The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le tirre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couieur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutèes lors d'une restauldion apparaissent dans le texte, mais, lorsque cela ètart possible. ces pages n'ont pas èté filmées.

L'Institut a microfilme le meilleur exemplaire qu'il lui a áté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or leminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (de;) index

Title on header taken from: /
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de depart de la livraisonMasthead/
Gènérique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This rem is filmed at the reduction ratio checked below/ Ce focument est filmé au taux de réduction indiqué ci-dessous.

the Canadian Journal.

NEWSERIES.

No. XLVII.-SEPTEMBER, 1863.

\qquad

PHONETIC ANOMALIES OBSERVED IN SOME MODERN FORMS OF ANCIENT PROPER NAMES.

by the gev. dr. sCadding.

(Read before the Canadian Institute, April 18, 1863.)
Ir is generally allowed that the usual English mode of pronouncing the ancient languages of Italy and Greece is rery far from being correct. However thoroughly our learned men may have entered into the genius and grammar of those tongues, the sounds which they reproduce when they come to express audibly with their lips what their eyes gather un from the written or printed page of Tacitus or Thucydides, are, probably, as like the sounds originally intended to be conveyed by the characters before them, as those uttered by the English proof-reader's assistant are, who, in ignorance of Parisian phonetic niceties, delivers aloud a chance sentence in French.

In regard to the vowel-sounds it would almost seem as if at the outset, when our forefathers,

> "Teuton or Kelt, or whatever we be,"
were first made acquainted with alphabetical writing, "some one had blundered;" as if the primitive learner had confounded a with e, and i with $e i$ or $a i$; and then that the mistakes of childhood, as is some-

Von. VIII.
times the case, had been handed on and finally become legitimized by force of custom.

We cannot imagine that Augustine and lis monks, fresh from Italy, pronounced, or taught the English people to pronounce, a, ay, or $e, e e$, or i, ei. They would rather have represented the sound which we call ay, by e accented or unaccented; whilst the English e would have been written i; and what we call i, would have gone down as $e i$ or $a i$.

By strangely deviating in these respects from the general usage, our nation has rendered itself doubly insular, and considerable difficulty bas been thrown in the way of foreigners desiring to learn our language. Not even do our Scandinavian brethren, I believe, herein agree with us. But although the continental nations have preserved more truly than we have done the tones of the languages which we are in the practice of calling dead, we are not to imagine that this has been anything more than an accident. These nations, either occupying the ground which was formerly the area of those tongues, or being geographically in contact with it, adopted in the written and spoken developments of their own respective vernacular languages the phonetic systems of vanquished or superseded races, simply as a matter of convenience, with no particular desire to perpetuate the veritable tones of the classic tongues. Ever since the revival of literature in the beginning of the sisteenth century, there has been a school of learned men on the European continent who contend that the classic languages ought to be more completely resuscitated; that many niceties and elegances of utterance which usage in the several nations bas failed to secure, might and ought to be recorered and practised.*

[^0]In unchanged proper names, as they are read, we may say by all scholars except those of the British Islands-such as Italia, Germanica, Roma, Terracina-we most probably hear the words very much as Cicero or Virgil uttered them. To this day the strauger from the north, when listening to the psalms and hymms sung in the churches at Marseilles, is scarcely able to decide whether the language is Latin or Italian.

In words that have undergone a slight alteration, according to certain dialectic principles,-such as paradiso, vino, teatro, civita, podesta-we feel pretty sure, also, that we hear sounds and syllables of veritable Latin, as it was spoken in the villas of Italy and in the Castra stativa of the frontiers.

In other words and proper names that have suffered a very great metamorphosis, Latin stiil meets the ear, but it is Latin disguised. In the French feu, ceil, we scarcely recognize focus, oculus; uor in the Italian vescovo, chiesa, reincopas, ecclesia. Here popular corruptions have become fixed in certain phonetic forms; orthographie we cannot style them.

Nor was rapid and vulgar pronunciation the only source of corruption. Ancient classic words suffered also from the difficulty which the northern and other races experienced in enunciating the names of the places of which they made themselves masters.

In Aosta, Saragossa, Grènoble, v.e hear some barbaric chieftain endeavouring to articulate Augusta, Cesar Augusta, Grantianopolis. In Watling Way we have au Angle or Saxon trying to say Ditelliana Via.*

[^1]To the vocal organs of some of the early Norse immigrants in Italy l, in certain combinations, appears to have been a difficult letter: hence Firenze for Florentia; and generally i for l when followed by a vowel : as in the familiar piano, piazza, for plano, plazza. We may notice that some of our Indian tribes have the same difficulty in the utterance of English words: with Ojibways, Montreal is Moneong, English, Yaganash, and so on. It used to be considered amusing by Canadian boys that the Indian could not say "plenty;" it was always "pnenty."
R appears to have been occasionally another awkward letter. Hence we have for Pistoria, Pistoia; for lavatorium, lavatoio; for cochleare, cucchiajo, \&c. Such a word as bere would inevitably have become baw, as an amusing periodical sometimes renders it. Some of our Indians again experienced the same difficulty with r. In Lewis's Iroquois Map, Torento is set down as Deonda, Onyagara as Neageh, \&c.*
The generality of the inhabitants of Saragossa and Grenoble would at this day as little recognize Cæsar Augusta and Grantianopolis, as the plain people of Brighton, Exeter, or Windsor would Brighthelmstone, Exanceaster, Wyndleshore.

Still these corrupted forms of ancient proper names, when placed side by side with their respective originals, have belped to preserve for us certain sounds and pronunciations, current long centuries ago, which would otherwise, perhaps, iave vanished without a trace.

Sounds and pronunciations are, we know, very impaipable and fluc ${ }^{+}$uating things; it is almost impossible to fix them-to embalm them, so to speak, from age to age-except by a musical notation.

In languages where rhyme has been admitted into poetical composition, a proof of ancient pronunciation may occasionally be discovered. Thus we learn from Spencer (1553-1598) that our curious modern pronunciation of "Tems," for Thames, is at least 300 years old. In his Prothalamion in honour of the Ladies Elizabeth and Katherine Somerset, "he walked forth," he says,

> "Along the shore of silver-streaming Thames, Whose rutty bank, the which his river hems Was painted all with variable flowers, And all the meads adorn'd with dainty gems Fit to deck maideas' bowers."

[^2]The wonder is that the name of the river has not come to be written, as so persistently pronounced. This is the kind of change which has takeu place in the names which I am about to adduce. The traditior pronunciation was at length phonetically expressed and perpetuated.
Again, a pun or play upon words may sometimes determine the pronunciation of a name at a particular time ; as in Warwick's

> " Roam hither then!"
in reply to the Bishop of Winchester's reference to "Rome." (1 Hen. IV. iii. 1.) This tends to shew that the pronunciation of Room-which was prevalent among old-fashioned orthoepists not many years ago-was not Shakspeare's rendering of "Rome." In Roumelia, however, and the Roumans of Moldavia and Wallachia, and in the Turkish sultanate of Roun, we have intimations that this was a pronunciation of Rome, at least in the Eastern Empire. Stocqueler (Or:ental Interpreter, p. 198) gives Room as the Persian name to this day, of Constantinople, the Nova Roma of Constantine. In a somewhat similar manner, the familiar title "John of Gaunt" shews, by an incorrect anglicised form, how our forefathers designated the birtle-place of that personage.*

But in the case of the ancient Greek and Roman proper names, to which I am about to refer, we are not guided to their pronunciation by the aid of rhyme-nor by a play upon words-although instances of this \bar{I} think I have seen-but simply by the modern forms which they have assumed.

I begin with some proofs of an unexpected deviation from the usual European pronunciation of the first vowel.

1. The normal sound of the first vowel we may take to be ah.We shall be pretty safe if we give it this sound in most of the foreign words we meet with. Its peculiarly English force is in many words, as we bave seen, ay, which continentals would rather express by e. Still the curious thing is, that in some ancient proper names, as preserved in their modern form, the a seems to have had something of this anomalous English sound. Take the name for example, of a tributary of the Rhone, entering the main river, near Valence - the Isère: the letter which this accented e represents is a in the

[^3]original word, lsar or Lsara; so that locally this a must have been sounded somewhat in our English way, or the name would nut have been phonetically expressed and handed down in the modern dialect as Isère.

Again, take the familiar nord C/ermont, the name of the principal tomn in the Depariment of Puy de Dôme : the e also here represents "in the Latin woed clarus-Clarus Mons. And similarly in Clairvaux in the Department of Aube = C/arus vallis,-although here the ay sound of a is represented by ai, as in Aquitaine also, from Aquitania, Aix from Aque, \&e. In Seine from Sequana, the dipthong ei to some extent represents the same sound.

In the common worls, père, mère, frère from pater. mater, frater, -cher from carlus, chair from caro, aimer from amare, taire from tacere, piaire from placere, \&c., there seem to be traces of the English long-sound of a. So asso in maire from major-although there can be no doubt that in Lago. Maggiore, we approach nearer the real vocable major. In the Italian word for an apple--mela-we are compelled to pronounce at least the stem of the Latin name for that fruit in the English manner-mal-um: this word ought to have been transmitted to us pure and simple, if mah-Ia was the sound that struck the ear of those who first wrote down the modern word.

One more instance will suffice to show that our English a-sound, however wrong it may be, has more to say for itself, than could have been conceived.

Take Reate-Ree-ay-tee, as the ordinary Englishman would call it; a very ancient city in Central Italy. Its modern existing name is Rieti-Ree-ay-tee-proving that the a in this case had the English sound in the ear of the person who reduced the popular language to writing. Compare Teate, hodie Chieti.*

[^4]2. The true sound of e is $a y$, but that this was not its sound invariauly, tinis word Ruefi compared with Reate, shews twice over.The same thing can be seen also in the numerous Italian words, in which $r i$ represents the inseparable particl, re, denoting repetition, \&c. Take rifacimento, i riformati, for examples, and uc for the familiar de. The same anomaly appears in Avignon on the Rhone. The ancient name of this celebrated city was the same to all intents and purposes-Avenio-where the e riust have been pronounced like i, that is, like ee. Once more : compare Monte Viso, the point of junction of the Maritime and Cottian Alps. Its ancient namer is Mons Vesulus, where the e, to hare begotten the i, must have , ossessed the English sound. So in Sena Gallica, on the sea-coast of Umbria -the e is represented in the modern name Sinigaglia by i, that is $e e$.

Similarly the common Italian pronoun of the first person $I o, I$, is almost literally the Latin Ego, pronounced Anglice. Also mio= meus, Dio=Deus, \&c.

Let us turn also for a moment to the Greek $\dot{\eta} r a$, the long e. in relation to it the anomalies are at first sight very extraordinary. Most continentals call this vowel ayta; and so the recent Greek grammars instruct our youth to do. Still, take Messina for example, from which the strait between Sicily and the mainland has its name. The Attic form of the name is Meoróv $\begin{gathered}\text {. The } i \text { in the modern name, }\end{gathered}$ pronounced of course er, therefore shews, that one, at least, of the ancient pronunciations of η was just what we call it in Euglish.Similar examples are numerous : Athens itself-" $A \theta$ θ vat-has for one of its modern popular appellations Settines-where i, that is, ee, does duty again for η. On the same principle the modern name of Lemnos, $\Lambda \eta^{\eta}{ }^{\prime}$ os, is Stalimine.* So Macronisi-literally Long Island -off the south east coast of Attica-gives again i, that is, ee-for the $\dot{\eta} r a$ of $v \eta^{\prime}$ ros island. \dagger

[^5]This anomalous sound of $\dot{\eta} r a$ obtained also in the case of some common nouns.

The early French or Gaulish Christinus who first heard the Greek rord éккдクбia from the lips of their missionaries, caught the sound of the irra as being that of our i, that is, as ee. Thus they wrote it down as Eglise. So we must suppose the tiaders of the Greek city of Marseilles to have sounded their etas, to account for boutique shop, being fashioned out of $\dot{\alpha} \pi о \theta \dot{j} \kappa \eta$ store. The same usage must have existed to some extent during the classic times, in Italy-if the Greek $\lambda \hat{\eta} \rho o s$ nonsense, and the Latin lire, pronounced leere, trifles, are identical.* Compare, finally, as a curiosity, deer with $\begin{aligned} & \text { Oip } \\ & \text {. } \dagger ~\end{aligned}$
3. But it is time to turn to i. The European usage is to call this letter ce. Nevertheless it is clear that there was a sound attached to this vowel which approached the ei, or almost oy-sound, which the English peoplc have chosen, in a multitude of cases, to give it.Loire, for example, represents Liger-the ancient name of the largest river of France. With this compare noir from niger; loisir from licet, and moi, as derived from mihi. Also, it is well known that the Latin plural termination i is an equivalent for, if not identical with, the corresponding oi in Greek. In later Greek, long i was often exchanged for ei diphthong : not that this diphthong was pronounced like the English i; but a deviation from the common ee-sound is certainly indicated. \ddagger

[^6]$$
\text { + } \Theta \hat{\eta} p \text { is "wild animal"-snd the cognate "decr," we know, is by no mrans exclusively the }
$$ gonus Cervider with which we m modern timen associate the word. We shall recal Bdgar', song in Lear (iij. 4,)

> Mice and rats and such small deer
> Ifave been Tow's food for soven long year."

It may be added as a brief corollary that venison is anything taken in hunting, and not exclusively tine flesh of Cervida.
\ddagger The restoration of the ei diphthong to proper names which for a series of yesrs have been printed with a simple i-although it may momentarily offend the cye-has the advantage of being a saferuard against false quantities. We may not quite like to see Phidias figuring as Pheidias-but not only do we thereby approach nearer to the actual name of the great sculptor, but the, joung competitor for classical honours is guarded against a possible heavy discount on his merit-marks. In like mannor, althougi it may not be expedient to alter the

The present German mode of pronouncing ei does not appear to secino for ua precioely the sumut of ancieni proper names. Cosar and Tacitus expressed Rhein by Rhen-us, conveying to us a sound something like that which is to be heard in Marseilles. Linyua Latina in German, would be Lateinische Sprache: if i was prouounced ce, this $c i$ of Lateinische doubtless onee had more of this sound.

The rest of the vowels need not detain us long; as in regard to them the usage in ancient and modern times is nearly the same, and Euglish custom is not much out of harmony with the continental.
4. O and u, we know, were not uncommonly interchanged in many words. In Greek we have öropa Attic, and övopa Eolic, whence our second y in synonymous: in Latin quojus, cujus, \&ce. Hence in modern proper names we find the o often uaturally representing one of the u sounds.

$$
\begin{aligned}
\text { Fesoie } & =\text { Fæsulæ } \\
\text { Genoa } & =\text { Genua, } \\
\text { Modena } & =\text { Mutina, \&c. }, \\
\text { so popolo } & =\text { populus, \&c. } ; \\
\text { and conversely, currant } & =\text { Corinth } .
\end{aligned}
$$

And so do-ge, the title of the chief magistrate of Genoa and Venice, from duc, and dogale, ducal. We may compare with this, the short u sound which we in many English words give to $0:$ e.g. London, Monmouth, Honiton, money. So "common" from "commun."-But in Lucca, pronounced $L u$-ca, notwithstanding the two c 's, we have the long sound of u-the sound which is generally to be given to it in continental proper names. Lucca retains its ancient name in sound, as well as in form, with the exception of the double c.
5. U in modern proper names derived from the Latin and Greek, often represents, and no doubt retains the proper sound of ou. As in Siracusa, the ancient Syracuse of the Romaus, and the Evpakovala of the Greeks.* Compare the imaginary proper name Utopia, Oüroria, rightly and in every respect denoting "Nowhere."

[^7]6. In regard, finally, to the vorel y, it would be difficult to say for what reason it was made to represent in Latin words the Greek upsilon, and why it should be called in French e Grec, did we not discorer that in modern Greek this letter is pronounced ee. According to the Grammars for Romaic, ψ ' $\chi \eta$, strange to say, is Pseechee; and so to the Romans the word must have sounded when they wrote it down as Psyche.

But that the upsilon in very early times had not invariably this sound, may be gathered irom Sayuntum, which, though known to derive its name as well as its origin frow Zákvytos, the modern Zante, was still br Roman historians written with the u unchanged. -One of the charactristic archaisms of Ennius was, to pronounce the upsilon as u. We feel as ii the Roman Chaucer ought to call Pyrrhus, Burrus : Phryges, Bouges, \&ic., as we are told he did.

Again, that y does not well express the u-sound in Supia is clear from the ancient as well as the modern mame of Tyre, viz. Tsour, itself probably the stem of Supía.-Cheke oddly gives Surri for Syria.-Similarly Assouan-a name familiar to voyagers on the Nile -also preserves the same sound of upsilon, Assouan being in Greel letters Sujp i, i.e. Syene, from which comes Syenite.

It was possibly the easy interchange of y with u that suggested to the old chroniclers, Brute, as the name of the eponymous hero of "Inys Prytain,"* the island of Britain.

These mingled u and $e(i)$ sounds of upsilon led at one time to perplexing anomalies and confusions in connexion with "satire" and "satirical." These woris in French and Spanish, and in the English st the last century, exhibit a y. Tro distinct things bud come to be confounded-the Greek इírupor, dramatic productions in which "satyғs" were actors;--and the Latin saturae-at a later period satirae-"dishes full of mixed fruits," literally,-and then, "free

[^8]criticisms on things in general." From these latter compositions sprung "Satire"-with which the goat-fcoted monsters had nothing to do.
7. The continental pronumciation of the diphthong ae is ay. Wo have neverthejess Galiicia from Galacia, Isernia from fesernia. Turbia from Tropcea, Vercelli from Vercellae. Velletri from Velitrae, Carsoli from Carsulae, \&c.; and in a sense different from Porson's

> "The Germans in 'Greek,' Are sadly to scek"-
for with toe will and full power to call ae, ay-they in their own tongue turn Graca Lingua into die Griechische sprache.
8. Di and ou have been virtually noticed.
9. Of au, the recent Greek graminars, compiled from German sources, give ou naturally, as the sound. Wliis rendering in Greek words is probably right, Aristophanes giving us β ait $\zeta_{\epsilon t}$, "to utter the sound $\beta a i$, β ais," i.f. to bark. The early Gauls, however, aseigned to ou more of the o-power: thus they converted Aurelianum into Orléane, Arausio into Orange, and auram into or: the latter word their cisalpine brethren made oro. Comparing Claudius with Clodius, explaudo with explodo, caudex with codex, \&c., we see that a similar dialectic mutation was not uncommon at an earlier period. Our suffocate, from sub and fauces, exhibits the same change.Wicklif and Cheke germanized in regard to St. Paul, the former calling him Powl, the latter Poul. To identify, as some do, the mythic Italian Faun-us with the Arcadian Már, we must suppose that in this instance at least, the au must have had something of the English sound, for $\bar{i}=$ a u nearly.
10. The diphthong oe remains. Of this combination, by which we know the Latins represented the Greek ou, and which we have reduced to e in "economy," the contiuental pronunciation is $a y$, or else the un-writable sound which we hear in "Gocthe." Still I have one or two anomalies to offer: more doubtless could be found. Take the first syllable of the well-known proper name Innsprïck, i.e. "Bridge over the Inn." This "Inn" is Latinized into EEn-us, where oe represents i, that is, ee. In a similar manner the modern Vitulo in the Morea is the ancient CElylus.-In the French ciel, has descended to us a like pronunciation of of in coelum.

