohio, we took auvantage of public coaches only when they offered themselves in the day-time, and always found good private carriages for the rest of the way. If some writers, who have recently travelled in this part of America, found the fatigue of the journey excessive, it must have arisen from their practice of pushing on day and night over "oads which are in some places really dangerous in the dark. On our reaching a steep hill north of Mount Vernon, a fellow-passenger pointed out to me a spot where the coach had been lately upset in the night. He said that in the course of the last three years he had been overturned thirteen times between Cincinnati and Cleveland, but being an inside passenger had escaped without serious injury.

In passing from the southern to the northern fronticr of Ohio, we left a handsome and populous city and fine roads, and found the towns grow smaller and the ligh road rougher, as we advanced. When more than half way across the State, and after leaving Mount Vernon, we saw continually new clearings, where the felling, girdling, and burning of trees was going on, and where oats were growing amidst the blarkened stumps on land which had never been ploughed, but only broken up with the harrow. The carriage was then jolted for a short space over a
corduroy road, constructed of trunks of trees laid side by side, while the hot air of burning timbes made us impatient of the slow pace of our carriage. We then lost sight for many leagues of all human habitations, except here and there some empty wooden building, on which "Mover's House" was inscribed in large letters. Here we were told a fumily of emigrants might pass the night on payment of a small sum. At last the road again improved, and we came to the termination of the table land of Ohio, at a distance of about sixteen mles from Lake Erie. From this point on the summit of Stony H.ll we saw at our feet a broad and level plain covered with wood; and beyond, in the horizon, Lake Erie, extending far and wide like the ocean. We thin began our descent, and in about three hours reached Cleveland.

The changes in the condition of the country which we had w.tnessed are illustrations of the course of events which has marked the progress of civilisation in this State, which first began in the south, and spread from the banks of the Ohio. At a later proriod, when the great Erie canal was finshed, which opencd a free commercial intercourse with the river Hudson, New York, and the Atlantic, the northera frontier began to acquire wealth and an increase af inhabitants. Ports were founded on the lake, and grew in a few years with almost unpuralleled rapisity. The forest then yielded to the axe in a $n \in \mathbb{N}$ direction, and settlers migrated from north to sourl, leaving still a central wilderness between the Otri. and Lake Erie. 'This forest might have proved for many generations a serious obstacle to the progress
of the State, had not the law wisely provided that all non-resident holders of waste lands should be compelled to pay their full share of taxes laid on by the inhabitants of the surrounding districts for new schools and roads. If an absentee is in arrear, the sher ff seizes a prition of his ground cont guous to a town or village, puts it up for auction, and thus dscharges the debt, so that it is impussible for a speculator, ind fferent to the local interests of a district, to wait year after year. unt.l he is induced by a great bribe to part with his lands, all ready communication between neighbouring and highly cultivated regions being in the mean time cut off.

Oaio was a wilderness exclusively occupied by the Indians, unt.l near the close of the last century. in 1800 its population amounted to 45365 , in the next ten years it had increased five-fold, and in the ten which followed it again more thin doubled. In 1840 it had reached $1,600,000$ souls, all free, and almost without any admixture of the coloured race. In this short interval the forest had been transformed into a land of steamboats, canals, and flourishing towns; and would have been still more populous had not thousands of its new settlers migrated still farther west into Indiana and Illinois. A portion of the pub. lic works which accelerated this marvellous prosperity, were executed with foreign capital, but the interest of the whole has been punctually paid by direct taxes. There is no other example in history, either in the old or new world, of so sudden a rise of a large country to opulence and power. The State contains nearly as wide an extent of arable land as England, all of moderate elevation, so rich in its
alluvial plains as to be cropped thirty or forty years withoat manure, havirg abundance of fine taber, a temprate climats, many large navig ble rivers, a ready communication through Lake Eric with the north and east, and by the Ohio with the south and west, and, lastly, abundance of coal in its castern countics.

I am informed that, in the beginniug of the present year (1842), the foremost bands of cm:grants have reached the Flatte River, a tributary of the Missouri. This point is said to be only half way between the Atlantic and the Rocky Mountains, and the cometry beyond the present frontier is as fertile as that ahready occupied. De Toequeville calculated that along the borders of the United States, from Lake Superior to the Gulf of Mexico, extending a distance of more than 1200 m :les as the bird flics, the whites advance every year at a mean rate of seventeen miles; and he truly observes that there is a grandeur and solemnity in this gradual and continuous march of the European race towards the Rocky Mountains. He compares it to "a delr, e of men rising unabatedly, and daily driven onwards by the hand of God.".

When conversing with a New England friend on the progress of American population, I was surprised to learn, as a statistical fact, that there are more whites now living in North America than all that have died there since the days of Columbus. It seems probable, moreover, that the same remark may hold true for filty years to come. The census has been very carefully taken in the United States since

[^8]the year 1800 , and it appears that the ratio of increase was 35 per cent. for the first decennial periods, and that it gradually diminished to about 32 per cent. in the list. From these data, Pro.essor Tucker estimates that, in the year 1850, the population will amount in round numbers to 22 millions, in 1860 to 29 m .llions, in 1870 to 33 millions, in 1880 to 50 mil . lions, in 1890 to 63 millions, and in 1900 to 80 millions.

The territory of the United States is said to amount to one-tenth, or at the utmost to one-eighth of that colonised by Spain on the American continent. Yet in all these vast regions conquered by Cortes and Pizarro, there are cons.derably less than two m.llions of people of European blood, so that they scarcely exceed in number the population acquired in about half a century in Ohio, and fall far short of it in wealth and civ.l.sation.

We were perfect strangers in our tour through Ohio, and, when at inns and in public conveyances, had many opportunities of hearing lawyers, no:chants, farmers, and labourers, conversing freely and unreservedly together. I have generally abstained from retalling such gossip, riflecting how small would bs the valus of the opinions which an American could derive from a s.milar source, or from talk overheard in an Engli-h railway or steamboat. I shall, however, depart sl ghtly from my rule on this occasion, as my reaters may, prhaps, be amused as I was and will abstain from drawing general conclusions from the conversation of parsuns whom chance has thrown in the traveller's way.

As soon as we were recognized to be foreigners,

Chal

we
our that,
we
for
man
tle.
at ho at th read luorr high pres: dem and and had nativ tal settle oppo taxec were daily the Prote alleg to all their plung pol:ti A Woo
we were usually asked whether we had made up our minds where we should settle. On our derlaring that, much as we saw to like and admire in America, we had no intention of exchanging our own country for it, they expressed surprise that we had seen so many States, and had not yet decided where to settle. Nothing makes an English traveller feel so much at home as th.s common question. You have arrived at the domain of a r.ch and hospitable host, who is ready to welcome you, and where there is ample roon and accommodation for all. Sume of the more highly educated class, espocially the lawyers, expressed their alarm at the growing strength of the democratic party in Ohio, owing to the influx of Irish and German labourers, nearly all Roman Cathol cs, and very ignorant. These new comers, they said, had lately turned the elections against a maj rity of native Americans, their superiors in wealth and mental cultivation. They also complaincd that many settlers of German origin from Pennsylvania were opposed to all improvement, and unwilling to be taxed for new schools, canals, and roads. They were ind fferent to the speedy arrival of letters and daily newspaocrs, and other advantages, for which the New Englanders and the Scotch and Engl.sh Protestants would pay most cheerfully. Yet they allege that these same Germans, opposed as they are to all useful innovations, are in the habit of giviag their votes to demigogaes, who are presared 10 plunge the country into the most headlong carecr of pol.tical changes.

A thriving farmer, who entered the coach at Wooster, spoke vehemently against the new tariff,
which, he said, would sacr:fice the agr:culturists of the West to the New England manutaceurers, who meant to compel them to buy their lome-made goods at a high price, while the raw preduce of Oh.o and the West would be shut out from the British market. He also boasted to me of the advantages they enjoyed in the U. S., commiserating the lut of the mass of the people in the old country, deprived of their political rights, and expesed to the tyranny and oppress:on of the rich. By way of drawing him out, I told him how I had found the day before a minister preaching in Welsh to a congregation of three huludred persons in the town of Columbus-that these and other poor settlers, Irish and German, were ignorant of the American laws and institutions, and wholly uneducated. Ought they to be permitted to turn the elections, as I was told they had recently done in Olio? On this he pured forth an oration on the equality of the rights of all men, on the invidious distinctions some des.red to establish between the franchise of old and new settlers, on the policy of welcoming new comers when the population was sparse, on the advantages of common schools, and, lastly, on the ev.l of endowing universities, which ho said were "hot-beds of aristocrats." While descanting on these and other topics, the tone of his voice grew louder and louder as his warmth increased, and when he left the public coach, a lawyer of Ohio congratu'ated me that I could now understand what is meant in the United States by " stump oratory," or that kind of declamation which is addressed by a candidate for popular favour from the stump of a tree in a new clearing.

Chap
On
Van
and
tive
gene
were
ca"ee
The by th Bure that i peop! large mona gerou attack super ricans little for a never travel on the every happe States gress to be shoulc veto, ply to cxpre: would

On another occasion, the respective merits of Mr. Van Buren, Mr. Clay, and others, were canvassed, and an animated discussion to 3 place on their re!ative claims to fill the presidential chair at the next general election. I expressed surprise that, as there were still three years to run of Mr. Tylers olficial ca"eer, they should be mooting this question already. The whole country had been so recently convulsed by the severe contest between Harrison and Van Buren, in which purtics had been so nearly balanced, that it was surely inexped ent that the minds of the people sho.ld ba again excited and unsettled. I enlarged on the superior advantages of an hereditary monarchy, as preventing the recurrence of such dangerous ag tation, and was prepared for in retaliatory attack upon the kingly office, and a eulogy on the superiority of the American constitution. But Americans at home, however loyal and patriot'c, and as little disposed to change their form of government for a monarchy as we are to turn repablicans, are, nevertheless, by no means opt.m sts. When they travel in England, they acquire a hahit of standing on the defensive, from hearing John Bull object to everything in which their laws and institutions may happen to differ from his own. But in the United States, I frequently heard politicians deplore the progress of democracy, argue that the pres:dent ought to be elected for six years instead of four, that he should not be re-cligible, that there should be no veto, and contend for other organic changes. In reply to my sally, one of the party, who had previously expressed his fears that General Harrison's death would lead to the democratic party regaining their
areendancy, remarked, "The most disastrous periods, sir, in your history, were the wars of a disputed succession. We are always engaged in a civil war of th's kind." By way of consolation, I reminded him that, at all events, there had been less bloodshed in their battles for the ehief mag stracy than in our contests for the rightful heirs to a throne. He replied, "Yes, there has been less destruction of the body, but not of the soul. A president who has 60,000 places in his gift holds in his hands far greater means of bribery and corruption than did your Harry the Eighth, even after he had seized upon the property of the monasterics."

One of my travelling companions in Ohio assured me that agricultural labourers from the Lowlinds of Scotland were the best settlers of all who came direct from Earope. Some of these had arrived with a large famly, and with no money even to buy the implements of husbandry, and had in twelve years become the owners of 300 acres of cleared land, in which the log-house was replaced by a neat farm buildng, called a frame-house, with a small garden attached to it. They laugh here at the comuon error into which new settlers fill, who possess some money, and have been accustomed to English farming, especially their diligence in uprooting stumps, which have so slovenly an appearance. This practice scems to be in their eyes the most unequivocal test of extreme ignorance of the relative value of labour and land in a new country. Foreigners who have a small capital should always sattle in districts which have been already cleared, and broken up iny the plough.

CIIAPTER XIX.

Cleveland.--Ridges of Sand and Gravel along the Southern Coust of Lake Erie.-Their Origin.-Fredonia, Streets lighted with natural Gas-Fialls of Niagara.-Burning Spring.-Passing behind the Falls.-Daguerrootype of the Falls - Boulder Formation of Whiripool, and Valley of St. David's.-Glacial polishing and Furrows.-Influence of Icebergs on Drift.

June 3, 1842.-Tie morning after my arrival at Cleveland, Dr. Kirtland, the zoolog'st, took me to Rockport, about four miles to the west, and afterwards to the ravine of a torrent called the Rocky River, about six miles farther, in the same direction, that I might examine in both places what are here called the Lake Ridges. Like the " ridge road" of Lake Ontario before described (Vol. I.. p. 24), they resemble ancient beaches, running parallel to the shores of Lake Erie, and being composed of sand and gravel.

At the point which I first visited, in the town of Rockport, Lake Erie is bounded by a perpendicula: cliff (A, fig. 10), about seventy-five feet high, at the base of which the water is so deep, that, in some places, it can only be approached in a boat. Horizontal beds of shale, with some layers of sandstone, appear cut off abruptly in the face of this cliff, all referable to the Hamilton group, No. 10 of Map Pl. II., or the lowest part of the Devonian ser.es (F). Proceeding from the summit of the cliff inland, we find the surface of the country covered with clay (b),
eloping gently, so that, in half a mile, there is a rise of aboat to.ty fect, and we then coms t., the bontom of the first or northermmost ridge (c), wh ch is about fiteen fect high, rising at an angls of absut $1: 2$, both on its nothern and southern slope. Between this and the next ridge (d), which is about half a

m :le distant, extends a line of swamps and marshes, some of them several hundred acres in extent. Two other parallel ridges of sand and gravel are observable still farther inland or southwards, the distance of each varying greatly according so the general slope of the land, for the same ridge occasionally approaches within a mile of the shore at one point, and recedes to the distance of eleven miles from it at another, apparently preserving everywhere the same level.

Boulders of granite, some of them three feet in diameter, which must have come from the north side of Lake Eric, are scattered sparingly here and there as at e, fig. 10. I could not obtain any foss.l shells from any of these ridges, although some are said to have been found, together with fragments of wood, similar to those now thrown up on the beach of the lake. The shells might at once decide the point whether the ridges are of marine or freshwater origin. If this were settled, another and distinct ques-
tion would still remain; namely, whether they were fir the most part formed at first under water, like s.nd bars at the mouth of rivers; or were thrown up, by the waves on the margins of ancient sheets of water, in the manner of beaches.

The section which I saw on the banks of the Rocky River appeared to me to favour the theory of the subaqueous or:gin of the ridges. This torrent, about a mile and a half above its mouth, flows in a narrow ravine, scarcely more than thirty yards wide, with perpendicular cliffs on each side, 110 feet high. When we arrive at the point where the ravine intersects the second of the Rockport ridges before alluded to (l, fig. 10), we see the river-cliff suddenly heightened by the addition, for a short space, of a bank of sand and gravel, about 30 feet high, the pebbles in the ridge being rounded like those on the lake shore, and proving that the bank was never a mere dune of blown sand.

If we imagine bars or banks of sand and pebbles to have been formed in succession near the shore in shallow water, and then cut through by torrents when the land was elevated, we can explain the abrupt manner in which the ridge determinates on each side of a ravine evidently excavated by the torrent in soft shate since the emergence of the strata. But it is difficult to imagine how an ancient beach, formed where a stream entered a lake or sea, could have been so straight and continuous, and so little modified and rounded off in its outline conforming to the shape of the small b:y, which must have existed at the entrance of a stream. It will be unnecessary, however, to dwell longer on this question at present, VOL. II.
as I shall resume the subject when discussing the natare and origin of the " lake ridges" near Toronto.

The town of Cleveland is built on a terrace of stratified clay and sand, the height of which is 103 feet above the lake. Its depth is unknowns, the fundamental Devonian (or Hamilton) strata being concealed here, so that the newer deposit exclusively occupies the lake shore for forty miles. As several rivers besides the Cuyahoga of Cleveland cut wilding courses through this terrace, we may presume that these rivers existed when the water stood IC0 feet higher relatively to the land. If so, we seem to have here an upraised delta formed of the materia's brought down by streams before the waters had stink to their present relative level. The nature of the sand and clay is such as rivers might have washed down from the land above, but no shell's have been discovered, although diligently searched for, during the excavation of a ship canal and other works in the town. The tooth of a mastodon, however, was shown rue as having been found low down in the clay.

June 5.-Sailed in a steamboat to Fredonia, a town of 1200 inhabitants, with neat white houses, and six churches. The streets are lighted up with natural gas, which bubbles up out of the ground, and is received into a gasometer, which I visited. This gas consists of carburetted hydrogen, and issues from a black bituminous slate, one of the beds of the Hamilton group of the New York geologists, or part of the Devonian formation of Europe. The light-house-keeper at Fredonis told me that, near the shore, at a considerable distance from the gasometer, he
bored a hole through this black slate, and the gas soon collected in sulficient quant.ty to explode, when ignited.

There is a r.dge of sand at Fredonia, as at mony other places, between Cleveland and the outlet of the Nagura from Lake Erec, but I tricd in vain to identify the ridges with those seen by me at Rockport, and could not discover that their heigh's, as est mated by residents, agred at difierent places. Some of them, inde d, accordng to Mr. Whittl sy thengincer, deeline in alttude as they are traced castward.

We next reached Buffils, and found so many new buildings erected since the preceding autumn, and new shops opened, that we were amazed at the progress of things, at a time when all are complaining of the unprecedented state of depression under which the commerce and industry of the country are suffering.
At the Falls of Niagara, where we next spent a week, residing in a hotel on the Canada side, I resumed my geological explorations of last summer. Every part of the scenery, from Grand Island above the Falls to the Ferry at Queenstown, seven miles below, deserves to be studied at le sure.

We visited the "burning spring" at the edge of the river above the rapids, where carburetted hydrogen, or, in the modern chemical phraseology, a light hydro-carbon, similar to that before mentioned at. Fredonia, rises from beneath the water out of the limestone rock. The b:tuminous matter suphlying this gas is probably of animal origin, as this lmestone is full of marine mollusca, crustacea, and corals, with-
out vegretable remains, unless some fucoids may have decomposd in the sume strata. The invis.ble grs makes its way in c maters bubbles through the chan transparent waters of the Niagara. On the appleation of a lighted candle. it takes fire, and pays about with a lambent flickering flame, which seldom touches the water, the gas being at first too pure to be inflammable, and only obtaining sufficient oxygen after mingling with the atmosphere at the height of several inches above the surface of the stream.

At noon, on a hot summers day, we were tempted, contrary to my previous resolution, to perform the exploit of passing under the great sheet of water between the precipice and the Horse-shoe Fill. We were in some degree rewarded for this feat by the singularity of the scene, and the occasional openings in the curtain of white foam and areh of green water, which afford momentary glimpses of the woody ravine and river below, fortunately for us lighted up most brill antly by a midday sun. We had only one guide, which is barely sulficient for safety when there are two persons, fur a stranger requires support when he lose "is breath by the violent gusts of wind dashing the spray and water in his face. If he turns round to recover, the blast often changes in an instant, and blows as impetuously against him in the opposite direction.

The Falls, though continually in motion, have all the effect of a fixed and unvarying feature in the landscape, like the two magnificent fountains in the great court before St. Peter's at Rome, which seem to form as essential a part of one architectural whole as the stately colonnade, or the massive dome itself.

However strange, therefore, it may seem, some Ditguerreotype representations of the Falls have been executed with no small success. They not ouly record the form of the rocks and islands, but even the leading features of the cataract, and the shape of the clouds of spray. I often wished that Father Hennep n could have taken one of these portraits, and bequeathed it to the geologists of our times. It would have afforded us no sl ght aid in our spieculations respecting the comparative state of the ravine in the 19th and 17 th centuries.

After one or two warm days, the weather became unusually cold for the month of June, with occasional frosts at night, and the humming birds which we had seen before reaching Buffulo appeared no more during our stay here.

In my visits to Grand Island, Lewiston, and St. Catherines, I made some of the observations already alluded to in the first volume (ch. 1.., p. 27) ; and I shall now confine myself to remarks en the conncetion of certain strata of dift which appear at the Whirlpool, and similar deposits observable in the valley of St. David's, about three miles west of Queenstown, where there is an opening in the escarpment, as shown in the burd's-eve view (Pl. I.), and in the map of the Niagaia district (PI. III.). In the former view (Pl. I.), a small chasm is introduced on the left bank of the Niagara at the whirlpool, to mark the only spot where the continuity of the older formations (the l'mestone, shale, and subjacent rocks) is broken between the Falls and Queenstown. This inter:uption occurs precisely opposite the summerhouse (e. fig. 11).

Fig. 11.

Cincrse of the Niagara at the Whirlpool.
e, b. Streamlets which are thrown in cascades over the limestone precipice, uftes cutting throngh. superficial red dilf, twenty five feet thick.
c. Bowman's Run.
d. Smul. gulley, betwean which nad c the cliffs consist of drift.
e. Summer housp, wher, aind with fresh-water phells rests on the top of the pre cipice. Ser fig i, Vol. I.. p. 40.
f, g. Probable course of the ancient valley, now filled with drift.
The river cl ff, from c to d, or for a distance of about 170 yards, on the northern side of the whirlpool, consists exclusively of strata of sand, loam and gravel; the latter in parts cemented together into a condomerate, and all belonging to the drift or boulder firmation. The visble thickness of this modern deposit is about 300 fect, but we know not to what depth it may extend below the level of the Niagma. It appears clearly that there was here an orig.anal valley, which was afterwards comp.ctely filled up with strat.fied drift. The same red clay which
spreads far and wide over the limestone platform, forms the uppermost stratum of the mass, the occurrence of which, at this point, had been overlooked by geolog sts, until Mr. Hall and I ooserved it in 1841. He immediately suggested to me that it might be connected with the opening in the escarpment at St. Dav.d's, about three miles to the northwest, which I determined to examine the year after.

On a close inspection of the drift in the cliffs between c and d, we find it to be composed at the top of red clay, from twenty to thirty feet thick, below which is a conglomerate, including boulders of granitic and trappean rocks, of northern origin, mixed with fragments of the Niagara limestone. One angular block of the latter is no less than fifteen feet in diameter, having been evidently dotached from the original wall of the chasm during its denudation. Below this come: beds of white sand and loam, to which succeed gravei cemented into a conglomerate by carbonate of lime, the pebbles being of sandstone, limestone, and hornblende rock. Under this conglomerate are laminated clays, being the lowest visible stratu.

