The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point d Jue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées
Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on he: 'er taken from:/
Le titre cie l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol. II.-No. 4.

```
JULY, 1874.
```

Price in Canada $\$ 2.00$ per An United States - \$2.80 "

PBINOIPLES OF SHOP MANIPULATION FOR ENGINEERING APPRENTICES.*

By Joun Miohards, M.E.

(Continued from page 74, vol 2.)

MOTiVE MAOHNERY.
Water wheels, next to steam engines, are the most common motive agents. For conturies water wheols remained withuut much improvement or ohange, down to the period of turbine water whecls, when it was discovered that instead of being a vory simple matter, the application of water power really involved some very intricate conditions, and this gave rigy to many problems of srientifio interost, that in the end produced the modern turbine wheels.

A modern turbine water wheel, of the best construction, operating under favorable conditions, gives a percentage of the power of the water that (taking into account the friction of che wheel itself) almost reaches the theoretical co-efficient due to gravity, and it may be assumed that there will in the future be but little improvement made in such water wheels except in the way of simplifying and cheapening their construction. In fact, there is no other class of machines that seems to have reached the same state of perfection as water wheels, nor any other class of machinery that is constructed with the samc uniformity of design and arrangement in different countries and by different makers.

Every one remembers the classification of water wheels met with in the older school-books on nataral philosophy, whire we are informed that there are three kinds of wheels-ss there were "three kinds of levers" - ismely, overshot, nadershot, and breast wheels, with a brief notice of Burker's mill, that ran apparently without any good reason for so doing.

Without finding fault with this plan of describiug water power, further than to say that a littlo explanation of the principles bs which power is derived from the water woald have been more useful, I will venture upon a different classification of water-wheels, that is more in accord with modern practice, and without reference to che special mechanism of the different wheels, except when uaavoidable.

Water-wheels can be divided into four general tgpes :

1. Gravity wheels, acting directly frow the weight of the water which is losded upon one side of a wheel revolving in a vertical plane, the weight resting upon the wheel until the water has reached the lowest poiat where it is discharged.

2 Impact wheols, driven by the force of spouting water that expends its percussive force againast the float tingentally to the course of rotation and at a right anglo to the face of the floats or vanes 4
3. Reaction wheels, that are "enclosed," as it is termed, and flled with water under pressure, this water being allowed to o-cape through tangental orifices, and the forco being derived from the unhalanced pressure within the wheel or from the reaction due to the weight of the water that is thrown off from the periphery.
4. Pressure wheels, acting in every respect upon the principle of a rotary steam engine, except so far as differences arise from operating with a non-Hlastic instead of an elasting flaid, the pressure of the water resting continually against the floats or abutment, without chance to escape except by the rotation of the wheel

To this classification might be sdded combination wheels, acting partly by the gravity and partly by the percassive force of the water; or acting partly by impact and partly by reaction, or by impact and pressure, which are common conditions of operation in water wheels.

The water wheel or water power, 28 a mechanical subject, is spparentiy quite disconnected with shop manipulation, but serves as a good example ior conveying general ideas of forco and motion, and, on these grounds, will warrant a more extended notice than the seeming connection with the general subject would othorwise call for.

In the remarks upon steam engines it was explained that power is derived from heat, and that the water and the cagine were both to be regarded as agents through which power was

[^0]applied, and, further, that all power is a product of heat. There id, perhaps, no problem in the whole range of mechanics more interesting than to trace the application of this principle to water wheols: ong that is not only Intoresting, b :i instructive, and may suggest to the miad of tho apprentioo a , uurse of in. vestigation that will apply to many other mattors connected with power and mechanics.
The poser derived from water by means of wheols is due to the gravity of the water in dusoending from a highor to a lower lovol; but the question arises, what has heat to do with this? If hoat is the source of power, and power a product of heat, there must be a connection someshere botween heat and the descent of the water.
Water in desceading from one lovel to another can give out no more power than was consumed in raising it to the higher level, and this power we will fand to bo huat.
Wdter is eraporated by the heat of the sun, oxpanded until it is lighter than the atmosphere, rises through the air, and by coudeasation falls in the form of rain over the earth's surface, then dr ins into the ocean through streame and rivers, to agaia resu ne its round by evaporation, giving out power in its des. cent that we tura to useful a counts by mesas of water whecls. Evaporation is continually going on; the rainfall is likewise quite constant, so that streams are maintained within a suchclent regularity to be available for operating machinery.
I'heanalogy between atsam powur and water power is, therefore, quite complote. Water i8, in both cases, the medium throuyh which power is obtained; evaporation is also tho le wing principle in both cases, the main difference being that i_{1} the case of steam power there is used a force arising directly from the expansion of water by eat, and in weter power a forco which is an indireot result of expansion by heat.
Reruruing to tho olassification of wator wheels, gravity or "overshot" wheels, as tioy are calle i, seam to be the most effective and capsble of utiliziug the whole effect due to the gravity of the water; but in practics this is not the case, and it is ouly under pecaliar conditions that wheels of this class are preferable to turbine wheele, and in no case will theg give out a greater per ceat of power than turoine wheols of the best cle: The rozsons for this will be apparent by examining the conditions of their opelation.
A gravity wheel must have a diameter equal to the fall of water, or, to use the techoical name, the hoight of the head The speed at the periphery cannot well exceed 16 ft . per second without losing effect due to the descending weight of th water. This produces a very slow axial speed, and a train of multiplying gearing becomes necessarg in ordor to reach the speed required in most operations where power is applied. Thas train of geariug, besides being liable to wear and accident, and costing usually a large amount as an investment, consumes a con-iderable share of the power by frictional reeistance, especially when the gearing cjnsists of tooth wheels.
Gravity wheels, from their large size and their necessarily exposed situaticn, are subject to be frozen up in cold climates, and, as the parts are liable to be first wot and thon dry, or warm an d cold by exposure to the air and the water alternately, the te adency to corrosion of iron, or decay if of wood, is much gi eater than in submerged wheels. Gravity wheels, to realise the fullest effect from the water, require s diameter so great that they must drag in the water at the lower or deliveriug side, and are especially affected by back water, to which all wheels are more or less liable, from the reflux of tides or by freshats. These are among the most notable of the disadvantages pertainiag to gravity wheels-disadvantages which have with other reasons, such as the inconvenience of manufacturing t'sem, first cost, and so on, driven such whee:s out of uss by the force of circumastances rather than by ictual tests or theoretical deductions.

Impact wheels, or those driven by the percues re force of water, including the class termed turbines, aro no *generally used for heads of all heights.
The theory of their action may be explained in the re "lowing propositions :
The spouting force of water is theoretically equal toits gra, ity.
The percussive force of pater can only be utilised to its full extent if its motion is altogether arrested ing the floats of the wheel.

The force of the water is greatest by its striking against planes at rightangles to its course.

Any force ropresented by the water rebounding from the
floats paralled to their face, or at any angle reverse to the motion of the wheel, is lost.

This rebounding action iecomes less as the columns of water projected upon tho wheel are increased in numbe" and diminished in sizo.
To mect the conditions of rotation in the wheel, and to facilitate the escape of the water witbout dragging, after it has expended its force upon the vanes, the reversed curves of the 117thine arrangement become necersary. Keeping these general principles in view, the apprentice will beable to understand in geueral the construction of impact wheels.

The modern turbine has been the subject of the most careful investigation by able engineers, and there is no lack of mathematical data to be referred to and studied after the general principles are understood. It is a subject of great complicity, if fulluwed to detail, atd, perhaps, less useful to a mechanical enpin-ct, who dues not intend to contine his practice to water whet la, than other subjects that may be studjed with moread. vantage. The subject of water wheels may be called an exbausted one, that can promise but little return for labour npent - fin it with a view to improvements; the efforts of the ablest hydraulic engencers have not added much to the percentage of useful effect realised by turbine wheels during fifteen years [ast, and their present performance is quite equal to anything that can be hoped for in future.

This matter is alluded to for the reason that in choosing ang particular branch for a special study, an apprentice should select such as are least perfect, and present the best chance for improvement, instead of such things as there is every reason to buticve have reached a reasonable state of perfection, and are in finture to remain substantially the same. The last statement of course applies only to a few branches in the engutering arts, and perbaps more fulls to water wheels than to any other
licaction acels are used only to a limited extent, and will soon, no doubt, become extinct as a class of water wheels. In spahing of the'm, I will select what is known as Barker's mill fur an example, because of the familiarity with which it is knuwn, although its construction is greatly at variance with modern reaction wheels. A query as to the principle of acthon in a Barker wheel, while it may be very clear in a scientific sennc, still remains a puzzle to the minds of many who are well ursed in mechanice, some contending that the porer is directly from pressure, others that it is from the dynamical effect due to rear tion. It is one of the problems so difficult to determine bs ordmary standards, that it serves for endless debate between thuse who hold to different views; and, considering the advantage that is derived from such controversies, perhaps, the most useful manner of disposing of the problem here is to slate the two sides as clearly as possible, and leave the reader to determine for himself which ho thinks right and which wrong.

Presuming the vertical shaft and the horizontal arms of a larher wheel to be filled with water under a head of 16 ft ., there would be a pressure of about 7 lb . upon each inch of surfare withn the cross arm exerting an equal force in every directhun By opening an orifice at the sides of these arms equal to 1 in of area, the pressure woula at that point be relieved by the escape of the water, and the internal pressure be unbalanced to that catent. In other words, opposite this orifice, and on the other s'des of the arm, there would be a force of 7 lb . that was not balanced, and would act as a propelling force in turning the wheel.
This is one theory of the principle upon which the Barker whet acts, that has been laid down in " Podges' Mensuration," and perhaps elsewhere, as an explanation. The opposing theoIf is that, dircct action and reaction being equal, ponderable matter discharged tangentally from the periphery of a wheel must creato a reactive force cqual to the direct force with which the weight is thrown off To state it more plainly, the spouting water that issues from the arm. of a Burker wheel mast react in the opposite courso in proportion to its weight.

The two propositions may be consistent with each other and even identical, but there still remains an apparent difference. Th latter seems a plausible (heory, and perhaps a correct one; but there are two facts in connection with the operation of reaction water wheols that seem to controvert the latter and favour the first theory, namely, that reaction wheels seldom uthlse more than 40 per cert. of useful effect from the water, aud that their speed may excecd the initial velocity of the water.

With this the subject is left as one for argument and investigation on the part of thore who choose to consider it.

Press're wheols, liku gravily wheels, would, upon theoretical inference, be expected to givea high per cent. of power, tho water resting with the whole of its weight again-t the vancs or abutments, and without chanco of escape excep; by turning the Wheel, would seem tomeet the true conditions of realising the whole force; and so it would, if such wheels had not to con. tend with cortain mechanical difficulties that render them im practicable in most cases.

A pressure whecl, like a steam engino, must include running contact between water-tight surfaces, and, like a rotary steam engine. runuin: contact between water-tight joints that move at degrees of speed that vary in the same joint, and when it is considered that the most careful workmanship nas never produced rotary engines that would surmount these difficulties in working atcam, it can hardly be oxpected thoy may be overcomo in using water, that is liable to be filled with grit and sedsment, and lacks the peculiar lubricating property of steam.
A rotary steam engine is in offect the same as a pressure water wheel, and the approntico in studying the first will fully understand the principles of botu by supposing steam to be substituted by water.
(To be continued.)

CIDER AND CIDER-VINEGAR.

To procure either cider or cider vinezar of the best quality, care and skill are requiredin the manufacture. Some too economical persons, thinking, that nothing should be wasted, are now engaged in gathering all tho wormy and defective apples that fall from the trees, and consigning them to the cider-press. As new cider this questionable liquid is sold to the unsuspecting consumer for fifty cents a gallon. It however bears no comparison with , ider that is carafully made from sound apples, and can not be made to produce a well-havoured vinegar It would be better economy to feed all such apples to the pigs, for the first requisite for good cider or vinegar is sound fruit. All bruised, wormy, or defective apples must be discarded, if perf ction is desired in the product. The next consideration is the mill and press, and the method of asing tieem. In districts where timber is plentiful, and the necessary mechanical skill can be had, an improvement upon the old-fashioned mill and press is probably the best machine that can be procured. It is mado wholly of wood, and no iron comes into contact with the crushed fruit. The timber should be sugar-maple or birch. These are free from the tannic acid, which renders oak objectionable, and stand wear and tear sufficiently well. The crushers are made of solid blocks, carefally seasoned under cover, so that they are free from cracks. They should be abont 18 inches in diameter, and about two feet long. They should be turned perfectly cylindrical in a lathe, and deep, broad grooves cut lengthwise in them, so that the teeth of each, which aro left projecting, fit accurately into the grooves of the opposite one. Four inches wide and three deep is a proper size for the grooves. This work should be done by a miliwright, or a carpenter used to doing mill-work, as it is a somewhat difficult job. Upon the perfection of the rollers or crushers, the yjeld of cider greatly depends, as tho apples mutt be reduced to a pulp, before all the juice can be pressed from them. The rollers are furnished with axles, also accurately turaed, and are fitted into a frame, which is shown in fig. 1. This frame consits of a strong bottom of plank, four inches thick, preferably of maple, closely jointed and matched together. This is raised about 22 inches from the ground, upon a stout frame, and is pinned fast to heavy posts, set a few inches in the ground, so as to be immoveable. A raised border is placed around .se bottom planks. A cross-frame is built across the centre of the bottom, into which the axles of the rollers are fitted, and to which they are secured by short blocks, pinned or bolted to the frame-work. The lower arles of the rollers fit into holes made in the bottom planks. The axle of one roller is lengtheced, and attached to a horizontal arm, to which the horse may be hitched. A hopper is built at the rear of the crushers, to receive the apples, and feed them to the crushers. Fig. I sufficiently explains all other details. The press is shown in fig. 2. It is an improvemont apon the old fashioned heavy press, which is made from the trink of a large treo, and frequently requires the trank of another large tree as a support for it,

Fin. 2.-Cidra Maxigu-Tur Preas.

Fig. 3.-Box.

Fig. 4.-Tie Ohrise.

