CIHM
 Microfiche Series
 (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the best origina copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below

Coloured covers /
Couverture de couleur
Covers damaged/
Couverture endommagèe
Covers restored and/or laminated /
Couverture restaurée el 'u pelliculèe
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes gėographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion elong Interior margin / Le reliure serrée peut ceuser de l'ombre ou de la distorsion le long de la marge intérieure.

Biank leaves edded during restorations may appear within the text. Whenever possible, these heve been omitted from filming / Il se reut que certaines pages blanches ejoutées lors d'une restauretion apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:
Various pagings.

L'Institut a microfilmé le meilleur examplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuver exiger une modifications dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages / Peges de couleur

Pages damaged/Pages endommagées
Pages restored and/or laminated /
Pages restaurées eVou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached/ Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de limpression
Includes supplementary material/
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., heve been refilmed to ensure the best possible image / Les pages totalement ou pertiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveeu de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolouretions are filmed twice to ensure the best possible image / Les peges s'opposant ayant des colorations variables ou des décolorations sont filmees deux fois afin d'obtenir le meilleur image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmi au taux de réduction indiqué ci-dessous.

The copy fllmed here hes been reproduced thenks to the generosity of:

National Library of Canada

The imeges eppeering here ere the best quaiity possible considering the condtion end iegibility of the orlginel copy end in keeping with the filming contrect specificetione.

Original copies in printed peper covers are filmed beginning with the front cover end ending on the lest pege with e printed or lllustreted Impression, or the beck cover when epproprlete. All other originel copies ere filmed beginning on the first pege with e printed or illustreted impression. end ending on the last pege with e printed or illustreted impression.

The iest recorded freme on eech microfiche shell contain the symbol - (meening "CONTINUED'), or the symbol ∇ (meening "END"). whichover epplies.

Meps, pietes, cherts, atc.. mey be filmed et different reduction retios. Those too lerge to be entirely included in one exposure ere filmed beginning in the upper laft hand corner, ieft to right and top to bottom, es meny fremes is puquired. The following diegrems illustrete the method:

L'exempleire fllmb fut reproduit grace to gendrosite da:

Bibliothèque nationale du Canada

Les imeges suiventes ont dth reproduites susc le plus grend soin. compte tenu de le condition st de le nertete de l'exemplaire filmd. et en conformitt evec ies conditions du contrst de fllmege.

Les exemplaires origineux dont le couverture sn pepier est imprimbe sont filmds en commencent par io promior plet et en terminent soit pse le dernidre pege qul comporte une empreints d'impression ou d'iliustretion, soit per to second plet, selon te ces. Tous les sutres exemplairss origineux sont fllmbs en commencent per to premidre pege qui comporte une empreinte d'Impression ou d'llustretion ot en ferminent per le dernidre pege qui comporte une tolle empreinte.

Un des symboles suivents eppereitra sur la dernidre imege de cheque microfiche. selon is ces: io symbole - signifie "A SUIVRE", le symbole ∇ signifle "FIN".

Les certes, plenches, tableeux, etc., peuvent otre filmds ad des taux de reduction differents. Lorsque lo document est trop grend pour etre reproduit en un soul clichd, il est filmd partir de liengle supdrieur gouche, de geuche droite. ot de hout on bes. en prenant le nombre d'imeges nucessoire. Les diegremmes suivents lliustrent le methode.

MICROCOPY RESOUUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

THE MOTH BOOK

PLAisl (Frontismect)

Explanation of Plate I (Frontispiece) LARVE of moths

Hylvicus chersis Hübner.
Callosamia promethea Drury.
Cucullia convexipennis Grote \& Robinson.
Citheronia regalis Fabricius.
Euchatias egle Drury.
Sibine stimulea Clemens.
Catocala innubens Guenée.
Samia cecropia Linnæus.
Prolimacodes scapha Harris.
10. Seirarctia echo Abbot \& Smith.
11. Mamestra picta Harris.
12. Achatodes zea Harris
13. Datana ministra Drury
14. Phobetron pithecium Abbot \& Smith
is. Nerice bidentata Walker.
16. Eurycytarus confederata Grote \& Robinson.
17. Lycia cognataria Guente.
18. Cersra mulliscripta Riley.
19. Tortricidia testacea Packard.

THE MOTH BOOK
 369. S.
 BARRIE Public Library.
 1862

A POPULAR GUIDE
 TO A KNOWLEDGE OF THE MOTHS OF
 NORTH AMERICA
 BY
 595
 \& 137

W. J. HOLLAND, D.D., Pr. D., Sc. D., LL.D.

DIESCTOE OP
the cainecir museum, pittibuigh, pa.; lati chancellor of the western university of pennsylvania; president of the Entomological society of wistein penmaylyania; fellow of the zoological AND ENTOMOLOGICAL SOCIETIES OP LONDON ; MEMBER OF THE entomological society of rance :

ETC., ETC.

WITH FORTY-EIGHT plates in color photography, and numerous illustrations in the text, reproducING SPECIMENS in the collection of the author, and in various public and rivals collections

TORONTO:
WILLIAM BRIGGS

$$
\begin{aligned}
& \text { QLS } 48 \\
& H_{6}
\end{aligned}
$$

$$
-11596
$$

\square
'/1 l., rins fin, nth is ?

Explanation of Plate Vil

(The specimens figured are cotitained in the collection of W. J. Holland.)

1. Pachysphinx modesta Harris, of
2. Pachysphinx mudesta occidentalis Henry Edwards, f
3. Sphinx cerisyi Kirby, $\%$.
4. Calasymbolus exracata Abbot \& Smith. $\delta^{\text {a }}$.
5. Protoparce rustica Fabricius, \%.
6. Chlenogramma jasminearsm Boisduval, \circ.
7. Hyloichs drupiferarum Abbot \& Smith, σ^{7}.
8. Hylowius chersis Hübner, \circ.
[^0]The Moth Boon

TO MY HONORED FRIEND.

 ANDREW CARNEGIE,WHOSE NAME IS A SYNONYM FOR FINANCIAL
SAOACITY AND PRACTICAL BENEVOLENCE,
I DEDICATE THIS BOOK
\square

PREFACE

WHEN a few years ago I published "The Butterfly Book," I stated in the preface to that voiume that I would foliow it by the preparation of a similiar work upon the moths of the United Ststes and Canada, provided the reception given that venture shouid seem to justify me in so doing. "The Butterlly Book" was very favorabiy received, and not oniy l, but my pubiishers, have been besleged with ietters from ail parts of the continent, urging the fuifiliment of the provisional promise made by me in 1898. A prompt compilance with these requests has, however, unfortunateiy been impossibie, owing to the fact that my ollicial duties, which are numerous and exacting, prevent me from devoting any but the evening hours to the work of literary composition. In addition to the difficuities arising from this source, there were other and even greater difficuities which presented themselves. The species of moths known to occur in the United States and Canada vastiy exceed in number the species of butterflies found within the same limits. Whiie it was possibie to bring together brief descriptions and numerous iliustrations of the majority of the species of butterflies found in the region, it became evident at the outset that in dealing with the moths it would be necessary to resort to a different method. It became plain that a process of selection would have to be foliowed, if the volume were to be kept within proper iimits as to size and cost. It would have been comparatively easy to have selected from the sbundant material at my command a series of the more showy insects, and to have iilustratid these, but as it is the purpose of the series of the books of which "The Moth Book" is one to provide in reasonabiy compact form manuals which will with toierabie compieteness cover the whoie fieid, the plan had to be materiaily aitered. Instead, thersfore, of attempting to briefly describe and figure all the thousands of species of moths which have been ascertained to

Preface

occur in North America north of Mexico, the effort was made to select thome species which would adequately represent the various families and the commoner and more important genera, thus providing a work which might serve ss an introduction to the study. This process of selection had to be msde with much patience and care. Ano ause of delay arose from the fact thst it is sometimes difficuls to ubtain perfect specimens for purposes of photogrsphic reproduction. Even where species are well known and common, snd are sbundsntly represented in the ccilections to which I have access, it has not infrequently hsppened that it was aimost impossible to discover specimens so perfect as to sllow of their being reproduced by color-photography in a astisfactory manner. Minor defects, which signify ilttle to s working natursiist, and which can easily be eilminated from sight by a drsughtsman, become very serious blemishes when resort is had to methods of photographic iflustration. Much time hsd, therefore, to be spent in searching through various collections for the kind of material which was rejuired, and often in remounting specimens which, while good enough for the cabinet, were not so set as oo parmit them to be employed in the photographic laboratory. Pstience snd perseverance, however, always bring in due time their reward, and I have been able to assembie enough properly prepsred msterial to ensble me in the msin to sccomplish my purpose.
"Brevity is the soul of wit," snd this fact has not been forgotten by the writer in preparing the pages of this book. The limitations necessarily imposed by the space available preciuded the preparstion of lengthy descriptions. This brovity in description is, however, as the writer believes, abundantly compensated for by the lifustrstions in the Plstes. One good recognizable figure of a species is worth reams of mere verbal ciescriptlon. Those who desire to go deeply into the subject, and who wish to familiarize themseives with all its technicalites, will find in the list of works nsmed in that part of the introduction devoted to the bibliography of the subject much that they desire.

I am indebted to many scientific friends for assistance, but to no one sm I more indebted than to Dr. L. O. Howard. the Entomologist of the United States Department of Agriculture and the Honorary Curator of Entomology in the United States National Museum, and to his amiable associates, Dr. William H. Ashmead
and Dr. Harrison G. Dyar. With unfatiing courtesy these gentie, men most generously aided ma by allowing tha to use tha matarial in tha National Collection, when it became nacessary to do so, and in many othar ways gave me invsiuabie help. I gratefuliy acknowiedga the kindness of Prnfessor J. B. Smith, of Rutgers Coliega, who vary graciously went over the Plates containing the Noctwida, theraby saving me in several instancea from errors in determination. My best thanks ara due to Mr. William Beutenmaller, tha Curator of Entomology in the American Museum of Natural Hiatory, New York, for hia most obliging courtesy and for much valued assistance. To Mrs. Beutenmaller'a facile fingers I owe the frontispiece and many iliustrations In the text. To Sir George F. Hampson, of the British Musaum, and to tha Trustees of that great institution, a debt of gratitude is due for many favors, and especially for permission to use aome of the iflustrations amployed in ' 'sir pubilcations. From Dr. Henry Skinner, of the heademy of Natural Sciances in Philadelphia, and Mr. Jacob Doll, of the Brooklyn Institute, I recaived graat asslatance. To the Messrs. F. A. and H. S. Merrick, of New Brighton, Pa., to Dr. William Barnes, of Decatur, lif., and to Mr. O, C. Poling, of Peoria, ill., i return thanks for the joan of specimens used for illustration. The Honorable Walter Rothschild and Dr. Cari Jordan, of Tring, England, placed me under apecial obilgationa oy permitting me to see advance proofs of the pages of their great work upon the Sphingida. To all of these gentiemen, as well as to scores of others, who have lent their aid in the preparation of the book, i extend my heartfett thanks.

Whife recognizing its imperfections, I trust that the voiume will accomplish much to quickan an interest, especially among the young peopie in our schoois and colleges, in that beautiful department of scientific inculry, which it is designed to aome extent to illustrate.

TABLE OF CONTENTS

Dedication pagi
Preface V
Table of Contents vii
List of Illustrations in the Text $x i$
Llst of Colored PIates $x y$xxiii
INTRODUCTION
chap.
i. The Life-History ano Anatomy of Moths PaczHow to distinguish a moth from a butterfly. The Eggs ofMoths; Caterpillars: Structure, Form, Color, Hobits, etc.; ThePupa of Mohs: Form, Covering, etc.; Ana ,ny of Moths:Head, Thorax, Abdomen, Legs, Wings.
if. The Capture, Preparation, and Preservation of Specl- MENS- 19-2Special Instructions for Mounting and Preparing the SmallerForms.
III. The Classification of Moths 22-26The Difficulties of Classification. Various Views Entertainedby Writers. Key to the Families of North American Heterocera,
IV. Books asout the Moths of North America. 27-38Early Writers. Periodicals. General Catalogues and Lists,General Works Containing Information as to the Motbs ofNorth America. Works Particularly Useful in Studying theDifferent Familics of the Moths of North America.

THE BOOK

The Moths of North America North of Mexico.Family 1. The Sphingidx
page
41Family II. The Saturniida
80
Family III. The Ceratocampidx 94
Family IV. The Syntomida 98
Family V. The Lithosiidx 103Family VI. The Arctidx
114
Family VII. The Agaristida 140
Family VIII. The Noctuidx
Fily VII. The Noctuida 151
Family IX. The Nycteolida 288
Family X. The Pericopida 289
Family XI. The Dioptida 291
Family XII. The Notodontidx 292
Family XIII. The Thyatiridx 303
Family XIV. The Liparida 305
Family XV. The Lasiocampidx 311
Family XVI. The Bombycidx 315
Family XVII. The Platypterygida 320
Family XVIII. The Geometridx 322
Family XIX. The Epiplemidx 356
Family XX. The Nolida 357
Family XXI. The Lacosomidx 359
Family XXII. The Psychidæ 360
Family XXIII. The Cochlidiidx 364
Family XXIV. The Megalopygida 368
Family XXV. The Dalceridx 369
Family XXVI. The Epipyropidx 370
Family XXVII. The Zyganida 371
Family XXVIII. The Thyridida 374
Family XXIX. The Cossidx 375
Family XXX. The Egeriidx 379
Family XXXI. The Pyralidx 391
Family XXXII. The Pterophoridæ 415
Family XXXIII. The Orneodidx 417
Family XXXIV. The Tortricidx PAGE
Famlly XXXV. The Yponomeutida 417
Family XXXVI. The Gelechiide 423
Family XXXVII. The Xylorictida 424
Family XXXVIII. The CEcophoridx 428 428
Family XXXIX. The Blastobasidse. 428 428
Family XL. The Elachistidx 429
Family XLI. The Tinelda 430 430
Family XLII. The Hepialide 430
Family XLIII. The Micropterygida 443 444
DIGRESSIONS AND QUOTATIONS
The World of the Dark page
"Splitters" and "Lumpers" 77
Sugaring for Moths 112
The Tragedy of the Night Moth (Thomas Carlyie) 146 146
Walking as a Fine Art 209
Das Lied vom Schmetterlinge (Herder) 270 270
Ode to an Insect (Anacreon) 290 290
Nasu-no Take 291 291
Moth Song (Cortissoz) 301
The History of Silk Cuiture 310 310 316 316
Transformation (Henry Brooke)
Transformation (Henry Brooke)
Living and Dying (Gosse) 321 321
Far Out at Sea (Horne) 355
363
Faunal Subregions
387
387
Cupid's Candle (Felix Carmen)
427
427
434
434
The Erd of All (Tennyson) 445
Clothes-moths
Clothes-moths

LIST OF ILLUSTRATIONS IN THE TEXT

ri. Mal

1. Dahlla hesperioides Pagenstecher 3
2. Egg of Peridroma saucia 5
3. Egg of Samia cecropia 5
4. Larva of Hyloicus kalmlæ 7
5. Pupa of Telea polyphemus 10
6. Pupa of cut-worm in underground cell 10
\%. Front vlew of the head of a moth 12
7. Lateral view of the head of a moth 12
8. Antennar of moths 13
9. Antenna of Telea polyphemus 13
10. Legs of a moth 15
11. Diagram showing the structure of the wings of a moth 16
12. Neuration of the wings of Hepialus gracilis 17
13. Figures showing the frenulum and the retinaculum 17
14. Figure showing the maculation of the wings of a Noctuid 18
15. Setting-needle used in mounting microlepidoptera 19
16. Setting-board used in mounting microlepidoptera 20
17. Double mount 21
18. "As it is not done" 26
19. Three joints of the antenna of Protoparce quinquemacu- latus 41
20. Neuration of the wings of Sesia tantalus 42
21. Pupa of Protoparce quinquemaculatus 43
22. Isoparce cupressi 48
23. Hyloicus cremitoides 50
24. Hyloicus canadensis 51
25. Protambulyx strigilis 54
26. Larva of Pholus satellitia 65
27. Larva of Pholus achemon 66
28. Larva of Darapsa myron 68
29. Parasitized larva of Darapsa myron so
nc. PACE
30. Microgaster which preys upon the larva of Darapsa myron 69
31. Pupa of Darapsa myron 69
32. Larva and moth of Sphecodina abbotti 70
33. Light forim of larva of Celerio lineata 76
34. Dark form of larva of Celerio lineata 76
35. Philosamia cynthia 81
36. Cocoon of Samia cecropia 83
37. Larva of Callosamia promethea 85
38. Cocoon of Callosamia promethea 85
39. Larva of Actias luna 87
40. Larva of Telea polyphemus 88
41. Cocoon of Telea polyphemus 88
42. Larva of Automeris io 90
43. Eggs of Buck-moth 92
44. Larva of Buck-moth 92
45. Anisota rubicunda, larva and pupa 95
46. Crambidia pallida 104
47. Crambidia casta 104
48. Palpidia pallidior 105
49. Hypoprepia fucosa 106
50. Hamatomis mexicana 107
51. Comacla simplex 107
52. Bruceia pulverina 108
53. Clemensia albata 108
54. Hlice unifascia 109
55. Illice subjecta 109
56. Lerina incarnata 111
57. Dodia alberto 117
58. Haploa lecontei 119
59. Haploa contigua 119
60. Euerythra phasma 120
61. Larva of Ecpantheria deflorata 120
62. Turuptiana permaculata 121
63. Seiraretia echo 122
64. Alexicles aspersa 122
65. Estigmene prima 122
66. Estigmene acrea 123
67. Isia isabella 125
на. 69. Caterplilar and pupa of Isia Isabella PACE
68. Phragmatobia fullginos? 125 125 126
69. Phragmatobia yarrowi
70. Apantesis anna 127 127
71. Kodiosoma fulva 130 130
72. Ectypia bivittata 133 133 133
73. Euchatias egle
74. Euchatias egle 135
75. Pygarctla eiegans
76. Pygarctla eiegans 136
77. Hypocrisias minima
78. Hypocrisias minima
79. Egg of Copidryas gloveri 136
80.
81. Pupa of Copidryas gloveri 142
82. Larva and moth of Copidryas gloverl 142
83. Tuerta sabulosa
143
143
84. Alypia disparata
I44
I44
85. Alypia octomacuiata
144
144
86. Alypiodes bimaculata
145
145
87. Apatela populi, \&
154
154
88. Apatela populi, larva
154
154
89. Apatela oblinita
158
158
90. Apharetra dentata
91. Apharetra dentata
158
158
92. Apharetra pyralis
93. Apharetra pyralis 159
94. Cerma cora 161
95. Copibryophiia angellca 162
96. Platyperigea præacuta 164
97. Platyperigea discistriga 164
98. Fishea yosemite 170
99. Momaphana comstocki
172
172
100. Pyrophila pyramidoides, larva
173
173
101. Larva of Laphygma frugiperda
174
174
102. Moth of Laphygma frugiperda 174
103. Podagra crassipes 178
104. Abagrotis erratica 180
10I. Metalepsis cornuta 181
105. Setagrotis terrifica 181
106. Agrotis ypsilon 182
107. Pronoctua typica 185
108. Feltia subgothica
109. Feltia subgothica
186
186
110. Eucoptocnemis fimbriaris 190
ne.
pact
1c7. Mamestra pleta 194
111. Trichopoiia aerrata 199 199
112. Eupolia licentiosa 199
tio. Larva of Heliophila unipuncta 206
113. Pupa of Heliophila unipuncta 200
114. Moth of Heliophila unipuncta 201
115. Larvac and eggs nf Heliophiia albilinea 202
116. Neieucania bicolorata 203
117. Stretchia muricina 205
118. Perigrapha prima 205
119. Xylina antennata 206 206
120. Asteroacopus borealis 209
121. Bellura gortynides 211
122. Gortyna immanis 212
123. Larva of Papaipema niteia 213 214
124. Ochria sauzelite
125. Ochria sauzelite
126. Pseudorthosia variabilis 216
127. Selicanis cinereola 216
128. Orrhodia californica 213
129. Tristyla alboplagiata 220
130. Pippona bimatris 221
131. Bessula luxa 221
132. Oxyenemis fusimacula 221
133. Boll-worm feeding on tomato 223
134. Heliothis armiger 223
135. Derrima stellata 224
136. Pseudacontia cri 'aria 225
137. Graperia magnift. 225 225 226
138. Trichosellus cupes
139. Trichosellus cupes
140. Eupanychis spinosx 226 226
141. Canidia scissa 226
142. Palada scarletina 229
143. Sympistis proprius 229
144. Heliodes restrictalis 230
145. Heliosea pictipennis 230
146. Eupseudomorpha brillians 231
147. Larva of Psychomorpha epimenis 232
148. Pseudalypia crotchi 232

List of Illugeretions in the Trext

na.
pacs
pacs
145. Larva of Euthisanotia grata 233
146. Acherdoa ferraria
146. Acherdoa ferraria
234
234
147. Neumcegenia poetica 235
148. Autographa brassica 239
149. Diastema tigris 241
150. Eutelia pulcherrima 242
151. Alabama argillacea, egg, iarva, and pupa 243
152. Anepischetos hlpartita 245
153. Diallagma iutea 245
154. Incita aurantiaca 246
155. Trichotarache assimilis 246
156. Thalpochares ætheria
249
249
157. Gyros muiri
249
249
158. Tornacontia sutrix
250
250
159. Cerathosia tricolor 253
160. Hormoschista pagenstecheri 253
161. Sylectra erycata 254
162. Melanomma auricinctaria 255
163. Argillophora furcilia 255
164. Parora texana 255
165. Capnodes punctivena 277
166. Selenis monotropa 277
167. Latebraria amphipyroides 279
168. Epizeuxis americalis
280
280
169. Epizeuxis amula 280
170. Zanclognatha protumnusalis 281
171. Sisyrhypena orciferalis 282
172. Hypenula cacuminalis 283
173. Hypenula opacalis 283
174. Tetanolita mynesalis 284
175. Dircetis pygmea 284
176. Salia Interpuncta 285
177. Lomanaltes eductalis 285
178. Hypena humuli 28,
179. Eunystalea indiana
295
295
180. Euphyparpax rosea 298
181. Cargida cadmia
301
301
182. Hemerocampa leucostigma, moth 306
Liet of ILIumeration in the Textna.189. Hemerocampa leucostigma, female moth, larva, and
male and female pupre 307 307
184. Hemerocampa leucostigma, full grown female larva 309
185. Doa ampla
310
310
186. Leuculodes lacteolariz
312
312
187. Hypopacha grisea 313 313
89. Malacosoma disstria, mature larva
89. Malacosoma disstria, mature larva
190. Malacosoma disstria
190. Malacosoma disstria 314 314 316
191. Larva of Bombyx morl
191. Larva of Bombyx morl 316
192. Cocoon of Bombyx mori.
192. Cocoon of Bombyx mori.
193. Moth of Bombyx morl 316
194. Eudeilinea herminiata 320
195. Paleacrita vernata, egg, and larva 325
196. Paleacrita vernata, male and female moths 325
197. Alsophila pometarla, egg, larvz, and pupa 336
198. Moths of Alsophila pometaria 326
199. Larva of Eols ptelearia 334
200. Moth and cocoon of Eois ptelearia 335
201. Fernaldella fimetaria 337
202. Cymatophorz ribearia, moth 340
203. Egg of Goose-berry span-worm 340
204. Goose-berry span-worm
204. Goose-berry span-worm 341 341
205. Coniodes plumigeraria 346
206. Coniodes plumigeraria, larva 346
207. Nigetia formosalis 358
208. Oiketicus abboti 361
209. Thyridopteryx ephemeraformis 361
210. Harrisina americana, larva, and moth 372
211. Harrisina americana, larve on grape-leaf 373
212. Zeuzera pyrina 376
213. Inguromorpha basalis 37^{8}
214. Cossula magnifica 379
215. Synanthedon acerni 386
216. Desmia funeralis. 392
217. Glyphodes quadristigmalls 394
218. Phlyctanodes sticticalis 395
219. Phlyctenodes sticticalis, larvx 396
No.
PAGE
PAGE 220. Phlyctrenodes sticticalis, pupa 396
221. Hypsopygiz costalis 400
222. Pyralis farinalls 401
223. Diatrez saccharalis, larva 403
224. Cornstalk attacked by Dlatrea saccharalis 404
225. Moth and pupa of Dlatrea saccharalis 405
226. The Bee-moth 406
227. Mineoia juglandis 408
228. Mineola Indigenella, larve and moth 409
229. Mineola Indigenella, larval case among leaves 410
230. Yophodia grossularlie 411
231. Canarsia hammondl 411
232. Ephestla kuehniell2 412
233. Cocoons of Ephestl2 kuehniella 413
234. Larva of Ephestia cautella 414
235. Ephesti2 cautella 414
236. Plodia interpunctella 415
237. Oxyptilus periscelidactylus 416
238. Orneodes hexadactylus 417
239. Eucosma scudderlana 418
240. Ancylis comptana 419
241. Cydia pomonella 420
242. Alceris minuta 421
243. Phthorlmæa operculella 424
244. Gnorimoschema gallasolidaginis 425
245. Anarsia lineatella, larve 426
246. Anarsla lineatella, moths 427
247. Depressaria heraclian2 428
248. Holcocera glandulella 429
249. Walshia amorphella 430
250. Bucculatrix canadensisella 431
251. Bucculatrix pomifoliella 432
252. Tineola bisselliella (The Clothes-moth) 432
253. Tinea pellionella. (The Fur-moth) 433
254. Trichophaga tapetzella. (The Carpet-moth) 434
255. Prodoxus quinquepunctella, larvx 438
256. Prodoxus quinquepunctella, moth 439
257. Prodoxus marginatus 439

List of Illugtrations in the Teat

vic. Pact
258. Prodoxus y-inversa 440259. Prodoxus reticulata440
960. Prodoxus coloradensis 440
361. Prodoxus clnereus 441
262. Pronuba yuccasella
442
442
263. Pronuba yuccasella, pupa 442

LIST OF COLORED PLATES

Produced by the color-photographic process of the Amerlean Colortype

 Company, New York and Chicago1. Larvae of Moths
ACIMOFroniispicce
II. Sphingidx (Hawkmoths)
42
III. Sphingide (Hawkmoths), \&ec. 48
IV. Sphingidx (Hawkmoths) 56
V. Sphingide (Hawkmoths) 62
VI. Sphingidze (Hawkmoths)
70
70
VII. Sphingida (Hawkmoths)
76
76
VIII. Saturnilde, Ceratocampidx, \&c. 80
IX. Saturniidx, \&c. 84
X. Saturnildx, Ceratocampidx, Lasiocampidx 88
XI. Saturniddx, Ceratocampidx, Lasiocampidx, \&cc. 92
XII. Saturniidx, Cossidx, Lasiocampidx 96
XIII. Syntomidx, Lithosiidx, Arctida 108
XIV. Arctiide.
116
116
XV. Arctildx.
122
122
XVI. Arctide, \& \&c.
134
134
XVII. Arctildx, Agaristidx, Noctuide 140
XVIII. Noctuide
156
156
XIX. Noctuidx
164
164
XX. Noctuida
176
176
XXI. Noctulda
182
182
XXII. Noctuidx 188
XXIII. Noctuidx
194
194
XXIV. Noctuidx
204
204
XXV. Noctuidx
210
210
XXVI. Noctuidx 218
List of Colored Plates
facino
FAGI
XXVil. Noctuidz 228
XXV1ll. Noctuidz 240
XXiX. Noctuidz 252
XXX. Noctuida $: 60$
XXXI. Noctuidxe 263
XXXII. Noctuidat 266
XXXIII. Noctuids 268
XXXIV. Noctuidz 270
XXXV. Noctuida 272
XXXV1. Noctuidz 276
XXXVII. Noctuidx 278
XXXVIII. Pericopidæ, Dioptidx, Liparidx, Megaiopygidx, \&c. 290
XXXIX. Notodontidx 296
XL. Notodontidæ, Thyatiridæ, \&c. 300
XLI. Lasiocampidx, Hepialidx, Psychidx, Platyptery- 314
gidz, Lacosomidx, \&c. 328
XLII. Noctuidæ, Nycteolldx, Geometrida 330
XLIII. Geometridx 338
XLIV. Geometridæ 348
XLV. Geometridæ 354
XLVI. Fegeriidx 382
XLVII. Cochlidiidx, Zyganidæ, Thryrididx, Pyralidx 394
XLVIII. Pyralidæ, Tortricldæ, Tineidx, \&c. 412

INTRODUCTION

INTRODUCTION

CHAPTER

THE LIFE-HISTORY AND ANATOMY OF MOTHS

[^1]Oliver Wendell Holmes, The Poet at the Breakfast Table.
The great order of the scale-winged insects, or lepidoptera. by the consent of almost all naturalists has been subdivided into two suborders, the Rhopalocera, or Butterfies, and the Heterocera, or Moths. As Dr. David Sharp well says, "The orly definition that can be glven of Heterocera is the practical one tnat all Lepidoptera that are not butterflies are Heterocera."*

The distinction made between butterflies and moths, according to which all lepidoptera having clubbed antennæ are to be classlfied as Rhopalocera, or butterflies, and those without clubbed antennex are to be classified as Heterocera, or moths, while holding good in the main, yet is found with the increase of our knowledge to have exceptions, and there are a few famllies of lepidoptera, apparently forming connecting links between the butterflies and the moths, in which, while most of the structural characteristlcs are those of the Heterocera, the antennæ are distinctly clubbed. This is true of the Castniide, found in troplcal America, the Neocastniide of the Indo-Malayan region,

Fia. 1- Dahlia hesperiovides Pagenstecher. the Euschemonida of Australia, and certain obscure genera of the Agaristida, among them that remarkable Insect, Dahlia hesperioides Pagenstecher, which occurs in the

[^2]
The Life-Histery and Anatemy of Mothe

Bismarck Archipelago and the Island of Buru. When, a few years ago, I communlcated a specimen of this strange little moth to Sir George F. Hampson, he suggested that a trlck had been played and that the head of a butterfly (a sklpper) had been affixed to the body of a moth, but such was not the case, as a considerable series of specimens in my possession showed. The incident reveals that in classification hard and fast lines, based upon the character of a single organ, can not be aiways adhered to. There is scarcely any generalization in reference to organic structures which students have made which has not been found with the increase of knowledge to have its limitations. While ali this is true, it is neverticeless also true that, so far as the lepidoptera of the United States and the countries of British North America are concerned, the old distinction between the two suborders, based upon the form of the antenna, holds good, wlth the sole exception of the Insects beionging to the genus Megathymus, which are by many authors classified with the Castniida, and by others with the Hesperiida. In the "Butterfly Book" 1 have left these insects with the Hesperiida. Leaving them out of sight, we may say that all lepidoptera found in the region with which this book deais, and which do not possess clubbed antennze, are moths. The easiest way for the beginner who lives in the United States, or Canada, to ascertain whether the insect before him is a moth. is to first familiarize himself with the structure of the antenne of butterflies, and then by comparison to refer the specimens before him to their proper suborder.

Moths undergo metamorphoses anaiogous to those through which butterflies pass. They exist first in the embryonic form as eggs. When the eggs hatih the insects appear as larva, or caterpillars. They are then, afier undergoing a series of moits, transformed into pupze, or cinrysalids, which may be naked, or may be provided with an outer covering, known as the cocoon, which is more or less composed of silk. After remaining for some time in the pupal state, they appear as perfect four-winged, six-footed insects.

THE EGGS OF MOTHS

The egg: of moths, like those of butterflies, consist of a shell containing the embryo and the iiquid food upon which it subsists
until it has attained the degree of maturity which permits it to hatch, or come forth in the first larval stage. The eggs of moths have various forms. Spherical, hemispherlcal, cylindrical, and lenticular, or lens-shaped eggs are common. The eggs of the Cochlidiida, or Slug-moths, are broad and very flat, looking like mlcroscopic pancakes. The surfaces of the eggs of moths are seen under a mlcroscope to be more or !ess ornamented by

Fig. 2.-Egg of Peridroma saucia greatly enlarged. cases the eggs of moths are beautifully spotted and mottled, they are generally quite pliin in color, white, pale green, bluishgreen, or brown. Like the eggs of butterflies, they are provided with a micropyle. The micropyle, in the cilse of such eggs as are globular, conical, or cylindrical, is situated on top. In the case of those eggs which are flattened or lenticular, the micropyle is located on the outer margin or rim.

The eggs are always laid by the female in a state of freedom upon that food-plant which is most congenial to the larva. In

Fig. 3.-Egg of Samia cecropia, greatly enlarged. captivity moths will often deposit their eggs in the receptacle in which they are confined. In such cases, unless the observer knows the food-plant upon which the species feeds, he will be apt to have great difficulty in rearing the larve, unless by a happy chance he succeeds experimentally in ascertaining the proper plant. This may sometimes be done by introducing the leaves of a number of plants found in the neighborhood and observing those to which the young caterpillars resort.

The date of oviposition varies with different fanilies and genera. Some moths deposit their eggs in the fall and the young insect passes the wintir in the egg, emerging when the early springtime brings opaning flowers and leaves. Some moths lay their eggs in the lat:. summer and early fall; the eggs hatch shortly afterward, and tice larva, after molting one or more times, hibernate in the caterpillar state, and in the following spring resume the process of feeding and molting until such time as they are ready to undergo further transformation. Most
moths In temperate regions oviposit in the spring or early summer, and the eggs hatch shortly afterward.

THE CATERPILLARS OF MOTHS

The caterpillars of moths are of course extremely small when they first emerge from the egg. They, however, rapldly Increase in relative size as they continue the process of feeding and molting, and in the case of some of the larger specles become to the ignorant and uninformed even formidable in appearance. The larva of the Royal Walnut-moth, or "Hickory HornDevil," as it is sometimes called, Is a striking object. (See Plate 1, Fig. 4.) Specimens six and seven Inches in length are not at all uncommon. With its curved horns and numerous spines it presents to the uninitlated a truly repellent aspect.

The lai va of the Heterocera, like those of the Rhopalocera, are principally f-hytophagous, that is to say, they feed upon vegetable matter. The food of the vast majority consists of the leaves of grasses, shrubs, and trees. A few larva feed upon woody tissues, and hore long galleries under the bark or In the wood of trees. Oth rs feed upon the pith of herbaceous plants. A number of species feed upon the inside of growing frults. Only a very few species are known to be carnivorous. In Australia there occurs a Galleriid moth, the larva of which burrows Into the fatty tissues of one of the great wood-boring caterpillars of the region, and preys upon it somewhat as is done by the great family of parasitlc Hymenoptera, known to scientific men as the Ichneumonida. Certain Phycids and Noctuids feed upon scaleinsects, in the same way in which the larva of the butterlly known as Feniseca tarquinius feeds upon the same class of insects. Among the Tineida there are certain species which, as is well known, feed upon hair and on horn. Every housewife is more or less acquainted with the ravages committed by the destructive larva of the clothes-moth.

There is considerable variety in the form of heterocerous larve, and still greater varlety in the manner in which their bodies are adorned by various growths and colors. The body, as is the case with the larva of the Rhopalocera, is composed normaily of thirteen rings or sumites, anterior to which is the head.

The head is usuaily prominent, and is provided with mandibies, or jaws, eyes, rudimentary antenna, maxiila, paipi, and a spinneret for the production of silk. The head may be globular, hemisphericai, or cono.d. it is sometimes clert on top, or bifid. It is generaily more or less retractile, or capable of being drawn back, so as to be partialiy concealed in the folds of the anterior somite of the body.

Of the thirteen somites forming the body of the caterpiiiar, the three foremost are thoracic, and each is furnished with a pair of legs which correspond to the six iegs of the perfect insect, or imago. The last two somites of the body are often so closely united with each other as to be superficiaily indistinguishable. The somites from the third to the eleventh inclusive are provided on either side with spiracles connecting with the trachex, through which the creature receives the external air in order to the oxydization of the waste products of the circulation.

Fic. 4.-Larva of Hyloicus kalmia: a, thoracic legs; b, prolegs; c, anal proleg; d, anal horn; e, head.

The body is usually supported at the middle and at the end by prolegs, or false legs. In the majority of famiiies there are four pairs of these prolegs, situated upon the sixth, seventh, eighth, and ninth somites, and a fifth pair situated on the thirteenth or last somite. The latter pair are called the anal prolegs. In the larve of the greater portion of the Geometrida, and in those of numerous Noctuida, the prolegs are reduced in number, and in many of the Psychida they appear to be whoily wanting. in most of the Geometridae the pair found on the ninth and thirteenth somites are the only prolegs, and therefore in order to progress the creature makes a series of movements in whith the body is looped upward. These caterpillars are

The Life-Hintory and Anatomy of Moth

knciwn as "loopers" or "measuring-worms." When, as is the case with many genera of the Noctuida, a less complete abortion of the prolegs occurs, and only a partial approximation to the movement employed by the larva of the Geometride is witnessed, the caterpiilars are said to be "half-loopers," or "semiloopers." As examples of such caterpillars we may cite those belonging to the genus Plusia, in which there are only two pairs of abdominal prolegs. In the family of the Megalopygida the prolegs are supplemented by sucker-like pads on the somites ranging from the fifth to the tenth, inclusive. In the Cochlidiidia the prolegs are wanting, their function being wholly assumed by such sucker-like pads, ranging on the ventral surface from the fourth to the eleventh somites, inclusive. In the Eriocephalida, which are regarded as ancestral forms, there are, as has been pointed out by Dr. T. A. Chapman, eight pairs of abdominal prolegs and an abdominal sucker situated upon the ninth and tenth somites, having the shape of a trefoil or clover leaf. These larvæ are further remarkable in having well-developed antennæ.

After the larve have emerged from the egg and fed for a longer or shorter period, the outcr skin, or epidermis, becomes too small to admit of further growth, and the insect then molts, or sheds its skin, and resumes feeding until increased development makes another molt necessary. The number of such molts varies in the case of different specles. Ordinarily, heterocerous caterpillars do not molt more than five times before transforming into pupx, but some genera molt as often as ten times, while others only molt thrice. The skin which is cast off preserves the outline not only of the body, but also of the horn-like processes, the hairs, and various other appendages attached to the body at the time of molting. The molting period is a critical time in the life of larvx, and those who are endeavoring to rear them should never disturb them in the least at this time.

The bodies of the larva of moths are covered with tubercles, the location and arrangement of which has in recent years received considerable attention from students, and is thought to furnish a clue to the lines of descent of certain families. These tubercles sometimes carry only a single hair, in other cases they carry large tufts of hairs; they may be small and inconspicuous, or they may be developed until they assume the form of great
spines, horns, or bulbous projections. The halrs and spines with which some larve are ornarnented poreess stinging properties. Thls is true of some genera among i .e Saturniida and the Cochlidiida in temperate America and of many genera In the same families and among the Lasiocampide in the tropics. The stinging hairs of a large caterpillar f unis his tropical Africa are employed by the natives in preparing the poison which they put upon their arrows. The inflammation caused by these hairs, even in the case of specimens long dead, I know from personal experience to be very severe.

The coloration of caterpillars is often very striking and beautiful, and in most cases is such as to adapt them more or less to their surroundings in life. Cases of protective mimicry are very numerous. A beautiful illustration of this is seen on Plate l, fig. 15, where the singular form of the caterpillar, combined with Its green tint, suggests the serrated edge of the leaf of the elm, upon which plant it feeds. There is almost endless diversity in the modifications of form and color in the larval stiges of moths, and they are as characteristic as are the forms and colors of the perfect insects.

There is much diversity in the social habits of the larvx of moths. Some are gregarious and exist In colonies which disperse at the time of pupation; but there are a few singular instances, in which the communistic instinct perdures, and leads the entire colony to form a common cocoon, or envelope of silk, in which each individual subsequently spins a sinaller cocoon for itself. In 1893 I had the pleasure of communicating some information in regard to this curious phase of insect life to the pages of the journal of the Cambridge Entomological Club (See Psyche, Vol. VI., p. 385). This habit is characteristic of certain genera of African moths, but has not thus far been observed as occurring in the case of any American species.

THE PUPE OF MOTHS

When the caterpiliar has gone through its successive molts and attained to full development it undergoes the transformation known as pupation. From a life of freedom and motion it passes Into a condition in which freedom and almost all power of motion are lost. The flexible and more or less agile body is

The Life-Hietory and Anatomy of Mothe
encased in hard chitinous rings and sheathings. As a measure of protection during this stage, the insect, befor s transforming into a pupa, descends Into the earth, and forms there a cell at a greater or lesser depth beneath the surface, or else weaves a cocoon of silk about lts body. In some cases the
 transformation takes place at the surface of the eirth under leaves or under fallen branches and the loose bark of trees. In almost all such cases there i- apparently an attempt, though often slight, to throw a few strands of silk about the body of the caterpillar, if only to hold in place the loose material amidst which transformation is to occur. The forms assumed in the pupal stage are not as remarkably diversified as in the larval or imaginal stages. The pupa of moths are generally brown or black in color, though a few are more or less variegated. The bright golden and silvery spots which ornament the pupa of many species of butterflies, causing them to be called chrysalids, are seldom, if ever. found.

Whlle the change into a pupa migut it lirst slght appear to the superficial observer to be disadvantageous because of the loss of motion and the imprisonment wlthin narrow bounds, it nevertheless distinctly marks a progression In the life of the rreature. The pupal case contains within it the moth, as may easily be ascertained by a careful dissection made \ln the very earliest period after the change has occurred,

Fic. 6.-Pupa of Cut-worm in earthen cell. (Riley.) and which becomes very evident at a later tlme when the period of the pupal life is drawing to its close.

In the cocoon or in the cell in which pupation has taken place will always be found the exuviz, or the larval skin, etc., of the caterpillar, whlch have been cast off.

When the time comes for the perfect insect to emerge from the pupa, nature has provlded methods by whlch escape from the prison cell underground, or the tightly woven cocoon, can be effected. In the case of those pupa which lie deeply buried
under the soil escape is inade by means of the power possessed by the abdominal somites, or rings, of moving with a sort of spiral t wist. The pupa "wriggles" itseif upward through the soil untii it reaches the surface, following in its course the line of least resistance, which is generally the line through which the larva burrowed down ward to its hiding place. In this inovement the pupare are often aided by spinous projections at the lower edge of the somites which prevent backward motion. When emergence from a cocoon occurs, the insect is provided with the power of ejecting from its mouth a fluid, which has the property of dissolving and cutting the siiken threads. When the moth first emerges from the pupa its wings are soft and flabby and its body is long and vermiform. The first act is to secure a quiet resting piace. The fluids of the body are in the process of circulation rapidly absorbed from the abdominal region, and, pressing outward under the action of the heart, ciluse the wings to expand and assume their normal form and the other parts to acquire adjustment. There is no more interesting spectacle than to witness the rapid developnient of a moth from its apparently helpless condition at emergence from the pupal stage into an insect strong of wing and often gloriousiy beautiful in coior.

THE ANATOMY OF MOTHS

The body of all lepidoptera consists of three subdivisions, the head, the thorax, and the abdomen. The head bears the principal organs of sense and of nutrition, the thorax those of locomotion, and the abdomen those of generation and in large part those of assimilation, respiration, and circulation.

The reader who desires to ascertain the names and the function of the various organs of the body of moths may consuit in this connection the corresponding portion of the "Butterfly Book," in which the principal facts have been fuliy set forth as to the diurnal lepidoptera. The anatomy of moths does not radically differ in its main outlines from that of the Rhopalocera. The same names are applied to the parts, and the differences which occur are not so much differences in function as in outline.

In studying the head of moths we find that as a rule the head is not as prominent as is the case In butterflies. It is more retracted, as a rule, though in the case of some families,
as the Sphinglde, it is produced well in advance of the thorax, but even in such ences it is generally more aolidly attached to the anterior part of the thorax and is less mobile than in the butterfies.

The auctorlal apparatus is mrmed in

Fi6. 7.-llead of a moth viewed from in front. a, entenna; c, clypous; \quad, eye; oc, ocel-〕и"; p. proboscis. the moths as in the case of the butternies by the peculiar modification of the maxilize into semi-cylindrical and interlocking tubes forming the proboscis. This is enormously produced In some groups, enabling the insect to hover upon the wing over flowers and rob their cups of the honey which they contain. This is especially true of the Sphingidae and some subfamilies of the Noctuida. In other cases, as in the family of the Saturniide and Bombycida, the proboscis is very feebly developed or aborted. In fact, we know that some of these creatures are without mouths and that they do not partake of nourishm(itt in the winged state. They are simply animate, winged reservoirs of reproductive energy, and, when the sexual functions have been completed, they die.

The eyes of moths are often greatly developed. This is especially true of those species which are crepuscular in their habits. The eyes of the heterocera are, as in all other insects, compound. They may be naked, or may be more or less studded with hairs, or lashes, projecting from points lying at the juncture of the various facets making up the organ. This fact has been utilized to some extent in classification, Ocelli, or minute slmple eyes, subsidiary to the large compound eyes, occur in some forms,

Fio. 8.-Head of a moth viewed from the side. a, antenna; e, cye; $o c$, ocellus; m.p., maxillary palpus; i.p., labial palpus; p. proboscis. just above the latter, but are generally so concealed by the covering of the head as to be only recognizable by an expert observer.

The labial paipi of moths, as of butterflies, consist of three joints, but there is far greater diversity in the development of the palpi among the moths than among the butterflies. In some
cases they are but very feebly developed, in others they attain relatively enormous proportions and strangely eccentric forms. Maxillary palpi are found in some groups. The maxillary palpi may have from two to eight joints.

The antenne of moths, which, as has already been pointed out, differ greatly in form from those of butterfies, are attached to the head in the same relative location as in butterflies. Antenne may be filiform, threadlike, fusiform, spindle-shaped, or dilate. more or less swoilen toward the tip. They may be simple, i e., without lateral projections, but this is rarely the case. The shaft may be set

Pio. 0.-Antenne of moths. I_{t} fusiform: ${ }^{2}$ filiform; . dilate: 4 , ciliate: 5, hipetinate: ${ }^{6}$, setosesillate: $\overline{7}$: fasciculate: s_{1} dentate; o. serrate; 10 , lamellate. with cilia, or small hair-like projections on the side of the joints. Such antennes are said to be ciliale. Sometimes instead of cilia we find bristle-shaped projections on the joints. These are called selose antenna. In some

Fic. 10.-Antenna of Tolec polyphemes. Plumose; doubly bipectinate. (From 'Insect Life."
forms both cilla and bristles occur on the antenna. When the bristles are arranged in clusters on the joints of the antennax they are said to be fasciculate. Many forms have tooth-like projections on the antenna; In such cases the antenna are described as den-

The Lifo-Hintory and Anatomy of Mothe

tate. The form and arrangement of the joints may be such as to suggest the teeth of a saw; such antennz are said to be serrate. When on the lower side of the joints of the antennax there are minute plate-like projections, the antenne are described as lamellate. Many moths have pectinate antennæ, the projections resembling little combs, which may be arranged singly or in pairs on each joint. Occasionally, but not often, there are two pairs of such appendages on each joint. When the pectination is excesslve, so as to cause the antennæ to resemble a feather, they are sald to be plumose. Figures 9 and 10 illustrate some of these forms. In addition to the peculiarities which have just been mentioned, antennæ inay be variously adorned with scales, especially upon the upper side of the shaft, and they may be notched, or provided with knot-like enlargements, in which case they are salid to be nodose, or they may be curved, or bent in peculinr ways, when they are described as sinuate.

The thorax, as in butterflies, consists of three segments, the prothorax, the mesothorax, and the metathorax. The prothorax bears the tegule or collar-lappets, the patagia, or shoulderlappets, and the anterior pair of legs. The mesothorax carries the second palr of legs and the fore wings. The metathorax the last pair of legs and the hind wings.

The abdomen, just as in butterflies, is normally composed of nine segments, though the modifications of the terminal segments are often such as to make lt difficult to recognize so many. At the base of the thorax is situated a pair of large tracheal spiracles, and on the other segments pairs of smaller spiracles. Through these spiracles respiration is carried on. At the end of the abdomen, more or less concealed by variously arranged tufts of hair, are the organs of generation, which have in recent years been studied quite closely by a few authors and are useful in distinguishing species.

The legs of moths are composed of coxa, trochanter, femur, tibia, and tarsus, the latter composed of five joints, and armed at its end with twe more or less developed hooks, or claws, known technically as the ungues, and also a pulvillus, or pad, just back of the claws on the lower side. The legs are armed with spines and spurs, and there are different sexual appendages in the males of various genera. The cut (Figure 11) shows the structure
of the legs. It will be well for the student to thoroughly famillarize himself with the location and names of the different parts indicated in this and the following figure.

Fig. 11.-Legs of a Moth. (From "Packard's Guide." p. 231.) 1. Fore Leg. 2. Mioole Leg. 3. Hino Leo.

c. Cora.
f. Trochanter.
f. Fernur.
t. Tibia.
tar. Tarsus.

~. Unques.
sp. 2. Single anterior spur.
sp. 2. Paired medial spurs.
sp. 3. Two pairs of posterior spurs.

The structure of the wings of moths is essentially like that of butterflies, and consists of a framework of hollow tubes which support a double membrane which bears upon its surfaces the scales, which overlap each other like the tiles upon the roof of a house. The tubes, which are known as veins, communicate with the respiratory system and are highly pneumatic. They are also connected with the circulatory system, and are furnished, at least through their basal portions, with nerves.

The fore wing has normally twelve veins. The hind wing has also in primitive forms, as the Hepialida, twelve veIns, but in the vast majority of cases this number has been reduced, and eight veins is the number which is found in the majority of cases in the hind wing. The accompanying figures, with their explanations, will suffice far better than any mere verbal explanation to explain the structure of the wings of moths. (See Figures 12 and 13.)

The relative position of vein five in relation to the median or subcostal systems has been much utilized in recent years by systematist in their classification of the various groups.

The Life-Hiotory and Anatomy of Moths

The fore and hind wings in some of the primitive forms are not connected with each other in the operation of flight. In the Hepialide there is a lobe near the base of the primaries which is

Fio. 12.-Diagram of Wings of a Moth. (After Hampson's 'Moths of India," Vol. I., with modifications.)
A. Fore Wing.
B. Hind Wing.
c.m. Costal margin.
o.m. Outer margin.
i.m. Inner margin.
a.a. Apex.
i.a. Inner angle.
c. Discoidal cell.
d. Discocellulars.
ar. Areole.
f. Prenulum.
${ }_{7}$ a. Subeostal bar.
c.n. Costal nervure, vein iz of fore wing, 8 of hind wing.
s.n. Subcostal nervure.
m.n. Median nervure.
i a, b, c. Three hranches of internal nervure.
2, 3, 4. Three branches of median nervure.
5. Lower radial.
known as the jugum, but it does not appear to serve the practical functions of a yoke. This is iilustrated in Figure 13. In the vast majority of cases a connection between the fore and hind wings is made by means of the frenulum on the hind wing, which hooks into the retinacuium upon the fore wing, as iilustrated \ln Figure 14. The form of the frenulum is of use in determining the sex of specimens, as in the case of the males it consists of a singie curved, hook-like projection, whereas in the case of the females it is split up Into a number of bristles. However, in some
groups, as the Phycitine, the frenulum is simple In both sexes. In some of the families the frenulum is aborted, and Its function is assumed by a lobe-like expansion of the basal portion of costa of the hind wing. The nomenclature of the parts of the wings of moths is not essentially different from that which is employed in describing the wings of butterflies. There are, however, certain conventional terms which have been applied by authors to the markings upon the wings, especialiy of the Nocluida, and Figure 15 will

Fic. 13. - Wings of Hepialus gracilis. Magnified. j, jugum.
and inustrate these terms.
A great deal of useful information in regard to the anatomical structure of the Lepidoptera, and of moths in particular, may be

2

Fio. 14.-Frenulum and Retinaculum. (From "Moths of India," Vol. I.) 1. © ; 2. q.-A. Fore Wino.
B. Hind Wing.
f. Frenulum
F. Retinaculum.
s.n. Subcostal nervure.
m.n. Median nervure.
i.n. Internal nervure.
derived from the study of various manuals and special papers, reference to which will be made hereafter as the various families are successively taken up and studied.

Among works to be particulariy recommended in this connection are those of Professor A. S. Packard and Professor Comstock's "Manual for the Study of Insects." A very useful treatise Is found in Professor David Sharp's two volumes upon the Insecta contained In the "Cambridge Natural History." Every student, as he advances In the study of the subject, will have frequent occasion to consult these useful books, which embody the results of the most recent researches and are invaluable for purposes of

Th Life-Hiotory and Anatomy of Moth

reference. An even more valuable work than these is the great "Catalogue of the Lepidoptera Phalane contalned in the Collectlon of the Britlsh Museum," which is being prepared by Sir

Fig 15. - Wing of Noctuid Moth. (After Beutenmuller, "Bulletin American Museum Natural History," Vol. XIV., p. 230.) C, collar lappet; t , patagium or shoulder lappet; T, thorax: $a b$, abdomen; H, head; p, palpus; E, eye; ant, antenna: b, basa line; bd, hasal dash; ta, transverse anterior line; $c l$, claviform or, orhicular; ms, median shade; ren, reniform; tp, transverse posterior line; ap, apical patch; apex, apex; u, terminal lunules; ${ }_{s t}$, subterminal line; fr, fringes; om, outer margin; ha, hind angle; $d s$, discal mark; el, exterior line; an, anal angle; im, inner margin.

George F. Hampson, and published by the Trustees. The endeavor in thls work is to give a complete view of the entire subject in compact forta, and the learned author has enlisted the coöperation of the most distinguished lepidopterists throughout the world in the prosecution of his great task. The work is of course somewhat expensive, but the working iepidopterist cannot well do without it. Much help may also be derived froin the older works of Burmeister and Westwood, which, though old, are far from being obsolete and useless.

CHAPTER II

the capture, preparation, and preservation of stecimens
"Does he who searches Nature's secrets scruple
To stick a pin into an insect ${ }^{\prime \prime}$
A. G. Chlenachlager, Aladdin's Lamp.

Everything that has been said in "The Butterfly Book" in reference to the capiure, oreparation, and preservation of specimens holds good in the case of the Heterocera. Inasmuch, however, as many of the moths are exceedingly minute in form, It is worth while to state that a greater degree of care must be observed in the coliection and preservation of these minute species than is necessary in the case of even the smaliest butterflies. The best method of coilecting the micro-lepidoptera is to put them, after they have been netted, Into piil-boxes, which have glass covers, or into viais or test tubes of large size. These receptacies may be carried in a bag or pocket by the collector. When he has returned from the field, the specimens may be kilied by subjecting them to the action of sulphuric ether applied to the corks of the vials, or introduced into the boxes on a camel's-hair pencil. By dipping the cork into the ether and moistening it with a drop or two and then replacing it in the vial the Insect is stunned. Sometimes two or three successive appiications of ether are necessary. When the insect has been kiiled and is still

Fio. 16.-Setting needle used in adjusting wings of microlepidoptera upon the glass surface of the setting board.
lax, it Is fixed upon a smail silver pin of a size proportionate to that of its body, and is then transferred to the setting board. Setting boards for mounting micro-iepidoptera should be made
differently from setting boards commonly used for butterfies and larger moths. The best form known to the writer is one, which has for many years been employed by Mr. Herbert H. Smith, the veteran collector. Small pieces of glass about one Inch square, wlth their edges very lightly beveled, so as to remove all sharpness, are spaced upon a strlp of cork fastened to a wide piece of soft pine in such a way that an Interval of from one-slxteenth to oneeighth of an inch occurs between them. This serves as the groove to receive the body of the specimen. Having been fixed upon the pin the insect is placed in one of these grooves. The wings are then carefully expanded with a crooked needle fastened in a handle, as Illustrated in Figure 16, and are then bound

Fio. 17.-Setting hoard for mounting micro-lepidoptera; $a_{\text {, }}$ picces of glass attached to papered cork with shellac; b. base of soft pine ; co., corls; d, white paper covering coris; ee, brads, to which setting threads are tied; ff, pins set firmly beyond groove to secure alignment of setting threads; t, setting threads : $p p$, pins to which setting threads are fastened, and which are stuck into the pinc base to hold down the wings in position; h, small silver pin transfixing thorax of specimer.

In place by a thread which is held in place by a pin, as shown In Figure 17. Though the wings of these small insects may, when mounted, at first curl up a little under the pressure of the thread drawn across them, they generally recover their position after removal from the setting board. The advantage of mounting these insects upon glass arises from the fact that the sharp point of the needle wili glide over the glass and the surface is smooth,

The Capture, Preparation, and Preservation of Bpecimsns
so that they are not torn, nor are the fringes and other delicate portions Injured. In doing thls work it is best to use a readingglass mounted In a frame, so that the operator can see the objects before him magnified two or three diameters. The mounting of micro-lepidoptera taken in the field and put into envelopes, as often has to be done, is a very trying operation. After the insects have been sufficiently dried they may be set up as double mounts, the small silver plns belng thrust through pieces of pith held upon a larger pin. The Pyralida, the Tortricida and all the smaller

Fig. 18.-Double mount. micro-lepidoptera should, If possible, be collected in the way whlch has just been described, and it is only thus that specimens worthy of installation in a well ordered cabinet can be secured.

Larger forms may be placed in envelopes if intended to be transmilted to great distances prior to study. Larve may be Inflated in the manner described in "The Butterfly Book." In all other particulars the directions contained in that volume may be safely followed by the student.
"As the moths around a taper, As the been around a roce.
As the gnats around a vapour,
So the spirits group and close
Round about a holy childhood, as if drinking its repose."
E. B. Blowning, A Child Asleop.

CHAPTER III

THE CLASSIFICATION OF MO'HS

"The filmy thapes that haunt the dusk."
TEnnyson, Ie Mfomoriaw, sciel.
The insects of to-day, like the animals of all other classes found upon the globe, represent lines of descent from an ancestry, which runs back into the remote geologic past. The attempt to trace the lines of descent in any order by studying the resemblance between genera and specles as they exist to-day, while throwing considerable light upon the subject, can never yleid wholly satisfactory results in the absence of testimony derived from the field of paleontological inquiry. The study of fossil Insect life is as necessary to elucidate the story of the development of the Insect world, as the study of fossil vertebrates is necessary in order to understand the manner in whlch existing mammals have been derived from preëxisting forms. At best descent can only be positively asserted within the lines cf those groups, to which naturalists have given the name of families. Withln these it is possible to declare of this or that genus that it has been possibly, or even probably, derived from the same stock as another. Reference to a common ancestral form may safely be predicated of very few families, so far as such assertion of a common parentage rests upon evidences found in the living structures of to-day.

All attempts to classify the lepidoptera in such a manner as to show the derivation of one of the existing families from another, and to maintain a lineal sequence in the order given, must necessarily prove wholly disappointing. The fact is, that the various families represent divergences from the parent stem, which may be likened to the divergence of the branches from the trunk of a tree. Any system of classification, which leaves thls
fact out of sight, is necessarily defective, and as unnatural as it wouid be for a man to lop ofl the branches of a tree, and then, laying them down side by side, declare, as he contemplated the result of his iabors, "This is a tree scientificaily arranged." Inasmuch, however, as in books and cabinets serial order must be preserved, the best that the student can do is to coilocate those forms, which display some traces of likeness, and give some hint of their cominon origin.

Exceedingly different views have been entertained by naturaiists in recent years in reference to the matters which we are discussing, and various schemes of systematic arrangement have been evolved, many of which are contradictory, and not a few of whlch appear to the unprejudiced to be more ingenious than natural. Inasmuch as this book is intended for the use not so much of advanced students, as of those who are entering upon the study of the subject, it does not seem to the writer worth while to encumber these pages with what would necessarily be a lengthy recital of the various schemes for classificatiun to which he has alluded. He is inciined to regard the scheme which has been adopted by Sir George F. Hampson in the preparation of his great work upon the moths of the worid, which is now being issued by the Trustees of the British Museum, as upon the whole as satisfactory as any which has recentiy been evoived. Inasmuch, however, as Dr. Harrison G. Dyar has quite recently pubilshed a List of tine Lepidoptera of the United States, which is certain for many years to come to be used very largely by American students in arranging their collections, it has seemed upon the whole to be best to conform the text of the present voiume to the serial arrangement given in Dr. Dyar's List, although the writer differs very positively from the learned author of that work in his views as to the position which should be held in relation to each other of a number of genera. The last word in reference to the classification of the insects contained in this group has certainly not yet been spoken by any one, and we are very far from having attained in our studies to conclusions which may be accepted as final.

For the assistance of students the writer herewith gives a key to the families which are represented in this book, which is based upon the key given by Sir George F. Hampson in the first

The Claceltication of Methe

voluma of his "Catalogue of the Lepidoptera Phalene," and in the preparation of which he has been assisted by Dr. Dyar.

KEY to the families of north american HETEROCERA.

Anteane not cluhbed or dilated, or frenulum present when cluhbed or dilated. Prenulum present when not otherwise indicated. . 1 -Hind wiag with cell emitting not more than six veins; winge unlike in shape.
Hind wing with cell emitting more than six veins; winge similar in shape
s-Hind wing with vein ic absent . 3
Hind wing with vein 16 present. ss
3-Pore wing with vein g nearer 4 than 6 4
Fore wing with vein 5 from midale of discocellulare or nearer 6
\qquad
-Hind wing with vein 8 absent . Fam. . 4, Symtomide.
Hind wing with vein 8 present. 5
5-Hind wing with vein 8 remote from 7 6
Hind wing with vein 8 touching or approximate to 7 beyond cell. . . is
6-Hind wing with vein 8 anastomosing with cell to near or beyond middle
Hind wing with vein 8 anastomosing with cell near hase only...... 9
Hind wing with vein 8 joined to cell hy a bar. . Pam. 14, Liparide.
7-Ocelli present
Fam. 6, Arctide.
Ocelli ahsent

- Fore wing Pam. so, Nolide.

Fore wing without such tufts Fam. 5, Lithosiide.
9-Antennse with shaft more or lens dilated toward tip
Fam. 7. Ageristide.
Antennse with shaft not dilated
.10
0-Hind wing with veins 3 and 4 stalked...... Fam. 10, Poricopide.
Hind wing with veins 3 and 4 not stalked
. 11
:-Fore wing with costa and inner margin parallel, arched at beew.
. Fam. 9, Nyetoolida.
Fore wing trigonate
Fam. 8, Nacturde.
13-Hind wing with vein 16 absent or not reaching anal angle
Hind wing with vein 19 reaching anal angle...................
-Prenulug present .
sm. 17, Platyptarygide.

3-Frenulum present
. Pam. 28, Thyridide.
Frenulum absent
F: T. 15, Lasiocampida.
14-Hind wing with vein 8 diverging from cell fron , nse.............. . . 85
Hind wing with vein 8 connected or approximate to cell 17
15-Tongue absent; no tihial spurs; frenulum absent. . Fam. 2, Satwriiide.
Tongue and tibial spurs present; frenulum absent
Fam. 3, Ceratocampide.

The Clavalfeation of Mothe

16-hind wing with veln 8 remote from 9 . 89
Hind wing with vein 8 approximated to or united with 7.
17-Proboucis absent; frenulum absent. Fam. 16 , Bombycide. Probosels present .8
18-Hind wing with vein 8 jolned to cell to near middle; vein 5 weak
Hind ..Fam. 12, Notodontide.
Hind wing with vein 8 joined to cell near base only or vein 5 strong

19
19-Fore wing with veins 3 and 4 separate . 10
Fore wing with veina 3 and 4 gtalked. Fam. 22, Dioptide.
10-Fore wing with vein 8 stalked with 9 Fam. 19, Epiplemide.
Fore wling with vein 8 not atalked with $9 .$. Fam. 18, Grometride. 1:-Hini wing with vein 8 joined to cell by a bar . . Fam. : Sphingide.

Hind wing with vein 8 not joined to cell by a bar..Fan. 23. Thyatirida. a,-Winge divided into plumes

Wings not divided into plumes . 23
23-Fore wing divided into four plumes Fam. 32, Pterophoride.
Pore wing divided into alx plumes. Fam. 33, Orneodide.
14-Hind wing with vein 8 absent Fam. 30, Eigeriide.
Hind wing with vein 8 present. as
25-Fore wing with vein \mathbf{g} from middle of diecocellulars or nearer 6 than 4
Fam. 11, Lacuspmida
30-Hind wing with vein 8 anastomosing with or closely approximated to vein 7

Fam. 38, Pyralide.
Hind wing with vein 8 remote from 9
.16
17-Vein 8 of hind wing anastomosing with cell at base 28
Vein 8 free or enited to cell by a bar . 29
88-Hind wing with vein 8 joined to cell to middle; fore wing with a branch to vein \& below. Fam. 24, Mrgalopygide.
Hind wing with vein 8 joined to cell at hase; no branch to vein i below. Fam. 13, Cochlidiide.
s9-Mid spurs of hind tibise very short or absent.
Mid apurs of hind tibie, or at least one, well developed 34
30-Proboscis absent. 38
Proboscis present; vein 8 joined to the cell by a bar
.32
Fam. 27, Zygenide.
3:-Female winged
Female not winged. 32 .
3:-Abdomen extending beyond hind wings Fam. 29, Cosside.
Abdomen not extending beyond hind wings.
33-Antenne short; larve free
. Fam. 15, Dalcoride.
Antennse long as usual; larve parasitic Farn. 36, Epipyropude.
34-Palpi obtuse.
Palpi morc or less acute . 35
35-Head at least partly roughly haired.................................. 35 Head smooth, or with loosely appressed scales.

The Ciscatisation of Merka

30-Anteane with bead oye-cap. Fam. 41, Timeide (part).
Aateane whthout beed erp-cap. 37
37-Maxillary pelpi developed . 38
Marillary palpi sudimoatary. 39
$30-$ Fore wing with veln 7 to outer margin
Farn. 35, Yponomoutide (part).
Fore wing with vein 7 to ecett...........Fam. 41, Timoide (part).
30-Hind wing with vein 8 more or les distinctly connected with cell; outer margin uanlly sinuate.
.40
Hind wing with vein 8 not consected with cell. 4 it
40-Fore wing with vein 7 to outer margin or apex........................
Fore wing with vein 7 to costa
Fam. 36, Gelochitide.
41-Hind wing with veins 6 and 7 nearly parallel
...................... . 4 4
Hind wing with veins 6 and 7 approximated of atalked........ 43
48 -Poterior tibim hairy.
\{ Fam. 38, CEcophoride.
\{Pam. 39, Blastobaside*.
Poeterior tibim amooth
Fam. 35, Ypenomentide.
43-Hind wing elongated ovata, longer than fore winge
Hind wing lanceolate or linear, shorter than forewinge. : . Fam. 40, Elachistida.
44-Maxillary palpi and tibial spurs absent...... Fam. 42, Hepialide. Maxillary palpi and tibial epurs developed. . Fam. 43, Micropherygide.

[^3]
CHAPTER IV

SOOKS ABOUT MORTH AMERICAN MOTH:

This literature of our subject is quite extensive, and the most important portions of it are contained in the publications of various iearned societies and institutions.

The first references to the subject are found in the writings of Linnzeus, Johanssen, Cierck, Fabricius, Cramer, Habner, Geyer, Drur 'nd John Abbot. The works of Clerck, Cramer, Hobner, Geyc. and Drury are ail iifustrated, and contain figures of many of the more showy North American species. Abbot and Smith's "Rarer Lepidopterous Insects of Georgia" gives figures of a number of moths, with their larvze and food-plants.

In 1841 the work of Dr. Thaddeus William Harris, entitled " A Report on the Insects of Massachusetts which are Injurious to Vegetation," was published. This was foilowed in 185a by the work of A. Guente on the Noctueiltes, the Deltoides, and the Pyralites, constituting Voiumes V.-Vlil. of the "Species General des Lepidopteres," forming a portion of the "Suites a Buffon." Many North American species were here described for the first tlme, and some of them were figured in the Atlas of Plates accompanying the work. in 1850 G. A. W. HerrichScherfier of Ratisbon began the publication of his "Sammiung Neuer oder Wenig Bekannter Aussereuropaischer Schmetterlinge," which, appearing in parts, was not completed untii 1869. Good figures of a number of North American moths are contalned in this Important voiume. In 1854 Francis Walker began the publication under the authority of the Trustees of the British Museum of his "List of the Specimens of Lepidopterous Insects in the Coliection of the British Museum." This work, which finally grew to thirty-five volumes, the last of which appeared

Booke abort North Ameriens Moth

in 1866, contains descriptions of a multitude of moths found withln the United States and Canada. Unfortunately Walker's descriptions are not always recognizable, and his classification as to families and genera was at times very careless. In 1859 Brackenridge Clemens published in the Journal of the Academy of Natural Sciences of Philadelphla, Vol. IV., pp. 97-190, a "Synopsis of the North American Sphingldes." In 1860 the Smithsonian Institution issued a "Catalogue of the Described Lepidoptera of North America," compiled by the Rev. J. G. Morris. This catalogue, which was the first to appear, is now antiquated. in 1862 the same institution published a book by the same author, entlted "A Synopsis of the Described Lepidoptera of North America." It is almost wholly a compilation. The first part is devoted to the butterflies of the region. From pp. 122-314 the book is devoted to descriptions of the moths, principally extracted from the writings of Harris, Clemens, and Walker, and these are continued in the Sirpplement, pp. 330-350. The work is not wholly without value.

This brief review of the literature issued previous to the outbreak of the great Civil War in America, covers practically everything of Importance upon the subject which had appeared up to that time. The period which has followed has been characterized by greater activity in all sclentific directions, and the principal works which have appeared upon the moths of the United States during the past forty years are herewith given in a list, which, while not by any means complete, is sufficiently full to enable the student to ascertain where to find information for the prosecution of his studies, when he shall have acquainted himself with the contents of thls volume.

PERIODICALS CONTAINING MUCH INFORMATION IN REGARD TO THE MOTHS OF NORTH AMERICA

Bulletins of the U. S. Department of Agriculture (Division of Entomology). (Published occasionally.)
Bulletin of the Brooklyn Entomological Society, Vols. I-VII, 1878-1885.
Bulletin of the Buffalo Society of Natural Sciences, Vols. I-IV, 1873^{-} 1884.

Canadian Entomologist, Vols. I-XXXIV, 1869-1903, London, Ontario. (Published monthly.)
Entomologica Americana. Vols. I-V, Brooklyn, 1885-1889.

Books about North American Mothe

Entomological News, Vole. I-XIII, 1890-1903, Philadelphia Academy of Natural Sciences. (Puhlished monthly, except July and August.) Insect Life, Vols. I-VII, Washington, 1888-3895
Journal of the New York Entomological Society, Vole. I-X, 1893-1903. (Puhlished quarterly.)

Papilio, Vols. I-III, 1881-1883, New York, Edited by Henry Edwards; Vol. IV, 1884, Philadelphia, Edited by Eugene M. Aaron.

Proceedinga of the Entomological Society of Philadelphia, Vols. I-VI, 1861-8867. (Continued as tue Transactions of tbe American Entomo logical Society.)

Proceedings of the Entomological Society of Washington, Vols. I-V, 8890-1903. (Published occasionally.)
Proceedings of tbe U. S. National Museum, Washington, Vols. I-XXVI, 1878-1903.
Payche. Organ of the Cambridge Entomological Club, Cambridge, Mass., Vols. I-IX, 1877-1903. (Published bi-monthly.)
Transactions of the American Entomological Society, Vols. I-XXX 1867-1903. Philadelphia Academy of Natural Sciences. (Published quarterly.)

GENERAL CAT. ${ }^{\text {G }}$ LOGUES AND LISTS
Grotz, A. R., And List of the Lepidoptera of Nortb America, I Roanson, C. T. (Sphingida to Bombycida.) American Entomological Society, Philadelphia, 1868.
Grote, A. R. List of the North American Platypterices, Attaci. Hemileucini, Ceratocampide, Lachneides, Teredines, and Hepiali with Noten (Transactions American Philosophical Society, 1874).
Gaots, A. R. A New Check List of North American Moths, New York, 1882, pp. 1-73.
Baooxlyn Entowo- Check List of the Macro-Lepidoptera of America, lootcal Society North of Mexico (Brooklyn, 1882, pp. 1-25).
Smitr, Jonm B. List of the Lepidoptera of Boreal America (Philadelphia, American Entomological Society, 189i, pp. 1-124).
Kiray, W. F. A Synonymic Catalogue of the Lepidoptera Heterocers, Vol. I, Sphinges and Bomhyces, London, 1892.
Draz, H. G. A List of North American Lepidoptera (Bulletin U. S. National Museum, No. 52), pp. i-xix, 5-723.

GENERAL WORKS CONTAINING INFORMATION AS TO THE MOTHS OF NORTH AMERICA
Constoce, J. H. A Manual for the Study of Insects, Ithaca, 1895.
Davce, Hanaar Biologia Centrali-Americana, Insecta, LepidopteraHeterocera, Vols. I-II, Text; Vol. III, Plates, London, 1881-1900.

Sooks aboat North Ameriena Morth

Pacearn, A. 8. Guide to the Study of Insecte. Numerous Editdons. A Text-book of Entomology, Now York, 389 s .
Smarp, David The Cambridge Netural History: Insecte, a Vole; Vol. I, s895; Vol. II, 8899 . London and Now York.
Steceren, Herman Lepidopters, Rhopaloceres and Heteroceres, Indigenous and Exotic, with Deacriptions and Colored Illustrations. Reading, Pe., 1872-1877. Three Supplements, 1898-1900.
Walese, Francis List of the Lepidopterous Inwects in the Collection of the British Museum. Vols. I-XXXV, London, 1854-1866.
Riley, C. V. Reporta on the Noxious, Beneficial, and Other Insects of the State of Missouri Noa. 1-9, and Index, 1869-1878.
WORKS PARTICULARLY USEFUL IN STUDYING THE DIFFERENT FAMILIES OF THE MUTHS OF NORTH AMERICA

BPHINGIDR
Gaots, A. R., Ana A Synonymical Catalogue of North America SphisRominson, C. T. gide. (Proceedings Ent. Soc. Philadelphia, Vol. V, 1865, pp. 149-193.)
Gzotz, A. R. Catalogue of the Sphingide of North America. (Bulletin Buffalo Soc. Nat. Sciences, 1873, pp. 17-28.) New Check List of North American Sphingido, (Bulletin Buffalo Soc. Nst. Sciences, Vol. III, pp. 230-2a5.)
Climena, B. Synopais of the North American Sphingides. Uournal Acad. Nst. Sciences, Philadelphia, Vol. IV, 1859, pp. 97-19a.)
Boranuval, J. A. Sphingides, Sesides, Castaiides. Paris, 1874. Vol. I, text; and a series of Plates in the Atlas accompanying the work, which forms a portion of the "Suites à Buffon."
Butlek, A. G. Revision of the Heterocerous Lepidoptera of the Farnily Sphingids. (Tranactions Zoological Soc. London, Vol. IX, 1877, pp. 511-644, Plates XCXCIV.)

Surfa, Jomin B. An Introduction to a Classification of the North American Lepidoptera. Sphingido. (Entomologica Americma, Vol. 1, 188 5, pp. 8 1-87.)
List of the Sphingide of Temperate North Americe. (Entomologica Americana, 1888, pp. 89-94.)
A monograph of the Sphingids of North Americs North of Mexico. (Transactions American Ent. Soc., Vol. XV, 1888, pp. 49-342, Twelve Plates.)

Booke about North Americas Moths

Farnald, C. H. The Sphingide of New Edgland. Orono, Matne, 1886.

Bzutznxüllez, W. Descriptive Catalogue of the Sphingide Found within Fifty Miles of New York City. (Bull. Am.

Rotnschild, Hon W., and Joadan, K. (Novitates Zoologice, 1003.) Thermily Sphingide. work upon the suhject as yet written.
:ATURN1ide
A Revision of the Lepidopterous Family Saturniide. (Proc. U. S. National Museum, Vol. IX, pp. 414437, Three Plates.)
Packard, A.S. Synopsis of the Bomhycides of the United States. (Proc. Ent. Soc. Philadelphia, Vol. III, 1864, pp. 97-1 30 and 331-396.)
Naumacosn, B., and A Preliminary Revision of the Bombyces of America
Diar, H. G

Grotz, A. R.

Grotz, A. R North of Mexico. (Journal New Yorik Ent. Soc. Vol. II, pp. 121-132.)
List of the North American Platypterices, Attacl, Hemileucini, Ceratocampider, Lachneides, Teredines, and Hepiali, with Notes. (Proc. Am. Philos. Soc., Vol. XIV, pp. 256-264.)
ceratocampide
List of the North American Platypterices, etc. (See Above.)
Nzumagen, B., and A Preliminary Revision of the Bomhyces of America
Dyaz, H. G.

Catalogue of the Lepidoptera Phalenne in the British Museum, Vol. I, 1898. Lithosilde
Butlaz, A. G. On the Lepidoptera of the Family Lithosiida, in the Collection of the British Museum. (Transec-
tions Edt. Soc., London, 1877, pp. 325-377.)
Illustratiods of the Zygrenida and Bomhycida of North America, San Francisco, 1874, pp. 242, Ten Plates. (Numerous Lithosiids are figured and
described.)
Hamplon, G. F. described.)
Catalogue of the Lepidoptera Phalense in the British Museum, Vol. II, 1900.
ARCTIDAR

Hampson, G. F. Catalogue of the Lepidoptera Phalans in the British Museum, Vol. III, 1901.

Booka about North American Mothe

Stakteh, R. H. Ilustrations of the Zygenide and Bomhycide of North Americk. (Numerous Aretiids are figured and described.)
Bautamulllkr, W. Detcriptive Catalogue of the Bombycine Mothe Found within Fifty Miles of New York City. (Bulletin Am. Mus. Nat. Hist., Vol. X., pp. 35344.)

Smitr, Joan B. Preliminary Catalogue of the Aretidea of Temperate North America. (Canadian Entomologist, 1889, pp. 169-175, 193-200, and 283-219.)
The North American Species of Callimorpha Latreille. (Proc. U. S. Nat. Mus., 1887, Pp. 349353.)

Lrman, H. H. The North American Callimorphas. (Canadian Entomologist, Vol. XIX, pp. $18 \mathrm{I}-1 \mathrm{~g}$:. $)$
Grots, A. R. Tahle of the Species of Euchates. (Canadian Entomologist, Vol. XIV, pp. 196-1 97.)
agaristide
Hampaon, G. F. Catalogue of the Lepidoptera Phalana in the Collection of the British Museum, Vol. III, pp. 585663 , 5901.
(Consult also Stretch, Neumoegen and Dyar, and Periodicals.)