These irregular jottings, casually made from time to time, have not I fear, presented anything that will be deemed of very great impor-
 syllable their utterances, matters of the hind I have touched upon, however minute and trivial they may seem, must have a degree of interest. It is a collection, as it were, of verbal fossils that I offerphilologic " flies in amber," of considerable antiquity, yet modern in their aspect.

The vocal solecisms just enumerated, have been adopted by most of us as proprieties of speech. I might have urged them in the way of precedent to justify, to some extent, the traditional usages of our old-fashioned English grammarians; but I have adduced them not at all for this purpose, but simply as phenomena that require to be accounted for.

It would seem as if, at the period of transition from the old languages of Europe to tho new, some one, on seeing the particular proper names and other words to which I have referred, had read them out in what we may call the English manner, giving to the vowels very nearly the sounds which wo are accustomed to gire them when we make use of our own language; and that then, a scribe or reporter, writing from ear, and accustomed to pronounce the vowels in the general European mamuer, had committed them to paper phonetically, producing theroby no longer the aucient classic names, $t_{n}:$ Italian, Frerich, and Romaic appellations. How else came Reate, for example, to be handed down to posterity, in Italian, as Rieti?

All the subiivisions of the great families of language, we know, were themselves subdivided into dialects, originating in isolation of locality,-imitation of the individual peculiarities of chiefs, bards, \&c., and other conceivable causes When, then, new languages developed themselves from the intermixture of the Northerners and Southerners of ancient Europe,-an intermixture arising not only from conquest, but from joint service in Roman armies long before the fall of the Western Empiro,-it is certain that dialects did not cease, but rather multipiied. Not ono of the new tongues was uniformly spoken, any more than the old ones had been.

Now amongst the multitudes who, as adventurers or as soldiers, found themselves transplanted from trans-Rhenane or trans-Danubian regions, to sunny Provence, Lombardy, or Thessaly, we may be sure there were many of our ancestral blood-relations from the neighbourhood of the Elbe and the Weser. Did some of these, from
genius of dialect previously spoken, or from structure of vocal organs and habits of speech combined, fall, when they began to articulate the euphonious vocables of the South, into some of the customs of pronuaciation which distinguish 0_{0} "selves, and so originate local dialects possessing, in respect of literal sounds, an affinity with the English tongue?

NOTE ON THE PRESERVATION OF SOME INFUSORIA WITII A VIEW TO THE DISPLAY OF THEIR CILIA.

BY JAMES BOVELL, M.D., TRIN. COLL., TORONTO.

In No. XXII. of the Microscopical Journal for 1858, Dr. Ralph writes: "Some months ago, I have made a decided advance in the preparation of insect tissues. I adopt the following plan: Place the insect alive in sweet spirits of nitre; it will dic rapidly, and the air will be frecly expelled, partly by reason of the volatility of the medium, and those with a proboscis, \&c., will protrude it. After soaking a day, the specimens are to be rapidly transferred to a small quantity of clean spirits of turpentine, when all the sweet spirits of nitre will be expelled in the form of globules charged with grease; immerse in a further supply of turpentine in a clean bottle, and when the specimen has been a day or tro (perhaps a little longer time may be required) it can be mounted in the chloro-balsam. Refractory specimens, or those which are very oily, may, after immersion in sweet spirits of nitre, and cleaning in turpentine, be again soaked in sweet spirits of nitre, when the turpentine will be expelled. If they are then a second time taken out of the sweet spirits and plunged in turpentine, the clearness of the globules which escape will indicate if the specimens are sufficiently cleansed. The sweet spirits of nitre must be fully expelled or the Canada balsam will assuredly quarrel with it, and form a cloud around the object. A modification of the above plan is, sulphuric ether in three times its bulk of spirits of wine."

Finding Mr. Ralph's method a very efficient one for insects, I thought that a similar effect would be produced on the ciliated Infu-
soria by the sweet spirits of nitre. Accordingly I procured from the ponds at the mouth of the Humber, west of Toronto, some slips of Anacharis and of Chara. On a portion of the latter, I was fortunate enough to discover a few active and finely developed Megalotrocha albo flavicans, and four of Floscularia oruata-these latcer, June 27 , 1863. Placing a couple of the Megalotrocha which were on the end of the Chara stem on a glass slide, with a drop of clear water, by means of a camel's hair pencil sweet spirits of nitre was added. At first it seemed to cause the active little creature to shriuk, but in a moment or two it threw out its prettily arched oral extremity and displajed its ciliated fringed lappets. A little camphorated water with creosote, and which had been filtered through chalk, was allowed to insinuate itself under the glass cover, and the specimen sealed with black varnish. It is still in good preservation, being put up now for some time. Floscularia was not preserved as a permanent specimen.

I beg also to add a list of animalcule which I have as yet found at the Humber, and in the Island ponds, Toronto.

Amœba princeps, in same place with small green spouges.
Micrasterias Boryana.
Enastrum rota.
Desmidium hexaceros.
Staurastrum paradoxum.
Stentor caeruleus.
Vorticella convallaria.
Leucophrys patula.
Kolpoda cucullus.
Paramecium aurelia.
Megalotrocha albo flavicans.
Floscularia ornata.
Oxytricha gibba.
Chilodon cucullus. Rotifer vulgaris.
Staurastrum alternans.
Fragillaria capucina.
Gomphonema truncatum.
Cocconema lanceolatum.
The above list bas been determined from Pritchard's work, and I hope will be found correct.

A PROPOSED CLASSIFICATION OF THE GENUS IIELIX.

8Y A. F. WILLIAMSON.

Among the mollusca there are many genera containing a large number of species. Of the fresh water varietie's, the genus Unio has over 300 representatives; the genas Melania from 200 to 250 ; and the genus Lymnoa, although not nearly so mmerous as wither of the preceding, is still a very important division. Of the laus shells the genus Helix bears off the palm in point of numbe:s, having upwards of 1500 species; the genera Bulimus, Pupa, and a few others also, present many varieties.

It will be seen by these facts that considerable difficulty may be encountered in arriving at the name of any species, even though we be well sapplied with works of reference; for the labour of wading through a number of descriptions is not a very pleasing task, and it is only by figures of the shells, by well filled museums, by notes published in scientific journa!s, or by long practice and study, that we can get over this difficulty.

How much easier it would be, and, at the same time, prevent us from becoming disheartened at the long list of descriptions we may have to read over before finding the name of any shell, if some good classification could be adopted under which the shells might be grouped. This, I think, would in a great measure obviate the diffculties mentioned above. In following out this idea I have attempted the following classification of the genus Helix :-

DIVISION I.

SHELLS TOOTHLESS.

Section A.-Umbilicus closed or wanting.
Sub-Sec. A.-Shells large, over $\frac{1}{2}$ inch in diameter.

1. Lip reflected.

H. albolabris (Say).-Whorls about $5 \frac{2}{3}$, with rather obtuse wrinkles, crossed by very minute lines, more obvious on the body whorl than on the spire; shell pale reddish brown; labrum (outer lip) widely reflected, flat, and white; breadth 1 inch. Canada.
H. hortensis (M `er).-A variety of H. nemoralis. Whorls about 5, rounded, wrinkled; shell thin and light; white, yellow, with
or without clear brown bands; spire very much elevated; labrum very slightly reffected, except at base, where it is widely reflected; this pretty banded shell is an imported lenglish species. It is found below Quebec.

$$
\because \text { Lip simple. }
$$

Sub-Sec, B.-Whells small, less than: inch in diameter.

$$
\begin{aligned}
& \text { 1. Lip reflerted. } \\
& \text { 2. Lip simple. }
\end{aligned}
$$

II. Cnersina (Say).-Whorls about 6, wrinkles not distinct; shell sub-globose, conic ; pale yellowish white, pellucid; body whorl slightly carimated above the middle; breadth about $I^{2} \sigma$ inch. Lower Canada.
II. egrena (Say).-Whorls 5, not distinctly wrinkled, rounded; shell polished, aperture rather narrow, transverse ; labrum at its inferior (lower) extremity, terminating at the centre of the base of the shell; umbilical region deeply indented; breadth over $\frac{1}{10}$ inch; it is broader than chersino, and much more clevated, and not so broad as arborea; the aperture is also of a different shape. Lower Canada.

Section B. -Shells mbilicated.
Sun-Ske. A.-Shells large, umbilicus exhibiting all the whorls.

> 1. Lip reflected.
H. concava (Say).-Whorls 5, irregularly wrinkled across; shell horn color or whitish, depressed; aperture large and short; labrum towards the base very slightly and inconspicuously reflected; greatest width $\frac{1}{10}$ inch. Canada.

2. Lip simple.

H. aleternata (Say). - Whorls 5, striated across, with raised equidistant acute lines, forming grooves between them; shell reddish brown, varied or alternating with pale rays; aperture thin and brittle; breadth $\}$ inch. Canada.

Mr. Tytler, B.A., has a specimen of this shell in his possession, found at Weston, the dark rays of which are a deep black.
H. perspectiva (Say).-Specimens from the States are nearly $\frac{3}{4}$ inch in diameter. Our Canadian species do not appear to be quite $\frac{1}{2}$ inch in diameter-see Sub-Sec. B.

Sub-Sec. B.-Shells omall, umbilicus exhibiting all the whorls.

1. Lip reflected.

H. minuta (Say).-Ohio, \&c.

2. lip simple.

H. perspectiva (Say).-Whorls about 6, striated across, with raised parallel acute lines, forming strongly impressed sulcat (furrows) between them; shell brownish; umbilicus very large. l'aris, Upper Canada.
II. striatella (Anthony).-Whorls over 4, rounded, regularly striated with rather strongly raised lines; shell light yellowish brown; aperture thin and brittle; resembles perspectiva, but is much smaller, has fewer whorls, is lighter in color, and the umbilicus does not exhibit the whorls as plainly as in that species. Canada.

Sub-Sec. C.-Shells large, umbilicus not exhibiting all the whorls.

> 1. Lip reflected.
H. clausa (Say).-Illinois and Pennsylvania.

2. Lip simple.

H. inurnata (Say).-Penusylvania.

Sua-Sec. D.-Shell small, umbilicus not exhibiting all the whorls.

1. Lip reflected.

H. pulchella (Müller).-Whorls about 4, rounded, striated; aperture circular; labrum reflected, flat, and white; umbilicus round, large, and profound; breadth about $\frac{1}{8}$ inch. Canada.

The small size and reflected lip will readily distinguish this shell from all other species found in Canada.

2. Lip simple.

H. poncina (Say).-Whorls over 4, depressed above, rounded beneath ; shell depressed, yellowish brown; epidermis rugose () with minute very numerous bristies; umbilicus rather small, profound; breadth over $\frac{3}{10}$ inch. II. hirsuta (Binney) is identical with this species (Blandi) Garafraxa, County of Wellington, U. C.
H. ligera (Say).-Whorls over 6, all except apical one, wrinkled across; shell pale yellowish horn color, polished, body whorl pellucid, yellowish white, opaque beneath the aperture; spire but little raised; umbilicus very small; breadth about $\frac{3}{10}$ inch. Toronto.
H. arborea (Say).-Whorls 4, irregularly wrinkled across; shell very thin, fragile, horn color, pellucid; lip thin, brittle; umbilicus large and deep; breadth $\frac{1}{5}$ inch. Canada.
H. harpa (Say). -Whorls 4, with numerous raised, equal, acute lines across, the spaces between them flat and wrinkled; shell conic, reddish brown; aperture truncated by the penultimate whorl (the whorl preceding the body whorl) ; spire very much elevated; umbili-

Vol. VIII.
cus small, nearly conealed; length Tis 1 inch. Lower Canada. In shape somewhat resembles a Bulimus for which it might be mistaken.
H. hyorophila (lngalls).-Whorls about 5, rounded, striated acruss with very fine lines; shell thin, horn color or whitish and translucent, polished; umbilicus rather large, profound; breadth, $\frac{2}{6}$ inch. Upper Canada. This species and Striatella and Alternata are very common.

DIVISION IT.

SHELLS TOOTHED.

Section A - Umbilicus closed or wanting.
Sub-Sec. A.-Shells large, over $\frac{1}{2}$ inch in diameter.

1. Lip reflected.
II. abmolabris (Say).-Occasionally found with a small tooth. See Division I., Sec. A., Sub-Sec. A.
II. palliata (Say). Whorls 5 ; shell depressed with elevated lines, forming grooves between them; epidermis fuscous, rugose, with numerous tuberculous prominences; labrum widely reflected, white, a prominent tooth on the imer side above tlie middle, and a projecting angle near the middle of the lip; labrum (inner or pillar lip) with a large prominent white tooth ; greatest breadth $\frac{4}{3}$ inch. It muc' "esembles tridentata, but is larger and has no umbilicus. Some rarieties have an acute carina, and are destitute of the minute prominences; breadth nearly 1 inch. Douglas Village, Garafraxa, Co. Wellington.

> 2. Lip simple.

Sub-Sec. B.-Shells small, less than $\frac{1}{2}$ inch in diameter.

> 1. Lip reflected.
H. inflecta (Say).-Lower Missouri.
2. Lip simple.
H. gularis (Say).-Ohio and Pennsylvania.

Section B.-Shells umbilicated.
Sub-Sec. A.-Shells large, umbilicus exhibiting all the whorls. 1. Lip reflected.
H. diodonta (Say).-New York.

> 2. Lip simple.

Sub-Sec. B.-Shells small, umbilicus exhibiting all the whorls. 1. Lip reflected.
H. fallax (Say).

2. Lip simple.

H. lineata (Say). Whorls about 4, with numerous regular revolving lines; shell much depressed, somewhat discoidal; aperture longer than wide; umbilicus very large. As the shell is somewhat translucent, two pairs of white tecth, remote from each other, may be observed through the body whorl. One pair of these teeth is placed in the throat, and can be readily scen by looking in at the aperture; these teeth are nearly equidistant from each other, and from the extremitiss of the labrum. The other pair is placed too far in to be seen from the aperture; diameter $\frac{3}{2}$ inch. Lower Canada.

Sub-Sec. C.-Shells large, umbilicus not exhibiting all the whorls.

1. Lip reflectet.

H. tuyroides (Say).-Whorls 5, wrinkled ; shell rather thin, pale reddish brown ; labrum widely reflected, white; labium with an oblique white tnoth, not very prominent; umbilicus narrow, distiact; breadth $\frac{1}{3}$ to $\frac{0}{10}$ inch. Resembles Albolabris but is always umbilicated, smaller and toothed. Garafraxa, and Walkerton, Co. Bruce.
II. thidentata (Say).-Whorls 5, crossed by numerous lines, separated by regular grooves; shell depressed, brownish or horn color; teeth placed triangularly, one on the labium; labrum widely reflected, white, furnished with two teeth; umbilicus moderate; breadth $\frac{1}{2}$ inch. Canada.

2. Lip simple.

Sub-Sec. D.-Shells small, umbilicus not exhibiting all the whorls.

1. Lip reflected.

H. tridentata (Say).-About $\frac{1}{2}$ inch in breadth. See Sub-Sec. C. above.
H. labyrinticica (Say) - Whorls 5 or 6, with conspicuous elevated lines across, forming grooves between them ; shell dark reddish brown, body whorl lighter; lanrum rounded; labium with a large lamelliform elongated tooth which appears to revolve within the shell, a smaller raised line revolves nearer the base but becomes obsolete before it arrives at the labium; umbilicus rather large; breadth $\frac{1}{10}$ inch. Lower Canada.
H. monodon (Rackett).-Whorls 5 or 6, diminishing very gradually in breadth from the outer whorl to apex, marked with fine lines of growth ; epidermis russet or chestnut color, with very minute hairlike projections; aperture contractea y a deep groove behind the lip;
labrum white, narrow, extending to the base of the umbilicus, and slightly contracting it ; labium with a compressed white tooth; umbilical region deeply indented; greatest breadth $\frac{1}{2}$ inch. Canada.
The hair-like projections, Dr. Gould says, are often wanting at every stage of growth.*

Some objections may be raised against a classification of this kind, such as the finding at times of shells normally without teeth with teeth; but these are exceptions and by no means common. II. albolabris has been frequently found in the United States with a small tooth. I have examined a great many Canadian specimens and as yet have not found one with this peculiarity. This difficulty is, however, easily obviated by placing such shells in each division under their proper sections-the description of course being attached to the section it normally belongs to.

Again, some shells are found occasionally with the umbilicus nearly or entirely covered, as in II. fraterna (Say); this peculiarity is very rare. I only know of it occurring in fraterna. It can be got over in thie same mamer as pointed out above.

As regards dividing the shells into large and small, I have taken $\frac{1}{2}$ inch as the division line. This division is not a very good one on account of the variation in size of many shells, but it in some measure helps the object in view, as it places fewer specimens under each head.

I do not pretend to say that this classification is a perfect one ; if it assists in the more ready determination of species it has amply fulfilled my object. It is more a classification of convenience than a strictly scientific one. 'Those who have made a study of Conchology will see its imperfections, but I hope at the same time they will turn their attention to perfecting some good classifications of not only the genus Helix, but of the other large genera.

[^9]
SYNOPSIS OF CANADIAN ARCTIADAE, INCLUDING SOME ADDITIONAL SPECIES LIKELY TO OCCUR IN CANADA.

BY WILLIAM SAUNDERS,
COR. MEMBER RNTOMOLOGICAL GOCIETY, PHLLA., AND SOC. NAT. BCIEFCRS, bEPPALO.
Read before the Entomological Society of Canada, April 16th, 1863.
In pursuance of the plan first adopted by Prof. Hincks, of collecting and publishing in the "Journal" materials for a complete synopsis of our Canadian Entomological fauna, the following paper has been prepared; with the hope that it may be of some assistance to collectors, by enabling them more readily to determine their specimens, and also do something towards clearing up some hitherto doubtful points in connection with the specific characters of several species belonging to this beautiful and interesting family of Moths. The method of taking up, from time to time, certain families or subfamilies of insects, and publishing deseriptive lists of all the known Canadian species, including those likely to occur in Canada, is, we believe, a good one, and we feel sure that if continued it will greatly stimulate the growth of our favourite branch of science. W \sim trust that those who have time and opportunity will assist us in the work, for the field is a wide one, and there is ample room fr- all to labour profitably.

In the preparation of this paper, free use has been made of the material collected by Dr. Morris, ir the late Smithsonian "Synopsis of North American Lepidoptera," and also of that contained in Dr. Clemens' "Contributions to American Lepidopterology," published in the Proc. Acad. Nat. Sciences. We would aliso acknowledge our indebteduess to the many find friends who bave freely placed their specimens at our disposal. The collection thus gathered from various parts of the Province, has materially aided in making the list of Canadian species much more complete than it otherwise could have been, and also acquainted us with many interesting variations.

Fam. Arctiadae.-Herr-Schaef. Chelonides Boisd.
Stature usually robust. Maxillæ short, sometimes obsolete. Antenne pectinate in the male, sometimes filiform. Palpi small pilose.