Fig. 5.

and which is wolghted at tho end with a clumsy screm, a foot in diameter, and a ton of stoces in a hugo box. If any person supposed all this huge weight saved labor, ho was greatly mistakeo, because beforo a pound 'of pressure could be exertod upon the pamace, tho whole weight of beam, scrow, and stone, must be rajeed. In this ancient machine the weight, which causes the pressure, is raised, whilo in the one here illustrated the pressure is brought to bear directly. The immense weight of the old press is, thereforc, not only useless, but a hindiance. It is needicss to give any description of what is eo clearly shown in the cngraving, farther than to state that the material of the press fis similar to that of the mill, and that the screw may be of wood, preferably of beecb, but is better, and in most cases chicaper ol iron. The screw ahould be lubricated with hard tallow, ground up smoothly with black lead. As tho apples are ground, the pomace should be put into the press immediately, if light coloured cider or vinegar is desired. If a deeper colour ss wished for, it can be procured by exposing the pomace in the mill to the air, while one batch is pressing. A wooden scoop should be used to lift the pomace. No iron should touch the crushed frult or juice during the process, if excellence is wished for. In building up the "cheess"in the press, it is better to uge a small square frame of boards in the centre, by which an interior space is left in the mass of pomace, through which the juice is exprepred more readily than if the mass were solic. The use of this small frame will obriate the necessity of a second pressing. The frame, firy. 3 ., is placed in the centre of the press. From this centre a channel two inches wide, and one inch deep, is made to the front, to carry off the juice as it flows. A piecs of board is laid over this chan. nel, and the floor of the press is covered with clean, straight rye-straw, leaving the ends projecting at each side, which have to be turned over the first layer of the pomace. This prevents the pomace from being squeezed out when it is pressed. When the first layer is finished, and the straw is torned upon it, it appears as in fig. 4. This process is repeated, until the press is full, when the pressure is applied gradually, so as not to burat the checse. The juice runs through a filter of cut straw into a vat from which it may be dipped or pumped into the barrels. It is well to have a strainer of hair-cloth in the funnel, or across the mouth of the pail, as the barrels are filled. In all these processes the utmost cleanliness should be observed, if a good product is wished for. For those who find it more convenient to use a manufactured mill, that known as Schenck's Apple and Grape Grinder, which is able to grind 200 bushels per hour, may be desirable. There are several excellent cider-mills manufactared by different parties East and West, which are convenient for those who have but few apples, or who have enough to keep one hand-machine going. One of these, known as the Keystone Cider Mill, is an exceilent one. We have made cider and vinegar of s very ligbt colour in one of these milts, as the pomace is exposed to the air only for a moment, as it falls from the grinders, and it is passed immediateIy under the press. No straw is needed in asing a press of this kind. When the juice is safely in the barrels, it needs close watching during the fermentation. It is best to keep the bunghole covered, to exclude insects and the air. For this purpose a perforated bung is useful, in which s glass tabe, an inch in diameter, (ig. 5 ,) may be inserted. The tube 12 inches long, may be kept filled, which will provent any access of air into the barrel. When the cider is to be kept for a length of time, this course is advisable. After fermentation has stopped, which may be seen by observing that gas no longer bubbles up and escapes through the glass tube, the cider should be carefully drawn off into frush, sweet casks. The barrels should then be stored away in a flace where the tomperature is even, and the bung.holes tightly closed. If it is intended for vinegar, empty vinegar-casks may be used. The bung-holes should be left open, and kept covered with a picce of fine wire gauze, so as to admit the air. After a time the vinegar will make, and should be again irawn eft in o clean casks, without disturbing the sediment. If the sediment should become disturbed, the vinegar is never perfectly clear afterward. To make vinegar from cider in the most rapid manner, the building must be heated to about 70°, and the liquid frequently exposed to the air, by drawing it from one cask to another.-American Agriculturist.

Tax Onited States Government will soon sell by auction seven singie turrat monitors and five irrinclads at philadelphia.

DRUOE AND STEE'R' PATENT SOREW AND SOREW-DRIVER.

In connection with marhincry and other composite me. chanical, engineering, and architectural structures, of wood or motal, separato or combined, cunsiderablo interest and importance attaches to the dovices whereby a firm and secure union, aitachment, and connection is o: may bo obtaines and effected botween tho individual and component parts As atructural elements these devices discharge very indispur. sable functions; and perhaps the foremose place among them must be assigued to screws and screw-bolts; wherefore these small but essential parts of compound structures have by on means becn neglected by inventors and improvers, although the attention and ingenuity devoted to them has almost esclusivoly been directed to the body, shank, or threaded portion, of the screw or screw-bolt-as witaces the Palliser bolt and the Enirbairn screw-tho head comiug in for a very tuflugg share, if any, consideration and improvement. Whereas every practical workman or industrial omployer, who has hal to do with scrows and their congeners-every amateur or professional cabinet-maker, carpenter, joiner, patern-maker, or millwright, who has lost time, patience, and temper, over the common screw and its accessory the common screw-driver who has been ignominiously beaten, and has damaged costly finished sarfacee, in his assaults upon a refractory screw, which he has been driven to apostrophise with injurious epithets-must have been forcibly impressed whith the conviction that even the best modern screws and scruw-drivers fall-longo intervallo-of perfection.

Among recent patented inventions to which our attention has been directed, we are disposed to regard with much favour that of Messrs. Drace and Steers, for a patent screw and screwdriver upon a new and sound principle, now being introduced by Messrs Steurs and Co., 4, Queen's Buildinge, Qucen Victoria Street, London, E.C. ; and whercof the eanexed engravings give an illastration, which almost speaks for itself. Ths improvement relates to and concerns tho head only, that part which has for so long remained without variation from its primitive form and construction; and its effect is to 1 m prove apon, or rather entirely to supersede, the slit or groove in the scrow-head, commonly called the nick, which indeed is not susceptible of improvement asa nin k, inasmuch as, whethes it be made deep or shallow, it preserts in either alternative obvious defects, in stripping, splittiog, or slipping, either on the part of the screw or of the screw-driver. It seems to us, therefore, that the inventor: have turned their attention in the right direction, and, so to say, have "hit the night nanl on the head," if such an expression be admissible in respect of screwa.

In the engravings, figs. 1, 2, and 3 ropresent these variouslsheaded patent 8 crews ; figs. $4,5,6$, side views, and figg. $7,8,9$, end views of the points or heads of the correspos.ling screvr. drivers ; fig. 10 is a sectional view of a screw ; and fig. 11, an delineation of a patent screw-driver, showing how one size will fitany size of the corresponding screws, whether large or small.

The essential principle and characteristic feature of the invention is simple and obvious, and consists in the furmation, within the head, of a pyramidal recess, tapering down to a point in the body or shank of the screw, and leaving at all points of the periphery, for the requirements of strength, protection, and security, a sufficient margin or interval of inetal between the outstde and the recess. The turnscrew or screws driver is made with a head of similar form, to correspond such head will, therefore, io pyramidal in form, fiting, with exactuess and precision into the corresponding recess in the head of the "icrew; and it is olivious, therefore, that the largest size of turnscrew is avallable for use with every sizy of screw, down to the smallest, so as to drive them home, of withdraw them, without in any way touching or injuring the surrounding surface or material. An important practical adrantage in favour of this form is, that the head of the turnscrew can readily be inserted in the recess of the screm, and, when pressed firmly home, necessarily assumes a true axial position in relation to the screw; while the rotating force appled is emploged to the utmost adrantage, the operating edges and gurfaces being of considerable ustent, so that there is a sure and frm grip, while the accidental $a_{\text {siplacemunt }}$ of the turnscrew, and consequent injurious effects are entirely obviated.

Of the ordinary forms of this improved screw and scrow. driver, that shown in Gga. 3, 6, and 9, which is tetraidral, will, re oplac, prove the best adapted for universal use, and preferable in many renpects to that shown in 日ge. 1, 4, and 7, which is triangular. The exceptional form shown in flgs. 2, 5 , and 8, a conoidal tefoil, together with various others of similar character: may be made and employed in fancy work, and wherever it is found desirable or necessary to onlist them as aids to ornamentation, as in cabinet-work and the like, in thich ca6o the recesees may be filled up with coloured matcrial of any suitable kind. It must bo obvious that this improved form and its concomitant adrantages are by no mpaps limited to the common class of wood screps, but oxtend to all kinds and clasees of screws and scrow-bolts.
Id comparison with ordinary screws there must be an obvious economy in the weight of metal per gross, as well as in the labour of making the improved screws, when manufactured by suitable special machinery; and the comparison must bo still more favourable as against screw-bolts, with square or hexagon heads, as the metal and labour of the heads will be almost entirely eccnomised ; resulting in a material reduction in weight and cost of bolts, as well as uf the structures whereof they are component parts. Another, and by no means unimportant advantage would be found in the leads being flush with the surfaces of the structure, all projections of boltheads being climinated These are points which must specially commend this improved screw to rallway engineers, as important improvements in connection with permanent way and plant, as well as to Government, Admiralty, and War departments, for armour-plated and other composito etructures, fixed and floating. Hence, a wide range of employment and utlity may be confidently antiripated for this simple, ingenious, and effective invention, although it concerns only articles which are small things, per se.

CRANE ARRANGEMENT.

To reduce the friction upon the posts of rotating cranes, Mr. George Weichum, engincer on the Austrian States Raiiway, has introduced with considerable success a detail which we illustrate by the views on page 104. It consists in the application around the.crane post of two cast-iron rings A and B, Fig.1. The former of these is placed vertically and has attached to its inner surface a grooved wrought-iron ring forming a track for a number of steel balls, which press as shown against the top of the post. The lower ring B is placed horizontally; it also has a grooved wrought-iron ring attached to its lower side in which run a second series of balls upon a fixed disc below. This detail, which has some advantages, has been adopted largely in Austria.

FIELD'S SCALE PREVENTER.

We illustrate on page 105 an ingeniously arrañed and apparently very efficient apparatus for preventing the accumulation of scale on the internal surfaces of steam boilers and which appears indeed to bave the effect of removing scale already formed. It consists, as will be seen from the section, mert of a rod passing through the boiler, and properiy support and insulated by the bracket and insulators C, D, E. The lower end of the rod is turned over to form a loop, and it supports a bell as shown in the sketch, or as preferably employed, a cone in both cases left free to oscillate. The disc or bell is submerged about 4 in. below the level of the water in the boiler. A battery of one or two cells, which may be kept in any convenient position, and quite removed from the boilers, is connected with the apparatus, one pole being placed in communication with the rod by a wire, and the other pole connected to the shell of the boiler.
Carefully conducted experiments establish the cxistence of a steady current setting towards the shell of the boiler, and the theory upon which the inventor has proceeded, is that by this current the soluble salts in the water are carried forward and deposited upon the surface of the iron, but by reversing the current with the aid of a battery, the tendency to deposit is destroyed, and the salts in solution are precipitated. That this apparatus is reliable in its action, is proved by considerable experience gained upon a number of steam bollers to which it has been applied, and as consequent upon the advantage of
keeping the boiler shell clean it effects a marked cconomy in the consumption of fuel, there is every reason why it should find a wide applicntion among owners of steam boilers.

ROBEY'S VERTIOAL BOILER.

We give on page 105 engravings of a now form of vertical boiler which is now being exhibited at the she w of the Royal Agricultural Society at Bedford by Messrs. Robey and Co. (Limited), of Lincoln. The leading features of the boiler will bo at once seen from our engravings. As shown, the luwer part of the firebox is made tapered. whtle above this tapered portion is an cnlargement, produced by finnging tho lower firebox plate outwards. From the shoulder thus formed water tubes-slightly inclined inwards-extend upwards to the firebox crown, this crown being made slightly concave, and being protected from the deposition of dirt by a concave tray fixed above it, this tray aleo probably serving a good purpose by deflecting laterally the currents of water rising through the water tubes just mentioned.
Outside the ring of water tubes there is fixed a ring of flue tuber, extending from the firebox crown to the top of the boiler, and from the position of these tubes it follows that the products of combustion, on their wiy to them, must pass between the water tubes, thus causing the heating surface exposed by the latter to be very effective. The water, after cising through the water tubes and parting with is steam, returns down the sit?es of the firebox, and the sudden change of direction which it undergoes, when turning to agan riso upwards through the ring of water tubes, greatly facilutates the deposition of any matters in suspension, these matters accumulating in the large space left around the base of the firebox, from which space they can be removed through the mudholes when convenient We are informed that careful experiments with this boiler have shown it to be capable of evaporating, at atmospheric pressure, $10 \frac{1}{2} 1 \mathrm{~b}$. of witer per pound of coal, and there appears to be every reason for expecting it to give a good evaporative performance.

THE GIFFARD PISTON

This new arrangement of pistons has attracted much attention in Europe, and constant working at gas and other woiks is considered to have established its importance. M. Puillon, of Lille, who is the maker of thum, furnishes them in three principal forms, for aspiration, for compression, and double-actioned.
The piston for aspiration is represented in fig. 1. It considts of a solid plite with a groove round the edge, in which is placed an indiarabber ring of one centimetre, or less, in thickness. Apertures, as shown in the drawing, are plerced near the circumference of the piston. The rubber ring is only half the thickness of the circular channel in which it lies, 80 that when the piston is descending, as shown in the figure the ring rises and leaves the water or gas ways open. FVhen the piston descends, the ring, on the contrary, closss the apertures hermetically, while the pressure of the fluids causes the ring to expand and pack the piston perfectly.
The friction is said to be reduced to such an extent as to prodace an economy of about twenty per cent. in fuel, the depth of the sing being only about onc-fifteenth of the ordinary packing. And all valves are dispensed with.

The forcing piston, as shown in fig. 2 , is simply the reverse of that which precedes it.
The double-action piston, ag. 3, has no apertures, and the ring has lose play, just enongh to allow of its submitting to sufficient force to make it spread ana pack the piston.
Pistoms of this kind have been used at the Pario gasworks for twelve months without the ring undergoing the slightest injury, and other experiments bear ont this assertion.
Another advantage of the arrangement is that it seduces the thickness of the piston by about three-fourths, and of course the cylinder in the same proportion. In addition to their application to ordinary pumps, the pistons are specially recommended for air pamps, as producing an almost perfect vacuum for blast furnaces, for surgical syringes which require so much nicety of action, and for moderator-lamps, for which they are said to be cheap and peculiarly effectipe. It remains to be seen how the rubber will support the action of oil.

DRDOE AND SHEER'B PATENT SCRET AND SCREW-DRIVER.

MUSCULAR STRENGTH OF INSECTS.

It is an intercsting study to compare the motive power of birds and insects, and recent experiments prove thas they are superior in this respect to quadruyeds, especially whon the poscibility of acrial navigation is taken into account. In a fow mintutes the condor will soar many miles in height; tho swallow is not weary of describing its rapid and graceful curves for fifteen hours at a timo. It has been calculnted that the eagle, with its rapid flight, produces an effort sufficient to bear up its own weisht equal to twenty-six horse power.

Inscct oramazation is as full of we ndersas that of the bird. The energy which lives vithin these curious little creature may well excite the wonder of an observer. "If you compare their loads Fith the size of their bodies," eays Pliny,in speaking of ants "it must be alluwed that no other animal is endowed with such immense strength in proportion.' Sir Walter Scott suggests the same jdea.

When a beetle is placed under a candlestick it will move it, in its frorts to escape, which is relatively the same thing as a prisoner in Newgate shaking the building with his back. Iirshe us remarhs that an clephant, having the force of a horn-betle, would be able to movea mountain. M. Felix Plateau, a young B. Igian naturalist, and a son of the celobrated physician, has lately tried some very delicate experiments t) measure the muscular strength of insects, as others have done with man and the horse. The strength of the last two is eslimated by the aid of amachine called a dynamometer, where the tension of a spring is counterbalanced by an effort exercised for a very short time. A man, it is found has the power of traction equal to live-sinths bis weight; but this is very small in comparison with the strength of insects, many of which can draw forty timos that amount.

The way in which Mr Plat au has measured these powers is ingenions. He harnessed the insect by a horizontal thread, which was passed over a light moveable pulley; to this was attached a balance loaded with a few grains of sand. To prevent the insect turning aside, he made it walk between tro bars of glass on a rough board covered with muslin, 80 as to afford a rough surface, exciting it forward, be gradually poured fresh sand into the balance until it refused toadvance further ; the enad and tho insect were then wejghed, and the expartment was repeated three times, in order to arrive at a correct conclusion as to the greatest effort that each could make. The tables which give the results of these trials seem clearly to demonstrate that, in the same group of insects, the lightest and smallest possess the greatest strength, or that the relative force is in inverse ratio to the weight. This law applics also to the experiments in flying and pushing as well as to dmaving.

