CIHM
 Microfiche
 Series
 (Monographs)

IC:MH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleurCovers damaged /
Couverture endommagee
Covers restored and/or laminated/
Couverture restaurée evou pelliculèe
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autte que bleue ou noire)
Coloured plates and/or illustrations /
Planches evou illustrations en couleurBound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponible

Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages riont pas étè filmées.

L'Institut a microfilmé le meilleur examplaire qu'il lui a été possible de se procurer. Les details de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modificaticns dans la misthode normale de filmage sont indiqués ci-desson's.

Coloured pages / Pages de couleur
 Pages damaged / Pages endommagees

Pages restored and/or laminated/
Pages restaurées evou pelliculeès
Pages discoloured, stained or foxed !
Pages décolorées, tachetées ou piqueees
\square Pages tetacl ad / Pages détachèes
Showthrough / Transparence
Quality of print varies /
Qualité inégale de limpression
Includes supplementary material /
Comprend du matériel supplèmentaire
Pages wholly or parlially obscured by errata slips, tissues, etc., have been refilmed to ensure the best posslble image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to erisure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleur image possible.

This item is filmed at the reduction ratio chocked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been raproduced thenke to the generosity of:

Health Sciences Library
McMaster University
The imagas appaaring here are the best quaility possible considaring tha condition and logibility of the originai copy and in kaaping with tha filming contrect spacificetions.

Original copias in printed paper covers are filmad beginning with the front cover end anding on the lest pege with e printad or illus:"etad imprasslon, or the beck cover whan appropriata. All other originai copias ere flimad baginning on the first pege with a printed or lilustrated impraecion, and ending on tha lest pege with e printad or lilustreted impression.

The last recorded frama on each microfiche sheli contain the symboi \rightarrow Imaaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever epplias.

Maps, pietas, charts, etc., may ba filmed ot different raduction ratios. Those too large to ba entirely inciuded in one exposure ara filmed baginning in tha upper left hand cornar, ieft to right and top to bottom, as many fremes es required. Tha foliowing diegrems iliustrate the method:

L'exempleire filmó fut reproduit grâce à la génúrosité de:

Health Sciances Library McMaster Univarsity

Las images suivantas ont dté raproduitas ovec le plus grand soin, compte tenu de le condition at da le nettete de l'exemplaire filme, et en conformite avec les conditlons du contrat de filmaga.

Las axemplairas origineux dont la couvartura en peplar ast Imprimbe sont filmes en commencent par le pramier plat et en terminent soit par le dernlore pege qui comporte una emprainte d'imprassion ou d'iliustretion, soit per ie sacond plet, selon ia cas. Tous les eutres exemplaires origineux sont filmés en commencent par ie premidra pege qui comporte une empreinte d'Imprassion ou d'iliuetration et en tarminant par le darniére pege qui comporta une taile empreinto.

Un des symboies suivants apparaitra sur ia derniatra Imega de chaque microficha, salon la cas: le symbole \rightarrow signifie "A SUIVRE". ie symbola ∇ signifle "FiN".

Les certes, planchas, tabiaaux, etc.. peuvent étre filmés é das taux de reduction differenta. Lorsque la dacumant eot trop grend pour étre reproduit on un saul cliche. il est filme e pertir de l'engie superiaur gauche, da gaucha à droita. at de haut an bas, on pranant la nombra d'images nécessaire. Las diegrammaa suivants illustrant ie methoda.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2;

APPLIE \square IMALGE Inc
1653 Eost Main Street
Rochester, New York 14609 U5A
(716) $482-0300-$ Phone
($7165288-5989-$ Fgx

CLINIGAL DASORDERS

()だ 'IIIL:

HEART BEAT

A MANDBOOK FOR IRAC'TITIONERS A.VH STUDENTS.

M

TIIOMAS L.EWIS, M.D., D.Sc., M.R.(\%.I.

TOURONT0:
THE MACMJJA.IN (OMPANY OF ('INADA, LIMITEH. 70, Bond strever.

902658

MilCMILLAN Co.

PrEEACE TO FIRST EDITION.

THERE can be bnt few, engaged in the active practiec of medicine, who are not aware that a new and important chapter has been added to our knowledge of the meehanism of the heart beat during reeent years. The newly-aequired information has been gathered by the employment of precise graphic methods. Those who are engaged in studying the heart and its defeets by means of speeial instruments, are fully conseious of the burden whieh awaits the student or praetitioner who has yet to bring himself abreast the times in this fiell of knowledge.

A question is often put to some of us. In what degree is an acquaintanceship with the new methods essential or expedient in the routine of busy praetice?

The graphie study of heart affeetions is but one of many clinieal and pathological subjects which has forged ahead of late years. While a medieal man can ill afford to neglect the advance of a subject in which he practises, he may act, in a too vigorous pursuit of one branch of medical science, to the detriment of his knowledge in other directions. A universal and detailed aequaintanceship with medical scienec as it exist.s to-day is no longer possible, but it behoves all practitioncrs to grasp new principles and to be aware of their influence upon the care of patients afflicted with eommon maladies.

If I an asked whether it is essential that a praetitioner of general medicinc should be trained to record the movements of the several heart chambers, I an inclined to reply that the aequisition of the special manipulative skill and the ncecssary experience, which the obtaining and aceurate interpretation of graphic records involves, entails too great an expenditure of time and energy adequatcly to repay him or the patients he scrves. And my reply is dictated by the belicf that most of those disturbanees of the
heart's meehanism which are met with in everyday practice can be identified by simpler means.

Refleetions of this kind influence me in offering to medieal men a small handbook, whieh I trust may inform them of the new facts and eonelnsions whieh are of ehief serviee at the bedside.

I have confined the reproduction of graphie records almost to such as illustrate what may be seen and felt, for many disorders of the heart ean be identified by sight and touch when these senses are aided by hearing. A single and portable piece of apparatus may be used in eases of doubt and diffieulty, to supplement the observations so obtained. The Dudgeon sphygmograph is probably familiar to most medical men; fitted with elastic bands of attachment, and preferably with a time-marker also*, it readily allows a short strip of radial pulse enrve to be obtained. Sueh a curve, alone, will ustally place the observer in possession of facts, which are sufficient for an analysis of the common disturbanees of the heart

[^0]vi.

Preiuce.

beat. The use of the sphygmogriph encourages aceuracy; yet, as I hope to show, a great deal can be accomplished without it.

In the succeeding chapters, I have not attempted to aequaint the reader with the evidence* upon which the diagnosis of the several cardiac disorders rests, but have recounted such physical sig's as I have found serviceable in identifying these disorders, prior to the application of more precise methods in individual instances.

To ascertain the nature of the heart's meehanism in a given patient is, as we shall sec, of twofold value. It is of importance in elucidating the remaining physical signs, cspecially those of auscultation ; and it scriously affects the attitude towards the patient, for it often influenees the prognosis and treatment profoundly. The recognition of the existing meehanism is, as experience has so oftell shown, one of the very first essentials in the carc of cardiac cases.

[^1]Such new facts as may be found in the ehapters, have been collected largely during the tenure of a Beit Memoria! Fillowship, to the Trustees of which it is my desire to state this obligation. That the reader may benefit from a fuller experience, I have not hesitated to take advantage of the published works of other writers on the same subjects. It is pleasurable to ateknowledge the kindness of my friend and colleague Dr. T. R. Elliott, for his eritieism of the ehapters and for his careful perusal of the proof shects ; and I am grateful to all my colleagues at University College Hospital for the generous mamer in whieh they have placed their material at my disposal.

Th. Lewis.

December, 1911.

(viii)

PREFACE HO SECOND EDITION

The speedy exhaustion of the first cdition of this landbook preserves it for the most part in its original form. A richer experience has confirmed my belief in its conchusions.

The chief alteration is the addition of a shot ehapter upon Auricular Flutler, a condition which has come to light but recently. Special opportunities of studying this curious disorder enable rae to sketeh its chief features.

27, Queen Anne Street,
Auyимя, 1913.

(ONTENTN.

Chilpter I.

Preliminary ctidences 4
Age and frequency; heart rate; persistence of irregularity.
Common types of disarder and their meaniny is
Solitary pulse intermittences; coupled beats; triple beating; hateved pulse rate; a grossly irregular pulse; a mild yrade of irregntarity.

CHAP'IEK 11.

Sinus hergulamities ४
Definition 8
The nature of sinns disturbances 8
Respiratory irrcgularities 11
Sinns irregularities which bear no relation to respiration .. 14
The recoynition of sinus irregularitiey 14
The prognostic significance of sinus irregularities $1 \overline{5}$
X.

Contents.

CHADTER HI.

Henhtralork
Definition 1016
The nature of hiart-block 11;rifation to chroni: degenrative processas of more obsenreorigin; licurt-block u* a rexult of digitulia udministrution;morbid cinatomy.
The rccoynition of licart-b/c:h
Etioloyical and pathological relutions
Age; srx; herivlity; rilations to infectier diserveses; $\because 0$
24
Effects on the circulation und the tencral symptomatoloyy
The proynasis
The trcatm•nt3436
CHAPTER IV.
Piemature conthaltions
Definition 3039
The nature of premature contractions $3!$
Etioloyical and patholoyical relations
Age; sex; associated conditions and frovocutice fuctors. 42The recognition of premature contractions45
The sutijectixe phenomena which acconpany promature
51
The proynosis and trcatment 52

Contents.

CHIDTER VI

Alpictian fletten
Definition 71
-•• \cdot.. 71
The nature of flutter
Etiological and pathological rilations it
Age; sex; mrlatione to infective discase, cte.; associated conditions: morbid anatomy.

The reconnition of flutter
During the 2: 1 hrarthock

- phinse: during the stuge of irregular responses; when the responses of thr irmericle orr infrrynent.The symptomatoloyy of flutter77
The prognosis 80
The treatment 81
xii.

routruts.

CHADTE: V V.

Actictiah fhrmbiation
Drfinition $\quad . \quad$.. \quad N2
Ther mature of aurientur tilurillution 82
Etionmpiral and petholmical relutiona H 2
 morlisl anatomy.
Thr rerempition of auriculur filbrillution
87
87
The armeral symptomatolog?!
12
12
Remark: upon liagnonis 0.7
Thir progmonis
06
06
The trrnturi"t 07
I'aroxysmal fibrillation 101

CHADTER VHI.

Lhternation of the mine:
Drfinition 103
103The mechanism in nltrrnation of the pulse
103
Etioloyical and pathological relationa
104
104
The yrrognitiout of pulsua altervana
105
105
The sulbigrtire sensations of patiente presenting pulsus altermums 107
Thic trcuimare 108
Tlic trralmer'l 109
Jnimex110

THE RECOGNITION AND IDENTIFICATION OF DISORDERS OF THE CARDIAC MECHANISM.

It seems desirable that I shond open the chapters of this book by acopainting my readers with the general arrangement ol the matter contained in it.

Since those who work amongst the sick nsually diseover a real interes: in a particular phenomenon ly observing it rather than by reading of it, I begin the first chapter with a general deseription of the elief derangements of the rate and sequence of the pulse and lieart beat as they are felt, seen, or heard by all practitioners. I take certain common and gencrally reeognised physical signs as they are noted at the bedside and translate these signs into terms of meelanism, without attempting to describe the manner in which they are bronght about and without snggesting their value in prognosis or treat ment. I shall speak of seven forms of eardiae disorder, and the y will be described under the following headings:-

1. Simus urrhythmia.
2. Heart-block.
3. Premature contructions.
4. Simple parorysmal tachycardia.
5. Auricular flutter.
(i. Auricular fibrillthion.
6. Alternation of the pulse.

There may be some to whom these terms are still unfamiliar or to whom their meaning is still obseure. My
immediate condeavour, therefore, in to offior the:n a preliminary ictea of the meaning of theme numes, an idea which I hope may uppeal to them from their past experience: and I du wo by citing clear examples of phenomedna to which in finture I mont perforee refer hy the nese of distinctive names.

If we feel the pure of a young udult, when hie inspirntion is deep, or, bett "wtill, if we feel the benting of a dog's heart against its chem, ball, a periodie irregularity of the pulantions is observed which follows the neparate acte of breathing. 1 cite this disorder of the heart beat us a characteristic example of simus arrhythmin, or one in which the whole heart is involved.

In many putients in " hom the radial pulsutions and hedrt beats ran with perfect uniformity for long periods, an occasional amd isohted disturbance is noticed. The pulse intermits; it losen one of its merial beats at intervals. When the heart is examined it is found that at the moment of the clisturbance a ventricular contraction appears before the thythmic beat is doe, and that this carly beat is followed by a pause of musmal length. I cite this disturbance as a simple example of what I shall in future deseribe an a premuture contruction, end what has hswally been referred to in the past as an "extrasystole."

If in a sinitar case, where the oceasional pulac fails, a similar failure of ventricular action is discovered, so that on listening ai the apex beat no abnormal sounds are heard, but the heart remains silent throughout the whole of the pausc, the phenomena are evidences of another condition, namely heart-blcck. But lest I should create confusion at an early stage, I must add to this cxample the statement that heart-block manifests itself in many other ways and in no way which stands in more open contrast to the exemple now cited than by its production of regular pulses of conspicuonsly slow rate.

Peroxysumal thehycurdin is a terru whiols is probably familiar to all, bint 1 employ it in a restricted memate. and Noeak only of instances in which an absolutely abrupt areederation of regilar heart beat. which wilowequchtly terminates in an "phally abropt manmer, is repeated firmm time to time.

From time to the we flnd, more especially in the chlerly, regnlar and aceclerated heart action at rates of $1: 310$ lini per minute. 'Jlis aeceleration is motable lor its uniform rate under all norts wi eonditions and for its tendeney to pernist withont apparent cause. It is generally the rewnlt ol "turiculur flutter.

When δ_{6}. atient, who is known to lave mitral stenosis and who requires treatment for cardiac lailure, exhibites not only dropsy, venoms engorgement and eyanosis, but a rapid and utterly diwordered heart netion in which there is mo rhythmic sequence, lie presents the eharacterintic pieture of auricular jibrillution.

Finally, if in a case of renal disease or arterio-sclerosis, the pulse tension is high, ('heyne-Stoken' brenthing perhajs is present, and the pulse is regular in rhythm, but varies in force so that encli alternate bent is strong and eaclo alteriate beat is relatively weak, an example of altermition of the pulse is under observation.

I have deliberately chosen these examples beenuse iley are distinctive; but the several lorms of dinturbance are unt always so clenrly differentiater!, Were it so, my task would be simple. The examples are distinctive and conseguently allow a preliminary idea of the meaning of my terns to be entertained. It is into these terms that I shall in the first instance translate the commoner physical signs, and I (lo a) with the object of providing the student or practitioner with an immediate elue to the type of meehanism with whieh he is dealing. But as the preliminary deserijtion will be
inaderquate, it is supplemented by a detailed discussion of each form of disorder in the remaining chapters of the book, in which an account of the pathology, prognosis and management will be found.

Preliminary evidences.
Age and frequency. The first guides to the identifieation of a disordered heart mechanism are the age of the patient in whom it occurs and a knowledge of the frequeney of irregularities at different ages.

An irregularity of heart or pulse found before the tenth year is almost always a sinus arrhythmia. Heart-block may be present during the first decade but it is rare; a few premature contractions have been noted in quite young children, in most of whom cxtensive enlargement of the heart has been present, or during the course of acute infeetions. Solitary examples of aurienlar fibrillation have been reeorded at the ages of 5 and 13 ; it is very rare before the age of 17 .

The relative frequeney of disorders of the cardiac. meehanism from adolescence to old age is in general hospital practice approximately as follows:-
. Inricular fibrillation ..
Premature contractions. $\quad . \quad . \quad . \quad 40 \%$
Paroxysmal tachycarlia, sinus arrhyth- $\quad 350$ mia, heart-block. flutter and alternation, together 15\%
Dealing with those in whom there is obvious evidence of eandiac failure, at least 60% of irregular hearts are irregular becanse the auricles are fibrillating.

Heart rate. The second clue is the rate of the heart beat. When the ventricle beats regularly and its rate is continually below 35 beats per minute, eomplete heart-block (see Chapter III) is probably present; under similar eircumstances a rate which lies between 40 and 50 should arouse
a suspicion of partial heart-bloek; a persistent rate of 130 and over shonld always bring to mind the possibility that a long eontinued paroxysin of tachyenrdia or auricular flutter is present.

If, on the other hand, the remtricle* beats irrogulurly, and its rate surpasses $1 \geqslant 0$ per minute. fibrillation of the auricke is probably present, and as the rate is faster, so the' probability that such is the mechanism approaches certainty. Irregular hearts, beating at 140 and over, are scarcely evel affected in any other manner. Premature contractions very rarely aeeompany ventricular vates of 120 and ower : sinus arrhythmias are ahmost confined to rates below 100: and both these forms of irregularity become more frefuent as the seale of rate is descended to the sixties and fifties. If an irregularity is ohserved, and the rate of heart beat is in the neighbourhood of 100 , any influenees, such as exereise fever or the administration of belladonna, whieh enhance the ventrieular rate, tend to abolish all irregularities, with the exception of that due to aurieular fibrillation, and in this instance the disorder persists and is often angmented.

Persistence of irregularity. Auricular fibrillation is usually a persistent condition and examination from hour to hour or from day to day reveals its continual presence. The other irregularities are insually transient, the pulse being found to be gnite regular from time to time: shorter or longer periods of normal hisart aetion intervene between periods of disturbance.

Common types of disorder and their meaning.
Solitury phise intermittences. An oeeasional pause of pronouneed length, whieh interrupts an otherwise perfeetly

[^2]
Chapter 1.

regular pulse, is due to one of two causes.* namely, a premature contraction (common), or a dropped beat as a result of heart-block (rare). They are easily distinguished; the premature beat is felt or heard at the apex ; it gives rise to an carly first, or first and second sound. In block. the heart is silent and motionless during the whole pause.

C'oupled beuts. If the ventriculur beats are coupled and the couples are evenly spaced \dagger they are the result of one of two mechanisms. for either the alternate beats of the normal rhythm have been replaced by premature contractionsin which case the sccond beat of the couple is weak and may not reach the wrist -or else each third ventricular contraction has been lost and heart-block is present. If the pulse beats are coupled (pulsus bigeminus) a third possibility remains: the pulse pairing may be due to the occurrence of premature heart beats which replace each third rhythmie beat. If such is the case the premature beat will be appreciable at the apex, though it docs not reach the wrist.

Triple beuting. The recognition of the cause proceeds along similar lines. Tripling at the apex is due to premature contractions which replace each third rhythmic beat, or to heart-block in which each fourth ventrienlar contraction has been lost. Tripling at the pulse (pulsus trigeminus) may be due to a thind cause, namely, premature beats replacing each fourth ihythmic beat, the early beat failing to rcach the wrist.

Holved pulse rate. When the ventricle beats at twice the pulse rate, the disorder is due to premature contractions in all but the rarest instances. Alternation has been known

[^3]to oceasion halving, the weak alternate beats failing to reaeh the wrist ; but this condition is of great rarity and so far as I know is only very transient. The two are readily differentiated. for in the first instance the ventricular beats are coupled while in the last they appear regularly.

When sudden and exaet halving of pulse rate is noted and the ventricular rate is halved simultaneousiy. the disorder is the result of heart-block.

A grossly irregular pulse in which there is hopeless jumbling of stronger pulsations with ruick rums of almost impereeptible beats. and in whieh the lengths of intervening pauses are constantly varying, is due to auricular fibrillation.

A mild grade of irregularity which persists, whieh is not related to respiration even when the breathing is deepened and in which no definite sequence of events can be determined, is also due to aurienlar fibrillation in most cases. A similar irregularity, whielt shows relations to respiration, is a sinus arrhythmia.

In the preeeding paragraphs the method of procedure at the bedside is briefly stated, and an aequaintaner with the few rules which I have given will enable the prac coner to identify a very large number of the disorderly forms of heart action with which he meets. But where the reader is in doubt, or when he requires more explieit information, in regard to either the arrangements of the beats or the manner of their production, or ita respeet of the management of the ease in which the disorder is discovered, he may refer to the more detailed descriptions eontained in the remaining ehapters.

