IMAGE EVALUATION TEST TARGEI (MT-3)

Photographic Sciences
Corporation

T3 WESY MAIN STREET
WEBSTER, N.Y. 14580
(716) 872.4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géngraphiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (I.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planchas ot/ou illustrations en couleur
Bound with other material/
Relid avec d'autres documents

\square
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves adifed during restoration may
appear within the text. Whenever possible. these have been omitted from fllming/
Il se peut que certaines pages blanches ajoutbes lors d'une restauration apparalssent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas dte filmées.

L'Institut a microfilmé le meilleur exemplaire qu'ił lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuyent exigar une modification dans la inǵthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or fexed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualit' indgale de l'impression

Includes supplementary material/
Comprend du matériel supplémentaireOnly edition avaiable/
Seule édition disponible

Pages wholly or partially obscured by grrata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. ete., ont óté filmées à nouveau de façon à obtenir la msilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filrning contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impreszion, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat ot en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporta une einpreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE"', le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent ètre filmés à das taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, cie gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

THE BEST VERTICAL SYSTEM PUBLISHED.

Authorized in the Province of Quebec.

Grafton's Vertieal Penmanship.

Compleed by Competent Teachers.

Easy to L earn.

Graceful.

Easy to Write. Thoroughly Graded.

Practical.

Printed and ruled in the best style on a very fine quality of paper specially made for this series.

Duplicate head-lines are repeated in the centre of each page, and ruled vertical lines assist the pupil in writing perfectly upright.

Price, 8 cents each.

No expense has been spared to make these books superior in every respect.

The system is simplicity itself. The writing staff is divided into only three spaces, and all letters, both small and capital, are brought within these three spaces. The advantages of this must be apparent to every practical teacher. It makes the system simpler and easier to teach, it follows more closely the proporticins of ordinary type, and produces a style of penmanship having more character and dignity than any other scale.

Every single letter form has been carefully considered, so that it might combine in the highest degree the qualities of grace, legibility, and ease of exqcution. After much deliberation, the proportion of 3 in width to 4 in height has been adopted as the basis of the capitals and small letters; the capitals and loops of small letters are made just twice the height of the small letters a, c, m, n, etc. ; and the initial and terminal strokes are made to extend one half-space vertically and hori-zontally-a unique feature, simplifying the letters considerably.

An examination of Grafton's Vertical Copy Books will convince anyone that they are not books hastily prepared in response to a sudden demand, but that they are the outcome of long-continued study and thonght on the part of both the authors and the publishers.

In fifteen months the edition of these Copy l3ooks published in the United Staces has been adopted by School Hoards, over all competitors, in cities and towns having an aggregate population of $5,000,000$.

Descriptive Circular, showing specimen of writing in the different numbers, upon application.

F. E. GRAFTON \& SONS, Publishers,
MONTREAL.

A NEW BOOK ON A NEW PLAN, which sliould be in every schoul in the country. " IT INTERESTS PUPHSS AND MAKES THEM THINK."

Grafton's Word and Sentence Book.

ATTRACTIVELY AND STRONGLY BOUND. Price, 30 Cents.

While the ability to spell correctly is justly regarded as one of the most important objects of education, as it is also one of its most distinguishing marks, the old style of " Speller," with its lists of words in parallel columns, classified only with reference to their length, is, and deserves to be, in disrepute among intelligent teachers.

The Word and Sentence Book recognizes the truth of the educational maxim, " We learn by doing." While it contains an unusually large list of words, classified with respect to their meaning, it provides also, in great number and variety, carefully prepared dictation exercises requiring the pupil to write the words in different combinations. It will be found that by the use of these exercises the primary object of a spelling-book, to enable pupils to spell correctly in written composition, can be most successfully accomplished.

In order to get the best results the pupil must be interested in the book, and it is believed that Grafton's Word and Sentence Book, containing, as it does, not only the best selected and best classified list of words, but a far greater amount of useful and interesting information than can be found in any other look of its kind, will insure his interest.

What they say of the New Speller :

"It is the best."
"Is delighted with it."
"Selections for copying and memorizing are in good taste."
" Has found it perfectly satisfactory."
"I would like to jut every class in school through it."
"The best he has ever seen."
"It heads the list."
" It covers the whole ground.'
" The most practical and interesting he has ever seen. He predicts for it great success."

Authorized for use in the Province of Quedrec.
Adopted for use in the I'nblic and Misyd Schools of Montran.

F. E. GRAFTON \& SONS, Publishers,

GRAFTON'S

GRADED ARITHMETIC

BOOK I.

TEACHERS' MANUAL

WITH ANSWERS

HV
E. W. Aithe;
 \therefore UNTILESL.

MONTRE: DL:
F. E. (GRAETON \& SONS, PUBLISHERS.
1896.

Entered according to Act of Parliament of Canada, in the year one thousand eight hundred and ninety-six, hy F. E. Graftos \& Soss, in the Office of the Minister of Agriculture.

GENERAL SUGGESTIONS.

1. In teaching follow the method and instructions given in this mannal. Little time, however, is needed for teaching compared with the time needed for practice. A sufficient number of carefully graded examples will be found in the pupils' book. The best pupils may work them all; slower pupils should work part only. Do not make quick pupils keep pace with slow ones. Both must be tanght together, but in busy work the one should do much more than the other. Quick pupils may be asked to prove their work. Avoid long examples, which discourage and disgust little children.
2. Sight Exercises, when oral, should be conducted in a spirited mamer. When results are written, an exercise should be assigned, and pupils allowed to perform the mental work and record the answers at their own speed.
3. Endeavour first to make pupils understand the process of a rule; then train them to be accurate; and finally drill in rapidity. Never attempt to gain rapidity to the neglect of acemracy:
t. Go slowly, especially at first; do not measure the ability of the child by your ability. Bring yourself down to the level of the child's mind; be patient: repeat everything many times; review daily.
4. Problems (oral cud witten).

It shonld not be forgotten that the number-lesson may be made an excellent language-lesson. It is of the highest importance that the child give his answers in
complete sentences, plainly spoken, with clear accent. Explanatory statements made by pupils should be simple but clear. 'They should represent the pupil's thought, and be clothed in language of his own choice. A formula or form of analysis may be given to the class later. A problem is not finished when the answer is found, but when it has been analysed. The language may be taken as a safe test that a pupil has completely mastered a step. though it does not follow from a pupil's inability to make an oral statement that he has failed to moderstand the process.

Lead children to make original problems.
6. Slates, scribblers and pencils should be kept in good condition. Figures should be large and distinctly made and written in lines parallel to the upper edge of the slate or book. With begimers it is of prime importance that all lines or columms of figures should be large, ceve, distinct.

NUMBERS 1 TO 10.

A knowledge of numbers up to 10 is presupposed in the exercises of this book. It is presumed that a chitd not only knows them, but can use his knowledge. Of what use to the child if he can count to 100 , but is umable to separate the number 9 into its elements and use them? By means of the eye and by handling objeets (sticks, blocks and other comiters) he has mastered the first ten numbers and their combinations. At the 10 , if not before, the use of objects should he abandoned. The child shouk now be able to gain the abstract idea without the help of oljjects. Objects become a cumbrance as soon as the ehild ean do without them, as they withdraw the attention from the abstract number.

The nore thoronghly the numbers from one to ten are known, the surer and more rapid will be all later work in arithmetic. They are the foundation of the whole number system. A right conception of the first ten numbers will be much facilitated by arranging them in geometrical patterns. *" With a small number of oljeets a random grouping is instantaneously recognised; but not with many objects. Careful observation has shown that with most of us the highest number instantly recognised in a promiscuous assemblage of things is live. Higher numbers than five are subelivided by the eye into more easily recognised small groups. If nine pebbles be thrown upon a table before us, most of us will say mentally, here are three and three and three, nine. A few of the nore expert will say, here are five and four, nine, on the table. searcely one will say at once nine, as we should all say three, if but three were thrown down before us. What is difficult or imposible for us to do, when objects are promiscuously presented, becomes easy in a definite arrangement. This - © is at once recognised as nine, and that withont © © explicit breaking up into three and three and three, although that subdivision is implicit in the conception. The formation of such conceptions of the first ten numbers should be regarded as an essential preliminary to arithmetical rules, should be begun at home or in the kindergarten and completed in the first year of the primary school."

