The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagèeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

\square
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge in.' :rieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peur que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n° ont pas èté filmées.

Additional comments:/ |rregular pagination. Commentaires supplèmentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indigués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagér:sPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de dejpart de la livraison

Masthead/
Gėnėique (pėriodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Oriyimat exures.

NOTE ON THE PREPARATION OF SULphate of manganesl.

- 4 NENAK Croft,

The new process by F. Mrahla for meparing pure manganous sulphate, does not seem to be preferable to the old methods, cither as regards eer nomy, practicability; or efficiency: In preparing considerable quantities, the wishing out of some pounds of the bulliy manganous carbonate would be a tedions opemation, and the salt would oxidize.
The samo result may be obtaned by the old plan, viz:- heating black oxite (or the residue from the preparation of oxygen), with either sulphmric acid or ferrous sulphate, washing oat, winich is effected very casily, owing to the density of the residue; precipitating a small portion of the solution with -sodium bic.aisonate, and boiling this edtilcorated precipitate with the remaining solution. We have here only a small quantity of carbonate to ednlcomate, and the resilting salt is perfectly pure, it sufficient has beon used.
A very small quantity of impurity interferes with the colours of manganous sulphide and other componnds. For lecture experiments, a solution fit for showing those colours can be prepared in a few minutes by partally precipitating the commercial salt with sodium carbonate, boiling and filtering; or by boilng with sodium acetate, and filtering from the ferric oxide.
For greater security, it may be adrisable to first peroxidise the solution, by nitric acid or chlorine, d.c., Sc., but the commercial salt seldom contains iron protoxide.

SYRUPUS FERRI IODIDI.

BY W. B. RCSTOS.
Renl Wrifore the Canalian Pharnacentical Soricty, it tic Jlegular Monthly Mcelfuci, May $5 t!1$, 1sw.
Sqme thrce months ago, an article published in the Society's Jourval, upon a process for preserving Syr. Ferri Iollidi, led me to make a series of experiments, on account of laring myself experienced some little dificulty in making a syrup that wonld remain, for any lengthened period, without undergoing a change uf color.

A brief recital of these may prove of interest to some of the members of the Society who have had trouble in the same guarter. 'laking first the formula, as recommended by M. Jeannel, I made a syaup having a pretty good color, although not as bright is it should bo : owing, partly, to inability to ob. tain now honey that was perfectly clear. The syrup has retained its color until the present timo; but instead of remaining unchanged
in composition, I find that a copions white deposit has formed, and the symul gives a very decided reaction-mueh more so tham when first mate-the tartaric acid givins it a slight acid taste at fir:t. I next added tartaric acial to some syrup of iodide recently made, and also to fome syrup which had become discolored, having been made some eight months previous-buth syrups being mate after the British Phamacopecia. In each case there was deposited a quantity of gamet colured crystals. These were cammined, and fomd to le tartrate of iron. Cpon exposing this syrup to the direct mys of the sun, the tartate was re-dissolved, and a white, flocculent deposit formed : the syrup exhibited at strong acid reaction, as in the first expriment. Since then I have kept it in a warm place, and it has, for now two months, remamed clear; if changed at :ill, it has become nearer colorless than when first made. Being fally occ:upied with the duties of business, I have been umble to find time to prove, by amalys , what this similarity of change is,-alike in all the difierent cases in which the tartaricacid was used, giving the white precipitate and strong acid reaction in each case ; but from experiment, 1 am comvinced that it is produced by the addition of the tartaric acil. I should therefore yesard this atdition as unjustifiable, as also other sugrested adalitions, such as cit:ic or phosphoric acids.

Further experiments have pioved to me that the syrup can be kept withont undergoing any change, if attention is civen to a few particulars. To arrive at this conclasion, I made a gallo: of syrup after the British Pharmacopocia; divided it between three botiles, slass stopped, as cork appears to produce discoloration, on aceount, probably, of the tamic acid it contains. One bottle was placed in at dark, cool ceilar; :mother stood in a moderately warm place, in the dark; and the third in a warm situation, cxposed to the light. The two hatter have remained withont chame for the last three montle, while the former has gradually become quite darl: in color. It would therefore appear that it is necessary to keep the syrup in a warm situation; and after carefully olserving, as well as testing it, for any clange, I have concluded that kecping it excluded from, or exposed to light, prodisces no effect unon the syrup.
As a considerable portion of the iodine apppeared to be volatilized by the hent applicd in accordance with the directions of the British Plarmacopueia, I last tonk (as suggested br Mr. A. E. Tanner of the Pharnaceutical Society, England,) the same quantity of iron wire and iodine, and added but two ounces, instead of three, of water, as ordered in tho formula of the Pharmacopeia, havins the
wire su fine as to alluw the water to cover the whole when in the flask. The reaction commented, and progressed without any application of heat, thas avoiding any loss in iodine through volatilization, as well as having the advantage of leaving a larger quantity of the water to dissolve the sugar. The result of this has been most satisfactory, producing a fine bright syrup, which has remained without the least clange. I would therefore bey to recommend the last process; and by guating agninst the use of corts, and kecping the symp in :a wam, mather tham a cool position, I fecl satisticed it will retain its color indefinitely.

On the Technical Applications of Dialysis.

fic fhor. chamles a. Jor.
A fer years ago, Prof. Graham, Director of the hoyal Minit in London, discovered that a certain class of substances could bo nace rendily difinsed through water than others ; he found, for example that salt, sugar, gum, and died albumen, if placed in difierent vessels, and covered with water, will all of them be diffiused through the water, but not i:a the same period of time. The salt spreads rapidly; the sugar requires trice tho time, the trm four times, and the albumen twenty times longer. He found, as a rule, that suistances which crystallize are diffased more nupidly than those whichare amorphons. The first cliss are cilled crystalloid, and the second class colluid. When they aro both in solution we can employ a thin membrase, or a piece of parchment paper, and, as it were, filter of stmin the crystalloid through its pores, while the colloid remains behind. This operation is called dialysis, and the contri rance for effecturg it, is known as the dialyser.
A sieve, a hali barcel, a drum, a glass jar open at both ends, or ceen porous carthen cells, will serve for the apparatus. By tying a piece of bladder, or of parchnent paper, over one chal of my of the above pieces of apparatus, and flonting it upon water, we hare all that is required. If we pour into such a contrivance a solution of albumen and of common salt, and partially sink it into a larger vessel filled with fresh water, the common salt will very rapidy strain through the memlume into the outer water, and leave all of the allumen belind. Even silicic acid, which crystallizes in the form of quartz, can be separated from compounds in this way, provided it las been previously fused with soda. Gralam nas performed a series of experiments upon a large class oí bodies, a recapitulation of which may suggestsomo praction? applications of his simple device.

He discovered that tannic acid diffused through parchment paper tro hundred times more slowly than common salt, and finds in this fact an explanation of the reason why it takes tammin so long to penctrate hides so as to convert them into lenther. All processes for makiug leather maidly will be found to be based upon the facility with which the substances employed pass through membranes, and the agents used are generally composed of crystalline salts. We nre unt inmare of any practical application of Prof. Graham's discorery to the tanning of leather, lut it is
certainly worthy of the attention of persons engaged in the business.

Gum-arabic difinses four hundred times more slowly than salt, and hence belongs to the elass called colloid.

The method of dialysis can bo employed for the detection of arsenic, emotic, corrosive sublimate, or any crystalline poisun in the stomach, blood, milk, or any organic compounds. The poisons will pass through the membrane into the outer sessel, and theis presence can be shown by the usual tests. The same process can be made available in the casc of organic poisons, such as strychnine and morphine, and it is further valuable as a method of original research in seeking for alkaloids in any new plants, and it has even been proposed as the best way for the preparation of allanoids on a large scale. Many plants contains niter and other mineral salts, which can be separated and detected by dialyais better than in any other way.

Nitrate of sliver, from photographers' wasto, when put into the dinlyser, passes through to an outer vessel, where it can be precipitated and saved; the albmen and other organic matter will remain in the inner vessel. For this purpose a half barrel, with parchment tied over the buttom, and mmersed in a barral of water, wonld be a good contrivance.

Great expectations were raised in reference to the separation of sugar from molasses, and its purification by dialysis. Several patents have been taken out for this purpose. At the Paris Exhibition of 1807, Messrs. Carmichel © Co., sugar refiners and distillers, exhiluted dialysers for refining sugar, which they called osmogenes. Each apparatus contained fifty or sixty frames, forming partitions one quarter of an inch in thickness, and furnished with nettings of strings to support the sheets of parchment paper destined to accomplish the work. The frames with water alternate with those for mulasses or sirup3. Each frame is provided with an interior opening for the hot water, and another for the syrup, so arranged that each section receives, the one tha water, the other the syrup. Both liquids start from a height of three feet, and, after descending to the bottom of the apparatus, return again, nt a temperaturo of 160° to 170° Fahrenheit, and pass out at the top. The water is introduced and regulated according to the extent of purification required.

The inventors cif this apparatus claimed for it very important results, and as it was foumded upon thorough scientific principles, we see no reason to doubt the truth of their statements. The process is particulatly valuable in the mamfacture of beet sugar, and for removing potash and lime salts from symups, but it dues not appear to have been generally adopted, probably because it was not well understood.
Mr. Whitelaw took out a patent in England, in 1854, for the removal of salt and miter from salt and corned meats by means of danlysis. It is well known that the brine contains a large proportion of the nutritious cunstituents of the ment, and if we could remove the salt and evaporate the xesidue we should have all of the propertics of a good soup. It so happens that tho savory and valuable constituents of meat aro colloids, and will not, therefore, pass through a membrance. The salt, which is added to liecp the meat from decay, is crystalline, and, as wo have before seen, passes very readily through parchment. Mir. Whitelaw talses advantage of these two
facts, and puts the brine into porous jars or bladder3, which he suspends in water, that must be renewed three or four times in twen-ty-four hours. After a few days, the contents of the jars will be found to be fresh and sweet, ready for use as soup, or thoy can bo evaporatel down to dryness and cunverted into meat biscuit. In this country, where such large quantitics of corned and salted meats are consumed, the savines of the brine is is matter of much practical importance, particularly as what is thrown away is too often the most nourishing portion of the fond.

filterino oxygen prom the air.