(N)

Chapter II.

NINCS IRREGULARITIEN.

Dejinition.

Irregularitics of the heart which are produced by interferences with the rhythmic impulses at the seat of their

The mature of sinus risturbances.
In a discussion of sinus irregularities, the nerve supply of the heart in relation to disturbances of rhython occnpies a prominent position. Let me state emphatically at the outset that we have nothing to do, first, with the functions of the intrinsic cardiac ganglia, nor secondly with the sympathetic nerve trunks; as we have little or no real knowledge of the part they play in disease, so any theory which ascribes a derangement of the heart to a perversion of their functions is without practical significance. We have a linited but real knowledge of the vagus and its relation to pathology; my remarks npon the cardiac nerves are consequently
eonfined to it.

The complete beat of the normal heart consists of a contraction of its chambers in an orderly sequence. The wave of eontraction starts in a small and newly discovered mass of tissue, the sino-auricular norle (Fig. 1), which lies embedded in the upper and anterior end of the sulcus termin alis. The sulcus terminalis anterior end of the sulcus terminalis. The sulcus terminalis runs, as may be remembered,
from the junction of the right auricular appendix and the superior vena eava towards the inferior vena eava (see Fig. 1). The tissue of the node, coasisting of a specialised network of muscle cells, richly supplied by the nerves of the heart which enter in this region, lies therefore at the mouth of the superion

Fig. 1. I diagram of a human heart (modified from korlis), The walls of inferior vena eava, right auricle and right ventricle have been partially frinoved to expose the septa. The position of the sino anricmar nome. in which the heart beat commenees, is shown, as are also the position of the auriculo ventrieular node and the conrse of the amrienlo. wentricnlar trum and its branches, The last-named structures comver the con
traction wave from anricle to ventricle.
vena cava and is embedded in the right auricle. The contraction which commences in its neighlourhood spreads through the walls of both aurieles and is transmitted by a special band of tissue, which will reeeive subsequent description, to the ventrieles. The orderly rhythm of the whole heart taices its origin in this mode, to which I have eonsequently.
applied the term heart's " paeenaker." In the normally aeting atult heart, the pacemaker sends forth waves of contraction at rates which average $\overline{i \cdot}$ per minute, and, the separate beats being evenly spared, the systoles follow eaeh other in a regular order or rhythm. The pacemaker is under the control of the ragi, or inhibitory nerves of the heart, and they normally exert a considerable restraining influence upon this stimulus prochacing eentre. Destruction of the nerves, more especially that of the right side. or the administration of atropine. which paralyses the nerve endings in the heart, raises the rate at which the heart beats follow each other. In the hmman subject. the probable limit to which the rate may rise as a result of this denervation is $150-160$ per minnte.

In many subjects, and under special conditions, the vagus aets with excessive inhibition, either persistently, in rhythnieally. Its influencr consequently results either in a miform pulse slowing or in a waxing and waning of heart rate. Let us deal with uniform slowing first, for it is a subject with whieh we are only briefly eoneerned in these lectures. Pronounced slowing of the wiole heart is comlaratively rare; the lesser grades of slowing, most of which are probably of vagal origin, slowing to 50 or 60 beats per minite. are not uneommon and are especially prominent in athletes and in association with inereas - ? arterial pressure, Megnancy, jaundiee, aortie stenosis, convaleseence from the acute fevers and less frequently with other eonditions. Pulse slowing of this degree has no great signifieance, and it is not uneommon to meet with people who enjoy perfeet health and in whom the pulse rate lies habitually between these limits.

Periodie or varying disturbanees, whieh influence the rhythm of the heart at its souree and produce a greater or lesser degree of arrhythmia, are of greater importanee, though it will only be neeessary to deseribe the commoner forms of sueh irregularities.

```
ay
```

In Fig. : , a diagram of a characteristic sinus arrhythmia is given. I shall refer to similarly constructed diagrams it. succeeding chapters. The figure is arranged so that cach narrow black rectangle (A) represents a single eo-ordinate beat of the auricle, and so that cach broad black rectangle (I) represents a co-ordinate ventricular contraction. Where an anricular contraction is followed bie arentricular respase. 111911111
11111111
Fige 2. A diagrammatid representation of the action of of leart, ufinected reprosented arrhathmiat. Tlae contractions of armiche mal ventricle ure

 anticle and ventricle particijnto.
all oblique line is drawn, joining the corresponding rectangles. The slope of the oblique line indicates the time intervial between the contractions of auricle and ventricle. All such diagrams read from left to right. In the present example, a sinus irregularity, the whole heart is affected. so that each ventricular contraction is preceded by an anricular systole at the nsual interval. The irregularity consists of a gradual waxing and waning of auricular rate which is repeated periodically, and which is followed exactly by the ventricle.

Respirutory irregularities.

It is well known that young adnlts manifest a very appreciable irregularity of the heart and pulse rhythms when they breathe deeply (Fig. 3). The pulse quickens while the chest is expanded. and slows when the chest is emptied. luat in both young adults and old there is no

12

Chapter 11.

respiratory variation of polse rute, whieh the finger can discover, while the breathing is maturul. On the contrary. a perceptible degree of natural respiratory irregularity of the pulse, characterised chiefly by one or more long panses during the expiratory period (Fig. 4 and 5). is llot uncommon in young children, and sometimes it is sufficiently prominent to

Fig. 3. A whlagmographic curve from a mormal mobject, breathing dreply

Fig. (i. A
expiration. In this, is in all ; along pulse pause accompanies cach
in lifthe of seconds.
attraet immediate attention. Irregularity of a very similar kind is found frequently at the age of pubcrty, and it is also seen on rare oeeasions in the adult (a striking example of the last is shown in Fig. 6).

All these irregularities are of vagal origin.
('an $y, 4$ the ning n in t to
 (

[^4]

Nïns irregularities which bear wo relution to respirntion.
While the vagal irregnlarities of heart rhythm generally: show in respiratory relation, disturbances of similar origin sceur where there is no association hetween the changes und the several acts of breathing. These disorelers of the heurt meehanism fall into three main rategories. They are :(1) Sudden and prolonged cessation of the whole heart beat, u condition so rare that it rocjuires hut a passing notier in this general survey. (2) Phasie variation of pulse rate, in whieh a retardation and stibseguent gradial acceleration of the whole heart oceurs; the rhange is spread over tell, fifteen or more seeonds and may be repeated regularly or may oeenr from time to time; it is associated with the. administration of heavy doses of drugs of the digitalis group. Int may be seen apart from them (Fig. 7) ; it is a relatively. uneominon type of irregulitrity. (3) An irregularity of the. whole heart of mild degree, in whieh shorter and longer pauses are mingled indiseriminately. It is not infrequent. and is almost always combined with a general reduction of pulse rate. It may be found in quite young and apparently healthy children (Fig. 8) and is also eneountered in young adults in whom no other eardiae sign is apparent. It is specially frequent in patients who have rhenmatie heart rlisease and who are under the influenee of digitalis; it is accentuated when the heart slows after it has quiekened in response to exereise.

These sinus irregularities, like those whieh are related to respiration, are due to alterations of vagal tone.

The recognition of sinus irregularities.

Sinus irregularities are usually recognised with ease. It may be said that the great majority of pulse irregularities which oecur before the end of the first deeade are of this kind,
and most of them are respiratory. When there is the deflnite and stated relation to respiration, no firtioer evidenere is reguired : in most instances of sinus irregularity, this relation is present, but if it is absent, it lecomes establisherl if the breathing is decpened; a gradual waxing and whing of rate is nlways highly suggestive, if not conchasive. The radial beats and apex putsutions correspond: the henrt sonnds are simply modified aceording to the incidence of the ventrienlar contractions. The radial beats are full, und the apices of the several pulsations maintain an nlmost constant height in arterial curves (Fig. 4, 3 and 8).

The irregularity is abolished by any factor which notably. inereases the average pulse rate. Thus it disappears with excreise, with fever, or shortly after the administration of atmpine.

The prognostic significunce of sinus irreynlarifies.
The eommoner forms of sinus irregularity (excluding the prolonged and sudden cessation of the heart beat und the true phasic variation of pulse rate) are of little prognostic value. They are so frequently lond in pationts who present no other sign of cardiae disturbance, cither at the original examination or snbsequently, that they are to be regarded either as slight exaggerations of a normal phenomenon (respiratory irregularity) or as evidences of a mild and iusignificant instability of tonic inhibitory nerve action.* Their importance lies chiefly in possible confusion with otleer forms of heart irregularity. They should not be allowed to influence the habits of those who exhibit them ; neither do they sliggest or require any special therapeutic measures.

[^5]
CHAPTER III.

HEAR'I-RI.OCK。

Definition.

An abmormal heart mechamisu, in which there is a delay in, or absence of, response of the ventricle to auricular impulser.

The nuture of heart-block.
Under normal circmmstances the ventricle depends, for its stimulns, "pon impulses which are sent down to it from the regularly contructing auricle. Each uuricular systole trunsmits a stimmlus to the ventricle und this stimulis travels from auricle to ventricle along a narrow neurominscular tract, the auricuto-ventricular bundle. This band of tissue starts in the right auricle near the coromury sinns and proceeds forwards and downwards to the membranons septum of the ventriele (Fig. 1), where it divides into two main branches on either side of the septum. The main branches sulbdivide and are connected to the ventricular musenlature through the eomplex network of cells named after Prowinge. The sequence in which the chambers of the heart eontract is diagrammatically illustrated by Fig. !!. The black rectangles represent aurieular (A) ant ventrieular (V) systoles.

When from any cause the function of the tissuew miting aurlele and ventriele is impaired, a disturbanee of this sequential contraction is engentered. The grades of disturbance, which human hearts manifent, are numerous.

There may be a mere prolongation of the interval which separates the commencements of aurieuhr and ventricular systole (the Ax-l's interval, as it is ternetl). Such a conduction defeet is illustrated by Fig. 10; the thin lines becone more oblique in the diagram, and a gap, is left between the end of auricular and the beginning of ventricular sywtoles.

Fig. 10. A diagram reprembiting the action of the nommal heart. The amricho

 cemation of murifular mystole.
Fig. 10. A diagrath ilhastrating the carlient atage of heart.black. Alt
 ventrienlar ermeraction. There is delay in the transmission of the
 whicla joins $\cdot \mathrm{t}_{\mathrm{y}}$ revetangles in the diagrinnit.

Where the grade of heart-block is ligher, the ventricle may fail to respond to oceasional aurieular impulses. Such is the condition when "dropped beats" are spoken of. This form of heart-block is rarely a simple phenomenon; it is almost always complicated by variations in the lengths of As-Vs intervals over the period of disturbance. The relation of chamber contractions may be studied in Fig. 11. A "dropped beat " or ventricular silence produces a pause of exceptional length and this pause breaks the natural
rhythm of the ventricle. Wherc there is no associated variation in the $A s-V s$ intervals, the length of the pause is necessarily equal to that of two regular pulse beats. But this is rarcly the case ; the "dropped beat " is foreshadowed by a progressive increase of the preceding $A s-V / s$ intervals (cp. Fig. 11, 1, 2 and 3). Moreover, the As-V/s interval which follows the silence is generally curtailed (Fig. 11, 4). These two cvents shorten the long pause and consequently diminish the disturbance of the ventricular rhythm. The exact manncr in which the changes happen is of importance and requires closer study. Consider the first threc $A s$ - $v s$ intervals of Fig. 11; as illustrated by the obliquity of the lincs, the interval gradually widens, but it widens in a peculiar manner. The increase of the second interval

Fig. 11. The next stage of heart-block, to which the term "dropped beats", is applied. Cp to the point where the chief disturbance occurs. the gaps between the auricnlar and corresponding ventricular contractions widen out. The impulses travel to tho ventricle with increasing difficulty. Tho fourth anricular contraction stands isolated, it yields no respuuse: a ventricular contraction is "dropped." Following the ventricular pause, the As.Fs interval is short, for the tissucs have rested, but it again widens as successive cycles follow.

Fig. 12. "A diagram of $2: 1$ heart-block, in which alternate ventricular beats
are "dropled."
over the first is greater than the increase of the linit! sue, the second. The result is a decrease of the interventrinular period directly preceding the ventricular silance. \boldsymbol{T} ie ventricle quickens to the point of the distur'ruce The shortening of the $A s-V s$ interval following the pause, and the subsequent prolongation of it, produces a similar quickening of the ventricle after the disturbance. The primary and secondary aecelerations of ventrieular rate, before and after the disturbance, offer a very helpful clue to the recognition of many cases of clinical lieart-block.

As the grade of heart-block rises, and ventricular silences become more frequent, relatively simple ratios are established between the aurieular and ventrieular rates. When the ventriele beats at only half the rate of the auriele, beeause alternate impulses are ineffective, the condition is spoken of as 2:1 heart-block (Fig. 12). 3:1 and 4: I ratios, in which eaeh third or fourth anricular impulso alone yields a ventricular response, are sometimes cneountered, but they are not common.

The mechanisms which have been described are all included under the term "partial heart-block."

Fig. 13. I cliagram of complete heart-block or dissociation. Both the anrich and the ventricle beat regularly, but at independent rates. The relative positions of auricular and ventricular contractions are very
varjable.

The final grade of heart-block is reached when no impulses are transmitted to the ventricle. When this happens, the ventricle, having completely lost the controlling influence of the anricle, beats in response to a slow and regular series of inıpulses which it builds np intrinsically. In "complete heart-block" or "dissociation" two entirely separate rhytims are maintained ; one starts in and controls the auricle, the other originates in and controls the ventricle. The first has the usual rate, 72 per minute or thereabout, the last has an approximate rate of 30 to the minute. Though both are regular, the rhythms are quite independent (Fig. 13) and the systoles of auricle and ventricle fall with very varying time relations to each other.

Etiological and pathological associatiors.

Age. Heart-block may occur at any age. It has been observed in the newborn child and at alniost all ages into the eighties and nineties. Its age distribution is settled by the age incidence of the discases which produce it. Thus, it is especially prevalent amongst those whose hearts have been severely damaged by rheumatie fever or chorea, so that a special class of cases is grouped between the years 10 and 35. Senile affections account for another large group of patients who suffer from this cardiac disturbance ; these patients are elderly. But the causation is so varied that no age is excmpt. The distribution in my own series has been as follows:-

| Age 10.20 | 20.30 | $30 \cdot 40$ | 40.50 | 50.60 | 60.70 | $70-80$ | $80 \cdot 90$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cases 7 | 7 | 5 | 8 | 3 | 6 | 5 | 1 |

Sex. As in other disturbances of the cardiae mechanism, heart-block is most prominent in the male sex. I may
illustrate this by a reference to my own series, in which 33 are males and ! are females.

Heredity. A single instance of the supposed occurrence of several cases of heart-block in the same family has been reported, but has not been substantiated. It is highly improbable that heredity plays any direct part in the affection.

Relations to infectice disease. Relatively, heart-block is not infrequent during the course of infective diseases, and of these I believe rheumatie fever holds the first place; the disturbance is usually temporary. The exaet relation of rheumatic affections to acute and sub-acute inflammatory lesions of the heart is but imperfectly known, but there is a elear connection between them. A mumber of instances of heart-block have been reported during the course of severe rheumatie fever and its complications, aeute endocarditis and periearditis. It is probable that the infection of the heart is rarely limited to its onter or inuer layer; there is a growing belief that the middle layer or myocardium is also frequently involved. My own experience leads ure to think that heartblock is almost, if not quite, a common accompaniment of acute or sub-acute rheumatism of the heart, for 1 have seen several eases recently in which, during the eourse of rheumatic fever involving the valves or perieardium or both, the patients exhibited dropped beats or partial heart-bloek in its several grades. In other instances, temporary heartblock has appeared during short febrile attacks in patients who have been previously atfected by theumatic fever. It is eertain that being transient it is often overlooked.

Of other acute affections which should be mentioned are those of the more active pus organisms, and also those of diphtheria, influenza, typhoid and pmeumonia; heart-block in these conditions is linited to infections of severity.

A very large proportion of the reported eases of chronic heart-block and of those which have come under my own observation, have !elonged to two groups; the disorder has been found subsequent to single or repeated attacks of rheumatie fever, or has been the direet result of syphilis. Whether of rheumatie or syphilitie origin, heart-bloek is generally but an expression of a widespread affection of the heart musele in these patients, though the lesion may be confined to, or may fall most heavily upon, the tissues which establish functional eonnection between the auriele and ventriele. In a fourth of the eases in whiel the hearts have been secured after cleath the lesion has been gummatous. From my own series of 38 eases, 4 gave a history of venereal infection and 12 a history of rheumatism.

The relation of heart-block to rheumatism in chronic heart affections is a peeuliar one. The heart-bloek is often dormant or is detected only by exaet instrumental methods; it is often unmasked by the administration of drugs of the digitalis group, for the higher grades of heart-bloek are produced from the lesser by these poisons.

Relation to chronic degenerutive processes of more obscure origin. A very large number of the reported eases of heartbloek have been in elderly people, and observation has shown that the damage responsible for the disturbance has been part and pareel of a more or less widespread change, either in the heart itself, or in the lheart and its vessels. A number of the lesions can undoubtedly be traeed to syphilis or rheumatism, but the eause of a still larger number is obseure. Chronie inflammation, fibrosis, atroj'ly, ealeifieation or fatty degeneration of the tissues, associated ur unassociated with disease of the coronary arteries, are anongst the most frequent eauses.

Heart-block as a result of digitalis udministration. I have already referred to the unmasking of dormant heart-block in rheumatic heart disease. When digitalis, or an allied drug such as strophanthus and squills, is given in toxie doses to young patients who have rheumatie hearts, it is not uncommon to observe the severer grades of partial heart-block as a result. And it is known that in most of the cases which reaet in this manner a slight defect in the conduetion of impulses from auricle to ventricle was present before the drug was taken. The added effect is often due to the action of digitalis upon the vagus nerve, for it can be removed by atropinc.

Heart-block can be induced in experiment by stimulation of the vagus, and cfforts have been made to cstablish a clinical group in which the heart-block is attributable to disturbance of innervation. Up to the present time, there is no very clear record of the initiation of even a temporary disturbance of this character by vagal impulses; though, as I have stated, a pre-existing tendeney may be exaggerated in this manner; while if the higher grades of persistent heart-block are ever due to derangement of vagus action, such a causation is so rare that it scarcely comes within the practical field.

Morbid anatomy. It is in the main bundle, or in its aurieular attachment, that the lesions responsible for heart-bloek have been described. The kind of lesion has been spoken of already. Gummata, chronie inflanunatory processes and their accompaniments, fibrosis, atrophy, and calcification are most frequently found. Examples of tumours (fibroma and cndotheliorıa) affecting these special tissnes have been recorded.

Clecration invading the bundle, acuto inflammation evidenced by deposition of lencoeytes, or parcuchymatous
degeneration of the bundle are the common lesions in hearts which have becil damaged by aeute infeetions.

The recognition of heart-block.

The disorders of the heart's meehanism eaused by heart-block, in its several grades, are readily recognised by the exaet graphie methods provided by the polygraph and galvanometer. The efficaey of these instruments and the eertainty of the analysis nust be evident, for heart-hloek produces derangement of sequence in the contractions of auriele and ventriele, and the polygraph and galvanometer supply separate and clear records of the systoles of upper and lower ehamber. Therefore, a comparison of the onsets of the several systoles is relatively simple when these recording devices are employed.

But I speak to those to whom the special method is not available, and I hope to show that heart-block can be recognised in many of its grades by simpler means. It will be neecssary to treat each form of meehanism separately and, in this instance, to refer especially to exact measurenient of the arterial pulse pauses. In nany forms of irregularity such measurement is not necessary, though it may be expedient ; in the disturbance produced by heart-bloek it is often essential.