NOCTUIDA
Hampion, G. F. Catalogue of the Lepidoptera Phalene in the Collection of the British Museum, Vol. IV, at seq.
Gugnés, A. Noctuelites. Spécies Génêral des Lépidoptères. Suites a Euffon, Vols. V-VIII.
Grota, A. R. List of the Noctuidæ of North America. (Bulletin Buffalo Soc. Nat. Sciences, Vol. II, pp. 1-77.)
Introduction to the Study of the North American Noctuida. (Proc. Amer. Philon. Society, Vol. XXI, pp. 134-176.)
An Illustrated Essay on the Noctuide of North America; with "A Colony of Butterdies," London. 1882, pp. 1-85, four colored plates.
Consult also the very numerous papers upon the Noctuida published by Grote in the Bulletin of the Buffalo Society of Natural Sciences; The Canadian Entomologist; the Bulletin of the U. S. Geological Survey, Vol. VI; Papilio; and recently in the publications of the Romer Museum at Hildeheim, Germany,

Smitu, Jonn B. A Catalogue, Bibliographical and Synonymical, of the Species of Moths of the Lepidopterous Superfamily Noctuidse Found in Boreal America, with Critical Notes. (Bulletin U. S. Nat. Museum, No. 44, pp. 1-424.)
This is the mont scholarly and complete work upon the Pioctuide of Americe which has up to the present time been puhlished, and is indispensable to the student.
Consilt also the very numerous papers hy Protcssor Smith whict have been puhlished in tbe Procecdings of the U.S. National Museum; tbe Transactions of the American Entomological Society; The Canadian Entomologist; Papilio, and other periodicals.
Smitn, Jonn B., And A Revision of the Specien of Acronycta and of
Dyar, H. G. Certain Allied Genera. (Proc. U. S. Nat. Museum, Vol. XXI, pp. 1-194.)
Hulst, G. D. The Genus Catocala. (Bulletin Brooklyn Ent. Society, Vol. ViI, pp. 1 $_{3-56 .)}$

NYCTEO:IDE

Neumgern, B., and A Preliminary Revision of the Bomhyces of Americz
Dyar, H. G. North of Mexico. (Journal New York Ent. Soc., Vol. I, p. 117.)
Hampson, G. F. The Fauna of British India, Moths, Vol. II, pp. 365388.

PERICOPIDE

Neumgegn, B., and A Preliminary Revision of tbe Bomhyces of America
Dyar, H. G. North of Mexico. (Journal of New York Ent. Soc., Vol. II, p. 26.)

DIO PTIDE
Nzumaozn, B., And A Preliminary Revision of the Bombyces of Americz Dyar, H. G. Nortb of Mexico. (Journal of New York Ent. Soc., Vol. II, p. izi.)

NOTODONTID\&
Packard, A. S. Monograph of the Bomhycine Moths of America, North of Mexico. Part I, Family 1, Notodontidz. (Menoirs National Academy of Science, Vol. VII, pp. 1-390, Forty-nine Plates.)
Naumggan, B., ann A Preliminary Revision of the Lepidopterous Dyar, H. G Family Notodontida. (Transactions Am. Ent. Soc., 1894, pp. 179-208.)
Schaus, W. A Revision of the American Notodontids (Transactions Ent. Soc. London, 1901, pp. 257-344, Plates XI and XII.)

Book about Nerth Ameriena Methe

TMYATIRIDA

Grotz, A. R. A Revision of the Species of Cymatophorina Found in the United Stater and British Americe, with Descriptions of New Species. (Proce-dings Ept. Soc. Philadelphin, Vol. II, pp. 54-59.)
Syrtw, Joym B Bulletin 44, U. S. Nstional Museum, pp. 27-99.
LIPARIOR
Navigosn, B., And A Preliminary Revision of tbe Bombycen of Americe Draz, H. G. Nortb of Mexico. (Journal New York Ent. Soc., Vol. II, pp. 28-30 and 57-60.)

LASIOCAMPID量
Neumeom, B., and A Preliminary Revision of the Bombyces of Americe Drax, H. G. Nortb of Mexico. (Journal New York Ent. Soc., Val. 11, pp. 152-160.)

Bometcide
Hampson, G. P Pruna of British India, Moths, Vol. I, pp. 31-40.
pLatyptaryoide
Gnotz, A. R. On the North American Platypterygidz. (Transactions Am. Ent. Soc., Vol. II, pp. 65-67.) List of the North American Platypterices, etc. (Proceedings Am. Philos. Soc., Vol. XIV, pp. 256-- 264.)

Naumasm, B., and A Preliminary Revisiod of the Bombyces of America Draz, H. G. North of Mexico. Uournal New York Ent. Soc., Vol. 11, pp. 61-62.)

GEOMETRIOR
Packard, A. S. A Monograph of the Geometrid Moths or Phalsenids of the United States. (U. S. Geological Survey of the Territories, Vol. X, pp. 1-607, Thirteen Plates.)
Hulst, G. D. A Classification of the Geometripa of North America with Descriptions of New Genera and Species (Transactions Am. Ent. Soc., 1896, pp. 245-386.)
Gumppenezeg, C.v. Syatema Geometrarum Zona Temperatioris Septentrionalis (Nova Acta der Kaiser. Leop.-Carol. Deutachen Akad. der Naturforecher, 1887-1897.)

SPIPLEMIDE

Hulst, G. D. Transactions American Edt. Soc., Vol. XXIII, pp. 309-310.
Hampson, G. F. Fruns of British India, Moths, Vol. III, pp. 121-137 NOLIDS
Hampaon, G. F. Catalogue of the Lepidoptera Phalazes in the Collectiod of the British Museum, Vol. II, 1900.

LACOSOMIDA
Nzumacen, B., and A Preliminary Revision of the Bomhyces of Americe Draz, H. G. North of Mexico. Journal New York Ent. Soc. Vol. II, p. 120.)

parchide

Nrumagan, B., and A Preliminary Revision of the Bomhyces of America Dtar, H. G.

North of Mexico. Journal New York Ent. Soc., Vol. II, pp. 111-120.)

COCHLIDUDR
Neumaozn, B., ano A Preliminary Revision of the Bombyces of Americe Dyar, H. G. North of Mexico. (Journal New York Ent. Soc., Vol. II, pp. 64-76.)

MEOALOPTOID皇

Niumaons, B., and A Preliminary Revision of the Bombyces of Americe Dyar, H. G. North of Mexico. Journal New York Edt. Soc., Vol. 11, pp. 109-110.)

DALCERID曷

Nrumaosn, B., ano Canadian Entomologist, Vol. XXV, p. igı.
Draz, H, G
Journal New York Ent. Soc., Vol. V1, p. 132.

EPIPYROPIDE

Dyar, H. G. List of North Americen Lepidoptera, p. 359.
Wesrwood, J. O. Transactions Ent. Soc., London, 1876. p. 522.
ZYOANIDA
Paczard, A.S. Notes on the Family Zygrenids. (Proceedings
Grote, A. R. Essex Institute, Vol. IV. pp. 7-47.)
Catalogue of the Zyguenida of North America. (Bulletin Buffalo Soc. Nat. Sciences, Vol. I, pp. 29-

Starтсн, R. H. 36.)

Illustrations of the Zygrenide and Bombycider of North America.
Nrumaios, B., and Journal New York Ent. Soc., Vol. II, p. 63. (Pyro-
Dtar, H. G.
morphide.)
thyzidide
Hampaon, G. F. On the Classificstion of the Thyridida, a Frmily of the Lepidoptera Phalane. (Proc. Zool. Soc., London, 1897, pp. 603-33.)
cosside
Nuumaozn, B., And A Preliminary Revision of the Bombyces of Americ: Dtar, H. G North of Mexico. (Journal New York Ent. Soc., Vol. II, pp. 160-166.)

Beok about Nerth Ameriean Moh
Balley. J. 8. Some of the North American Comide, with Facts In the Lifa History of Cossus comterouds Lintner. (Bulititin No. 3. Division of Entomology, U. B. Dept. Agrieulture, 1883 .)
meamon
Bevtanyullea, W. Monograph of the Seeide of North Amerlen North of Mexico. (Memoirs of the Am. Mus. Nat. Hibt., Vol. 1, Part 6, pp. 217-352; Plates XXIX-XXXVI.)

PYALBDA
Gumis. A.
Gats, A. R.
hampion, G. F.

Hulet, ©. D.

On Certata Grate-anting Inwete. (Bullotin No. 64. Cornell Ualv. Agric. Enperiment Statlon, ${ }^{8894}$, pp. 47-10s, Fourteen Piaten.)
Famaln, C. H. The Cramblde of North America. (Annual Report Massachusetts Agricultural College, $1896, \mathrm{pp} .1-96$. Nine Plates.)
Ragonot, E. L. Monographle det Phycitins et des Galleriinse. (Romanofr's "Mermoires sur les Lépldopteres, Vols. VII-VIII, 1893-1902.) Volume VIII was completed by Sir Ceorge \mathbb{F}. Hampeon after the denth of the author.

PT胃ROPHORIDA
Finmald, C. H. The Pterophoride of North America. (Special Bulletin, Mase. Agricultural College, 1898, pp. 1-64, Nine Plates.)

Tompascida
Fanwald, C. H. A Synonymical Catalogue of the Described Tor. tricide of North America North of Mexico. (Transactions Am. Ent. Soc., Vol. X, pp. 1-64.)
On the North American Species of Choreutis and Its Allies. (Canadian Entomologist, 1900, Pp. 236435.)

Romimon, C.T Notea on American Tortricide. (Transactlons Am. Ent. Soc., Vol. II, pp. 261-288. Plates 1 and IV-VIII.)
Walamohax, Lond North American Tortricidee. Illustrations of Typical Specimens of Lepidoptera Heterocera to the Collection of the British Museum, Part IV. pp. i-xii and $1-84$. Platen I-XVII.
Zallaa, P. C.

Claunme, B. The Tineina of North America, hy the late Brackenridge Clemens. Being a Collected Editlon of his Writings on that Group of Insects. With Notes by the Editor, H. T. Stainton, London, 1872,
pp. 1-xv and $\mathrm{z}=\mathbf{2 8}$.
Cramazan, V. T. Index to the Described Tineina of the United Statea and Canada. (Bulletin U. S. Geol. Survey of the Territories, Vol. IV, pp. 125-167.)

Sooke abwet Nerit Ampriak Merte
Walmmean, Lons Norts Americen Coloophorm. (Transactions Ent. Boc., London, 3 S82, pp. $429-442$, P1. XVII.) A Revision of the Genera Acrolophus Pocy and Anaphora Clemens. (Transactions Ent. Soc., London, 1A17, pp. 137-173, Plates VII, VIII.)
8 teps Toward a Revision of Chambers's Index with Noves and Descriptions of New Specien. (Insect Life, Vol. I, Pp. 81-84, $133-317,345-150,234$ 138, 287-291; Vol. 11, pp. 23-26, 31-34, 77-83, 316-12e, 150-153, is4-286, 322-326; Vol. III, pp. 325-329, 386-389; Vol. IV, pp. 385-389.)
Draz, H. O. Notes on Some North American Yponomeutide, (Canadian Entomologist, 1900, pp. 37-43, 84-86.)
Buecr, A. New Species of Moths of the Superfamily Tineina from Florida. (Proc. U. S. Nat. Mua., Vol. XXIII, pp. 225-354)
New American Tineina. Journal New York Ent. Soc., Vol. VIII, pp. 234-948, Plate IX.)
A Revition of the American Moths of the Family Gelechiids with Descriptions 'of New Speciee. (Proc. U. S. Nat. Mus., Vol. XXV, pp. 767-938.)
" When simple curiosity pasces into the love of knowledge as auch, and the gratification of the mathetic rense of the beauty of completeness and accuracy seems more desirahle than the eary indolence of ignorance ; when the finding out of the causes of things becomen a source of joy, and he is counted happy who is successful in the seareh, common knowledge of Nature parses into what our forefathers called Natural History, from whence there is but a step to that which used to be termed Natural Philosophy, and now passes hy the name of Phynical Science."-Thomas Hanay Huxlay, in The Crayfish.

THE MOTHS OF NORTH AMERICA, NORTH OF MEXICO

"The laugh at entomology is naerly spent. Known profescort of that science, and members of its 'Soclety,' may now assemble in councll and communicate their observations and inquiries without fear of becoming therasslves subjects for a commiasion do lunatico inquirondo, and buttoraly hunters, net in hand, may now chase their game without being themselves made game of."-Achula Domestice.

ORDER LEPIDOPTERA

SUBORDER HETEROCERA (MOTHS)

FAMILY 1.
THE SPHINGIDAE (HAWKMOTHS)
"The Sphlinz in drowny.
Her wiage afe farled,"-Ematem

The moths composing this family vary greatly in size. Zome African specles are very little more than an inch In expanse of wings. Those which occur In North America are mediuni-s., eed or large.

The body is relatively very stout, the abdomen conic, cyllndric, or flattened on the ventral surface, always protruding far beyond the hind margin of the secondaries, sometimes adorned with lateral or terminal tufts capable of expansion. The thorax Is stout and often advanced beyond the insertlon of the wings. The head is large and generally prominent. The eyes are often large, prominent, and generally naked, never halry. The palpi are well, but never excesslvely, developed. The proboscls is generally long, sometlmes much longer than the body, but in a few genera among the Ambulicince greatly reduced and even obsolete. The antenna are well developed, stouter in the male than In the female sex, thlckening from the base to the middle, or in some genera to nearly the end, usually hooked at the extremity, sometlmes merely curved. The

Fic. 20.-Greatly magnified view of the under vide of three joints of the antenna of P.guin. quemaculatus. joints of the antennxe in the case of the males of some of the subfamilies are equipped at etther end with pecullarly arranged fasclcles of projecting hairs, or cilla, the arrangement

8 ribingidm

of which, as examined under the microscope, is seen to be quite different from that which prevails in any other family of moths. The accompanying illustration (Fig. 20) shows this arrangement in the case of the common Five-spotted Hawkmoth, (Protoparce quinguemaculatus).

The wings are small in comparison with the body. The front wings are very long in proportion to their width, and the costal veins are always very stoutly developed. The tip of the wing is usually pointed, and the margins are straight or evenly rounded, though in some genera, principally belonging to the subfamily Ambulicina, they have undulated or scalloped margins. The hind margin of the fore wings is always much shorter than the costal margin. The hind wings are relatively quite small. The venation of the wings is characteristic. The primaries have from eleven to twelve veins, the secondaries eight, reckoning the two internal veins, velns $: a$ and $i b$, as one. Veins eight and seven are

Fig. a1.-Neuration of wings of Sesia tantalus Linnseus. connected near the base of the wing by a short veln, or bar. The discal cell is relatively quite small in both wings. There is always a frenulum, though in the Ambulicina it is frequently merely vestigial. The general style of the venation is illustrated In Figure 21, which represents the structure of the wings of Sesia tantalus LInnæus. The hawkmoths have prodigious power of flight. A few genera are diurnal in their habits; most of them are crepuscular, flying in the dusk of evening, a few also about dawn.

The larva are usually large. There is great variety in thelr color, though the majority of the North American species are of some shade of green. They usually have oblique stripes on their sides, and most of them have a caudal horn, which In the last stages in some genera is transformed into a lentlcular tubercle. In a few genera the anal horn is wanting. The anterior segments of the bodies of the larva are retractile. When in motion the body is long and fusiform, but when at rest the head and the anterior segments are drawn back, the rings

Explanation of Plate il

(The specimens figured are contained in the collextion of W. J. Holland.)

```
Hamorrhagia thetis Boisduval. \(\sigma^{2}\)
Hamorrhagia tenuis Grote, 8
Hamorrhagia axillaris Grote \& Robinson. \(8^{7}\).
Hemorrhagia axillaris Grote \& Robinson, 8.
Hamorrhagia thysbe Fabricius, ol
Hamorrhagia cimbicijormis Stephens, \&.
Hamorrhagia brucei French, \({ }^{7}\)
Proserpinus flavofasciata Walker. \(?\)
Euproserpinus phaeton Grote \& Rohinson, ot.
Prosorpinus clarkie Boisduval. of.
Pogocolon gaura Abbot \& Smith. \(\sigma^{7}\)
Pogocolon juanita Strecker, 8.
13. Xylophanes tersa Linnæus, \(O^{\circ}\).
4. Celorio lineata Fabricius, \({ }^{\circ}\)
15. Deidamia inscriptum Harris, \(5^{7}\)
6. Sesia titan Cramer, of.
17. Epistor lugubris Linnaeus. \(O^{7}\).
18. Amphion nessus Cramer, or.
19. Sphecodina abbotti Swainson. \(0^{7}\)
2a. Celerio intermodia Kirby, \(\rho\)
21. Cautethia grovei Henry Edwards, ot.
```

The Moth Bloom.

Ephingide

"telescoping" into one another, and the anterior portion of the body being often raised, as illustrated in Plate 1, Figure 1. it is alleged that the habit of assuming this posture, suggesting a resembiance to the Egyptian Sphinx, prompted the application of the name to these creatures. The larve are not gregarious, but feed solitarily upon their appropriate food-plants.

Some forms pupate in a ceil deep under the soil, others spin a loose cocoon among damp falien ieaves and pupate at the surface. The pupe are as remarkable as the larva. A few genera have the proboscls enclosed in a sheath which is separate aiong the greater portion of its course from the adjacent wall of the body. This is illustrated in Figure 22.

Fio. 22.-Pupa of Protoparce quinquomaculatus. (After Riley.)
The Hawkmoths of the United States and Canada fall into five subfamilies, the Acherontiina, the Ambulicina, the Sesiina, the Philampelina, and the Choerocampina.

SUBFAMILY ACHERONTIINFE Genus HERSE Oken

(1) Herse cingulata Fabricius, Plate VI, Fig. 3, 8, (The Pinkspotted Hawkmoth.)

Syn. comvolvuli, var. Merian; affinis Gceze; drurai Donovan; pungews Evchsholts; decolora Henry Edwards.

This large and elegant hawkmoth, the larva of which feeds upon sweet-potato vines and various other Convolvulacea, has been confounded by writers with H. convolvuli Linnaus, which it resembles, but from which it is abundantly distinct. The latter species is confined to the old world. H. cingulata, the only species of the genus occurring in the western hemisphere, ranges from Canada to northern Patagonia, and is also found in the Galapagos and Sandwich Islands. I have a specimen taken at sea in the Atlantic, five hundred miles from the nearest land.

Aphiacide

It settled in the cabin of a ship and was caught by the captain of the vessel.

Genus COCYTIU8 Hübner

The genus Cocylius, which Includes some of the largest hawkmoths which are known, contalns five specles, all of which are found in the tropics of the new world. They may easlly be recognazed by the fact that the third joint of th.: labial palpl is in both sexes prolonged into a small, sharp, conical, naked hom. The larva, which feed upon the Anonacea, are covered with fine hairs. Only one of the species is found within the faunal limits covered by the present work. It occurs in southern Florida, and In southern Texas as a straggler.
(1) Cocytius anteus Drury, Plate VI, Fig. 1, 8. (The Giant Sphinx.)

Syn. carica Maller (now Linnmus); jatropho Pabricius; hydaspus Cramer; mador Stoll; anoma Shaw; rapayusa Moore.

The species is somewhat variable, specimens from the Antilles being often lighter in color than those from Central America, and the continental portions of its habitat. This lighter form is accepted by Rothschild \& Jordan as typical, and the darker form is called by them Cocytius antans medor Stoll. The difference is hardly sufficiently constant to justify the separation into two subspecles. The insect ranges from Florida into southern Brazil.

Genus PROTOPARCE Burmeiater

The head is prominent. The body is stout and heavy. The tongue In both sexes is at least as long as the body. The palpi are large, ascending, and appressed to the front, having the basal joint long, the second a little shorter, but broader, and the terminal joint minute. The eyes are large, feebly lashed. The tibia are either without spines, or feebly armed with minute spinules. The mid tarsus is provided with a comb of long bristles. The venation of the wings is typically sphingiform. The outer margins of the primaries are evenly rounded. There is a slight projection of the secondaries at the extremity of vein $1 b$. The prevalent colors of the wings are shades of gray, banded and mottled with darker and lighter lines and
spots. The abdomen is generally marked on the sldes by rows of yellowlsh spots.

The larvae are cylindrical with the head rounded. The anal horn curves downward and is granulose. The prevalent colors are shades of green. The segments, from four to eleven Inclusive, are marked on the sides with whitish diagonal stripes.

The pupa has the tongue-case free, curved, and nearly touching the pectus.

This genus, which Is confined to the two Americas, Includes thirty specles, of which four occur within our faunal limits.
(1) Protoparce sexta Johanssen, Plate IV, Fig. 2, \%. (The Tomato Sphinx.)

Syn. carolina Linneus; nicotiance Menttries; lycopersici Boisduval.
Thls is one of our commonest hawkmoths. Its larva feeds upon the potato, tomato, and other Solanacea. It ranges over the Unlted States and is represented in Central and South America by several subspecies or local races.
(2) Protoparce quinquemaculatus Haworth, Plate IV, Fig. 1, \%. See also text figures 20 and 22 . (The Five-spotted Hawkmoth.)

Syn. celeus Hübner; carolina Donovan.
Like the preceding species, this hawkmoth is very common. Its larva feeds upon the Solanacea and is particularly destructive to tobacco. It is familiarly known in the South as the "tobacco fly."
(3) Protoparce occulta Rothschild \& Jordan, Plate IV, Fig. 4. 8. (The Occult Sphinx.)

This hawkmoth is found in a number of American collectlons confounded with P. sexta = carolina Linnæus. It may readily be distinguished by the different markings of the hind wings, the absence of the two rows of small white spots on the back of the abdomen, and by the small but conspicuous whitish dot at the end of the cell of the fore wing. It oceurs in Texas and Arizona and ranges southward to Central America. Its larval habits are not known.
(4) Protoparce rustica Fabricius, Plate VII, Fig. 5, \&. (The Rustic Sphinx.)

Syn. chionanthi Abbot \& Smith.
The caterpillar of thls hawkmoth feeds upon the fringe-bush

Mphiagide

(Chionanthus) and the jasml.ce. it is a common species in the southern States and Centrai America, but is only occasionally found in the northern States. I have not Infrequentiy taken specimens in southern indlana, snd it is now and then captured in Pennsyivania and even in New England.

Genue CHLRENOGRAMMA Smith

This genus, which is very closely aliied of 'he preceding, may be distinguished from it by the fact tl it the comb of long bristles of the mid tsrsus, which is charar*ess.cc of Profoparce, is wanting or reduced to at most one or thr hristles. Pulvilius and paronychium present. The eyes are smalier than in Protoparce, and are not lashed. There are two species in the genus, one South American, the other found in the eastern portion of the United States.
(1) Chlenogramme jaaminearem Guerin, Plate Vil, Fig. 6, \&. (The Ash Sphinx.)

Syn. rotundata Rothechild.
The Isrva of this hawkmoth feeds upon the variols species of ash (Fraxinus). It Is found in the middle Atlantic States and southward, and ranges as far west as the Mississippl.

Genus DOLBA Walker

Hesd smsll; eyes small and lashed. The antenne are fusiform with a short abrupt hook at the tip. The tibize are not spinose. The mld tarsus has a comb.

The genus, which contains but s single species, is differentisted from ail those in which the eyes are lashed by the nonspinose tibiz.
(1) Dolba hylsus Drury, Plate Vi, Fig. 4, \&. (The Papow Sphlnx.)

This small, but neatly colored hawkmoth, may readiiy be distinguished by the figure given in our plate. Its larva, which is green, marked with lateral oblique red bands, commonly feeds upon the pspaw, (Asimima triloba), and is generally sbandant where that plant is common, as in the Valley of the Ohia. It is also said to feed upon Prinos. It ranges from Canads to the Guif States snd westward to jowa and Missouri.

Aphlagide

Genua ISOGRAMMA Rothechild a Jordan
This genus has been erected by Rothschlld \& Jordan for the reception of the single specles which we figure. The learned suthors say: "In the shortness of the fore tlbia and first segment of the fore tarsus tha only specles of thls genus sgrees with. the species of Ceralomia, snd In the preservstion of the pulvilius with Chlenogramma, while It differs from both genera in the fore tlbia snd the extreme apex of the mid tibis being srmed with splnes. The spinosity of the tibia is an sdvanced character, not scqulred by Ceratomia, whlle the pulvillus is an sncestra! structure siresdy lost In Ceratomia."
(1) Iaogramma hageni C. . ic, Plate IV. Fig. 8, 8. (Hagen's Sphinx.)

This obscurely colored hawkmoth, which is liable to be confounded with some of the species of Ceratomia, which it superficially resembles, may be distingulshed at is glance by the sllghtly greenish shade of the primaries and by the absence of the dark-brown border of the hind wings, which is characteristlc of all the specles of Ceratomia. It occurs In Texas.

Genus CERATOMIA Harris.

The tongue is reduced in size. The palpi are small. The eyes are small. The tibire are unarmed. There is no comb of bristles on the mid tarsus, the pulvilius is absent, the psronychlum is present. The primaries are relatively large with evenly rounded outer margin. The secondaries are sllghtly produced at the end of vein ib.

The species have dissimilar larve. In the case of amyntor the larva has four horn-like projections on the thoracle segments ; In the case of the other two specles of the genus the lsrve are distinctly snd normally sphingiform.

The tongue-case of the pupa is not projecting.
(1) Ceratomla amyntor Habner, Piste IV, Fig 6, \&. (The Four-horned SphInx.)

Sya. quadricorvis Harrio; mimi Henry Edwarde.
This common hawkmoth, which may be easily recognized by our figure, lives In the larval state upon the elm. It ranges from Canada to the Carollnas and westward through the Mississlppi Valley, wherever Ita food-plant is found.

Aplingide

(2) Ceratomia undulosa Waikar, Plata VI, Fig. 7, 8. (Ths Waved Sphinx.)

Syn. ropontimus Clemena; browtes Boieduval (mon Drury).
This hawkmoth, which may easily be separated from its congeners by its lighter color and the distinct wavy macuiation of the fore wings, lives in the larval stage upon the ash and the privet. It ranges from Maine snd Canada to the Carolinas and westward Into the trans-Mississippi region cast of the great plains.
(3) Ceratomia catalpa Boisduval, Plate IV, Fig. 7, 8. (The Catalpa Sphinx.)

The larva feeds upon various species of cataipa, and has in recent years been charged with doing considerable damage to these trees by denuding them of their foliage. The insect ranges from New Jersey and southern Pennsylvania southward to Florida and westward through the Mississlppl Valley, wherever lts food-plant occurs.

Genua ISOPARCE Rothachlld \& Jordan

Tongue short and weak. Palpl small. Tible without spines. The first protarsal segment is short. Hind tibia armed with long spurs. Comb on mid tarsus wanting; puivillus wanting. Paronychium without iobes. Veins 6 and 7 of the hind wing on a long stajk.
(1) Iaoparce cupreat Boisduval. (The Cypress Sphinx.)

The insect ls of an almost uniform brown color on the upper surface of the wings, and may be distinguished from other species by the two conspicuous parallel dark markings on the limbal area of the fore wings. it is extremely rare in collections, only three or four specimens being as yet

Fic. 33.-Isoparce cuprussi known. it has been reported from Gerrigia and Florida.

Genua DICTYOSOMA Rothachilit A Jordan

This genus has been erected by Messrs. Rothschild \& Jordan for the reception of the singie species originaliy described by Strecker as Sphinx elsa.

MUCAOCOPY RESOLUTION TEST CMART

 (ANSI Ond ISO TEST CHART No. 2)

Explanation of Plate II

(When not otherwise indicated the specimens tigured are contained in the collection of W. J. Holland.)

1 Pholus ritis Linnæus, 0^{7}.
Pholus fasciatus Sulzer, C".
Darapsa pholus Cramer.
Darapsa myron Cramer. ot.
Pholus achemon Drury, 0^{7}.
Pholus pandorus Hübner, C^{7}
Lapara bombycoides Walker
Hemeroplanes parce Fabricius, 0^{-7}.
Psychomorpha epimenis Drury, of
10. Dysodia oculatana Clemens, © .
11. Pholus labrusca Linnæus. ot 0.
12. Pachylia ficus Linnaus. F.
13. Darapsa versicolir Harris. of
14. Arctonotus lucidus Boisduval, 0^{7}.
15. Hamorrhagia gracilis Grote \& Robinson, ot
16. Lapara conijerarum, Abbot \& Smith, \%. U.S.N.M.

(1) Dictyosoma elaa Strecker, Plate V, Flg 14 Elsa Sphinx.)

This peculiarly colored hawkmoth, which may easily be recognized by the figure In our plate, occurs in Arizona. A number of years ago Mr. Jacob Doll reared a large number of specimens from the larve. Slnce then but few specimens have been obtained, and it is as yet comparatively rare in collectlons.

Genus ATREIDES Holland

The generic name Atrcus proposed by Grote and adopted on structural grounds by Rothschild \& Jordan for this genus, having been preoccupied by Koch in the Arachnida, 1 have given the name Atreides to the genus, which contains the single species named originaily Sphinx plebeja by Fabricius.
(1) Atreides plebeja Fabriclus, Plate V, Fig. 6, 8. (The Plebeian Sphinx.)

This common species feeds in its larval state upon the trumpet-vine (Tecoma). It ranges from Canada to the Gulf States and westward to the Mississippi, wherever its foodplant is found. It is double-brooded in the Middle States, one brood appearing in June, the second In August.

Genua HYLOICUS Hübner

This genus, which Includes some thirty species, $n \quad i$ which are found in America, though a few occur in Europe d Asia, is represented in our faunal limits by sixteen species, of which eleven are figured in our plates. It corresponids largely with the genus Sphinx as defined by many recent writers.
(1) Hyioicus eremitua Hobner, Plate VI, Fig. 6, \%. (The Hermit Sphinx.)

Syn., sordida Harris.
This hawkmoth, whlch is double-brooded, lives In the larval stage on spearmint (Mentha) and wild bergamot (Monarda). It ranges from New England southward to Georgia, and west ward Into the Misslssippl Valley. It is not uncommon in western Pennsylvania, where it is double-brooded.
(2) Hyioicua eremitoides Strecker. (The Hermit-like Sphinx.)

Syn., Ingons Grote (mon Walker).

Aphingld

This specles, which is allied to the preceding, may be easily recognized by its pale, silvery-gray cclor, by the almost entire absence of a dorsal stripe on the abdomen, and by the marking of the secondaries, which are grayish-white, having on the outer margin a broad band which is black inwardly, fading into darkish gray near the margin, a median Irregularly curved black band, and at the insertion of the wing a black basal patch. The cut (Fig. 24) wlil enable the student to recognize the species, which is not common in coilec-

Fio. 24.~Hyloicws memiotides. tions. The insect is found in Kansas and the southwestern States.
(3) Hyloicus separatus Neumcegen, Piate Vi, Fig. 10, 8. (Neumcegen's Sphinx.)

Syn. andromede Boisduval (partim.); lugens Smith (partim.).
This species has been confounded with others, but may easily be recognized from the figure which we give In our piate. It ranges from Coiorado southward through New Mexico and Arizona into Mexico.
(4) Hyloicus chersls Habner, Plate I, Fig. 1, larva ; Plate Vil, Fig 8, \&. (The Chersis Sphinx.)

This common and widely distributed species ranges from Canada to Florida, westward to the Pacific, and southward Into Mexico. Several local races are recognized, that which occurs upon the Pacific coast having been named oreodaphne by Henry Edwards. The caterpillar feeds upon the wild-cherry, the ash, the privet, and other ailied plants. The insect Is double-brooded in the Middle States, appearing on the wing in the latter part of May, and again in August.
(5) Hyloicus vancouverensis Edwards.

Syn. vashti Strecker.
Form albescens Tepper, Plate VI, Fig. 5, 8. (The Vancouver Sphinx.)

There are two forms of this hawkmoth, one, Hyloicus van-
couverensis vancouverensis in whis thorax is pale gray, and the other, Hyloicus vancouv of the albescens, which has a very dark thorax on our plate. The moth is found from Britlsh Columbla, and eastward to Mon northern Callfornia to
(6) Hyloicus insolita tintana and Alberta. (LIntner's Sphinx.)

This species, which is well represented on our plate, occurs in Texas. It is not common in collections. Rothschild \& Jordan regard it as a form of H. libocedrus Henry Edwards, and apparently with reason.
(7) Hyloicus perelegans Henry Edwards. (The Elegant Sphinx.)

This hawkmoth may be distinguished by the even dark silvery-gray color of the fore wings, which are crossed by a distinct submarginal whitish band. The maculation recalls a dark chersis with the dark thorax and the body of H. drupiferarum. it is found on the Pacific coast.
(8) Hyloicus canadensis Boisduval.

Syn. plota Strecker.
This species, which is not common, is represented by the accompanying cut (Fig. 25), drawn from a specimen in the Engel Collection in the Carnegie Museum, and taken in Massachusetts. It occurs in eastern Canada, northern New York,

Fic. 25.-Hyloncus canadensis. and New England.
(9) Hyloicus kalmixe Abbot \& Smith, Plate V1, Fig. 8, 9. (The Laurel Sphinx.)

This hawkmoth feeds in the larval stage upon Kalmia, Chionanthus, and Fraxinus. it ls not uncommon in the Middle States of the Atlantic coast region, ranging from southern Canada to Georgia.
(10) Hyloicus gordius Cramer, Plate V, Fig. 13, d. (The Gordlan Sphinx.)

Syn. pacila Stephens.

Sphingide

The larva of this hawkmoth feeds upon various rosaceous plants, as the wila rose and the crab-apple. It ranges over the Atlantic reglon from sout..ern Canada and New Englanu to Georgia, and westward to Colorado.
(11) Hyloleus luscitlosa Clemens, Plate V, Fig. 1, 8. (Clemens' Hawkmoth.)

The caterpillar feeds upon various species of wiliow. The insect occurs from Canada to the Carolinas, and westward through the eastern portion of the valley of the Mississippl.
(12) Hyloicus drupiferarum Abbot \& Smith, Plate VII. Fig. 7, 8 (The Wiid-Cherry Sphinx.)

This common and easily recognizable species ranges over the whole of temperate North America from the Atlantic to the Pacific. The caterpillar feeds upon various trees and shrubs, but seems in the Middie Atiantic States to prefer the wiid-cherry as a food-plant.
(13) Hyloicus dolli Neumægen.

Form coloradus Smith, Plate IV, Fig. 3, \&. (The Colorado Sphinx.)

Rothschild \& Jordan recognize two forms of this species, H. dolll dolll Neumœgen, and H. dolli coloradus Smith. The latter we figure. The former is prevalently lighter in color than the form coloradus. The insect ranges from Colorado to Arizona.
(14) Hyloicus sequolse Boisduval, Plate V, Fig. 8, 8. (The Sequoia Sphinx.)

Syn. coniferarum Walker (partim).
The zariy stages of this insect we do not remember to have seen described. It occurs on the Pacific coast. Boisduval's type was found sitting on the trunk of a red-wood tree (Sequoia).
(15) Hyloicus pinastri Linnaus. (The Pine Sphinx.)

Syn. saniptri Strecker.
The late Dr. Strecker reported this species as having been found by him in the vicinity of Reading, Pennsylvania, on one or two occasions. No one else has taken it, so far as is known. It is common in Europe, and has often been figured by European writers.

Besides the species above given, there are one or two other species of the genus found in our territory.

Genu: LAPARA Walker.

Bphingida

Head small. Palpi short and slender. Tongue very short, almost obsolete. Eyes small. Antennz slen.ler. Thorax stout and sho:t. Abdomen long and cylindrical, tapering. Legs weak. Fore and mid tlbix spinulose. The larva is without an anal horn, cylindrical, tapering slightly from the middle forward and backward, pale green, striped with white, and checkered with darker green. The caterpillars feed upon various species of pine, and are not at all sphingiform in appearance. There are reputed to be four species of the genus found in our filuna, two of whlch we figure. L. halicarniae Strecker, of which only one specimen is known, which 1 have recently examined, appears to be a somewhat hypertrophied and, in consequence, aborted female of L. coniferarum Abbot $\&$ Smith. It is very doubtfully a valid species.
(1) L. coniferarum Abbot \& Smith, Plate III, Fig. 16, 8. (Abbot's Pine Sphinx.)

Syn. саиа Martyn.
This species is somewhat variable, especially in the size of the females and in the amount of marking upon the fore wings. It is a common insect in the foot-hills of the Alleghenies about the headwaters of the Potomac River. I fourd the larvae in great abundance upon pines at Berkeley Springs, West Virginia, in the summer of 1884. It ranges from Canada to Florida and westward into the basin of the Mississippi, but has never been reported from any point west of that river, south of Minnesota, so far as is known to the writer.
(2) L. bombycoldes Walker, Plate III, Fig. 7, 8. (The Bombyx Sphinx.)

Syn. harrisi Clemens.
This littie hawkmoth, which may easily be recognized from the figure we give, has the same geographical distribution as the preceding species, and feeds upon the same forms of vegetation in the larval stage.

Lapara pineum Lintner (Lintner's Pine Sphinx) is a species of which thus far only two specimens have turned up. They differ from the two species we have figured in being wholly devoid of discal streaks and markings upon the fore wings. It is believed by recent authorities that these

ephingidis

specimens represent an extreme variation of the very variable L. coniferarum.

SUBFAMILY AMBULICINAE

Genus PROTAMEULYX Rothachild a Jordan
Thls genus is represented in our fauna by a single specles, which occurs as a straggler into the extreme southern linits of the United States, and is represented in Florida by a local race, to which Rothschild \& Jordan have given the subspecific name of carteri in honor of Sir Gilbert T. Carter, the Governor of the Bahamas, an ardent lepldop-

Fio. 36.- Protambuly strigilis. (Somewhat reduced.) terist. From A. strigilis Linnxus, which is represented in the annexed cut, A. carteri may be distingulshed by the fact that the fore wing is broader, less deeply excavated below the apex, and by the further fact that most of the lines and markings on the upper side of the wings and all the markings on the lower side of the wings are obsolete. Whlle strigilis has not yet been reported from our territory, except as represented by the form above mentioned, it is highly probable that it will be found to occur in southern Florida.

Genus SPHINX Linneus

The type of the gerius Sphinx of Linnzus is unquestionably the well-known European species named by the immortal Swede Sphinx ocellata. With this species the following two species, which have for many years been referred to the genus Smerinthus Latreille, which sinks as a synonym, are strictly congeneric.
(1) Sphinx cerisyi Kirby, Plate VII, Fig. 3, \%. (Cerisy's Sphinx.)

The larva feeds upon different specles of willows. There are several forms, or subspecies, which have received names, and
which run into each other to such an exten; as to matingidem impossible to distinguish them. These foris are Sphinx astarte Strecker, In which the outer margin of the fera ing is a little less dentate, and the brown markings of the sati. wing are a little narrower; Sphinx ophthatmica Boisduval, u . ch has rather pale fore wings; Sphinx paltidulus Henry Edwards, In which the color of the fore wings is cinnamon-gray; and Sphinx saliceti Bolsduval, In which the blue markings of the ocellus on the hind wing do not form a ring, but appear as two opposed crescents.

The insect is comparatively rare in the eastern part of the continent, but is not uncommon in the western States. It ranges from Canada in the north to the upper portions of the Gulf States, and westward to the Pacific, extending Its habitat southward along the high lands of Mexico.
(a) Sphinx jamalcensis Drury.

Normall form geminatus Say, Plate IV, Fig. 11, 8. (The Twin-2pot Sphinx.)

Thls beautiful hawkmoth was originally named and liescribed in error by Drury as coming from the Island of Jamaica. He also was so unfortunate as to have had for his type an aberrant specimen In which the ocellus of the hind wing had but one blue spot. Such specimens now and then occur, and have been obtained by breeding from the normal form, to which Say gave the name geminatus. Specimens also somerımes occur in which there are three blue spots in the oceilus, and Mr. Giote gave to this aberrant form the $\mathrm{n}:$:ne tripartitus.

The caterpillar feeds upon willows, birches, and various specles of wild-cherry. The insect is quite common \ln the Middle Atlantic States, and ranges from southern Canada to the Carollnas and northern Georgia, and westward to eastern Kansas and lowa.

Genua CALASYMBOLUS Grote

The genus differs from Sphinx In the fact that the head is crested, and the hind wing is on lts costal margin toward the apex produced Into a somewhat broad 10°, , There are three species recognized as belonging to the genus, all of which we figure.

Aphingid

(1) Calssymbolus excrecatus Abbot \& Smith, Plate VII, Fig. 4. 8. (The Blinded Sphinx.)

Syn. pronina Gryer.
The larval feeds upon virrious plants of the order Rosarea, but dces not strictly confine itself to these. It has been reported as found upon the willow, the hazel, iron-wood, and other ailled plants. It is a common specles, and In the region of Pennsylvania is double-hrooded. It ranges from southern Canada to Florlda and westward acruss the valley of the Misslsslppi to the borders of the great plains.
(2) Calasymbolus myopa Abbot \& Smith, Phate IV, Fig. 12, \&. (The Small-eyed Sphinx.)

Syn. rosacearum Boisdurat.
The food-plants and the geographicai distribution of this species are very much the same as those of the preceding species, though it seems to range a little further westward, exampies having been received from Colorado. It is not nearly as common as C. excrecutus,
(3) Calasymbolus antylus Drury, Plate IV, Fig. 10, 8. (The Huckleberry Sphinx.)

Syn io Gray; integerrima Harrs.
A rather scarce species, which is found from New England to Pennsylvania. The caterpillar feeds upon various species of Vaccinium and allied plants. The moth is easily distinguished by the fact that the outer margins of the fore wings are almost even, whereas in myops they are distinetly produced at the end of vein 3 , and in excacatus they are scalloped. The transverse lines on the limbal area of the fore wings, which are distinct in myops, are almost wanting in astylus, and the inner margin of the primaries is heavily margined with dark brown.

Genus PACHYSPHINX Rothachild \& Jordan

The genus Pachysphinx has been erected for the receptlon of the single species, two forms of which we figure on our plates. It is very different from the orlental genus Marumba, Into which Mr. Dyar, following Kirby, has put it in his recent List. Any one who is famillar wlth the peculiar style of coloration of the species of Marumba, as well as with the structural differences, which

Explanation of Plate IV
(The specimens figured are contained in the cullection of W. J. Holland.)

1. Protoparce quinquemaculatus Haworth, ㅇ.
2. Protoparce sexta Johanssen. \uparrow.
3. Hyloicus dolli coloradus Smith, Q.
4. Protoparce occulta Rothschild \& Jordan, \& .
5. Hamurrhagia senta Strecker. o'.
6. Ceratomia amyntor Geyer. O.
7. Ceratomia catalpa Boisduval, of
8. Isogramma hageni Grote. O^{*}.
9. Xylophanes pluto Fabricius, os.
10. Calasymbolus astylus Drury, o'.
11. Sphinx jamaicensis Drury, form geminatus Say. 0^{7}.
12. Calasymbolus myops Abbot \& Smith. o.

Sphingidm
present themselves, will recognize the propriety of the separatlon, which has been made.
(1) Pachysphinx modesta Harris, Plate VIl, Fig. 1, δ. (The Big Poplar Sphlnx.)

Syn. princeps Walker.
Form oecidentalie Henry Edwards, Plate Vll, Fig. 2, \&. (The Western Poplar Sphinx.)

Syn. imporator Strecker.
This noble hawkmoth feeds in the larval stage upon various species of the genus Populus and upon willows. There are a number of local races or subspecies, two of which we give; the common eastern form and the western variety. The latter may at once be distinguished by its generally paler coloration. It ranges over the United States and as far south as northern Mexico.

Genus CRESSONIA Grote \& Robinson

There is but one species in this genus. The insect is easily recognizable, In splte of the fact that it varies considerably in the color of the wings.
(1) Cressonia jugiandls Abbot \& Smlth, Plate V1, Fig. 9, 8. (The Walnut Sphinx.)

Syn. instabilis Martyn; pallens Strecker; robinsoni Butler.
The caterpillar feeds upon the black walnut, the butternut, and the hop-hornbeam. Some of the larva are green, others are reddish, but the color of the larvae seems to have no relation to any variation in color of the perfect insects. The species is distributed from Canada to Florida and westward to the eastern boundary of the great plains.

SUBFAMILY SESIIN⿸厂
 Cenus PSEUDOSPHINX Burmeister

There is but one species in this genus, which is structurally closely related to the species falling into the genus Erinnyis. It is a characteristic insect of the American tropics, and possesses a very wide rarg.ge.
(1) Paeudosphinx tetrio Linnzus, Plate VI, Fig. 2, δ. (The Giant Gray Sphlnx.)

Syn. plumaria Febricius; rustica Sepp; hasdrubal Cramer; asdrubal Pooy; obscura Butler.

Sphiagide

The larva of this hawkmoth has a long thread-like anal horn. It is very strikingly colored, the body being purplish black, girdied with yellow rings between the segments, and the head and anal claspers being bright red, of the coior of sealing wax. It feeds upon various Euphorbiaceous plants, preferably Plumeria. The insect occurs not uncommonly In southern Florida.

Genus ERINNYIS Hübner

This is a moderately large genus, the species of which are all confined to the tropical or subtropical regions of the Western Hemisphere, though one species, as we shail see, occaslonally occurs as a straggler far north of the metiopoiis of the genus.
(1) Erinnyis alope Drury, Plate V, Fig. 12, 8. (The Aiope Sphinx.)

Syn, flavicans Goeze; fasciata Swainıon; edwardsi Butler.
The caterpillar is brown on the upper side, and pale green on the lower side, the colors being separated by a dark brown Interrupted lateral band on either side of the body!. On the third segment from the head there ls a dark spot relieved by a red ring in the centre. The anal horn is quite short. The iarva feeds upon Jatropha and Carica. The Insect occurs in southern Florida and ranges southward as far as northern Argentina.
(2) Erinnyls lassauxl Boisduval.

Form meriane Grote, Piate V, Fig. 2, \%. (Madame Merian's Sphinx.)

Syn. janipha Boisduval.
This hawkmoth, whlch is widely dlstributed through the tropics of the new world, displays conslderable variation, and several forms, or local races, have been recognized. The one which occurs within our territory we have figured, and the student wiil have no difficulty in recognizing It. The larva, n 'ich is said to ciosely resemble that of the next species, is reported to feed upon Morrenia in the West Indies. It occurs In Florida.
(3) Erinnyls ello Linnaus, Plate V, Fig, 10, 8 ; Fig. 3. 8. (The Eilo Sphinx.)

This is quite the commonest of ail the hawkmoths of the American tropics, and becomes a perfect drug in coilections made by amateur naturalists, who venture into those

Sphingide

regions, net in hand. It may at once be recognized by the figures we have given, which are taken from specimens bred on the Indian River by Mr. Wittfeld. The sexes are dissimilar, as the student may observe. It straggles north sparingly, even as far as Canada, and is common in the Gulf States.
(4) Erinnyls anotrus Stoll, Piate V, Fig. 11, \&. (The (Enotrus Sphinx.)

Syn. ponaus Fabricius; molancholica Grote; piporis Grote a Robinson: picta Kirby.

The sexes in this species are dissimilar, the female being as represenied on our plate with iight fore wings, marked with dark spots and lines, while the male is prevaiently quite dark on the fure wings. The species may easily be recognized by the biack spots on the under side of the abdomen.
(5) Erinnyls crameri Schaus, Plate V, Fig 7, \%. (Crsmer's Sphinx.)

This species, which has often been confounded with the preceding, may easily be distinguished from it by the pale shoulder lappets, the absence of black spots on the under sids of the abdomen, and the more evenly coiored fc": wings, which recali those of E. meriana, from which it is at once distinguished by the absence of the white lateral markings on the abdomen. The species occurs in Fiorida and Texas.
(6) Erinnyis obscura Fabricius, Plate V, Fig. 5, 8. (The Obscure Sphinx.)

Syn. rustica Scballer; phaloris Kirby; stheno Hübner; pallida Grote; cinerosa Grote \& Robinson; rhabus Boisduval.

This small species is well represented in our plate by a specimen which in the main conforms to the most usual style of marking. It can always be distinguished from E. ello, which it resembles in having a dark longitudinal shade through the fore wings, by its much smaller size, and by the absence of the white and black lateral stripes upon the abdomen, which are characteristic of the latter species. It is common in Florida.
(7) Eri ayis domingonis Butler, Plate V, Fig. 9, \%. (The Domingo Sphinx.)

Syn. obscura Walker (non Fabricius); festa Henry Edwards. ${ }^{\text {• }}$
This species, which occurs in Florida and the Antiles, may be distinguished from the preceding by the darker color of the

Aphiogide

primsries and the absence of the pale color on the outer margin of the shoulder lappets, which is characteristic of E. obscura. It is also considerably larger than E. obscura.

There remalns one other closely allled specles in this group, to which Cramer gave the name caicua, and which occurs occasionally in Florida. The body is marked like E. ello, the fore wings are dark with longitudinal paler stripes, the secondaries are red as in E. crameri, but almost wholly without the dark border found in that species, it being replaced by a series of dark stripes running inwardly from the border toward the mlddle of the wing. For this species, hitherto associated with the preceding in the genus Dilophonota, Rothschild \& Jordan have erected the genus Grammodia, upon structural grounds.

Genus PACHYLIA Walker

This is a small genus, containing four specles, of which one occurs in our territory. It is not likely to be confounded with anything else.
(1) Pachylia fieus LInneus, Plate III, Fig. 12, \%. (The Flg Sphinx.)

Syn. crameri Menétries; lyncea Clemens; vomonolonsis Schaufuse: undatifascia Butler; aterrima Bonninghausen.

This great hawkmoth, which is very common in Central and South America, occurs sparingly in Florida and Texas.

Genua HEMEROPLANES Hübner

Thls small genus, the specles of which may at once be detected by the silvery spots of the fore wings, being the only American genus of sphingids thus adorned, : characteristically neotropical. It is represented \ln our fauna by a single species.
(1) Hemeroplanes parce Fabriclus, Plate IIl, Fig. 8, 8. (The Silver-spotted Sphinx.)

Syn. licastus Stoli; galianna Burmeister.
The figure given on our plate is sufficlently accurate to make 2 verbal description unnecessary. The insect occurs in southern Florida in the vicinity of Biscayne Bay, and ranges thence southward over the Antilles into South America.

Genue EPISTOR Boisduval

Ephingde

Five species belong to this genus, the type of which is the species which we flgure, and the only representative of the geilus found in our territory.
(1) Epistor lugubris Linnzus, Plate il, Fig. 17. \& . (The Mournin.' Sphinx.)

Syn. fegeus Cramer; luctuosus Boisduval.
There can be no difficulty in identifying this well-marked but obscurely colored hawkmoth, which occurs in Fiorida and Georgia, and even straggles now and then as far north as New Jersey. It is veiy common in the Antiiles and South America. In Florida it is double-brooded, appearing on the wing in May and September. The larva feeds on the Vitacea.

Genua CAUTETHIA Grote

There are three species of this genus, oniy one of which occurs within the limits of the United States. The figure we give will permit of its identification without difficulty.
(1) Cautethia grotei Henry Edwards, Plate II, Fig. 21, 8. (Grote's Sphinx.)

The habitat of this species is southern Florida, where it apparently is not uncommon.

Genua SESIA Fabriciua

The body is depressed, fusiform, without lateral tufts, but with a broad fan-shaped anal tuft, composed of coarse flattened scales. The abdomen is produced for more than hair Its length beyond the hind wings. The palpi are produced and appressed, forming a short snout-like projection beyond the head. The tongue is stout, but comparatively short. The antennze are slightly thickened at the end, and have a sharp recurved tip. The mid tibire have terminal spurs, and the hind tibiz two pairs of spurs. The fore wings have eleven veins. The venation is characteristically sphingiform, and is illustrated in Figure 21. The prevalent colors are black and dark brown with white spots and bands on the wings and in some species on the abdomen. The moths fly in the hottest sunshine.

The type of the genus Sesia estabiished by Fabricius is the species ramed tantalus by Linné. Rothschild \& Jordan, in the

Aphingide

latest Revision of the Sphingide, recognize five species as belonging to the genus, three of which occur within the limits of the United States, Iantalus Linneus, fadus Cramer, and the species we figure upon our piate. Ali three have by some recent writers been regarded as practically identical. Into the somewhat vexed question of their apecific relationship it is not our purpose to enter in these pages.
(1) S. titan Cramer, Plate II, .Fig. 16, $8 . \quad$ (The Whitebanded Day-Sphinx.)

The white spots of the fore wings are semi-transparent. On the under side the wings are whitish at the base and on the inner margin of the secondarles. They are crossed about the middle by two parailel distinct dark bands, which are quite close to each other.

The moth sometimes strays as far north as Massachusetts. It is very common in southern Florida and throughout tropical America.

Genus HAEMORRHAGIA Grote

Molh. - Head smail. Tongue as long as the body. Antennse clavate, two-thirds the length of the costa, with a minute recurved hook at the tip. Thorax smooth, strongiy projecting before the insertion of the wings. Abdomen more or less fiattened beneath, and, especialiy in the males, adorned with a broad fan-shaped anai tuft. The primarics have eieven veins. Both primaries and secondaries are transparent about the middle; the outer margin of the former is evenly rounded, and of the latter slightiy excavated between veins $t b$ and a.

Larva.-Characteristically sphingiform, provided with an anal hom. The epidermis in most species of the genus is more or less granulated. The caterpilars feed for the most part upon Symphoricarpus, Lonicera, Viburnum, Cratagus, and allied plants.

Pupa.-The pupa, which is brown in color, is enclosed in a somewhat dense cocoon, formed on the surface of the ground under falie": leaves.
(1) Hemorrhagia thysbe Fabricius, Piate 1, Fig. 5, 0.
(The Humming-bird Ciearwing.)
Syn. polasgus Cramer; ruficaudis Kirby; colus Boisduval.

Explanation of Plate V

(The specimens figured are contained in the coltection of $\mathbf{W} . J$. Holland.)

1. Hyloicas lascitiosa Clemens, 0^{*}
2. Errinyis lassamxi meriano firute, © .
3. Eirinyis ello Linneus, 8.
4. Hyloictss libocedrus insolifa Lintner. $O^{\text {at }}$.
5. Errinyis (ibscnra Fabricius, os.
6. Atreilles pleteju Pabricius, ot.
7. Errinyis cramri Schaus. 7.
8. Hyloicas sapuoio Boisduval, ${ }^{*}$.
9. Errinyis domingonis Butler, \&.
10. Errinyis cllo Linnueus, σ^{\prime}.
11. Errinyis arotrus Stoll, ℓ.
12. Eirrinyis alope Drury, \&.
13. Hyloicus gordius Stotl, of
14. Dielyosome alsa Strecker, ot.

ina Motn Boun

Plat: V.

Colinger

Form cimbiciformia Stephens, Plutu 1i, Fig. 6, Q.
Syn. mofeandis Walker (partim); Rondensis Grote; muiformie Grote * Robineon; bu/falornsis Crote; prowns Boteduvat.

This ls tha largest and the commonest species of the genus. It may easily be recognizad by tha figures given on Plate Il. it is subject to considerabie variation. The form cimbiciformis is distinguished by the absance of the dentations on the inner side of the marginal brown band of tha fore wings. It has been obtained by breeding from the egess of H. thysbr, and thysbe has been bred from it. It is a dimorphic form of the species. The caterpillar of H. thysbe feeds upon Viburnum and alitied plants. The insect ranges from Canada and Nova Scotia southward to Fiorida and westward to tha Mississippi.
(a) Hemorrhagla gracilia Grote \& Robinson, Piate lii, Fig. 15, 8. (The Gracefui Clearwing.)

Syn. rufiandis Walker (non Kirby) (parim).
The thorax and basal segments above are oilve-green. The middle segments are black, the two preterminal segments are margined iaterally with reddish. The anal tun is black, divided in the iddie by red hairs. On the under side the paipi, pectus, and thorax are white, and the abdomen paie red. The paie area of the thorax is traversed on either side by a stripe of reddish hair, and there are three rows of white spots on the under side of the abdomen. It occurs in the States of the Atiantic seaboard from New England to the Caroiinas.
(3) Hemorrhagia diffinia Boisduvai. (The Snowberry Clearwing.)

Spring form tenuia Grote, Plate ii, Fig. 2, 9.
Syn. fumosa Strecker; motahetis Butler; difinwis Beutenmullor.
Summer form diffinia Boisjuvai.
Syn. marginalis Grote.
Summer form axiliaris Grote \& Robinson, Piate il, Fig. 3, 8 ; Fig. 4, 9.

Syn. groted Butler; ahra Strecker.
This species is trimorphic. The iiie history has been in part very carefuily worked out by Mr. Eilison Smythe of Blacksburg, V rginia. (See "Entomologicai News," Voi. Xi, p. 584.) The form diffitis has the marginal band dentate inwardiy.

The caterpiiiar feeds upon Symphoricarpus, Lonicere, and Dierville. The insect has a wide range from New England to

Sphingide
Georgia and westward to the eastern boundaries of the great plains.
(4) Hamorrhagia senta Strecker, Plate IV, Fig. 5, 6. (The Californian Clearwing.)

Syn. rubens Hanhain (non Edwards).
The head, thorax, and basal segments of the abdomen are brownish-olivaceous. The abdomen is black. The two segments immediately preceding the terminal segment are marked laterally by yellow tufts of hair. The anal tuft is wholly black. The wings are very narrowly bordered with brown. There is no rusty red spot at the apex of the primaries. The clear portions of the wing in certain lights have a bright stecl-blue luster. The under side of the palpi, the pectus, and the abdomen are pale straw-yellow. In size this species is about as large as H. diffnis.

The perfect Insect occurs in Utah and California, frequenting the blossoms of Lupinus.
(5) Hamorrhagia thetis Boisduval, Plate Il, Fig. 1, 8. (The Thetis Clearwing.)

Syn. palpulis Grote: rubens Edwards.
Decidedly smaller than either of the two preceding species. The thorax is olive-green, passing on either side into pale yellow. This color is continued dorsally on the abdomen as far as the terminal segment, but is more or less lost in the broad yellow preanal band. The basal and middle segments of the abdomen are marked laterally with black, and the anal tuft is correspondingly marked with black on either side. The marginal band if the fore wings is narrow, as in H. diffinis, and is always distinctly marked above and below at the apex by a rust-red triangular spot. The wings at their insertion are more or less shaded with pale rusty red both above and below.

This species ranges from Colorado and Wyoming westward and north ward to Oregon and British Columbia. It has been by Dr. Dyar made synonymous with the following species, from which it is, however, quite distinct.
(6) Hamorrhagia brucei French, Plate II, Fig, 7, $\mathbf{\delta}$. (Bruce's Clearwing.)

This is a small species, in size approximating H. thetis, from which it may be at once distinguished by the green color of the

Aphingide

scales upon the thorax and the basal segments of the abdomen, and the fact that the anal tuft is wholly black, not divided by yellow scales in the middle as is the case $\ln H$. thetis.

The species Is not uncommon in Colorado and Utah.

SUBFAMILY PHILAMPELINAE
 Genus PHOLUS Hübner

This is a large genus, including nineteen species, and a number of subspecles. It is confined to the Western Hemisphere. Six species occur wlthin our territory. P. typhon Klug, which we have not figured, Is occasionally found in Arizona. The larva feed upon the Vitacea, and in the case of two of the species have done at times some damage to vlneyards.
(1) Pholus satellitia Linnæus. (The Satellite Sphinx.)

Form pandorus Hubner, Plate III, Fig. 6, 0 .

Syn. ampelophaga Walker.

This insect which is widely distributed throughout the eastern United States, and ranges northward into southern Canada, is well-known to all growers of vines. The caterpillar, when it first emerges from

Fio. 27.-Larva of Pholus satellitia pandorus; a, mature larva; b, larva after third molt, head retracted; c, young larva. (After Riley.) the egg and for several successive molts is green in color, and

Aphinglde

has at the anal extremity a very long caudal horn, which begins gradually to curl up, as represented in the accompanying cut, and after the third molt entlrely disappears, being replaced by a lenticular shining eye-like prominence. In the latter stages of development the larvae frequently become dark brown, and Professor Riley maintains that this is invariably the case in the neighborhood of the city of St. Louis. It is not invariably the case in other localities, as 1 know from experience. I have reared a number of specimens in which the green color perdured to the time of pupation, though the brown form is very common. Like the larva of the following species, the caterpillar of P. satellitia has the power of withdrawing the first two segments of its body into the third, when at rest, or when suddenly alarmed. When crawling or feeding the first segments are protrudec as represented in the cut by the larger figure.

Several local races of P. satellitia are recognized as occurring in the Antiles and in South America, one of these, for which Mr. Grote proposed the name posticatus, occurs in Fiorida, as weli as in Cuba and the Bahamas. It may be distinguished from the form pandorus by its siighter build, its narrower wings, which in the case of the primaries have the outer margin straighter than in pandorus, and by the presence of a large roseate spot covering the anal angle of the secondaries. There are other differences of a minor character, but those mentioned wili enabie the student to discriminate this form from the one we have figured.
(2) Pholus achemon Drury, Plate III, Fig. 5, f. (The Achemon Sphinx.)

Syn. crantor Cramer.
Like the preceding species the caterpillar of this beautiful hawkmoth feeds upon vines, and shows especial fondness for

Fig. 28.-Larva of Pholus achemon. (After Riley.)
the grape. It is also addicted to the Virginia creeper (Ampelopsis). The description of the habits of the larva given by

Professor C. V. Riley, "Missouri Reports," Vol. III, p. 75, is must excellent. The figure which we give is taken from that Report.

The insect ranges over the entire United States from the Atlantic to the Pacific, and from southern Canada to northern Mexico.
(3) Pholus vitis LInnæus, Plate III, Fig. 1, 8. (The Vine Sphinx.)

Syn. hornbeckiana Harris; linnei Grote \& Robinson: fusciatus Grote (partim).

The true Pholus vitis, which we figure in our plate, may easily be distinguished from its near ally, Pholus fascialus Sulzer, by the absence of the pink outer marginal area on the upper two-thirds of the secondaries, by the: ward prolongation of the large black snrt near the inner margin of the secondaries into a well markec mesial band, and by its larger size. It occurs in Florida and in southern Texas and Arizona, whence it ranges southward over wide areas.
(4) Pholus fasciatus Sulzer, Plate III, Fig. 2, 8 . (The Lesser Vine Sphinx.)

Syn. vitis Drury (non Limacus) ; jussteuce Hübner; strigilis Vogel.
The caterpillar is reported as feeding upon Jussieua in the tropics. In our territory it feeds upon various species of Vitacee. It is quite common in the region of the Gulf States and southward, and sometimes is even taken as a straggler as far north as Massachusetts.
(5) Pholus labrusce Linnæus, Flate IIl, Fig. 11, 3 . (The Gaudy Sphinx.)

Syn. clotho Fabricius.
This beautiful creature is characteristic of the tropics, where It is not uncommon. It occurs quite abundantly in southern Florida and along the borders of the Gulf, and throughout the Antilles, Central, and South America. Specimens, in splte of the subtropical habitat of the species, have been taken in Canada, Illustrating the wonderful power of flight which is possessed by these insects, the frail wings of which bear them in the dusk of evening, during the few days of their existence in the winged form, from the orange-groves of the south to the banks of he St. Lawrence, a thousand leagues, across rivers, plains, and mountains.

Sphingidm

Genu: DARAPSA Walker

We include in thls genus three specles, all of which occur within our territory, and all of which we figu e upon our plates.
(1) Darapsa pholus Cramer, Plate III, Fig. 3, 8. (The Azalea Sphinx.)

Syn. choerilus Cramer; asaloo Abbot \& Smith; clorinda Martyn.
This medium-sized hawkmoth, which is one of our commonest species in western Pennsylvania, may easily be distinguished from its very near ally, D. myron, by its reddish color. The caterpillar feeds upon Viburnum and Azalea.
(z) Darapsa myron Cramer, Plate Ill, Fig. 4, 8. (The Hog Sphinx.)

Syn. pampinatrix Abbot at Smith; cnotus Hâbner.
The caterpillar, of which we give a figure, feeds upon wild and domestic grape-vines, and also upon the Virginia Creeper. It is a very common

Fic. :9.-Larva of D. myron.
(After Riley.) insect in the Atlantic States, and ranges as far west as Kansas and lowa. It has been regarded as injurious to vineyards, but the damage done is inconsiderable, and the insects can easily be combated by picking off the larvx from the vines and crushing them under foot. The reason why these insects do comparatively sm:lll damage is perhaps found in the fact that they appear to be especially subject to the attacks of a small hymenopterous parasite, belcuging to the r_{c} mily Ichneumonida. The female ichneumon- $\mathrm{f}_{\mathrm{y}} \mathrm{y}$ deposits her eggs upon the epidermls of the young caterpillar. As soon as the eggs hatch, the grub penetrates the body of the caterpillar and feeds upon the fatty tissues lying just under the skln.

Before the caterpillar reaches maturity the grubs emerge from beneath the skin, and attaching themselves to the epidermis, proceed to weive about themselves little white cocoons, in which they are transformed into perfect insects, emerging to repeat the cycle of life. Caterpillars which have been thus parasitized do not survive the

Fro. 30.-Parasitized lar. Va of D. myron. (After
Riley.) ordeal. The accompanying cut (Fig. 30), shows a larva upon which the ichneumon-flies have done their deadly work.

Fic. 3 1. - Microgaster which destroys larve of D. myron. The insect, which acco:aplishes the task of destruction imposed upon it in the economy of nature, is very small. The figure glven herewith shows it of its natural slze, and also enlarged, so that its structural peculiarities may be more casily recognized. The species which we are considering shares this liability to parasitism with its congeners, as well as with the representatives of many other genera of the Sphingida. I was greatly annoyed a number of years ago by having a large series of the larva of the beautiful Darapsa versicolor, which I had collected in their early stages, destroyed by this ichneumon-fly, and the following summer, and, in fact, for several summers following, the larve of D. versicolor, which had been for awhile quite abundant in certain localities known to me, almost entirely disappeared. In one ravine, where I had obtained them by the hundreds, they were not to be found. I account for their disappearance by the unusual numbers of the parasites which had infested them that summer.

The larva of myron undergoes pupation in a loose cocoon

Fia. 32.-Pupa of D. myron the surfely woven threads of silk, which it spins under leaves at the surface of the ground. In this respect its habits are strictly like those of the other species of the genus.
(3) Darapsa versicolor Harris, Plate III, Fig. 13, 8. (The Hydrangea Sphinx.)

Sphingide

Thls lovely hawkmoth, which is accounted quite rare in localities, has been found very commoniy at certain times in western Pennsyivania. Its larva feeds upon the wild hydrangea, which grows abundantly in deep wooded giens, aiong the margin of brooks. The insect ranges from New England to the mountains of the Carolinas and westward into the eastern border of the Mississippi Vallcy.

Genus SPHECODINA Blanchard

The head is broad. The proboscis is nearly as long as the body. The antennxe are fusiform, with a recurved hook at the tip. The body is broad, flattened beneath. The abdomen has a pointed anal tuft, and the segments are adorned iateraily with prominent truncated tufts of coarse hairs. The wings in thelr outline closely resemble those of the genus Annphion. Only one species of the genus is known.
(1) Sphecodina abbotti Swainson, Plate il, Fig. 19, δ. (Abbot's Sphinx.)

This beautiful hawkmoth is found throughout the Eastern States and southern Canada and ranges westward as far as lowa and Kansas. The

Fic. 33-Larva and moth of S. abbotti. (After Riley.) larva feeds on the Vitacea and is not uncommon o n Ampelopsis. The caterpiilar is not provided with an anal horn, but has instead an eye-like tubercle, or boss, at the anal ext:emity. It has the habit, when disturbed, of throwing its head violently from side to side, a movement found in other sphingid larva, and also in some of the Ceratocampida.

Explanation of Plate VI
(The specimens figured are contained in the collection of \mathbf{W}, J. Holland.)

1. Coxytias antaras Drury. \&
2. Psendosphinx fetrio Linnau: σ '.
3. Herse cingulata Fabricius, or.
4. Dolha hylerus Drury, 9.

Hylocus munconverensis albescens Tepper, ©
6. Hyloicus ercwifus Hubner, \&

Ceratonia undilosa Walker, of
Hyhvicus kalmice Abbot \& Smith, \% Cressonia juglundis Abbot \& Smith, $\%$. Hyloicws separalus Neumnegen, δ.

Ganue deldamia Clemene
The head is amall, narrow, rotracted, crestod. Tha oyes aro smoll. The intennas are fuelform; with the tip bent buck alightly, scircely hooked. The thorax is atout, somewhat crested. The abdomen is conic, and in the male has a small anal tutt. The fore wings, which hove twelve veing: aro narrow, with the inner margin sincule. The apex of the fore wings is trincated, end the outer margin an deeply excivated oppostie the and of the cell and aleo just above tha innar ongle, which is distinctly produced. The hind wings are allightly crenulata on the outer margin. There is only one species belonging to the gepus.
(1) Delidamia inocriptum Horris, Plote 11, Fis. 15, 8. (The Lettered Sphinx.)

The eaterpillar feeds upon the wild grape-vine. The moth oppears in the early spring. It is a common species in western Pennsyivania, but ceems elsewhore to be regarded as quite rare. If ranges from Caneda to Virginia and westward to the Miadsippi.

Geaua Arctonotus Boladuval
This small genus, in: which there ore reputed to be two species, in very clonely related to the genus Proserpinus, from which, as has beon pointed out by Rothschild \& Jordan, it differs in oppearance "owing to the more woolly scelling." The chief arructural difference is found in the foct that the antenna is not clubbed but fusiform, gradually curved, and the feet are without a pulvilus, end have only vestiges of the paronychlum.
f(1) Arctonotua lucidue Boisduvel, Plate ili, Fig. 14. 8: (The Bear Sphinx.)

This insect, which hitherto has been rare in collections, appears to have a wide range along the Pacific coast, from southom Callifornia to British Columbic. "It oppears upon the wing very early in the spring of the yeat.

The name Arctonotus terlooi ts opplied to a species, reported from northern Mexico by Henry Edwards, and described by him, in which the hind winges are wholly vinous red, and the green basal band of the fore wings is wanting.

Aplingide

Genus AMPHION Hübner

Head small. Eyes small, hemispherical. Palpi rather short Tongue nearly as long as the body. Antenne fusiform with a long curved hook at the tip. Body plump, semawhat globose, the thorax projecting very little beyond the insertion of the primaries, and the abdomen terminating in a consplcuous fan-like tuft. The fore wings are comparatively short and narrow, excavated on the outer margin below the apex and above the Inner angle, which is strongly produced. The Inner margin is deeply Inuate. The hind wings are bluntly lobed at the anal angle. There is only one species in the genus.
(I) Amphion nessus Cramer, Plate II, Fig. 18, 8. (The Nessus Sphinx.)

This specles, which may easily be recognized from the figure on the plate, is not uncommon In the Middle States. It ranges from Canada to Georgia and westward to Wyoming. It fies in the daytime on cloudy days and in the late afternoon before sunset. The caterpillar feeds on Ampelopsis and the wild grape.

Genuis POGOCOLON Boladuval

This small genus, which is closely related in many structural respects to Proserpinus, differs from it very decidedly in the form as well as in the habits of the insects belonging to it. In the structure of the antennas and neuration of the wings the Insects belonging to Pogocolon show a close relationship to the insects referred to the genus Proserpinus, but the form of the abdomen is wholly different, elongated, cylindrical, and not bombyliform. The moths, mo.eover, are crepuscular, whereas the moths referred to the genus Proserpitus are diurnal In their habits, in this respect resembling the species of the genus Hamorrhagia. There are at least three specles belonging to this genus.
(1) Pogocolon gaure Abbot \& Smith, Plate II, Fig. 11, 8. (The Gaura Sphinx.)

The upper side of this small species is sufficiently delineated in the plate to require no verbal description. On the under side the wings are vinous brown, shading on the outer third into olive-green, and reproducing the maculation of the upper surface. The hind wings are deep olive at the base, passing into yellowlsh green outwardly.

The Insect leeds in the larysl Gaurs, and ranges from southern Kansas.
(2) Pogocolon juenlea Strecker, Plase II, Fig. 12, \& (Strecker's Day-sphinx.)

The moth in the general style of its maculation is very much llke the preceding species, but Is considerably larger, and the colors are decidediy brighter. The caterpillar is quite different in its marklngs from the larva of L. guura.

The habitat of this species is Texas, 30 far as is now known.
One other specles of Pogocolon, P. trega Dyar, occurs in our reglon. It is much darker in color than the two former species. which it otherwise somewhat closely resembles.

Genua PROSERPINUS Hübner

Head small ; proboscis moderate or long ; antenne clavate ; body stout ; abdomen with or without lateral tufts, but always with a more or less well developed anal tuft. Anterior tibie stout, armed with spines outwardly and at sip. Fore wings elongate, generally somewhat curved outwardly about the middle, and with the inner angle more or less distinctly produced; more or less densely clothed with scales over their entire surface. The moths are diurnall in their habits, and mintic humblebees in their appearance.
(1) Proserpinus flavofaaciata Walker, Plate II, Fig. 8, \&. (The Yellow-banded Day-sphinx.)

The head and thorax are pale yellow, the latter obscured with brownish hairs about the middle. The abdomen Is black with the basal segment about the milddle and the preterminal segment on either side pille yellow. The fore wings on the upper side are blackish, crossed by an oblique whitish band. The hind wings are deep black, crossed by a broad orange-yellow band. The fore wings on the under side are hright orange-yellow at the base.

This is always a rare insect in collections. It ranges, so far as is known, through British America, and southward and eastward to Maine and Massachusetts. It is found in very early summer hovering over flowers.
(2) Proserpinua clarkize Boisduval, Plate II, Fig. 10, 9. (Clark's Day-sphinx.)

Sphingidue

Syn. victoric Grote.
The head, thorax and abdomen on the upper side are prevalently pale olive-green, the fifth and the three anal segments of the abdomen being darker green. The fore wings are pale green with an oblique brownish median band, and a triangular paler brownish spot at the apex. There is a smill back discal dot at the end of the cell. The hind wings are deep orange-yellow, margined with black. On the under slde the wings are olivegreen, darker at the base. The hind wings have a wilved whitish band aboit their middle on the under side. The legs are greenish-white.

This species is found from Oregon to northern California, and eastward to Utah and Montana.

Genus EUPROSERPINUS Grote \& Robinson

This genus is discriminated by Rothschild \& Jordan from Proserpinus by the fict that the antenna is more abruptly hooked and slenderer at its extremity than in Proserpinus, and by the absence of the pulvillus and paronychium, which are found in Proserpinus. Two species belong to the genus, both having white hind wings margined with darker color and the under side of the pectus and the wings also white.
(i) Euproserpinus phaèton Grote \& Robinson, Plate II, Fig. 9, \& . (The Phac̈ton Sphinx.)

Syn. errato Boisduval.
The head and thorax above are gray, the abdomen blackish. The preterminal segment has yellow lateral tufts. The anal tuft is black. The fore wings above are of the same color as the thorax. The hind wings are yellowish-white with a broad black marginal band. Expanse 32 mm .

The habitat of this species is southern California.
(2) Euproserpinus euterpe Edwards. (The Euterpe Sphinx.)

This species, which is only known to the writer through an examination of the type, is discriminated from the preceding by the absence of pale tufts on the side of the abdomen and the fact that the marginal band of the hind wing is bowed inwardly and not straight as in E. Phaeton.

Sphingide

SUBFAMILY CHAROC ARI里 Genus XYLOPHANE•; Hübner

This genus, which is American, is * ary iarge, contaiting fifty species and many subspecies. Of the st. :pecies two only are found, so far as is now known, within our territory, tiough it is possible that a thorough exploration of southern Florida may show that one or two of the species which are found in the Antilles also occur in that State. The student will have no difficulty in recognizing the species occurring within our borders by means of the figures which are given upon our plates.
(1) Xylophanes pluto Fabricius, Plate IV, Fig. 9, 8. (The Pluto Sphinx.)

Syn. berhavicc Fabricius: crasus Dalman; thorates Hübner; eson Walker

This beautiful hawkmoth, which is very cominon in the Antilles, ranging southward to southern Brazil, occurs in southern Florida. The larva feeds upon Erythroxplon.
(2) Xylophanes tersa Linnæus, Plate Il, Fig. 13, 8, (The Tersa Sphinx.)

This common and easily recognized species has a wide range, occurring very rarely as far north as southern Canada, thence southward to Texas and Mexico, and as far south as northern Argentina. The larva feeds on Bouvirdia, Spermacoce, and Manetha.

Genus CELERIO Oken

Head of moderate size. Eyes hemispherical, not prominent. Antenna distinctly clavate, and armed at the tip with a minute hook. The thorax is stout, projecting for about one-third of its length beyond the insertion of the fore wings. The abdomen is conic, untufted, produced more or less at the tip, and projecting for half its length beyond the hind margins of the secondaries. The fore wings, which have eleven veins, are produced at the apex. Their outer margin is slightly and evenly bowed outwardly. Their inner margin is very slightly sinuate. The hind wings have their outer margin evenly rounded, except at the extremity of vein $1 b$, where they are slightly produced. The genus is well represented in the Old World, and there are several South American specles. Only two species occur in our territory.

Sphingidx

(1) Celerio lineata Fabricius, Plate I1, Fig. 14, \% . (The Striped Morning Sphinx.)

Syn. dawius Cramer.
This is probably the commonest of all the North American Sphingids. The larva feeds upon Portulaca. There is considerable diversity in the maculation of the larva. The two figures here given represent the two most usual forms of the caterpillar. The insect ranges over the southern portions of

British America to the Gulf of Mexico and southward to the Antilles and Central America. 1 have seen hundreds of the moths swarming about the electric lights in the streets of Denver, Cheyenne, and Colorado Springs. The moth lies con-

Fig. 35.-Dark form of larva of C. lineokr. (After Riley.)
stantly in bright sunshine on the Laramie Plains of Wyoming in the month of August, frequenting the blossoms of thistles. I have seen It busily engaged in extracting the sweets from dewspangled beds of Soapwort (Saponaria), in the valleys of Virginia long after the sun had risen in the morning.
(2) Celerio intermedia Kirby, Plate II, Fig. 20, f. (The Galium Sphinx.)

Syn. ©pilobii Harris (non Boisduval); chamanerii Harris; galii Walker; oxybaphi Clemens; ranadensis Guenee.

This hawkmoth, which is the North Armerican representant of Celerio gallii, which is found all over the north temperate regions of the Eastern Hemisphere, ranges from Canada to

Vancouver and southward through the mountains of the A.ppalachlan System and along the higher plateaus and mountain ranges of the West as far as Central Mexico. I have specimens taken in the Sierra Madre of Chihuahua. The identification of the species may easily be made by means of the figure on our plate.