The same principle of dialysis was successfully applied by Prof. Graham to the concehtration of the oxygen in the air. By passing air through the shavings of india-rubber, the rubber recains a portion of the nitrogen, and the quantity of oxy gen is increased to furtyono per cent., being twenty per cent more than its usual capacity. Anatmosphere with forty-one per cent of oxyen will re-ignite at glowing taper, and, in general, support cumbustion and respiration in a very active manner. The experiment points out such a simple and cheap way of procuring oxygen from the atmosphere, that it ought to be pat to a thorough trial before more money is expended in complicated and costly methods. It, by filtering the air through a membrane, or shavings, or amy cheap substances, we cim get rid of the nitrogen, we have made a discovery of the highest importance, and the experiments of Graham certainly seem to point ont the feasibility of the plan.
Certain physiological phenomena can be very well explained by the doctrine of diaIpsis; for example, according to Profeseur Daubeney, of Oxford, guns, starch, oil, or any similar class of boilies secreted in the cells of plants, mast be classed among the colloids; they have no tendency to pass through the walls of the cells where they hive been elaborated, and consequently arrauge themselves into groups. On other hand, the acids and alkalies are crystalloids, and pass freely through the pores of the cells, and are frequently found on the outside, or they pass to the organs of the plant, where they undergo transfomation by action of the vital force. The mucous membrane of the stomach may be compared to the parchment of the dialyser -the crystalloid clements are absorbed, while the colloid remain to be subjected to the action of the gastric juice, which, elaborates according to the laws of nutrition.
The action of different kinds of medicines can be explained according to the same law. Those which are crystalloids will diffuse rapidy through the coating of the stomach, while the amorphous medicines will remain, subject to the action of the gastric juice and the laws of digestion.

The application of cialysis in the dey way has been proposed by a French savant. He assumed that substances which fused at different temperatures could bo separated by passing them through a porous vessel on the same principle. Such an application woutd be most valuable in metallurgy, but thus far it has not been reduced to practice. In tho manufacture of paper fron sea-reed, after the weeds have been boiled in canstic soda, the black liquor is thrown away. It would be well to put the waste liquor into porous
cells, suspended in tanis of fresh water, to cells, suspended in taniss of fresh water, to
seo if the crystallizable salts of iodine would
not pass into the outer vessol, where thoy could bo seclaimed.
We have thus hastily noticed some of the leading applications of dialysis. It is a process so very easy, so simple, and so cheap, that it only nceds to be better understood to acquire great popularity. IJomal of -1 phicd Chemistr!!

On White Gutta Peroha.
by harry napien dhargi, f.c.s.
A paper on "Pure Whito Gitta-Percha" was contributed to the Norwich Mreeting of the Phamaceutical Confel ce, by Mr. J; Baden Jenger. Thers were some things so remarkable about this paper, that as I was at the time experimenting on gutta-percha, it attracted my attention. I have not, however, until now, had sufficient leisuro to make the points which struck me, the subject of at connected note.
Mr. Benger, after justly observing that much of the substance formed in comnerce, under the name of "white gutta-percha," is adulterated with oxide of zine, proposes a process for the manufacture of a really pure product. This consists in dissolving the ernde gutta-percha in chloroform, precipitating the tiltered solution with spirit of wine, and pressing, drying, and boiling the precipitate in water.
Mr. Benger appears to lave been successful; but when it is noted that, according to the data he gives, the production of three ounces of pure gutta-percha requires from five to six poumens of methylated chloroiorm, and about three pints of spirit of wine, the pucess does not appear to bo very economical, nor is a practical man much reassured on this point by learning that the chloroform and spirit cam be recovered; the forner by the addition of water and the latter by distilation "at the leisure of the operator."
This process has not even the merit of origisality, as it was patented by Dr. Cattell in $18 \div 9$.

Dr. Cattell at the same time patented other methods of effecting this object. These depended upon the circumstance that when alcohol or pyroxilic spinit is added in small proportion (the specification says one ounce to each gallon), to a solution of gutta-percha in chloroform or sulphide of carbon, the subsidence of the coloring matter is facilitated. But both Dr. Cattell and Mr. Benger scem to have overlooked the fact that the coloring matter of gutta-percha is quite insolublo in benzol, chloroform, and sulphide of carbon, and that the alcohol of the specification acts (if at all), only by diminishing the specific gravity of the solvent, in the cases of the two last named fluids. We set out then vith the proposition that all solutions of raw gattapercha are properly speaking solutions of the pure resin only, and that the coloring matter is simply held in suspension in them. If chloroform be employed, it is possible to effect the separation either by adding benzöl so as to reduce the specific gravity, or by entangling the precinitate in some heary insoluble powder. Carbonate of lead has thus been proposed for this purpose. But discarding chloroform altogether, on account of its high price and specific gravity, there remains to us the choice between benzeil and sulphide of carbon. This choice is casily made, Sulphide is by far the better solvent of the two; it is
quito as cheap as benzol and is more volatile. t'his latter is an importint advantage.
Many months since, my attention was di. rected to as solution of gutta-percha in sulphide of carbon, which originally used as a cement, had been but nside nal forgotten. The coloring matter had formed is compact deposit at the bottom of the bottle, and the supernatent liquor was of a very pale stran color; in fact, almost colonless. I at once made a now solution and found that in a narrow bottle, the precipitate soon completely subsided. I then poured my solution upon a sheet of glass contained in a woolen frame, and allowed the sulphide to evaporate, which it does with surprising rapidity. The films of gutta-perchan thus obtained were so very beaniful and so very tenacious that I showed some of them at one of the evenims mectings of the Dublin Chemical Club, and described the method by which they were prodnced, not doubting but this was new.
The next day, lowever, it was pointed out to me that I had been anticipated, and that Payen had obtained a like result in the same way.

Payen, however, seems to have adopted the method merely as one of analysis, and instead of allowing the precipitate to subsside, filtered the solution. Ifind that a solution, falte by dissolving one ounce of raw sutt:t-percha in a pint of sulphide of carbon, gives a solution from which the clear portion may be decanted at the und of three weeks. Or following Payen it may be slowly filiered through paper under a bell-jar. And if this be supported on a porcelain dish containing mercury, there will be absolutely less evaroration of the solvent than there would be from the same sur. face of an aqueous fluid exposed to the air. This method of filtration seems to be capable of very general application to volatile fluids.
To form thin films, the solution is evaporated on a plate of glass, but as the layer at the moment of becomung solid, is porrerfully contractile, care must be taken to cut it round the edge of the glass, in order to prevent its rupture from end to end.
A film of gutta-percha thus prepared, appears, by rethected light, of a delicate creany white, and by transmitted light lass an opaline semi-transparency. It is remarkably electric, producing when rubbed between the fingers, in the dark, a flasis of light. These thin films
have already been put to one useful purpose, have already been put to one useful purpose,
that of replacing the ground glass of the phothat of replacing the ground glass of the pho-
tographic camera. It is well known to photographers, that in the image formed on ground glass the most luminous and best delined portion is central, the parts outside the centre being more or less hazy. But if for ground glass, a plain glass upon which a thin
coating of the gutta-percha solution has been coating of the gutta-percha solution has been allowed to evaporate, be substituted, the image is found to be equally illuminated at all points. In microscopic photography, the advantage of this will bereadily perceived.
Gutta-percha thus prepared is a mechanical mixture of the resin with water, which, as do most other resins, it absorbs from the air during the eraporation of the solvent. That this is the case may be at once proved by warming a glass plate bearing in film. The gutta-percha becomes perfectly trinspatent and adhercs to the glass like a conting of rarnish.
I think I may say in conclusion, that if this process be not already employed for the industrial production of white gutta-percha, there is no reason why it shouild not be. The
solvent is cheap, und the manipulation sim ple, and if the greater part of the sulphide of carbon were renoved by distillation, the cost would be reduced to is minimmm. - Chemist aul Druyyist.

Rubidium and Lithium in Oertain Plants.

HY W. A. Wfatherbirt, M. L.

Though the compounds of rubidium have hitherto been discovered only in infinitessamal quantities, they are far more universally difinsed than is generally supposed. Rubidinm is not only dietected in most of the mineral spring waters containing larye proportions of the salts of line, potassa and soda, but also in many of the rergetables containing such salts. For example, the chloride of mbidium ($\mathrm{Rb} \mathrm{Cl}=121$) has been found, in very minute proportions, with hloride potassium (K Cl), in the saline waters derived from the root of the common beet, and it has also been found in the ashes of coffec, tea, and tobacco, and in argols, or crude tartar, which is derived from red grape wines.
Undoubtedly the color of the bect and of red argols is, to a great degree, due to the presence of this compound, and it may yet also be shown that it is present in many other plants, the infusions of which are colored red or brown. In some of these plants, the quantity of the metallic salt is so extremely small that it can ouly be detected by spectial analysis, the two intensely red lines of which will be rendered visible by the combustion of one-thirty-thousanth part of a grain. These spectral lines, when once seen, can never be mistaken for those of any other metal; for, besides being of a puculiar red color, and consisting of two lines, they are also of a very low degree of refrangibility,
being found at the extreme end of those rays being found at the extreme end of those rays which are the least refracted. The great Volatility of this metal and its salts, may possibly account for the fact that many of the vegetable productions mentioned above are rendered comparatively colorless by being heated or boiled in water for a shont time.
It shouldbe remarked, however, that chloride of rubidium, when unassociated with other salts, is colorless, ath it is only when in combination with certain other salts and organic matter that it produces the characterastic red color. The above remarks, in regard to the red color in plants being derived from their metallic salts, are, however, only theoretical, and experiments have not yet been carricd far enough to establish the proof of their authenticity.
There are only tro methods by which the salts of mibidium can be distinguished in organic combination from those of potassium, and these are, by the difference in the solnbility of their chlorides, and by spectral amalysis, by which latter means the metal rubidium was first discovered.
The salts of the metal lithinm, though litherto discovered only in very small quantitics, and in only four or five native minerals, are, nevertheless, widely diffused, in minuto proportions, in many spring waters, in Artesian wells which have been sunk to a great depth, especially through a etratum of carbonate of lime, and in mamy plants, among which are the ashes of several varieties of sea weed, those of the grape rine, tobacco, and of numerous others which grow upon peculiar
granite soils in Germany and elserfhere.

They have also been detected in the ashes of milk, blood, and inuscular tissue, in tho latter, threo of wheh they probably are derived from certain vegetahles uron which the mimal has fed.