Thorax and abdomen, most often spotted. Wings entire deflexed. Frenulum conspicuous. Larva hairy.

The family may be thus tabulated:
AA. Antenuæ of male pectinated.
B. Fore wings streaked and spottedArctia.

BB. " " white or fulvous, with black spots. Some- Spilosoma. times wanting \int Hypantria.
BBB. " " bluish grey......Euchates. BBBB. " " pale yellow or ocbre, $\left.\begin{array}{l}\text { banded or spotted with } \\ \text { a lighter colour }\end{array}\right\}$ Halesidota. BBBBB. " " white, with many black- $\left.\begin{array}{r}\text { ish ringlets }\end{array}\right\}$ Ecpantheria.

AA. Antennæ of male filiform,
C. Fore wings semi-transparent Phragmatobia.
CC. " " densely clothed with scales.
D. Hind wings red, with a black border ...Deiopia.

DD. " " white or yellow, without spots, or sometimes with cne or two small $\}$ Hypercompa. spots near the anal angle

Arctia Schr.

Head and thorax with long hairs. Palpi porrect, short, very hairy. Ocelli conspicuous. Thorax not crested. Wings gaily coloured and spotted. Abdomen stout, maculate. Hind tibio with four spurs; fore tibix simple. Flight nocturnal. Larve solitary.

Table of species:
A. Fore wings spotted, not striped.
B. Fore wings brown.
C. Hind wings with blue-black spots. $\left.\begin{array}{c}\text { Abdomen spotted with } \\ \text { black }\end{array}\right\}$ Americana.
CC. " " black banded. Abdo- $\left.\begin{array}{c}\text { men with disk black }\end{array}\right\}$ parthenos.

BB. Fore wings black, or blackish, with few spots placentia.
A. Fore wings striped.
D. Fore wings with many stripes.
E. Central stripe wide.
$\left.\begin{array}{r}\text { F. Hind wings red, anterior margin } \\ \text { bordered with black }\end{array}\right\}$ parthenice.
FE. "" $\left.\begin{array}{r}\text { red, anterior margin } \\ \text { with black spots ... }\end{array}\right\}$ virgo.
FFF. Hind wings flesh-colour, or slightly $\}$ dione. tinged with red \}
FFFF. " " ochre-yellow or brownish; external edges with a double black border nais. order virguncula.
EE. Central stripe narrow DD. Fore wings with few stripes.
$\left.\begin{array}{r}\text { G. Hind wings ochre-yellow, with } \\ \text { black spots...... }\end{array}\right\}$ phalerata.
(Note.-All known Canadian species will be followed by a note of exclamation (!). The others are natives of the adjoining States, and will probably also be found to occur with us.)

A. Americana !-Harris. Figured in "Agassiz's Lake Superior," Fig. 7.

Palpi dark brown above, red beneath. Head brown. Antennæ yeilowish-white above, with brown pectinations. Thorax brown, bordered in front with a white band which extends on each side to the extremity of the shoulder covers. Collar bordered above and below with red, with a frout line of the same colour

Primaries brown, deeper in colour towards base, with several white spots on costa, and crossed by broad irregular anastomosing lines of the same colour.

Secondarics bright ochre-yellow, with from four to six blue-black spots, three larger than the others.

Abdomen ochro-ywlow, with a reddish tinge, and a dorsal row of large black spots. Legs dusky; thighs and anterior tibix friuged with red.

Length of body 9-10 lines. Wings expand $25-28$ lines.
The larva of this specics does not complete its growth in the autumn, hut attains only to about three-eighths of an inch in length, when it hybernates, seeking shelter in some crevice, usually under the loose baik of decasing trees. At this period it presents the following appoarace:-Head black; body dark brown, with transverse rows of tubercles, from which spring dense tutts of iutermingled blatk and white hairs. For two summers past we have reared the larva from eggs deposited by captured females, to the period of hybernation; but have failed to preserve them alive during the winter. Several years siuce we found, in the latter part of May, a full-grown specimen, but it entered the chrysalis state before an opportunity occurred for describing it. \dagger They are somewhat omnivorous in their appetites, but show a preference for the common garden lettuce and lamb's quarter (Chenopodium album.)

The perfect insect usually appears in the latter part of June or early in July.

Hab.-London, uot common, Toronto (Mr. Bethune); Kingston (Mr. Rogers); Trenton Falls, N.Y.; Lake Superior.
*A. parthenos!-Harris. Figured in "Agassiz Lake Superior," pl. 7. Var.: A. Americana.-Walker.
"Head brown, with a crimson fringe above, and between the black antennæ. Thorax brown above, with an arcuated cream-coloured

[^10]band, which is continued on each side of the outer edge of the shoulder covers: upper edge of the collar crimson-red.

Primaries dark brown, with three small cream-coloured spots on the outer edge; four spots of the same colour in a line near the inner margin, and several more scattered on the disk.

Secondaries deep ochre-yellow; with the base, the basal edge of the inner margin, a triangular spot in the middle, adioining the basal spot, and a broad indented band behind, black.

Abdomen dusky above, tawny at the tip, and beneath. Legs dusky ; thighs and tibix fringed with crimson hairs."

Larva undescribed.
Hab.-Valley of the Kiver Rouge (Mr. D'Urban); Lake Superior; Mass.

$$
{ }^{*} \text { A. placentia.-Abbot. Figured in Sm. Ab. pl. } 65 .
$$

"Fuscous; primaries with one or three pale testaceous spots; secondaries reddish, margin and some sub-margmal spots fuscous. Abdomen above reddish, with the dorsal spots and apex fuscous.
Var. a.-Fore wings with the outer fringe partly pale testaceous; and with several spots and dots of the same colour in the disk.
Var. b.-Fure wings with the outer fringe wholly blackish-brown, unspotted, except tro very minute testaceous dots."
Larva undescribed.
Hab.-North America.
A. parthenice!-Kirby. Var. §—A. virgo.

Palpi black, tipped with whitish. Head buff in front, black at the sides. Antennæ dark brown. Thorax flesh-coloured, with two small anterior and three large posterior black stripes.

Primaries black, margined and striped with buff; veins and their branches narrowly striped; a wide central stripe extending to the hind margin, furcate just beyond the base; with the lewer branch again furcate near the posterior angle. The central stripe is joined at an acute angle at the tip by a branch extending to the costa; another stripe from the costa, about the apical third of the wing, extends to the median stripe, below which it is furcate,-one part terminating beyond the middle, the other at the end of the lower stripe.

Secondaries bright red, with five or six irregular black spots edged with yellow, mostly towards the posterior margin. A large patch of black at the apex, which is prolonged along the anterior margin, bordering it to the base. Cilisu yollowish.

Under surface paler than the upper, with the markings less distinct; margins yellow.

Abdomen red above, whitish at the tip, with a biack dorsai macular band; black below, with a contral row of four or five white spots. Legs black, fringed along the thighs and at base with brown; posterior edge of hind tibine whitish.

Length of body $8:$ lines. Wings expand 25 lines.
Larva.-Length one and three quarters to two inches. Head black, with a light spot on each side. Body black, with a dorsal flesh-colored stripe. A transturse row of prominent tubercles on each segment, of a yellowish flesh-color, from which arise tufts of stiff bairs, which are black on the back and brown on the sides of the body. Feet and prolegs yellowish, tipped with black.

This larra, like that of Americana, hybernates when partly grown, and completes its grow th the following spring. It feeds readily on lamb's quarter (Chenopodium allum) or on grass.

Mab.-London. Not uncommon. Montreal (Mr. D'Urban.)
A. parthenice closely resombles the following species "virgo," and has usually been regarded as a mere varicty of it; but since the larva described above, of which I have reared severa! specimens, does not agree with that of " vingo" as described by Marris, it is probable that they aro distinct.

A. virgo!-IIubner.

Palpi black. INead buff in front; black at the sides. Antenna ferruginous. Thorax bun or flesheolor, with five black spots; two small ones in front and three larger on disk.

Primaries black, margined and striped with buff, flesh-color, or sometimes reddish. Veins and their branches striped; two wide longitudinal stripes joined mear the base, and extending to the hind margin ; the lower one furcate near the end; three transverse from costa ; the two outermost, extending to the hind margin, the inner one to the median stripe or just bojow it. A short transverse stripe unites the upper with the lower longitudinal ones beyond the middle of the wing.

Secondaries deep red, sometimes with a pinkish tinge, with from seven to nine irregular black spots edged slightly with yellowish, not collected towards the posterior margin, but scattered uniformly over the surface of the wing. Cilia yellowish-red.

Under surface paler in color, with the same markings.
Abdr...en of the same color as secondaries, with a macular black band, or sometimes a row of black spots, along the back. Undor surface black, or very dark brown, wirh sometimes two or three faint whitish spots along the centre. Posterior edge of hind tibix buff.

The perfect insect appears about the end of July.
Length of body 8-9 lines. Wings expand 21-27 lines.
"Larva brown, rathe: thickly covered with tufts of brown hair."
Var.-Primaries with all the stripes wider, occupying the greater portion of the surface of the wing.

Hab.-London. Not uncommon. Cobourg (Mr Bethune.). St. Catherines (Mr. Beadle). Hamilton (Mr. Reynolds). Toronto (Prof. Croft; Dr. Morris). Kingston (Mr. Rogers). Montreal Mr. D'Urban). Nova Scotia; New York; Illinois.
A. dione!-Hubn. Arga.-Drury. Figured in Drury i. pl. 18; Sm. Ab. pl. 63 ; Naturalist's Library, vol. xxxvi. pl. 19.

Palpi black above, reddish below. Antenne whitish above, under surface brown, extremties nearly black. Head and thorax pale buff, with a pinkish tinge, especially towards the front; thoras with fire black spots, two small ones in front and three larger on disk, one central and one on each tegulx.

Primaries black, widely margined and striped with pale buff or cream-color, sumetimes with a pinkish tinge. Stripes all wide (especially the central one and its lower branch), occupying the largest portion of the sufface of the wing.

Secondaries reddish flesh-color, with a fulvous marginal line behind, and sight or nine black spots, chiefly along the hind margin.

Under surface with similar markings, the black spots less distinct, and costal edge of primaries yellowish-red.

Abdomeu reddish above, pale below, with five rows of black spots, one dorsal two lateral, and two on the underside; the latter, largest. Under surface of thorax, reddish, with two black spots below the eyes. Legs whitish, edged with brownish-black; anterior and middle thighs bordered in front with red.

Length of body 7 lines. Wings expand is lines.

The perfect insect may bo taken from early in June to the end of July.

The description given of the larva in the "Smithsonian Synepsis" does not exactly agree with that given by Harris, which is as follows: " Length one inch and a half. Color dark greenish-grey ; appearing almost black from the black spots with which they are thickly covered. There are three longitudinal stripes of flesh-white on the back, and a row of kidney-shaped spots of the same color on each side of the body. The tubercles are dark grey, each producing a thin cluster of spreading blackish hairs. It attains its full growth in the month of October."

Food plants.-" Plantain and other herbaceous plants. Abbot states that they sometimes make great devastation among young Indian corn in the Southern States."
"Var. a.-Primaries reddish-white, with cuneiform black spots. Secondaries red, with bhack-yellow bordered spots.
Var. b.--Spots of the primaries much larger, and forming a stripe towards the hind border.
Tar. c.-Spots of the primaries still larger, and more inclined to form stripes. Spots of the secondaries without yellow borders."
Var. d.-Secondaries whitish, spots small and without yellow borders.
Hab.-Niagara (Dr Morris). Toronto (Prof. Croft). Mass.; New Yorh ; Illinois ; Georgia.

A. nais!-Drury. Figured in Drury, pl. 7.

Palpi black. Antennæ black above, lighter beneath. Head and thorax dull buff, with a brownish tint; thorax with five black spote, two small ones in front aud three larger on disk, one central and one on each shoulder cover.

Primaries black, with pale ochre stripes; margins, veins, and their branches narrowly striped ; ceutral longitudinal stripe wide, furcate not far from the base, sending a wide branch to the posterior angle, where it is also furcate near its termination; the central stripe is again furcate about the apical third of the wing, emitting a wido branch, which joins the lower one; a short wide stripe crosses the apex, extending from the extremity of the central one to just under the costal edge.

Secondaries ochre-ycllow, with a brownish tinge; with one or two small black spots, and a brond irregular dusky black border along the external edges, widest at the apex and narrower towards the inner auglo; a line of ochre-yellow extends half through the black border, about the middle of the wing, and the border has also one or two small, dull, ochre spots in it.

Under surface paler, with aimilar markings; veins on secondaries narrowly striped with pale buff while passing through the black border.

Abdomen deep ochre, whitish towards the tip, with a black dorsal band, and lateral rows of spots of the same hue; under serface, thorax dull brownish, abdomen black, ammlated with whitish. Legs brownish black, femora edged externally with buff.

Length of body 7 lines. Wings expand 18 lines.
Larva undescribed.
Var. a.-Male. Fore stripe of the primaries not joining the costa.
Var. b.-Male. Inner border of the secondaries reddish.
Var. c.-Male. Primaries with no pale oblique band towards the tip. Var. d.-Hemale. Like Var. c. Secondaries red, with broad blackish borders. Abdomen wholly brown, except on each side above towards the base.
Var. e.-Female. Primaries with testaceous veins; fore stripe and part of the middle stripe almost obsolete."
Hab.-Hamilton (Mr. Reynolds). Massachusetts.
A. virgincula!-Kirby. Figured in Faun. Bor Amer. iv. pl. 4.

Palpi small, brownish black Antenne black, with a brownish tinge. Head flesh-colored above, black at sides. Thorax pinkishbuff, with five black spots, two small ones in front, and three larger on disk.

Primaries black, margined, and striped with pale flesh-color. Costal margin, veins, and their branches, narrowly striped. The central longitudinal stripe along the median vein linear througlout. A wide stripe, having its origin at the base immediately under the median vein, and deflected from thence to the hind margin, where it is furcate. A zig-zag subterminal band, beginning on the costa near the apex and terminating near the posterior augle, where it joins the end of the wide longitudinal stripe. Two wide stripes arise from the costal edge; the first, about the middle of the wing, jextends to
the median vein, or just belor it; the second at the apical third, uniting with the wide longitudinal stripe below.

Secondaries pale reddish-buff, with five or six black spots, one within, the others along the posterior margin, where they form an irregular macular band. Ciliæ whitish.

Uuder surface paler, with markings less distinct, excepting towards the apex.

Abdomen reddish above with the tip, and a dorsal macular band black. Under surface dark brown, imperfectly annulated with whitish hairs.

Length of body 5-8 lines. Wings expand 17 to 20 lines.
Larva undescribed.*
Var. a.-Primaries with the stripes reddish; secondaries pinkishred. Abdomen with two additional rows of spots at the sides; under surface black, centered with yellowishbrown.
Var. b.-Primaries with the stripes nearly white; secondaries pink-ish-orange. Abdomen with two additional rows of spots ; black, with some faint lightish central spots.
Var.c.-Primaries with the stripes pale; secondaries hright red. Abdomen entirely black below.
Var. d.-Primanies with all the stripes narrower and reddish; secondaries bright red. Abdomen with macular band above very wide ; entirely black below.
Var. e.-Primaries with the stripes reddish-ochre, costa edged only to about the basal third of wing; secondaries vermillionred. Abdomen deep black below.
Hab.-London : common. Toronto (Mr. Bethune; Prof. Croft; Dr. Morris). St Catharines (Mr. Beadle). Hamilton (Mr. Reynolds). New York.

[^11]A phalerata!-Harris. Figured in Harris' Insects, new Edition, Fig 166.
Male. Palpi black. Antennæ black above with light-brown pectinations. Head ochre-yellow, uarrowly bordered with black at the sides. Thorax ochre-yellow with three black stripes, one central, and one on each tegule.

Primaries black, with very wide stripes of ochre yellow, one along the costa to near the tip, another along the hind margin, and a third very wide ceutral stripe, furcate about the middle, both branches extending to the hind margin ; the end of the lower branch is joined by a transverse stripe, which extends obliquely to the costa; and from the termination of the upper brauch arises another extending across the tip to near the costa.

Secondaries bright ochre-yellow, with three black spots along the posterior margin, and a patch of black at the anterior angle, which is prolonged along the anterior margin to uear the base of the wing. Cilix buff.

Under surface with the same markings and uearly as distinct.
Abdomen ochre-yellow, with a wide dorsal black band narrower towards the thorax, below black, with a central yellow band, wider towards thorax. Legs black, fringed with brownish-yellow hairs at their base ; anterior thighs spotted with reddish-yellow.

Length of body 7 lines. Wings expand 16 lines.
Larva undescribed.
Var. Secondaries with a reddish tinge towards the inner margin.
Cnder surface of abdomen black, with oue small yellow dot near base.
Hab.-Cobourg. (Mr. Bethune.)
A philyra!-Drury.
Male. Palpi black. Antennæ blackish brown. Head and thorax reddish flesh color, the latter with two small black spots in front, three larger on disk, and a short one on each side at base of primaries of the same hue.

Primaries black, with pale flesh-colored stripes; one along the costa deflected at the apical third of the wing to the posterior angle; a broader stripe beneath the median vein, furcate about the middle, and extended to the hind margin, where it is turned at an acute angle towards the costa. The lower branch is also extended to the hind margin, where it is again slightly furcate, and joins the deflected
portion of the costal stripe near the posterior angle. Inuer margin bordered with the same color.

Secondaries reddish flesh color, deeper in color towards base, with three black spots aloug the hind margin, and a patch of the samo color extending from the anterior angle along the front margin to. near the base.

Under surface with the same markings, but paler.
Abdomen reddish, wlth a black dorsal band above; below brown-ish-black. Anterior thighs edged with buff.

Length of body $5 \frac{1}{2}$ lines. Wings expand thirteen lines.
Larva undescribed.
Hab.-St. Thomas, seventeen miles from Londou. Rare.

A decorata !-Saunders. Described in Proc. Ent. Soc. Philada.Vol. 2. No. 1.

Fenale. Tongue bright yellow. Palpi black. Antenoæ black, slightly pectinate. Head black, with a tuft of yellow hairs between the antennæ. Thorax ochre yellow, with two small linear spots in front, and three larger ones on disk, one central, and one on each shoulder cover, and a small spot of the same hue on each side at base of primaries.

Primaries deep velvety black, with rich ochre-yellow stripes, one on costa terminating at the apical third of the wing; one broad central stripe along the median vein to within a third of the hind margin, slightly enlarged at the tip, where it is joined at an acute angle by a smaller stripe which terminates just under the extremity of the costal band. This centrai stripe is notched or obscurely furcate about the middle; the lower part of the notch extends a very short distance towards the hind margin, terminating in a point, and in a line with this further towards the posterior angle, are one or two very minute yellow dots. Inner margin with a border of the same color, gradually widening towards the base.

Secondaries bright red, widely bordered with dull black, excepting on the inner margin ; a small red dot set in the blacis border not far from the apex. Ciliæ vary in color from cchre-yellow to dark brown.

Uuder surface paler with the same markings.
Abdomen deep black, with a patch of ochre-yellow or orange on each side at base, wide where it joins the thorax and narrow at its termination on the third segment. A yellowish dot on each side of
fourth and fifth segments, and one on centre of back near tip. Under surface entirely black.