THE WORLD OF THE DARK

> ". Sorrnwing we behelld The night come on; but soon did night display More wonders than it veil'd; innumerous tribes From the wood-cover swarm'd. and darkness made Their beauties visible."

> Southey.

There are two worlds; the world of sunshine, and the world of the dark. Most of us are more or less familiarly acquainted with the first; very few of us are well acquainted with the latter. Our eyes are well adapted to serve us in the daylight, but they do not serve us as well in the dark, and we therefore fail to know, unless we patiently study them, what wonders this world of the dark holds within itself. There are whole armies of living things, which, when we go to sleep, begin to awaken; and when we awaken, go to sleep. The eyes of the creatures of the dark are adapted to seeing with less light than our eyes require. The broad daylight dazzles and confounds them. Sunshine has much the same effect upon them that darkness has upon us. Our twilight is their morning; our midnight is their noonday.

This is true even of many of the higher vertebrates. The lemurs, which are a low family of simians, are nocturnal in their habits. So also is the Aye-Aye of Madagascar, and that curious little member of the monkey tribe known as the Specter (Tarsius spectrum). No one can see the great eyes of these creatures without realizing at a glance that they love what we call darkness better than what we call light, though they are far from being evil-doers. The great family of the cats are principally nocturnal in their habits. Their eyes are capable of being used In daylight, for the beautifully contracting and expanding iris modifies the amount of light admitted to the retina

World of the Dark

far more dellcately and Instantaneously than ar.y device, attached to the most perfectly constructed camera, regulates the amount of light transmitted through its lens. The tiger in the jungle sees what is going on about him in the starlight as well as we see what is happening in the noontide. I have studied the eyes of lions and tigers in the dark. The yellowish-green iris in the night almost entirely disappears from view, and shrinks down into a narrow ring. The windows of the eves have the curtains drawn back wide, so as to let in all the light which the darkness holds within itself. The great orbs then look like glohes of crystal, framed in a narrow band of gold, lying on a background of the blackest velvet, while in their pellucid depths, fires, tinged with the warm glow of blood, play and coruscate.

The eyes of many birds are adapted to the dark. This is true, as everybody knows, of the owls, and of their not distant relatives, the goat-suckers. 1 remember having, when a boy, dissected an owl, which 1 found dead after a long protracted period of intensely cold weather. The thermometer had stood at twenty degrees below zero for several nights in succession. The earth was wrapped deep in snow. Upon the sleety crust 1 found a great horned owl, lying dead, and frozen stiff. It may have died of old age, or it m:yy have starved to death. The instinct of the child, who takes his toys to pieces in order to see how they are made, seized me, and, with a sharp penknife as a scalpel, and a few needles set in sticks of pine, I took iny owl apart, and made drawings of what 1 found. 1 did not :hen know the names and functions of all the parts, but the drawing of the eye, which I made, I still ha 'e in an old portfolio, and there 1 saw it the other day. The eye of an owl is a wonderful piece of mechanism. It is a wide-anf, ie lens of beautiful powers of adjustment. It is adapted to taking in all the light there is, when the light is almost all gone; and it is so contrived as to shut out light, when too much of its splendor would dazzle and hurt.

Among the insects thousands and tens of thousands of species are nocturnal. This is true of the great majority of the moths. When the hour of dusk approaches stand by a bed of evening primroses, and, as their great yellow blossoms suddenly open, watch the hawkmoths coming as swiftly as
meteors through the air, hovering for an instant over thls blossom, probing Into the sweet depths of another, and then dashing off again so quickly that the eye cannot follow them. My friend, Henry Pryer, had a great bed of evening primroses in his compound on the Bluff in Yokohama. Well I remember standing with him before the flowers, and, as the light began to fade upon the distant top of Fuji-no-yama, with net in hand capturing the hawkmo:hs. which came eagerly trooping to the spot. When it grew quite dark O-Chi-san held a Japanese lantern aloft to help us to see where to make our strokes. A dozen species became our spoil during those pleasant evenings. Ahl those nights In Japan! Can I ever forget them?

Did you ever reflect upon the fact that the wings of many moths, which lie concealed during the daytlme, reveal their most glorious coloring only after dark, when they are upon the wing ? Take as an illustration, the splendid moths of the great genus Catocala, the Afterwings, as we familiarly call them. The fore wings are so colored as to cause them, when they are quietly resting upon the trunks of trees in the daytime, to look like bits of moss, or discolored patches upon the bark. Tiney furnish, in such positions, one of the most beautiful illustrations of protective mimicry which can be found in the whole realm of nature. The hind wings are completely concealed at such times. The hind wings are, however, most brilliantly colored. In some species they are banded with pink, in others with crimson; still others have markings of yellow, orange, or snowy white on a background of jet-black. One European species has bands of blue upon the wings. These colors are distinctive of the species to a greaier or less extent. They are only displayed at night. The conclusion is irresistibly forced upon us that the eyes of these creatures are capaile of discriminating these colors in the darkness. We cannor do it. No human eye in the blackness of the night can distinguish rec form orange, or crimson from yellow. The human eye is the greciest of all anatomical marvels, and the most wonderfu piece of animal mechanism in the world, but not all of power is lodged within it. There are other allied mechanisms which have the power of responding to certain forms of radiant eriergy to a degree which it does not possess.

Let me commend to the study of my readers this world of the

Saturniide

dark of which I have been speaking. Some of the pleasantest excursions afield which can be made are those which the naturalist takes, when he has only moonlight or starlight to guide his steps. Always take a dark lantern with you. Without it you cannot see, and even with it you will not see much which it might be delightful to behold. But winnout a lintern you will not see a great deal, and you may in the thick wood get deeply mired in a boggy hole, or even break a limb. Your eyes are not made like those of the owl and the cat. Do not be :ffraid of the "night air." The air of the night has the same chemical composition as the air of the day. It is cooler, of course, and sometimes it has fog in it, but cool and even foggy air is not unhealthful. Scusi,men live half their lives in fog, but are healthy. The only things to be dreaded are the mosquitoes, carrying with them the germs of malaria, as we call it. These may be kept off if you only know how to anoint yourself with a properly prepared lotion.

FAMILY SATURNIDAE

" When, hypocritically clad in dressing-gown and slippers, I stopped at my guest's inner door and Fontenette opened it just crnough to let me in, I saw, indeed, a wonderful sight. The entomologist had lighted up the room, and it was filled, filled! with gorgeous miry paths in a bewildering and all of a kind, dancing across one anothers airy pats. The mosquitomaze, or alighting and quivering on this thing and that. net, draping atraost from conimg alternation their upper and under majestically displaying in splendid alteriating to one side and another colirs, or, with wings lifted and vibrant, tipping to gilded sails in a fairies as they crept up the white

This family is composed of moths, which are for the most part medium-sized or large. The larvæ are cocoon-makers. The perfect insects have vein 8 of the hind wirigs diverging from the cell from the base of the wings. The frenulum is wanting. The tongue is aborted, being at most extremely rudimentary. There are no tibial spurs on the legs. The antennx are either singly or doubly bipectinated to the tips in the case of the males, and often in the case of the females. Bipectination of the antennæ occurs also in the family Ceratocampida, but in the latter family it never extends to the tip of the organ. The family falls into three subfamilies: the Attacina; the Saturniina; and the Hemi-

0 :3xad npu!no mesaxh

© 'Sneyx pos punow!d

- 's 'saun! r!dosys minms -

Jlls mivid so nollvivildxa
'IIA $\mathrm{B}^{\text {Bivา }}$ d

asturnilide

leucina. These sublanillies may be discriminated by the help of the following Key:

Hind winge with one distinet internal vein
Discel cell of both winge open
Find Dincal cell of both winge cised

- Satuacine

Homilowerne.

81

SUBPAMILY ATTACIN/E Genus PHILOSAMIA Grote

This genus, which may be distinguished from all others in our fauna by the tufted abdomen of the perfect insect, is represented by a slagle species, which, originally imported from the eastern parts of Asia, has become thoroughly accilmatized on the Atlantle seaboard in the viclnity of the larger citles, from which, as centres, It has spread to some extent to the surrounding country.
(I) Phliosamia cynthia Drury, Plate IX, Fig. 2, 8. (The Allanthus Silk-moth.)

Syn. awrotus Pabricium; onswlars Vollenhoven; vesta Walker; cannengi Walker; walleri Pelder; pryori Butler.

The cut (Fig. 36) and the representation on our plate obviate all necesslty for mere verbal description of the specles. The Insect which was orlginally introduced into Europe about the middle of the last century was first introduced into America In the year 1861. It was hoped that it would prove a valuable silkbearing specles, but although a good grade of coarse silk may be made from it by the process of carding, and strong and serviceable fabrics are manufactured from It in China, no method of successfully and economically reeling the cocoons has yet been invented. The caterpillar feeds upon the allanthus, and these shade trees in some places have been known to be completely defoliated by the worms.

Genua ROTHSCHILDIA Grote

This characteristically neotropical genus may always be recognized by the large more or less triangular translucent spots of the wings, and the general likeness to the specles we figure upon our plate. The abdomen is without tufts. The antenne of both sexes are doubly blpectinated. The fore wings are generally considerably produced at. the apex. Two species occur within our faunal limits.
(1) Rothachiidia orizaba Westwood, Plate \mathbf{X}, Fig $\mathbf{I}, 8$. (The Orizaba Silk-moth.)

From Rothschildia jorulla Westwood, the other species found in our territory, this is easily separated by its generally lighter color and the much larger size of the translucent spots

Gaturnilid.

upon the wings. Both species occur in Arizona, where they ure not, however, nearly as common as they are in Mexico.

Genue SAMIA IIübner

In this genus, composed of quite large moths, characterized, as are the moths of the two preceding and the next succeeding genera, by having the discal cells open, we find that the spots on the middle of the wings are opaque, not hyaline, as in the genus Rolhschildia; and, furthermore, the fore wings are more rounded and less produced than in that genus.
(1) Samia cecropia LInnaeus, Plate Vlli, Fig. I. s; Plate i, Fig. 8, larva. (The Cecropia Moth.)

This splendid moth, which is very common, is one of a small number of our native siik-moths, which attract more or less

popular attention, and the spring of the year in our museums is always regarded as a period in which a certain portion of the time of the entomologicai staff will be consumed in repiying to the letters of persons who, having for once opened their eyes to the wonders of the insect world, have sent in old matchboxes through the mails specimens of this insect, generally adding the information that the species is probably "new to science" or "excessively rare," they having for the first time in their lives noticed the moth.

The larva feeds upon a great variety of deciduous trees and shrubs, though manifesting a prediiection for the Rosacea. willows, maples, and the lilac. The cocoon is a familiar object. The insect is found over the whoie Atlantic seaboard, and ranges westward to the eastern margin of the great piains.

Batumidide

(2) Samia gloveri Strecker, Plate XII, Fig. 4, 8. (Glover's Silk-moth.)

This species, whlch may be distinguished from the preceding by the more obscure, purpllsh color of the outer band, which in S. cecropia is bright red, ranges over the region of the Rocky Mountains from Arizona in the south to Aiberta and Asslniboia in the north. A small dwarfed form has been taken upon the high mountains of Colorado, to which Neumcegen gave the subspecific name reducta.
(3) Samia columbia Smith, Plate VIII, Fig. 8, 8. (The Columbian Silk-moth.)

This species, whlch is well represented in our plate, may be dlscriminated from its allies by its smaller size, and by the absence of the reddish outer shading of the transverse white line which crosses the wings about their mlddle. It ranges from Maine to Wisconsin, never, so far as is known at present, ranging south of the forty-first parallel of north latitude. Whlle closely ailied to S. gloveri, it is much smaller, and the larva shows marked differences. The caterpillar feeds upon the larch.
(4) Samia rubra Behr, Plate Vill, Fig. 2, $\mathbf{3}$. (The Ceanothus Silk-moth)

Syn. ceanothi Behr: ouryalus Boisduval; californica Grote.
The species which is easily separated from its congeners by its small size and prevalently redder cast of coloration, is found on the Pacific coast, ranging eastward to Utah and Wyoming. The larva feeds upon Ceanothus thyrsiforus.

Genus CALLOSAMIA Packard

The structure of the moths of this genus is much like that of the preceding genus, but the species composing it may invariably be discriminated from others by the fact that the pectinations of the antennæ of the females in the anterior pair on each joint are shorter than the posterior pair. The genus contains several species, two of which are common in portions of our territory, and the other is a straggler into our fauna from Mexico.
(1) Callosamla promethea Drury, Plate 1, Fig. 2, larva; Plate XI, Fig. 11, $\mathbf{3}$, Fig. 12, 7. (The Spice-bush Silk-moth.)

Every country boy who lives in the Atlantic States is familiar with the cocoons, which in winter and spring he has found

Explanation of Plate IX

(Except when otherwise indicated the specimef figured are containcd in the collection of W. J. Holland.)

1. Telea polyphemus Cramer. \&
2. Philoramia cynthia Drury, of
3. Agapema galbina Clemens, or', U. SI. M. 2
4. Aulomeris io Fabricius. ot.
5. Autoneris io Fabricius, \& .
6. Antomeris pamina aurosea Neumor σ^{7}.
7. Psemdohazis eglanterina nutlalli Streer, σ^{7}.
8. Pseudohasis hera Harris. σ^{7}.
9. Zenzera pyrina Linneeus, ò

hanging from the twigs of the spice-bush, the sassafras, and other trees. As they dangle in the wind they are easily de-
tected, though they are often wrapped in the dead leaf in which the caterpillar originally spun them. The larva of which, In addition to the figure given in Plate i, we furnish a cut herewith, is a rather striking object, the coral-red tubcries on the second and third anterior segmer:s showing conspicuously against the bluish-green epidermis. The insect subsists in the larval stage upon a great variety of deciduous shrubs and trees, showing a

Fig. 39.-Cocont of C. promition, (After Piley.)

Fig. $3^{8 .-C a l l o s a m j a ~ p r o m e t h a . ~}$ a, Young lerva; b, front view of head; c_{1} magnified view of a eeg. ment of young larva; d, mature Larva. (After Riley.)
special predilection for the Lauracea, Liriodendron, Liquidambar, and the wild-cherry. It ranges over the Atlantic Statea from Florida to New England into southern Canada, and thence westward through the valley of the Mississippl to the eastern boundaries of the great plains. Whether the silk produced by this common and easily reared species could be utlized in such a way as to make its production commercially profitable is a problem to be solved in the future. No one up to

Satumiide

the present tlme has succeeded either in reeling or carding the silk of the cocoons.
(2) Callosamia angulifera Walker, Plate VIll, Fig. 3. δ, Fig. 4, 8. (The Tulip-tree Silk-moth.)

This species may easily be discriminated from the last named by the fact that the males are not without discal spots as in that species, but have large angular white spots, causing them to resemble In this respect the females of C. promethea. The larva feeds commonly on the tulip-poplar (Lirioilendron). The cocoon is not suspended from the twlgs, as in the case of C. promethea.

The only other species of the genus, which occurs in our fauna, is Callosamia calleta Westwood, which may be differentiated from the two foregoing species by the fact that it has a whitish band on the collar and at the base of the thorax.

SUBFAMILY SATURNIINAE

The discal cells are closed. The antenna are pectinated ln both sexes to the tip. The hind wings have but one Internal vein distinctly developed. But four genera representing this subfamily are found within our territory.

Genus AGAPEMA Neumcegen \& Dyar

The antenne of both sexes are doubly bipectinated, those of the female having both the anterior and posterior pectinations of equal length. Only one species is known.
(1) Agapema galbina Clemens, Plate IX, Fig. 3, 千. (The Galbina Moth.)

This interesting insect occurs in southern Texas, Arizona and Mexico. The larval stages have been described by Henry Edwards (see "Entomologica Amerlcana," Vol. IV, p. 61). The specimen figured is considerably darker than the figures given by Strecker. Specimens as light as those he depicts have never fallen into the hands of the author.

Genus ACTIAS Leach

The species of this genus may easily be discriminated by thelr pale green color, and the tailed hind wings. The pectinations of the antennæ in the female sex are shorter In the anterior pair on
each joint than the posterior pair. The genus is quite large, but only one species occurs in temperate North America. It is better 'represented In the Old World.
(I) Actias luna Llnnaus, Plate XII, Flg. 7, 8. (The Luna Moth.)

This common and well-known insect has an extensive range from Canada to Florida and westward to Texas and the transMisslssippl States as far as the region of the great plalns. The larva, of which we give a representation, feeds upon the various species of walnut and hickory, the sweet-gum (Liguidambar), the persimmon (Diospyros), and other trees. In North CaroUna it appeared to be particularly fond of the persimmon. The cocoon is thin and papery, spun among leaves, and falls to the ground in autumn. In consequence it is not

Fig. 40.-Larva of A. Iuna. (After Riley.) nearly as often found as those of some other species, which have been described in the preceding pages.

Genus TELEA Hübner

This is a very small genus, including only two or three specles. It is confined to the New World. The only representative in our faunal limits is the well-known species, which we figure.
(1) Telea polyphemus Cramer, Plate IX, Fig. 1, \&. (The Polyphemus Moth.)

Syn. paphia Linneus; fenostra Perry; oculca Neumaegen.
This very common moth feeds in the larval stage upon a great variety of trees and shrubs. I have found the caterpillar upon various species of oaks, upon the two species of Juglans, which grow in the Eastern States, upon hickory, basswood, elms, maples, birches, chestnuts, the sycamore (Platanus), wild-

tamuraitio

roses, and the beech. Other sbservers have reported the larva as found upon a great variety of other trees. The caterpillar,

Fio. 48,-Larva of Toloa polyphomus. (After Riley.)
which is of a beautiful shade of green, is ornamented on the sides by raised lines of siivery white, and is altogether a beautiful object, so far as coloration is concerned. The cocoon is in form like that of Actias luna, but is much more dense, and, after it has been spun up, is injected by the larva with a fluid, which appears to precipitate a white chalky matter through the fibers after it has dried. Efforts to reel the silk have hitherto amounted to but littie. The insect is double-brooded in the southern States.

In Pennsylvania and northward it is single-brooded. The moth ranges across the entire continent and into Mexico in the South. We have given in Figure 5 a representation of the Fio. 42.-Cocoon of Talia polyphemus. pupa, in Figure io a cut (After Riley.)
of the antenna greatly enlarged, and in Figures 41 and 42 are shown the larva and the cocoon. The latter, as is iilustrated in the cut, is spun among leaves, and falls in the autumn to the ground. A number of aberrant forms and local races have been described, and there is considerabie variety in the depth of the ground-color of the wings

Explanation of Platg X

(Except when otherwise indicated the specimens figured are in the collection of W. J. Holland.)
8. Rothschildia orisaba Westwood, $\%$.
2. Basilona imperrialis Drury. $\frac{9}{}$
3. Citheronio regalis Fabricius, ot
4. Citheronia mexicana Grote \& Robinson, σ^{7}
5. Adelorephala bicolor Harris, ot
6. Adeloceptala bicolor Harris, $\%$.
7. Syssphinx albolimeata Grote \& Robinuon, or
8. Coloradia pandora Blake, or
9. Malucosoma disstria Hubner, σ^{\prime}, U. S. N. M
80. Malacosoma arusa Stretch, σ^{2}.
11. Malacosoma culifirnica Packard, ${ }^{\text {a }}$.
12. Malacosoma americama Fabricius, \%, U. S. N. M.

in a long series of specimens collected in the same locality. I have one or two fine melanic specimens, in which the wings are simost wholly black on the upper side. Albino specimens are also occaslonally found.

Genus SATURNIA Schrank

This genus is represented in our fauna by a single species.
(1) Saturnia mendocino Behrens, Plate XII, Flg. 6, 1. (The MendocIno Silk-moth.)

The Insect inhabits northern California, where it is not uncommon. The larva feeds upon Arctostaphylos tomentosa.

Genus AUTOMERIS Hübner

Fol species of this genus occur within our borders. Three of them we figure on our plates. The other, Automeris zelleri Grote \& Roblnson, may be distingulshed from those we give by its much greater size, the female expanding fully five inches across the wings, and having three broad brown bands parallel to the margin of the hind wing, a large blind ocellus in the middle of that wing, and the fore wings purplish brown, marked with darker brown spots at the base, the end of the cell, and on the limbal area.
(1) Automeris pamina Neumcegen, Plate IX, Fig. 6, 8. (The Painina Moth.)

The figure we give is taken from an example of the form called aurosea by Neumcegen, In which the halrs along the Inncr margin of the hind wings are some what more broadly rosy red than in the specimens which he Indicated as typical. The specimen was labeled by, and obtalned from, the author of the specles.
(2) Automeris zephyria Grote, Plate VIII, Fig. 5, \&. (The Zephyr Sllk-moth.)

This beautiful Insect which is found in New Mexico, is well delineated in our plate, and may easily be discriminated from other specles by the white transverse lines of the fore wings.
(3) Automeris to Fabricius, Plate IX, Fig. 4, 8, Fig. 5, 8. (The lo Moth.)

Syn. corollaria Perry: varra, Walkar: fabricii, Boisduval; argus Neumargen \& Dyar.

Saturnilde
This common insect, which ranges from Canada to Florida, and westward and southward to Texas and Mexico, subsists in the larval stage upon a large variety of
 trees and shrubs; In fact, the caterpillar is almost omnivorous. The larva is a beautiful object, the body being green, ornamented with a lateral stripe of plnk and creamy white and covered with clusters of branching spines. These are possessed of stinging properties, and the caterpillar should be haniled with extreme care, if painful consequences are to be avoided. In spite of this defense the larva are greatly liable to the attack of ichneumon wasps, which destroy multitudes of them.

Genus HYLESLA Hübner

This is a neotroplcal genus of small size, one species of which, common enough in Mexico, is occasionally found in Arizona. It is a true Saturnian, the secondaries having but one inner vein and the discal cells in both wings being closed.
(1) Hylesia alinda Druce, Plate VIII, Fig. 12, \&. (The Alinda Moth.)

The specimens I have were taken on the Mexican border of Arizona. So far as 1 remember, nothing has been written upon the life-history of the species.

SUBFAMILY HEMILEUCINAE.

The moths of this subfamily may be structurally differentiated from their near allies by the fact that the hind wings have two distinct internal veins, $1 a$ and $1 b$, The antenna of the male insect in the genus Coloradia are doubly bipectinated. In the
genera Hemileuca and Pseudohazis, the antenne of the males are singly bipectinated. In the former genus the females have bipectinated antenna; in the latter the females have the antenna serrate, or very feebly pectinated.

Genus COLORADIA Blake

(1) Coloradia pandora Blake, Plate X, Fig. 8, \%. (The Pandora Moth.)

The range of this insect is from the eastern foot-hills of the Rocky Mountains to the Cascades, and from Montana to Mexico.

Genus HEMILEUCA Walker

Eight species of this genus u.e known from our territory, four of which we figure. H. electra Wright has the hind wings more or less red with a black border. H. grotei is a black species with a white collar, and a series of narrow whlte spots covering the middle of the wings, three on the fore wing, and those on the hind wling composing a narrow median band. H. neumageni is a beautiful Insect with snowy white thorax and reddish brown abdomen. The wlngs are snowy white with orange discal marks crossed by two black bands on the primaries and one on the secondaries, the inner line of the primaries being relieved externally by an orange spot bordered with black. H. hualapai Neumœgen has the wings dull pink, either without markings, or crossed by two pale lines. The form with the pale transverse lines has been dubbed sororius by Henry Edwards.
(I) Hemlleuca maia Drury, Plate XI, Fig. I. \%. (The Buck-moth.)

Syn. proserpina Fabricius.
In the fall of the year, when the leaves are falling and the days are still mellow and warm, the Buck-moths may be seen flitting through the air at noonday. They especially frequent the edges of groves of oaks. Upon the twigs of these trees, as well as occasionally upon willows, wild cherry-trees, and hazels, they deposit their eggs in clusters, as represented in Figure 44. The larve, which are gregarious and have stinging splnes or bristles upon the somites, hatch in the latter part of April or in May, according to latitude, and after undergoing five molts, pupate in

Saturnide

the ground. The moths emerge In the fall, though a few winter over in the soil until the next spring, when they emerge, or they may even remain dormant until the following fall.

The wings are semi-translucent, and in some specimens are apparently almost devoid of scales. The Insects are diurnal, or semi-crepuscular in their habit, and \mid have never known them to be attracted to artificial light. The name "Buck-moths" is said to have been given to them because they fly at the time when deerstalking is in order.

The insect ranges from Maine and Nova Scotla tc Florida and westward to

Fio. 44.-Eggs of Buck-moth. (After Riloy.) the eastern edge of the great plains. In the Carolinas it is very common, especially in groves of the Black-jack Oak, which grow on barren uplands.
(2) Hemileuea nevadensie Stretch, Plate XI, Fig 2, 8 . (The Nevada Buck-moth.)

Syn. californica Wright; artomis Packard.

Thls species, which closely resembles the preceding, may be distinguished from it by the much wider expanse of the transverse discal bands in both wings, and the much

Fic. 45.- Buck - moth; a. mature larva; b, pupa; $c-d$, bristles on larve in first stage; e, thoracic spine in second stage; f. spine in third stage; 8 , spine in fifth stage. (After Riley.) redder tuft of anal hairs. It may be a mere local race of Hemileuca maia, but most zuthors have recently accorded it specific rank.
(3) Hemileuea juno Packard, Plate Xll, Fig. 8, o. (The Juno Moth.)

Byn, yavapai Neuncegen.

Explanation of Pliate XI

(The specimens figured are contained in the collection of $\mathbf{W} . j$. Halland.)
8. Hemilenca maia Drury, of

Homilouca nevadensis Stretch. of
Psenduhasis hera pica Walker; 0^{-}
Psendolazis hera picu Walker. of
5. Pseudohazis eglanterina nuttalli Strecker. 0^{7}.
6. Chinucha brunnoa Stretch, d^{7}.

Tolype velleda Stoll, or
Tolype velleda Stoll, $\%$.
Anisota stigma Fabricius, of.
10. Anisota stigma Fallricius, o.
11. Callosamia promethea Drury, 0^{7}.
12. Cullosamia promethea Drury, f.
13. Basilona imperialis Drury, ${ }^{7}$
14. Syssphinx heiligbrodi Harvey, \&
15. Cargida pyrrha Druce. o^{7}.
16. Fenaria longipes Druce, o'
17. Xanthopastis timais Cramer, 8.
18. Euchetias mwrina Stretch. P.
19. Copilryas cosyra Druce. d^{2}.
20. Apanlesis intermertia Stretch, d^{7}.

Saturalide

This beautiful moth occurs in Arizona and northern Mexico.
(4) Hemileuca tricolor Packard, Plate Xli, Flg. 9. 8. (The Tricolor Buck-moth.)

This species, like the precedlng, is found in Arizonia and in New Mexico. The larve feed upon the Grease-wood, according to report.

Genus PSEUDOHAZIS Grote \& Robinson

This is a small genus of rather striking and exceedingly variable insects, the life histories of which have not been as thoroughly studied as is desirable. The moths appear to be diurnal in their habits, and may be found in vast numbers in the morning hours on bright days In their favorite haunts in the region of the Rocky Moultains. I have found them particularly abundant about Laramie Peak in Wyoming in the latter part of June and July. They appear to frequent flowers in company with diurnal lepidoptera, as the various species of Argynnis, and they may then be easily taken. Their flight is rapid. They are characteristlc of the country of the sage-brush, and the ranges of the western sheep-herder.
(1) Pseudohazis eglanterina Boisduval.

Form nuttalli Strecker, Plate IX, Fig. 7. δ; Plate XI, Fig. 5, 8. (Nuttall's Sheep-moth.)

Syn. shastaensis Behr; denudata Neumregen.
The two figures given on our plates show two forms of thls well-known insect. Whatever the amount of black or purple upon the fore wings the specimens may always be distinguished from others by the presence just beyond the discal spot of the fore wings of a longitudinal dash of Indian yellow. This is characteristic, and I have never failed to find it in a long series of specimens, no matter how the other markings varied.
(2) Pseudohazis hera Harris, Plate IX, Fig. 8, 8. (The Hera Moth.)

Form pica Walker, Plate XI, Fig. 3. 8 ; Fig. 4, 8. (The Magpie Moth.)

This extremely variable moth is represented by the typical form in the figure given upon Plate IX, and in the figures given upon Plate XI by two specimens showing the form, which is

Ceratocatmpide

most common in Coiorado and Wyoming, in which the wings are greatly suffused with black. To this form Walker's name pica properiy appiies.

FAMILY CERATOCAMPID/E

" In Nature's infinite book of secrecy
A little I can read."-Shazespiarz.
This family contains moths of large or medium slze, the larves of which do not produce cocoons, but undergo transformation in the ground. The iarve are generally more or less ornamented with spines and bristly protuberances. The moths have the tongue developed, but nevertheless feebly. The tibial spurs are present. The frenulum is lacking. The genera belonging to this family are American, and only five of them odcur within our faunal limits.

Genue ANISOTA Hübner

Of the five species, recognized as belonging to thls genus and occurring within our borders, we have selected three for representation. Anisota senatoria, a common species found in the Atlantic States, is distinguished from its very near ally, Anisota virgiviensis, not only by marked differences in the larval stage, but by the fact that the females are almost exactly iike the female of Anisota stigma, profusely covered with biack spots or frecklings on the wings, while the females of virginiensis, as shown in the plate, are almost wholly destitute of such spots. The maies of these two species are almost alike, the only difference being that the male insect in the case of virginiensis is somewhat darker than in the case of Anisota senatoria, and less ochreous.
(1) Anisote atigma Fabricius, Plate XI, Fig. 9, 8 ; Fig. 10, \&. (The Stigma Moth.)

The caterpillar feeds upon various species of oak. it is ornamented with short spines upon the segments, arranged in rows, those on the second segment from the head being long and recurved. The color of the larve at maturlty is a sull reddish brown, marked with small creamy-white and gray punctulations. The insect occurs in the Appaiachian faunai region, from Canada to the Caroiinas, and westward to Kansas and Missouri.
(a) Anisote virginiensis Drury, Plate Vili, Fig. 9, 8 ; Fig. 10, 8. (The Virginian Anisota.)

Syn. astymons Olivier; pollucida Herrich-Schmerer.
The male insect has the fore wings almost transparent sbout the middle, as is the case with Anisota senatoria, as has already been pointed out, but the female is not heavily spotted, as is the case In that species. The caterpillar feeds upon oaks. The moth has the sime geographical distribution as the preceding species.
(3) Anisota rubicunde Fabriclus, Plate VIII, Fig. 11, 8. (The Rosy Maple-moth.)

The larva of this beautiful moth feeds commonly upon the silver-maple, which in many of our western cities has been extensively planted as a shade-tree. The depredations it commits upon the foliage have subjected it to the indignation of arboriculturists. It was formerly very common in the city of Pittsburgh, but for many years past it has almost entirely disappeared, so that it is now regarded as a rather rare insect by local collectors. The disappearance of the moth is due no doubt to the combined influence of the electric lights, which annually
 destroy millions of insects, which are attracted to them, and to gas-wells, and furnaces, which lick up in their constantly burning flames other millions of insects. Perhaps the English sparrow has also had a part in the work of extermination. In Kansas the insect is very common. I recently saw in the city of Atchison numerous maples, which had almost been stripped of their leaves by these larve. The range of the insect is practically the same as that of the other species of the genus.

Coratocampida

Genus ADELOCEPHALA Herrich-Scheffer

As in the preceding genus, vein if of the fore wing is stalked with veins $6-8$, but the outer margin of the wing ls not straight as in that genus, and longer than the internai margin, but it is convex and shorter than the inner margin. There are a number of species belonging to the genus, which are indigenous in Central and South America, but only one occurs within our borders.
(1) Adelocephala blcolor Harris, Plate X, Fig. 5, of ; Fig. 6, \%. (The Honey-locust Moth.)

Syn. distigma Walsh.
The larva feeds upon the Honey-locust (Gleditschia) and the Kentucky Coffee-tree (Gymnocladus). It is a rather common insect in the vaiiey of the Ohio, and ranges from the region of the Great Lakes southward to Georgia and Kansas.

Genus SYSSPHINX Hübner

The insects assigned to this genus by recent writers do not differ greatly \ln structure from those referred to the preceding genus. The principai structural differences consist \ln the fact that the antennax of the females are some what shorter and less strongiy pectinated, and the abdomen is generaily longer, in some species greatly exceeding the hind margin of the hind wings. 'The genus is weii represented In Mexico and Central America. Oniy four species occur in our territory, two of which we figure.
(1) Syasphlnx albolineata Grote \& Robinson, Plate X, Fig. 7, $\frac{1}{}$. (The White-ined Syssphinx.)

Syn. raspa Boisduval.
The figure we give is sufficient to enabie the student to identify this species which is common in Mexico, and also occurs in southern Arizona.
(2) Syasphlnx heiligbrodti Harvey, Piate X1, Fig. 14, 8. (Heiligbrodt's Syssphinx.)

This very pretty moth, which may easily be determined by the heip of the figure we give, is not uncommon in southern Arizona. The caterpillar feeds, it ls said, upon Grease-wood bushes.

Explanation oy Plate Xil

(Except when otherwise indicated the specimens fgured are in the collection of W. J. Holland.)

1. Cossus comterexsis Lintner, do. U.S. N. M
2. Hypopta bercholdi Grote, Q.
3. Hypoplas henrici Grote, ơ, U.S. N .N.
4. Samia glowri Streeker, Ol' 7.
5. Artace punctistriga Walker, ơ. U. S. N. M
6. Saturnia mendocino Behrens. σ^{*}
7. Aetias luma Linneus, σ^{7}.
8. Homilonca gmo Peckard. of
9. Homilowca tricolor Packard. O^{7}.

Tha Motw soon

Genus CITHERONIA Hübner

This genus of large and showy moths is characteristically neotropical, having its metropolis in Central Amerlca. Three species occu: in our territory, two of them having an extensive northern range.
(1) Cltheronla regalla Fabricius, Plate I, Fig. 4, larva ; Plate X, Fig. 3, ${ }^{\text {s }}$. (The Royal Walnut-moth.)

Syn. regia Abbot \& Smith.
The caterpillar, which is known by boys as the "Hickory Horn-devil," feeds upon a great variety of trees and shrubs, showing a decided preference for the wainut and butternut, the persimmon, and several species of arborescent sumac ($R h u s$).
(2) Citheronia sepulchralis Grote \& Robinson, Pate XLI, Fig. 5, \&. (The Pine-devil Moth.)

The larva, which is smaller and more obscurely colored than that of the preceding species, feeds upon various species of pine, and the insect ranges from the Carolinas northward to Massachusetts along the coast. It is not uncommon in the valley of the Potomac, and at Berkeley Springs I have found it abundant in the larval state in the months of July and August.
(3) Citheronia mexlcana Grote \& Robinson, Plate X, Fig. 4, δ. (The Mexican Walnut-moth.)

This species, which is in many respects very closely allied to C. regalis, occurs in Arizona, and southward.

Genus BASILONA Boisduval

The only representative of this genus within the limits of the United States is the species which is illustrated on our plates. There are a number of other species, which are Mexican or South American.
(1) Basilona Imperialis Drury, Plate X, Fig. 2, ㅇ; Plate XI, Fig. 13, $8 . \quad$ (The Imperial Moth.)

Syn. imperatoria Abbot \& Smith; punctatissina Neumogen.
The larva feeds upon a vast number of trees and shrubs, and may almost be described as omnivorous. The larva are either brown or green, the color his ving nothing whatever to do with the character of the perfect insects, which emerge from the pupz. Sisch cases of dichromatism among larva are not at all uncommon.

FAMILY SYNTOMID/E

"Whoever looks at the insect world, at ties, aphides, gnats, and innamerable parasites, and even at the infant mammale, must bave remarked the extreme content they take in suction, which constitates the main basiness of their life. If we go into a library or news-room, we see the same function on a higher plane, performed with like ardor, with equal impatience of interruption, indicating the sweetness of the act."-Emerson.

This family, which quite recently has been monographed by Sir George F. Hampson, consists of moths whicn are small, or at most of medium size. They are diurnal in their habits, and frequent flowers. At first glance, they often alre mistaken for wasps and other hymenoptera, which they mimic. The following characterization of the fimily is quoted from the learned author, to whom reference has just heen made:
" Proboscis usually well developec, but sometimes aborted; palpi short and porrect, long and downcurved, or upturned; frons rounded; antennex simple, cillated, or bipectinate, usually with short branches dilated at extrenity in both sexes; tibire with the spurs short. Fore wing usually with the terminal area broad; vein $1 a$ forming a fork with $1 b, 16$ absent; 5 from below middle of discocellulars; 7 stalked with 8,9 . Hind wing small; vein $1 a$ often absent; ic absent; 8 absent, rarely rudiunentary and not reaching costa; frenulum present; retinaculum barshaped." Hampson, Catalogue of the Lepidoptera Phalana, Vol. l, p. 20.

Eleven genera comprised within this family are recognized by recent writers as holding place in the fauna of the United States and Canada. Most of these are southern, and represent a northern movement of the great complex of genera and species referable to the family, which inhabits the hot lands of equaitorial America.

Genus COSMOSOMA Hübner

This is a large genus, including at least eighty species, whlch are found in Central and South Americia. Only one species is, at present. known to occur within our faunal limits.
(1) Connosoma auge Linnaus, Plate XIII, Fig. I, 3. (The Scarlet-bodied Wasp-moth.)

Sya. omphale Hübner: melitta Müchler.

This beautiful little insect occurs throughout the tropics of the New World, and is not rare in southern Florida. The larval stages have been described by Dyar (see "Psyche," Vol. VII. p. 414). The caterpillar feeds upon Mikania scandens.

Genus SYNTOMEIDA Harris

The type of this genus is Syntomeida ipomea. Six species have thus far been assigned to it, two of these occuring in the extreme southern portions of our territory.
(1) Syntomeida Ipomeae Harris, Plate XIII, Fig. 3 \$. (The Yellow-banded Wasp-moth.)

Syn. fcrox Walker; eutcrpe Herrich-Schmffer.
This species is confined to the southern States along the L.rders of the Gulf of Mexico. The caterpillar, which according to report feeds upon the Convolvulacea, remains to be fully described.
(2) Syntomeida epilais Walker, Plate XIII, Fig. 2, 8. (The Polka-dot Wasp-moth.)

The larva has been described by Dyar (see Journal New York Entomological Society, Vol. IV, p. 72, and "Insect Life," Vol. II, p. 360). The caterpillar feeds upon Neriumb odorum.

Genus PSEUDOMYA Hübner

Thls is a small neotropical genus, including, so far as is known, but eight species, one of which occurs in the extreme southern part of Florida.
(1) Pseudoınya minima Grote, Plate XIII, Fig. 6, 8. (The Lesser Wasp-moth.)

The caterpillar, which has been described by Dr. H. G. Dyar in "Psyche," Vol. VIII, p. 42, feeds upon Myginds ilicifolia.

Genus DIDASYS Grote

Only one species has hitherto been referred to this genus. It is found in Florlda.
(1) Didasys belae Grote, Plate XIII, Fig. 7, 3, Fig. 88. (The Double-tufted Wasp-moth.)

As shown in our plate, the male has the end of the abdomen ornamented by two tufts, while the female is devoid

Byctomide

of these appendages. The insect is found on the indlan Rlver In Florida, and southward.

Genus HORAMA Hübner

Ten species compose this genus, of which only one is found wlthin the llmits of the United States.
(1) Horama texana Grote, Plate XIII, Flg. 9, \&. (The Texan Wasp-moth.)

No difficulty should be experienced in identlfying this moth by the help of the figure which is given.

Genus eUCEREON Hübner

Sixty-two species, ail inhablting the hot lands of North and South Amerlca, are assigned by Hampson to this genus. The only one thus far known to occur within the limits of the United States is figured on our plite.
(1) Eucereon confine Herrich-Schaffer, Plate XIII, Fig. 10, \%. (The Floridan Eucereon.)

Syn. carolina Henry Edwards.
This Interesting IIttle moth, which was described by Henry Edwards under the name Nelphe carolina, had been figured by Herrich-Schaffer under the specific name above cited thirty-two years before. It is rare in Flerida, but is common in the Antilles, Mexico, and Central America.

Genus LYMIRE Walker
Thls is a small genus comprehending only five species. lts only representant within our borders was originally assigned by Grote to the genus Scepsis, which it superficially resembles.
(1) Lymire edwardsl Grote, Plate XIII, Fig. 11, \&. (Edwards' Wasp-moth.)

The larval stages, thanks to the labors of Dr. H. G. Dyar, are known. The caterpillar feeds upon Ficus pedunculata. The insect, when pupating, spins a small cocoon of hair and silk. For fuller knowledge upon the subject the reader is referred to "Insect Life," Vol. I1, p. 36t.

Genus SCEPSIS Walker

Three species of this genus, which does not range far into the Mexican territory, are recognized. Two of these we figure;

3yatomida

the third, Srepsis pachardi Grote, matthewi Grote, is a trifle larger In size, than the other two, much paler in color, and inhabits Washington, Oregon, and British Columbia.
(1) Scepsis fulvicollls Habner, Plate XIII, Fig. 12, $\&$ (The Yellow-collared Scape-moth.)

Eyn. samidiaphana Harris.
This common insect, the larva of which feeds upon grasses, has a wide range from Canada to the Gulf States, and westward to the Rocky Mountains, and southward to Chihuahua in Mexico. The moths frequent the blossoms of the golden-rod (Solidago) in the late summer.
(2) Scepsis wrighti Stretch, Plate XIII, Fig. 13, $8 . \quad$ (The White-collared Scape-moth.)

The habitat of this species is southern California. The specimen figured was sent me by Mr. Wright, labeled "Type," and may be accepted as typical of the species.

Genus LYCOMORPHA Harris

A small genus of moths, diurnal In their habits, having a preference for the flowers of the Composita, upon which they may frequently be found in their habitats.
(1) Lycomorpha grotei Packard, Plate XIli, Fig. 14, \&. (Grote's Lycomorpha.)

Syn. palmeri Packard.
This pretty little insect occurs in Colorado and thence southward to Texas. So far as recalled by the writer its larval stages have not as yet received attention from any of our American students of the lepidoptera.
(2) Lycomorpha pholus Drury, Plate Xlll, Fig. 15, δ.

This common insect, but not the less beautiful because It is common, is widely distributed throughout the United States. The larva is said to feed upon lichens.

Genus CTENUCHA Kirby

This genus, which includes about twenty species, is quite well represented in our fauna. Figures of all the species occirrring within our territory are given in the plates.
(1) Ctenucha venose Walker, Plate XIIJ, Fig. 20, δ. (The Veined Ctenucha.)

Syntomidm

From Clenucha cressenana, its nearest ally, this species may be distinguished by lts smaller size, the reddish tint of the stripes upon the fore wings and the edges of the shoulder lappets, and the fact that the fringe opposite the end of the cell on both wings ls marked by fuscous, and not uniformly white throughout as in C. cressonane. The species ranges from Colorado to Mexlco.
(2) Ctenucha cressonana Grote, Plate XIII Fig. 21, δ. (Cresson's Cienucha.)

This species, which is one of the largest In the genus, may easily be recognized by the figure we give and the remarks made in connection with what has been said in regard to the preceding species.
(3) Ctenucha brunnea Stretch, Plate XI, Fig. 6, \& . (The Brown-winged Ctenucha.)

Easily recognized by the pale brown color of the primaries, upon which the veins stand forth In a darker shade of brown.
(4) Ctenucha multifaria Walker, Plate XIII, Fig. 19, 8. (The Californian Ctenucha.)

This species, which is closely allied to the next, may be dlscriminated by the fact that the fore wings are lighter in color, the collar is black, not orange spotted with black, as in C. rubroscapus, and the costal margin of the primaries is narrowly edged with white.
(5) Ctenucha rubroscapus Ménétriés, Plate Xlll, Fig. 22, \%. (Walsingham's Ctenucha.)

Syn. walinghami Henry Edwards.
This species, which may be dlstinguished by the aid of what has been said under the preceding species, as well as by our figure, may have the edges of the shoulder lappets either red, as in our figure, or orange yellow. It is found in the Pacific States.
(6) Ctenucha virginica Charpentier, Plate XIII, Fig. 18, $\%$. (The Virginian Ctenucha.)

Syn. latrcillana Kirby.
This moth, which is not at all uncommon in the northern portions of the Appalachian faunal region, may be found in the latitude of New York City and Pittsburgh frequenting the blosscms of blackberries at the end of May and in June. The larva feeds, as do the larvze of the other species, upon grasses.

Genus DAHANA Grote

Only one species, the type of the genus, is known.
(1) Dahana atripennis Grote, Plate XIII, Fig. 23. 8. (The Black-winged Dahana.)

The habitat of this species is southern Florida. The insect does not appear to be common in collections.

FAMILY LITHOSIIDAE

"You would be another Penelope: yet, they say, ail the yarn she spun in Ulysecs's absence did but fill Ithaca full of moths."
-Shatespeare, Cotiolanus, I. 3.
The moths belouging to this family have the larva of the usual form displayed by the Arctiida. with all of the prolegs present. They feed principally upon lichens. They pupate in cocoons spun up of silk, in which the hairs of the larva are mingled.

The perfect insects, or imagoes, are of medium size or small. As a family, they present many variations in structure, both as to the venation of the wings and secondary sexual characteristics. The following general characterization of the group is taken from Hampson, "Catalogue of the Lepidoptera Phalenæ," Vol. 11, p. 80:
" Proboscis usually well developed, but often aborted; palpi usually short and porrect, sometimes reaching well beyond the frons, often upturned, rarely reaching above the vertex of the head; antennee of male usually with bristles and cilia, often bipectinate, sometimes dilated or with tuft of scales on upper side of shaft; ocelli absent; tibize with the spurs usually moderate, sometimes long or absent. Fore wing typically long and narrow, but in a large section, short and broad, the narrow winged genera having vein 5 , and often vein 4 , absent. Hind wing with vein 8 coincident with the cell from base to one-third or to near end of cell."

About a dozen genera have thus far been recognized as represented In the faulla of the region of which this book treats.

Lithoalide

Genus CRAMBIDIA Paekard

This small genus, conslsting of moths displaying dellcate shades of slaty-gray, pale yellow, or pearly white upon their wings, is represented in our fauna by six species, three of which we iggure, one of them

Fia. 47.-Crambidia pallida, δ.$\} .$ being hitherto undescribed. The genus fal\% ito two sections, In the fire. be..g included those specios: :, which there Is no areole In te fore wing, and in the second those which have the areole developed. The first sectlon is represented by Crambidia pallida, and contains, in addition, the specles named lithosioides and uniformis by Dyar; the second section is represented by Crambidia casta, and contalns, in addition, the species named cephalica by Grote \& Robinson, and the species herein described and named allegheniensis. The structure of the insects is sufficiently well eet forth in the two cuts we give, which have been kindly furnished by Sir George F. Hampson, with the permission of the Trustees of the British Museum.
(1) Crambldla pallida Packard. (The Pale Lichen-moth.)

The moth is uniformly brownish-grey, with the hind wings a trifle paler than the fore wings. The wings on the under side are lighter than on the upper side. The species occurs in the northerm Atlantic States.
(z) Crambldia easta Sariborn, Plate XIII, Fig. 30, 5 . (The Pearly-winged Lichen-moth.)
On the under side the fore wings and the costal area of the hind wings are fuscous, and in some specimens the upper side of the wings is also slightly touched with pale

Fig. 48.-Crambidie casta, © . \&. fuscous. The insect appears to be not uncommon in Cotorado and ranges thence south and north toward the Pacific coast.
(3) Crambidia alleghenlensis, sp. nov., Plate XIII, Fig. 31, \ddagger. (The Alleghenian Lichen-moth.)

Lithooilde
The head and anterior portions of the thorax are paje yeliow: The patagia are of the same coior. The thorax and the abdomen on the upper side are paie siaty-gray. The iegs and the tlp of the abdomen on the under side are ochreous, the middle of the abdomen on the under side being dark siaty-gray. The fore wing on the upper side is slaty-gray, with the costa evenly edged with pale yeiiow. The hind wings are transiucent whlte. On the under side the wings are marked as on the upper side, but paier. The insect Is slightly smaller than casfa. it occurs in western Pennsylvania. The type, which is in the coliection of the author, was taken by him in East Pittsu-gh.

Genu: PALPIDIA Dyar

The genus is represented by oniy one species, so far as is now known.
(1) Palpidia pallidior Dyar. (Dyar's Palpidin.)

This insect, a drawing of the type of which is given in the annexed cut, has the fore wings pale ochreous, with the interspaces between the veins strongiy irrorated with dark scaies. The hind wings are whitish. it is as yet a rare

Fig. 49.-Palpidia pallidior, $\%$. 1. insect in collections, and has only been recorded from Cocoanut Grove, in Dade County, Florida.

Genus LEXIS Wallengren

The genus Lexis is of moderate size, all of the species referred to it, with the single exception of the one figured on our plate, being inhabitants of the Old World. The metropolis of the genus appears to be southern Asia and the adjacent isiands. One species is recorded from Australia, and the species, which is the type of the genus, is found in East Africa.
(1) Lexis bicolor Grote, Plate Xiii, Fig. 29, 8. (The Yeliow-edged Lexis).

Syn. argillaca Packard.
The moth is paie siaty-grey, with the head, patagia, and anal tuft yellow. The fore wings are bordered on the costa

Letwouilds

with pale yellow, the band of this color running out to nothing before it quite reaches the apex. The specimen figured on the plate came from Colorado. it is also said to occur In Canada and the northern portions of the United States.

Genus HYPOPREPIA Hübner

A small genus of North American inoths, all the species of which occur within the territory covered by thls book. The insects closely resemble each other, and the student who has learned to recognize one of them cannot fail to refer the others correctly to their genus. It is not, however, so easy to discriminate the species. The following little key, which is taken from Hampson's Catalogue, Vol. II, page 515, may help the student in making correct specific references ;
2. Ground-color of the fore wing wholly scarlet.mixista
2. Ground-color of the fore wing yellow and crimson. jucosa
3. Ground-color of the fore and hind wings yellow cadaveros.
4. Ground-color of the fore wing fusious brown, of the hind

(1) Hypoprepia miniata Kirby, Plate XIII, Fig. 41, 8. (The Scarlet-winged Lichen-moth.)

Syn. viftuta Harris; suburnata Neumargen \& Dyar.
This rather common insect ranges from Canada to the Carolinas and westward in the region of the Great Lakes to Minnesota. it comes freely, as do all the species of the genus, to light, and I have found it very abundant at times about the lamps in the village of Saratoga, New York. I have taken it at Asheville, North Carolina, and at the White Sulphur Springs In West Virginia, but have never received specimens from low altitudes on the Virginian and Carolinian coasts.
(2) Hypoprepia fucosa Hobner, Plate XIII, Fig. 42, 8.

Fig. 50.-Hypoprepia fucosa, δ. t. (Aiter Hampson.) (The Painted Lichen-moth.)

Syn.trivolor Fitch; plumbea Henry Edwards.

This speric:i, which may be easily distingui hed from the preceding by the fact that the tip of the abdomen is not marked by a dark fuscous spot, and by the narrower marginal band of the secondaries,

Lithoaild

as weli as by the difference in the color of the wings, is a common species in the Aliantic States, and ranges westward into the basin of the Mississippi.

Genus Hematomis Hampan

This iittle genus includes, so far as is now known, but two species, both of which are Mexican, but one of which ranges into southern Arizona. The species are separated as foilows by Hampson :
i. Fore wing with yellowish streaks, on costa, through cell, and on inner margin
.mexicanu
2. Fore wing with pale streak on the conta onlynniformis
(i) Hecmatomis mexicana Druce, Plate Xlii, Fig. 34, 8. (The Mexican Lichenmoth.)

With the help of the iilustrations we have given the student should have no great difficuity in identifying this iittie moth.

Fig. 52.-Hamatomis mexicana, f. \}. (After Hampeon.)

Genua COMACLA Walker

This genus is represented in our fauna by two species. One other occurs in Europe and northern Asia, and another in tropicai Africi. The two American species are very much alike in appearance, and it is difficuit to distinguish worn or rubbed specimens. The foliowing key will be of some assistance:

1. Wings pale mouse gray, translucent; collar and abdomen ochreous; apex of fore wings rounded.
2. Wings and body uniformly pale mouse gray, wings translucent only about the middie, sprinkled with blackish scales and marked by an obscure discal dot, apex of fore wings less rounded and more nearly square than in preceding species fuscipes Grote
Fig. 92.-Comacla simplex, δ. $\}$. (After Hampion.)
(1) Comacla simplex Waiker, Plate Xlii, Fig. 34, 3 . (The Mouse-colored Lichen-moth.)

Syn. murina Walker; clarus Grote \& Robinson; texana French.

MICROCOFY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Ine
$\$ 653$ Eost Mm Stenet
Rochester, ine rork 14609 USA
(716) 482-0300-Phan
$(716) 205-5989-\mathrm{Fga}$

Lithoviid .

The species is common in Texas. C. fuscipes occurs in Arizona.

Genus BRUCEIA Neumagen

One species is reckoned in this genus, the structura! characters of which are well shown in the cut we give.
(1) Bruceia pulverina

Fia. 53.-Bruceia pulverina, ©. \&. (After Hampsin.) eumcegen, Plate Xlll, Fig. 33. $3 . \quad$ (The Powdered Llehen-moth.)

Syn. hubbardi Dyar.
The insect named hubbardi by Dyar seems to be only a smaller form of B. pulverina.

Genus CLEMENSIA Packard

To this genus Sir George F. Hampson refers a dozen species. All of these are inhabitants of the hot lands of America, except the species we figure. Cisthene lactea Stretch is by Hampson referred to the genus lllice. Dr. Dyar places it in the genus Clemensia. The species is unknown to the writer, and does not exist in any collection which he has examined, so that we shall not attempt to discuss the vexed question of its proper location.
(1) Clemensia albata Packard, Plate XIII, Fig. 38, 8 . (The Little Wh:te Lichen-moth.)

Syn. albida Walker; cana Walker; umbrata Packard; irrorata Henry Edwards; patella Druce ; philodina Druce.

The insect ranges from New

Fig. 54.-Clemensia albata, δ. 1 . England to Mexico and westward to the Pacific coast.

Genus ILLICE Walker

This is a moderately large genus comprising nearly thirty species, the most of which are found in troplcal America. It has been subdivided into three sections, or subgenera, by Hampson. In the second section, equivalent to Ozonadia, a genus erected by Dyar, are placed those species, in which 108

Explanation of Plate Nill

(Unless otherwise indicated, the sperimens figured are contained in the collection of W. J. Holland.)

1. Cismosoma auge Linnæus. 0^{7}.

Syntomeida epilais Walker, o'
Symomeifa iponece Harris, of
Triprocris rata Henry Edwards ${ }^{7}$.
Triprocris latercula Henry Exlwarcls, ©'. U.S. N. 11.
6. Psendomya minima (i"tic. U. S. N. M

Didas ys belw Grote. M.U S.N.M.
Didasys bele Grote. \&
Hurama texana Grote. 0^{7}.
Eucereon confine Herrich. Schaeffer, \%, U. S. N. M.
11. Lymire edwardsi Grote.?.
12. Scepsis fulvicollis Hübner. ㅇ.
13. Scepsis urighti Stretch, O^{7}. type.
14. Lycomor pha grotei Packard, of
15. Lycomorpha pholus Drury. 8 .
16. Triprocris constans Henry Edwaris. σ^{7}.
17. Lycomorpha fulgens Henry Edwards, of.
18. Clenucha virginica Charpentier, ค.
19. Ctenucha mullifaria Walker. of U.S. N. M.
20. Cuenucha venosa Walker. σ^{7}.
21. Ctenucha cressonana Grote, δ^{7}.
22. Clenteha rubroscapus Ménétries, 7. U. S. N. M.
23. Dahana atriponnis, Grote, g^{9}.
24. Vola ovilla, Grote 8^{7}.
25. Celama triquatrana Fitch. d^{3}.
26. Celame pustulatu Walker, or U.S. N. M.
27. Karselia fuscula Grote, f
28. Pitychoglene phrada Druce, σ^{7}.
29. Lexis bicolor Grote, σ^{7}.
30. Crambidia casta Sanborn, σ^{7}
31. Crambidia allegheniensis Holland, σ^{7}.
32. Nigetia formosalis Walker. ${ }^{7}$.
33. Bruceia pulverina Ni-umirgen, 0^{7}.
34. Comacla simplex Walker, 0^{7}
35. Illice subjecta Walker. σ^{1}.
36. Illice unifascia Grote \& Robinson. 8^{7}.
37. Illice nexa Boisduval, σ^{7}.
38. Clomensia albata Packard. I. U. S. N. M.
39. Hamatomis mexicana Druce. σ^{7}.
40. Pygoctenucha funerea Grote, $\%$. Acad. Nat. Sc. Phila
41. Hypoprepia miniata Kirby, ㅇ.
42. Hypoprepia fucost Hubner. δ^{7}.
43. Kodiosuma eavesi Stretch, 0^{7}.
44. Kadiosoma tricolor Stretch, of 45. Kodiosoma fulva Stretch, σ^{7}.

Lithuelld

the hind wing is slightly produced at the anal angle. Here come two of the species found in our fauna, l. schwarziorum and /. unifascia, In the third section, typical lllice, fall the species in which the anal angle is not produced. Here are placed five species. The student may find the following key helpful in determining his specimens;
A. Hind wing slightly produced at the anal argle.

Lappets and markings of fore wing yel.ow, hind wings crimson, fuscous at apex.

1. Fore wing with the hand across the wing crimson on the
inner margin. schurarsiorum Dyar
2. Fore wing with the band across the wing not crimson on the inner margin
\qquad
Hind wing not produced at the anal angle.
Abdomen crimson; fore wing slaty-gray in ground color
3. Fore wing with crimson patch on the costa.subjocta Walker
a Fore wing without crimson patch on costa, and with a pink
streak on the inner margin at the hase. . . .striata Ottolingui
4. Fore wing with whitish patch about the middle of the inner
margin.
.plumbea Stretch
Abdomen orange or yellowish.
5. Hind wing pale yellow, with apex blackish.nexa Boisduval
6. Hind wing smoky-gray. faustinula Boisduval
(I) Illlce unifascla Grote \& Robinson, Plate XIII, Fig, 36, \%, (The Banded Licheninoth.)

Syn. tenuifascia Harvey.
The Insect ranges from the Ohio Valley southward to Texas, and from Virginia to Florida. The transverse band

Fic. 56.-1llice subjocta, $\boldsymbol{\delta}$. $\frac{1}{1}$. (After Hampson.)

(2) Illice subjecta Walker, Plate XIII, Fig. 35, 8 . (The Subject Lichen-moth.)

Syn. packardi Grote.

Lithosild

The distribut on of this species is much the same as that of the preceding. lis ringe is slighily more northern than that of l. unifascia.
(3) Illice nexa Boisduval, Plate Xlll, Fig. 37, 8 , (The Yellow-blotched Lichen-moth.)

Syn. grisea Packard; deserta Felder.
This species is found upon the Pacific coast, and is not uncommon in southern California.

Genus PTYCHOGLENE Felder

A small genus confined to the southwestern portions of our territory. The four species occurring within our fauna m:ay be briefly characterized as follows:

I Head, thorax, base of abdomen, basal two-thirds of primarics and basal half of secondaries bright carmine; black marginal borders of both wings strongly dentate inwardly .coccinea Henry Edwards
2. Head. thorax, and abdomen black; fore wings crimson, narruwly edged with black on inner margin, and with a black marginal band covering the wing for about onefifth of its length, dentate inwardly opposite end of cell. Hind wing blackish-brown, more or less broadly laved with crimson on costal margin. ph the costal margin narrowly edged with black; terminal black band of the same width as in the preceding species, but not dentate inwardly. Hind wing pale yellowish crimson, with the outer marginal band strongly toothed inwardly on vein 2........sanguineola Boisduval
4. Head, thorax, and abdomen, deep black; patagia crimson; fore wings deep crimson, very narrowly edged on external margin with black, extending on costal margin a short distance from tbe apex toward the base. Hind wings deep lius-black, very narrowly edged on the costa with crimson, the crimson fascia not quite reaching tbe apex .tenuimargo ap. nov.
(1) Ptychoglene phrada Druce, Plate XIII, Fig. 28, 6. (Druce's Lichen-moth.)

Syn. flummans Dyar.
(2) Ptychoglene tenuimargo sp. nov., Plate Xlll., Fig, 17. \&. (The Narrow-banded Lichen-moth.)

The type of this species, which 1 have received in recent years from Arizona and in great abundance from the State of Clllhuahua in Mexico, is figured upon our plate.

Genus PYGOCTENUCHA Grote

A small genus containing three spicies, two of whlch are found within the limits of tue United States. They naay be discriminated as follows:

1. Uniformly black, collar-lappets and tip of abdomen ochre-
yellow; size small. funerea Grote
2. Head, thorax, and abdomen black shot with brilliant tluc; fore coxm, tegule. patagia, and anal tuft scarlet. the latter white in the female; fore wings black shot with green; hind wings black shot with blue. Fully one-
third larger than preceding species........... . terminalis Walker
(1) Pygoctenucha funerea Grote, Plate Xlll., Fig. 40, 8. (The Funereal Lichen-moth.)

The specimen figured on our plate was kindly loaned for the purpose by the Academy of Natural Sciences of Philadelphia. The insect occurs in New Mexico.
(2) Pygoctenucha terminalis Walker. (The Blue-green Lichen-moth.)

Syn. harrisi Boiduval; pywhoura Ilulst; votiz'a Henry Edwards.
This insect, referred by Hampson to his genus Profosia, must be placed here, Pygoctenucha having priority over Protosia, which falls as a synonym.

Genus LERINA Walker

Only one species belor rys to this genus. It was originally named by Walker, and nade the type of the genus. Subsequently it was redescribed by Boisduval as Ctenucha robinsoni, under which name it has passed current in American collections until recently.
(1) Lerina incarnata Walker. (The Crimsonbodied Lichen-moth.)

Syn. robinsoni Boisduval.

Fic. 57.-Lerina incarnata, ©. +.
(After Hampson.)

The head, tegulx, and patagia, with the terminal half of the abdomen are deep crimson. The rest of the body and
" Splistere" and "Lumpers"
Its appendages are black. The wings are bronzy-green. The insect inhablts Mexico and southern Arizona.
"SPLITTERS" AND "LUMPERS"
Every true naturalist ls called upon to exercise the faculty of discrimination and the faculty of generallzation. His work trains him to detect disslmilarities on the one hand and likenesses on the other. His judgments as to likeness are expressed in the genera, the familes, the orders, which he proposes. His judgment as to dissimilarities is most frequently expressed in his views is to species. When the two faculties of discrimination and generalization are weii balanced and accompanied by the habit of patient observation, ideal conditions are reached, and the work of the naturalist in classification may be expected to stand the test of time. But where, as is often the case, one of these faculties is exalted at the expense of the other, there are certain to result perversions, which will inevitably cause trouble to other students. When a man cultivates the hablt of discrimination to excess, he is apt to become, so far as his labors as a systematist are concerned, "a splitter." A "splitter" magnifies the importance of trivial details; he regards minute differences with interest; he searches with more than microscopic zeal after the little things and leaves out of sight the lines of general resemblance. Huber, the celebrated naturalist, said that by patient observation he had come to be able to recognize the different ants in a hill, and, as one by one they emerged from their subterranean gaileries, he knew them, as a man living upon a certain thoroughfare in a great clty comes at last to know by sight the men and women who are in the habit of daiiy passing his wlndows. No doubt the critical eye can detect as great individual differences in the lower animal world as are to be detected among men. A student comes to apply himself wlth great zeal to searching out and describing these differences, and when he undertakes to say that because of them one form should be separated specifically from another he becomes "a splitter." I recall an entomologist whose chief weapon of research was a big microscope. He would take a minute insect and study it until he was able to number the hairs upon its head. Then he would describe it, giving it a specific name. The next
specimen he would subject to the same critical process, and if the number of hairs was not just the same, or a small wart was detected here or there, or a bristle grex: in a place where - bistle did not grow in the speciraen previously examined, it to. was described and a specific nime was given it. It was as if :nan, sitting and looking out ont the throng upon Broadway, should resolve to give every individual n specific name and should declare he had seen as many species of men as he had seen men passing his window. The labors of such naturalists may be highly entertalning to themselves, but they are, to say the least, provocative of unpleasant feelings in the minds of others who come after them and are compelled to deal with and review their labors.

The "lumper," on the other hand, is a man who detects no differences. "All cocoons look aiike to me!" he says. Any two moths which are of approxim:tely the same size and the same color, are, by him, declared to belong to the same species. Questions of structure do not trouble him. General resemblances are the only things with which he deals. No matter if eggs, larve, legs, veins, and antenne are different it is "all one thilg" to him. His genera are " magazines," Into which he stuffs species promiscuously. The "lumper" is the horror of the "spiiter," the "splitter" is anathema to the " lumper"; both are the source of genuine grief and much hardship to conscientious rien, who are the possessors of normally constituted minds and truly scientific habits. Nevertheless, we are certain to have both "splitters" and "lumpers" in the camps of science until time is no more. "This kind goeth not forth" even for "fasting and prayer."

> Look at this beautifut wortd, and read the truth In her fair page: see every season brings
> New change to her of everlasting youthStil. the green soit, with joyous living thinge Swarms-the wide air is full of joyous wings."

Bryant.

FAMII.Y ARCTIID/E

"All diamnended with pancr of quaint deriee, Innumerable of stains, and splendid dyes, At are the Tiger Moth's decp damakk winge."

Krats.

"There is another nort of thene eaterpilien, who hauc nocertaine place of abode, nor yet cannot tell whare te find theyr forole, hut, like vnto superstitious Pilgrims, doo wander and stray hither and thither (and like Mise), consume and cat vp that which is none of their owne; and these haue purchased a very apt name amongst va Englishmen. to be called Palmer-worms, by reaton of their wandering and rogish life (for they neuer stay in one place, but are euer wandering), although by reason of their roughnes and ruggednes some call them Beare-wormes. They can by no means endure to be dyeted, and to feede vpon nome certainc herbes and flowen, but boldly and disorderly creepe ouer all, and tast of all plants and trees indifferently, and liue as they list."-Topszil, History of Serfenti, p. 105 (1608).

This is a large family including many genera and reckonIng, according to recent lists, over two thousand specles. The familly is represented in our fauna by thirty-eight genera, and at least one hundred and twenty species.

The following characterization of the family is adapted from Hampson, with special reference to the genera occurring within our territory:

Probosels more or less aborted in the typical genera Arctia, Diacrisia, and allies, fully developed in most neotropical genera, and in Utetheisa and its allies; palpi slight and porrect, or well developed and upturned; ocelli present; eyes rarely hairy; antenne pectinate or ciliate; tibial spurs typically small, but often well developed, the hind tibiz with the medial spurs absent in a few genera and the fore tibix in others with curved apical claw, the mid and hind tibia rarely spined. Wings usually well developed. Fore wing with vein ia separate from 1b; 5 from near lower angle of cell or well below angle of discocellulars; 6 from or from near upper angle; areole present in many genera, Hind wing with vein a present; ic absent;
\ddagger often absent; 5 from near lower anigle of cell or w angle of discocellulars; 6,7 sumetimes coinclaent cident with the ceil frin. 7 sent; 8 coinor extrem the ceil from or almost from base to near middie, extrememity of the cell and even In some genera beyond the extremity of the cell. In the genus Halisidots vein 8 is olsolete.

The larvar have ail the prolegs and ire generially profusely clothed with hairs. They pupate in cocoons woven of siik mixed with the hairs which are shed during the process of spinning. The caterpillars of some species have received the common appellation of "woolly bears," and the moths are familiarly known as "tiger-moths."

Genus HOLOMELINA Herrich-Scheeffer

The names Eubaphe and Crocola, proposed by Habner, and applied recently by some writers to this group of insects, being what are known to students as nomina undi, cannot stand.

It may be ald In passing that this genus from a classificational sta , oint is in a very unsatisfactory condition, so far as some of t ipecies are concerned. The "Splitters" and the "Lumpers" have been hard at work upon it, and inasmuch as the insects show vary iittle purely structural variation, and vary greatly in color and size. there has resulted great confusion. Within the limits of $\frac{1}{2}$ space assigned to us in the present compendium we have 1 : the opportunity to discuss these questions, but suggest t, our readers that there is here an opportunity to use both eyes and mind to advantage in solving some of the vexed points. The test of breeding should be rigorously applied, and the larval stages of the insects should be critically observed.
(1) Holomelina ostenta Henry Edwards, Piate XiV, Fig. 17. 8. (The Showy Holomelina.)

This conspicuous and very beautifuily colored insect ranges from Colorado through New Mexico and Arizona into Mexico.
(2) Holomelina opella G:ote, Piate XIV, Fig. 23, 3. (The Tawny Holomelina.)

Syn. obscura Strecker; ruoricosta Ehrman.
This species is rather common in Atlantic States as far south as Georgia Pennsylvania and the

Arctide

Form belmaria Ehrman, Plate XIV, Fig. 24, \&. (Ehrman's Holomelina.)

This Insect, a paratype of which is figured as above clted, Is regarded by Dr. Dyar as a varietal form of H. opella. The author is inclined to question the correctness of this determination, because all specimens of the moth so far seen, and a considerable series has come under observation, appear to be structurally different from H. opella, in so far forth that the fore wlngs are narrower, longer and more produced at the apex. The mere fact that they are always black in itself could hardly constitute a valid ground for specific discrimination.
(3) Holomelina immaculata Re:lkirt, Plate XIV, Fig. 20, d. (The Plain-winged Holomelina.)

The range of this species is the same as that of the preceding.
(4) Holomelina diminutiva Gref, Plate XIV, Fig. 22, 9. (The Least Holomelina.)

Very common in Florida, and apparently quite constant in slze and markings. It is sunk as a synonym of aurantiaca, form rubicundaria, by Dyar, but the writer is not willing to admit that this is correct.
(5) Holomelina brevicornis Waiker, Plate XIV, Figs. 19, 21, 8. (The Black-banded Holomelina.)

Syn. belfragei Stretch.
This species has also been sunk as a synonym of aurantiaca by recent writers, but with doubtful propriety. It is common in the Gulf States and particularly in Louisiana and Texas.
(6) Holomelina quinaria Grote, Plate XIV, Fig. 18, 8. (The Five-Spotted Holomelina.)

Syn. choriona Reakirt: bimaculata Saunders.
Characterized by the creamy white spots upon the fore wings. The depth of color of the primaries varies much, from dark brown to pale ferruginous, the specimen figured being representative of the latter form. The spots also vary much in size.

[^4]-Lowele.

Explanation of Plate XIV

(Uniess otherwise indicated, the specimens figured are contained in the collection of W. J. Holland.)

1. Eupsendosoma involutum Sepf, 0^{7}, U.S. N. M.
2. Bertholdia triguna Grote, σ^{7}.
3. Parsuchates insulata Walker, 9 .
4. Parouchateseglenensis,Clemens, ㅇ.
5. Opharus astur Cramer. 0^{7}.
6. Howihyalea oduardsi Packard. \%.
7. Howihyalea labecula, Grote, 0^{7}
8. Halisidota argentata Packard, 0^{3}.
9. Halisidota argentata Packard. $\%$.
10. Halisidota carye Harris. 0^{7}.
11. Halisidota maculata Harris, 0^{7}.
12. Halisidota tessellaris Abbot \& Smith, 0^{3}.
13. Halisidota cinctipes Grote, σ^{7}.
14. Emilia roseata Walker, $\%$.
15. Emilia ambigwa Strecker, 0^{7}.
16. Halisidota longa Grote, 8^{7}.
17. Holomelina ostonta Henry Edwards, 8 .
18. Holomelina quinaria Grote, 8 .
19. Holomelina brcvicornis Walker. \%.
20. Holomalina immaculata Reakirt, σ^{7}.
21. Holoweling brevicornis Walker, \% . var.
22. Holomelina diminutiva Graf. σ^{7}.
23. Holomelina opella Grote, σ^{\prime}.
24. Holomolina belmaria Ehrman, \%, paratype.
25. Leptarctia colifornio Walker, 9 .
26. Leptarctia dimidiata Stretch. 0^{7}.
27. Leptarctia decia Boisduval, 0^{7}.
28. Leptarctia Lena Boisduval, 0^{7}.
29. Neoarctia beani Neumorgen, \circ, U. S. N. M.
30. Neoarctia brucri Henry Ed. wards. 0^{7}.
31. Phragmatobia fuliginosa Linnecus, \circ.
32. Diacrisia rubra Neumagen, \quad. U. S. N. M.
33. Diacrisia vagans Boisduval, δ^{7}. 34. Diacrisia vagans Boisduval, \circ.

The Moth Book.

Arevilda

Genus DODIA Dyar

Only one species has thus far been assigned to this genus. It was named Dodia albertse by Dr. Dyar in the year 1901. The description both of the genus and the species will be found in the Journal of the New York Entomological Society, Vol. IX, p. 85. The annexed cut (Fig. 58) is taken from the type of the specles in the United States National Museum. The in-

Fig. 58.-Dodia alberte. sect has thus far only been found In the Territory of Alberta.

Genus UTETHEISA Hübner

A genus of small extent, represented both in the Old World and the New by nine species, two of whleh occur within our territory.
(1) Utetheisa bella Linnæus, Plate XV, Fig. 27, \&. (The Be..itiful Utetheisa.)

Syn. hybrida Butler; intermcdia Butler; terminalis Neumoegen \& Dyar.
This common moth, which frequents the blossoms of the golden-rod (Solidago) in the late summer and fall, is wldely distributed in the States of the Atlantic .seaboard, and shows some tendency to local variation.
(2) Utetheisa ornatrix Linnæus, Plate XVII, Fig. 8, 8. (The Ornamented Utetheisa.)

Syn. stretchi Butler; pura Butler.
This species may easily be distingulshed from the preceding by the washed-out appearance of the primaries. In the form named pura by Butler the fore wings are white, immaculate, except for the red costal streak. The species is common In the Antilles, and occurs in southern Florida.

Genus HAPLOA Hübner

The genus Haploa, which is confined to our territory, has furnished a great deal of amusement to classificationists, who have busied themselves with the spots and markings on the wings of the specles, which are very variable. In a long series of specimens of any one of the species it will be found

Afatide

that scarcely two are exactly alike in the amount of black or white displayed upon the fore wings. The reader will do well In this connection to consult the Proceedings of the United States National Museum, Vol. X, pp. 338-353, where Prof. John B. Smith has written upon the subject, the Canacian Entomologist, Vol. XIX, p. 181 et seq., where Mr. H. H. Lyman has presented hls views, and the Plate given by Mr. F. A. Merrick In the Entomological News for 1903, in which the extreme variabillty of H. lecontei In a given locality is illustrated.
(1) Haploa clymene Brown, Plate XVII, Fig. 7, 8. (The Clymene Moth.)

Syn. interruptomarginata De Beauvois; comma Walker.
Thls is one of the most constant species of the genus, and may easlly be recognized by the figure we have given upon the plate. It ranges from southern New England to Georgia, and westward to the Mississippi. The larva feeds upon Eupatorium it is said, and the writer believes that the statement, which has been calied in question, is correct, for, although he has never reared the larve to maturity himseif, he has observed the female moth ovipositing upon this plant in southern Indiana. It is also said to feed upon wiilows.
(2) Haploa colona Habner, Plate XVII, Fig. 2,\%. (The Colona Moth.)

Syn. carolina Harris.
Form consita Walker, Piate XVII, Fig. 5, δ.
Syn. lactata Smith.
This species, which Is the largest of the genus, is very variable In the amount of the biack shown upon the fore wings. "Ve give two extremes. Other forms aro recognized. The inse: has its metropolis In the southwestern States, though it occurs aiso very sparingly in the northern Atlantic States, and more commonly in the southern Atlantic States. It is common in Texas.
(3) Haploa lecontel Boisduval (Leconte's Haploa).

Form dyari Merrick, Plate XVII, Fig. 9, δ.
Form militarls Harris, Plate XVii, Figs. 4, 10, 8 ; Fig. 1, $\%$.

Form veatalls Packard, Plate XVII, Fig. 3, 8.

This is a protean species, of which a half dozen, or more, forms have been recognized, named, and described. We give in our cut (Fig. 59), a figure of the wings of a specimen, which agrees In Its markings with the specimen figured by Bolsduval, the author of the specles, in hls Plate given in the Regne Animal. Such specimens come in the form of their maculation very near the next species, which has been differentiated by Lyman under the name confusa. Haploa lecontei ranges from New England to Georgia and westward to the Mississippl. It is a very common insect in western Pennsylvania. The caterpillar feeds upon Triosteum perfoliatum, and in localitles where thls plant is abundant the moths may be found in swarms at the end of May and the beginning of June.
(4) Haploa confuse Lyman, Plate XVII, Fig. 6, 8 . (Lyman's Haploa.)

Thls form, or species, is well represented in our piate. It appears to be constant, and is indigenous to the New England States. The specimen figured came from the neighborhood r Claremont, New Hampshire.
(5) Haploa contigua Walker. (The Neigibor.)

The cut we give (Fig. 60), shows the macuiation of the wings of this species sufficiently weil to

Fig. 60.-Haploa cantigua, 8

Pio. 59.-Haploa lecantei, δ. enable it to be separated at once from its congeners. It occurs in the Atlantic region from New England northward and westward. It is found in the Catskilis and ti,c Adirondacks, and probabiy occurs in the mountains of northern Pennsylvania, aithough I do not recail any reference to its having been taken in that State, nor have 1 seen it on the summits of the Alieghenies, where 1 have passed several summers.

Genus EUERYTHRA Harvey:
There are two species of this genus known, Euerythra phasma Harvey, which is represented in the accompanying cut

Asptide

(Fig. 61), and Euerythra trimaculata, which is figured on Plate XVI, Fig. 4. The insects oicur in Texas and Arizona. They are not common in collections as yet, and so far as the

Fig. 6x.-Eucrytira phasma, of t. (ifter Hampion.)
writer recalis, their iarval habits have not been described. The student who desires to study the structure of the genus shouid consult Hampson's Catalogue, or Prof. Smith's Paper published in the Proceedings of the United States Natlonai Museum, Vol. X, p. 335 et seq.