This law, assuredly very curious and interesting in the eco. nomy of nature, has been contirmed by trying a dozen individuals of tarious species, in order to obtain results more approaching to the truth These have been fully sucerssful in confirming previous espuicace-for example, the dronein four times the weight of the bee, yet it can only drag a weight fitteen times greater than its own: whilst the bee easily draws twency-three or trenty-four times its own bulk. In flying, it can rase a weight very little inferior to its own; whilst the drone can only transport in this manner half its own weight The law in questaon appears also to apply not only to the species which belong to the same entomological subdivision, but in a certain measure to the entare class of iosects. It is true that if the specles examined are arranged by the increasing order of their weight, the corresponding relations which express their relative fonce are not always exactly progressive. 'Ihere are exceptions, which may be explisined by the difference of struc. ture The law holds good if they are divided into three gronps, comprising, respectively the lightest insects, those of a middle size, and the lienviebt. In this way the relative force is rejresented for the first group lig twenty-six; for the second, by nineteen, for the last, by niae. This relates only to the porver of traction; if that in flying be taken into consideration, the ligh' st can fiar surpass the heaviest; tho first being equal to one and one-tbird, the last is but one-lalf. Thestrongest insects appiar to be those so familiar to the naturalist, which live on lilies and roses, such as the Crioceres and Trichics. These little beings can draw a weight about torty times superior to their own, and onc, an athlece of the tribe, drew sixty-siven timesits own reight. A small bectlo of the tribo Anomale has exccuted the same fest. Another more remarkable fact is related of a hora-bectle, which held between its mandibles, si-
ternately raising and lowering its head and breast, a rod of thitty reuiicioters long, welghing four hundred grammes; its own weight was but two grammes. At the side of this insect, what are the acrobats who can carry a table between their teeth! Such examples show to what an extent insects are superior to the larger animals in the strength of their mnscles Dry and nervous, they can in proportion to themselves, more mountains. In addition to this, tliey are ingenious; when an obstacle does not gield to them, they know how to tura it a-ide. One day, in a garden, a small wasp was trying to raise a caterpillar, which it had just killed. I'he caterpillar was at least five or six times heavier than its conqueror, which could not gain its end. Six times successively, weary of the war, despairing of success, it abandoned its prey, and sadly placed itself at some distance. Λ t last a bright idea saved it from its embarrassment: it returned, placed itsalf across the caterpillar, as if on horseback; with its two middle fect it embraced the body of ita victim, raised it against its breast, and managed to walk on the four feet which were at liberty ; thus it soon crossed a ralk of 6 ft. wide, and laid its prey against a wall.

Investigations have been made regarding the jumping insects of the order Orthoptera-the weight which crickets and grasshoppers can raise when jumping. To prevent them u-iog their wings, M Plateau tied them an. 1 the eaytra or outer sheaths with a tbread. The burden was a ball of wax ballasted with morsels of lead, which was hung to a thread tied round the thorax; as much lead was added to tho wax until the in-ect could only raige itself an inch from the ground. The ball and the insect were aftersards weighed, the latter haviny been made insensible by the fumes of ether. Crickets of the larger sind raised about one and a half of their own weight; the smaller ones, three or four times their weight. The grasshopper difiors from the crictset in haviug longer and thinner legs, the green variety weighing about two and a-half grammes, can ouly raise a we'ght equal to its own, coafirming the law, that the muscular force of insects increases as their size diminishes. When allowed to jump freely, crickets describe as curve in the air similar to all projectiles. It is curious that the amplitude of the epring is the same for the latge and smaller kinds alike. This result was foreseen by the celourated naturalist, Strauss-Durckheim In his work on "The Comparative Anatomy of Articulated Animals," he establishes the poiut, that two ani nals of similar form, but of d fferent dimensions, will jump the sane height above the point where lies their cent.e of gravity at the moment when they quit the soil. Ho takes as an example the cat and the tiger, and adds that the same couclusion is applicable to crickets and grasshoppers. Tho principle which serves as a basis for this theory je, that the motive porrer of animals increases with the section, and not with the volume of the muscles. It depends only on tho number of tibres of which the muscles are composed; from whence it follows that it ought to be in proportion to the surface of the section of thi se organs, whilst the weight of the animal is propurtional to their volume. The veight augmente more rapidly tha the motive power, and the relation between this peight and this forc become, the more unfarourable as the aumal is larger. Other natural st: who agree to this as a whole do not consider it to be an absolute or general las.

Among tho inscets that dig or burrow in the ground, a different plan was tried to see their power of pushing forwards. They were placed is a cardboard tubc, which had been blackened and made rough fr the feet; at one end, a transparent plate of glass was fixed to a horizontal lever. Perceiving the light before it through the plate which barred its exit, tho insect, when excited, pushes with all its strength; the plates gives way, the lever turns, and aaises at its other extremity the balanco which is attached by a pulley, and into which tho sand is poured as before. In this way the Oryctes, weighing about forty-six grains, pushed tbree or four times its own veight, whilst the little Onthophagus moved eighty or ninety times that amount.

The experiments in the way of flying lead to the conclusion that inscctsemploy much less muscular force in that way than in drawing or pushing, perhaps it is that, unlike birds, they aro not intended to cirry large weights through the air. A ball of suft wax of a weight little soperior to what tho insect might be expected to bear, was fastened round its body, and it was tried as to whether it could support this in the air ; if it fell, the sizo was diminished. Among various insects belonging to the five orders of Coleoptera (beetles), it ras found thet th could raise from one-sixth to doublo their own weight; th
common fly could manage triple that amount. Yet the flight of insects is so rapid that some can distance the swallows that pursue them, and certain kinds of flics are said to be able to pass a racchorse or a locomotive going at full speed.
If we inquire why the smaller species are the stronger, the answer may be, that their way of life necessitates it. Thus, the hardness of the soil is the same to all the burrowers: the grains of sand which the larger can easily displace are rock; to the smaller ones; and compalring them with animals, the mole and the rabbit require much less strength to torce a passage than the ant. The prodigious leaps of the cricket, the locust, and the grassnopper, would in the same proportion make a lion spriag over half a mile. Not less surprising is the power of destruction in certain classes : tho termates have undermined whole towne, which are now suspended over catacomib; such is the case with Valencia, in Neir Granala; La Rochelle is menaced by the same fato. The larya of the Sirex pierce through balls of lead with their mandibles. During the Crimean War, packets of cartouches were iound, the couical balls of which were perforated in various parts. The little African ant can raise mounds of clay flve yards high, and the solidity is such that the wild cattle stand on them to explore the horizon. Such edifices are thousands of time largers than their architecte, whilst the"pyramid of Cheops is but nincty times the height of man.
Another subject which has engaged the attention of naturalists of late is ihe strict relation which ex sts between the habits, manners, and mode of life in insect;, with the conformation of their urgans. Mr. Darwin has acknowledged the organic adaptation of species to the condition of existence; but he thinks that, owing to their want of exercise on one side, and natura! selection on the other, these organs may undergo deep aut hereditary modifications. Thus he cxplains the want of wings in many coleopterous insects which inluabit the island of Madeira; they lose the habit of flying, because if they used it the Find would carry them arfay into the sea, an 1 the race would soon disappear : thus, winged insects made for fight, can transform th - mselves, in time, into walkers or swimmers.

If we consider the locomutive organs of insects, it is casy to see that broad members, which can be conver.ed into oars, belong to swimmers; when they are short and indented, they are to be used like shovels and pickaxes by the burrowing tribes. Though the mouths of insects are formed with the same number of appliances, yet they are adapted to the condi. tion of each species. By examining one or two parts of the mouh of a larra, a naturalist can discover the foud it hives upon, and the way in which it partakes of it. Thus, if two caterpillars of different kiads live on the same plant, one may attack the leares from the edge, the other will, prhaps, ott the flower-bud; these habits are recogni ed by indubitable signs, when the lips and mandibles are examoned. By similar means, the inspections of the foot will decide whether thre insect walks on leaves, or climbs up the stem of the shrub it has chosen for its home. There are some insect- which lead an ide life, whilst others have one of work and tightiug; they are each armed with the necessary appliances for their particular destiny, some having at their extremities nippers, pincers, a saw, an auger, or even a poisoned sword. Lookingat the class of Spiders, what an arsenal of work and war they possess! The mandibles are scissors, grindstones, lancets; the jawo are truaks and suckers, the lower lip is often a spinniag-plate. Their locumotive organs edapt themselves to a uunber of uses -spades, picks, oars, sometime tending in rakes, forks, spindles, brushes, and baskets; and all these iastrumests are of far mere delicate conformation than the clumsy too's of man's making. Those linds that spin, weare an iufiaite variety of webs; some are closely spon like stuffs, others are nets or simple thrcads thrown by chance. Here the claws play a principal part ; they resemble combs or cards amoog those which produce the close tissuc, and forks in those which weave with a wir r mesh.

The eycs of insects, often of enormons dimensions, are of strange optical structure, and marvellou-ly fulfil their varied uses. Those which hunt for their prey have th m raised on such an eminence that they can look all around them, and see ther booty from afar. Thu one which is always in a hidingplace has its eycs w:dely disseminated; if its lair be in a tube, they are arranged in frout, and the number is dıminish d; the eyes at the back hape disappeared. In othero, the position and conformation ef the respiratory orcaus revial the way of lifo to which they are accustomed. Fifty ycars ago Covicr said:
"Give me a bone, and I will reconstruc the animal in its entircty " Such science may also be applied to insects.

These complex and perfect arrangements astonish us the more breause they are in bodier of the smallest dimensions; we natu ally think that the organisation must be very simpie, the intelligence of the lowest type The dimensions of the whale, or the immense reptiles of the early geolugical periods, excite our interest; but the attention is not so powerfally attracted by the admirable structure of the fly, and yot the humblest beings furnish precious teachings to the philosopher. It can scircely be dented that in relation to their intelligence, some of them are superior to the largor animals. They show a bighly developed sease of perception, instincts of wonderful fiuesse, extrandinary aptitude for all kieds of work, but there is even something more undeniable, marks of higher faculties. These are visible when, in the course of their work, an arcident occurs, or an unforcseen obstacle arises: they overcome them, and guard against the danger that migh ${ }^{+}$arise. At other times, an idle bird profits by the chance why places an old nest in its way, making it habitable by a f. , cay repuirs. So the smaller insects, n it acting as simple 4 achines, make choice between a bad and good situation, conceive the idea of sparing their work when they can arrive at the iequired end without it, and become idle, when they were created for labour. Can we call this instinct only?

AN OPTICAL DELUSION.

The following is an optical delusion which is none the less interesting for being very casily explained.
Let a person, standing before a looking glass, look attentively at the reflection of the puphlof one of his eyes, and then at t.sat of the other- et him look at different parts of the eye, and from one ese to the other, lirst at one and then at the other. Knowisg that thus, in changing the direction of his gaze, his cyes must move about in their sockets, he will expect to see that they do so in the glass. As a fact, they will appear perfectly still.
If he looks at the eyes of another person trying the experiment, the peculiar fixedness of his own will be still more striking. when he looks at them again.

I will not spoil the riddle by giving the answer at the end. - Nature.

THE MALLEABLE IRON WORES.
We can safely say that we havo the best Malleable Iron Manufactory in Canada-in fact, that we hare the only good one-and that the quality of its productions are not excelled in the world. This is pretty strong talk, but it is conceded that American malleable iron is better taan English, and Mr. Glen, the Presideat of the Joseph Hall Manufacturing Company, who has used malleable castings for several years from eight of the leading malleable iron manufactorics in the United States, says he has never had any castings superior to those made here. there is no class of machinery which te.ts the quality of malleablu castings more soverely than reapers and mowers, and wheu we say the O.hava Malleable Iron Company make as good reaper mallcables as are made in the worl I we cannot say more. We can add that its r.putation is fully established, and its success assured. Th.re have been so many fanures in this bu-iucss in Cauada that it was difficult to gain the confidence of the trade. Maqufacturers who had respers and mowers returned on their hands through poor malleables did not fect like giving their orders to an untried concera, but this period has been successfully passed, and Oshawa can claim the first and only successful malleable iton woiks in Canada. As the risk is very great in propertion to the profit, even with men of experience, it may to some time before wo have another successful establishment in Canada. Tho President of a leadiug malleable iron company in the States told us only a short time sincu that in getting their ex-po-ionce, cren with practical managers, thoy destroyed $\$ 25,000$ worth of castings. Wo anderstand our company's works are to be enlarged at once. We hope and expect to sco them ertended frequently in the future to mest the demands upon them.-Oshava Reformer.
 4

Mechanics' Magazine.

MONTREAL, JULY, 1874.

Illustrations:
SIr WIlljam Fairbairn. 07
Clder Making............. 100
Tbe Ceylon Poarl Flsh.
nry
Welchum's Crano Jibs 101
Patent Screw andSrew-
Driver.
Robey's Vertleal Boller 105
Field's Scalo Preventer 105
The Giffard Piston....... 105
Locurts ifeatroying Ω
Grain Fleld............
Irrgation In Cotorado.. 109
New Colonial Oflces... 112
Lanneb of the Indepen-
denzla
113
Swedish Marine En-
glues 116
Swedish Darine En-
gines 117
American Raltroad
Stations.................. 120
Amerlean Rallroad
Gtations.................. 121
Vertical Planing Machinc...................... 124
Dnvetalling Machine... 125
The Dolbi Clock Tower 128
Contents:
Princlples of Shop Ma. algulation Cider-vine.
Clder and Claer-Vlie-
gar

98
09

Druce and Stears' Pa. tent Scrow and Screv-Drlver 10
Crane Arrangement....... 103
Ficid's Scale l'roventer... 103
Rovey's Vertical Briller... 103
The Giflard Piston......... 103 Muscular Strength of In.
\qquad
An Optical Delusion.
Malleable Iron Worss...
Sir W, Fairbairn.............
New Colonial Oflces...... 110
The Coylon Pearl Flsh.
ery 110
The "Independenzia.".... 111
Irrigntion in Colorado... 111 Change of Gauge on tho
G. T. R........................

111
Grand Trunk Ralway... 114
Insectivornus Plants...... 115
Swedish Marine Euglnes 119
Rallway Matters............. 11
Lightning and Lightaing
Conductors 1
Dominion News............. 123
Cerical Planiag Ma-
chlne 124
Dovetalling Macbive...... 124
The Power of Modern Mechanlsm

125
Sclentific News............... 127
Tho Delhi Clock Tower. 127

SIR WILLIAM FAIBBAIRN.

This celebrated engineer and cminent man of science. whose death on the 18'h of August, wo have to record, was born at Kelso on the 19th February 1789. His parents were people in bumble circumstances and his education was consequently, most of it, self-acquired. From an early period of his life he showed a taste for mechanical pursuits, the first symptoms of which "ppeared in the construction of a small carriage in which he used to draw ebout his younger brother-afterwards Sir Peter Fairbairn. From the age of fourteen Fairbairn engaged in active work suited to his genius. At the age of sixteen he was apprenticed to a colliery company where he underwent a regular course of professional training. During this time he laid down for himself a regular plan of self-education, devoting each orening to separato studies, the chief being aritumetic, algebra, mensuration, mathematics and mechanical construction. His early life was one of struggling cnergy and it was by slow degrees that he gradually rose to a situation of eminence and independence as a maker of machinery. His special branch was that of mill-work, in which he originated many jmprovements, among others the substitution of iron for wood in the construction of mill machinery and ships.