The pattern which is presented to the class as the typeform of a number should be carefully chos an. It ought

[^0]\[

$$
\begin{aligned}
& 3 \bullet \bullet \bullet \bullet \\
& 4 \bullet \bullet \bullet \bullet \bullet \bullet \\
& 5 \bullet \bullet \quad \bullet \bullet
\end{aligned}
$$
\]

$$
\begin{aligned}
& 8 \bullet \\
& 9 \bullet \bullet \bullet \quad \bullet \bullet \bullet \quad \bullet \bullet
\end{aligned}
$$

to be (1) well balanced, (2) easily derived from preceding patterns. If the triangle is accepted as the typical three, and the square as the typical four, good patterns may readily be constructed from these two forms with the aid, pertaps, of some linear arrangement. Special care should be taken in the selection of patterns for numbers above five. The patterns placed first in the series on page 4 can be recommended, and analysis will show how they are related to each other, e.g., the patterns for the seven, the eight, the nine and the ten are all developed from the six, the two triangles of the six being separated by a linear arrangement of 4 to make 10,3 to make 9 , etc.

When a number is being decomposed into its elements for the purpose of comparing and measuring it with other numbers, the remaining patterns will be found useful as suggesting new combinations. If some desired combination is not readily seen, it will be made plain by the use of coloured chalks. Pupils must be trained to make patterns for themselves and to discover in them fresh combinations.

Notes for Book I.

Figures in heavy type at the top of each page indicate corresponding pages in the Pupils' Book. Roman numerals and capital letters on a page indicate corresponding exercises in the Pupils' Book.

I. Numbers 10 to 20.

1. The Ten. We have now reached the first number that must be considered as another kind of one-the ten. We write the figure 1 as before, but to show that this 1 contains ten times as much as the simple 1 , we move it one place to the left, and say this 1 is a ten. The vacant
place of the simple one will be indicated by a cipher, so10. Teach the ten as a group; ten dots joined together, ten sticks bound together, etc.
2. The teaching of each number above ten mist precede the working of the exercises in the book. Show that the numbers from ten to twenty are formed ly adding the first nine numbers to ten. Their names, from 18 to 19 , indieate this, e.g., forrtcen means four and ten: fifteen, five and ten, etc. In writing these numbers the ten is expressed by a 1 in the secoul place and the figure expressing the ones is put in the firs: place.
I. A. This exercise must be worked across the page, not in columms downwards. It involves one new step, viz., the combination of the ten with the nine digits.
I. B. This exercise introduces the key to addition through the ten. When the sumi of two numbers exceeds 10, one (usually the upper in the cohmm) is broken into two parts, the first of which is sufficient to raise the lower number to 10 . The remaining part is then added to the 10 thus formed, e.g., the sum of 6 and 5 is found by breaking the 5 into ++1 , and the operation becomes 6 and + are 10 and 1 more makes 11 . This mentel rearrengement of 6 and 5 into 6 and 4 and 1 , for the purpose of addition, is, fumd!amenial, and must be thoronghly taught. It removes the necessity of committing to menary an addition table, and enables a papil, who knows the elementary sums up to 10 , to add at once more ditticult mambers through the ten. P'actice will soon enable pupils to atd by this methot mpidly and aceurately: when they no longer need the intermediate stop, they must be eneonriged to do withont it, and in most cases they will themselves dispense with it. The process is purely mental, and exeopt in explaning it, oral
expression of it must not be permitted; in adding 9 and 8 , the thought is $9,10,17$, nothing more, instead of 9,17 , without the intermediate 10 .

The fourth line of exercise B must be worked exactly as the fourth column of example A.
I. C. Addition and subtraction should be taught together. The latter process is the opposite of the former, and should be derived from it. As soon as a child sees that 7 and 5 are 12 , he is ready to see that 12 less 7 is 5 , and 12 less \bar{j} is 7 . The difference between 12 and 7 must be inferred from the knowledge that 7 requires 5 to make 12 , and not by counting 7 off 12. Examples must be worked through the ten as in addition, e.g., $12-7$ presents itself in this form: "What number must be added to 7 (the lower number) to make 12 (the upper) ?" The result (5) is found mentally by raising 7 to 12 in two steps, thus, 7 , 10,12 (7 and 3 are 10 and 2 more are 12).
I. D. Such exercises in computation as are here given must be practised frequently not for any great length at one time, but in a spirited mamer at frequent intervals. Successive results only must be named as rapidly is they can be given, e.g., adding by threes from 1 would require pupils to say, $4,7,10,13,16$, etc. The spelling process, 1 and 3 are 4 , and $: 3$ are 7 , and 3 are 10 , etc., cannot be allowed.
II. A. The teaching of numbers from 20 to 100 should precele and accompany these exercises. The exercises, if studied by the teacher in advance, will themselves indicate the method of teaching. As before, every ten should he regarded as a group or bundle, and the number of such groups or bundles should be called so many tens, the surplus left over being called ones or units.

A child must be taught to give clearly and exactly an analysis of numbers, written or spoken. Upon his ability to do this rapidly will depend his power to compute. E.g., in 49 he must see at once 4 tens and an added 9. Concerning such a number he must be able to tell (a) that it consists of 4 tens and 9 units, (b) that it requires 1 unit more to make it 5 tens.

In counting, the following device may be tried with advantage :-
Count by ones (say) from 30 to $50: 31,32,33,34,35,36-$ "Stop!" the teacher says, "Where are we?" Ans.-"We have passed the third ten by 6 ; we require 4 more to make 4 tens, and still another ten to make 50."
II. B. All these exercises are to be worked in tens, e.g.:
$90+50=140$ (9 tens and 5 tens are 14 tens).
$100-60=40$ (6 tens requires 4 tens to make 10 tens).
$79+20=99$ (7 tens and 2 tens are 9 tens; 9 tens and 9 units are 99).
$93-40=53$ (4 tens needs 5 tens to make 9 tens or 90 ; and 3 units more to make 93 .
III. The practice of giving to the unit figure great prominence in elementary instruction in number is to be commended. Even in grades where the last figure is not spoken of as the unit figure, the same method of instruction should be pursued. In adding digits to decades, e.g., 7 successively to $14,24,34$, etc., pupils must be made to observe that 7 and 4 , or 4 and 7 , added together will always give 1 as the unit figure. Kesnlts must still be obtained by computation throngh the ten $;: 34+7=34+6$ $+1=40+1=41$, or in rorrls, 34 requires 6 to make 40 , and 1 more makes 41. But the memory soon comes in, so that pupils will instantancously remember 1 as the unit fignre resulting from an addition of 7 and 4 or 4 and 7 . So conversely in subtraction, where 1 and 7 are the mit figures, a resulting 4 (or from 1 and 4 , a resulting 7) will be instantaneonsly remembered.

The book exercises, pp. 10 to 13, on digits and deeades, are to be all worked mentally. Children may copy them or not before working, as the teacher thinks wise. Examples which involve several additions, or additions and subtractions combined, may be omitted at this stage by duller pupils.
IV. A. These exercises, like all others written in columns, should not be copied, but added from the book, results only being recorded. Pupils should here be taught to check each addition by adding from the top down, as well as from the bottom "p.

IV. B. Practical Questions.

1. The first of the three exercises here given is intended as an exercise in adding concrete numbers silently. The teacher should dictate the numbers with sufficient slowness to give the pupils time to add, but with sufficient rapidity to prevent connting. Answers are to be written simultaneously on slates.

The examples here given are models only, and their number should be increased. Digits and decades should be added in the same way, e. $!\cdot, 25$ pencils and 8 pencils? 17 dollars and 6 dollars?

2 . The second exercise will form a similar model for the silent subtraction of concrete numbers.
\therefore The third exercise has quite a different purpose, and may be employed and added to with much benefit. It is intended to train the pupil to thimk and to tull: The teacher says, "There are $\$$ girls and 11 boys in the class." One pupil may say, "There are 19 children in the class." Another may say, "There are $: 3$ more boys than girts in the class." Another maty say, "The number of girls is 3 less than the mmber of boys." This exercise is incidentally a language lessom. The teacher should see that pupils always answer with a sentence.

By way of preparation for this exercise it will be well to give some simple concrete questions in addition and subtraction, to which the pupils must reply orally in sentences, first finding the sum and then the difference ; e.g., the teacher says, " 7 counters and 3 counters?" The pupils say, " 7 counters and 3 counters are 10 counters, and 7 counters less 3 counters are 4 counters." The words "sum" and "difference" may now be required from pupils, e.g., the above question may be answered, "The sum is 10 counters; the difference is 4 counters."