Genua ECPANTHERIA Hübner

This is a large genus, weli represented in the tropics of America. Only two species occur within the limits of our fiuna, Ecpantheria muzina Oberthur, which is found in Texas as a straggler from the Mexican territory, and Ecpantheria deflorata Fabricius, which is more commonly known

Fic. 6a.-E. deforata; a larvis: b magnified hair of larva. (After Riley.) by its synonymical name, scribonia, given to it by Stoll. The larva of this handsome moth is itseif a beautiful object. it is deep biack, slothed with biack hairs, and at the junction of the somites, or segments of the body, it is banded with rings of crimson. The male of the perfect insect is figured on Plate XVi. Fig. 16 , and in the accompanying cut we give a figure of the larva. The Eyed Tiger-moth ranges from southern New Engiand, where it is rare, through the southern parts of the United States into Mexico. it is quite common in the Carolinas, and in my boyhood \mathbf{i} derived much pleasure from rearing the larva, which fed very freely upon the piantain (Plantago).

Genus TURUPTIANA Walker

There are eight species in this genus, but only one of them occurs within the limits of the United States.
(1) Turuptiana permaculata Packard, Plate XVI, Fig. 15, 8. (The Many-spotted Tiger-moth.)

8yn. reducta Grote; caca Strecker.

Fia. 63.-Twruptiana pormaculata, 8. 4. (After Hampeon.)
Thls neat moth is found in Colorado and thence southward as far as Arizona and Mexico.

Genus LEPTARCTIA Stretch

There is only one species in this genus, but the single species by assuming protean colors has caused a great multiplication of names. We have figured a few of the varietal forms.
(1) Leptarctia californise Walker, Plate XIV, Fig. 25, 8. Form lena Boisduval, Plate XIV, Fig. 28, 8.
Form decia Boisduval, Plate XIV, Fig. 27, 3.
Form dimidiata Stretch, Plate XIV, Fig. 26, δ
The moth is found In southern California, where It is quite common. The student will have little troubie in recognizing the commoner varieties by the help of the figures we have given, but these are only a few of the forms which occur.
> " And with childlike crodulous affection We behold those tender wings expand, Emblems of our own great resurrection, Emblems of the bright and better land."

-Longrellow. Plate XVI, Fig. 23, \&. (The Echo Moth.)
Syn. niobe Streaker Fig Io, larva; 8 yn . niobe 8 reeker.
This beautiful moth, the caterpillar of which feeds

Pro. 64.-Sotronctic echo.
sabal palmetto, occurs in Mississippi.

8. f. (After Hampton.)

Genus Eeirarctia Packard

upon the veto, occurs in Florida, Georgia, Alabama, and

Genus ALEXICLEs Grote

(1) Alexleles asperse Grote.

This moth is referred by Hampson to Hyphan'ria. It may belong there, but 1 leave It \ln the genus erected for it by Grote. The abdomen is vernilion-colored, with black dorsal spots. The wings are dark brown, the primaries somewhat lighter than the secondaries and showing obscure

Pie. 6 g.-Ahericles asporsa, 3 . darker spots, arranged in transverse bands.

Genus Estigmene Hübner

There are reputed to be four species of this genus found

Fico. 66.-Estigmon prime, ${ }^{\circ}$. or orange above, all agree in having the abdomen just natlowish within the United States. Albida Stretch ls possibly only an extreme while variaion of E. acraa. E. prima Slosson is represented in Fig. 66. It is found in the New England States, northern New York, and Canada. The three species just named

\&xplanation of Platik Nt

(Uniess otherwive indicated, the apecimens figured are contained in
 the collection of W. J. Holland.)

- A pancesis rectilima Prench, O. U. B. N. M.

Arctia cuia, var, wiskutil Staudinger. 0 .
A pantesis determinata Neumargen. of
A pantosis prorima Gufrin-MÉneville.
Arctia caia Linnaus. ?.
A pantesis mholeruta Harris. ©
Apantesis novalensis Grote al Kiphineon. v^{*}.
A pancesis persephom Grote. 0°
A puntessis virguncwla Kirby. of
A pantesis persephone Conte.
i pontesis virgo Linnaru. 0^{7}.
Apanessis figurata Drury, P. U. S. N. M
A pantessis parthenise Kirhy. on
A pantesis phyllira Drury. of
A pawtesis arge Drury. ס"
A pantesis virguncula Kirhy. 0^{9}. var
Apantesis michabo Grote. Q
Platyprepia virginalis Boisduval. of 7.
Plotypropia virginalis Boisduval.
A pantesis acitala Grote a Rohinion.
A pantesis radians Walker. of
A pantesis vittata Pabricius, o
A pantesis radians Walker. 0^{*}.
A paniosis achaia Grote a Robinson. a^{7}.
A pantesis vittata Pabricius. 0^{*}.
6. Hyphantric cunco Drury, var
39. Utothisa bolla Linneeus, o pallida Packard. σ^{*}

comenanted er m. Mablovs, wet.
spots. E. congrua has the abdomen white on the upper side. The genus is represented in Asia, Africa, and Tasmania, as well as in the temperate regions of North America.
(1) Estigmene acrea Drury, Plate, XVI, Fig. 11, of, Fig. 12, \&. (The Acræa Moth.)

Syn. caprotina Drury; menthastrina Martyn; pseudermiseca Peck; californica Packard; paikardi Schaupp; klagesi Ehrman.

A western variety with the fore wings slightly shaded with brown has been dubbed dubia by Walker, and rickseckeri by Behr. In Mexico there is a local race in which the males have the hind wings white like the females, and to thls race Hampson has applied the name mexicana. This is altogether one of

Fio. 67.-Estigmene acrea, $\mathbf{5}$. \& (After Hampson.)
the commonest insects in the Middle Atlantic States, and with the illustrations we have given can be easily determined.
(2) Estigmene congrua Walker, Plate XVI, Fig. 8, 8. (The white-bodied Estigmene.)

Syn. àntigonc Strecker; athena Strecker.
A fairly common species in Pennsylvania and the Atlantic States generally, ranging westward as far as Colorado.

Genus HYPHANTRIA Harris

This small genus contains only three or four species, one of which is South African.
(1) Hyphantria cunea Drury. (The Fall Web-worm Moth.)

Form punctatissima Abbott \& Smith, Plate XVI, Fig. $10, \delta^{*}$.

[^5]
Aretide

Form palllda Packard, Plate XV, Fig. 26, 8.
The larvar are soclal in their habits, and spin great webs upon the foliage of almost all kinds of deciduous trees in the late summer and fall, and do a great deal of damage to orchards and nurseries. The insects pupate in loose cocoons, in crannies, and even under the loose surface of the soil. The species ranges over the United States from southern New England and New York to Texas and further west.
(2) Hyphantria textor Harris, Plate XV1, Fig. 9, 8. (The Spotless Fall Web-worm Moth.)

This spec $\because s$, which is closely allied to the preceding in its habits, may be distinguished by the white antennz, and the unspotted abdomen. There are specimens of the preceding species, which have the wings as immaculate as in H. textor. The range of the insect is from Canada to the Gulf, and from Nova Scotia to California.

Genus ARACHN:S Geyer

A small genus containing eight or nine species found in the southwestern States of the American Union, Mexico, and Central America.
(1) Arachnis aulaca Geyer, Piate XVl, Fig. 1, 3 . (The Aulæan Tiger-moth.)

Syn, incarnata Walker.
The insect occurs in southern Arizona and ranges thence southwardly as far as Guatemala. The larval stages have been described by Dyar in the Canadian Entomologist, Vol. XXV1, p. 307.
(2) Arachnis picta Packard, Plate XVl, Fig. 2, 8 . (The Painted Arachnis.)

Names have been applied to a number of color varieties of this insect. It ranges from Colorado to southern California and northern Mexico. The larva feeds upon Lupinus.
(3) Arachnis zuni Neumœgen, Plate XVl, Fig. 3,\%. (The Zuni Tiger-moth.)

The figure we give will enable the student to recognize this pretty and rather rare species without any difficulty. It ranges from New Mexico to Arizona and southward on the tablelands.

Genus ISIA Walker

Three specles belong to this genus, one found in Argentina, the other in Turkestan, and the third in the United States and Canada.

Fra. 68-Isia isabella, f. f. (After Hampsnч.)
(1) Isiaisabella Abbot \& Smith, Plate XVI, Fig. 13, $\%$. (The Isabella Tiger-moth.)

This common insect is found everywhere in the United States. The caterpillar is the familiar "woolly bear," which may be often seen by the roadside rapidly making its way in the fall of the year to a hiding-place in which to hibernate, or, in the spring, to some spot where it may find food. It is reddishbrown in color, black at either end. When disturbed, it curls up and lies motionless, as if feigning death. To "caterpillar," in the slang phrase of the Middle West, is to silently succumb

Fig. 69.-Isia isabellu. a. larva; b. pupa.
and yield to te unavoidable. The larva feeds freely upon a great variety of herbaceous plants. It is fond of the grasses, and particularly likes the leaves of the plantain (Plantago). There does not appear to be any marked tendency to variation in this species. Both the moth and the larva are common objects, with which every American schoolboy who has lived in the country

Aretidim

is f:miliar; and unhappy is the boy who has not at some time or other in his life made the country his home. "God made the country, man made the town."

Genus PHRAGMATOBIA Stephens

A genus of modern extent, represented in Europe, Asia, and North America. The structural characteristics of the wings are displayed in Fig. 71.
(1) Phragmatobia fuliginosa Linnæus, Plate XIV, Fig. 31, 9 . (The Ruby Tiger-moth.)

Syn. rubricosa Harris.
The Ruby Tiger-moth is widely distributed, belng foum-1 throughout boreal Asia, Europe, and the northern United Staces

Fig. 70.-Phragmatobia fuliginosa. a. larva; b. cocoon; c. imago, 8. From "Insect Life," Vol. I, p. 236.) and Canada. A multitude of minor subvarietal forms have been distinguished, and to some of them names have been applied, buit there is comparatively little difference between them, and the student who has once learned to recognize the species will find no difficulty in assigning to it any specimens which may come Into his possession. The insect, so far as our fauna is concerned, is a northern species, quite common in New England and Canada, and ranging southwaid along the Appalachian Mountains into the Carolinas, where it only occurs at high elevations above sea-level. It is also found ranging southward along the Rocky Mountains. The caterpillar feeds upon a variety of he: baceous plants, and is partial to the shoots of the goldenrod (Solidago).
(2) Phragmatobia brucei Henry Edwards, Plate XIV, Fig. 30, ${ }^{\text {a }}$. (Bruce's Tiger.)

This species is found in Colorado upon the mountains.
(3) Phragmatobia beani Neumeegen, Plate XIV, Fig. 29, 9. (Bean's Tiger-moth.)

Aretiden
The habitat of this species is the Rocky Mountalns of Alberta and Assinibola.
(4) Phragmatobia yarrowi Stretch. (Yarrow's Tigermoth.)

Syn. romissa Henry Edwards.

This pretty little tiger - moth is found from the country south of Hudson Bay to British Columbia, and
 ranges thence southward far as northern Arizona.

Genus MAENAS Hübner

Only one species of this rather extensive genus, which is represented in South America by five species and by a considerable number in Africa and the Indo-Malayan region, occurs in North America.
(1) Menas vestalis Packard, Plate XVI, Fig. 5, 8. (The Vestal Tiger-Moth.)

This insect, which closely resembles Estigmene congrua, figured on the same plate, may be distinguished from the latter not only by structural peculiarities, but unfailingly by the ordinary observer, by the presence of the two black spots on the hind wings, as shown in our illustration.

Genus DIACRISIA Hubner

This large genus, which includes over one hundred and twenty-five species, according to the arrangement given in Hampson's Catalogue, not reckoning the species referred to the genus Isia, which he also places here. is represented in our fauna by four insects, of which we give illustrations.
(1) Diacrisia virginica Fabricius. Plate XV1, Fig. 7, 8. (The Virginian Tiger-moth.)

The form figured on our plate is the slight variety named fumosa by Strecter. in which the fore wings are a little dusky at reir tips as if they had been flying about in the smoke of the furnaces at Reading or Pittsburgh. Ordinarily the species.

Asctid

is pure whlte. The body of the specimen on our plate is greasy, and hence too dark.
(a) Diacrisia latipennis Stretch, DIate XVI, Fig. 6, 8. (The Red-legged Diacrisia.)

The coxere and femora are pink or reddish. The insect is common in Pennsylvanii, and the Atlantic States generally.
(3) Diacrisia rubra Neumœgen, Plate XIV, Fig. 32, $\%$. (The Ruddy Diacrisia.)

The habitat of this species is British Columbia, Oregon, and Washington.
(4) Diacrisia vagans Boisduval, Plite XIV, Fig. 33, 8 , Fig. 34, 9. (The Wandering Diacrisii.)

Syn. pterilis Henry Edwards; bicobr Walker; rufula Boisduval; punctata Packard; proba Henry Edwards.

The lnsect illustrates the phenomenon of sexual dimorphlsm, the males and females belng unlike in color. The species-makers have had some sport with it, as shown by the synonyms.

Genus HYPHORAIA Hubner

This is a sub-arctic genus, circumpolar in its distribution in the Northern Hemisphere. Three species occur ir. our territory, one of which we figure.
(1) Hyphoraia parthenos Harris, Plate XVl. Fig. 20, $\&$. (The St. Lawrence Tiger-moth.)

Syn. borealis Moeschler.
The moth, which ls one of the most benutiful in the family. is comparatively rare in collections. It occurs in northern New England, ind the valley of the St. Liawrence, westward o Manitoba. It is occasionally found in the Catskills.

Genus PLATYPREPIA Dyar

One species is found in our region. It is somewhat variable in the style and number of the spots upon the wings.
(1) Platyprepia virginalis Boisduval, Plate XV, Fig. 18, \% . Fig. 19. \&. (The Ranchman's Tiger-moth.)

Syr.. ochracea Strctch; guttata Boisduval.
A very beautiful insect, quite common in Colorado, Wyoming. and Montana, and thence ranging westward to northern California and the region of Puget's Sound.

Aroutide

Genus APANTESIS Walker

The metropolls of this genus is North America, only two specles attributed to it belng found in the Old World. There are over twenty valid species found within our limits, and numerous so-called subspecies and varietal forms. A small treatise might be written upon these, but in a volume like this, which is designed to cover in as compact form as possible the most needed information, all that we can do is to help the student to the determination of the more important species.
(i) Apantesis virgo Linneus, Plate XV, Fig. it, 8. (The Virgin Tiger-moth).

Found in the northern Atlantic States and Carada.
(2) Apantesis parthenice Kirby, Plate XV, Fig. 13, 3. (The Parthenice Moth.)

Syn saundersi Grote.
The habitat of this species is the same as that of A. virgo, from which it may always be discriminated by its smailer slze, the narrower white lines upon the fore wings and the absencz of the dark spot at the origin of vein two on the hind wings, which is characteristic of the former species.
(3) Apantesis intermedia Stretch, Plate XI, Fig. 20, 8. (The Intermediate Tiger-moth.)

This species which is by some authors regarded as a southern form of A. parthenice, is intermediate in size between A. virgo and A. parthenice. It closely resembles the latter in the maculation of the wings. but the pinkish-white stripes on the primaries are broad as in A. virgo.
(4) Apantesis oithona Strecker, Plate XVI, Fig. 30, 8. (The Oithona Moth.)

Thls insect is undoubtedly genetically the same as A. rectilinea French. The difference is merely in the width of the pale lines on the fore wings, which, being narrower in reciilinea, give these wings a darker appearance.

Form rectilinea French, Plate XV, Fig. 1, \&. (The Straight-lined Tiger-moth.)

This insect in its varietal forms ranges from the Atlantic States across the Misslssippi Valley.

Aretile

(5) Apantesis michabo Grote, Piate XV, Fig. 17, $\%$. (The Michabo Moth.)

Syn. minea Slosson.
The illustration we give is sufficient to enable the student to identify this species, which is discriminated from its congeners most readily by observing the broad 1 msh-coiored band on the costa of the fore wings. In the form minea the fleshcoiored lines are deep-red. This is the only difference.
(6) Apantesis arge Drury, Plate XV, Fig. 15, 8. (The Arge Moth.)

Syn. dion Fabricius; incarnatorubra Gceze; calcos Martyn; nerea Boisduvat; doris Boisduval.

Aliied to the preceding species, but ascertained by the test of breeding to be distinct. The species is very variable. The hind wings are not often as free from dark markings as the specimen, and frequently are as much spotted and blotched with biack as is the figure of A. michabo we give. The species is found almost everywhere within the United States and Canada.
(7) Apantesis ornata Packard. (The Ornate Tiger-moth.)

Form achaia Grote \& Robinson, \because ute XV, Figs. a0, 24, 8. (The Achaia Moth.)

Syn. edwardsi Stretch.
A variable Insect to which a number of names have been given. The variety in which the hind wings are yeliow is A. ochracea Stretch. The species is found on the Pazific coast. The iarval stages have been described by Dyar, Piyche,

Fic. 73.-Apontesis anna, 9.

Vol. V, p. 380, 556.
(8) Apantesis anna Grote. (The Anna Moth.)

Form persephone Grote, Plate XV, Fig. 8, 8, Fig. 10, 9. (The Persephone Moth.)

We give in Figure 7a a cut representing a specimen of the typicai anna, In which the hlnd wings are wholly black. Persephone is the normal form. The insect is very variabie in the amount of black displayed upon the hind wings, and also to some extent in the width and extent of the iight lines on the primaries. The species is found in the Atlantic States, and is
not at sll uncommon in western Pennsylvania. The larva has been described by Dyar.
(9) Apanted quencell Paykull, Plate XVI, Flg. 28, 8. (The Labrador Apsntesis.)

Syn. strigosa Fabricius: gelida Mavehler; liturata Menétrien; complicata Walker; turbans Chriatoph.

This little moth is found in Labrador, Greenland, snd Arctic America generally, It aiso occurs in Arctic Europe and Asia and upon the summits of the Swiss Alps. It doubtless will be found upon the American Alps In British Columbia.
(10) Apantesis virguncula Kirby, Plate XV. Fig. 9, 8 , Fig. 16, 8 . (The Little Virgin Moth.)

Syn. dahurica Grote (nec Boisduval); speciosa Moeschler; otiosa Neu. maegen * Dyar.

A vsriable specles. The form described as ofiosa hss traces of the transverse iines, characteristlc of so many other species of the genus, and the fore wings have a more checkered appearance on thls account. The Insect occurs in the northern United States and Canada.
(11) Apanteais proxima Guérin-Méneville, Piate XV, Fig. 4. \%. (The Mexicsn Tiger-moth.)

Syn. docta Walker; mexicana Grote \& Robinson; arisononsis Stretch; mormonica Neumcegen.

Form autholea Boisd dval, Plate XVI, Fig. 32, s .
From the varietal form autholea figured in the plste proxima may be discriminated by the fact that the latter has the hind wings msrked with dark brown or black spots on the margins. The species occurs in southern California, Arizona, Mexico, and Centrai America.
(12) Apantesis blakei Grote, Plate XVI, Fig. 31, 8. (Blake's Tiger-moth.)

Syn. bolanderi Str ${ }^{*}$ ch
This species is found in the mountains of Cailfornia and adjoining States.
(13) Apantesis nevadensls Grote \& Robinson, Plate XVI, Flg. 29, 8 . (The Nevads Tiger-moth.)

Syn. behri Stretch.
Form Incorrupta Henry Edwards, Plate XV, Fig. 7, \&. Syn. shastainsis French.

Asctildo
As the name indicates, this species is an Inhabitant of the Rocky Mountains.
(14) Apantesio wiliiamal Dodge. (Wiliiams' Tiger-moth.) Form determinata Neumegen, Piate XV., Fig. 3, 8. Byn. diechi Neumeogen.
This easily recognized species is found in Coiorado and adjacent States among the mountains.
(15) Apanteaia phyilira Drury, Piate XV, Fig. 14, 8. (The Phyilira Moth.)

Syn. B-abra Gaeze: plantuginis Martyn; dodges Butlef; excelisa Neumcegen; fovorita Neumcegen; lugubris Hulat.

This species is found in the Southern States, where it is not uncommon. it is rather variabie in the disposition and extent of the dark and light markings.
(16) Apantesia figurata Drury, Piate XV, Fig. 12, \&, (The Figured Tiger-moth.)

Syn. ceramica Hübner: 1 -pallida Strecker
This is probabiy oniy a form of the preceding species, which occurs with considerabie frequency. it is confined to the Southern States.
(17) Apanteais vittata Fabriclus, Piate XV, Fig. 25, 8, Fig. 22, \&. (Banded Tiger-moth.)

Syn. decorata Saunders.
Form radians Waiker, Piate XV, Fig. 23, 8, Fig. 21 \&. Syn. colorata Waiker; incomplata Eutter.
Form phaierata Harris, Plate XV, Fig. 6, \&.
Syn. rhoda Butter.
A very common and variabie species, which is probabiy the same as A. nais Drury, which has the abdomen prevalentiy ochraceous, and not as strongly marked with biack. The species seems to be, so to speak, in a liquid state. in a series of some hundreds of specimens before the writer, many of them bred from iarva, and undoubtedly aii referabie to the same species, any and all of the forms, which have been named by writers, can be found, yet the buik of them came from one narrow iittie ravine in western Pennsylvania. We leave the synonymy as It stands in Dyar's iist, so far as the things figured on our plate are concerned, but cannot believe that these insects represent different species, as maintained by some authors.

Genus KODIO8OMA 8tretch

Thls little Callfornlan genus, the structure of which is abundantly lllustrated by the cut we give, contains but one species, which is represented in a number of varietal forms.
(1) Kodionoma fulva Stretch, Plate XIII, FIg. 45, 8.

Form eaveal, Stretch, Plate XIII, Fig. 438.
Form trieolor Stretch, Plate XIII, Fig. 44, 8.
There are still other forms, one of which is wholly biack, and has been named nigra by Stretch. The moth is found in Caiifornia, and is there not at all uncommon. The life-history has been thus far oniy imperfectly ascertained.

Fic. 73-Kodiosoma fulva, 8. t. (After Hampson.)

Genus ectypia Clemens

Two species are referred to this genus. E, thona Strecker, from New Mexico is doubtruily referabie to it, but the cnly specimen known, the type, is in too poor a condition to enable much to be toid about l t.
(1) Ectypia bivittata Ciemens. (The Two-banded Ec-

Fio. 74-Ectypia bivituta, \% . \$. (After Hampion.)
typia.)

Syn. nigrofiava Gref.
This very beautiful and rare moth occurs In Texas. Its characteristics are weli dispiayed in the figure we give in the accom- panying cut.

Genus EUVERNA Neumagen \& Dyar

(1) Euverna cllo Packard, Piate XVi, Fig. 22, 8.. (The Clio Moth.)

This chasteiy beautifui moth occurs in the Rocky Mountains of southern California. it is the sole representative of its genus, and is as yet rare in coilections.

Geave PARABEMIA Hubner

Thia genus la represented in our fauna by certain varletai forms, which sgree in part with thone found in the Oid World, and in part differ from them. There is only one species in the genus, which has a wide circumpolar distribution, snd a score or more of namea have been given to mere color varietlea. We figure two of the commoner variationa. The larva feeds on Plamlago and Myosolis.
(1) Parazemia plantaginie Linnzua. (The Small Tigermoth.)

Plate XVI, Fig, 23, 8. The usual form found in Colorado and Wyoming.

Plate XVI, Fig. 26, 8 . Form named gcometrice by Grote.

Genua ARCTIA Schrank

A circumpoiar genua of the Northern Hemisphere, containing rour apecies, which are subject to considerable variation in color and size of spota.
(1) Arctia caia Linneus, Plate XV, Fig. 5, 9. (The Great Tiger-moth.)

The specimen figured on the plate was taken In Labrador.
Form wiakotti Staudinger, Plate XV, Fig. 2, q.
Syn. utohonsis Henry Edwards; ouriponnis Butler: aronsmoniane Neumcegen a Dyar.

The apecimen portrayed on the piate was taken in Coiorado.

Genua Pareuchretes Grote

There are three species of this genus, two of which we figure. The species may be discriminated as followa:

1. Hind wing yellowish. .insulut.,
2. Hind wing white. ..eneru
3. Hind wing tinged with fuscous .oglonensis
(1) Pareuchetee insulata Walker, Plate XIV, FIg. 3, $\%$. (The Yellow-winged Pareuchates.)

Syn. cadoverosa Grote; affisis Grote; awrata Butler.
Found in the Gulf States and the Antillea.
(a) Pareuchetea eglenensis Clemens, Plate XIV, Fig. 4. \&. (The Gray-winged Psreuchatea.)

Explanation of Plate XVI

(Unless otherwise indicated, the specimens figured are contained in the collection of W. J. Holland.)

1. Arachnis aulia Geyer, of.
2. Arachnis picta Packard, ${ }^{7}$
3. . Arachnis zuni Neumagen, of U. S. N. M.
4. Euerythra trimaculata Smith, σ^{7} U. S. N. M.
5. Marras vestalis Packard, σ^{7}.
6. Dracrisia latipennis Stretch, σ^{7}
7. Diacrisia virginica Fabricius, σ^{7}
8. Estigmene congrua Walker. ${ }^{\circ}$
o. Hyphantria cunea Drury, $\delta^{\prime \prime}$.
9. Hyphantria cunea Drury, σ^{+} var. punctatissima. Abbot \& Smith.
10. Estigmene acrea Drury, σ^{7}.
11. Estigmeme acraca Drury, of.

1,3. Isia isabella Abbot \& Smith, \circ.
14. Acoloithus falsarius Clemens, σ^{\prime}.
15. Turuptiana pernraculata Packard, σ^{7}
16. Ecpantheria defiorata Fabricius, 0^{π}.
17. Pygarctias elegans Stretch, σ^{7}.
18. Pygarctia spraguei Grote, $0^{\prime \prime}$.
19. Euchatias oregonenvis Stretch, σ^{7}.
20. Hyphoraia parthenos Ilarris, U. S. N. M
21. Euchatias egle 1rury, of.
22. Euverna clio Packard, $\%$.
23. Seirarctio echo Abbot \& Smith, of.
24. Calidota strigosa, Walker σ^{7}.
25. Parasemia plantaginis Linneus, σ^{7}, U. S. N. M.
26. Parasemia plantaginis var. geometrica, Grote σ^{7}.
27. Pigarctia abdominalis Grote, ㅇ, U. S. N. M.
28. Apantesis quenseli Paykull, σ^{7}.
29. Apantesis nevadensis Grote \& Robinson. $\sigma^{\text {T, U. S. N. M. }}$
30. A pantesis oithona Strecker, ot Engel Collection.
31. A pantesis blakei Grote, σ^{7}, U. S. N. M.
32. Apantesis proximu var. autholea, Boisduval, δ^{7}.

Arctilde

This specles occurs in the Carolinas and southward Pareuchates tenera is found in the Atlantic States and is not uncommon in Pennsylvania.

Genus EUCHETIAS Lyman

The following key based upon that of Hampson may enable the student to differentiaie the species In his coliection:
Abdomen red above.
Fore wing with costal fascia.
Fore wing with the costal fascia yellow antica Walker Fore wing with the costal fascia whitealbicosta Walker
Fore wing without costal fascia.
Hind wing with crimson patch on inner area........ perlevis Grote
Hind wing without crimson patch on inner area.
Fore wing uniform brownish . murina Stretch
Fore wing white inged with fuscous. bolteri Stretch Abdomen orange above.

Fore wing gray-brown
Fore wing brownish white with the veins white .. oregonensis Stretch Abdomen whitish above \qquad pudens Henry Edwards
(1) Euchatias murina Stretch, Plate XI, Fig. 18, 8. (The Mouse-colored Euchatias.)

The habitat of this species is Texas.
(2) Euchetlas egle Drury, Plate 1, Fig. 5, larva; Plate XVI, Fig. 21, \%. (The Milk-weed Moth.)

Fro. 75.-Enchatios aghe, it . 1. (After Hampson.)
The figure given above in the text and those given on the plates will suffice for the identification of this common insect, which ranges from the Atlantic to the Mississippi and beyond. The larva feeds upon Milk-weed (Asclepias).
(3) Euchætias oregonensis Stretch, Plate XVI, Fig. 19, t. (The Oregon Euchatias.)

This insect is found throughout the northern portions of the United States and Canada.

Arctilde

Genus PYGARCTIA Grote

A small genus containing four species all found within our territory. The following table taken from Hampson will serve for the identification of the species, taken in connection with the cut and the figures we give:
A. Fore wing with zcarlet fascia on costa and inner margin.spraguei
B. Fore wing with orange fasciz on costa and inner margin
a. Abdomen scarlet . .vivida
b. Abdomen orange . abdominalis
C. Fore wing without fasciz......elogans
(1) Pygarctia elegans Stretch, Plate XVI, Fig. $1 \%, \delta$. (The Elegant Pygarctia.)
The neuration and structural characteristics of the genus are sufficiently well displayed in the accompanying cut of this species to make any verbal description unnecessary. The insect occurs in southern California, Texas, Arizona, and Mexico.
(2) Pygarctia abdominalis Grote, Plate XV1, Fig. 27, 9. (The Orange-bodied Pygarctia.)

The habitat of this species is Florida.
(3) Pygarctia spraguei Crote, Plate XVI, Fig. 18, δ. (Sprague's Pygarctia.)

The home of this insect is Kansas, Colorado, and adjoining States.

Genus HYPOCRISIAS Hampson

A small genus of which a single representant is found within our limits, occurring as a straggler from the Mexican fauna.
(1) Hypocrisias minima Neumœgen. (The Least Hypocrisias.)

Syn. armillata Hicrry Edwarde.
The prevalent tints of the body and fore wings are ochreous and brown. The hind wings are yel!owish white. The annexed cut will help the student to recognize the insect, when a specimen comes into his

Fic. 77-Hypocrisias minima, δ. possession. The habitat of the species is Mexico, but it is occasionally taken in southern Arizona.

Arctida

Genus FEMILIA Kirby

A small neotropical genus, represented in our fauna by two species. The insect namied occidentalis by French is a form of A. roseat., in which the red of the wings has been replaced by ochreous.
(1) Emilia ambigua Strecker, Plate XIV, Fig. 15, 0. (The Red-banded Æmilia.)

Syn. bolecri Henry Edwards; syracosia Druce.
This beautiful insect is found in the Rocky Mountains of Colorado, and thence southward to northern Mexico.
(2) Emilia roseata Walker, Plate XIV, Fig. 14. \%. (The Rosy Emilia.)

Syn, cannamoma Boisduval; sariguivenosa .Veumoegen; significans Henry Edwards; cecidentalis French.

This rather rare insect occurs on the Pacific coast, and, according to report, ranges from British Columbia to Mexico. The specimen figured on the plate came from the latter country.

Genus HALISIDOTA Hübner

An extensive genus, well represented in Central and South America, and containing about a dozen species, which are found within our faunal limits. Of these we figure a number of species, enough to enable the student to recognize the genus, and the commoner species, which he is likely to encounter.
(1) Halisidota tessellaris Abbot \& Smith, Plate XIV, Fig. 12, δ. (The Tessellated Halisidota.)

Syn. antiphola Walsh; harrisi Walsh.
The form named Harrisi does not differ from tessellaris in the imaginal stage. The sole difference is in the color of the pencils of hairs in the larvæ, whirh are orange in color, while in tessellaris they are black. This is siarcely sufficient ground upon which to estahlish a species.
(2) Halisidota cinctipes Grote, Plate XIV, Fig. 13, δ. (The Gartered Halisidota.)

Syn. davisi Henry Edwards.
This species, which is southern In its habitat, and larger than its close northern ally, tessellaris, has the markings on the fore wings much more dlstinct than is the case in the latter

Aretlide
species. The tarsl are annulated with black bands, marked with small gray points. The insect occurs in the Gulf States and in South and Central America.
(3) Halisidota maculata Harris, Plate XVi, Fig. 11, 8. (The Spotted Hallsidota.)

Syn. fulvofava Walker; suttifora Herrich-Scheffer.
This species, which occurs in the northern portions of the Atlantle coast region, ranges westward to California. Several forms from the western territory have been discriminated by writers, and varietal names have been glven to them. They are mere color forms.
(4) Halisidota longa Grote, Plate XIV, Fig. 16, \%. (The Long-streaked Halisidota).

This species, whlch may easily be determined by the help of the figure we have given, occurs in Florida. The specimen delineated by the writer was taken by him at light in Jacksonville in the month of February.
(5) Halisidota caryze Harrls, Plate XIV, Fig. 10, 8 . (The Hickory Halisidota.)

Syn. annulifascia Walker; porphynia Herrich-Schaffer.
This well-marked and easily Identified species is common in the northern Atlantic coast region, and ranges westward into the valley of the Mississippi.
(6) Halisidota argentata Packard, Plate XiV, Fig. 8, 8, Fig. 9, \&. (The Silver-spotted Halisidota.)

Thls pretty species is found in Colorado, and thence westward and northward to the Pacific coast. A number of subspecies have been named in this connection, but it is doubtful whether the sexes of the insects on meeting each other would recognize any speclfic differences themselves.

Genus Hemihyalea Hampson

Two species of this genus occur within the limits of the United States. Edwards: is distinguished from labecula most easily by the fact that the inner margin of the secondaries in the former is crimson, while in the latter it is not.
(1) Hemihyalea edwardsi Packard, Plate XiV, Fig. 6, $\%$. (Edwards' Glassy-wing.)

Syn. translucida Walker; quercus Boisduval.
This is a Californian species.
(2) Bemihyalea labecula Grote, Plate XIV, Fig. 7, 8. (The Freckled Glassy-wing.)

This insect is not uncommon in Coleciado. It occurs in early summer about Manitou, and among the mountains generally.

Genus OPHARUS Walker

An extensive neotropical genus, represented within the limits of the United States by but one species.
(1) Opharus astur Cramer, Plate XIV, Fig. 5, 8. (The Astur Moth.)

Syn. albicans, Walker: maculicollis Walker: pustulata Packard.
The insect is common in Mexico and South America, and occaslonally occurs in Arizona.

Genus CALIDOTA Dyar

A neotropical genus containing a dozen species or more, two of which are found withln our limits. We figure one of these; the other, C. muricolor Dyar, has the wings mouse-gray, semihyaline, the secondaries paler than the primaries. The head is gray in front, yellowish above; the thorax is gray, the collar edged inwardly with ochreous; the abdomen is reddish buff, with a series of black dorsal spots and broad lateral bands of the same color. The pectus and coxæ are ochreous, the legs gray. The type of the species came from Arizona.
(1) Calidota strigosa Walker, Plate XVI, Flg. 24, 3. (The Streaked Calidota.)

Syn. cubensis Grote: laqueata Henry Edwards.
This insect occurs in Florida, and is abundant in the Antilles. Its life-history has been described by Dyar in the Proceedings of the United States National Museum, for 1900, p. 268. The food-plant is Guettarda elliptica.

Genus EUPSEUDOSOMA Grote

Three species are attributed by Hampson to this genus, one of which, the type of the genus, we figure. It is the only species of the genus occurring within our territory.
(1) Eupseudosoma involutum Sepp, Plate XIV, Fig. 1, 3. (The Snowy Eupseudosoma.)

Syn. nivea Herrich-Scheffer; flordum Grote; immaculata Greef.

Agarietide

The life-history of this species has been given by Dyar, l. c., p. 258. The food-piants are Eugenia buxifolia, Eugenia procera, and Psidium pyrifera. The insect has a wide range in tropical America, occurring from Florlda to southern Brazil.

Genus BERTHOLDIA Schaue

A small neotropical genus represented in our fauna by one species.
(1) Bertholdia trigona Grote, Piate XIV. Fig. 2, 8. (Grote's Berthoidia.)

The moth nlies in Colorado, New Mexico, Arizona, and northern Mexico.

FAMILY AGARISTIDAE

"Ye lovers of marvel and fairy lore,
Say not that the days of enchantment are o'er. That the well-springs of Fancy and Fable fail,

There are streamlets yet where the river-sprite With his Harlequin changes bewilders the sight; There are castles yet of ivory and gold,
Hung with floral fabrics hy sunshine unroll'd. Within whose luxurious recesses recline
Fays of exquisite form, quaffing exquisite wine; Some in gossamer veiled of ethereal dyes,
Which have only their match in the rainbow'd skies;
Some in richest and softest of velvets arrayed, Or in mail that does shame to the armourer's trade. These are haunting us ever for ill, or for good, Through earth and through air, field, forest, and flood: To transport our thoughts, as by magic spell, From the sordid objects whereon they dwell, To a land of the Marvellous dimly displayed, Where the light-winged Fancy, hy wonder stayed, Still delighteth to hover, and joyously say: 'Oh 1 my darling elves, ye're not chased away, There's a region still where ye have a placeThe mysterious world of the Insect race.' '"

Acheta Domestica. Episodes of Insect Life.
The Agaristidx compose a family of moderate size. The moths are day-flying in their habit, and in the tropics both

Explanation oy Placz XVII

(Except when otherwise indicated, the mpecimens figured are contained in the collection of W, J. Holland.)
8. Haploa militaris Harris, of

Haploa colona Hübner, of.
Haploc vestalis Packard. 0^{7}.
Haploa militaris Harris. σ°
Haploa consita Walker. of
llaphara confusa Lyman. 0^{7}.
llaplaca clymene Brown. ${ }^{7}$.
Utelluisu ornatrix Linn:tux, ${ }^{*}$.
Haploa dyari Merrick. δ^{7}, Merrick Cullection.
Haploa milifaris Harris, 0^{7}. Merrick Collection.
Copidryes gloveri Grote \& Robinson. ${ }^{*}$.
Fenaria sevorsa Grote, f.
Androloma maccullochi Kirls. on

- llypia ridingsi Grote, σ^{7}

Alypis mariposa Grote \& Robinsım, $\%$.
Alypia langtoni Couper, δ^{7}.
Alypia langtoni Couper, of
Alypia wittfeldi Henry Edwards. σ^{7}.
Alypia wiltfehti Henry Edwards. $\$$.
Alypia actomaculata Fabricius. σ^{7}.
Alypia octomaculata Fabricius, 8.
Alypiodes bimaculata Herrich-Schaffer, 0^{*}.
Euthisanotia grata Fabricius, 0^{7}.
Euthisanotia unio Hübner, 0^{7}.
Baileya ophthalmica Guence. of
Baileya doubladayi Guente, 0^{7}.
27. Baileya australis Grote, σ^{7}.
38. Aleptince inca, Dyar δ^{7}.

Charci ira decora Morrison. 3
Panthea portlandia Grote, of U. S N. M.
11. Panthea furcilla Packard, ©. U. S. N M
32. Feralia jocosa Guenée, o'.

Thy Morit Exok

Agariotida
of the Old World and the New reckon in their number some of the most resplendently colored insects found upon the globe. Thay are regarded as being an offishoot of the Noctuide.

The following description of the characteristics of the famlly is adapted from Hampson with reference to the forms found within our faunal limits:

- Proboscls fully developed; paipi upturned and well developed, the third joint usually naked and porrect; frons with a rounded, conlcal, or corneous process; antennat cylindrical, almost simple, with slight bristles at the joints, not clliated, and more or less distinctly dilated toward the extremity. Ocell present; eyes sometmes halry; tlblal spurs well developed, the tible rarely spined; the male claspers often very large; wings large and strongly formed. Fore wing with vein $1 a$ separate from $1 b$; tc absent; 5 from or from close to angle of cell; the areole present In nearly all the genera. Hind wing with veln 10 present; ic absent; 5 obsolescent from angle of discocellulars; 6, 7 from upper angle or shortly stalked; 8 free at base, then bent downward to anastomose with the cell at a polnt only. All the specles have silvery blue scales on the fore wings.

The larva are noctulform and have all the prolegs present. The pupa is naked.'

Genu: COPIDRYAS Grote

Two specles belonglng to this genus occur within the Ilmits of the United States. We give illustrations of both of them.
(1) Copidryaz gloveri Grote \& Robinson, Plate XVII, Fig. it, \&. (Glover's Pursiane-moth.)

The life-history of this pather pretty moth has been well worked out by Professor C. V. Riley and from his article published In "Insect Life," Vol. J, p. 104, we have taken the cuts which are herewith glven. The drawlings of the egg, pupa, and cocoon were made by Mr. C. L. Marlatt. The excellent account given by Professor Rliey is drawn upon for the followlng quotations: "The eggs are laid

Agrriatide

on the under side of the purslane leaf, either singly or In clusters of from two to five. The larva hatches In two or three days, and

Fig. 79.-Pupa and cocoon cell of Copidryas gloveri. is at first light green or yellowlsh green with darker shading across the middle of the body. In elght or nine days it attains full growth after having passed through four molts. The full grown larva is light gray or dull white with black dashes on the sides of each segment, and with the shadings of salmon pink."
"The full-grown larva enter the ground for pupation, excavating a tubular burrow in the surface soil, gumming the lining and closing the opening with a thin layer of partlcles of soil. . . . The insect remains in this state In the neighborhood of twelve days."

In the accompanying figures we show the egg, the pupa, and the adult larva and moth. The insect is very abundant at certaln times in Nebraska, Kansas, and the southwestern States generally, and ranges into northern Mexico. It appears to feed exclusively upon purslane, and as this plant is of no particular economic value, but is justly accounted as a troublesome weed, we may wish blessings upon Copidryas gloveri.
(2) Copidryas cosyra Druce, Plate XI, Fig. 19, δ. (The Cosyra Moth.)

This pretty insect, which belongs to the same genus as

Fig. 80-Copidryas gloveri. a. moth; b. lerva. (After Riley.) the preceding, though assigned by the author of the species to the genus Euthisanotia, Is found In Arizona and in Mexico. Its hablts are undoubtedly very much
the same as those of Glover's Purslane Moth, though up to the present time no one has described them.

Genus TUERTA Walker

Only one species of this genus, which is better represented in Africa than in America, is found within our borders.
(1) Tuerta sabulosa Boisduval. (The Sand-dune Moth.)

Syn. noctuiformis Mosechler.
The moth has the primaries grayish-brown marked with white at the insertion of the wings. The secondaries are bright orangeyellow, with a wide black marginal border, as represented in the cut. The habitat of the

Fig. 8i-Tucria sabulosa, δ. 1. Insect is Arizona and Mexico.

Genus ALYPIA Hübner

This genus is well represented within our territory. The following synopsis of the species is adapted from Hampson:
I. (Androloma.) Fore wing of male with a dilation of costa and e groove of ribbed membrane below it from basc cxtending beyond middle.mac-cullochz II. Fore wing of male with a postmedial dilation of costa and groove of ribbed membrane below it; wing elongated.
a. Fore wing witb the markings yellowdisparata
b. Fore wing with the markings white.brannani III. (Alypic.) Fore wing of male without dilation of costal area or grove.
A. Fore and mid tibie, orange; hind wings marked with white.
a. Discal spot of fore wing longitudinal.octomaculata
b. Discal spot of fore wing transverse. wittfeldi

Hind wings marked with yellow.
c. Hind wing with suhbasal yellow spotdipsaci
d. Hind wing without subbasal yellow spot.angtoni
B. Mid tibie only orange.
a. Wings with the spots not traversed by black veins . . mariposa
b. Wings witb the spots traversed by black veinsridingsi
(1) Alypia mac-cullochi Kirby, Plate XVII, Fig. 13, 8. (MacCulloch's Forester.)

Syn. lorquini Grote \& Robinson; similis Stretcb; edwardsi Boisduval, The habitat of this species is Canada and the Rocky Mountains northward to Alaska.

Agariatide

(2) Alypia disparata Henry Edwards. (The Mexican Forester.)

Syn. gracilonta Gref; desperata Kirby.

The structural features of this species are shown in the accompanying cut; for the use of which we are indebted to the kindness of Sir George F.
Fig. 82-Alypia disparata, ©. t. Hampson. The insect (After Hampson.) occurs in southern Texas, Arizona, and Mexico. The writer has a large series collected for him in the neighborhood of Jalapa, where it is apparently more common than farther north.
(3) Alypia octomaculata Fabricius, Plate XVII, Figs. 16, 20, 3, Fig. 21, 8. (The Eight-spotted Forester.)

Syn. bimaculata Gmelin; quadriguttalis Hûbner; matuta Henry Edwards.

This very common insect, which sometimes proves a veritable plague by the depredations which it commits upon the foliage of the Ampelopsis, which is extensively grown in our cities as a decorative vine, is found everywhere in the northern Atlantic States, and ranges westward beyond the Mississippi. One good thing which can be set down to the English sparrow is the work, which he has been observed by the writer to do in devouring the larve of this moth from the vines with which his home is covered.
(4) Alypia wittfeldi Henry

Fig. 83-Alypia octomaculata. a. larva; b. enlarged somite, showing markings; c. moth. (After Riley.) Edwards, Plate XVII, Fig. 18, oै, Fig. 19, 7 . (Wittfeld's Furester.)

Sir George F. Hampson sinks this species as a synonym of A. octomaculata, but the writer cannot agree with him in this. The form of the spots on the primaries, the white at the

Agaristida

base of the abdomen, and the white annulus near its extremity, are at all events marks quite as characteristic as those by which some other species In the genus are separated. Its habitat is southern Florida.
(5) Alypla langtoni Couper, Plate XVII, Fig. 17, 8. (Langton's Forester).

Syn. sacramenti Grote \& Robinson; hudsonica Henry Edwards.
This species ranges from Canada westward through British Columbia Into Caiifornia in the south and Alaska in the north.
(6) Alypla mariposa Grote \& Robinson, Plate XVIII, Fig. 15. (The Californian Forester.)

This, undoubtedly the handsomest species of the genus, is confined to the Pacific coast.
(7) Alypia ridingsi Grote, Plate XVII, Fig. 13, z, Fig. 14, 8. (Ridings' Forester.)

A common species in the Rocky Mountain region at high elevations, and ranging northward to Sitka and the valley of the Yukon.

Genus ALYPIODES Grote

Two species of this genus are Mexican, the third is found In our fauna, though also occurring south of our boundary.
(1) A:ypiodes bimaculata Herrich-Schæffer, Plate XVII, Fig. 22. (The Twospotted Forester.)

Syn. trimaculata Boisduval.

The figure in the plate represents the typical form, the figure in the cut shows the aberration named crescens by Waiker, in

Fic. 84.-Alypiodes bimaculata, 8 . (After Hampson.) which the hind wing has a yellow spot about the middle of the wing. The insect is fairly common in southern California, New Mexico, and Arizona.

[^6]
SUGARING FOR MOTHS

The day has been hot and sultry. The sun has set behind great banks of ciouds which are piiing up on the northwestern horizon. Now that the light is beginning to fade, the great masses of cumulus, which are siowly gathering and rising higher toward the zenith, are lit up by pale flashes of sheet-lightning. As yet the storm is too far off to pernit us to hear the boom of the thunder, but about ten or eleven o'clock to-night we shall probably experience all the aplendor of a dashing thundershower.

Along the fringe of woodland which skirts the back pastures is a path which we long have known. Here stand long ranks of ancient beeches; sugar maples, which in faii are glorious in robes of yeilow and scarlet; ash trees, the taii gray trunks of which carry skyward huge masses of iight pinnated foilage; walnuts and butternuts, oaks, and tuiip-poplars. On either side of the path in luxuriant profusion are saplings, sprung from the monarchs of the forest, young elm trees pianted by the winds, broad-leaved papaws, round-topped hawthorns, viburnums, spreading dogwoods, and here and there in moist places clumps of wiilows. Where the path runs down by the creek, sycamores spread their gaunt white branches toward the sky, and drink moisture from the shallow reaches ." the stream, in which duckweed, arrow-weed, and sweet ponc-lilies bloom.

The woodiand is the haunt of many a joyous thing, which frequents the giades and hovers over the flowers. To-night the lightning in the air, the suggestion of a coming storm which lurks in the atmosphere, wiil send a thrill through ail the swarms, which have been hidden through the day on moss-grown trunks, or among the leaves, and they wiil rise, as the dusk gathers, In troops about the pathway. It ls just the night upon which to take a coliecting trip, resorting to the weil-known method of "sugaring."

Here we have a bucket and a clean whitewash brish. We
have put Into the bucket four pounds of cheap sugar. Now we will pour In a bottle of stale beer and a iittle rum. We have stirred the mixture well. In our pockets are our cyanide jars. Here are the dark lanterns. Before the darkness falls, while yet there is light enough to see our way along the path, we wiii pass from tree to tree and apply tile brush charged with the sweet seml-intoxicating mixture to the trunks of the trees.

The task is accomplishedi Forty trees and ten stumps have been baptized wlth sugar-sweetened beer. Let us wash our sticky fingers in the brook and dry them with our handkerchlefs. Let us sit down on the grass beneath this tree and puff a good Havana. It is growing darker. The bats are circling overhead. A screech-owl is uttering a piaintive lament, perhaps mourning the absence of the moon, which to-nighi wiil not appear. The frogs are croaking in the pond. The fireflies soar upward and nash in sparkling multitudes where the grass grows rank near the water.

Now let us light our lamps and put a drop or two of chloroform Into our cyanide jars, just enough to slightly dampen the paper which holds the lumps of cyanide in piace. We will retrace our steps along the path and visit each moistened spot upon the tree-trunks.

Here is the last tree whlch we sugared. There In the light of the lantern we see the shining drops of our mixture ciinging to the mosses and siowly trickling downward toward the ground. Turn the lig't of the lantern full upon the spot, advancing cautiously, so as not to break the dry twigs under foot or rustie the leaves. Ha! Thus far nothing $\because \cdots$: $:$ black ants which tenant the hoilows of the gnarled ol: tre: appear to have recognized the offering whlch we have made. But they are regaling themselves in swarms about the spot. Look at theml Scores of them, hundreds of them are congregatIng about the piace, and seem to be drinking with as much enjoyment as a company of Germans on a pienic In the wilds of Hoboken.

Let us stealthlly approach the next tree. It is a beech. What is there? Ohol my beautyl Just above the moistened patch upon the bark is a great Catocala. The gray upper wings are spread, revealing the lower wings gloriously banded with

Augaring for Moths
black and crimson. In the yellow light of the lantern the wings appear even more brilliant than they do in sunilght. How the eyes glow like spots of firel The moth is wary. He has just allghted; he has not yet drunk deep. Move cautlouslyl Keep the light of the lantern steadily upon hlm. Uncover your poisoning jar. Approach. Hold the jar just a little under the moth, for he will drop downward on the first rush to get away. Clap the jar over himl Therel you have donelt! You have him securely. He flutters for a moment, but the chloroform acts quickly and the flutterings cease. Put that jar Into one pocket and take out another. Now let us go to the next tree. It is an old walnut. The trunk is rough, seamed, and full of knotted excrescences. See what a company has gathered I There are a dozen moths, large and small, busily at work tippling. Begin with those which are nearest to the ground. When I was young my grandfather taught me that in shooting wild turkeys resting in a tree, It is always best to shoot the lowest fowl first, and then the next. If you shoot the gobbier which perches highest, as he comes tumbling down through the flock, he will startle them all, and they will fly away together; but lf you take those which are roosting well down among the branches, those above will slmply raise their heads and stare about for a moment to find out the source of thelr peril, and you can bag three or four before the rest make up their minds to fly, 1 follow the same plan with my moths, unless, perchance, the topmost moth is some unusual rarity, worth all that suck the sweets below him.

Bravol You have learned the lesson weil. You succeeded admirably In bottling those Taraches which were sucking the moisture at the lower edge of the sweetened patch. There above them is a fine specimen of Strenoloma lunilinea. Aha! You have him. Now take that Catocala. It is amasia, a charmIng little species. Above him la a specimen of cara, one of the largest and most superb of the genus. Weil donel You have hlm, too. Now walt a momentl Have your captives ceased their struggles in your jar? Yes; they aeem to be thoroughiy stunned. Transfer them to the other jar for the cyanlde to do its work. Look at your lantern. Is the wick trimmed? Come on then.

Let us go to the next tree. This is an ash. The moist spot 148

Ougaring for Moths
shows faintly upon the siivery-gray bark of the tree. Look sharpiy! Here below are a few Geometers dalntily sipping the sweets. There is a iittie Eustixis pupula, with its siivery-white wings dotted with points of biack. There is a specimen of Harrisimemna, the one with the coppery-brown spots on the fore wings. A good catchi

Stopi Hoid stllit Hal I thought he wouid alight. That is Catocala coccinata-a fine moth-not overly common, and the specimen is perfect.

Well, iet us try another tree. Here they are hoiding a general assembly. Look! See them fairiy swarming about the spot. A dozen have found good places; two or three are fluttering about trying to aiight. The ants have found the place as weli as the moths. They are squabbling with each other. The moths do not iike the ants. I do not blame them. I would not care to sit down at a banquet and have ants crawiing ali over the repast. There is a specimen of Catocala relicta, the hind wings white, banded with black. How beautiful simple colors are when set in sharp contrast and arranged in graceful iines! There is a specimen of Catocaia neogama, which was originaliy described by Abbot from Georgia. it is not uncommon. There is a good Mamestra, and there Purophiln pyramidoides. The latter is a common species; we shail find scores of them before we get through. Do not bother with those specimens of Agrotis Ypsilon; there are choicer things to be had. It is a waste of time to take them to-night. Let them drink themselves drunk, when the flying squirrels will come and catch them. Do you see that flying squirrei there peeping around the trunk of the tree? Fiying squirrels eat insects. I have seen them do it at night, and they have robbed me of many a fine specimen.

Off now to the next tree!
And so we go from tree to tree. The iightning in the west grows more vivid. Hark 1 i hear the thunder. it is half-past nine. The storm will be here by ten. The leaves are beginning to rustle in the tree-tops. The first puise of the tornado is beginning to be feit. Now the wind is rising. Boom! Boom! The storm is drawing nearer. We are on our second round and are coming up the path near the pasture-gate. Our

Iugaring for Mothe

collecting jars are full. We have taken more than a hundred specimena representing thirty apecles. Not a bad nlght'a work. Hurry upl Here are the draw-bars. Are you through? Put out the light In your lantern. Come quickly after me. I know the path. Here is the back garden gate, It la beginning to rain. We shall have to run if we wlsh to avoid a wetting, Ahl here are the stepa of the veranda. Come upl

MyI what a flash and a crash that was I Look back and see how the big treea are bowing their heada as the wind reaches them, and the llghtning ailhouettes them against the gray veil of the rain. We may be glad we are out of the storm, with a good roof overhead. To-morrow morning the aun will rise bright and clear, and we shall have work enough to fill all the morning hours in setting the captures we have made. Good-nlght!

Abstract

"It is interesting to contemplate a tangled bank, clothed with many plants of many kinds, with hirds singing on the bushes, with various insects flitting about, and with worms crawling thsough the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent upon each other in co complex a manner, have all been produced by laws acting around us. These laws, taken in the largent sense, being Growth with Reproduction; Inheritance, which is almost implied by reproduction; Variability, from the indirect and direct ection of the conditions of life, and from use and disuse; a Ratio of Increage so high as to lead to a Struggle for Life, and as a consequence to Natural : lection, entailing Divergence of Character and the Extinction of less improved forms. Thus, from the war of Nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is a grandeur in this view of life, with its several powers, having been originally breathed by the Creator into a few forms or into one, and that, whilst this planet has gone eycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been and are being evolved."-Darwin.

FAMILY NOCTUIDAE

"Shall mortal man be more just than God?
Shall a man be more pure than his Maker?
Behold Hie put no trust in His servants:
And His angels He charged with folly:
How much less in them that dvell in houses of ciay, Whose foundation is in the dust, Which are crushed before the moth . ${ }^{\text {. }}$

Jos, Chapter IV. 17-rg.
The Noctuidae are a huge complex of genera and species, the genera belng reckoned by hundreds, and the apecles by thousands. Within the faunal limits Intended to be covered by this book there are already known to occur In the nelghborhood of three hundred and seventy-five genera, and many more than two thousand species which are referable to thls familly. In the arrangement of the genera and the species the author has In the maln followed Dyar's Catalogue, which is based upon that of Prof. J. B. Smith, published in 1893 as "Bulletln 44 of the United States National Museum."

The moths are nocturnal in their habits. The neuration is very constant, and is described as follows by Hampson ("Moths of India," Vol. II, p. 160):
"Fore wing with veln $1 a$ sllght and not ana3tomosing with 1b; 1 c absent; 2 from middle of cell; 3,4,5 from close to lower angle; 6 from upper angle; 8 given off from 7 and anastomosing with 9 , which is given off from 10 to form an areole; 11 from cell; 12 long. Hind wing with $1 a$ and b present; ic absent; 2 from middie of cell; 3 and 4 from lower angle; 5 from near lower angle or middle of discocellulars, rarely absent, but more or less aborted In the Acontiina and Trifina. Frenulum always, proboscls almost always, present."

The larves are generally naked, or at most pubescent. In some of the subfamilies the larve are semiloopers, some of the prolegs being absent. Pupation generally takes place under

Nentuid

ground without cocoon, the earth being fashloned in some cases into cemented cell about the pupa.

Genus PANTHEA Hübner

(1) Panthea furcilla Packard, Plate XVII, Fig. 31, 8. (The Eastern Panthea.)

Closely allied to the following specles, from which it may be distinguished by the absence of the renlform spot at the end of the cell.
(2) Panthes portlandis Grote, Plate XVII, Fig. 30, 8. (The Western Panthea.)

Transverse markings less diffuse than in the preceding specles, and reniform spot always present.
P. furcilla occurs on the northern Atlantic, and P. porllandias on the northern Paclific coast.
(Por the other two species consult Proceedings U. S. Nat. Muscum, Vol. XXI, p. $\mathbf{1 3}^{3}$.)

Genus DEMAS Stephens

(1) Demas propinquilines Grote, Plate XIX, Fig. 3, \&. (The Close-banded Demas.)

The caterpillar feeds on various declduous trees, maklng a case for itself by drawlng two leaves together with strands of silk. It occurs In the Atlantic States.
(For the other two species of genus see Proceedings U.S. Nat. Museum. Voi. XXI, p. 23.)

Genus CHARADRA Walke:

(1) Charadra deridens Guenée, Plate XVIII, Fig. 4, 8. (The Laugher.)

Syn. circulifer Walker; contigua Walker.
A rather rare moth, the habitat of which is the Atlantic States, and the larva of which makes a case for itself, very much as done by the preceding species.
(2) Charsdra illudens Walker, Plate XVIII, Fig. 5, 3 , -7. . 2, 8. (The Sport.)

Syn. pythion Druce.
A Mexican species, which 1 admit to the fauna of our territory on the authority of George Franck of Brooklyn, who reports its occurrence in Florida.

Netuide

(3) Charadra dacora Morrison, Plate XVii, Fig. 29, 8. (The Dandy.)

Syn. felina Druce.
This is ilikewise a Mexican species, which is said to occur In Arizona, but the fact of its being found there requires verification.

One other specles of the genus, C. dispulsa Morrison, occurs In the Southern States.

Genua RAPHIA Hübner

(1) Raphla frater Grote, Piate XVIIl, Fig. 3, \&. (The Brother.)

Syn. personata Walker; flexuosa Walker.
Thero are three species belonging to thls genus in our fauna. They are closeiy ailike in appearance. The specles we figure occurs in the Eastern States. R. abrupta Grote is also an eastern specles, whiie R. coloradensis is found in the West.

Genua APATELA Hübner

This is a large genus, well represented in the temperate regions of both the Old World and the New. The latest Catalogue of the Lepidoptera of the United States credits our fauna with seventy-five species. The genus has been monographed by Smith \& Dyar. (See Proceedings U. S. Nat. Museum, Vol. XXI, pp. 1-104.) Within the compass of these pages we cannot do more than glve a representation of a number of the forms, which have been described, leaving the student to further researches in the readily accessible literature of the subject.
(1) Apatela americana Harris, Plate XVill, Fig. 12, \&. (The American Dagger-moth.)

Syn. acoricola Guenee: obscura Henry Edwards; accris Abbot \& Smith (non Linnotus).

This is one of the iargest specles of the genus.
The caterpillar feeds upon deciduous trees of many genera, and the insect occurs from New England to Utah and south to the Gulf States.
(2) Apatela dactylina Grote, Plate XVill, Fig. 17, 8. (The Flngered Dagger-moth).

Easily distingulshed from the preceding species, which it

Nostuide

resembies in ths markings of ths fora wings, by its smsiler slze and tha white hind wings. It ranges from Canada to Virginis and westwsrd to the Rocky Mountains. The caterpillar lives upon alder, willow, snd birch.
(3) Apatela populi Rlley, Plate XVIIl, Fig. 14, 8 (The Cottonwood Dagger-moth.)

The moth, of which we reproduce the figures of tha larva and imago given by Professor Riley, who first described the specles, ranges from Canada to the

Fio. 85.-A patela populi, 8. (After Riley.) western parts of the Carolinas, thence across the continent to the Paclfic coast, avolding the warmer reglons of the Guif States and southern Califomia. The imago is discriminated from Apatela lepusculina Guence by the broader wings, especlally of the female, by the paler groundcolor of the primaries, and by the absence of the orblcular spot, which is very rarely as conspicuous as it appeara in the figure given by Riley, and still further by the very short basal dash on the fore wings, which In A. lepusculina is long, reachlng outwardly as a sharply defined black line one-third of the length of the cell. The larva is alsoquite different in important particulars from that of the species, which has been named, but with which thls species is

Fic. 86.-Apatela populi, larva. (After Riley.) often confounded in collections. The caterpillar feeds upon the foliage of different species of the genus Populus, and ls particularly common in the

Nestulde
States of the Mississippl Basin upon the Cottonwood (Populus monilifers and Populus heterophylla.)
(4) Apatela innotata Guenee, Plate XVIII, Fis. 13, 8. (The Unmarked Dagger-moth.)

Syn. grafi Grote.
The figure given In the plate represents a form Intermediate between those depicted by Smith \& Dyar. (See Proceedings U. S. Nat. Museum, Vol. XXI, Plate II, Figs. 17, 18). The ground color is a dirty yellowish-white. The species occurs in Canada and the northern Atlantic States.
(5) Apatela morula Grote, Plate XVIII, Flg. 8, 8. (The Darkish Dagger-moth.)

Syn wlmi Harris.
This Insect occurs from Canada southward and westward to the Rocky Mountains. The caterpiliar feeds upon elm, apple, and linden.
(6) Apatela Interrupta Guence, Plate XIX, Fig. 5, 8. (The Interrupted Dagger-moth.)

Syn, occidentalis Grote \& Robinzon.
The larva feeds upon the Rosacea, and also upon the elm and the birch. The Insect has a wlde range from the Atlantic seaboard to the Rocky Mountains and from Canada to the northern portlons of the Guif States.
(7) Apatela lobelise Guenée, Plate XVIII, Fig. 9, 8. (The Lobelia Dagger-moth.)

The caterpillar feeds upon oak, In spite of the fact that the author of the species attributed it to the Lobelia, which would no doubt poison it if administered. It ranges from Canada to Florida and Texas, and westward to the Rocky Mountains.
(8) Apatela furcifera Guente, Plate XVIII, Fig. 10, 8. (The Forked Dagger-moth.)

The range of this species is practically the same as that of the preceding. The larva feeds upon various species of wild-cherry.
(9) Apatela hasta Guente, Plate XIX, Fig. 6, \&. (The Dart Dagger-moth.)

Syn. telum Guenée.
The insect is found in the northern Atlantic States and Canada. It is smaller a.id darker than the preceding species, to

Noetuide

which it is closely allied. The figure in the plate is hardly dark enough.
(to) Apatela quadrata Grote, Plate XVIIl, Fig. 15, 8. (The Quadrate Dagger.)

This specles occurs on the Pacific coast and ranges eastward as far as Alberta In the north and Kansas in the south. The author does not recall a description of the larva.
(II) Apatela superans Guenée, Plate XVIll, Fig. 26,\%. (The Chieftaln Dagger.)

This is a well-marked species, which cannot easily be mistaken. It occurs in Canada, southward to the Carolinas, and westward through the valley of the Mississippl. The larva feeds on the same plants as its allies, which have been mentioned above.
(12) Apatela lithospila Grote, Plate XVIll, Fig. 24, 8. (The Streaked Dagger.)

Ranges from the Atlantic to the Pacific. The larva feeds upon oak, hlckory, and chestnut.
(13) Apatela connecta Grote, Plate XVIll, Fig. 19, δ. (The Connected Dagger.)

The habitat of this specles is found from Canada to the Carollnas and westward to the Mississippl. The larva feeds on willows.
(14) Apatela fragills Guente, Plate XIX, Fig. 1, of. (The Fragile Dagger-moth.)

Syn. spectans Walker.
This delicate little species has by some authors been referred to the genus Microcolia, but is a true Apatela. It ranges from Canada to the Carolinas and westward to the Mississippl. The caterpillar feeds on birch and various plants belonging to the Rosacea.
(15) Apatela vinnula Grote, Plate XVIll, Flg. 25, 8. (The Delightful Dagger.)

This pretty and easily recognizable species feeds in the larval stage upon the elm and ranges from the Atlantic coast to the border of the Great Plains. It comes very freely to sugar.
(16) Apatela grlsea Walker, Plate XVIll, Fig. i1, $\%$. (The Gray Dagger-moth.)

Syn. pudorata Morrison.
The caterpillar feeds on apple, birch, wlllow, elm, and arrow

Explanation of Plate XVIII

(Except when otherwise indicated, the specimens figured are contained in the collection of W. J. Holland.)

Diphthera fallax Herrich-Exll:effer, \%.
Charadra illudens Walker. \&.
Raphis frater Grote, \&. U. S. N. M.
Charadra deridens Guence: $\%$.
Charadra illudens Walker. कf.
Arsilonche albovenosa $\mathrm{G} \leftrightarrow \cdots \mathrm{z}, \mathrm{O}^{7}$:
Merolonche lupini Grote. ${ }^{-1}$, Merrick Collection.
8. A pasela morula Grote. 0^{7}

Apatela lobelia Guenér. ol
A patela furcifera Guené: dr.
A patela grisea Walker. \&
A patela americanc Harris, $\$$.
A patela innotata Guenée. 8^{7}.
A patela lepusculina Guenéc. ob
A patela quadrata Grote. $\%$.
A patela raddliffei Harvey, d^{7}.
A patela dactylina Grote. or
Apatela oblinita Abbot \& Smith. $\%$.
A patela connecta Grote, 0^{7}.
A patela roctivaga Grote, 7.
A patela impressa Walker, 0^{7}.
A patela impleta Walker, of.
A patela brumosa Guente, ${ }^{7}$.
A patela xyliniformis Guenée. dot Merrick Collection
Apatela vinnula Grote. $\%$.
A patela superans Guenée, \&.

wood (Euonymus). The insect is found from Canada to Georgiz and westward to Missourl and Minnesota.
(17) Apatela albarufa Grote, Plate XVIII, Fig. 16, o. (The Reddish-white Dagger.)

A somewhat variable specles characterized by 2 very faint reddish cast upon the primaries. It ranges from the Atlantic to New Mexico and Colorado.
(18) Apatela brumosa Guenée, Plate XVIII, Fig. 23, δ. (The Frosty Dagger-moth.)

Syn. inclara Smith.
Very closely alled to A. inmpressa Walker, but easily dlstingulshed from that species by the lighter hind wings. The larva feeds upon willow, birch, and alder.
(19) Apatela noctivaga Grote, Plate XVIll, Fig. 20, q. (The Burglar Dagger.)

The larva feeds upon poplar and various herbaceous plants. The insect is found over almost the entire United States and southern Canada.
(20) Apatela impressa Walker, Plate XVIIl, Fig. 21, δ. (The Printed Dagger.)

The larva feeds upon wlllow, plum, hazel, currant, and blackberry. It is found from the Atlantic coast to the Rocky Mountains.
(21) Apatela impleta Walker, Plate XVIll, Fig. 22, q. (The Yellow-haired Dagger.)

Syn. Iuteicoma Grote.
The range of this species is from Canada to lorida and westward far into the valley of the Mississippl. The larva feeds on a great variety of deciduous trees and shrubs.
(22) Apatela oblinita Abbot \& Smith, Plate XVIII, Fig. 18, \&. (The Smeared Dagger.)

Syn. salicis Harris.
This is probably the commonest specles of the genus. It occurs from eastern Canada to Florida and westward to the Rocky Mountains. The larva feeds on a great variety of shrubs and herbaceous plants. It never is found upon trees. It is very fond of the various species of smart-weed (Polygonum), and in the

Noesuide
fall of the year it is very abundant in places where this piant grows. It does some damage to cotton-plants in the South, but by handplcking it can easily
 be kept under. The cocoon, whlch is composed of yellowish silk, is long and ovai. There are two broods in the Middle States. The hibernating insects emerge from their cocoons in May, and lay thelr eggs. The caterpillars develop and the second brood of moths appears upon the wing in July. They oviposit and the caterpillars of this generation, having made their cocoons, pass the winter in the pupal state.

Genus APHARETRA Grote

This is a small genus, the species of which have been separated from Apatela, in which they have been formerly placed. We give figures of both species known to occur within our territory. They have been drawn from the types, and will suffice for the identification of the perfect Insects. Nothing is as yet known as to their larval stages.
(1) Apharetra dentata Grote. (The Toothed Apharetra.) This insect occurs in Canada and the northern portions of

Fic. 88.-A pharetra dentata, \& . f.
New York and New England. It is, however, for some reason as yet very rare in collections. The annexed cut has been

Noctuidx
drawn for me by Mr. Horace Knight from the type which is contained in the British Museum.
(2) Apharetra pyralis Smith. (Smith's Apharetra.)

The specimen represented in Fig. 89 is the type contained in the United States Nationai Museum, a drawing of which 1 was kindly permitted to make. The species is considerably darker than the preceding. It is thus far only known from the Territory of Alberta in British America.

Genus ARSILONCHE Lecerer

Two species belonging to this genus are represented in our fauna. Arsilonche colorada was described by Smlth in the Proceedings of the United States National Museum, Vol. XXII, p. 414, in 1900 . The other species, which is well known, we figure.
(1) Arsilonche albovenosa Gæze, Plate XVIII, Fig. 6, o . (The White-veined Dagger.)

The abdomen in our figure is dark, the specimen being greased. It should be light, like the thorax. The insect occurs quite commonly in Canada and the northern portions of the United States, and also in Europe and northern Asia.

Genus MEROLONCHE Grote

For a full account of the three species contained in this genus the student is referred to the Proceedings of the United States National Museum, VoI. XXI, p. 179.
(1) Merolonche lupini Grote, Plate XVIII, Flg. 7, \&. (The Lupine Dagger.)

Like all the species of this genus the Lupine Dagger is an inhabitant of the Pacific States. Good specimens are rare in collections.

Genus HARRISIMEMNA Grote

Only one species of this genus is thus far known.
(1) Harrisimemna trisignata Walker, Plate XIX, Fig. 4, 8. (Harris's Three-spot.)

Nostuide

The moth ranges from Canada to Texas, and from the Atlantic to the Great Plains. The larva feeds on the winterberry and the lilac.

Genus MICROCOLLIA Guenée

This genus is like the preceding represented in our territory by but one species.
(1) Microccella diphtheroldes Guenée, Plate XIX, FIg. 9, 8 ; form obliterata Grote, Plate XIX, Fig. 10, 8 . (The Marbled Mlerocelia.)

The form obliterata in whlch the marbings are wanting is common. The species is found in the Atiantic Subreglon of the United States.

Genus JASPIDIA Hübner

This is a moderately large genus embracing five species, which occur In our fauna. We figure two of them.
(1) Jaspidia lepidula Grote, Plate XIX, Fig. 7, \%. (The Marbied-green Jaspidia.)

This is a common species in the Atlantic Subregion, ranglng from Canada to the Carolinas and westward to the Mississippi.
(2) Jaspidia teratophora Herrich-Schaffer, Plate XIX, Fig. 8, 8 . (The White-spotted Jaspidia.)

The distribution of this species is practicaily the same as that of the preceding.

Genus DIPHTHERA Hübner

There is but one species of this genus in our fauna.
(1) Diphthera fallax Herrich-Schaffer, Plate XViil, Fig. 1, 8. (The Green Marvel.)

This beautiful iittle moth is not uncommon in the Appalachian, or Atlantic, Subregion of the Continent.

Genus POLYGRAMMATE Hübner

This genus like the preceding is represented in our territory by but a single species.
(1) Polygrammate hebraicum Habner, Plate XIX, Fig. 11, 8. (The Hebrew'.)

Syn. hebraa Guente.

The caterpiliar feeds upon the sour gum-tree (Nyssa sy/vatica). The larval stages have been described by Dyar. (See Proceedings U. S. Nat. Museum, Vol. XXI, p. 9.) The insect is not uneommon in Pennsyivania and has much the same range as the preceding three or four species.

Genus CERMA Hübner

Three specles of this genus are credited to our fauna. The one of which we glve a cut has been by some authors confounded with Polygrammate hebraicum.
(1) Cerma cora Hobner. (The Cora Moth.)

Syn. fosta Guente.
The ground-color of this pretty little moth is whlte shading Into vinaceous gray, upon whleh the darker markings stand forth conspleuously. Fio. oo--Ccrma It Is quite rare, and so far as is known is con- cora. 3 . fined to the Atlantic Subregion of the contInent. The figure was drawn by the author from a specimen in the possession of the Brooklyn Institute, beionging to the Neumœgen Collection.

Genus CYATHISSA Grote

(1) Cyathissa percara Morrison, Plate XIX, Fig. 12, 3. (The Darling Cyathissa.)

Thls pretty little species is found in the Gulf States and has been reported as ranging northward as far as Colorado. A second species of the genus has during the past year been described by Prof. J. B. Smith, from southern Californla, under the name pallida.

Genus CHYTONIX Grote

(1) Chytonix palliatricula Guente, Plate XIX, Fig. 13, $\mathbf{3}$; Fig. 14, 3, var. (The Cloaked Marvel.)

Syn. iaspis Guené.
A common species in the Northern Atlantic States. It may be found in June and July in Pennsylvania seated upon the bark of oak-trees in the forest. it comes freely to sugar and to light.

Nectuld

Genu: COPIBRYOPHILA Smith

Of the sole species, named angelica, beionging to this genus, which was erected by Prof. J. B. Smith in the year 1900 (see "Proceedings U.S. Nat. Mus.," Vol. XXii, p. 416), we give a cut made from a drawing of the type, which is contained in the National Museum at Washington.

Genue ALEPTINA Dyar

This genus has been erected by Dyar to accommodate the species named inca by him in the "Canadian Entomologist," Vol. XXXiV, p. 104. The maie is figured on Piate XVil, Fig. 28. The insect is found in Arizona and Texas.

Genu: BAILEYA Grote

A small genus, the species in which have been commonly referred hitherto to the genus Leptina, but erroneously.
(1) Baileya ophthalmica Guenée, Plate XVIl, Fig. 25, 8.

Not an uncommon species in the Appalachian Subregion. It comes freely to sugar, and is rather abundant in the forests of southern Indiana.
(2) Balleya australis Grote, Plate XVII, Fig. 27, 8 .

This is smaller than the preceding species, and generally lighter in color, with a very pronounced blackish apical shade on the fore wings. It occurs in the Guif States from Florida to Texas.
(3) Baileya doubledayi Guenée, Plate XVii, Fig. 26, 8 .

Of the same size as ophthalmica, but differently marked. From australis it may readily be distinguished by its larger size, and by the different marking of the apex of the fore wings.

Genus HADENELLA Grote

(1) Hadenelle pergentilis Grote, Plate XIX, Fig. 24, \&.

This inconspicuous, but neatly marked little insect, belongs to the region of the Pacific coast, and ranges eastward as far as Colorado.
(2) Hadenella aubjuncta Smith, Plate XIX, Fig. 25, 8.

The Identification of this insect with minuscula Morrison, made by Dr. Dyar, is open to question. The range of this species is from the Atlantic to the mountains of Colorado, north of the Gulf States.

Ganue ACOPA Harvey

(1) Acopa carina Harvey, Plate XIX, Fig. 16, δ.

The habitat of this species is Texas. Three other species belonging to the region of the Southwestern States have been referred to this genus.

Genua CATABENA Walker

(1) Catabena lineolata Walker, Plate XIX, Fig. 15, δ. Syn. miscellus Grote.
This is a common little moth which ranges from the Atlantic States to California. It is freely attracted to light. The larva feeds on Verbena.

Genua CRAMBODEs Guenáe

(1) Crambodea talidiformin Guente, Plate XiX, Fig. 17, δ. Syn. conjugens Walker.
A common species in the Appalachian Subregion, ranging westward as far as Colorado. Like the preceding species the larval form feeds on Verbena.

Genua PLATYSENTA Grote

(1) Platyaente videne Guenee, Plate XiX, Fig. 21, 8.

Syn. indigens Walker; meskei Speyer; atriciliata Grote
This species has the same range as the preceding. It is common at sugar.
(2) Platyeenta albipuncta Smith, Plate XIX, Fig. 23, 3.

This moth was originally described from Colorado, but it occurs all through the Southwestern Sta ${ }^{*}$ is. The specimen figured came from Texas.

Genus BALSA Walker

(1) Balea malana Fitch, Piate XIX, Fig. 18, of. Syn. obliquifera Walker.

Nectulde

This is very common species in the Allantic States and is freely sttracted to light.

Genue PLATYPERIGEA Smith

This genus has been erected by Prof. J. B. Smith for the reception of three species, two of which we figure in the
 annexed cuts, which have been made for me from the types through the courtesy of Dr. H. G. Dyar, of Washington. All of the specles have been recorded from Colorado. They also occur In Wyoming, and I have specimens col-

Fio. 93.-Plalypiriza discistriga, \& . f. lected for me in the Freeze-out Mountains In that State. They probably have an extensive range in the Rocky Mountalns.

Genus ANORTHODES Smith

(1) Anorthodea prima Smith, Plate XIX, Fig. 19, 8.

This inconspicuous insect is quite common In central Ohlo, and its range extends thence southward into the Southern States. It occurs in Kentucky, Tennessee, the Carollnas, and Georgia.

Genus CARADRINA Ochsenheimer'

Thls is a genus of moderate extent, represented both in the Old World and the New. We have chosen a few species, familiarity with which will enable the student to recognize others.
(t) Caradrina meralis Morrison, Plate XIX, Fig. a2, 8. (The Mooned Rustic.)

Syn. bilunata Grote.
The moth is distributed from the Atiantic seaboard to the interior of New Mexico. It is common in Texas.
(2) Caradrina muitifera Walker, Plate XIX, Fig. 29, $\&$. (The Speckled Rustic.)

Syn. fidicularia Morrison.
The habitat of this specles is the Atlantlc Subregion.