Uften the earliest manifestations of heart-block consist in a widening of the As-Vs interval (see page 17) ; this defeet can rarely be identified by ordinary elinical means; yet it may be responsible for two physieal signs. It may not be known to everyone that aurieular systole produces a distinet though muffled sound, and that while this sound is inaudible when the heart's meehanism is normal, it is frequently heard when the aurieular and vent.icular systoles are sufficiently
separated. A slight widening of the As-Vs interval may lead to a reduplication of the first heart sound; a more pronounced widening may result in a double seeond sound, for the auricular systole may fall in early diastole.

The second sign is confined to eases of mitral stenosis and is of similar origin ; in these patients the systole of the auricle is the cause of the presystolie murmur which characterises the valve lesion. Contraction of the auricle at an abnormal instant in diastole is accompanied by a murmur and thrill which replace the customary presystolie events. When the pulse is regular, apical thrills or rough murmurs, confined to mid- or early diastole, are physical signs which should' suggest not alone stenosis but also the beginning of heart-block.

Single dropped beats are not difficult to identify. Take the case where a pulse, which seems otherwise regular, is interrupted by an oceasional pause of monsual length, while examination of the apex beat reveals neither movement nor sound in the pause. If the pause is not associated regularly with the phase of expiration (see page 12) it can be attributed to a failure of the customary response of ventricle to auricle. The length of the pause in radial tracings may be exactly equivalent to that of two rhythmic beats. More frequently (as in the radial pulse tracing of Fig. 14) it is distinctly short

Fig. 14. A pulse curse showing " dropped beats." The arrows, which represent the posit ms of the regular auricular contractions, have ween Accurately determined in this and subsequent figures by menus of poet graphic curves. There is of course a big delay between the auricular The arrangement so beat. The heart sounds are shown diagrammatically. intervals and upon the failure of pends upon the lengths of the $A \mathrm{I}$. I's Asterisks. Note the widening of the A_{s}. I increase of pulse rate before and after each dropped beat meconfunying
of this, and is preceded and suceceded by slight pulse quiekening. The nature of these phenomena has been eonsidered already (page 18), and the mechanism is indicated in the present figure by means of the arrows which show the points at which the regular aurieular systoles fall. Responses to the auricular contractions marked by asterisks have failed.

Abstract

Whon dropped beats are more fromuent, the irregularity tukes the ferm of that medl in Fig. 15. Here end third or fonth impulse misearries, and the heart and pulse lopats are grouped in twos nud threes. Had we not the tormination of this curve, the mathsim of the first half ceouk not be completed, for the pirture is identical with that procheed by premature contructions. The "lue to the true interprotation is given by the lengthe of panses I und 3: they are equml. These ure the opening leate of two gromps, the first of two. the second of three pulsutions. The long panse whieh follows. cach gronp ix of coustant length; it lum been produced by a constunt mechanismin. If thre pulse which follows the first group were attributable to prematurity of pulse beat $\underline{P}, \boldsymbol{a}$ similnr panse would be expected after pulse beat f. It doses not ocelur, miel we reegonime in 3 and $\&$ the acederation of pulse rate whieh precectes or follows an masual pause resulting from heart bluek.

Fig. 1.\% Curses of herertis upex beat and pulse from 11 pationt in whom ventricular respomses failed frefucoll:-

2:1 heart-block is to be suspected in any patient in whom the ventricle beats regularly and where the rate lies between 40 and 50 contractions a minute. A sudden and exact halving of rentricular rate is always most suggestive. 2:1 heart-block is usually an unstable condition, the ventricle quickening from time to time, and these changes in the

Hzart-block.
frequency of its response to auricle disclose the nature of the whole disturbance.

Fig. 16. Cirves of heart's apex beat and pralse, taken during the paswage
 original at the change: The rute is refluced to exactly thres. fourthe the

fig. 17. Curses showiog the iuterruption of a periof of $2: 1$ heart-Dleck by a single reypouse of the yontricle to one of the series of alternate

The transition betwieu 2: 1 heurt-block and ma arrangement previensl studief, manndy, the lons of eacd third response, is armage inent previenslas bigeminal or "rapled actien of the veutricle passes ollown in Fig. If a netien. The fenturew which proclainu heart block in thiser into a slow reqular in the length of pause from " to b, and the exact reducurve ate the inerease fourthes. The longths of the several pauses exact reduction of rate to three. positions of the muricular systoles which have understood by examining the druwn on the eurve. Systoles 品, fa, $5 a$, Ga have been indicated by arrows and where the ventriefe is silent an unusually arterial phuse a is brief us compared with a lengthy pause is fownel. The 4 takes lennew to reacle the ventricle than doesuse the aurienlar iupulse of a $2: 1$ pelo, is shewn in Fig. 17. An en does impulse 5. Disturinnce is followed by a pulse pmise a which is shorty contraction of the ventricle pauses. The reasou of this shortenuig has beer than b and the succecding of the last figure. Iu Fig. 17 heart-bloek is alse explained in the deseription the total duration (c) of the two short leots is also evidenced by the fact that the dervetinn of the longer beats (proriod d). In ether wo one and a half times to three nuricular cycles.

In mitral stenosis partial heart-block is often characterfired l, y peenliaritien of the murmurs. They are often oxtropely complex. Where 2: 1 horat-block is present two halls and two diastolic murmurs may accompany exch

 heart sounds are modified by the nuriculur comeractimes, which are faintly mandible. Where auricular and ventricular contructinas begin toget her the first sound is exaggerated. The pure auricular somas are shown as dots.
ventricular cycle. The meaning of the phenomenon will be obvious if it is remembered that the thrill and harsh murmur of mitral stenosis are produced by auricular systole and that in $\mathbf{2}: 1$ block the auricle contracts twice as frequently as the ventricle. A more complex arrangement of murmurs

> Heurt-block.
shown in Fig. Ix. The ventricle beats at first in conples. and at such times the murmar ocemes before the first and after the second somind of the first beat of a conple; the seronid bent of the conple is aceompanied by mo murnar, for the single anricular contrintion in its neighbourhood falls with that of the ventriele and mo blood is forced thronghe the stenosed orifice. Over tha last portion of the curve $\mathfrak{a}: 1$ heart-block is present, and each eyche is accompanied by presystolic and early diastolic mormars.

In complete heart-block the action of the ventricle is phenomenally slow; amost all hearts which beat at rates of 35 and under are affected in this manner. The rhythnn is generally quite regular. Each ventricula beat is accompanied by a first and second sound, and in addition very faint muftled somd:3 are heard in the long diastoles. These are due to anricular systoles. A sign which is characteristic. and often present, is a modification of the first and seeond heart sounds from beat to beat. When the auricular and ventricular contractions begin together, the first sound is intensified, and when they fall almost together the first or second sound may be reduplicated (Fig. 19). Evidences of the relatively rapid auricular eontraction are generally seen in the neek; small and regular pulsations (Fig. 20, a waves) are shown by the jugular veins between the beats of the carotid (c waves). From time to time a prominent venous pulsation (Fig. 20, a/c) accompanics the intensified first heart sound, when auricular systole coincides with that of the ventricle and when as a consequence the blood cannot be driven forward oat of the auricle. A periodic waxing and waning of the venous pulsations, independent of respiration, is always highly suggestive of the condition. Traces of aurieular pulsations upon the arterial enrves are also evident in most of the patients from whom full pulse excursions can be obtained

[^6](Fig. 21). Where, as in the acempanying fignre, the litthe: whes oft the downstroken of the regulur pulae beate vhos it yrudual and orderly change of powition, moving steadily away from the suceceding radial now trokr, the prexence of consplete
heart-block is certnin.

E'//ects on the circulution "InI the general symmpmomiteduygy.

The symptoms presented by paticutes with heart-bheck are divisible into two gromps. On the one wide are the symptoms which are the special appurtenance of the comelition itself, and on the other wre those which result from cotexisting disense in other portions of the heart. Fon dixemese is rarely limited to the bunde, and generatly hemethbeck is but a local manifestation of a more widespread prosess ; the loeal lesion is often aceidenta!. The effecter of a lewion whieh transects the bundle differ from those of a similar lewion in another portion of the muscolluture in one ehict mexpect ; the dannge gives rise to obvions disturbance ; there is not second strand whiel may fulfil the functions of that which is destroyed, whereas 1 cice in the general mass of musele is hidden by the respo: at , A. rining tissule. As in disease of the nervons system, where large areas of tissue may be lost withont gross signs of damage, but where a minnte morbid foens in a given situation gives rise to obrions and profound disturbance ; so it is with the heart. It is necessary to emphasise the faet that heart-bloek is usmally an iudication of a far graver eondition than simple transection of the bundle; it is a sign of wide or universal invasion of the myocarlium.

The symptoms whieh result from affections of the whole heart museulature do not lie within the seope of this book; but it is important to recognise that the presence of heart-bloek deniands an exhanstive study of the sulject in whom it appears : in all instanees special attention should
be directed to the fitness or otherwise of the heart as a whole. And this caution is not limited to heart-block, it applies to all departures from the normal mechanisn.

The special symptomatology of heart-block may be conveniently approached from two standpoints.

Heart-block of high grade is accompanied by a reduction of the ratc of the heart beat, often to a half its former rate. What is the effect of this retardation of heart rate upon the circulation, and what are the results of the lessencd nervous control of rate which often accompanies it? It is certain that thercby a scrious burden is imposed upon the efficiency of the heart as a pump; but nothing is more remarkable than the accommodation of the cardiovascular system to conditions which diverge widely from the normal ones. Dissociation of auricles and ventricles, and the consequent establishment of a slow ventricular rhythm, is followed by some degree of ventricular hypertrophy. Undoubtediy, this increase in the mass of the ventricular muscle compensates in a measure for the loss of co-ordination and of the nature! rates. During the long diastoles the blood is squeezed from arteries to veins and a low diastolic blood pressure results; but the blood pours equally fast from veins to heart, whose efficient chambers, receiving the extra load, expel it into the arteries. Fullness of pulse and high systolic pressure (170-200 $\mathrm{mm} . \mathrm{Hg}$.) consequently charactcrise the arterial system when in persistent heart-block there is no lack of liealthy cardiac tissue. As evidences of the adaptability of the circulation as a whole to the new conditions, I may citc the casc of a patient in whom, judging from the signs and symptoms, the damage to the muscle mass is but little. The patient, a man of 33 years, is known to have had a heart rate of 30 to 35 , with occasional accelerations to 48 , for 13 years. He is the subject of completc heart-block. There is a little hypertrophy of the heart, but no subjective symptoms. He leads a very

> Heart-block.
aetive business life, and nassed in the street would be judged a perfeetly normal a : healthy individual. There is no eirculatory embarrassment, even after strenuous exertion; he prides himself upon his "sprinting" power and has raced during the past few years. An instanee of this kind offers a partial answer to the original questions; the slow pulse of heart-block and the absence of regulation of rate do not disable an otherwise healthy heart from performing its full work. In hearts more profoundly affeeted, the extra burden is less readily borne, but in these it is not easy to dissociate the effeets of the new mechanism from those of disease of the remaining muselc.

In the second place, heart-bloek is responsible for a group of symptoms whieh arise as a direet result of exee.ssive slowing. Reduction of pulse rate beyond certain limits, or the eessation of the arterial flow for a certain time, is aceompanied by grave disorders of nutrition, and the brain is an early and anxious plaintiff. The patient, who exhibits marked pulse slowing in eonjunetion with fits, falls into the eategory of Adams-Stokes' syndrome. The higher grades of heart-bloek, whether of persistent heart-block in whieh ventrieular responses are frequently missed (2:1, 3:1 ratios, ete.), or of complete dissociation, are frequently aecompanied by temporary periods of excessive pulse slowing or by cessation of the ventrieular systole for prolonged intervals. The cause of the shange in ventricular rate, for the auricles continue to beat at the usual or at an enlaneed rate, is not fully understood, and I do not propose to consider it further. The symptoms presented by the patient are intimately dependent upon the degree of heart slowing or upon the duration of isolated periods of asystole. When the pulse falls to 8 or 20 beats per minute, uneonseiousness supervenes; suspension of the mental funetions is also produced by a single period of asystole of from 3 to 7 seeonds
duration. Patients who suffer from the higher grades of heart-block cornmonly give a history of brief attacks of giddiness, fainting, temporory loss of consciousness and its dependent accidents. Seen in mild attacks, the subject of them is pulseless and momentarily pale. In severer seizures, where the pulse ceases for 15 seconds or more, there are additional phenomena. The blood is dammed back in the venous system, increasing pallor has cyanosis added to it, the breathing deepens and becomes stertorous; twitching of the face and upper limbs eventually oceurs. The convulsive fit rarely spreads beyond the named area, but it may become more generalised. Urine is not passed, neither is the tongue bitten during the attacks. In most cases the condition is readily recognised by the absence of signs of ventricular activity and by the presence of rapid undulations in the veins of the neek, signifying activity of the right auricle. Unexpected death is a by no means uncommon accident amongst the affected, but considering individual attacks it is rarc. Death occurs after a period of status epilepticus in a number of the patients, and the status consists of repeated seizures of the forms described.

As a rule the patient has no warning of an inpending syncopal or epileptic attack; though on occasion he or his medical attendant may be informed of the approaching danger by a change in the heart's action, for example, by the occurrence of further ventricular slowing. The sensations of the patient at the commencement of long scizures are usually similar to those accompanying a brief cessation of the heart beat, and consequently do not properly constitute an aura.

The prognosis.

Heart-block in itself does not kill ; those who suffer or have suffered from it mostly die with the usual symptoms of general heart failure. Let me be clearly understood in this

Heart-block.

statement. Heart-block and the Adams-Stokes' syndrome are not synonymons terms ; the majority of patients who exhibit heart-block never have fits. Lesser grades of heartblock are common in conjunction with rheumatic heart disease and as a rule they prodnce no symptoms. Moreover, the disturbed mechanism is not of neeessity dircetly fatal even in chronic licart-block of high grade.

The prognosis in heart-block has to be dealt with from several points of view. In the first instance, let us consider the milder grades of heart-block, such as are associated with rheumatic leart disease (prolonged $A s$ - Vs intervals or "dropped beats"). Where such heart-block is persistent, there are usually a number of physical signs in addition to those dependent upon the heart mechanism; they are the signs of heart disease, muscular or valvular, and in its several and universally recognised forms. Heart-block is often the least prominent symptom in these cases; they are often to be classed as mitral stenosis. The only question that I raise is as to the manner in which heart-block affects the prognosis in thesc cases. It should be regarded as an evidence of myocardial damage, not necessarily limited to the bundle, but probably diffused throughout the heart. My experience of such cases is that they are serious; in fact, most of those I have seen are dead, though they did not dic of heart-block. But temporary heart-block of mild grade is not uncommon during the febrile attacks to which rheumatic heart subjects are liable ; it occurs also in pneumonia and typhoid. The appearance of this abnormal mechanism is of great importance, for it is often the sole sign which indicates that the myocardium has been damaged. Whenever it complicates an acute infection it consequently increases the gravity of the prognosis; at the same time it should be understood that the normal mechanism is usually recovered. Occurring as an accompaniment of fever in a patient who has rheumatic heart
disease, it should be regarded as an outward sign of an isolated injury which, if often repeated, eventually so weakens the nusele that life is no longer supported.

Where the higher grades of heart-block are present, the prognosis is based upon two chief considerations. The general evidence of the integrity and fitness of the muscle as a whole should be weighed first. The fits, especially their frequency and severity, are next taken into account: a number of the patients are free from them; others are in constant peril ; and it is not easy, nay it is often impossible, to predict the ultinate effects of syncopal attacks or severer crises in a given ease. Those patients cspecially who have progressive lesions, and :lose in whom partial is eventually converted to complete isd perınanent dissociation, must pass through a time of particular danger; for, during the passage from one mechanism to the other, fits are very common and the period of passage may not be a short one. It is useful to remember also that those who have partial heart-block are more prone to fits than those in whom the obstruetion is complete. Uncertain in both ineidence and effects, the fits always dictate a cautious prognosis.

Regarded in its entirety, persistent leart-bloek of ligh grade is a grave condition. It is usually eomplicated, and then a few years generally close the scene. Nevertheless, some, and especially the younger patients, survive for many years, in comparative and absolutc comfort. They are those in whom the mass of heart muscle is comparatively healtly and in whom fits are rare or absent.

The trealment.

Persistent heart-block of the milder forms requires no immediate treatment, but is an indicr on for repeated examination of the patients who show it. As such patients usually require treatment for the general condition of the
heart, constant supervision is not difficult. They often require digitalis medieation, and this will frecjaently increase the grade of block. But the increase of block should not deter digitalis administration for the relief of dilatation, dropsy or other symptoms; nor is it in itsetf detrimental ; the drug or its allies may be given without restraint and often bencficially.

When the abrupt onset of partial heart-block is observed, it is, as I have said, an index of active mischief. The patient should lie up or remain in bed and should be thoronghly searched for the provocative canse, which, when fond, is attended to. The acute infections are suitably treated. Rheumatic patients are treated with salicylates, and serupulous attention is paid to the liygiene of the mouth and throat. If, after the subsidence of remaining symptoms, the block remains and persists for several weeks, the pitient is treated along the lines indicated in the previons paragrapl. Heartblock in itself does not eall for rest in bed or other interference, though a suspicion of an active or progressive lesion does.

The higher grades of heart-block are nsinally chronic and stationary and the habits of the patient should be governed by his general fitness. Most patients of this class are np, and about, and are able to undertake many of their ordinary duties; yet it is only in exceptional instances that real bodily activity is either possible or permissible. Here again a suspicion that the lesion is active or progressive calls for rest and careful watching. A history or sign of syphilis constitutes an imperative demand for thorough and appropriate treatment, and in some eases success las attended the administration of mercurials and iodides.

All those who have fits should be warned of the danger which they run from falls during fits if they do not appreciate it fully. Not a few have lost their iives by falling heavily and suffering mortal injury. In many cases the fits occur in
groups, and additional precautions will be required until such attacks ccasc. Most patients have brief warnings of the onset of unconsciousness, and, if advantage is taken of them, less risk is incurred.

A careful inquiry for causes predisposing to the fits may elicit a listory of gastro-intestinal disturbance or overexertion, upon which it is well to act.

For the fit when it is present, I know of no remedy which is of avail to increase the pulse rate and restore the unconscious patient. A number of drugs have been administered with this end in view, and the list includes oxygen, strychnia, strophanthine, digitalin and anyl nitritc. They appear to have no appreciable effects. Atropine is said to have abolished fits in isolated instances. As a rulc it is contra-indicated.

Chapter IV.

PREMATURE CONTRACTIONS.

Definition.

Responses of the heart to new and isolated impulses formed in the musculature ; contractions which occur before the anticipated time and which consequently disturb the normal order of the heart's mechanism.

The nature of premature contractions.*
A clear and full apprcciation of an abnormal heart mechanism can be attaincd only by those who are perfectly familiar with its normal action. The orderly sequence of muscle movements, which constitute the normal heart beat, is propagated, as I have already stated, from a single inipulse horn in the sino-auricular node. The contraction, starting from the mouth of the superior vena cava, travels rapidly through the auricle, reaches the auriculo-ventricular node and traverses this node and the bundle which is its continuation; it is distributed in an orderly manner amongst the mass of ventricular fibres in which it ends. The normal rhythm of the heart consists of a regular sequence of such beats, so that auricular and ventricular contractions fall with the proper time relations to cach other. Each stimulus elaborated at the sino-auricular node requires a certain time

[^7]of preparation, and this time of preparation is very eonstant under definite and given circumstances. It is relatively long, reaching nearly two-thirds of a second when the heart is beating at a normal rate. Indeed it is the tinse of impulso preparation which controls the rate of a normally beating heart. A second characteristic of physiologieal impulse formation is regular repetition. Each impulse belongs to a regular or rhythmic serics.

The premature or pathological contraction differs from the physiological in two fundamental respects The inipulse which gives rise to it is formed at a phenomenally rapid rate. It is to this quality that the pathologieal contraction owes its prematurity. The absence of a definite tendency for the pathologieal impulse to repeat itself constitutes its seeond distinetive feature, and upon this character the usual isolation of the pathological contraction depends. Premature contractions originate abruptly, and may spring from the auricle, from the ventricle, or from the tissues which mite these two contractile structures. For ordinary elinical purposes it suffices if we remember the two chief classes of premature beat, the auricular and the ventricular.