Before passing to multiplication aud division let the teacher write on the board two colmms of $+\left.\right|_{-}$ for review work in addition and subtraction, and ought not to be erased, heing kept for constant practice whenever a few minutes can be spared. The teacher with a pointer will indicate the successive numbers, the operation being indicated by the sign at top of the columm. When a figure in the first column is pointed to, the number which it represents will be added; but when a figure in the second

2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9

V. Multiplication Table.

1. See that pupils have a clear idea of "fimes," and then of a number taken several times. The successive tieks of a watch, somuds of a bell or strokes of a choek will illustrate times.
2. Multiplication is to be taught as a short method of adding a mumber to itself. Thus $: \times 6=2 t$ is a short method of finding $6+6+6+6=24$. Children must construct for themselves each table. In teaching a table observe carefully the following steps:-
(a) Let the results that are to be memorized in the table first be proved by rows of dots as shown in the pupils' book, p. 18.
(b) Let pupils make the table by comnting (adding) by equal increments, $e .!!$, if the table of 6 's is to be learnt, this step calls for adding by 6 's up to $60:-6,12,18,24,30,36,42,48,54,60$.

The rate at which these successive numbers are named will at first be slow, but will become gradually quicker as facility is attained.
(c) The table must then be read and recited as follows :-

$$
1 \text { six, } 6 ; 2 \text { sixes, } 12 ; 3 \text { sixes, } 18 ; 4 \text { sixes, } 24 ; \text { etc. }
$$

No other words should be spoken or thought of.
(d) Study, recitation and frequent repetition are still required to fix the table in the memory.

Division Table.

The division table, though given in full, must not be committed to memory. Division must be taught as the reverse of multiplication; and the elementary quotients must be derived from the elementary produrts. Division and multiplication at this stage must be taught together. As soon as a pupil has learned that 6 fires are :00, he is prepared to see that $: 30$ contains 5 six times. The question, reversing the process, should be first put thus: How many 5 's in :30? or, In :30 how many fives? The form of question may afterwards be varied as follows: How many 5 's make 30 ? 30 contains how many 5 's? 30 contains $\overline{5}$ how many times? \bar{z} is contained in 30 how many times? etc.

The boot exercises, pp. 18-26, on each table should accompany the learning of the table. The problems at this stage both in multiplication and division ought to be illustrated by drawings, rows of dots, ete.
K.g., How many cents must I pay for 4 three-cent stamps:

This problem may be ilhestrated by drawing four oblongs representing the stamps, and placin: dots above each to represent the cents.

Hatives, thinds, fourihs, etc., shonld be taught from fraction disks, and problems involving their use illustrated afterwards, e.g., 16 ounces in a lb. How many omees in $\&$ lb, " 16 dots (4 rows of 4
each) may be drawn, representing 16 ounees, and one-quarter of them then marked off.

The task of committing to memory the imultiplication table may be shortened by several devices which are educationally sound. The following are recommended :-

1. The table of ticos should be derived from addition as something already known ; and that of tens from numeration and notation. These tables may be taken first.
2. Prove (but do not enumeiate) the principle that the product of two fasters is the same in whiehever order they are taken, e.!., $3 \times 5=$ 5×3. This may be shown by rows of dots whieh, read horizontally, make 3 fives; read vertically, make 5 threes; or by adding a eolumn of 3 fives and then one of 5 threes. This prineiple, whieh proves that 3 fives and 5 threes give the same result, and need not be memorised as independent faets, reduees the number of products to be memorised in each table progressively by one. In this way, when nine times is reaehed, 9 nines is the only result not already learned.
3. Five times is easy to remember, but, for the sake of the training involved, is best taught in eonneetion with ten timen, every two fives making a ten. S fives=1 ten; 3 fives $=1$ ten and five or $15 ; 4$ tives $=2$ tens or $20 ; 5$ fives $=2$ tens and five or 25 , ete.
4. The mines, which are difficult to memorise, may be thus simplified : Nine is one less than ten; therefore, 2 nines are 2 less than 2 tens or $18 ; 3$ nines are 3 less than 3 tens or $2 \overline{7}$; ete.

These processes, once understood, must be worked mentally, not repeated aloud. Dull pupils will still use their unreasoning memory.

VI. Practical Questions.

A contains easy mental questions in multiplication. B and C contain similar questions in division. In both cases the questions should be considered as samples, and their number increased.

This exercise is intended to develop oral cepression and anclysis. The analysis given in the Arithmetic must be followed. Each example shonld be analyced cleurly and roncisely, and recited with distinctness and promptitude, inist by some one pupil, then by the class. Practise this exercise until you have attained the desired result.

Before passing to written work, let the teacher write four columns of-figures on the blackboard, as represented in the margin. This is a practical exercise to make pupils rapid and accurate in the mechanical processes of adding, subtracting, multiplying and dividing. For the method of conducting this cxercise see directions on p. 10 of this Manual.
VII. Numbers to 1000.

1. Teach the place-value of a

+	-	\div	\times
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

2. Require pupils to write numbers from dictation, their component parts being given in order and out of order, e.g., 1 unit, 5 tens, 6 hundreds; and to name at sight the component parts of any number of 3 figures.'
3. The addition and multiplication of hundreds will result in giving a figure in the fourth place, viz., units of thousands. Give the name thousands to figures in the fourth place, but do not teach the thousand period.
4. In writing numbers from dictation give special drill on numbers that present difficulties, e.g., 101, 106, 413, 219. Such numbers as 756 are seldom read or written incorrectly.
VIII. The result found by addition is called the sum. The numbers to be added are called addends. These terms must be now explained, and afterwards used constantly. No definitions need he memorised.

Addition.-Two cases, (a) without carrying, (b) with carrying.

$$
\begin{aligned}
& \text { A. } 341+415+122 \text { (no carrying) }:- \\
& 341=3 \text { hundreds }+4 \text { tens }+1 \text { unit. } \\
& 415=4 \text { hundreds }+1 \text { ten }+5 \text { units. } \\
& 122=1 \text { hundred }+2 \text { tens }+2 \text { units. } \\
& \overline{S 78}=8 \text { hundreds }+7 \text { tens }+8 \text { units. }
\end{aligned}
$$

Like is added to like, units to units, tens to tens, hundieds to hundreds. Impress and illustrate this principle.
B. $594+687+555$ (carrying) :-

$$
\begin{aligned}
594 & =5 \text { hundreds }+9 \text { tens }+4 \text { units. } \\
687 & =6 \text { humdreds }+5 \text { teus }+7 \text { units. } \\
555 & =5 \text { hundreds }+5 \text { teus }+5 \text { units. } \\
\overline{1836} & =\overline{18 \text { hundreds }+3 \text { tens }+6 \text { units. }}
\end{aligned}
$$

The sum of the units is 16 units; but 16 units make 1 ten with 6 units ove:. We write down the 6 units and carry the 1 ten to the column of tens (like to like).

The sum of the tens 1 (carried), 5, 8, 9 , is 23 tens; but 23 tens make 2 hundreds with 3 tens over. Write down the 3 tens and carry the 2 hundreds to the eolumn of hundreds.

The smin of the hundreds, 2 (carried), $5,6,5$ is 18 hundreds.
The answer may be read, eighteen hundred and thirty-six.
Note 1.-Teaeh the extended method and the short method together.

Note 2.-The extended method must be reviewed again and again till pupils thoroughly grasp it, and are able to reproduee it. This aeeomplished, the showing of the extended work should only be ealled for oceasionally.

Note 3.-Where examples in addition are arranged in eolumns, pupils should atd from the book without copying, results only being recorded on their slates. They will get plenty of praetiee in copying other examples not arranged in eolumns.