Expianation ay Pi,atr XiX

(Bxcept when otherwise indie:aterl. the specimens are contained in the eollection of W. J IInlland)

1. A palila fragilis Guené, δ°.
2. Ciric :wilsoni Grote. ©.
3. Domas propinguilinea Gove. ₹. U. S. N. M.
//urrisimemul trisigman Walker. Q
4. A palela interrupta Guenée,
5. A patifla hasta Guenée. 1 .
6. Faspidea lepidula Grote, σ^{7}.
7. Taspidea teratophora Herrichscheffer. a^{7}.
8. Mtirocalia diphthernids Guenée, of
9. Miricalia diphtheroides var. oblitirata, Grote. N.
10. Polygraminali hebration Hibmer. σ^{2}.
11. CVathissa percara Mortimun. U. S. N. M.
12. Thytonix palliatrisha Guener. 0^{7}.
13. Chytonix palliatricula Guenée. var. σ^{7}.
14. Culathena lineolata Walker. or 16. Acopa carina Harvey. s', U. S. N. M.
15. Crambudes talidiformis Guenée.下.
16. Balsa malana Fitch, of.
17. . Itorthodes prinua Smith, 0^{7}.
18. Orthindes vecors Guenée, C^{7}.
19. Ilatysenta videns Guente. $\overline{7}$
20. Caradrina meralis Morrison. 8 .
21. Platysenta albipunita Smith. 8 .
22. Hadenella pergentilis Grote. \& .
U. S. N. M.
23. Hadenella subjunita Smith. δ
24. Caydrina extimia Walker. 0^{*}.
25. ('uradrina punctivena Smith. ${ }^{2}$.
26. Caradrina spilomela Walker. ${ }^{\circ}$.
27. Curadrina multifera Walker. ̧̧
.o. Perigea xanthivides Guenee. ©
28. l'urizea zecors Guenée. :
29. Oligia festivorides Guence, ${ }^{7}$.
3.3. Oligia graia Hübner. σ^{2}.
30. Oligia fuscimacula Grote, ot'
31. Hillia algens Grote. Of.
32. Hadena passer Guenée, 0
.37. Hiulena burgessi Morrison, of.
33. Hadena lateritia Hübner. ©?
34. Hadena dubitans Walker. P.
35. Hadena ducla Grote. ρ.
36. Mamestra juncimacula Smith. σ^{7}.
37. Hadena nigriar Smith. :

38. IIolena derustatrix Brace, σ°.
39. Iladena afiticu Boisfluval. of.

Nectuidm
(3) Caradrina spilomela Walker, Plate XIX, Fig. 28, 8. (The Convivial Rustic.)

Syn. conviva Harvey.
This is a neotropical specles found all over the hotter parts of North and South America, and ranging northward into Arizona and Texas.
(4) Caradrina extimia Walker, Plate XIX, Fig. 26, δ. (The Civil Rustic.)

Syn. civica Grote.
The moth occurs in Colorado and thence westward to the Pacific.
(5) Caradrina punctivena Smith, Plate XIX, Fig. 27, 8. (The Brown-streaked Rustic.)

The identity of this insect with C. rufostriga Packard has been suggested as probable. Its habitat is Colorado, amnng the mountains, and Labrador. It no doubt occurs at Intermediate points at suitable elevations. It is evidently a strictly boreal form.

Genus PERIGEA Guenée

This is a rather extensive genus, well represented in t're warmer parts of the New World, and also occurring in the Eastern Hemisphere. Twenty-four specles are credited to our fauna in the latest catalogue. We figure two of the commoner species, which have a wide range.
(1) Perigea xanthioide: Guenee, Plate XIX, Fig. 30, 8. (The Red Groundling.)

This is not a scarce species in the Appalachian Subregion. It is particularly abundant in southern Indiana and Kentucky, where I have obtained it in large numbers.
(2) Perigea vecors Guenée, Plate XIX, Fig. 31, \%. (The Dusky Groundling.)

The distribution of this species is very much the same as that of the preceding.

Genus OLIGIA Hübner

Nine species belonging to this graws are credited to our territory, of which number three are selected for illustration.
(1) Oligia festivoides Guenée, Plate XIX, Fig. 32, f. (The Festive Midget.)

Syn. varia Walle r.

Nociulde
This is not an uncommon species in the Atlantic States.
(2) Oligia fuscimaeula Grote, Plate XiX, Fig. 34, 8. (The Brown-spotted Midget.)

A common species in the Gulf States.
(3) Oligia grata Habner, Plate XIX, Fig. 33, 8 . (The Grateful Midget.)

Syn. rasilis Morrison.
This specles is quite widely distributed through the Atlantic States.

Gènus HILlia Grote

There are three species in this genus. They are found In the more temperate regions of our territory, being confined to the Northern States or to high elevations among the mountains of the West.
(1) Hillia algens Grote, Plate XIX, Fig. 35, 3.

This obscurely colored moth is found in Maine, northern New York, southern Canada, and among the mountains of Colorado, Wyoming, and Montana.

Genus HADENA Sehrank

This is a very large genus which is represented in both the Old World and New. More than one hundred species are credited to our fauna. Of these we have selected a number for purposes of illustration, knowing that familiarity with these will enable the young collector presently to recognize other species, which he will then be able to determine with the help of accessible literature.
(1) Hadena bridghami Grote \& Robinson, Plate XX, Fig. 2, $\begin{aligned} \text {. (Bridgham's Hadena.) }\end{aligned}$

A bright little species, the reddish color of the medial area of the fore wings being quite distinctive. It is found in the Appalachian Subregion.
(2) Hadena transfrons Neumegen, Plate XX, Fig. 7, \&. (Neumœgen's Hadena.)

Closely allied to the preceding species, but with darker primarles, and dark hind wings. Habitat Alberta and British Columbia.
(3) Hadena violacea Grote, Plate XX, Fig. 12, \&. (The Vlolet Hadena.)

This species, which ranges over the region of the Rocky Mountains from Colorado to California, may be distIngulshed from the preceding two species by its somewhat larger size, and by the fact that the secondaries are Immaculately white.
(4) Hadena claudens Walker, Plate XX, Fig. 6, δ. (The Dark-winged Hadena.)

Syn. hilli Grote.
This species is apparently confined to the northern portion of the Atlantic Subregion.
(5) Hadena modica Guenée, Plate XX, Fig. 14, δ. (The Black-banded Hadena.)

Syn. subcedens Walker.
Ranges from the Atlantic coast to the mountains of Colorado.
(6) Hadena characta Grote, Plate XX, Fig. 3, 8. (The Double-banded Hadena.)

The habitat of this species is in the southwestern portion of the Rocky Mountains. It is not unconmon in Arizona.
(7) Hadena mactata Guenée, Plate XX, Fig. 8, \&. (The Dark-spotted Hadena.)

The distribution of this species is over the Appalachian Subregion and westward to the eastern ranges of the Rocky Mountalns.
(8) Hadena turbulenta Hobbner, Plate XX, Fig. 16, \&. (The Turbulent Hadena.)

Syn. arcuata Walker.
This little species is not uncommon in the Atlantic Subregion.
(9) Hadena versuta Smith, Plate XX, Fig. 4, \%. (The Albertan Hadena.)

So far as is now known this species is found in the Territory of Alberta, but it probably has a wide range on the eastern slopes of the northern ranges of the Rocky Mountains.
(10) Hadena miseloides Guenée, Plate XX, Fig. 15, 8. (The White-spotted Hadena.)

This is not a scarce species in the Atlantic States. It may easily be recognized by its greenish fore wings, generally marked near the middle by a large white spot.

Nectuito

(11) Hadena chloroctigua Harvey, Plate XX, Fig. 13. δ. (The Green-spotted Hadena.)

This species is variable In color, some specimens having green spots on the disk of the fore wings, others being, as represented in the plate, almost entirely brown. It is a common species in the central portions of the Misslssippi Valley, ranging thence southward. The example figured was taken at Columbus, Ohio.
(12) Hadena fractilinea Grote, Plate XX, Fig. 10, $\boldsymbol{z}^{\text {. (The }}$ Broken-lined Hadena.)

Not a scarce species in the Appalachian Subregion.
(13) Hadena baslllnea Fabricius, Plate XX, Fig. 9, 3 . (The Base-streaked Hadena.)

Syn. cerivana Smith.
This specles, which is also found In Europe, occurs in Aiberta, and the northwestern portions of British North America.
(14) Hadena passer Guenée, Plate XIX, Fig. 36, \mathbf{t}. (The Passerine Hadena.)

Syn. incallida Walker; loculata Morrison; viralis Grote; conspicua Morrison.

Not a very common species, ranging from southern Canada and the northern Atiantic States westward in the same latitudes to the Pacific, and southward into the mountains of Colorado.
(15) Hadena burgessi Morrison, Plate XIX, Fig. 37, 8. (Burgess's Hadena.)

Syn. discors Grote.
The habitat of this weli-marked species is the Atlantic Subregion and the valley of the Mississippi as far west as the Great Plains.
(16) Hadena vultuosa Grote, Plate XX, Fig. 11, it. (The Airy Hadena.)

Not a very common species, confined to the Atlantic Subreglon.
(17) Hadena lateritia Habner, Plate XIX, Fig. 38, 8 . (The Red-winged Hadena.)

Syn. molochina Hübner; obliviosa Walker.
Found throughout temperate North America and Europe.
(18) Hadena dubitans Walker, Plate XiX, Fig. 39, ㅇ. (The Halting Hadena.)

Syn. insignata Walker; sputatrix Grote.

Much darker than the preceding species, which it somewhat resembles. It is found in the northern portions of the Atlantic Subregion.
(19) Hadena ducta Grote, Plate XIX, Fig. 40, 9. (The Speckled Gray Hadena.)

The range of this specles is the same as that of the last mentloned.
(20) Hadena devastatrix Brace, Plate XIX, Fig. 44, 8. (The Destroying Hadena.)

Syn. ordinaria Walker; contenta Walker; marshallana Westwood.
Universally distributed throughout the United States and squthern Canada.
(a) Hadena arctica Boisduval, Plate XIX, Flg. 45, 8. The Northern Hadena.)

Syn. amputatrix Fitch.
A large and handsome species, easily recognizable. It ranges from Canada and New England into the Carolinas and westward to Colorado.
(22) Hadena occidena Grote, Plate XX, Fig. 20, 8. (The Great Western Hidena.)

The species is distributed from Colorado to California.
(23) Hadena verbascoides Guenée, Plate XIX, Fig. 43, $\%$. (The Mullein Hadena.)

A peculiarly marked specles, which cannot easily be mistaken for anything else. It occurs in the northern Atlantic States.
(24) Hadena nigrior Smith, Plate XIX, Fig. 42, \%. (The Darker Hadena.)

Allied to the preceding species, but with the light color of the costai area confined to the basal portion of the wing. Found in New England and Canada.
(25) Hadena Iignicolor Guenée, Flate XX, Fig. 5, t. (The Wood-colored Hadena.)

A well-marked species, in color recalling H. vultuosa, but larger. It ranges from the Atlantic to Colorado and Arizona.
(a6) Hadena aemilunata Grote, Plate XXII, Fig. 41, 3. (The Half-moon Hadena.)

Not uncommon in Colorado and ranging thence westward to the Pacific.

Noctulde

(27) Hadena vinela Smith, MS., Plate XX, Fig. 19, 8 . (The Dark Ashen Hadena.)

This species has been long distributed in collections as Fishea enthea, which it is not. 1 apply to the figure the manuscript name, which has been given me by Prof. J. B. Smith. It is found in New England and southern Canada.

Genue CALOPHASIA Stephena

:.,n only specles of this genus credited to our fauna is r. "rfigata Smith, represented In Plate XX, Flg. 17, by a female $50: 5, m e n$, loaned to me by the United States Natlonal Museum. \therefore occurs in Colorado and Wyoming.

Genue EPIDEMAS Smith

This genus was erected by Professor J. B. Smith for the reception of the species figured in Plate XXIII, Fig. 2, from a female specimen in the National Collection, and named by him cinerea. It occurs in Colorado.

Genus MACRONOCTUA Grote

(1) Macronoctua onuata Grote, Plate XX, Fig. 18, 9.

There is only one species of this genus, which occurs in the southern Atlantic States.

Genus FISHEA Grote

A small genus. There are only two species known.
(1) Fiahea yosemitse Grote, Plate XX, Fig. 1, \%. (The Yosemite Fishea.)

This species, which i; gencrally referred to the genus Aporophile Guenee, is placed here on the authority of Prof. J. B. Smith. In addition to the figure given in the plate
F18. 94-Fisha yosmmite, \&.t. we have inserted a cut drawn from the type. By the help of these the student will no doubt be able to identlfy the species. The Insect is found in California.

Genua POLIA Hübner

A moderateiy large genus, which inciudes about twenty species in our fauna. Of these we have seiected two for iiiustration.
(1) Polla theodori Grote, Plate XX, Fig. 21, δ. (Theodore's Poila.)

The home of this species is the southwestern portion of the region of the Rocky Mountains.
(2) Polia diverailineata Grote, Piate XX, Fig. 22, \& . (The Varied-banded Poiia.)

Syn. illepida Grote.
Like the preceding species this is an inhabitant of the Rocky Mountains.

Genus DRYOBOTA Lederer

(1) Dryobota iilocata Waiker, Piate XX, Fig. 24, \&. (The Wandering Dryobota.)

Syn. stigmata Grote.
A native of the Atiantic Subregion wandering as far west as Coiorado.

Genus HYPPA Duponchei

The genus is found in both hemispheres. Four species are credited to North America.
(1) Hyppa xyiinoides Guenée, Plate XX, Fig. 23, \%. (The Common Hyppa.)

Syn, contraria Walker: ancocisconensis Morrison.
A very common species in the Atiantic Subregion. it is freeiy attracted to light in the spring of the year.

Genus FERALIA Grote

A smaii genus containing four species in our territory. The insects are generaliy found in groves of pine.
(1) Feralia jocoan Guente, Plate XVii, Fig. 32, 6 . (The Joker.)

Found in suitabie iocalities throughout the northern Atiantic States.

Nectuld

Genua MOMOPHANA Grote

The only species of this genus known is a very rare insect so far as has been ascertained. The cut wa

Fio. 95.-Momophana comstochi Grote. \& give was drawn from a unique apecimen in the Neumorgen Coilection at the Brookiyn institute. The type is at Corneil University. All the specimens which have been taken have occurred in New York and Canada.

Genua VALeria Germar

This genus occurs on both sides of the Atlantic. The only species in our fauna is Valeria opina Grote, the male of which is figured in Plate XX, Fig. 25. It is found in California.

Genua EUPLEXIA Stephens

But one species of this genus, which is also found in Europe, occurs in North America. English entomoiogists cali the moth "The Small Angie Shades." The scientific name is Euplexla lucipara Linnzus, and it is depicted on Plate XX, Fig. 26. It occurs all over the United States and Canada.

Genus TRACHEA Hübner

This genus is also found in both hemispheres. Only one species is found in America, and is confined to the Atlantic Subregion. It is known as Traches delicata Grote, and the male is shown on Piate XX, Fig. 27.

Genus DIPTERYGIA Stephens

The genus Dipterygia is represented in the New World by the species named acabriuscula by Linnaus, which also occurs ir. Europe. There are severai Asiatic species. It is shown on Pite XX, Fig. 28. It ranges from the Atiantic westward to the Rocky Mountains.

Genus ACTINOTIA Hübner

This smail genus is represented in the United States and Canada by the insect to which Guenee applied the specific name

Nectuld

ramosula, and which is delineated on Piate XX, Fig. 99. It is very common in Pennsylvanla.

Genus PYROPHILA Hübner

Thls genus is better represented in Europe and Asia than In America.
(1) Pyrophlia slaballa Morrison, Plate XX, Fig. 32, 8. (The Gray Pyrophila.)

Not nearly as common as the next species, but widely distributed throughout the United States and Canada.
(2) Pyrophila pyramidoides Guenee, Plate XX, Fig. 30, 8 . (The American Copper Underwing.)

Thls insect, which is one of the commonest moths in the Atlantic Subregion, and ranges westward as far as Colorado, conceals itself under the loose bark of trees during the daytime, and comes forth at night. It sometimes fairly swarms at sugar, and becomes a veritable pest to the collector, who desires rarer things. The caterpillar does a good deal of damage to vegetation. I have recently been annoyed by the ravages Inflicted by

Fic. 96.-Larva of Pyrophila pyramidoides. (After Riley.) the larver In the spring of the year upon the foliage of Imported rhododendrons, for which they seem to have a partiality in my garden. They feed freely on a great variety of shrubs and herbaceous plants.
(3) Pyrophila tragopoginis Linnaus, Plate XX, Fig. 31, 8. (The Mouse-colored Pyrophila.)

Syn, reprassus Grote.
A circumpolar species ranging throughout the temperate zone.

Genus HELIOTROPHA Lederer

The genus is represented in the Atlantic States by a species, of which a light and a dark form occur. The typical, or light form, was named reniformis by Grote, and is depicted on Plate XX, Fig. 33, while the dark form, named atra by the same author, is shown on the same plate by Figure 34 .

MICROCOFY RESOLUTION TEST CHART (ANSI and ISO TEST CHART No. 2)

Nocluid

Genus PRODENIA Guenée

A small but widely distributed genus found in all parts of the globe. Hllustrations of two of the three species found in our fauna are given.
(1) Prodenia commelinae Abbot \& Smith, Plate XX, Fig. 36, 9 .

This species, which occurs in the Atlantic Subregion, is common in the southern portlon of its range.
(2) Prodenia ornithogalli Guenée, Plate XX, Fig. 35, む.

Not as common as the preceding species, but ranging over the entire United States.

Genus LAPHYGMA Guenee

A small but widely distributed genus, represented in our fauna by but one species.
(1) Laphygma frugiperda Abbot \& Smith, Plate XX, Fig. 37, ${ }^{*}$. (The Fall Army Worm.)

Syn. macra Guenée; signifera Walker: plagiata Walker: autumnalis Riley.
This destructive insect, which is found all over the Atlantic States, the Misslssippl Valley, and thence southward through

Fic. 97.-Laphygma frugiperda. a full grown larva; b. head, magnified; c segment of body, viewed from above; d. viewed from side, enlarged. (After Riley.)

Fig. 98.-Laphygma frugiperda. a. typical form of moth; b.c. varieties. (After Riley.)

Central and South America, feeds in its larval state upon a great variety of succulent plants, showing, however, a decided prefer-
ence for the cereals. It does considerable damage to garden crops, and attacks cotton. It is said to inflict damage upon winter wheat, blue-grass, and timothy. The moth is variable in its markings. The typical form is represented on Plate XX, and by the upper figure in the annexed cut. It has frequently been mistaken by observers for the true Army Worm (Leucania unipuncta). Because its ravages are generally committed in the fall of the year it was named The Fall Army Worm by the late Prof. C. V. Riley. A very excellent account of the insect is given by this distinguished authority in the "Eighth Annual Report" of the State Entomologist of Missouri, p. 48, et seq., which the student will do well to consult. It is from this arricle that the two accompanying figures have been tiken.

Genus LUSSA Grote

(1) Lussa nigroguttata Grote, Plate XX, Fig. 38, 8.

This little moth is found in Florida. Not much is as yet known in regard to its life-history.

Genus MAGUSA Walker

(1) Magusa dissidens Felder, Plate XXI, Fig. 2, δ.

Syn. divaricata Grote; angustipennis Mœes:hler; divida Mqeschler.
The sole species of the genus found within our territory, ranging from the southern Atlantic States into South America.

Genus PSEUDANARTA Henry Edwards

We figure three of the five species attributed to this genus and reported to occur within the limits of the United States.
(1) Pseudanarta flava Grote, Plate XX, Fig. 39, s. (The Yellow Pseudanarta.)

Syn. crocea Henry Edwards.
The range of this species is from Colorado and Arizona to the southern portlons of British Columbia.
(2) Pseudanarta singula Grote, Plate XX, Fig. 40, f. (The Single Pseudanarta.)

The habitat of this species is the southwestern United States.
(3) Pseudanarta falcata Neumogen, Plate XX, Fig. 41, δ. (The Falcate Pseudanarta.)

The species occurs in Arizona and Mexico.

Nociuid

Genus HOMOHADENA Grote

A considerable genus, one species of which we represent.
(1) Homohadena badistriga Grote, Plate XXI, Fig. I, δ.

This is the only species of the genus, whlch occurs in the northern Atlantic States. Most of them are western and southern. The range of badistriga is from the Atlantic to Colorado.

Genus ONCOCNEMIS Lederer

An extensive genus, in which are included over forty species, most of which are found in the western and southwestern States. We have selected for representation seven of their number.
(1) Oncocnemis dayi Grote, Plate XXI, Fig. 4, 8. (Day's Oncocnemis.)

Not an uncommon species in Colorado and Wyoming.
(2) Oncocnemis tenuifascia Smith, Plate XXI, Fig. 5, 8. (The Narrow-banded Oncocnemis.)

The distribution of this species is the same as that of the last mentioned.
(3) Oncocnemis occata Grote, Plate XXI, Fig. 8, \&. (The Harrow-moth.)

This species occurs in Texas, Colorado, and the States lying westward of these, as far as the Pacific.
(4) Oncocnemis chandleri Grote, Plate XXI, Fig. 7, 9. (Chandler's Oncocnemis.)

Indigenous to the Rocky Mountains.
(5) Oncocnemis atrifasciata Morrlson, Plate XXI, Fig. 3, 9. (The Black-banded Oncocnemis.)

This fine species is found in the northern portions of the Atlantic Subregion. The specimen figured was taken in Maine.
(6) Oncocnemis iricolor Smith, Plate XXI, Fig. 6, 9. (The Iris-colored Oncocnemis.)
So far this species has only been reported from Colorado and Wyoming.
(7) Oncocnemis cibalis Grote, Plate XXI, Fig. 9, 子. (The Gray Oncocnemis.)

The only specimens so far found have been taken in Colorado.

Explanation of Plate XX

(Uniess otherwise indicated, the specimens figured are contained in the collection of W. J. Holland.)
3. Fishia yosemita Grote. ${ }^{-7}$.
2. Hakems bridghauti Grote Robinsion. 0°.
3. Hutena characta Grote, 0^{7} Hudena requita Smith, 0^{7}.
Hudena lignicolor Guenée. ${ }^{7}$
Hadena cluudens Walker. ${ }^{0}$
Hadena transfrons Neumcegen, Q.
8. Hadena mactata Guenée, \&.
9. Hadena basilinea Fabricius. 0^{77}.
10. Hadena fractilinea Grote. σ^{7}
11. Hadena vultuosa Grote. σ^{7}
12. Hadena violacea Grote. \&.
13. Hadonachlorostigma Harvey. O^{n}
14. Hadena modica Guenée. 0^{7}
15. Hadena miseloides Guenée, of
16. Hadena turbulenta Hübner, \&
17. Calophasia strigata Smith.
U. S. N. M.
13. Macronoctua onusta Grote, \&
U. S. N. M.
19. Hadena vinela Snith. 0^{7}.
20. Hadena occideus Grote. Ot. U. S. N. M
21. Polia theodori Grote. 0^{π}.
23. Polia ditersilineata Grote. 0^{7}.
33. Hyppa xylinoides Guenee, $¢$.
24. Iryobuta illocata Walker, §.
25. l'aleria opina Grote. ©. U. S. N. 1
26. Eliplexia lucipara Linnirus, \&
27. 7 rachca delicata Grote. σ^{7}.
28. Dipterygia scabriuscula Linnaus. \& .
29. Actinotia ramosula Guenéc. o.
30. Pyrophila pyramidoides Guenée. σ^{2}.
33. I'yrophi'a tragopoginis Linnæus. σ^{2}.
32. Pyrophila glabella, Morrison. 0^{7}.
33. Helotropha reniformis Grote, \&.
34. Helotropha renifornis var. atra. Grote. F
35. Prodenia ortithogalli Guenée. 7.
36. In denia commelinue Abbot \&e Smith. \&
3i. Laphygma frugiperda Abbot \& Smith. ${ }^{7}$.
38. Litssa nigroguttata Grote. 0^{7}. U. S. N. M.
39. Psendanarta flava Grote. O^{7} -
40. Pseudanarta singula Grote, 0^{7}
41. Pseudanarta falcata Neumagen. σ^{7}.

Genus LEPIPOLYS Guenée

(1) Lepipolya perscripta Guenée, Plate XXI, Fig. 11, 8. Only one specles occurs in our territory, ranging from the Atlantlc to the Pacific.

Genue ADITA Crote

(1) Adita chionanthi Abbot \& Smith, Plate $X X 1$, Fig. 10. A rather rare moth, which is found in the Atlantic Subregion, but is much commoner in Colorado and Wyoming. It is the only representatlive of its genus.

Genus COPIPANOLIS Grote

A small genus said to contain four species, which are not as distinctly separable as might be desired.
(1) Copipanolis cubilis Grote, Plate XXI, Fig. 12, $\%$.

The habitat of this insect is the northern United States. It appears upon the wing in Pennsylvania early in April.

Genus EUTOLYPE Grote

(1) Eut Jlype bombyciformis Smith, Plate XXI, Fig. 13, 1.

The genus represented by this species contains four others within our limits. They all occur in the Atlantic Subregion, except the species named damalis by Grote, which is Californian.

Genus PSAPHIDIA Walker

Of the four species of this genus occuring within our territory we give illustrations of two.
(1) Psaphidia grotei Morrison, Plate XXI, Fig. 14, 8.

The home of this species is the northern Atlantic States. It occurs upon the wing very early in the spring of the year.
(2) Psaphidia resumens Walker, Plate XXI, Fig. 15, i.

Syn. viridescens Walker; muralis Grote.
The range of this insect is the same as that of the preceding species.

Genus CERAPODA Smith

Only one species of this genus is known. It was named Cerapoda stylata by Prof. J. B. Smith, and is shown on Plate XXIII, Fig. I. Its habitat is Colorado.

Nectulde

Genus FOTA Grote

There are two species of this genus, both of which we figure. They both occur in Arizona and Mexico.
(1) Fota armata Grote, Plate XXI, Fig. 16, 3.
(2) Fota minorata Grote, Plate XXI, Fig. 17. \&

We do not recall any description of the habits of these two species.

Genus PODAGRA Smith

Fis. 99.-Pida. gra crussipers. is given in Fig. 99.

This genus has been quite recently erected by Smith for the reception of the species, a representation of the type of which, based upon the specimen in the United States National Museum,

Genus RHYNCHAGROTIS Smith
Over twenty species have been attributed to this genus. Of these we figure six.
(1) Rhynchagrotis gilv:pennis Grote, Plate XXI, Fig. 18, $\%$. (The Catocaline Dart-moth.)

This pretty species is found in the northern parts of the United States, in Canada, and British America. It is scarce in the eastern parts of its range south of Maine and the Adirondack Woods.
(2) Rhynchagrotis rufipectus Morrison, Plate XXI, Fig. 22, 8. (The Red-breasted Dart-moth.)

The general distribution of this species is like the former, but it extends much farther southward.
(3) Rhynchagrotis minimalis Grote, Plate XXI, Fig. 21, 8. (The Lesser Red Dart-moth.)

This species is found In Maine, southern Canada, and also in Coiorado, Wyoming, and Montana.
(4) Rhynchagrotis anchocelioides Guenée, Plate XXI, Fig. 19, 8.

Syn. cupida Grote; telata Walker.
A common species in the northern Atlantic Subregion, extending its habitat to the region of the Rocky Mountains.
(5) Rhynchagrotis placida Grote, Piate XXI, Fig. 23, 8. (The Placid Dart-moth.)

A very common species in the as far wistward as the Rocky Mounnthern United States, found (6) E ,ynchagrotis atternat Gins. (The Gre: er Red Dart-moth.)

This upecies closely resembles In general appearance the species named minimalis, but may be distinguished by its larger size, and the darker color of the hind wings.

Genu: ADELPhagrotis Smith

Of the five species belonging to the genus we select the commonest for illustration.
(1) Adelphagrotls prasina Fabricius, Plate XXI, Fig. 24, 8. (The Green-winged Dart-moth.)

This insect occurr ail over Canada, the northern Atiantic States, the Rocky Mountains, and British Columbia. It occurs also in Europe.

Genus PLATAGROTIS Smith

The species of this genus are confined to the more temperate regions of our territory.
(1) Platagrotis pressa Grote, Plate XXI, Fig. 25, 8. (The Dappled Dart.)

Occurs in the northern portions of the Atlantic Subregion.

Genus EUERETAGROTIS Smith

Three species of the genus occur, all of them within the Atlantic Subregion.
(1) Eueretagrotis sigmoides Guenée, Plate XXI, Fig. 26, 8 . (The Sigmoid Dart.)

From the following species distinguished readily by its larger size, and the darkci coloration of the fore wings.
(2) Eueretagrotis perattenta Grote, Plate XXI, Fig. 27, $\%$. (The Two-spot Dart.)
common species in the Atlantic States.

[^7]
Nectulde

Genue ABAGROTIS Smith

Only one species is attributed to this genus. It is represented by the accompanying cut, drawn from the type in the United States National Museum. Abagrotis erratica is thus fir only recorded from California. It is rate in collections. The color of the wings is ashen gray in some specimens; in others pale reddish.

Genus SEMIOPHORA Stephens

(1) Semiophora elimata Guenće, Piate XXI, Fig. 29, $\%$. Form janualis Grote, Plate XXI, Fig. 30, \&. (The Variable Dart.)

Syn. dilucidula Morriton; badicoliss Grote.
Not at all an uncommon species, ranging from Canada to Georgia.
(2) Semiophora opacifrons Grote, Plate XXI, Fig. 28, 9. (The Black-fronted Dart.)

This species is found in the more northern portions of the Atlantic Subregion ranging into Quebec.
(3) Semiophora tenebrifera Walker, Plate XXI, Fig. 33, 8 . (The Reddish Speckled Dart.)

Syn. catharina Grote; manifestolabes Morrison.
A well-marked species, the fore wings of which have a prevalently reddish cast. It ranges from New Jersey northward into Canada.

Genus PACHNOBIA Guenée

The species are mainly boreal, being found in the northern portions of our territory, principally in Canada, and on the higher mountain ranges.
(1) Pachnobia littoralis Packard, Plate XXI, Fig. 32, 8. (The Reddish Pachriobia.)

Syn. pectinata Grote: ferruginoides Smith.
The species occurs from the mountains of Colorado northward to Alberta.
(2) Pachnobia salicarum Walker, Plate XXI, Fig. 31, 8. (The Willow Pachnobia.)

Syn. orilliana Grote: claviformir Morrison.

Nemulde

This species, readily distinguished from ail others by the weil deflned claviform spot, ranges from Massachusetts to Albefta and northward.

Genua METALEPSIs Grote

Two species of this genus are credited to our fauna. Of the type of one of these, preserved in the British Museum, I am able to give an excelient figure taken from Sir George F. Hampson's

Pio. 10:-Metalepsis cornuta, \&. f.
fine :ivork upon the ' oths of the world, which is being published by the Trustees c he above named Institutlon. The insect occurs in Californi:

Genus SE TAGROTIS Smlth

Eight species, ail of them found : sie northern parts of our territory or at considerable elevations hong the mountains of the West, are atuributed to thls genus. I am able to give a figure of one of these, which Dr. Dyar kindly had drawn from the type in the United States National Museum. It occurs among the mountains of Colorado and Wyoming. The ground color of the wings is pale luteous.

Fio. 102,-Selugrotis terrifica, 8 . $\frac{1}{2}$.

Genus AGROTIS Ochsenhelmer

(1) Agrotis badinodis Grote, Plate XXI, Fig. 37, 8. (The Pale-banded Dart.)

Not an uncominon species in the northern Atlantic States and Canada.

Noctuide

(2) Agrotis ypsilon Rottemburg. (The Ypsilon Dart.) Syn. suffusa Denis \& Schiffermüller; telifera Harris; idonca Cramer. This is an exceedingly common specles, which occurs everywhere in Canada and the United States. It is also found in Europe. lts larva is one of the species, which under the name of "cutworms," are known to inflict extensive injurles upon growing plants. They burrow into the loose soil during the day, and come forth at night and do their mischievous work. They are a plague to the market-gardener in particular.
(3) Agrotis geniculata Grote \& Robinson, Plate XXI, Fig. 36, $\%$. (The Knee-joint Dart.)

Not a scarce species in the northern Atlantic Subregion.

Genus PERIDROMA Hübner

This is a moderately large genus, represented in the United States and Canada by.about a dozen species. Half of these we illustrate.
(1) Peridroma occulta Linnaus, Plate XXI, Fig. 42, $\%$. (The Great Gray Dart.)

The habitat of this insect is the northern portion of our territory.
(2) Peridroma astricta Morrison, Plate XXI, Fig. 41, $\%$. (The Great Brown Dart.)

The species is found in the northern parts of the Atlantic Subregion, and also in Colorado.
(3) Peridroma nigra Smith, Plate XXI, Fig. 43, \&. (The Great Black Dart.)

Found in Colorado and Wyoming.
(4) Peridroma saucia Habner, Plate XXI, Fig. 40, 8 ; Egg, Text-figure No. 2. (The Common Cut-worm.)

Syn. inermis Harris; ortonii Packard.
Almost universally distributed throughout the United States and southern Canada. It also occurs in Europe.

Explanation of Plate XXI

(Exeept when otherwise indicitt the specimens are contained in the coflection of W. J. Holland.)

1. Homohadera badistriga Grote. 22. Rhynchagrotis rufipectu.
σ^{7}. U. S. N. M.
2. Magusa dissidens Felter. ơ".
3. Oncocnemis atrijasciat.z

Mornson, 9.
Oncocnemis dayi (irote, 0^{*}.
Oncocnemis tennijascia Smith. 0^{2}.
6. Oncocnemis iricolar Smith. ?

Oncocnemis chaulliri Grote. of
8. Oncucrentis aciata Grote.

Oncuchemis, rbalis Grote, 0^{7}
. Adita dhiomathi Abwot \& Smith. : © S M.
Lepipolys perscripta Guenée.? ? US.N. I.
('apipanolis athilis Grote: i.
U. S. N. M.
13. Eutolypi bomblyijormis Smith. 7.
4. I'saphidiat gridici Morrison. F. U.S. N. M.
15. Psaphidit resmuers. Walker. ©.
16. Fold urimata Grote. ${ }^{\text {ch }}$
17. Fota mintorata Grute. \vec{c}.
18. Rhynchagrotis gilvipenmis (irate. $\%$
19. Rhynchagrotis anchocelioides Guenée, $\%$.
20. Rhywhagrotis alternatia Grote. ?.
22. Rhynchagrotis placida Grote. 0^{-x}. red variety.

Morrison, ${ }^{\circ}$.

2,3. Rhychagrotis placida (irote. c^{\prime}.
24. Adelphagrotis prasina Fabricius. \%.
25. Platagrotis pressa Grute, or'.
36. Eueretagrotis sigmoides Gurni. σ^{7}.
27. Eneretagrotis perattenta Grrat P.
28. Somiophora "pacifrons Grots. ξ.
20. L'cunicphora elimata Guenéc, do.

30 Scmiaphora slinata var. jannahis Grote. \ddot{C}
31. I'achnotia salicarum Walkar. 0^{7}.
Pachnobia littiralis Packaral. 0^{7}.
i3. Semiophora teutbrifica Walker. 0^{7}.
Dortua nornaniana Grote. c^{*}.
Noctua bicarnea Gucnée. 5
Agrotis geniculats Grote Kobinson, 9.
. Agrotis badinodis Grote. σ^{7} Pcridroma simplaria Morrisom \&
30. Peridroma incicitis Guenél. त्र.
40. Peridro masaticia Hübner. ๆf
41. Peridroma astricta Morrison. $\overbrace{}^{\wedge}$
42. Peridrona actila Linnaus. ©
43. Peridrona nigra Smith, 0^{7}.

Tha Muth Bown

(5) Peridroma incivie Guené, Plate XXI, Fig. 39, 8 . Noetuide Uncivil Dart.)

Syn. alabama Grote.
Ranges from the Atlantic to the Pacific.
(6) Peridroma simplaria Morrison, Plate XXI, Fig. 38, \%. (The Pale-winged Dart.)

Not an uncommon species in Texas and Arizona.

Genus NOCTUA Linneus

This is a very extensive genus, to which over forty specles found in our territory are referred in recent lists.
(1) Noctua normanniana Grote, Plate XXI, Fig. 34, δ. (Norman's Dart.)

Syn. obtusa Speyer.
Found everywhere in the Atlantic Subregion.
(2) Noctua bicarnea Guenée, Plate XXI, Fig. 35, \%. (The Pink-spotted Dart.)

Syn. plagiata Walker.
Thls Is likewise a common species ranging from the Atlantic as far west as Colorado.
(3) Noctua c-nigrum Linnæus, Plate XXII, Fig. 1, \%. (The Black-jetter Dart.)

Universally distributed through the Appalachian Subregion and also occurring in Europe.
(4) Noctua jucunda Walker, Plate XXII, Fig. 5, \%. (The Smaller Pinkish Dart.)

Syn. parconfua Grote.
Very commonly found in the northern United States.
(5) Noctua oblata Morrison, Plate XXII, Fig. 3, \%. (The Rosy Dart.)

Syn. hilliana Harvey.
The habitat of this species is the North. It is common i : Alberta.
(6) Noctua fennica Tauscher, Plate XXII, Fig. 4, $\mathbf{8}$. (The Finland Dart.)

Syn. initractata Walker.
A circumpolar species found throughout northern Europe, Asia, and America.

Noetuide

(7) Noctue plecta Llnnieus, Plate XXII, Fig. 6, 8. (The Flame-shouldered Dart.)

Syn. vicaria Walker.
The distribution of this small and well-marked specles is somewhat llke that of the preceding, but it extends farther to the south.
(8) Noctua collaris Grote \& Roblnson, Plate XXII, Fig. 7, 8 . (The Collared Dart.)

Occurs in the northern parts of the Atlantic Subreglon.
(9) Noctua juncta Grote, Plate XXIl, Fig, 12, \& . (The Scribbled Dart.)

Syn. patefacta Smith.
The species ranges from Nova Scotia to Alberta.
(10) Noctua haruspica Grote, Plate XXII, Fig. 9, \%. (The Soothsayer Dart.)

Syn. grandis Speyer.
Wldely distributed through the northern portions of our territory.
(11) Noctua clandestina Harris, Plate XXII, Fig. 14, $\%$. (The Clandestine Dart.)

Syn. unicolor Walker; nigriceps Walker.
A common specles ranging from the Atlantic to the Rocky Mountalns, and readily separated from the preceding species by the narrower and darker fore wings.
(12) Noctue havilee Grote, Plate XXII, Fig. 18, 3. (The Havilah Dart.)

A smaller species than either of the preceding. It occurs from Colorado and Wyoming westward to California.
(13) Noctua atricincta Smith, Plate XXll, Fig. it, δ. (The Black-girdled Dart.)

Thus far this species has only been reported as occurring in Alberta.
(14) Noctua substrigata Smith, Plate XXII, Fig. 10, 8. (The Yellow-streaked Dart.)

This species, like the preceding, is found in Alberta. Both probably have a wider range.
(15) Noctua calgary Smith, Plate XXIi, Fig. 13, 8 . (The Calgary Dart.)

The remarks made as to the two preceding species apply to this also.

Noctulde

(16) Noctua lubricans Guenee, Plate XXII, Fig. 8, 8. (The Slippery Dart.)

Syn. associans Walker; illapsa Walker; beata Grote.
A very common species, universally distributed throughout the United States.

Genus PRONOCTUA Smlth

Only one species of this genus, named typica by Prof. J. B. Smith, is known. It is found in Colorado and Wyoming. Through the kindness of Dr. Dyar a drawing of the type was made for me at the United States National Museum and it is reproduced in the annexed cat (Fig. 104).

Fig. 104.-Pronoctua typica.

Genus CHORIZAGROTIS Smith

Elght species are attributed to this genus by Dyar in his recent Catalogue of the moths of the United States. We figure three of them.
(1) Chorizagrotis introferens Grote, Plate XXII, Fig. 15, $\%$. (The Interfering Dart.)

This insect is not scarce in Texas and Colorado, and thence ranges westward to California.
(2) Chorizagrotis inconcinna Harvey, Plate XXII, Fig. 22, 9. (The Inelegant Dart.)

An obscurely colored species occuring in the southwestern Sttes.
(3) Chorizagrotis balanitis Grote, Plate XXII, Fig. 17, 8. (The Acorn Dart.)

The range of this insect is from Colorado to British Columbia.

Genus RHIZAGROTIS Smith

About a dozen species have been assigned to this genus by recent writers. We figure one of them, to which Prof. J. B. Smith has applied the name proclivis. It is represented by a female specimen on Plate XXII, Fig. 16. The insect occurs in Arizona and northern Mexico.

Noetuide

Cenus FILTIA Walker

This is considersbie genus, represented by species in the northern portions of both hemispheres.
(1) Feltia aubgothica Haworth. (The Subgothic Dart.)

Of this common species, which is found in the northern portions of the United States and siso in Canada, and which iikewise occurs in Europe, we give a figure on Piate XXii. We aiso have reproduced a cut of the species taken from Prof. C. V. Riley's First Missouri Report. The iarva is one of the commonest cut-worms, found more abundantiy, however, in the West than in the East. The species has a wide range over the northern portions of the United States and through southern Canada.
(2) Feltia herilia Grote, Piate XXii, Fig. 20, \%. (The Master's Dart.)

The insect ranges from the Atiantic to the Rocky Mountains.
(3) Feltia gladiaria Morrison, Piate XXII, Fig. 19, 8. (The Swordsman Dart.)

Syn, morrisoniana Riley.
The distribution of this species is the same as that of the previous.
(4) Feltia venerabilis Waiker, Plate XXii, Fig. 26, δ. (The Venerabie Dart.)

Wideiy distributed throughout the United States.
(5) Feltia vancouverensis Grote, Plate XXii, Fig. 42, 8. (The Vancouver Dart.)

Syn. hortulana Morrison; semiclarata Grote; agilis Grote.
I have given the above name to the specimen figured on the Plate as cited upon the authority of Prof. J. B. Smith, who has kindiy examined the figure. The specimen came from Labrador.
(6) Feltia volubilis Harvey, Piate XXii, Fig. 23, \%. (The Voiubie Dart.)

Syn. stigmosa Morrison.

Found throughout our entire territory.
(7) Feltia annexa Treitschke, Plate XXII, Fig. 28, 8. (The Added Dart.)

Syn. docurnows Walker.
Found throughout the southern Atlantic and Gulf States and ranging Into South America.
(8) Peltia malefida Guené, Plate XXil, Fig. 32, \%. (The Ruscal Dart.)

This species has the same range as that of the last mentioned form

Genus POROSAGROT18 Smith

Eleven species are assigned by Dr. Dyar in hls Catalogue to this geni s. As representatives of these we have chosen five for Illust ition.
(1) Poroasgrotis vetusta Walker, Plate XXII, Fig. 25, \& (The Old Man Dart.)

Syn. muranula Grote \& Robinson
This pale-colored species extends In Its range from the Atlantic to Colorado.
(a) Porosagrotia fusca Boisduval, Plate XXII, FIg. 31, 8. (The Fuscous Dart.)

Syn. stptentrionalis Maschier; patula Walker
The specimen figured was taken at Naln, Labrador. The Insect is sald also to occur In the Rocky Mountains.
(3) Poromagrotis tripare Walker, Plate XXII, Fig. 24, 8 ; Fig. 37, 9 . (The Tripart Dart.)

Syn, worthingtoni Grote.
The speclmens figured came from Colorado.
(4) Porosagrotis rileyana Morrison, Plate XXII, Fig. 33. 9. (Riley's Dart.)

This specles is spread from the Atlantic to the Rocky Mountains.
(5) Porosagrotis deedalus Smith, Plate XXII, Fig. 29, 8. (The Daedalus Dart.)

The insect is peculiar to the region of the Rocky Mountains.
6 miore

Genus EUXOA Hübner

This great genus, including nearly two hundred specles, which are found in the region, with which this book deals, has

Nertuide

In recint years been ranged under the name Carneedes after tha tenching of Grote, but as Carneedes, which was erected by Bates, includes a different concept, this name was abandoned by Dr. Dyar, and the name Paragrotis Pratt was substituted for it. This name, however, must yield to the older name proposed by Hobner, and which we have adopted at the suggestion of Prof. J. B. Smith
(1) Euxoa quadridentata Grote \& Robinson, Plate XXII, Fig. 30, 8. (The Four-toothed Dart.)

This insect is distributed from Colorado to Oregon.
Short-winged Dart.)
27.8. (The

The range of this species is the same as that of the preceding.
(3) Euxoa ollvalin Grote, Plate XXII, Fig. 34, 8. (The

The species occurs in Colorado and Utah.
(4) Euxoa flavidena Smith, Plate XXII,

Yellow-toothed Dart.)
This moth is sprea
Mountains from Colorado tough the region of the Rocky figured came from the Sierrarthern Mexico. The specimen been compared with the erra Madre of Chihuahua. It has Washington.
(5) Euxoa perpollta Morrison, Plate XXII, Fig. 36, 8. (The Polished Dart.)

It ranges from the States of the northern portion of the Atlantic Subregion to the mountains of Colorado.
(6) Euxoa velleripennin Grote, Piate XXII, Fig. 35, 8. (The Fleece-winged Dart.)

It has the same range as the preceding species. It may at once be distinguished from it by its slighter build, and by the whiter hind wings.
(7) Euxoa deterea Waiker, Plate XXII, Fig. 39, 8. (The Rubbed Dart.)

Syn. pityochrous Grote: personato Morricon.
A pale and Inconspicuously coiored
same distribution as the two pryined insect, which has the
(8) Euxon Reaper Dart.)
ter the ed by

Explanation of Plate XXII
(Exeept when otherwine indicated the apecimens figured are enn. rained in the collection of W J. Holland.)

- Vorimis cenigra'll Linneus. of

ग. Vixitua phyllophira Grote, 9.
3. Verfous ahluta Morrinen, d^{7}.
4. Vactus fenmica Tauscher. on.
3. Disima juiunda Walker, 9.
b. Niniza plicta Linneres, d°.
7. Noctua colluris Grote Robinsor σ^{7}.
8 . .irilus lutricums Guenée. ©s.

- Vieitua harmopica Grote, V.

10. Noctuas stahsiviguth Smith. 0^{*}.
11. Aortuo ufricinctu Smith. of
12. Nexthia juncta Grote, of
13. Vieilua culgary Smith. σ^{7}.
14. Divina clandestina Harris. ρ.
is Churisagrotis introferen. Grote, 3.

16 Khizagrotis proclitior Sunith. of.
17. Chorisugrovis balunitir Grote, σ.
18 Noctua havile Grute, 0^{2}.
14. Fellius gludiaria Morrimon, 9.
10. Fellia harilis Grote. σ^{7}.
21. Feltia subgothica Haworth. σ^{7}.
32. Chopiougrotis incominans Harvey, φ.
3. Foltia tolubilis IIarvey, :
24. Porusagritis trifurs Grete. O°

9s. Porbsagrut is ictustu Walker. c.
96. Follia ernerabilis Walker. σ^{7}.
27. Enxoo bratipunnis Smith, $\%$.
28. Fellis anmexa Treitishke. 9 .
29. Porosugrotix dacdalus Im mith. 0°
30. Euxine quairidemtata Grote \& Rolinmon. of
31. Porosagrotis fus.ca Brieduval. σ^{7}.
33. Fieltia malefidu Guener. ρ.
3.3. Pirosagrotis wileyama Morrison. $\$$.
34. Euxoa oliealis Grote. or
35. Euxod vellcripermis Gmte, ot.
36. Euxoa porpolita Morrizon, of'.
37. Porosagrotis tripurs Walker. σ^{7}.
38. Eurea flavidens Smith. σ^{7}.
39. Enxoa deterse Walker. σ^{7}.
40. Euxoo messoria Harris, ơ'.
41. Hadena semilunata Grote. ©

Tua Morm Boon

Syn. spissa Guente; cochrani Riley; repentis Grote \& Robinson; displicioms Walker, ete.

Thls wretched little creature, the larva of whlch is one of our most destructive cut-worms, was described seven times by Walker under dlfierent names. The more inconspicuous, or the smaller an insect, the more names it bears. The littlest bugs have the blggest names. It is thus also, sometimes, with men.
(9) Euxoa Iutulenta Smith, Plate XXIII, Fig. 13, \%. (The Muddy Dart.)

An Inconspicuous species, which ranges from Alberta in the north to Colorado in the south, and thence westward to Californla.
(10) Euxoa dissona Mœeschler, Plate XXIII, Fig. 5, \&. (The Dissonant Dart.)

This moth is found in Labrador.
(11) Euxoa titubatls Smith, Plate XXIIl, Fig. 6, s. (The Tippling Dart.)

The distribution of this species is coincident with that of the preceding.
(12) Euxoa insulsa Walker, Plate XXIII, Fig. 3, \&. (The Silly Dart.:

Syn. insignata Walker: expulsa Walker; declarata Walker; decolor Morrison; campestris Grote; verticalis Grote.

This is another poor creature, which unconsciously has suffered much at the hands of the species-makers. It is found all over the United States.
(13) Euxoa albipennls Grote, Plate XXIIl, Fig. 7, ©. (The White-winged Dart.)

Syn. nigripennis Grote.
A common species in the Atlantic Subregion ranging across the valley of the Mississippi into Colorado.
(14) Euxoa tessellata Harris, Plate XXIII, Fig. 4, δ. (The Tessellate Dart.)

Syn. maisi, Fitch; atropurpurea Grote.
Unlversally distributed throughout our region.
(15) Euxoa basalls Grote, Plate XXIII, Fig. 8, $\%$. (The Basal Dart.)

This species is found in Colorado and Wyoming, and probably has a still wider range.
(16) Euxoa ochrogaster Guente, Plate XXIII, Fig. 10, 8. (The Yellow-bellied Dart.)

Syn. illata Walker; cinereomaculata Morrison; gularis Grote; turris Grote.

This moth Is found In the northern Atlantic States and thence westward to the foothills of the Rocky Mountains.
(17) Euxoa furtivus Smith, Plate XXIII, Flg. 11, 8. (The Furtive Dart.)

The habitat of this species is the region of the Rocky Mountains.
(18) Euxoa obeliscoides Guente, Plate XXIII, Fig. 12, 8. (The Obelisk Dart.)

Syn. sexatilis Crote.
Distributed over the northern Atlantic States, and across the valley of the Mississippi to Wyoming and Colorado.
(19) Euxoa redimicula Morrison, Plate XXIII, Flg. 9, 8. (The Fillet Dart.)

The insect has exactly the same range as the last mentioned species.

Genus EUCOPTOCNEMIS Grote

There is but one spesies of the genus recognized In our fauna. To thls Guenee gave the name fimbriaris. It was afterward named obvia by Walker. Its habitat Is New England. It is a scarce specles In collections. The figure we give was taken from a specimen in the United States National Museum.

Genus RICHIA Grote

A small genus of obscurely colored moths. They are found in the southwestern States.
(1) Richia aratrix Harvey, Plate XXIII, Fig. 14, \&. (The Plough-girl.)

The species is found in Colorado and Texas.
(2) Richia parentalls Grote, Plate XXIII, Fig. 15, 8. (The Parental Dart.)

This is a New Mexican specles. It also occurs in Texas, and in the mountains of northern Mexico.

Genus ANYTUS Grote

Only a few species have been recognized as belonging to this genus. Of the five which have been named, we figure two.
(1) Anytus privatus Walker, Plate XXIII, Fig. 16, \%. (The Sculptured Anytus.)
r. n . sculptus Grote.

A native of the Atlantic Subregion.
(2) Anytus obscurus Smith, Plate XXIII, Fig. 17, 8. (The Obscure Anytus.)

Thus far this insect has only been reported from Alberta.

Genus UFEUS Grote

A small genus of rather large, plainly colored moths, having a robust habitus, which permits them to be easily distinguished from others.
(1) Ufeus plicatus Grote, Plate XXIII, Fig. 19. Pleated Ufeus.)

Syn. barometricus Goossens.
Distributed over the norther Atlantic States, and westward as far as California. The insect is not, however, very common.
(2) Ufeus satyricus Grote, Plãe XXIII, Fig. 20, 8. (The Satyr.)

This moth ranges over the northern Atlantic States, but, like the other species of the genus, does not appear to be anywhere very common.

Genus AGROTIPHILA Grote

There are seven species attributed to thls genus by recent authors. We can only figure one of them.
(1) Agrotiphila zoognita Smlth, Piate XXIII, Fig. 18, $\mathbf{0}$. The species oce. s in Alberta and westward to British Columbia.

Genus MAMESTRA Ochsenheimer

A very large genus, represented in both hemispheres by a large number of species. The caterpillars of some species are

Nocluidm
quite destructive to cultivated plants. Of the one hundred and ten or more species occurring in our territory we have selected thirty for purpose of $!!!11 s t r a t i o n . ~ T h i s ~ n u m b e r ~ o f ~ s p e c i e s, ~$ If correctly ascertained by the student, ought to enable him to form some idea of the general character of the complex of insects, with which we are now dealing.
(1) Mamestra imbrifera Guenée, Plate XXIII, Fig. 32, q. (The Cloudy Mamestra.)

A native of the northern Atlantic States. It is not rare in New England.
(2) Mamestra purpurissata Grote, Plate XXIII, Fig. 26, 8. (The Empurpled Mamestra.)

This is a very common species in Maine and Quebec. It occurs less commonly south of these localities.
(3) Manestra juncimacula Smith, Plate XIX, Fig. 41, 8. (The Fused-spot Mamestra.)

The habitat of this species is Colorado.
(4) Mamestra meditata Grote, Plate XXIII, Fig. 21, q. (The Studied Mamestra.)

Quite a common species in the Appalachian Subregion.
(5) Mamestra lustralis Grote, Plate XXIII, Fig. 22, q. (The Lustral Mamestra.)

Syn. suffusa Smith.
The range of this species is through the Atlantic States south and west to Arizona and northern Mexico.
(6) Mamestra detracta Walker, Plate XXIII, FIg. 24, 8. (The Disparaged Mamestra.)

Syn. claviplena Grote.
The range of this insect s the same as that of the last mentioned species.
(7) Mamestra farnhami Grote, Plate XXIII, Fig. 23, 9. (Farnham's Mamestra.)

A native of the eastern portions of the region of the Rocky Mountrins.
(8) Mamestra liquida Grote, Plate XXIII, Fig. 36, \%. (The Liquid Mamestra.)

The range of this insect is in the northwestern part of our territory as far as British Columbia.
(9) Mamestre (Dimmock's Mamestra.) Walker, Plate XXIII, Fig. 25, 8. Syn. dimmocki Grote; desperata Smith.
Distributed from Maine and Quebec across the northern parts of the United States and the southern portions of the British possessions to the Pacific.
(10) Mamestra nevadæ Grote, Plate XXIII, Fig. 33, 9. (The Nevadan Mamestra.)

Found in Nevada and California.
(11) Mamestra subjuncta Grote \& Robinson, Plate XXIII, Fig. 27, δ. (The Harnessed Mamestra.)

Not at all an uncommon species in the Appalachian Subregion, ranging across the Mississippi Valley to the foothilis of the Rocky Mountains.
(12) Mamestra grandis Boisduval, Plate XXIII, Fig. 41, f. (The Grand Mamestra.)

Syn. libera Walker.
(13) Mamestra trifolii Rottemburg, Plate XXIII, Fig. 29, 0 . (The Clover Mamestra.)

Syn. chenopodii Fabricius; albifusa Walker; glaucovaria Walker; major Speyer.

Found throughout Europe, northern Asia, and the United States and Canada. The caterpillar does at times considerable damage to crops.
(14) Mamestra rosea Harvey, Plate XXIII, Fig. 30, \%. (The Rosy Mamestra.)

Distributed generally through the northern portions of the United States and the southern portions of Canada and British Columbia.
(15) Mamestra congerraana Morrison, Plate XXIII, Fig. 31, \%. (The Cousin German.)

This insect ranges from the Atlantic to the eastern portions of tie region of the Rocky Mountains.
(16) Mamestra picta Harris, Plate I, Fig. 11, larva; Plate XXIII, Fig. 34, 5 . (The Painted Mamestra.)

Syn. exusta Guenée; contraria Walker.
This is one of the corninonest species of the genus. The caterpillar is : conspicuous object, and in the fall of the year is

Nociulde

generally very noticeable, feeding upon various herbaceous plants. It is a promiscuous feeder, and to enumerate all the vegetables whlch it

Fig, 107.-Mamestra picta, a. larva; b, moth. (After Riley.) attacks would almost be to provide a list of the plants of the United States. They manifest, however, a decided preference, when accessible, for the cruciferous plants, and do much damage in fields of cabbages and beets. There are two broods In the Middle States. The species does not occur on the Pacific coast, so far as is known to the writer. Its range is from the Atlantic to the eastern foothills of the Rocky Mountains.
(17) Mamestra lubens Grote, Plate XXIII, Fig. 28, 8 . (The Darling Mamestra.)

A denizen of the northern portions of the United States.
(18) Mamestra latex Guenée, Plate XXIII, Fig. 40, \%. (The Fluid Mamestra.)

Syn. demissa Walker.
This insect has the same range as the preceding species.
(19) Mamestra adjuncta Boisduval, Plate XXIII, Fig. 38, 9. (The Hitc.ed Mamestra.)

This species occurs from southern Canada to the Carolinas and westward to Missouri and Minnesota.
(20) Mamestra rugosa Morrison, Plate XXIV, Fig. 3, 8. (The Rugose Mamestra.)

The habitat of this species is Maine and Nova Scotia.
(21) Mamestra lilacina Har:'ay, Plate XXIII, Fig. 99, $\%$. (The Lilacine Mamestra.)

Syn. illabefucta Morrison.
t,

Explanation of Plate XXifi

(Unless otherwize indicated, the sperimens figured are contained in the collection of W. J. Holiand.)

1. Cerapoda styluta Smith. σ^{7}, \mathbf{U}. S. N. M.
2. Epidends cincreu Smith, \wp. U. S. N M.
3. Eincos insulsa Walker. \&.
4. Litured tessellatu Harris, of
5. Enime dissona Maschler, $\%$.

Finces tidubutis Smith, of
limiod albipennis Grote, of.
Iincua basalis Grote, of
Limios redimiculu Morrsion, or
Enuad whergaster Guenee, of
Eincidd furtizus Smith, of
Enriva obeliscoites Guené, ¢
Ennua lutulenta Smith. ${ }^{7}$
Kichis uratrix Harvey. ${ }^{\circ}$
Kichia parchatis Grote, 0^{-}.
6. Auytus prizutus Walker, ©
17. Luytus obsearns Smith. 0^{-}
88. Agrotiphila ineoguta Smith. 0^{7}
19. Ufens plicaths Grote: d^{7}.
20. ('fens satyricus Grous: $\overrightarrow{0}^{\text {an }}$
22. Mamestra meditata Grote. ©
22. Mumestra lustralis Grote, of.
23. Mamestra furnhami Gritce, \&.
24. Mamestru detructa Walkrr, $0^{\prime \prime}$.
25. Mamestru radar Walker, o'
26. Mamestros purpurissata Girnte, σ^{7}
27. Mamestro subjunitu Grote ac Robinson. 0 .
28. Mumesira lubens Grite, or'
29. Dumestra trifinii Rottomburg. σ^{7}.
30. Mamestra rosca llarsey, \%
32. Mane' congermantu Marrison. $\%$.
32. Mumeitra imbrijeras Guence, ?

34. Manestra pictu Harrix, of
35. Manestra rinigera Stuphens. ?
36. Manticstru bipuida Groter. 8
37. Manestra divecra Morrison. 3
28. Alamestro dimu'tu Boisolaval, \&.
19. Mamestra lilucira Harves. σ^{7}
40. Mahestra hitex Gurnéc. §
41. Mamestra grandis Boisdluval, 0^{7}

Thy Mutn Book

,

This moth ranges from the Atlantic coast to Coiorado and New Mexico.
(2a) Mameatra renlgera Stephens, Plate XXIII, Fig. 35, 9. (The KIdney-spotted Mamestra.)

Syn. herbimacula Guends: infocta Walker.
This prettily marked little moth is found from New England and Ontario to Colorado. It occurs also In Europe.
(ay) Mameatra ollvacea Morrison, Plate XXIII, Fig. 37, d. (The Olivaceous Mamestra.)

For the very extensive synonymy of thls insect the reader is referred to Dr. Dyar's "Catalogue of the Moths of the United States." It Is too lengthy to Impose upon these pages. The moth ranges over the northern portions of the United States and southern Canada.
(24) Mameatra laudablla Guenée, Plate XXIV, Fig. I, \&. (The Laudable Mamestra.)

Syn. indicans Walker; strigicollis Wallengren.
This species extends its range from New Jersey through the southern States to Texas and southern Californla and northern Mexico.
(a5) Mamestra Iorea Guenec, Plate XXIV, Fig. a, 8. (The Brldled Mamestra.)

Syn. ligata Walker: dodgei Grote.
An obscurely colored species, which ranges from the Atlantic to the Rocky Mountains.
(a6) Mamestra erecta Walker, Plate XXIV, Fig. 4, 6 . (The Erect Mamestra.)

Syn. constipata Walker; innexa Grote.
This little moth occurs in Texas, Arizona, and northern Mexico.
(a7) Mamestra anguina Grote, Plate XXIV, Fig. 5, \%. (The Snaky Mamestra.)

The Insect occurs In the northern portions of our territory. and among the higher mountains of the States of Colorado and Wyoming.
(28) Mamestra vlcina Grote, Plate XXIV, Fig. 6, \&. (The Allied Mamestra.)

Syn. teligcra Morrison; acutipennis Grote.
Ranges from the Atlantic to the Pacific.

Nestuide

(29) Mameatra naotarica Smith, Plata XXIV, Fig. 7, 1. (The Modern Mamestra.)

The range of this species is from Manitoba to Alberta, so far as is ut present known.
(30) Mamaatra naguaa Smith, Plate XXIV, Fig. 8, \&. (The Brown-winged Mamestra.)

The species was originaily described from Alberta. It occurs aiso in northern Montana,

Genua ADMETOVIS Grote

(1) Admetovia oxymorua Grote, Plate XXiV, Fig. 9, 8.

This insect which is one of two species, which are attributed to the genus, is found from Coiorado to Caiifornia.

Genus BARATHRA Hübner

(1) Barathra occidentata Grote, Plate XXiV, Fig. 10, 8.

This is a New Mexican species. Anotier species of the genus, named curialia by Sinith, has been described by him as coming from Maine and New Hampsinire.

Genua NEURONIA Hüner

(1) Neuronia americana Smith, Plate XXIV, Fig. 12, 8. (The American Neuronia.)

This is the only species of the genus represented in our territory. It occurs in Montana and Alberta.

Genua DARGIDA Walker

The only species of this genus found withln the limits of the United States was named proc.. ctus by Grote. It is represented by the figure of the male insect on Plate XXIV, Fig. 11. It is found from Colorado to Caiifornia and Oregon.

Genus MORRISONIA Grote

Six species are attributed to this genus. We figure two of them.
(1) Morrisonia sectilis Guenée, Piate XXIV, Fig. 13, 8. Syn. evicla Grote.
Form vomerina Grote, Plate XXIV, Fig. 14, 8.

Nestulia

The home of this insect is the Northern Atlantic States. It occurs In both forms In western Pennsylvania and Indiana.
(2) Morrisonla confusa Hobner, Plate XXIV, FIg. 19, 8.

Syn. infructuosa Walker; multiforia Walker.
Not uncommon In the Atlantlc Subregion.

Genu: XYLOMIOEs Guenée

In our fauna are found fifteen species which have been assigned to this genus. From their number we have chosen seven to put before the students of this book.
(1) Xylomlges simpiex Walker, Plate XXIV, Fig. 17, 8. (The Simple Woodiling.)

Syn. crucialis Harvey.
A well marked and easily recognizable specles, recalling the genus Apatela, so far as the pattern of the maculation is concerned. It is spread from Colorado westward to California.
(2) Xylomiges dolosa Grote, Plate XXIV, Fig. 20, 8 . (The Grieving Woodiling.)

Distributed over the northern Atlantic States, and westward to Colorado.
(3) Xylomiges perlubens Grote, Plate XXIV, Fig. 19, 8. (The Brown Woodling)

Syn. subepicalis Smith.
This species belongs to the fauna of the Pacific coast, ranging eastward to Colorado.
(4) Xylomiges pulchella Sinith, Plate XXIV, Fig. 21, 8. (The Beautiful Woodling.)

Habitat British Columbia.
(5) Xylomiges patalia Grote, Piate XXIV, Fig. 18, 8. (Fletcher's Woodling.)

Syn. fletcheri Grote.
Found in the Pacific States.
(6) Xylomiges cognata Smith, Plate XXIV, FIg. 22, 8 . (The Oregon Woodling.)

Ranges from British Columbia and Oregon castward to Colorado.
(7) Xylomiges indurata Smith, Plate XXIV, Fi '3, 8 (The Hardened Woodling.)

Noctuide

Readily distinguished from X. dolosa by the lighter color of the primaries and the pure white secondaries, as well as by the different maculation. It is found in Coloradc.

Genus SCOTOGRAMMA Smith

Of the thirteen species belonging to this genus and occurring in our fauna we depict thee.
(1) Scotogramma submarina Grote, Plate XXIV, Fig. 24, 8 .

A native of the region of the Rocky Mountains ranging from Arizona to Montana.
(2) Scotogramma infuscata Smith, Plate XXIV, Fig. 25, 8.

The figure given on the plate is taken from a specimen in the United States National Museum. The insect is found in Colorado.
(3) Scotogramma inconcinna Smith, Plate XXIV, Flg. 26, 8 .

This plainly colored species, like its predecessor, occurs in Colorado.

Genus ULOLONCHE Smith

A genus of moderate extent, all of the species belonging to which are western, except the one we figure, which occurs in the Atlantic Subregion.
(1) Ulolonche modesta Morrison, Plate XXIV, Fig. 16, 8.

The species is not common.

Genus ANARTA Ochsenheimer

A subarctic genus, represented in both hemispheres. The insects occur either in high northern latitudes, or at great elevations upon high mountains. There are many species. We give illustrations of five of those found in our fauna.
(1) Anarta cordigera Thunberg, Plate XXIV, Fig. 28, 8. (The Catocaline Anarta.)

Found in northern Canada, Labrador, Alaska, and thence southward along the summits of the higher ranges of the Rocky Mountains to Colorado. It also occurs in the north of Scotland, and from Norway to Kamschatka.
(2) Anarta melanopa Thunberg, Plate XXIV, Fig. 27, 8. (The Black-mooned Anarta.)

Syn. nigrolunata Packard.

A circumpalar species commonly found in both hemispheres. (3) Asarta ;choenherri Zetterstedt, Plate XXIV, Fig. 30, 8. (Schœenher:'s anarta.)

Syn. 'encocy la Staudinger.
Its wabity! is Labrador, Greenland, Norway, Lapland, and arctic Asia.
(4) Anarta richardsoni Curtis, Plate XXIV, Fig. 29, $\%$. (Richardson's Anarta.)

Ranges from Alaska to Labrador, and has been found on the mountains of Norway.
(5) Anarta impingens Walker, Plate XXIV, Fig. 3I, 8. (The Dull Brown Anarta.)

Syn. nivaria Grote; curta Morrison; porpura Morrison.
Found on the mountains of Colorado.

Genus TRICHOCLEA Grote

A small genus confined in its range to the mountain regions of the West.
(1) Trichoclea antica Smith, Plate XXIV, Fig. 32, 8.

The specimen figured is one kindly loaned me from the national collection, and determined by the author of the species.

Genus TRICHOPOLIA Grote

Of this small genus we are able to give a figure of the type of the species named serrata by Professor Smith. The moth occurs in Texas.

Fig. 108.-Trichopolia serrata. 8 . 1.

Genus EUPOLIA Smith

Only one species has thus far been referred to this genus. It was named licentiosa by Prof. J. B. Smith. The annexed cut gives a figure of the type, which is preserved in the United States National Museum. Its home is Utah.

Genus NEPHELODES Guenée

(1) Nephelodes minians Guenée, Plate XXIV, Fig. 33, 8. Syn. expansa Walker: sobria Walker; violans Guené; subdolens Walker.

Noctuidse

A common species in the Atlantic States. It is abundant in the fall of the year in western Pennsylvania.

Genus HELIOPHILA Hübner

A large genus well represented in both the eastern and the western hemispheres. Thirty-six species are credited to our fauna. Of these we give figures of eight, selecting the commoner and a few of the rarer forms.
(I) Heliophila unipuncta Haworth, Plate XXIV, Fig. 40, 8. (The Army Worm.)

Syn. extrakea Guenée.
This species, the larva of which is known as the "Northern Army Worm," or simply as the "Army Worm," is found from the Atlantic to the Rocky Mountains, and

Fic. 110.-Larva of H. wкipuncta. (After Riley.) from Canada to Texas and southward at suitable elevations upon the higher plateaus of northern Mexico. It appears occasionally in vast numbers, and is regarded by the farmer and the horticulturist as one of those pests against the ravages of which they must direct a great deal of energy. The first appearance of these insects in great numbers is recorded as having occurred in New Hampshire and Massachusetts in the year 1743. In the year 1770 they devastated the fertile fields of the valley of the Connecticut. They devoured the grasses and cereals, but neglected the pumpkins and potatoes. The chronicler of this invasion says: "Had it not been for pumpkins, which were exceedingly abundant, and potatoes, the pcople would have greatly suffered for food. As it was, great privation was felt on account of the loss of grass and grain." Successive attacks of the insect have been made siluce ihen upon the crops in various parts of the country. The year 186I is memorable as having

Pic. 112.-Pupa of H. unipuncta. (After Riley.) heen marked by their ravages, which were particularly noticeahle in the State of Missouri and in southern lllinois. An excellent account of this invasion has been published

Noctuidat
by Prof. C. V. Riley in his "Second Annual Report " as State Entomologist of Missouri. It appears from the investigations of those who are familiar with the habits of the insect that they appear in greatest numbers in years which are characterized by being wet and cool, following years in which there has been drought. Such conditions seem to be favorable to the development of the insects in great swarms. Their appearance in the fields is often at first not observed; but when, having attained considerable size, the supply of grain and grasses gives out, and they

Fig. 112.-Moth of H. unipuncta. (After Riley.) begin to migrate in vast bodies in search of provender, they at once attract attention.

The best remedy for these pests is to burn over grass lands in the winter, to keef the fence-rows clear of grass and weeds, and to plough under the land in the spring or the fall. Untilled grass lands on which crops are not properly rotated become centres of infection.
(2) Heliophila pseudargyria Glanée, Plate XXIV, Fig. 47. 8. (The False Wainscot.)

A common species in the Atlantic States, freely attracted to sugar.
(3) Heliophila subpunctata Harvey, Plate XXIV, Fig. 35. 8. (The Dark-winged Wainscot.)

Syn. complicata Strecker.
The range of this species is from New Mexico and Texas to Arizona.
(4) Heliophila minorata Smith, Plate XXIV, Fig. 41. 8. (The Lesser Wainscot.)

This specles is found in California and Oregon.
(5) Heliophila albilinea Höbner, Plate XXIV, Fig. 34, δ. (The White-lined Wainscot.)

Syn. harvari Grote.
The insect is widely distributed, ranging from Nova Scotia to New Mexico and Texas, but apparently avoiding the Great Plains and the regions lying west of them.

Nactuid
It Is a very common species in the Atlantic States, and at times does considerable

Fig. 113-Heliophila albilinea. a. Larvæ; h. Mass of eggs laid on the stem of wheat; c. Egg viewed from above; d.Egg viewed from the side; (eggs greatly magnified). (After Riley.) injury to the crops. It has never, however, equaled in destructlveness the first species of the genus, to which we have given our attention on the preceding pages. It is said to be particularly attracted to the wheat when the grain is in the milk and the heads are just maturing. The damage done at this time is, In the Middle States, where winter wheat is commonly grown, due to the first generation of the insects. There are in fact two broods, one appearing on the wing in spring or early summer, the second in the late summer. The latter brood, which generally is more numerous than the first, produces the caterpillars, the pupe of which yirld the moths, which, coming out in the spring of the year, lay their eggs in the wheatfields. It is said that the habit of attacking wheat in its period of maturation has lately been acquired by this insect, and is an illustration of the way in which species, long regarded as innocuous, develop with apparent suddenness destructive tendencies.
(6) Heliophila heterodoxa, Smith, Plate XXIV, Fig. 36, 8. (The Heterodox Wainscot.)

The insect ranges from British Columbia and northern California as far east as Minnesota.
(7) Heliophila multilinea Walker, Plate XXIV, FIg. 39, ${ }^{2}$. (The Many-lined Wainscot.)

Syn lapidaria Grote.
Not a scarce species in the Atlantic States.

Noetuida

(8) Heliophila commoides Guenée, Plate XXIV, Fig. 42, $\mathbf{8}$. (The Comma Wainscot.)

The insect occurs from the Atlantic westward as far as Colorado. It is not very common.

2. ". ef
 Genus NELEUCANIA Smith

This is a small genus composed of species, which are, so far as is known, exclusively Western.
(1) Neleucania bicolo:ata Grote. (The Two-colored Neleucania.)

Of this species, which occurs in Colorado, New Mexico and Arizonia, and prohably has a still wider distribution, we are able to give a figure based upon a specimen contained in the United States National Museum.

Fig. 114.-Neleucania bicolorata. 6 . f.

Genus zOSTEROPODA Grote

Only one species of this genus is known at present. (1) Zosteropoda hirtipes Grote, Plate XXIV, Fig. 46, δ. The insect occurs in California.

Genus ORTHODES Guenée

Of the ten species reputed to belong to the genus and said to be found in our territory four are figured.
(1) Orthodes crenulata Butler, Plate XXIV, Fig. 37, 8. (The Rustic Quaker.)

An exceedingly commcia species in the Atlantic States, ranging westward throughout the valley of the Mississippi.
(2) Orthodes cynica Guenée, Plate XXIV, Fig. 38, 8 . (The Cynical Quaker.)

Syn. candens Guenee; tecta Walker.
Quite as common as the proceding species, and having the same range.
(3) Orthodes vecors Guenee, Plate XIX, Fig. 20, 3 . (The Small Brown Quaker.)

Syn. encrvis Guenée; nimia Guenée; togata Walker; velata Walker: proleuns Walker; griseucincta Harvey: nitins Grote.

Noctulde

This is another small creature, which has caused the speciesmakers much exercise. It is found very generally throughout the Atlantic States.
(4) Orthodes puerilis Grote, Plate XXIV, Fig. 45, 8. (The Boyish Quaker.)

This insect is found in northern California.

Genus himella Grote

(1) Himella contrahens Walker, Plate XXIV, Fig. 44, 7.

Syn. thecata Morrison.
This Insect is found from the northern Atlantic States south. ward and westward to New Mexico and Colorado.

Genus CROCIGRAPHA Grote

(1) Crocigrapha normani Grote, Plate XXIV, Fig. 43, 8.

Not an uncommon insect in the northern portions of the Atlantic Subregion.

Genus GRAPHIPHORA Huibner

This is an extensive genus, represented in both hemispheres, and containing thirty-six species, which occur within our territory. We illustrate four of them.
(1) Graphiphora culca Guenée, Plate XXV Fig. I, q.

Syn. mivdifica Mcrrison.
This species is quite common in the Appalachian or Atlantic Subregion.
(2) Graphiphora oviduca Guenée, Plate XXV, Fig. 2, 8 .

Syn. capsella Grote; onbia Harvey.
The insect has the same range as the preceding species, and is equally common.
(3) Graphiphora alia Guenée, Plate XXV, Fig. 3, \%.

Syn. instabilis Fitch; insciens Walker; hibisci Guente; confuens Morrison.

Not a scarce species in the Atlantic Subregion.
(4) Graphiphora garmani Grote, Plate XXV, Fig. 5, 8.

A rather scarce insect ranging from western Pennsylvania throughout the valley of the Mississippi as far as lllinois and lowa.

Explanation of Plate XXiV

(Except when otherwise indicated, the npecimens figured are contained in the collection of W. J. Holland.)

1. Mamestra laudabilis Guenée, \%.
2. Mamestra liren Guenee. 0^{7}.

Mamestra rugusa Morrison, σ^{7}
Mamestra erecta Walker, o
Mamestra anguina Grote. of
Mamestra vicina Grote. ©
7. Mamestra neuterica Smith. σ^{7}
8. Mamestra negussa Smith, of.
9. Adnetmis oxymorus Grote. of
10. Barathra accidentata Grote, of
11. Dargida prexinctus Grote. σ^{7}
12. Vinuronia amaricanal Smith. 0^{n}
1.3. Morrisonia sectilis Guenév. dre 7.
14. Morrisonia sectilis var. romerina, Grutc., ¢
15. Morrisonia confusiz Hubner, 0^{7}
16. Ulolunche modesta Morrison, 0^{7}
17. Xylomiges simplex Walker. o
18. Xylomiges patalis Grote. of.
19. Xylomiges perlinbens Grote. ${ }^{2}$
20. Xylomiges dolosa Grote. σ^{1}.
21. Xylomiges pulchclla Smith. σ^{7}
22. Xylomiges cognata Smith, 0^{7}.
23. Xylomiges indurata Smith, σ^{7}.
34. Scotogramma submariua Grote σ°.
25. Scohogramma injusiahis Smith. σ^{*} U. S. N. M.
0^{*} U. S. N. M
27. Anarh melanopa Thunberg. 0 .
28. Anartu cordigera Thunberg. O^{7}.
29. Inarha richarilsoni Curtis, of.
30. Anarla schanhervi Zetterstedt
35. Anatiu impingens Walker. O^{7}
32. Tri'hoclea antica Smith. σ^{7}. U. S. N, M.
33. Nephelodes miniuns Guenee. ${ }^{7}$
34. Heliophila albilinea Huhner. σ^{1}
35. Heliophila subpunctatu Itarvey, 아.
36. Heliophila heterodoxa Smith. 0^{7}.
37. Orthodes crenulata Butler. ${ }^{\text {ot }}$.
38. Orthodes cymica Guence. ö'
39. Heliophila multilines Walker. σ^{7}.
40. Heliophila unipumi.h Ilaworth, σ^{7}.
41. Heliophila minarata Smith, ${ }^{7}$
42. Heliophila commoides Gnenée σ^{7}.
43. Crocigrapha normani Grote. σ^{7}.
44. Himello contrahens Walker, \circ.

45 Orthodes puerilis Grote, σ^{7}.
46. Zosteropoda hirtipes Grote. ${ }^{7}$ U. S. N. M

Genus STRETCHIA Henry Edwards
This is an extensive genus, to which a number of Western species have bee.. referred. It badly needs revision by a critical authority. We figure one of the best known forms.
(i) Stretchla muricina, Plate $\mathrm{XXV}, \mathrm{Flg}, \mathrm{s}, \mathrm{s}$.