Ascending the steep bank formed of these materials, we soon reach the general level of the tableland, and pass over it for two miles before we begin to enter the depression, which, decpening gradually, carries us down to St. Davids. This valley is entrely excavated in the boulder formation, and we may infer that the latter maintains its full depth between St. David's and the whirlpool, from sections obtained in sinking wells in the intervening township
of Stamford, wherc a great thickness of drift was passed through.

In the bird's-cyc view (Pl. I., Vol. I.), the ral'ey of St. David's is represented, for want of more space, as of small width ; but it is, in fact, about two m les broad at its mouth, so that it bears no resemblance to the decp narrow chasm in which the Niagara flows. One end of it seems to have terminated originally in an angle at the point where the whirlpool is now situated; and the sections laid open in the gulleys (c and d, fig. 11) show that the walls of the ancient hollow were not perpendicular, but consisted of a succession of precipices and ledges. I was informed that, near St. David's, an outlier of quartzose sandstone, ($a^{\prime}, f i g .12$), was found by bor.ng through the drift, which may, therefore, have projected 1 ke an island in the middle of the original valley or channel.

The accompanying diagram will, probably, convey a correct notion of the manner in which the drift rests upon the older rocks near the northwestern end of the valley of St. David's. The outline of the older formation given in this transverse section is, in fact, the same as that presented by the same rocks in those parts of the escarpment east and west of Lew. iston and Queenstown, where the face of the cliff is not masked by drift.

I shall afterwards describe cavities, or ancient valleys, intersecting the old Silurian rocks near Quebec, which have been filled up with transported m terials, in which marine shells of recent species, and of a northern or arctic character, have been discovered. These shells have also been found in the drift of the

Chap. xix.
glacial furrows. 81

Fig. 12.

Supiosed sfetion of drift aid sabjacent rocks in valley of St. Davids.
a. Ledye of quartzise (Medina) sandstone.
b. Leilge of Clintun Limestonc.
c. Ptatform of Niagura linuestune.
d. General covering of drift or boulder form ;ion.
valley of the St. Lawrence, at elevations of more thun 500 feet above the level of the sea, or nearly as ligh as Lake Erie, so that I consider it to be a mere local accident that none of the same are preserved, or have yet been met with in the Niagara district.

Professor Emmons has shown thit, on the removal of the clay and sand containing those marine shells in the valley of Lake Champlain, the rocks beneath are polished and furrowed, and similar phenomena are observed in the region now under consideration between Lakes Eric and Ontario. If the reader will glance at the frontspiece (Pl. I.), he will see in the distance a zone of country (No. 1) boun ling Lake Erie, part of which consists of an upper Silurian limestone, called in New York the Corniferous. It occurs at Black Rock among other places (sce Map, PI. III.). It is very hard, contains many corals, and has nodules of flint or chert dispersed through it in horzontal beds. The upper surfece of this rock, when the boulder clay is removed, appears smoathed or polished, and usually scored with long parallel furrows. But the nodules of chert, although much rubbed down and worn, stand out slightly in relief, while narrow elongated ridges of limestone are seen
cxtending from the southern end of each nodule, marking the space where the softer rock has been protected for a short disiance from the triturating action which ground down the whole.

Mr. George E. Hayes of Buffalo showed me large specimens of the polished rock, on which these markings were conspicuans; and he and Mr. Hask'n have ascertained that the general direction of the grooves in th s region is N.E. and S.W., or N. 3.5° E. They are traced over the broad platform of the Niagara limestone No. 3 (sce Frontispiece and Map, PI. III.), retaining the same course wherever the drift is removed; and, what is still more remarkable, as Mr. Hall pointed out to me, near Lewiston and Lockport they are imprinted at different levels on the projecting shelves formed by the more solid rocks of the great escarpment. Suppose, for example, the drift d (fig. 12, p. 81) to be removed from the ledge of quartzese sandstone, a, and from the surface of the upper edge of Clinton limestone, b, and from c,-we should find everywhere grooves running nearly in the direction N.E. and S.W.

Some geologists have considered these facts as very difficult to reconcile with the glacial theory. To me they appear to indicate the following succession of evelts. First, the country represented in the frontispicce (Pl. I.) acquired its present geographical coufiguration, so far as relates to the outline of the older rocks. under the joint influence of elevatory and denuding operations. Secondly; a gradual submergence then took place, bringing down each part of the land successively to the level of the waters, and then to a moderate depth below them.

Large isl:inds and bergs of floating ice came from the nor h, which, as they grounded on the coast and on shoals, pushed along all loose materials of sand and pebbles, broke off all angular and projecting points of rock, and when fragments of hard stone were frozen into their lower surfaces, scooped out grooves in the subjacent solid strata. The sloping beach, as well as the level bottom of the sea, and even occas:onally the face of a steep cliff, might all be polished and grooved by this machinery; but no flood of water, however violent, or however great the quantity of detritus, or size of the rocky fragments swept along by it, could produce straight, parallel furrows, such as are evcrywhere visible in the district under consideration.

Mr. John L. Hayes, in an able paper recently published, on the influence of icebergs upon drift, has shown, from a great variety of testimony, that they have a remarkable steadiness of motion, in consequence of the larger portion of their bulk being deep under water, so that they are not perceptibly moved by the winds and waves, even in the strongest gales. Many had supposed that the magnitude attributed to ice-islands by ur scientific navigators had been exaggerated, but it appears that their estimate of their dimensions has rather fallen within than beyond the truth. Many of the icebergs, carefully moasured by the officers of the French exploring expedition of the Astrolabe, were between 100 and 225 feet high, and from two to five miles in length. Captain D'Urville ascertained one of these bergs, floating in the Southern Ocean, to be thirteen miles long, and a hundred feet high, with walls per-
fectly vertical. The submerged portions of such islands must, according to the weight of ice relatively to sea-water, be from six to eight times more considerable than the part which is visible, so that the mechanical power they may have exerted when fairly set in motion must be prodigious.*

To return to the succession of geological changes which immediately preceded the present period in the Niagara district:-Thirdly, after the surface of the rocks had been smoothed and grated upon by the passage of innumerable icebergs, the clay, gravel, ind sand of the drift were deposited, and occasionally fragments of rock, both large and small, which has been frozen into glaciers, or taken up by coast ice, were dropped here and there at random over the hotom of the ocean, wherever they happened to be detached from the melting ice. During this period of submergence, the valleys in the ancient rocks were filled up with drift, with which the whole surface of the country was over-spread. Finally; the period of re-elevation arrived, or of that intermittent upward movement, when the ridges to be described in the next chapter were formed in succession, and, when valleys, like that of St. David's, which had been filled up, were partially re-excavated.

[^9]
CHAPTER XX.

Afirage on Lake Ontario.-Toronto.-Excursion with Mr. Roy to examine the Parallel Rillges between Lakes Ontario and Simcoe-Correspondence of Level in their Base-lines over wide Areas -Origin of the Ridges-Lacustrine Theory.Hypothesis of Sand-banks formed under Water.-Ropid Progress of the Colony.-British Settlers unable to speak English.

June 14, 1842.-From Queenstown we embarked in a fine steamer for Toronto, and had scarcely left the mouth of the river, and entered Lake Ontario, when we were surprised at seeing Toronto in the horizon, and the low wooded plain on which the town is built. By the effect of refraction, or "mirage," so common on this lake, the houses and trees were drawn up and leng!hened vertically, so that I should have gucssed them to be from 200 to 400 feet high, wh le the gently rising ground behind the town hid the appearance of distant mountains. In the ordinary state of the atmosphere none of this land, much less the city, would be visible at this d.stance, even in the clearest weather.

Toronto contains already a population of 18,000 souls. The plain on which it stands has a gentle, and to the eye imperceptible, slope upwards from the lake, and is still covered, for the most part, with a dense forest, which is beginning to give way before the axe of the new settler. I found Mr. Roy, the civil engineer, expecting me, and started with him vul. II.

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic
Sciences Corporation
the morning after my arrival, to exam ne those ridges of sand and gravel, and those successive terraces, at variots he ghts above the level of Lake Ontar:o, of which he hied given an account in 1837 to the Geological Soc.ety of London. No small curiosity was excited, when his paper was read, by h.s endeavour to explain the phenomena, by supposing the former existence of a vast inland sea of fresh water, the barriers of wheh were broken down one alter another unt.l the present chain of lakes alone remained.

We started at an early hour from Toronto on horseback, taking a direction due northwards through the forest, and after riding for a mile over what secmed a perfectly level plain, came to the first ridge, the base of which my compan:on informed me was 108 fect above Lake Ontario. This ridge rose abruptly with a steep slope towards the lake, and was from 20 to 30 feet high. Its base cons:sted of clay, and its sandy summit, covered with pines, might easily be traced castward and westward by the dist.uctncss of the narrow belt of fir-wood, on each side of which other kinds of timber flourished luxuriantly on the clayey soils.

Cortinuing our ride over the plain we arrived at the second ridge, a mile and a half farther inland, having its base 208 feet above the lake; this level, and the others afterwards to be mentioned, having bcen accuratcly ascertained by Mr. Roy when employed profess onally in making measurements for several projected canals and railroads. The second ridge is a far more striking object than the first, being from 50 to 70 feet high above the flat and even ground on both sides of it. At its foot were a great
number of bould rs of rocks which, by their com. position, can be proved to have come from the norih; and some few of wh'ch were perched on the summit of the ridge. Such transported fragments are rare on the soil between the ridges. Another ride of two miles and a half, in a northerly direction, brought us to the third r:dge, five m les distant from the likeshore, which was much less conspicuous than the preceding ones; it was indeed, at the point where we crossed it, little more than a steep slope of ten feet, by which we mounted to a higher terrace. The surfice of this terrace was enly 80 feet above the base of the second ridge, so that the top of the latter, in those places where it is 70 fect or more in height, is nearly on a level with the bettem of the third ridge, or c!iff.

In this manner we went on, pass ng one r.dge or cliff after another, somet mes deviating from our course for several miles east and wist, thit my guide might point ont to me the continuity of the rillges, and the unformity of the level of the.r base-fines. This uniformity, howerer, though I have no doabt of its reality, I had no time to test by actual incasurement. On tracing the same ridge for several milss cast and west, I occasionally found it to vary greatly in height above the plain, and som times to d.vide into two. One of these sometmes formed a step immediately above the other, and somet mes divergeu or branched off so as to form an upper and parallel ridge at some distance. They were all broken occasionally by deep narrow gaps. as I had observed in the Osars of Sweden.

I saw, on the whole, no less than eleven of these ridges, some of which might be called cliffs, or the
abrupt term:nations of terraces of clay, which cover cverywhere the subjucent Silurian riciss to a great depth, and belong to the drift or boulder formation. The highest ridge is about 680 fect above Lake Ontario, the water-shed between that lake and Lake Sime oe be ng 762 fect high. There is then a descent of 282 feet from that summit level to the shores of Lake Simcoc, which is $\mathbf{4 2}$ miles from Lake Ontario. On this northern slope of 282 feet, Mr. Roy has traced several of the higher ridges, at levels precisely correspending to those wh.ch I saw on the southern side. He a'so assures the that several of the ridges, which exceed in height the level of the table-land between Lakes Ontario and Er:e, extend continuously to the northern shore of Lake Erie; and in another direction agree with ridgs on the uplands bounding the valley of the Ottawa river.

The identification, however, of horizontal planes at points several hundred miles distant from each other. requires a niccty and exactness of trigonometrical measurement, which cannot as yet have been bestowed on this reg on ; and when there are so many terraces at levcls differing but slightly from each other, and some of them occasionally dividing into two, an upper and a lower shelf, they may eas.ly be confounded at remote points.

I shall content myself with stating that, with the exception of the parallel roads or shelves in Glen Roy, and some neighbouring glens of the Western llighlands in Scotland, I never saw so remarkable an example of banks, terraces, and accumulation of stratified gravel, sand, and clay, maintaining, over wide
areas, so perfect a horizontality, as in this distict north of Toronto.

The hypothesis which attributes such appearances to the successive breaking down of the barriers of an ancient lake or ocean of fresh water, has now been very generally abandoned, from the impossibility of conceivng where, in Nurth America, as in the west of Scotland, the lands capable of damming up the waters to such he ghts could have been situated, or how, if they ever existed, they could have disappeared, while the levels of the ancient beaches remaned und sturbed. In order to dispense with the necessity of burriers, we may assume that the successive ridges and cl.ffs were formed on the margin of the sea, which changed its level relatively to the land again and again, while a large part of the continent emerged gradually from the waters. In that case, we must imagine the movement of upheaval to have been intermittent, so that there were pauses during which the coast-l ne remained stationary for centuries, and when the waves had time to cut cliffs, or throw up beaches, or throw down littoral deposits and sandbanks near the shore.

This theory has been objected to on the ground of the great improbability of so vast an amount of vertical movement having been developed so uniformly over areas several hundred miles in diameter. In some parts of Sweden and Finland, however, there has been a near approach to an uniform upward movement of two or three feet in a century throughout wide arcas within the historical era, and we know far too little of the laws governing subterranean movements, to entitle us to raise objections, on the ground
that the observed phenomena would imply a rezisarity in the process of upheava!, not in h. rmony with our pre-concsived notims.

Between the first and second ridges, north of Toronto, I saw a scetion 50 feet deep in the argil. laceous deposit on wlich all the ridges rest, or in which cliffs, corresponding in level w th some of the ridges, are cut. It consisied of blue clay in horizontal thin layers, with purtings of yellow sand, and at the byttom yellow clay, with some interstratificd layers of white clay. I observed no included boulders, but Mr. Roy has seen them at Torontn, where deep excavations were made for the foundations of bu ldings. They occurred near the j:nction of the clay and the subjacent rocks; and he remarked that the solid rocks. on the removal of the boulder iurmation, were polished and scored on the sur:ace. I could find no shells either in the clay or in the ridges. I was informed, indeed, that marine shells had been met with in the el.y, but, on inquiry, they turned out to be Silurian fossi's, washed out of the ancent shales.

It will be seen from the above observations, that I consider the ridges and other marks of ancient waterlevels, between Toronto and Lake Simcoe, as referable, some of them to ancient beaches and lines of cliff formed on the marg:ns of channels of the sea; others including some of the lofiest ridges, as having orignated in binks or bars of sand, formed, not at the extrem? edge of a bidy of water, bui at some distance from the store, in proportion as the water obtained a certain shallowness by the upheaval of the land.

It is well known that on many shelving coasts the breakers and tides give rise to bauks of sand at no great distance from the bach. I leam from Mr Whittlesey that a bank of this kiod has been formed fur several miles along the southern shore of Lake Erie, near Clevcland, the orgig of which he aitributcs in part to the reflux of the waves from the beach, by which pobbles and saad are swept out from the land.

Mr. Mather informs us that the great beach on the south coast of Long Island, in the State of New York, extends fur a distance of 104 miles, with a breadth of from 100 to 1009 yards. For 70 miles it is separated from the mainland by a continuous line of bays, which are between half a mile and six miles broad. "This great beach or bank forms a line of spits aud low islands. One of the islands is about 25 miles long, with a breadth of a fuw hundred yards. They are all narrow and long, and when above the reach of the surf they are covered by a labyrinth of hillocks of drifted sand, imitating almost all the variety of form which snow-drifts present after a storm."* They cons.st, he adds, of the mateitials derived from the neighbouring cliffs of Long Island, which are undermined and destroyed by the waves. \dagger

Examples of similar banks parallel to the shore are citcd by Mr. Darwin, in his work on Coral Reefs (p. 53). Capt. Grey also states that the west colst of Australia, in lit. 24°, is fronted by a sand bar about 200 yards in width, on which there is ouly two

[^10]feet of water ; but between it and the land the deptls increass to 1 wo lith:oms.*

At Buhia Elanca, in Brazil, Mr. Darwn obscrved a bar runuing parallel to the coast, on which they latided from the boats at low water, and then waded for a quarter of a mile to the shore. He has described a sim lar bar at Pernambuco, in Brazil, several leagues in length, in which the sand has been consolidated into a hard stone by calcareous mater. W.thin these bars currents are often seen to run strongly, caused by the water thrown over them by the waves when the tide is high. These waters run between the bar and the coast, until at leng:h they find some breach in the bar by which they return to the sea.

In illustration of the anceent ridges or osars in Roxburghshire, Mr. David M Ine, F.G.S., has described many examples of narrow sandbanks now existing off the coast of Britain, some 5, others 30 miles in length, with ten or twelve fathoms water betwcen them and the neighbouring shore. \dagger

The existence of such bars near modern shores being ascertained, it follows that, if a coast be gradually upraised, many of them will be both formed and made to emerge in succession, all preserving the same general parallel.sm to each other which pre-

[^11]vails in the ridges above the Canadian lakes. It is also clear that there will be swamps and ponds on the iuland side of such upraised bunks, representing the channels and lagoous which intervened originally betwen the bars and the mainland. There would also be occasional gaps in the ridges, sume corresponding to original openings, through which the back water escaped, and others cut by torrents after the emergence of the land.

Accord ng to Mr. Whittlesey, the base lines of several ridges cast and west of Cleveland are not strictly horizontal, but inclined five feet, and sometimes more, in a mile. To account for this difference of level, it has been suggested that the upward movement of the land on the south side of Lake Erie may have been unequal, some parts being raised higher than others. But it deserves consideration whether the ridges, if some of them were bars or sandbanks, may not oceasionally have varicd in level from the first, according to the inequalities of the ground and the furce of currents.

If we adopt the theory above set forth we must still conceive the banks to have become beaches as they emerged, or cilffs partially undermined by the waves, while in some cases they may have been entircly destroyed, of which I thought I saw indications when tracing the continuity of some ridges near Toronto.

In my ride with Mr. Roy through the forest we went about twenty miles due north of Toronto, besides making many detours. A more active scene of the progress of a new colony could scarcely be witnessed. We often came upon a party of survey-
ors, or pinncers, tracing out a new line of road with the trinns of tall trees fell d on every side, over which we had to leap our horses. Th n we made a circuit to get to windward of some large stumps whict were on fire, or, if we could find no pathway, hurried our steeds through the smoke, half suffocated and oppressed with the heat of the burning timber and a sultry sun. Sometimes we emerged suddinly into a wide clearing, where not a single clump of trees had been spared by the impatent and improvident farmer. All were burnt, not even a shrub remain ng lor the cattle and sheep, which, f.r want of a better retreat, were gasp ng under the imperfect shade of a wooden paling, called in America a Virginia, or snake fence.

The appearance of the country hald bsen so entirely alter. d since Mr. Roy sarveyed the ground two years before, and marked out the bound.ries of the new se:tlements, that he lost his way while explain'rg to me the geology of "the ridges;" and after we had keen on horseback for twelve hours we wandered about in a bright moonlight, unable to find the tavern where we hoped to pass the night. In the darker shade of the forest I saw many fire-fles; and my attention was kept alive, in spite of fatigue, by stories of men and horses swallowed up in some of the morasses which we crossed. I shall always, in future, regard a corduroy road with respect, as marking a great step in the march of civilisation ; for greatly were we rejoiced when we discovered in the moonlight the exact part of a bog, over which a safe bridge of this kind had been laid down. At length we reached a log-house, and thought our
troubles at an end. But the inmates, though eager to serve us, could not compr hend a syllable of our language. I tried Englsh, French, and Gcrman, all in vain. Tired and disappont.d, we walked to another log-house, a mile farther on, leading our weary horses, and then to others, but with no better success. Though not among Indans, we were as forcigners in a strange land. At last we stumbled, by good luck, upon our inn, and the next day were to'd that the poor setters with whom we had fallen in the nght betore had all come from the Britsh Isles in the course of the five proceding ycars. Some of them could speak Gaelic, others Welsh, and o:hers Irish; and the farmers were most eloquent in descanting on their misfortune in having no alternative but that of employing labourers with whom they were unable to communieate, or remaining in want of hands while so many were out of work, and in great distress. For the first time I became fully aware how much the success and progress of a new colony depends on the state of schools in the mother country.

CHAPTER XXI.

Kingston.-Montreal.-French Population and Language -Quebec.-Soldiers.-Deserters.-Three Rivers.-Scotch Emi-

- grants-Distinctness of French and British Canadians.Large Military Foree.-American Sympathizers.-Geologic it Survey - Analogy in Structure of Canada and Scandinana.
-Section at Falls of Montmorency - Unconformable position of lowest Fossiliferous Sandstone to Gneiss.-Supposed Monument of the Commencement of the Organic World.-To what extent the Granitic Rocks are Primary.-Difficulty of establishing the Date of Metamorphic Action.-Two sources of popular error respecting the more abundant production of Hypogene Rocks at Renote Periods.

June 18th.-An excellent mail steam packet carricd us along the northern coast of Lake Ontario, from Toronto to Kingston, from whence I made a geologieal excursion to Gannanoq:oi. From Kingston we then descended the St. Lawrence to Montreal. The scenery of the Thonsand Islands and of the rap.ds of the St. Lawrence owc much of the r beauty to the clearness of the waters, which are almost as green, and their foam as white, as at the Falls of Niagara.

On approaching Montreal we scemed to be entering a French province. The language and costume of the peasments and of the old beggats, the priests with their breviaries, the large crosses on the public roads, with the symbols of the Cruc:fixion, the architecture of the houses, with their steep roofs, large casement wiudows, and, las:ly, the great Cath lic cathedral ris n_{0} in state, with its two lofty towers, carried back our thoughts to Normandy and Brittany,
where we ep int the eorresponding season of last year. The French spoken in those provinces of the mother eon try is often far less correct, and less casy to follow, than that of the Camadians, whose manners are vory prepossessing, much solter and more p lite than those of their Anglo-Saxon fellowcountrymen, however superior the latter may be in encrgy and capability of advancement.