Note 4.-Book exercises must be commenced as soon as pupils understend the process of the rule. Do not put off the mechanical drill intil they are able to reproduce the extended work. In teaching the four simple rules observe the following steps:-(1) Make pupils understand the process of iae rule. (2) Truin them to be accurate by mechani. cal practice. (3) Drill them in rapidity. (4) Make them show the process. by reproducing the extended work.
IX. The method of finding the part that remains, when a smaller number is taken from a larger, is called subtraction. The number that remains after subtracting is called the difference. Subtraction is very closely comnected with addition (being its opposite), and must be tanght by means of addition. The larger number is the sum, the smaller number is one of two cuddends. The remainder is the other culdend. To show this relation introduce subtraction as a variation of addition in the following way:-

432

978

Suppose this example in addition has just been worked. Erase one of the addends, say 546, and then ask the class to discover what it was. Leal them by judicions questioning to reproduce the missing addend, e.!., the sum is 8 and one of the two addends is 2 ; therefore, the other must be 6 . The sum is 7 and one of the two is 3 ; therefore, the other must be 4 , and so on. When the missing addend is thus reproduced, prove its correctness by addition. The other addend may next be erased and reproduced in the same way.
$\begin{array}{lll}\text { The next step, will be to rearrange the nmmbers } & 978 & 978\end{array}$ after the mamer usual in subtraction, and agion $546 \quad 432$ find the missing addends.

This method has the following advantages to recommend it :-
(a) It shows clearly the relation between addition and snbtraction.
(b) We easily derive from it a rule for subtraction, viz., to ruise the lower line so as to equal the top line.
(c) We easily derive the proof of subtraction, via., that the rematinder and lower line (the two addends) will give the top line (the sum).
(d) The borrowing becomes the currying of addition.

Note.-Do not mention or teach the terms minuend or subtrahend. They will come in later.

Pupils must be able to show the work extended as before:-

$$
\begin{aligned}
& 623=6 \text { hundreds }+2 \text { tens }+3 \text { units. } \\
& 237=2 \text { hundreds }+3 \text { tens }+7 \text { units. } \\
& \hline 386=3 \text { hundreds }+8 \text { tens }+6 \text { units. }
\end{aligned}
$$

7. units require 6 units to make 13 units. Write down the 6 units and carry 1 ten. 4 tens $(3+1)$ require 8 tens to make 12 tens. Write down 8 tens and carry 1 hundred. 3 hundreds ($2+1$) require 3 :hundreds to make 6 hundreds.

Note 1.-Carrying 1 ten means that having raised 7 up to 13 (instead of 3), we are 1 ten to the good in raising the next figure of the lower line up to the next figure of the upper line. Do not waste time in explaining this. It will be evident when the subtraction is proved by adding 386 and 237 .

Note 2.-Though the exercises in the text-book give 4 figures (thousands), extended work need not go beyond 3 figures (hundreds).
X. Multiplication is a short method of adding a number to itself. Prove this by working a few examples (as 3 times 41:) both by addition and multiplication. Pupils should occasionally be required to prove an example by addition.

The number to be multiplied is called the multipliaand. The number by which we multiply is called the multiplier. The result is called the product. Explain and afterwards constantly employ these terms.

A complete analysis of the steps used in multiplication is too difficult for pupils at this stage; but they must be taught to show extended work, as before, up to hundreds.

$$
\begin{aligned}
495 & =4 \text { hundreds }+9 \text { tens }+5 \text { units. } \\
\frac{4}{1980} & =\overline{19 \text { hundreds }+8 \text { tens }+0 \text { units. }}
\end{aligned}
$$

4 times 5 units (4 fives) are 20 units. 20 units are 2 tens and 0 mits over. Write down 0 and carry 2 tens. i times 9 tens are 36 tens, which with 2 tens carried make 38 tens. 38 tens are 3 hundreds and 8 tens over. Write down 8 tens and carry 3 hundreds. 4 times 4 hundreds are 16 hundreds, which with 3 hundreds carried make 19 hundreds.
XI. Division is finding how many times one number is contained in another (e.g., how often 5 days are contained in 20 days), or separating a number into equal parts (e.g., distributing 20 apples equally among 5 boys).

In division there are two numbers, called dividend and divisor. The dividend is the number to be divided. The divisor is the number by which we divide. The result or answer found by division is called the quotient. The part of the dividend left after dividing is called the remainder. Explain and afterwards employ these terms.

A complete analysis of division need not be attempted, but pupils must be taught to show extended work up to hundreds.
5) $732=5$) 7 hundreds +3 tens +2 units.

146 with 2 rem .1 hundred +4 tens +6 units with 2 rem .
5 is contained in the hundreds, which are 7 , once with 2 remainder. Write down 1 under the hundreds. The 2 hundreds remaining are equal to 20 tens, to which are added the 3 tons in the dividend, making 23 tens. 5 is contained in 234 times with 3 remainder. Write 4 under the tens. The 3 tens remaining are equal to 30 units, to which are added the 2 units of the dividend, making 32 units. 5 is contained in $\mathfrak{3} \mathbf{6}$ times with 2 remainder. Write the 6 under the units and the 2 as a remainder.

$$
4) \frac{136}{34}=\frac{1 \text { hundred }+3 \text { tens }+6 \text { units. }}{0 \text { hundred }+3 \text { tens }+4 \text { units. }}
$$

4 is not contained in the hundreds, which are l. We show this (in the extended form) by placing 0 under the hundreds. We then write the 1 hundred ($=10$ tens), with the 3 tens of the dividend, and proceed as before. The absence of a remainder is not recorded.
XII. Time.-Teach time at this stage by the clock, begining with the hours, half-hours and quarter-hours, and ending with the minutes. The following units of time should be taken: minute, hour; hour, day; day, weck; ucek, month; month, year.

The Roman numerals to XII must be taught from the clock-dial. I one, V five and X ten shonld be taught first. The others are combinations of these three. When I precedes V or X , it must be subtracted from it: when I follows V or X, it must be added.
XIII. Capacity.-By way of introducing a table, have a talk with the children to find out what they know about it. Even little children will know something about buying milk, coal-oil, etc., by the pint, quait and gallon. Have these measmes in your class-room, and prove the reality of your table, using water or dry sand. The table must then be copied and learnt, and drill given upon it.
XIV. Length.-The measuring strip here suggested should be of thick paper or cardboard. It may be prepared by the pupil at home, if it cannot be conveniently done in school. No work is to be done by means of this measure : it is to be used as a test of correctness only. The length of all lines or objects must be guessed, then measured, the difference between the estimate and true measure being found and recorded.

XV. Mental Exumples.

In these examples, when the problems are given in concrete form, an oral statement should be called for;
E.g., 40 roses; 9 faded; how many left? Ans. 40 roses less 9 , or 31 roses are left ; or 31 roses are left, the difference between 40 and 9 .

Mary is is yours older than Jane, who is 8 . What is Mary's age? Ans. Ma.g: 3 years old, because 5 and 8 make 13 (or hecause the sum of 5 and 8 is 13).

For oral statements of examples in multiplication and division see P1. 27 and 28 l'upils' Book.
XVI. When problems involving concrete numbers are given in the Test Exercises, the following plan is recommended :-

1. Let pupils first endeavour to solve such exanples without aid and without giving any written statement of the process.
2. Let the teather draw from the class by questioning an oral analysis of these exanples.
3. Let pupils now work the examples a second time, giving a written statement sufficient to indieate the process.
E.g., If 4 tishermen catch 920 fish and divide them equally, how many fish will each have?
(a) What is given in this example? Ans. (drawn from several pupils). That there are 4 fishermen ; that they eateh 920 fish ; that they divide them equally.
(b) What is required? Ans. To find how many fish each fisherman will have.
(c) Whieh of the four methods or rules shall we nse to fin? this? Ans. Division.
(d) Employing division, what shall we do? Aus. Divide 920 by 4, or 920 fish into four equal parts.
(e) Why? Aus. Becanse each fisherman onght to get \ddagger of the whole.

The pupils, after this oral analysis, proceed to work the example a second time, and are now expected to give some written statement of the process. Something like the following will be sufficient:-

Each fisherman will have $\frac{1}{4}$ of 920 fish.
4) 920 fish.
$\frac{1}{4}$ of 920 fish is 230 fish.
230 fish.
$\overline{\mathrm{X}} \overline{\mathrm{V}} \overline{\mathrm{I}}$. Before teaching numbers to $1,000,000$, study the questions in this exercise and the test questions that
follow. The division of numbers into periods of 3 figures each must now be taught. Review the place-value of a figure. The three piaces of the units' period have already been taught, viz., the units' place, the first; the tens' place, the second; the hundreds' place, the third. On commencing instruction on the thousands' period, leach the names of the 3 places, thousinds (or units of thousands), tens of thousends, humdreds of thousands; also the correspouding numbers of the places, fourth, fifth and sixth.