In 1831 he built a small vessel at his works in Manchester, which was conreyed tbreugh the strects to the Irwell, and thence proceeded to sca. I his was one of the earlicst examples of iron ship-building, and was so successful in its results as to induce Sir William to establish, in 1835, the well-known works at Millwall - subsequently occupied by Mr. Scott Russell Where, during the four een scars he occupied them, be built about 120 iron ships, some being over 2,000 tons burthen.

Subsequently he was associated with D sbert Stephenson in the construction of mon tubular bridges the experience gained in which operations was of much service aflerwards to him in the improrement of the construction of iron ships. Bestes pamphlcts, papers, \&c, Sir William Fairbaira contributed $6 e r-$ eral raluable additions to scientific literature. Among these are "Millsand Mill-Wo as," "Iron Shipbuilding," "The Application of Iron to Building Furposes," \&c. During his busy jife he found time to carry on exhanstivo experiments for as-
certaining the strength of iron, and not only in tbis but in nu. merous other directions of commercial and meohanical importance did his active mind contribute important improve. ments and discoveries to a greater extent, perhaps, than in the case of any other contemporary scientific man.

NEW COLONIAL OFFICES, LONDON.

These new offices, which wo illustrate on page 112 are from the design of Sir Gilbert Scott, and aro now approaching completiou. The general design is said to be of a stately character but not to be of a character to excite enthusiasm. This hewever is made up for in the detailed ornament which is sald to be good in every way both in design and in execution. The broad band of flowing acanthus follage divides the ground and first floors This has been carefally designed and is a very rich und refined pieco of work. Among the ornaments the figures on the right wing, by Mr. Armstead, represent the five quarters of the globe; Europ, a figure launching a ship to sail over the globe (which is represented in a somewhat too material and mattir-of-fact manner), Asia, a heavy half-made figure, seated in a kind of indolent stateliness, and backed by an elephant ; Africa, a Hottentot tigure further helped out by a hippopotamus ; America, indicated by a Choctar Indian and a bison; and Australia, by avery lively young woman, wholooks as if she were about to emulate the leaping powers of the kangaroo which keeps her company. Asia and Africa strike us as the most successful of these; the former is a figure of considerable character and power. How long these and the delicate carved work will remain intelligible to the eye of the passerby, is one of those questions which architects and sculptors who have to work in London smoke can only try to pat out of mind as much as possible.

THE CEYLON PEARL FISHERY.

Our illustrations on page 101 represent the first pearl fishery that has taken place in Ceylon during a period of ten years, the oysters having mysteriously disappeared for that length of time. Great efforts were made to discover the reason of their disappearance but without effect. The fishery is described as follows in the London Graphic. "The present fishery has yielded rather more than a million oysters, netting to Government a lac of rapees ($£ 10,000$) An ordinary Tamil Coolie is said to have picked up an oyster in which ho found a pearl worth $£ 150$, but generally the ogsters bave been too young to yield good pearls. The pearl fishing-ground isabout twelve miles distant from Siiawatorre, and about 2 v 0 boats, divided into two fleets, distinguished by red and blue flags, were engaged during the trelve days for which the fishery was fixed. At midnight a signal gun is fired from the shore, whereupon the boats start for the Banks as represented in one of our cogravinge. On arrival another gon is fired, and operations are forthrith begun. To each boat there is a crew of twenty-three persone, to whom one-fourth of each taxe belonge, the other three-fourths accruing to the Goverament. The divers are let down by stones fastencd to ropes. They stay from fifty to seventy-five seconds under water, during which time tucy fill their baskets with oysters. The diving on thes grand scalc--from a couple of hundred boats-was a very interestiog sight. Moreover, there was an Eaglish dive: in regular diving dress, who stajed an hour under water, walked a mile, and pointed out to the natives where tho beds of oysters lay, thus saving much time. Another engraving represents the Goverament Fottoo,
a long thatched verandah, with several heaps of oysters placed at intervals in it, Cool'es with sacks of oysters on their heads, and clerks and oversecrs watching the counting. The third engraving shows a couple of Tamils sitting crossiegged, and intently engaged in drilling holos in the pearls, the pearls being apparently fixed in a curiously constractod three-legged stool.

THE " INDEPENDENZIA."

This vessel, which is said to be the heaviest ever attempted to be launched is a tarret ship being built on the Thames for the Brazilian Government. She measures 300 ft . long and 63 ft . beam and is to havo a draught of water nearly 25 ft . Her measurement is a little over 5,000 tons with a displacement of about 9,000 tons. The firstattempt to launch her was unsuccessful es all the pressure that could be brought to bear failed to move her. An other attempt with additional hydraulic power was subsequently made. This time the vessel made a start and slid down the "ways" for about her oven length, and until her stera became well immersed-sufficieatly so, it is stated, to be lifted perceptibly by the buoyancy of the water liere, however, the resistance of the water, added to the friction of the ways, seem to have become greater than the weight of the vessel resolvod along the ways, and sufficient to destioy the momentum acquired by the vessol, and she was brought to rest-

It is said that in about three hours after the vessel stopped the bottom began to give way. The whole of the bottom amidships was entirely crushed up from the bilge inwards, keels, keelsons, pillars, beams, decks, and bulkheads in the engine and boiler rooms were bent, broken, or doubled up, and formed a pitiablesight, and the vessel dropped aft until the stern be came sunk for a depth of some 8 ft . in the mud and gravelly bottom of the river. The bow remained on the ways and was lifted as the stern went down. There now she lies, the object of much interest and much speculation.

When it was reported at Lloyd's that the bottom had gone up and the vessel was breaking, intense excitement followed, and men who had insured for one-eighth per cent. were glad to re-insuro their risks at 50 and even at 60 per cent.

The popular belicf is, that she has broken her back, and is a hopeless wreck, while professional men are for the most part sanguine that the vessel can be got off and repaired at a fraction of her total cost.

IRKIGATION IN COLORADO.

There is, on this continent, as in Asia, a vast extent of land which, to become capsble of sustaining population, must be cultivated by a system ontirely different to that followed in the parts at present most extensively peopled. In Colorado, for instance, the character of the soil is said te have been greatly changed for the better by t" ystem of irrigation now extenslbly pursued there, a sketen of which we give on page 109. From the large rivers and strcams sach as the Arksansab, the Platte and the Bear rivers, canals are dug which branch off in diminishing streams ovor the surface of the land to be cultivated. Without irrigation the chances of a harvest are extremely problematical, but with its aid deserts become caltivated land and fruitfal gardens, the land trebles its accustomed sicld and the very climato becomes more healthful and invigorating. The ancients regarded the practice with such admiration and adorition as to place Aquarias among the constella-
tions. The real practical effect, howover, may be estimated by considering the enormous populations sustained and the prosperous condition of such countries as anciont Egypt, China, India under native rule and Spain under Moorish rule, in all of which a fully doveloped system of irrigation was the main producing cause of prosperity.

THE CIANGE OF GAUGE ON THE GRAND TRUNK

 RAILWAY.It has been a matter of much pleasure to us to chronulu from time to time the projection of new railroado in canada and to record the progress of their construction. We have always considered that the condition of the roade of a country was a far inder of its civilization and prosperity. It is with much satisfaction, therefore, that we record the accumplishment of the unification of gauge ou what may be called the arterial road of Canada At the timo ahen the question of the best gauge for Canadian rallways was decided, the prevaleut opinion was in favour of the broad or 6 ft .6 in . gauge, and consequently enurmous lengtbs of road were constructed on this gauge. But as time went on and traffic from the West suught to pass over the shortest road it was found that the broad gauge was a mistake, constructed as it was after the previous existenco un the same continent of so many roads ou the $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. gauge. Still, in spite of the hindrance, it was found remunerative to take freight from the narrow roads and by various devices carry it over the broad gauge Sometimes cars were employed with axles capable of rapid shortoning and lenghtening to suit the two ganges. Sometimes a third rail was laid but oftener the freight was bodily unloaded and loaded agnin at great expen-e of time and labour. Of course this condition of affairs could not be suffered to continue for ever and it was at length decided to change the gauge of the whole road in large secti ns at a time. Accordingly in 1872 the line between Sarnia and Fort Erie was changed. This was the beginning and we have now to announce the complotion of this vast undertaking. As to the manner of its accomplishment we refer our readers to an account on another page. Some idea of the difficulty of the undertaking may be gained from that - but a persoual inspection is needed to realize the real magnitude of the worh. At two points on the line there is collected rolling stock whach, if coupled on the line, would extend without break for a distance of at least fifteen miles. All this must be changed from 5 ft . 6 to the $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. pattern. It is stated that the Company had to order about sixty new ongines and to change the gauge of at least fifteen hundred carriages. The result of all this is that thercad is in itself now a unit and is also uniform with the other roads of the continent. The advantage of this is too evsdent to nced any more words. Freight may nuw pass over the road in its course from Chicago to Portland wathout any hin. drance, and passenger traffic between Montreal and the seaboard shares in the gain. The presentimprovement is but the rectification of a mistake and it shows how careful we should be in such vast undertakings not to give way too easily to the prevailing curront of opinion. The alteration with other inprovements along the line, additions to the reling stock and the building of the Niagara bridge have cataled an expenditure of about twelve millions oi dollars. The money has certainly been well expended and it now only remanns to congratulate the officers of the raad on their success and to trust that the justly expected increase of traffic and reduction of working expenses may benefit the shareholders as much as tho improvemont in the road benefits the country.

NEW COLONTAL OFFICES, LONDON, ENGLAND.

(1)

GRAND TRUNK RAILWAY.

Today the Grand Trunk Rallway is, or rather will be by this cvoning, throughont its entire length, of the uniform continental gauge of four feet eight and a half inches. The determination to complete the change of gauge on the castorn section was arrived at ouly in June last, and since that time the energles ot the diffurent departments have been dovoted to carrying out the work. 'The grounds at Point St. Charles have for some timo back been an object of intereat owing to the acres of rallway trucks which wero spread out opon them, the chicf Indication to the gencral public of the important work for which preparation was leing made. Theso have been distributed when required for the use of the rolling stock to be changed and the process of londing was one of the interesting features of the work. liwenty-five platform cars were atteched together, and an inclintd plane placed at the end of them, up which the trucks, banded together, were pushed along a temporary wooden track laid upon the platforms. By this process some ninety-threo trucks could be loaded in two hours ready for the rond. Large numbers of these trucks are used for changing the rolling stock at tho Point, and the process of changing was certainly an interesting one. A shed, open at each end, with a track with a third rail for broad or narrow gauge running through it, and an engine at the side in a covered lean-to, made the place where the work was carried on. On each side of the track were two powerful screws, worked by the engine, and the broad gauge car being drawn in on oneside by a horse, is stopped in the centre of the ehed. Heavy iron rails are placed under the box, leaning upon stretchers placed upon the screws, and then the engine working these last, the car box is raised uff the broad gauge trucks, which are drawn from under it. The men speedily change the plates on each side, and then the narrow gange trucks were drawn under them, the box let down, and the work of changing is completed. The men cm . ployed at this work are divided into gangs of six, working cight hours each, but receiving, by way of encouragoment, twelve hours' pay. The gang which had just completed its elght hours, before wo had the pleasure of examining the procces, had changed no less than fifty-four cars in that time. By diat of working night and day, the process of changing makes rapid progress. There are avout two thousand two hundred assenger and other cars to change, leaving four thousand four hundred brond gauge trucks. Of these, some sixteen hundred can bo reduced so as to answer for the new gauge, and for these now bodles will be made, tbus increasing the aggregate rolling stock by that number. On Friday there were no less than one hundred and twenty locomotives off the line.

Thets brictly ts the operation which has been going on at Point St. Charles, and which is now going on with some five hundred cars, accumulated on the Arthabaska branch, and for which the narrow gauge trucks, loaded on platform cars, as we have described, have been already sent to that point. As to the work of changing the gauge itself, the rapidity with which the work has been carried out is the best indication of the completeness of the preparations made for it. In the first place, in order to avoid any unnecessary accumulation of freight for the eastern section of the road, circulars were sent to the station agents west of Montreal, on the 11 th Sept., stating that for the next ten days the "through tratic" for points cast of Montreal on tho Urand Trunk lino should not be unnecessarily pressed, but as much as possible should be done in obtaining trafic to points reached by the Central Vermont by way of St. Johns; the object being to utilize the narrow gauge stock as fully as it could be made use of, and not to crowd traffic down to Montreal which could not be moved eastward expeditiously on the lroad gauge line. The whole line between Montreal and Portland was divided into twenty districts, averaging about fifteen miles in length each, under the charge of an experlenced overscer and three section foremen. From Richmond to Quebec was similarly divided into seven districts and that from Quebec to Riviere du Loup into eight districts. Section foromon wore required to go carefully over their sections one week hefore the change of gauge to see that all culverts and cattle-gunrds were in perfect order for being narrowed, either with a third stringer in place, or, where the stringer had to be narrowed, to see that the bed was properly prepared, cleaned off and lovel, and that the neceseary rodsand blocks were on hand to malse secure after being narrowed. They wero also required one week in advance of the change of gauge to see that all switch gearing was on hand, such as slid.
ing bars, connecting rods, sockot rods, cottors, and all other parts neceseary, such now iron work to be laid along side each switch ready for uso. Mr. Hannaford himsolf passed over the entire lino from Montreal to Portland, and Michmond to Puia Lovi and River du Loup, by hand-car, and explained to each foreman the working of his section, examined the gavge of the spikes driven, and the bridges and cattle-guards. He also arranged cach gang in position, and explained that the work must be carried out facording to the instruction thes given. In the working of the men, it was arranged that east section (the average length of which was five miles) should have two gangs of about eight men in each gang, and, oue a these gangs being placed at each end of the section, shoul, work toward the centre of the section until they met, both of the gange should then narrow the station yard if any on the section. The regular section foreman of the section was te quired to place a competent and trustworthy man in charge of one of his gange, he having charge of the other gang, and tak. ing the narrow gauge hand-car with him, he was requird, when both gangs met, to run his hand-car over that part of the section narrowed by the other gavg to see that the gauge wa right, and that all was ready for the passing of the regulat :rains.
These arrangements were well calculated to accomplish what they in fact have accomplished, viz : the smallest posidbl: inconvenience to the traffic of the country, and the greateat possible safety"and expedition in the important work of chat. ing the gauge. And in order to give them effect, late last weth all the men that cculd be coureniently spared from the wes ern part of the line wore brought down ready to be distuluted over the Eastern Section. On Tharsday night some sis of eight hundred were lodged and fed in the freight sheds at l'ont St. Charles, which had been temporarily fitted up for that purpose, and on Friday morning early they wero sent over the hine, aud distributed at points where their work was require1 Altogether there were some two thcusand men engaged outhe work. The last through broad gauge train to Portland lift Montreal at nine o'clock on Friday morning and the last brosd gauge train left Portland the same day at twenty minutesafta ono o'clock, coming, however, no further than Island Pud These trains were expected to meet at Groveton, and aftet passing each other thoy were required to display a sigas agreed upon, showing that they were respectively the last trains 'the moment the trains becring this signal passed, the trackmen commenced their work of narrowing between Is and Pond and Portland, the first part of the road that was narrowod The last broad gange trains betrieen Montreal and Island Pond left the former place at four in the afternoon on Friday, and the latter at a quarter past tivo. These trains were to crossat Richmond, and then to display the "last train" signal, upos sight of which the trackmen proceeded with their work. In the same way the work of narrowing was proceeded with 02 the other sections; and with such promptitude was the wors performed, tbat at eight o'clock on Saturday morning, the work of changing the gauge was practically accomplished, at ted o'clock narrow gauge trains were started eastward, and during the day some twenty-five trains in all were sent off. During Saturday and yesterday the men withdrawn from other parts of the work to assist in this important change were on theis way back to their several locations, and the whole work, which for some weeks past has been a source of anxicts and labuarts the oflicers of the Company, may be said to-day to be succex. fully completed. We congratulate Mr. Hickson, and the sereral heads of departments upon the admirable manner in whast this important work has been carried out, and we anticipat from it valuable results not only for the trade of Canada, btt for the proprietors of the Railway as well.-Montreal Gazalle

Tater Supply of Cmicago.-Céhicago is supplied with part water for drinking and culinary purposes by means of a toneel two miles long carried out to the middlo of Lake Nichiga The capacity of this tunnel is stated to be $57,000,000$ gallons per day, cad yet Chicago, fearing that her growth would be so rapid as to uso up this supply, commesced in 1872 building st other tunnel (nearly twice as large as the first) which it is expectel will be ready for use at the commencement of 1835 Chicago will thus neat year have water supply arrangement adapted for a population of somewhere about $5,000,000$:

INSECTIVOROUS PLANTS.