If, while the heart chambers are beating in a normal and sequential manner, a pathological impulse arises in: the ventricle, the ventricular beat which it awakens will fall before the anticipated point in the rhythmie series; whence comes the term "premature contraction." It disturbs the sequence of ventricular contractions in a definite manner. Excepting the premature impulse, the ventricle is absolutely dependent for its stimuli upon the impulses which descend to it from tho auricle. Consequently, after the disturbance produced by a single premature beat, the ventricle rests until a rhythmic aurieular impulse reaches it. If the accompanying diagram (Fig. 22) is studied, it will be seen that for the first three cycles the ventricle follows the auricle in contraction; a
premature beat ($1 /$) is then interposed and as a consequence the next aurieularimpulse, represented by the broken line, urrives while the ventricle is already in a state of contruction. Being

Fig. 22. A dingrammatie representation of the disturbanmen produced
a promatare ventrienlar coutraction (p). Thin muricle pirnduced by The impulse tho ventricle responds to six auriculur regularly while the ventrict central nuricular aystole is lost, for it fully of the ventricular beat is inmature kystole. The almorn it origis Note the equality in the lengentis of the the beak in its rentre. compensatory pause.
in contraction the ventricle shows no response, its muscle is in the "refractory" state. The dominanee of auricular impulses is reasserted during the suceeeding cycle. Thus, the disorder is controlled by the fundamental heart rhythm which proceeds, unheedfin of the disturbance. The ventricular contractions, subsequent to the disturbance, fall at points which may be accurately anticipated; the period of the disturbance (b) is exactly equivalent to the length of two complete eyeles of the normal rhythm (a). The pause whieh follows the promature ventricular beat is long; the ventricle is waiting. The length of the panse (c) is snch as to compensate for the brevity of the pause which precedes, consequently it is spoken of as the "compensatory pause." When a premature impulse originates in the auricle the order of events is different. The premature contraction of the auricle, which it calls forth, is followed by a similar
and parallel disturbance in the ventricle (Fig. 23), for the ventrick responds to each anticular contraction wherever wach eont ractions are placed in a series. In all but execptional inatanees too. there is a disturbanee of the fundamental heart

Fig. :33. I diagrummatio repromentation of ut premature nuricular eonstrartion. The auricular rivthu is disturted hy the abmormal anricular treat (p): the disturbincei in the ventricolar rlyythun is parallel. for euch aurienlar aystole vielde th ventricular response. Tlie rhythm of the whole heart is disforated, the preriod a is longer than the period b.
rhythm ; the premature contraction (p) is followed by a long panse, but the whole period of the disturbance (b) is not equivalent, as in the case of the premature ventricular beat. to two fall eyelen of the normal rhythm (1).

Etiological ant puthologicul relations.

Age. Premature beats have been recorded at all ages from a few wreks to old age. During the first decade they are extrenely rarc. Their incidence in an age table is actually heaviest between 50 and 70 years; if the age distribution of the populace is consid ed in conjnnetion with this fact, it becomes cvident that essentially they are a phenomenon of advaneing years.

Age distribution of premature beate in 112 cases.

Age 0.10	10-20	20-30	30.40	40-50	$50-60$	60.70	70.80	80.00	90.100
Auricular 0	2	4	4	4	2	-	1	0	1
Ventricular 2	3	N	()	14	20	18	4	0	0
$\underline{2}$	1.5	12	13	18	22	24	5	0	1

Se.x. Premature contractions are mueh commoner in men than in women. In laf mubjects the wex distribution wam as follows:-

Nex		
Auricular	.1/arr.	Fromalr.
Ventricular	10.7	12
	8.5	14

Issociuted romlitions umel provocutive factors. It shonld be remembered that any statistics compiled to whow the relations of premature eontractions to assoeiated conditions and infections, suffer from a defect. Those eases which exhibit frequent and persistent premature beats preponderate in the tablex ; for under these circmmstances they are eomspicuous, While if they are seareer tl cy may often fail to attract attention. It is probable that the majority of people who live to midele life or advanced vears are affected in this manner at some time or another. Amongst patients who attend out-patient departments or are admitted to the wards of general hospitals. frequent and persistent premature contr.:. ions are most common in those who exhibit definite s.: ptoms and signs of cardiac discase. They are often iriand in association with aortie ineompetenee and mitral stenosis ; an even larger number of conrves are colleeted from patients who present signs of degenerate heart muscle, as evidenced by dilatation and symptoms of muscle insufficiency in the absence of gross value lesions. In yet another large group of patients, no evidenee of funetional impairment of the heart, leaving the irregularity ont of consideration, can be discovered.

Cardiac Promaturr auricultur contractions.

Myocardial degeneration

Irrinature mentricular contrustiona.					
Cindiace: aronp. 		18			
		-4			,
A Tirlioe dimeomer	\cdots	1:	Hramelitios mul employ	-4'0111	1
Nitrul metolumis		$1: 1$	diallatorsis ..		1
. Digioua in'rloris		7	finosrelies of limes (mol	ail.)	1
Brighi'f diwanse all	I gramilar		Fipilejomy ..		1
kidtrey :	i	J.jprins of trick		,
Arleriomeltromis		:	Frartural wkull		
dente emonnurditia		\because	Jindunioral thmour		I
. Inrurimil	, \cdot	1	Exophthalone muitre	. .	I
			(inatrine nlener ..		
			Hivpremia		1
			- Tiparently heaithy	Atherwime	H
		\square			
		137			24

Of the factors which nppenr to be predominantly associated with them, gross 1 sions of the heart stand tirst. Otherwise an inquiry into the habits, history und state of the patients throws bitt an -issure light 1 pon the camation. A history of rheumatr atection is ecrtainly common, it was present in one-third of the cases in my series. ln yonng adults, excessive tobaceo smoking is recognised ns an cexeiting eanse of their temporary appearanes. Digitalis not its allies ure no: memmonly responsible, when the patient is mode, the full influence of these drugs. There are also clinical associations between premathre embtractions, raised arterial pressure and digestivo disturbancess, bist these ure not filly understood at the present time.

Nany things uffect the frequency of prematire contractions. Fatigue, subsequent to exertion, is provocative in those who are predisposed. The influence of heart rate is enpecially noteworthy. Hearts beating at 100 per minute and wer are not often disturbed, and prematnre contractions are very rare when the heart rate exeeeds $1 \geq 0$. Fever usually rids the pulse of this form of irregularity, and so also docs any other cause which notaily accelerates the pulse rate. Thus they are abolished during exereise and for a short period afterwards, but during the period of slow heart action which often follows exercise, they are frequent. As we
whall subsectuently were, this knowledge may often be nsed advantageonsly to indnce premntare bents in putientes predisponed to them. Sillspensions of respiration for a periond compatible with comfort oftens suthicom. Thr puthological bents are in evidence either in the apmeice stage or shoortly after the resmaption of respirations. So fartor is more potent than postare. Pationts. who exhibit mumerons premature contractions while standing. may soon lose thems in recombency, and this dexpite a slight deceremse of heart rate in the last position. In other pationts, pressmes прои the ablomen nay abolish them.

The recoynition of premature contructions.
The work aceomplished by premature bents is smull. becanse the periods of rest that precede them are short. They may or may not raise the rortic valers. Arcompanying the prenutare beat. a feeble pulsation or a prolonged paise. is noted in the arterial pulse; anseutation reveals carly. first und second sounds when the aortie valves are foreed, but only an isolated and premature first somod if the ventricnhe pressure fails to top the arterial. The consequent grouping of sounds in threes and fours is comprehended when the nature and degree of the corresponcling arrliythmia are diseerned. The commonest arrangements of pulsations and sounc's are deweribed in the following paragraphs, and are illustrated by the aecompanying diagram and tracings.

In the sueceding paragraphs 1 have sub-grouped the symptoms aecording ins the prematire beat (a) raises or (β) fails to raise the aortic valves.

1. When a systole of a regularly beating ventricle i_{s} replaced by a premature beat, this abnormal contraction is aeeompanied by an early apex thrust and by (a) a weak arterial wave and two extra sounds, which together with those of the preeding riythmie beat form a group of four

Chapter IV.

Fig. 24. A diagran showing common disturbances of the arterial pulse and heart sounds when premature ventricular contractions are present. (a) Normal rhythm; (b) Occasional prematuro beat, which affects arterial prefssure; (c) Occusional premature beat, which fails to affect arterial pressure ; (d) Premature beat replacing each third normal beat and affectiog arterial pressure: (e) l'remature beat replacing each third normal beat and failing to affert the arturial pressure ; (I) Premature beat replacing each second normal beat and affecting the arterial pressure; (g) Premature beat replacing ear:h secomi normal beat and failing to affect arterial pressure. The heart sounds occur in groups, and the groupa are of four or three, according as the aortic valves are ruised or remain at reat when the pr mature beat occurs.

Premature Contractions

(Fig. $24 b$ and 25) ; or by (β) an intermission in the arterial pulse and one extra sound, forming with the sounds of the preeeding rhythmic beat a group of three (Fig. 24 c).
2. When each third beat of the regular ventricular rhythm is replaced by a premature beat, we find a grouping of the apex thrust in threes, of which the third beat in each group is premature. The arterial beats (a) are grouped in threes,* with groupings of the apical sounds. so that two normal heart sounds alternate with a group of four sounds (Fig. $\mathbf{2} 4 d$); or (β) are paired with grouping of the apical sounds, so that two nozmal heart sommels alternate with a group of three sounds (Fig. 24e and 30).
3. Premature beats which altern te with rhythmic beats give rise to pairing of the apical thrusts (Fig. $2-: 2 x, 3: 2$), and to (") pairing of arterial beats of which the second stroke is weak, and to groupings of heart sounds in fours (Fig. $24 /$ and 29) ; or to (β) halving of the rate of the arterial pulse, and heart sounds in groups of threes (Fig. $24 g$ and 28).

The differentiation of premature auricular and veatricular beats is not always possible without full instrumental examination.

Where an oceasional premature beat occurs, the inclications of its ventricular origin are as follows: (a) There is no disturbance of the fundamental heart rhythm. The preseneo of this phenomenon may sometimes be elicited in feeling the beats, following the disturg the points at which the rhythmic original rhythm ; but it is , ought to fall to carry on the instances of disturbance of usually more casy to identify them by this method. A strip rhythm than to exclude always sufficient to A strip of radial eurve alone is almost instance of the prematureish one from the other, in the

[^8]

Fig. 2.5. Apex and radial curves, showing a single premature ventricular contraction $a=b$.

Fig. 2\%. Radial (olio and heart sounds in a case in which premature ventricular contractions replace each fourth normal beat. Tins premature beats fail to affect the pulse.

Fig. 27 and 28. Apex and radial curves and heart sounds. The normal mechanising passes into one in which premature ventricular contractions replace alternate normal beats. Fig. 27 is from a case in which mitral regurgitation was present. In Fig. 28, interval $a=b$.

Fig, 29. I'remature ventricular contractions replacing each second normal beat. The heart minn es are grouped in fours; sloe pulse is of the form terined pulsus bigeminus.
of the disturbance is equal to two normal cycles (Fig. 25). In the instance of the premature auricular beat the full period is less (Fig. 31). (b) There is a prominent jerk and swelling of the veins of the neck (Fig. 30) at the time of occurrence of the premature ventricular beat. This is brought about in the following fashion. The ventricular beat, falling prematurely as it does, usually coincides with a rhythmic auricular contraction, so that the two heart chambers are in systole together (see Fig. 22). As a consequence of this simultaneous contraction, the auricle fails, for a single cycle, to empty itself into the ventricle, and pumps the blood back into the veins. (c) By synchronism of the premature ventricular beat with the rhythmic auricular contraction, the corresponding first sound is often exaggerated.

Where the premature beat follows pairs of normal bests or alternates with normal beats, signs b and c may be present, but a is usually valueless
unless a tran is graphically recorded a period of disturbance to a period of normal rhythm instituted between the length of ig. 28 end 32). A comparison can then be Thus, in Fig. 28 the long pauses are exauy turbed and undisturbed heart cycles. a is equal to b; premature contractions ex twico the length of the short ones; an exact lailving of pulse rate. In Fig. 22 the in the ventricle have created contraction is not compensatory; a is longer than $i, 2$ the pullowing the premature

The effect of premature onger than b (see Fig. 23). signs, when murmurs are peats upon the auscultatory them can be foretold if A A systolic mitral murmur will be found with the premature as well as with the rhythmic beat (Fig. 27), but it is usually short and may be absent. At the base in aortic diseasc, a systolic or diastolic murmur is present when the premature beat raiscs the aortic valves (Fig. 33). On the other hand, in mitral stenosis, a presystolic mitral murmur is absent whether the premature beat is auricular or ventricular, but in the former instance, it is often replaced by a presystolic sound. The absence of the presystolic murmur in the case of the auricular beat is attributable cither to weakness of the premature contraction or to its coincidence with the preceding ventricular systolc.

Fig. 30. C'urves from the neek and radial artery. Premature ventricular contractions replace each third normal beat, but do not affert the pulse. An exngarrated first sonud and a prominent wave, easily visible in tha neck, meompanied each premature leat ; these phenomena result from simultaneons iontraction of auricle and vontricle.

Fig. 31. Apex and radial curves showing oceasional premature auricular contractions; a is greater than b.

Fig. 32. A " higeminy " or coupling of heart beats, resulting from premat ure auricular contractions, pessing into tho normal rhythm; a is greater
than b.

Fig. 33. A bigeminy, rasulting from premature suricular contractions. The beats are paired in apical and radial curves. Aortic regurgitation
was present.

More complex heart sounds are heard in instanees whero a premature beat raises the pulmonary, but not the aortic valves, as sometimes happens; tho second puimonary sound oceurs, but the second aortic sound is absent. This phenomenon has been erroneonsly ascribed to hemisystole, the presence of tho sccond sound of the right heart and tho absence of that of the left heart being taken as cvidences of activity and quiescence of the respeetive ventricles.

The subjective phenomena which accompany premature In a very large number of those affected, the disturbances of heart rhythin pass unnoticed. On the other hand premature beats are not an uncommon cause of what patients term "palpitation." The symptom is more prominent in young subjects, especially thoso of female sex and thoso afflicted by nervous instability. When numerous, they sometimes occasion actual distress; by calling attention to the heart, they often indueo anxiety. The sensations experienced are exaggerated by depression of the general health, by fatigue and by emotion. They are often more noticed after the patient retires for the night, after cxeessive smoking, after a heavy meal, or after exertion.

As a general rule the premature contraction itself passes unperceived; the long pause which follows awakens a senso of uneasiness or oppression in the chest, or a feeling of "void," while the succeeding contraction of the heart is accompanied by consciousncss of shoek to the ehest wall and frequently by a feeling of gripping in the throat. Patients cough, or inspire as soon as they experienee them. When a number of premature beats suceeed eaeh other at short intervals, and consciousness of them is marked, anxiety may be profound, and faintness, coldness of the extremities and even sweating may result.

The prognosis and treatment.

It should be clearly understood that, in speaking of the prognostic value of premature beats, I speak of these beats witlout reference to the conditions with which they are associated. That when frequent and persistent, they often accompany grave affections of the heart will be evident from a study of the tables already given; but this fact does not materially affect the question before us. The associated lesions give prognostic indications of their own ; our inquiries are as to whether a heart, which presents no other sign, can be regarded as healthy and as to whether, in the case of an unhealthy heart, the prospect has an added gloom.

It must be admitted that all such bcats are decided evidence of a pathological condition and that the pathological process has its seat in the tissues of the heart. The presence of premature contractions is an indication of disturbance of cardiac nutrition, whether temporary or permanent, but it is an asject that should not be allowed undue prominence. A number of people are temporarily affected by premature beats which do not reappear, while the heart manifests no sign of further damage, either at the time or afterwards. In such instances it is impossible to suppose that the disturbance of the cardiac function has been more than transient or that the nature of it has been serious. Observations and inquiry also teach that they may be present constantly and for long periods, and that those who manifest them may do so from an early to a good old age, such patients never showing any other sign or symptom of cardiac disability. It may be said therefore, that in themselves premature beats cannot be regarded as evidences of serious involvement of the heart muscle, although such involvement is often found in conjunction with them.

The question can be regarded from another standpoint. The premature contractions, when present and frequent, must
inevitably increase the work of the heart, but the amonnt of the added burden is not easy to ascertain. It is probably not weighty, for where the muscle is cvidently compromised and frequent premature contractions occur periodically, littie change in the condition of tho patient can be detected from time to time, and serious embarrassment of the circulation as a direct result of them is only suspected on rare occasions.

Modern observations therefore tend to mininise the significance of theso beats; in fact it has been tanght that they may be neglected in the forecast. My own standpoint is a more guarded onc. Premature contractions constituto and bear witness to defcets; there is the mechanical imperfection and there is the evidence of altered cardiac nutrition; and the more frequent the interruptions, the greater the degree of such defcets. Moreover, single premature beats testify to the presence of a process which may lead to cardiac irregularities of a more serious nature. They may be precursors of grave conditions which are colnsidered in subsequent chapters. Premature bcats, true paroxysmal tachycardia, auricular flitter and fibrillation have a common pathological basis; they are one and all the outcome of new impulse formation in the heart. While it is true that the majority of hearts which show premature contractions may never exhibit profounder derangements, it is also true that these occur for the most part in learts in which single interruptions have been common; it follows that of hearts scen to-day, some of which show premature contractions and some of which show none, the incidence of grave irregularities will in later years be greater in the former than in the latter.

I may summarise in the statement that, while premature eontractions have unquestionably a relatively insignificant inıport, as compared to many forns of cardiac irregularity, entire neglect of their presence is not advisable. Although
their deteetion shonld not be allowed, in itself, to eripple or hamper the patient who is the subjeet of them, a re-examination of such eases from time to tine is recommended.

The first standpoint of treatment is already indieated. The presenee of premature beats does not eall for a limitation of bodily exereise ; it shonld not prejudiee the voeation or pastine of the patient. Restrictions are necessitated only where other signs render them advisable, or where some particular act or oeenpation is definitely known to originate symptoms of a distressing kind. The anxiety to whieh the beats conduce in some subjeets may be materially allayed by reassurance. No drugs are known which influence their prevalenee; digitalis as a direet measure is contra-indicated. The symptoms are nsually masked or considerably modified by the bromides administered in doses of from fifteen to thirty grains or more a day; and these drugs are espeeially useful in tiding a nervous or excitable patient over a period of disturbance.

Chapter v:

SIMPLE PAROXYSMAL TACHYCARDIA.
 Definition.

Paroxysmal tachyeardia is a term which has heen and still is applied to several distinet phenomena. It will be of matcrial assistance at present if I restrict my description to the simple form and define it as a condition in which from time to time the normal mechanism is abruptly submerged in rapid contractions of the muscle in response to a scries of

The nature of simple paroxysmal tachycardia.
It has been stated that the normal pacemaker of the heart lies at the union of the superior eava and right auriele. The usual rate at which the rhythinie impulses proceed from this focus is 72 per minute in the adult. If a new centre of impulse formation develops in any portion of the heart wall, and this centre initiates muscle responses at a rate surpassing that of the normal rhythm, then, while it is aetive, the new eentre dominates the movements of the whole heart. Sueh are th~ naroxysms which we are about to study ; they consist of $\cdot n$ accelerations of heart rate in response to the aw : itg of new pathological impulses. The paroxysms

* In so defining it I have purposely excluded all aceelcrations of normal or sinus rhythm, for these are dependent unon all aceelcrations of normal in the present chapter ; ongye whia, which are elosely related to thation. I have also exceeds 200 chapter; one, which is regular, but in whied to that deseribed (see Chapter VII).
may be regarded both clinically and pathologically as formed essentially of a regular serics of premature beats. The new impulses are claborated in a single focus, whence the regularity of the series, and this focus lies, usually or always, at a point which is removed from the pacemaker.* Fig. 34 opens with

Fig. 34. A diagrammatic representation of a short paroxysm of premsture auricular beats : a paroxysm of tachycardia. The abnormal auricular leats are broken in their centres. Fach yielda a veutricular response. The firat abnormal beat occupien the same position in relation to preceding eventa as does that of Fig. 23. Tho short paroxysm ends in a pause $y . y$ is longer than x.
three normal heart beats, and the fourth auricular contraction (p) is premature. Up to this point the diagram is identical with that shown in Fig. 23 \dagger; it differs from the earlier picture in the repetition of the abnormal contraction, five such beats following each other in rapid and regular succession. In each instance the ventricle responds. The paroxysm terminates, and its end is marked by a pause (y) which is longer than the pause (x) intervening between the beats of the normal rhythm \ddagger; its length is generally that of the pause which succeeds an isolated promature contraction (see Fig. 23).