Notation, mumeration, decimal scale must be explained and the definitions given in the book committed to memory.
XVIII. The object of this exercise is not to teach Canadian money (which is dealt with in Book II., Ch. I.), but only how to read and write it. Attention must be drawn to the following points:-
(a) Dollars and cents are separated by a point.
(b) The eents ocenpy two places, the first being single cents (mits), the second ten-cent pieces (tens).
(c) When the number of cents is less than 10 , a nought must be put in the secomb place to indieate the absence of tens.
XIX. The definitions relating to addition here given (and all definitions hereafter given in the pupils' book) are to be eommitted to memory. Before this is done, not only the terms nsed, but the arithmetical rule to which they apply, should be fully umlerstood. *"The question, 'How shall pupils learn to express each rule and its reasons?' does not so much concern arithmetic as comi-

[^1]position. It is not a question of ealculation, it is a question of the right use of language. Nothing must be done that the ehild does not understand as he does it. It is not grood training to say to a ehild, ' Do or learn this, that or the other thing. You will understand it later.' He may understand it better later, but even as he does it or learus it, he should have within himself a suffieient reason for the doing or learning. Therefore, not so mueh in the interest of the pupils' arithmetical instruetion and training, as of his general mental enlture, let him attempt the enunciation of the rule, and let him argne the correetness and eonvenience of the rule. Let this be done at first in answer to questions given by the teaeher, - What do you do first in adding several numbers (or in subtraeting, moltiplying or dividing one number from or by another')? What then? And then?' The answers will very likely be imperfect. If erroneous, the error will probably be an error of omission, and the imperfeetion or omission may be bronght to light by further questioning, or, better still, by the teacher's attempting to to exactly what the pupil has said should be first done. No step by step all the elements of the rule are prominently and distinctly presented."
XIX. A. Drill in culdiny biy cqual increments must be given at frequent intervals. (For method see p. 7, I. D.)
XIX. U. To the first number add the mates of the second number, and to the result add the tens of the second number: $\because 9 ., 65+36 . \quad 6 \tilde{5}+6=71: 71+: 0=101$.

The following method may be usel, if preferred. Adh the tens first ; then the umits. Combine the two, e.!., bis +36 . 6 tens +3 tens $=9$ tens or $90 ; 5+6=11: 90+11=101$.

In alling dollars and cents (involving four figures) pupils may be allowed at first trial to record the sum of the cents before adding the dollars. The exercise may b. repeated later withont such indulgence.
XIX. I) and E. The suggestions, including the notes, made for the teaching of written addition on p. 14, still hold good. Read and follow them. Extended methods need not be taught beyond four figures.

Such examples as 9 times 987 (see E. 13), when given under addition, must be worked by culding 987 to itself mine times. They may be proved by multiplication.

Note.-A figure in the secenth place will sometimes occur in the answers, as the result of adding a column of figures occupying the sixth place. Give the name millions to a fignre in the seventh place, but do not teach the millions' period.
XIX. F. All problems ought to be analysed orally by asking (a) what is given, (b) what is required, (c) what steps and methods must be employed. For method of analysing see p. 19, XVI.

The denomination must be marked in all answers involving concrete quantities.
XX. A and B. Raise the smaller number so as to equal the greater. This may conveniently be done in two steps: (1) raise the units of the smaller to the units of the larger; (2) raise the tens.
E.g., 79-19. 19 requires 60 to make 79. (Second step outy, the units heing already the same.)

78-34. 34 requires 4 to make 38 , and 40 more to make 78. Ans, 44.
86-29. 29 requires 7 to make 36, and 50 more to make S6. Aus. 58 .
The first step gives the units; the second the tens.
XX. C. Wraw attention to the different ways of wording a question in subtraction. The method of working remains the same.
XXI. C. Do not forget the oral analysis of the problems.
XXII. This exercise takes up examptes for the solution of which both addition and subtrution we requirod. See that each step is fully moderstood. The examples
increase in difficulty so that some of those given under 1) and E may require explanation. lroblems must be analysed orally. The short method of adding by multiplication must not be permitted.
XXII. B. Brackets, inclosing nmmbers, indicate that whatever is contained within the brackets is to be treated as a single number.

Therefore, if within brackets there are several numbers comeeterl by signs, the operations denoted by these signs must be performed, before any operation denoted by a sign outside the brackets. E.g.,
$31-(8+6)$. The numbers $8+6$ inside the brackets are to be treated as a single number, and our first step is to find their sum. $31 .-(8+6)$ $=31-14$ (first step) $=17$ (second step). This example should be read "From 31 take the sum of 8 anel 6 ."
XXIII. The millions' period is to be taught like the thousands' period. It occupies the secenth, eighth and ninth places, consisting respectively of millions (units of millions), tens of millions and hundreds of millions. Dictate numbers as follows: 801 million, $60^{\text {º }}$ thousand, $760 ; 19$ million and 1 ; ete.
XXIV. The tables of elecens and tweltes are best learned from tens. Eleven is 1 ten and 1 : \because elevens are 2 tens and 2 or 22 ; $:$, elevens are 3 tens and $: 3$ or 33 , etc. Twelve is 1 ten and $2: 2$ twelves are 2 tens and 4 or $24 ;: 3$ twelves are 3 tens and 6 or $: 36$, etc.
11×11 and 11×12 must be memorised and shonld receive special attention on account of their difficnlty.
XXV. A. In multiplying at sight begin with the tims. E!.y., $40 \times 9=t$ tens $\times 9=36$ tems $=: 360$.
$84 \times 7: 7$ times $80=.560 ; 7$ times $4=28 ; 560$ and $\because 8$ $=588$.
XXV. B. 22. Division by factors. Hov to find the remainder when one exists, e.g., 670408 $\div 35(5 \times 7)$.
5) 670408
$7 \underline{\underline{19154}-3 \text { fives over }}\} 3$ fives +3 units $=18$ rem.
The first division by 5 distributes the units into groups of fire each, with 3 units over. When we again divide these groups of five by 7 , we get 3 over ; but these are 3 fives, not 3 mits. The true remainder is then found by adding the two. From this derive the rule, "Multiply the second remainder by the first divisor and add the first remainder."
XXVI. A. Multiplying a number by 10 is to raise it from units up to tens, e.g., $2: 3 \times 10=2: 3$ tens $=230$. Examining the result we find that the figures composing the number remain unaltered, but each has heen moved to the next higher place, and a cipher has been inserted in the units' place. Hence a number is multiplied by 10 by amexing a cipher.

For the same reason annexing two ciphers increases the value of a number 100 times (raising each digit two places), and therefore multiplies the number by 100 .

To multiply a number by 20 , multiply by 10 and 2 , i.e., amex a cipher and multiply by 2 ; to multiply by 700 , multiply by 100 and 7 , i.e., amex two ciphers and multiply by 7 , etc.

In the same way and for the same reason, a number is divided by 10 by moving each figme to the next lower. place; or by 100 by moving each figure two places down. The last figure or figures of the number, which are thas cut off, become the remainder.
XXVI. B. 13. You are now ready to explain multiphcation where the multiplier consists of more than one
figure. Suppose the product of 571 and 23 is required. The multiplier $23=20$ (2 tens) +3 , and the product is found by multiplying 571 first by the 3 units and then by the 2 tens. The partial products are then added.

571		571 23	
1713	$=571 \times 3$	or	1713
11420	$=571 \times 20$	more briefly	1142
$\overline{13133}$	$=571 \times 23$		$\underline{13133}$

The cipher at the right of the second partial product does not affect the result of the addition, and may be omitted (as in shorter method), if care is taken in writing down the partial results, so that the first figure of each shall be directly under that figure of the multiplier which was used to obtain this result.

Note 1.-Do not wait for a complete understanding of full method before giving practice by shorter method.

Note 2.-It is essential to good work in multiplication that figures should be large and plain, and columns and lines even and distinct.
XXVI. D. Review the principles taught in XXVI. A, and now derive and establish the following rule for multiplying when either or both factors have ciphers on the right of their significant figures.

Find the product of the significant figures, and to the result annex as many ciphers as are on the right of both, factors.

Give test questions like the following: "How many ciphers will there be in the product of 670 and 800 ?"