Length of body 6 lines. Wings expand 16 lines.
Larva undescribed.
Hab.-St. Catherincs. Rare. (Mr. Beadle.)
A celia!-Saunders. Described in Proc. Ent. Soc. Philadelphia, Vol. 2. No, 1.
Male. Palpi black above, yellowish beneath. Head yellow, with black lateral stripes. Antemæ brown, pectinated. Thorax yellow-ish-white, deeper in color towards the head, with two short black stripes in front, and three longer and larger on disk, one central and one on each tegulx.

Primaries brownish-black, with white stripes, a wide stripe having its origin at the base of the median vein, and from thence deflected towards the posterior angle, where it grows narrowly linear, from this two branches proceed: the first from about the centre of the wing extends in a straight line to the costa, the second obliquely towards the apex, terminating under the costal edge; a subterminal zigzag line forming a distinct W, crossed at the top by the oblique band.Costa edged with yellowish to about the apical third of the wing.

Secondaries lightish-brown, with two irregular yellow spots about the middle of the wing, and a stripe of the same color extending from the base along the submedian rein, to within a third of the hind margin. Imer margin yellow. Ciliæ brown, intermixed with white.

Abdomen yellow, with a dorsal macular band black, and a row of black spots on each side; under surface whitish, with imperfect black bands. Legs black, spotted with yellow, and with tufts of yellow hairs at their base.

Length of body 6 lines. Wings expand 14 lines.
Larva undescribed.
Var. a. Male. Secondaries dark-brown, with the yellow spots somewhat smaller, inner margin brown. Legs edged with yel-lowish-white.
Var. b. Male. Antenne light-brown. Head and thorax with a pinkish tinge. Secondaries with the central spots smaller than the type, and of a reddish color. Abdomen vellow-ish-red, with the central portion of under surface greyishwhite.
Vol. VIII.

Hab.-Toronto. The type from Mr. Bethune, Vars. a and b from Professor Croft.

Spilosoma.-Stephens.

Palpi more or less exceeding the clypeus, hairy beneath, first and second joints usually short, sometimes the joints nearly equal.Wings white or fulvous with black dots, sometimes wauting. Abdomen with five or six rows of black dots, sometimes indistinct; one above, one below, and two on each side. Hind tibio with two pairs of spurs near the tip, sometimes minute.

Table of species :

A. Wings white.

> B. Wings with few dots Virginica.

BB. Wings with many dotsacrea.
B1BB. Wings without dots
collaris.
AA. Wings fulvous
Isabella.

S. Firginica !-Fabr.

Palpi black above, yellowish below. Antenne white above, with black pectinations. Head and thorax white and very woolly.

Primaries whte, with a black discal dot.
Secondaries white, with three black dots, one on disk, and the others towards the hind margin.

Under surface with the same markings; the dots on secondaries, especially the discal one, more distinct.

Abdomen deep yellow above, whitish beneath, with five rows of black spots, one dorsal, and two on each side. Anterior coax, and femora ochre-yellow, the latter with a black spot; tarsi annulated with black.

Length of body 6-7 lines. Wings expand 17-19 lines.
"The Larva varies much in color, often of a pale yellow or straw color, with a black line along each side of the body, and a transverse line of the same color between each of the segments, and it is corered with long pale yellow hairs. Others are of a brownish-yeilow or fosy red. Head and cuds of the feet ochre-yellow. Body below blackish." Will teed on almost any herbaceous plant.
Var. a. Wings wholly white.
Var. b. Wings wholly white above, below primaries with a small black dot above the dise; secondaries with three black dots.
Var. c. Primaries with one black dot, secondaries with two.

Var. u. Same as c, with as: additional black spot on underside of primaries near base.
Var. e. Primaries with two black dots, secondaries with same number.
Var. f. Primaries with two black ints, secondaries with four black dots, primaries below with a dot at base.
Var. g. Primaries with three black dots, secondaries the same.
Var. h. Same as g , with the black basal dot on primaries below.
Var. i. Primaries wholly white, secondaries with three black dots.
Hab.-London, very common; Cobourg (Mr. Bethune); St. Catherines (Mr. Beadle) ; Hamilton (Mr. Reynolds) ; Toronto (Prof. Croft, Dr. Morris) ; Kingston (Mr. Rogers) ; Montreal (Mr. D'Urban.)
S. acrea !-Drury.

Female. Palpi black above, yellowish beneath. Antenne black. Head and thorax white and woolly.

Primaries white, with many black dots, those along the costa largest.
Secondaries white, with from three to six black spots chiefly along the hind margin.

Wings below white, with fewer spots, veins tinged with yellowish.
Abdomen deep ochre-yellow above; apex and under surface white, with six rows of black spots, the dorsal row largest. Thighs and fore tibie ochre-yellow. Tarsi black, amulated with white.

In the Male the primaries are white, with a yellowish tinge; secondaries deep ochre-yellow; under surface of body and wings ochre-yellow.

Length of 'Jody 6-8 lines. Wings expand 18-23 lines.
"Larva wh te when young, nearly black when full grown; intermediate stage reddish brown; two yellow lines along the sides, and a transverse series of orange spots on each segment. From the back of each segment arises a tuft of blackish hairs." Feeds on almost every herbaceous plant.

Hab.-London, common; Cobourg (Mr. Bethune) ; Toronto (Dr. Morris, Prof. Croft) ; St. Catherines (Mr. Beadle) ; Hamilton (Mr. Reynolds) ; Kingston (Mr. Rogers); Muntreal (Mr. D'Urban.)
S. collaris !-Fitch.

Palpi brownish-black above yellow below. Antennæ whitish above, with brown pectinations. Head yellor. Thorax yellow in front, uearly white behind.

Primaries glossy white, semi-transparent; with tho costal edge, sub-costal vein, and space between, y ellow; paler towards apex.
secondanies wholly white, semi-transparent.
Under surface same as upper, but paler, with the discal cell on primaries partly dusky.

Abdomen rather slender, whitish annulated with yellow, with a dorsal and double lateral rons of black dots. Anterior femora pale yellow; feet rather long and slender, brownish. Hind tibio with the two pairs of spurs long.

Length of body 5 lines. Wings expand 14 lines.
Larra undescribed.
Hab.-London, rare; Mississippi.
S. Isabella!-Abb. and Sm.

Palpi brown, short, and haty. Antente filiform whitish above, brownish-yellow below. Thorax yellowish-brown, anterior portion darker.

Primaries tulvous or brownish-ochreous, sometimes tinged with red; with a discal spot, and an indistinct sub-terminal line of spots along the outer margin, black.

Secondaries yellowish-ochreous with a roseate tinge, semi-transparent; with two black discal spots, and several more of the same hue along the hinder margin.

Under surtace of primaries rosy, margined with ochre-yellow, and with a short black stripe on sub-median vein near base; secondaries similar in color to the upper surface, with discal spots on both larger and deeper in colur.

Abdomen ochre-yellow, with a reddish tinge, and three rows of black spots. Anterior thighs crimson in front; legs black.

Length of body 7-8 lines. Wings expand 14-16 lines.
Larva. Head black and shining; body brownish-black, with irregular transverse rows of tubercles, from which arise tufts of stiff hairs, which are duil yellowish-red along the middle of the body aud black towards each end. Under side lighter in color than upper. This larva, which is one of our commonest species, completes its growth in the autumn, and bybernates througb the winter. In spring they usually feed for a few days before going into chrysalis; they will eat almost any herbaceous plant. Length, about one and a half inches.

Var. a. Primaries deeper in color both above and below, crossed above by three wavy bands of dusky black; underside with an additional black line on disk.
Var. b. Primaries like the typo; secondaries whitish-yellow.
Var. c. Markings on primaries very indistinct; secondaries immacu. late.
The perfect moth appears from late in May to the middle of June.
Hab.-London, very common; Cobourg (Mr. Bethune); Toronto
(Prof. Croft, Dr. Morris) ; St. Catherines (Mr. Beadle); Hamilton (Mr. Reynolds) ; Kingston (Mr. Rogers) ; Montreal (Mr. D'Urban.)

Iryphantria.-Harris.

Palpi hairy beneath, scarcely extended beyond the clypeus. Second joint very short, terminal joint nearly rudimental. Wings white, sometimes spotted with black. Abdomen with rows of black dots, Hind tibie with one pair of small apical spurs.

Table of species:
A. Wings white, without spots textor.
AA. Wings white spotted
B. Primaries with many black spots cunea.
BB. Primaries with one black dotpunctata.
*H. tertor.-Harris.
" Palpi blackish. Antenne blackish-brown.
"Wings pure white, without spots.
"Fore femurs tawny yellow, without spots.
"Larva greenish, dotted with black: a broad blactrish stripe along the top of the back, and a bright yellow stripe on each side. The warts from which the thar bundles of hairs proceed, are black on the back, and rust yellow or orange on the sides. Ifead and feet black. They spin large webs, and live in communities."

Hab.-Mass.; Penn.; Georgia.
*H. cunea.—Drury. Figured in Drury I, pl. 18 ; Sm. Abb., pl. 70.
"Antemne blackish brown. Thorax ash color, usually unspotted, sometumes with a few black spots.
"Primaries white, with highly variable marlings, usually with numerons black spots; external margin with fire spots; those nearest the tip triangular; sometimes the spots fewer.
"Secondaries without spots, sometimes with a dark spot near the external edge, and faintly marked near the exterial angle.
"Abdomen white, with three rows of minute black spots, frequently inconspicuous. The fore coxæ and femora luteous; tarsi blackish.
"Length of body 5-6 lines. Wings expand 13-18 lines."
Larva undescribed.
Hab.-Mass.; Penn.; Georgia.
*II? (Spilusqma) punctuta.-Fitch. Fitch's Third Report, p. 265.
"Primares white, with a bicek central dot, and in the malee a row of smail blachsis spots, extemding from the middle of the imer margin to the tip.
"Secondaries white.
"Thighs and hips yellow in front; a continuous black stripe on fore side of anterior feet and shanks."

Larva undescribed.
Hab. -New York.
Euchates.-Harris.
Wings bluish-gray, witho:+ spots. Abdomen smooth, spotted. Hind tibio with two pairs of . . .rs.
*E. Egle.-Drury. Figured in Drury II., pl. 20. Larva figured in Harris' Insects, new edition, fig. 172.
"Head gray; occiput with a narrow luteous line. Thorax gray.
"Wings rather long, thin, and delicate, of a bluish-gray color, paler on the front edge, and without spots.
"A bdomen above dark yellow, with a dorsal and lateral row of black spots; beneath whitish or gray. Fore cosm woolly, and touched at the sides with luteous."

Wings expand 17-20 lines
"Larva black, with a whitish line on each side, and thickly covered with short tufts of hairs, proceeding from little warts. Along the top of the back is a row of short black tufts, and on each side, from the fifth to the tenth ring inclusive, are alternate tufts of orange and yellow hairs, curving upwards so as uearly to conceal the black tufts between them; below these, along the sides of the body, is a row of horizontal black tufts. On the fir: t and second rings are four long pencil-like black tufts, extending over the head; on each side of the
third ring is a similar black pencil, and two which are white placed in the same manner on the sides of the fourth and tenth segments. These larve are gregarious; they feed on milkweed (Asclepiu Syriaca). They are full growa about the mouth of September, when they leave of feeding, disperse, conceal themselves, and make their cocoons, which mostly consists of hairs. The chrysalis is short, almost eggshaped, blunt, and rounded off at the hind end, and is covered with small punctures.
"The perfect moth appears between the middle of June and the beginning of July."

Hab.-Mass.; New York.

> Ifelesidota.-Hubner. Lophocampa.-Harris.

Palpi stout, porrect, not long; third joint conical, very minute. Primaries long and narrow. Body stout; abdomen smooth, extending beyond the secondaries. Legs stout, smooth; hind tibiæ with four spurs, moderately long.

Table of species:
A. Primaries semi-transparent tesselaris.
AA. " densely clothed with scales
B. Primaries with transverse rows of silvery
white spotsarya.

BB. Primaries with yellow spots......................maculata.
BBB. " with whitish tawny bordered spots.fulvo flava.
H. tesselaris !—Sm. Abb. Figured in Sm. Abb, pl. 75.

Palpi deep yeliow, tipped with black. Antennæ brownish-yellow. Head and thorax whitish-yellow; inner edges of shoulder-covers fringed with bluish-green, with the space between the fringes bright yellow.

Primaries semi-transparent, whitish, tinged with ochre-vellow, with fire irregular transverse dusky bands, edged on each side with delicate blackish lines.

Secondaries paler than the primaries and more transparent.
Abdomen ochre-yellow above, paler below. Feet ochre-yellow, spotted with black.

Length of body 5-6 lines. Wings expand 19-20 lines.
Larva: " Head brownish-yellow. Body yellowish-white, with dusky tubercles, from which spring tufts of light yellow or strawcolored hairs, those along the crest being a very little darker : on
the second and third segments are two orange colored pencils, which are stretched over the head when at rest, and before these are several long tufts of white hairs. On cach side of the third segment is a white pencil, and there are two pencils of the same color on the eleventh segment directed backwards. They are gregarious, and feed upon the buttonwood or sycamore tree, upon which they may be found in July and August. In August or September they leave the trees and secrete themselv. . under logs, stones, \&c., and construct their cocoons, which are oval, thin, and hairy."

Hab.-London, not common ; Port Stanley (Mr. Edwards) ; Montreal (Mr. D'Urbam.)
H. carya!-Harris. Figured in Harris' lusects, Mass., new edition, fig. 175. IF. amulifascia.-Walker. C. B. M., 374.
Palpi dusky yellow, with a minute black dot at the tips. Antennæ deep brownish-vellow. Head and thorax pale ochre-yellow. Shoulder covers edged intermally wit! pale brown.

Primaries pale ochre-yellow, thickly covered with minute brownish dots; two oblique brownish streaks passing backwards from the costa, the inner one most distinct, and three or four irregular transverse rows of silvery white spots, cdged with brown; veins brown.

Secondaries paler, semitransparent, and without spots.
Under surface paler than upper; primaries with the same markings, more distinct towards the apex.

Abdomen bright ochre-yellow above; under surface paler, with three longitudinal rows of light brown spots; legs brownish-yellow.

Length of body 6-7 lines. Wiugs expand 19-21 lines.
Laria: "Length one mad a-half inches. White, sprinkled with black dots, and covered with short spreading tufts of white hairs, with a row of eight black tufte on the back, and two long, slender blach pencils on the fourth and on the tentl, segments. The tufts along the top of the back couverge on each side so as to form a lind of ridge or crest; and the warts from which these tufts proceed are oblong, oval, and transverse, while the other warts on the body are round. The hairs on the fore part of the body are much longer than the rest and hang over the head; the others are short as if sheared off, and spreading. The head, fent, and under surface are bleck, and the spaces betwera the segments have transterse black lines. They feed on hickoy, wh, and clm trees; are full grown in September,
when they secrete themselves and make their cocoons, which resemble those of the last species."

The perfect insect appears late in May or early in June.
Var. Primaries much darker in color, giving a greater prominence to the silvery white spots; under surface also darker, with markings more distinct.
Hab.-London, common ; Toronto (Mr. Bethure) ; Prescott (Mr. B. Billings) ; Montreal (Mr. D'Urban).
H. maculata !-Harris. lus. Mass., p. 259.

Palpi yellow. Antemn brownish-yellow. Head and thorax deep ochre-yellow.

Primaries yellowish-brown, paler towards the hind margin; with three or four very irregular transverse bands of pale yellow spots, which are largest along the costa, at base, and along the inner margin.

Secondaries whitish, semitransparent, and without spots.
Under surface paler with the markings much less distinct.
Abdomen tawny-yellow above, somewhat paler below with a few brownish dots along the sides. Legs yellow; tarsi tipped with black.

Leugth of body 7 lines. Wings expand 16 lines.
The larva, as described by Harris from a shrivelled specimen, "is covered with whitish tufts forming a crest on the back, in which are placed eight black tufts; a black pencil on each side of fourth and tenth segments, and a quantity of long white hairs overhanging the head, and the hinder extremity. Head black."

Hab.-London, not common; Cobjurg (Mr. Bethune) ; Kingston (Mr. Rogers).
*H. fulvo flava.-Walker. C. B. M., 733.
"Proboscis tawny. Thorax with two towny stripes which converge hindwards, and with two tawny spots in front between the stripes.
"Primaries yellow with a tawny spot at the base, with two oblique tawny bands, with darker borders; these bands are partly connected; and the inuer one is especially irregular and ramose, being forked in front, a I dilated in the disk, towards the base, and emitting a branch to each border.
"Secondaries whitish with a slight testaceous tinge.
" Femora and tibix hairy ; fore femora and fore tibie tawny above.
"Length of body 6-7 lines. Wings expand 16-18 lines."
Var. "Primaries taway with yellow spots at the base, at the tips, along the costa, and forming au oblique band beyond the middle."
Hab.-North America.
It is probable that his species is identical with "maculata."

Eepantheria. Walker.

Proboseis moderately long. Palpi rery short, not extending beyoud the clypeus. Antemm of Male serrated, of Female simple. Wings moderately broad. Primaries much longer than secondaries. Body stout. Abdomen extending beyond the hind wings. Legs stout; hind tibie with two minute apical spurs.
E. scribonia!-Stoll. Macularia, Fab. cram. Oculatissima, Sm. and Abb. Chryseis, Godart. Figured in Sm. Abb., pl. 69, Nat. Lib. vol. 37.
Palpi dark brown above, whitish below. Antenure black above, lighter below. Head white, with a wide blue-black Jand across the front. Thorar white with ten or twelve black rings centred with bluish-white.

Primaries white with numerous dark brown rings and spots, arranged in five or six illy defined transverse bands.

Secondaries white with few spors, chiefly along the hind margin; inner margin rery hairy with a blackish stripe.

Under surface somewhat paler than upper with the markings distinct.

Abdomen bluish-black with a metallic gloss; a dorsal row of orange spots and a macular band of the same color along each side; also somerrhat bauded between the segments with orange; under surface whitish, with three rows of black spots. Legs white spotted with black; auterior thighs blue-black in front.

Length of body 8-10 lines. Wings expand 24-30 lines.
Larva: Length two and a half inches. Head bilobed, black and shining; reddish at the sides. Body black; each segment with a transwerse row of elevated tubercles from which spring tufts of rigid, black, shining hairs. Sides brownish-black near under surface with tufts of hair of same color. The spaces between each segment from fourth to tenth inclusive are banded with red, bands wider and more
conspicuous from sixth to ninth. Color of under side varies from reddish to yellowish-brown ; feet reddish ; legs brown, thickly clothed with short hairs.

These larva attain their full grow th in the autumb, when they may be found feeding on the wild sunflower, and hybernate through the winter under logs, the loose bark of decaying trees, se. When aroused from their torpor by the warmth of spring, they feed a little on almost any green thing they meet with, before going into chrysalis 'Shey will feed readily on grass. They enter the chrysalis state about the last of April or begiuning of May, and the perfect insect is evolved early in June.
Var. Thorax with bluish-black spots instead of rings; abdomen tipped with white ; dorsal row of orange spots wanting.
Hab.-Loudon, nut common; St. Catherines (Mr. Beadle); Port Stanley (Mr. Edwards).