I was informed by a physician at Montreal that the Eig! sh language has made great progress there within his recollection; and all agree that it would soon become st ll more general if the seat of government were transferred to that city,-a measure since realized, but which was then only beginning to be discussed (1842), and was exciting no small effervescence of party feeling. I was assured by many that it was the only step towards anglicising Lower Canada that would be popular with the French party. The country round Kingston must always be comparatively barren, as much of the soll consists of granite and granitic detritus; and it could never become a large metropolis, such as 'Toronto might be made, or such as Montreal is even now.

Quebec, with its cetadel and fortifications crowning the precipitous heights which overhang the St. Lawrence, and where the deep and broad river is enlivened with a variety of shipping, struck us as the most picturesque city we had seen since we landed in America. We were glad to meet with some old friends among the officers of the garrison, who accompanicd us to the Falls of Montmorency, and other places in the neighbourhood. Their task in maintaining strict discipline in their corps, in preventing vol. It.
the desertion of soldiers, and keeping the peace along the frontier, has been more irksome than in quelling the rebellion. Those soldiers who have des rted to the States are said rarely to make good and thriving settlers; for they hava been turned into such more machines, into such creatures of routine, so exclus. vely trained for excellence in one art, that they want resources, and are singularly deficient in a virtue termed by the Americans "shiftiness," or the power of turning one's hand to anything and everything, for which the well-educated New-England coloniser is celebrated.

On our way back from Quebec to Montreal, I stopped at Three Rivers to make a geoogical (xcursion to the Falls of Maskinongé, about ten miles northward of the St. Lawrence. In the woods, near the beautiful waterfall, where the river forces its way through a narrow cleft in the gneissose rocks, I lost my way, and was attacked by myriads of mosquitosthe only occasion, owing to the unusual coolness of the season, on which I was annoyed by these enemies, so much dreaded here by the lovers of angling.

When standing on the wharf at Three Rivers, I conversed with the proprietor of a large estate in the Eastern townships, who complained to me that white crowds were passing up the river every week to remote districts, and sometimes returning disappointed, and even occasionally re-crossing the Ailantic, he and other farmers were unable to get liands. While he was speaking, a large steamer, with several hundred Scotch emigrants from Ayrshire, came alongside the wharf. They were only to tarry there one hour to take in wood for the engines. My companion
went on board, eagerly endeavouring to bribe some of the new-comers to settle on h.s farm, but all in vain. They said they had cousins and friends in "Upper Canadi," and were all resolved to go there. I could not help sympathzing with him in his disappoint"ent, and the more so, as I had seen at Toronto large bands of Irish and Welsh peasants in a state of dest:tution for want of work; and in spite of the I berality of the citizens, several gangs of them, while we were there, committed robberis in the neighbourhood. It appears that during the late troubles in Canada the tide of immigration was almost entirely stopped for several years; now it is setting in more strongly than ever: but as they come from all parts of the Britis'l Isles, it is scarcely possible, unless the whole system of colonising were under government regulation, and conducted on arbetrary principles, to adjust the supply of labour to the various and ever-fluctuating local demands.

When passing in a carriage over the rich alluvial grounds on the left bank of the St. Lawrence, I expostulated with some of the English proprictors on the intolerable condtion of the muddy roids. I reminded them that all this part of Canade was a cleared and cultivated country, when half the Enited States was still a w.Iderness. They replied, that the French farmers, to whom most of the land belonged, refusid to pay taxes for bettering the roads, contending that it was preferable to spent more time on the way. and to wear out their horses and vehicles somewhat faster, than to pay down money to a tixgatherer.

The anecilotes told us by the British settlers, of
the superstitious horror of the old Canadiars at the new inventions and innovations of the Anglo-Americans, were very amusing. The river craft of the Canadian " voyageurs" was so unrivalled in its way that we may pardon them for beholding the first steamers with jealousy. One of them is said to have exclaimed, as he saw them ascending the St. Lawrence," Mais croyez-vous que le bon Dieu permettra tout cela?" During this tour I often thought of the old story of the American, who said that "if the United States ever got possession of Canada, they would soon improve the French off the face of the earth." The French party speak of the late Lord Sydenham as if they really believed him capable of conceiving and executing such a project. On the other hand, not a few of the English settlers, while they praised his zeal and habits of business, and devotedness to the interests of Canada, took pains to persuade me that if his measures were enlightened, his means of carrying them through the legislature were equally unscrupulous. One of his admirers, deeply imbued with the spirit of his policy, is said to have declared, " We shall never make anything of Canada until we anglicize and protestantize it;" to which a French seigneur rejoined with bitterness, "Had you not better finish Irelond first?"

Some of the American travellers whon we met lere were extremely enterta ned with the military display of the lirge army now quartered in this provinee, the reviews, the bands of music, the trains of hag-gage-wag ns, which they occasionatly met on the roads, the barracks of infantry and cavalry, the urw fortifications of Kingston, and the old ones of Quebec.

All this wi rlike parade, after a sojourn of nine montlis in the Ulit d States, appeared almost as great a novely to $1 s$ as to them; but the resemblance of the colony to a garrison afforded me no pleasure. It was a perpetual remembrance of the late troubles, and of that former mismanagement of whech a civil war, however unjustifiable, affords ample pro ff. It rem nd d me also of the diffiec.Itics wilh whieh the wisest and bestintentioned government will have to cmatend, whose task it is to fuse into one harmonious whole two pepalations so dissimilar in origin and hanguyge as the French and British, and all whose ideas on suc al, political, and religious subjects, :re s, d scordant. It recalled, morever, to mind the unwarrantable conduct of thoe turbulent borderers, the Amer can " sympathzers," who poured in by thousands to a d the insurgents, and whose neervention alone rendered the rebellion formidable for a time.

Great indignation was expressed to me by many Canadians, that these citiz ns should have been allowed with impunity, by the gevernor of New York, to take cannon out of a public arsenal, and invade a friendly tervitory in time of peace.
"Non cogente quidem sed nec prohibente tribuno."
Some New Yorkers, on the other hand, while they freely condemned the sympathzers, and said they had rejuiced in their defeat, defended their governor, saying it was imposs.ble for him to have forcseen and provided against so sudden a movement along so extensive a frontier; that neither he nor the federal government had troops enough at their command to act as a sufficient police; and 10*
that it was too much to expect of them to maintain, p rmanently, a large standing army for the sake of be ng prepared for such rare emergencics.

That the whule of the British force now kept up in this colony is absolutely reeded, I venture not to doubt; but they who sefise to hope for its speedy reduction, appear to me.ti ibel by anticipation our future colmial policy. I listened with no small inpat ence to the wishes expressed by some residents, that this full war establishment should be perm:nent, and to their discussions on the des rableness of new furt.fications, to be executed at great cost by England, and of fleets of war steamers to be built on the lakes, in order that they might at all times be ready for an outbreak with the United States.

The population of the British possessions in America, in 1842, amounted in round numbers to one million and a half.

Lower Canada	-	-	$\mathbf{6 9 0 , 0 0 0}$
Upper Canada	-	-	$\mathbf{5 2 6 , 0 0 0}$
New Brunswick	-	-	156,000
Nova Scotia	-	-	$\mathbf{1 8 0 , 0 0 0}$
			$\mathbf{1 , 5 5 2 , 0 0 0}$

The annual growth of the population of the United States, with which their wealth and territory kcep pace, exceeds at present 700,000 souls, so that every two years' increase is about equal to the number of all the present inhabitants of British America. The mere contemplation of these figures
would seem to me enough to convince a reasonable man, that Canada must owe her security from external aggression, not to local armaments and provincial demonstrations, but to the resources of the whole Brit.sh empire. A surplus revenue at home, or the remission of taxes which press heavily on industry and commerce, and economy in administering our colonial affairs in times of peace, are the true means of fortifying the Canadian frontier.

The legislature of Canada have lately voted a sum of money for a geological survey of the province, which has been placed under the direction of Mr. Logan, from whose labours we may soon expect an accurate map, with a description of the rocks and their organic remains, and a comparison of them with the equivalent formations in the United States. My own observations were confined to the valley of the St . Lawrence and its environs, where I was struck with the remarkable analogy between the structure of this part of North America and those portions of Scandinavia which I visited in 1834 and 1836. I seemed to have got back to Norway and Sweden, where, as in Canada, gneiss and mica schist, and occasionally granite, prevail over wide areas, while the fossiliferous rocks belong either to the most ancient or the very newest strata, to the Silurian rocks, or to deposits so modern as to contain exclusively shells of recent species. In both countries, we pass over enormous spaces, without beholding any formations of an intermediate age. In both, large erratics, or far-transported fragments of rock, have been carried from north to south, while the surfaces of solid rocks, covered at
various heights by gravel, sand, and clay, have been smoothed and furrowed.

There are large parts of Scandinavia, where the Silurian strata have not been invaded by trappean rocks, whether felspathic or basaltic. There are others, where these igneous materals have intruded themselves, both in the form of dykes and overlying masses, as in Sweden, at Kinnekulle near Lake Wencr, and in Norway near Christ ania. The same geological condition of things recurs in Canada, the mountain of Montreal affurding a good example of slightly disturbed Silurian limestone full of shells and corals, with a capping of basalt or greenstone about eighty feet thick, which terminates abruptly towards the river, giving a picturesque outline to the hill. (See fig. 13., p. 117.) Numerous dykes or veins of trap, both felspathic and augitic, are scen penetrating the limestone, and some of them sending ramifications through it. One of the felspathic dykes (d, fig. 13), consisting of claystone-porphyry, was well exposed to view by new excavations near M-Gill's College, at the time of my visit.

The limestone of this mountain, and of other districts in the valley of the St. Lawrence and the adjoining country, agrees in its fossils with the Trenton limestone of New York. (No. 15 of m / p Pl. II.) The same is seen at the Falls of Montmorenci, where it rests on the ancient sandstone (No. 15), called the Potsdam sandstone, the lowest of more than twenty fossiliferous formations older than the coal, which are recognized in the classification of the New York surveyors. The upper part of this sandstone, at the falls above mentioned, is re-
markable for containing boulders of enormus $\mathrm{s}_{\mathrm{z}} \mathrm{z}$, the largest I ever remember to have seen in any ancient stratified rock. I measured some of them which were eight feet long, but they may have been derived originally from the destruct on of rocks in the immediate neighbourhood, as they consist of the same gneiss as that on which they rest, and therefore cannot be said, 1 ke certain modern erratics in Canada, to print to glacial action, or to imply that large bl scks were trumsported by icebergs at a very remote period.

The strata of black slate, commonly called greywacke in Canada, which appear in a highly inclned postion immediately below the Fa'ls of Montmorenci, have, no doubt, been correctly referred, by Professor Emmons. to the slate of the Hudson river scrics. (No. 14. of map Pl. II.) In consoquence of a derangement or fult in the strata, they appe:r, on a cursory view, to bel ing to an older formation than the less disturbed limestone and sandst ne before mentioned. This fiult is so extensive, that it has misled many of the earlier explorers of the valley of the St. Lawrence, who naturally concluded that the inclined greywacke was more ancient than the horizontill limestone of the same district, whereas it occupies in fact a higher place in the sories.

The termination downwards of the most ancient lossiliferous rocks of Canada in a stratified quartzose sandstone with few fossils affords another point of analogy between the geology of Scandinavia and North America. An additional one is supplied by the unconformable superposition in both hemispheres of the inferior sandstone to gneiss. I saw a junc-
tion of this kind at Kinnekulle in Sweden, and in the U. S. at Little Fulls on the Mohawk; and afterwards on the western borders of Lake Champlain in the U. S. At Little Falls, however, the ancient strata, which rest upon gneiss, do not belong precisely to the same part of this lower member of the Silurian series as those at Montmorenci, but to the beds next above the Potsdam; namely, those called the calciferous sandrock by the New York surveyors. This circumstance should serve as a warning against the hasty assumption that in any of these sections we have p istively arrived at the lowest stratum containing organic remains in the crust of the earth, or have d.scovered the rel cs of the first living beings which were imbedded in sediment.

When reasoning on this subject, we must not forget that the oldest formations are those which must h:lve suffered the greatest loss by aqueous denudation, and which have been most extensively altered by plutonic action. We must also remember how small a part of the earth's crust is accessible to human observation, three-fourths of the surface of the globe being submerged beneath the ocean, and a fraction only of the remaining portion having been as yet carefully investigated by geologists. Nor must we overlook the large spaces occupied by formations newer than the Silurian, which may conceal from our view fossiliferous strata older than any yet brought to light.

As it is still a favourite theory of many geologists, that the granite and other formations, both strat fied and unstratified, which I have called hypogene, were produced in far greater abundance before the origin
of the oldest strata at present known to contain fisssils than at any subscquent period; and as some are disposed to consider their conclusions on this head much strengthened by the fact that, in North America, as in Europe, there are certain points where granite, mica schist, and gneiss, can be shown to be of prior date to any of the fossiliferous rocks hitherto detected; I shall briefly refer to the leading arguments against this doctrine, which I have advanced both in my "Principles" and " Elements of Geology."

The crystalline formations, such as granite and gneiss, were termed primitive and primary by some of the earlier observers, because in each district they are the lowest in geological position. It is now understood, in regard to granite, sycnite, and the unstratified class, that they are of various ages, often newer than fossiliferous strata, and that it by no means follows that they were first in the order of time, because they are inferior in position. Paradoxical as the first statement of this proposition appears, it is now acknowledged, that the superstructure is often older than the forindation on which it rests, the latter having been forced up subsequently from below either in a solid form, or, more frequently, like lava in a volcano. It is also now admitted, in direct contradiction to all preconceived opinions, that many stratified hypogene formations, the gneiss, mica schist, talcose schist, and saccharine marble of the Alps, Appenines, and other districts, have assumed their crystalline texture after the origin of many of the fossiliferous strata, even in some cases long after
the deposition of those wiaich repose directly upon them.

Nevertheless, if we confine the term primary to all rocks which we can prove to be of older date than strata in which organic remains have yet been discovered, we may affirm that the gneiss of Kinnekulle in Sweden before alluded to, or of the Falls of Montmorenci, and many of the unstratified or Piutonic rocks of the Adirondack Mountains. west of Lake Champlain, are truly primary. We may also extend the same appellation, without much lability of error, to all the crystalline rocks found fir a considerable space on every side of the points where the lowest strata charged with fossils are incumbent upon the non-fossiliferous formations. But the farther we go from such points of departure, the more unsafe does our generalization become; and the American geologists have already found reason to retract their first conclusion, that the gneissose, micaceous, and talcose schists, of the Taconic range (see above, p. 245, Vol. I.), are referable to a primary serics.

The posteriority of age of many masses of granite and other Plutonic rocks is more easily proved than the modern origin of the stratified hypogene formations, because the former produce alterations of moderate extent, at the point of contact, or send veins into the newer fossiliferous strata. But where these strata have been altered on a great scale in texture, by heat and other subterranean causes, the evidence of transmutation is difficult to detect in proportion to the intensity of the metamorphic action. The study of the Alps and Appenines has shown that it is characteristic of such action to annihilate all s.gns of the
date of its development, by the obliteration throughout entre mountain masses of all traces of organic structure. We are therefore entilled, on every principle of sound reasoning, to suspect, that for one case where we can positively establish the secondary origin of any set of crystalline strata, there are many others where the prools of their modern origin have been destroyed.

A geologist whose obscrvations had been confined to Switzerland might imag ne that the coal measures were the most ancient of the fozsilif rous series. When he extended his investigations to Sconland, he m'ght modify his views so far as to supp se that the Old Red sandstone marked the beginning of the rocks charged with organic remains. He might, indecd, after a search of many yeurs, admit thit here and there some few and fuint traces of fossils had been found, in still older slates, in Scotland; but he might naturally conclude that all pre-cxisting fossilifereus formations must be very ins:gnificant, since no pebbles containing organic remains have yet been detected in the conglomerates of the Old Red sandstone. Great would be the surprise of such a theorist, when he learnt that in other parts of Europ:, and still more remarkably in North America, a great succession of antecedent sets of strata had been discovered, capable, according to some of the ablest palcontologists, of constituting no less than three independent groups, which are ench of them as important as the "Old Red" or Devonian system, and as distinguishable from each other by their organic remains. Yet it would be consistent with methods of generalizing not uncommon on such subjects, if he vol. II.
still took for granted that in the lowest of these "Trans tion" or S lurian rocks, he had at length arrived at the much-wished-for termination of the foss.liferous series, and that nature had begun her work precisely at the point where his retrospect happened then to terminate.

It may be useful to inquire, whence arises this strong tendency to believe that the present limits of human knowledge in geological science exactly embrace that period of past time in which organic beings have flourished on the earth. If it be a very common delusion, there must be some cause for its popilarity. Its source is, I believe, twofold; first, it is almost unavoidable that we should under-rate the magnitude of the subterranean changes now in progress at great depths in the earth's crust ; and, secondly, that we should equally exaggerate the amount of those which took place far bolow the surface at furmer eras, especially those most remote from our times.

In regard to the first of these sources of error. we iave of late years grown familiar with the proofs of great subsidence and upheaval of land in modern times, without sufficiently reflecting on the enormous alterations in the condition, and probably the structure, of the subjacent parts of the earth's crust, which are implied by these movements. The connection of such rising and sinking of the solid parts of the globe with volcanic action can be demonstrated in many places, and fairly inferred in others, where the action of subterranean heat. owing to its great depth, is latent. I have endeavoured elsewhere to explain the grounds which we have for inferring that crystal-
iine formations hive been elaborated at imnny sue cossive periods, both secondary, tertary, and atll more modern. We need g ', no fiather, in leed, than the valley of the St. Lawrence, now under cons deration, to find wide areas covered with marine shells of recent species, at the lieight of 500 feet above the sea, and where all the rocks can be shown, both to have sunk and to have been aga n upifted bodly, fir a height and depth of many hundred fect, since the depostion of these shells.

But however firmly we may be convinced that subterrancan causes, connected with the development of internal heat, have onprated with great. and perhaps nearly unitorm intensity, at each success.ve geological period of equal durat on. we must still be prepared to find that by far the larg st portions of the visible hypogene rocks are of high relative antiquity to the fossil. ferous depasits. This must happen, if we are correct in assuming that the crystalline rocks, whether stratified or unstratificd, have been formed originally at considerable depths in the crust of the earth. For in that case, a long period of time must have elapsed after their origin before they can have been brought up within the sphere of human observation. There must have been great uphcaval and denudation to cause them to emerge, even in a single district ; but it must require a series of geological epochs before those formed at a given era of the past can have become generally exposed at the surface. A repetition of one series of elevatory movements after another must have taken place in different areas, accompanicd by denudation ; and while such forces are acting, the deposition of new strata is going on,
and the pre-existing crystalline rocks are becomirg relat. rely more and more ancient.

What was before said of the succession of ages required to raise deep-sea format ons extensively to the surface (see p. 47) is equally applicable to rocks of deep subterranean origin. Hence it fullows that the high relative antiquity of the visible crystalline rocks aflords no better a presumption in favour of a period when nothing but granite and gneiss were formed, than the plagic character of the visible Silurian strata and the absence of contemporaneous litt ral deposits, imply the universality of the ancient ocean.

CHAPTER XXII.

Glacial Furrows in the Valley of the St. Lawrence.-Action of packed Ice in the Canadian Rivers.-Boulder Formation with and without Shells.-G innanoqui.-Mountain of Montreal.Recent Shells in Drift more than 50, Feet above the sea Lake St. Pter.-Falls of Maskinonge.-Deposit of Shells at Beauport near Quebec.-. Igreement with Swedish Fussils.Shells in Boulder Furmation of Lake Champlain.-Burfington, Vermont.-Fossils of Lrift imply a colder Climate.Scenery of Lake Champlain-Organic Remains of lowest Silurian Sandstone.-Lingula.-Vermont Mountains.-Inns and Boarding Houses.-Return to Boston.

I had frequent opportunties in the valley of the St . Lawrence, especially at Kingston, and in the country between that city and Gannanoqui, of examining the recently bared surface of the fundamentai rocks, consisting of, first, granite ; 2dly, quartzose (or Potsdam) sandstone ; 3dly, lower Silurian (or Trenton) limestone. Wherever the drift or superficial clay and gravel have been removed, the surfaces of these rocks are worn, smoothed, and furrowed, the furrows being least clearly defined on the sandstone.

The direction of all the straight and parallel grooves was nearly N. E. and S. W., differing uniformly in their general course from those traced by Protessor Hitcheock and Mr. Percival through New England, where they run usually from N. N. W. to S. S. E. It is worthy of not'ce, that in both regions the crratic blocks and boulders have been transported southwards, along the same lines as are marked out by 11*
the direction of the furrows. There is obviously, therefore, a connection between these two distinct classes of phenomen: ; and I know of no theory that can account for both of them, with any plaus.b.lity. except that already alluded to in the last chapter, viz., the agency of large islands of float ng ice, which, by their buoyancy and enormous weight, supply the carrying power and pressure required to scratch, polish, and groove the solid floor of the ocean, and to convey stones of all sizos, firmly fixed and frozen into the ice, to great distances.

As large masses of ice are annually accumulated in the rivers of Lower Canada, and when they break up in spring are often the means of conveying from place to place, huge fragments of rock, I hoped to discover indications, not only of the pol.shing, but also of the grooving of the surface, at those points where the packed ice is forced every year over the bottoms of the Canadian rivers. Accordingly, at Quebec, I went with Colonel Codrington, and searehed carefully below the city in the channel of the St. Lawrence, at low water near the shore, for the signs of glacial action, at the precise point where the chief pressure and friction of packed ice are exerted every year. But the edges of the worn greywacke slates, in the channel there, are scarcely any of them hard enough to receive or retain such markings, and if they were so, the weight of the ice would probably be insufficient. At the bridge above the Falls, at Montmorenci, over which a large quantity of ice passes every year, the gneiss is polished, and kept perfectly free from lichens, but not more so than rocks similarly situated at waterfalls in Scotland. In none

Char. exir. at kingston and quebec.
of these places were any long straight grooves observable, and I feel persuaded that any degree of freedom of motion in the rocky fragments force d along by small pieces of ice, or by a flod of water, would be quite incompatible with the mechanical effects exhibited in what are called glacial furrows.