The above rule is not to be memorised.
If a multiplier, e.g., 4007 , contains ciphors, not to the right of, but between, its significant figures, two points of' ciphers and need not be uritten.
(2) Tho first figure of each partial rewult must be uritten under the figure used as a multiplier.
XXVII. C. For method see Manual,
XXVII. D. For method see Manual, XVI. p. 19.
XXVIII. Long Division. The difficulty of teaching long division will be much lessened by a careful grading of the exercises. The book exercises have been, therefore, carefully graded, and teachers are advised not to diminish or increase them without due precaution, lest some step may be unwittingly omitted or prematurely introduced.
A. Short Method. Examples in A, 1 to 17.
$: 3 1 \longdiv { 1 3 } \quad 3 1$ is not contained in the first figure
31 is contained in 40 (the first two figures) 1 time with 9 over, (or, if $\begin{array}{ll}9: 3 & \text { figures } \\ 9: 3 & \text { preferred, } 3 \text { is contained in } 4 \text {, taking }\end{array}$ 93 the first figure only of the divisor).
Write the 1 over the second figure of the dividend (the last figure taken).

Annex 3 , the next figure of the dividend, to the remainder 9.31 is contained in 9:3 3 times with no remainder.

Write the 3 over the third figure of the dividend.
Note 1.- l'upils must be mate to observe that there are four steps in each partial operation: (1) Ditide, (2) Mintionty, (3) Suberact, (4)
Briug doow.

Note 2.-If, when we multiply, the product is greater than the partial dividend, the quotient figure is too large and must be diminished.

Note 3.-If, when we subtract, the remainder is equal to, or greater than, the divisor, the quotient figure is too suall and must be increased.

Note 4. - The method of writing the figures of the quotient above the corresponding figures of the dividend is recommended for two reasons; (a) it closely resembles the method of short division, the (quotient figures being now written inmediately above instead of below; (b) it prevents the omission of fignres (especially 0 's) from the quotient, for (the place of the first quotient figure being determincd) there will be a quotient figure over each succeeding figure of the dividend.
('. Extended Method. 1 ten $+: 3$ units $=1:$ Ans. $3 1 \longdiv { 4 0 \text { tens } + 3 \text { units } }$

$$
40: \div 31 \quad 31
$$

$$
403=40 \text { tens }+3 \text { mits. }
$$

$$
9 \text { tens }=90 \text { units }
$$ dreds, which are 4 , we arrange the dividend into 40 teus and 3 mits.

31 is contained in 40 (tens.) 1 (ten) $9: 3$ with 9 (tens) over. Write the 1 tes above the tens of the dividend. Add the 3 mits of the dividend to the 90 (9 tens) of the remainder.

31 is contained in 93 (mits) 3 (mits) with no remainder. Write the 3 anits above the mits of the dividend. Quotient $=1$ tell +3 mints $=13$.

Note.-Teach the short method first and give practice upon it. lutrodnce the extemded method later.

$$
\begin{gathered}
\text { XXVIII. A. Examples } 18 \text { to } 51 . \quad 86 \text { Ans. } \\
249 \pm \div 29
\end{gathered}
$$

How to find the quotient flgures. $\quad 2:!2$
When the second figure of the divisor is greater than 5 , use the 174 firsi figure only as a trial divisor, $\underline{174}$ and increase it by 1. Also increase the trial dividend by

1. Thus, instead of saying how often is 29 contained in 249, say how often is 3 contained in 25. A trial quotient figure 8 is thus obtained.
XXVIII. B. Ciphers are now introduced into the quotients. The introduction of 0 's in the quotient involves no new principle. Care must be taken that they are not omitted. Their omission will be best prevented by close attention to Note 4, p. 27.
XXIX. B. Division is the reverse of multiplication. The former separates a number into equal parts; the latter unites equal parts into one number. The dividend corresponds to the product, and the divisor and quotient to the multiplier and multiplicand. Explain and illustrate this.

XXX. A. See instructions, p. 18. XV.
 XXX. B. See instructions, p. 19. XVI.

Time - Review the units previously taught (see pupils' book, p. 41). Now teach seconds, using the small dial and second-hand of the clock-face. Show how to write the time of day, explaining A.M., M., and P.M.

Teach also the number of days in a year, the months and the seasons with their months. Teach the number of days in each month. February 28 or 29 ; those with 30 days easily fixed in the memory by means of the famihar couplet, "Thirty days hath September," ete; all the others 31 .

Capacity.-Review previous work 1. t2 pupils' book, and see suggestions p. 18 of manual.

Measurements.-Review previous work p. $4: 3$ pupils' book, and see suggestions p. 18 of this manual.

Weight.-For this lesson you need scales and the following weights : 1 lb ., $8 \mathrm{oz} .\left(\frac{1}{2} \mathrm{lb}\right.$.), 4 oz . (4 lb .), 1 oz . Introduce by a talk about these weights.

Roman Notation.-The following key to Roman notation must be explained:-

1. When letters representing equal values are placed side by side, their values are to be added, e.g., XX.
2. When a smaller number (i.e., a letter representing that number) is placed on the right of a larger number, it must be added to the larger, e.g., VI, LX, XV.
3. When a smaller number is placed at the left of a larger, it must be subtracted from the larger, e.g., IV, XL.

Mental Problems, p. St.-An oral analysis of these problems is required. The answer may be recorded by all pupils and the oral aualysis given by one.

Review Examples.—For suggestions see p. 19, XVI. of manual.

ANSWERS.

VIII. Pages 31, 32, 33.
A. 1. 1036 .
2. 7...
3. 859.
4. 898.
5. 965.
6. 878 .
7. 798.
8. S89.
9. 797.
10. 768.
11. 789.
12. 988.
1.781.
2. 1117 .
3. 1331.
4. 1714.
5. 20 ธ่8.
6. 2301 .
7. 2.568.
8. 2939.
9. 2643.
10. 2143.1
11. 2030.
12. 2094.
13. 2436. 14. 2720. 15. 2106. 16. 205.5. 17. 2164. 18. 1596.
19. 1872. 20. 2235. 21. 20s2. 22. 2791. 23. 2359. 24. 2740.
C. 1. 3256 .
2. 3012 .
3. 368i.
4. 24 it.
5. 2696.
6. 2236 .
7. 2:301.
8. 170%.
9. sin.
10. :.it3. 1

1. 3540.
1. 219^{-}.
2. 2197. 14. 2341. 15. 224. 16. 1703. 17. 3393. 18. 3347.

F. 1.825. 2. 658 .
3. 678. 4. 908.
5. 864 .
6. 998.
7. 953.8 . 1498.
9. 1604. 1 O. 341 .
11.1723. 12.1681.
G. 1. 711 .
2. 103.
3. 210.
4. 407.
5. 408.
6. 1275.
7. 1857.
8. 1442 .
9. 1564. 1 O. 2168. 11. 2650.
IX. P'ages 34, 35, 36 .
A. 1. 3243. 2. 3232. 3. 3244. 4. 3424. 5. 3525. 6. 3213.
7. 5022. 8. 5024. 9.6257. 1 0. 1361. 11.2001. 12.2170.
B. 1.2728 .
2. 2710 .
3. 2780 . 4. 2419.
5. 1449 .
6. 2324.
7. 1825.
9. 1300
10. 4093.
11. 111.
12. 453.
13.2462 .14 .1250 .15 .643 . 16. 6332. 17. 3545. 18. 355\%.
19. 1881. 20. 5760. 21. 5365. 22. 3016. 23. 6154. 24. 1844.
C. 1. 4623. 2. 2780 . 3. 4790 . 4. 1147. 5. 4572. 6. 3144.
7. 3754. 8. 3п53. 9. 2432. 10. 73ヶ. 11.138. 12. 2901. 13. 2281. 14. 2288. 15. 3258. 16. 3154. 17. 21S4. 1 8. 2017. 19. 6432. 20. 3053. 21 . 4490. 22. 6335. 23. 4930. 24. 7899.

E. 1. 1.446. 2. $2717 . \quad$ 3. 4429 4. 4622. 5. $4797 . \quad$ 6. 3726.
7.6352. 8. 2861. Э. 6306. 10. 3552. 11. 7644. 12. 2879.
13. 3212. 14. 7179. 15. 5026. 16. 8383. 17. 8, 78. 18. 619.
F. 1.70i50.
2. 4.587.
3. 4857.
4. 5841. 5. 4763.
6. 807π.
7.4217.
8. 5170.
9. .2:1. 10. 20\%. 11.007.
12. 407 .
13.11. 14. 223.
15. 813. 16. 408. 17. 124.
18. 233.
G. 1. 236 .
2. 253.
3. 36 .
4. 27.
5. 461 .
6. 578 .
7 . 4209.
8. 431 .
9. 81. 10. 4135.
X. Patiks 37, 35 .
A. 1. 4f.
2. 52.
3. 123.
4. 171.
5. 208 .
6. 300 .
7. 110.
8. 340.
O. 192. 10. :32.
11.329.
12. $3 \% 1$.
13. 696. 14. 768.
15. 450. 16. 6666.
17.678.
18. 4:30.
19.371. 20. 70:.
25.291. 26.159. 31 . 302. 33. 504. 37. 510. 38. 469. 39. 616. 40. 891.
21. 688. 22. $4 \% 0$.
23. :3:3.
24. 864.
27. 32!. 23. :16.
29. 280.
30. 17:
3. 998. . 1681. 3. 1275 . . 3213. . 2170.