The forms in which this metal is chiefly found as an ingredient in plants are, chiefly, the oxide ($\mathrm{Li} \mathrm{O}=10$), and the chloride (Li $\mathrm{Cl}=42$). Some of the carbonated mineral waters of Bulhemia contain carbonate of lithia ($\mathrm{LiO}, \mathrm{CO}^{2}=37$), but it has not been discovered in this form in any organized body. By tho spectral analysis, one-seventy-millionth part of a gain of this metal maty be discovered. It is known by a single brilliant red line, whle, as already stated, ribidimm is de-. tected by two lines.
No doubt many of the plants containing the salts of this metal, as well as those of rubidim, owo much of their ther ventic virtue to the presence of these salts. The various compounds of lithium have recently come into use as medicinal agents, particularly in the treatinent of discases of tho hidneys and bladder, and in certain morbid conditions of other functions of the system; and the fachlity with which it assimilates with vegetable and animal life, renders it tho quicker in action, and less nccessary to be administered in large doses than any other therapeutic substances.
Again, when many of the common salts, as, for example, several of the phosphates, which form ingredicnts an our daily food, are brought in contact satn the lithium compounds, the latter are precipitated, and thus retained fur a considerable tine in the says-
tem, so that in this tem, so that in this mannir all their virtues are brought to bear. So pupular has jithium become, in its various combinations, among the medical faculty, that it is now incorperated into some of the artificial waters which are sold in drug stores and saloons, and though these beverages do not, by their taste, reveal the aresence of any of these s.llts, they are contained in sufficient guantities to be readily detected by any one of the usual tests by which they are known to chemists. One of the most common of these is by soaking the wick of a spirit lamp in theso waters, and drying it, and then igniting it with alcohol, when it will burn with a red flame. -Jourual of Applicd Cliemisty.y.

Salts of Strychnine separated by means of Phenic Acid.

M. Panl Bert submits a property of phenic acid to the attention of chemists, under thio impression that it may have some industrial value, or be useful in medico-legal practice. He states that if a dilh.e solution of hydrochlorate of strychnine be shaken with a few drops of phenic acid, and the enulsion obtained be carefully filtered, the filtrate will be found to be divested of its poisonous prepertics, the whole of the stryclnine being contained in the portion renaining in the filter. M. Bert has assured himself that striclmine may be thus removed with equal facility from putrefied amimal matters. If the cmulsion obtained by tho agitation of phenic acid with the dilute solution of strychnine be treated with ether, the former is removed, whilst the limpid solution is found to contain the whole of the strychmine. MI. Bert las not extended his experiments to many alkiloids, but leaves the determination of the value of the process to other chemists.Clicmist and Druggist.

On tho Indlaminc Point of Vapors.

Various fluids occurring in the trade volatalize, as is well known, at ordinary temperatures, forming explosive mixtures with atmospheric air ; others give off vapurs at a somewhat ligher, but still comparatively low temperature.
W. R. Futton, of Ghesow, has recently detemaned the degreo of heat at which the vations of a number of liquids catch tire from a buming candle, when it is approached to the surface of the floid at ar distance of $1: 5 \mathrm{in}$. or 0.5 inch. The results of these experiments are recorded in the subjoined table

	Juhawing pent in degreve ai 8 \%al		
Neetuc	Atalla	hamee 1	
Wrijilit.			
Sulphuris cthur.... .. $n \cdot 7+7$	beluw	530	
13isilphide of caubon..1-270	"	[13'	
letrvienm lueninc....00706	"	53°	
Benzole from coal tar,			
90 percent...:.00.Sil	،	$7{ }^{7}$	$7{ }^{10}$
Crude paratia cil......0-849	*	71°	73
Crude n:ip:htha.........00.88t	"	73°	$7{ }^{10}$
Whiskey...............0.940	"	-	80°
Wood niphtlia........0.St0	"	37.6	S1 ${ }^{\circ}$
Crude paratin oil......0.891	"	89°	84.2'
Crude naphila..... ...0.881	*	911°	86°
1)utc! sim...00.930	*	-	90°
Wood spirit. $0 \cdot 82 \%$	"	$96.5{ }^{\circ}$	S.1.2
Illuminating maphta.0-859	"	100	91°
Wine spint..0 0 -517	${ }^{\prime}$	101*	73°
Whiskey, 1 soverprovi0 S93	،	140°	83
" 11 overproof0.905	\cdots	110°	S. $1 \%^{\circ}$
Kerosent.............. .. $0 \cdot 801$	،	115°	110°
light oil from coal tar.0-920	*	119°	100°
Spinit from resin.......0.02:	6	1293	$1105{ }^{\text {c }}$
Turpentine........ ...00.575	،	130	119
Sherry winc...........00993	6	-	$1: 310^{\circ}$
Port wint...............1-003	*	-	$130{ }^{\circ}$
Refined paraline oil . 0 Su9	*	134'	123
6 6 $\ldots 0.814$	'6	1:SS ${ }^{3}$	$1 \because 7$
Fuscl oil..............00850	*] $10{ }^{\text { }}$	129.20
Oil from resin...00.987	above	218	
Heasy tar oil0950	${ }^{*}$	2120	

From this table it may be seen at a glance that the specific weighat has, on the average, no influence on the temperature at wheh the gencration of rapoza takes place. The canse of this property may bo initerreti from the fact that the thuids in uluestion cualstst of mixtures of various compuan:ds, of whel the lighter generally escape first. This is the case with the two kinds of crude naphtha anel the illuminating maphthn, from which the benzole had been separated by distinlation. The crude maphthat of the specific gravity of nealy 6.89, contained considerable portions of tarry substances and napthaline, but it nevertheless took lire at a lower degree of heat than refined naphtha, the specific weight of which did not exceed 0.86 . That is liquil which contains but a stanall amount of a very volatile fluid, may be dangerens, is seen, for instance, in the experinent with the light oil from coal tar. This oil infianes by the light of a camdle at 119° Fah. When approached to it withuin a distance of one amd a half inches. When comparcl with the great intlammability of bisulphide of carbon or benzole, the tar oil may be considered os of little danerer, but it is ji:st as dangerous when it is taken into consideration that the groat inflammability of bisulphide of carbon is well known, whilo the tar oil is looked uponas being comparative harmless. In the preceding case, the fiquid portion, which generated inflammable gises nt 119° Fah., dudnct amount to two per cent of the whole, and after their separation, vapors were not given of below $179 . \bar{j}^{\circ}$ Fall.

Hydrogun and its Analogues.

On tho 20th of Foburary, Jr. William Odling, F. R. S., delivered another oi his courso of ten experimental lectures at the Royal Institution, upon "Hyirogen and its Amalogucs."
On this oceasion ho gave attention principally to the combinations of hydrogen. Ilo ! bunt a jet of pure hydrogen in a jar of chlorine gas; the iflame increased in brilliancy, and the product of combustion was hydrochloric acid gas: Next he filled an inverted Florence flask withlydrogen, amd, after lighting the gas at the moult of the flask, he lowered it over at jet of chlorine issuing from a fine ghass tube; the chlorine was then seen to burn ingide the flazli of hydrogeir. Woth the foregoing experiments show the surfaco nature of chenical action, for all daines aro nothing but shells, the lmuinums lityer being where the two gases come in contaret; it does not matter which gas formes the jet or which forms the exterior carelone, as in any case the diame will bo produced. A jet of hydrogen was next bumt in a large glass jas full of common air, and the union of the hydrogen with oxygen of the air produced water-was or steam, wheh was conlensed unon the cold sides of the large glass vessel. The same experiment was shown with pure oxygen in the place of common air, which is oxygen diluted with hydrogen.

Dr. Uding afterwards tilled a glass globe with a running stream of coal gas, aud, by means of a little piece of tube piercing the bottom of the flole, a jet of common air was admitted iato the sphere; this jet whe then lighted, so that the common air was seen buming in the mendele of the atmosphere of coalgas, this beinga reversal of the household experiment wherein jets of coal gas are mado to birn in common air. As before stated, it doues not matter which gas is outside the other, and the slow combination of the two forms a shell of luminous chemical action. If the tro gases are well mixed torcther, and well lighted, cunkiastion takes place at once and they go off with a bang, which as the reason why a luge :aixture of coal gas with the air of at roum may canse an explosion when a light is intruduced; no explosion can take phace unless the two gases be mixed before they are ignited.

When one volume of hydrogen mites with one volume of chlorine, two volumes of hydrochluric acal gas are prodiced, so there is no alteration in bulk. lat when hydrogen unites with oxygen steam is first produced amd then water; in tha latter case there is greatalteration in volume, and there is some alteration even in the transformation into steam, for two volumes of hydrogen miting with one of oxyen produce only two volumes of steam. To show this by experiment, it wasnecessary that the ressel wherein the two gases united should be kept at such a high temperature that the steam produced conld not be condensed into water. This wis effected by first mixing two volumes of hydrogen with one of oxygen, in a larce tube closed at its upper end, and inverted over mercary.
To maintain the requisite temperature? secund and larger tubo was inverted over the first; and the spaco between the two was kept full of the transparent vapor of boiling aniline, for aniline boils, at 180 deg. Centi-grade-a temper:ture much hifher than that
of boiling witer. The mixed gases in the of boiling witter. The mixed gases in the
inncr livet thbe vere then fired by an elec-
thical spark; they combined with an oxplosion after which the mercury instantly rose in the thbe, and showed that tho transparent steam or water-gas produced vecupied only twothirds of the space which had been takon up by the two gases white uncombined. After showing how hydrogen will decomposo vapor of tetrachloride of carbon, mader the action of hoat, by uniting with the chlorine to form hydrochloric acid, tho lecturer showed how the ignition of a mixture of hydrogen with nitrous oxide or langhing sas will set up der muposition, resulting in oxide of hiydrogen and nitrons gas.

Dr. Oding next took a jur of chlorine gas, and shook up in its interior a little of the most volatile spirit which can bo distilled from petroleum. When this mixture of gas and vapor was ignited tho hydrogen united with the chtorine, producing at the same timo a deep red light and volumes of lack smoke.
Another very neat uxperiment cxhibited by Dr. Odling was the cumbustion of oxygen and ammonia. Some strong liquid ammonia was placed in the bottom of as slass flask, and a stieam of oxygen was directed upon the surface of the liquid by means of a glass tube passing down the. neck of tho bottle, till it just touched the surface of the ammoniacal solution. Upon dropping a light into the flask the mixed oxygen and ammoniacal gases caught fire, and burnt brilliantly upon the surfiece of the liquid. Substances rich in lyydrogen and carbon, such as wood and tallow, will usually burn viridly in oxygen or common air ; but when the cxterior gas is highly hydrogenous, the substances easy to burn tharein much usually) be rich in oxygen. Chlorate of potash, which is very ridh in oxyeg isincombustible in common air; but when Dr. Odling made some chlor:ate of potash red liot in a metal spoon, and immersed it in a glass jarfilled with coal gas, the chlowate of potash burnt away brilliantly.
In this summary the best of a very large mumber of expericments harebeendescribcd, and the whole of them were expeditiously performed by Dr. Odling in less then one hour, accompanied by very clear explanations of the principles involved.-Landon Daily Telegrath

Tobacco.