In addition to the figure given on the plate we annex a cut made from a drawing of a specimen contalned in the collection of the late Henry Edwards, and now in the possesslon of the American Museuin of pl_{t} Natural Hlstory in New York.

Genus PERIGONICA Smith

This is a small genus, which we represent by a figure of the Coloradan insect to which Prof. J. B. Smith has applied the specific name fulmanans. The male is depicted on Plate XXV, Fig. 6.

Genus PERIGRAPHA Lederer

The only species of this genus found in our fauna has been named prima by Professor Smith. It is represented by a drawing of the type, which is contained in the

Fig. 116-Pirigrapha prima. American Museum of Natural History. The insect is a native of California,

Genue TRICHOLITA Grote

(1) Tricholita signata Walker, Plate XXV, Fig. 7, δ.

Syn. scmiaperta Morrizon.
This is the only species of the genus found in the eastern portion of the United States. There are four other species, but they are western in their habitat.

Genus CLEOSIRIS Boisduval

This is a smail genus found in Europe as well as in America. The species which has been chosen to represent the genus was named populi by Strecker, who first described it. It is not at all uncommon in Colorado and Wyoming. It

Noctuid.

occurs abundantly about the city of Laramie. It is represented upon Plate XXV, Fig. 8, by a female specimen.

Genus PLEROMA Smith

(1) Pleroms obliquats Smlth, Plate XXV, Fig. II, 8 ,

The species of thls genus are all found In the western half of our terrltory.

Genus LITHOMOIA Hübner

(1) Lithomoia germana Morrison, Plate XXV, Fig. 12, 8.

This is not at all an uncommon species In the northern Atlantic States.

Genus XYLINA Ochsenheimer

An extensive genus found both in the New World and the Old. Thirty-five specles are attributed to $1 t$ as found in our filuna. Of this number ten ale depleted in this book.
(1) Xylina disposita Morrison, Plate XXV, Fig. 13, 8. (The Green-gray Pinion.)

The moth is found in the northern Atlantic States.
(2) Xylina petulea Grote, Piate XXV, Fig. 9, 8. (The Wanton Pinion.)

Not a common species, having the same range as the preceding.
(3) Xylina antennata Walker. (The Ashen Pinion.)

Syn. cinerca Ritey.
The moth is a native of the Allantic States. The larva feeds upon the apple, poplar, hickory, and other deciduous trees. It

Fic. 117.-Xylina antennala. a. Larva boring into peach. b, Moth. has the habit of boring Into appies and peaches, and the galls which are found upon oaks. The caterpiliar is green, marked with a cream-colored interal stripe, and spots of the same color. it pupates beneath the soil in a loose, fiimy cocoon of silk, to which the particies of earth are adherent. Pupation takes place at the end of June, or the 206

Noctuid.
beginning of July, and the moth emerges in September and October.
(4) Xyilna laticinerea Grote, Plate XXV, Fig. 17, 8. (The Broad Ashen Pinion.)

The distribution of this species is the same as that of the last mentloned.
(5) Xylina innominata Smith, Piate XXV, Fig. $10,8$. (The Nameless Pinion.)

The range of the Nameiess Pinion is from the Atlantic to Colorado.
(6) Xyiina unimoda Lintner, Plate XXV, Fig. 16, \%. (The Dowdy Pinion.)

The species occurs in New England and the Middie States.
(7) Xylina tepida Grote, Piate XXV, Fig. 15. 8. (The Warm Gray Pinion.)

An eastern species, not uncommon in Pennsyivania.
(8) Xylina baileyi Grote, Plate XXV, Fig. 19, 8. (Bailey's Pinlon.)

A rather pretty specles, which has thus far only been reported from northern New York.
(9) Xylina thaxteri Grote, Plate XXV, Fig. 18, 8. (Thaxter's Pinion.)

The home of this species is New England. It was originaliy described from Maine.
(10) Xyilna pexata Grote, Plate XXV, Fig. 20, 8. (The Nappy Pinion.)

Syn. washingtoniana Grote.
The species ranges from New England to Washington and Oregon.

Genua LITHOLOMIA Grote

There are only two species reckoned in this genus. The one, which we figure on Plate XXV , Fig: 22, by a male specimen, ranges over the entlre northern portion of the United States from ocean to ocean, but is nowhere very common. The other species, L. dunbari Harvey, is only known from Britlsh Coiumbia.

Genus CALOCAMPA Stephens

The genus is found in both hemispheres. The species have a habitus which enabies them to be easily recognized. Of the

Noctuidw

six occurring within the faunal limits, with which this book deals, we lllustrate two.
(1) Calocampa nupera Lintner, Plate XXV, Fig. 24, 8. (The American Swordgrass.)

A rather large moth, easlly distingulshed from the following species by the absence of the dark markings, which are found in the disk of the primaries of the latter insect. It occurs in the Atlantic Subregion.
(2) Calocampa curvimacula Morrison, Plate XXV, Fig. 23, 8. (The Dot and Dash Swordgrass.)

The species ls found throughout the northern portions of the United States and also in Canada.

Genus CUCULLIA Schrank

This is a considerable genus, which occurs in the temperate regions of both the Old World and the New. Four of the fourteen species attributed to our territory are chosen for representation. The larva feed on Solidago and other Composita.
(1) Cuculla convexipennis Grote \& Robinson, Plate I, Fig. 3, larva; Plate XXV, Fig. 29, 8. . (The Brown-bordered Cucullia.)

A native of the Atlantic States.
(2) Cucullla asteroides Guenée, Plate XXV, Fig. 27, $\%$. (The Asteroid.)

Found In the same localitice as the last named spceies."
(3) Cucullla speyeri Lintner, Plate XXV, Fig. 26, 8. (Speyer's Cucullia.)

Ranges through Colorado, Wyoming, and the adjacent regions to the west.
(4) Cucullia intermedia Speyer, Plate XXV, Fig. 30, 8. (The Intermediate Cucullia.)

An Atlantic species.

Genus COPICUCULLIA Smith

(1) Coplcucullia propinqua Smith, Plate XXV, Fig. 28. \%. A native of Colorado and Wyoming
(1) Rancora solidaginis Behr, Plate XXV, Fig. 25, $\%$. Syn. strigata Smith.
The range of this insect is from northern California to British Columbia.

Genus LATHOSEA Grote

(1) Lathosea pullata Grote, Plate XXV, Fig. 32, 8. The species occurs in Oregon and east ward to Colorado, (2) Lathosea ursina Smith, Piate XXV, Fig. 31, f. A native of Colorado and the southern portions of Wyoming.

Genus ASTEROSCOPUS Boisduval

We are able to give a cut of the sole species which has been assigned from our fauna to this genus. It is based upon the type of the species which was named borealis by Smith, and which is preserved in the United States National Museum at Washington. The insect is a male.

Fig. 118.-Asteroscopus borealis. 1 .

TRAGEDY OF THE NIGHT-MOTH

Magna ausus
'Tis placid midnight, stars are keeping Their meek and silent course in heaven;
Save pale recluse, for knowledge seeking. All mortal things to sleep are given.
But ree! a wandering Night-moth enters, Allured hy taper gleaming hright:
Awhile keeps hovering round, then venture: On Goethe's mystic page to light.
With awe she views the candle hlazing;
A universe of fire it seems
To moth-savante with rapture gazing, Or Fount whence Life and Motion streams.
What passions in her small heart whirling, Hopes boundless, adoration, dread; At length her tiny pinions twirling, She darts, and-puff l-the moth is dead.

Tragedy of the Nisht-Moth

The sullen flame, for her scarce sparkling, Gives but one hiss, one fitful glare;
Now bright and husy, now all darkling. She saaps and fades to empty air.

Her bright gray form that spread so slimly, Some fan she ceemed of Pygmy Queen;
Her silky cloak that lay so trimly, Her wee, wee eyes that looked so keen.
Last moment here, now gone forever, To nought are passed with fiery pain;
And ages circling round shall never Give to this creature shape again I
Poor moth 1 near weeping 1 lament thee, Thy glossy form, thy instant woe;
"Twas zeal for "things too high" that sent thee From cheery earth to shades below.
Short speck of houndless Space was needed For home, for kiurgdom, world to thee I
Where passed unheeding as unheeded Thy little life from sorrow free.

But syren hopes from out thy dwelling Enticed thee, hade thee earth explore-
Thy frame, so late with rapture swelling, Is swept from earth forevermore!

Poor moth I thy fate my own resembles. Me, too, a restless, asking mind
Hath sent on far and weary ramhles, To seek the good I ne'er shall find.

Like thee, with common lot contented, With humhle joys and vulgar fate,
I might have lived and ne'er lamented, Moth of a larger size, a longer date!
But Nature's majesty unveiling What seemed her wildest, grandest charms,
Eternal Truth and Beauty hailing, Like thee, I rushed into her arms.

What gained we, little moth? Thy ashes, Thy one hrief parting pang may show: And thoughts like these, for soul that dashes From deep to deep, are-death more slow 1

Thomas Carlyle.

Explanation of Platr XXV

(Except when otherwise indicated, the specimens figured are in the collection of W. J. Holland.)

1. Graphiphora culea Guenée, 7.
. Graphiphora oriduca Guenée, 3 .
2. Graphiphora ulia Guenée, of.
3. Graphiphors garmani Grote, or, Merrick ColIfction.
4. Sitrithia muricina Grote. C

Perigonica jnlminats Stmith. 0^{-1}
Tricholita signata, Walker. or
Cleosiris populi Strecker, ९. U. S. N. M
Xylina petulia Grote, 8.
fylina innominata Smith. σ^{7}.
Pleroma oblighatu Smith, or, U. S. N, M.
Lithomina germana Morrison. of
Xylina disposita Morrison, of
Homoglca curbunaria Harvey. \&
Xylina lepida Grote. ${ }^{2}$.
Xylina unimoda Lintncr. ${ }^{-1}$
Yylina laticinerea Grote, ot
Xylina thaxteri Grote, $\%$.
Yylina baileyi Grote,
Xylina pexata Grote. f
Xylina capar Grote \& Robinson.
Litholomia napea Morrison, σ^{7}
Calocampa curaimucula Morrison. σ^{2}.
Calirianpar nupera Lintner, or
Rancora solidaginis Behr, $\%$.
Cucullia spegeri Lintner, ${ }^{7}$.
Cucnilia asteroides Guenée, ${ }^{7}$.
Copicacullia propingna Snith, of
Cucullia cianiexipcnais Grote \& Robinson. or
Cucullia intermedia Speyer, of.
Lathosea ursina Smith, \&, U. S. N. M.
Lathosed pillata Grote, 0^{2}, U. S. N. M.
, Vonagria oblomga Grote. or, U. S. N. M.
Nonagria sntifliz'a Grote, 9.
Oinmatosthla lintureri Grote, σ^{*} U. S. N. M.
Sphida obligna Walker, $\%$.

This Moth Boon

Genue BELLURA Walker

We cause this genus to be represented by a figure of the species named gortynldea by Walker. Synonyms are densa Waiker, vulnifica Grots, melanopyga Grote. The Insect is peculiar to the Atlantic States, so far as is known. The cut was drawn from a specimen In the American Museum of

Fig. 119.-Bellura gortynides. \& . f.

Genus SPHIDA Grote

(1) Sphlda obliqua Walker, Plate XXV, FIg. 36, 9. Syn. obliquata Grote A Robinson.
The range of this moth is from the Atiantic to the Mississippl. The specimen figured was taken by the writer at light in Minneapolis. It feeds in the stems of Typha latifotia.

Genus NONAGRIA Ochsenheimer

A rather small genus of obscurely colored moths, the larva of which burrow in the stems of aquatic plants, below the waterIlne. The genus is represented in both hemispheres. Six species belong to our fauna.
(1) Nonagria oblonga Grote, Piate XXV, FIg. 33, 8. (The Large Nonagria.)

Syn. permagna Grote.
This is a Southern species, thus far only recorded as found in Florida.
(2) Nonagria subfiava Grote, Plate XXV, Fig. 34, 7 . (The Yellowish Nonagria.)

The insect ranges from Maine to lliinois, where it is found in the vicinity of lakes and pools of water in which rushes grow.

Genus OMmATOSTOLA Grote

(1) Ommatostolalintneri Grote, Plate XXV, Fig. 35 t.

Thus far this species has oniy been recorded from New York and New Jersey.

Noctulde

Genus ACHATODES Guenee

(1) Achatodes zez Harris, Plate I, Fig. 12, larva; Plate XXVI, Fig. 1, of

Thls common insect, like those of the next three genera, is a stem-feeder, burrowing in the pith of its food-plants. It feeds in stems of elder (Sambucus), and Indian corn.

Genus GORTYNA Ochsenheimer

This genus is represented in the faunz of both hemispheres. It is quite extenslve.
(1) Gortyna velata Walker, Plate XXVI, Fig. 3, 8 . (The Veiled Gortyna.)

Syn. sera Grote \& Robinson.
Not uncommon in the Atlantic States.
(2) Gortyna nictitans Borkhausen, Plate XXVI, FIg. 2, 8.

This specles, whlel is also found in Europe, has an extensive synonymy. It is found from the Atlantic to the Pacific, and shows in different localities slight differences in ground-color and markings, which have led to the creation of a nu.aber of subspecific distinctions by writers.
(3) Gortyna immanis Guenee, Plate XXVI, Fig. 4, \%. (The
 ment of larva; b. larva; c. pupa; d. adult of
(After Howard.) Hop-vine Gortyna.)

The Insect ls not often found south of New York and New England to any great extent, though its occurrence as far south as Maryland as a rarity has been noted. From western New York it ranges across the continent to the Pacific. As it partlcularly Infests the hop it will not be abundant in places where that plant is not grown. In the centre of the hop-growing region of

New Yo.k and Ontario it is very depredations have been complatid about by those interested in little larve immediately bore laid on the young shoots and the they remain until they are he into the stem near the tlp. Here and attack the piant are halr an inch long, when they descend ommended to pinch the level of the ground. It has been recthus to kill the you the which are seen to be affected and about the roots worms. Various applications to be put may consuit "Bulletin No. 7 (New Series) which the reader Department of Agricuiture," (New Series) of the United States not be hilled up until the The hop-vines should at all events August. This prevents the larve from July or the beginning of stems at the level of the ground.
(4) Gortyna obliqua Harvey, Plate XXVI, Fig. 13, 8. (The Oblique Gortyna.)

The habitat of this species is the Atiantic States and the Mississippi Valley.
(1) Papaipema inquasita Grote \& Robinson, Plate XXVI, Fig. 5, \mathbf{t}.

This species is, so far as we know, confined to the northern Atlantic States.
(2) Papaipema purpurifascia Grote \& Roblnson, Plate XXVI, Fig. 7, 8 .

The range of this, as weil as of all the species subsequently mentioned, is the same as that of the first species named in the genus.
(3) Papaipema nitela Guenée, Plate XXVI, Fig. 9, δ. Form nebris Guenée, Plate XXVI, Fig. 8, δ.

The caterpillar inflicts a good deal of damage upon Indian corn by burrowing into the end of
the ear when the seed is in the milk. Those who have had to do with the preparation of roasting ears well know the unsightly larvx, which, as they have stripped

Fig. 121 -Larva of Papaipema nitela. (After Riley.) the husk from the cob, have revealed their presence. Cooks know more about these things than the farmer. The farmer

Nomulde
pulls his corn after the seed is hard and dry, but the " kitchen mechanic," who has to deal with green vegetables, often has light upon subjects which elude the observation of the grower.
(4) Papsipeme necopins Grote, Plate XXVI, Flg. 12, 8.

The species occurs in the Middle States, and has been more frequently found In New York than elsewhere.
(5) Papaipema cerusasta Grote \& Robinson, Plate XXVI, Fig. 10, $\%$.

A pretty species, whlch occurs in New England and the Northern States as far west as Minnesota.
(6) Papaipema cataphrecta Grote, Plate XXVI, Flg. 6, δ.

The species is found in the northern Atlantic States, and is not unusual in western Pennsylvanla.
(7) Papaipems marginidens Guenée, Mate XXVI, Fig. 11, 8 .

A rather scarce specles, which has the same range as the preceding.
(8) Papaipema furcata Smlth, Plate XXV1, Flg. 14, $\%$.

The specimen shown on the plate was taken in western Pennsylvanla.

Genus OCHRIA Hübner

Dr. Dyar In his recent list refers to this genus the Insect which was accorded the specific name

Fig. 122. \rightarrow Ochria sauselita. f. sauzelite by Grote. We give a figure of the moth taken from e specimen in the American Museum of Natural Histury, for the skilful delineation of which we are indebted Beutenmaller, one of the most accomplished delineators of insect life \ln America.

Genus PYRRHIA Hübner

(1) Pyrrhia umbra Hufnagel, Plate XXVI, Fig. 15, \&.

This species, which occurs in Europe, ${ }^{\text {ranges }}$ in North America from the Atlantic to the Rocky Mountains.

Genus XANTHIA Hübner

(1) Xanthia flavago Fabricius, Plate XXVI, Fig. 16, 8. Syn. tugaia Lexper; silagu Ilubner.

This is likowise a European species, which has a wide range in the northern parts of the United States,

Genus JODIA Hübner

(1) Jodia rufacgo Hobner, Plate XXVI, Flg. 17, 8. (The Red-winged Saliow.)

Syn. homasta Wulker.
A European as weli as a North American species.

Genus BROTOLOMIA Lederer

(1) Brotolomia iris Guence, Plate XXVI, Fig. 19, $\%$.

Not a very cominon moth, which occurs from New England to Colorado.

Genus TRIGONOPHORA Hübner
(1) Trigonophora periculosa Guenée, var. v-brunneum Grote, Plate XXVI, Fig. 18, s.

This is a very common species, having the same range as the preceding. The form we figure has the V mark on the wings heavy and dark. In the typical form this mark is light in color.

Genus CONSERVULA Grote

(1) Conservula anodonta Guenee, Plate XXVI, Fig. 20, 8. A rather scarce species, which is found in the northern part of our territory, south of Canada, and east of the Mississippl.

Genus EUCIRRCEDIA Grote

(1) Eucirrcedia pampina Guence, Plate XXVI, Fig. 28, 8.

The moth comes out late in the fall. I have often found them when \& warm day has occurred in the autumn, freshly emerged, and hanging from the stems of bushes from which ali the leaves had already fallen. The insect is common in the Appalachian subregion.

Genus SCOLIOPTERYX Germar

(1) Scoliopteryx libatrix Linnaus, Plate XXVI, Fig. 22, 。 (The Herald.)

A common insect found in Europe and the entire temperate zone in North America. The larva feeds on willows.

Nemaile

Geass CHC:PHORA Grote \& Robineon

(1) Choophora fuagorum Grote \& Robinson, Plate XXVI, Fig. 23, 8.

Not a very common moth. It is found among the Aileghanies in western Pennsyivania, and also occurs in other portions of the northern Atiantic subregion.

Genue PsEUDORTHO8IA Grote
The oniy species of the genus was named veriabilis by Grote. It ranges from California to Colorado. We give a nigure of the species drawn by Mrs. Beutenmelier from a specimen contained in the coliection of the late Henry Edwards, and now in the American Fic. $183 .-P$ Psendor.
thosia variabilis,. . Museum of Natura! History.

Genus PSEUDOGLFA Grote

(1) Pseudoglee blanda Grote, Piate XXVI, Fig. 24. 8.

Syn. Paduld Grote: decepta Groto.
The habitat of the specles is the Pacific States from which it ranges eastward to Texas and Coiorado.

Genue ANCHOCELIS Guenée
(1) Anchocelis digitelis Grote, Plate XXVI, Fig. 25, 8.

The oniy species in our fauna so far known is found in the northern Atiantic States.

Genus SELICANIS Smith

Under this generic name Prof. J. B. Smith in 1900 described a species from Coiorado to which he gave the specific name cinereols. The type of this insect, .which is preserved in the United States National Museum, is represented in the accompanying cut.

Fic. 144.-Solicanis cinewola, 8 . t.

Genue tapinostola Lederer
(1) Tapinostols variana Morrison, Plate XXVI, Fig. 26, s.

The figure we give is taken from a specimen belonging to the United States National Museum and coming from Michigan.

Cenue FAGITANA Walker

Nextuide

Two species, which were formeriy attributed to the genus Psemsolimacodes Grote, occur In the United States. We figure both of them.
(1) Fagitana obliqua Smith, Plate XXVI, Fig. 27, 8. The habitat of this species is Florida.
(a) Fagitana Ilttera Guente, Plate XXVI, Fig. 28, 8.

Syn. Inciduta Walker; nivericostalus Grote.
This is a rare Insect, which occurs In the Atlantic States.

Genua COsmin Ochsenhelmer

(1) Commla paleacea Esper, Plate XXVI, Fig. 32, 8. (The Angle-striped Sallow.)

Syn. discolor Walker; infumata Grote.
This Insect is found ail over northern Europe and the United States.

Genus ORTHOSIA Ochsenheimer

The genus is weil represented both in the New World and the Old. Or the fifteen species reckoned as belonging to our fauna two are selected for iliustration.
(1) Orthosla bicolorago Guenée, Plate XXVI, Fig. 29, ${ }^{\text {s }}$.

An eastern species, which is not uncommon.
(2) Orthoela helva Grote, Piate XXVI, Fig. 30, 8.

A very common species In the Atiantic States, ranging westward as far as Colorado.

- Genue PARASTICHTIS Hübner
(1) Parastichtls diecivaria Waiker, Plate XXVI, Fig. 31, 8. Syn. geontilis Grote
Found throughout the northern Atlantic States.
Genue SCOPelosoma Curtis
This genus represented In Europe by a single specles is represented in the United States and Canada by halr a score of species. They appear upon the wing very early In the spring, when the nights are still cool and even frosty. This fact is the reason why they are for the most part not well represented in

Noctuld

collections. A good place to collect them is in maple-sugar camps, about the sap-buckets.
(1) Scopelosoma moffatiana Grote, Plate XXVI, Fig. 33. 8. (Moffat's Sallow.)

This as well as all of the other species is found in the northern portion of the Atlantic subregion.
(2) Scope losoma ceromatlea Grote, Plate XXVI, Fig. 34, \&. (The Anointed Sallow.)

Ranges from New Jersey to Maine.
(3) Scopelosoma walkeri Grote, Plate XXVI, Fig. 35, δ. (Walker's Sallow.)

The moth is knowr to fly from Texas to lowa and eastward to Maine and Canada. The larva feeds upon oaks.
(4) Scopelosoma devia Grote, Plate XXVI, Fig. 42, δ. (The Lost Sallow.)

It occurs in northern New York and Canada.

Genus ORRHODIA Hübner

The genus is found both in Europe and America. Prof. Smith has attributed to it a species to which he gave the name of californica. The type is in the Unlted States National Museum and the annexed figure gives a representation of it. It is the only species of Fis. 125 .-Orrhodia a representation of the genus in our fauna.
ralifornica.

Genus GLAA Hübner

(1) Glea viatica Grote, Plate XXVI, Fig. 38, i. (The Roadside Sallow.)

The species appears very late in the fall of the year. It ranges from Texas In the south to Massachusetts in the north.
(2) Glaea inulta Grote, Plate XXVI, Fig. 37, \&. (The Unsated Sallow.)

The moth ranges from Canada to Virginia and westward to lllinois and lowa.
(3) Glea sericea Morrison, Plate XXVI, Fig. 36, i. (The Silky Sallow.)

The range of this species is much the same as that of the preceding.

Explanation of Plate XXVI
(Except when otherwise indicated, the sfxwimens figured are contained in the collection of W. J. Holiand.)

1. Aihatodes zec, Harris σ^{7}. U. S. as. Eucirrodia pampina Guenee, N. M.
a. Gortyitit nictituns Borkhausen, d.
2. Gortyna velatu, Walker, 0^{\prime}
3. Gortyna immanis, Guenée, \ddagger.
4. Papaipema inquasita Grote \& Robinson, σ^{7}.
5. I'upaipema ralaphracta Grote,百.
6. Papaipema purpurifascia Grote \& Robinson, σ^{7}.
7. Papaipema nitela, var, nebris, Guenéc, ơ.
8. Papaipema witelu Guente, σ.
9. Papaipisma cerussula Grote \& Robinson, $\%$.
10. Papaipema marginidens Guenée, \&.
11. Papaipema mecopina Grotc, S.
12. Gortyna obliqua Harvey, σ^{7}.
13. Papaipema furcata Smith, \&.
14. Pyrrhia umbra Hufnagel. \& .
15. Nanthia flavago Fabricius, σ°.
16. Findia rufago Hıbner. σ^{7}. U. S. $\mathrm{N} . \mathrm{M}$.
17. Triponophora rotornиешт Grote, σ^{7}.
18. Brotolomia iris Guenés, \varnothing,
19. Comsenula anodonta Guence, $\%$, U. S. N. M. aliopleryx libatrix Linnetus, 0 .
20. (haphora fungurunt Grote \& Robinson, $\%$.
21. I'sendoglara blamda Grote, $\bar{\sigma}$, U. S. N. M.
22. Anchocelis digitalis Grote, σ^{7}. U. S. N. M.
23. Tapinostola variana Morrison, σ^{7}, U. S. N. M.
24. Fagitana obliqua Smith, o'.
25. Fagituma littera Guenée, ㅇ.
26. Orthosia bicolorago Guenée, σ^{7}.
27. Orthosia helva Grote, \&.
28. Parastichtis disitraria Walker, ${ }^{\circ}$.
29. Cosmia paleacea Esper, ${ }^{7}$.
30. Scopelosoma moffationa Grote, ${ }^{7}$.
31. Scopelosomia ceromatica Grote, $\%$.
32. Scopolosoma walkeri Grote, ${ }^{7}$.
33. Glea sericea Morrison, ${ }^{\circ}$.
34. Gláa, wulta Grote, 0^{7}.
35. Flea trintica Grote, d^{7}.
36. Homoglea hircina Morrison, σ^{7}.
37. Epiglasa decliva Grote, 0^{7}.
38. Epiglaca pastillicans Morrison, σ^{7}.
39. Scoprlosoma devia Grote, σ^{7}.

Genus EPIGLEA Grote

(1) Epiglea pastillicans Morrison, Plate XXVI; Fig. 41, δ. (The Round-ioaf Sallow.)

The species occurs from West Virginia to Maine, and westward to Ohio.
(2) Epigleea decliva Grote, Plate XXVI, Fig. 40, 8 . (The Sloping Sallow.)

Syn. duleta Grote.
The moth occurs from Canada to Virginia, and westward to Illinois.

Genus HOMOGLEA Morrison

(1) Homoglea hircina Morrison, Plate XXVl. Fig. 39, 8. (The Goat Sallow.)

The habitat of this species is the northern part of our territory. It ranges from Aiberta to Nova Scotia, and southward along the Alleghany Mountains into the Western part of North Carolina.
(2) Homogleea carbonaria Harvey, Piate XXV, Fig. 14, 8. (The Smudged Sallow.)

The species ranges from Washington and Oregon eastward to Colorado. It has been located in the genus Euharveya, but this name is a synonym for Homoglaa, according to Prof. J. B. Smith, and accordingly slnks.
(1) Calymnia orina Guenée, Plate XXVII, Fig. I, © . Syn. canescens Behr.
This easily Identified moth ranges over the entire temperate portion of the North American continent. The larva feeds upon oaks.

Genus ZOThecA Grote

(1) Zotheca tranquila Grote, Plate XXVIl, Fig. 2, 8. (The Western Elder Moth.)

Syn. sambuci Behr; viridula Grote.
The larva feeds upon elder (Sambucus). The moth ranges from northern California to British Columbia and eastward to Wyoming. The greener form was named viridula by Grote. The difference is hardly subspecific, as the shade of green on the wings is hardly alike in any two specimens, and the color soon fades out.

Neotuld

Genus IPIMURPHA Hübnor

(1) Ipimorpha pleonoctuas Grote, Plate XXVII, Fig. 3, 8. (The Even-lined Sallow.)

Syn. aquilinea Smith.
The species occurs from the Atlantic to the Rocky Mountains.

Genus ATETHMIA Hübner

(1) Atethmia subusta Habner, Plate XXVII, Fig. 4, 8.

A very common species ranging through the warmer parts of the Guif States through Central and South America as far as Argentina.
(2) Atethmia rectifascia Grote, Plate XXVII, Fig. 5, 8. Found from New Jersey to lllinois and southward.

Genus TRICHOCOSMIA Grote

(1) Trichocosmia inornata Grote, Plate XXVIl, Fig. 6, 8. The insect is found in Arizona and northern Mexico.

Genus TRISTYLA SMITH

The genus was erected by Smith for the reception of a Californian species to which he gave the specific name alboplagiata. Through the kindness of the authorities of the United States National Museum I am able to give a

Fig. 126.-Tristyla alboplagiata, 8 . representation of the type of this insect.

Genus ANTAPLAGA Grote

A small genus composed exclusively of western species.
(1) Antaplaga dimidiata Grote, Plate XXVII, Fig. 7, 8. Hitherto only reported from Colorado.

Genus GROTELLA Harvey

(1) Grotella dis Grote, Plate XXVII, Fig. 8, 8.

A small moth found in New Mexico and Arizona.

Genus PIPPONA Harvey

Noetuide
The only species hitherto referred to this genus is found in Texas. We give in the cut, which is herewith presented, a figure of a specimen which is contained in the American Museum of Natural History, and which was carefully drawn for this book by Mrs. Beutenmoller. It was named bimatris by Dr. Harvey.

Fig. 1a7.-Pippue ma bimatris., δ t.

Genus Bessula Grote

Through the kindness of the authorities of the British Museum and Sir George F. Hampson I am able to give herewith a figure

of the type of the genus and species, which is preserved in the Grote Collection. The moth occurs in New Mexico and Colorado.

Genus OXYCNEMIS Grote

This genus is composed wholly of species which are found

Pic. 199.-Oxycnemis fusimacula. of. t. in the southwestern portions of our territory. Of one of these, found in California, to which Smith has applied the specific name fusimacula, we are permitted to give a figure taken from a specimen preserved in the American Museum of Natural History. it was drawn by Mrs. Beutenmoller.

Genus NYCTEROPHAETA Smith

(1) Nycterophaeta luna Morrison, Plate XXVII, Fig. 9, 9. Syn. magdalena Hulst; notatella Grote.
The moth ranges from Dakota and Montana southward to southern Colorado.

Nectuidn

Genus COPABLEPHARON Harvey

(1) Copablepharon grandia Strecker, Plate XXVII, Fig. $10, \delta$.

The species ranges from northern California and Oregon eastward to Montana.
(2) Copablepharon longipenne Grote, Piate XXVil, Fig. 11, 8.

From the preceding species it may easily be distinguished by its much greater size. It has thus far oniy been found In Montana.
(3) Copable pharon album Harvey, Piate XXVil, Fig. 12, δ.

The fore wings in this species are pure white, and not shaded with yellow, as is the case with the other two species, which have been mentioned. it occurs from Oregon to Montana and sourhward to Coiorado.

Genus THYREION Smith

(1) Thyreion rosea Smith, Piate XXil, Fig. 13, 8.

This insect is thus far only known to occur in Colorado.

Genus CHLORIDEA Weatwood

(1) Chloridea virescens Fabricius, Plate XXVII, Fig. 14, δ. Syn, rhexia Abhot \& Smith; spectanda Strecker.
Found from the Atiantic to the Pacific and from Canada southward into Mexico.

Genus Heliocheilus Grote

(1) Hellocheilus paradoxus Grote, Piate XXVII, Fig. 15, δ.

The Insect ranges from the middle of the Mississippi Valley south and west. It does not appear to be common in coliections.

Genus HELIOTHIS Ochsenheimer

The genus is represented in both hemispheres by a number of species. it used to be made to inciude a large assembiage of insects, but iatterly has been restricted by authors.
(1) Heliothis armiger Hobner, Plate XXVII, Fig. 17, δ. (The Boll-worm.)

This insect, which is known to English entomologists as the "Scarce Bordered Straw," is unfortunately not scarce in the

United States, and being of a singularly gluttono larval stage, has become the object of execration to horticulturists. It is a very promiscuous feeder, but shows a special fondness for young Indian corn in the ear and for cotton bolls. On account of the latter peculiarity It has received the name we have applied above. It attacks the fruit of the tomato w It also feeds upon puinpkile green, and causes it to rot on the vines.

Fic. ${ }^{131}$-Heliothis armiger, a. Egg vicwed from the side; b. Egg viewed from on top (both eggs Riley.)
 (After Riley.) upon tobacco.

An excellent account of lts habits has been given by Prof. C. V. Riley in his "Third Annual Report" as State Entomologlst of Missouri. It is from that paper that we have extracted the figures, which are herewith given, and which serve to illustrate the life-history of the insect. The moth ranges all over the United States and southern Canada. It is most abundant in the southern portion of our territory, where there are from three to four broods annually. It is here in the

Nectulate

cotton-flelds and in the growing corn that the greatest damage is inflicted. There appears to be no way of sppiying remedies in a wholesale manner to the crops 80 as to prevent the depredations of this insect. The only resort is for the grower to go carefully over the fieids, and where he detects the presence of the insects in their early stages, to pick them off and destroy them. in the case of corn the presence of the worm is shown by the premature drying of the silk, and in the case of cotton by the falien nower-buds, which lie withering on the ground.
(2) Heliothis scutosus Fabricius, Piate XXVII, Fig. 16, 8. (The Spotted Clover-moth.)

Syn. muchalis Grote.
This species, which occurs in Europe and Asia, is slso frund not infrequentiy in the western part of our territory.

Genus DERRIMA Walker

(1) Derrime stellata Waiker, Piate XXiX, Fig. 67, δ. (The Pink Star-moth.)

Pia. 132.-Dirrima stoluta, 8 . \ddagger.

Syn. herrietla Grote.
The specimen figured was taken in Maine.
We also give a cut taken from a specimen in the American Museum of Natural History. It is 2 rare insect, but widely distributed from New England to the Mississippl through the northern tier of states.

Genus RHODOPHORA Guenée

(1) Rhodophora gaure Abbott \& Smith, Plate XXVII, Fig. 18, 8.

Sya. matutina Hâbner.
A very common species in the southern and southwestern portions of our territory. The larva feeds upon Gaura biennis.
(2) Rhodophora florida Guenée, Piate XXVII, Fig. 19, 8.

Ranges from Canada to the Carolinas and westward as far as Utsh.
(3) Rhodophora citronellus Grote \& Robinson, Plate XXVII, Fig. 20, 8 .

This is a common species in Texas and Arizona. It occurs also in Cooorado.

Genus RHODOSEA Grote

(1) Rhodosea julla Grote, Plate XXVII, Fig. 53, \%

The moth occurs In New Mexico and southward to northern Mexlco. The specimen figured on the piate is contained in the United States Nationai Museum.

Genu: RHODODIPSA Grote

(1) Rhododlpea volupia Fitch, Piate XXVII, Fig. 22, 8. Habitat Colorado and Texas.
(a) Rhododipaa mInlana Grote, Plate XXVII, FIg. 23, 8 . The insect occurs In New Mexlco.
(3) Rhododlpaa masoni Smith, Plate XXVII, Fig. 24, \&. This species has thus far oniy been reported from Colorado.

Genus TRIOCNEMIS Grote

There is only one specles of this genus, to which Grote applied the specific name saporia. The male ls depicted on Plate XXVII, FIg. 21. It ranges from Washington and Caiifornia eastward to Colorido.

Genus PSEUDACONTIA Smith

This is another genus represented thus far by one specles. The Insect received the specific name crustaria at the hands of Morrison. The figure we glve was taken from a speclmen contained In the United States National Museum at Washington. The insect ranges from Nebraska to Coiorado and Wyoming.

Fic. 133.-Psendu. conlia crustaria.

Genu: GRAEPERIA Grote

The only species attributed thus far to this genus is still a

Fio. 134-Graperia magnifica, \&. \& rare Insect in collectlons. We give a figure of the type contained in the coliection of the late Berthold Neumaegen, whlch Is preserved at the Brooklyn Institute. Th = insect occurs In Texas. The fore wings are deep maroon, edged anterlorly with pale creamy white.

Nensuide

Genue PORRIMA Grote

(1) Porrims regis Strecker, Phate XXVII, Fig. 26, 8.

This is a southern species, found in Texas, and also ranging northward as far as Kansas and Colorado.

Genus TRICHOBELLU8 Grote
(1) Trichosellus cupes Grote.

Syn. crotchi Henry Edwards.

Pio. $135 .-$ Tricho sollus cupes. \&. t.

This little moth, which is the only one belonging to the genus, is represented in the annexed figure by drawing of the type, which is preserved In the American Museum of Natural History.

Genus EUPANYCHIS Grote

The only species belonging to the genus was originally named apinosse by Guenée. Grote \& Robinson subsequently called it hirlella. It occurs from Canada southward to the Potomac and westward to Illinois. The figure we give is from : drawing of a specimen in the United States National Museum.

Fic. 137.-Cunidia scissa.
This is a Floridan species, a figure of the type of which has been prepared for this book under the supervision of Sir George F. Hampson.

Genus SCHINIA Hübner

This is a very extensive genus of small and rather pretty moths, which are particularly abundant in the grassy and seiniarid
lands of the southwestern States. There are, how aver, a number of specles, which occur In the Atlantic subregion.
(1) Behinla chryaellus Grote, Plate XXVII, Fig. 28, i.

The fore wings sre sllvery white. The Insect is strikingly beeutiful, and is not ot all uncommon In the States of Colorado, Now Mexlco, end Texas.
(2) Schinia aleucia Harvey, Plate XXVII, Fig. 29, δ.

Thls specles Is smalier than the preceding, which it resembles In e general way. Th = ind wings are darker. It occurs In Texas,
(3) Bchtria cun. 1 ilis Grote, Plate XXVII, Fig. 30, 8.

A beautiful speri. vith livers-white wings. It may at once be distimp wishe' from the t ireceding species by the different arran m_{f} tent of it : lations upon the fore wings. It is

(4) Schinia tribarcia lohu: 1 ', 'e XXVII, Fig. 35.8.

8yn. Jineri' : Whalicer
The moth is fouth fron the Allantic to the foothils of the Rocky Mountians in colondo and Wyoming.
(5) Schinia simplex = nith, Plaic XXVII, Fig. 39, \&

The home of this $s p=$ les i. colorido. The fore wings in some specimens are nutich brighter gicen than shown on the plate.
(6) Schinia mundina Urury, Plate, XXVII, Fig. 33, 8.

Syn. nigrivena Haworth.
This is a strikingly marked species, which cannot easily be mistaken for anything else. It ranges from New Jersey southward and westward to lilinois and Kentucky.
(7) Schinia meutlinea Grote, Plate XXVII, Fig. 34, 3.

Syn. separata Grote.
The moth is found In Colorado and Utah.
(8) Schinia brucel Smlth, Plate XXVII, Fig. 37, 8.

The home of the Insect is Colorado.
(9) Schinia iynx Guenée, Plate XXVII, Fig. 38, 8 .

Is taken from Massachusetts to Florida and westward to the MississIppi.
(10) Schinia roscitincta Harvey, Plate XXVL, Flg. 36, δ. Syn. exaltata Henry Edwarda.
Has been found from Colorado to Texas.
(11) Schinia aaturata Grote, Plate XXVII, Fig. 43, 3.

Ranges from Massachusetts to Florida, and westward to Texas and southern Cailfornia.

Noctuide

(12) Schinia tertia Grote, Plate XXVII, Fig. 39, 9.

This species is common in Texas.
(13) Schinle albafascia Smith, Plate XXVII, Flg. 45, 9. The habitat of this specles is Utah and Colorado.
(14) Schinia jaguarina Guente, Plate XXVII, Fig. 41, 8.

The species ranges from western Pennsylvanla to Nebraska and Colorado and southward to Texas.
(15) Schinia arcliera Guente, Plate XXVII, Fig. 42, \&. Syn. spraguci Grote.
The specles occurs from New England to New Mexico and southward.
(16) Schinia packardi Grote, Plate XXVII, Fig. 31, 8.

Syn. Mortua Grote; mobilis Grote.
Distributed from Colorado to Texas and Arizona.
(17) Schinla thoreaul Grote \& Robinson, Plate XXVII, Fig. 46, 8 .

Ranging from the valley of the Ohio southward into Texas.
(18) Schinla marginata Haworth, Plate XXVII, Fig. 44. 8.

Syn, rivulosa Guenee; divergens Walker; contruta Walker; designata Walker.

Found from New York to lowa and thence southward.
(19) Schinia brevis Grote. Plate XXVII, Fig. 40, 8.

Syn. atrites Grote.
This species is spread from Massachusetts to lowa and southward to New Mexico.

Genus DASYSPOUDAEA Smith

(1) Dasyspoudzea lucens Morrison, Plate XXVII, Fig. 47, 8.

A common insect in Nebraska and westward in Colorado and Wyoming.
(2) Dasyspoudxa meadi Grote, Plate XXVII, Fig. 48, 8.

Ranges from Montana southward to Colorado.

Genus PSEUDANTHGECIA Smith

(1) Pseudanthcecia tumida Grote, Plate XXVII, Fig. 49, 8.

This insect occurs from Colorado to the higher plateaus of northern Mexico. It is common in Chihuahua.
Explanation of Plate Nixvit
(Except when otherise, indicated, the specione coflection of w, tained in the coflection of W. J. Folland.) specimen
Calymnia arina Guení. Jolland.)
Zotheca tranguilla Grote, 0^{7}.
28. Schiniu chrysellus Grote, of.
39. Schinia aleucis Harvey, 0^{7}. o^{7}. pleonectusa Grote.
4. Alethmics subusta Hühner U. S. N. M
31. Schinia cumatilis Grote, or
32. Schini packardi. or
5. Authmia rectifuscia Grote, c^{x} U. S. N. M.
Trichocosmia o^{7} U. S. N. M
7. Antaplaga dim.
8. Grotella dis Grotiala Grote. o^{7} M. Grote, o^{\prime}, U. S. N
9. Vucterophata luna Morrism. \& o. Copablepharon grandis Streckicr σ^{\prime}.

1. c'opablephuran
Grote 0 V il lungipenure
2. Cupablepturin. S. N. M. σ°.
3. Thyreiner rose
S. N. M. Smith. f, t
4 (hluridea
0^{7}. wess ms Fabricius,
4. Helioch ©
5. Heliothis
6. Hclinthis andiri Fabricius. of
is. Whudophore ger Hübner. δ^{7}.
Smith, of
7. Rhodophora flo
8. K'hodophora foriala (rucnée, a^{7}
Robinson curonellus firote \&
21 Trionemis.
U. S. N M Muris Girote, O^{7}.
2 Kíntelipa
2) Nhturhalips mippis Fitch, ${ }^{7}$
af Kímhalipia mintana Grote: of
2г. I'seutulumila mani Smith, o
(i. S. N. M.
26 porrima N. M.
3) Fima rigia Strecker,
7. Porriura glariosa Strecker, of.
8. Schinia nurdite Smith, \circ.
9. Schinia acutilina Drury, 0^{7}.
10. Schinia trifascia Grote, 0^{7}
11. Schinia rosestinctubbner, of
12. Schinia brucei Sla Harvey, of
13. Schinia lynx
14. Schinia tertia Guenee, 0^{7}.
15. Schinic bria Grote, of
16. Schinia bevis Grote, or
17. Schinia
18. Schinia arcijera Guene.
19. S'chinia saturala Grote, of. 0^{*}. marginala Haworth
20. Schinia albafuscia Smith, \&
21. Schiniziz thorcaui Grote \& Robin. son, σ^{7}.
22. Dasyspoudcca lucens Morrison 0 .
23. Dasyspozdea meadi Grote, ot
24. Stylapoda
25. Melicleptria phalica Smith, of.
26. Melicleptria sueta Grote, 0^{7} Grote, or pulchripennis
53 Rhutir N. M. ${ }^{\text {alia Grote. o, U. S. }}$
27. Afelaporphyria

Edwards, "rcgona Henry
55. Dysuc

Edwards, of. ${ }^{7}$.
56 IIclia
57. Axenus arioli, Crote Grote, δ^{7}.
alt: Grote. ${ }^{1}$.
59 Oninune modicella Grote, :
6o. Xanthothrir Mith, Ot 7 U.S.N.M.
Edwards, \%.

1. Heliophana mitis Grote 0^{7}.

Genus PALADA Smith
There is but one species of the genus, and we are abie to give a figure of the type of this through the kindness of the authorities of the United States National Museum, It received the specific name acarletina at the hands of Prof. J. B. Smith. Its habitat is California.

Fio. 138.-Palada scarletina, $\%$.

Genus STYLOPODA Smith

(1) Stylopoda cephallca Smith, Plate XXVII, Fig. 50, 8. This is a very common species in southern California.

Genus SYMPISTIS Hübner
This is another of the many genera among the Heifothid

Fic. 139.-Sympistis proprius, δ. \ddagger moths, which are represented thus far in America by but a single species. The insect was named proprius by Henry Edwards, and we give a figure of the type which is in his collection now in the possession of the Americin Museum of Natural History.

Genus MELAPORPHYRIA Grote

This little genus contains three species. Of these we select one for lllustration.
(1) Melaporphyria oregona Henry Edwards, Plate XXVII, Fig. 54, δ.

The range of the species is from Colorado to Oregon.

Genus DYSOCNEMIS Grote

(1) Dysocnemis belladonna Henry Edwards, Plate XXVIl, Fig. 55, 8 .

This beautiful little moth occurs in Utah.

Genus PSEUDOTAMILA Smith

(1) Pseudotamila vanella Grote, Piate XXVil, Fig. 25, 8. Found among the mountains of Nevada and California.

Noctulde

Genu: MELICLEPTRIA Hübner

(1) Molicleptria pulehripennia Grote, Plate XXVII, Fig. 53, 8.

Syn. Lamguida Henry Edwards
The range of this insect is from Colorado to Callforma.
(2) Melicleptria mueta Grote, Plate XXVIl, Fig. 51,

Syn. californicus Grote
Is distributed from Colorado to California.

Genus HELIOLONCHE Grote

(') Heliolonche modicella Grote, Plate XXVIl, Fig. 58, of . The moth is distributed from California to Colorado and Wyomlng.

Genus OMIA Hübner

(t) Omia nesaea Smith, Plate XXVIl, Fig. 59, δ.

The habitat of this little moth is California.

Genus HELIOPHANA Grote

(1) Hellophana mitis Grote, Plate XXV1l, Fig. 6t, δ. Syn. obliquata Smith.

Genus HELIODES Guente

There are but two species so far known to

Fic. 840. Holiades restrictalis. 8 . belong to this genus. They both occur in California, and are among the smallest of the Heliothids. We glve in the annexed cut a representation of the type of the species named restrietalis by Prof. J. B. Smith.

Genus heliosea Grote

The figure of the type of the genus and the species is kindly loaned me for use in this book by Sir Geerge F. Hampson. It is

Noctuida taken from the "Catalogue of the Lepidoptera Phalana," Vol. IV. The moth occurs in Californla.

Genus XANTHOTERIX Henry Edwards

(1) Xanthothrix neumogeni Henry Edwards, Plate XXVII, Flg. 60, $\%$.

Thls pretty bright colored little moth occurs in California.

Genus AXENUS Grote

(1) Axenus arvalis Grote, Plate XXVII, Fig. 57, δ.

Syn. ochraceus Henry Edwards; ampsus Henry Edwards.
A common insect ranging from Colorado to California and southward.

Genus HELIACA Herrich-Schaffer

Five species are attributed to this genus, of which we illustrate one.
(1) Heliaca diminutiva Grote, Plate XXVII, Fig. 56, 2.

The range of this species is the same as that of the last mentioned.

Genus EUPSEUDOMORPHA Dyar

(1) Eupseudomorpha brillians Neumagen.

Of this beautiful insect, which is still very rare in collections, we give a figure drawn by the writer from the type, which is contained in the Neumœgen Collection. The moth inhabits Texas.

Fig. 142.-Eupseudomorphabrilians of t.

Genus XANTHOPASTIS Hübner

(1) Xanthopastis timais Cramer, Piate XI, Fig. 17, \%.

Syn. ragnatrix Grote.
This insect has a very wide range all over the tropics of the New World. It occurs not infrequently in the Gulf States, and occasionally ranges as far north as New York.

Noctuid

Genus PSYCHOMORPHA Harris

(1) Paychomorphe eplmenls Drury, Plate lil, Fig. 9, 8.

This very beautiful littic moth appears on the wing early in the spring in Pennsylvania. it is not uncommon in the Atiantic States. Hitherto lt has
 been placed by many authors among the Agarislida, but we Incline to the opinion that it is better located where we have put it, among the Noctuida. Larval characteristics, however, show a great likeness in this stage of development to the species included in the genus Alypia. The accompanying cut, which we have reproduced from the writings of Prof. C. V. Riley, may be compared in this connection with the figure of the larva of Alypia octomaculata glven on page 144.

Genus PSEUDALYPIA Henry Edwards
This genus, like the preceding, has been located by some recent writers among the Agaristida. The moth is undoubtedly a Noctuid. I have placed it here in the order of arrangement, believing that upon the whole it is beller located at this poinl in the serial arrangement than anywhere else. The figure annexed is

Fio. 144.-Psendalypia crothi, \%. \ddagger. that of the type preserved in the American Museum of Natural Hislory. It was drawn by Mrs. Beulenmailer.

Genus eUTHISANOTIA Hübner

(1) Euthisanotia unio Hübner, Plate XVil, Fig. 24, 3. (The Pearly Wood-nymph.)

This lovely moth has a wide range throughout the eastern portions of our territory as firr west as the Mississippi.
(2) Euthisanotia grata Fabricius, Plate XVII, Fig. 23. 8. (The Beautiful Wood-nymph.)

Syn. assimilis Boisduval.

Thls is a much larger has practically the same range of distribution. The affinity of the genus to the genus Psychoniorpha is clearly shown by the larva, a representation of which is given in the annexed cut taken from the writlngs of Prof. C. V. Riley, who devoted considerable time to the study of the life-history of these insects.

Fio. 145-Euthisanotia gratu. a, Fullgrown larva; b, enlarged segment, side view: c, cervical shield from behind; d, anal hump from behind; -1 , top and side views of egg, enlarged. (After Riley.)

Genus CIRIS Grote

(1) Ciris wilsonl Grote, Plate XIX, Fig. 2, 8.

This insect occurs in Texas and Arizona. It has also been referred to the Agaristida and to the Zyganide by various authors. There Is, however, no doubt as to its being a true Noctuld.

Genus NOROPSIS Guenée

(1) Noropsis hieroglyphica Cramer, Plate XXVIII, Fig. 1, 8.

This very pretty moth has a wide range in the hotter portions of America. It is found in Florida, and represents the invasion of our southern territory by the fauna of the Antilles, and South Ameris.

Genus Fenaria Grote

(1) Fenaria longipes Druce, Plate XI, Fig. $16,3$.

The species occurs in Arizona and ranges thence southwardly into Mexico.
(2) Fenaria sevorsa Grote, Plate XVII, Fig. 12.9. Syn. adessa Druec.
The species has the same range as the preceding.
" I love the season well
When forest glades are teeming with bright forms."
Longretlow. An April Day.

Genus ACHERDOA Walker

Only one species of the genus is attributed to it from our fauna. It recelved the specific name farra-

Fia. 146.-Acherdoo ferraria, 8. t. sia at tha hands of the lata Francis Walker, and was ranamed ornets by Neumogen. Tha cut we glve was drawn by Mrs. Beutenmoller from a specimen in the American Museum of Natursi History. It represents the male Insect.

Genue AON Noumceren

(1) Aon noctuiformis Neumcegen, Plate XL., Fig. 18, 8. This is not an uncommon moth in southern Texas.

Genue CIRRHOPHANUS Grote

(1) Cirrhophanue trisngullfer Grote, Plate XXVIII, Fig. 2, 8.

The insect varies considerably in size, the specimen depicted on the plate being rather small. It is not an uncommon species in the southern States, and is also found as far north as Pennsylvania.

Genue BASILODES Guenee

(1) Beallodes pepite Guente, Plate XXVIII, Fig. 7, 8.

The genus Basilodes contains a number of species which are all, with the single exception of this species, natives of the scuthwestern portions of our territory. The present species occurs from Pennsylvania to Florida and westward to Colorado. The insect has been occasionaily taken in Pittsburgh.

Genus STIRIA Grote

(1) Stiria rugifrons Grote, Plate XXVIII, Fig. 5, 8.

The specimen figured on the plate was caught by the writer in southern Indiana. It is reported also from Kansas and Colorado. It probably has a wide range, but is as yet rare in collections.

Genus STIBADIUM Grote

(1) Stibadium apumosum Grote, Plate XXVIII, Fig. 3, 8.

The insect ranges from New York to Colorado and southward. It is very abundant in southern Indiana, where it comes fieely to sugar.

Genue PLAGIOMIMICUS Grote

There are five species reckoned as belonging to this genus. All of them are southwestern and western forms, except the one ws figure.
(I) Plagiomimicue pityochromue Grote, Plate XXVIII, Fig. 9, 8.

This moth is quite commen in western Pennsylvanla. It ranges southward and westward to the Guif States and Colorado.

Genus FAla Grote

(1) Fala ptycophora Grote, Plate XXVIII, Flg. 4, 8.

The habitat of this insect, which is the sole representative of its genus, is California.

Genus NARTHECOPHORA Smith
This is another genus in which we recognize thus far only one species.
(1) Narthecophora pulveres Smith, Plate XXVIII, Fig. II, 9 .

The figure is taken from a specimen determined by the author of the species, and contained in the United States National Museum.

Genus NEUMGEGENIA Grote

The only species of this genus was nained poetica by Grote. It is s beautiful little moth, the fore wings being bright metallic green, with a golden reflection, the light spot, which is outwardly trifid, and the costa being creany yellow. The drawling for the annexed cut wals made from the type which is preserved at the Brooklyn Institute.

Fic. 847.-Neuma. genia poetica, ot. \mathbf{t}.

Genus PLUSIODONTA Guenće

The only species of this small genus recognized as found in North America was named compressipaipis by Guente. Walker renamed it insignis. It is represented on Plate XXVIII, Fig. 6, by a male specimen. The insect is a native of the Atlantic subregion, and is locally very common in western Pennsylvania.

Genus GONODONTA Hübner

This genus is representative of the tropical fauna of America, and but two species occur within our limits, both of them in the warmer parts of Florida.
(1) Gonodonta unica Neumœgen, Plate XXVIII, Fig. 10. δ.

The larval stages have been well described by Dyar in the " Proceedings of the United States National Museum," Vol. XXIII, p. 272. The caterpillar feeds on Anona laurifolia, the Custardapple.

Genus CALPE Treitschke

The genus Calpe is found in the temperate regions of both hemispheres. Only one species occurs in America.
(1) Calpe canadensis Bethune, Plate XXVIII, Fig. 8, 8. (The Canadian Calpe.)

Syn. purpurascens Walker; sobria Walker.
The range of this species is restricted to the colder portions of our territory. It is found in Canada, rarely in northern New York, and ranges westward to Alberta.

Genua PANCHRYSIA Hübner

This genus, which is generally known under Walker's name Deva, is better represented in the eastern hemisphere than in the western. We figure one species of the four credited to our fauna.
(1) Panchrysia purpurigera Walker, Plate XXVIll, Fig. 13, 5 .

This pretty little moth, which is not very common, ranges from New England and Canilda to Colorado and New Mexico.

Genus POLYCHRYSIA Hübner

Two species, both of which we figure, are attributed to this genus as occurring within our territory.
(1) Polychrysia moneta Fabricius, Plate XXVIII, Fig. 12, 8. Syn. trabea Smith.
This is a European insect, which is found also in Alberta and Assiniboia.
(2) Polychrysia formosa Grote, Plate XXVIII, Fig. 14, 8.

So far, all the specimens which have come under the observation of the writer have been taken in New England or in New York.

Genus PLUSIA Hübner

Three of the four species attributed to the genus as found in America are represented upon our plate
(1) Plusia serea Habner, Plate XXVIII, Fig. 16, 8.

The moth ranges from Nova Scotia to Florida and westward to Texas and the region of the Rocky Mountains.
(2) Plusia seroides Grote, Plate XXVIII, Fig. 17, δ.

The distribution of this species is almost identical with that of Plusia area. The larva feeds on various species of Spiraa.
(3) Ilusia balluca Geyer, Plate XXVIli, Fig. 22, 7.

The species is not uncommon in the northern Atlantic States.

Genus EUCHALCIA Hübner

(1) Euchalcia contexta Grote, Plate XXVIII, Fig. 23, 3.

The species is found from Maine to Wisconsin, and occasionally as far south as the mountains of central Pennsylvania.
(2) Euchalcia putnami Grote, Plate XXVIII, Fig. 15, δ.

Dr. Dyar with questionable correctness treats this species as a form of the European festuce Linneus. There is no doubt of the distinctness of the two.
(3) Euchalcia venusta Walker, Plate XXVIII, Fig. 21, 8. Syn. striatella Grote.
The range of this species is from Nova Scotia and Canada southward to the mountains of West Virginia.

Genus EOSPHOROPTERYX Dyar

(1) Eosphoropteryx thyatiroides Guenée, Plate XXVIII, Fig. 18, δ.

This lovely moth is still very rare in collections. It ranges from New England and Canada to the mountains of Virginia and westward into the Valley of the Mississippi.

Genus AUTOGRAPHA Hübner

Thls is a large assemblage of species, about fifty being recognized as occurring in the United States. Of this number we are only able to figure about one third.

Noctuidm

(I) Autographa bimaculata Stephens, Plate XXVIII, Fig. 19, 8.

Syn. u-brevis Guepte.
This is a common species in the northern Atlantic States.
(2) Autographa biloba Stephens, Plate XXVIII, Fig. 24, δ.

The species is distributed widely from the Atlantic to the Pacitic.
(3) Autographa verruca Fabricius, Plate XXVIII, Fig. 20, δ.

Syn. omega Hübner; oo Cramer: omicron Hūbner; questionis Treitschke; rutila Walker.

The moth is scarce in the northern Atlantic Stites, but has been recorded as occurring in Massachusetts. It ranges from New England to Texas and southward through Central and South America.
(4) Autographa rogationis Guenée, Plate XXVIII, Fig. 25, δ.

Syn. hamifera Walker; dyaus Grote; includens Walker: culta Jintner.
The range of this species is the same as that of the preceding.
(5) Autographa precationis Guenée, Plate XXVIIl, Fig. 28, of.

The insect is found in Canada and the United States east of the Rocky Mountains.
(6) Autographa egena Guenée, Plate XXVIII, Fig. 29, ${ }^{\circ}$.

This is a southern species, occurring in Florida and the Gulf States, and ranging southward into South America.
(7) Autographa flagellum Walker, Plate XXVIII, Fig. 27, δ. Syn. mo:zodn Grote; insolita Smith.
The species ranges from Quebec to Alberta.
(8) Autographa pseudogamma Grote, Plate XXVIII, Fig. 35, ठ.

The insect is indigenous in Quebec and Nova Scotia.
(9) Autographa ou Guenée, Plate XXVIII, Fig. 33, \ddagger.

Syn. fratetta Grote.
This species is almost universally distributed through the United States and southern Canada.
(10) Autographa brassicar Riley, Plate XXVIII, Fig. 36, δ. Syn. echinocystis Behr.

Nostuld
This insect, whish preys upon the Cruciferae in its larval state, has been well described and its habits fully set forth by Prof. C. V. Rlley In the Missouri Reports. It is from his paper upon the species that we have been permitted to extract the figure which is herewith annexed of the insect In Its various stages. The moth appears to be very generally distributed throughout the United States and Canada, and does a good deal

Fic. 148.-Alitograp sa brassia .o. Full-grown larva: b, pupa; c, male moth. (After Riley.) to diminish the supply of the raw material from which sauer-i:raut is made.
(11) Autographa oxygramma Gryer, Plate XXVIII, Fig. 30, 8.

Syn. indigna Walker.
The moth is found in th athern States, and thence southward to South America.
(12) Autographa rectangula Kirby, Plate XXVIII, Fig. 32, $\%$. Syn. mortuorum Guenee.
This lovely species is northern in its range. 1 found it quite abundant one summer at Saratoga, New York.
(13) Autographa vaccinii Henry Edwards, Plate XXVIII, Fig. 34, δ.

This species may easily be distinguished by the strongly checkered fringes of the primaries.
(14) Autographa selecta Walker, Plate XXVIII, Fig. 39, of Syn. viridisisignata Grote.
This is a somewhat large species, not very attractively colored. It is northern in its range.
(15) Autographa angulidens Smith, Plate XXVIII, Fig. 38, 8.

Noctuide

The species is found in Colorado, and probably has a wide range In the Rocky Mountains.
(16) Autographa ampla Walker, Plate XXVIII, Fig. 31, 8.

Thls fine specles is northern in lts range, but extends its habitat southward along the ranges of the great mountains of the west
(17) Autographa basigera Walker, Plate XXVIII, Fig. 26, 8. Syn. laticlavia Morrison.
The insect occurs in the Appalachian subregion.
(18) Autographa simplex Guence, Plate XXVIII, Fig. 37, 8.

This is one of the very commonest species of the genus, which is apparently universally distributed throughout our country.

Genus SYNGRAPHA Hübrer

This genus is composed of species which are subpolar in their habitat. Of the four species which are reckoned as belongIng to the fauna of North America, we illustrate two.
(1) Syngrapha hochenwarthi Hochenwarth, Plate XXVIII, Fig. 41, 8.

Syn. divergens Fabricius.
Found everywhere in Arctic Anierica. The specimen figured was taken In Labrador.
(2) Syngrapha devergens Habrie:, Hlat XXVill, Fig. 40, $\%$. Syn. alticola Walker.
The species Is found in Labrador, and has been reported from the high mountains of Colorado. It will probably be found to have a wide range.

Genus ABROSTOLA Ochaenheimer

We give representations of both the species which occur in our fauna.
(1) Abrostola urentia Guenée, Plate XXVIII, Fig. 42, 8.

The insect, which is by no means common, is found in the Appalachian subregion.
(2) Abrostola ovalis Guenée, Plate XXVili, Fig. 43, 8.

The range of this Insect is the same as that of the last mentioned.

Explanation of Platr XXVill

(Linless oflerwise indicated, the speromens figured are contained in the enllection of W. J. Heiland)

1. Niropsis hieroglyphical Cramer. σ^{7}.
2. f'irriophanus triangulifer (irnte. §. U. S. N. M.
3. Stibuifum spuhosinn Grate:
4. Fisha pliwhiphers Grote. ci. U. S. N M
5. . itiviat ruxifroms Grote. 0°
h. J'hsiodunt, comprissipulpis Guencer δ.
6. Busilodes pepifr Gumee, F
7. (ialpe canadensis Betlune. O U. S. N . ${ }^{1}$
8. Phghomimions pitanhromus. Crote, §
 f. U. S. N. . I
it Narilecopharis puliaria Snith. ©, U. S. N $\quad 1$
9. Polychrysia momela Fabricius. var. esinerclifs, Oberthür, $\%$.
10. Panchrysia purpurigeru Walker, o^{7}
11. Polychrysia formusa Grote. σ^{x}
12. Euchalcia putnami Grote. σ^{π}.
13. Plusia area Hubner. 0^{7}.
14. Plusis aroides Grote. Q
15. Eosphoropteriv thylatirinides Guenée.
1q. Intographabimaculata Stephens. 0^{π}
16. Autugrapha terrucu Fabricius. 0^{2}

17. Ihusia balluca Gever. (V.
18. Enhhaleia contexfu (irote. o

24 . Anhegrepha biloha Stepherns. θ^{7}
25. Iatographat rogathui. (ixeres. C
Intusisphathoviger Wialker.
Intagrisphatherollum Walker. 0
Anfographa promationts limenée. c^{*}.
Inhagraphat chen (iwncer. तो
Intographas or mganma Gever $\vec{~}{ }^{7}$

Intogrsphat rofamenta Kirliy. 7
. Iutographas 'in Genéc. j
Antographa inticinii Henry Edwaris. 0^{π}.
35. Intographa pisetilog is m m is Grote, σ^{x}.
36. Intographa brassicia Ritex, 0^{π}
37. Iufographa simplex Guenée. σ^{2}.
S. . Infugrapha ungulidius Smith. c.
9. Inlugrapha selich Walker. 0^{7}.
40. Simgraphas detergeth Huhner ?

1. , yugraplua hochenuarthi 1linhenwarth. σ°.
1 brosioda urintis Guenee. O^{π}
Abrostola mulis Guenèe. 0^{7}
Behrensia conchiformis. Grote,
σ^{π} U. S. N. M.

-2

Genu- EHRENSLA Grote
Only one species has il. s far been attributed to this genus. (1) Behrensia coneniformis Grote, Plate XXVIII, Fig. 44, 8 .

This little insect, whlch is as yet very rare in collectlons, is found in northern California and Oregon.

Genue DiAstema Guenée

(1) Dlawtema tigria Guenéc.

Syn. lineata Walker.
The sole species belonging to the genus, which occurs within our borders, has beef reported from Florida. We give in :he accompanying cut an illustration of a specimen which is found in the Americatn Museum of Natural History.

Fia. i49-Diastema sigris.

Genus OGDOCONT/. Butler

(1) Ogdoconta cinereola Guenée, Plate XXiX, Fig. I, \&. Syn. atomaria Walker.
This is not at ali an uncommon species In the Atlantic subregion. I have found it particularly abundant in southern Indiana, where it comes freely both to light and to sugar.

Genus PAECTES Hübner

Eight species are enumerated as belonging to this genus in Dyar's recently published Catalogue. Of these v'e have given illustrations of three in our plates.
(1) Paectes abrostoloides Guenee, Plate XXIX, Fig. 3, 8.

The insect occurs in the Atlantic States, and ranges west ward into the Mississippl Valley.
(2) Paectes pygmaes Hübner, Plate XXIX, Fig. 2, 8.

This is a southern species. The specimen from which the figure on the plate vas taken was captured in Texas.
(3) Paectes ocluatrix Guenéc, Plate XX.IX, Fig. 4, $\begin{gathered}\text {. }\end{gathered}$

The species is by no means very coramon. I' bas a wide range from the Atlantic into the basin of the Mississippi. The specimen figured on the plate was taken in western Pennsylvania. I have specimens from Indiana and Illinois.

Nestulde

Genue EUTELIA Hübner

(1) Eutella pulcherrima Grote.

Syn. dentifera Walker.
The only species of this genus known to occur withir our territory is that which is figured in the accompanying cut, which

was made from the type now In the possession of the British Museum. The Insect Is found in New York and New Jersey, but probably has a wider southern range. It is as yet very rare in collections.

Genus MARASMALUS Grote

(1) Marasmalua Inficita Walker, Plate XXIX, Fig. 6, 8. Syn. histrio Grote.
This specles is found from the northern Atlantic States and Canada southward and westward to Texas and Colorado.
(a) Marasmalus ventilator Grote, Plate XXIX, Fig. 5. $\%$.

This species, which is considerably larger than the preceding, has the wings more or less marked by reddish scaies, which enables it to be easily discriminated from its congene:. Its range is practically the same.

Genus AMYNA Guenée

(1) Amyna octo Guenée, Plate XXIX, Fig. 7, q.

This little moth has suffered more than any other known to the writer by being made the sport of the makers of synonyms. No less than nineteen synonyms have been appiied to it in addition to its true name. In Dyar's Catalogue it appears under the name orbica Morrison, and tecta Grote Is given as a synonym. The student who wishes to know what some of the other names are which have been given to it may corisult Hampson's "Moths of India," Vol. II, p. 251. It is found throughout the hot lands of both hemispheres.

Genus PTERATHOLIX Grote
(1) Ptermetholix bullula Grote, Plate XXIX, Fig. 8, ε. The habitat of this little moth is the Gulf States.

Genus Alabama Grote
(1) Alabama argillacea Hübner, Plate XXIX, Fig. II. s. (The Cotton-worm Moth).

The Cotton-worm Moth is one of a number of Insects which annually inflict a vist amount of dannage upon the crops in the southern portion of our country. In Prof. Comstock's "Re. port upon the Insects which are injurious to cotton," published In 1879, and In the " Fourth Report of the United States En tomological Commission," there is given
a great deal of valuable and interesting information in regard to this species. Much may also be learned about it from the study of the "Missouri Reports" published by the late Prof. C.. V. Riley. The range of the insect is very broad. It sometimes, though very rarely, occurs as far north as Canada. From this northernmost location it has been found ranging southward as far as Argentina. It sometimes appears to migrate in swarms. A number of years ago, during a heavy snowstorm in November, inyriads of the moths suddenly appeared in the city of Pittsburgh, and they came flying in the evening to the electric lights. From one store the proprieior said that he hald swept them out by the

Nociulde
quart. I have a few of the insects which thus appeared, and the figure on the plate is taken from one of these specimens.

Genua ANOMIS Hübner

The species belonging to this genus are mainly southern. There is considerable uncertainty as to the identification of some of the species, which were named by the older authors. Of the four reputed to be found within our limits we figure the one which is commonest.
(1) Anomis crosa Hubner, Plate XXIX, Fig. 12, \& .

Occasionaliy found as far north as New ${ }^{\text {F }}$ Igland. Ranging thence southward into the South American continent.

Genus SCOLECOCAMPA Guenée

The only species of the genus so far known to occur in the United States was nained liburna by Geyer. Guenée subse* quently called it ligni. The larva feeds in decaying wood, particularly that of oaks, chestnuts, and hickories. It tunnels its way through the softer parts, and after reaching maturity makes a loose cocoon composed of a few strands of silk mixed with chips and the frass left In the burrow, from which it emerges in due season as the moth, which is represented on Plate XXIX, Fig. 16, by a male specimen.

Genus EUCALYPTERA Morrison

A small genus, the species of which are confined to the southern States and to Mexico and Central America.
(1) Eucalyptera strigata Smith, Plate XXIX, Fig. 9, 5.

The habitat of this species is Texas.

Genus CILLA Grote

(1) Cilla distema Grote, Plate XXIX, Fig. 10, .
This obscure little moth, the only representative of the genus in our territory, has hitherto only been reported from Texas.

Genus AMOLITA Grote

(1) Amollta fessa Grote, Plate XXIX, Fig. 13, δ.

The moth occurs from Massachusetts to Florida and westward to Texas and Colorado.

Genus RIVULA Guenée

(1) Rivula propinqualis Guenée, Plate XXIX , Fig. 14, $\%$. The range of this insect is from Nova Scotia to Texas, and across the continent as far as the Rocky Mountains.

Genus PSEUDORGYIA Harvey

(1) Pseudorgyia versuta Harvey, Plate XXIX, Fig. 17, 8. This insect is thus far only known to us from Texas.

Genus DORYODES Guenée

(1) Doryodes bistriaris Geyer, Plate XXIX, Fig. 15, 8. Syn. acutaria Herrich-Schæffer; divisa Walker; promptella Walker There are three species of the genus found in our territory, one of them, so far as is known to the writer, as yet unnamed. The insect we are considering ranges from Maine to Florida and westward to Colorado.

Genus PHIPROSOPUS Grote

(1) Phiprosopus callitrichoides Grote, Plate XXIX, Fig 18, $\%$.

Syn. nasutaria Zeller; acutalis Walker.
The species ranges from New York to Texas.

Genus ANEPISCHETOS Smith

The only species thus far referred to this genus, which was erected by Smith in 1900 for its reception, received at the hands of that author the specific name bipartita. A figure of the type, which Is contained in the collection of the United States National Museum, is given in the accompanying cut.

Anepischetos bipar. fita, 8 . \ddagger.

Genus diallagma smith

Fio. 153.-Diallagma lutea, $\delta \cdot \frac{1}{1}$.

This genus was erected at the same time as the preceding by the same author for the reception of the insect of which we give a representation in Fig. 153. Its habitat, as also that of the last mentioned species, is Florida.

Nectulde

Genus PLEONECTYPTERA Grote

This ls a genus of moderate size, which by some writers has heretofore been placed among the Pyralida, though it is undoubtediy correctly located among the Noctuida. Eight specles are credited to our fauna in the latest catalogue.
(1) Pleonectyptera pyralis Habner, Plate XXIX, Fig. 19, $\%$.

Syn. irrecta Walker; floccalis Zeller.
The insect ranges through the southern Atlantic States to Central and South America.

7.1
 Genus ANNAPHILA Grote

A genus of moderate extent, embracing over a dozen species, which are found within the United States.
(1) Annaphila diva Grote, Plate XX|X, Fig. 20, ${ }^{\text {s }}$.

The habitat of this pretty little moth is California.
(2) Annaphila lithosina Henry Edwards, Plate XXIX, Fig. 21, 8 .

The specimen figured in the plate came from southern California.

Genus INCITA Grote

Fig. 154. - Incita aurantiaca, \$. \ddagger.

Oniy a singie species, the type of the genus, is known. The figure we give in the annexed cut is drawn from the type in the possession of the American Museum of Natural History in New York.

Genus TRICHOTARACHE Grote

The sole representative of this genus in our fauna is the insect the type of which is given in the accompanying figure, drawn for this work by Mr. Horace Knight, of London.

Fig. 155.-Trichotarache assimilis Grote, \& . \&.
The habitat of the moth is California.

Genus EUSTROTIA Fübner

This is quite an extensive genus, of which eignteen species are included in our fauna. Of this number we give illustrations of seven.
(1) Eustrotia albidula Guenée, Plate XXIX, Fig. 22, 8

Syn. intractabilis Walker.
This little moth ranges from the Atlantic to the Mississippi, and further west.
(2) Eustrotia concinnimacula Guenée, Plate XXIX, Fig. 23, 8.

Not an uncommon species in the Atlantic subregion.
(3) Eustrotia synochltis Grote \& Robinson, Plate XXIX, Fig. 24, 8.

The distribution of this species is the same as that of the last. It occurs from Canada to Texas.
(4) Eustrotla musta Grote \& Robinson, Plate XXIX, Fig. $25, \delta$.

Found from the Atlantic to the Rocky Mountalns.
(5) Eustrotia muscosula Guenée, Plate XXIX, Fig. $26,9$.

The moth has the same ranges as the last mentioned species. It is very common in Indiana.
(6) Eustrotia apicosa Haworth, Plate XXIX, Fig. 27, δ. Syn. migritula Guenée.
A very common species, having the same range as its predecessor
(7) Eustrotia carneola Guenée, Plate XXIX, Fig. 28, $\%$. Syn. biplaga Walker.
What has been said of the last species applies also $i n$ this, except that it Is, if anything, even more common.

(1) の.

Genus Galgula Guenee

(t) Galgula hepara Guenée, Plate XXIX, Fig. 31, \boldsymbol{z}.

Syn. externa Walker.
Form partitz Guenée, Plate XXIX, Fig. 32, 5.
Eyn. vesca Morrison: subpartita Guen6e.
This common insect exists, as is shown in the plates, in two forms, one quite dark, the other lighter. It is an inhabitant of the Atlantic subregion, and is particularly abundant in western Pennsylvania.

Noetuide

Genue AZENIA Grote

(1) Azenia implora Grote, Plate XXIX, Fíg. 29, 9. Not an uncommon insect in Arizona.

Genus LITHACODIA Hübner

(1) Lithacodia bellicula Hobner, Plate XXIX, Flg. 30, 8. This little moth may be found from the Atlantic to the Rocky Mountains. It is the only species of its genus occurring in the United States.

Genus PROTHYMIA Hübner

(1) Prothymia rhodarialis Walker, Plate XXIX, Fig. 38, $\%$. Syn. coccineifascia Grote.
The species ranges from Massachusetts to Texas.
(2) Prothymia semipurpurea Walker, Plate XXIX, Fig. 36, 9.

The species has the same range as the last. The specimen figured was taken at New Brighton, Pa., by the Messrs. Merrick, whose ardent and successful labors as collectors of the local fauna deserve all praise.
(3) Prothymia orgyix Grote, Plate XXIX, Fig. 37, 8.

Thls is a Texan species.

Genus EXYRA Grote

(1) Exyra semicrocea Guenée, Plate XXIX, Fig. 35, 9.

There are four species of the genus Exyra attributed to our fauna, but only one of these is figured. The species are mainly southern in their range. Exyra semicrocea is found from New Jersey southward and westward as far as Texas.

Genus XANTHOPTERA Guenee

Two of the four species which are found within the limits of the United States are represented upon our plates.
(1) Xanthoptera nigrofimbria Guenée, Plate XaiX, Fig. 33. 8.

The insect is found in the southern portions of the Appalachian subregion.

Noctuide

(2) Xanthoptera semifava Guente, Plate XXIX, Fig. 34, 8. The distribution of thls species is Identical with that of the one last mentioned.

Genus THALPOCHARES Ledorer

The only species of this genus found within our faunai limits Is a native of Florida. It received the specific name atheria at the hands of Mr. Grote. The illustration we give is drawn

Fig. 156.-Thalpochares atheriu, \&.1.
from the type which is preserved in the British Museum, and was drawn for this book by Mr. Horace Knight under the directlon of Sir Giorge F. Hampson. The insect is not common in collections.

Genus EUMESTLETA Butler

Seven species are given by Dyar in his Catalogue as occurring within the limits of the United States. The insects have a southern and southwestern range, occurring in the Gulf States and in Arizona. We have selected one of them for illustration.
(1) Eumestleta flammicincta Walker, Plate XXIX, Fig. 39, 8.

Syn. patula Morrison; patruelis Grote
The habitat of this insect is Florida and Texas.

Genus GYROS Henry Edwards

There is only one specles of this genus known. It received the name muiri through Mr. Henry Edwards in honor of his friend, John Muir, the well-known writer, whose charming descriptions of the natural beauties of the western portions of our continent have established for hlm an enviable
 position in the world of letters. The moth is Fig. 157.-Gyres found \ln California.

$$
\text { muiri, } \& \cdot \ddagger
$$

Genus TRIPUDIA Grote

This is a genus of considerable size, represented in the western and southwestern States by nine species, and well represented in the fauna of Mexico and Central America.
(1) Tripudia opipars Henry Edwards, Plate XXIX, Fig. 40, 8 .

This is a very common species in Texas.

Genus Metaponia Duponchel

Thic ganue is represented in both hemispheres. Three species occur in our fauna. Of these we figure two.
(1) Metaponia obtusa Herrich-Schaffer, Plate XXIX, Fig. 41. 9.

Syn. obtusula Zeller.
The insect occurs from the valley of the Ohlo southward to Texas. It is commoner in the south than in the north.
(2) Metaponia perflava Harvey, Plate XXIX, Fig. 42, $\%$. Not an uncommon species in Texas.

Genus CHAMYRIS Guenee

(1) Chamyris cerintha Treitschke, Plate XXIX, Fig. 43, $\%$.

The species is found from New England and Canada southward to the Carolinas aud westward to Kansas. The larva feeds on the Rosacea. The insect is very common in Pennsylvania, Ohio, and Indiana.