I have stated that, between Kingston and Quebec, the quartzose sandstune retains the grooving much less distinctly than the limestone or granite. The largest area over which I observed the furrows to preserve a p rfect parallelism, was a floor of limestone forty yards wide, from which clay had recently been removed. It was situated about six miles wist of Gannanoqui. I saw the surfaces of sinoothed granite on the Rideau Canal, six miles north of Kingston, swelling into those flattened dome-shaped forms called "roches moutonnées," so common in Sweden, and near the glaciers in Switzerland.

Although in this part of Canada the boulders are usually uppermost, yet at some points, near Gannanoqui, and elsewhere, they have been found, in s nking wells, to lie thirty feet deep in the clay and sand.

The St. Lawrence, in its course from Lake Ontario to Montreal, a distance of about 160 miles in a direct line, has a wide extent of low ground on both sides of it. The river falls in that distance 214 feet, descending by a succession of rapids, between which are lake-like expansions. At the rapids, the Transition limestone, or sandstone, or the intrusive trap, or subjacent gneiss, are exposed, but the valley is for the most part occupied by the boulder formation, the thickness of which, at the Belouse rapid, and at

Cornwall，varies from twenty to iorty feet．At Co－ teau du Lac，＂the Cascudes，＂and St．Ignatius，it constitutes a broad terrace， 80 to 100 feet above the St．Lawrence，and the smail streams which drain the terrace have cut deep gulleys or valleys through the clay．

This drift，or deposit of clay，sand，and grav ll，is more usually stratified than that associated with large boulders in Scolland．It is generally destitute of organce remains，but in a few places contains them in abundance．In order to show the identity of the fiss liferous and non－fussil ferous protions of this formation，it will be necessary to enter into some details，which may not be without interest to the geologist who considers in how much obscur ty all phenomena bearilig on the glacial period is still in－ volved．

Travelling from the south－west，I found no shells in the dritt t．ll I reached Montreal，which stands at the base of a mountain rising abruptly from a broad plain where the valleys of the St．Lawrence and the Ottawa meet．This mountain，which is $\mathbf{7 4 0}$ feet h gh above the St．Lawrence，terminates in two summits； one cons．derably higher than the other，and capped， as before stated，with a mass of greenstone about eighty feet thick．The subjacent beds of Silurian limestone are traversed by dykes and veins of trap． At the base of the hill，on its eastern side，in the suburbs of Montreal，we find clay and sand（ d, e ， fig．13）above 100 feet deep，in which marine shells occur．This deposit forms a terrace which ends abruptly in the stecp bank（e）facing the river－plain， and running parallel to it for three or four miles．

It varies in height from 50 to 150 feet, and at its base is a low flat of more modern gravel (f), rising from ten to twenty feet above the St. Lawrence. In certain places, as at the Côte St. Pierre, on the road from Montreal to Lachine, the surface of the terrace slopes from e to d, or towards the mountain. A good section of this modern deposit was to be seen at the Tanneries, a village in the parish of St. Henri in the

Fig. 13.

Scction of Montrea? mountain, with shclly drift at its base.
A. Silarian limestone.
B. Trap or greenstone.
c. Dykes of basaltic trap.
d. Dyke of f.lspathic trap, or claystone-porphyry.
d.e. Terrace of drift with shells.
f. Gravel, on which part of Montreal stands. g. River St. Lawrence.
suburbs of Montreal. at the tme of my visit (June, 1812). Excivations had recently been made for a new road, exposing horizental beds of loam and marly clay, in one of which, at the height of about sixty feet above the St. Lawrence, I obssrved great numbers of the Mytilus edulis, or our comm'n Europ an massel, the shells r taining both valves and their purple colour. In the same beds were specimens of Tellina greenlandica, and a few of Saxicava
rugosa. In the midst of the shells, I found a single isolated boulder of gneiss, six inches in diumeter. The Mytilus, although so abundant in this bed, is by no means of common occurrence in the drift of Lower Canada. The colour of the layers containing the Mytilus reminded me of those purple marls which I had seen in the boulder formation of Sweden, produced by the decomposition of countless numbers of these same shells.*

At the Côte St. Picrre, near the house of Mr. Brodie, forty feet above the section in the road last mentioned, and about ninety feet above the river, gravelly beds appeared, in which the Tellina groenlandica and Mya arenaria were abundant, retaining both valves; they were also accompanied by Saxicava rugosa. The shelf (d, e) containing these remains is intersected here and there by deep narrow gullies, one of which terminates at the Tanneries. In the channels of the small streams draining these gullies I found fossil shells, washed out of the clay and sand, among which were a new species of Astarte (A. Laurcntianu), Saxicava rugosa, and Tel!ina græenlandica, yet nowhere could I see a single shell in situ. At some points, the upper beds of sand and gravel, at the same level as the shelly beds with Mytilus, before alluded to, become very coarse, and contain boulders of gneiss and syenite three feet in diameter, showing the inseparable connection between the fossils and the ordinary boulder formation of Canadd.

As I could find no organic remains at any points higher than the terrace $d, e, f i g$. 13 , or none that were

* Phil. Trans. 1835, p. 7.
elevated 200 feet above the river, I might have gone away with the notion that the fossiliferous drift was confined to a comparatively low level, if Mr. Lngan had not informed me the year before that Mr. M.Cord had been fortunate enough to meet with a small patch of gravel full of sea-shells at the height of more that 500 feet in the hollow between the two eminences which form the Mcntreal mountain. I was conducted by Dr. Holnes to this place, called the Cote de Neige, and found there a bed of gravel six feet thick, containing numerous valves of recent species, Saxicava rugosa. and Tellina groenlandica. The deposit was covered by an unstrat fied mass of boulders and gravel twelve feet thick, which would have entirely concealed the shelly bcds, had not the gravel been lately dug for road-making.

Mr. M•Cord estimated, from barometrical measurements, the height of these shells above the St. Lawrence, at Montreal, at 429 feet, which would give them an clevation above the sca of about 450 feet; but the same series of barometrical observations gave only 668 tcet for the summit of Montreal mountain above the river, whereas Capt. Bayfield determined, by the mean of three trigonometrical measurements, the true height to be 760 feet, or 92 feet more. 1 am inclined, thes efore, to believe that the shells are 520 feet above the river, or 540 feet above the sea, which gives an clevation of 306 feet above Lake Ontario, and places them nearly on a level with Lake Erie. which is 565 feet above the sea. Even if we adopt the lower estimate of Mr. M•Cord, and suppose the shells to be only 450 feet above the sca, they would be within 55 feet of the summit of the Falls of Nia-
gara, and more than 200 feet above Ontario, between which lake and the mountain of Montreal there is an open and uninterrupted valley.

After this discovery of marine shells of living species, at so great an elevation in the drift of Canada, we must either conclude that the boulder furmation of the Niagara district was deposited in the same sea, or abandon all idea of any approach to uniformity in the last series of upward movements, which raised the great lake district to its present height.

Between Montreal and Quebec, a distance of about 140 miles, in a straight line, I found the older rocks covered with a stratified drift similar to that already described, the lower beds usually consisting of laminated clay, and the upper of sand ; but this arrangement is not constant. Boulders are for the most part sparingly interspersed, and often only seen on the surface. As I know that Capt. Bayfield had met with marine shells in abundance, in the drift at scveral points between Quebec and Montreal, I inquired everywhere for fossils in the intervening country, but neither at Sorel, nor between Berthier and Maskinongé, nor on the shores of Lake St. Peter, could I see or hear of any.

At Lake St. Peter, the St. Lawrence expands into a lake, bounded by a low alluvial flat, which is sometimes several miles broad. This flat is in its turn bounded by a steep bank of sandy drift forty feet high, in which I could find no shells. Ascending it to a higher level, I went for nine miles over a sloping terrace of drift to the base of the mountains of gneiss, where the Falls of Maskinongé are situ-
nted. On the way, I examined the clay and yellow sand of St. Ursule, and other places, but was unable to detect a single sheil. At the falls, at a height of more than 300 feet above the St. Lawrence, the gne:ss makes its apparance in rounded domes (roches moutonnées). Higher up, or more than 400 feet above the St . Lawrence, the same gneiss is again covered decply with stratified yellow sand, s.milar to that of the lower grounds.

Ahthough, during my short stay, I was equally unsuccessful in detecting any marine shells at 'I'hree Rivers, they have been met with in the neighbourhood, and at Port Neuf, and on the banks of the Jacques Cartier river, twelve miles above its junction with the St. Lawrence, about thirty miles above Quebee. My friend Col. Codrington observed there a fine section of drift, laid open by a landslip in May, 1842. At the top of the cliff was sand about thirty fect thick, and below bine clay, with shells of Tellina calcarea, T. grenlandica, and Astarte Laurentiana.

I shall next describe the drift with shells in the immediate neighbourhood of Quebec, respecting which my curiosity had been excited as early as the winter of 1835 , when Capt. Bayfield, then engaged in a trigonometrical survey of Canada, sent me a collection of marine fossil shells. In his letter, he described them as occurring in very modern strata, bordering the St. Lawrence, at a village called Beauport. When they arrived in London, Dr. Beck of Copenhagen, an eminent conchologist, happened to be with me; and great was our surprise, on opening the box, to find that nearly all the shells agreed specifically vith fossils which, in the summer of the preceding

[^12]years, I had obtained at Uddevalla in Sweden, and figured in my paper "On the Rise of Land," (Ee., in the Phil. Trans. for $\mathbf{1 8 3 5}$. Among the specics m ist abundant in these remote regions (Scandinavia and Canada), were Saxicava rugosa, Mya truncuta, M. arenaria, Tellina culcarea, T. graenlandica, Nuticu clausa, and Balanus Uddevallensis. All of them are species now living in the northern seas; and wherees I had found them fossil in latitudes 58° and $60^{\circ} \mathrm{N}$. in Sweden, Capt. Bayficld sent them to me from part of Canada, situated in latitude $47^{\circ} \mathrm{deg}$. N. In both hemispheres, they are most abundant at moderate elevations above the sea, not exceeding usually 200 or 300 feet, but occasionally, in Norway, they attain, as at Montreal, much higher levels. As some of them belonged to species now living in the Grecnland and other seas in high latitudes, Dr. Beck and I immediately concluded that this fossil fauna, having an almost arctic character, must formerly have had a wider range than the same assemblage of species at present.

Captain Bayfield had called my attention in his letter to the fact, that boulders accompanied the shells in such a manner as to imply, that they had been dropped from melting icebergs to the bottom of a sea, in which the mollusca lived and died. He also furnished me with evidence, that the testacen now inhabiting the Gulf of St. Lawrence, differed widely as a whole from the fossil fauna of Beauport.*

[^13]Сни
T

The village of Beauport is about a quarter of a mile distant from the St. Lawrence, on its lett bithk. and about three miles below Quebec. Near it, a small streamlet flows in a narrow ravine, about 110 feet deep, partly excavated in the drift, which, like that of St. David's before described ($p .95$), had filled a more ancient hollow in the Silurian strata. By examining the cliff' immediately below Mr. Ryland's house, and again a few hundred yards to the west, where lower beds were laid open by the river, and then ascend ng to the higher grounds northwards and towards St. Michel. I obtained the annexed siction, the different parts of which I shall now describe.

Fig. 11.

A. Inorizontal Lawer Sihuri-a str tha.
b. Laminated clay.
c. Yellow sanil.
d. Dift with bon'ders.
e. Mya, Terebiatula. \&ec.
f. Mitss of Suxicava rugosa.
g. Grivel with bomblara.
h. CIny and sund of higher grounds, with Saxicava, \&c, K. Mr. Ryland's house.

The lowest mass of drift (1, fig. 14), having a thickness of twenty-five feet, consists of fine, laninated, stiff blue clay. without fossils, similar to that containing shells on the Jacques Cartier, before m $\quad \mathrm{n}$ tioned. Next above, the beds c are composed of meoherent yellow sand, in regular layers, abont twenty-five feet thick, also without shells. In the next mass, d, of loam and blue clay, having also a
thickness of tw nty-five fect. large beulders of dirk syou te are Ir quatu. Ifinad ur contemporan ons fussils, but fragments of Encrimts and Trilubite, derived from the older firmations. Λb bve thas, in e, the fossils commenced. In the lowest five or six feet, they are rare, but become more abandant above. They are embedded in layers of sund :and loam with pebbles. The Tellina calcarea is mast common. after which may be mentioned Myu truncata, Terebratula psittacea, with both valves united; Mytilus: edulis, Scaluria borealis, S. granlandica, and several others.

To these suceeeds a remarkably compact mas of shells, f, twelve feet th ck, rudely stratified, consising almost entrely of the Saxicava rugosu, most of the:n having the valves united. They are disposed in layers in every position, ofientimes end upwards, and are interm xed with a slight quantity of carthy matter and pebbles, some of the latter ineing eight inches in diancter. Most of the shells are bleached white, but there is one layer, an inch thick, in which they are stained of a ferruginous colour. as in the Engl.sh Crag. The individuals of the Saxicava are smaller in their average size than those of the same species in the great bed of Uddevalla, in Sweden. With the Saxicava is associated Balanus miser, and more rarely Natica clausa and Mytilus edulis.

The topmost bed, g. in this vertical section, is two or three feet thick, and consists of sand, gravel, and boulders of granite, distinct from the boulders in d; but the mass g appeared to me to be superficial, and not to belong to the shelly drift. The bed of Saxicava, f, is about 150 feet above the level of the St. Lawrence, but is by no means the newest part of the
drift of this region, for I found the ground immediately above, or north of \mathbf{K}, to consist of a sloping terrace, in which are horizontal strata of clay and yellow sand, as at h, containing Suxicava rugosa, T'ellina grentandica, and other marine shells. Sume of these foss:liferous beds were within a quarter of a mile of Mr. Ryland's house, K, and about 200 feet above the St. Lawrence; but I observed other similar beds without shells several miles inland, in a north-westerly direction, from $\mathbf{3 0 0}$ to $\mathbf{4 0 0}$ feet above the sea.

The following is a list of twenty-three species of fossils which I procured at Beauport:-

Tritonium anglicanum. Syn. Buccinum undatum, var.?
T. fornicatum. Syn. Fusus carinatus.

Trichotropis borealis.
Natica clausa. N. septentrionalis, Beck.
5. Velutina.

Scalaria granlandica.
S. boretilis.
littorina palliata, Say.
Mya truncata.
10. M. arenaria.

Saxicava rugosa.
Tellina groulandica.
T. calcarea. Agrees with recent species from Boston.

Astarte Laurentiana. New species: see description in note. ${ }^{*}$

* Fig. 15. Astarte Laurentiana.

a Out:lde.
c. Inside of left valve.

b. Inside of right valve

15. Cardium grœnlandicum.
C. islandicum.

Nucula. Agrees with recent species found by Capt. Bayfield in the St. Lawrence.
Mytilus edulis.
Pecten islandicus.
20. Terebratula psittacea.

Balanus miser.
B. Uddevallensis. Syn. B. scoticus. Found recently in the German Ocean, off Scarborough.
Echinus granulatus, Say.
At the fills of Montmorenci, the most northeastern place which I visited in this neighbourhoor, I saw on the right bank of the river, above the falls, and elose to the bridge, a bed of gravel and san 1 , containg large boulders of gravel ant syenite, somo of then three feet in diameter. In this coarse gravel the Stricava rugrosa and Tellina groenlandica securred. The whole mass rested on Lower Silurian limestone.

I di.l not examine the valloy of the Ottawa River (sce map) ; but I may mention that Mr. Log'n obt:ined near Bytown concretions of clay similar to

This must be regarded as an Astarte, although somewhat different from the usual form; it is comparatively thin, it is more lomgritudinal, it is deeper or more gibbous; the posterior lateral tooth in one, and the anterior lateral tooth in the other valve, are more than usually prominent. The shell has all the usual characters of the Astarte; among others, the small sccond vascular impression placed above the anterior adductor muscle. The following are its characters:-

[^14]those called fairy stones, which occur without fossils in the clay at Albany, New York, and at Burlington, Vermont, and in Massachusetts, as described by Profcssor Hitchcock. In the centre of one of these nodules was the entire skeleton of a fossil fish, allied to, if not identical with, that named Mallotus villosus by Professor Agassiz, which now lives in the Greenland seas, and is also found fossil in Greenland.

The only remaining district seen by me where shells have been discovered in the boulder formation, is on the borders of Lake Champlain, about eighty miles south of Montreal. The basin of this lake may be considered as a southern branch of the valley of the St. Lawrence, and the locality is important, as being the most southern latitude ($44^{\circ} 25^{\prime} \mathrm{N}$.) to which this assemblage of arctic fossils has been traced. Professor Emmons has given an account of the spot where the shells occur, south of Port Kent, in the county of Essex, State of New York, at a point where a small brook enters on the western side of the lake. In this place I observed, at the bottom of the section, first, clay, thirty feet thick, with boulders of gnciss, granite, limestone, and quartzose (Potsdam) sandstone, some rounded blocks of the latter being nine feet in diameter; secondly, loam with shells, six feet thick; thirdly, sand, twenty feet thick. Although the shells in the second bed, or the loam, were very numerous, I could only detect four species, namely, Mytilus edulis, Suxicava rugosa, Tellina granlandica, and Balanus miser.

Travelling inland from this spot to Keeseville,] found the boulder formation of great depth, covering the older rocks, and the ascent to an elevation of
about 500 feet is by a succession of terraces, compesed chiefly of beds of sand. I consider the while of these strata to be upper members of the same deposit, doubtless all marine, although no sheils have yet been met with at a greater height than forty fect above the lake.

At Burlington, in Vermont, on the opposite or east side of Lake Champlain, the drift consists chiefly of clay, laminated and micaccous, or unlaminated and without mica. In this clay, argillaceous concretions of curious forms occur. In some places beds of brick earth, sand, and gravel, are associated, pebbles and boulders be:ng scattered sparingly through the loam. Professor Bencdict pointed out to me several spots where this loam behind the town, at the height of thirty and forty fect above the lake, contains shells of the Tellina groenlandica, without any other species. In like manner, I afterwards observed this Tellina in a recent state, on the shores of the Bay of Fundy, in Nova Scotia, strewed for miles along the beach unmixcd with other species. At the Falls of the Winouski or Onion River, near Burlington, the boulder clay attains a thicknsss of 200 feet. Although in great part marly and calcareous, it is barren of shells. There has evidently been great denudation of the drift around Lake Champlain, and I conceive that most of the large boilders of granite, syenite, and sandstone, which now rest upon the surface, may once have been dispersed through the mass. Nothing, however, is clearer than that here, as well as in the vally y of the Sit. Lawrence, between Kingston and Quebec, il.c marine shells of recent species are referable to the
same geological period as that to which the boulders belong. The shells occur both below and above far-transported fragments of rock, and the fundamental granite, limestone, and other rocks, which support the shelly drilt of the St. Lawrence and Lake Champlain, are smoothed and furrowed on their surace by glacial action.

In my first memoir on the fossl shells sent to me by Captain Bayfield, from the drift near Quebec, I called attention to the fact, that the number of species was small, while the individuals were numerous, a character belonging to the fauna of seas in high latitudes. At the same time it was shown, that there was a fir greater varicty in the shells now living in the Gulf of St. Lawrence. Dr. Gould, the eminent coucholog'st of Boston, suggested to me, that on examining a greater number of local.ties, especally at wide distances from each other, I might find the number of species gradually to augment. This has not been the case, and when we reflect, that at Burlington in "ermont, which, as before stated. is situated in latitude $44^{\circ} 25^{\prime} \mathrm{N}$., or corrcsponding to the latitude of Bordenux in France, we meet with the same assemblage as near Quebec, latitude $46^{\circ} 48^{\prime}$ N., and at some points on the coast of Labrador, in latitude $5: \%$, most of them being identical with fossils of the Scandinavion drift, in l.titudes 58° and $60^{\circ} \mathrm{N}$.; we shall be inclined to acquiesec in the views which I formerly advanced. respecting the prevalence of a colder climate in these regions at the time when the boulder formation originated.
July 5th.-Returning to Montreal after our excursion to Quebec, we c.ossed the St. Lawrence on
our way sonthward to La Prairic. On looking back over the river at Montreal, the whole city scemed in a blaze of I ght, owing to the fashion here of coviring the houses with tin, which reflected the rays of the setting sun, so that every roof seemed a mirror. Behind the city rose its stecp and sh:ap ly mon.ntain, and in front were wooded islands, and the cleur watcrs of the St. Lawrence sweeping along with a broad and rapd currnt. At the barracks in La Trairie, a regiment of hussars was exercising-a scene characterstic of the times. On our way to Loke Champlain we slept at St. John's, where I counted under the eaves of the stable of our inn more than forty nes's of a spacies of swallow with a red breast. The head of a young bird was peeping out of each nest, and the old ones were flying about, feeding them. The landlord told me, that they had built there fir twenty years, but missed the two years when the cholera raged, for at that time there was a searcity of insects. Our host also mentioned, that in making an excavation lately near Prattsburg, about 1000 of these birds were found hybernating in the sand : a tale for the truth of which I do not vouch; but it agrees with some old accounts of the occasional hybernation of our swallows in s.milar situat ${ }^{\text {chens. }}$

We next crossed Lake Champlain to Burlington, in Vermont, in a steamboat, which, for neatness, clegance, and rapidity, excelled any we had yet beheld. The number of travellers has been sensibly th inned this year by the depressed state of commerce. The seenery of this lake is deservedly much admired. To the west we saw the principal range of
mountains in the State of New York, Mount Marcy, the highest, attaining an elevation of upwards of 5400 feet. It is still (July 6th) capped with snow, but the season is unusually late. From the survey of this part of New York by Professor Emmons, it appears that hypersthene rock rises up in the central part of this chain, and forms the nucleus, around which masses of gneiss, crystalline limestone, and other formations are disposed. To the eastward were the Green Mountains, chiefly composed of chlorite schist, the Camel's Hump and the still loftier Mount Mansfield, being very conspicuous.