Phragmatobia. Stephens.

Palpi short, scarcely distinct, very pilose. Antenuæ short; of the Male serrate, of the Female simple. Head and thorax with long hairs. Wings semitransparent. Body stout. Abdomen maculate. Anterior tibix marmed; posterior tibix with four spurs.

Table of species:
A. Primaries red, with brown markings............... assimilans.

AA. ." brown rubricosa.
*P. assimilians-Walker. C. B. M., 630.
"Male. Red. Antemæ testaceous. Thorax with brown hairs.
"Wings red; veins darker. Primaries slightly brown along the costa, and elsewhere indistinctly sprinkled with pale brown, with two blackish dots.
"Secondaries brighter red, with three biack dots, two on the disk, and one near the hind border towards the inner angle.

Length of body 6 lines. Wings expand 16 lines."
Var. "Primaries almost wholly brown. Secondaries with a broad blackish submarginal stripe."
Larva undescribed.
Hab.-United States.
P. rubricosa!--Harris. Arctia rubricosa, Harris' Insects ; new edition.
Antenne whitish. Palpi, head and thorax dark reddish-brown.
Primaries dull reddish brown, with the discal cell terminated by a blackish line, enlarged into a dot at each end.

Secondaries paler in color than primaries, with a rosy tint becoming blacker behind. Imer margin and friuge of hind margiu red.

Under surface of both primar: s and sceondaries reddish excepting along the hind margins. The lines which, on the upper surface, unite the dots on discal nervure, wanting.

Abdomen red, with dorsal and lateral rows of black spots; under surface dull rdd dish-brown. Fore femora bright red.

Length of body 4-5 lines. Wings expand 11-12 lines.
The larva has been reared by D. W. Beadle, Esq., of St Catherines, who has kindly furnished me with the following notes: "They were found in the fall, teeding on a young ash tree, near St. Catherines; they spun a web over nearly the whole of the tree before they had done feeding, spinning as they fed, so as to keep themselves corered. The web is not so dense as that of Clisiocampa dmericana.The larva were of a dingy smoke color, deepening into a dark brown. Hairs not stout and bristle like, as in 'S. Isaboclla,' but finer and softer, like 'virginicu.' The perfect insect did not appear until the following spring."
Var. Secondaries reddish piuk; hind margin widely bordered with dull blackish.
This species closely resembles the European "fuliginosa," and has usuall been regarded as identical with it; Harris, however, held a differeni view, and named it rubricosa. The babits of the larva appear to be different, and there are slight differences also in the markings on the wings. In "fuliginosa," the black dots on wings are more prominent, and the red on secondaries much deeper and brighter in color. In "rubricosa" the secondaries are margined behind throughont with black, whereas in fuliginosa the red color of the cilie encroaches upon the wing, especially towards the apex ; and the black is somewhat broken towards the anal angle into irregular spots; in the latter also the primaries are somewhat less transparent, and the dorsal spots on abdomen coalesce forming a macular band.

Hab.-St. (atharines, (Mir. Beadle). Hamilton, (Mr. Reynolds), Matan. Golf of the St. Lawrence, (Mr. Bell). St. Martin's Falls, Hudson's Bay Territory, (Dr. Barnston.)

Deiopeia Curt.

Body slender. Head small. Lyes prominent. Antemm simple in each sex ; rather short and slighty pilose bencath in the males.Palpi curved, ascending nearly to the middle of the face, basal joint tumid, middle joint long, terminal joint short, ovate. Tongue about equal to the thorax beneath. Legs moderate, tibise very short, hind tibise with four spurs at the aper. Flight diumal.

D. bella!-Linu.

Palpi yellowish-white, tipped with black. Antenna black. Head whitish, with four black spots. Thoras white, with about twelvo black spots; and a patch of ochre-yellow on each side, at base of primaries.

Primaries orange-yellow, with from five to seven irsogular transverse whitish bands, spotted in the midlle with black, the last one furcate from about the middle towards the costa; hind margin with a row of black spots.

Secondaries bright red, sometimes paler; with the hind margin bordered with a black-white edged indented band, which is fureate at the apex of the wing.

Under surface very bright red; primaries with the costal margin yellow; three elongated black spots extending from the costa inwards; a subterminal imperiect black band and a row of spots on the hind margin. Secondaries with the same markings as above, with two white bordered black spots on the costal margin.

Abdomen greyish-white, with two rows of black spots on the under side. Legs whitish, spotted with black.

Length of body 6 lines. Wings expand 13 lines.
Larva undescribed.
Var. Primaries with the white stripes from the base to beyond the middle intersecting the orange bands, dividing them into two or three portions.
Hab-London. Rare. St. Catherimes, (Mr. Beadle). Keswick, Lake Simeoe, both type and var., (Mr. Bethune.) Port Stanley, (Mr. Edwards.)

Hypercompa Hubn. Callimorpha Latr.

Palpi somewhat exceeding the clypeus, pilose towards the base, the middle and basal joints nearly equal, terminal joint short and
ovate. Tongue about the length of the thorax beneath. Eyes large and prominent. Antenne simple in both sexes, ciliated with two strong seta at each joint. Thorax smooth. Body slender. Secondaries broader than primaries. Legs rather slender, anterior tibia much shorter than the femora; hind tibie with four moderate spurs. Flight diurnal.

Table of species :
A. Secondaries white.
B. Primaries white with a transverse $\left.\begin{array}{l}\text { dark brown band } \\ \text { beyond the middle. }\end{array}\right\}$ contigua.
$\left.\begin{array}{cc}\text { BB. " " } & \begin{array}{c}\text { with the costal edge } \\ \text { yellow orange .. }\end{array} \\ \text { BBB. " fulvicosta. } \\ \text { with a brown band } \\ \text { from the inner } \\ \text { margin to the tip }\end{array}\right\}$ militaris.
C. Primaries brown with white spots .. Lecontei. CC. " " with an oblique $\left.\begin{array}{l}\text { subapical white } \\ \text { band }\end{array}\right\}$ confinis.
AA. Secondaries yellow.
$\left.\begin{array}{r}\text { D. Primaries dark brown, with whitish } \\ \text { spots ; secondaries pale } \\ \text { yellow }\end{array}\right\}$ clymene.

DD. " pale buff, bordered with $\left.\begin{array}{r}\text { brownish-black; second- }\end{array}\right\}$ interruptoaries, deep yellow $\}$ marginata.
H. contigua!-Walker. C. B. M., 650.

Palpi oravge-yellow, tipped with black. Antennee brownish-black, somewhat lighter below. Head and front edge ot thorax deep yellow. Thorax brownish-black, with the sides and shoulder covers white.

Primaries white with blackish-brown stripes; one along the costa to near the tip; one on the inner margin, joined at ita extremity with an oblique transverse band, extending to the costa; from the centre of this latter a stripe extends to the hind margin, somewhat enlarged at its termination, where it is centered with white. Hind margin partially edged with brownish-black.

Secondaries white, immaculate.
Abdomen white, with a blackish dorsal stripe extending nearly to the tip. Fore femora yellow; legs whitish, fore and middle pairs edged anteriorly with black.

Length of body 6-7 lines. Wings expand 17-18 lines.
Larva undescribed.
Var. Secondaries with two or three brownish spots near the anal angle.
Hab.-London, not common; Grafton, Co. Northumbe:land (Mr. Bethune) ; United States.
*H. fulvicosta.-Clemens. Clemens Contributions to Amer. Lepıdopterology. Proc. Acad. Nat. Sci.
"Palpi yellow-ornage, tips black:sh. Head and prothorax yelloworange. Thorax white.

Primaries white with the costal edge, especially beneath, yelloworange, sometimes bruwnish.

Secondaries white.
Abdomen white, tipped with yellowish. Rreast and legs yelloworange, the middle and fore tibire and tarsi blackish."

Larva undescribed.
Hab.-Illinois.
*H. militaris.-Harris. Figured in Harris' Insects, ner edition, fig. 165.
"Head and collar buff-yellow. Thorax and abdomen with a dorsal brown stripe.

Primaries almost entirely bordered with brown, with an oblique band of the same color from the inner margin to the tip; and the brown border on the front margin has two short irregular projections extending backwards on the surface of the wing.

Secondaries white without spots.
Thighs buff-yellow.
Wings expand $18-20$ lines."
Larva undescribed.
Hab.-Massachusetts.

II. Lecontei !-Boisd. (C. militaris? Var. Lecontei.)

Palpi deep orange-yellow, tipped with black. Anteunæ black. Head orange-yellow. Thorax whitish with a wide central brown stripe.

Primaries vary in color from very light to dark brown, with from four to sis large irregular white spots and two or three smaller ones.

Secondaries white, sometimes with one or two brown or blackish dots towards the anal angle.

Cnder surface of primaries with the costal edge, and brown markings towards the apex orange-yellow.

Abdomen yellowish-white tipped with yellor. Legs ochre-yellow, striped and spotted with black.

Length of body 6-7 lines. Wings expand 16-17 lines.
Larva undescribed.
Hab.-London, common; St. Catherines (Mr. Beadle); West Flamboro' (Mr. Bethune) ; Port Stanley (Mr. Edwards.)

This moth, which is usually regarded as a variety of the preceding species, bas been described separately under Boisduval's name "Lecontei" for the following reason: That while this so-called variety is common in many localities throughout the Province, 1 have never yet met with a single specimen at all approacbing the description and figure given of "militaris" in "Harris' Insects;" a fact exceedingly remarkable if the furmer is merely a variety of the latter.
*H. confinis.-Walker. C. B. M., 661.
" Proboscis tawny. Palpi with black tips. Antennæ black. Head, prothorax, fore coræ, and abdomen at the base luteous. Thorax and abdomen white with a brown stripe.

Primaries brown, with a discal slightly angular white stripe, and an elongate, triangular, oblique, subapical white band.

Secoudaries white.
Length of body 6 lines. Wings expand 18 lines."
Larva undescribed.
Hab.-United States.
H. clymene!-Esper. Colona Hubner.

Palpi ochre-yellow tipped with brown. Antennæ brownish-black. Head and prothorax orange-yellow. Thorax yellowish-white with two small spots in front, and a wide central band black.

Primaries brownish-black, with four or five large white or yellow. i sh-white spots, and one or two small oues.

Secondaries light yellow with a brown spot near the anal angle.
Under surface of primaries with markings as above but much paler and overcast with yellow. Secondaries deeper in color than above.

Abdomen pale yellow with the tip of a deeper color, and a dorsal line of black. Legs yellow, the fore and middle pairs edged with black.

Length of body 6 lines. Wings expand 17-18.
Larva undescribed.
Hab.-Near West Flamboro'. Captured at midday in August. (Mr. Bethune.)
H. interrupto-maryinata!-Beauv. Carolina, Harris. C. comma, Walker, C. B. M., 652. Bornlix interrupto-marginata. De Beauvois, Ins. Afriq. et Amer., p. 265, pl. 24.
Palpi deep ochre-yellow with black tips. Antennæ brown. Head pale orange-yellow. Thorax yellowish or pale buff, with a wide central black stripe, and a black spot on each side at base of primaries.

Primaries pale buff, with a black stripe along the costa not reaching the apex; a broad stripe of the same color along the inner margin, widening near the tip and sending from near the inner angle towards the hind end of the disk a hooked demi-band; hind margin with an incomplete black band, widest in the middle.

Secondaries` bright orange-yellow with a hlack spot not far from the anal angle.

Under surface deep yellow througbout, with the markings on primaries excepting the demi-band scarcely perceptible.

Abdomen orange-yellow, with a dorsal band black. Legs deep yellow; the fore ana middle pairs edged anteriorly with black.

Length of body 6-8 lines. Wings expand 16-20 lines.
Larva undescribed.
Hab.-London, rare ; St. Catherines (Mr. Beadle) ; Port Stánley (Mr. Edwards); Wisconsin, and Virginia.

REVIEWS.

The Geological Evidences of the Antiquity of Man, with Remarks on Theories of Suecies by Variation. By Sir Charles L.yell, F.R.S. London: John Murray, 1863.
There are certain guestions and debatable points of inquiry, belonging to the domain of Science, which awaken, from their very nature, an almost equal amount of interest on the part of the general public, and on that also of the anti-scientific world-using this latter term, in default of a better, to designate a class, at one time numerous, though now reduced in parliamentary phrase, to a small but active minority, which regards (without actually confessing it) the rerelations of Natural Science as clirectly or indirectly antaronistic to the authority of Biblical acceptations. An:ougst these questions, the date of Man's origin occupies a prominent place. The usual belief fixes the creation of Human Life at about six thousand \dot{y} ears before the present era; but theologians differ amongst themselves with regard to the precise date. The gathered records of Geology have long been tending towards another conclusion: one that attributes to our race a far higher ,or more remote antiquity ; and the principal aim of Sir Cl arles Ly ell's book is to present a clear and forcible cxposition of this view, based on the results of reent discovery and research. The book, however, has, apparently, a two-foid aim: one to maintain the high antiquity of Man; and the other, to make this antiquity subservient to the support of the so-called Darwinian theory with regard to Man's origin. Postponing, for the present, the discussion of this latter view, let us briefly examine the more important facts, thus brought together, in support of the assumed presence of Man upon the earth at a period incalculably remote as compared with the known points of human history. In order to cxhibit these facts to the general reader, in their true bearings on the question under revipw, it will be necessary to carry our retrospective glance still farther into the depths of Time, and-to trace up the course of geologicai history, from the remote epochs which preceded the dawn of life, to the period of Man's advent, when the geology of the Past blends with and gradually meryes into the geology of the Present.

Speculation, supported by many facts that point in the same direction, pictures the primary condition of the earth-cqually with that of other cosmical bodies - as one of nebulosity, gradually condensing to-
wards the solid state, and eventually passing into this, as regards the surface of the earth-mass. Although the rock-matters resulting from the first consolidation, must long have disappeared, or have lost altogether their original characters, a period would finally arrive when a certain degree of stability-or rather a more equal balance between destructive and formative furces - would be appronch:d. This would arise, when by the continued radiation of heat into space, the earth's crust became sufficiently thick to almit of the comdensation of water upon its surface. Then a new set of phenomena would appear. The exposed rock-surfaces would be slowly worn down by aqueous and atmospheric agencies, and the materials, thus obtnined, would form over the sea-bed a gradually increasing thickness of stratified deposits. Many of these rocks, though mostly in an altered or metamorphic condition, have been preserved to us. They contain no vestiges of organic forms, vegetable or ammal. Life, as yet, held no place upon the earth; and as these strata, ceen as now seen, present a thickness of many thousands of feet, it is evident that thig first or Aznie period of the Earth's history was one of almost immeasurable length.

The busy agents of Decay and Renovation, those old but yet unreconciled antagonists that have made Nature their battle-field trom all time, still continued their active and unceasing strife. The older rockmasses furnished the sediments for the formation of newer strata; but in these latter, we find the records of a wonderful change, witnessed by the Earth at the close of its azoic day. To the strange mystery of the Earth's presence, the still stranger mystery of Life had now been added. The organic remains enclosed within these earliest fossiliferous rocks, are of comparatively low types. Fucoids, brachiopods, trilobites, constitute the more characteristic forms: the vertebrated life-structure is ertircly absent. A little bigher in the series, a little later in the course of time, plants of trrestial growth, fishes, and obscure reptilian types, make their appearance, together with powerful tetrabranchiate cephalopods and other forms of an extinct or rare organization, as compared with the lifeforms of existing seas. Strata still succeed strata, as newer sediments are spread along shore-lines, in bays, and over the sea-bed. Many of the earlier types, or chose enclosed in the lower rocks-graptolites, trilobites, and others -die out, not gradually as it were, as though the organic pattern were changed by gradnal molification, but abruptly, at fixed stages in the rock series, before the close even of this first life-period, the great Palæozoic Age. To this, and some related points, we shall have oc-
casion to allude again, in the sequel. At present, we may observe, that, with the exception of a few reptiles of comparatively low station, fishes appear to have been the most highly organized vertebrates or leading forms of palæozoic development. These fishes, even those with bony skeleton, had, throughout, unequally-lobed tail-fins; and their scaies (when present) were of a sc'id osseous character: a peculiarity of structure now all but unknown.

A third epoch of the Earth's history, the second of its great lifeperiods, is characterized by a remarkable development of reptilian forms of varied and high organization. Some of these belong to marine, natatory types: frequenters of the open ocean: representatives, not in structure, but in character, of the great predatory sharks of modern seas. Another presents a winged, bat-like structure, and its species are amongst the most curious of extinct forms ; whilst carnivorous and herbivorous mammals, as now existing, were represented in their functions by other reptilian types of this Mesozoic Age. Combined with these, and equally characteristic of the period, are numerous Ammonites, and other related cephalopods with foliated or bighly complicated shell-partitions. All of these, and other peculiar types-reptilian, molluscous, \&c.-became extinct with the closing of the geological age in which they had their being. But in addition to these modifications, foreshadowing, as it were, the advent of a higher time, a few rare and more or less obscure indications of mammalia occur amongst the organic remains preserved in Mesozoic rocks. The best known appear to present characters most nearly allied to marsupial or didelphian mammals, the lower of the two great parallel saries into which the mammalian class admits of being sub-divided. In this age also, a remarkable change occurs in the representatives of fish-life. Homocercal forms appear; and a little later, the rapidly diminishing ganoids are all but replaced by teleosteans of modern type.*

Then another scene appears, and the new geological period heralds the dawn of that condition of Nature which we now see around us.Reptiles form no longer the great leading types of the animal world. The strange creations of the Mesozoic day have all disappeared, and the Earth is now abundantly tenanted by representatives of a higher class, typifying all existing orders of Mammalia save that to which

[^12]Man alone belongs. Many of these forms, not only as species, but as genera, are quite extinct: but none appear to have belonged to absolutely extinct orders. In its vegetation also, the Earth of the Cainozoic Age presents much that is common, in its general features, with the arborescent vegetation of existing Nature. A general similarity indeed, between that period and our own, is visible throuqhout all the sub-divisions of the organic world; but the physical and climatical relations of the carlier time differed in many marked respects from those which now prevail. Up to a comparatively late interval, the Cainozoic earth appears to have possessed a more or less uniform and warm climate, without those broad distinctions, derived from geographical position, which are now experienced. This view is amply sustained by fossil evidence. In the comparatively high latitude of England and Northern Europe generally, not only do we find the shells of comularia, nautili, and similar warm-sea mollusea; but the Cainozoic rocks of these districts contain also palm-fruits, together with the remains of large ophidians and skeletons of mammals allied to the modern tapir, hippopotamus, giraffe, and other forms-including even the quadrumanous type-now limited, or nearly so, to intertropical habitation. As time passed on, however, a great climatic change crept slowly orer all the northern lands of both the eastern and western continents, and was apparently experiencad also, in the extreme southern regions of the latter. Under its influence, the once warm climate gave gradually place to all the rigors of an Arctic winter.This remarkable change was evidently accompanied, and perhaps in chief part produced, by enormous alterations in the previously-existing levels of land and sea. A general cleration of northern districts, and a corresponding depression (with subsequent elevation) of the adjacent and more southward-lying country, must have taken place at one epoch of this period of cold, during which, the drift and boulder deposits, with their accompanying glacial phenomena, were slowly ela'iorated. All the high lands were covered by broadly-extended glaciers; and the seas were filled with floating icebergs, bearing southwards the gneissoid and other boulders of the north. This condition of things probably continued throughout a long interral af time.During its continuance, nearly all the animal and vegetable species of the preceding epoch became extinct, but some few survived its changes. Between its close, and the commencement of the present state of things no strict line of demarcation can be drawn. The one merged slowiy
i:sto the other : the glacinl manifestations being gradually beaten back, as it were to within their present arctic and aipine boundaries.