Ges: TORNACONTIA Smith

Two species have been attributed to this genus. One of them, which received the specific name sutrix at the hands of Grote, is represented in the annexed cut. It was drawn by Mrs. Beutennaller from a specimen in the collection of the United States Museum of Natural History in New York.
Fio. 158.-Torna. The insect is found in the region of the Rocky consia sutrix, of \&. Mountains.

Genus TEERABEA Grote

This is a small genus, represented in our fauna by two species. (1) Thermees flaviconta Smith, Plate XXIX, Fig. 47, 8. The moth occurs in the region of the Rocky Mountains.

Genus TARACHE Hübner

The genus is found In both hemispheres. It is well represented In our fauna, thlrty-five species being known to occur within the limits of the United States and Canada. Eleven of these are figured upon our plates.
(1) Tarache terminimacula Grote, Plate XXIX, Fig. 46, $\%$. The specles ranges from Massachusetts to Illinois.
(2) Tarache delecta Walker, Plate XXIX, Fig. 48, 8.

Syn. meiallica Grote.
The range of this species Is along the Atlantic coast. It occurs in the salt-marshes on Long Island and New Jersey, and ranges thence southward to Texas.
(3) Tarache flavipennis Grote, Plate XXIX, Fig. 52, 8. The habitat of thls species is the Pacific coast.
(4) Tarache lactipennis Harvey, Plate XXIX, Fig. 45, 8. Not at all an uncommon species in Texas.
(5) Tarache lanceolata Grote, Plate XXIX, Fig. 49, 5. This species, like the preceding, occurs in Texas.
(6) Tarache sedata Henry Edwards, Plate XXIX, Fig. 53 \$. The habitat of thls insect is Arizona.
(7) Tarache aprica Hobner, Plate XXIX, Fig. 50, 8.

The range of this species is from the valley of the Ohio southward to Texas and westward to Colorado.
(8) Tarache erastrioides Guente, Plate XXIX, Fig. 54, 8. The moth is found in New England and Canada and southward so far as West Virginia and Indiana.
(9) Tarache virginalis Grote, Plate XXIX, Fig. 51, 8. The habitat of the species is from Kansas to Arizona.
(10) Tarache binocula Grote, Plate XXIX, Fig. 44, 3. The range of this species is the same as that of the preceding.
(1i) Tarache libedls Smith, Plate XXIX, Fig. 55, 8.
The home of this Insect is New Mexico and Colorado.

Neetulde

Genus FRUVA Grote

The species belonging to this genus are southern and southwestern in their distribution. Six are known.
(1) Fruva aplcella Grote, Plate XXIX, Fig. 56, 9.

Syn. truncatula Zelter; accopta Henry Edwarde.
A very common specles in the Gulf States.

Genus SPRAGUEIA Grote

A genus of small, but very attractively colored moths, which requent the flowers of the Composita in the later summer.
(1) Spragueia onagrus Guenee, Plate XXIX, Fig. 57, 8.

The moth occurs quite abundantly in southwestern Pennsylvania and the valley of the Ohio, and ranges thence south wardly. It is common on the blossoms of the golden-rod (Solidago.)
(2) Spraguela plumbifimbriata Grote, Plate XXIX, Flg. 58, 9 .

This modestly colored specles is found in Texas.
(3) Spragueia dama Guenée, Plate XXIX, Fig. 59, 8. Syn. trifariana Watker.
This is a common species in the southern States.
(4) Spraguela guttata Grote, Plate XXIX, Fig. 60, 8.

This pretty moth ranges from Texas to Costa Rica.

Genus CALLOPISTRIA Hübner

(1) Callopistria floridensis Guenée, Plate XXIX, Fig. 61, 8.

As the name indicates, the species is from Florida.

Genus METATHORASA Moore

A genus represented in both hemispheres, and particularly well in Asia.
(1) Metathorasa monetifera Guenée, Plate XXIX, Fig. 02, 9.

A native of the Appalachian subregion, ranging from Canada to Florida. Thus far it does not appear to have been reported from any locality west of the Allegheny Mountains. I found it one summer quite abundantly at Saratoga, New York.

Explamation ar plath XXIX

(Except when utherwiwe indicated the xpecimen* figured are contained in the collection of W.J Ilolland.)

2. l'aites ryonian Ilubiner, ot.
3. Porites alimestombites Guende, 8
4. I'cectes enchatatrir fiuener. of Merrick Cidhetiom.
8. Mharasmales rentihum Grote. 8 .
o. . Murnsmalus inficitu Walker. σ^{7}

$*$ I'hracthilix bullula Grote, $0^{7}, \mathrm{U}$.

S. N M.

4. Liuculypicers strigata Smith, σ^{7}.
5. Cilla ilistema Grote. σ^{7}.
6. Nhathmis argillacea Iluhner. 0^{7}.
7. Anımiv erova llūbner. \&
8. IntohinjessaGGrote. O', U.S.N.M
9. Kiswh propinqualis Guenée, 8.
10. Dirsuydes bittriaris Geyer, σ^{7}.
11. Sindition \quad mpms liburna Geyer. σ^{7}
12. P'sublurevia wrsuta Harvey, 8. U. S. N. I.
13. Phiprasupus cullitrichondes Gruti.
14. Ploomectypiera piralis llâbner. 3 .
15. Inllaphitas dizas Grate, v^{7}.
16. Annaphilas lithusima Ilenty Edwards. 0
17. LEuserotia alhiduha Guenée. $\frac{\theta}{}$
18. Einstrutis runcinnimacula Gurner. . .
19. Eustrmia syuodritis Grote a Kobinion. 0^{7}.
20. l:ustratin masha Grote \& Rubin:on, σ^{7}.
21. Finstrisis muscosula Guené, 8.
22. Eustrotia apicosa Haworth, σ^{7}.
23. Enstrutia caruevla Guenér. 8.
24. Azenias implura Grote, \circ.
25. Lithacndia bellicula Hubner. \mathbf{o}^{7}.
26. Galguls hrpura Guenere of
27. (ialgula hepiris var. paritila Guence.
28. Nanthptira nigrofimbria Gucnés.
29. Vanthoptera semiflara Guente, σ^{7}
U. S. N. M
30. Porthymia somipurpurcuWalker, 9, Merrick (olliction.
37 I'rothymia argyur cirute, os
31. I'roftymia rhadurnalis Walk. r. \&
32. Eumestifa flaminuincta Walker, σ^{7}.
33. Tripudia apipara Ilenry E.lwards. σ^{7}.
34. Metupunsa abinsa Herrich. Schueffer, \%.
35. Melupunia perflava Harvey. 'f
36. Chamyris cerintha Treitschke. \%.
37. Tarache binurulu Grote, $0^{\prime \prime}$.
38. Tursdie lestipennis Harvey, $\%$
39. Turaihe Verim snimuculaGrote. y.
40. Therasea flaviciata Smith. O^{\prime}.
41. Turishe delectu Walker. :
42. Taraithe lanceolata Grite. ob
43. Taraclie upri, ${ }^{\text {I }}$ Habncr. ©
44. T'uracher surgenalis Grote.
45. Turathe thatiperinas Girute. o°.
46. Tarache seduhi Henry Edwarils, σ^{7}.
47. Turache erastrioides Guenér, $\%$.
48. Tarache libedi. Snith, 0^{*}.
49. Fruva apicallu Grote. \%.
50. Spraguisu unagras Gience. or 7.
51. Spragueiu plunbifimbriata Grote. \%
52. Spraguetis dants Guenée: d^{2}.
53. Spragucia gutbuta Grote. of.
54. Callopistria Huridensis Gut nee, σ^{7}. L. S. N. M
55. Metathurasu inimitijera Griente. Q.
56. Euherrichia arallissima Guenev. σ^{7}
57. C'ydasia innitella Stretch, σ^{7}.
58. (Ydusia aurizitta Grote \& Robinson, of
59. Cydosia majuscula Henry Edwards. §
60. Derrim, stellata Walker. σ^{7}.

The Morm Boons

Genus EUHERRICHIA Grote

A small genus represented by three species in our fauna. Euherrichis granilosa occurs in Fiorida; Euherrichia ceroina on the Pscific slope; and the species, which we figure, from Cansda to Florlda and westwsrd to Colorado.
(1) Euherrichia moiliasime Guence, Plate XXIX, Fig. 63, 8. Syn. rubicunda Walker.
The specimen depicted was taken in the neighborhood of Saratogs, N. Y.

Genue CYDOsiA Weatwood

A small genus represented in our fauna by three species, all of which we figure. The iarva pupates in a small cocoon made of strands of siik woven into the form of a globular basket with open meshes, which is suspended from the under side of a leaf by a long cord.
(1) Cydosia imitelle Stretch, .hate XXiX, Fig. 64, 8.

The moth is found in the southern States.
(z) Cydonia aurivitta Grote \& Robinson, Plate XXiX, Fig. 65, 8.

The species occurs in Florida.
(3) Cydosia majuacula Henry Edwards, Plate YXIX, Fig. $66,8$.

The habitat of the insect is the same as that of the spe.tess last mentioned.

Genua CERATHOSIA Smith

The oniy spesies of the genus was nsmed tricolor by Smith. The fore wings are pure white, spotted with black, the hind wings are paie yellow. The habitat of the species is Texas.

Fto. 159.-Ceralhosia tricolor, \& . \&.

Fic. 160.-Hormoschista pagenstocheri, $\%$. \&.

Genua HORMOSCHISTA Mceschler

The only species of this genus, which occurs within our territory, was originally described by Moeschier from Porto Rico. it is found in Florida and eisewhere along the borders of the Gulf of Mexico.

Noatuide

Genus PHALENOSTOLA Grote

There is only one species of the genus known to occur within our territory.
(1) Phalenostola larentioides Grote, Plate XXX, Fig. 1, $\%$.

The insect ranges from New York southward to the Carolinas and westward to Mlssouri.

Genus PANGRAPTA Hübner

(1) Pangrapta decoralis Hübner, Plate XXX, Fig. 3 , $\%$.

Syn. grometroides Guenée; epionoides Guenée; elegantalis Fitch: recusans Walker.

The moth occurs from Nova Scotia to Florida and westward to the Mississippi.

Genus SYLECTRA Hübner

There is only one species of this genus whleh occurs within the faunall limits covered by this book. It was originally named
 erycata by Cramer. Subsequently Habner applied to it the specific name mirandalis, which, of course, falls as a synonym. It is found in Florida, and is also quite common in the entire equatorial belt of South America. The peculiarly scalloped wings and the Fig. 16t.-Sylecira nodose antenna serve to readily distinguish erycata. f . t . the insect, and it is not likely to be confounded with any other. The ground-color of the wings is luteous, variegated with reddish ochraceous.

Genus HYAMIA Walker

Three species of the genus are accredited to our fauna. Of these we figure two.
(1) Hyamia sexpunctata Grote, Plate XXX, Fig. 2, 8.

The insect ranges from Massachusetts to Texas.
(2) Hyamia perditalis Walker, Plats XXX, Fig. $4,8$.

Syn. semilineata Walker; umbrifascias Grote.
The range of this moth is the same as that of the preceding species. It is not uncommon in western Pennsylvania.

Genus MELANOMMA Grote

Thls is another genus of which we know but the one species in our territory, It received the specific name auricinctaria

Fig. 162.-Mclanomma auricinctaria, of
from Mr. Grote, who first described it. It occurs in the southern Atiantic States. The annexed figure is drawn from the type which is preserved in the British Museum.

Genus ARGILLOPHORA Grote

The sole representant of this species is shown in the annexed cut, which was prepared for this book by Mr. Horace Knight

Fic. 163.-Argillophora furcilla, 8. 1.
from the type, access to which was kindly given by Sir George F. Hampson. The insect was originally reported from Alabama, but is still rare in collections. It probably has it wide range.

Genus PARORA Smith

The sole species belonging to this genus was originally described by Prof. J. B. Smith, from Texas. The accompanying cut shows a figure of the type, which is preserved in the United States National Museum. The ground-color of the wings is pale reddish ochraceous. The moth is found in Texas.

Fig. 164.-Paroria texana, \%. f .

Noctuida

Genus HOMOPYRALIS Grote

Five specles belong to this genus. We figure one of the commoner of these as representative. They come freely to sugar.
(1) Homopyralis contracta Walker, Plate, XXX, Fig. 5, q.

Syn. eonata Walker; tactus Grote.
The insect ls widely distributed all over the Appalachian subregion.

Genus ISOGONA Guenće

(1) Isogona natatrix Guenée, Plate XXXVIl, Fig. 18, $\%$. Syn. tenuis Grote.
The moth occurs in the southern Atlantic States.

Genus HYPSOROPHA Hübner

(1) Hypsoropha monilis Fabricius, Plate XXX, Fig. 6, 8.

The species is quite abundant in northern Florida in the spring of the year. It ranges west ward and northward as far as Kansas.
(2) Hypsoropha hormos Hobner, Plate XXX, Fig. 7, 9.

The moth occurs from New York to Texas, and is not uncommon in the eastern half of the valley of the Mississippi.

Genus CISSUSA Walker

Ten species are attributed to this genus in the latest Catalogue of the moths of North America. They are all western and southwestern species. We have selected three of them for purposes of illustration.
(1) Cissusa spadix Cramer, Plate XXX, Fig. 9, ${ }^{\circ}$.

Syn. vegeta Morrison.
The species occurs in the southwestern portions of the United States.
(2) Cissusa inepta Henry Edwards, Plate XXX, Fig. 10, f.

Syn. morbosa Henry Edwards.
The moth flies in Colorado.
(3) Cissusa sabuloaa Henry Edwards, Plate XXX, Fig. 11, 7.

The habitat of this insect is the same as that of the preceding species.

Genus ULOSYNEDA Smith

The only species of this genus was named valens by Henry Edwards. It is represented on Plate XXX, Fig. 12, by a specimen of the male sex. Its home is Colorado, Wyoming, and Utah.

Genus DRASTERIA Hübner

A widely distrihuted genus containing four species, which are peculiar to our suuna. All of these are figured on our plates.
(1) Drasteria erechtea Cramer, Plate XXX, Fig. 14, $\%$

Syn. sobria Walker; narrata Walker; patibilis Walker; agricola Grote \& Robinson; mundula Grote \& Robinson.

This is a very common species widely distributed from Canada to Florida and westward as far as Colorado and Wyoming. It frequents grassy places and may be found from April to October.
(2) Drasteria crassiuscula Haworth, Plate XXX, Fig. 15. ${ }^{\circ}$.

Syn. erichto Guenéc.
Quite as common as the preceding species, and having the same general distribution.
(3) Drasteria caerulea Grote, Plate XXX, Fig. 13, 1.

Syn. aquamarina Felder.
The habitat of this pretty species is the Pacifi: ooast. It is one of the very few blue moths which are known.
(4) Drasteria conspicua Smith, Plate XXX, Fig. 16, 3.

This elegant moth is a native of Alberta and the adjacent territorles of the British possessions.

Genus CANURGIA Walker

(1) Cæenurgia convalescens Guenée, Plate XXX, Fig. 17, ô.

Syn. socors Walker; purgata Walker.
The range of this insect is from anada to Florida and westward to the Mississippi.
(2) Cæenurgia adversa Grote, Plate XXX, Fig. 18, δ.

The habitat of the species is California.

Genus EUCLIDIA Ochsenheimer

We show two of the four species whicls are known to occur within our faunal limits.

Noctuide

(1) Euclidia ruspidea Habner, Plate XXX, Fig. 20, 9 .

The moth is found from Canafla to the Carolinas and Georgia and thence westward to the Mississippi.
(2) Euclidia intercalaris Grote, Plate XXX, Fig. 19, 8.

This is a rather rare species in collections. It is found in New Mexico and the southwestern States.

Genus PANULA Guenée

(1) Panula inconstans, Plate XXX, Fig. 21, 8.

Not uncommon in the southern States.

Genus MELIPOTIS Hubner

This is a moderately large genus, represented in both the New World and the Old. Of the ten species known to occur within our faunal limits we show six on our plates.
(1) Melipotis fasciolaris Habner, Plate XXX, Fig. 22, 9

This is not :n uncommon insect in the Antilles, and also occurs in Florida. The specimen figured on the plate was taken in the liatter locality.
(2) Melipotis pallescens Grote \& Rohinson, Plate XXX, Fig. 25, 9.

An inhabitant of the southwestern portions of our territory, reported from Colorado, New Mexico, Texas, and Arizona.
(3) Melipotis limbolaris Geyer, Plate XXX, Fig. 27, 8.

Syn. grandircna Haworth.
Fourd from New England to Florida and westward to the Mississippi.
(4) Melipotis perlata Henry Edwards, Plate XXX, Fig. 26, 9.

The species has been found in Arizona and Texas.
(5) Melipotis jucunda Hubner, Plate XXX, Fig. 24, 3.

Syn. cinis Gur néc; agrotipennis Ilarvev: hadeniformis Behr.
The insect ianges from New York to Florida and westward to Texas and Colorado.
(6) Melipotis sinualis Harvey, Plate XXX, Fig. 23, $\%$

This easily recognizable species is an inhabitant of Texas and Arizona and ranges southward along the high table-lands of northern Mexico.

Genue CIRRHOBOLINA Grote

(1) Cirrhobolina deducta Morrison, Plate XXX, Fig. 36, 8. Syn. pavitensis Morrison.
A common insect in Texas.
(a) Cirrhobolina mexicana Behr, Plate XXX, Fig. 28, $\%$.

Syn. incandescens Grote.
The moth occurs quite commonly in the southwestern portions of our territory from Colorado to Arizona and Texas, and thence southward on the Mexican plateaus.

Genus SYNEDA Guenée

Twenty-five species are attributed to this genus and indicated as having their habitat within the territory with which this book deals. it is possible that a final revision of the genus will lead to the discovery that some of the so-called species are merely local races or varietal forms of others. There is considerable dissimilarity between the sexes in some of the species, and it may be that there is in this fact also an element of confusion. The species which are figured on the plates are such as are for the most part well $\mathrm{k}_{1} . \mathrm{Jivn}$ and the identification of which is certain.
(i) Syneda graphica Hobner, Plate XXX, Fig. 30, 3.

Syn. capticola Walker.
The insect ranges from New York to Florida west ward to the Alleghany Mountains.
(2) Syneda divergens Behr, Plate XXX, Fig. 32, 8.

The Insect is western and has an ascertalned range from Colorado to California.
(3) Syneda alleni Grote, Plate XXX, Fig. 35, 8.

Syn. saxea Henry Edwards.
The species has a northern range and is reported from Maine and Canada, Manitoba and Montana. It extends its habitat southward along the elevatest table-lands of the continent to Colorado and Wyoming.
(4) Syneda adumirata Behr, Plate XXX, Fig. 34, 8.

This is a western species ranging from Montana and Arizona In the east to the Pacific.
(5) Syneda socia Behr, Plate XXX, Fig. 38, 8.

The range of this specie- is practically ihe same as that of the last mentioned.

Noctuld

(6) Syneda howlandi Grote, Plate XXX, Fig. 33, 2 .

Syn. stretchi Behr.
The insect is distributed from Colorado and Arizona .estward to California.
(7) Syneda edwardsi Behr, Plate XXX, Fig. 37, $\%$.

The moth is thus far known only from California.
(8) Syneda hudsonica Grote \& Roblnson, Plate XXX, Fig. 31, 8.

This is a northern specles, ranging from Ontario westward to Montana.
(9) Syneda athabasca Neumæegen, Plate XXX, Fig. 29, 8.

The moth has been taken in considerable numbers in Alberta and Assinlboia, and is also reported as occurring in Brltish Columbia.

Genus CATOCALA Schrank

This is a very large genus represented in both hemispheres. The metropolis of the genus appears to be North America; at all events, there are more species found in our territory than occur elsewhere. though in eastern Asia and temperate Europe the genus is very well represented by many strikingly beautiful forms. There is considerable variation in the case of some of the species, and as they have always been favorites with collectors, a great deal has been written upon then, and many varietal names have been suggested. Over one hundred species are attributed to our fauna. Of these the majority are figured in our plates. We follow the order of arrangement given in Dyar's List of North American Lepidoptera.
(1) Catocala epione Drury, Plate XXXI, Fig. 3, \%. (The Epione Underwing.)

The insect is distributed from New England and Canada southward to the Carolinas and westward to Missouri and lowa.
(2) Catocala sappho Strecker, Plate XXXI, Fig. 2, \%. (The Sappho Underwing.)

This rare species has been found from western Pennsylvania and West Virginia as far west as Illinois and as far south as Texas.
(3) Catocala agrippina Strecker, Plate XXXI, Fig. 1, \&. (The Agrippina Underwing.)

The species occurs from New York and the region of the Great Lakes southward to Texas.

Expianation or Plate XXX

(Exeept when otherwise indieated, the specimens figured are contained in the collection of W. J. Holtand.)

1. Phalanostola larentivides Grote. 21. Panula irconstans Guente, of \uparrow.
2. Hyamia sexpunctata Grote. 0^{7}.
3. Piangrapta decoralis Hubner. $\frac{8}{}$
4. Hyamia perditalis Walker, $\%$.
5. Homopyralis contructa Watker. $\%$.
๑. Hypsoropha monilis Fabrieius. σ^{7}.
6. Hypsoropha ho mos Hubner. \&
7. Hy yhict puerol'amer. \&.U.S. N M.
8. ('issura spadix Cramer. ${ }^{\text {ot }}$
o. (issura inepta Henry Edwards ${ }^{3}$.
9. ('issnra sabnlosu Henry Edwards. 9.
10. Ulosyncda radeas Henry Edwards. ${ }^{\text {or }}$.
\therefore Drasteria carulew Grotc. or' Drasteria erechte: Cramer. 8.
11. Drastoria crassinscula Haworth. ${ }^{\circ}$ ".
12. Drasteria conspicua Smith, σ^{7}.
13. Canurgia conialescens Guenéc, ${ }^{*}$
14. Canurgia adtersa Grote, of.
15. Euclidia intercaluris Grote, 0^{7}.
16. Euclidia cuspidea Hübncr. of
17. Mdeliputis fusciolaris Hubner, 8.
18. Melipotis sinualis Harvey, \circ
19. Meitpotis jucunda Hubner, σ^{7}.
20. Melipotis pallescens Grote \& Robinsom. 8.
21. Malipotis perketa Henry Eilwards. ?
27 . Melipotis limholaris Geyer, o^{7}.
22. Cirrhubulins mexicana Behr, of.
23. Syneda athabasice Neumargen, ct.
24. Syneda graphico $\mathbf{H a ̈} 1 \cdots \quad \delta^{7}$.
3). Syneda hudsouica Lirote \& Robinson, $\%$
25. Syndds divergens Behr, 0^{7}.
26. Syncda houlandi Grote, σ^{7}.
27. Synedu adumbrata Behr, 0^{7}.
28. Syneda alloni Grote, or.
;6. Ciirrhobolina ieducta Morrison, 3^{7}.
29. Syneda eduyrdsi Behr, of.
30. Syneda socia Behr. ơ.
31. Litocala sexsignata Harvey. $\%$. 40. IIypucala andremona Cramer, σ^{*}.
32. Agnomonia anilis Drury. ${ }^{7}$.
33. Epidromin delinquens Walker, \&

Nestuile

(4) Catocala aubviridic Harvey, Plata XXXI, Fig. 4, 8. (The Falntly Green Underwing,)

The insect has been by some writers regsrded as a variety of the preceding specles. It is characterized by larger size, and brighter colored fora wings, on which the maculation is much more distinct. In certain lights there is a pronounced greenlsh shade visible upon the wings.
(5) Catceala laerymoaa Guenec, Plate XXXI , Fig. 6, 8. (The Tearful Underwling.)

Form paulina Henry Edwards, Plate XXXI, Fig. 12, $\%$. (The Paulina Uncierwing.)

Form evelina French, Plate XXXI, Fig. 9, \&. (The Evelina Underwing.)

The range of this variable species is practically the same as that of the last mentioned.
(6) Catoeala viduata Guenec, Plate XXXI, Fig. 15, \&. (The Widowed Underwing.)

Syn. maestosa Hulst; guowci Grote.
The metropolis of thls species appears to be the Gulf States. It is abundant in Texas.
(7) Catocala vidua Abbot \& Smith, Piate XXXI, Flg. 5, 8. (The Widow Underwing.)

Syn. desperata Guenée.
The insect ranges from Canada to Florida through the Appalachian subregion.
(8) Catocala dejecta Strecker, Plate XXXII, Fig. i, 8. (The Dejected Underwing.)

The species is found in the northern portions of the Atlantic subregion.

Form carolina subsp. nov., Plate XXXII, Fig. 5, 8. (Carrie's Underwing.)

This insect, which occurs in western Pennsylvania, appears to be a form of dejecta, having the same relation to that species as that which is heid by basalis to habilis. It Is characterized by its smailer size, and by the biack stripe which runs from the base of the wing to the apex, giving it quite a different facles from dejecta. The type is figured upon our plate, and it may from the Illustration easily be recognized.

Nestuila

(9) Catocala retacta Grote, Plate XXXI, Fig. 8, 8. (Tha Yellow-Gray Underwing.)

Tha moth is found from Canads to the Carolinas and west ward to the Mlssissippl.
(10) Catocala fieblite Grote, Plate XXXI, Fig. 11, 8. (The Mourning Underwing.)

The habitat of this species is the same as that of ths las martioned.
(11) Catocala robinsoni Grote, Plate XXXI, Fig. 7, 8. (Robinson's Underwing.)

The moth ranges from New England to the Mississippi and southward to Tennessee and the Carolinas. It is particularly abundant in the Ohio valley.
(12) Catocala obecura Strecker, Plate XXXI, Fig. 14, 8. (Tha Obscure Underwing.)

The moth may be found from Canada to Maryland and westward to Colorsdo.
(13) Catocala Insolabille Guence, Plate XXXI, Fig. 10, 8. (The Inconsoiebie Underwing.)

The species is found from Canada southward to the Carolinas and westward to the Mississippi.
(14) Catocala angusi Grote, Plate XXXI, Fig. 19, 8. (Angus ${ }^{\circ}$ Underwing.)

The range of this species is the same as that of the preceding.
(15) Catocala judith Strecker, Plate XXXII, Fig. 2, $8 . \quad$ (The Judith Underwing.)

The insect occurs from New England westwsrd in the northern portions of the Atlantic subregion.
(16) Catocala tristia Edwards, Plate XXXII, Fig. 3, 8. (The Gloomy Underwing.)

The species appears to be commoner in New England than elsewhere.
(17) Catocala relicta Walker, Plate XXXII, Fig. 6, \%. (The Relict.)

Form bianca Henry Edwards, Piate XXXII, Fig. 7. \& . (The Bianca Underwing.)

This fine moth is found in the northern portions of the Appalachian subregion. It is not uncommon in New England snd

Explanation of Plate XXXi

(The specimens figured are contained in the collection of \mathbf{W}. J. Holland.)

Catocala agrippina Strecker, δ^{7}.
Catocala sappho Strecker, σ^{7}.
Catucalue epione Drury, of.
Catocala subviridis Harvey, ${ }^{7}$.
Catocala vidua Abhot \& Smith, σ^{7}.
Catocala lacrymosa Guence. ot.
Catocala robinsoni Grote, $\%$.
(atocala retecta Grote. 0^{7}.
© atocala lacrymosa var. evelina. French, \&
Catocala insclabilis Guenéc, Q.
(atocala flebilis Grote, 8.
Catrecala lacrymosa var. pantina Henry Edwards, $\%$.
Catocula angusi Grote, 0^{7}.
Catocala obscura Strecker, of
Catocala viduata Guené: $\%$

(-2
northern New York, but it is rare in western Pennsylvania. It has a westward range to Colorado and Oregon.
(18) Catocala cara Guence, Plate XXXII, Fig. 9, $8 . \quad$ (The Darling Underwing.)

This large and splendid specles is a native of the Appalachian subregion, and in it has a wide range.
(19) Catocala amatrix Hobner, Plate XXXII, Fig. 12, ε. (The Sweetheart.)

Form nurus Walker, Plate XXXII, Fig. 13, \%. (The Nurse.)
This is another fine species, which has the same geographical distribution as the last mentioned.
(20) Catc sala marmorata Edwards, Plate XXXV, Fig. 9, $\%$. (The Marbled Underwing.)

This is a rather rare species, which has a wide distribution. Its metropolis appears to be West Virginia and Kentucky, though it has been taken elsewhere.
(21) Catocala concumbens Walker, Plate XXXV, Fig. ro. \& . (The Sleepy Underwing.)

This lovely moth has a wide range in the Appalachian subregion. It is very common in New England and central New York, less common in western Pennsylva ia.
(22) Catocala californica Edwards, Plate XXXIII, Fig. 1, δ. (The California Underwing.)

As the name implies, the species is a native of California.
(23) Catocala cleopatra Henry Edwards, Plate XXXV, Fig. 14, \%. (The Cleopatra Underwing.)

This insect is regarded by some as a varietal form of the preceding species. It has the same habitat.
(24) Catocala luclana Henry Edwards, Plate XXXV , Fig. 11, 8. (The Luciana Underwing.)

Syn, nebraske Dodge.
Form somnus Dodge, Plate XXXV, Fig. 16, $\%$.
The moth is found In Kansas, Nebraska, Colorado, and Wyoming.
(25) Catocala babayaga Strecker, Plate XXXV, Fig. 18, 8. (The Babayaga Underwing.)

The habitat of the species is Arizona.
(26) Catocala atretchl Behr, Plate XXXV, Fig. 13, δ. (Stretch's Underwing.) The specles is Californian.

Noctuide

(27) Catocala augusta Henry Edwards, Plate XXXIII, Fig. 8, 8. (The Augusta Underwing.)

Llke the preceding species, thls is also confined in its range to the Paclic coast.
(28) Catocala rosalinda Henry Edwards, Plate XXXV, Fig. 15. 8. (The Rosalind Underwing.)

The insect has been found in Kansas and Colorado.
(29) Catocala pura Hulst, Plate XXXV, Fig. 17, 8. (The Pure Underwing.)

The moth is an inhabitant of the region of the Rocky Mountains.
(30) Catocala unijuga Walker, Plate XXXIII, Fig. 5, 8. (The Once-married Underwing.)

This is a widely distributed species, the range of which is northern, extending from New England to Colorado, through Canada and the reglon of the Great Lakes. It is common in central New York.
(31) Catocala meskei Grote, Plate XXXIII, Fig. $6,8$. (Meske's Underwing.)

By some students this species has been regarded as a variety of the preceding. Its range is the same.
(32) Catocala groteiana Bailey, Plate XXXII, Fig. 4, 8. (Grote's Underwing.)

The moth occurs from Canada to New Mexico, and has been sometimes treited as a variety of Catocala briseis Edwards.
(33) Catocala hermia Henry Edwards, Plate XXXVI, Fig. 7, \%. (The Hermia Underwing.)

The habitat of the species is Colorado and New Mexico.
(34) Catocala briseia Edwards, Plate XXXV, Fig. 128. (The Briseis Underwing.)

The species is an inhabitant of the northern portions of the Appala :hian subregion, and is also known to occur in Colorado.
(33) Catocala faustina Strecker, Plate XXXIII, Fig. 3, 8. (The Faustina Underwing.)

The specimen figured on the plate was received by the writer from the author of the species, and may be accepted as typical. The range of the moth is from Colorado to California.
(36) Catocala parta Guence, Plate XXXIV, Fig. 11, 8. (The Mother Underwing.)

This fine species is quite common in the Appalachian subregion and ranges northward into the region of Hudson Bay and westward as far as Colorado.
(37) Catocala coccinata Grote, Plate XXXIV, Fig. 10, 3. (The Scarlet Underwing.)

The moth is recorded as occurring from Canada to Florida and Texas, and westward to the Mississippi. It is not very common.
(38) Catocala aholibah Strecker, Plate XXXIV, Fig. 15, 8. (The Aholibah Underwing.)

The specimen figured on the plate was obtained from the autior of the species, and may be accepted as typical. The insect is found from New Mexico and Colorado to California and Oregon.
(39) Catocala verrilliana Grote, Plate XXXIV, Fig. 16, 8. (Verrill's Underwing.)

A neat and prettily marked species which has much the same range as the preceding, though extending somewhat farther to the south.
(40) Catocala ultronia Hübner, Plate XXXIII, Fig. 2, 3. (The Ultronia Underwing.)

Form celia Henry Edwards, Plate XXXIII, Fig. 4, ó . (The Celia Underwing.)

Form mopsa Henry Edwards, Plate XXXIII, Fig. 7, o. (The Mopsa Underwing.)

Besides the three forms of this varialle species which we have selected for illustration, there are several others which have received subspecific names. The insect is very common, and occurs from the Atlantic to the Great Plains and from Canada to Florida.
(41) Catocala illa Cramer, Plate XXXIV, Fig. 14, t. (The llia Underwing.)

Form uxor Guenée, Plate XXXIV, Fig. 17, \%. (The Wife.)
Form osculata Hulst, Plate XXXIV, Fig. 7, む. (The Beloved Underwing.)

This is a common and variable specles which is foulid generally throughout the United States and Canada.
(42) Catocala innubens Guenée, Plate XXXIII, Fig. 13.8 ; Plate 1, Fig, 7, larva. (The Betrothed.)

Form hinda French, Plate XXXIII, Fig. 10, 8. (The Hinda Underwing.)

Form acintillans Grote, Plate XXXIII, Fig. 9, 3 . (The Glittering Underwlng.)

This is another very common and very variable species, which is found from Canada to the Carolinas and westward to the Mississippl.
(43) Ca ocala ne'ullosa Edwards, Plate XXXIII, Fig. 16, 9. (The Cloude I Underwing.)

This fine species is found in the Middle Atlantic and Central States east of the Mississippi. It appears to be quite common in southern Indiana.
(44) Catocala piatrix Grote, Plate XXXVI, Fig. 6, 8. (The Penitent.)

The moth is found throughout the United States east of the Rocky Mountains, and as far south as Arizona. It is a common species.
(45) Catocala neogama Abbot \& Smith, Plate XXXVI, Fig. 5, 8. (The Bride.)

This is another common and variable species which has the same geographical distribution as that of the last-named insect.
(46) Catocala subnata Grote, Plate XXXIII, Fig. 15, \& (The Youthful Underwing.)

The species is found in the Appalachian subregion, and appears to be not uncommon in Kentucky and southern Indiana.
(47) Catocala cerogama Guenée, Plate XXXIV, Fig. 6, 8. (The Yellow-banded Underwing.)

Syn, aurella Fisher; eliza Fisher.
This is a common species ranging from Canada to the Carolinas and westward to the Mississippi.
(48) Catocala palæogama Guenée, Plate XXXVI, Fig. 3, 8. (The Oldwife Underwing.)

Form phalanga Grote, Plate XXXVI, Fig. 4, 8. (The Phalanga Underwing.)

The moth ranges from New England to Virginia and westward to the Mississippi.
(49) Catocala consors Abbot \& Smith, Plate XXXIV, Fig. 3. 3 . (The Consort.)

Explianation or Platz XXXil

(The apecimens tigured are contained in the collection of W J Holland.)

1. Catocala dejecta Strecker, ó Catocala judith Strecker of. Ciatocala tristis Edwards, ox Cotocala grotciana Bailey. 0^{7} Cithecala carolina Holland. os
Cideralar relicta Walker, \& .
Coseciala relicto var, biamia Henry Edwards. or
Catucaha antinympha Itütner, σ^{7}.
Catocala cara Guenéc. ${ }^{6}$
Catocala badia Grote \& Robinson, \hat{O}
Catoiala muliercula Guenée. $0^{\text {th}}$.
Catocala amatrix Hubner. of
Catocala unatrir var. nurus Walker. 8.
Catocala olivia Henry Edwards. ${ }^{\circ}$.
Catocalu alabame Grote, \%
Catocala amicu Hubner, o'
Catocala minuta Edwards. of
Catocala calebs Grote, $\sigma^{\prime \prime}$.
('atocala lineella Grote. o ${ }^{\circ}$
C'utocala nerissa Henry Edwards, of
2. Catocala gisela Meyer, \uparrow.

The insect is found from Pennsyivania southward and westward to Texas.
(50) Catocala mullercula Guente, Plate XXXII, FIg. 11, 8. (The Little Wife.)

The Insect is an inhabitant of the central portions of the Appalachlan subregion.
(51) Catocala delilah Strecker Plate XXXIV, Fig. 4, 8. (The Delilah Underwing.)

Syn. adoptiva Grote.
The range of this species is from southern Illinois and Kentueky southward to the Gulf and westward to Kansas and Nebraska.
(52) Catocala desdemona Henry Edwards, Plate XXXIV, Flg. 5, 8. (The Desdemona Underwing.)

The specles is found in the southwestern States.
(53) Catocala andromache Henry Edwards, Plate XXXIV, Fig. 2, 8. (The Andromache Underwing.)

This species Is found in southern Californla and Arizona. I am indebted to Mr. O. C. Poling for the fine speclmen of this rare moth whlch is figured upon the plate. It is closely ailied to the preceding species.
(54) Catocala illecta Walker, Plate XXXIV, Fig. 1,8 . (The Magdalen Underwing.)

Syn. magdalena Strecker.
The moth is found from Indiana to Nebraska and southward to Texas.
(55) Catocala serena Edwards, Plate XXXIII, Fig. 14, 8. (The Serene Underwing.)

The insect ranges from Canada and New England westward into the valiey of the Misslssippi. It is said to also occur in eastern Siberia, but this is doubtful.
(56) Catocala antinympha Habner, Piate XXXII, Fig. 8, 8. (The Wayward Nymph.)

The moth is reported from Canada to Maryland and westward as far as the Mississippi. I have found it very abundant at Saratoga, N. Y., and even more abundant on the summits of the Allegheny Mountains about Cresson Springs in the month of August.
(57) Catocala badla Grote \& Robinson, Plate XXXII, Fig. 10. 8. (The Badia Underwing.)

Nectulde

The specles is more common in New England than elsewhere. It is tather abundant on the north shore of Massachusetts Bay, and occurs also in central New York and the Adirondacks. I have naver known it to be taken in western Pennsylvania.
(58) Catocala coelebs Grote, Plate XXXII, Fig. 18, 8 . (The Old-mald.)

The range of this species, which is by some students regarded as a varietal form of the preceding, is from southern Canseda through New England into central New York.
(59) Catocala habilis Grote, Plate XXXIII, Fig. It, 8.

Form basalls Grote, Plate XXXIII, Fig. 12, 8.
The moth occurs from Canada to Virginla and westward to the Mississlppi. The form basalis has a black longitudinal streak from the base of the fore wing along the lower side of the cell.
(60) Catocala abbreviatella Grote, Plate XXXIV, Fig. 9, 8.

The insect occurs from Minnesota and lllinois southward to Texas and westward to Utah.
(61) Catocala whitneyi Dudge, Plate XXXIV, Fig. 8, 8. (Whitney's Underwing.)

The moth, which is probably only a varietal form of the preceding species, has the same range. The specimen figured on the plate was recelved from the author of the species.
(6a) Catocala polygama Guenée, Plate XXXIV, Fig, 13, 3. (The Polygamist.)

Form crategi Saunders, Plate XXXIV, Fig. 12, 8. (The Hawthorn Underwing.)

A common and varlable species ranging all over the Appalachian subregion,
(63) Catocala amasia Abbot \& Smith, Plate XXXV, Fig. 1, 3. (The Amasia Underwing.)

Syn. sancta Hulst.
The geographical range of the species is from New York and Illinois southward to the Gulf of Mexico.
(64) Catocala similis Edwards, Plate XXXV, Fig. 2, 3.

Syn. formula Grote.
Form aholah Strecker, Plate XXXV, Fig. 3. 8.
The moth occurs from Rhode island to Texis. It is a widely distributed but not very common species.

Explanation of Plate XXXIII
(The specimens ligured are contained in the coflection of W. J Holland.)

1. Catocala calijornica Henry Edwards, o'
2. C'atocala nltronia Hübner, d^{7}.
3. Catocala faustina Strecker, of

Cidocala celia Henry Edwards, ${ }^{\circ}$.
5. Catucala unijuga Walker, P.
6. Catocula meskei Grote, o'.
(atocala mopia Henry Edwards. d' 7.
(atocala alrusta Henry Edwards, d' $^{\circ}$.
(atucala scintillans Gmete. d' $^{\prime}$.
('itucala hinda French. d'.
(iuthcala habilis Grote, d^{7}.
(idtocula hasalis Grote, \boldsymbol{o}^{7}.
Citocala innitens Guenée, ơ

- itucala serena Edwards, di.

Catocala subutata Grote, θ.
('iftriala nehulosal Edwards, $\%$
Prophila quadrifilaris Hubner, $\%$.
is. Allotriu elonym pha Hubner, d^{\prime}.

(amex $5 x^{2}+x^{3} x^{2} x-y+x y$

(65) Catocala fratercula Grote \& Robinson, Plate XXXV, Fig. 4, 3 . (The Little Slster.)

Form jaquenetta Henry Edwards, ${ }^{\text {nlate }}$ XXXV, FIg. s, δ. Form gisela Meyer, Plate XXXII, Fig. 21, 8.
The species is very variable withln certain limits, and is widely distributed over the United States and Canada from the Atlantic to the Paclic.
(66) Catocala ollvia Henry Edwards, Plate XXXII, Fig. 14, 8. (The Olivia Underwing.)

The species is a native of Texas.
(67) Catocala preclara Grote \& Robinson, Plate XXXV, Fig. 7, 8.

The insect belongs within the more northern portions of the Appalachian subregion. The specimen figured was taken in Massachusetts.
(68) Catocala grynea Cramer, Plate XXXV. Fig. 6, 8.

The moth is found from Canada to the Carolinas and westward to the Misslssippi.
(69) Catocala alabamae Grote, Plate XXXII, Fig. 15, 8.

The habitat of the species is, as indicated by the name, the state of Alabama.
(70) Catocala gracilis Edwards, Plate XXXV, Fig. 8, 8. (The Graceful Underwing.)

The species occurs from Canada to the southern States on the Atlantic seaboard and westward to the valley of the Ohlo.
(71) Catocala minuta Edwards, Plate XXXII, Fig. 17, δ. (The Little Underwing.)

The moth is indigenous in the Eastern and Middle States.
(72) Catocala amica Habner, Plate XXXII, Fig. 16, δ.

Form lineella Grote, Plate XXXII, Fig. 19, δ.
Form nerissa Henry Edwards, Plate XXXII, Fig. 20, q.
Thls small specles is subject to considerable variation. It has a wide range from Ontario to Texas, and from the Atlantic to the Great Plains.

[^8]
WALKING AS A FINE ART

The first act of ail animals is that of absorption. Feeding is a primal necessity. The senses of smell, of touch, and of taste are involved in it. Sight has littie to do with it at first, but is soon awakened. Coincident with this act among the lower animals is that of locomotion. Man, whose desire to annihilate space has become a supreme passion, approaches the act of locomotion later than all other animals. Young ducks and geese fly from the Arctic Circle to Florida a few months after they have been hatched. Bables do not often begin to crawl until they are twice as old, and rarely walk until more than a year of life has been passed. There is nothing more interesting than the sight of a child just beginning to walk. The look of giad surprise and immense satisfaction which is displayed when a few successful steps have been taken is delightful to the observer. The triumphs of the most successful men do not in later years afford them so much momentary pieasure as is experienced by the little fellow who realizes that at lust after many failures he has "got his legs."

In much of our going to and fro on this small globe we are aided by adventitious helps. Stephenson, Fulton, and the fathers of the science of magnetism and electricity have done much to pave the way for our rapid transportation from one spot to another. But there are some places to which we cannot be hauled, and we have not yet reached the point where we can dispense with the use of our pedal extremities.

Happy is the man who has acquired the love of walkino for its own sakel There is no form of exercise more health-giving, none which tends more thoroughly to Invigorate, if it be wisely undertaken. The effect of the act is to quicken the venous circulation; to send the blood to the lungs, there to be purified by contact with the oxygen of the atmosphere; to harden and strengthen the muscles of the legs and to bring those of the arms and the chest into play. People who waik do not have overloaded velns. The shop-girl who stands behind the counter all day suffers from varicosis, but the man or woman who walks avoids it. Standing is harder than walking; it is more fatiguing. and brings no return of health to the system.

Explanation or Plate XXXIV
(The specimens figured are contained in the collection of \mathbf{W}.! Holland.)
2. Catocalu illectu Walker, σ^{7}.
3. Catocala andromache Henry Edwards. σ^{7}.
3. Catocala camsors Abbot \& Smith. © ${ }^{*}$
4. Catocala delifuh Strecker, \circ.
5. Cutocala desdemona Henry Edwards, σ^{7}.
6. Catocula cerogama Guenéc, σ^{7}.
7. Catocuia osinhata Hulst. σ^{7}.
8. Caltacala whitneyi Dodge. 0^{*}.
9. Catocah abhreviatella Grotc: 9.
10. Catocula chicinata Grote. 0^{7}.
15. ('athcula parta Guenee. O' $^{\beta}$.
12. Cufocada cratagi Saunders. 0^{7}.
23. Catuadar polygana Guenéc. σ^{7}.
14. Cutocala ilia Cramer. σ^{7}.

15 Catocula aholibah Strecker. \&.
36. Catorala vervilliana Grote. 0^{7}.
17. Catocala u ror Guenér. $\%$.

Wallatas ac ation Art
In walking, the best results are secured when there is no burden upon the mind. The man who carries the load of daily care with him when he walks derives iess benefit from the act than the man who dismisses all concern and simply gives himseif over to the act. It is a mistake to suppose that it is an advantage in waiking to have some definite object of pursult. The woman who is advised by her physlcian to walk shouid not select as her path some busy street upon which she is certain to be diverted by the opportunity to unlte with her exercise a number of shopping excursions. The man who goes out to walk should not choose a much frequented part of the town where he is sure to meet business friends and acquaintances. The person who desires to derive the best resuits from his strolls should seiect a retired spot in park or country where the "madding throng" does not resort. it is hard to make Americans realize the importance of these suggestions. The demand is forever that exercise, if taken at ail, shail have an aim ulterior to Itself, in the pursuit of which the upbuilding of the system shall take place as a collateral incldent. The popularity of golf is due to the fact that it answers the demand of a great class of persons to be amused while they are being invigorated. it is one of the least objectionabie forms, in which the pill of exercise is sugarcoated for consumption by a race which is slowly but surely working itself to death in office, mill and factory.

Walking for its own sake is pursued to a far greater extent in England and In Germany than In America. We may well iearn to imitate our cousins on the eastern slde of the Atlantic In this regard.

If walking is to be pursued with an object, there is nothing which may be chosen as an aim better than the pursuit of that knowiedge which is the end uf the naturalist. To become acquainted with the fields and the flowers which bloom in them, with the forests and the myriad forms of animate life which frequent them, is an aim which leads far away from the cares and pursuits of the weary, workday world. I met the other day a friend, who, with quick step and alertness depicted in every feature, was hurrying along one of the avenues in the capital. I marveled at his gait, for I knew that the winters of fourscore and five years rested upon his head. "How is it that you have

Walking at atine Ar

found the fountain of eternsl youth ${ }^{\prime}$ " 1 said. "My desr boy," he replied, "I have found it by living near to nature's hesrt, snd by having my beloved sclence of entomology to refresh and quicken ms in my dally walks."

Would you cultivate walking ss s ine art, lesrn to ses snd to hear what the world, which msn has not msde nor hss entirely msrred, is telling you of the wonders of thst life whleh she kindly nourishes upon her bosom.

- Cleon sees no charm in nature-in a daisy, I;

Cleon heara no anthem ringing in the wea and the aky.
Nature sings to me forever-eannest listener, I:
State for state, with all attendants, who would change! Not I."

Genue ALLOTRIA Hübner

(1) Allotria elonympha Habner, Plate XXXIll, Fig. 18, 8.

This hsndsome little species is found in the Appalachisn subregion. It is the sole specles of the genus.

Genue ANDREWSIA Grote

(1) Androwsia messalina Guenée, Plate XXXVI, Fig. 1, 8

Syn, belfragiana Harvey: jocasta Strecker.
The insect has been found to range from Kansas to Texas. It appesrs on the wing in the latter state in May."

Genus EUPARTHENOS Grote

(1) Euparthenoe nubilic Habner, Plate XXXVI, Fig. 2, 8. The moth occurs from the northern Atlantic States to Arizona.

Genus HYPOCALA Guenée
(1) Hypocala andremona Cramer, Plate XXX, Fig. 40, 8. Syn. killi Lintner.
The insect is characteristic of the neotropical fsuna. It occurs as a straggler into Texas, and is found very commonly throughout Mexlco, Ce . al America, and South Americs.

Genus LITOCALA Harvey

(1) Litocala sexsignata Harvey, Plate XXX, Fig. 39, 7.

The species occurs through the region of the Rocky Mountains to California.
$2,8$. rizons.

0,8 .
occurs
ughout
untains

Explanation of Pliath XXXV

(The mpecimens fisured are contained in the collertion of W I Holland.)
('uhaciala amassia Ablest \& Smith. \%.
(itherulu simitis Edwards. 0^{7}
('ahkiahs wholoh Strecker. of
('ahmaha fratercula Grote \& Rubinswin. $\sigma^{\text {a }}$
('uhnisho juphe'tetlo Henry Edwardm. 0^{7}.
('ath alu gryunds (ramer. or

(isth ald ghtu ilix Edwards, \& .
Cibhenthl Hispillarafa Edwards, of
Cifthula inminilioner Walker, σ^{7}.

(abrulas triveis Edwards. 0^{7}
('utceisha stretihi Behbr, or
('atimith ilnupatra Honry Edwards. of
('afocalar rosulindo Henry Edwards. 0^{7}.
('utinula sumums Dodge, \&
riahnouls pura liulnt. ot
(istonalia baboyaga Strecker. or

Genu: TOXOCAMPA Guenée
(1) Toxoeampa victoria Grote, Plate XXXVI, Fig. 10, \%, This is a northern species found from New England to British Columbla and ranging southward along the higher mountain ranges of the west.

Genus PHOBERIA Hibner

(1) Phoberia atomaris Habner, Plate XXXVI, Flg. 14, δ. Syn. orthosioides Guence; forrigens Walker; ingenua Walker.
The moth has been taken from Maine to Texas and westward as far as the Great Plains.

Genus SIAVANA Walker

(1) Siavana repanda Walker, Plate XXXVI, Fig. 15, q. Sy" ouripennis Grote.
The moth ranges from the Valley of the Ohio southward to the Gulf of Mexico. It is not uncommon in Florida.

Genus PALINDIA Guenée
This is an extensive neotropical genus, represented hy but two species, which have thus far been taken within our territory.
(I) Palindia dominicata Guenee, Plate XXXVI, Fig. 17, 8.

The moth occasionally occurs in Texas. It is very common in Central and South America.

Genus PANAPODA Guenće

(I) Panapoda rufimargo Habner, Plate XXXV1, Fig. 19, δ. Syn, rubricosta Guenee; cressoni Grote
Form carneicosta Guenée, Plate XXXVI, Fig. 20, δ.
Syn. scissa Walker; combinata Walker.
The insect is found through the Appalachian subregion. It is quite common in parts of New England, and at certain times has been taken abundantly in western Pennsylvanla.

Genus PARALLELIA Hibner

(1) Parallelia bistriaris Hobner, Plate XXXVI, Fig. 18, 8. Syn. amplissima Walker.
The Insect occurs from Nova Scotia to Florida and westward to the Rocky Mountains.

Noctuide

Genus AGNOMONIA Hübner

(1) Agnomonia anille Drury, Plate XXX, Fig. 41, 8.

Syn. sesquistriaris Hübner.
The moth is found from Pennsylvania to Missouri and Texas. It is common in Florida.

Genus Remigin Guenée

(1) Remigia repanda Fabricius, Piate XXXVI, Fig. 16, $\%$.

Syn. latipes Guenee: perlata Walker; indemlata Harvey; texana Morrison.
The species, whien is somewhat variable, ls sald to occur in Labrador, but the writer, though he has at various times received large collections from that country, is not in possession of any direct evidence of the correctness of the statement. The insect does, however, occur in northern Canada and ranges thence southivardly to Argentina, keeping, so far'as is known, to the eastern side of the Rocky Mountains and the Andes.

Genus GRAMMODES Guenée

A moderately large genus, which is represented in both hemispheres. Three species occur in our fauna, of which we figure one.
(1) Grammodes smithi Guenee, Plate XXXVI, Fig. 22, $\%$.

The moth occurs in the Gulf States and in Mexico. The specimen figured was taken in southern Texas.

Genus EPIDROMA Guenée

(1) Epidroms delinquens Walker, Plate XXX, Fic. 42, $\%$.

The moth, which is common enough In Central and South America, has recently been found to occur in southern Florida.

Genus POAPHILA Guenee

This is a genus of large size, the insects belonging to which occur in the warmer regions of America. We figure but one of the twelve species, whlch are attributed to our fauna.
(1) Poaphila quadrifilaris Hübner, Plate XXXIII, Fig. 17, 9.

The insect is known to occur from Massachusets to Florida along the coast.

Genus PHURYS Guenée

Six species occurring within our territory are given as belongIng to this genus in the latest list of the lepidoptera of North America. Of these we illustrate two.
(1) Phurys vinculum Guenée, Plate XXXVI, Fig. 12, 8.

The species occurs in the Gulf States and southward.
(2) Phurys lima Guente, Plate XXXVI, Fig I1, δ.

The range of this Insect Is the same as that of the preceding specles. It may be easily distinguished by the presence of the small round dark dot near the base of the fore wings on the inner margin.

Genus CELIPTERA Guenée

(1) Celiptera frustulum Guenee, Plate XXXVI, Fig. 13, 9. Syn. discissa Walker: elongatus Grote.
The moth is found from Canada to the Gulf of Mexico east of the Rocky Mountains.

Genus ANTICARSIA Hübner
Of the two species of the genus found within our limits we give a figure of the one which most commonly occurs.
(I) Anticarsia gemmatilis Habner, Plate XXXVII, Fig. 10, 8 .

The moth is found through the vailey of the Mississippi from Wisconsin to Texas.

Genus ANTIBLEMMA Hübner

(1) Antiblemma Inexacta Walker, Plate XXXVI, Fig. 23, δ.

Syn. canaiis Grote.
This is a variable insect, to which a number of subspecific names have been given, based upon slight differences in the markings of the wings. It is found in the Southern States, and ranges thence to the southern portions of the South American continent.

Genus LITOPROSOPSUS Grote

(1) Litoprosopsus futilis Grote $\&$ Robinson, Plate XXXVII, Fig. 4, 8 .

The insect occurs in Florida and Georgia and also in the hotter portions of America.

Genus OPHIDERES Boisduval

This is a large genus of remarkably showy insects, which are more numerously found in the tropics of the Old World than In the New. There are several very beautiful species which are found in South America. Only one occurs sparingly as a straggler into our fauna. It is now and then taken in Florida. It is commoner in South America and is also found in Africa.
(1) Ophideres materna Linnzus, Plate XXXVI, Fig. 8, \&.

Syn. hybrida Fabricius; calaninea Cramer.
The insect is rare in Florida.

Genus STRENOLOMA Grote

(1) Strenoloma lunilinea Grote, Plate XXXVI, Fig. 9, 8.

This fine moth is quite common in the valley of the Ohio, and ranges' from Pennsylvania southward and westward as far as Missouri and the Gulf of Mexico.

Genus CAMPOMETRA Guenće

The species of this genus are principally found in the southern and southwestern portions of our territory.
(1) Campometra amella Guenée, Plate XXXVII, Fig. 8, 8.

Syn. integcrrima Walker; sty!obata Harvey.
The species ranges from Florida to Texas.
(2) Campometra mima Harvey, Plate XXXVII, Fig. 9, 8.

The moth occurs from Colorado to Texas and Arizona.

Genus TRAMA Harvey

Three species sre assigned to this genus in recent lists.
(1) Trama detrahens Walker, Plate XXXVI, Fig. 21, δ. Syn. arrosa Harvey.
The habitat of this $s p$ ecies Is the Southern States.

Genus MATIGRAMMA Grote

A small genus, the species of which are southern, or southwestern, in their distribution.
(1) Matigramma pulverilinea Grote, Plate XXXVII, Fig. $11, \%$.

The moth is found from Florida to Texas.

Explanation of Phate EXVE

ablaicam colontyen Co., m.r. \triangle CNI.

$$
2-\cos 2 \cos
$$

covengine

$$
\text { B } 1
$$

Genus CAPNODEs Guenée

The genus is well represented in the tropics of both hemispheres. There is but one species in our fauna, Capnoden punetivena Smith, a representation of which is given in the accompanying cut, drawn from Fic. 165 .-Capnodes the type in the National Museum.

Genus YRIAS Guenée

Not a Jarge genus, the species of which are confined to the southwestern portions of our territory.
(1) Yrias clientis Grote, Piate XXXVII, Fig. 13, 8. The insect is found In Arizona.
(2) Yrias repentis Grote, Piate XXXVII, Fig. 12, 8. The moth, iike its predecessor, is found in Arizona.

Genus ZALE Hibner

(1) Zale horrida Hobner, Plate XXXVIl, Fig. 9, 8.

The moth is found throughout the United States east of the region of the Great Plains.

Genu: SELENIS Guenée

The only species of the genus which occurs within our borders is monotropa Grote. It Is found in Texas. The annexed

Fio. 166.-Selenis monotropa, 8 . 4 .
cut was drawn from the type of the species which is preserved in the British Museum. It was made by Mr. Horace Knight, under the supervislon of Sir George F. Hampson.

Genua PHEOCYMA Hübner

(1) Pheocyma lucifera Habner, Plate XXXVII, FIg. 5, 8. syn. hinoola Walker.
Found in the Appalachisn subregion.

Genus YPSIA Guents

(1) Ypala undularis Drury, Plate XXXVII, Fig. 6, 8.

The moth occurs from Canada to Florida and westward to Coiorado.

Genus PSEUDANTHRACIA Grote

(1) Peeudanthrecia coreclas Guente, Plate XXXVIL , Fig, 7, 8 .

The insect, which is far from common in coliections, has practicaily the same range as the preceding species, of which it appears at first glance to be a miniature reproduction.

Genua HOMOPTERA Boiaduval

This is quite an extensive genus, species of which occur both in the Old World and the New. Some twenty or more so-called species are attributed to our fauna, but several of these will no doubt prove to be mere varieties or local races of others. We give figures of three of the commoner forms in our plates.
(1) Homoptera lunata Drury, Piate XXXVII, Fig. 15, 8.

Form edusa Drury, Plate XXXVII, Fig. 16, 8.
Syn. putrescens Guenee; sanndersi Bethune; viridans Walker; involuta Walker.

Aimost universally distributed throughout the United States and Canada.
(a) Homoptera cingulifera Waiker, Plate XXXVII, Flg. 17, 9.

Syn, intenta Walker: woodi Grote.
The moth occurs from Massachusetts to Florida and westward to the region of the Great Piains.
(3) Homoptera unilineata Grote, Piate XXXVil. Fig. 14, 9.

The insect ranges from eastern Canada to the Caroiinas and westward to the Mississippi. It appears to be quite common in eastern Massachusetts. The specimen figured on the plate was taken at Magnolia, Massachusetts.

Eipmianatuin of Phatk NXXVill

 the collerytion if If I IIallami.)

[^9]

Genus LATEBRARIA Guente.
(1) Latebraria amphipyroides Guenée.

There is only one species of the genus known to occur within the faunal llmits covered by this book. It is a siraggler from the South American and Mexican territories, in which it is quite common. The accompanying cut based upon a drawing made from a specimen contained In the collection of the United States National Museum at Washington, will,
 no doubt, enable the student Fic. 167.-Latebraria amphipyroides, to readily recognize the 8 . 1. species, which is not likely to be confounded with anything eise.

Genus EREBUS Latreille

This is a genus of large moths most in evidence in the tropics of the New Worid. Only one species occurs in the United States.
(1) Erebus odora Linnaus, Plate XXXVII, Fig. 2, $\%$.

Syn. agarista Cramer.
This great moth is very common in the tropical regions of America. It occurs quite abundantly In southern Florida and the warmer portions of the Gulf States, and is universally distributed over the countries of Central America and throughout tropical South America. It is found as a straggler into the northern portions of the United States, and has even been taken in Canada. I have in my collection a specimen whicll was taken at Leadville, Colorado, in a snowstorm which occurred there one Fourth of July. The insect, blown to that lofty and desolate spot, was caught fluttering about in the drifts.

Genus THYSANIA Dalman

(1) Thyaania monobia Cramer, Plate XXXVII, Fig. 1, 8.

This is another great South American moth, which occasionally wecurs within our territory. It has been taken in Florida

Foctulde

and southern Texas. It is a very abundant species in Mexico and South America.

Genus EPIZEUXIS Hübner

Pic. 168.-Episeuxis americalis. a, Larva en larged: b, Dorsal view of larval segment: c, Leteral view of do.; d. Cremaster of pupa. (After Riley, "Insect Life," Vol. IV. p. 15.)

This is a genus of considerable size. The larva feed upon dried leaves for the most part. Eleven species are attributed to our fauna, five of which we figure.
(1) Epizeuxis americalis Guente.

Syn. scriptipennis Walker.
The range of thls insect is from Canada to Texas east of the Rocky Mountains. It is exceedingly common in the woods of the Appalachian subregion. and is one of the moths which are most commonly attracted to sugar. The life history has been well ascertained, and has been entertainly described by Professor \mathbf{C}. V. Riley in the Fourth Volume of "Insect Life." The reader is referred to the account there given for fuller details.
(2) Epizeuxis æmula Hübner.

Syn. mollifera Walker; herminioutes Walker; effusalis Walker; concisa Walker.

The range and the habits of this species are very much the same as those of the last mentioned species. Like it, the insect is also very frequent at sugar, and on a warm summer night, in the forests of southern Indiana, I have seen as many as twenty of these moths at one time, congregated about a spot on the trunk of a tree, which had been moistened with beer in which sugar had been dissolved.
(3) Eplacuxis lubricalis Geyer, Plate XXXVII, Fig. 29, 8.

Syn. phadis Guente; surrecta/is Waker.

Fig. 169.—Episeuxis amuid. a, Larva enlarged: b, Segment of larva viewed laterally; c, do. viewed dorsally: d, Tip of pupa: Moth. (After Riley." Insect Lifn." Vol. 1V, p. I10.)

The species occurs generally throughout the United States and Canada
(4) Epizeuxis denticulalis Harvey, Plate XXXVIl, Fig. 27, 8.

The insect is found from the Atlantic to the Mississippi and from Canada to t ie Carolinas.
(5) Epizeuxis scobialis Grote, Plate XXXVII, Fig. 28, 9.

The moth occurs from New England to the Trans-Mississippi States, east of the Great Plains.

Genus ZANCLOGNATHA Lederer

The genus is of moderate size. All of the species known are found in the Apralachian subregion, and have within it a wlde range.
(1) Zanclognatha levigata Grote, Plate XXXVII, Fig. 21, 8.

The species is somewhat variable in the amount of dark shading upon the fore wings. It is distributed from Canada to the southern states.
(2) Zanclognatha protumnusalia Walker.

Syn. minimalis Grote.
The moth has much the same range as the last-mentioned specles. Its life history has been accurately ascertained, and Professor C. V. Riley has given us an account of the habits of the insect in the paper to which reference has already been made. The types of both Walker's and

Fig. 1yo.-Zanclognatha pro. fumnusalis. a, Moth: b, Malantenna; c, Larva; d, Dorsal view of larval segment; ; latera! view of do.; b, d, e, Enlarged. (After Piley,"Insect Life," Vol. IV. p. 141.) Giote's insects are preserved in the British Museum, and there is no doubt of their identity.
(3) Zanclognatha ochreipennis Grote, Plate XXXVII. Fig. 22, 8.

The habitat and the habits of this species are much the same as those of the preceding.
(4) Zanclognatha lituralis Hobner, Plate XXXVII, Fig. 20, 9 .

The moth is widely distributed throughout the Appalactrian subregion.

Genus honmisa Walker

This is a small genus of which there sre known to be four species Inhabiting our territory. We figure the two commonest of these.
(1) Hormise baorptalic Walker, Plate XXXVII, Flg. 19, 8.

Syn. nubilifascia Grote.
The moth ranges from Canada to Virginia and westward to Illinois.
(a) Hormisa bivittata Grote, Plate XXXVII, Fig. 31, 8.

The moth, which is not common in collections, is found from Quebec and Maine to Wisconsin and lowa, and southward as far as Pennsylvania and Ohio.

Genus SISYRHYPENA Grote

FIG. 172.-Sisyrhypena orciferalis, of t.
(1) Siaystaypena orciferalis Walker.

Syn. pupilleris Grote: karti French.
The figure which we give was drawn for thls book from the typs of the species which is in the collection of Mr. Grote In the British Museum. The insect occurs in the southern States.

Genu: PHILOMETRA Grote

Threa species are reckoned as belonging to this genus. We give a figure of one of them.
(1) Philometra metonalis Walker, Plate XXVIi, Fig. 30, 8. Syn. goasalis Walker: longilabris Grote.
The moth is found from Nova Scotia and the region of Hudson Bay to Virginia and westward to Illinois.

Genua CHYTOLITA Grote

(1) Chytolits morbidalis Guenée, Plate XXXVii, Fig. 33, 8. The moth is not at all uncommon in the Atlantic subregion.

Genus HYPENULA Grote
One speeles is reckoned as belonging to this genus.

Fio. s72.-Hyperula cacuminalis, \& . \ddagger
(1) Eypenvia cacuminalis Walker.

Syn. bffralis Walker; opacalis Grote.
The moth is a natlve of the southern portlons of our territory. The figure we give is taken from Walker's type, which is preserved in the British Museum. We also give a figure of a specimen preserved in the American Museum of Natural History, and which was determined by Mr. Grote as his species, to which he gave the name opacalis. The comparison of the two

Pig. 173.-Hypenula opacalis Grote, $\%$. t. figures will serve to illustrate the variability of the species.

Genus RENIA Guenee

There are eight species belonging to the genus which are found within the region covered by this book. One of the commonest of these is selected for illustration.
(1) Renia discoloralis Guenée, Plate XXXVII, Fig. 24. 8.

Syn. fallacialis Walker; generalis Walker; thraxalis Walker.
The insect is very common in the Appalachian subregion.

Genus BLEPTINA Guenée

(1) Bleptins caradrimalis Guenee, Plate XXXVII, Fig. 32, 8. Syn. cloniasalis Walker.
The moth occurs from Canada to the Gulf of Mexico, and westward to the Rocky Mountains.

Genus TETANOLITA Grote

Three species are assigned to this genus in the latest lists. Of these, we have selected the one which is the type of the genus

Meetuide
for purposes of illustration. The specific name mynesalis was originally applied to the insect by Walker. Subsequently Grote gave it the name lixalis. The cut hereto annexed was drawn

Fig. 174.-Tetanolita mynesalis. 8
\ddagger
from Walker's type, which is contained in the collections of the British Museum. The moth ranges from Pennsylvania to Illinois and southward to the Gulf of Mexico.

Genus HETEROGRAMMA Guenee

(1) Heterogramma pyramusalis Walker, Plate XXXVII, Fig. 26, $\%$.

Syn. gyasalis Walker; rurigena Grote.
The species is found from Canada to the Gulf of Mexico and westward to the region of the Great Plains. It is the only species in the genus.

Genus GABERASA Walker

(1) Gaberase ambigualls Walker, Plate XLIl, Fig. 2, 3 . Syn. bifidalis Grote; indivisalis Grote.
The male moth has the fore wings bifid. Grote described the female, which has not bifid wings, under the name indivisalis. The moth occurs from Canada to Texas.

Fio. 175.-Dircetis pygmasa Grote, \%. \&.
There are two specles of the genus which are found within our borders. We give In the cut a figure of the type of Grote's

Noctuide
species to which he applied the name pygmsea. It is found from Florida to Texas along the shores of the Gulf of Mexico.

Genu: PALTHIS Hübner

Two species of the genus are found within the United States. We figure both of them.
(1) Palthis angulalia Habner, Plate XXXVII, Fig. 25, 8. Syn. aracinthusalis Walker.
The insect is very common everywhere from Canada to the Gulf of Mexico east of the Great Plains.
(2) Palthia asopialis Guente, Plate XLil, Fig. 1, 8.

The distribution of the species is the same as that of the preceding.

Genus CAPIS Grote
(1) Capis curvata Grote, Plate XXXVII, Fig. 33, 8.

The insect is found in Maine, northern New York, and Canada. It is the only species belonging to the genus.

Genus SALIA Hübner
Two species belonging to the genus are found within our territory. We figure in the accompanying cut the type of one of these, which received the specific name interpuncte at the hands of Mr. Grote.

Fig. 176.-Salia interpuncta. 9. t.
The moth is found from Massachusetts to Arizona.

Genus LOMANALTES Grote

(1) Lomanaltes eductalis Walker.

Syn. Latulus Grote.
The figure of the moth which we give was drawn for this book by Mrs. Beutenmaller of New York from a specimen contained in the collections of the American Museum of Natural History. The insect ranges from Nova Scotia to

Fig. 177.-Lomanalies eductalis, ó $_{\text {. }}$. Minnesota and southward to New York and Pennsyivania.

Cenus BOMOLOCHA Hiubnar

Sixteen species occurring within our llmits are attributed to thls genus in the latest Llst of the Lepldoptera of North America. Nine of these we Mlisustrate.
(1) Bomolocha manalls Walker, Plate XLll, Flg. 3. 8.

The moth ranges ir in Canada and Minnesota southward to the valleys of the Potr,ite and the Ohio.
(a) Bomolocha Fulismoralls Guente, Plate XLII, Fig. 4, 8.

Syn. benignalis is 1 ker: laciniusa Zeller.
The geographial distribution of the species practically coincides with that of the last.
(3) Bomolocha bijugalis Walker, Plate XLII, Flg. 7, 8.

Syn. fecialis Grote; pallialis Zeller.
The Insect occurs from Canada to Florida' and westward to the Rocky Mountains.
(4) Bomoloche scutellaris Grote, Plate XLII, FIg. 10, δ

The moth is found from New England to Britsh Columbia, but does not range far to the south.
(5) Bomolocha aballnealis Walker, Plate XLII, Fig. 5, 8

The habitat of the insect extends from New England and Canada westward to llifinots and southward to Pennsylvania and the Virginias.
(6) Bomolocha madefactalis Guenée, Plate XLII, Fig. 6, 8 ,

Syn achatinalis Zeller; damnosulis Walker; cadwcalis Walker; profecto Grote.

The insect is found from the Middle States southward to Texas.
(7) Bomolocha toreute Grote, Plate XLII, Fig. 9, 8.

Syn. albisignalis Zeller.
The moth ranges over the same region as the last-mentioned species.
(\$) Bomolocha deceptalis Walker, Plate XLII, Fig. 8, δ. Syn. prangulalis Harey.
The moth is found from Canada to Virginia.
(9) Bomoloche edictalls Walker, Plate XLII, Fig. 11, 8.

Syn. Intiginosa Grote: vellijera Grote.
The range of the species is the same as that of the last mentioned.

Genus PLATHYPENA Grote

Only one species of the genus is known to occur within our territory.
(1) Plathypena scabra Fabriclus, Plate XLII, Fig. 14, 3.

Syn. arectalis Guenee: palpalis Haworth; crassatus Haworth; obesalis Stephens.

Universally distrlbuted through the United States and Canada east of the Rocky Mountains.

Genus HYPENA Schrank

Th. genus is found in all parts of the globe. Three species are kiow wh to be found in our territory. Of these we figure the one which is commonest.
(1) Hypena humuli Harris, Plate XLll, Fig. 12, 8 ; Fig. 13, \%, var.

Syn. cuanidalis Robinson: remmanalis Walker.
This insect, the larva of which does considerable damage to the hop, is widelydistributed over the whole of the United States and Canada. It is somewhat variable in the shade of the wings and the amount of maculation upon them. For anaccount of the habits of the Insect and the best manner to guard against the ravages which the larva commits the reader is referred to the excellent article by Dr . L. O. Howard of the Department of Agriculture

Fic. 178.-Hypenahumuli. a, egg; b, larva: c, segment of do.: d, pupa: e, tip of do.: $\%$. adult. a, c, e. greatly enlarged. (After Howard. Bull. U. S. Dept. Agric., New Series. No. 7, p. 44.) in Washington upon insects injurious to the hop-vine, which was published as the Seventh Bulletin of the New Series of Bulletins issued by the Division of Entomology of the Department.

Arm. Who was Samson's love. my dear Moth ?
Moth. A woman. master.
-Shaxesprare. Lotr's Labot's Losi, I, a.

FAMILY NYCTEOLIDF

"An varedy reue thi residue shal upene,
That menye moththe was maiater ynne, in a mynte-while."

- Pizes Plowman (C) xiii, 216.

The Nycteolide are related to the Nocluida, many of the genera, especially in the Oid World, contalning moths which are green in color and frequent trees. The apex of the fore wing is more or less produced to 2 point. The larve have eight palrs of legs, and are neshy, with the anal somite tapering to a point. They are either naked or slightly pubescent. But two genera are found in the United States.

Genus NYCTEOLA Hübner

The genus is represented in both the Old World and the New. Two species are found in the United States.
(1) Nycteola revayana Scopoli, form lintnerana Speyer, Plate XLII, Fig. $15,8$.

A large number of synonyms and subspecific forms have been erected by authors who have dealt with this species. The form which we figure is the one which is most commonly encountered In our territory.

Genus HYBLAEA Fabricius

This genus is extensively developed in the warmer portions of the Eastern Herairphere, but is represented by only one species in our region.
(1) Hyblea pueia Cramer, Plate XXX, Fig. 8, $\%$.

Syn. saga Fabricius; mirificum Strecker.
The insect, which is common in the tropics of the two hemispheres, occurs occasionally in Florida. The specimen figured on our plate is contained in the coilection of the United States National Museum.

FAMILY PERICOPIDRE

(Hypside Auctorum)
> " Loome to the wind their airy garments flew, Thin glittering textures of the filmy dew, Dipt in the richent tincture of the skien, Where light disports in ever-mingling dyes, While every beam new transient colours fingy,
> Colours that change whene'er they wave their winge."
> -Pops, Rape of the Lock.

The following characterization of the family is taken from Hampson's "Moths of India," Vol. I, p. 495: "Proboscls present. Palpi smoothly scaled; the third joint long and naked. Legs smooth; mid tibiae with one palr of spurs, hind tibiae with two pairs. Frenulum present. Fore wing with veln ia separate from $1 b ; 16$ absent; 5 from near lower angle of ceii. Hind wing with veins $1 a$ and $1 b$ present, ic absent; 5 from near lower angle of cell; 8 free from the base and connected by a bar with 7 at milddle of cell.
"Larva with ail the legs present, sparsely covered with long halrs.
"Cocoon slight."

Genus DARITIS Walkes

A smail genus of rather showy moths, which is represented in our fauna by two species.
(I) Daritia thetis Klug, Plate XXXVili, Fig. 5, 8.

The insect occurs in southern Arizona.
Genus COMPOSIA Hübner
(1) Composia fidelissima Herrich-Schaffer, Plate XXXViil, Fig. 4, 8.

Sya. olympia Butler.

MUCROCOPY RESOLUTION TEST CHAET

(ANSI and ISO TEST CHART No. 2)

Pericopida

This very beautiful moth is found throughout the Antilles and in southern Florida, it is the only representative of its genus which occurs within our territory.

Genus GNOPHAELA Walker

Three species of this genus are found within the limits of the United States. Others occur in Mexico and Central America.
(1) Gnophela latipennis Boisduval, Plate XXXVIII, Fig. 2, 8 .

Syn. hopfferi Grote \& Robinson; discreta Stretch; arisona French; morrisoni Druce.

The habitat of this species is the southwestern portion of our territory and northern Mexico.
(2) Gnophaela vermiculata Grote \& Robinson, Plate XXXVIIl, Fig. 3, δ.

Syn. continua Henry Edwards.
The moth is found from southern Colorado westward and south-westward.
(3) Gnophala clappiana Holland, Plate XXXVIll, Fig. 1, 8.

The figure on our plate represents the type of the species, which was taken at Colorado Springs. It occurs from central Colorado to Arizona.

DAS LIED VOM SCHMETTERLINGE

" Liebes. leiehtes, luft'ges Ding, Schmetterling.
Das da über Blumen schwebet, Nur von Thau und Bliten lebet, Bluhe selbst, ein fliegend Blatt, Das, mit welehem Rosenfinger I Wer bepurpurt hat?

War's ein Sylphe, der dein Kleid So bestreut,
Dich aus Morgenduft gewebet, Nur auf Tage dich belebet? Seelchen, und dein kleines Herz Pocht da unter meinem Finger, Fühlet Todesschmerz.

> Fleuch dahin. O Seelehen, sei Froh und frei,
> Mir ein Bild, was ich sein werüe,
> Wenn die Raupe dieser Erde
> Auch wie du ein Zephyr ist
> Und in Duft und Thau und Honig
> Jede Blutte küsst."

Herder.

Explanation or Plate XXXVili

(Unless otherwise indicated, the specimens figured are contained in the collection of W. J. Holland.)

```
Gmophaela clappiana Holland, \(\delta^{*}\). type.
Gnophacla latipennis Boisduval. \({ }^{7}\)
Gnophela termiculata Grote \& Robinson, \(\sigma^{7}\)
Composia fudelissina Herrich-Schafficr, ó'.
Daritis thetis Klug. 8 .
Phryganidia californica Packard. \(0^{7}\)
Olene leucophaca Abbot \& Smith, of
Olene lentophaca Abbot \& Smith. \(\%\)
Olene achatina Abbot \& Smith. \(0^{7}\)
Gymephara rossi Curtis. \(0^{7}\).
Gymaphora rossi Curtis. \(\%\).
Porthetria dispar Linnieus. \(\sigma^{7}\)
Porthetria dispar Linnaxus. \(\%\)
Psilura monacha Linneus. ob
Psilura monacha Linneus, of
Euproctis chrysorrhoca Linneus. \(0^{7}\).
Hemerocampa definita Packard, o', U. S. N. M.
Notolophus antiqua Linnaus, o' U. S. N. M.
Hemerocampa vetusta Boisduval, of' U. S. N. M.
Hemerocampa leucostigma Abbot \& Smith, or'.
Hemerocampa leucostigma Abbot \& Smith. \& .
Carama cretata Grote, ơ, U. S. N. M.
Lagoa crispata Packard, \({ }^{*}\).
Lagod pyxidifera Abbot \& Smith. of
Megalopyge opercularis Abbot \& Smith, \(\sigma^{\circ}\).
```


- Genius deterts through the fiv, throngh the caterpiltar, through the grub, through the egg, the constant individual; through countless individuals the fixed species, through many speeies the genus. through all genera the steadfast type; through all the kingtoms of organized life the eternal unity."-Ratpli Waldo Emerson.