The follouing statement of the relative consumption of tobacco by the male population of the different combtries, has been kindly fumished by a friend.
It is said that the anmual consumption of the weed in ounces per head is nearly as fol-lowis:-

In Great Britain.	60 to 70 oz
France.........	80
Belgium	150 to 160
Eolland.	130
Denmarl:	120
Norway	100
Sweden	70
Russia.	40
Anstria	110
Sardinia	40
Tuscany	30 to 10
Papal States.	30
Sphir,	70 to 80
Portural	50 to 60
United State	120

Zollevercin...thelargestquantity per head.

CANADRAN MMARHMCEUTZCAL SOCHMTM.

President,

Wat. ELLIOT, Esq.
The regular mectings of the Suciety tule place on the first Wellucsday cecning of cerch month, at the Mrechennics' ?nstitute, when, ofter the trensaction of husiness, therc is a paper sead, or discussion coigaged in, upon stebjects of interest and ralue to the members.
The Socicty admits as members, Chemisto'and Druggists of good standing, "ned their assistants and apprentices, if clected by a majority rute, and on payment of the followiny fees:
Principals - - - - \$4 00 par Annum Assistants \& Apprentices, 200
The Joornal is fumisicel pree to ell members.

Parties wishing to join the Sucicty may senel their names for proposel to cuny of the members of the Socicty. A copy of the Constitution and By-lews of the Socicty acill be furnished on application.

HENRY J. ROSE, Secretary.

CANADIAN MEDIOINAL PLANTS.

> PMIZES.

Prizes are offered for collections of indigenous medical substances of ve getable origin, as follows:-
1st Patee-Fifieen Dollalis-a copy of Grifith's Mralical Butany, and Certificate.
20 Prize-Tey Dollars-a cony of W^{\prime} ond's Class-Boole of Botany.
3d Prize- FiveDollars-at copy of Weod's Class-Book of Botany, and Cerlificatc.

Conditions of competition to be-
1st. Competitors to have becn engeued in the arug trade, and for not more than therec ycars, and to be members of the Phamnaceatical socicty previous to 1860.
2. Specimens to be fontarded (cariage puid) to the Secretary of the Sucicty, I'uronto, b! 1st Sipptenber, 1809, with a sealal letter, enclosing the address of the competitor; a certy jecate from his employer that the collection has becs made by the competitor solely withiu se year; that he has been engagad in the drwy trade darimg that time, and that he has not been more than three years so engaged at the date of this notice.
3. Each specimen is to oc carcfully prepared recudy for sale or use, and paclial in a paper bag. On cuch shall be written legibly, the common and scientific names, the date anel locality of collcction, and a private nark, which shail also be put on the outside of the letter accompanying the collection.
4. Three judqes shull determine the orier of merit; they shall be at liberty to withhold any or all of the Prizes, if the collections do not warrant an azard, end to select such specincns as they may deem meritorions for the Muscum of the Society, athich spocimens will have the name of the collector put upon them.
5. The points of compctition to be number of specimens, comilition, corrcetncss of numing, and gencral cxcellence; quentity a sccondary consideration.

Collections to which Prizes are aveurled wil be sent to the Provincial Exhibition at the expense of the Socicty; and any Prizes sccural there, shall be for the beneft of the collector.
Addicss-Collcctions.
Canadian Pharmaccutical Sucicty, H. J. ROSE, Sccictary,

Soptember loth, 1868.
Toronto.

THE CANADIAN

E. b. shutthewonth, Eultor.

'IORONYO, ONT., MAY, 1860

Correspondence aml genemal commanications. of a chameter suited to the objeets of this Toc:pan, are invited, and will always he welcome. The writer's mane should accompany his communication, but nut necessarily for publication.
Suluscriptions will not be aeknowlelged by letter, as our sending the paper may be talacon as sullicient evilence of the rectipt of the money.
All communications commected with the papur to be addressel, prost-maid,
 To:onto."

Br an arrangement with the Printing Committee, we shall be emabled to devote a portion of our time, during the day, to the furtherance of the interests of this Jounsia. Herotofore, our duties in the Laboratory have precluded anything but the employment of "midnight oil" for the accomplishment of our editorial duties. We have, howeser, found this means of illumination inadequate to the purpose of sustaining so thriving a concern as our piaper promises to be, and, moreover, not over conlucive to health. "All work and no play makes Jack a dull boy," and as we hatre no desire to experience this result ourselves, much less to infict its consequences on our readers, we have adojted our present course.
We hope, by the amangenent, to mako the Jounsal of greatei ralue to the commmity, and shall spare no cffort in duiug our best to this end. We rould ask the co-operation of members of the Suciety, in extending onr circulation, and communicating interesting facts, which may come mader their observation. Thus aided we are certain of success.

THE BOTANICAE PRIZES.

It is now full time for om young friends to bestir themselves in regard to these prizes. The last traces of a dreary winter have disappeared, and on every hand the welcome sigus of spring are to be found. Every day brings forth new accessions of opening buds and leaves, as Nature once more resumes her cheerful garb of green. Alhough there is but little to collect at this season, there is much to observe. Even by those who are not pre-inclined to botanical study, the rapid changes and speedy development of regetation at this time are remarked with interest. Tho tender shoot, just peeping from the ground, in a few days takes on the semblance of a stately plant; while opening spring flowers, blooning fresh to-daf, are, iy to-
morrow, withered and fallen. Our young friends must nuto these chamges, and the order of their occurrence; the locality of the plant, and their times of springing up and flowering. Nothing can be more delightful than a walk, note-book in hand, to gather specimens, instruction, mad health in the green woods.

Wo regret exceedingly that R. W. Elliot, Esq., the donor of the prizes, is absent in Europe, as it is prob:able that ho would give definite directions regarding the specimens which should be collected at this time. However, if those who intend to compete will refer to the May ammber of the Jounsar, for 1868, they will find an excellent paper, written by Mr. Elliot, appropriate to the season.
We trust that a large number of apprentices will enter the lists, and are quice sure that even the unsuccessful candidates will be a thonsand times repad for the time or trouble they may expent. Tho American Journal of Phumency, in noticing the conditions attending the prizes, says:-"This method of competition is calculated to be of great bencfit to the students, as in order to name their specimens they must learn the plant yielding them, and by connecting tho two in the mind they become more thoroughly accuainted with thecir history and chaxacter. This method is well worthy of adoption by all our colleges of pharanacy."

We notice in the last number of the Plummaccutical Journal (Enghand), the amonucement of a botanical prize, ofiered by tho home Society, for the best Herbarium, col lected in any part of the United Kingdom, between May, 186y, and June, 18j0. The prize tikes the form of a"Silver Coment Medal ;" and should there be more than one collection worthy of award, a second prize, consisting of a bronze medal, and also certificates of merit, will be given at the discretion of the Council. The collections are to consist of flowering plants and ferns, arranged nccording to the natural system of Do Condolle, or any other matural method in use. Some work on 3ritish botany must be followed (such as that of Babington or Bentham), and the name of ench plant, its habitat, and the date of collection, to be stated on the paper in which it is preserved. Associates, registered apprentices, or students of the Society, only, are allowed to compete; nor must the age of the competitor exceed twenty-one ycars.

Our ipprentices in Camada here at least equal chance with those of Great Britain; and in this instance the adrautages of larger and more numerous prizes are a trifle in our favor. We hope, when the day of adjudication comes, that for good preservation, accurate naming, and full collections, our Juniors nay bear away the palm.

POISONS.

The interpretation of this wond has been the source of no little troublo and perplexity to the dinggists of England since the passing of the Pharmacy 13ill. By a clanse of that enactment, it is rendered mulitwful for any person whatever to sell any of the poisons, or their preparations, emmerated in tho first part of an attached schedule, withontantixing a label distinctly marked "Poison" on tho packare containing such substance. It so happens that opiun and its preparations are included in the eaterory, and here has arisen the principal dificulty. The well-known popular remedy, paregoric, is mudenably a preparation of opium, and as such is distinctly enmmerated in the British Phamasoperia. It has been justly asserted that to aftix a poison label on such a compuatively hamless article would not only he prejudicial in alarming patients about ticking it useful medicine, but would also familiarize the public mind with a very significant word, and thes detract from its cautionary value.
We all know the effect of this word when attached to an ounce of are enic, or a bottle of strychnine; and when sarmounted with the piratical skull and cross bones, standing with a deathly whiteness from a black ground, it is certainly calculated to strike terror to the heart of even the most determined suicide. What, then, shall we say when we see this appalling emblem attached to a bottle of paregoric which stands in a fanmar comer of the cupboard, and is dispensed by the hand of a mother for the ailments of the household? Du we start bach to see an infant take poison by the spuonful? There is little cause for alarm ; the label is of no significance, and the word "Puison" has become a dead-letter.

In this way the British public have reasuned, the druggists lave been perplexed, and the framers of the Pharmacy Act hamassed with inquiries. The result has been that.a number of "casc-raisins points" have been prepared hy the Comed of the Pharmacenteal Society, and submitted to the opinion of the Privy Comncil of Great Britain. The following answer has been received:

Malical Dep othinnt of hir Priry (ounacil Oflice, 6th 3Farth, 1869.

The Secretary of the linarmareutical Sociaty:
1\% Istumasbury Sinare, W.C.
Sur,-I have laid before the Lords of Mer Majesty's Comacil the statement prepared for that purpose by the Solicitors of the Pharmaceutical Society, and put into my hands by the President of the Society, on the subject of a difficulty which the Society feels in applying the languade of the Phamacy Act, and particularly of its schedule A, to the case of such pharmaceutical compoume's as contain some scheduled "poison" in extremely small and practically non-poismous quantity.
My Lords having given their best considemation to the subject, are of opinion that the
"preparation" of a poison in tho Pharmacy rol, the finger, or any minute speck of solid Aet, 1808 , means a compound which, like the poison of which it is a preparation, is in itself deadly or dangerons, and that it does not mean a compound which is in itself perfectly harmless, athough into its composition may enter a paison, or the preparation of a poison, which taken alone would be dangerons or deadly. My Lurds apppehend that ruestions of fact must be dealt with as they arise; for it is possible to take so much of a compound perfectly harmless if taken in reasomable quantities (c. \%. carbonate of soda), as to destroy life, and it is possible that io particular paregoric lozenge might contain a deadly amount of poison; but it seems to their Loriship that, for seneral purposes, and as matter of legal interpretation, theso extrome and barely supposatble cases may be disregarded, and that the Pharmaceutical Society may safely act upon the test given above.
My Lords, however, are advised that it is nut fasible to define the preciso proportion of puisun in amy preparation which may bring it within the Act.

I am, Sir, your obedient servant, Jons Simos.
We are glad that this rexed question is so far settled; not only as regards the English drugeists, but ourselves also, as a similar wording to that of the act of Great Britain occurs in the propused Pharmacy Bill of Ontaria, and we hatve now an opportmity of having the matter rectitied before further legislation takes place.

EDITORIAL SUMMARY.