[^9]> Simple Paroxysmal Tachycurdia.

How important a clear pathological conception of this disturbance is, will be evident: for the nerve control of a new centre of impulse formation is not known from analogy ; as a matter of fact the new rhythms show only limited subordination to vagal and sympathetic con..ul.

The sites in which the new rhythms develop are numerous; the abnormal focus is generally sented in the a uricle, and the usual sequence of contraction is consequently maintained in the heart chambers ; but it may be ventricular, and the auricle then responds inversely to the ventricular beats. The chief features of the mechanism will be sufficiently impressed by a closer cxamination of the commoner auricular variety. The diagram exhibits a paroxysm of five beats, and this short series permits the display of both ouset and offsct. Actually the attack may last a few seconds or a week or more : whatever its length the mechanism is constant, but the symptoms vary with the duration.

The total range of rate in this the singple form of paroxysmal tachycardia is from 110 to 200 per minute; during most paroxysms the heart contracts 140 to 190 times

Etiological and patholoyical relations.

Age. Paroxysmal tachycardia occurs at all ages after the first decade. The actual age limits, so far as observed cases are conecrned, are 6-74. In my own series. which comprises 45 cascs, the age distribution is as follows :-

Age	10.20	$20-30$	$30-40$	40.50	50.400	60.70	$70-80$
Cases	4	11	7	7	7	6	3

A single instance has been recorcied in a child of 6 years. The highest incidence is between 20 and 30 .

Sex. In my series 30 males and 15 females are included. That is to say, the disorder is a good deal more frequent in
men than in women. Phis propertion is in fair agreement with other reeords, though perhups the make element in less predominnat in the whole number.
iferedity has beor blamed, bat the evidence is insuffieient to whow that it has any direct influence.

Relotions to infectice disense. In quite half the eases no history of previous illnems, other than perhaps ehildren's ailments. conl be traed. Rheumntie fever is the only infectiont which is at all common. Oecasional instances appertr to have followed immedia: : "ןon malaria, measles and searlet fever ; a few of the pationte have beell syphilitic.

Associntal comalitions. Host eanes of paroxymmal tachycardia are foumd to have no sign of valve lesion, and in a large number of the pratiente there is little or no evidenee of diatation during the intervals between the paroxysum.

Nevertheless a number of them show a limitation in the ficld of eardiae response and become breathless with slight exertion. Taking dikatation, in the absence of valve lesion, undue breathlessness upon exertion and the subsecfuent development of more merious signs of cardin failure as cridences of degeneration of the myoeardinm, I have placed nine of the patients in a eorresponding group. The only value lesiou whieh figures prominently is mitral stenosis, boing present in ten of my eases.

Paroryamal tachycardin and usnocieted conditions.

Simple Paroxysmal Trachyenrdia.

Fiurlors promoting methekis. Exsertion or emationml dis. turbance are the chiof excitants of at theks int thone prodisposed to thenn, and tho zannler of instanees in which the history. tefls of paros.bxins croked in these ways is remarknhle. 'The induction of af first attrek ly unteronstomed effort is oftern
 quentionable if errnin is erer the complete ntory: there probables damaged or perverted musile is in all calce the madorlying misehicf. Flatalence, other digestive diat wh mane
 the chicef remaining excitants of crises.
 lins berot pessible nfter death, the most prominent ant frectuent lexions hanve been in the whlls of the heart. Fihme-in. pallor: friability. atrophy and interferencer with the arterial supply are the chicf maked eye changes recorded. In n few enses of thelyentid nerve lesions have been found, but their associntion with the mereific condition with whieh we now deal is more than cloubtful.

The recognition of simple parorysmal luchycurdin.

A lreart rate of l80 or more in an adult is usmally the result of pathologienl impulse formation, and especially is this
Then i. the case where a heart lesion is lation, and especially is this rate of the veutricular beatiug is prosen to be present. The pelsscs from the npright to the is preserved when the patient alterel by more than a maintained in a supinew beats per minute even when ho is time. A physical pign position for considerable periods of may be noted at the onset or utinost diagnostie importanee and deerease in rate at or offset of an attack, the inerease patients who are consciese times is absolutely abrupt. In whom the offset and ons the rapid heart aetion, bist in Whom the offset and onset cannot be observed, the sudden
change at the beginning or ending of the attack can usually be elicited by careful questioning.

Other physical signs which may be present are of importance, though their significance is not so great. A prominent and palpable pulsation in the veins of the root of the neck is often present; it may be almost aneurysinal in force. The arterial pulse is frequently irregular in forcc, and at the first examination may give an erroneous impression of an irregularly beating ventricle. No observations are more unreliable than counts of puise rates taken in the urdinary manner during the paroxysms; they should always be checked at the apex beat, either by palpation or auscultation. The heart sounds are tic tac in character and murmurs which nay have been notical on previons occasions nsually disappear while the heart rate is raised. The last sign is of value in mitril stenosis, in which such attacks are relatively common; for the presystolic murmur is abolished. When a rough presystolic murmur is lost by a patient who develops an accelerated and regnlar heart artion, the disappearance of the murmur is generally attributable to the onset of an abnor mal rhythm. In patients who suffer periodically from tachycardia, the presence of occasional premature beats during the periods of quiescence is extremely suggestive that the tachycardia is due to ncw rhythm production.

The curves are illustrated by Fig. 35-37. In Fig. 35 the onset and offset of the period of tachycardia, due to abnormal impulsc fornation at a new auricular focus, is shown. The slow periods to left and right of it arc irregular, for premature contractions interrupt them. The terminations of two long paroxysms are shown in Fig. 36 and 37 . The noteworthy features of such curves arc several. The changes from the slow to the fast and from the fast to the slow ventricular rates are quite abrupt. Following each paroxysm
Simple Paroxysmal Tachycardia.
is a relatively long pause, and this forms the first of a series of pauses in a period of retarded rate. The rate at the actual termination is almost always slower than the average rate during the periods of quiescence : quickening, which is best

Fig. 36.

Fig. 37.
Fig. 3.5 to 37. Three radial curve r tat
tachycardia, In Fig. Bis a short and from separate cases of paroxysmal Fig. 36 and 37 the terminations of lou g complete paroxysm is shown. In abrupt onset and offsets of the paryer paroxysms are seen. Note the terminate, the irregularity of the paros periods, the pauses in which they fast periods.
seen in Fig. 36, occurs directly after the termination. The slow rhythm is interrupted by occasional premature contraction; these may usually be shown, by special methods: to have the same point of origin as the paroxysm.

Symptomatology of paroxysmal luchycardia.

Broadly speaking, the less frequent the attacks, the longer rlo they last. In a given patient, the duration of attacks is tairly constant, so that the paroxysms are similar from time to time. Paroxysms of a few seconds duration are not uncommon; attacks which last for several hours are the most irequent ; those of a fortnight's duration are rare ; the attacks may be of any intermediate length. Paroxysms of accelerated heart action of longer duration, and of the form considered in the present chapter are unknown (see succeeding (chapter).

The synptoms aceompanying parosysms of tachycardia of the kind considered are variable both in their nature and in their degree. They are intimately dependent upon the duration of the attack, the heart's rate during it, and upon the functional reaction of the heart. Amongst those in whom the attacks are brief, it is not uncommon to find that a patient is entirely oblivious to the rapid heart action when it occurs, and this is more especially the ease when the subjeet is elder!y and of the phlegmatie type ; or he may be conscious of transitory attacks only when his attention is specifically drawn to them or lo phenomena commonly associated with them. Paroxysms lasting half an hour or longer are almost invariably accompanied by obvious symptoms, and these are aggravated as the attack proceeds.

The iminediate onset is signalled by a sense of discomfort in the region of the heart, and this discomfort may amount to slight or violent palpitation. A tremor or fluttering in the ehest and a beating in the neck are common. Ceneral effects, such as lassitude, exhaustion, coldness and sweating are also amongst the early symptoms. Later, flatulence, salivation, nausea and vomiting are prominent. These alimentary symptoms are common within an hour or more of the onset and, once established, persist usually so long as tho
heart rate is maintained. They hasten the exhanstion whieh is cominon and conspieuous in attacks of long duration. In many patients a number of symptoms whieh are directly referable to the heart are added. These may be divided into two groups. First, anginal symptoms, varying in intensity from slight precordial pain or a sense of compression with skin tenderness, to violent and continuous pain, radiating in tho eharaeteristie fashion over the chest, into the neck, into the left arm or both arms and into the abdomen. Wide areas of hyperalgesia, corresponding to the distribution of the lower cervical and upper thoracic nerve roots. are fiequently present and persist after the attack has ceased; they are aeeompanied by tenderness of the tendons of the stemomastoids and of the bellies of the deltoid, pectoral and other muscles. The patients complain of eonstriction of the chest, variously described as " a band of tightness," .. a sensation of gripping " or " a diffientty in breathing." The second group of symptoms is a sequel to enibarrassed emptying of the heart. In a number of patients, as the attack proceeds, the limits of eardiae dulness move steadily away from the middle line, and as pallor, which is often an early symptom, becomes more The veins swell progressively; the cyes scem sumken, dark areas appear below them and the patient beeomes restless. The liver bulges downwards, its edge becomes palpable and may pass the umbilieus. Tenderness is experienced when the organ is pressed upon, and pulsation is felt in it : tho abdominal museles assume an inereased rigidity. tho pain develops in the epigastrinm and right rigidity; aching In more exeeptional pagestrinm and right hypochondrium. develops after a long eases, puffiness of the ankles and face show signs of enlargement atined attack. The spleen may also and sometimes blood-stained cough, aecompanied by a frothy signs of engorgement of thed sputum is not infrequent, and signs of engorgement of the lungs in the form of sibilant rhonehi
and moist râles are found at the bases. Collapse of the patient is prominent in the later stages. The attack may terminate in progressive failure, delirium, ascites, general anasarca and death. Unexpected death also ends the attack on oecasion, but the great majority of the paroxysms cease at the abrupt resumption of the normal rhythm. The actual cessation of the attack is marked by symptoms of its own, a sharp stabbing pain in the chest, or one or more forcible thumps of the heart. But as a rule the patient speaks only of relief. Nothing is more remarkable than the rapidity with which the natural circulatory conditions are restored, when the abrupt fall of pulse rate comes. The dilatation of the heart and the accompanying engorgement of the neck veins vanish as it were by magie. The liver recedes beneath the ribs, respiration becomes free, the pain is subducd and the remaining symptoms subside. Quantities of flatus and limpid urine are often passed after an attack.

A varying degree of exhaustion follows the severe attack, the cough may continue for a few hours or days, and skin and muscle tenderness commonly persists for some while.

Differential diagnosis.

The diagnosis of paroxysmal tachycardia, during an attack, rests upon carcful attention to the history of the patient and to those physical signs and symptoms which have been enumerated already. As a rule there is little difficulty. But a nuniber of errors do occur, and the chief of these may be mentioned; they mostly depend upon the prominenee of symptoms which are referred to other organs, and eonscquently upon a hurried or ncglected examination of the organ at fault.

The stasis of the lungs, with dulness and repitations at the bases, has been attributed to pneumonia. It is an error which should not happen, for it is always accompanied by signs of venous congestion in other organs. When it has

Simple Paroxysmal Tachycardia.

 ocenrred, I believe it has been largely attributable to under estimation of the heart rate, and the mistake emphasises the rule that the heart rate shonld be taken from the apex beat and not from the wrist.Anginal pain, maximal in the abelomen and aceompanied by abdominal rigidity, voniting and signs of collapse, has been mistaken for the symptom of a perforated gastric nkeer, and has led to a dangerous and ueedless haparotomy ; and this in a patient in whom eardiac diatation, engorgement of the weins and exeessive heart acecleration, were overlooked in the absence of eonspichous ryanosis.

A large number of cases are grouped moder the comprehensite term " heart strain," and this is applied (specially to the patient iu whom the first attack has becu hastened by effort.

More than one instance has come to my notice, in which "aente eardiae dilatation" has sufficed as a diagnowis in a pregnant woman, suffering in reality from a rheumatic heart, with mitral stenosis. A rheumatic history is not mecommon in caser of paroxymal tachyeardia, and the characteristic murmurs of mitral stenosis, when this vale lexion is present, are usually masked during the attack. A history of rheumatic fewer. or a stight systolic thrill and an accompanying apical marmur, may suggest a mone correct interpetation of the case

The chicf difficulty arises, ats these instances illustrate, when a patient is seen for the first time in an attack, and this is especially wo when no clear history is obtainable. When a regular heart rate axcects lfiop per minute in an adnlt, the presence of a wew rhythm. rather than aceckeration of the normat thythm, should ahays come first to mind ; it may be suspected even at bower rates. The reaction of the rate to posture is important. It is perfectly true that very high pulse rates are met with in exophthalmice goitre, in puluonary
tuberculosis, in alcoholism and other conditions, but tho presence or absence of the diseases or intoxication in question may usually be ascertained and the conditions differentiated. Failing positive evidence from these sources, an examination of the heart rate in its response to posture is of service. In the aforesaid conditions a notable or marked decrease of rato at or shortly after the assumption of the supine posture is the rulc. Where we deal with a new rhythm, posture influences the rate inappreciably, if at all, neither is it affected by repeated swallowing or the suspension of respiration. A persistent tachyeardia of 140 or upwards, maintained under a variety of circumstances, should always suggest the presence of a new and extraneous heait rhythm.

Patients who are the subjects of rclatively brief attacks occasionally seck advice during periods of quicseence on the score of attacks of faintness, palpitation, rapid heart action, etc.. The true nature of the condition may be suspected or proved by careful examination. Tho history of the sensations at onsct or offset are then most valuable. The complete absence of symptoms or physical signs of cardiac involvement, and especially the absence of occasional or frequent premature beats, should suggest causes otber than those which we are considering, though they are not finally excluded thereby. In a neurotic subject, excessive foreo of the cardiac action and excessive consciousness of the beat are the most probablo explanations. In cases of doubt an effort should be made to investigate the heart during an attack. A prolonged cxamination of the patient is sometimes rewarded by the discovery of brief paroxysms of true paroxysmal tachycardia, for the patient so affected is often the subject of more attacks than those of which he is conscious.

The prognosis.

The prognosis of the individual attacks contains an element of uncertainty. Death during paroxysms has
occurred on not a few oceasions, but the great inajority of tho paroxysms are tolerated. Several prognostic aspects need emphasis. The symptoms of the patient are largely governed by the reaction of tho nervous system; neurotic subjects, especially women, awaken needless anxiety. Tho duration of the observed paroxysm and the length of previous seizures have to be considered. The outlook is more ominons when, after a continuation of several days, the heart shows signs of progressive weakening, manifested by steady increase in its size and by the supervention of pulnionary and hepatio congestion. The strength of the pulse is no indication of the future, it may be searcely perceptiblo in repeated attacks. The gravest symptoms are those of increasing respiratory embarrassment, eonsequent upon cedenta of the lings, and the onset of delirinm and general anasarea. Nevertheless it often happens that wher embarrassment is profound the paroxysm ends, and the patient passes in a few minutes from a condition of aeute distress and secmingly the ntmost gravity to one of relative comfort and safety.

The prognosis of the inalady as a whole shonld be based upon two chief considerations; first and most important, upon an estimate of the endurance of the cardiac muscle, and secondly upon the severity of the trials throngh which it passes. The estimate of the first factor is formed from the signs and symptoms between the attacks and from the reaction to moderate effort. The prognosis in a case of paroxysmal tachycardia is the same as that in a similar case which shows no attacks, but with the following reservations: the attacks are themselves important indications of nuscle damage, and the attacks frequently place the life of the patient in jeopardy. The reaction of the heart to the attacks is also of importance. A healthy heart reacts to a pure increase of rate, amounting to a doubling of the normal rate, by decreasing in size, and the eirculation may be maintained
for long periods. A diseased muscle reacts by dilating. The degree of dilatation and the rapidity of its onset and progress conserquently suggest the degree of muscular involvement.

The estimate of the second factor involves a struey of the length and frequency of the attacks and the heart rate during such attacks. as they are summed up by observation and the previous history; but as the attacks may cease at any time never to return, and as we are ignorant of the grade of injury, if such injury exists, which single paroxysms imposo upon the lieart, the value of th so considerations in the eompletion of the prognosis l in its limitations. The possibility of death in a seizuro is an uncertain factor ; it necessitates caution in prognosis when the paroxysms are of long duration.

The prognosis, where little further sign of eardiae musele damage is fonnd, and where the paroxysma are infrequent and of a few hours duration, and the rate not very excessive, is favonrable : such paroxysme do not entail life as a rule, and a prospect of long vears may be spoken of to young subjects without hesitation. These patients always wish to know whether they will ever be free from attacks. They may be told that, althongh such freedom eannot be promised, the prospect of it is fair. The prognosis as a whole starts from this foundation, and as mnsele or valve lesions are moro in evidence, as the attacks are longer and more frequent, as the heart acceleration is greater, and as the patient is older, so the outlook is less hopeful.

The tratment.

The treatment of paroxysmal taehycardia may be conveniently dealt with from two standpoints; the management of the attacks themselves, and the care of the patient during the general eomrse of the malady.

> BIOMEDICAL LIBRARY McMASTER UNIVERSITY

Are we aware of any remedy which will infallibly abolish a paroxysms of tachycardia! The answer to this question is in tho negative. I hare frequently seen attacks of several hours duration terminate shortly after the ndministration of eertain remedies or alter cortain interlerences. The patients Who are the smbjects of them are often aware of and adopt ecrtain curative measmres. In some instances tho assmmption of a given posture, sitting and placing the head between the knees, for example, or lying supine, is a certain remedy. The induetion of vomiting, the relief ol flatulence, or tho application of a tight abclominal binder may te immediately and constantly effieacious in given cases. I have seen the application of an icehag to the precordinn, a remedy whieh always affords relief, specdily terminato attacks. Nimilarly they have ceased shontly alter the administration of a single intravenous injection of digitalin ($1-100 \mathrm{gr}$.) or strophanthin ($1-250 \mathrm{gr}$). Firm pressure upon one or other vagus nerve as it lies in the carotid sheath has heen successful. But much more often than not, sheh remedies are without effect and the treatment finally adopted becomes palliative or symptomatie. Rest is enjoined, and attention is paid to the wishes of the patient in respect of posture. Most frequently these unfortunate people prefer to lie well propped with pillows; sometimes they prefer to stand. The dietary shonld be thid, hland and as restrieted as jussible. Ieed water or milk are well borme and are often beneficial.

Local applications. the icebag, a mustard plaster, leeches or cupping over a distended or pain-giving organ, be it the heart or the liver, often afford great relief. Pain, if general, may be combated by more general remedies, smeh as chloral or morphia; but these drugs are not often called for. The induction of sleep in long continued parosysins is essential, and fortunately chloral and the opiates may he
employed with safety. Serious engorgement of the heart and signs of progrensive lung codema or grave venous stasis are indieations for venesection. The letting of 8 or 12 oz. of blood will be followed by improvement ; but the oceasion does not often arise. Respiratory embarrassment is relieved and sleep indueed by the administration of oxygen; this gas is best given through a tight fitting mask which eovers the whole face, so that high pereentages are breathed.