2:24. 453. 3553. : 1844.
. 3144. 2901. 2017. . 7899.
. 5027.
. 549:3.
3726.
5870.
619.
8637. 4079.
233.
578.
300.

371
430 .
894
$17:$
293.
B. 1.942. 2. $1146 . \quad$ 3. $964 . \quad 4.2860$. 5. 3822. 6. 2887.
7. 4656. 8. 6S49. 9. 2748. 1 O. 3220. 11. 1435. 12. 3822.
13.4550 .14 . 6264. 15.3411. 16. 412. 17. 1401. 18.374.
19. 1290. 20. 5076. 21.4956. 22. 602s. 23. 6036. 24. 5157.
C.

| 1. | 2. 9152 | 3. 26663 | 4. 53424 |
| ---: | ---: | ---: | ---: |
| 20169 | 13728 | 30472 | 610.76 |
| 26392 | 18304 | 34281 | 68688 |
| 33615 | 22850 | | |
| 40338 | 27456 | | |

5. $9144,13716,18288,22860,27432,32004,36576,41143$.
6. 17806, 26.09, 35012, 44515, 53418, 62321, 71224, 80127 .
7. 12374, 15:361, 24748, 30935, 37122, 43309, 49496, 55683.
1). 1. 976 . 2. 679. 3.1134. 4. 445, 534, 623, 712, 801 .
8. $\$ 776$. 6. $978 \mathrm{lljs}$. 7. 243 miles. 8. 784 lbs . 9. 168 hrs. 10. 2456 lbs . 11.8600 . 12. $\$ 475$. 13.522 cents.
XI. Pages 39, 40.
B. 1.214.
9. $1: 2$.
10. 212.
1. 488 . 5. 24.
2. 163.
1. 86.
1. 174-1.
9.2:9.
2. 36. 11.61.
1. 7.

13.119. 14.103. $15.103 . \quad 16.11 \mathrm{~S}$. $17 . \therefore 26$-1. 18.239-2.
19. 155-3. 20. 149.4. 21. 14.5-5. 22. 01-6. 2כ. 11г.7. 24. 78-3.
25.60-3. 26. 11-1. 27.147. 23.201-2. 20. 2n-2. 30.:31-1. 31. 7.6. 32. 92.4. 33. 9i-5. 34. 124.5. 35. 14\%1. 36. 13.-\%.
37.7. 38.45\%. 3э. \%\%. 40.41. 41.59. 42.17.4.
43. г2.1. 44.21-4. 45.269. 46. 269-1. 47.53. 48. 15\%-1.
C. 1.839. 2. 789. 3.345. 4.738. 5.584. 6. 643.
7. 8:39. 8.380. ©. 738. 10.647. 11. 583. 12. 730.
13. 837.14 .485 15. 1537 . 16. 863. 17. 749. 13. 897.
19. 579. 20. 496. 21.371. 22.695. 23. 73s. 24. 297.
25. S36. 26.948. 27. 379. 28. 957. 29. 657. 30. 295.
1). 1. $1260,840,630,504,420,360,315,280$.
2. $1980,1320,990,792,660,565-5,495,440$.
3. 2:76, 1584, 1188, 950-2, 792, 675-6, 594, 52S.
4.385. 5. 324. 6. 81 phums. 7. S94 times. 8. 106 slates.
9. 31 children. 10.97 yls. 11 . 126 qts. 12.1123 . 13. 873 .

NVI. Pages 46, 47.
A. 1. 736. 2. 219. 3. 47 counters. 4. 12627 people 5230 fish.
B. 1.1313. 2. 890.3 . 8330 yils. 4. it cows. 5. 3600 times.
C. 1. 881. 2. 11 marbles. 3. 53. 4. 725-5. 5. 2920 days.
D. 1. 151 days. 2. 137 children. 3. 141. 4. 41909. 5. 107 cents.
E. 1. 850. 2. 88 sheep. 3. 574 pts. 4. 133 . 5. 2384.
F. 1. 299 pupils. 2. 99 3. 181. 4.6867. 5.90.
G. 1 . 2147 bushels. 2.343 kittens. 3.1188 panes. 4.52 yds. 5.317 eggs.

XIX. Pages 54, 55, 56.

D. 1.22998.
2. 19983.
3. 28310.
4. 242724.
5. 122904.
6. 267974.
7. 390370.
8. 262412.
9. 94372 .
10. 146506 .
11.409448.
12. 205782.
13. 1124838.
14. 1070465.
15. 2250524.
16. 271:305.
17. 401968.
18. 323049.
19. 5133357.
20. 1469297.
E. 1. 202821.
2. 154810 .
3. 3140069 .
4. 779053.
5. 2009637.
6. $1: 333435$.
7. 1034683.
8. 1126047.
9. 2498457.
10. 931108.
11.72084.
12. 391385.
13. 5883.
17. 20797.
14. 68331 .
18. 8704.
15. 62:378.
19. 4956.
16. 1406361 .
F. 1.71 panes. 2.5665 pupils. 3. 2192 apples.
5. 1984 pages. 6. 1008 pens. 7. 2309 sheep. 8. 365 di.ys.
9. 78 strokes. 10. 41015.
11. 1773 potatoes.

12 . 171979.
XXI. Pages 59, 60.
A. 1. 61333 .
2. 66641 .
3. 21107.
4. 2165.
5. 47693.
6. 1618 .
7. 13031.
8. 1570s.
9. 17368.
10. 32131.
11. 161376. 12. 4113s9. 13. 492064. 14. 370504. 15. 524433. 16. 237797. 17. 168299. 18. 162798. 19. 11999. 20. 253676.
B. 1. 39672 . 2. 730926 .
6. 92514 . 7. 96444.
3. 80857.
4. 170595. 5. 599071.
11. 877507 . 12. 291111. 13. 111109. 14. 54322. 1 O. 779044.
$\begin{array}{lll}16.20000 .17 .675 & 18.1 . & 19.360679 .15 .299999 . \\ \text { 20. } 699731 .\end{array}$
21. 730926. 22. 78552. 23. 80857. 24. 163s96. 25. 22468.

26 9946. 27. 63642. 28. 594044. 29. 212503. 30. 91002.
C. 1. 67805. 2. $103875.3 . \$ 242.19$. 4. \$126.17. 5. 423570.
6. 42 yrs. 7. $1815 . \quad$ 8. 969370 . 9. 18394. 10. S319595.
11. 749 yrs . 12. 152367 males. 13 . 586 trees. 14. 339752.
15. 44769 grains.
16. 13269 ft .

0 days. 7 cents. 2384. 90. 317 eggs.
XXII. Pages 62, 63.
D. 1. 2456 2. $6398 . \quad$ 3. $696 . \quad$ 4. 1436 . 5. 201 .
6. 676 .
7. 10388.
9. 90408. 10. 92.
11.1.
12. 28177.
8. 426.
14. 4098.
E. 1. 988. 2. 177.3 .200 .4 .10 . 5. 19013 . e. 827.
7. 65454. 8. 710 . 9. 2397. 10. 5329. 11. $\$ 5072.43$. 12. $7065 . \quad 13.985 . \quad 14.498$ pages. $15 . \$ 4405$.
16. 382 pupils. 17. 44 yds. 18. Mary 786, John 1069.
XXIV. Page 65.
3. 664279,724668 ; 779845, 850740 ; 701899, 765708; 963952, 1051584; 9999099, 10908105.
4. 66555-2, 61008-11; 1089905.4, 999079-11; 1000999, 917.582.5; $6910100-1,6334258-5$; 9829199-9, 9010099-10.
XXV. Page 67.
B. 1. 12510 2. $12592 . \quad$ 3. $224608 . \quad$ 4. 162315.
5. 206952.
7. 438480 .
8. 2271528.
9. 6364248 .
6. 368109 .
11. 1026480.
12. 7827280.
13. 854904. 14. 2823408. 15. $\$ 46530.56$. 16. $\$ 175179.24$.
17. \$200408.88. 18. \$201150.60. 19. \$145952.96.
20. $\$ 571069.80$. 21. \$275096.88. 22. 4419-4. 23. 18119-8. 24. 19154-18. 25. \$3.24. 26. \$5.63.
27. 244779-12, 156659-1, 111809-11, 48351-45,69937-4.
28. 547597-9, 456331-6, $342248-12,586711-10,228165-24$.
29. 44018-21, 29976-71, 2567-35, 19608-23, 43138-3.
30. 272088-12, 105812-12, 57715-75, 90696-12, 52906-12.
31. 200355-38, 127499-14, 103888-20, 58437-20.