Phisematiun of Herbs.-A writes in the Phurmactutical Journal (Eng.) reconmends for this purpose the addition of ten per cent. of spinit to the recently powdered herb, the damp puwder being at ance put nitu widemouthed stoppered bottles. This plan is said to answer thoroughly. It was fumb that leaves of digitalis, preseserved in the ordinary way, at the end of a jear after gathering became comparatively inert, but by the above treatment their virtue was mimpaired.

Cathamisin.-This is a new scienthic term intended to define the influence cxerted by chemically clean surfaces. Charles Tumlinson, F.R.S., F.C.S., las recently delivered a lecture on the subject. before the Chemical Society, London, in which he endenvours to attribute various phenomena which have heretofore puzzled philosophers to this influence. He reviews the experiments of Oersted, Schönbein and Liebies on the liberation of gases or salts from solution, by contact with certain bodies. For instance, Oersted remarked that dihute hydrechloric acid conld be dropped on a solution of carbonated alkali, causing only momentary efferrescence, and the two liquids might remain undisturbed for hoars without further appearance of gas, but the moment a solid was introduced, stich as a platinum wire, a glass
rod, the finger, or any minute speck of solid matter, such a solid not only became instantly covered with gas, but discharged gas briskly from its surface. Oersted was unable to account for this. Again, Schönbein found that gas was given off abundantly whewe con. per, brass, iron, or silver wiro were put in a very dilute solution of nitrous acid, and that the escape of gas was far too copious to be accounted for by chemical action; moreover, a bit of pine wood acted with as much energy as bratss wire, but if the wood was boiled no effect was produced. Schënbein thought this was on account of the wood being deprived of air, by boiling, and that solids act by carrying down air, into which the gas oxpands, and when deprived of sir they ato inoperative.
Mr. Trminson explains these and kindred phenomenat, by his new principle of catharism. He siajs, -

When bodies act as nuclei in scparating gas, or salt, or vapour from solution, it is because the gas, or the salt, or the vapour has it stronger adhesion to, or attraction for, the surface of the nucleus, than the liquid portion of the solution has for such surface. If the mucleus be chemically clean, there is no appreciable differcuce between the adhesion of the gas and such surface, and tho liquid that holds the gas in solution. Henco there will be no separation of gas, becauso the solntion adheres perfectly and as a wholo to a catharized surface.
Bodics that are exposed to the air, and to the products of respiration and of ordinary combustion, that are handled, or wiped with a cloth, contract more or less of a greasy film, which lessens the attraction between the liquid portion of a solution and such surface, Whie the attraction letween the gas, etc., of such solution remains the same as before. Hence there is a separation of gas, etc., from solution, since gas or salt, or vapour will adhere perfectly to a greasy surface, and the attraction between such a surface and a gas is so strong as, in some cases, to produce chemical decomposition, as when chloride of nitrogen is touched with an oily or greasy surface.
The dust of a room, which is constantly floating in the air, is more or less contaminated with a greasy or organic matter, and acts as a mueleus. If such dust be collected on a filter, and washed with a solution of caustic potash, rinsed with water and dried out of contract with air, it ceases to act as a nucleus.
A nuclens, then, may be defined as a body that has a stronger adhesion for the gas, or the salt, or the vapour of a solution, than for the liquid that holds it in enlution.
I believe this new prin 3 of catharism is sufficient to generalize ano account for, in a scientific mamer, the numerous facts already introduced to your notice. When Liebig. shook a buttle half full of a carbonated. mineral water, the gas was libernted by coming into contact with the unclean sides of the ressel. When he struck his hand on a glass containing sparkling Mosello or other gascous wine, he not only precipitated some of the unclean dust of the air upon it, but he also shook the wine against the unclean sides of the glass. If a bottle of soda water bo
gently poured into a catharized glass, not a single bubble will become attached to the sides. If water in a similarly clean glass, containing a clean glass rod, or wire, be put mader the receiver of an ar-pump, and the air be exhansted, not n single bubble of air will attach itself to the sides of the vessel, or to the gliss roll, or to the wire. When Sclenbeins found a bit of pine wood, by long boiling, inactive in liberating gas from solntion, it was not that tho boiling had driven the air out of the wood, but that the boiling had catharized the wood. There is not a greater mistako than to suppose the air to hive an influence in setting yas, or salt, or vapur free from solution. When air appenrs to act it is merely as a carrier of some unclem mote or speck of dust that is floating in it. Ant this oxphains the fact noticed by Lowsel and othrrs, that supersaturated saline solutions can bo kept longest without crystallising in narrow necked vessels, the time being long in proportion to the narromess, so that if the month of a vessel be contracted to a capillary bore, the solution can bo kept as in n close vessel. I have fourd that highly charged sulpersaturated saline solutions in wide-monthed flasks can be opened in a garden or a field in the comentry where the air is free from the dust and motes of a room, and bo kept open for a long time without crystallising, amd when crystallisation doss take place, \AA nucleus is to be found in the shape of a small fly or other unclean object."

Svapmia and Sweet Quinine. - Both these preparations are deservedly coming into use, and are fast growing in faror with the medical faculty. The intensely bitter taste of ordinary sulphate of Quinino has been a great drawback to its employment-some patients being completely unable to conquer their repugnance to it . This persistent bitterness has been overemme, or disguised, in the above preparation, but the virtues of the quinine remain unimpaired. With regard to "Svap-mia"-which, by the way, is pronounced Esz-vap'-nia-we have merely to say that it is an improved and purified form of opium, and as such is sure of a steady demand. It is simply opium deprived of inert and injurious matter, and of uniform and reliable strength. This is all that is required, and, even now, Stapnia bids fair to become a solid rival of the famous "liquor" of Battley.

Chloroforsi, and a New Method of Admindsterina it. By A. M. Rosebrlgh, M.D., 'Toronto.

This is the title of a pamphlet which has just reached us, containing the substance of a paper read before the Medical Section of the Camadian Institute in November last. The subject is treated in a very concise yet thorough manner, and the portion relating to the administration of chlornform is worthy of the attention of all medical men, as marked advantages of precision and simplicity may be secured by pursuing the author's method of administering this sometimes dangerous anesthetic.

OANADIAN PHARMAOEUTIOAL SOOIETY.

The regalar monthly mecting was hell at the usual phace on the 5 th inst. Mr. Shapter occupied the chair.
Minutes of hast meeting was read and adopted, and tho following were elected members of the Society:-

The question of the qualifications, if any,
requisite for membership in the Society, was again discussed ; some advocated the requirement of a fuir knowledge of the business of a Pharmacist, in a proposed candidate. The question was decided by the adoption of the following, which Mr. Shuttleworth gave is a notice of motion :
"That Article Il of the Constitution, regarding admission of members, be amended, and that applications shall in future be entorsed by a member of the Socicty."
The report of the Printing Committee was then read, as follows:-

bepont of majting commitee.

The year having expised in which the Printing Cummittec updertook to conduct the publighing of the Pharmaceutical Jourisal, they deem it their duty to report to the Society the result ; and as the term of their appointment has expired, it becomes their duty to exphin to the Socicty the finamcina nosition, and to ask that they may be relieved from further responsibility in the matter; and that a new Committee be appointed to take their place. The Journal thus far has not paid its expenses, but the aypropriation made by the Society, viz., three-fourths the amount of subscription of country menbers has not all been used; and they fell so far gratified with the result; they would also state, that the guarantee fund subscribed by city members last year will nut bo available for the coming year (unless re-subscribed); so that for the next year the undertaking will have to depend upon the Bociety for its success.
We may here mention, that tho Committee havo made one change in conducting the Journal that will entail a somewhat larger expenditure for the coming than for the past year. Mr. Shattleworth, who gave a considerable time to the editorial department, gratuitously, found it impossible to continue it without trespassing too mucion his other engagements, has thercfore to ask some compensation for the future. The Committee therefore deemed it advisable to dispense with the services of Mr. Trout, who received three hundred dollars, for the financial management, and place both departments in charge of Mr. Shuttleworth, at a salary of five liundred dollars per annum, which they considered would be more coonomical than having one person for eacl. department. The Committeo would therefors, recommend, that a resolution be offered,
placing the whole of the country fees at the disposial of the now Committee, so that there may be no cmbarassment in publishing tho Joumal, wheh they think is all important to the prosperity of the Society.
All of which is respectfully submitted.
War. H. Dunspavory,
('hairnan of l'ritting Commiltec.
Financial Statement. Neceints.
Advertisements..... 800280
Subscriptious................................ 9248
Papers sold.. 1240
Balance paid from apropriation by
Society
35762
$\$ 96530$

Expenditure.

Printing, Robertsun \& Cuok...........8060 75
J. MI. Trout, salary 30000

Com. on advertisements.................. 3500
Exchanges..................................... 2188
Postage.................... 3875
Stationery 579
Protest on draft 313
$\$ 06530$
Outstatding for advertisements $\$ 11008$ No. of members receiving Joumal..... ... 281 subscribers not belonging to Society 83
On motion, the report was adopted.
Mr. Shapter lawing vacated the chair, which was taken by Mr. J. L. Howarth, moved a vote of thamks io DIr. Shuttleworth, for his valuable services durng the past year; and, in doing so, spoke in complinentary terms of the talent and time which Mr. S. had gratuitously devoted to the Joumal project during the first year of its existence, stating how much the present success of the Journal was due to his eflorts. His remarks were fully endorsed by the mecting, and the motion acknowledged by Mr. Shuttleworth.

It was then moved by the Treasurer, and seconded by the Secretary, That in accordance with the report of the Printing Committee the enture amount of the subscriptions of non-residents be placed at the disyosal of the Printing Committec for the ensuing year. -Carried.

It was then moved that the Printing Committeo bo dissolved, and the following appointed for the ensuing year:-

Mr. R. W. Elliot.
" W. H. Dunspaugh.
" J. T. Shapter.
" J. L. Howarth.
" H. P. Brumell.
"N. C. Lovn.
" C. E. Hooper.-Carried.
The paper for the evening was then called for, and Mr. Ruston read a useful paper on Syr. Ferri Iodidi, which was placed in the hands of the Editor, and received a warm expression of thanks, after whech the mecting adjourned.
H. J. Rose, Sccrctary.

Contry pandere.

Now Form of Heating Apparatho for Puarma-
ceutical Purposes.

Dear Sur,-I send you a description of a heating apparatus, devised by myself, which I have found to answer admirably, both from its simplicity, and also from the facility with which a constant and easy regulated heat can boobtancd, for any length of time, at a trifling expense, is compared with that of alcohol, which we have to use during the summer, when fires are not in use.