The treatment of the malady as a whole is largely governed by the condition of the heart between the attaeks. A searehing inguiry may reveal exeiting eanses of paroxysms: often. sudden exertion or emotion is the chief provocative, so that the eessation of employment beeomes, not infrequently, imperative. General eare of the health, the cleanliness of the month and throat. the orderliness of the dietary and the remedying of dyspeptie troubles and constipation may ward off the erises. The eontilued wearing of an abdominal belt, applied before rising and disearded at bedtime is sometimes aecompanied liy the happiest of results.

Where other remedies fail, a full eourse of digitalis* may ultimately improve the eondition.

The paroxysms themselves do not contra-indicate the eareful administration of general anowthetien, slould they be nceessary.

[^10]
Chapter VI.

ALRICULAR FLUTTER.

Dr/inition.
Auricular flutter may be arbitrarily defined as a condition in which the norinal beats of the auricle are submerged by contractions of this chamber in response to a series of new, rhythmic and pathological impulses, varying in rate from 200 to 350 per minute.

The nature of the flutter.
A strict scparation of auricular flutter from simple paroxysmal tachycardia, the disorder described in the preceding ehapter, is not at present possible; yct the symptomatology, course and treatment of new auricular rhythms of extreme rate, are sufficiently special that for descriptive purposes it is convenient to retain them in a separate category. Although it may be perfectly true that an acceleration of the auricle to 210 per minute does not provoke widely different symptoms from an acceleration at 190 per minute, yet between the features of tachycardia at 100 and 300 per minute there is as a rule little resemblancc. Extreme acceleration of the auricle has its special characters, and the arbitrary line of separation is drawn at 200 per minute, because these special characters begin to appear when the

MICROCOPY RESOIUYION TEST CHARY

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 Egst Moim Sireet
Rochester, New York 14609
USA
(716) 482 - 0300 - Phone
(716) 288-5989-Fax
rate is so far enhanced. Perlaps the most notable feature of flutter, or extreme aeceleration of the anricle, is its almost invariable association with heart-block. Flutter, so far as we know, arises in the auriele only,* and the rate of the aurienlar contractions is so great, that the ventricle ean rarely keep the paee. The usinal aurieular rates are from 260 to 320 per minute; the systoles of the auriele follow each other so rapidly that the diastoles are redneed almost to vanishing point.t The usial ventricular rates are from 130 to 160 , exaetly half the aurienlar ; for $\mathbf{2}: \mathbf{1}$ heart-block is generally present when the patient first eomes under observation (Fig. 38). The new impulses which drive the auricles in this

Fig. 38. A diagrammatic representation of auricular flutter. The abmormal nurieular beats are broken in their centres. The auricular rate is very heart-block is present.
merciless fashion probably spring from a single focus in the auricular tissue, and as in the simple form of paroxysmal tachyeardia, this foeus is probably an unnatural one. The mischief lies at a distance from the pacemaker, and the reins of eontrol, the inhibitory nerves, are powerless. The auriele has veritably seized the bit with its teeth. The ventriele, shielded

[^11]
Auricular Flutter.

 from the whip by the auriculo-ventriemar bundle, lags behind. 2: 1 heart-block is the rule ; but any grade of boock may be present. Thus it happens that while the auricle races at 300 per mimute, the ventricle may beat at 150 ($2: 1$ heart-block) ; at 75 ($4: 1$), a normal rate, or at 30 to 38 (complete dissociation). The speed of the anticle onee set is wonderfully uniform; it may vary but a few beats per minute over long periods of time ; its beating is always regular. The responses of the ventricle are often regular; but may also be irregular, when the impulses from the auricle are chosen at irregular intervals; especially is this the condition when ons. uniform grade of heart-block is passing into another. But even when the ventricle beats irregularly, as each of its responses is to an auricular contraction forming one of a perfectly regular series, the ventricular contractions lie in the eurves at definite points (Fig. 3!!), which may be prejudged

 Fig. 39. A similar representation of aturicular fluttor with irregular response time. Note the change in the A are aren intervaly repeated from time to

which a ventricular beat block is known. The point at described under heart-blocs placed is governed by laws Attacks of flutter brief duration . brief duration; usually they last for months or years.

Etiological and pathological relations.

Age. Flutter is a comparatively rare condition, and is usually associated with advanced years. In a serics of 27 collected cases the age incidence is as follows :-

Ag.	20.30	30. 40	+10.310	50-60	60.70	70.80
Cases of my own scrios	1	1	2	3	8	2
Remaining cases	1	3	1	2	2	1
					10	3

Sex. Of this series 22 were males and only 5 females.
Relutions to infective disease, etc.. As a general rule, no previous infection can be traced. Rheumatic fever or syphilis has seemed responsible in some cases, and in others there has bcen an antecedent infcetion of the urinary tract or history of recurrent attacks of gout.

Associated conditions. Occurring as it does in elderly cases, flutter is often associated with arterial sclerosis; much increasc of the heart's dulness is uncommon; as a rule there are no murmurs, hut any of the valve lesions may be discovered. There are nearly always some signs of degeneration of the heart muscle, as witnessed to by the symptoms of the patient, when the heart beats at normal rates.

Of the morbid anatomy, we have little or no knowledge.
The recognition of flutter.
In a number of patients, the presence of auricular flutter may be recognised by ordinary clinical ineans; but in perlaps a larger numher, the diagnosis is only possible when special methods (the electrocardiographic particularly) are employed.

During the 2: 1 heart-block phase. When flutter patients are first seen, the rate of the ventricular action is usually half the auricular. The history often includes palpitation, of
sudden onset months or years previously. A regular and persistent ventricular action of from 130-160 per minnte in an elderly subject is a most suspicious circumstance, and its diseovery should always be followed by a special cxamination for other signs of flutter. The patient may give a history of short paroxysms of many years standing and may speak of this the final attack which he is unable to discard. If tachyeardia persists for a month or more at one of the stated rates, and there is absolutely no change of rate with change. of posture, rest or cxercise, the eondition is almost certainly. flo'te:. A most suggestive incident is the constant repetition of the same high pulse reading in the pulse chart, or the finding of exactly the same high pulse rate at intervals of weeks or months.

From time to time in eertain individuals, and usually. during periods of emotion or cxertion, the ventricular rate springs inomentarily to the full aurieular rate; the resulting disturbance is profound, and patients who retain eonsciousness. subsequently give vivid aceounts of the experience ; fainting is eommon in flutter patients.

Firm pressure upon the carotid sheath, on left or right side, sufficient to ohliterate the vessel and stimulate the vagus nerve, always produces a conspicuous slowing of the pulse or lapse of many beats (Fig. 40). Similarly, digitalis, given in fuil doses always slows the pulsc and ereates irregularity. The radial eurves, when the pulse is fast, often exhibit alternation (see Chapter VIII).

During the stage of irregular responses. If the responses raising a limb from bed, immediately accelerates the ventricular aetion and induces perfect regularity of the pulse (2:1 heart-block) and this regular pulse aetion may then be

Chapter VI.

The character of the radial curves giver an immediate clue to the condition (Fig. 4 Ul and explanation).

Fig. 42:1. A series of 22 chick future of three rictus curves for ma "urges lures of the irregularities pron lured a case of flutter, shewing the
 by the manner ia l which not produced in this fundione contractions: but
 they corresponded to equal duration, ane they are of aqua bracketed portions auricular contraction gal numbers of auricular equmlduration breonasi pulse beat. unmarked above vale lt under these circumstances ventricle are infrequent. It is recognise by ordinary clings that fluter is so difficult to a fluttering auricle and the means. A patient may possess: limits of rate and may be pulse may be within normal are rare ; moreover, the fail regular. Fortunately such cases times is relatively of less consed to detect the flutter at such vibratory movements of the quince. In some patients the veins of the neck and may be auricle are transmitted to the The symptomatentified (Fig. 42b).
The symptom symptomatology of flutter. long detain us. In patienter with auricular flutter need not in short paroxysms the sym p whom the acceleration occurs of simple paroxysmal tanptoms are identical with those according to the heart rate and ; they vary in intensity power of the ventricular inuscle.

Chapter VI.

$$
\begin{aligned}
& \text { Fig. 423. } \left.\begin{array}{c}
\text { Venous and arterial curves in flutter with a high grade of partial heart-block. Showing the numerous } \\
\text { and regnlar auricular waves (a) which appear in the hong diastoles. } \\
\text { As in Fig. 40 the number of auricular contractions corresponding to a ventricular cyele is narked above } \\
\text { the respective beat of tho curve. }
\end{array}\right]
\end{aligned}
$$

Auricular Flutter.

But in patients who experience longer periods of disturbed heart action, and these are more frequent for flute tor generally persists for months or years, the subjective sensations are modified. Although the reason is not clear. the symptoms of flutter seem less profound than is to be expected from a study

σ

Fig. 43. A series of four curves, showing the effect of digitalis medication occasional periods of 4 : heart is beginning to respond to digitalis and regular 2: 1 mechanism : the rate of the seen, interrupting an otherwise that of the ventricles 133. (b) Further slowing was 264 per minute, and to $4: 1$ grade of hearict now occur in groups, or the few days hater. The grossly irregular ast.block. (c) A few days later ; the hanismis is reduced digitalis having been result of the establishment of ventricle becomes resumed (ii); the rate of thrawn. the normal and regular illation. The and ventricle being 64 pro minute. infrequently, the action erises of tachycardia. Thus, not 130 or 150 for periods of of the heart may be accelerated to consist of little more the ar or more, al yet the symptoms after slight exertion. The cense of exhaustion and fatigue limited, but signs of failure occupations of such patients are limited, but signs of failure in the form of stasis and dropsy
may not ocenr. Find tolerance is to be attribuced perhaps to relatively powerful ventricular musele. Naturally there wre cases of thattor in which signs of eongestion are visible ut all early stage; but in reviewing a werices of cases, one cannot but be impressed by the inferenence of these signs of laihre, as compred to their ineidenee in other tachycardias giving similar vent rieular rates.

As I have already indieated, there is an additional symptona complex in flutter ; it results when the ventriele asmimes the full anricular rate; an accelenation of the ventricle to 310 per minnte phees the life of the mulicet in immediate jeopardy. the symptoms are protound, and conscionsmess is nsially lost; such attacks, being murvived, are necessurily flecting.

The prognosis.

The time has not arrived when we may speak of the proguosis in auriendar flatter from long expericuee of the cases ; the malady is but newly discovered. I have known the eondition to last for four years, the ventriche beating withont cessation at 160 per minnte. Hew muc. longer this high rate may be maintained in the presenee of a tole: ably efficient circulation, we cannot say. Oi my 17 eases, one only has sucenmbed, and this as an immediate secfuel to prostatectomy : but as yet most of the patients have been under olservation only for short periods of time.

We may gather a general idea of the prospeet upon the lines disenssed in treating of the simple paroxysms of the last chapter. It should be based upon a general consideration of the strength of the heart muscle, and of the burden which this musele has to carry. Inportant in this respeet is the response to treatment, for most cases are amenable to specifie measures, as we shall see in the succeeding paragraphs.

The trettiment.

The trentment of bong \quad 'inned thater of ho auricles is often conspienonsly successful. Even after th, aceeleration has lasted for many monthes or wem se veral years ile natural rhythom of the heart may be restored by suitable medication. The remedy is digitalis or an allied drug. My experienere tells me that the wentricular mate can always be redued by giving !ligitatis or strophanthus in full doses, and maty be maintained acthe reduced ratesolong ast reat ment is continued.

Furthe: I hase fermd, that if, having obtained this reaction. the dosage can be increased, the flutter censes and tibrillation (a condition described in: the next chapter) takes its place; if now the cemedy is withdrawn, the fibrillation vanishes in most enses and the normal rhyt han is immediately sesmmed. I have seen these ehanges in a number of patients and can speak eonlidently of the suceess of the remedy. Oceasional intolerance to the drug, the onset of gastrointestinal symptoms, appears to be the sole limitation ; strophanthin may then be administered intravenonsly with equally happy, and much more speedy, results. It may be asked if the flutter ever returns when it has been abohished? In one of my cases it has returned, but renewed treatment again restored the rormal rhythm and this has since persisted. The secret of hie treatment seems to lie in the rupture of a vicious circle. Flutter, once it comes, promotes an:' establishes itself; the same tendency is found in fibrillation, a condition which we shall discuss presently. Being checked, the eause of its persistence seems to be remo. d.

When, in such patients as have signs of cardiac failure, flutter is removed and the normal rhythm, wi h normal heart rate, takes its plaee, the change in the general condition is remarkable and aluost immediate. Engorgetzent and dropsy rapidly disappear; l, reathlessness and other discomfurts are relieved; the customary oceupations of life niay be resumed.

(82)

('ILAPTER VII.

AURICULAR FIBRILAATION.

Definition.

A condition in which normal impulse formation in the auricle is replaced by stimulus production at multiple auricular foci. (co-ordinate contraction in the auricle is lost ; the normal and regular impulses trinsmitted to the ventriele are absent, while rapid and haphazard impulses produced in the auricle take their place and produce gress irregularity of tho ventrienlar actien.

The nature of auricular fibrillation.

When we inspeet the nermally heating leart of an animal, the systoles of beth auriele and ventricle are readily diseerned. The mevement of the auriele is a sharp flick, most elearly perceptible in the length of the auricular appendix, fer in this line the shortening is greatest. When the auricle is forced inte fibrillation or delirimm, tho appearances are quite distinctive; the muscular walls are maintained in a pesition of diastele; systole, either cemplete or partial, is never aceomplished; the structure as a whole rests inmebile; but clese ebservation of the musele surface reveals its extreme and incessant activity, rapid and minute twitchings and undulatery mevements are visible over the whole. It is believed that the tissue mass has suffered functional fragmentation and that a number of small areas

Auricular filbrillutiom.

give independent hirth to new impulaces. Finther it is hell that thewe fresh impulses are pathological, being similar ta, or identieal with, these which awok single premature rontractions. The effert of the anricular emfusion nown the ventricle is twofold. The normal, regular and cooordinate the ventricte is robbed of the regular impmlses whith form its acenstomed supply. These are replaced by mamerons and haphazard impulses, eseaping to the ventricle from the turmoil which prevails in the upper chamber the change in the netion of the ventricle, when the auricle fibrillatey, is consequently profound. Its rate of beating rises considerably
 of the muricles do mot contraet conoramoriendar bibrillation. The fibres

 ventricle, producing in it a rapided and irregar intar necions mal stinmande tho and the erontrnctions irregular fashiontions follow each other in a completely represented in Fig. 44, in whis mechanism is diagrammatically the absence of eo-ordinate a I have attempted to emphasise constant fibrillary of the quickened ventrietion, and the irregular responses Such are the events the new aurieular impulses. elinical condition are ints in experiment, and those of the Ventriculer are identical. with one proviso; since in the * Ventricular fibrillation is incompatible with for in the responsible for many instances of ungexpected with life. It is probably

experimental heart the tissues controlling the eonduction of impulses are healthy, the ratc of the ventricular contractions is doubled or even trebled; but in the human subjeet, the condueting tissues may be either intact or damaged, consequently the ventrieular rate varies widely in different patients, according as access to the ventriele is full or limited. While a free passage vields rates approaching 200 per minute, damage to the junctional tissucs may reduce the rate to 40 or less : the nsual rates lie between 90 and 140 .

Etiological and pathological relations.

Age. The observed age limits of fibrillation are 5 to 84 ; it is extremely rare before the age of 17 years. In stndying the age distribution, the eases are conveniently divided into rheumatic and non-rheumatie groups. This division clearlyshows that, independent of rhemmatism, the affection is related to advaneing years ; as with premature contractions, the highest incidence is in the sixth and seventh deeade. In the rheumatic group, the incidence is heaviest between the twenticth and thirtieth years; it is almost as heary in the fourth and fifth decade, but lightens as the years mount further.

Age distribution of airicular fibrillation in 141 cases.

Age 0-10	10-20	20-30	30.40	40-50	50-60	60-70	72.80	80.90	90-100
Rheumatic	4	${ }^{6}$							
Non.		2	21	23	10	5	0	2	
rheumatic 0	0	0	2	6	17	18	4	3	
0	4	26	23	$\overline{29}$	27	23	4	5	

Sex. Auricular fibrillation is much more common in men than in women, and the preponderance in males is chiefly in the non-rheumatie group. Where there is a rheumatic history, the sexes bear the burden more equally. The relative frequeney of rheumatie fibrillation in women is linked with the prevalence of mitral disease in this sex; mitral stenosis and aurienlar fibrillation are bosom eompanions. Among 18!) subjects the sex distribution was as follows:--

Rheumatic Nom-rhembatic. Not noted	. $1 / t^{\prime \prime}$.	Fromo.
	.3)	17
	4	13
	17	1.5
	\cdots	-
	114	\therefore

Relation to injections; ussociuted romlitions. Amongst 1.i2 cases, a rheumatic or choreic history las been found Il times; in fonr instances at least, there was a history of one or other affection in the family. limongst the remainder, mitral stenosis was present in 26 , and pericardial athesions or effusion in two eases. If these patients are coldected to form a rheumatie gronj, the subdivision incluckes 101 cases, or 66 per eent.. The prevalence of fibrillation amongst those who suffer from mitral constriction is especially noteworthy : i!) of the eases, or $5: 2$ per cent., had this valve lesion. The relation to mitral stenosis may be traced in another and equally emphatie manner. Of 106 cases of mitral stemosis eolleeted in an out-patient department, 22 , or approximately one-fifth, showed auricular fibrillation. The proportion amongst in-patients is much higher ; it exceeds 50 per cent..

In the table, I have classcel a gronp as myocardial degeneration; it inchudes those in whom the heart irregularity was the outstanding feature, though many of the cases gave signs. of eardiae failure in addition to the irregularity. Aortic disease, arterial disease and granular kidney are the most prominent lesions in other groups. Of all eases of cardiac failure admitted to a general hospital 60 to 70 per eent. nanifest this disorder of the cardiae meehanism; it is difficult, therefore to over cardiac importance.

Of ctiological factors, rheumatism is predominant, as we have seen; a history of other infections, "influenza" amongst then, is given by many patients, but the influence of these infections is imperfectly understood.

[^12]Morbid anatomy. That valve lesions are present in a number of the cases is ohvious front the bedside examinations ; enlargement of the whole heart is common, and dilatation or hypertrophy of the auricles is more frequent than the valve lesions which niight be held to account for them. The most constant structural alterations, which are found, are discovered by histological examination of the heart musculature. Usually it shows a more or less intense grade of subacute or chronie inflammatory change progressing to fibrosis, and the auricles are conspicuously affected. A diffuse fibrosis, accompanied by leucocytic infiltration and atrophy of the neighbouring muscle cells, is the most frequent change.

Such is the tale told by the microscope, but it does not justify us in holding that the inflammatory reaction is the cause of the altered mechanism. We examine the hearts of those who die, and most die with all the classical signs of heart failure. Many of the microscopic lesions are to be regarded as the result of infections producing heart failure rather than fibrillation. Similar lesions are found where fibrillation has never occurred ; and hearts which have shown this disorder may not present the lesions described.

The recognition of auricular fibrillation.
Auricular fibrillation gives rise in a clinical case to two series of phenomena; the one dependent upon the virtual paralysis of the auricle; the other dependent upon the irregularity of the ventricic.

It will be convenient to study the ventricular signs first. The irregularity is most varied in form according to the rate of the contractions. When the heart is beating rapidly at $100-160$ per minute, the grade of disorder is maxinal. The radial artery supplies indifferent news of the ventricular rate, many pulsations fail to reach it (such beats are marked with asterisks in Fig. 46). The pulse is a medley

Chapter VII.
Fig. 45 to 50. Apex and radial curves from zases presentiag atrienlar fibrillation.