XXYI. Pages 68, 69.
B. 13. 182. 14. 483.15 .1426 .16 .25228 .17 .25116.
18. 10952. 19. 27300 . 20. 114885.21 .145314.
C. 1. 1760 . 2. 2625 . 3. $169 . \quad 4.625$. 5. 2116.
6. 6084. 7. 14450 . 8. 15215 . 9. 11414. 10. 4250.
11. 68026. 12. 34466. 13. 110768. 14. 254736. 15. 486726. 16. 199617. 17. 7275538.18 . 3592212. 19. 3131672.
20. 820.22571 . 21.760852. 22.939015. 23. 2408917.
24. 6754755. 25.68604840. 26. 54949721. 27. 9320556.
28. 76661002 . 29. 64240198. 30. 16978.76.
D. 17.37200c. 18.118400. 19.373520. 20. 10940000 .
21. 2075904050.22. 3603200. 23. 5544700. 24. 40593600 .
25. 809600. 26. 95060000. 27. 3860040. 28. 8271960.
29. 6681600. 30. 1594700. 31. 17.59500. 32. 76753300.
33. $89044758 . \quad 34.87 / 01204$. 35. 275697188 36. 190151117.
37. 407186647. 38. 361277560.39. 421001350.40. 280507095.
41. 36:229800. 42. 389710ss1. 43. 4629:3952. 44. 76370766.
45. 916468s. 46. 15087224. 47. 19764888. 48. 1057904889.

XXVII. Page 72.

1) 2. 52280 yds. 2. 360 miles. 3. 317 tons. 4. 35475.
5. 2700 teet. 6. $\$ 12.15 . \quad 7 . \$ 567 . \quad$ 8. $27,000,000$ seeds. 9. 360,000,000 eggs. 1 O. 149176 people. 11. 122596 tish. 12. 174 mables. $13.2,595,583$ ounces. 14 . 817200 parges. 15. 462000 bricks.

NXVIII. Pater; 73, 74.

A. 1. 13. 2. 15. 3. 16. 4. 21. 5. 16. 6. 2:3. 7. 22. 8. 13. 9.47. 10.23.11. 11. $241 \cdot 22$ 12. 136-21. 13.39. 14.192-1. 15. 222-21. 16. 545-10. 17. 56-11. 18.86. 19.98. 20.175.2S. 21. S.-̈. 22. 127.16. 23. 259-11 24. 531-7. 25. 195-12. 26. 27. 27. 40. 28. 357. 29.63.47. 30. 61. $31.494-13 . \quad 32.96 \div 9 . \quad 33.5 \%-65.34 .93-58$. 35. 3217-12. 36. 27\%3.27. 37. 11:39.1. 33. 1+4:7. 39. 1489.33. 40. 428-34. 41 . 33:38. 42. 2616-10. 43. 42:31.2. 44. 544. 45. 52-.31. 46.4:9. 47.962. 48.472. 49.615. 50. 12:3120. $51.8: 3720$.
B. 1. 205. 2. $3207 \cdot 12.3 .104 .3$. 4. $1025-5.5 .604 \mathrm{~s} .0$. 0054. 7. 40\%. 8. 807.5 . 9. 704-7. 10. 504. 11. 400 12. 70. 13. $500-21$. 14. $8000-\mathrm{s}$. 15. 5050. 16. 10050. 17. 6410-30. 13. 3280-45. 19. 1608. 20. 1020. 21. $\$ 10.90$. 22. 20.04. 23. \$4.70. 24. 330.(0.), 25. \$56.2). 26. \$70.03. 27. \$70.03. 28. 30000-56. 29. 10010-6. 30. $2010-23$.
C. 1. 35.17. 2. 35978. 3. 1099% 4. 9013.59. 5. 861-64. 6. $40-455$ 7. 118 -5ss. 8. 96:35. 9. 3935.373. 10. 5.64 .12 . 451-85. 12 . 4.12.199.

17. 245-116. 18. 133-137. 19.26.388. 20. 18. 0.83.
21. 591.27. 22.697.35. 23. 720.306. 24. !95-847.
25. 1010.490. 26. 19-948. 27 . 37.51:372. 28. 2400 к.
29. 2-1130. 30. 179:3185. 31.73619. 32. 31-1640.
33. 3:2-1676. 34. 63.261\%, 35. 429.3350. 33. 716.2.387.
37. 418-1366. 38. 114.72s.
XXX. Page 7.
3. 1. 31 yrs. 28 weeks over. 2.7.5 dresses. 3. \$50. 4. 27 days.
5. I26 haxes 6. 288 egge. 7. 75 huns. 8. 17 cars.
9. 106 daily, 72 weekly. 10. 49 tons. 11. 6610 boxes. 12. 86: 13. 63182 arres, \$28 uver. 14.9080. 15. \$804. 16. 75298 dozen. 17 . 1908.

Review Examplen. Pages $86,87,88$.
1 1. 2023 soldiers. 2. $1006: 3$ plums
3. 39 payments, 3 yrs. 3 mos. 4. 141816 .

2 1. 25:i3. 2. 880 comters. 3. 8 wks. 6 days. 4995049 .
3 1. 346 apples.
4 1. $8: 3149$.
2. 76.
3. 261-8.
4. $40 \div 99$.

5 . 1.24 diays.
2. 76.54.
3. 44%.
4. 1.56 strokes

6 1. 2000
2. 10119 men.
3. 85.
4. 36 marbles.

7 1. 52.
2. $174: 30$.
2. 83.80.
3. 3227 .
4. $\$ 108$.

8 1. 40 apples each, 11 apples over. \quad 2. 40 boys, 11 apples over:
3. 2009.584.
4. 1:59.
9 1. se:4.
2. \$1. 80.
4. 3 ft .6 in.
5. 360 mimites
C. $\$ 600, \$ 900, \$ 2100$.

Fit few Olseful Jiooks FOR TEACHERS.

BROOKS' NORMAL METHOD OF TEACHING $\$ 1.50$
BALDWIN'S ART OF SCIIOOL MANAGEMENT'. 50
FITCH'S LECTURES ON TEACHING. 1.00
GLADMAN'S SCHOOL METHOD, net to Teachers. 75
HACKWOOD'S NOTES OF LESSONS ON MORAL SUBJECTS 70
SINCLAIR'S FIRST YEAR AT SCHOOI 50
SPENCER'S EDUCATION 50
THE STUDENT'S FR(EBEL.-Part I: Theory of Education 90
" " Part II : Practice of " 90
OBJECT LESSONS FROM NATURE.-Part I 70
" " " 6 Part II 70These are two capital books. Each part is complete initself, and may be purchased separately.
LONGMANS' OBJECT LESSONS. 1.00llints on preparing and giving them.
CUSACK'S MODEL DRAWING1.25For 'Teachers and Students of Public and ElementarySchools.
HOW TO SHADE FROM MODEL.S I. co
A Practical Manual.
THE NEW CALISTHENICS 1.25
A Manual of Health and leauty.
METHOLS OF MINI TRAINING, CONCENTRATED ATTENTION ANI) MEMORY, by Catherine Aikin. 1.00One of the most helpful and fascinating books for Teachersever published.
F. E. GRAFTON \& SONS,
Puilishers, Booksellers and Stationers,250 ST. JAMES STREET,

[^0]: * This quotation is from a treatise on the fonr simple rules of aritmmetie, by Dr. Rohins, Principal of the Mediill Normal School, which was lent to the author in mannseript, and to which he desires to acknowledge his indebtedness for some valuable snggestions.

[^1]: * This extract is from Dr. Robins' treatise.