Abore the clay, gravel, nud boulder deposits accumulated during this interval of cold, lie various other beds of clay, loam, sand, and gravel, accompanied locally by bog-iron-ores, calcareous tufa, peat, and sundry related matters of comparatively modern origin-many of these beds, indeed, being still under process of formation. Great changes of level have been continually going on during the accumulation of these different materials ; and portions of the original seabed have been raised high above the water-line, at varicus localities. Gravel deposits containing marine shells of existing species orcur, for example, at considerable heights on the coasts of Norway and Sweden, in Eastern Canadn, Maine, and numerous other places. On the south coast of the Island of Sardinia, an ancient sea-bed, containing shells of the modern oyster and mussel, with fragments of pottery and other wrought objects, occurs at a height of between two and three hundred feet above the present sea-level These deposits in many places, moreover, exhibit in themselves a thickness of over a hundred or even two hundred feet. It is evident, therefore, that although recent in a geological sense, many ages must have rolled away since the commencement of their accumulation. Sir Charles Lyell, in the work before us, basing his calculation on the known rate of uprise of the Scandinavian const, computes a period of at least 12,000 years for the elevation alone of the Sardinian sea-beach; and the unknown interval before the commencement of the upward movement, and that which has elapsed since its close, must be added to this, in attempting to fix the date of the imbedded pottery. Basc'i on a similar calculation, the shell-beds of the Norwegian const are assumed to have occupied in the:r upward passage from their original place of deposition, an interval of no less than 24,000 yenrs. And yet these are amongst the latest geological records of the Earth's history: even subsequent in some instances, as proved by the Sardinian pottery, to the actual appearance of Man.

The shells of marine and fresh-water mollusca, enclosed in these recent geological deposits, belong, as already stated, to cxisting species, although some are no longer mot with in the localities at which the deposits in question occur. The mammalian remains preserved in these accumulations are likewise referrible in great part to existing forms; but some are altogether extinct. The more remarkable of the latter, in the eastern continent, comprise: the mammoth and some
other species of the elephan't, the Rhinoceros tichorinus, IIippopotamus major, Equus fossilis, Cave-Lion (Felis spelaa!, Cave-IIyena (Hyena speloa), Cavern-Bear (Lrsus spelous), Irish Llk, \&c.; and on this continent, the mammoth, mastodon, mryatherium. mylodon, megalonyx, glyptodon, and others. In some parts of Europe, more especially in the valleys of the Somme and Oise in north-western France, and in parts of Suffolk, Bedford, Essex, Kent, and Surrey, in England, remains of these extinct elephantine and other species have been discovered in gravel, or similar deposits, associated with knifeblades and other flint implements of rude form. This of itself would not absolutely prove the contemporaneity of the extinct mammals, and Man; but the flint weapons in many cases lie deeper in the earth than some of the animal bones; and these latter are occasionally seen to have been cut (when in a fresh state) by instruments of a comparatively rude construction. The weight of evidence, therefore, is strongly in favour of the riew, that Man was actually a denizen of the earth long before the mammoth and its congeners became extinct. A link, and that an important one, in this train of evidence, it is true, is yet wanting. No human bones have hitherto been discovered with these flint implements and extinct remains in the gravel deposits of the above localities.* Several canses have been assigned to account for this apparent discrepancy, but none are of a very satisfactory character. Nevertheless, under other, though at the same time closely related conditions, human remains have been met with somewhat abundantly in intimate association with the bones of extinct mammals. This occurs, for example, in numerous caverns, in which the organic maiters have bèen preserved from final decomposition by a protecting layer of stalagmite. But here, again, it might be urged that the bones, with which these caverns are filled, are not of contemporaneous origin. In some instances this is undoubtedly the fact. The caverns often formed the lairs of wild animals, the bones of which, with those of their prey, are imbedded in the stalagmitic matters of the floor. But in many localities the human bones are so mixed with those of fetidee and other animals, as to leave but little doubt of the contemporaneous origin of the whole. If an accidental tooth of the mammoth, a solitary skull of the cavern bear, or scattered bones, only, of the cave-hyena or lion, were mingled with the human relics, we might

[^13]conceive the former to have been swept into these receptacles by floods acting on loosely-consolidated sediments in which the animal remains were previously contained; but these remains are far too abundant to admit of such a conclusion. The question, morenver, has to a great extent been set at rest, by some comparatively recent discoveries in the south of France, made known, during the course of last year, by M. Lartet. Near Aurignac, in the department of the Haute Garonne, a small carern occurs on the sloping side of a hill, in which many human and extinct animal remains, mixed with some of existing species, were discovered in a remarkable state of preservation. The mouth of the cavern was concealed beneath a talus of detrital matter, washed down from the top of the hill; and on this being removed, a large slab of rock was found to have been placed vertically before it so as to defend the entrance. It was clear, consequently, that the cavern had been filled by human agency; and further explorations shewed it to have been a place of sepulture. The human bones are thought to have belonged to no less than seventeen individuals of different ages and of both sexes. A great number of flint knives, pieces of perforated shell, and other wrought articles, were also found within the cave; and on the outside of the vertical slab of mont, partially burnt and broken bones of various animais, mixed $r_{\text {. . h }}$ ashes and other matters, were discovered in some abundance, but without any intermixture of human bones. Hence it is conceived that the animal remains within the cavern were derived from beasts, slaughtered and placed there, after the custom of most savage nations, during the sepulchral ceremonies; whilst those without the cavern: entrance are thought to have resulted from the accompanying funeral feasts. The human skulls of this cavern were buried in the cemetery at Aurignac, some time before M. Lartet's visit to the spot, and the exact place of their interment could not be afterwards ascertained. They were examined, however, by a surgeon, the mayor of Aurignac, when first obtained, and they do not appear to have offered any exceptional characters. This is also the case with regard to most of the. skulls obtained from various other caverns in which human remains have been fom ; but in some, an occasional skull of a more than ordinarily low type has been met with. The most remarkable of these is the now celebrated cranium from a cave near the Neuderthal, not far from Düsseldorf. This presents, according to Huxley and other competent observers, a rery ape-like character: a fact which .
has been seized upon by the supporters of the Darwinian theory, as strongly confirmatory of their views regarding the assumed relationship of progression between the Quadrumana and Man. An interpretation of this kind, however, based on the examination of a single skuil, or other equally imperfect data, is, at least, premature. To substantiate the theory, a much larger amount of evidence is assuredly required: and even if the majority of cavern skulls exhibited a simian aspect, the question would still remain unproved, since the existence of a structural relationship between the ape and man, as between all forms of the same general type, is nevessarily and universally admitted. But on this subject we shall have more to say as we proceed.

Keeping, at present, to the first question, we have no hesitation in regarding the extinction of the mammoth and other departed forms. of the Post-Tertiary period, as long subsequent to the appearance of Man. This alone would prove the high antiquity of our race : since the extinction of these types cannot be supposed to have taken place in any sudden manner ; more especially when we consider the great abundance of their remains, as those of the mammoth for example, in so many localities. Their extinction, though aided to some extent by the agency of man, was undoubtedly the work of slow physical changes, gaing on continuously throughout a long series of ages. This conclusion, as bearing on the antiquity of our species, is in harmony with that drawn from the uprise of the ancient sea-beach (containing relics of man's industry) on the Sardinian coast.

And other proofs of this antiquity are still forthcoming. Amongst the more interesting, we may refer to the curious facts gleaned from the so-called "refuse-heaps" or "shell-mounds" of Denmark, and from the great peat-deposits of the same country, as described in one of the earlier chapters of the work before us. At certain poinis along the coast of Denmark, writes Sir Charles Lyell " mounds may be seen consisting chiefly of thousands of cast-away shells of the oyster, cockle, and other mollusks of the same species as those which are now eaten by man. These shells are plentifully mixed up with the bones of various quadrupeds, birds, and fish, which served as the food of the rude hunters and fishers by whom the mounds were accumulated.

Such accumulations are called by the Dancs, Kjökkenmëdding or "kitchen-refuse heaps." Scattered all through them are flint kuives, hatchets and other instruments of stone, horn, wood and bone, with fragments of coarse pottery, mixed with charcoal and cinders, but
never any instruments of bronze, still less of iron. The stone knives are sharrened by rubbing, and in this respect are one degree less rude than those of an older date, associated in France [and in England] with the bones of extinct mammalia. The mounds vary in height from three to ten feet; and in area, some of them are 1,000 feet long, and from 150 to 200 wide. They are rarely placed more than ten feet above the level of the sea, and are confined to its immediate neighbourhood, or if not (and there are cases where there are several miles from the shore), the distance is ascribable to the entrance of a small stream, which has deposited sediment, or to the growth of a peaty swamp, by which the land has been made to advance on the Balcic, as it is still doing in many places, aided, according to M. Puggard, by a very slow upheaval of the whole country, amounting to two or three inches in a century. There is also another geographical fact equally in favour of the antiquity of the mounds, viz., that they are wanting on those parts of the coasts which border the Western Ocean, or exactly where the waves are now slowly eating away the land. There is every reason to presume that originally there were stations along the coast of the German Ocean as well as that of the Baitic, but by the gradual undermining of the cliffs they have all been swept away. Another striking proof, perhaps the most conclusive of all, that the "refuse-heaps" are sery old, is derived from the character of their embedded shells. These consist entirely of living species; but, in the first place, the common eatable oyster is among them, attaining its full size, whereas the same Ostrea edulis cannot live at present in the brackish waters of the Baltic except near its entrance, where, whenever a north-westerly gale prevails, a current setting in from the ocean pours in a great body of salt water. Yet it seems that during the whole time of the accumulation of the shell-mounds the oyster flourished in places f:om which it is now excluded. In like manner, the eatable cockle, mussel, and periwinkle, which are met with in great numbers in the "refuse-heaps," are of the ordinary dimensions which they acquire in the ocean; whereas the same species now living in the adjoining parts of the Baltic, only attain a third of their natural size, being stunted and dwarfed in their growth by the quantity of fresh-water poured by rivers into that inland sea. Hence, we may confidently infer that in the days of the aboriginal hunters and fishers, the ocean had freer access to the Baltic than at present."

The bones of manmalia enclosed in these refuse-heaps belong entirely to existing forms, with the exception of one species, the Bos

Orus: and the latter, it is well known, survived to within a comparatively recent epoch. Although of ancient date, therefore, as proved by the changes in the suriounding physical conditions which must have taken place since their accumulation, they belong to a less remote period than the gravel beds of Amiens and other localitics alluded to in an earlier part of this notice. In the peat-bogs of Denmark, we find evidences of a still more recent origin, coupled, however, with facts which shew how vast must have been the lapse of time between even these latest records, and the carliest known days of northern history. The three successive periods of stor:e, bronze, and iron, are clearly revealed in these peat accumulations as in those of many other countries. But each of these periods in Denmark was accompanied by a special forest-vegetation of its own : and in this lies the chief interest of the Danish peat-bogs-the physical changes which these so clearly indicate, being in themselves an undeniable record of the long periods which must have elapsed since the tirst stone implement became imbedded in the peat-morass. The lower beds, a few feet in thickness, rest in hollows on the surface of Drift deposits, and contain, with flint knives and other implements of stone, numerous trunks of trees, some three feet in diameter, belonging chiefly to the Pinus sylvestris or Scotch Fir. This tree has never been seen in Denmark within historical times, except here and there as an introduced species; and the climate at present is quite unsuited to its growth. The succeeding peat-beds contain two varieties of the oak, now almost extinct within the Danish Isles; and mixed with these, more especially towards the apper part of the deposit, hatchets and other implements of copper and bronze have been found. Finally, in the highest stratum of the peat, the oak trunks are replaced by stems of the common beech, the tree of which the present forests of Denmark are chiefly composed."In the time of the Romans"-writes Sir Charles Lyell-" the Danish Isles were covered, as now, with magnificent beech forests. Nowhere in the world does this tree flourish more luxuriantly than in Denmark; and cighteen centuries seem to have done little or nothing towards modifying the character of the forest vegetation. Yet in the antecedent bronze period there were no beech trees, or at most but a few stragglers, the country being then covered with oak. In the age of stone, again, the Scotch fir prevailed, and already there were human inhabitants in those old pine forests. How many generations of each species of tree flourished in succession before the pine was sup-
planted by the oak, and the oak by the beech, can be but vaguely conjectured; but the minimum of time required for the formation of so much peat must, according to the estimate of Steenstrup and other good authorities, have amounted to at least 4,000 years; and there is nothing in the observed rate of the growth of peat opposed to the conclusion that the number of centuries may not have been four times as great, even though the signs of man's existence have not yet been traced down to the lowest or amorphous stratum."

With regard to the Lamarckian or Darwinian hypothesis, of which a general sketch is given in the latter part of his book, and to the bearings of Man's antiquity on this theory, the author expresses himself in somewhat indefinite terms, but with a manifest bearing towards an acceptation of Darwin's views. There is a good deal of book-making, however, in this part of the volume; merely a general resume of the subject being given, withoutt the elaboration of any important facts or deductions of a novel character. Having already discussed the leading points connected with this theory, in a recent volume of the Journal,* we need not extend the present notice by any lengthened repetition of the argument. The theory essentially supposes this; that our so-called species, in place of being original creations, are really derivative forms-developed from types of earlier existence by slow accumulative changes, brought about, in themselves, chiefly by a gradual alteration of physical conditions in surrounding Nature.-. In other words-an organic form of any kind, is supposed to be subject to indefinite variation : and thus, it is maintained, all existing species have sprung during a long series of ages from a few original, life-forms, or even from a single parent-organism. Startling as this. view must at first appear, it has nevertheless some strong claims to consideration. The principal of these, confining ourselves to the ani-. mal world, are as follows :-First, the structural and functional homologies which obtain, not only amongst nearly related types, but even; to some extent, throughout the whole animal series. Secondly, the resemblance between the progressive phases of fottal development in. higher forms, and the permanent condition of inferior types. And. thirdly, the presence of rudimentary or imperfect organs in various. species. These facts, which are in perfect harmony with the develop-: ment theory, constitute grave difficulties when we strive to explain them in connexion with the usually received or "special creation".

[^14]view. The two first might be met, it is true, by assuming these structural and functional relations to belong to the general plan of creation, conceived and carried out by the Almighty, for some, to us, unfathomable purpose; but the third, if closely considered, cannot be made amenable to any explanation of this kind. It is useless to urge, moreover, that these imperfect organs may have become so by disuse, in consequence of a change of life produced by accidental conditions, since there are numerous cases to which this cannot be applied. On the other hand, the so-called development theory is beset by equal difficulties. One of the more striking, is the apparent absence, both in existing Nuture and amongst the fossil relics of the Past, of any transitional forms, linking together the more strongly marked groups or special types. At present, for example, the reptile and the mammal are quite distinct in all their leading characters, and they appear (zoologically) to have been equally d 'stinct in earlier geological periods.In other words, the required parent-types of this theory, are universally wanting. In our very lowest fossiliferous rocks, again, we find various distinct genera, as strongly separated from each other as these now existing, appearing at one and the same time; and when a great change in any type takes place, the new forms appear, for the greater part, quite suddenly or abruptly, as instanced amongst other examples, by the nearly total replacement of the Ganoid fishes by true Teleosteans in the Cretaceous epoch. The assumed imperfection of the geological record is brought forward in reply to this; but granting to a certain extent, the incompleteness of this record, it is at least a damaging fact for the Darwinian theory that the imperfection tells always on one side. Another obstacle to the reception of this theory, is found in the strong sexual antagonism, if such a term may be used, existing between all but the most closely allied forms; and the general sterility of crossed species beyond the first generation. The possession of instinct in certain types; an unimprovable and unchangeable quality, as pointed out by Darwin himself, is also opposed to the theory ; and we may extend this argument, and urge that the absence of special instincts in other types, is also an objection. Taking two genera, for example, not far removed from each other, as the Bee and the Fly, it is difficult to understand on the development hypothesis, how one comes to possess the hive-building and other accompanying instincts, so strikingly manifested, whilst the other is totally devoid of them.But apart from all other considerations, the immensity of the break
which stares us in the face when we attempt to compare one type with another, even within the limits of the same class-as the whale with the sheep, for instance, and this latter with the bearer or the tiger-is alone sufficient to prevent a present acceptance of the development theory. Between the highest apes and Man, it is true, much closer structural relations are shown to exist ; and great weight is attached to this by the followers of Darwin's school. But admitting the full force of these relations, the gulf required to be bridged over is equally great : a dumb and stationary brute-inteflect on the one side-speech, reason, and progress, on the other. We may yet say, in the words of Jean Paul, if not in the exact sense in which he used them, "Der Menseh ist der grosse Gedankenstrich im Buche der Natur.'
E. J. 0.

On the Origin of Species, or the Causes of the Phenomena of Organis nature : A Course of Lectures to Working Men. By Thomas H. Ilusley, F.l.S , F.L.S., Professor of Natural History in the Jermyn St. School of Mines. London : Published. New Yurk : Reprinted;
D. Appleton \& Co., 443 \& 445 Broadway- 1863.

This is a publication from the notes of the Short-hand writer, the lectures having been delivered extemporancously, and the author having had no leisure for their revision, beyond the correction of any important error in a matter of fact. The work hes been much read, and $\mathrm{h} \cdot \mathrm{s}$ attracted much attention, which is only natural and reasonable considering the varied and accurate knowledge, the high reputation and undoubted talents of its distinguished author, as well as the extraordinary interest excited by Darwin's book, in which the bypothesis was proposed, but although anything coming from Professor Huxley must deserve careful consideration, and is in fact only too likely to be hastily accepted on his authority, the present publication involses such grave questions affecting the rery fomdations of our scientific inquiries, that we are not disposed to content ourselves with saying that it is an able work deserving of condid cexamination, but feel bound to enter a little upon the argument, and to express our reasons for not assenting to the hypothesis defended.

There might at the cutset be a question raised whether Professor Huxley exercised a wise discretion in the choice of a subject to bring before such an audicnce as he was to address. He selected a subject
very interesting to himself; a controversial subject upon which he entertained a very strong opinion, which he was glad of any opportunity of defending; a subject which is at this time engaging much of the attention of the scientific world, and exciting the curiosity of the public, so as to promise as much popularity as any which could be chosen: but a subject involving the most obscure and difficult questions connected with natural science, and therefore least adapted for those whose ordinary employments prevent their giving much time to such pursuits, and who camnot be presumed to possess the preliminary knowledge requisite for any useful judgment on the points at issue. It may be that Professor Husley calculated on an audience very different in character from that which he was nominally addressing; it may be that he relied on his clear and forcible style of address to remove the difficulties in his way, and that himself, holding his riews to be true and useful, he slighted the uneasiness or alarm which it creates in the minds of many, but there are numbers to whom it will appear very questionable whether he would not better have fulfilled his official duty by offering instruction respecting the estallished principles and interesting facts of natural science, rather than speculative views on the most recondite question his science afforded.