Radial

Auricular Fibrillution.
Gress irreequarity is present. Mitral systulic und aurtic diantulic nummury uemer
of beats of many sizes (Fig. 45), an intimate mingling of changing panses; now the beats are ahnost uniform in strength and spaeing; now feehle pulsations ehase along rapidly; now the pulse is lost ; now it returns with inereased vigour. Feel the pulse and the meehanism is apparent ; the more the disorder, the more eertain the evidence. It is when the rate is slow that close attention and more experience are often asked for with slower rate, the disorder is less pronounced ; all the heart heats now reaeh the wrist and the irregularity eomprises minor variations in the length of panse (as in Fig. 48) ; in such instanees it eseapes notice, and a heedful examination, eoneentrated upon its presence or absence. alone brings it to diseovery. Short pulse curves reveal the irregularity on all lut rare oerasions. The nature of the arrhythmia is such that the heart aetion is never quite regular, and seldom do two beats of a precisely equal eharaeter or length lie adjaeent. No two whole strips of eurve are similar; the pauses hetwist heats bear no simple length relation one to another. Proportion between the force of an arterial pulse and the panse preeeding it is often lost (Fig. 45 and 46) ; a strong beat sueeeeds a brief pause and a weak beat succeeds a long one. When the pulse is slow, only beat to beat measurement may disclose the irregularity.

The fully developed disorder of the ventriele is readily appreeiated at the apes. The hear: sounds are modified; they wary in intensity and the variation runs hand in hand with the strength of the heats. First and second sounds are present with each cyele which gives arterial pulsation (Fig. 45) ; a first somnd stands isolated when the pulse beat is missing (Fig. 46). If a systolic mitral murmur is present, it aecompanies each ventrieular contraction (Fig. 44), exeept where the rate is fast, for here it is apt to vanish. Aortic murmurs obey the general rule, their presence or absence is eontrolled by the efficieney of the respeetive beats (Fig. 47).

> Auricular Fibrillation.

The inactivity of the auricle is responsible for special alterations of the heart sounds in patients who have stenosis of the mitral orifice. It is enstomary to allude to disappearance of presystolie murmurs when the auricle fibrillates, but this statement is not exaet. The change in the eharacters of the nurmurs at the onset of fibrillation is oftentimes impressive, but it varies according to the heart rate and the degree of stenosis. If, while the regular heart beats are present. there are short presystolie murmurs, these murnurs usually venish when fibrillation legins; and more especially. if the rate during fibrillation is rapid. If the presystolic murmur is long and rough, a murmur of similar character is preserved during fibrillation. But its time relations are altered. Attention shonld eoncentrate upon the position of the second sound at the apex. When the a bele is fibrillating, the diastolic murmur has a fixed time relation to this sound. If the heart rate is ropid, the murmur begins early in cliastole and fills the whole gap to the first sound of the sueceeding beat (Fig. 48) ; if the heart rate is less rapid, the murmur maintains its relation to the second sound but falls short of the succeeding first during the longest ventrieular pauses (Fig. $46 p$) ; if the heart rate is slow, a long, though varying, interval separates the end of the murmur and the next first sound; the murmur is then confined to early diastole (Fig. 50). The whole series of riummur arrangements may be observed in a single case which exhibits different heart rates from time to time. The reason of the changes will be clear when the pressures and mechanism are considered. The diastolic murmurs of mitral stenosis are dependent upon the rate of flow through the constricted orifice, and the rate of flow is controlled by the difference of pressure in auriele and ventricle at anv given moment. Now although the auricular pressure eyceeds the ventricnlar during the whole of diastole, the excess is greatest at two phases, namely, when the
auriele is in eontraction nud directly after the opening of the uritral valves. Where the auricle eontracts in normal fushion, mitral diastolie nurmurs are in chief evidence at first in late, and afterwards in early diastole: they are found in carly diastole when the auricle is virtually paralused, eypecially when, the henrt rate being slow, stasis raises the ventrieular pressure during the last phases of diastole.

The elinieal recognition of anricular fibrillation rests primarily upon the nature of the sentricular action. but it is aided, as we have sern, by certain additional phemonema. It is possible, too, to formulate a fow general rulew. which serve as usefnl gnides to its identification. When the rentricle bents irregnlarly at a rate sumpasing 120 per minute, the irregularity is almost always of this mature. When an irregular ventricular action acompanies signs an! syuptoms of serions heart failure, it is probably the result of anmentar delirimm, and the probability is increased if the heart rate is much aceclerated. In patients in whom the heart is irregular, hant in whom the heart rate is not much aecelerated and in whom signs of heart failure are alowent or few, a test nay be applied whieh is of considerable value. Moderate exereise augments the ventricular rate. and this is so whether fibrillation is present or not : but there is a striking contrast in two given cases of irregularity, of which one is due to anricular fibrillation, while the other has a different cause (i.e. premature beats, partial heart-block, ete.). In fibrillation the pulse hecomes more irregular with its accelcration, while in the remainder the pulse steadies. Wheu premature beats are present, a sufficient acceleration of ventrieular rate to abolish them temporarily may often be induced by several fuick changes from the reeumbent to the sitting posture; this is not so where fibrii.ation is concerned. On the other hand, as the pulse slows subsequent to exercise, reversed relations are witnessed ;
the itregulerity of fibrillation deereases, while other eorms of irregularity become more prominent. Ferer similarly raises the ventricular rate and dhange the febrile stage the disordere of fibrillation persists and is often augmented in degres. Finally. the persistence of the irregnlarity. Which is due to fibrillation. needs emphasis. In most cases it is comtimmons from the time of observation until death. The other itregularities ate present from time to time, so that there are intervals of regular ventrimar action each lour of each dis.

The general symiptomutology.

The sympton a complained of by patients in whom the auricles are in at state of fibrillation are very various. beiug dependent manly nom the eoncomitant conditions. Whay are the symptoms of degenerate and failing heart muscle, and these do not require reiteration at the present time. The symptoms which are now our special concern are these whieh appear to be the epeecial developmentes of fibrillation itself. Patients. who porsess the persistent disorder, often experience. oceasional fluttering in the ehest sud neck and may be eonscions of irregular heart action. They are more prone to shorthess of breatle, exhaustion and other symptoms of over-taxation of the heart than are those with similar value lesions and a like degree of cardiae dilatation*: hut it is not always easy to allot these superidded symptouns to preeise canses; they are in part the result of the graver myocardial condition which consects with fibrillation; they are in part due to the actual turbulence and embarrassment of the ventricle.t That the heart is taxed by the irregularity. cannot be donbted, but it eannot be stated that any symptom.

[^13]such as reyanosis, conspieuous dyspncen, notiecable venous engorgement or clropsy, is the direct outcome of fibrillation; for cardiae failure and these, its elassical arcompaniments, are found where there is no fibrillation, and instances of fibrillation are not rare in whieh these symptoms are not discoverable. In the production of the symptoms, there is, as las been stated, an interplay of two factors, namely, the inherent nusele defeet and the extra burden of disorlered aetion; while the signs of failure are proportioned to the degree of musele damage, the whole of this symptomatio serle is raised lyy irregularity. In the healthy hearts of animals it is a general rule that fibrillation of the auriele produces a fall of arterial and a slight rise of venous pressure, but at the same time it is aecompanied hy a decrease in the heart's dimensions, a usual phenomenon when the rate is inereased. The leart aceommodates itself to the new conditions in a few moments ; the arterial pressure rises and the venous pressure falls, so that they alnost recover their previous levels and the blood flow is maintained in a wellnigh perfect fashion for hours. Rut if th, heart has been damaged, the effeet is both profound and lasting and in plaee of decreasc of heart volume, an increuse may occur. So it is in patients. Patients may experience paroxysmal fibrillation at intervals of a month or perhaps a year ; many of them pass through their attacks with little or no sensibility of then ; neither can any sign, other than irregularity, bo discovered during their progress. Yet similar erises give rise in other patients to profound and serious disturbanee, breathlessness, pain, eyanosis and further indications of inereasing dilatation of the lie. t. In these, the severest eases, the symptons resemble those of long coutinued paroxysms of regular tachyeardia. Between the mild and most extreme reactions is the intermediate. The variation in the reaction is great, and as I have said is largely attributeble
to the grade of underlying leart mischief. But there is another and equally important factor in the hmman subject ; it is the rate of the ventricular action during the attack. Just as the musele defect varies ir. its degree, so alyo does the burden imposed npon it ; thas, in the extreme instances, it is found that little reaction is shoun in parosysums of relatively slow ventricular artion, whil. amongst those with grave disturbance the ventrieular rato is usually rapid.

Remarks upon diagnosis.

The diagnosis, nsually suggested for cases whieh eshibit fibrillation of the auricles, is still that of the accompanying valve lesion, though I am strongly of opinion that it is no longer warrantable. A diagnosic shonld include cither the outstanding feature of the p.uthology, or it should be chosen that it may heerme assoeiated with some specially benefieial form of treatment. In all these patients chronic affection of the myoeardium is the essential lesion : while the relations of the eardiae disorder to digitalis medieation are so peeuliar that the named disorder of the heart always brings this drug to mind.

But I wish to refer but briefly to this question of terminology under the present heading, and have chosen it more espeeially to emphasise a common and avoidable dingnostic blunder, which eones from want of true appreciation of the mechanism in these eases. In diseussing the signs associated with fibrillation. I have spoken of the modification of diastolie murmurs in nitral disense. A murmur, whieh originally oceupies the full diastole of the whorter ceveles, is replaeed, as the heart slows, by an carly diastolic murmur which is maximal in the region of the apex. It is the last murmur which so frequently misleads the physician and suggests to him an insufficieney of the aortic valves. It is said that in some easos of aortie regurgitation the characteristic
bruit is com/inad to the apex, but 1 bedieve thin in far less commonn that has becen xipposed, and that an erroneons conception of ita frefucoly han arienen from inclisions of many of the casee to which 1 now erfer. When mitral ntenosir and unricolar fibrillation ure present in the mame patient. "und the hecurt rute is slow. an canly diastolic murmanc, most clearly andible at the nopex but often mperating beyorl it, is an expected sign. diagnowis of nortie reflis is never justifinble "hen the hean, is growely irregular and wlow, malesw unequivocal signs of it are present apart from wiels a mmrmur. Unechapliented aortice valvilar disease and fibrillation of the auricles is a comparatively rare clinical pieture. The combination, yielding a pursly apieal murmar, is so far an uncencribed condition. ("ose attention to the character nud acerarate timing of the alventitions nomml is often helpfol. The carly dinstolic murmar of mitral stenosis is relatively soft in quality end it usually begins a little !ater than the second sound. The absence of a waterhammer pulse and of a murmur at the aortic eartilage are evident ajds to a correct conclusion.

The prognosis.

As in al: other kinds of heart irregularity, the prognosis is largely governed by the remaining symptoms and signs, and in any individual case an estimate is formed, whieh includes consideration of the past history, the presence or absence of serious symptoms, the presence or absence of dilatation, of valvo lesion, renal disease, etc.. But fibrillation gives an added signifieance to the case. It is, as I lave said, in itself an evidence of muscular damage, and of serious muscle damage. It loads an already defective musele with an ext.a and appreciable burden. In most cases it heralds cardiac failure, temporary or terminal, so that few patients survivo its onset for more than ten years. There are well anthentieated ins'ances In which it hue perseites period, bilt ther aro fow , is the rate of the ventrientar mose valamber intrinvic mign or over is of serions omer arion, a prervistent rate of $1: 0$ maintained abowe thisem, and necording as the rate is Rates of $1+0$ and over are the ratlowle beeomes graver. monthes, rates of lobe do are rarely maintained for many extremely importint eonsiderntioninu for many wereks. dn As wo shall sere, a harge mumber of is the rate tion to treatment.
 be rontrolled, ran be redure thombatio gronp, the rate can limits which sparg the heart from ean ler hanintained within strength. In chaling bith a fonm excersive taxation of its rate, the proge iv ill wes tar pitient who has a given hrart does mot depernel so umed ins it is affereted by the librilhation. observed, as upon then now the rate of the heart beat treatment. At the the heart rate which prosists under for a given rate, when trentme, the prognosis is more grase rate is maintained in trentment is sernired, than when this rate is maintained in the absence of remedies.

The treatment.

There is no aihment in wheh such success can be achieved, no other eardiae disorder which may be wo speodily benofited, as the well-managed case of auriente: fibrillation. In no other affection can the medical attendant point with more thorough confidence to the effectes of his remedios. As it direet resnlt of active trentment the moribund may be. restored and many vears may be added to their lives Aurienlar fibrillation is the condition to whe their lives. digitalis group owe their well for (he

The guide to the welfounded reputation. an index which rarely failsian is the rate of the heart beat, absolnte indieation for tho him. Aurieular fibrillation is an absulnter inclieation for the administration of a member of the
digitalis group, whenever the heart rate exceeds 100 whilo the patient is at rest. In a very large proportion of the patients the drug acts as a specifie, impeding the passage of impulses from auriele to ventricle and thus redueing the rate. If the heart rate does not fall as a result of rest, and if it will not fall when digitalis or an allied drug has been properly administered, no other remedy is known whieh is of servieo in redueing the heart rate. In young people, and espeeially those who have been affected by rheumatism or elorea, an absolnte eontrol of the rate is almost always established and maintaincd. The treatment eonsequently eonsists of the administration of such doses as will keep tho heart rate within reasonable limits.

It does not necessarily follow that a patient who has fibrillation should lic up. But where the heart rate exceeds 100 it is advisable, and the patient should remain in bed until his reaetion to digitalis, or a similar drug, has been thoroughly investigated. Further treatment in bed is deeided upon according to the gencral eondition, and according to the tolerance and reaetion to digitalis. In treating eases with digitalis, it is found that in some the rate is unaffected; these are ehiefly patients of the non-rheumatie group. In most, a reaction is speedily obtained. These latter may be divided into three elasses : the first, those in whom the reaetion is a permanent one ; these are patients in whom the rate remains slow tlough digitalis is omitted : the second, those in whom the reaction is permanent when small doses are subsequently administered: the third, those in whom persistent high dosage is required to maintain eontrol.

As a routine, the tincture or fresh infusion of digitalis is given, for it is the safest and most potent remedy. Tho tineture is given to adults in doses of from 10 to 15 minims three or four times a day (the infusion in 1 to $1 \frac{1}{2}$ drachm doses) ; if the reaetion does not begin within four or fivo days,
the dosage may be increased until symptoms of nansea, diarrhœa, headache or retardation of the pulse appear. It not infrequently happens that the desired fall of lieart rate first eonies when other signs of intoxication are manifested; if these persist for several days the drug must be reduced or omitted, whether the rate has fallen or not. The dosage is also reduced if the heart rate falls, and the reduction is continued so long as the heart rate remains below 90. It may be diminished to nothing in many eases ; oftell $\mathbf{5}$ minim doses are eventually found to suffiee. Usually the full reaction is obtained after six or eight drachms of the tincture or an equivalent quantity of infusion has been given. Whenever the rate has reached 60 or 80 per minute, the drug is stopped, and it is given again only if the heart rate begins to accelcrate once more. The appearance of coupled heart beats (Fig. 50) is always a sign of danger; whenever they appear the digitalis must be discarded. I have seen more than one case of unexpected death, attributable to execssive dosage with digitalis, at this stage; it minst be remembered always that digitalis is a poison, and that it has other actions than the simple reduction of heart rate.

In most instances where the patient has reacted, the drug can be stopped without the recurrence of accelcrated rate so long as he remains in bed. When he rises from bed a renewal of the small dose (is minims) may be necessary. In other cases the result is less satisfactory and heavier losage must continue.

It sometimes happens that a patient is peculiarly intolerant to digitalis, and that, where a reaction is expected, a dosage of 15 to 20 minims of the tincture cannot be reached or maintained sufficiently long, without nausea, or other squills may be tried, starting witl doses of 10 minims of the tinetures. These drugs are pushed in the same manner, but
thongh they are less apt to induee nansea or vomiting, and while diarrhea is the ehief intestinal disturbanee produeed by them, they are less reliable than digitalis. In some of these eases, too, recourse may be had to intravenons injections of stroplianthin.

When a patient who has fibrillation is first seen, and the heart beats persistently at $170-000$ per minute, the eondition is urgent and heary doses of digitalis (minims 20 to 30) shonkd be employed. The intravenons injection of strophanthin is akso vahable at such times. Two or three doses of $1 / 250$ of a grain, each in 40-60 minims of saline, are given at intervals of two lionrs. The rednction of rate is almost immediate, and lieart rates of ninety or eighty are reached in from 6-1:2 hours. The remedy should be employed cantionsly and its adoption must be confined to the urgent ease which belongs to the rhenmatic gronp or to similar eases in which medieation by the month has been hindered by the onset of gastrointestinal symptoms.

A relatively small group of eases of aurieular fibrillation remains where, with persistently high ventricular rate, digitalis; has little or no influence; these patients are also unafieeted by strophanthus and squills. In so far as the fibrillation and excessive heart rate are concerned, nothing further ean bo done for them.

The treatment of the ease of auricular fibrillation, in the patient who is up and about, is guided mainly by the rate of the heart and the urgency of the patient's symptoms. The disorder is generally persistent, and most hospital patients eventually leave their beds and retnrn to their former ocenpations. But even where the pulse rate is persistently low and symptoms are few, excessive exertion should be avoided; heary manual labour, strenuons games or sports should form no further part in the daily life. If the pulse rate quiekens readily, if drugs are eonstantly required to maintain
the retardation, and especially if breathlessness or precordial uneasiness are casily indneed, filther restrictions are necessary: All patients of the female sex should be specially warned of the strain and danger of pregnancy.

Regular meals consisting only of a sufficieney of solid and sustaining food, preferably dry : carly hours: a placid existence; the avoidance of public buildings and all places and seasons in which influenza and bronchitic tronblex are contracted ; and, lastly, serupulons attention to the hygiene of the tecth and throat, ie somnd directions in this as in other serious heart maladies.

Belladonna, its ally hyoscyamus and their extractives should be a voided. Their customary action is to increase the rate of the ventricle considerably in this condition.

In cases of urgency, or where the patient 's life may be considerably prolonged by surgical operation, genera! aniestheties may be enployed. But where there is any hesitancy to perform an operation, apart from the cardiac condition, the presence of fibrillation should countermand it.

Parorysmal librillation.

Most hearts which develop fibrillation of the auricles essentially a chronic and terminal nalady. But from time to time transient attacks are seen, and in some patients paroxysns of fibrillation of a few hours, days or weeks duration are noted. The affection, when it takes this form, is generally classed as paroxysmal tachycardia. In my, discussion of paroxysmal tachycardia I have excluded it, desiring to deal, as I did, with the simpler mechanism alone.

The exact frequency of the paroxysmal affection has not been ascertained, but it may be gauged approximately by comparison. Of the 152 cases of auricular fibrillation
temporary and reeurring. Paroxysms of regular taehyeardia appear to he more eommon; as opposed to the 16 irregular taehyeardias, simple and regular paroxysms have been seen in 45 patients.

The symptons of paroxysmal fibrillation have been spoken of already. They may be inconspicuous or profound. When the rate of ventricular response is rapid (160-200 per minute) the symptoms are those of simple taehyeardias at similar rates, though they are on the whole more severe. The prognosis is reasoned in the manner stated for regular paroxysms; the management and symptomatie treatment of the attaeks are similar in the two. A few words are necessary upon digitalis medication. Drugs belonging to this group have been known, not infrequently, to excite fibrillation in those predisposed. They are therefore contra-indicated in paroxysms of short duration and in those which produce few symptoms. Where the paroxysms are more prolonged, or where the symptoms are urgent, they may be given to advantage ; and, if given, desage should he arranged for a speedy reaction. In sueh patients, the reaction eonsists of slowing of the ventricular rate and is therefore henefieial. but the duration of the paroxysm is usually prolonged by the administration.

Chipter Vilif.

ALTERNATION OF THE PULSE.

Definition.

A eondit: ${ }^{\prime}$ n in which the left ventriele, while beating regularly, expels larger and smaller quantities of blood at alternate contractions.