Under this heading Prof. Asa Gray contributes to the New IF, k Tribune come interesting information on a subject which Dr. Burdon Sanderson recently brought before the Royal Sofiety. The facts are chiffly derived from the communications of a correspondent, as will be scen from the following:-
Dr. Mellichamp, the writer of the letters from which the ollowing extracts are made, is a physician, resident at Bluffton, gnuth rarolina, if the samo district were Dr. McBride made gis observations over half a century ago upon the same ppecies, i e., Sarracenia variolaris, the only species of the region, ad the most efficient of the fly-catehers. In rendering assislance to the principal botanists of the country, Dr. M. has be fore shown himself to be a most capable and reliable invesfigator. These notes are only the first fruits of his observalons, which will doubtless be repcated, extended, and, perhaps, in some particulars, corrected. But it is best to publish them as they are, in all their fieshness. If the two capital new points which he appears to have made out should be fully confitmed, this Sarra enia variolaris will rank whh Dionaia itrelf as a vegetable wonder. Indeed where Dioncea captures sen or a dozen insects this captures a thoueand, and that by a process wholly diferent, yet not less amazing. Dr. Melliphamp's letters were addressed to Mr. Canby and myself, the first under date of April 20 :-
The first point to decide seemed to be whether the watery guid found in the leaves was a true secretion of the plant or only rain water. As I have two or three patches of S. vartobaris conveniently near in a neighbouring pine-barren it was no difficult matter to make the necessary examinations. On the 22ad, therefore, the sandy pine-land being very dry and thists-no rain baving fallen for sume days-I visited the plauts, which were blooming freely. hany leaves were carefully eramined with the throat still closed and impervious to raicer, and inflated as they usually are with arr. Upon slight pressure the air would escape, thus opening the throat for inpection The leaf being tilted, there was almost invariably an Escape of fluid-from three to five drops generally-occasion-
Hlly as many as ten drops, and rarely fifteen drops. It is, therefore, a true secretion, as no rain could poss. bly have been dmitted to the completely closed and sealed leaf. The taste of this secretion was bland and somewhat mucilaginous, yet evertually leaving in the mouth a peculiar astringency, rcalllog very accurately the taste of the root, with which I am quite camiliar. So much for the examination of the not yet matured ind uncpened leaves, in which I may as well remark that I Fould find no trace of insects either by puncture, or eggs, or larve, nor indeed any dobris of any kind. I next examined a great many perfect leaves with the throat open. In almost every leaf the secretion was to be found, containing generally from ten to fiftecn drops, very rarely a half drachm. Even in these opened leaves the admission of rain water is next to impossible, so completely docs the upper lid overhang the mouth or throat, like the projecting eaves of a house. Unless in severe rainstorms-and perhaps not even then-would this be posible With very rare exceptions, dead and decaying, br more properly, macerate i insects were to be found packed it the base of the tube-most frequently a large red ant-aleo bettes, buge, flics, \&e., and invariably within the decaying mass one or more small white worms, perhaps the larvio of insects hatched within the putrefying mass.
At this period, having examined only young leaves of the season and older ones of the previous year, Dr. Mellichamp had bot detected the swest exudation at the rim of the pitcher. Directing his attention to the watery liquid which collects fithin, he made the unexpected discovery that this has ineoriating or narcotic properties. By draining every leaf plucked ff its few drops of juice, I collected about half an ounce of the eccretion in a vial, with which I made careful experiments in esting its intoxicating effect upon insects. My "subjects"
fere chitly house-flics. About half a drachm to a drachm of the secretion was placed in a small receptaple, and the flies brown in from time to time-the liquor not being deep enough oimmerse them completely, but sabling them to walk abont a it without swimming and the risk of being drowned. Some Po fles were experimented with. At first the fly makes an ffort to escape, though apparently he nover uses his wings In doing so-the fluid, though becmingly not very tenacious, eems quickly to saturate them, and 60 clings to them and clogs them as to render fight impossible. A fy when thrown
in water is very apt to cecape, as the fluid seems to "run" from its wings, but none of these escaped from the bath of tho Sorracsnia secretion. In their effurts to escape they soon get unsteady in their movements and tumble sometimes on their backs ; recovering, they maku more netive aud frantic efforta, but very quickly stupor secms to overtake them, nud they then turn upon their sides either dead (as I at firs' suppoeed) or in profound numsthesia.

I had no doubt, from the complete cessation of all motion, and from their soaked or caturated condilion, that they were dead, and, like dead men, they were "laid out" from the to time as they succumbed to the puwerful fiquor; but to my great surprise, after a longer or shorter interval-from a half hour to an hour or more-they indicated signs of returnivg life by sight motions of the legs and wings or bidy. Their recovery was very gradual, ant eventually, when they ciavied away, they seemed badly crippled and worsted by their truly Circean lath After contact with the secretion, the fles which wero first thrown in became still, seemingly dead, in about half a minute, but whether from expesure to the air or exhausted by action on theee insects, the liquor did net seem to be so intoxicating with those last exposed to its influence. Ama-thesia or intoxication certainly did not occur so quickly; it took from three to tive m'nutes generally, and in one rebellious 'subject' it took at least ten minutes for him to receive his coup de grace. a cockroach thrown in succumbed almost immedintely, as did also a emall moth, and much more slowly a common houec-spider. On the recovery of the latter, it was almost painful to witness his unsteady motions and seerng him dragging his slow length along.

Without doubt, therefore the secretion found in the tubes of Sarracensa varoolaris is intoxicatine-or anesthetic, or narcotic, or by what-ver word jou may prefer to indicate that condition to which these small msects succumb. I forgot to mention that while experimenting as above I also threw several flies in water-a few escaped, one remained for some hours, still "paddling" and undrowned. A large " bluc ty " was also repeatedly immered in a weak solution of gum arabic (in imitation of the fluid of Sarracenia), but be remained unhurt all nigbt, when I liberated him in the morning.

The idea that the macerated or decomposed insects, accumulated in the lower part of the tube, served to nourith the plant paturally raised the question whether the liquid, which deprived them of life, bad also any digestive power. Dr. Mellichamp made the experiment of immersing bits of fresh venison in this liquid and also in a corresponding amount of pure water. Examining the two after 15 hours, he found the venison more changed, softened, and broken up in the former than in the latter. But as it was also " more offensive to the aostrils," and as the leaves, when stuffed with insects, become ""ost disgustiog in odour," the only inference to draw is that the liquid may hasten decomposition. For it seems to me that decomposition, not digestion, is what it comes to. In his neat letter, written on the 4th of May, after ho had received ny article upon the Sarracenias, and on exami, ing leaves a week or two older, Dr. Mellic amp announces that he had vir fied the esistence of the sugary secretion within the rim which acts as a lure ; and also that he had discovered a trail of it l-ading dow: the outside of the pitcher nearly to the ground I This remarkable statement sbould be read in his own words, as follows:
"Having discovered, therefore, in an unburned pincland many plants of Sarracenia vartolarss which were far more advanced that the more toader and succulent ones first examined, the leaves beiug more rigid and harsher to the touch and more deeply coloured, I had no difficulty in detecting in almost every leaf the sugary secretion or honey-like exudation noticed by Dr. McBride as being found at the mouth of the tube. I find it precis. ly in the place described by him, ssve that it extended downward more than '3in.') generally $\frac{1}{2}$ in., or even fin.; I also found it more sparingly under the arched lid or upper lip of the leaf, in and among thick and coarse hairs found there, and which I believe, are thicker and coarser than those in the lowermust portion of the tube. Dr. McBride, however, failed to trace the continuance of the sugary exudation which I frequently found glistening and soucwhat viscid -along the whole red or purple coloured border, or edging of the broad 'ving'-extending from the cleft in the lower lip even to the ground. There is therefore a painted or honeybaited pathvay, leading directly from the petiole (or the ground itself) up to the mouth, where it extends on each side as far as

the commissures of the lips, from which it runs within and downward, as before stated, for at least $\frac{1}{2} \ln$.
"Onn now can readily understand why ants should so frequently be found among the carliest macerated insects at the base of the tube. Their fondoess for saccharino juice is woll known, and while reconnoitering at the base of the leaf and bent on plunder, they are doubtless soon attracted by the sweets of this nonoyol path lying right before them, along which thoy may eat as they marili, until the mouth is reached, where certain destruction avaits them.
"Having determin"d this still in tho woods, I collected a large number of the maturest and in sit perfect and most sugared lenves. Whin I reached home I placed them in tivo goblets of fresh water, and that morning fortunately having perfect lei ure, I eat down before therm for the purpose of carefully watching the rutrapment and deterini ing, if possible, whether the lies were intoxicated after sipping the honey. I rennined in my position, for, I suppose, at least two hours, and in other ways continurd my observat on wore or less the greater part of the ding. Flies were soon attracted to the leaves, but by no means so greedily as stated by Dr. XicBride (there were, however, not many in the house at this season) and many were cutrased, the buzaing of the uafortmate prisoners being incessant. But 1 soon found that this was no way to test the matter, for al hough the flice would disappar-none cs-caping-it was no easy matter to seo the procees. I therefore turned backward the greater part of the overha iging lid, and thus flooded the prisons with daylight, so that the whole region of the 'sugar countries' could be secn and examined while the fles were busy at their food. Dr. McBride evidently (as you remark) did not suspect any incbriating quality in the exudation, but you yourself 'incline to take Alr. Grady's view of the case.' I cannot but think that the last-named observer is wrong, and that the nectir found at the orifice and border of the wing is simply a lure. Let it be remembered, however, that my examinations were made only on the 2nd day of May, and that it is barely possible the nectar, although attractive to flies is not yet concentrated enough to intoxicate or kill, aud that MIr. Grady may bo correct. But what did I witness? After turming back the lids of most of the leaves the flies would entrer as before, a few alighting on the honeyed border of the wing and walking upward-sipping as thay went-to the mouth and entering at the cleft of the lower lip; others Would light on the top of the lid and then walk under the roof, feeding there, but most, it seemed to me, preferred to alight just at the 'commissures' of the lips and either enter the tubs immediately there, feeding downward upon the honey pastures, or would linger at the brink, sipping along the whole edge of the lower lip and eventually enter near the cleft. After enterirg (which they generally do with great caution and circumsnction, apparently) they begin again to feed, but their foothold for some reason or other seems insecure, and they occasionally slip, as it appers to me upon this exquisitely soft and velvety 'derlining pubescence.' (The nectar is not exuded or smeared over the whule of this surface, but, as before remarked, scems disposed in separate little drops.) I have seen thom regain their foothold after slipping, and continue to sip, but always moving slowly and with apparent caution, as if aware that they are treading on dangerous ground. After sipping their till they frequently remain motiouless, as if satiated with delights, and in the usual self congratulatory manner of fies proceed t^{\prime}) rub their legs (or hands) together, but in reality, I suppose, to cleanse them. It is then they betake themselves to flight, strike themselves against the opposite sides of the prison-house-either upward or downward, generally the former. Obtaining no perch or foothold they rebound off them from this velvety 'microscopic chevaux de friso' which lines the inner surface still lower, until by a series of zigzag, but generally downward falling tlights, they finally reach the coarser and more bristly pubescence of the lower chamber, where, entangled somewhat, they struggle frantically (but by no means drunk or stupefied), and eventually slide into the poul of death, where, once becoming slimed and saturated with these iethean waters, they cease from their labours. A id ceven here, although they may cease to struggle, and seem dead like 'drowned fhes,' yet are they only as, hyxiated, not by the nectar, but by this 'cool and animating fluid, limpid us the morning dew, as saith Bartram. After continued asphyxia they dio, and after maceration they add to the vigour and sustenance of the plant. And this seems to be the
true use of the ' limpld fluid,' for it does not seem to be at a] necessary to the killing of the insects (aithough it does posern that power), the conformation of the funnel of the fy -trap a suffirient to destroy them They only die tho sooner, and $u_{\text {: }}$ sooner become'liquid manure.'
"But let mo return from this digression to the entrapmeal of the fiex. As before stated, I could never seo ray indicatient of unstendiaess or tottering in the sipping thes-nothing sart an occasional slip from the uncertain hold which the peculue pubescence would give-save once or twice while watchutz intuntly I saw a fly disappear so quickly downvari that could not with certainty say whother it was flight or a tumbit from stupor or insensibility But on sn many othor occension have I satigfied myself to the contrary, by seeing them fly of Ward as woll as downwa-d, with full vigour of an nhurt, unio. toxicated iniect, that I altogether reject the idea of stupor may state that while watching I observed not a single "acrapt When the lid was down, but aftor I had turned it back on mus of the leaves under examination a few, but only a few, escas ed. And those which escaped aftersipping to repletion seemed in no wiso inebriated.
"Indeed, I have still better proof as to the innocuouspess of the nectar. Yesterday (3rd) about sunset I strolled into tbs pine-land, and brought home with me the lamine of perlasis a hundred leaves-all maturing and sweet witi the cxudation Somn of them were placed on a table after candlelight, and, sitmeted a fow hungry flies. They remained many minutes sipping, and would return to sip, seeming to enjoy the evenitg meal thus afforded them. Di course there could be no entraf. ment here, as only the honoy-bearing portions which I ha! torn off were exposed; the flies I can only say eat and cat, bet no unsteadiness, or tottering, or falling, was in a single tho stançe to be seon, and my guosts, after having satisfet their appetites with my repast, retired for the night. Iha morning also the same viands have been temptingly platet before them, and although they have been visiting the board off and on through the day, I have yet to be informed ofs single case of intoxication.
"I have only now a word or two more to say as to the cause of the entrapment from the peculiar conformation of S. virm laris. The nectar being found below the lower, lip for a halfinct or more, when the fly is satiated and makes for flight, he must do so immediately upward for a very short distance, and thes somewhat at ripht angles to get through the outlet-a somewhat dificult flight, which perbaps of all insects only a dy might be capable of, but which even he probably is not. This, ton, upon the supposition that his head is upward, wheress his head is, I believe, generally downward, or at least paralled with the lip. If in the first position he attempts fight, he is very apt to strike the arch overhead, and if he escapes that it is nest to an impossibility for him to turn and strike tbst small space between the projecting (and downward projectingl lid and the lower lip. If, with head downvard, he is very api in flight to strike the opposite wall at a still lower arcle, and then from rebound to rebound get lower and lower until he touches the pool. In almost every instance, therefore, a fif once entering is caught."
Dr. Mellichamp finally alludes to the light spots, whicb give to the species its name of variolaris, from a fancied smallpos. These cover the upper and posterior part of the pitcher, and are translucent. Dr. M. suggests, as probably a wild faucy, that this translucent portion mas play a part in detaining the flies by suggesting a direction of escape the very opposite of the only practicable one. As to that, one should not hastily reject a vierr which goes to show that even this arrangement, which is especially conspicuous in the species, may be of useful account to the plant; that is, if the capture and destruction of tiies is use. ful to if, as I cannot doubt. As to Dr. Mellichamp's capita! discovery of the honcyed pathway leading from the ground op to the larger feeding-ground to which ants are thus enticed, it may well be crmared with the trail of corn with which huo. ters are wont t. intice wild turkeys into their trap. One can. not imagine anything more curious.