It would be useless, however, to press this objection now, and although there are undoubtedly fitnesses of things, in respect to times and places for propounding opimions, the mischief which it is possible to do by their violation is temporary and transient whilst we may rely on the great general law that, whatever may appear at the moment or to the partial view of individuals, discussion must ulti. mately promote the cause of truth.

Another preliminary observation is, we think, called for before we endeavour to estimate the force of Prof. Ifuxley's argument. He has more than once insisted on the origin of species being an inquiry essential to their scientific study, and there being before the public no hypothesis on the subject, entibled to the least attention, except the Darwinian, and he takes this to be a presumption in its favour, entithing it, at least for the present, to guide the course of inquiry on the subject. Now it appears to us that the preliminary inquiry is, whether there exist in nature any forms of fixed character, varying only within certain limits, and through an indefinite succession of generations remaining continually the same; or whether organic structures are sulject to gradual modification, so as after a certain succession of generations to be found very materially different from
their original condition, and to be accowited different species. If our inquiries lead us to the former conclusion, every species in nature has come into existence at some time and place, and it is an important inquiry how long each can be proved by good evidence to have existed, and within what geographical limits it has been confined; but there is scarcely any place for inquiry respecting the act of creation since it is not easy to perceive how it could be effected by the operation of second causes, and if we can conceive of such causes they are out of the . d of natural science, and if ever determined it must be by other means than the observation of nature and the study of the relations between differing structures. If, on the other hand, we conclude that such distinctions, as properly mark species, are liable to change with the progress of time, and can produce good evidence that even any one distinct species has been derived from any other in the course of ages, then it may be 'reasonable to admit the possibility of all varying forms having been derived from one primitive germ, and the manner in which such changes have been effected, the causes upon which they depend, become subjects of intense interest, and furnish the most important inquiries in which a naturalist can be engaged. But it seems to us most unreasonable, to expect that the believer in the immutability of species should want a theory as to their origin. He sees throughout nature the abundant evidence of the operation of an intelligent designing mind, the great first cause of all things. He sees every species adapted to its condition and enabled to supply its wants, and the conception of a creative act, as the expression of an almighty volition, is sufficient to account to him for the existing order of things-objects may have been created simultaneously or successively, ; all in one place on the earth's surface, or in various localities; but as long as they are acknowledged to be essentially distinct objects, and to have no natural tendency to intermix and modify each other, they admit of no inquiry into the nature of the modifying causes, and consequently of no theory of the formation of species. It is quite true theat we recognise a common plan of structure in a variety of objects; on examination this plan is found to consist in a certain arrangement of elementary organs, which, in some form, are always present, whilst the characteristics of species seem to be really found in the tendencies to comparative development of certain parts, which, in all of the same genus tribe or sub-kingdom, are at least rudimentally present, bearing to each other certain common rela-
tions. The truest notion of a species may perhaps be that of a group of developmental tendencies, fixed in the nature of things and only liable to modufication by external causes within certain limits. Since those differences of plan or degree of development wh... mark genera, tribes and sub-kingdoms are without douht at legct as constant as those which distinguish species, it follows that these larrer groups are natural and real associations of objects as much as species themselves, and that in determining them we find out, and invent names to express, something existing, and it is a great mistake to represent classification as a mere human contrivance of which there may be many varieties equally well founded. I elassification which way serve some purposes may be founded upon any observed resemblances and differences amongst oljecets; but a true natural classification is the interpretation of the great plan of the Creator, expressing real aftinities amongst organised beings, and pointing out their natural relationships whether direct or analogical, that is, whether consisting in confermity to a common type, or in a correspondent position as to r.ode of development and plan of life in respect to different types.

The believers in the transmutation of species will naturally enough regard the case of different organisms, resembling each other in many important particulars, and approaching each other more or less nearly, as favouring their notion of a common origin of all organic structures, and as illustrating different stages of progress or the influence oi different circumstances, but the facts are equally accounted for by admitting a certain plan of creation. They are in truth much 'etter accounted for, since the regularity with which we may generally observe each type to display an equal number ot analogous variations, affords proof of a great plan ruaning throughout nature, and excludes the idea of the differences of species depending on such influences as incidental special development in one of the offspring of a creature, giving that one advantages in the struggle for existence which are transmitted to its descendants.

We deduce from these considerations that it is not the business of the philosophical inquirer to form some theory respecting the origin of the various species of organised beings, unless he has first observed in them such signs of fluctuation and of being modified by causes, of which he can estimate the operation, as to turn his thoughts in that direction. So long as species are regarded by him as fixed and constant forms, he is not as a naturalist concerned with their origin, but

Vol. VIII.
only with their mutual relations as parts of the great sestem of the unverse.

Lut us now turn to Mr. Huxley's mode of dealing with the subject before us, and we shall first quote a passage containing lis statemett of the principles upon which such inguiries as that proposed must be conducted (Lecture Y.., p. 130, American edition.)
"I stated to you in substance, if not in words, that wherever there are complex masses of phenomena to be inquired into, whether they be phenomena of the affurs of duily life, or whether they belong to the more abstruse and difficult proilems haid before the philosopher, our course of procceding in unravelling that complex chain of phenomena with a view to get at its canse, is always the same; in all cases we must invent a hypothesis ; we must phace before ourselves some more or less lakely supposition respecting that catase; and then, having assumed a hyothesis, having suppesed a cause for the phenomena in question, we must endeavour, on the one hand, to demonstrate our hypothesis, or, on the other, to unset and reject it altogether by testing it in three ways. We must, in the first place, be prepared to prove , "at the supposed causes of the phenomena exist in hature ; that they are what the logicims call rerocouse-true causes:-in the next phace, we should be prepared to show that the assumed canses of the phenomena are competent to produce such phenomena as those which we wish to explain by them; and in the last place, we ought to be ablo to show that no other known causes are competent to produce these phenomena. If we can sucreed in satisfying these three conditions, we shall hare demonstrated our hypothesis; or rather I ought to say, we shall hare proved it is far as certainty is possible for us ; for, after all, there is no one of our surest convictions which may not be upset, or at any rate modified by a further accession of knowledge."

We make no objection to these principles, but, as already indicated, we consider it as requiring proof that the phenomena of species are such as demand any investigation of their cause, or easily admit the supposition of any second cause. We pass on to Professor Huxley's concise statement of the Darwinian hypothesis (Lect. VI., p. 131, A.m. Ed.)
"What is Mr. Darwin's hy pothesis? As I apprehend it-for I have put it into A shape more convenient for common purposes than I could find verhatim in his book-as I apprehend it, I say, it is, that all the phenomena of organic nature, past and present, result from, or are caused bs, the inter-action of those properties of organic mater, which we hafe called Atayism and Vabiablaty, wita the Conditions of Existence; or in other words,-giren the enistence of organic matter, its tendency to transmit its properties, and its tendency occasionally to vary; and, lastly, given the conditions of existence by which organic matter is surrounded - that these put together are the causes of the Present and of the Past conditions of Organic Natorg."

Accepting this as a clear and accurate summary, we shall find that the points requing to be carefully examined are the proper meaning and natural limits of Atarism and Varability, and we must recollect that the existence of these tendencies is equally admitted by both parties. The question is whether, in comnection with the external conditions of existence, they are fully sutficient to account for all the phenomena of specie: genera and higher groups amongst organized bodies, or whether the modifiations they produce are subservient to certain determinate inherent tendencies of dev-lopment, descending from the first created organisms and constitutig the great plan of creation which, as we learn to interpret it, we eapress by the kingdoms, sub-kingdoms, classes, tribes, wenera, and species. Now this question is identical with that of the permanence or mutability of species, which is therefore, we ejprehem, the real subject of controversy. Granting their mutability, we do not pretend to adduce more probable influences for their modification than those assigned by Mr. Darwin, and all who maintain their permanence believe the cases of variation brought forward to be confined to varietics and races, and to affect charace rs which are not essential to the species. It is easy to assume that the existence of certain structural resemblances implies a common origin, but such resemblances iorm an essential part of the notion of a plan of creation in which every position is vecupied and in which the utmost variety is produced by special adaptations of various types. They are as well accounted for on the one scheme as on the other-unless indeed we recognise in the regularity of corresponding variations of different types, the impossibility of what may be termed accidental causes of rariation, such as are supposed in Darwin's hypothesis, having any place.

It seems to us beyond all reasonable question that what is absolutely required before we can admit the possibility of the transmutation theory, is the production of at least one clear instance of descendants of a common parent, having by the joint action of variability and atavism become se distinct in structure as to be fairly accounted separate species. This we do not believe to have been done. We know, however, that the want of any definition of a species in which both parties can agree, and the power of requiring indefinite periods -of time to accomplish the supposed changes, will prevent this test being of much valuc for cor incing opponents. We must therefore be content with enquiring what we really know of atavism and varia-
bility, and what proof can be brought forward of the tendency of long periods of time, to change the characters of species.

Atavism is but a mame for the general law that the offspring resemble the parents. The resemblance is not a complete and exact one, but it is real and certain, and we believe it to include all the particulars which characterise the species. There is a certain amount of variation arising partly from nssignable, partly from unknown causes, the nature and extent of which is learned by experience. In cases of a sexual reproduction, whether naturally occurring by gemmation or fissure, or artificially produced by section with replacement of parts, the variation is almost nothing. In reproduction by the fertilised ovum a regular series of changes is passed through before reaching the complete condition of the organism, and this condition is not an exact copy in every particular of the parents, for they themselves differ in some points; there are variations in the influence of each parent upon the offspring; there are effects of such causes as temperature, food, atmospheric conditions, and superinduced habits on the development of the germ ; and there are internal causes not to be estimated by us which, within secmingly narrow limits, affect development so as to produce slight deviations from a precise pattern. Again it is obsereed that existing varieties in parents are most commonly transmitted to the offspring, if found alike in both parents very generally; if only occurring in one parent, much less uniformly, yet the peculiarity frequently occurring. When by selective breeding a variety is kept up through successive penerations, it becomes a permanent variety or race which may either have become insulated by its position or may be studiously kept up on account of its beauty or utility, but if the causes which maintain the varicty are removed the offspring gradually return to the more normal specific types. The advocate of the Darwinian hypothesis believes that no real difference can be recognised between species and varicties; that there are no determinate inherent tendencies of development limiting the action of causes of variation, and that new species are produced, as some also become extinct, in the ordinary course of nature. We ask, has he proved by sufficient examples that varieties tend to recede more and more from the specific trpe and do not tend to return to it; that species are rapable of mixing by the production of fertile intermediate forms which thus in reality become new species, or that palæontological facts encourage the idea, that species are transmuted, of course very
gradually, through a lengthened period of time? The transmission through several generations of the monstrosity of a sixth finger, has no more to do with specific distinctions than the transmission of a particular cast of features, complexion, tendency to certain diseases or any similar instance of atavism acting in sulservience to the more marked tendencies which constitute species. The history of the otter breed of sheep exemplifies the formation and preservation of races, but affords no argument for their breaking through the natural boundaries of species. The case of the varieties of pigeons is a very interesting one, and the more so because the leading varieties seem to exhibit the same tendencies of development which distinguish the larger really distinct groups and prevail throughout hature; but so long as it is generally agreed that all the varietics have sprung from columbu livia, and it is reasonably supposed that if not under the care of man they would gradually fall back into that species, instances of partial return being frequent; and so long as the difficulty remains, which is candidly acknowledged by Prof. Huxley, respecting the general if not universal infertility of hybrids between species, we cannot admit that the phenomena of the races of domestic pigcons afford any evidence whatever against the natural and real separation of species. Races which are habitually under the care of man, being cherished and kept in favourable circumstances to suit his parpose, may well illustrate the extent to which variations may be carried, but are least of all to be alleged as examples of the formation of distinct types of structure, the very fact of the peculiarities occurring in such circumstances being a warning to us against attributing to them any specific importance.

We have such clear evidence of the antiquity of various existing specias both of animals and plants, which plainly appear to be now what they were many centuries ago, that the presumption is against the influence of time in modifying organised structures. Direct evidence on the subject can only be derived from palacontological studies, and the defenders of the Darwinian hypothesis ave been forward to claim the facts of the paleontology as favourige their views. The following passage from Mr. Huxley shows how they proceed : (Lect. VI., p. 136-140, Am. Ed.)

[^15]in these successive strata of rocks successive groups of animals arising and dying out, a constant succession, giving you the same kind of impression, as you travel from one group of strata to another, as you would have in travelling from one country to another; -when you find this constant succession of forms, their traces obliterated except to the man of science,-when you look at this wonderful history, and ask what it means, it is only a paltering with words if you are offered the reply,-"They were so created."

But if, on the other hand, you look on all forms of organized beings as the results of the gradual modification of a primitive type, the facts receive a meaning, and you see that bese older conditions are the necessary predecessors of the present. Viewed in this light the facts of palieontology receive a meaning -upon any other hypothesis, I am unable to see, in the slightest degree, what knowledge or signification we are to draw out of them. Again, note as bearing upon the same point, the singular likenes- which obtains between the successive Faune and Flora, whose remains are preserved on the rocks : you never find any great and enormous difference between the immediately successive Fauno and Flora, unless you have reason to believe there has also been a great lapso of time or a great chatuge of conditions. The animals, for instance, of the newest tertiary rocks, in any part of the world, are always, and without exception, found to be cloely allied with those which now live in that part of the world. For example, in Furope, Asia, and Africa, the large mammals are at present rhinoceroses, hippopotamuses, elephants, lions, tigers, oxen, horses, \&c.; and if you examine the newest tertiary deposits, which contain the animals and plants which immediately preceded those which now exist in the same country, you do not find gigantic specimens of ant-eaters and kangaroos, but you find rhinoceroses, elephants, lions, tigers, de., of difterent species to those nisw living, but still their close allies. If you hurn to South America, where, at the present day, we have great sloths and armadioes and creatures of that kind, what do you find in the newest tertiaries? You find the great sloth-like creature, the Megatherian, and the great armadillo, the Gilyptorlon, and so on. And if you go to Australia you find the same law holds good, namely, that that condition of organic nature which has preceded the one which now exists, presents differences perhaps of siecies, and of genera, but that the great types of organic structure are the same as those which now flourish.

What meaning has this fuct uphan ather hypothesis or supposition than one of successive modification? But if the popation of the rorld, in any age, is the result of the gradnal modification of the forms which peopled it in the preceding age, -if that inas been the case it is intelligible enongh; becanse we may expect that the creatare that results from the modification of an elephantino mammal shall be something like an elephant. and the creature which is produced by the modification of an amamblo-like mammal shall be like an armadillo. Ulon that suphostion, I say, the facts are intelligible; upon any other, that I am aware of, they are not.

So far, the facts of pabontolngs are eonsisient with almost any form of the doctrine of progressive monfifation, they would not be absolately inconsistent with the wild spreahatons of De Mallet, or with the less ohjectionable hypothesis of Lamarck. But Mr. Darwits riews hare one pecalar merit; and that
is, that they ure peffectly consistent with an array of facts which are utterly inconsistent with and fatal to, any other hypothesis of progressive modification, which has yet been adranced. It is one remarkable peculiarity of M:. Darwin's bypothesis that it involves no necessary progression or incessant modification, and that it is perfectly consistent with the persistence for any length of time of a given primitive stock, contemporaneously with its modifications. To return to the case of the domestic breeds of pigeons, for example; you have the Dorecot pireon, which closely resembles the Rock pigeon. from which they all started, existing at the same time with the others. And if species are developed in the same way in nature, a primi'ire stock and its modifications may, occasionally, all find the conditions fitted for their existence; and though they come into competition, to a certain extent, with one another, the derivative species may not necessarily extirpate the primitive one, or vice versa.

Now paleontology shows us many facts which are parfectly harmonious with these observed effects of the precess by which Mr. Darwin supposes species to hare originated, but which appear to me to be totally inconsistent with any other hypothesis which has been proposed. There are some groups of animals and plants, in the fossil worh, which have been said to belong to "persistent types," because they have persisted, with very little change indeed, through a very great range of time, while everything about them has changed largely. There are families of fishes whose type of construction has persisted all the way from the carboniferous rock right up to the cretaceons; and other; whic have lasted through almost the whole range of the sccondary ocks, and from the lias to the older tertiaries. It is something stupendous t^{\prime} is $-t 0$ consider a genus lasting without essential modifications through all th. 3 enomons lapse of time while almost crerything else was changed and moditied."

Mr. Ifuxley calls it paltering with words to say of the suceresion of organisms reveald by an examination of the earth's strata, that they were so created, meaning that this is all we know of their oricin. We confess to a lifferent feeling. There way be a grand schem: of successive creations, suited to changes, tabing place in the physieal condition of the glohe, as well as a sheme of sucessive changes in mode and degree of development of oreans a rivel from the primitive living element. Which of these sehemes is most conformable to known facts must be deternined by observation, but it the orivin of lise be at all referred to a direct exertion of the will of a suprene intellirence, we camot see that the former scheme is less antecedently probable than the latter : and even if it be referred to the operatom of che nical lars, laws of nature do not imply any pewers iaherent in matter, but are only enr expresions of the observed miffremity of a chas of results from canses-and really oniy direct our attention to the monle of operation of the great first cause of all things. Mr. IInsley thus describes an objection to Darwin's hypothesis which we think he hardly
treats fairly: "Well, ifter all," he supposes the objector to say, "you see Mr. Darwin's explamation of the 'origin of species' is not good for mueh, because, in the loner run, he admits that he docs not know how orgamic matter began to exist. But if you admit any special creation for the first particle of organic matter, you may just as well adnit it for all the rest ; five hundred or fire tho:asand distinct creations are just as intelligible, and just as litte difficult to understand, as one." Now, if such an objection were ever used as an argument against learming as much as we can of the order of Nature and mutual dematiun of organized beings, it is as little worth as Mr. Ifuxley repreacnts it ; but jif, as we apprehend, it was only meant to show that the larwieman hypothesis relieves us from no fancied difficulty about the ide of treation, and that there is in truth no rational presunption in faroar of ibe creation only of the first and simplest organ. isms, rather that the creation of mumerous foms of living beings, and as olten as a wise regard to other changes night require, then we must think the objection a sound one leaving us opea to draw whatever truths we can from the study of nature, but convincing us that we are not driven to seek an origin of species in second causes, and that there is no strong reasonable presumption that such might be found.