The mechanism in alternation of the pulse.
Alternation in the size of pulse beats, so that each alternate beat is large and each alternate beat is small is of obseure origin. The contractions of the ventriele are regular, and each is preeeded at a normal interval by a contraction of
V

Fig. 51. A diagrammatic representation of alternation of the heart
almicular and ventricular beats are placed regularly of the heart. The alternate ventricular contractions are weak. regularly and in order, but the auriele (Fig. 51). The disturbance is dependent upon some unexplained anomaly of the ventricular systoles, whereby at each alternate systole of the left ventricle a greater or lesser quantity of bluod is thrown into the systemie
arteries. In the figure, I have represented this anomaly by varying the size of the ventricular rectangles.

Etiological and mathological relations.
Alternation of the pulse is seen in two classes of patient. First, it oecurs in those in whom the heart rate is unduly accelerated and more especially as an accompaniment of paroxysmal tachycardia. Associated with paroxysmal tachyeardia, it lias etiological and pathologieal relations in common with the last named disorder; its prognostie signifieance is not fully known, but as it depends ehiefly, if not entirely, upon acceleration of the heart rate, it may be regarded almost as a physiological reaction to the inereased freguency of beat.

Seeondly, it occurs when the heart rate lies within normal limits and at such times it is a sign of mueh clinical value. Seen in elderly subjects and pre-eminently in the male sex, it consorts especially with angina pectoris, high arterial pressure, renal disease, and fibrotic nyoearditis. It has been seen in pneumonia during the pre-critical stage, and also in patients under the influence of large doses of digitalis.

It is eneountered in experiment under similar eircumstances, namely, when the heart rate is extremely rapid, or when it has been injured by the intravaseular injection of poisons.

Whenever it occurs, there is reason to believe either that a tolerably healthy heart muscle i.. carrying an excessive burden, or that a discased or poisoned muscle is struggling to perform work of which it is barely capable.

In the remainder of this chapter, I shall allude to pulse alternation as an accompaniment of heart rates which are not ligh. When the heart is disposed to alternate, the actual alternation is unmasked by anything which imposes a
fresh and added strain upon that organ. Thus it is often made manifest by a slight acceleration of pulse rate ; ald, in the cartier stages of its development, it is frequently brought to light by the occurrence of a single premature beat ; under the last named circumstance it follows immediately upon the disturbance, and continues for a varying number of heart cycles.

The recognition of pulsus alternant.
It is an unfortunate fact, but nevertheless true, that most instances of pulsus alternans cannot be recognised by other than instrumental means. There are patients in whons

ublublubublubllulublucise Fig. 52 alternate beat is work Each alternate bent is strong anil each

 surrrarrarrarrior Macuruchaiific ba co ${ }_{\text {rig }}$$\leadsto \Omega$ The curve is taken at n fores and heart sounds in heart alternation, beats are in pulse passes, As opposed the thant and shows the slight beat is followed by the longer premature: the the force of alternate pulse beats is perceptible to the finger:* but such cases are rare, and identification of the condition from the feel of the pulse is most unecrtain. Examination of the

[^14]apex beat gives little assistance, for the heart beats with regular rhythm and the differences in the foreo of ventricular systoles and the intensity of the heart sounds are inappreciable.

It is a sign of such importance and is so readily overlooked, that it should be sought deliberately whenever there is reason to suspect the possibility of its presence. Thus it is wise to examine all cases of angina pectoris, all cases of high blood pressure and all elderly subjeets in whom affection of the lieart is suspeeted, or renal discase is known to exist, witl a specific object, namely, to determine its presence or absence. It should be looked for, ton, in all clderly people in whom prematuro beats are frequent. If ruch methods are adopted it will not often escape detection. It is so frepuently confined to the few cycles which follow a premature beat that, in any one of the classes of patient mentioned, it is most useful to obtain a curve which contains such a beat. This may often liappen at the first examination. The patient shonld remain standing, for premature beats are inore frequent in this posture, and if he has come some distance, it is well that the examination should proceeci at once, since premature beats are more conspicuous at such times. It should be remembered too, that a held breath may evoke a prematnre beat and the opportunity of catching it in this manner slould not be lost.

Fig. ju. Aiternation of the pulse, appearing after, and as a result of, a single premature beat p. It lasts for four heart cycles.

Single premature beats are usually followed by a pulsation of exceptional size, for the heart puts out more than its usual quantum of blood. It is the pulse which sueceeds this tall beat which shows the first sign of alternation; it is less

Alternation of the Pulse.

forcible than that whieh surceeds it. In Fig. it n regular pulse is interrupted by a single premature contraction (p): it is followed by the nsual panse and this is succeeded by a tall puller beation (l) ; the next beat s^{1} is small, it is followed by a sign of the eonditionall heat s^{1} is, as I have saicl, the earliest urtual figure s^{2}, the alterume it may be the sole sign. In the Las proceeded for four eyeles beat, is also lon. Alternation are restored. In Fig. $5 \mathbf{2}$ and $5: 3$ the normal pulse heats throughout each curve ; little ande eondition is persistent alternately. Extreme, ittle and big beats are arranged are selcom eneountered ; degrees of alternation of the pulse little beats vanish entirel. but on very rare occasions the

The other irregularity and the pulse rate is halved. be confused is a coupled pulse whieh pulsus altermotnes may. beats. but this only happens phlse resulting from premature seeond beat of each comple is slighe the prematurity of the in Fig. 33 of an earlier eliopter slight. An example is shown hetween them; whereas the little bere is a sufficient eontrast by the longer pause, if pulsus alterue in Fig. 333 is followed beat is followed, if there is alternans is present the little. slightly shorter pause. In any variation in panses, by at travelling paper the differenee traeings written upon slowly. (Fig. 52) ; but where the paper latervals is harelly perceptible able difference is often found ; its moved faster, a measurewhieh the pauses following ; it is well seen in Fig. int. in following s^{1} and s^{2}. 1 and l^{1} are longer than those

The subjective sensations of patients presenting pulsus
Alternation of the lieart is itself responsible for no symptoms ; the jatient only complains of sensations which are referable to other eauses. Thus, anginal pain is eommon. Breathlessness is even commoner; it is often noeturnal. repeatedly awakening the subject of it after short periods
of sleep and being aceomparied by aeute anxiety. Breathing of the Chryue-Stokey type is rarely noted by those who manifest this respiratory abnormality, int perioslie dyspucen may be remarked by the fricicis, enpecially by those who slecp with the patients.

The prognosis.

Atternation of the pulse belongs to a small gromp of phenomena witnessed by those who attemd the sick, which. treated as isolated signals, are in themselves emphatie and portentions. It ranks with subsultus tendimum, with optic nenritis, with the risus sardonicus and other ill-omenerl messengers. It is the faint ery of an anguished and fast failing masele, which, when it comes, all should strain to hear, for it is not long repeated. A few months, a few years at most, and the end comes.

How grave is the condition of the patient whose heart produees this alternating pulse is often witnessed to by associated signs ; angina, noeturnal dyspnœa, Cheyne-Stokes brenthing or high blood pressure are often eneountered in the same subjeet. But here lies its speeial signifieanee : each and everyone of these signs may fail, and alternation may appear alone to foretell the future. Unexpeeted death is a comınon termination.

I write of eontinued alternation, of the pulse whieh alternates in foree for many eyeles. It is persistent while the heart yet lives. The prognustie value of the lesser grades of perverted mechanism is less certainly known; but that their signifieanee is grave, and that they are but too often the forerunners of the fully developed condition, should be understood. A favonrable prognosis is always forbidden by the latter, and can be but rarely justified in the presence of the former. The only propitious cireumstanees are a history of exeeptional and prolonged strain in the patient who slows the

Altermation of the Jatise.
sign, Nerain which muy le at onee and permancontly awided, and cevdences of nente intosidetion which is vantishing.

The troutment.

The mamagement of healt cilses, in su far as it is affereted by the presener of alternation, may be stated in af few worls. for it should be evident. Altermation is a sign of overtanations: it clemands relicl. In the busy it aflls for prompt aml drastic curtailment of the work, be it mental or physieal exertions. In the more sedestary, it is an indiention for prolengations of the homes of atetual rewt, both of borly and mind ; the condition of such pationts may underge temporary reliof by a long period of absohate gutioscence. In each citsice the a coidance ol all noureres of ansiety or emotion is to be onjoined. 'The presence of alternation forbiek the administration of general amentheties in major operations, unless the withholdment of the first immediately jeopardises
110)
INDEX.

- I'thinticited bitht mol:nh I'Aar
29 (4) 4
АІАмл. Stokem Syendome:3:1
ditmination or the bronk: 10:1
. Inging amal 104
Ifeneriaterel comditione 119
Definition of 1113
E:tionoy!y of
104
104
Erampli of :
Iliritt rate aml
1114
1114
In exprriment
110.4
110.4
Jrehaniam of
10:3
10:3
Proymoatic ivalue of
105
105
Recomnition of
10.7
10.7
Ninbirctive menaations 1117
Trratment of 10:1
 70, 301 de leo
Incina
Altrration and
104
Aluricular fibrillation aml 03 (fuotmote)
I'nroxymmal auchycurdia and 0:1
Ah-F's intervile 17
Prolongation of $17 \& 24$
Avritlitr fimbleation
S:
S:
Associated comlitions
8.5
8.5
- Luricular llatter anl
81
81
Dr-finition o! $8:$
Digitatis an:l
98
98
E.rample of
3
3
Heart-block aml $848: 8$
Heart rate and 3, 81, 82×98
Herrt sounds in $90,111 \& 9.5$
Mitral atenosis anl 91
Morbid anatomy in 87
Index.

Nalure of
f'riroxyam's Puis:11!
Promasaia in
Recernition of (11)
Ilrlution to nelr ! 1
llifution to infration diverow. s:
Mrlation to arex st
Rrmarke "pmon dia.pmovin 8.3
Rhirumatio fower and 4
Strophiunthin aml (1.)
Sigmptomatodrayy of 8.7
?'rratment of 1011
 Q: 3
Imworiathl conditions 17
. Iurienlar fibrillation an 1 il
Infinition of is
Digitulian amal 81
E'rumplu! of -1
/leart-bluck ant 81
Marlaif nuntomy in :
Siuture of 72
Iroymaxis in it
Rrcermition of il
Mration to ay, ete. 74
Nitroplianthin ant if
Sympitamatolopy of it
Trutument of si
Auricelar hounds $: 7$
Acheclan wayes M1
In arterica 24829
ln rins
Acrictlo.venthei 2!Commos types of msohden13 \& : : 3C'auplest beata
liross irreynhurity of pulae
IValuet pulse rufe \&:
Mild irreyularity of pulae d 82Solitary pular intermittencers4. : 2 C d 4Triple beatingti, : $2 \mathrm{~d}+4$
\therefore : 5 : 4.58

1) \& 47

Index.Phas:
Compenshtory palife 41
Coctrei, beits $6,27,47 \& 69$
Dicitiales
Auricular fibrillation amd 97
Altricular jluttor and 81
Hearl-block and 23, 37 \& 98
I'arnxysmal tachyrardia and 70
I'rrmatirer brats and 4485
simus irreqularity induced by 14
Dipitherid anil heart-biock21
Disorderfil irtion of the hehirtA!f incidere
Frequene!y 4
Hiart rate aml 4 4
Irrsistene
Irrsistene 5
Droremil me.its $17 \& 23$
 7
Haiven ine.irt ritt: (sef llfart r.ite).
 6. $97 \& 4$ $+7$
Heart-bisock 16
Blond pressurre in 32
('omplete $20 \& \%$
Drfinition of 16
Digitalis and 23, 37 \& 98
Diphtheria amd 21
Effect of (on the circulation) :3
Etiolouly 20
Examiple of 2
Fits in 33. 3.5. 36 \& 38cirades of$17-20$ \& 24-31
Heurt rate in 4 , 26. 20 \& 33
Heart soumls in 24, 28 \& 29
Heredity and 21
Hypertrophy in 32
Influchan anl $\xlongequal{2}$
Mitral stenosis and 25 \& 28
Inde..
Hfirt-biock (continued) 113Morhint anntom! in
Nifturer n! PAl:
Phrrmmonit, and 2:;
Prounnaris it $11 i$
Prrmmitiona of 21
Rrlation to alir :14
Relation to chromir Aryruraration 21
biriation to intirstive dixertar 29
Wrlation to sex $2 \cdot 2$
Rhermatic frerer and 21 20
sigmptoms of
sigmptoms of
Siyphilis and $21 \& 2$
Trretement of 31
2: 1 lirart block: 21.23
Typhinit and 34
Vin!$118: 26$
Heart rite $\because 1$
Iltrrnation anil $2: 3$thrirular milhrillation min!
43
. luriculur !luttrer amid 7. 81. 12 \& 48 Fust
71.73
Haliod
4 ※ 3
4 ※ 3
llinat I limek amil 88
Primature contractions ant 26, 2! \& $8: 3$
Sïnns irr!!ularity nen!
Son. \therefore \& 11Heirt solinis 8 易 1.5

- 1. 10. 96, 2! \& s 4
- Inricular filmillation andAluric:slar soumla90. 918 8. 9
First sound intensiliell $248: 3$Frimat soumt ridnulicuthl$2!4$ \& 4firouping of
3.5
Hewrebock amal
4.5
4.5
Mitral strnowis am"Puroxy/smen! tuchyenrilen amil
$2!$
$2!$
25
Promature comerartisena and60
Sicond sound :rrdupliorated Infletenzi 4.387
Al"rientar filsrillation and Aurirular fluttir aml 9.7
Merarsblock in $8: 3$ 7
114 Index.
Intehmitione: of blag..
P.acit:
Mitrin. stenosis
Aluric:lar fibrillation aint 74
Ilrart-引ock and : 8.28
Hrart sisemeds in
l'aroxysmal tachycurdiat nul 汭 \& 60
Mohemib inimtons
Aluriculur fibrillition anll its 87
Aluricular Ilntter and ita 71
Hatart-b/ock aml its 23
Sarorysmal tuchycardia ami its. 5)
L'ACEMAKER 10
 8.3
Ingina and 183
Associated conditions is
Drjinition of 3 \& 5.5
Dif/ercntial diagnosis of 1. 4
Fuctors promotiny uttackis !
Hercelity and
Mitral atchowis und is \& lill
Morbid anutom!! o! 5!!
Nature of 53
Pusticre and 5! \& $6!$
P'rmature contractions alll 56 d 10
I'rufnosis of ${ }_{6} 6$
Relation to a!! 5
Sirlation to injectice disensio ๖̆
Relation to six 8
Whernmatic forer and 58
Symptomatoloy,y uf 62
Syphilis and J8
Treatment o! 68
l'hasic variations of pulse r.ime 14
I'neumonia
Altcrnution and 104
Heart-block and 21
Index.115
fhematime rostintions 1's:I Praciutted comatitions
Itrimulur :3!
$4: 3$
Drfinition of
Dinitulio aull 11847
Examblic of :3!
Firtiture ant 11 d .11 \because
It rart matr autl
It rart matr autl Merart matr rump
$+1$
$+1$
Ilitert seriends is \therefore d +4
Sitture of 6. が 4
 :3:
I'oxferer unt (ii)
I'roymosis of 1.7
I'roncoratice /uctors \therefore
Ritcormition of 41
Rilatition to atfo 4.5
Liclution to st.ex
$4:$
$4:$
sirlijectier fhenomt nut is $4: 3$
T'obacero und
I
I
Treatment of
4
4
Ventricular 54
 Proesionits
40 d 5
Alternation of the heare and
Aluricular jibrillation and 113.
Aluricular flutter and 96
Heart-block and no
P'aroxysmal tachycardia und 34
I'remature contructions and
6;
6;
Sinus irregnlarity and is
 15
l'clese r.ite: (ske Heart hate)
Haleet pulse rate
I'LRKLNJE NETHORK 6, 20 d 47
REDCJUC:ITED FIRST sousi 16
SE(OND sound) 25
Refractohy state 25
Reshimatohs herequlamitess 41

Index.
Rheimati- fever
Pabig
Aluricular fibrillation amd 8.5
Alurirular llutter and 74
Herart-llomk and 218.2
Paroxysmal tachycar:lia ant кк
Sino.at'rictiliar nodf \star
sinis: imrebillimitisa s
Definition o! s
Digjitalia and 14
Erample of $\stackrel{2}{2}$
lleart rate ant 1.5
Nature of 8
Phasic rariation 14
Promnostic signilicaner of 1.5
Rrempation of 14
Rrlation to rrapiration 11 \& 14
Standatill of the herrt 14
T'aberculosis meningitis and 15 (footnote)
Sıow pel.s: 4, 10. 24, 9! 478 \&
Stindstidi, of the helift 14
Strophintilin and acriettomb Fibrhidation 100
shapatietil serbey s
sypurlis
Auricular flutter and 7.4
Heart-block aml 21.23
l'aroxynnal tachycardia and 8
Tonacco axd prese irregutamity 44
Treatment
Alternation of the pulas and 109
Auricular fibrillation and 97
Auricular fluttor and 81
Heart-block aul 36
Paroxy,nmal tachycurdia and 6s
Promiture comeruetiona and 54
Tmiple britint: (0) 47
 1.) (footnote)
TYTHOD AND He.her-blork 21
Vages $8,10,23 \& 7.5$
Venous pelsation
. .. . 2!), 4! \& 77

[^0]: * The complote apparatus is suppliel hy S. Shaw, Esq., of Padiham, Lancashire, at a morlerate cost.

[^1]: * A full account of such evidence may bernernernand
 it in my recent publica. on, "The Mechanism be found by those who desire: by Messrs. Shaw and Sons, London.

[^2]: * I draw especially attention to the distinction betweon ventricular irrognarity and pulse irregularity ; they do not always run hand in hand.

[^3]: *. A long expiratory pause of a respiratory arrhythmia may be for intermittence if the cxamination is cursory: arrhy thmia may be mistaketh \dagger simetimes the pauses follon is cursory:
 The irregularity is then a conplowing the pairs are not of nniform length. which prematime beats have heren one; it is due to anricular fibrillation, to usually under the influene of excessive doses of digitatis.

[^4]: The

[^5]: * Occurring in children, thisirregularity has , :cained an exaggerated and unenviable reputation, on account of its supposer relation to tulserculous

[^6]: one radial egele to the next.
 1
 \vdots
 \vdots
 $\stackrel{1}{4}$
 管

[^7]: * I use the term premature contraction in preferenen to "extrasystole." A name which has boen and still is employed to designate the same abnormal
 beat.

[^8]: fill period
 beats when they replace may also be responsible for sroups of three arterial

[^9]: * A statement which is based upon the findings of electro-cardiographio curves.
 + In both diagrams I have broken the auricular rectangle, to emphasise the abnormsl birthplace of the pathological contractions.
 \ddagger The interval (x) has been deliberately chosen at the onset of the paroxysm, because the restored rhythm of the old pacemaker is often slow for a few cyeles. For simplicity this retardation is not figured but it will be referred to agsin at a later stage.

[^10]: * By a full course, I wish to denote a course of the drug which will produce a definite reaction in the form of nauseu or headacle, and the subse quent administration of the drug for several uecl:s, in doses which are tolerated. As a rulo $\overline{j s s}-3 i$ of the tincture or $\overline{3} 88-3 i$ of the freal infusion may be given daily for tho first week, the dose being increased intil symptoms appear, and finally reduced to the maximal quantity tolerated without undue discomfort. Small doses of digitalis and the allied drugs are withoui appreciable effect. Aconite, strychnine, belladoma and its allies should bo avcided.

[^11]: * Ventricular flntter is unknown clinically; it is probably unknown because, continuing, it would inevitably kill the sulject of it.
 \dagger These facts have been elucidated electrocardiographically.

[^12]: * The heary g_{g} ures mark the rheumatic group.

[^13]: * On the other hand they seem peculiarly exmpt from angina.
 + The heart embarrassment is the result of ventifutur imene rapid action ; the virtual patalysis of the aurich ventrieulur irrogularity and on tile general circulation.

[^14]: * The separation from a di present the beating of the pulse is at ic pulse is easy; for where tho latter is