Take a common coal oil lamy, with the common B, burner; have a donble drum made from two copper tubes, about 8 inches long-the one, 18 inches in diannter, the other 2 to $2 f$ diameter-the smaller one phaced inside the larger; the space between them closed, and all well soldered, so as to be watertight. A suianble copper vessel, or tin with copper bottom, say i inches wade by 6 inches deep, or any convenient eize, to act as a water or ste:m bath, is to be attiched to the top of the drum, by three small tubes, inserted in the end, and passing through the bottom of 'he large vessel, leaving a syace of half or five-eighths of an inch between the bottom of the vessel and the top of the drum. The apparatus may be supported on a tripod, or amy other way, high enough to allow the lamp to be placed with the conical top of the burner inside the tube or drum-the smaller tube having been left to project half an inch below the outer one, so that it may go down clear to the inside of the burner. Having filled the drum by poming water into the large vessel, allowing it to rise from one-fuurth to one-half an inch in depth, place the lyghted lamp in its place, and in a very short time tho water will boil strongly-in mine, 20 oz . boil in ten minutes.
The lamp must be carefully trimmed, and it is well to try it with a glass clumney, to ensure a nice flame; for if it be uneven, and the least point of flame tonches the tube, the apparatus will smoke.
The flame camboregulated by turning it up until it is seen to smoke a little, and then lowering it to ensure its bumang clear.
This gives, as will be seen, a great heating surface, and by confining the steam by having the vessel containing the matter to be heated made to fit very close into the mouth of the other, a heat much above that of boiling water can bo obtained. By leaving it open, and regulating the flame of the lamp, any desired temperature, within certain limits, can be insured; whether for anfusions or decoctions. Ointments can be nicely made in a common earthen bowl set over the vessel, and it is also handy for a glass retort.

1 remain,
Yours resplectfully,
Thos. Canne.
Menford, April 10th, 1869.

GOD.IIVER OIL.

On the hleak shomes of Norning; I've lately been told,
Large mumbers of cod-fish ate fomm,
And the animals' livers are alterwanls sold
At so many " prenaings" pur pound;
lrom which is cextracted, with intinite toil, A sillamous thid callal cod-liver oil.
Now, I don't mimula a nowler, a pill, or a dirnught -
Thuylith 1 mingle the former with janin,-
And many's the minture I'ye checrfilly quatrid, And the pill I have gulpill like a lan.b. Bat then I envelop my pills in tin-foil, and 1 can't do the satme will my cod-liver vil'
In the cousse of my lifetime I've swallowed enough Tu have lluated as shp of the hame,
Ant it's purely the fant of thes homble stulf
That l^{2} ve ceased to enjoy ginger wine.
For how can you wonler to see me recoil
From a lignor I misid with my cod-here on:
There are few decels of daning fom which I should quail-
There are few things lid temble to do;
But there's one kind of tonic that makes mu turn paic,
Smat yatce spuils my appute, too:
hat you see, just at present, l've got none to spoil,
So I don't mind :dluding to cod liver on!

Impurities of Ohloroform.*

Pure chloroform is neutral to test-paper; its specific gravity is 1.49 to $1 \cdot 5$, amd it boils at $1 \cdot 40 \mathrm{~F}$. If dropped into distllled water, it collects at the bottom m transparent glonules. When it is mixed with an equal volume of oflicinal sulphuric acid in a glass-stuppered bottle, no heat is evolved; and after standing for twenty-four hours, only a faint ycllow colour is imparted to the scid. On evaporating three or four drachms of pure chloroform, from a porcelain plate, no pungency or empyreuma is observed, but a slightly aromatic odour; and the plate is covered with a film of moisture without odour or taste.
The most common impurities and adulterations of chloroform are alcohul; cther; chlorinated pyrogenons oils; hydrochloric and hypochlorons acids; chlorine, and Dutch liquid.
Alcohol and ether reduce the specific gravity of chloroform helow the normal standard; and the impure liquid when dropped into distilled water, falls to the bottom in milky globules (Minlhe) A solution of bichromate of potassa in sulphurie acid becomes green, on the addition of chloroform containing
alcohol (Procter) ; and almond oil is rendered
malky by the admixture of chloroform having $\overline{5}$ or 0 per cent. of this impurity. (Sonbeiran). Albumen (white of egg) is coagulated by chloroform, if alcohol is present. Chloroform that contains alcohol or ether is diminished in volume by agitation with water; and when potassium or sodium is thrown into the adulterated article, sharp, acrid fumes are evolved. Ether may also be recognized by its smell; and by tinging drops of chloroform dull-red, which have been added to an aqueous solntion of iodine (Berchon).
Chlorinated pyrogenous oils are detected by shaking together equal volumes of the impure article and pure, strong sulphuric

[^0]acid; a brown colomation is produced. Theso impurities result, most frequently, from the use of methylated, instead of rectified spirits, in the preparation of chloroform.
Hypochlorus acid and chlorino are recornized by their olour and bleaching power.
Hydrochloric acil is detected by its acid reaction, end after its extraction with water, by the ordinary tests.
The presence of Dutch liquid is revealed by the addition of an alcololic solution of potassa; ; volatilo chlorido of acetyl is evolved, of a disagreable oduar.

Donton on the Origin of Potroloum.

Professor Denton says that petrolemm: is not a cout oil, but a cural oil. Among his arguments in support of this theory are the following. - It is rarely met with in a cond district. Fot even a smell of it has Prof. D. perceived in any of the coal mines which he has visited. If it is from coal it shouldnever be found in rocks older than the coal mensures. The contrary is true. "In this country nealy all the oil hitherto obtained has been from beds that lie below the coal mensures, and semetimes at great depth below them. On Oil Creek, in Pennsylvinia, it is found by boring in shales and sandstones, sometimes to al depth of one thousand feet; these beds belonging to the Chemung group of the Devonian formation, and many hundred feet below thecoal measures. At Enniskillen, in Canalia West, where the oil has at one time canc up in springs, and overflowed, leaving a thick bed of asphaltum covering the ground fir an acre, the limestone in which borings are mado contains characteristic fossils of the Hamilton group of the Devonian formation. The vil wells in Western Kentucky, and in some parts of Temessec, are in the Trenton limestone-that is, in the lower Silutian formation. The same oil fioats on the surface of a limestono quarry near Chicago, the lanestone belonging to the Niagara group of the Silurian formation; showing conclusively that it has no necessary conmection with coal."

The immense quantity of free oil forbids the belief that it could have been produced from sea plants. It would require large subterranem lakes of it, to pour out the thonsands of barrels which some wells have daily yielled. The sea-weeds of the Silurim and Dovonian times contained so little bituminous matter that their impressions do not even darken the light-coloured shales in which thoy are found.

Against the theory that it has been distilled from bituminuts slales may be said, that for this strong heat 13 remaired; and generally, where it is found in greatest abundance, thero is the least appearance of igncous action.

Professor D. has in his possession numerous specimens of fossil coral from Devonian and Silurian rocks, the honcycomb cells of which aro filled with thi o oil. He has seen the same from different parts of the country. We quote a portion of his conclusion: "I have found it repeatedly in these corals, and in no other part of the rock invariably accompanying the corals, and never connceted vith nny other fossil; these corals frequently in the eentre of limestone blocks. Recis of such coral would furnish oil in quantities cufficient to account for the immense deposits that have been discovered. Preserved by them in conpact bodies, the oil taking up at least inaif the space of the coral recf, wo can readily sun-
pose that whas the cells were crushed by the superimembent weight of rock, or cturing upheavals and subsidences, civities and crevities in the earth's interior would bo filled by it. It is, then, manimal prodnction, and not a vegetable one."-_Imerican Exchange.

Baron Liobig " on a Now Method of BreadMaking:"

Baron Liebig has just made some inuortant researches on a now method of bread-making. He remarks on tho stationary character of this art, which remains to the present day much in the same state in which it was thonsamds of years ago. Ife dwolls upon the sanitary importanre of the mineral constituents of grain, and the necessity of a sufficient abundant supply of them in bread. Thesu aro best found in certain kinds of black and brown bread, which are therefore, more wholesome than the whitebreadthat is nevertheless preferred by most peoplo (especially by the lower orders) on account of its better appeatance and superior palatablencss. The problem has hence arisch, how to provide a beantiful white bread which shall contain all the escential mineral constituents of black bread. Theso mineralconstituents (phosphete of potash, lime, magnesia and iron) are introduced into the bread by the use of the baking-yowder invented by Professcr Horsford, of Cambridge, in North America. This baking-powder consists of two powders-the one acid, the nther alkaline. The acid powder is phosphoric acid in combination with lime and magnesia ; the alkaline powder is bicarbonate of soda. Tro measures made of timned iron, the larger one for the acid powder and the smaller one for the alkali, are employed. When bread is requinai to be made, every pound of flour is mixel with a measure of the acid ponder and a measure of the alkeli powder, and sufticient water added to make dough, whech is presently made into loaves and baked. In one and a half to two hours bread may be made by this process. The chenical change which takes place will be easily intelligible; carbonic acid is generated and phosphate of the alkali is formed at the same time. The essential feature in Horsford's invention is the cconomical gettins of phosphoric acid in the shape of a dry white powder. This is done by taking bones, burning them, and then treating the well-burnt bone-earth (which consists of phosphate of lime and magnesia) with a certain quantity of sulpharic acid, so as to rer se two-thirds of the lime and leave a soluble superphosphate of lime. The sulphate of lime which results from the action of the sulpharic acid is seperated from the rest by tiltration, and the solution subsequently concentrated by evaporation, and when it becomes very concentrated, mised rith a certain quantity of flour, and dried up. The mixture of flour with the superphosphate admits of being reduced to the finest porder, and constitutes tho acid powder just referrea to. It will be observed that the allali-powder contains sola, whereas potash is required in order to furnish the right kind of nineral salts. Liebig proposes to rectify this defect by using a certain quantity of chloride of potassium along with the alkali. Chloride of potassum is now tolerably cheap, oring to tho finding of immense quantities of it at Strassfurt. Baron Lielig in order, as he says, to avoid being bothered, has appointed Herr Zimmer, of Nianuheim,
and Herr Marquart, of Bomm, his agents for his new baking powder ; and those interested may if they liko, get it from them.-1british Medical Joumal, Jan. 2, 1869.

Magnesium Light.

Lato scientific intelligence from England expresses the belief that magnesium, by new processes of manufacture about to bo introduecd, will bo brought down to a shilling an ounce retail. At this price its uso in lamps, in the shape of ribbon of the thichness of heary paper and at tenth of an inch wide, will bo decidedly conomical. Tho supply of magnesium ores and other componnds is unlimited. Dolomite, one of the cummunest rocks in the Sonthem States, and extend..." in a vast rango through New Jersey, New York, Westen Mrassachusetts and Vermont into Canada, contains $45 \cdot 6 \bar{b}$ parts of carbonsate of lime.
From the magnesium canbonate the chloride is prepared, and from that the metal is eliminated; or the chloride of magnesimm can be obtained direct from sea water, and then reduced to metal by the usual process. It is estimated that a ton of sea water contains two pounds of the metal. The sources of supply are thus shown to abound all about us; and the only que,tion involved in the use of the metal for ilhuminating purposes is that of tho cost, and that question, as we learn, is on the point of being satisfacturily answered.