We landed at Burlington, finely situated on the east shore of the lake; its streets adorned with avenues of the locust tree (Robinia pseudo-acacia), now covered with white blossoms, and affording an agreeable shade. After examining the rocks in the neighbourhood, and at the Falls of the Winooski, with Professor Benedict, I crossed the Lake to Port Kent, where, after seeng the boulder formation with shells already described, I went to Keeseville, to examine a deep cleft in the sandstone, through which the Ausable river flows for two miles. This chasm is only from forty to fifty feet in width, while its perpendicular wal: are 100 feet high. A flight of wooden stairs has been placed so as to enable one to reach the bottumı, and the geologist may observe, as he descends, the numerous horizontal strata of siliceous sandstone. In many places, this most ancient of the fossiliferous rocks of New York (the Potsdam sandstone) is divided into laminæ by the remains of innumerable shells of the genus Lingula. They are in such profusion as to form black seams like mica, for which

132

they were at first mistaken.* With the Lingula occurs another small placunoid shell, allied to, if not identical, according to Professor E. Forbes, with a fossil which occurs in company with a small Lingula in the lowest beds of the English S.lurian scrics at Builth, in Brecknockshire. As this is perhaps the most ancient foss.lifcrous rock of which the position has been well determined in North America, it is highly interesting that one of its commonest urganic remains should belong to a living genus (Lingula), and that its form should come very near to species now existing. Throughout so vast a series of ages has Nature worked upon the same model in the organic world! Nor are the signs of uniformity confined to these phenomena, for they extend equally to the shape of the ripple mark on the ledges of sandstone laid open to view above the chasm, where two beautiful waterfalls are seen on the Ausable river. The ri ${ }_{r}$ ple-like ridges and furrows exhibit their ustal parallelism and ramifications as sharp as if they had been made yesterday. On my way back over the lake to Burlington, I saw, on looking from our boat through the clear and shallow water near the shore, a similar ripple in the light yellow-coloured, loose sand, extending over hundreds of acres, and proving that it is not merely on the beach between high and low water mark that the movement of the water can produce those s.nuous ridges, but also to a certain depth below.

Some of the freshwater shells inhabiting Lake Champlain are of species peculiar to this lake, as, for example, Limnaa gracilis, specimens of which were

[^15]presented to me by Professor Benedict. Among the it wers and piants which enlivened the borders of this lake was the Virginia raspberry, with its large red blossoms, the Kalmia (K. angustifolia), a beautiful tger lily, the oderiferous shrub called sweet fern (Comptonia asplanifolia), an Hypericum, and a blue Campanula.

July 9th.-From Burlington, I crossed the Green Mountains of Vermont, composed of chlorite schist, gneiss, and other crystalline rocks, passing by Muntp.ler, to Hanover. Here we paid a vis't to Professor Hubbard, at Darmouth College, and then returned through New Hampshire by Concord to Bastom. Sinec we had left that city in May, we had travelled in little more than two months a distance of 2500 m les on railways, in steamboats, and canoes, in publ.c and private carriages, without any accident, and having always found it possible so to plan our jurney from day to day, as to avoid all fatigue and night travelling. We had usually slept in tolerable inus, and sumetimes in excellent hotels in small towns, and had scarcely ever been interrupted by bad weather. I infer, from the dismay occasionally expressed by Americans when we pursued our journey, in spite of rain, that the elimate of the States must be always as we found it this year-wonderfully more propitious to tourists than that of the "old countre," though it is sa:d to be less favourable to the health and complexion of Europeans.

I ventured on one or two occasions in Canada, when I thought that the inns did not come up to the reasonable expectations of a triaveller, to pra:se those of the United States. I was immediately assured vol. II. 13
that if in their country men proferred to dine at ordinaries, or to board with their families at taverns, instead of cultivating domestic habits like the English, nothing would be more easy than to have fine hotels in small Canadian towns. This led me to inyuire how many families, out of more than fifty whom we had happened to visit in our tour of cleven months in the United States, resided in boarding houses. I found that there was not one; and that all of them l.ved in houses of their own. Some of these were in the northern and middle, others in the southern and western States; some in affluent, others in very modcrate circumstances: they comprised many merchants as well as lawyers, ministers of religion, political, literary, and scientific men.

Fam lies who are travelling in the U. S., and strangers, like ourselves, frequent hotels much more than in England, from the impossiblity of hiring lodgirgs. In the inns, however, good private apartnents may be obtained in all large towns, which, though dear for the United Statec, are cheap as contrastod with hotels in London. It is doubtless true that not only bachelors, but many young married couples, occasionally escape from the troubles of house-kecpng in the United States, where servants are difficult 0 obtain, by retreating to boarding-houses; but the act of our never having met with one instance among , ur own acquaintances inclines me to suspect the ;ustom to be far less general than many foreigners ruppose.
It was now the fourth time we had entered Boston, and we were delighted again to see our friends, some of whom kindly came from their country resi-

Char. xxif.
dences to welcome us. Others we visited at Nahant. where they had retrcated from the great neat, to enjoy the sea-breezcs. The fire-flies were rejoicing in the warm evenings. Ice was as usual in abundauce; the icemen calling as regularly at every house in the norning as the mlkman. Pine-apples from the West Iudes were sclling in the streets in wheelbarrows. I bought one of grod size, and ripe, for a shilling, which would have cost twelve shillings or more in London. After a short stay, we set sail in the Caledonia steam-packet for Halifax.

CHAPTER XXIII.

Hulifax.-Glacial Furrouss in Nuva Scotia-Difference of Climate of Halifax and Windsor.-Tracts covered with Kalmia.-Linnaa borealis.-High Tides of the Bay of F'undy.-The Bore.-Recent Deposits of Red JIud hardened in the Sun.-Fossil Showers of Rain.-Fuotprints of Birds, and Casts of the same.-Cracks caused by Shrinkage.Submerged Forest.-Recent Glacial Furrows at Cape Blo-midon.-Loaded Ice.-Ice-Ruts in Mud.

July 1G, 1812.—Wien I went on board the Caledonia at Boston, I could hardly believe that it was as large as the Acadia, in which we had crossed the Atlantic from Liverpool, so familiar hid I now become with the greater dimens ons of the steamers which navigate the Hudson and other large American rivers.

We soon reached Halifax, and I determined to devote a month to the grology of Nova Scota. Ab-rut three miles south of Hal.fax, near "the Tower," I saw a smooth surface of rock, formed of the edges of curved and highly inclined strata of clay-slate. This surface was crossed by furrows about a quarter of an inch deep, having a north and south direction, and preserving their parallelism throughout a space 100 yards in breadth. Similar phenomena are observed in other parts of this peninsula, on the removal of the drift, which occurs both stratified and unstratified, and much resembles that of Scotland. I may mention here, that afterwards
near Pictou (at Dixon's quarry), I observed prlished a surface of quartzose grit of the coal measures, with distinct furrows ruming noarly E. and W. ar E. 15° N., magnetic ; while in some other places I saw them having nearly the same direction as at Hialifax.

Nova Scotia is usually known to strangers by its least favourable side,-its foggy southern coast, which has, nevertheless, the merit of affording some of the best harbours in the world. We lift Hal fax for Windsor in a drizzling rain and fog, and were told that we should probably find fair weather on the other side of the hills. Accordingly, when we had travelled about thirty m:les, and crossed a low chain called the Ardoise Hills, we found the sun sh ning on a region sloping towards the Bay of Fundy, where a rich vegetation clothes the rocks of red sandsione, marl, and limestone.

Great was the contrast between the climate and aspect of this fertile country, and the "cold barren tracts of granite, quartzite, and clay-slate which we had passed over on our way from Halfax. The sterility of that quartz.ferous district had not been relieved by any beautiful features in the scenery, the plants alone affurding us some points of interest ant novelty, especially a species of Kahinia (K. angustifolia), now in full flower, which monopolised the ground in some wide open spaces, as heaths take exclusive possession of barren tracts in Europe. In the woods near Windsor, I saw several kinds of Py. rola and other flowers, differing, for the inost part, from British speries, but among them the Linncea borealis appeared here and there, matting the ground
with its green leaves under the shade of the fir-trees, and still dispheng some of its deleate p nk flowers. I had g thered it some yons before in the mountains of Norway, n r.h of Christ ania, and have since seen it growing in Scotland, where it is very rare. Linnæus, when this small and elegant plant had been named after him by a friend, accepted it as his emblem, comparing it to hims. If when strugglng with difficu'ti.s ; he d seribel it as "a hurnble, despsed and ueglected Lapland |lant, flewering it an early age." Eventually, the last only of thesa pints of resem!lance remand true, for few inen of se.ance have risen to greater honours in their own country than he did, and has diary has la d him open to the charge of no ordinary share of vanty, a fiult which we forget in our admiration of his original genus, and the imp ortint reforms which ha introduced into the study of every brunch of natural history.

More than half of the ssuthern port on of the peninsula of Nova Scotia comsists of gran tic rocks, cliy-slate, quiriz te, and oher crystaline formitions without fossils, the strata having an east an 1 west strike. Granite also occurs, intruding itself in veins ints every part of this series. Towards their northern l mits, the slaty formations become less metamorphic, and contain fossils, some of which I collected at New Canaan near Wulfille in King's County, and others on the East River of Pictou, conssting of Encrinites, and Trilobites, and shell of the genera (D)thoceras, Spirifer, Orthis, and Leptana. S:me few of then agree specifically with fiss:ls of the Hamilton group or uppermost Silurian division of the United States, No. 10 of map, Pl. II.

After crossing the Ardoiso Hills above mentioned, I le.t these older rincts and entered up on strat: which const.tute, as I shall show in the s quel (ch. 20), a lower carbonferous formation, containing subordinate beds of gypsum and marine limestone. These rucks I examined on the batiks of the A von, in the neighburhood of Windsor, and in the cliffs at Horton Blaff. I then passed by Kentv lle and Cornwallis, skirting the western shores of the Basin of Mines. Into this bassh, or innor cstuary, the tides of the Bay of Fundy pour iwice every day a vast body of water through a narrow strat, converting every sinill streamlet into the appearance of a large tidal r.ver. The t des are said to rise in some places seventy feet perpendicular, and to be the highest in the world. They oft n come up at first with a lofty wave ca led the Bore, of which l saw a fine example in the largest river of Nova Scotil, the Shubenac dic. where the waters seemed to be rushing down a mach stecper slope than the St. Lawrence at its rap ds. They roared too as loudly over the r rocky bed, but could not compete in beauty; for instead of the transparent green waters and white foam of the St. Lawrence, they resembled a current of red mud in violent motion.

The waters of the Bay of Fundy become charged with this red sediment, by undermining cliffs of red sandstone and soft red marl; and in places where they overflow the alluvial plains, they throw down red mud wherever the velocity of the current is suspended at the turn of the tide. Many extensive and level flats of rich land have been thus formed naturally, and many thousand acres of the same have
been excluded artificially from the sea by embankments. When I arrived in this region it was the period of the lowest or neap tides, so that large areas, where the red mud had been deposited, were laid dry, and in some spots had been baking in a hot sun for ten days. The upper part of the mud had thus become hard for a depth of several inches, and in its consolidated form exactly resembled, both in colour and appearance, some of the red marls of the New Red sandstone formation of Europe. The upper surface was usually smooth, but in some places I siw it pitted over with small cavitics, which I was told were due to a shower of rain which fell eight or ten days before, when the deposit was still soft. It rerfectly recalled to my mind those "fossi shewers" of which the markings are preserved in some ancient rocks, and the origin of which was first correctly exp'ained to an incredulous public by Dr. Buckland in 1833. I have already alluded to such impressions of rain-drops when speaking of the ripple-marked flags of the New Red saud-stene at Newark in New Jersey. I saw several other examplcs, during my tour, of similar phenomena, particnlarly in a br ght red deposit of mud thrown down at the mouth of the Patapsec at Balt more, of wheh I was able to bring away some consolidated layers. On these, in addition to the smaller cavitics due to rain, there are larger ones, more perfectly circular, about the sze of l.irge currants, which have been formed by air-bubbles in the mud.

On the surface of the dried beds of red mud at Wulfivile on the Bay of Fundy before mentioned, I obse.:ved many worm-like tracks, made by Annelides
which burrow in the mud ; and, what was still more interest.ng to me, the d stinct fotmarks of birds in regular sequence, fa thfu'ly repesenting in their gencral appearance the smaller class of Ornithicn tes of h gh ast quity in the valley of the Connect.cut befure described. (Vol. I., p. 25!).

I learnt from Dr. Harding of Kentville, an 1 Mr. Pryor of Horton, who were my guides, thit these recent fo tprints were th se of the sandp per (Tringa minuta), a species commen to Europe and North America, flights of which I saw daly running along the water's edge, and often leaving thirty or more similar impressions in a straight lne. p ralld to the borders of the estuary. The red mad had cracked in hardening in the san's heat, and was divided into compartments, as we sce clay at the bottom of a dried pond, and I was able to bring away some pieces to England. One of these I have figured in the annexed plate (VII.). In fig. 1 we see the upper surface of the slab, on the left side of which are six perfect foot-marks in the same line, with part of a seventh, and another, a, probably belonging to a distinet line. A small ball or protuberance will be seen near the base of the middle toe, as at a, b, or sometimes about the middle of the impression of the middle toe, as at c. This is caused by the mud which is displaced by the prominent metatarsus or inste p bonc, which has thrust forward a small mound of earth, in consequence of the slanting position of the leg as the bird advances. On spltting the slab, and reducing it to the thickness expreesed in the transverse section, fig. 3 , l was tortunate enough to lay open an under surface, on which two other lines of foot-prints
appeared in relicf, fig. 2. These are the casts of impressions which had been made on an inier.or layer, deposited several tides before; and I ascertained that on the upper and under surfaces of several other th n laminx, shown in the cross section No. 3, there exist similar foot-marks, each set made by birds at different times. It wiil be seen that the toes which are indented in No. 1, are represented by protuberances in No. 2, and that at d the mark of a single toe occurs in relief, and quite is mated. This occurrence was not unfrequent, and Mr. Waterhouse has suggested to me in explanation that these waders, as they fly near the ground, often let one leg hang down, so that the longest toe touches the surface of the mud occasionally, leaving a single mark of this kind. The slaios here figured have been presented by me to the Brit.sh Muscum, in order that those naturalists who are still very sceptical as to the real origin of the ancient fossil ornithicnites, of which there are some fine examples in our national repository, may compare the fossil products of the month of July, 1842, with those referable to featherel bipeds which preceded the era of the Icthyosauas, Iguanodon, and Pterodactyl.

On several wide areas, comprising many hundreds of acres cach, I saw the surface of the red mud fissured in all directions by the shrinkage accompany ing des.ccation, and I was surprised to find some of the cracks several inches wide, and no less than two or three feet deep. Occasionally, a fresh tide had deposited sediment in the older cracks, filling them up, and this mud having in its turn become hardened, together with a new contemporaneous superficial
layeı, I found, on taking up the slab, the casts of the oll fissures stinding out in relicf, as we occasionally see them on the under surfaces of flitgs of sandstonc. whech rest on layers of clay or shale.

Belore quiting the subject, 1 may state that hard nodules of a red clay-ironstone are occasionally met with in the red mud, some of which I was shown as having been found near Minudie at low water. Tlie nucleus of the coneretion often censisted of reen n, li:toral shells, Mya arenaria and Tellina gramlamdica. I was also informed that there wals a submerged forest buried in this red mud, and exposed to v.ew in the Cumberland Basin at low tide, not far from Fort Cumberland. I regret that I had no time is examine this forest of upright trees, as the accounts I received of it appeared to imply that there mest have been some subsidence of land in modern times. In estimating the changes in progress i: nature's laboratory beneath the sea, we must not forget that by far the greater part of the red sediment of the Bay of Fundy is carried out by a strong current into the depths of the Atlantic.

July 24.-Continuing my course along the western borders of the Basin of Mines, I at length reached Cape Blomidon, where cliffs of soft red sandstonc, in nearly hor:zontal beds, are capped by a mass of t : salt, greenstone, and amygdaloid. This mass of igneous rock, after presenting fine ranges of rude columns in the bold precipices facing northwards, is continuous, in a narrow strip of high land, for no less than 130 miles cast and west, extending as far as Annapol's, and beyond it to Briar leland. Its structure and characteristic minerals have been well described
by Messrs. Jackson an! Alger, in their claboate paper, read in the year 1831, to the Amer can Academy.* Although this trap is gin mally parall 1 to the su!.jicent red sandstone, it appears in reality to for:n a gruat dyke rather than a contemporaneous bed.

As I was strolling along the beach at the base of these basalice elfs, collecting minerals, and occasomaily recon sheis at low tide, I storp d short at the sift of an enexpected ${ }^{\text {th }}$ nomen n. The solitary iubabitant of a do sert island could se ucely have be n more startled by a human foot-print in the sand, then I was on beliolling some recent furrows on a ledge of sandst ne under my feet, the exact counterpart of those grooves of ancient date which I have so often described in this work, and attributed to glacial action. After having searched in vain at Quebec (see p. 120) fir such indications of a modern date, I had despaired of witnessing any in this part of the world. I was now sat.sfied that, whatever might be their origin, th se befure the were quite recent.

The infer:or beds of soít sandstone, $a, a, f i g .16$, which are exposed at low water at the base of the cl.ff at Cape Elomidon, form a broad ledge of bare rock, to the surface of which no sea-weed or barnacles can attach themselves, as the stone is always wearing away slowly by the continual passage of sand and gravel, washed over it from the talus of fallen fragments, d, which lies at the foot of the cliff on the beach above. 'The slow but constant under.

[^16]Fig. 16.

Section of the Cliff and Beach at Cape Blomidon.
a, a. Ledges of sof sindstone exposed at low water.
b. Red marls with light greenish streaks, and layers of fibrous gypsum.
c. Capping of trap.
d. Talus of blocks and pebbles of trap, amygdaloid, greenstone, \&c.
mining of the perpendicular cliff forming this promontory, round which the powerful currents caused by the tide sweep backwards and forwards with prodigious velocity, must satisfy every geologist that the denudation by which the ledge in question has been exposed to view is of modern date. Whether the rocks forming the cliff extended so far as the points $a, 10,50$, or 100 years ago, I have no means of estimating ; but the exact date and rate of destruction

Fig. 17

Recent furrows on ledge of sandstone at Cape Blomidon.
are immaterial. On this recently formed ledge, I saw several straight furrows half an inch broad, some of them very nearly parallel, as $a, b, f i g .17$, others diverging, as c, the direction of a, b, being $\mathbf{N} .35^{\circ} \mathbf{E}$.
or corresponding to that of the shore at this pont. After walking about a quarter of a mile, I found :nother set of similar furrows, having the same general direction within five degrees; and I made up my mind that if these grooves could not be referred to the modern instrumentality of ice, it would throw no small doubt on the glacial hypothesis. When I asked my guide, a peasant of the neighbourhood, whether he had ever scen much ice on the spot where we stood, the heat was so excessive (for we were in the latitude of the south of France, $45^{\circ} \mathrm{N}$.) that I seemed to be putting a strange question. He replied that in the preceding winter of 1841 he had seen the ice, in spite of the tide, which ran at the rate of 10 miles an hour, extending in one uninterrupted mass from the shore where we stood to the opposite coast at Parrsborough, and that the icy blocks, heaped on each other, and frozen together or " packed," at the foot of Cape Blomidon, were often fifteen feet thick, and were pushed along when the tide rose, over the sandstone ledges. He also stated that fragments of the " black stone" which fell from the summit of the cliff, a pile of which, d, fig. 16, lay at its base, were often frozen into the ice, and moved along with it. I then examined these fallen blocks of amygdaloid scattered round me, and observed in them numerous geodes coated with quartz crystals. I have no doubt that the hardness of these gravers, firmly fixed in masses of ice, which, although only fifteen feet thick, are often of considerable horizontal extent, have furnished sufficient pressure and mechanical power to groove the ledge of soft sandstone.

In Nova Scotia the term "loaded ice" is in

Chat. xini. Loaded ice, nova scotia. 147
common use for large sheets of ice several acres in area, which are somet.mes floated off from the rivers as the tide rises, with sedge and other salt-marsh plauts frozen into their lower surfaces; also with mud adhering plentifully to their roots. In our speculations, therefore, on the carrying power of ice, we ought always to remember that, besides gravel and large fragments of rock, it transports with it the finest mud.

Dr. Harding informed me that the surface of mudbanks along the estuaries near Wolfille, are olten furrowed with long, straight, and parallel ruts, as if large waggons had passed over them. These conform in their general direction to the shore, and are produced by the projecting edges of irregular masses of packed ice, borne along by the tidal current.

CHAPTER XXIV.

Coal Formation of Nova Scotia -Productive Coal Measures.Erect Fossul Trees in the Cliffs of the Bay of Fundy - Sec. tion from Minudie to the South Joggins.-Ten buried Forests, one above the other.-Connection of upright Trees with Seams of Coal.-Stigmaria.—Sigillaria.-Evidence of Repeated Submergence of dry Land.-Theory to explain the Evenness of the Ancient Surface.-Pictou Coal-field.-Bed of Erect Calamites, comparel to those of St. Etienne, in France.-List of Specirs of Nova Scotia Coal-plants.-Four fifths of these Fossils identified with European Species.-C'arboniferous Flora of the United States.