Hene is a Japanese receipt for keep ng meat fresh in hot weather : Pla e it in a clean porcelain bowl and pour vary hot water over it so as to cover it. Then pour oil on the water. The air is thus quite excluded and the meac is preserved.

SWEDISH MARINE ENGINES.

Visitors to Stockholm are all fanitiar with the small passenger eteamers which the position of that city cambles to be used with so much convenience to the public, and the demand fit these boats has led to considerable attention being paid to the design of simple engines for driving them At the Jate Vienna Eshibition the well-known Motala Vorks, of Sreden, exhibited one of these boats - the Motala-which was aul excellent specimen of her class, and we give on pages 116 und 117 engravings, from Engincering, showing the engines with whigh sho was fitted.
The principal dimensions of the Motala are: Length over all, $56 \mathrm{it} .6 \mathrm{in} . ;$ beam, 11 ft 8 in ; draught of water with 106 passengers on board, and coal bunkers billed, 4 ft 27 in . The engunes by which the boat is driven is non-condensing, and is rated at 8 horse power, and is shown by Figs. 1 and 2 of our two page engraving. It has. as will be seen, a single cyhonder, and is fitted with an expansion slide working in a separate valve chest to the ordinary slide.
The supply of steam to the suine is contrulled by the butterfly valve, of which we give a .actailed view in Figs. 5, 6, and 7, this valve and its casing being formed so that gteam can be admitted through the openings $k k$ to the expansion valve chest only, or to both the expansion valve chest, and the chest containing the ordinary slide, the opening l communicating with the latter. This is a handy arrangement, and enables steam to be admitted for nearly the whole stroke at starting, \&e., whale by covering the port l, the expansion valve is at once brought into action.
reversing is effected by means of the armagements shown in detail by Fig. 8. From this it will be seen that the two ecerntrics off, are not fixed directly on the crank-shaft, but are formed on the slecve d, this sleeve being held between two collars on the shaft, so that it cannot shift longitudinally. Encircling the sleeve d is another sleeve c, which bas a scries of collars turned upon it, these collars engaging wit the pinion b. By turning the handle a, Fig. 2, the pinton b, Fig 8 , is mado to shift the sleeve e longitudinally upon the stecve d. Through the sleeve d are cut two spira ${ }^{\text {i }}$ slots, shown in Fig. 8, and fitting these slots are blocks h_{1} th 1 se blocks being carried by the outer sleeve c, and their inner ends working in straight groores cut in the crankshaft. It fullows from this arrangement that when the sleeve c is shifted longtudinally on d, the latter is by the action of the blocks h in the spial slot; turned upon the crank-shaft, and the eccentrics are thus shifted from the position fo" going ahend to that for going astern, or vice versia. The arrangement is not 1 novel one, but the details are very neatly worked out.
The engine is placed abaft the boiler, and close to it, and the exhaust steam after traversing the belt q, enters the feedwater heater s, and passes theves through a pipe attached at rinto the chimney. The feed-water leaves the feed pump by the pipe o, traverses a bent pipe inside the heater, and leaves the latter at p, whence it is led off to the boiler. The bilge pump is at u, and $t t$ are hand pumps.
The engine drives a screw 3 ft .2 in . in diameter, with 6 ft . 3 in pitch, and it is supplied with steam at 60 lb . pressure by a builer of the locomotipe type, as shown by the diagram Fig. 9 The dimensions in the letter are in Swedish feet and inches. The principal dimensions in English measures are as follow:

Figs. 3 and 4, on our two-page engraving, show a somewhat differently arranged engine to that above described, this angine, which is also one made at the Motala Works, being intended to be placed aft the boiler, and to give a sufficient distance between the engine and boiler for firing the latter. Both the designs we illustrate are neat and simple, and well adapted for their purpose.

RAILTAY RATTERS.

Ir is stated that the largest locomotive in the world is tho "Punnsylvania," on the Philadelpha and Reading laiilroad. The diametor of the cylinder is 20 inches, the strolse 20 inches, the number of the driving wheels twelve, the diancters of the drivers 4 feet, the weight of the engine alone sixty tons.

The tr. Gotalad Tuxpa.-It appears from a report made to the Swiss Federal Council, that at the close of June the contmetors had completed nearly one-seventh of the whole dist ance of niae miles, 2213 ft . The progress made during July was about evenly balanced, but the advance on tho Goeschenen side was rather more rapid than that effected on the Airolo side.

Tuis tea trade between New York and Chiua and Japan via the Pacific Railroad continues to bo carried on actively. In one day soventeen car loads of teas arrived at New York by this route, in sisteen days and seventeen hours from Yokuhama to San Francisco, and less than foutese days from the lattor city by rail, altogether, including delays, less than thrity-four days, bing the quickest time yot mado botween Japan nad New York. It can, howover, be done in less tim 3 if better coal be used in the Pacific steamers.

TaE Purt Jervis (N. X.) Gazelte of recent date says:- "At the birie car shop in this place a record is kopt of tho wheels removed from cars To-day four whecls wors removed from a freight car which were made, respectively, in the following ycars: Dec mber 24th, 1853; two November 30th, 1853, May 318t, 1854 . These wheels have been running over twenty years, havo doublless worn out several cars, and are fit still apparently fur as much mere wear. Allowing twenty days in each year fur standing still, and ten miles an hour while rumning, they have run $1,697,400$ milles."

Ths Rhilcoad Commisstoners of Massachusetts havo been hearing a complaint male by the corporation of Bostow, that the citizens are annoyed by the sharp railroad whistle, which in one crossing is sounded more thin 300 times a day. The commissioners find that it is questionable whether, in its effect or tuvalids ani horses, such fre juent anouying whistling does not occasion a greater loss of lite than would ensue from Its total suppression. They regrd it as "a singular relic of the crude expedients employed in the past," that the companies should disturb wholo communities in order to attract the atteation of their own servants; and it is suggested that electric signals, and a bell, with fagmen at level-crossings, would answer every purpose, oxcept in the management of frajight trains, and as a signal of danger. For this last purpose the value of the whistle, it is remarked, would bo greatly increased by abohshing that frequent use of it which leads people to pay little attention to it. The commissioncrs recommend the change of practice thus indicated.
The length of the Panams line from the Atlantic to the Pa-ific Ocean is nearly 48 mites; the summit rudge is 287 tt . above the mean tide of the Atlantic. The distance from New York to Hong Kong vac Cape Horn is more than 17,000 miles, but by this railroad across the Isthmus it is less than 12,000 , a saving of 5500 miles. Starting from Aspiawall (otherwise called Colon?, on the Allantic side, fur Panama, on the Pacific, the traveller is soon in the midst of a sceno of tropical beauty hardly to be surpassed in the world. Cocoa, palms, and breadfruit trees wave their branches on either side, an 1 from the fastnesses of murky swamps richly-coloured aquatic plants rise in luxuriant wildness. The cries of gorgeously plumaged birds are heard on all sides, and now and then tin discordant notes of monkeys, parrots, and other natives of the wood. On the low, muddy banks of streams yellower than the Piber can be seen the huge unwieldy forms of alligators sunning them. selves and awaiting some unlucky object of prey. Slmost all the towering trees are clasped in the vice-like embrace of plants of parasitic growth, and many tottering trunks attest the effect of such close companiouship. Nlong the sides of the road and upon the woody banks of the streams passed orer are to be seen the thatched habitations of the mongrel specimens of humanity that live on the Isthmus. The rainy season commences in May and lasts uniil October, aud it rains " hot water," according to the statement of residents. The wires of the Isthmus Telegraph Company run alougside the tracks. The dampness of the earth is guarded against by setting the telegraph-poles in concrete. Tho railroad-tıes are made of lignum-rito, laid on a stone ballast. The rallroad and rolling stock have probably cost $12,000,000$ dollars.

AMERIOAN RAILROAD gTATIONS.

Itis well known that bince the civil War, progress in the United States has been rapid and vigorous in all dirme. tions, but in no departmeat has this progress been mort marked than in railroads. The main lines or arteries through. out the country aro bocomidn every day more sabatantial and their permanent way stations, warehouses, shopb, \$0.. are rapidly assumiag tbr solid apprarance tnat w. see on Engliah and Contsnental roads No roed stands bigher in this respect than the Pennsylvanis Radroad. in fact, it bas always main. tained a pro-eminent reputa tion in matters of this kual, with its iron bridges, its solld ballasted track, steel railo. and fine shops
We publish on this pag and the next engravings from Engincering of passanges station erected recently an this line at Bryn Mawr, eight miles from Philadelphia, a portion of the conntry thronged with summer resid. ences and country seats of wealthy Philadolphians. It is only a sample of a number of others on the road, ad shows what this road is ctoing, and promise to ccn. tinue doing, for the comfort of its patrons.
This station consists of a main passengor building and agent's dwelling combined, on the south eide of the road, and a passenger shelter on the north side, an from footbrijge connecting both gides to prevent the necessity of passengers crossing on the tracke. The buildings ase constructed of a bandsomo native gneiss rock, with da. k pointing, and Connecticut brown-stone dressinge. The interior is finished op with hard woods, black walnut and ash, throaghoat, and presents a pery handsome appearance The main waiting-room covers an area of 24 ft . bp 37 ft., and has an ope: timbered roof. The building is lighted by gas made on the premiess

Ter London, Huron and Brace Railroad is to be put ander constraction immediately

Onz of a party campetios an island in Muskoke Lake, not slx miles from tha month of Misknoka River, discovered a largo quantity of magnetic iron ore, or magnotic pyrites
बVOGTIVG FINVATAENNGX THL

LIGHTNING AND LIGUTNING CONDUCTORS.

By J. T. Spragut-"Siana."

(In the English Mechance.)
The common conception of lightning may almost be described as a belief that there is a something packel away in the rlouds, whi, hat oume uncertana moment falls from them as a "thunder bult," ur rushes uut upon the earth as a discharge of ""lectir flund," with destructive effects, resembling in zome degree those of the bursting of a reservoir of water. The conductor is regarded as having some a tiraction for the " bolt," and also as a pipe to rective and carry of the fluid. These ideas are not ouly erroncous scicintifically, but they are the source of many practical uistakes in the setting up of conductors which sometimes lead to fatal results.

Those who know tomething of electricity are of course aware । that lightning is strictly analogous to the artificial electric discharge; but the cummon ertoncous views of this latter, based on the fluid the ories of electricity, lead to notions not unlike thosi just described.

The di-charge does nut mercly issue from the clouds and rush to the earth, wut the latter fulfils a function just as important as that of the clouds, the latter are indeed "prime conductors " of Vaturc's great electrical machine, but the force is distributed over a vast "inductive circunt," of which the air and the earth form as much Ω part as the clouds thrmselves, and the discharge is a redistribution of force all over this inductive circuit, not across the air simply.

The thunder cloud is in fact to all intents a condenser plate uron which terminates the polarised chain of a circuit, and there are two vaicties of thunder-storm, which depend unon the nature of the opposite condensing plate. This may be another cloud above, or at a distance from the first; then the dischanges oceur only between the clouds themselves, and the only effect on the earth is of an inductive nature, and is usually slight; this is the case with what is called sheet lughtning, m whels the clouds are vividly illuminated, but there is no line of light visible. In the other class the surface of the earth furms the second condenser-plate, the air and all bodies between the clouds and the carth are "polarised," and assume a condition aualogous to that produced in the neighbourhood of an electric machune at work. Discharge at last occurs in one or more lines jn which the resistance happens to be least, when the lension has risen to a degree greater when the resistance of the circuit c.an sustain. Very slight circuastances determine the direction of this discharge : an animal standirg on the ground, a trec, the presence of extra moisture, or a metallic vein, or a range of pipin' m the ground may suftice. 'tisis is very evident in the case of ships at sea: they will not only draw a flub of lightaing, but will frequently cause a change in the direction of the wind itself, by the electrical attraction they set up.

I have frequently seen this occur. On one occasion a very heavy squall.eloud rose on the weather bow of a ship I was in, withan the 'Tropies, when I was in charge of the vessel, it crossed our course and went nway to leeward, we running up nearcr and nearer to its path: the cloud then stopped, mapidly returned toward us, against the wind we had, and as it reached above us, a violent chnnge of wind occurred, the cloud threw out its charge, struck our fore and main top-gallant mastsand killed two men.

To this same order belong a variety of natural phenomena, such as what sailors call St. Elmo's Fire, when the points of masts and yards are tipped with lambent hames, which resemble the common brush dischare of our machines. A third variety, called lall Lightning, is very uncom non, and its clectrical unture is not at present explainable; if, indecd, it is directly clectric in its nature at all. In this a large ball of fire is seen to roll along the carth, doing great mischief on its path, and apparently having some connection with or relation to the revolving winds called tornadoes or whirlwinds, models of which may frequently be observed in our streets when the dust is not properly laid by watering, and of which the waterspout is another varicty.

In the true thunderstorm the cloud consists of a series of layers or zones opposite by electrified with a similarly arranged but opposite series on the earth bencath, the air between completing an electric circuit. Such a circuit is often extended over many miles, so that when a discharge occurs at
one extremity a corresponding one in the reverse direction (sometimes called the back stroke) occurs at the other extremity, perhaps twenty miles away. The clouds themsolves may be only 100 ft away, or two or thr e miles. Flashes ot such length have indeed been measured by the angle occupied by the line of light and the period between the flash and the sourd of the thunder, which toge ther furnish the means of calculating the length of the visilie flabh. soveral attempts have also bern made to measure the time uccupled by a discharge. droving oljects, when thotographed by its hight, appear as distinct as if stationary, but by means of revolving mirrors it has been ascertained that the actual duration of a flash is some. thing less than 1.500 th of a second, its apparent duration is an effect of our own eyes, due to what is called persistence of vision, owing to which we cannot lose au impression once producer in much less than a sizth of a second, on whech principle are based so many optical toys.