As our readers may not malerstand the working of the magnesium light, we will explain that the motal, in the form of a thin ribbon, weighing but little mose, for its bulk, than a delicate wood shaviug or a strip of writimg paper, is coiled alout a drum, and fed by simple clockwork in the flame of a small alcolol lamp. The heat of the flame ignites the metal, and it burns slowly and regularly with the purest imaginable white light equal to seventy-four stearine candles and upwards, according to the size of the ribbon. As it has the essential characteristic (the actinic power) of thesolar rays, photugraphs are easily taken by it. It is, in fact, an imitation of daylight, and therefore splecially adapted to the cyes; whereas, the ordinary gas is known to be highly injurious to those organs.
So soon as magnegium can be furmshed cheaply enough, Yankeo ingenuity may be trusted to invent some still cheaper apparatus for burning it up. It takes but little faith to look with confidence to the introduction of the magnesinm light (unless a better one can be introduced) as a common substitute for gas. That man is not rash who would predict that at some day, perhaps not far off, gas will become as obsolete as rushlights now are in civilized communitıes.N. Y. Jour of Commerce.

Ambergris.

This singular substance is one among those derived from animal sources that are cmployed in the perfumer's art, and although its origin would seem to preclude its use by the fastidious, the same objection would equally apply to musk, the product of the civet cat or musk deer, which if not an exeretion is a secretion intended mobably, as is the offensive liquid ejected los the skunk, is a means of defense. Anbergris, or "gray anber" as its name denotes, is simply and
only a portion of tho excreta of tho sperm whale, 1hiseter mucyoccphalus, resulting from disease. It is considered generally to bo a result of morbid secretion of the while's liver and is probably produced also by other oceanic mammalia. It is usually found "ating on the surface of the sea in thoyo parts of the ocem most frequented by tho spermaceti whale ; a small barren island off the coast of Yucatan, having received its mame of Ambergris from the quantity of that substance found on its shores.
Whale fishers look for it in the mestines of tho whale, and its value is so great that whalemen pursue with cagerness the sickly cetacere although they promise a scant return of oil. It is amorphons, or in roundish pieces frequently fomned in layers, of a grayish color-whence its name-with streaks of whitish yellow, brown, or black. it has a waxy texture and when warmed emits a pungent odor. It is for this quality it is so highly estecmed. It has been sold for its weight in gold. It is very scarco and seldom appears except as "essenco of amber" or "Extrait d'ambre," forms of perfumery having this material for their base and bearing a very high price.

Its discovery is not at all new. It is pretty certain it was known as a rare perfumo in the fifteenth century, for Sinbad the sailor, being wrecked somewhere in the Indian Ocean, says:
"Here is also a fountain of pitch and bitumen that runs to the sea, which the fishes swallow, and then von t up again, turned into ambergris."

Piesse in his "Art of Perfumery" does not rank the perfuning value of this subtanco highly ; for he says: "A modern compiler, speaking of ambergris, says 'it smells liko dried cow dung.' Never having smelled this substance we cannot say whether the simile be correct; but we certainly consider that its perfume is most incredibly overrated; nor can we forget that Homberg found that a vessel, in which he had made a long digestion of the human fieces, had acquired at very strong and perfect smell of ambergris, insomuch that anyone would have thought that : great quantity of essenco of ambergris had been made in it. The odor was so strong that the yessel was obliged to be moved out of the laboratory."

We cannot agree with Homberg, for when first, some tirenty yeare ago (and recollections of scents are among the most tenacious), we tested some fragments just brought in by a whaling ship, we reny much admired the aroma, but-we are also partial to musk.

It is genernlly found in small quantities of only a few pounds or perhaps ounces in weight, but large nasses have beendiscovered, one weighing 104 lbs. having been purchased in the East Indies hy the Dutch, and a mass of 237 lbs . being obtained by the French East India Company. Lately, however we read that Captain Timothy C. Spaulding, of tho bark Eliaabeth of Now Bedford, while coming southwest of Madagascar, struck a very large spem whale. On opening the whale they had the good luck to discover 285 pounds of am-bergris-worth on the spot $\$ 20,000$

Another New Bedford ship, the Merald, lately brought home 71 lbs . of this substance that sold for $\$ 97 \mathrm{per}$ lb. -Scientific A merican.

Nenvous Headacie.-Two drons of sulphuric cther on sugar, will frequently gire case in less than half an hour.

Destructive Explosion of Picrate of Potass in Paris.

An explosion of a most clisastrons chameter occurred in Paris, on Thesday, the 16th March, in the laboratory of M. Fontane, manufacturing chemist, the successor of Messrs. Robiquet and Pelletier. It appears, from what is known on the subject, that a quantity, equal to about $\overline{0} 6 \mathrm{lbs}$., of picrate of Potass was being packed for trimsuission to Toulon, to be used in charging marine torpedoes, when, from some unknown canse, an explosion took place which destroyed the premises, and caused also destenction of human lifo, instantly killing all those who were pre sent, and who might have eaplained the par ticular circumstances of the case.

The explosive compound which occasioned this great calamity was a salt of picric acid, which has been frequently been used as a dye, imparting a yellow color to silk or wool withoutrequiringanymordantorperious preparation of the fabric to be dyed.

It has long been hnown that the salts of picric acid are explosive, the acid itself being a compound having a similar constitutiou to gun-cotton, and being usually made by the action of nitric acid on carbolic acid. Some years ago a factory in Berlin was destroyed, and threemen killed, by theexplosion of 40 lbs . of pierate of soda. This salt is said to explode with four times the force of gunpowder
The application of salts of picric acid for tho production of the implements of war appears to have been of recent date, and the terrific nature of the cxplosion which has now occurred in Paris fully justifies the opinion occurred in Paris fully justifes the opurpose. It is stated that a few pounds of picrate of potash, enclosed in a torpedo, explodes with pufticient violence te destroy an iron-clad frigate. The order that was being executed by M. Fontaine was reccived from the Minister of Marine; and it is surprising that the Gorernment, knowing the dangerous nature of the material, should have anowed such an order to be executed in Paris, where an accident could hardly fail to prove fatal to many persons. The victims on this occasion were Mr. Fontaine's son, M. Bal, a chemist, and troo other persons employed in the establishment, but besides these, inost of whom were literally blown to atoms, there were several other persons more or less seriously injured, and a great deal of property destroyed or damaged.

Metallic Uraniom.

Metallic Cranium has lately been prepared in the pure condition by Peligot (Comptes Rendits, tome 67, p. 507).

One of the least-expected properties of this metal is its high specific gravity. In his carlier experiments Yeligot obtainedit in the form of porder ; later he succeeded in producing it in small globules, fused at a hight temperature. In this state it is white in color, somerlint ductile, though almost as hard as steel. By menns of a fiic small frasments may be separated, which burnin the air rith vivid lustre. At ordinary tempratures the metal, after a time, assumes abronze color, sometimes the color of bluisin sted.
Tho specimens exchibited in the Paris Exposition of 180% were made by Mrr. Valenciennes, accurding to the folloring prucess:
i mixture of is grammes of prutuchiluride
of ura.:ium, 150 grammes of cessiccated chloridic
of potassiung, and 50 grammes of sodium, cut into small pieces, are placed into a porcelain crucible, and covered with a stratum of chloride of putassima. The cructble is placed in a graphite put or crucable, the space between the two being filled with perfectly dry pundered chareval, after which the whole is heated in at draught fumace heated with charcoal. The reaction talies place regularly at red heat, after winich the heat is immediately increased, to bring the metal to fuse "ithont volatilizmg any flux. In the hack slag thus resulting, whel is very dense, the metallic manimm is contaned, and must be ficed by washmg.
In this process all mfluence of monsture must be atsuded must carefully; cven moist arr, uwing to its decomposing action on the protuchluride, wheh beemes the oxide, in which state it is unfit for reduction to metal ; besides, the metal whele coolng must be carefully protected from air.
The density of this metal varics from 18.33 to $18 \cdot 40$; hence uranium is one of the very densest metals, remarkable in so far as its chemeal propertues place it in near relation to the earth metals.

Weight of tio Brain.

At at mecting of the Vienna Socicty for 1'sjchiatria and Forensic P'sychology, prosector Dr. Meynert gave some statistics on the weight of the brain. His deductions from the weight of 351 brains, as well as those of Parchappe from 2S1, prove that the influch: - of pisychoses is much greater thanage on the weight of this organ. For example, during the physiologically blooming age of the brain's weight ($30-40$ years in males), a mean of only 1,317 grammes was given, because brains of the later stages of psychoses were mingled with the others weighed.; on the other inand, in the primary stage of ispcloses, without regard to age, a mean of 1,329 grammes was gren for conditions of depression and $1,35 y^{0}$ for mania. Furthermore, the reduction of weight wias always equal to the duration of the discase. It was also found to depend upon the intensity of the latter, as paralytic jdiocy was clarncterized by a great reduction of weight. Meynert also found that insane brains lad more cercbellum, proportionally, then sane; and that insane females had more than insane males.-Mfedical Press and Circular.

The Use of Zinc in the Reduction of Gold Ores.

3I. D'Heureuse has been for some time experimenting in the use of zinc as a substitute for quicksilver in gold mining. According to the Scicntific lievicu, he now finds that in the amalsamation process only ab .ut lialf the gold is extracted from the rock. Nelted zine appears to take up all the gold, allows slag and rubbish to float at its surface, requires liticle heat to kecp it melted, and from its volatile nature cin be distilled in a retort to separate the gold and re-collect the zinc itsclf. The mede of operating is simply to introduce gradually the gold-bearing rock, in a pulverized state, into at bath of melted zinc. This metal immediately attacks and dissolves nearly every particle of gold, while the debris rise to the surface of the bath, and can be skimmed off. When sulphurets are present, the roch must be previousiy ruasted. Surely nothing can be more cconumical and effective than this when plenty of zine ore is at hand.

Now Process fer the Preparation of Phosphorus.
M. Aubertin communicates to the APonitew Scicutifiyuc a process for the preparation of phosphorus, based on the fact that silica in presence of carbon displaces and reduces 1)husphuric acid combined with carthy bases, silicates of theso bodies being formed. The anthor submits to the action of a strong furnace silica and fossil phosphate of line, in such propurtious that the silcai shall prepunderate over the lime, but yet not be in such eacess that an infusible silicate be formed. To angment the fusibility of the silicate producel, a little alumma and magnessa mity bo added, if enough is not present, inasmuch as the silicates with several bases are mure fusible than others; to effect thas, clay is of great service. The escapme gases mixed with vapor of phosphorous may be condensed by any suitable contrivance, or lee bumed, and the immediate production of phosphoric acid bo effiected.