Abnve the granite, clay-slate, quartzite, and Silurian furmations of Nova Seotia, there occur, in the northern part of the peninsula, as stated in the last chapter, strata referable to the carboniferous group, occupying very extensive tracts, and resting unconformably on the rocks of the older scries. They may be divided into three formations; the middle one, comprising the productive coal-measures, agreeng precisely with those of Europe in their lithological characters and organic remains; an upper one, composed of sandstone and shale with fossil plants, but without coal; and a lower carboniferous group, chiefly made up of red sandstone and red marl, with subordinate beds of gypsum and marine limestone. In this lower serics there are also occasionally some beds of shale with plants, and some coal-grits, and thin seams of impure coil.

A variety of opinions have been entertained re-
specting the true age and position of the last-mentioned or sypuiberous formation, which has been generally presuined to be newer than the coal,-by some referred to the New Red sandstone, and even thought to overlie the coal-measures unconformably: Immediately after my return to England, I communicated to the Geolngical Society my opinion; 1st, that the gypsiferous formation, with its accompanying fossiliferous limestones, is a true member of the Carboniferous group; 2dly, that its position is below the productive coal measures.*

I shall now give some account of these middle or productive coal measures, which contain valuable seams of bituminous coal, at various places, especially near Pictou. I was particularly des.rous, before I left England, of examining the numerous fossil trees alluded to by Dr. Gesner as imbedded in an upright posture at many different levels in the cl ffs of the South Joggins, near Minudie. The cliffs belong to the Cumberlind enal-fitd, on the suthern shomes of a branch of the Bay of Fundy, called the Clignecto Channel, whinch divides part of New Brunswick from Nova Scotia. The first allusion the trecs which I have met with, is that published in 1829 by Mr. Richard Brown, in Halyburton's Nova Scotia, and he attributed their firsslisation to the inundation of the ground "n which the firests stood. I felt convinced that. if I could verify the accounts of wheh I had read, of the superpasition of so many different tiers of trees, each r presenting forests which grew in succession on the same area, one above the other;

[^17]and if I could prove at the same time their connexion with seams of coal, it would go farther than any facts yet recorded to confirm the theory that coal in genen.' is de.ived from vegetables produced on the spots where the carbonaceous matter is now st. red up in the earth.

At Wulfville I hired a schooner, which soon carried us across the Basin of Mines to Parrsborough. We had a side wind, and the deck was inclined at about an angle of 45°, in spite of which we admired a splend d view of the coast, and the range of basaltic rocks which extend from Cape Blomidon to Cape Split. At Parrsborough I was joined by Dr. Gesner, who had come expressly from New Brunswick to meet me; and we went together to Minudie, a thriving village, where we were hospitably received by the chief proprietor and owner of the land, and of many of those fertile flats of red mud before described. which he has redeemed from the sea.

From Minudie, a range of perpendicular cliffs extends in a south-westerly direction along the southern shore of what is commonly called the Chignecto Channel. The general dip of the beds is southerly, and the lowest strata near Minudie consist of beds of red sandstone, with some limestone and gypsum, a, b, fig. 18. The section is then very obscure for about three miles, or from b to c, the rocks consisting chicfly of red sandstone and red marl, after which, at c, 'olue grits are seen, inclined to the S.S.W. at an angle of 27°, affording an excellent grindstone, and attaining a thickness of forty-four feet. These beds are succeeded to the south by a vast series of newer and conformable strata, all dipping the same way,

Fig. 18.

Section of the cliffs of the South Joggins, near Minudie, Nova Scotia.

$$
1
$$

and, for the first three miles which I examined, inclined nearly at the same angle, upon an average about 24° S.S.W. Within this space, or between d and g, all the upright trees hitherto found occur; but the same set of strata is still continuous, with a gradually lessening dip, many miles farther to the south.

If we assign a thickness of four or five miles to this regular succession of carboniferous strata, which, as I shall afterwards show, must have bern or gimally quite horizontal, our estimate will probably be rather under than over the mark. For the first mile south of the grindstones, or from c to d, I observed no coal in the cliffs, alter which the first of the upright trees appears at d, at the distance of about six miles from Minudie. Then followed a scries of coal-bearing strata, consisting of white freestone, bituminous shale, micaccous sandstone, sandy clays, blue shale, and clays with and without nudules of ironstone, all resembling the carboniferous rocks of Europe. They occupy a range of coast about two miles long, the vertical height of the cliffs being from 150 to 200 feet; and about nineteen seams of coal have been met with, which vary in thickness from two inches to four feet. At low tide, we had not only the advantage of beholding a fine exposure of the edges of these beds in the vertical precipices, but also a horizontal section of the same on the beach at our fect.

The beds through which erect trees, or rather the trunks of trees, placed at right angles to the planes of stratification, are traceable, have a thickness of about 2500 fect; and. no deception can arise from the repetition of the same beds owing to shifts or
faults, the section being unbroken, and the rocks, with the exception of their ${ }^{\circ} \mathrm{dip}$, being quite undisturbed. The first of the upright trees which I saw, in the strata d, fig. 18, is represented in the enlarged section, fig. 19. No part of the or:ginal plant is preserved except the bark, which forms a tube of pure bituminous coal, filled with sand, clay, and other deposits, now forming a solid internal cylinder without traces of organic structure. The bark is a quarter of an inch theck, marked externally with irregular longitudinal ridges and furrows, withont leaf-scars, and therefore not rescmbling the regular flutings of Sigillarix, but agreeing exactly with the description of those vertical trees which are found at Dixonfold, on the Bolton railway, of which Messrs. Hawkshaw and Bowman have given an excellent account in the Proccedings of the Geolog.cal Society.* On comparing Mr. Hawkshaw's drawings of the British fossils, in the library of the Gcological Society, as well as a specimen of one of the Dixonfold trees presented by him to their muscum, with portions of the bark brought by me from Nova Scotia, I have no hesitation in declaring them to be identical.

The diameter of the tree, $a . b$, fig. 19, was fourteen inches at the top and sixteen inches at the bottom, its height five feet eight inches. The strata in the interior of the tree consisted of a series entirely different from those on the outside. The lowest of the three outcr beds which it traversed consisted of purplish and blue shale, c, fig. 19, two feet thick, above which was sandstone, d, one foot thick, and

[^18]above this clay, e, two feet eight inches. In the interior, on the other hand, were nine distinct layers of d.fferent composition: at the bottom, shale four inches; then, in the ascending series, sandstone one foot, shale four inches, sandstone four inches, shale eleven inches, clay with nodules of ironstone, f, two inches, pure clay two feet, sandstone three inches, and, lastly, clay four inches.

Mr. Bowman has explained in the Manchester Transactions the causes of the frequent want of correspondence in the strata enclosing a buried tree, and the layers of mud and sand accumulated in the interior, which vary according to the more or less turbid state of the water at the periods when the trunk decayed and became hollow, and according to the height to which it was prolonged upwards in the air or water after it began to be imbedded externally in sediment, and various other accidents. It is not uncommon to observe in Nova Scotia, as in England, that the layers of matter in the inside are fewer than those without. Thus, a "pipe" or cylinder of pure white sandstone, representing the interior of a fossil trec, will sometimes intersect numerous alternations of shale and sandstone. In some of the layers in the inside of the trunk, a, b, fig. 19, and in other trees in this line of cliffs. I saw leaves of ferns and fragments of plants which had fallen in together with the scdiment
(iontinuing my survey, I found the second of the erect trees, e. fig. 18, or a, fig. 21, separated from the tirst, or from a, b, fig. 19, by a considerable mass of shale and sandstone. This second trunk was about nine feet in length, traversing various strata, and cut
off at the top by a layer of clay two feet thick, on which rested a seam of coal, b, fig. 21, one foot thick. This coal formed a foundation on which stood two large trees, c and d, fig. 21, about five yards apart, each about two and a half feet in diameter, and fourteen feet long, both enlarging downwards, and one of them, d, bulging considerably at the base. The beds through which they pass consist of shale and sandstone. The cliff was too precipitous to allow me to discover any commencement of roots, but the bottom of the trunks seemed to touch the subjacent coal. Above these trees were beds of bituminous shale and clays with Stigmaria, ten feet thick, on which rested another bed of coal, e, one foot thick, and this coal supported two trees, f, g, each eleven feet high, and sixty yards apart. They appeared to have grown on the coal, e. One of these, about two feet in diameter, preserved nearly the same size from top to bottom, while the nther, which was about fourteen inches in diameter at the top, enlarged visibly at the base. The irregular furrows of the bark were an inch and half one from the other. The tops of these trees were cut off by a bed of clay, on which rested the main seam of the South Joggins coal, four feet thick, above which is another succession of strata, very similar to those already described, with occasional thin seams of coal, and with vertical trees at five or six different levels.

I observed in all at least seventeen of these upright trunks, but in no instance did I see any one of them intersecting a layer of coal, however thin, nor did I find any one of them terminating downwards in sandstone, but always in coal or shale. Their
usual height was from six to eight fect, but one which was more than a hundred feet above the beach, and which I could not approach to measure, seemed to be twenty-five feet high, and four feet in diameter, with a considerable bulge at the base. They all appear to be of one species, the rugosities on the surface producing the effect of a rudely-fluted column, and they were placed very accurately at right angles to the planes of stratification. I found numerous flattened trunks of large Sigillarix with their flutings and leaf-scars in the shales, but none of them resembled the erect trees with their irregularly furrowed exterior.

Stigmarix are abundant in the argillaceous sandstones of these coal-measures, often with their leaves attached, and spreading regularly in all directions from the stem. It commonly happens here, as in Europe, that, when this plant occurs in sandstone, none of its leaf-like processes (or rootlets?) are attached, but I saw one remarkable exception in strata of micaceous sandstone, between the site of the upright tree represented in fig. 19 and those given in fig. 21. The stem was about four inches thick (see fig. 20), and it traversed obliquely several layers of fine white micaceous sandstone two feet in vertical thickness. Mr. B nney of Manchester seems now to have proved that these Stigmarix are really the roots of Sigillaria, by finding them actually proceeding trom the bottoms or stools of the trunks of Sigllatire which occur erect in the British coal-measures. We may therefore conclude that the dome-shaped mass represented by Messrs. Lindley and Hutton in their Fossil Flora, pl. 31, and figured by Dr. Buckland in
his Bridgewater 'I reatise, pl. 56, vol. ii., was nothing more or less than a section of the stump of a fossil Sigillaria, from which the roots extended in all direc. tions through the ancient soil. lt should be remembered that M. Adolphe Brongniart, when he obtained from Autun the first and only example yet discovered of a Sigillaria exhibiting internal structure, pronounced it to agree so nearly with Stigmaria, that he inferred on botanical considerations alone, that both must belong to the same plant, and that the Stigmaria was probably the root. In some of the specimens of the latter plant obtained in Nova Scotia, and cut in thin slices so as to transm: light, the woody fibre of the internal cylinder surrounding the axis from which the pith has disappeared, shows, under the microscope, the vascular tissue, and the fern-like or scalariform vessels, which are so conspicuous in European Stigmariæ. By aid of the s.licficd fossil from Autun, M. Ad. Brongniart has been enabled to demonstrate that this structure, or the scalariform vessels, so distinguishing a character of the living Ferns and some other cryptogamous plants, is united in Sigillaria with rings of growth peculiar to dicotyledonous trees, so that we have here, in this extinct genus, a link between classes of plants standing widely apart from each other in the arrangement of existing vegetables.

I have stated that I counted seventeen upright trees in the strata of the South Joggins, and I was assured by Dr. Gesner, and by residents at Minudie, that other and different individuals were exposed a few years ago ; the action of the tides of the Bay of Fundy being so destructive as continually to undermine and sweep away the whole face of the clifis. so that VイL. II.
a new crop of fossils is laid open to view every three or four years. I saw the erect trees at more than ten distinct levels, one above the other ; they extend over a space of two or three m.les from north to south, and more than twice that distance from east to west, as I am informed by Dr. Gesner, who has explored the banks of streams intersecting this coul-field. For the names of S:gillariæ, Lepidodendra, Ferns, and Calamites collected by me in the elffs of the South Joggins, and in other coal-measures of Nova Scotia, I refer to the list given at the end of this chapter, calling the reader's attention the extraordinary amount of specific identity in fossils so widely separated from each other in their "habitations." It appears that, out of forty-eight species, without enumerating the d.fferent kinds of Stigmaria, which agree perfectly with the varieties found in England, there are no less than thirty-seven which have been identified. The greater part of the remaining eleven might perhaps have been found to agree with known European fossils. had not most of the specimens been in :oo imperfect a state to admit of close comparison.

Out of fifty-three species obtained by me from the soal-fields of the United States (almost all of them from Pennsylvania, Maryland, and Ohio), I have been able to identify thirty-five with European fossils, chiefly species found in Great Britain. Of the remaining eighteen, only four can be said to be peculiar forms, the other fourteen being ail closely allied species, or geographical representatives of European coal plants. When it is considered that all the genera of these fossils are likewise common to North America and Europe, we seem entitled to declare,
that so great a degree of uniformity in the flora of regions equally remote is without parallel, whether in the more ancient strata or in the geographical distribution of plants, in the present cundition of the glube.

Continuing uur survey of the el.ffs of the South Joggins, we observe, not far above the uppermost coal-seams with vertical trees, or, g, fig. 18, two strata, h, i, perhaps of freshwater or estuary orign, composed of black calcareo-bituminous shale, chiefly made up of compressed shells, of two species of Modiola and two kinds of Cypris. Above these beds are innumerable strata of red sandstone or shale, without coal seams, and with few or no fossils, on which it will be unnecessary to dwell.

Many curious conclusions may be deduced from the facts above enumerated.

1st. The erect position of the trees, and their perpendicularity to the planes of stratification, imply that a thickness of several thousand feet of strita, now uniformly inclined at an angle of 24°, were deposited originally in a horizuntal position. But for the exist.ace of the upright trees it might have been conjectured, that the beds of sand and mud have been thrown down at first on a sloping bank, as sometimes happens in the case of gravel and coarse sand. But, if we are compelled to arsume the original horizontality of beds 2500 feet thick, through which the erect trees arc dispersed, we cin hardly avoid extending the same inference to the greater part of the strata above and below them. It by no means follows that a sea four or five milcs deep was filled up with sand and sediment. On the contrary, repeated subsidences, such as are required to explain
the successive submergence of so many forests which grew one above the other, may have enabled this enormous accumulation of strata to lave taken place in a sea of moderate depth.

Secondly. The evidence of the growth of more than ten forests of fossil trees superimposed one upon the other prepares us to admit more willingly the opinion, that the St:gmaria with its root-like processes was really the root of a terrestrial plant fossilised in situ. Yet, if we embrace this opinion, it follows that all the innumerable underclays with Stigmarix in North Ameriea and Europe, which I have alluded to at pp. 62 and 84, Vol. I., and p. 15, Vol. II., \&c., are indications of an equal number of soils, whether of dry land or freshwater marshes, which supported a growth of timber, and were then submerged. If this be true, and the conclusion seems inevitable, the phenomenon of the upright trees in Nova Scotia, marvellous as it may be, shrinks into insign.ficance by comparison.

At the same time, it is quite intelligible, that we should find hundreds of cases where the soil has remained with the roots fixed in their original matrix for one instance where the trunk has continued to stand erect after submergence. Many favourable circumstances must concur, to allow of such an exception to the general rule. There must, for example, be an absence of waves and currents of sufficient strength to loosen and overturn the trees, and the water must be charged with sediment ready to envelope the plants before they have had time totally to decay. I have shown (p. 164, Voi. J.) that on the coast of S. Carolina and Georgia the land has sunk
in modern times, and that buried trees are occasionally found in strata containing shells of recent species. The formation of low islands of sand ofl the shore, breaking the force of the Atlantic. has probably allowed many of these trecs near the mouths of estuaries to continue erect under water, until they were silted up and preserved. Similar low islands and sandbanks skirt nearly the whole of the castern coast of the United States, and may assist the geolog'st in explaining some of the phenomena of the Carboniferous period, especially the manner in which superficial beds of vegetable matter, as well as upright trees, escaped the denuding forces.

Thirdly. It has been objected to the theory which refers the origin of seams of pure coal to plants which grew on the exact spaces where we now find coal, that the surfaces of ancient continents and islands ought to undulate like those we now inhabit. Where, they ask, are the signs of hills and vallers, and those river-channels which cut through deltas? I inese apparent difliculties w.ll, I think, be removed, if we reflect that the fossilisation of successive forests presupposes both the subsidence of the ground and the deposition of sediment going on simultaneously. If so, the accumulation of mad and sand furnishes us with the levelling power required, and, had there been extensive denudation capable of producing valleys, it could readly have swept away all the coal. In regard to ancient river-courses, the late Mr. Buddle often assured me, that he had in many places met with them in the coal-fields of the North of England, and he has given a detailed account of one which intersected a seam of coal in 15*
the Forest of Dean. Even in these cases, however, the general eveuness of the surface is immediately restored by a new sinking of the delta, and the deps.tion of fresh sediment, so that the succeeding seam of coal has grown on as perfectly flat a surface as if there had been no partial destruction of the beds below.

If it be obiected that, according to the analogy of recent subterrancan movements. some areas ought to have sunk down at a more rapid rate than others, produc $n g$ irregularities in the ancient level of the dry land, we reply, that there are abundant proo's in the arrangement of the carboniferous strata, that the amount of local subsidence was actually not uniform. Mr. Bowman has clearly pointed out, that the wedge-shaped or lenticular masses of sandstone and shale, which sometimes intervenc between the upper and lower portions of a seam of coal, are the natural result of such inequalities in the downward movement. In those areas which sink so fast as to be submerged, the growth of terrestrial plants is suddenly arrested, and the depressed region becomes the receptacle of sediment, until its level is again raised. Then the growth of the former vegetation is resumed, and the result is the intercalation of strata for a certain space between two beds of coal, which unite and become one, if they are followed to a certain distance in every direction.

In our excursion to the fossil trees, Dr. Gesner and I were joined by several volunteers, some of whom separated from us on their way home. I asked a cottager, whether he had seen them pass. He said, that "a party of Jogginers on horseback
had come by his house half an hour before." As I had heard of a North Joggins on the other side of the bay, I asked whether there was any meaning in this term. He immediately pointed to the salient and retiring angles of the cliffs, observing, "You see that they jog in and jog out."

The coal-field of Pictou, the only one in Nova Scotia where a large quantity of the valuable mineral has been worked, lies about a hundred miles to the eastward of the Cumberland or Minudie coalmeasures. An examination of the strata of the Albion Mines, near Pictou, convinced me that the coal-bearing formation there is the equivalent of that already described, although it may be impossible to identify the different strata in detail. They contain the same fossil plants, and s.milar shales, with the same species of Modiola and Cypris, as at the South Joggins. At the latter place, the largest seam is only four feet thick, whereas that at the Albion mines is estimated at thirteen yards in thickness. In both localities there is a vast series of beds of red sandstone and red marl, with limestone and gypsum underlying the principal coal-seams, and an enormous thickness of sandstones and shales, without coal, above them.

The only spot in the Pictou coal-field where plants have been observed in an erect position is at Dickson's Mills, a mile and a quarter west of Pictou. Here a bed of upright Calam.tes were discovered by Mr. J. W. Dawson, with whom I visited the locality. But the secticn in 1842 was almost entirely concealed by water. The strata consisted of red and grey sandstones and shales, with imbedded fern
leaves, and numerous fragments of Calamites and Sternbergia. The sandstone in which the upright Calamites were enveloped was about ten feet thick, and all these terminated downwards at the same level, where the sandstone joined a layer of coarse grey limestone with pebbles. The tops of the Calamites were broken off at different heights, where the grit became coarser. Mr. Dawson states that he observed in the same bed, in a prostrate postion, a Irpidodendron, with leaves and lep.dostrobi attached to its branches.

Since my excursion to Nova Scotia, I have examined the French coal-field of St. Etienne near Lyons, where M. Alexandre Brongniart first described a great bed of erect Calamites, inclosed in sundstone, which he believed to have grown where they have become fossil. The section of the beds of which he published a drawing, representing the erect fossil stems, has been since entirely destroyed by the quarrying away of the sandstone, but I obtained so much evidence, in 1843, of the occurrence of various upright trees, Sigillariæ and others, at different levels in the same coal formation, as to incline me fully to belicve M. Alex. Brongniart's conclus.ons, and to retract the objections I formerly urged against his inferences, on the ground of the dfferent heights at which the Calamites terminated downwards.* This may perhaps be explained by a slight obliquity in the direction of the trunks, or a want of perpendicularity in the vertical face of the clifls to the planes of stratification.

[^19]The following list of plants comprises several species which I did not meet with in Nova Scotia, but which occur in the neighbouring island of Cape Breton, and were presented, at different times, to me and to the Geological Socicty, by Mr. Richard Brown. For several specimens from Nova Scotia I have been indebted to Mr. J. W. Dawson, of Pictou, and to Mr. Alison, F.G.S. I have also included in the catalogue one or two fussils from the New Brunswick coal-field (which may be considered as another part of that near Minudic) presented to the Geological Society by Mr. Henwood.

In determining the specific characters and names, I have been principally indebted to Mr. Samuel Woodward, of the Gcological Society, who has been occasionally assisted by Mr. Morris, and I have referred, in some points of difficulty, to M. Adolphe Brongniart. After the list was completed, it was revised, as far as relates to the ferns, by Mr. Chas. Bunbury, some of whose corrections have been adopted, and his comments cited.

LIST OF FOSSIL PLANTS FROM TIIE COAL MEASURES OF NOVA SCOTIA AND CAPE BRETON.

NAMES OF FOSSIL PLANTS.

1. Flabellaria Sternb.

Fragments of large palm-like leaves, such as are figured by Sternberg under the name of Flabellaria, are common in many British and Continental localities.
2. Cyperites Lindl.