It is frequently stated that the bodies of those killed by lightning are marked with impressions of neighbouring objects. It is hard to say what amount of truth there is in this, and how much natural exaggeration ; credit is most often giveu to a neighbouring tree as the amage copied, and it would seem not unlikely that sach marks are caused by an action like that of the brush discharge, causing a series of striggling lines, which the imaginstion of excited observers converts intoa tree. It is of more moment to those who are alarmed at the flashes of lightning to understand that when a flash is seen all danger from it is passed, a person struck never sees the flayh, ond it would appear that this death is the rost instantancous and painless which can be conceived.

The foregoing considerations as to the nature of the discharge will enable us to see what are the trus principles of conductors to avoid its cffects. They aro not inten led to attract or convey a d scharge from the clouds. Their object is to supersede the condition of polarisation and tension in the space to be protected. 'I'bey do this in a twofold manner--1 They practically rase the earth's surface to such a curved height as corresponds to the electric relations of the conductor and the air ; not in an exact invariable form, as some suppose the protected area to assume ; but still, roughly in a cone from the apex of the conductor, and of a radiu* perhaps equal to the height of the point, but this applies only to the rod its. If, when buildings are in the included cone no law can be given, as the conductivity is affected by their materials and contents Whatever the space protected may be, within it the condu tor lowers or nullifies the condition of tension, transferring it to the space outside the cone, \&c. They react also upon the enterior space in the direction of a reversed cone, by the discharging properties of points when forming part of a polarised area On ponats, the lines of polarisation converge, and so affect the circuit that it will not rise to its extreme t.nsion; the action is precisely that of a point connected to the rubber of a ma. chine, and held (even much beyond the sparking distance), towards the prim \geqslant conductor; in these couditions no charge can be given; a brush disciarge is kept up and a current passes instead. The lightning conductor pertorms the same duties. soon as the charged cloud approaches, and would begin to set upan "inductive circuit" under tension in the air to the carth bencath it, a curreut begins to forr quetly in the conductor, the tension above it is rapidly lowered, and may not be able to accumulate sufficiently for a violent discharge, i.e., a lightning flash, at all; but if it does, the discharge will occur through the space between the cloud and the outer area of the conductor's cone; and the conductor takes it upin the form of a momentary increase of current. In considering theso principles it mu-t be remembered that lightning is not a mere thread of flame, or confined to tho visiblo line; a large space all round the line takes part in the discbarge, and gives up the force previously accumulated in it as tension.

These principles sette for us all questions as to conductors. They should connect to carth every pertion of a buildiag, and as that is possible only with metal buildings, they should connect overy salient point and as much of the surface as possible, so as to extend around the building the area of low tension, or artificial "earth" surface opposed to the cloud. Chimness reqLire especial attention, because they are tubes lined with cond cting material, containing warmer air, and if with fires, then extending a comparatively good conductiag column of wirm air torrards the cloud and so inviting a discharge ; hence it is that lightning almost always enters a houso by the chim-

nays. All doors and windows causing currents of air should bo clored during a thundesstorm.

The prime essontial is a good connection to oarth ; water and gas mains provide the best if the conductor is well secured to them; next to them is the metal shaft of a good pump, in a well constautly supplied by springs; then ponds or ditches. What is required is a largo metal surface terminating the conductor, and in contact with a stratum of muist earth, so that a hole sunk into wet gravel, into which the conductor is led, and surrounded vith a quantity of coke to increase its surfuces of contact, will answer, but dry clay, or rock is not safe. This connection should, if possible, surround the building by means of rods from its various corners, cither led to different earths or else continued by a rod round the bouse to one earth connection Erery piece of metalwork about the building should be utiliser such as ridge cajus, guttering, and water pipes. They cannot be trusted as conductors because of the juints in them, which offer great resistance, and therefore preveat reduction of tension, but they will help to form a protecting network around the building, especially if strips of copper are soldered across each joint Gas and water pipes within the building, and any tall metal work are sources of danger, the former also because they are in contact with the earth, it 18 b :tter to connect them at their highest points with the conductors by wres through the walls, but care must be taken that they do not givea better path than the conductor itself, as if they do, the leaden parts might be melted; this will depend greatly upon the "earth" mad. by the conductor. If this is itself of sufficient siz ω, and connected to the mains, it will be perfectly safe. Several accidents have occurred by gas-pipes, bell-wires, \&c., having enther received a direct charge through the walls, or having a violent current induced in them. The terminals should be attached to all high or salient points, most particularly chim-ney-stacks; if these are wide, and contain several chimneys, it is safer to have two points, though usually one is sufficient, but the kitchen chimney, or any one commonly used, should be specially attended to. The points may be made of rods of lin iron drawn out to a point, rising 2 ft . or 3 ft . above the building, they are better also for galvanisiog. There is no advantago in any of the fancy points, patented or otherwise. The conductor depends upun the bulding. A factory chammey or church steeple should have a copper conductor of at least $\frac{1}{2}$ in. scction, cither as a rod or as a wire rope, well protected agannst injury. For smaller buildingsiron rod will answer, and in most cases galvanised iron wire, about finch, such as it used for telegra,hic lines, will answer perfectly, if brought from several salicnt points and carried down the different sides of a house as connected as above described; but for a simple conductor at least $\frac{1}{2}$ in. should bo used. Solid rod is best as it exposes least surface to rust, for it is the mass or weight of metal which conducts, not its surface as somo suppose, but every joint must be carcfully made and soldered to secure perfect contiouity and low resistance.

It will be seen that the conductor should in no account be insulated from the building. In some electrical experiments wo surround an electrometer or other epparatus with a cage of wire connected to "earth" or to the negative pole of the source, in order that it may not be influenced by any external electric actions. That is exactly what we want to do with our buildings, to so connect their exterior surface with the carth, the pint of zero tension, as to prevent their contents from being affected by external electric disturbance. An iron bouse well connected to earth and iron roofed, would not only be perfect. ly saie, but its iamates mould scarcely feel any of the cífects usually produced on the nervous system by "thundering weather," except so far as these are due to heat The object aimed at in our lightning conductors should be to approach that condition as much as possible ; to obtain an enclosed arca within a conducting envelope provided with points and connected with earth.

A siry of Connecticut brass and copper wire manufacturers recently drew a copper coin into 2700 ft .-more than half a mile-of wire.

A Mifle which the Evans Rifto Co., at Mechanics Falle, Me., are mauufacturing, is sad to be capablo of disclarging thirtyfuur shots in niueteen seconds.

DUSINION.

Tue Lovis and Kennebec Kailway now havo the mils laid ss far as St. Mary's, and will open the lime for traftic in a few days.

Tine first sod of the Pumbina Railw ay was turned on saturday last at the present northera terminus, eight miles from Winnififg Men and teams are preparcd, aud the work is to be commenced this week.

Mr. F.C. S. Ridgewry, formerly Editor of the Ctzen, is at present having a furnace erected at the Baldwin Iron Mine in Hull, whach will be in operation in a few months

Intelligence from the Canada Sllver Mining Co's. Agent at Thunder Bay are encouraging. Ata meeting of Directors last niglit it was decided to make a contract with the miners to drive a level 100 feet duriug the water months.

The manufneturing of eal soda has been begun in Hamilton by C. B. Leickie, late of Scotland. This is the first, it is believed, ever produced in Cauada. The ingredients are obtained from their native locality, within twenty miles of thes city, and the industiy forms an important addition to the list of manufactures of Hamilto.s.

A Lock is to be built on the Muskoka River between Mary and Farry Lakes, by which a fall of over four feet will be overcome. The lock is to be a wooden one, resembling that at Rosedale, and will give a very important stretch of navigation, and another lock or two would add a hundred miles more to the navigable waters.

Tus Sherbrooke Gazetle says the construction of the S. E. 'I'. and Kennebec road 18 being pushed on with vigour, as ten extra mile, are to be graded immediately. Mr. Bowen, who is now in London superinterding the purchase of ralls, advises his partner that he has purchased 700 tons 400 of which are to be shipped on the 10 h inst, and the remaining 300 tons soon afterwards, without delay.

Tue managers of the Canada Southern Road have projected another international bridge which will cross the westera int ranational branch of the Niagara liver, to which a short line will be built from Stevensville, then rum along Grand Island a distance of about 7 miles, aud cross the castern American branch to the main land, near Tonawanda. 'The bridge, it is announced, will be finished in August, 1875, and wall take the road around 3 uffalo instead of tnrough it.

The Nova Scotia Western Counties Railway through Yarmouth county is in an excellent state of progress. The Herald reports that the road is ne arly all completed to brazil Lake, a distance of fourtecu miles; and betreen that point and the county line-a distance of about five miles-a large part of the work is also finished. The company purpose to commence laying the rails about the first of sept mber, and by the ead of the month the locomotive and flat cars whll commence operntions in ballasting the rond.

A syndicate is forming for the purpose of purchasing a half interest in the Templeton Iron Mines, owned by Mr. Haycock, who has consented to the terms proposed. It is intended that the Company to be formed by the syndicate and Mr. Haycook shall erect bloomaries to be in operation nest January, using charcoal as fuel. It is anticipated that the metal produced will be of a very superior quality. On the Company b ing in a position to ylace their own manufactured metal before the public and thus show what they bave to operate on, they will extend their capital, and put into operation extensive works.

The Newcastlo Advocate says:-Track laying is proceeding rapidly on Section 10 L. C. R. From the deep water terminus to the N. W. Bridge and the station buildings, thence along section 10 , somo ten miles are slready laid, and the work is going ahead at the rate of half a mile every day. The two locomotives landed some time ago are hept busily at work hanuing the sleepers, rails, \&c., to their destination. Two new locomotives are now being titted up, having been landed from the brigantine Pierre Polasque, a few days ago, one being rearly for work. We understand two more locomotives are expected this fall. It is eatisfactory to sec such progrers being made torard completion, and we hope no unnecessary delay will be allowed to interioro with the work of track laying.

$\stackrel{\rightharpoonup}{*}$
vebtioal planing maceine.
Vertical planing machines are now becoming pretty general In engineering workuhops of the first class. The Chineso Government have lately established arsemals and dockyards en the European system at soveral of their principal ports, and among the tools sent out from this country by Messrs. John Boarne and Co to formish these catablishments, there is a typt of vertical planing machine which offers several features of advantage. Of this machine we give an illustration.

Upon a planed base plate of cast iron formed with yrooves fitted with a T.headed bolts for the attachment of the object to be operated upon, two strong standards are erected which carry pianed cross pieces at the top and bottom, along which are drawn by means of screws a great upright bar which carrics the catting tool. The toolholder with the tool, or if desired three tools, is made to travel up and down upon the vertical bar by means of a screw-shown in the engraving-and after each cut the vertical bar is drawn sidewass by the top and bottom screprs through a suitable distance, whereby an action resembling that of an ordinary planing machine is maintained, except that the cat is vertical. The foandations in many parts of Ching being precarions, the tool is so constructed as to bo independent of falls or bulldings. The vertical travel is 12 ft., and the horizontal is 16 ft . The catting tool travels up at twice the speed that it travels dorn, and as will be seen by a reference to the engraving, the design is one which combines strength with simplicity. The base plate is formed in two parta bolted together laterally for facility of shipment. Only
abont one-third of its depth is shown above the floor. At tin back of the nachine there is a pit aboat 3 ft . doop in which the attendant stanis when the mechine ls at mork.

gOVETAILING MAGHINB.

We illustrate, nu page 125 a dovetailing marhina manufactured by the Sachasche Maschinen-fairik, of bermintz, an excellent piece of workmanship, and an exact copy of the American machine now largely manutartured by Missrs Kobmson and Son, of Rochdale. The principles of thes machine are too well known to requare a repctition here. It will be sufficient to point out that the saw bledes by which the dovetails are rutare mounted on the discs set at un angle to each other, as shown in the engraving. For a portion of their length around the periphery of the dise they are simple blades, and for the remainder the top of the blade is bent at right augles, so that in entering the wood it may cut the bottom of the dovetail. The timber to bo cut is clamped upon the table, with its edge projecting far cnough to be operated on by the saws, and the table is made to advance by a fceding screw, which is also shown in the sketch. By altering the rate of feed, dovetails of varying pitch mas be cut. By reversing the bent blades in the disc, the recesses for the dovetails may be cut. The table is srranged so that it can be sat at an angle, and blind dovetails formed when desired.

THE POWER OF TLODEBN "MECEANISY": [TS INELUENOE ON ABT.

The world has been told more than once, and with no little suthority, that we are remarkable, if for anything in this age and in this country, for our most wonderful power of " mecha. nism" No one, who will think about it for a moment attentivoly and serionaly, can possibly doubt the potency of the machine: for a visitor to any one of our famons manufactorics, giving but a glance at what is going on in it, must feel assured that mechanlem is gradually and certainly taking the place of the haman element, which has bitherto been a part, and an essential part, of mundane work. It would be very difficult, indecd, to find in the nature of thinge a more foundationally suggestive aubject of thought, as one more capable of influencing practice and practic il life, than this of the over groving power of mechanism. Tho subject just now is more than usually interesting from the fact of its taking a somerhat leading part in the discassions of the various scientific bodies which meet for "conforences" at this season of the ycar We might epecially refer to the eddrass delivered to the Alechanical En gineers by their Presideat, wherein the " power of machinery" is made to be all but omnipotent, ov-n a things are, bat in the fature promises to bo absoluto master, almost of men's thoughts : and when the whole human race shall combine its powers-powers which, when isolated, accomplish sach marvels-its good, and its possible evil effects may surpass oven our dreams. A few thoughts, then, on " mechanibm," as it progrosecs and promises to rule all things, oven are itself, me. have a special interest at the proeent moment and may rouss a thinkor here and there.

In tho first place, to philosophise a little, it mast be remeznbered that tne time was when there was, in our present ense of the word, no "mechanism," no "enginery". Force, or owor, to do heavg work, was got out of haman atrength. Huge bodies of men, as representec in the Egyptian drawings and aculptures, did the work of the norli; and dag and brought up the materials from the earth, and moved them abont afterpards. Levers and ropes were all that werc used to move the huge Colossi from the quarry to the temple, for which they were sculptnred; and kings even do not scem to have diedalned to look on if not to "superintend" the moving of them. All the great and famous temples and poblic buildinge of antiquity every where-for let us for the moment confine our attention to the mechanical forco atilised in buildingawere pat logether, we are quite sure, without the ald of the stamm-ongine, that magic bit of mechanical engineering, which, but to name, is to explain tho progress of modern society. In all antiquity there wes most surely nothing Ulee it, or in any Way approrimating to it. Yet, with all this deficiency of mochanigm, did the antique times, and the men who livod in them, eccomplish work which we nowsduys strive our very utmost, in vain too, to rival, or even to imitate. Why is this? Is mechanism, which Mir. Bramwell so vannted before the mechsaical engineura, a thing to bo regretted, or is it a thing misused, or is it indeed a something which we have yet to see into the true nature of; and to use, but not to over-use.
Tredgold, one of the founders of the age of mechanism, for this is not too strong a term to use here, gaid that, a Enginearing is the art of directing the great sources of power in nature for the use and convenience oi man." Accepting this broad definition, the president wont on to prove, by a variety of proofs, drawn from every eource aroznd ns, that we owe-to
exprefs the idea in one single word-"Civilisation" itself to the efforts of the mind and body of the mechanical engineer, and to tho mechanism which he has created Indecd, so triumpiant is the resull of his labonrs in these latter days, that it is no unrensonable loast to add that we may confine our thoughts on It to a very limited ravge of time, for in mechanicsl enginerring, unlike the work of the poet. or of tho sculptor, or the painter, or the architect, wo have not to go back to past ages to find its triumphs In firt, so little is to be gleaned from antiquity, that the president declares that he will not bo tempted even by the great name of Archimedes to advert to ancient engluecting; but will limit himself to the Jives of those now present amongst us. Now, this is really to say a triumpliant thang, and to marls the age in which we live with a mark which cannot be missed or mistaken-for what more can be sad ? Whoelso can make such a boast as this, and with so much of truth in it. But is it in truth, and in logical fact, the whole truth, and a thing so very much to be boasted of Uught the age, the ninetecntls century, to be so very proud of this absolute supremacy of mechanism. 'The machine doing all things, all but thinking for us, certainly communicating and recording our thinkings. Almost monopolising them. We are inclined to think, looking about us for a brief moment. that there is far more in the nature of thangs than this; and that even the conversion of a "tea-kettle into a locomotive " may be surpassed, at least as a matter of human interest and feeling.