New Direct Vision Spectroscope.

At the soirce of the Royal Society, Mr. Browning exhibited a direct vision spectroscope, small enough to be carried in the pocket, yet so powerful, that it shows the \mathbf{D} lines widely separited. The instrument contained ten prisms; four of these were of the great specific gravity 4%. This is the densest flass that has been made for optical use in Englanu. Although it contains a great quantity of lead, it scems to preserve a good surface. But in MIr. Browning's arrangement of the prisms, the oxidizable surfaces are so completely protected from the action of the atmosphere, that the snectroscope might be used in a chemical laboratary:

Measurement and Weights.

A well proportioned man,
Mcasuring 6 ft. should weigh... 17 j libs.

"	5 ${ }^{\text {a }}$ "	$11 \mathrm{in}_{6!}$	"	... 170	"
"	5 "	9 "	*	... 160	"
،	$5{ }^{\text {¢ }}$	S ${ }^{\text {c }}$	*	... 155	"
*	$5 \cdot$	7 "	"	... 150	"
"	$5{ }^{\text {¢ }}$	6^{6}	"	... 145	${ }^{\prime}$
"	$\overline{5}$	5"	*	... 140	"
"	戸"	$4^{\prime \prime}$	${ }^{6}$... 135	"
"	5 "	3 "	"	... 130	"
"	5"	$2 "$	6	... 125	"
"	5 "	$1 "$	6	... 120	'
"	5 "			115	

This table has been estimated from the measurement and weight of two thousand six Inundred and fifty healthfal jiersons (2,650). The averages (not the actual figures) are given, and the curious fact appears that fur every inch in height shove five up to 6 feet, a healthy person ought to weigh an additional five pounds.

In weighing, an allowance of one-serenteenth should be made for clothing; thus a person weighing 170 pounds should be put down at 160, when denuded. - The Probe.

Sugar from Pampkins.

We condense the following from a Southern cotemporary for the bencfit of our readers:

During late years, sereral mure or less succossful attempts liare been made to introduce into the Vinited States, sugar producing
plants to replace the cance. The beet root and somghum are anong the number, but one of the most valuable, which is cultasated in every enrufield in the Midille States as at side product, has been quitu neglected. This phant is no other than the common pumphan, t^{\prime} e C'ucurlita pepe of butanists. Its pernod i i harvesting lasts longer than that of the inect, it is casier preserved and its refuse is , ust as valuable for the fecding of stuck. Pumpkins weigh from 00 to 60 pumads; they furnish about 4 per cent of sugar, theirentents in juice is 80 per cent. This juice m dicates from 10 to 11 on Bunnés arevanter.
The sugar obtained from pumphas is of a good grain and culor. Befure refiantis, a has a olight-flavor of melon. The sirup is of a very dark green culor, heanly wash, and tast: like cane sugitr.

In Hungary, since the gear 1837, several manufactories for making sugar from pmmpkins have been in operation. The treathent of this fruit is perfectly identical with that of the leet root, and the machinery used for the purpose the same. - Siciontefic Amereche.

Neutral Carbouate of Ammonia.

It has been generally supposed that this salt conld not be obtained in it solid form, but E. Divers has recently succecded in prepariag it by dissolving commercial sesquicarbonate of ammonia in aqua :ummonia :amd ammoniacal gas; also, by passing ammoniacal gas throngh the solution of the commercial carbonate and cooling the mixture, the new salt will crystallize out. The simple carbonate of ammonia forms silly crystals, castly suluble in water, soluble m 70 rolunes of alcohol, amd very soinble in the air.
The mean of seremal analyses gave:-
Carbonic Acid. $35 \cdot 60$
Аминоиіа
$29 \cdot 52$
Water
$31 \cdot 5 \mathrm{~S}$
$100 \cdot 00$
Corresponding to the formula $\mathrm{NH}^{+} \mathrm{O}, \mathrm{C}(\%$ + HO. Journill of Applied (7emistry.

Syrup of Orgeat.

We have often been desired to give a formula for making a good syrup of orgeat, as the article commonly sold by druggisis and others at the soda fountain is very inferior. We have recently seen a very fine syrup, and lave been farored with the recipe for making it. Take of the kernels of swect almonds 1 pound; of bitter almonds, 2 dmachms; deprave them of the skin; beat them in a mortar to a paste, and add barley water, 1 qt.; strain and add white sugar, 3 lbs. orange fower water, one tablespounful, and brandy, 1 half pint. The barley water is made by wishoms 2 ounces of barley $t 0$ clear it of extrancous matter, then boiling it in half a pint of water for five minutes, rejectuy the resultug li-1 quid. It is then boiled in tro quarts of water, until it is reduced to one cuart, and strained. - Jour. of Applicel Chemistry.

Preparation of Podophyllin.

The Jonrnal ie Pharmacic i'Aurers gives the following recipe for the prepumation wi, podophyllin - linil the mot of $y^{2 m A n p h}$ ghum pellatum with lime, and yrecipitate the lime from the filtered decoction with donble sul-
phate of iron and aine ; evaporate the filtrate to at syrup consistence, treat the latter with alcolaul, amilter again; ceraporate the alen holte solution, and re-dissolve in briling wa iter. On coolng a depusit of pundophylin is ubtinned. - Chement ami Drughist.

Flini Cavities in Minemals.-"Pruc. Roy Sne,"No. 109, cuntaits all isupurtut papur hy XLessrs. Surbs and Buther, unt thad cavities in rubies, sapphires, diamomes, ctc. A specimen of sapphire, of which they spual, evhibits a remarkable catity, contanins a huill which aygears tos be liguidubube achd. 1 They said of this thaid, "Thunioh the exp,am$\operatorname{sim} 1$ lelow 30° (Cent.) was very great, cumbparen with that of any vther houm substances, except liquid carbonicacidand nitrous nvile, when the temperature suse above 30^{-} (C.), it was so very extraurdinary, that it was । not until after having preformed the experiment over and over again that Mr. Sorby felt confidence in the results." They foumd the expansim " 80 times as much as that of water \mid weuld be, 69 times as much as air and permanent gises. Above 32^{2} (C.) the fluid quite filled the carity, so that its further expansion could not be asertained.
'l'm Lasis Inech, Trocheta subviridis. Some interesting correspondence has been published in "Lamd and Water," proving that the abore lecels is a native of this comtry, as 1)r. Gray allirmed in 1850. Some specimens sent by a correspondent, were recently examined by Mr. Henry Lee, Who identificd them with the Tracherta subririeles of Dubochet. He showed them to Dr. Baird and the Res. W. Houphton, by whom the identification was confirmed. When Mr. Baird put some of them into strong spirits, the colour left them, and gave at fine green hae to the fluid. Mr. Houghton shows that Dubochet considered them entirely terrestrial, while I Moyuin Tandon asserts that lie kept them alive in water for more than fifteen days. Mr. Houghton says that neither of the indivaluals sent to himseemed at all at home when phaced in water.

Preschiming in Cumar Pemonicals.-A most dangerous practice prevails of mblishing in some of the cheajs literature of the day various reccipts for the cure of minor ailments, and it is one that is certainly umon the increase. Many of the prescriptions so given are alosurd, and even dangerous; and this is not to be wondered at if we consider that the writer is often rery deficient in all real knowledge of medicine, and that he is: assisted by the errurs of the prater, to whom the symbols of quantities are so many hicroglyphics. Our attention has been called to the following prescription, fur instance: "Syr.
of poppies, ome ounce and a half; syr. of squills, half an ounce; of tincture of digitalis, thirty drops; a teasporanill to be given to a child frequently." We can quite man- 1 sine a fractious baty being dosed anto the effectual quietness of death by such a mix-ture- Lancet.
To Clehri vemy Dirti Brass.-Rub some ibichromate of protass fine, pour over it abont twice the bulk of sulphuric acid, andi
mix this with an equal quantity of water. The dirtiest brass as cleaned matmee. Wash inmuediately in plenty of water, wape at, and rub periectly dry and polish with powdered r.ttenstone.

Conuestive Imeabachr. - Charactorized by pallor of the countenamee, dull eye3, dhated pupils, cold extremuters, soft and fecble pulse. Give the fluid eatrict u_{2} belladoma, twenty drops to fuur ullaces of water; teaspoonful, every two hours.-Vinirersty Jourmal.

Cumblaiss - Ouc of the best remedies, is the free applimation of the strong tincture of c:apsicmm.

Tromrin wite - ssmall picce of cotton wool, qatwratod with amm ni.s, and anserted moto the ewvity af a decayed and achings towth, is said to :itfort instamtancuas rehef.

zotes mil (Vurries.

7'. ('. asks regrding Sm. Fumin Iowm:"Is there any objection to pouring the iodide, withont filtering, into the syrup, ambllowing it to charify by subsidence; it seems to me to keep hetter. I tried the addition of tartaric acid, but it caused the syrup to change color. I refer to syrup made with sugar."

We see no objection to the omission of filtration, execpt non-compliance with the oflicinal directions. Yun are doubtless aware that the quantity of iron specufied is much larger than is requred for combination with the iodine; 28 parts of iron suffice for 120 parts of indine, while the propurtion ordered in the l^{\prime}. B. is 1 to 2 , so that by using the mafitered iodide, you have a large excess of metallic iton present, which, you rightly surmise, tends to preserve the syrup unchanged. Wo should prefer to filter the solution, and inmerse in the syrup a strip of bright iron. llegariling the latter part of your note, wo refer yon to a papre on the subject in our present issue.
I. Y: Z.-Cologise Water.-The following form is said to have been given by one of the Forinas, and was published as genuine in a German japer, a few years ago:-

Tinct. Flur. Geranma ruser. g. s.
S. V. R.

9 gals.
Add the ingredtents to the spirit in the above order, and macerate for tro weeks.
Gunstunt Reader. -Stainson Glass.-These may be removed by applying a mixture of hydrohluoric acid 1 past; water 5 parts. The dilute acid should be applied by a tuft of cotton wool attached to the end of a stick; otherrise, the fingers might sustain injury. After the expintion of furi or fire minutes, wash well nith water. Scratches in lenses, wa suectacle ghasses, may be rendered unobsarrable by this trentment.

WIIOIESAIF PRICES CURREINT-MMAT, 1869.

[^0]: - From "Chlomform, and a Net Hethot of Administering it." By A. 3f. Moseingigh, S.D., Toronto.