Identical with the grass-like leaves of C. bicarinata, as far as the specimens admit of comparison.

LOCALITIES.
Horton Bluff, nea. Windsor, South Jag gins, and Pictou in Nova Scotia.

Cape Breton.

HAME OT TOABIL PLANTB.
3. Trigonocarpum Brongn.

An undescribed and new species of this genus, so common in the European coul-fields, was given me by Mr. Dawson.
4. Artisia approximata Brong. This plant (the Sternbergia of Brong.) is considered by Mr. Dawes as the cast of the medullary cavity of stems of trees. Quarlerly Jisurn. Geal. Soc., No. 1, p. 91.
5. Asterophyllites, allied to A. tuberculata.
Mr. Binney considers the specimen from Sydney to differ from \mathbf{A}. tuberculata, but to be identical with a species found at Manchester.
6. A. galioides? Lindl.

British.
7. Sphenophyllum Schlotheimii? Brong.
A common British coal plant, of which I found only one speciment.
8. Pinnularia capillacea Lindl. Also British.
9. Lepidophyllum lanceolatum
(Lindley and Hutton) t. 7. fig. 3, 4.
Also British species.
10. Lepidodendron Rhodianum

Sternberg. Also British.
11. L. obovatum Sternberg, t. 6. f. 1 ; Lindley and Hutton, pl. 19, bis.
Also British. The L. aculeatum which I found

LOCARJTYEA.

Picton.

Pletou and South Joggins, Nova Scotia.

Sydney, Cape Breton.

Pictou, Nova Scotia.
Pictou, Nova Scotia; Sydney, Cape Breton.

Sydney, Cape Breton.
Pictou, Novz Scotia.

Cape Breton.

Sydney, Cape Breton.

NAMES OF TO甘期L PLANTE.
abundantly associated with this in the U. S. coal-fields appears to Mr. Woudward not specifically distinct from L. obovatum.
12. L. undulatum Sternberg.

This species, also British, was found by Mr. Henwod in New Brunswick.
13. Lepidodendron elegans (Lindley and Hutton.)
Extremely common in the coalfields of Nova Scotia down to the lower or gypsiferous coal-measures.
14. L. gracile?

Also a British species.
15. L. (new species.)

Not known in Europe or elsewhere; the specimen is in the Museum of the Geol. Society.
16. L. In the same fissured state as L. or natissimum, figured by Brongniart.
17. Lycopodites? selaginoides (Lepidodendron selaginoides Sternherg).
Common in the British and Bohemian coal-measures.
18. Lepidostrobus.

I met with no species myself in Nova Scotia, but Mr. Dawson has observed it associated as in Europe with Lepidodendron.
19. Sigillaria Saullii Brong. pl. 151.

A British species found at Manchester.
locaritize.

Bathurst, New Brunswick.

Horton and Windsor, Nova Scotia; Sydney, Cape Breton.

South Joggins, Nova Scotia; Cape Breton.
Cape Breton.

South Joggins, Nova Scotia.

Cape Breton.

Pictou, Nova Scotia.

Windsor, Nova Scotia;
Sydney, C. B.

NAMES OF FOSSIL PLANTS.
20. S. allicd to S. Schlotthermii Brong. pl. 152, fig. 4.
21. S. scutellata Brong. pl. 163, fig. 3.
Also British.
Quare. Same as S. undulata of Sternberg, tab. 15.
22. Sigillaria reniformis Brong. pl. 142. Lindley \& H. pl. 57 and 71.
This British species I have obtained from Cape Breton in a decorticated state, and found it common, with its bark, at Frostburg in Marylend.
23. S. organum Lindley \& H. t. 70. Syriogodendron? Brong.
A British species.
24. Lyginodendron.

1 lound vario:s fluted stems without scars in the lower coal formation near Windsor, and elsewhere in Nova Scotia. Perhaps these fossils may be only lower portions of the stems of Sigillarix, in which the scars are obliterated by age and growth.
25. Stigmaria ficoides, and nt:merous varictics.
These seem to agree well with the different British Kinds, probably the roots of distinct species of Si gillaria.
26. Neuropteris cordata, Brongn. pl. 64, f. 5. Lindley and Hutton, 41.
Extremely common in the middle

LOCALITIES.
South Joggins, Nova Scotia.

South Joggins, Nova Scotia.

Sydney, Cape Breton.

Sydney, Cape Breton.

Nova Scctia, passim.

Dickson's Mill, Pictou, Nova Scotia, and Cape Breton.

NAMES OF FOSSIL PLANTS. \quad LOCALITIES.
or productive coal-measures of Nova Scotia; also British.
27. N. angustifolia, Brongn. t. 61, Cape Breton. f. 3, 4.

Also British.
28. Neuropteris flexuosa Brongn. t. 65, f. 2.

The most abundant fern in the coal-measures of Nuva Scotia, the U. S., and Europe. Also British.
29. N. acutifolia ? allied to Odontopteris minor Brongn. t. 77.
30. Cyclopteris dilatata? Lindley and Hullon. See Neuropteris ingens, t. 91, A.
Quare, if variety of N . cordata. The only indication of a Cyclopteris which I have met with in Nova Scotia. I found the same species at Pomeroy, Ohio.
31. Pecopteris muricata Brongn. pl. $95 \& 97$.
Perfectly identical with common British specimens.
32. P. abbreviata Brongn. pl. 115.

Common British species.
33. P. arborescens Brongn. pl. 102. Also British.
34. P. lonchitica Brongn. pl. 84.

The most characteristic British species of Pecopteris in the coalmeasures.

Cape Breton.

Sydney, Cape Breton.

Sydney, Cape Breton.

South Joggins, and Dickson's Mill, Pictou ; also Bathurst, New Brunswick.

Cape Breton. Cape Breton.

South Joggins, Nova Scutia.

NAMEB OF TOgAIL PLANTS.
35. P. pteroides Brongn. pl. 99. f. 1. Also Britigh.
36. Pecopteris æqualis Brongn. Also British.
37. P.

A remarkable species, with anastomozing veins, resembling in this respect the P. Defrancii of Brongniart. Mr. Charles Bunbury observes respecting this species, that "its venation is completely reticulated, the midrib evanescent," and "it would form the type of a new genus, standing in the same relation to Lonchopteris as Neuropteris does to Pecopteris."
38. P. Sillimanni ?. Brongn. pl. 96, f. 5.
A single pinna, collected by Mr. Henwood.
39. P. villosa Brongn. pl. 104, f. 3. Also British.
40. P. Serlii Brongn. pl. 85. Also Britis'..
Calamite
The specimens of this genus scarcely afford satisfactory specific characters to the botanist, but all the Nova Scotia fossils agree with common European forms from the coal-measures.
41. C. cannæformis Schlot.
42. C. Suckowii Brongn.

LOC A LITIIPA.
Bathurst, New Brunswick.

Cape Breton.

Sydney, Cape Breton.

Bathurst, New Brunswick.

Dickson's Mill, Nova Scotia.

Sydney, Cape Breton.

South Joggins, Nova Scotia, and Cape Breton.
South Joggins, Nova Scotia.

Chap. xxiv. nova scotia and	breton. 171
names of fossil plants.	localities.
43. C. approximatus Artis.	Cape Breton. Nova Scotia.
44. C. arenaccus? Jager.	Nova Scotia.
45. C. Steinhaucri Brongn.	South Joggins, Nova Scotia.
46. C. dubius Brongn.	Sydney, Cape Breton.
47. C. nodosus Schlot.	Pictou, and South Jog. gins, Nova Scotia.
48. C. Cistii Brongn. Also British.	Sydney, Cape Breton.

CHAPTER XXV.

Lower Carboniferous or Gypsiferous Formation of Sova Scotia. -Why formerly considered as newer than the productive C'oal.-Determination of its true Age.-Sections near Windsor. -Supposed Reptilian Footstcps.-Scction on the Shubena-cadie.-Large Masses of Gypsum.-Their Origin.-Volcanic Action contemporaneous with Niva Scotia Coal Measures.Limestone with Marine Shells - Table of Organic Remains of the Carbonverous Limestone of Nova Scotia and Island of Cape Breton.

Tue productive coal-measures near Minudie, de. scribed in the last chapter, may be regarded as the m'ddle of the carboniferous series of Nova Scotia; while the strata above th m , including the beds with Modiola, h, i (fig. 19, p. 151), and the sandstones and shales farther to the south, in the same reg'on, together with a corresponding series near Pictou, and the lower sandstone of Prince Edwards Istind, ascertained by Mr. Dawson to contain coal-plants, may be all classed as the Upper Carboniterous divis on. in which no seams of coal have yet been found. Lastly, we may regard an enormous mass of red and brown sandstones and red marls, the lower portions of which include beds of gypsum, and limestones charged with marine shells and corals, as the Lower Carboniferous or gypsiferous series. In this division grits and shales, with some true coal p'ants and some thin seams of impure coal are occasionally met w.th.

Before my visit to Nova Scotia, the group last mentioned had been considered, chiefly, I believe,
from its resemblance to the gypsiferous red marls above the coal in Europe, as the uppermost formattion in Nova Scotia. Mr. Logan, in his first brief excursion in 1841 to the Windsor district, where the beds are greatly disturbed, had little more than time to collect some of the most abundant fossls; and these, when submitted to several able palæont logists (to M. de Verneuil among others), were thought to confirm the opinion previously entertained, that the strata were newer than the coal. That geologists should at first have arrived at this result will surprise no one who is aware how many of the fossils of ous Magnesian limestone and coal resemble each other, or who studics the list given at p. 218 , in which several species both of shells and corals from Nova Scotia, identical or elosely allied to well-known Permian or Magnesian linestone forms, are enumerated. By these consideratons my fricud Mr. Murchison was induced, in his Anniversary Address to the Geological Society of Lendon, in 1843, th pronounce the gypsferous rocks of Nova Scotia as the equivalents in age of the Permian group of Russia. My first inspection of the conntry uear Wadsor, f Ilw wed by an examination of the elffs near Mandie, described in the last Chapter, led me to in opposite view, strengthened by discussions with Mr. Richard Brown of Sydney. and Mr. J. W. Dawson of Pictou, with whom I explored the cliffs of the East River, south of the Alb on Mines, near lictou I then extamed with care, in compeny with Messrs. Dawson and Duncan, the fine section laid open in the el ffs of the Shubenacadie, a river which intersects Nova Scotia from south to north, cutting through the gypsiferous strata for a 16*
distance of twenty miles. Lastly, I had an opportunity of studying at my leisure in London the fussils collected from various localities, and I had then no longer any hesitation in aunouncing to the Geological Society my conviction, that the gypsiferous strata were older than the productive coal-measures, whether of the South Joggins or of Pictou. I also stated at the sume time my opinion that I considered them as constituting a lower member of the Carboniferous group, containing fossil plants of the coal, with shells and corals of the carboniferous limestone.

Mr. Richard Brown, after our meeting at the Albion Mines in 1842, kindly undertook, at my request, te make a re-examination of part of Cape Breton, and the result was published in a letter, dated October 20, 1843, addressed to me,* in which this experienced obscrver declared that he had been able "to confirm my views as to the relative age of the coal and gypsum," and that the gypsiferous strata of Cape Breton, agrecing in character with those of Nova Scotia, were inferior in position to the productive coal-measures of Sydney. Mr. Dawson also, soon after my visit, published several memoirs on the neighbourhovd of Pictou and the northern parts of Nova Scotia, in which he adopted and extended the same views. Mr. Logan, after seeing my fossils and sections, and examining in 1844 the cliffis near Minudie, and at the South Joggins, which he had not seen on his first visit to Nova Scotia, communicated to me his op:nion that the gypsum and accompanying marine limestones (in which he found several of the characteristic fossils of

[^20]Windsor), and the red sandstones near Minudie, were older than the productive coal-measures. Dr. Gesner, however, has not abandoned the op:nion at which he had previously arrived on this point, having recently, in a letter addressed to the President of the Geological Society, and read May, 1845, declared his belief that the true order of superposition is not as I have represented it, and that other geologists have been mislod by me.

As this question affects the geological structure of a large portion of Nova Scotia, I shall give a brief outline of the data which favour the classification I have proposed. In the first place, I found everywhere that the gypsiferous formations were much more disturbed than those strata which I have called the Middle and Upper coal-measures, and that their outcrop was always nearer to the region occupied by the older rocks, whether Silurian or Metamorphic. Thus, for example, if we pass from the granitic mountains and older slates of the Cobequid Hills to the coal of the South Joggins, we find the gypsum and limestone nearest the Hills: or, if we descend the East River, we pass from the Silurian strata, cross the region in which limestones and gypsums occur, and then come to the coal-measures of the Albion Mines. Mr. Richard Brown has shown, in the Memoir above cited, that the same arrangement holds good in Cape Breton. Secondly, the regular dip of all the beds seen near Minudic (see section above, p. 151) would carry the strata to which the limestone and gypsum are subordinate under the workable coal of the South Joggins. Thirdly, geologists before and since my visit, who have carefully examined the East

River, south of Pictou, including Mr. Logan, are agreed that the sandstones and marine limestomes, some of them having an oolitic structure, occurring to the south of the Albion Mines, are older than the coal of those mines. Now I found that most of the fossils of those limestones agreed with shells and corals obtained by me in the limestones near Windsor, or in those of the Shubenacadic, accompanying the principal masses of gypsum. Fourthly, both in the Windsor district. and on the Shubenacadie, I found an intimate association between strata containing mountain limestone fossils, masses of gypsum, and coal grits, with Sigillaria and Lepidodendron, but no seams of pure coal in this part of the series. Fifthly, I observed that, in the Pictou region, as well as at the South Joggins, the strata which I class with Mr. Dawson as the Upper coal-measures, although several thousand feet thick, and respecting the position of which above the productive coal there is no question, contain no marine limestones, or great masses of gypsum. Sixthly, there is a formation of unconformable red sandstone without fossils, which appears on the Salmon River six miles above Truro, lying on the edges of the inclined Carboniferous strata. In this series of beds no limestone with marine shells or gypsum have been discovered.

In illustration of the first of these points, namely, that the gypsiferous rocks occur nearest to the older formations, I may cite, in addition to the Minudic and East River sections already adverted to, the structure of the first country which I observed near Windsor. I saw, for example, the gypsum near the Halifax Road almost in contact with the old slates of the Ardoise

Hills, and afterwards traced the gypsilicrous beds of the Saint Croix River up to their junction with the older slates. I ilso found, in going southwards from Windsor to a small tributary of the Avon, on which is situated Suides Mill, that the gypsiferons series incloses, before its junction with the older rocks, coarse sandstones with a seam of impure coal two inches thick, also clay-iron-stone, and shales with Lepidodendron elegans, but no strata resembling the pro ductive coal-measures.

I consider the inclined and bent rocks near the town of Windsor, consisting of soft red, yellow, and purple marls, with confi mable beds of limestone and gypsum, as higher in the series than the coal-grits above mentioned. In some of these limestones of Windsor, one of which having an oolitic texture occurs near the bridge, and another on the farm of Belvidere on the Avon, the following fossils occur, Terebratula suflata, 'T. elongata, two other species of Terebratula, Producta Martini, P. Lyelli (De Verneuil) Pecten plicatus, Avicula, Modiola, allicd to M. Pallasi, Cirrus spiralis, Euomphalus lacis, Nutica, Fenestella membranaceu, and Ceriopora spongites, almost all of which I afterwards found on the Shubenacadie, and some of them on the Debert River near Truro, associated with gypsum, also in strata on the East River, decidedly lower than the productive coalmeasures.

I consider the highly-inclined and curved strata of Horton Bluff, near Windsor, as affording another fine section of the Lower Carbonifcrous series associated with the gypsum. In the cliffs here I found Lepidodendra, and other coal plants, and scales of fish of the
genera Holnptichius and Paleoniscus, both of them common to the Engl.sh coal-measures. Mr. Logan detected in the same strata masses of concretionary limestone, which I had overlooked, and which are interesting, as they contain the Terebratula elongata, Acicula, and other marine fossils identical with those of Windsor. He also found, in one of the ripplemarked slabs of Horton what appear to be the im. pressions of the lootsteps of an animal, perhaps a Reptilian, having five claws. There are two of these tracks, and they resemble considerably some footprints in the New Red sandstone of England, but, as they are on a stratum containing fucoids, and are not very sharp in their outline, like tracks formed above water, and as there is no series of them, Mr. Owen does not feel himself ent tled to decide positively on their reptilian character.* Mr. Dawson has also fuund impressions resembling trifid footsteps in several parts of the carboniferous series of Nova Scotia, in ripple-marked sandstones, so sharp as to imply that they were not made above water ; but I have not yet been able to decide that any of them belong to vertebrate animals.

The gypsiferous strata are best disclosed in the cliffs which bound the estuary of the Shubelacadie, for a distance of about 14 miles from north to south, or between Fort Ellis and the mouth of the river, where they are several thousand feet in thickness.

[^21]The rapid tides of the Bay of Fundy continually undermine and sweep away the fallen detritus at the base of these elifts, otherwise the section would soon be obscured, so rapid is the disintegration of the soft red marls, with which the gypsum and fossiliferous limestones are interstratified. The general strike of the beds on the Shubenacadie, as at Windsor, is nearly east and west, the strata seeming to have been first folded into numerous parallel wrinkles, running east and west, aud then part of these folds tilted at considerable angles, sometimes towards the east, and sometimes to the west, while the rocks were fissured in the direction of their strike, and shifted vertically. By such complicated movements the strata have been thrown into the greatest confusion. At the Big Rock, a mass of gypsum or alabaster of a pure white colour and no less than 300 yards thick, is exposed and forms a conspicuous object in the vertical cliff, and has been followed continuously east and west for 12 miles through the country. Below it are alternations of anhydrous gypsum with yellow shale and bituminous limestone. Among the dislocated strata which alternate with the gyps:ferous series, are three masses consisting of coal-grit, shale with lepidodendra, and red sandstone, which I refer to the same formation. In five cases where Mr. Dawson and I traced the junction of these sandstones with the gypsiferous beds, visible only at low water, we found a line of fault at the point of contact, and one wall of the fault was in every case formed of gypsum : yet I do not believe that the gypsum has filled rents, for it has all the appearance of having been an original and intregral part of the stratitied series, formed

IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences Corporation

contemporaneously with the beds of red marl and marine limestone. If we endeavour to account for the origin of the gypsum by the subsequent conversion of carbonate into sulphate of lime, we encounter this difficulty, that beds of limestone full of fossils are intimately associated with the gypsum, and yet have undergone no alteration. I saw nowhere any passage from the one to the other even at points where the gypsum and limestone alternate. On the other hand, there are abundant proofs in various parts of Nova Scotia of the intrusion of trappean rocks of contemporaneous origin with the lower carbonifcrous strata, so that I have little doubt that the production of gypsum in the carboniferous sea was intimately connected with volcanic action, whether in the form of heated vapours (or stufas), or of hot mincral springs, or any other kind of agency accompanying submarine igneous eruptions. To the influence of these latter I also ascribe the remarkable mineralogical difference between the inferior carboniferous rocks of Nova Scotia and those of the coal-ficlds of the United States, which are free from trappean rocks.

The gypsum of Nova Scotia when burnt is used for manure, and is shipped in great quantities for the United States. There are many indications of metalliferous ores in the rocks of the Shubenacadic, and the neighbouring districts, and among other places, I observed near the mouth of the river and on its left bank, a limestone called the Black Rock, containing disseminated crystals of galena with one of magnesia, copper, lead and cobalt.

The limestones containing marine shells on the Shubenacadie coccur, 1st, at a place north of Rose's

Point, about $7 \frac{1}{2}$ miles above the mouth of the river ; 2dly, at the point called Anthony's Nose, nearly opposite, in both places near beds of g!psum ; 3dly, at Admiral's rock, four miles higher up the river, on its left or western bank. One dark bed in the latter locality is made up entirely of the broken stems of a small species of encrinus. Some layers at Anthony's Nose are almost exclusively composed of a small coral, Ceriopora spongites, Goldf., while in other beds Productæ are very abundant. The greater number of species are common to the different limestones of the Shubenacadie, the district round Windsor and that of Brookfield, a locality eight or nine milcs to the east of Anthony's Nose, and probably in the strike of that fossiliferous rock. For a sct of fossils from the place last mentioned, enumerated in the list at page 183, I was indebted to Mr. Duncan, of Truro. The limestone of Gay's River, having many shells in common.with the above-mentioned rocks, occurs near the outcrop of the gypsiferous formation, eight miles south of Fort Ellis, where the Shubenacadie section above alluded to terminates, and near which older formations make their appearance.

In addition to the places above-mentioned, I also discovered during my tour with Mr. Dawson, to whose active operations I was much indebted, a scries of strata below the bridge on the Debert River, thirteen miles east of Truro, consisting of highly-inclined beds of red limestone and black slaty limestone, red sandstone, and red marl, in which a large number of the Windsor shells occarred, together with some small bivaives, and a fragment of a Limulus, or a genus intermediate between Limulus and Trilobite vol. II.
rescmbling that of the coal-measures of Colebrook Dile, figured by Mr. Prestwich. We also saw beds s.milar to the above in the district of Onslow, about twelve miles N. E. of the Debert River bridge, where there is also a black slaty limestone, with similar small b.valve shells in it.