It is, by way of illustration, not a little curious to note the distinction between the past and the present, in their mude of work, and in the character of the work produced, and in what is perhaps more, the mental impression made by the work after it $i=$, by whatever means, brought into being. Of course, we all allow, without a word, that the more easily and cheaply necesearies, of whatever hind, are brought into existence, and distributel, the better it must be for human nature generally; and did the machine but stop here, no one could say a word. But it so beppens, that the machine which does one thing so well, and so cheaply, and in such quantity, maty be made, and is made, to do other work, aud yretty nearly all work. The allpotent mechanism can, as the engineer buasts, manufacture nails and sweet biscuits, by the tull, and that it can do almost without touch of the human haud. all we have to do 18 to stand by and looh at it at work. It is simply marvellous. But it can alos,-and here it is that the artust has good reason. now-a-days, to tremble a little,-not only make bricks, and saw and planc timber, but it moulds them into "gracious forms," and, what is more in every stase of the manufactere and making of the materials which form our garments, from the very coarsest to the very filest, it can, and dous do its entire and triumphant work. From the finest lace, says the president of the engineers, to the sole of the stoutest boot! Indeed, it is even so. It is no exaggerafed boast. He stops here as a fathiul mechanician is almost bound to do, but we may ask agan, is this all pura gain? Is there nothing wanting? Is it a complete triumph, and a national success, when it is sadd, that the "machine "is driving the human bilug fairly out of the field, and doing all his work for him?

And while this is, as must be confessed, no exaggerated or enthusiastic statement, but a sober fact, that machnary, even now, is doing almost everything, mure or less perfectly, which the hum an hand in less advance 1 days did sometimes so very well, it is not enough for the future of engineering a-parations, for we know, and no man ci rtanly can denv its possibility, that within the next fifty years "great zuventions will be made," and we are sure that any one, lookng back to the condition of things in engineering science at the present time, and compairing it with that which he will then know, " will won ler how it was that the men of this day failed to make many a grand discovery which, at that time to him, will be as familar as the steamboat or the locomotive is, now-adays, to us!" We think we might even go further than this in mechanical prophesying, for what is there to hinder the production of everything about us, or which we see, or make use of including even "gracious forms," as the president has it, but the putting the machine to it Art,-一fine art,-for example, to take an extreme case; why, as it is, statues aro all but the result of elaborate and ingenious machinery applied to the formless marble block. They way be, and are, multiplied almost indefinitely by aid of machincry. Pictures,-there are
duced, both for export and import, by machine processes, the hand of man doing but little else than touch up and dovetail together discordant parts. A wonderful process, and ingenious coough. Of architecture we need but to name it, for "here would the smart "ornamental moulding" of the shop be were it not for the all-potent machine which produces it by the mile? We do indeed, own, as we are reminded, our dwellings, as wall as our r'othing, to the skalful labours and thoughtfulness of the mechanical engineer. It would be a right curious inquiry to go through, specification in land, a quite new and smartly-built modern dwelling-house, and note down accurate'y the details ef work-the pure an 1 simple work, by the band of the workman; and on the opposite page of our notebock, the work done wholly by the power of machinery -by almost living mechan.sm. Aud then we migh go a littlo further with the said inquiry and afterwards quietly compare the final result when all is accoruplished-the perfected modern house with a dwelling house of the same size, built in a past age, and before any one of our modern mechanical appliances had any existence, and then note well, artistically and otherwise, the difference between them. How thingo change, as timo goes on, and as they appear to different minds, and how that which is looked at by one human intelligence, as a dead antiquity, and a something waiting to be improved away, hke a City church, is regarded by another as good "pre cedent" to go by, to wonder at, and even to try to copy, sometimes, by and through this power of mighty machinery.
But is this, and we ask it once more, all gama? It is a good thing, and an advance on the old ways of work, to bring in the mighty machine whenever and wherever it can be brought in, and to discard at the same time the hand of man? surely it cancot be so, for a something must be lost by it; viz, that individuality of feeling which can only bo impressed on Nature's materials by the intelligent hand of man! Such a structure as the Parthenon could not by any possibility, by any power of ingenious machinery, bo produced. 4 mechanical dead copy cf it might be, there is no doubt, quickly, and may be cheaply, produced, but the whole classic spirit of the great original must needs be lost in the mechanical processes. Of Gothic work, it need hardly be said that it is in its very esstrce opposed to this mechanical mode of production, and to that unifurmity and sameness of detail which is the necessary result of it. The Doge's palace, to wit, could not be carved out by a machine, however, potent, neither could a copy by machinery be made of it. And may not the like be said of every real and individualised work of art, however small and apparently insignificant? It is impossible to infuse soul, or lifu, or poetic power, into material forms by any puwer of machinery The dua? furm onay be there, but the spirit is absent.

May we not, therefore, conclude that one, and not the least, of the problems of the future of human nature will and must be, not how much the machine may be made to do, and how far it can be made to tabe the work from the human han 1 , but, most momentous thought, where must we stop? Where does the legitimate action of the machine really cease, and where must the hand of the workman and artist come in, and the engine cease its whirling ? It is not how far the machine can be made to do all things, including even the production of "gracious forms," in the future, but where is the ability, whether natural or acquired, to distinguish between the gracious form, as produced by a machine and the same form when the result, of the hand, directed by the mind, of the artist workman. Then, and then only, will it be found out wher in the true aud legitimate action of the wondrous modern "mechanism" lies; what it can do and ought to do, and what it cannot really do. A great problem for the future.-The Builder.

Econony of Iron Cars.-An iron car made of boiler tin, with a capacity of ten and a half tons, weighs but 10,000 pounds, while the wooden car of like capacity weighs 17,500 pounds-a difference 80 great that while 29 londed iron cars make up a train on the Cumberland and Pennsylvania railroad. 20 loaded wooden cars make up one of equal weight. The iron cars stand the wear and tear of usage better that the wooden, come out of a wreck battered and bent but readily straightened out as well as new, where wooden ones would be shivered to pieces and burnt, and the bolts and bars carried away in a basket. And, moreover, there is about $\$ 100$ in favor of the iron car over the wooden when their first cost is considered.

SCIENTIFIC NEWS.

Tue Carbnniferous Plants of Canadn havo been explored by Dr J W Dawson, F R S, who has published a serics of reports upon the sulject, which have been reprinted from the "Transactions of the Geological Society of Canada." The work extends greatly our knowle dge of the Lower Cari oniferous Flora. It also contains a list of the species of the Middle and Upper rosl Meafures, and discusses the character of Sigillarioid and Lepidodendroid stems.

An invention by Signur Abbiati of a now plough for clearng the tracks of railroads, is attractiug attenti.n, and the clam is made for it that it is buth expeditious, therough and cheap. Th machne, which operates on the suow or iee, is a heavy revolving saly, or fau, which cuts inte the opposition deply, and sends the fragments thy thg. The snow is thrown to a great distance on either side or, in case of a very steep tank, it is tahen up and hurlul backward on platform cart, by whilh it can bu removed.
At a private party, glven at his London house during the past month, Sir Charles Wheastone exhbited some curious electrical experiments for the amusement of his friends, which would secm to throw some light on certain so-called" spiritualistic manfestations." In a dark ruom, by a stamp of his ioot, Sir Charles produced a brillant crown of electric light in mud air, whale musical instruments seemed to be played by invisible hande, whercas the sounds really came from an adjoining room, in which the player eat, aud were mado to appear to be produced by the instruments betore the spectators ty an ingenious contrivance. A contest between scieace and the "spirits" in their own chozen feats would be almost as memorable as the celcbrated compettion between sloses and the magicians.
Tae Delleville Ontario is informed that there are fully thirty-five miles of logs in the Moira, including last year's as well as this year's cutting This one fact is a good index of our lumbering business.
The Feit l zatiuy u! Ciemtasas by Hemble Bees.-Thocluged gentian (G.liana - indrew sa, has Auwerd an imeh and a quarter or more in leng'h Thisc inflated, bright blue fluwers of late antumn, appear to be always in the lud, as they uever open. The corolla is twisted up su as to leave no openog at the top. The flowers are all nearly erut, with two stigmas cunsiderably ab ve the five anthers. The writer says he sees but oue way in which it can be fertilized, that is by insects, but who the writer is we are not told. "Several of my students, as well as myself, more than two years ago, have often secn humble bees cntering these flowers. They pry or untwist the opening with their mouth organs and legs, and then pup iato the barrel-shaped cavity, with th. y just fill."
Gom an Froit.trees coneideded as a Pathological Phenowe usi.-M. Prillieux says, in "Comptes Rendus," April 27, that the flow of gum is a real disease, which he names gammose. The alimentary suustances, placed in reserve in the interior tisoues, instead of promotiag the plant's growth, are diverted to production of gum, and a portion accumulates, awaiting the instant of their trausformation about gummy centres, which seem to att as centres of irritation. The case 15 analogous to what occurs when an ins ct deposits one of its eggs in the tissues of a plant, leading to production of a gall, which consists of new culls holding a mass of nutritive matter (particularly fecula) destined, not for the wants of the plants itself, but for the development of the small parasite which appears. The production of gum at the expense of the nutritive matter has no other limit than the complete exhaustion of the plant. Scarification of the bark is the best remedy. Mr. Prilicux's explanation is this :-To cure the diseaso the materials misappropriated to formation of gum must bo brought back to their normal destination. Hence a more powerful attraction for them must be introduced than that of the gummy centres. Now the wounds of the bark necessitate the prodaction of new tissuce, and under this strong cxcitation the reverve matters are employed in formation of new cells, and cease to be attracted in the wrong direction.
A Horizontal Pendulos.-In " Poggendorffs Annalen," C. L. , p. 134, is described liy Herr Zollaer a series of experiments with a form of horizontal pendulum of such surprising delicacy that it seems to open a wide and fru. .ful field for inrestigation. This instrument con-ists of a shoıt horizontal rod suspended by a vertical piece of fino watch-spring, and carrsing at one cad a beary leaden weight and mirror. To prevent
the other end from rising, a second watch-spriar is attached, and fastened below. Tho two points of suppurt he, therefore nearly in the same vertical, and are equatistant, one above and the other below the pendulum. They are connocted wath the top and bottom of a vertical rod, which rests on a tripod, with levelling screws. If the two points lio in the s :me vertial, the weight will remain in any pusition, but if on: of the levelling screws is slightly moved, the pondulum will assume a position of equilibrium around which it will vibrate if dis. turbed. It will act, in fact, precisciy like a common pendulum, except that the effect of gravity has been greatls diminished, so that the time of vibration is increased. Its senmbility is of course readily varied by shifting the livelling screw. In the instrument actually employed, the nadulum weighed about Glbs, and when removed from its supports and vibrated vertically like a common pendulam, ito timo of usullation was about 25 of a second Thesprings wereabo it cisht inches long, and the delicacy of the instrument was such that ats vibrations were casily observed when the time was incrensed to thirty seconds, corresponding to a diminution of the furce of gravity of 14,000 times.
'I'te most extensive deposits of meerechaum in Asin Minor (wo learn from Polytechnurches Centralblut'), is a short way S.E. from the torn of Eskischehr, the ancieat Dorylra, the population of which, isa bout 12,000. Armeniansand Turks, are mostly eng ged in the working and sale of it. It is brought from the galleries of pits 8 to 10 m . in depth. In one pit there wall be 40 to 50 miners ; and thesc, furning a socicty, blare the profits from the mineral. The size of the stones, which are so nerally very irragular, varies from that of a hut, to a culus fuot or more. The mineral, ficsh from the ground is cuvered about a finger thick with red oily earth, and is so suft that one can cut it with a knife. Its preparation is slow and troublesome. After removal of the earth it is dried 5 to 6 days in the sun or 8 to 10 in a hot chamber, then it is cleaned agamand polished with wax. Then the different kinds, of whech there are ten, are corted and carcfully packed with ruol ia luxes. By cleaning and drying, the stunes lose abuat two-theds of thear weight and volume. The largest quantitics are sent to Austria (Vicnna) and Germany, and the ansual expurt is about $8, v e=$ to 10,000 boxes, representidg a valuo of 1, zuo, vou hunius. The Turbisi Government impose a tas of $12 \frac{1}{2}$ per wat. at the place of extraction of the raw material and a further tax of 122 per cent. on the sale.

DELHI CLOLK TOWER.

The Vuniripal Commissioners of Delhi have effected many improvements in that city since the mutinies. the strect, are now amongst the cleanest and best drained, and repaired, of any native citr in the upper provinces. A town-hall, with a ball-room, museum, lecture-room, durbar-hall, measuridy 80 ft long and 40 ft . wide, and an extensive Serai fur the accummodation of native travellers, may be spicially mohthund amongst the works that have been constructed by the municipality. Trees have been planted along the road eides, castiron pillara from England have superseded the old wouden posts that formerly supported the street-lamps, large tanks bave been constructed; and new gardras have been furmed.

The latest improvement is the new clnck-tower, which stands in the centre of the Chandnce Chowk, opposite the town-hall. Of this a photograph is given in "Professionsl Papers of Indian Enginecring," and from that we bave prepared the accompanying engraving.

This building is erected on an apprnpriate site at the crossing of four streets, and stands 110 ft . bigh, exclusive of the gilt vane and final. The lowest story is about 20 ft . square externally. The materials used in its constructiou are brick, red and yellow sandstone, and white marble. The capitals surmountiug the main corner pillars are 4 ft .2 in: wide at top, and 4 ft .6 in . deep; they are carved out of solid blocks of white eand sione, and each of them weighs about two tons.

The dials of the clock are sufficiently elevated to be visible from the. East Indian Railway Station, and from other prominent points in the city. The clock is constructed to work five bells, placed in the open canopy above it; these give out a different peal for each quartor, the largest bell striking the hours.

The building was completed in eighteon months, at a cost, including clock and bells, of 28,000 rupecs, the whole of which amount was provided from municipal funds.

[^0]: - This, and tho sucoeeding articles undor the same title, wrore publishod simultsinouslyin the Journal of the Frankin Invtitute, Phila-