We cannot at all perccive why, the prevalence of certain sections of the animal kingdom in particular regiens of the globe being an admitted fact in respect to the present state of things, it should not be admitted as equally suitable in any former state-or why the present existence of the armadillo where an armadillo-like animal formerly existed should be admitted as any proof that the one is descended from the other without distinct evidence of gradual changes. But perhaps the best thing we can do with this palæontological argument will be to bring under the reader's notice, in immediate connection with Prof. Huxley's reasoning, the sentiments on the same subject of one of the greatest living authorities, and who cannot possibly, from his known opinions on the subject, be supposed to be prejudiced in favour of old-fashioned doctrines. We shall quote from a note to the second chapter of the first part of Agassizs treatise on the Acalephae in his contributions to the Natural Ilistory of the United Sates, (Vol. III., p. 90, Note 1,) the sentiments of this eminent palæontologist respecting Darwin's geological arguments.
-"It seems generally almitted, that the work of Darwin is particularly remarkable for the fairness with which he presents the facts adverse to his views. It
may be 80 ; but 1 confess that it has made a very different impresion upon mo. I have been more forcibly struck with his inathity to futcise when the facta are fatal to his argument, than wihany hing else in the whole w ci:. His chapter on the Geolngecal hecord, in partictar, appears to me to be, from begimuing to end, a serme of ill gical deductions and misrepresentations of the modern resuits of Geology and Patrontolog.. I do not intend to argue here, one by one, the questions he bas decussed. Such arguments end too often in spectul pleading; and any one familiar with the salject may readly perceive where the truth hes, by confronting lis assertions with the geolegical accond itent. Rit, since the question at issue is chicfly to be sethled by palaoniolugical evidence, and I hare devoted the greater part of my life to the special stuigy of the fossils, I wish to record my protest against his mode of treating this part of the subject. Not only does Dawin never perceive wien the tacts are fatal to his views, but, when he has succeded by an ingenious circumloctuion in oveleapiag the facts, be would tare we believe that he has lessend their importance, or changed their meaning. He would thus iave us believe that there have been periods during which all that had taken :ree during other periods were destroyed; and this solel; to explain the absence of intermediate forms between the fossls found in successive delosits. for the origin of which he looks to those missing links, whilst every iecent !rogess in Geology shows more and more fully how gradual and successive all the deposits hare been wheh form the crust of our earth - He would have us believe that entire fame have disarpeared befure those were preserved, the remains of which are found in the lowest fossiliferous stratit; when we find everywhere non-fossiliferous strata below those that contain the oldest fossils now known. It is true, he explains their absence by the supposition that they were too dehcate to be preserved; but any animals from which Crinoids, Brachiopods, Cephalopods, and Jriluhites could arıse, must hare been similar enough to them to have left, at least, traces of their presence in the lowest nonfossiliferous rocks, had they ever existed at all -He would have us believe that the oldest organisms that existed were simple cells, or something like the lowest living beings now in existence: when such highly organized animals as Trilobites and Orthoceratites are amongst the oldest known.-He would have us believe that these lowest first-born became extinet, in consequence of the gradual advantage some of their more favored descendants gained over the majority of their predecessors; when there exist now, and have existed at all periods in past times, as large a proportion of more simply organized beings, as of more favored types; and when such types as Lingula were among the lowest Silurian fossils, and are alire at the present day.-He would have us believe that each new species originated in consequence of some slight change in those that preceded; when every geological formation teems with types that did not exist before. He would have us believe that animals and plants became gradually more and more numerous; when most species appear in myriads of individuals, in the first bed in which they are found.-He would have us believe that animals disappear gradually; when they are as common in the uppermust bed in which they occur, as in the lowest, or any intermediate bed. Species appear suodenly sud iisappear suddenly in successive strata. That is the fact proclaimed by Paleontology ;
they neither increase sucessively in number, nor do they gradually dwindte down; none of the fossil remains thus far observed show signs of a gradual improvement or of a slow decay.-IIe would hare us believe that geological deposits took place during periods of subsidence; when it can be proved that the whole continent of North America is formed of beds which were deposited during a series of successive upheavals. I quote North America in preference to any other part of the world, because the evidence is so complete here that it can be overlooked only by those who may mistake subsidence for the general shrinking of the earth's surface, in consequence of the cooling of its mass. In this part of the globe, fossils are as common along the successive shores of the rising deposits of the Silurian system, as anywhere along onr beaches : and each of these successive shores extends from the Allantic States to the foot of the Rocky Mountains. The eridence goes even further. each of these successive sets of beds of the Siturian system contains peculiar fossils, neither found in the beds above nor in the beds below. and between them there are no intermediate forms. And yet Darwin aflirms that " the littoral and sub-littnral deposits are continually worn away, as soon as they are brought up by the slow and gradual rising of the land within the grinding acion of the coast waves."-(Origin of Species, p. 290.)-He would also have us believe that the most perfect organs of the body of animals are the product of gradual improvement; when eyes as perfect as those of the Trilobites are preserved with the remains of these oldest animals.- He would hare us believe that it required millions of years to effect any one of these changes; when far more extraordmary transformations are daily going on, under cur eyes, in the shortest periods of time, during the growth of animals.- He would have us believe that animals acquire their instincts gradually; when even those that never see their parents, perform at birth the same acts, in the same way, as their progenitors.- He would have us belicese that the geugraphical distribution of animals is the result of accidental transfers ; when most species are so narrowly confined within the limits of their natural range, that cren slight changes in their external relations may cause their death. And all these, and many other calls upon our credulity, are coolly made in the face of an amount of precise information, readily accessible, which would orerwhelm any one who does not place his opinions above the records of an age eminently characterized for its industry: and during which, that information was laboriously accumulated by erowds of faithful laborers.

Professor Inuxley argues from the existence of rulimenney organs, such as "the splint-like bones in the leg of the horse, which correspond with bones which belons to certain toes and fingers in the human hand and toot;" the rudimentary cutting tueth on the upper jaw of the young calf; the teeth of the foetal whale which are never used and come to nothing, and other sinilar instanes; contendiag that such facts are cmirely waccountable and inexplicable exeept on Mr. Darwin's hypothesis, according to which the whatebone whate descended from a whale with teeth, the horse from an animal with several toee,
the ruminant from an amimal furnished with cutting teeth in its upper jaw. We have already referred to this s: bject, and we need only say now that the facts can be generalised in at least two distinct ways, the one followed by Darwin, in which imperfectly developed organs are regarded as indicating their partial suppressions by accidental variety, and the view previously taken that in forming a perfect creation in which every position should be suitably filled, and the greatest possible amount of life and enjoyment be produced; the almighty and all-wise inteligence used a plan, according to which the required rariety depended not on so many altogether different types of structure, but on changes in the comparative development of parts in structures belonging to one type, the common relationship giving unity to the whole, and harmonising the various parts into one grand system. According to this riew certain elements of structure belonging to one organic type would receive their fullest development in one form, and in others would be gradually reduced until they existed only imperfectly or rudimentally, so as in many instances not to be observable without investigation or only to become observable under peculiar circumstances. We account the latter view the most antecedently probable because it best explains the analogies as well as affinities observabie in nature; beeause it is most consistent with the uniformity and completeness $0^{\prime \prime}$ the design which seems to us to pervade creation, and is more readily conceived as the result of ordinary intelligence. But it would be enough, as an answer to Prof. Huxley's argument, merely to shew that there is a way of viewing the occurrence of imperfectly developed organs, which is reasonable and consistent in itself, add by no means requires or favours the Darwinian hypothesis.

On the whole, it must be acknowledged that the cases of the phenomena exhibited by species, suggested by Darwin, have a real existence in Nature. Proceeding to the second test, we deny that they are, so far as we yet know, competent to give rise to all the phenomena; since, besides the admitted difficulty about sterility of hybrids, it has not been proved that the tendeacy t t variation ever passes the boundaries imposed by predominating developmental tendencies which constitute species, and it is not proved that any degrees, variation entitled to be called specific have arisen within our knowledge, or that time, however long the period attained, tends to increase the extent of variation. We camnet affirm that the contralictory of these pronositions is absolutely prived, but it seems to us in each case to be more
probable. As to the third test, the hypothesis being the only one which can explain the phenomena, we cannot understand upon what ground Prof. Inuley belieres that "the alternative is Darwinian or nothing." The opponents of the new hypothesis may not profess to explain the origin of species by tracing them to second causes, but they insist that they are not called upon to do so. They find, as they think, organised nature made up of pernanently distinct structures, amidst their differences bearing numerous and striking relations to each other, and together forming a connceted whole displaying one grand plan, and presenting an inconceivable variety of different combinations of organs, all working out, by varying means, a common end and together filling creation with order, harniony, beauty, forming one grand and beneficent system.

If it were a legitimate aim of philosophy to prevent the thought of Deity from arising from the contemplation of his works, we should have made a step in adrance in adopting Darwin's hypothesis which makes all the variety in nature the result of fixed physical laws, and limits the direct operation of the Divine volition to the production of the first organised element. Even so however a creative act is required, and if for one creature why not for a million? If for one condition of external nature, why not for any number of such conditions which may succeed one another 0.3 the earth's surface? The scheme of a creation of numerous species which may reproduce themselves with a certain limited variation is not essentially unphilosophical, and so long as we believe in the real distinctness of species is the most probable explanation of what we see. If the transmutation of species can be definitely established the case will be altered, and we may apply ourselves with advantage to the study of the law of modification. Our limited space forbids, at present, the fuller expression of our views on this interesting subject, but differing as we do from Messrs. Darwin and Huxley and other eminent naturalists, we readily receive the speculations which have engaged their minds as worthy of candid consideration, and only desire that they may be so considered as to promote st und knowledge, just views, and practical utility.

W. H.

MONTELY METEOROLOGICAL REGISTER, AT THE PROVINCIAL MAGNETICAL OBSERVATORY, TORONTO, CANADA WEST, \sim JUNE, 18G8.

406
BEMARES ON TORONTO METEOROLOGTOAL REGISTER FOR JUNE, 1868.
Fitghest Barometor 29.844 at 8 a.m. on 16th. $\}$ Monthly range $=\|$ June, 1863, was comparatively cold, calm, cloudy; and very dry. COMPARATIVE 'RABLE
 Direc. Vem. Velocity

COMPARATIVE RABLE FOR JUNE.

| 2 |
| :--- | :--- |
-sory

408

[^0]: *The numerous native "professors" of the Greek tongue who found their way to Italy after, and long before, the fall of Constantinople ($14: 3$), naturally pronounced the ancient language as they would their own vernacular Romaic, which bears the same relation to it that Italian does to Latin. Manuel Chrysoloras, who died in 1415, thus taught in Florence, Milan, and Rome. Previous to this, Boccacio, who died in 1375, was a diligent student of Greek under similar trition.

 Reuchlin (1455-1522) advocated the Romaic pronunciation in Germany. In 1528 Erasmus published his treatise "De recta Latini Greccique Sermonis pronunciatione," in which, in opposition to the great German scholar, he maintained that the ancient sounds are not reproduced by the modern modes. Henceforward there were two schools of Greek orthoepists, the Erasmian and the Reuchlinian-the etists and the iotacists, (the latter so called from their giving the sound of iota to η, t, v, and the diphthongs x snd x. .) At Orford, Grocyn (1442-1519) taught Greek, probably Romaicè; and strangely enough, under him it is said that Erasmus first began the study of this langurge in 1497. At Cambridge, Cheke (1814-1577) inculcsted a method resembling the Erasmian in his "Disputatio de Pronuncia-

[^1]: tione Greces potissimum Lingux," which drew forth a prohibition of the new practice from Gardiner, then Chancellor. "In sonis ommino ne philosophator, sed utitor presentibus,"the decree ran. "It were n:uch better," the conservative Chancellor added, "that the Greek language itself with its sounds were wholly banished, ths.a that the youth by his (Chebe's) teaching should imbibe rashness, arrogance, and vanity, most pernicious pests to all the rest of the life."
 Caius also, the "Pui Caius" of Caius College, supported the old way in a creatise "De Pronunciatione Graca et Latinæ Lingux cur., Scriptione nova." Erasmus himself had filled the Greek chair at Cambridge in 1510, where he lectured te small classes on the Erotomata of Chrysoloras. A well-known walk in the grounds of Queen's College retains his name. The question of pronumiation. after enlivening the learned world for a time, was at length decided practically. Euronean scholars (the English included) adopted the new method. That is to say, in the several countries scholars took the liberty of reading the dead languages, as they did their own respectively. The result in England has been seen above.

 - In some modern forms of ancient names we also probably hear conventional abbreviations similar to those which are so common in the British Islands, as Lemster for Loominster. Lanson for Launceston, ac., \&o.

[^2]: * In Baraga's "Otchipwe Dictionary" the articles F, L, and R, do not appear.

[^3]: * Ghent : Fr. Gand. Shakspeare, of course, plays on "Gaunt,"-as, for example, in "Gaunt am I for the grave," (Ric. II. ii. 1); and Charles V. boasted that he could put all Paris into his "Gant" (glove), alluding to the great extent of the city (also his birth-place) in bis day.

[^4]: * Castra. which in so many instances became Caster (comp. Lancaster), in more than one became Caister. (e.g. in Lincolnshire) in which we have phonetically the English sound of a. The Auglo-Saxon form of caster was ceaster, wherein ea was still pronnunced ay. Where we have chester for caster, the e had probably the sound which we give it in Derby, Hert . fordshire, \&c. In other words the ca came at length to be written a, as in shame identical with sceam nodesty. In the fact that a came to represent ea, we have probibly the origin of the Enrlish somed of a.

 The Anglo-saxon \mathcal{C} also, was converted in some cases into ea. still sounded $a y$, w in lafax to leave. Groat and break, with us, retain the sound of ea; but to call leave, lave is not considered polished. Shame-fast-ness, from sceam-fiest-nes, has been chanzed to zhame. faced-nows: "faced" is, of course, the phonetic biunder of some unweeting person, but it serves to shew that the a representing e of fast, (lirm, resolute,) had the ay sount. In Wessex (Devon e.g.) the Anglo-Saxon rendering of ea survives: heal is popularly hayle. \&c.Quers: Was tag intended to be the French the, or the unusually elegant botanical Thea? The Chinese word is said to be tcha. In Persian cha-khutai=tea of Cathay.

[^5]: *As to the forms Settines, Stalimize, for Athens, Lemnos ay not be uninteresting to explain, in passiug, that the sprefxed seems to have ariset. .. um 's's a preposition of motion. Turks and others learning from native sailors the destination of their craft for such and such a place, erroncously mixed up the sonnd of the preposition with the local name, iucorporating also in some instances, the definite article. Thus the island of Oos acquired the extraordinary name of Stanco; and Constantinople, in like manner, becam Stamboul, or Istam-boul-the City-literally "To the City." This syllable, buul reminds is of a pronunciation of Sebastopol, popularly prevalent durinc the frimean wat.
 \dagger 'The learned Theodore, Aurostine's successor in A i. com, was a mative Greek. This will help to account for tion phenomenon noticed by hallam ou an examatation of a certain MS. in the British Musenm, of the Lord's P:ayer in (ire-k. writen in Awelo. Saxon characters. -

[^6]: ern, or Rumaic, and not what we hold to be ancient." Dide Hallam's Literary Mistory, Vol. 1., 92. The Greek of Christian missionarics in Britain, six centuries before Theodore, was probably similar. The sound which we give to the Greek eta may thus be a very ancient tradition.
 -That in Quintilian's time (A. D. 00.) the principles of pronunciation were not the same In the Latin and Greek languages, is plain from what he says of the danger of a Roman child's acquiring faults of pronunciation from a use too long and too exclusive, of the Greek tongre. Vide Instit. Orat. Lib). I. ijj. 3.

[^7]: popularized Alexandria, Samaria, Attalia, \&c.,-yet in grave listorical works, it is not amiss to give intimation of the of diphthong which has been displaced by the penultimate vowel in them.

 - It is a fixed rule that we are nerer to give to \boldsymbol{u} in Italian words our favourite but anomalous English ew sound. The Duke of New castle, saluted " Dook" so often by our neighbours, in 1891, thus received in part what by his bearing and wisdom he morited in full, the title of the late rulers of Tuscany-il grandixea (pron. dooka).

[^8]: * We cannot but be acquaint a with several selections from the animai kingdom which are supposed to symbolize cur race and astion ; in refard to one of them, Ytahu $=$ Vitulus (whonce veau and veal) may help to keep us in coumtenance; but the generic term contained in the name menthoiad above would veem, without xplanation, to be arrying symbolism too far. "Brute" is here, howerer, a hixhly honourable human appellation. He kas a Trojan Prince, an-ar rilative of Ancas, the equally veritabic founder of the Roman line of kines. Geoffrey of Monnouth ($11: 2$) goes very minutely into his history. In the "Trascdy of Locrine," attributed with some shew of reason to Shakspeare, this founder of the British line of sines i. one ef the ciramatis persona. Although supposed to be speaking before the time of the buiding of fome, he is made, by a bold prolepsis, to say. when presenting a bride, Guenduline to Locrine, who is his son, that she is-
 "A gifi more rich than are the wealthy mines
 Found in the bowels of America."

[^9]: * None of the above descriptions are as full as the orisinals. I bave piven what Ithink to be the most important parts, sufficient to distinerish the shells one from another.
 I have made brief deseriptions of hortensis, striatella, pulchella, and hydrophila, from specimens in my possession, not having seen any descriptions of them.
 A few more species besides these described in this paper are found in Lower Canada, viz. H. Sayii (Binney), H. astericus (Murse), and H. exoleta (Buney).

[^10]: + Since the above was written, specimen. of the full grown larva have again veen procured. They were found on the 1 Sth of June, under some loxs. The following description will serve to complete the history of this species:-hength two inches Head back and bilobed Bods ceep velrety-black, whth transwerse rows of tubercles, most of which are of a whitish colour, cmittme tufts of hair. Hairs on secoud, thrd, and fourth segments dull red-on the latter sioh'ly intermixed with white; those along the back are very tong and silky, white mixed with black; while those on the sides are shorter, and of a dull red color. Under surface dull black, with a thickly set row of tubereles, in contination of those above, on the third, sixilh, eleventh, and twelfth semments, fom which spring tufts of very short stiffish red hars. Fect and proleg, black and shining.
 - Those sperion protixed witi: an asterisk (") are not in the writer's collection; he would therefore feel preatly obliged for specimens from any person possessing duphicates of such.

[^11]: * A single specimen of the larva of this species was taken during the present season, on the and of June, under a log. Length $1 \frac{1}{2}$ to $1 \frac{1}{2}$ inches Head small, black, reddish at sides. Body dull black, rather glossy, with a sliphtly reddish tinge. On each sexment is a transverse row of black tubercles, emitting tufts of stiff bristly hairs of the same hue. Hairs on the two hinder segments longer than those on the other. A faiut whitish dorsal line from the head to the third serment, and another faint mark of the same color on the terininal segment. Under surface dull red, ieet and prolegs of the same color.

[^12]: - It may be observec, for the information of the gencral reader, that amongst the few remaining ganoids now in existonce, the Lepidosteus or 'sar pike' of the lakes and rivers of North America, is one of the most characteristic examples. Specimens, easily distinjuishod from other flahes by their onamelled and rhombic scales, nasy be seen in any museum.

[^13]: - Since the above was written. the discovery of a human jaw-hone in the cravel pit of Moulin-Quignom, mear Abbeville, has been amonteced: but the assumed antiquity of this bone is cxcecungly doubtful.

[^14]: - Vol. v. pp. 367-987

[^15]: "If you regaid the whole series of stratified rocks-that enormons thickness of sixty or seventy thousand feet that I! ave mentioned before, constituting the oniy record we have of a most prodigious lapse of time, that time being, in all probability, but a fraction of that of which we have no record :-if you observe