The annexed Table will show in one view the fossils of the various lucalities of the gypsifurous limestone of Nova Scotia, together with a few others from Cape Breton, decidedly of the same formation, wh.ch I received from Mr. Richard Brown and Mr James Dawson. Mention is made in the Table of the geological postion, when known, of the same species in other countries. I am indebted to M. de Verneuil for the determination of the greater part of the shells. On considering this Table we shall not hesitate to pronounce the gypsiferous formation of Nova Scotia to be a member of the carboniferous group, instead of the triassic or magnes.an limestone formation, to both of which it had been severally conjcctured to belong. The presence of the genera Orthoceras, represented by two species, the Nautilus and Conularia, the Limulus or Trilobite, and the Cyathophyllum are opposed to the opinion that the beds are newer than the coal. ' The following species are either identical or scarcely distinguishable from well known mountain limestone fossils; Inomphalus lævis, Pileopsis vetustus, Pecten plicatus, Isocardia unioniformis, Phil. Producta Martini, P. Scotica? The Ceriopora spongites also occurs in the mountain limestone in Ireland; and the coral which has been compared to Retepora flustracea of the magnesian limestone is not the same, but more
nearly allied to, if not identical with Fenestella nembranacea of the mountain limestone, according to Mr. E. Forbes. The abundance of this coral and three shells, namely, Terebratula elongata, Modiola allied to M. Pallasi, and Avicula antiqua, brougl.t by Mr. Logan from Windsor, first led to the presumption that the gypsiferous beds were newer than coal; but M. de Verncuil now informs me that T. elongata has also been found in the mountain limestene of Yorkshire. The other genera mentioned in tlie Table accord well with the Carboniferous fuana, a rosult which we might expect from the association before mentioned of the Gypsiferots marine Limestone with sandstone and shales, containing L، pidodendron elegans. It will be seen that the agrement of species from various and often distant localitics is quite as great as could have been expect d, whif n we consider the small number of the fussils hitherto obtained.

LIST OF FOSSILS OF THE LOWER CARBONIFEROUS OR GYPSIFELIOUS FORMATION OF NOVA SCOTIA AND CAPE BRETON.

NAMES OF FOSSILS.

1. Trilobite or Limulus.
2. Cypris or Cytherina.
3. C —. Second species.
4. Nautilus.

Allied to N. Leplayi, Demidoff,

LOCALITIES.
Debert River, near Truro.

South Joggins and Pictou, Nuva Scotia.

South Joggins.

Brookfield, Nuva Scotia.
name of rossils.
and to N. bidorsatus., Fischer.
(Oryctol. of Warsaw.) A fossil
of the Mountain Limestone of
Europe.
5. Cyrtoceras.

A genus not known above the coal.
6. Orthoceras.

Analogous to O. Gesneri, Martin, with longitudinal stria, and with the syphon between the centre and the border.
7. O

Second species. Larger and different, but specimens imperfect.
8. Conularia.

New species, distinct from C. quadrisculate, by size, distance of striæ, and other characters.
9. Littorina?

Analogous to a Permian species.
10. Cirrus spiralis (or C. rotundatus?)
11. Enomphalus lævis.
Λ fossil also of the Devonian and Carboniferous formations of the Eiffel.
12. Natica.

New species, like N. plicistria, but smaller; found also by De Verneuil in the Permian rocks of Russia.
13. Cypricardia.

New species, (aff. C. transversa) fnasil in the mountain limestone of Belgium.

LOCALItIES.

Windsor, Nova Scotia,

Brookfield.

Windsor.

Brookfield. and Gut of Canso, Cape Breton.

Gay's River.

Windsor.

Windsor.

Windsur and Gay's River, Nova Scotia.

Windsor.

Chap. xxy. mountain limestone, nova scotia. :85

NAME OF FOSSILS.
14. Isocardia unioniformis Phil.

A shell of the carboniferous limestone.
15. Cardiomorpha Archiacana.

Found in the coal of Belgium.
16. Bivalve.

Numerous impressions, genus not determinable, common to several localities.
17. Cucullæa.

New species (aff. C. obtusa Phil.)
18. Modiola (afi: M. Pallasi).

Like one in Permian formation of Russia.
19. M. A second species.
20. Avicula antiqua Munst.

In Zechstein of Europe.
21. $\mathrm{A}-$.

New species allied to the preceding, but more gibbous.
22. A

With forty-five narrow ribs.
23. A \qquad
$24 \& 25$. A.
Two other species.
26. Pecten plicatus.

Or very analogous.
27. P \qquad (or Avicul.).
Smooth.
28. $P \underset{\text { New species. }}{ }$

LOCALITIES.
Brookfield.

Windsor.

Debert River and Onslow District, Nova Scotia.

Windsor.

Windser, Brookfield, and Gay's River.

Gay's River.
The Shubenacadie and Gay's River.

Gay's River.

Debert River.

Debert River.
Windsor.
Windsor, Brookfield, and Shubenacadie.

Debert Ricer.

Brookfield.

NAME OF FOSSILS.
29. \mathbf{P} \qquad
New species, allied to P. granosus, found in the carboniferons Jimestone.
30. Terebratula elongata Schlot.

Occurs in the Zechatein in Enrope, and in the mountain limestone of Yorkshire.
31. T. suffata.
fucre. Gibbors variety of preceding, De Verneuil.
32. T \qquad
Small, like T. diodonta with sinus.
33. T

With one fold in the sinus.
34. T

New Species.
35. Terebratula.

New species, with sinus reaching very nearly to the beak, very like one described by Von Buch, as T. canidea.
36. Spirifer glaber.

Fossil of mountain limestone and Zechstein of Europe.

> 37. S. cristatus ?
> Fossil of English magnesian imestone.
38. S. Minimus Sow.

Or new species? A fossil of the Permian of Russia.
39. S. octoplicatus. Silurian of Europe?
localities.
Shubenacadic.

Windsor, Brookfield, Shubenacadie, Gay's River, Debert River, and Cape Breton.
Windsor, Brookfield, Shubenacadie, and Debert River.

Debert River.

Windsor and Shubenacadie.

Windsor.

Brookficld.

East River of Pictou, and Cape Breton.

Windsor.

Windsor, Brookfield, Shubenacadie, and Debert River.

Windsor.

Char. xxv. MOUN'TAIN LIMESTONE, NOVA SCOTIA. 187

NAMES OF FOSSILS.
40. Producta Martini.

A fossil of the mountain limestone of Europe.
41. P. concinna, Sow.

Or allied Species ; carboniferous limestone of Europe.
42. P. Lyelli, De Verneuil.

Shell with fine strix, and with long and slender tubes, the most characteristic fossil of the lower carboniferons for.nation.
43. Producta Scotica.

Smaller than European, if identical ; carboniferous limestone, Europe.
44. P. Spinosa Sow.

Qucre. Var. of P. Martini. Carboniferous limestone, Eırope.
45. P. antiquata de Koninck.

Coal-measures, Europe.
46. Encrinus.
47. Fenestella membranacea? (Retepora membranacea, Phil.)
Carboniferous limestone, Europe.
48. Ceriopa spongites, Goldfuss. (pl. 64.)
Eiffel, Silurian, and mountain limestone, Ireland.
49. Favosites ramosa?
50. Cyathephyllum.

LOCALITIES.
Windsor, Brookfield, Shubenacade, East River of Pictou, and Cape Breton.
Cape Breton.

Windsor,Horton Bluff, Shubenacadie, Gay's River, Debert River, Minudie, and Cape Breton.

Windsor, Brookfield, Shubenacadie, East River of Pictou, and Cape Breton.
Cape Breton.

Brookfield.

Shubenacadie, and East River, Pictou. Windsor, Brookfield, the Shubenacadie, and East River, Pictou.

Windsor and Brookfield.

Shubenacadie.
Cape Breton.

CHAPTER XXVI.

Progress and Resources of Nova Scotia.-Highland Settlers.-
Timber Duties - Cobequid Hills.-Confagration of Forests.-
Allion Mines.-Humming Birds.-Estuary of the Shuben-
acndie.-Stakes cut by Bcavers.-Promotion of Science.-
Social Equality.-Nova Scotians "going home."-Return to
England.
Tile day after my arrival in Nova Scotia, a fellowpassenger in the coach from Halifax to Windsor, a native of the country, and who, from small beginnings, had acquired a large fortune, bore testimony to the rapid strides which the province had made, with n his recollection, by deploring the universal increase of luxury. He spoke of the superior simplicity of manners in his younger days, when the wives and daughters of farmers were accustomed to ride to church, each on horseback behind their husbands and fathers, whereas now they were not content unless they could ride there in their own carriage.

In spite of the large extent of barren and siliceous soil in the south, and, what is a more serious evil, those seven or eight months of frost and snow which crowd the labours of the agriculturist into so brief a seas n, the resources of this province are extremely great. They have magn:ficent harbours and fine navigable estuaries, large areas of the richest soil gained from the set, vast supplies of coal and gypsum, and abundance of timber.

Not a few of the most intelligent and thriving inhabitants are descended from loyalists, who fled from the United States at the time of the declaration of independence. The picture they drew of the stat.onary condition, want of cleanly habits, and ignorance of some of the Highland settlers, in parts of Nova Scotia and Cape Breton, was discouraging, and ofien so highly coloured as to be very amusing. They were described to me as cropping the newly cleared ground year after year wihout manuring it, till the dung of their horses and cattle accumulated round their doors, and became, even to them, an intolerable nuisance. They accordingly pulled down their log-cabins and removed them to a distance, till several of their more knowing neighbours off red to cart away the dung for a small remuncration. After a time, when the Highlanders perceived the use to which the manure was put, they required those who removed it to execute the task gratuitously ; and my informants thought that the idea might possbly occur to some of the next generation of applying the material to their own ficlds.

I heard frequent discussions on the present state of the timber duties both here and in Canada, and great was my surprise to find the majority of the small proprietors, or that class in whose prosperity and success the strength of a new colony consists, regretting that the mother country had legislated so much in their favour. They said that a few large capitalists and shipowners amassed considerable fortunes (some of them, however. lesing them again by over-speculation), and that the political influence of a few such merchants was naturally greater than that of
a host of small farmers, who could never so cffectively plead their cause to the Government. But, on the other hand, the labourers engaged during the severe winter, at high pay, to fell and transport the timber to the coast, became invariably a drunken and improvident set. Another serious mischief accrued to the colony from this traffic: as olten as the new settlers reached the tracts from which the wood had been removed, they found, instead of a cleared region. ready for cultivation, a dense copsewood or vigorous undergrowth of young trecs, far more expensive to deal with than the original forest, and, what was worse, all the best kinds of timber, fit for farm buildings and other uses, had been taken away, having been carefully selected for exportation to Great Britain. So that, while the English are submitting to pay an enhanced price for timber inferior in quality to that of Norway, the majority of the colonists, for whom the sacrifices are made, feel no gratitude for the boon. On the contrary, they complain of a monopoly that enriches a few timber merchants, at the expense of the more regular and steady progress of agriculture.

After my visit to the district of Windsor, Cape Blomidon, and Minudic, I went by Amherst to the Cobequid Hills, the nucleus of which consists of granite. Their outline, though rounded and not picturesque, formed a striking contrast to that of the low, long, flat-topped and uniform ridges, with straight intervening valleys, into which the Cumberland coalfield near Minudie is divided. On the highest part of the Cobequid Hills, we crossed a fine wild forest covering the granite, and then, on the southern flanks of those hills, I observed clay-slate cut through by
trap dikes. We then went by Londonderry to Truro at the head of the Bay of Fundy, and fiom thence took places for Pictou in an open four-wheeled vehicle, here termed a wagon, which carried the mail. The road was cut through an endless forest of fir-wood, parts of which had lately suffered much by conflagrations. These fires often spread for leagues in the summer season, and cause great devastation. The more resinous species of fir, when they have been heated by the burning of the surrounding timber, blaze up suddenly when the fire at last reaches them, and are enveloped from top to bottom in brilliant flames, presenting in the night a most splendid spectacle.

I had arranged with Captain Bayfield, whom I had not seen for many years, that we should meet at Pictou, and the day after my arrival there, his surveying ship, the Gulnare, sailed into the harbour. I spent a day on board that vessel, and we then visited together the Albion Mines, from whence coal is conveyed by a railway to the estuary of the East River, and there shipped. Mr. Richard Brown, whose able co-operation in my geological inquiries I have bcfore acknowledged, had come from Cape Breton to meet me, and with him and Mr. Dawson I examined the cliffs of the East River, accompanied by the superintendent of the Albion Mines, Mr. Poole, at whose house we were most kindly received. Here, during a week of intense heat, in the beginning of August (1842), I was frequently amused by watching the humming-birds, being able to approach unperceived, by aid of a Venetian blind, to within a few inches of them, while they were on the wing. They remained for many
seconds poised in the air, while sucking the flowers of several climbers trailed to the wall on the outside of the window, and in this position the head and body appeared motionless, brilliant with green and gold plumage, and the wings invisible, owing to the rapidity of their motion. The sound was somewhat like that of our humming hawk-moths or sphinges, but louder. When they darted away, they seemed to emit a flash of bright colour. Following them into the garden, I sometimes saw them perched upon the dry stakes on which peas were trained, and there plume themselves. It is wonderful to reflect on the migrating instinct which leads these minute creatures from the distant Gulf of Florida to a country buried constantiy under deep snow for seven or eight months in the year.

After leaving Pictou, I made an exper ${ }^{\prime}$ ition with Mr. Dawson to the Shubenacadie (see abor 3, p. 139), and at Truro we were joined by Mr. D ican, by whose advice we started at an early hour ea h morning in a boat, after the great tidal wave or ore had swept up the estuary, and were then ca ied ten, fifteen, or twenty miles with great rapidi t up the river, after which as the tide cbbed, we c. ne down at our leisure, landing quietly wherever we pleased, at various points where the perpendicular cliffs offered sections on the right or left bank.

On one occasion, when 1 was seated on the trunk of a fallen tree, on a steep sloping beach about ten feet above the level of the river, I was warned by my companion that, before I had finished my sketch, the tide might float off me and the tree, and carry both down to the Basin of Mines. Being incredulous, I
looked at my watch, and observed that the water remained nearly stationary for the first three minutes, and then, in the next ten, rose about threc feet, after which it gained very steadily but more slowly, til! I was obl ged to decamp. A stranger, when he is looking for shells on the beach at low tide, after the hot sun has nearly dried up the sandy mud, may well be surprised if told that in six hours there will be a perpendicular column of salt water sixty feet high over the spot on which he stands.

The proprietor of one of the large quarries of gypsum on the Shubenacadie showed me some wooden stakes, dug up a few days befure by one of his labourers from a considerable depth in a peat bog. His men were persuaded that they were artificially cut by a tool, and were the relics of aboriginal Indians; but having been a trapper of beavers in his younger days, he knew well that they owed their shape to the teeth of these creatures. We meet with the skulls and bones of beavers in the fens of Cambridgeshire, and elsewhere in England. May not some of the old tales of artificially cut wood occurring at great depths in peat and morasses, which have puzzled many a learned antiquary, admit of the like explanation?

I never travelled in any country where my scientific pursuits seemed to be better understood, or were more zealously forwarded, than in Nova Scotia, although I went there almost without letters of introduction. At Truro, having occasion to go over a great deal of ground in different directions, on two successive days, I had employed two pair of horses, one in the morning, and the other in the afternoon. The vol. .I.
postmaster, an entire stranger to me, declined to receive payment for them, although I pressed him to do so, saying that he heard I was exploring the country at my own expense, and he wished to contribute his share towards scientific investigations undertaken for the public good.

We know, on the authority of the author of "Sam Slick," unless he has belied his countrymen, that some of the Blue Noses (so called from a kind of potato which thrives here) are not in the habit of setting a very high value, either on their own time or that of others. To this class, I presume, belonged the driver of a stage-coach, who conducted us from Pictou to Truro. Drawing in the reins of his four horses, he informed us that there were a great many wild raspberries by the road-side, quite ripe, and that he intended to get off and eat some of them, as there was time to spare, for he should still arrive in Truro by the appointed hour. It is needless to say that all turned out, as there was no alternative but to wait in the inside of a hot coach, or to pick fruit in the shade. Had the same adventure happened to a traveller in the United States, it might have furnished a good text to one inclined to descant on the inconvenient independence of manners which democratic institutions have a tendency to create. Doubtless, the political and social circumstances of all new colonies promote a degree of equality which influences the manners of the people. There is here no hereditary aristocracy -no proprietors who can let their lands to tenantsno dominant sect, with the privilcges enjoyed by a church establishment. The sects are too numerous, and too fairly balanced, to admit of the possibility of

Chaf. xxvi. nova scotians " going home."
such a policy; and the Baptists, who predominate greatly in number and position in society, are opposed on principle to all ecclesiastical endowments by the State. The influence of birth and family is scarcely felt, and the resemblance of the political and social state of things to that in the United States is striking.

The longer, indeed, that I remained here, the larger were the deductions I found it necessary to make from those peculiarities that I had imagined, during my sojourn in the United States, to be the genuine fruits of a republican as contrasted with a monarchical constitution,-of an American as distinguishod from a British supremacy. They who lament the increased power recently acquired by the democracy in the United States, ascribe to it, and I believe not without reason, the frequent neglect of men of the greatest talent and moral worth, and the power which it gives to envy, concealing itself under the cloak of a love of equality, to exclude such citizens from the most important places of trust and honour. In our American colonies, on the other hand, we hear complaints that very similar effects result from the habitual disregard of the claims of native mer:t, all posts of high rank and profit being awarded to forsigners, who have not their hearts in a country where they are but temporary sojourners. The late revolution in our colonial system, obliging the responsible executive to command a majority in the colonial parliaments, must, it is to be hoped, remove this cause of dissatisfaction.

It is no small object of ambition for a Nova Scotian to "go home," which means to "leave home,
and see England." However much his curiosity may be gratified by the tour, his vanty, as I learn from several confessions made to me, is often put to a severe trial. It is mortifying to be asked in what part of the world Nova Scotia is situated-to be complimented on "speaking good English, although an Amcrican"-to be asked "what excuse can possibly be made for repudiation"-to be forced to explain to one fellow countryman after another "that Nova Scotia is not one of the United States; but a British province." All this, too, after having prayed loyally every Sunday for Queen Victoria and the Prince of Wales-after having been so ready to go to war about the Canadian borderers, the New York sympathisers, the detention of Macleod and any other feud!

Nations know nothing of one another-most true -but unfortunately in this particular case the ignorance is all on one side, for almost every native of Nova Scotia knows and thinks a great deal about England. It may, however, console the Nova Scotian to reflect, that there are districts in the British isles, far more populous than all his native peninsula, which the majority of the English people have never heard of, and respecting which, if they were named, few could say whether they spoke Gaelic, Welsh, or Irish, or what form of religion the greater part of them professed.

August 18.-We left Halifax in the steamship Columbia, and in nine days and sixteen hours were at the pier at Liverpool. This was the ninetieth voyage of these Halifax steamers across the Atlantic, without any loss, and only one case of detention by
putting back for repairs. As we flew along in the railway carriage between Liverpool and London, my eyc, so long accustomed to the American landscape, was struck with the dressy and garden-like appearance of all the fields, the absence of weeds, and the neatness of the trim hedgerows. We passed only one unoccupied piece of ground, and it was covered with heath, then in full blossom, a plant which we nad not seen from the time we crossed the Atlantic. Eight hours conveyed us from sea to sea, from the estuary of the Mersey to that stream which Popa has styled "the Father of the British Floods." Whatever new standard for measuring the comparative s:ze of rivers I had acquired in my late wanderings, I certainly never beheld "the swelling waters and alternate tides" of Father Thames with greater admiration than after this long absence, or was ever more delighted to find myself once more in the midst of the flourishing settlement which has grown up upon his banks.

[^0]: - Trans of Amer. Geol. 1840, p. 446.
 \dagger See also Description of Maps.

[^1]: * Trans. of Amer. Geologists and Naturalists, p. 232.
 \dagger Trans. of Hist. and Phil. Soc. of Ohio, vol. i., 1839.

[^2]: * Philadelphia, 1844

[^3]: * Conquest of Mexico, vol. i., p. 111.

[^4]: *See Journ. of Geol. Soc. London, vol. i., p. 207. vol. II.

[^5]: * Journ. of Acad. Nat. Sci., Philadelphia, 1842, vol. viii. part 2, p. 233.

[^6]: * Hall's Report, p. 276.

[^7]: * Darwin's Journal, p. 156; Sir W. Parish's B'ienos Ayres, pp. 151 and 371.

[^8]: * Democracy in America, vol. ii., ch. x., sect. 4.

[^9]: * J. L. Hayes, Boston Journ. Nat. Hist., 1844.

[^10]: * New York State Report, 1338, p. 130.
 ' Jururnal of Two Expeditions, \&ec., vol. i., p. 369.

[^11]: * Journal of Two Expeditions, \&c., vol. i., p 369.
 \dagger See Trans. Roy. Soc. Edinb., vol. xv., p. 484, Jan. 1842. My paper, citing analogous cases, in explanation of similar geological phenomenon, was read at the same time to the Geological Society of London, without our having communicated together on the sub. ject. See Abstract in Proceedings Geol. Soc., No. 92, p. 21, Jan 4, 1843.

[^12]: vol. II.

[^13]: - See my paper on this subject, Geological Trans. vol. vi., Second Series. p. 135, read 1839.

[^14]: A testâ subovali, sublongitudinali, tenuiusculâ, gibbosulâ, extûs concentricè confertirs sulcatâ; dente laterali utriusque valva prominentiori.

[^15]: * See Emmons's Report on the Geology of New York, p. 218

[^16]: * On the Mineralory and Geolo:y of Nova Scotia. Mem. of Amer. Acad. of Arts and Sci., vul. i., New Series, 1833. Cambridge, Mass.

[^17]: * See Proceedings of Geol. Soc., vol. iv., p. 184. 1843. 14*

[^18]: *London, 1830-40; vol. iii., pp. 139, 270

[^19]: - See Elements of Geol., vol. ii , p. 137.

[^20]: * See " Quarterly Journal of the Geological Society of London," No. I., p. 23.

[^21]: * Dr. A. King has lately published an account in the Proceedings of the Academy of Natural Science of Philadelphia, Nov., 1844, of footsteps, referable, some of them to birds, others to batrachian reptiles, from the true carboniferous strata of Westmoreland county, Pennsylvania.-Silliman's Journal, vol. xlviii, p. 3431845