The moths belonging to this family are, so far as is known. closely related in many respects to the Geometridir. They differ. however, in having veins 3 ind 4 of the hind wing arising from a common stalk at the lower angle of the cell. The family is well represented in the tropics of the New World, but is only known in our territory by the genus Phruganidia Packaid, which occurs in southern California.

Genus PHRYGANIDIA Packard

(1) Phryganidia californica Packard, Plate XXXVIII, Fig. 6. 8 .

The moth, which is obscurely colored, is one of the least attractive insects belonging to the family which it represents. Many of the species are very bright and gay in color, as any student of the fauna of South America knows. The home of the species, as the name implies, is California, to the southern portion of which it is confined.

- Happy inseet, what ean be In happiness compared to thee? Fed with nourishment divine, The dewey morning's gentle wine 1 Nature waits upon thee still,
And thy verdant eup does fill:
'Tis filled wherever thou dost tread
Nature's self thy Ganymede.
"Thou dost drink and danee and sing. Happier than the happiest king! All the fields which thou dost sec. All the plants belong to thee. All the summer hours produce, Fertile made with early juiee, Man for thee does sow and plough, Farmer he, and landlord thou."

From the Greek of Anacreon.

The Notodontidx have veen characterized by Sir Georice F. Hampson as follows: "A family of moths superficially resembling the Noctuidx. Mid tibia with one pair of spurs; hind tibia with two pails; tarsi short and hairy. Fore wing with vein ta formIng a fork with 16 at the base; $1 c$ absent; vein 5 from the middle of the discocellulars, or rarely from just below the upper angle of the cell. Hind wings with two internal veins; vein 5 from the centre of the discocellulars or rarely absent; 8 free from the base, curved, and running close along the subcostal nervure or joined to it by a bar.
"Larva without the anal prolegs, and carrying the anal somites more or less erect; these often bear paired processes and are sometimes swollen; the other somites are of ten prominently humped.
"Pupa naked."
An elaborate and very useful monograph dealing with the insects composing this family has been written by Professor A. S. Packard, and is published in the Memoirs of the National Academy of Science, Vol. VIl, pp. 87-284. The student will do well to refer to this.

Genus Apatelodes Packard

(I) Apatelodes torrefacta Abbot \& Smith, Plate XL, Fig. 20, 8.

The insect is not uncommon in the Appalachian subregion. It ranges from Canada to the southern States and as far west as the Mississippi. preceding. It is rather common in western Pennsylvanla.

Genue MELALOPHA Hübner

Six species and a number of subspecies have been recugnized as belonging to this genus and are found in the region with which this book deals. Of four of these we give figures.
(I) Melalopha apicalis Waiker, Plate XL, Fig. 18, 8.

Syn. vau Fitch; indentata Packard.
The figure upon our plate, cited above, represents the form of the species to which Grote \& Robinson applied the name ornata and of which the name incarcerata Boisduvai is a synonym. The insect is widely distributed all over the United States.
(a) Melalopha inclusa Hobner, Plate XL, Fig. 19, $\%$.

Syn. americana Harris.
The insect is very widely distributed over the Appalachian subregion. The larva feeds upon the leaves of various species of the genus Populus.
(3) Melalopha strigosa Grote, Piate XL, Fig. 17, 8. The habitat of this species is the northern portion of the Appalachian subregion,
(4) Melalopha albosigma Fitch, Plate XL, Fig. 16, 3.

Widely distributed over the United States. Easily discriminated from the other species by the broad brown shade on the apical haif of the outer margin of the primaries, succeeded near the costa by a distinct s-shaped white line.

Genus DATANA Walker

Thirteen species which are properly referred to this genus are found within our limits. Of these we give figures of the four which are most commonly found.
(1) Datana ministra Drury, Plate 1, Fig. 13, larva; Plate XL, Fig. 11, 8.

This is a very common species, found throughout the Appalachian subregion. The larvæ are gregarious and may be found in great masses upon the leaves of the walnut and allied trees in the latter part of August and early September.
(2) Datana angusi Grote \& Robinson, Plate XL, Fig. 12, 3.

Nerodoncide

The habits and the distribution of this species are very much the same as those of the preceding.
(3) Datana perspicua Cirote \& Robinson, Plate XL, Fig. 14, 8.

More nearly allied to D. ministra than to any other species of the genus, but readily distingutshed from that insect by the palef coior of the secondaries and the IIghter, more yellowish color of the primaries.
(4) Datana integerrima Grote \& Robinson, Plate XL, Fig. 13. 3 .

The darker color of the primaries and the more numerous transverse bands enable this species to be at once separated from the other species which we have figured.

Genus HYPERESCHRA Butler

(1) Hypertachra atragula Grote, Plate XL. Fig. 1. i.

Syn. sciti ponnis Walker
The moth is found throughout the United States. With the help of the illustration we have given there should be no difficulty whatever in determining it.
(2) Hyperaschra georgica Herrich-Schaffer, Plate XL, Fig. 7, $\frac{1}{}$

The moth is found in the Appalachian subregion, and is commoner In the southern portions of its range than in the more northern portions thereof. It is, however, not very rare in Pennsyivania.
(3) Hyperaschra tortuosa Tepper, Plate XL, Fig. 4, \%.

The insect is as yet quite rare in coliections. its habitat is Colorado and Arizona.

Genus ODONTOSIA Hubner

(1) Odontosia elegans Strecker, Piate XL, Fig. 3, $\begin{gathered}\text {. }\end{gathered}$

This elegant insect is found from Canada to Coiorado and spears to be commoner in the region of the Rocky Mountains than elsewhere.

Genus NOTODONTA Ochsenheimer

The genus is represented in both hemispheres. There are two species which belong to our fauna. We give iilustrations of both of them.

Notodontide
(1) Notodonta basitrient Wialker, Mate XL, Fig. 5, \&. The moth is found in the Atlantic States.
(a) Notodonta elmplaria Grief, Plate A. Fig. 6, 8.

The moth, which is by no means con, on, occurs in the northern portions of the Appalachian subregion.

Genu: PHEOSIA Hübner

(1) Pheosia dimidiata Herrich-Schaffer, Piate XL, Fig. 9, 2 Syn. rimosa Packard; californica Stretch.
The moth, which is far froni common, ranges from Canada and New England west ward to the region of the Rocky Mounteins.
(a) Phe uila portiandla Henry Edwards, Plate XL. Fig. to, 8.

Syn. descherei Neumoegen.
The species replaces in the northwestern States the form, which has been described as dimidiatio. Whether this i a valid species or a local race of the preceding is a question which is still open to discussion.

Genus LOPHODONTA Paciard

(1) Lophodonta ferruginea Packard, Piate XL, Fig. 8, 8.

The moth is not rare in the Appalachian subregion. The caterpilar feeds upon the linden (Tilia).
(2) Lophodonta angulosa Abbot \& Smith, Pate XL, Fig. 15. 2 .

The insect is found in the same region as the last mentioned, and its habits are very much the same.

Genus EUNYSTALEA Grote

(1) Eunystalea indiana Grote.

This is one of the rarest insects of the family to which it belongs. Besides the type, which the writer b.llieves in be contained in the collection of the British Museum, there is oniy one other specimen known, wilich is found in the coliection of Dr. Barnes, to whom the author is indebted for the privilege of being allowed to make the cut which is given herewith. The insect occurs in Florida.

Notodontida

Genua NADATA Walker

(1) Nadata glbboaa Abbot \& Smith, Plate XXXIX, Fig. 1. 8.

This insect. the distribution of which is almost universal throughout our territory, h.is been described under a nuinber of varietal or subspeclic names, founded for the most part upon trifing varlations in the ground-coior of the wings.

Genus NERICE Walker

(1) Nerice bidentata Walker, I'iate I, Fig 15, larva; Plate XXXIX, Fig. $2, \varepsilon$.

The iarval feeds upon the elm. The insect has a wide range through the Appalachian subregion.

Genus SYMMERISTA Hübner

(1) Symmerista albifrons Abbot \& Simith, Plite XXXIX, Fig. 7,8

A very c^{\prime} mmon insect in the Appalachian subregion, ranging from the At'antic westward as far as the region of the Rocky Mountains.

Genus HIPPIA Maschler

(1) Hippia packardi Morrison, Piate XXXIX, Fig. 18. 8.

A rather scarce insect in collections. Its habitat is Texas.

Genus DASYLOPHIA Packard

(1) Dasylophia anguina Abbot \& Smith. Plite XXXIX, Fig. 5, 8.

Syn. cuculifera Herrich-S:hefficr; punt tita Walker; cuma Walker. sigrata Walker.

The moth ranges from the Atlantic to the Rocky Mountains.
(2) Dasylophia thyatiroides Walker, Plate XXXIX, Fig. $6,8$.

Syn, interna Packard; tripurtha Walker.
The habitat of the moth is the Appaiachian subregion. The specimen figured was taken in Indiana.

Genus LITODONTA Harvey

(1) Litodeata hydromeli Harvey, Plate XXXiX, Fig. 20, 8 ,

The moth, which is the sole representative of the genus in

Fig.
rsal
of
pon
tate
nge
(IX,
ging
<IX,
lker.
ins.
Fig.

The
8.
is in

Explanation of Platr XXXiX

(Unless otherwise indicated, the specimens figured are contained in the collection of W.'J. Holland.)

```
Vadates gibbosa Abbot \& Smith, \&.
    Verice bidentata Walker. \(0^{7}\).
    Hyparpax venus Neumargen, of, U. S. N. M.
    Hyparpax aurora Abbot \& Smith, \(0^{7}\). U. S N. M.
    Dasyluphia anguina Abbxt \& Smith, \(\sigma^{7}\).
    Dasylophia thyatirvides Walker, \(\%\).
    Simmerista albifrons Abbot \& Smith, \&
    Harpyia cinerea Walker, 9, U. S. N. M
    Harpyi, borealis Boisduval, त
    Harpyis albicona Strecker. ©', L'. S. N. M.
    Harpyina scolopentrina B ixduvai. o".
    ('erura multiscripta Riley. \(0^{7}\)
    Schizura iponece Doubleday, var cincreofrons
    Packiard. ©
    Schizara butia Packard. 7. C. S. N. It.
    Schisura cominna Abbot \& Smith, o
    Schizurn liptimides Grote, on'
    Schizurn nitiornis Ablot \& Smith, \(\boldsymbol{o}^{7}\).
    Hippia packardi Morrison, of
    Ianassa liguticalor Walker. of U. S. N. M.
    Litotonta hydromeli Harvey, of.
    17isuguda unicolor Packard, 9
    Heterocampa astarte Doubleday. 才t
    Hetcrocumpa manteo Doubleday. \(\sigma^{\circ}\)
    Hetcrocampa bilineata Packard, \(\sigma^{2}\).
    Heterocampa biundata Walker. \({ }^{7}\).
    Heterocanpa umbrata Walker, ot.
    Gluphisia severa Henry Edwards, \(0^{7}\). U. S. N. M.
    Gluphisia septentrionalis Walker. \(0^{7}\).
    Gluphisia wrighti Henry Edwards, \(0^{7}\).
    Fentonia marthesia Cramer. \({ }^{7}\)
    Ellida caniplaga Walker, \(\%\).
```


$+$ (1) Thinco

Notodentid

our fauna, is not at all uncommon in Texas and Arizona, and ranges southward into northern Mexico.

Genus HETEROCAMPA Doubleday

Eleven species belonging to this somewhat extensive genus are recognized as occurring within the limits with which this book deals. Six of these have been selected for illustration.
(1) Heterocampa astarte Doubleday, Plate XXXIX Flg. 22, 0 .

Syn. varia Walker; menas Harris.
The moth is not uncommon in the southern States and ranges northward as far as Pennsylvania and Ohio.
(2) Heterocampa obliqua Packard, Plate XL, Fig. 2, 8.

The insect occurs in the northern portions of the Appalachian subregion.
(3) Heterocampa umbrata Walker, Plate XXXIX, Fig. 26, 8. Syn. somiplaga Walker; pulverea Grote \& Robinson; athereo Harris.
The moth is rather common in the Appalachian subregion, ranging from the Atlantic as far west as the Mississippi.
(4) Heterocampa manteo Doubleday, Plate XXXIX , Fig. 23, 8 .

Syn. cinerascens Walker; subalbicans Grote.
The distribution of this species is the same as that of the last mentioned
(5) Heterocampa biundata Walker, Plate XXXIX, Fig. 25, 8. Syn. olvvatus Packard; nollis Walker
Llke the preceding species, this is a native of the eastern portion of our territory, and occurs from Canada southward to Georgia.
(6) Heterocampa bilineata Packard, Plate XXXIX, Fig. 24, 8 Syn. turbida Walker; associata Walker; ulmi Harris.
'Not uncommon in the eastern States.

Genus MISOGADA Walker

(1) Misogada unicolor Packard, Plate XXXIX, Fig. 21, 8. Syn. marina Packard; cinerea Schaus (non Packard); sobria Walker. This is the sole species of the genus. It inhabits the Appalachian subregion.

Genus EUHYPARPAX Beutenmüller

The only species of the genus as yet known is that to which Beutenmaller applied the name

Fic. 180.-Euhyparpan rosea, 8.4. rosea. It is a native of Colorado, and is as yet very rare in collections, only one specimen, the type, belng known. Thls is found in the collection of the American Museum of Natural History in New York. The moth is pale rosy red in color, and marked as shown in the cut, which was drawn from the type by Mrs. Beutenmaller.

Genus IANASSA Walker

(1) Ianassa lignicolor Walker, Plate XXXIX, Fig. 19, 9.

Syn. zirgata Packard; lignigera Walker.
The habitat of the species is the Appalachian subregion. Two other species, both of them inhabiting the southwestern portions of our territory, are known to belong to the genus.

Genus SCHIZURA Doubleday

(1) Schizura ipomcea Doubleday, form cinere ofrons Packard, Plate XXXIX, Flg. 13, δ.

The species is widely distributed throughout the United States. Several subspecific or varietal forms have been described, and a number of synonyms have been created for the species. For a knowledge of these the reader may refer to the Monograph by Professor Packard, to which allusion has already been made.
(2) Schizura concinna Abbot \& Smith, Plate XXXIX, Fig. 15, 8.

Syn. uitida Packard.
This is also a widely distributed species. The larva feeds upon the Rosacea.
(3) Schizura unicornis Abbot \& Smith, Plate XXXIX, Fig. 17, 8.

Syn. edmandsi Packard; humilis Walker; conspecta Henry Edwards.
This is a very common species of wide distribution. Its habits are much the same as those of the last mentioned.
(4) Schizura badia Packard, Plate XXXIX, Fig. 14, $\&$ Syn. significata Walker.
The habltat of the species is the Appalachian subregion.
(5) Schizura leptinoides Grote, Plate XXXIX, Fig. 16, 8. Syn. mustelina Packard.
The insect ranges through the Atlantic States westward to the Mississippl.

Genus HYPARPAX Hübner

(1) Hyparpax aurora Abbot \& Smith, Plate XXXIX, Fig. 4. 8.

Syn. rosea Walker; venusta Walker.
The moth occurs in the Appalachian subregion, but is more common In Virginia than elsewhere, so far as the observations of the writer extend.
(2) Hyparpax venus Neumœegen, Plate XXXIX, Fig. 3, \%. The habitat of the insect is Colorado.
(3) Hyparpax perophoroides Strecker, Plate XL, Fig. 28, δ

The insect has thus far been reported only from Florida. I am indebted to Mr. Beutenmaller for the loan of the specimen, which is figured upon the plate.

Genus CERURA Schrank

The genus is found in both hemispheres. Two species are attributed to it as being found in the United States.
(1) Cerura scitiscripta Walker, form multiscripta Riley, Plate 1, Fig. 18, larva; Plate XXXIX, Fig. 12, 8.

The moth is known to occur from New England to Mexico.

Genus HARPYIA Ochsenheimer

(1) Harpyia borealis Boisduval, Plate XXXIX, Fig. 9, 8.

The range of the specles is through the Appalachian subregion.
(2) Harpyia cinerea Walker, Plate XXXIX, Fig. 8, $\%$.

The moth occurs almost everywhere throughout the United States and southern Canada.
(3) Harpyia scolopendrina Boisduval, Plate XXXIX, Fig. $11, \delta$.

Syn. aquilonaris Lintner.
Form albicoma Strecker, Plaie XXXIX. Fig, 10, 8.

Notodontide

The insect is a denizen of Canada and the northern portions of the United States from the Atlantic to the Pacific.

Genus FENTONIA Butler

(1) Fentonia marthesia Cramer, Plate XXXiX, Fig. 30, 6.

Syn. tessella Packard; turbida Walker.
The moth, which is by no means common, has a wide range through the Appaiachlan subregion.

Genus GLUPHISIA Boisduval

(1) Gluphisia septentrionalis Walker, Plate XXXIX, Fig. 28, 8 .

Syn. clandestina Walker; trilineata Packard.
Widely distributed throughout the entire territory.
(2) Gluphisia wrighti Henry Edwards, Plate XXIX, Fig. 29, 3.

Syn. albofascia Henry Edwards; rupta Henry Edwards; formosa Henry Edwards.

The moth is found in southern Caiifornia and Arizona, as well as in northern Mexico.
(3) Gluphisia severa Henry Edwards, Plate XXXIX, Fig. 27, 8 .

Syn. danbyi Neumoegen; avimacula Hudson; slosroni Packard.
The species, which is somewhat variable in the maculation of the wings, is found in the northern portions of our territory.

Genus ELLIDA Grote

(1) Ellida caniplaga Walker, Plate XXXIX, Fig. 31, 9.

Syn. transuersata Walker; gelida Grote.
The moth In Pennsylvania is double-brooded. The first brood appears upon the $\because \cdot \mathrm{ing}$ in the early spring. The caterpillar feeds upon the linden (Tilia). The second brood is matured about the end of July. The insect is not common in collections, because its habits have not been hitherto understood.

Genus CARGIDA Schaus

(1) Cargida cadmia Guenée.

Syn. obliquilinea Walker.
The moth is a native of the southern States, and ranges from Texas southward to Costa Rica. The cut which we give is

Fig.

Fig.
mosa
well
Fig.
on of
first
ater-
d is n in ood.
from ve is

Explanation of Platk XL

（When not otherwise indicated，the spectimens fixured are contained in the eollection of W 」 Inoltand．）

1 ／／iperavidras strisgmis（irnota．of
－Heferoitampas whlicisas I＇ackint 3
3．（h）hatosjis eligisns Strexker，o
今，じ．S N \mathbf{N}
 を，L \＆N $\boldsymbol{\|}$
14．N＇intordoutis simplimin（irisef．\＆？ L＇S．N．M．
7．HiphFosishra satrgi，a llorrich $=$ S．bicifers． 0^{x}
 ？．
a）／hensia dimidiufa llerrich S＇hieffer．σ^{π}
co fibcosia porilumdia Henry Helwarkls，ot，U．S．N．．．
1．Jhatams ministra 1）rurs，e？
 Rudinstin，o
13．Datamd intigerfiond Grote \＆ Robinsam．ot
4 ／tifitua perspicina Grote \＆ Rubinsion， $\overrightarrow{\text { K }}$
13 Liophadonfs ongulosis Ablont \＆ Smith，σ^{7} ．

16 ．Methlophas allorsigime Fiteh． σ^{*} ．
：\％．Medahopha strigum Grote， 0 ． C．S N $\quad 11$
is ．Whohophas apiculis Walker，var ＂rnaht Grote \＆Rohinsm． ot C．S．N．M
in Welwhophas imilusu blulmer． \uparrow ．
20．1patelindes hurrijuth Mhuil \＆ Smith． 0^{7} ．
21．． 1 patehendes angedia，Grute．a
22 Habrosym suripha Gosse， 0^{7} ．
23．Euth muthra pudens Guenee，ot Marrick collection．
24．Auth yutim pudens var．peninsy－ zubuica Smith，of Merrick Cullection．
25．Psoudothyatira cymutophuraides Guenée，ot
26．Pscmdothyotira expultrix Grite． σ^{7} ．
27．Bumb，rids tearli llenry Edwards．σ^{7} ．U．S．N．M．
28．Hyparfar perophoroides Strecker．of Beutenmüller Collection．

drawn from the type of Walker's species, which is contalned In the British Museum. The Insect is rare as yet In collections, though specimens coming from Central America are far more

numerous in cablnets than specimens obtained from points within the limits of the United States.
(a) Carglda pyrrha Druce, Plate XI, Fig. 15, 8.

The insect occurs in southern Arizonal and in Mexico.

Genu: CRINODES Herrlch-Schmeffer

(1) Crinodes beskei Hahner, Plate XLJ, Fig. 4, 8.

Thls very peculiar moth is the only representative of its genus which occurs within our territory. There are numerous species found In the tropics of the New World. The habitat of the present specles is Arlzona and Mexico.

NASU.NO TAKE

Nasu-no Take is a volcano in the Interior of Japan. Tora-san came Into my room on the upper floor of the tea-house where we had made our stay while exploring the summit of the mountain, which was in eruption at the time. Tora-san was my fidus Achates. He could make an insect-box or repair a jinrickisha, for he was "an honorable carpenter." He did not disdain, when necessity demanded, to prove himself a capable cook, though this was not hls calling. He could provide a meal of "America-no Chow" or "Nlppon-no Chow," the cuisine of Anglo-Saxon and of Japanese being alike familiar to him. He was best of all an enthusiastic entomologist, and much preferred sug aring for moths to making curries. "Danna-san," he said, "Nasu-no Take have got many moth Tokio no have got." "Yca, verily! good Tora-sin." "Danna-san, me catchee moth

Nantre Tale
ko komban sugar way. Danna-san go long p" "With all my heert! Suyol" And so It was errenged.

In the ock-forest below the tea-house we sugered tie trees. When the inght came on we went with our lanterns to the spot. The black shadows clung to the woodland path. As the lanterns went bobbing elong the narrow wey, each turn produced a .. i.d and beautiful effect. The gnarled old pines, the oaks and the bamboos, the wild yams festooning the shrubbery, thrust forth for a moment Into relief agalnst the universal darkness. were fascinating to look upon. Here and there white lilles held up their stately blossoms, and starry flowers, from which the moths fled es we came along, bloomed every where. The effect of moving lights in shrubbery and forest-growths is always charminig.

But the captures of that night were more memorabie than all the witchery of the strange and beautiful scenery in the midst of which we walked. The gems of our catch were a dozen perfect specimens of the great Snowy Underwing, the most beautiful as well as one of the rarest specles of the splendid genus to which It belongs. I never pull out the draw ir in the cabinet, where these things have rested full many a day since then, without seeing visions and dreaming dreams of the happy past. How nuch "globe-trotters" miss when they are not students of nature! The memory of one such night spent in the wild woods is worth the memory of weeks spent in palaces.
" The insect lagions, prank'd with gaudiest hues, Pearl, gold and purple, swarm'd into exintener. Minute and marvellous creations these.
some proudly shone
like living jewels; some grotesque, uneouth,
And hideous
Those lived deliciously on honey-dewn. And dwelt in palaces of blowsomed bells. Millions on millions, wing'd and plumed in front, Fill'd the dim atmosphere with hum and hurry. Montoonerx, - Polican It'and.

FAMILY THYATIRIDAE

"Feeble though the inxect lie, Allah apeak through that thee! As within the moonbeam 1. (isd in glory sits on high, Sits where countess planets roll, And from thence controls the whole: There with threads of thousand dyes 1.ife's bewidered web he plies, And the hanil which holile them all Jets not e"en the fechlest fall."
(Fitsenschlergen.-Aladdin's Lamp.
The family has been characterized as tollows by Sir George F. Hampson, in his work upon the moths of India:
"A family of moths resembling the Noctuida in appearance.
Proboscis present. Antennee usually rather thickened and nattened. Mid tibia whth one palr of spurs, hind tibia with two pairs. Fore wing with vein $1 a$ short and slight, not forming a fork with $16 ; 1 c$ absent; 5 from the center of the discocellulars. velns 7 and 8 stalked; and 9 and 10 stalked, and almost or quit. anastomosing with veins 7 and 8 to form an areol.. Hinu wing with two internal veins; vein 5 from the center of the discocellulars, or generally from below the center; veins 6 and 7 given off not far from the base; 8 bent down and quite or almost touching 7 after the bifurcation.

Larva noctuiform. with five pairs of prolegs."

Genus HABROSYNE Hübner

(1) Habrosyne scripta Gosse, Plate XL, Fig. 22, 3.

The moth is quite common locaily in the northern States of the Atlantlc seaboard, and ranges westward to the central portions of the Valley of the Mississippi.

Genus PSEUDOTHYATIRA Grote

(1) Paeudothyatira eymatophoroides Guenee, Plate XL, Fig. 35, 5.

Form expultrix Grote, Plate XL, Flg. 26, 8.
The moth, which occurs in the two forms which we have delineated on the plate, is a native of the northern portions of the Appalachian subregion. It is common in Pennsylvania.

Genus EUTHYATIRA Smith

(1) Euthyatira pudens Guenée, Plate XL, Fig. 33, δ.

Form pennsylvanica Smith, Plate XL, Fig. 24, $\%$.
The moth emerges in the very early spring, and may be found where it is common, seated about three inches from the end of twigs in the woodlands, with its wings folded about the twig in such a way as to elude the observation of those who are not familiar with its habits. The form pennsylvanica is found in both sexes in every brood. It represents a curious case of dimorphism.

Genus BOMBYCIA Hübner

(1) Bombycia improvisa Henry Edwards, Plate XL, Fig. 27, 8.

Syn. tearli Henry Edwards.
The habitat of the insect is on the Pacific slope, in the northern portions of the coast ranges.

" Then rapidly with foot as light

 As the young musk-roe's, ont she flew To cull each shining leaf that grew Beneath the moonlight's hallowing beams For this enchanted wreath of dreams, Anemones and Seas of Gold,And new.blown lilies of the river, And those sweet flowrets that nnfold

Their buds on Camadeva's quiver."
Thomas Moore. - Lalla Roukh.

FAMILY LIPARIDA

"The stady of entomology is one of the most lascinating of parsuits. It takes its votaries ioto the treasnre-houses of Nature, and explains some of the wonderfnl series of links which form the great chain of creation. It lays open before ns anoher world, of which we have been hitherto unconscions, and shows has its work to thiest insect, so smsll perhaps that the unaided eye can scarcely see it, world, and does it."-REv. J. G. Wood.

The following characterization of the family is adapted from the pages of Sir George F. Hampson's "Moths of India," Vol. I, p. 432 :

A family of moths generally of nocturnal flight, though some genera, as Aroa of the Eastern Hemisphere and Hemerocampa, are more or less diurnal in their habits. The perfect insects are mostly clothed with long hair-like scales upon the body. The males have the antenno highly pectinated, the branches often having long terminal spines, and spines to retain them in position. The females oft have a largely developed anal tuft of hair for covering the eggs. The proboscis is absent. The legs are hairy. The frenulum is present, except in the genus Ratarda, which does not occur in America. The fore wing with vein $\mathrm{I} a$ not anastomosing with $\mathrm{I} b$; $\mathrm{t} c$ absent except in Ratarda; 5 from close to lower angle of cell. Hind wing with two internal veins; 5 from close to lower angle of cell, except in the eastern genera Gazatina and Portbesia, 8 nearly touching 7 at middle of cell and connected with it by a bar.

Larva hairy; generally clothed with very thick hair or with thick tufts of hair, and forming a cocoon into which these hairs are woven, they being often of a very polsonous nature.'

Genus GYNAEPHORA Hübner

(1) Gynæephora rossi Curtis, Plate XXXVIII, Fig. 10, $\%$, Fig. $11, \%$

The genus is arctic, and the species is found in the arctic 305

Liparide

regions of America, the specimens figured having been received by the writer from Point Barrow in Alaska.

Genus NOTOLOPHUS Germar

(1) Notolophus antiqua Linnzus, Plate XXXVIII, Fig, 18, 8 Syn. nova Fitch.
The moth is found in Europe and in the northern portions of the United States and in Canada.

Genus HEMEROCAMPA Dyar

The females in this genus are wingless, or have the wings at most rudimentary. The eggs are difusited in masses, generally upon the surface of the cocoon from which the female has emerged. The larva are voracious feeders; and as the species are generally very prolific, the insects inflict a great deal of damage upon vegetation
(1) Hemerocampa vetusta Boisduval, Plate XXXVIII, Fig. 19. 8

Syn. cana Henry Edwards: gulosa Henry Edwards.
The insect replaces on the Pacific coast the following species, which in its habits it closely resembles.
(2) Hemerocampa leucostigma Abbot \& Smith, Plate XXXVIII, Fig. 20, ${ }^{\circ}$, Fig. 21, ㅇ. (The White-marked Tussock Moth.)

Syn. lencographa Geyer; intermedia Fitch; borealis Fitch; obliziosa lienry Edwards

The moth is widely distributed in the Appalachian subregion, and its ravages upon shade-trees and shrubbery are matter of familiar observation. The insect is double-brooded in the more northern portions of its range, and triple-

Fig. 182. -H . leucostigha, 6. 1. (After Riley.) brooded farther south. The first generation is matured from eggs which, having been deposited in the fall of the year, remain in situ upon the cocoons upon which they were deposited until they are hatched by the heat of the sunshine of spring. The caterpillars rapidly develop, and the second generation, which is always much more numerous than the first, begins to appear about the middle of july in the latitude of New York and Philadelphia.

Liparide

A third generation follows in the month of September. This generation lays the eggs from which the larva which appear in the following spring are hatched.

The female, as has already been stated, is wingless, and lives solely for the purpose of oviposition. Hatving laid her eggs, which she covers with the hairy scales which she plucks from the abdomen, and mingles with a viscid secretion, which she deposits with the eggs, and which on drying becomes hard and brittle, she dies. Th. young larva on being hatched has the power of spinning a thin thread of silk, with which it lowers itself from its resting-

Fig. 183.- $1 /$. lescostignti. a, female; δ, young place when disturbed, larva, magnified; 6, female pupa; ${ }^{\text {(After Riley.) male pupa. }}$ and by means of which it regains the place from which it has drcpped. This power is lost as the insect develops after successive molts. The mature caterpillar is a rather striking and not unbeautiful creature. The head is brilliant vermilion in color; the body is white banded with black, and adorned with bla k-tipped tufts and bundles of cream-colored hairs. There is considerable disparity in the size of the larva and the pupx of the two :ies, as is partially shown in Fig. 183. The larva and the pupa of the female moth are generally twice as large as those of the male.

The best means of combating the ravages of this insect is to see to it that in the fall and winter the cocoons, which may be found adhering to the

Fic. 184.-M. iencostiyma. Larva of female moth (After Riley.) twigs of trees and shrubs and secreted in th nooks and crannies of ances, are gathered to 0 ather and destroyed. It is also useful to spriy the young foliage of trees which are liable to attack with any one

Liparide

of the preparations which are made by reputable firms for the purpose of destroying the lariz of this and other destructive insects which attack our shade-trees. The sprayug should take place at intervals when the young larva are observed to be moving upward upon the trunks of the trees.
(3) Hemerocampa definita Packard, Plate XXXVIII, Fig. 17. 8.

This species, which is closely allied to the last, is found in the northern Atlantic States. What has been said as to the habits of H. leucostigma applies also to this insect.

Genus OLENE Hubner

(1) Olene achatina Abhot \& Smith, Plate XXXVIII, Fig. 9, 8.

Syn. parallela Grote \& Robinson; rephra 11 ubner; cinnamomea Grote \& Roblnson.

The moth, which is somewhat variable in the style and intensity of the dark markings upon the wings, is found in the Appalachian subregion, but is somewhat more frequent in the south than in the north.
(2) Olene leucophsea Abbot \& Smith, Plate XXXVIIl, Fig. 7, 8, Fig. 8, $\%$.

Sym. basifava Packard; atrivenosa Palm; manto Strecker.
This ls likewise a variable insect, the range of which is practically coincident with that of the last-mentioned species.

Genus PORTHETRIA Hübner

(1) Porthetria dispar Linnæus, Plate XXXVIII, Fig. 12, of, Fig. 13, 8. (The Gypsy Moth.)

This well-known insect is a native of the Old World. A number of years ago, a gentleman interested in entomology, and residing at the time in Cambridge, Massachusetts, received from a friend in Europe a number of cocoons of the moth, from which the insects in due season emerged. A few of the number were prepared and mounted in his cabinet, and the remainder were allowed to escape through the window of the room in which they were. Unchecked by the presence of parasites, which in their native habitat keep their numbers down, they rapidly multiplied and became a scourge. Fully a million of dollars has thus far been expended in the effort to exterminate thers. In spite of

Liparide

all the exertion which has been put forth, the insect appears to have obtained a permanent foothold In the New England States, though in recent years the destruction wrought has not been very great, owing to the incessant vigilance which is malntained by the civic authorities in repressing the nuisance.

Genus PSILURA

(1) Psilura monacha Linneus, l'late XXXVIII, Fig. 14, z, Fig. 15, 9.

This is another insect which is satd to iatave been imported from Europe, and is reputed to have found a foothold on the soll of the New World. The specimens figured on our plate are from il brood which the writer is inforined by Mr. George Franck, of Brooklyn, to have been found in the eastern suburbs of that place. Mr. Franck has assured me that it is certainly already well domiciled in the region.

Genus EUPROCIIS Hübner

(1) Euproctis chrysorrhcea Linnæus, Plate XXXVili, Fig. 16, \%. (The Brown-taii Moth.)

This insect, like the two preceding species, is an importation from Europe. It has become domiciled in the vicinity of Boston, Massachusetts, and is very common in the vicinity of Magnolia, Beverly Farms, and Manchester-on-the-Sea.

Genus DOA Neumdegen \& Dyar

The only species of the genus, named ampla by Grote, is a native of Colorado, and ranges thence southward through Arizona to the higher mountain plateaus of Naxico. It also occurs not infreqiaently in northwestern Texils. it may easily he recognized with the help of the accompanying cut, which is drawn

Fic. 185 - Dow ampho t . ! from a specimen in the collection of the writer.

> "Maidens, like moths, are cver ught by glare;
> And Mammon wins his way v .rre seraphs might despair.",
> Byrov, -Childe Harold, Cantu, I.

Llparide

Genus LEUCULODES Dyar

The genus is thus far represented in our

Fic. 186.- Lencuiodes lacteolaria, ¿ . f. fiuna by but a single species, to which Hulst applied the specific name lacteolarla. It is : native of Arizona. The figure which is herewith given was drawn by the writer from the type which is preserved in the United States National Museum.

MOTH.SON:

"What doat thou here, Thou dusky courtier,
Within the pinky palace of the rose?
llere is no bed for ther,
No honeyed spicery,-
But for the golden bee,
And the gay wind, and me,
Its sweetness grows.
Rover, thon dost forget :-
Seek thon the passion-flower
Bloom of one twilight hour.
Haste, thou art late!
Its hidden savors wait.
For thee is spread
Its soft, purple coverlen ;
Moth, art thon sped ?

- Dim as a ghost he fies

Thorough the night inysteries."
Elien Mackay Hetchinson Cortissoz.

FAMILY LASIOCAMPIDE

"Now busily convened upon the bull
That crowns the genial branch, they feast sublime, And sprend their mustin canopy around, Pavilioned richer than the proudent kings."
The Lasiocampidur have been characterized as follows by Sit George F. Hampson, in "The Moths of India," Vol. 1, p. 402 :
"Moths mostly of large size. Palpi porrect and generally large. Proboscis absent; eyes small; antenne bipectinate in both sexes; legs generally with minute terminal pairs of spurs to mid and hind tibix and rather hairy. Fore wing with vein $1 a$ not forked with $b ; 1 c$ rarely present; the cell medial in position; veins 6 and 7 from the angle; veins y and 10 always stalked and from before the angle. Hind wing with two internal veins; 6 and 7 arising very near the base; 8 curved and almost touching 7, or connected with it by a barr, thus forming a precostal cell; accessory costa! veinlets generally present. Frenulum absent.

Larya winn lateral downwardly-directed tufts of hair, and oftell subdorsal tufts or dorsal humps on anterior somites thickly clothed with hair.

Cocoon closely woven of silk and hair."
Seven genera belonging to the fimily are recognized as occurring within our faunal limits.

Genus GLOVERIA Packard

(1) Gloveria arizonensis Packard, Plate XLI, Fig. 3, 8.

Syn. dentata Henry Edwards.
The moth is found in Arizona and northern Mexico.
(2) Gloveria psidii Sillé, Plate XLI, Fig. 2, 8.

The habitat of the species is the same as that of the foregoing.
(3) Gloveria howardi Dyar, Plate XLI, Fig. 1, 8.

The specimen figured on the plate is one of several which are contaitsed in the collection of the United States National Museum,

Lasiocampida

and which constituted the material upon which the original description of the species was based by Dr. Dyar.

Genus ARTACE Walker

(1) Artace punctistrlga Walker, Plate XII, Fig. 5, 8.

Syn. mubrialpis Felder.
This rather rare little moth has its habitat in the southern Atlantic States.

Genus TOLYPE Hubner

Five species are accounted as belonging to this genus. We give illustrations of the one which is commonest.
(1) Tolype velleda Stoll, Plate XI, Fig. 7, 千́, Fig. 8, q.

The species is for nd throughout the Appalachian subregion.

Genus HYPOFACHA Neumaegen \& Dyar

The only species known to belong to this genus was named grisea by Neumagen. The only specimen of which the writer has knowledge is the type which is contained in the collection of the Brooklyn Institute. Of this I have, through the hindness of the authorities of that institution, been permitted to make a drawing, which is reproduced in the annexed cut. The habitat Fig. 5 - H. of the species is Arizon:a,

Cenus MALACOSOMA Hubner

(1) Malacosoma americana Fabricius, Plate X, Fig. 12, $\%$. $\mathrm{s}_{\text {ju. deciplens Walker ; frutetorum Boisduval. }}$
The species, which is commonly known as "The American Tent-caterpillar," is widely distributed throughout the Appalachian subregion, and at times inflicts considerable injury upon the foliage of trees. It especially affects trees belonging to the Rosacea, as the wild cherry and wild plum, and attacks apple-orchards with avidity. The great white webs woven by the caterpillars are familiar objects in the rural landscape, detested by the fruitgrower, and equally despised by the inan who loves to see trees in perfect leaf. An orchard cobwehbed by the tent-caterpil-

Laslocamplda

Rusacear, although they also at times feed upon other trees. The hickorles of various species and the walnuts are not exempt

Fig. ıgo, - M. disstrins. a_{0} ege mast; b_{0} moth; c, egg viewed from top: d, egge viewed from aide ; c, d, magnified. (After Riley.) from thelr ravages. The writer has never observed then feeding upon oaks, birch, or beeches. An excellent account of the habits of these creatures may be found in Riley's Missouri Reports, Number III, from which the illustrations here given have been taken. The means of holding the insects in check are the same which have been recommended in the case of M. americana.

Genus HETEROPACHA Harvey

(1) Heteropaeha rileyana Harvey, Plate VIII, Fig. 7 \%.

The moth is not uncommon in the Valley of the Mississippi, ranging from western Pennsylvania to Kansas and Missouri, and southward into Texis.

Genus EPICNAPTERA Rambur

(1) Epienaptera amerieana Harris, Plate XLI, Fig. 19, ${ }^{3}$, Fig. 20, 9 .

Syn. accidentis Walker; carpinifolia Boildorvl.
There are a number of color forms of this insect which have received names, and which appear to be local races of some measure of stability in the regions where they occur. We have given in our plate the form which is common in the Mississippi Valley. The specimens figured were bred from larver reared by Mr. Tallant at Columbus, Ohio.

[^10]

Explanation of Plate XLl
(Unleas otherwime indicuted. the apevimenn tigureal are comtained in the callection of II J. Holland.)

1. (ilowria hereardi Dyar, Q, U. S. N. M.
ciloneriu psidii Sallé. σ^{7}. U. S. N M. Cilorrrid arisumensis Packard. Q, U. S. N. M. Crinodes heskei Hubner. σ^{7}. Cithoronia sepulchralis Grote a Kabinwon. 9. Oritu ierorata Packurd, F. Falcaria bilineata Packard, ρ.
Enryc yturus comfederata Grote \& Rıbinsun. or. Cossus andosus Lintner. ?
Prionoxystus ribinia Peck. \% Prionoxystus robinice Peck. ot. Thyridopteryx sphemeraformis. Haworth, O^{2}. themopis quadrigntlatus Grote. δ^{7}. ithenpis argentermuculutus Harris. 0^{7} Hipiulas hyperherens Muschler. \boldsymbol{o}°. L. S. N. M. Ilepialus lembeti Dyur. ot U. S N. M.
('icinnus melsheimeri Harris, 9.
2. Aon metuiformis Neumargen, O^{4}.

19 Epic nuptero americund Harris. ot.
30. Epi, muptera americuna Harrix. \&.

31 Lacosoma chiridota Grote, σ^{x}.
22 Drepana genicula Grote, ot.
43. Drepulte arituata Walker. of.
34. Oreta rosed Walker, 9.

FAMII.Y BOMBYCIIIT

" And thou, the insect of an hour,
O'er Time to triumph wouldst pretend;
With nerves of grass wouldsl brave the power
Beneath which pyramids must bend! "
Cart. Gestaf Ar Leotulis.
The Bombycide were origin:illy confined to the Asiatic continent, and more particularly to the southeastern portions of that great land mass. The family is quite small and includes only a few genera. Of these the genus Bombyx is the only one which is well known. The family has been characterized as follows by Sir George F. Hampson, in "The Moths of India," Vol. I, p. 31:
"Proboscis absent, palpi rather sinall or absent; antenna bipectinated in both sexes; legs hairy, without spurs. Frenuluin absent; vein 5 of both wings from or from above the iniddle of the discocellulars; veins 7,8 , and 9 of the fore wing generally more or less bent downward; vein 1,2 forming or not forming a fork with $1 b ; 1 c$ absent or present. Hind wing with two or three internal veins; vein 8 arising from the base of 7 , or free from the base with a bar between them; the inner margin irregular and in part turned over.

Larva elongate and not hairy; dorsal hutnps on some of the somites, or a horn on the terminal somite, or paired dorsal spines.

Cocoon formed of fine silk of great commercial value."

Genus BOMBYX Linnæus

(1) Bombyx mori Linnæus.

The silk-worm of commerce is not known to exist in a feral or wild state in the regions where it is now most commonly

Bombycide

reared. In this respect it is like many other domesticated animals. The caterpillar, of which a figure is herewith given, feeds upon

Fi:. 191.-I Iarva of Bombyx mori. (After Riley.)
the leaves of the white mulberry, and will also feed freely upon the leaves of the Osinge oringe, an American hedge-plant. The insect was introduced at an early date into the American colonies, but its

Fti. 192. - Cocoon of 13. mori.
(After Riley.) culture has not as yet risen in the New World to great proportions, though the manufacture of silk from imported material is at the present day an important American industry.

The culture of silk is an industry which might be best undertaken and maintained in the Southern States of the American Union, where climatic conditions are wholly favorable to it . The Carolinas and Georgia appear to furnish the best climate for the development of this industry, and it is believed by those who are most conversant with the matter that in time the rearing of the silkworm may become in these States an exceedingly important and profitable branch of industry.

Fic. 193. - Moth of B. mori. (After Riley.) Southern California and Arizona are also likely to become centers in which the growing of raw silk may be successfully pursued.

THE HISTORY OF SILK-CULTURE

The greater portion of the silk of commerce is produced by the larve of the moth known as Bombyx mori. The in-
sect, through ages of human culture, has become thoroughly domesticated. It has been wrongly maintained that the moth known as Tbeopbila buttoni, and which is found in China and western India, is the ancestral or feral form from which the domesticated Bombyx mori has been derived. The common silkworm does not exist in a wild state anywhere so far as is known, and is as much a domestic animal as the Jersey cow or the greyhound. Chinese Itterature clearly shows that the silk-industry originated in that country. The Emperor Hwang-Ti, whose reign was in the eighteenth century B.C., fostered the culture of silk, and his empress, Si-Ling-Chi, who gave her personal attention to the breeding of silk-worms and the manufacture of silk, was deified in consequence, and is reputed to be "the goddess of silk-worms." The methods of securing the silk and weaving tabrics from it were held secret by the Chinese for nearly two thousand years, and only after ages was a knowledge of the art transmitted to Corea, and thence to Japan. Slk in very small quantities was imported into Greece and Rome from China by way of Persia. Aristotle was the first writer in Europe to give a correct account of the manner in which silk is produced. . He is supposed to have derived his information from those who hac accompanied Alexander the Great on his victorious march into India. The price of silken fabrics in the West at the beginning of the Christian era, owing to the cost of transportation, was so great that only the very rich could possess garments of this material. Their use was restricted to wealthy women. For a man to use silken clothing was esteemed a sign of luxurious effeminacy. Under the reigns of Tiberius, Vespasian, and Diocletian the use of silken apparel by men was positively interdicted; but gradually, with the increase of importation of raw silk from Persia and its manufacture into stuffs in Asia Minor and elsewhere, the habit of using it grew, and its cost was slowly lowered. Under the reign of the Emperor Justinian, in the sixth century, positive steps to foster sericulture as an imperial monopoly were taken. Silk-looms operated by women were established in the palace at Constantinople, and Justinian endeavored, in view of the loss of the supply of raw silk brought about by a war with Persia, to induce the Prince of Abyssinia to secure to him supplies of the article by a circuitous route. Relief was finally

Bombycide
brought to the embarrassed imperial manufacturer when two Nestorian monks, who had lived iong in China and had learned all the processes of silk-culture, were induced to go back to that lar-away land and bring to Constantinople a stock of the eggs of the silk-worm. As it was among the Chinese a capital offense to reveal the secrets of the trade or to export the eggs from which the worms are hatched, the two priests had to proceed with the utmost caution. They concealed the eggs in the hollows of the bamboo staffs which they carried as pilgrims. I'rom these eggs, thus transported to Constantinople in A.D. 555, all of the silkworms in Europe, Africa, Asia Minor, and Americ: until as recently as 1865 were descended. It was not until the last-mentionad year that any importation of fresh eggs of the silk-worm from China took place. Those two bamboo sticks held within themselves the germ of a vast industry, countless costly wardrobes, the ratincint of kings, queens, and emperors, and untold wealth.

From the time of Justinian onward the growth of silk-culture in Greece and Asia Minor was rapid. It was introduced into Spain by the Saracens at the beginning of the eighth century. It found lorgment in Sicily and Naples in the twelfth certury, and in the next century was taken up in Genoa and Venice. It was not begun in France until the latter part of the sixteenth century, but in the seventeenth century it made great progress in france, as well as in Belgium and Switzerland. The weaving of silk had begun at an earlier date than this in France, Germany, and England. Attemots made to introduce the culture of the mulberrytree and of the silk-worm in Great Britain have always signally failed. The c'mate appears to be against the industry. James I, who had failed in his attempts to foster sericulture in England, undertook to plant the industry in Virginia in 1609. But the eggs and mulberry-trees he sent out were lost by shiowreck. In 1619 and the years immediately following the attempt was renewed, and the raising of silk-worms was enioined by statute and encouraged by bounties. In spite of every effort, little came of the attempt, the colonists finding the growth of tobacco to be far Inore profitable. In Georgia and the Carolinas similar attempts were made, and from 1735 to 1766 there were exported to England considerable quantities of raw silk from these colonies. Frosin

1760 onward the industry declined. Sericulture was at this time taken up in Connecticut and flourished there more than anywhere else for many years, though the raw silk was not exported, but woven on the spot into various fabrics. The production of raw silk in Connecticut for many years amounted to a sum of not less than $\$ 200,000$ annually. In 1830 an effort was made to introduce into the United Stites the so-called Chinese mulberry (Morus mulficaulis). A popular craze in regard to this plant and the profits of silk-culture was begotten. Fabulous prices were paid for cuttongs of the Morns multicaulis, as much even as five dollars for twigs less than two fect in length. Hundreds of people came to believe that the possession of a grove of these trees would be the avenue to fortune. But in 1839 the bubble burst, and many persons who had invested the whole of their small earnings were ruined. It was discovered that the trees would not withstand frost and were practically worthless, as compared with the white mulberry (Morus alba). "Colonel Mulberry Sellers" remains in American literature a reminder of those days, and of the visionary tendencies of certain of our people.

The manufacture of silk thread and of silken fabrics was begun in the United States at an early date. Machinery for reeling, throwing, and weaving silk was invented, and the importation of saw silk was begun. The industry has steadily grown until at the present time silk-manuficture has come to be an important industry, in which nearly a hundred millions of dollars are invested. The annual production of silken goods amounts to a sum even greater than the capital employed and gives employment to seventy-five thousand persons. So much for the industrial importance of one small species of those insects to which this volume is devoted.

[^11]Charles G. Halpine. - Janette's Mair.

FAMILY PLATYPTERYGIDE

" Above the wet and tangled swamp White vapors gathered thick and damp, And through their cloudy curtaining Flapped many a brown and dusky wingPinions that fan the moonless dun, ut fold them at the rising sun."

The family has been described as follows by Sir George F. Hampson, "Moths of India," Vol. l, p. 326:
"Small or moderate-sized moths of somewhat slender build, generally with the apex of the fore wing falcate.

Palpi slender and slightly scaled, often very minute. Fore wing with vein $1 b$ forked at the base; $1 c$ absent; 5 from close to the lower angle of cell. Hind wing with one or two internal veins; $1 a$ short wher presert; 5 from rear lower angle of cell; the discocellulars angled; the origin of veins 6 and 7 before the angle of cell; 8 bent down and nearly or quite touching 7 .

Larra smooth, with the anal prolegs absent, except in the genus Euchera; ${ }^{*}$ the anal somite usually with a long process, the others often humped.

Cocoon spun among leaves."

Genus EUDEILINEA Packard

The only species of the genus known in our

Ftg. 194. $-E$. herminiata, đ. fauna is the one named herminiata by Guenée. It is a rather rare little moth in collections, being probably overlooked by collectors on account of its insignificant size and its general resemblance to commoner species. It is found in the Appalachian subregion.

- Not American.

Platypterygide

Genus ORETA Walker

(1) Oreta rosea Walker, Plate XLI, Fig. 24, 8.

Syn. americana IIe .ach-Schaffer; formula Grote.
The moth is a native of the eistern portions of our territory.
(2) Oreta irrorata Packard, Plate XLI, Fig. 6, 8.

The range of this species is coincident with that of the last.

Genus DREPANA Schrank

(1) Drepana arcuata Walker, Plate XLI, Fig. 23, 8 , Syn. fobuta Gircte.
Form genicula Grote, Plate XLI, Fig. 22, 3.
The species, which is dimorphic, inhabits the Appalachian subregion. The form genicula occurs in the spring, the form arcuata in the summer.

Genus FALCARIA Haworth

The genus is common to both hemispheres.
(1) Falcaria bilineata Packard, Plate XLI, Fig. 7, 8.

The insect, which is by no means common, is a native of the eastern portion of our territory.

TRANSFORMATION

"Who that beholds the summer's glistering swarms, Ten thousand thousand gaily gilded forms, In volant dance of mix'd rotation play, Bask in the beam, and beautify the day ; Who 'd think these ciry wantons, so adorn, Were late his vile antupathy and scorn, Prone to the dust, or reptile thro' the mire, And ever thence anlikely to aspire? Or who with transient view, beholding, loaths Those crawling sects, whom vilesl semblance cloalhs; Who, with corruption, hold their kindred state, As by contempt, or negligence of fate; Could think, that snch, revers'd by wondrous doom, Sublimer powers and brighter forms assume; From death their future happier life derive, And tho' apparently entomb'd, revive; Chang'd, thro' amazing transmigration rise, And wing the regions of unwonted skies; So late depress'd, contemptible on earth, Now elevale to heaven by second birth."

Henay Brooke. - Universal Beanty.

FAMILY GEOMETRIIIF

". . . The sylvan powers
Obey our summons; from their deepest dells The Drysds come, snd throw their garlauds wild And odorous branches at our feet; the Nyuphs That press with nimble ntep the moantain-thyme And parple hesth. flower come not empty handed, Bat scatter round ten thousand forms miunte Of velvet moss or lichen, torn from rock Or rifted oak or cavern deep: the Naiats 100 Quit their lovel native stream, from whose sunooth face They crop the lily, and each sedge and rusls That drinks the rippling tide: the frozen poles, Where peril waits the bold adventurer's tread, The barning sands of liurneo and Cayenne,
All, all to us anlock their secret stores
And pay their cheerful tribute."
J. Tasione.-Nomidit, 1818.

The Geometrida are a very large and universally distributed family of moths. There is no country where there is any vegetation where they do not occur. Even in the inhospitable regions of the far North, upon the verge of the eternal ice, they may be found. They are more or less frail in their habit, with considerable expanse of wing in proportion to the size of the body. They are semidiurnal or crepuscular. They have been characterized as follows by Sir George F. Hampson:
". . . Proboscis present or rarely absent. Legs and tarsi slender, elongate, and naked, or slightly clothed with hair. Fore wing with vein $1 a$ forming a fork with $1 b$. ic absent; vein 5 from or from above middle of the discocellulars, 7 rising from 8 , 9. Hind wing with the frenulum usually present, but absent in a few genera. Vein $1 a$ very short, appirently ahsent in some forms; vein $1 b$ running to anal angle; $i c$ absent. 8 with a welldeveloped precostal spur.

Larva with the three anterior pairs of abdominal claspers totally aborted, and progressin: by bringing the posterior somites close to the thoracic, looping the medial sumites. In a few ancestral forms there is tendency to develop additional prolegs and to a more ordinary mode of progressicn."

The larva, whic. are cummonly knowis as " measuringworms," ' 'span-worms," or "loopers," have the power in inany cases of attaching themselves by the posterior claspers to the stems and branches of plints, and extending the remainder of the body outwardly at an angle to the growth upon which they are resting, in which attitude they wonderfully resemble short twigs. Dichromatism is often revealed among them, part of a brood of caterpillars being green and the remalnder brown or yellowish. Various explanations of this phenomenon have been suggested. In not a few cases the females are wingless.

Over eight hundred species of Geometrida are known to occur within the limits of the United States and Canada, and when the region shall have been exilaustively explored, there is little doubt that this number will be greatly increased. It is impossible within the limits of this book to mention and depict all of these species. We have therefore confined ourselves to the description through our plates of one hundred and seventy species, which are either more commonly encountered, or are possessed of some striking character. Incidentally occasion has been taken to figure a few of the types of species in the collection of the author which halve never before been delineated.

The student who desires to familiarize himself with the fimily with which we are now dealing will derive much assistance from the writings of Packard and Hulst, the titles of which he will find in the portion of the Introduction of this book devoted to the literature of the subject.

SUBFAMILY DYSPTERIDINた Genus DYSPTERIS Hübner

(1) Dyspteris abortivaria Herrich-Schæffer, Plate XLII, Fig. 21, 3. (The Bad-wing.)

This pretty little moth may be easily recognized by the fact that the hind wings are so much smaller than the fore wings.

Ceometrdo

It is the only species of the genus found within our territory. It is not uncommon In the Appalachlan subregion.

Genue NYCTOBIA Hulet

Three species belong to this genus. One of them is selected for illustration.
(1) Nyctobia limitata Walker, Plate XLII, Fig. 22, 3.

Sya. lodophonata Walker; 'mata Packard.
The habitat of this moth is identical with that of the last-mentioned species. It is not at all uncommon in Pennsylvania.

Genus CLADORA Hulet

(1) Cladora atroliturata Walker, Plate XLII, Fig. 23, δ. (The Scribbler.)

Syn. grminata Girote \& Robinson.
A neatly marked species, which is the sole representative of the genus in our fauna. The moths may be found in the early spring seated upon the lrur'ts of trees in the forest. It is a native of the Appalachian subregion.

Genus RACHELA Hulst

Four species of this genus have been characterized by the lite Dr. Hulst. The oniy one which occurs in the eastern portions of the continent we figure.
(1) Rachela bruceata Hulst, Plate XLII, Fig. 24, 8.

The moth is found in the northern Atlantic States. It is not uncommon in western Pennsylvania.

SUBFAMILY HYDRIOMENINÆE Genus Paleacrita Riley

There are reputed to be three species of he genus found in the United States. Only one of them, because of its economic importance, has received much attention thus firr.
(1) Paleacrita vernata Peck, Plate XLll, Fig. 25, 3ै, Fig. 26, \%. (The Spring Canker-worm.)

Sya. sericriferata Walker; aufumnata Packerd; merricata Dyar.
There are two insects known as canker-worms. One of these, the smaller of the two, is properly named the Spring

Canker-worm, because the great majority of the moths issue from the ground in the spring. It has been a great pest in orchards, and formerly in our Eastern cities was a nuisance, not oniy because of the injury which it innlicted upon the foliage of shade-trees, but because of the annoying manner in whlch the larva, pendent from the branches by iong threads of silk, were blown about over things and persons beneath them. It was to effect their destruction that the English sparrow was originaliy imported Into thls country.

Fia. 195. - Paleacrifa ver. nata. A, mature larva; 6 , eqy, magnified, natural slze shnwn in mase at side; c, enlarged seg. ment of larva, side view; do., viewed dorsally. (After Riley.) The ravages of the insects upon the foliage of trees in porks and gardens have measurabiy decreased since this step wils taken, but in the open conutry, especially in

Fus, 196.-Puliarvifi tremati, a, male: b, fenale: c, joint of antenna; d, jnint of ab. domen; e, ovipositor. (After Riley.) the Valiey of the Mississippi, the insects are stiii numerous enough to do much harm to orchards. The females being apterous, the best method of preventing the multipication of the insects upon trees is to prevent them from clinibing up upon the foliage and ovipositing. A simple device, which has proved very effective, is to tle a piece of rope about the trunk of the tree which it is intended to protect, and to insert between the rope and the bark strips of tin, which, having been put into place, should be bent downwardiy and outwardly, so as to form a collar with a downward flare. The insects have been found not to be inclined to pass such a barrier, and they will congregate just below it, and may there be captured and destroyed. Birds are the chief enemies of the canker-worm, and every wise orchardist will see to it that ali species of insectivorous birds are not molested in his neighborhood, but are encouraged to find in his trees a hospitable welcome. The small amount of frult which the birds take as :oll is amply compensated for by the work which they perform in keeping down insect pests, such as

Oeematride
the one under consideration. It is the part of wisdom in every way to protect the birds.

The canker-worm is widely distributed from the Atlantic to the Paclfic.

Genue ALSOPHILA Hubner
Oniy one species of the genus occurs within our limits.
(1) Alsophile pometarl Harrls. (The Fall Canker-worm.)

Sya. mostionows Walker,
The Fall Canker-worm in many respects closely resembles the preceding species, but a critical eye can at once detect great differences both in the form and in.rrkings of the caterpiliar and of the mature insect. The moths generally enserge from the
 pupal state in the late fall, or
 during mild spells of weither in the winter, and may even continue to come forth until the spring is weil advanced. The eggs are not laid as those of the preceding species, singly under the scales of bask,
Fu:, 197, - f/sishinti pumetiris. a, ejga, side view; b, do. top view; r_{1} side view of segment of larvin d_{s} top view of se: ment of larva; f, mature farva: s. pupa: $^{\text {poser }}$ h, cremasler, (After Ritey.) but are deposited in a compact mass fistened to the twigs by a strong gluey secretion, and are loosely covered with gray hairs, which the femsis rubs from her abdomen. The caterpiliars are not ornamented on the back by a muititude of fine lines, but have a broald brown stripe along the dorsal line. The moths are larger than those of the Spring Canker-worm, and have a distinct whitish spot on the costa of the primaries near the apex. The caterpillar undergoes but two molts, ind matures very rapidly. it has rudimentary proiegs on the eighth

Fig. 195. $-A$, pomstaria. a male ; b_{0} le. male ; $c_{\text {}}$ female antenns: d segment of luwly of female, enlarged. (Alter Riley.) somite. The precautionary measures which have proved effective in combating the Spring Canker-worm are not efficacious in dealing with this species. To effectively destroy them the best means is to spray the foli-
age, just as the buds are opening, with some one of the poisonous nilxtures which are prepared as litsecticides. One of the very best means of keeping down the ravages of the insects is to encourage the cherry-birds (Ampelis) to stay about the place. They wage reientiess war upon the pest..

Genu: EUDULE Hubner

(1) Eudule mendica Walker, Plite XLil, Fig. $27,^{\circ}$, (The Beggar.)

Syn. Biseriala lierrich. Sch effer,
This dellcate little moth is widely distributed throughout the Appalachian subregion. It has been conmoniy placed in the genus Euphancssa.
(a) Eudule unlcolor Robinson, Plate XLII, Fig. 28, d. (The Plain-colored Eudule.)

The insect, which has been in nost lists attributed to the genus Ameria, ranges from Colorado to Texas and Arizona.

Genus NANN1A Hulst

(1) Nannla refusata Walker, Mate XI.11, Fig. 31, 8. (Harvey's Geometer.)

Syn, Aarrecinth Puckard.
This is a common species in the spring of the year in the northern Atlantic States.

Genus HETEROPHLEPS Herrich-Scheffer

(1) Heterophleps triguttarla Herrich-Sihæffer, Pate XLII, Fig. 29, \& . (The Threw-spoticd Fillip.)

Syn. quadrinotata Walker: hexaspilata Walker,
This pretty littie moth is widely distributed throughout the entire United States, and is very generally associated with the preceding species in locitity and time of appearance.

Genus TEPHROCLYSTIS Hubner

This is at very extensive genus, composed for the most part of small and inconspicuous species. It is found in both hemispheres. We select, for purposes of illustration, one of the commoner species, which is found in both Europe and Americ:a.

Geometrid.

(1) Tephroclystis absinthiata Clerck, Plate XLII, Fig. 32, 8. (The Absinth.)

Sym. minutata Treitcchke; notata Stephens; clongata Haworth; absywthiata Guente; cosgulase Guesée; seminats Packard.

This inconspicuous little creature illustrates the truth of the remark, already made, that the smaller the insect the more and the lengthier the names which it bears or which have been imposed upon it.

Genus EUCYMATOGE Hubner

(1) Eucymatoge intestinata Guenée, Plate XLII, Fig. 30, ㅇ․ Syn. impleta Walker; indoctrinata Walker.
The moth is almost universally distributed throughout the United States. It is found in the spring of the year seated upon the trunks of trees, the gray bark of which it assimilates in color.

Genus VENUSIA Curtis

The genus is common to both hemispheres. Venusia cambrica Curtis is found in Europe and the United States. Two other species of the genus occur in our territory, and of both of these we give figures.
(1) Venusia duodecimlineata Packard, Plate XLIII, Fig, 15, 8.

The moth is very widely, if not universally, distributed throughout temperate North America.
(2) Venusia comptaria Walker, Plate XLII, Fig. 33, 8.

Syn. condensata Walker; inclinataria Walker; inclinata Hulst; perlinesta Packard.

The species is common in the eastern portions of the Uinited States.

Genus EUCHOECA Hübner

(1) Euchaca albovittata Guencie, Plate XLIV, Fig. 19, δ. (The White-striped Black.)

Sya. propriaria Walker; reciprocata Walker.
The moth is found from the Atlantic to the Pacific and ranges well up into Alaska, whence I have obtained specimens taken at Sitka and on Lake Labarge, in the Valley of the Yukon.
(2) Euchoca callforniata Packard, Plate XLIV, Fig. 20, δ. (The Californian Black.)

The moth inhabits the Pacific States.

Geometride

(3) Euchoea lucata Guenée, Plate XLIV, Fig. 6, 8. (The Woodland Black.)

The insect is distributed from western Pennsylvania and West Virginia to Illinois, and northward to Manitoba. It is not rare about Pittsburgh.

Genus HYDRİ̀ Hübner

(1) Hydria undulata Linnæus, Plate XLII, Fig. 34, f. (The Scallop-shell Moth.)

This neatly marked species is found in both Europe and America. It is the only species of the genus in the United States.

Genus PHILEREME Hubner

The species of this genus are all Western in their habitat.
(1) Philereme californlata Packard, Plate XLII, Fig. 36, $\%$.

The specimen figured was tiken on the slopes of Mt. Shasta.

Genus EUSTROMA Hubner

This is quite an extensive genus found in both the New World and the Old. Of the nine species recognized thus far as occurring within the United States, we figure three.
(1) Eustroma diversilineata Hübner, Plate XLII, Fig. 42, 8. (The Diverse-line Moth.)

The moth is not at all uncommon in the Appalachian subregion.
(2) Eustroma prunata Linnæus, Plate XLII, Fig. 53, 8. (The Pum Moth.)

Syn. ribesiaria Boisduval; trizngulatum Packard; montanatum Packard.
The insect is found in both Europe and North America.
(3) Eustroma atrocolorata Grote, Plate XLII, Fig. 4.3, 3. (The Dark-banded Geometer.)

A denizen of the Appalachian subregion. It is one of the most beautiful of the geometrid moths found in the Atlantic States.

Genus RHEUMAPTERA HUbner

A genus of moderate size, the species of which are found in the temperate and boreal regions of both hemispheres.
(1) Rheumaptera hastata Linnæus, Plate XLII, Fig. 40, 8 , Fig. 41, \&, var. (The Spear-mark.)

The species is very variable, and half a dozen forms have been named. The only differences existing between these forms are

Ceometride

in the relative amount of black and white upon the upper side of the wings. The moth is found all through northern Europe and Asia, and is widely distributed through the northern United States and Canada as far west as Alaska, where it is very common.
(2) Rheumaptera luctuata Denis \& Schiffermuller, Plate XLII, Fig. 39, ${ }^{2}$.

The remarks made as to the preceding species apply equally well to the present. I have received it in recent years in great numbers from Alaska.
(3) Rheumaptera rubrosuffusata Packard, Plate XLII, Fig. 38, 8 .

The moth is a native of the Pacific States.

Genus PERCNOPTILOTA Hulst

This genus is represented in North America by a single species, Perenoptilota fluviata Hübner, which is shown on Plate XLII, Fig. 48, by a male specimen. The moth also occurs in Europe and northern Asia, and has been described under at least fifteen different names. The synonymy is too extensive to burden the pages of this book with it.

Genus MESOLEUCA Hubner

This is an extensive genus found in the temperate regions of the northern hemisphere on both sides of the Atlantic.
(1) Mesoleuca ruficillata Guenée, Plate XLIII, Fig. 21, \ddagger.

The habitat of the species is the northern United States and southem Canadil.
(2) Mesoleuea gratulata Walker, Plate XLII, Fig. 47, 3.

Syn. brwnneiciliata Packard.
The insect is found in the Pacific subregion
(3) Mesoleuea laeustrata Guenee, Plate XLII, Fig. 50, 9.

This is not an uncommon species in Europe and the northern portions of the United States and in Canada.
(4) Mesoleuca intermediata Guenee, Plate XLII, Fig. 49, 9. The moth occurs in the Atlantic States.
(5) Mesoleuca hersiliata Guenée, Plate XLII, Fig. 46, δ.

Syn. flammifera Walker.
The home of the species is in the region of the Rocky Mountains. It is not uncommon In Colorado.

Explamation of Plate Xlil

(The specincns figured are contained in the Collection of W.J Holland.)

[^12]

Geometrida

Genus HYDRIOMENA Habner

This is a very extensive genus, which is well represented in the temperate portions of both the Eastern and the Western Hemisphere. There are nearly thirty species which have been reported to occur in our faunio.
(1) Hydriomena sordidata Fabricius, Plate XLII, Fig. 54. $\%$.

Syn. rectangulata Fabtricius ; bicolorita Korkhausen ; birvinata Borkhuusen.
The insect is found all over the northern United States and Canada, and is comınon in Europe. Various varietal forms have been described, based upon rifferences, more or less constant, in the markings of the wings.
(2) Hydriomena autumnalis Strobmeyer, Plate XLII, Fig. $51,8$.

This is another species which is found in Europe, and also occurs in the Pacific subregion of North America. It has an extensive synonymy, for a knowledge of which the student may refer to Staudinger \& Rebel's Catalogue of the Moths of the Palæarctic Region, or to Dyar's List.
(3) Hydriomena speciosata Packard, Plate XLII, Fig. 52, 8.

The home of this pretty species is in the southwestern portions of the United States. It occurs in Texas, Arizona, and southern California.
(4) Hydriomena latirupta W:ilker, Plate XLII, Fig. 35, 3.

Sya. lascinata Zeller.
The insect is found almost everywhere in the United States and Canada.
(5) Hydriomena custodiata Guenée, Plate XLIII, Fig. 10, ठ, upper side; Fig. 11, ठ, under side.

Syn. gueneala Packard.
The moth is an inhabitant of the Pacific subregion.

Genus TRIPHOSA Stephens

(1) Triphosa progressata Walker, Plate XLli, Fig. 45, 3.

Syn. indubitata Grole; dubitata Packard.
The species uccurs in the northern portions of the Pacific subregion.

> "Soft.buzzing Slander; silly moths that eat
> An honest name." Thosison, - Liberty, PI. IV, 609.

Geraviridm

Genus CORNOCALPE Hubner

This is a moderately large genus, almost all the species of which are found in the Pacific subregion or in the southwestern portions of the United States.
(1) Ccenocalpe glbbocoatata Walker, Plate XLIII, Fig. 16, 8.

Syn. costinotata Walker; strigularia Minot ; encijormis Harvey.
The moth is one of the few species of the genus found in the Atlantlc States.
(2) Coenocalpe fervifactaria Grote, Plate XLIII, Fig. 4, 8.

This rather pretty insect is found in the region of the Rocky Mountalns.

Genus MARMOPTERYX Packard

(1) Marmopteryx marmorata Packard, Plate XLIII, Fig. I, 8 . (The Marble-wing.)

The insect ranges from Colorado in the east to Callifornia In the west.

Genus GYPSOCHROA HUbner

(1) Gypsochroa deslgnata Hufnagel, Plate XLII, Fig. 44, 8.

Syn. propugnata Denis \& Schifermuller; propugnaria Treitschke.
The moth occurs in both Europe and North America.
(2) Gypsochroa sitellata Guenée, Plate XLII, Fig. 37, 3.

Syn. hassitata Guente; impawierrata Walker; albasignata Packurd.
The species is quite widely distributed throughout the United - States.

SUBFAMILY MONOCTENIIN/E Genus PAOTA Hulst

(1) Paota fultaria Grote, Plate XLIII, Fig. 27, δ.

The habitat of the species is Arizona.

Genus HemATOPSIS Hubner

(1) Hematopsis grataria Fabricius, Plate XLIll, Fig. 2, δ. (The Chickweed Moth.)

Syn. saniara Hubner ; successaria Walker.
This common but none the less beautiful little moth is often seen by the roadsides, where it has the habit of clinging to the stems of grasses, and of flying up when the footsteps of the passer-by approach. It is a native of the Appalachian subregion,
and ranges from the Atlantic to the Mississippi and beyond. The larva feeds on chickweed.

SUBFAMILY STERRHIN/E
 Genus erastria Hübner

(1) Erastria amaturarla Walker, Plate XLIII, Fig. 22, 8.

This insect, which is not likely to be mistaken for anything else, is a native of the Appalachian subregion. It is common in Pennsylvanla.

Genus PIGEA Guence

(1) Pigea mutlineata Hulst, Plate XLIII, Fig. 3, 8.

The insect is found in Arizona. The specimen figured is one of the types of the species which was loaned to Dr. Hulst, and upon which he based his description.

Genus COSYMBIA Hübner

(1) Cosymbla lumenaria Hobner, Plate XLIII, Fig. 12, \%. Syn. pendulinaria Guenée; quadriannulata Wuiker.
This is a common species in the Atlantic sulvegion.

Genus SYNELYS Hulst

This is a small genus containing eight or nine species, all of which are found in the Southern States, except two.
(1) Synelys alabastaria Hobner, Plate XLIII, Fig. 5, \%.

Syn. rcoondilaria Walker: ennucleata Packard (non Guenée).
The moth is very common in the Appalachian subregion.

Genus LEPTOMERIS Hubner

(1) Leptomeris quinquelinearia Packard, Plate XLIII, Fig. 9. \%. (The Five-lined Geometer.)

A common species everywhere in the United States.
(a) Leptomeris sentinaria Habner, Plate XLIII, Fig. 14, 8. Syn. spwraria Christoph; gracilior Butler.
The habitat of this insect is the northern portion of the A palachian subregion.
(3) Leptomeris magnetaria Guenée, Plate XLIII, Fig. 8, \& . (The Magnet Moth.)

Syn. rubrolinearia Packard; rubrolineata Packard.
The insect is found in the Pacific subregion.

Ocometride

Genus EOIS Habner

(1) Eois ptelearia Riiey. (The Herbarium Moth.)

The moth which is the subject of consideration is Interesting because of the fact that in recent years it has become known as a destructive herbarium pest: The larve attack the flowers, to

Fig. 199.-Eois phelcaria. a, larva, from slde: 1 , do., from above ; c, side view of abdominal segnent ; d, tubercie of same; $c_{\text {, }}$ pups ; f, cremaster ; g, abdominsl projection. All figures grestly enlarged. (Aiser C. V: Riley, "Insect Life," Vol. IV, p. rog.)
some extent the leaves, and also to a less extent the hard fruits and seeds of specimens collected in the Southwestern States and in Mexico. Their ravages were first detected at the United States Natonal Museum in the year 1890. Strangely enough, they show no appetite for species belonging to the flora of the Eastern and Northern States. it is believed that the insect is native to the region the plants of which it devours, but thus far no entomologist has rep, ed its occurrence in the section of country from which it is supposed to come. The damage it is able to inflict upon specimens is very great, because of the very rapid multiplication of individuals which takes place.

An exceedingly interesting account of the insect and its
destructive work was glven by the lite Professur C. V. Riley in "Insect Life," Vol, IV, p. 108 et seq. From this article the cults whlch are herewlth given have been extracted. Botanists cannot too carefully guard against this and uther insect pligues which multiply in their collections. A solution of corrosive sublimate and arsenic, sucli is is commonly employed for poisoning herbarium specimens, will do much to prevent the raviges of the lirver; but, as is pointed out by Professor Riley in the article to which reference has been made, adılitional safety from ittilick will bed :ecured if all specimens, as they are received in the herbarium, are subjected to at least twentyfour hours' exposure to the fumes of bisulphide of carbor. in an air-tight box or receptacle.

114:, 200,-Evis pislearia. a larva; b_{1} cowoon ; c_{0} moth : at, egg. All figures greaty enlarged. (After C. V. Riley, "IIvect Life," Vol. IV, pi 110.) This substance, as experience has shown, is destructive to all furms of insect life. Cirre should. however, be exercised in its use, as the fumes mixed with atmospheric gases make a highly exnlosive compound. The operathon should never be undertiaken in the presence of flame. It is not even safe to allow the fumes of carbon bisulphide to mingle in large quantity with the atmosphere of an apartment which is lighted by electricity. Accidental sparking, owing to some defect of the wires, may cause an explosion. Several bad accidents have occurred from the use in cireless hands of this otherwise most valuable insecticide.
(a) Eois ossularia Habner, Plite XLIII, Fig. 7. 3.

The moth, which has an extensive synonymy, which we will omit, is widely distributed throughout the United States.
(3) Eois inductata Guenée, Plite XLIII, Fig. 6, 3.

Syn. cmuscentaria, Walkeri sobria Walkeri supfressinvia Walker.

Ocometride

The species is Indigenous in the Appalachlan subregion.
(4) Eole ulderaria Guenec. Plate XLIII, Fig. 13, 8.

The specles ranges over the northern portions of the United States.

SUBFAMILY GEOMETRINRE Ganus CHLOROCHLAMYs Hulet

(1) Chlorochlemys chloroleucaria Guenec, Plite XLIII, Fig. 17, 8.

Syn. indiscriminaria Walker; demsaria Walker; deprivam Walher.
The insect ranges from the Atlantic to the Paclicic. It is freely attracted to light In the evening.

Genus EUCROSTI8 Hubner

(1) Euerostis Ineertata Waiker, Plate XLIII, Fig. 18, 8.

Sym. oporaria Zeller ; grutela Packard.
Not at all uncommon in the Appalachian subregion.

Genus RACHEOSPILA Guenée

A smail genus, characterlstic of the hot lands of the American continents. One species, R. lixaria, is found in the Appalachian subregion as far north as the Middle States; the four remaining species found withln our territory have thus far been reported only from Fiorida.
(1) Racheospila hollanderia Huist, Piate XLill, Fig. 19. 8.

The specimen depicted on the piate ls the type of the species, which was taken by the writer on the upper waters of the St. Johns River.
(2) Raeheosplla saltusaria Hulst, Plate XLili, Fig. 20, 8.

The specimen depicted on the plate is likewise the type of the species and came from the same locality as the preceding specles.

Genus SYNCHLORA Guente

(1) Synchlors Ilquoraria Guené, Plate XLIIi, Fig. 23, \&.

Sya. Aricoloraria Packard.
A species which is very widely distributed throughout the United States.

Osnus ANAPLODEs Packard

(1) Anaplodes Iridaria Guenée, Plate XLIII, Fig. 24, 8 Sya. wowerne Grote.
The moth ranges from Colorado to California.

SUBFAMILY FERNALDELLIN/E Genue FERNALDELLA Hulte

The genus is the only representative of the subfamily. There are two species in the genus, both of them natives of the region of the Rocky Mountains. One of these, originally named Gmetarla by Grote \& Robinson, and suhse-

Fic. 208. - Firmaldel. ha fimetaria, s. 4 .
 sented in the accompanying cut. It is a very common insect in central Texas as well as in Colorado and Arizona.

SUBFAMILY ENNOMINFE Genue Epelis Hulet

(1) Epelis truncataria Waiker, Plate XLIII, Fig. 26, 8. Syn. faxomi Minct.
This species, the only representative of the genus, ranges through the northern and cooler portions of the Appalachian subregion, west ward to the Rocky Mountains.

Genu: EUFIDONIA Packard

(1) Eufdonla notataria Walker, Plate XLIII, Fig. 25, δ

Syn. discopilata Walker ; fidomiaku Walker ; bicolorafa Minot: quadripmecharia
This neatly marked moth is found in the Appalachian subregion. It is the only species in the genus.

Genu: ORTHOFIDONIA Packard

(i) Orthofidonia semlclarata Walker, Plate XLIII, Fig $30,8$.

Syn. viatica Harvey.
The moth is a native of the Atlantic States.
(a) Orthofidonia vestallata Guenée, Plate XLIII, Fig. 3i, δ.

Syn. junctaria Walker.

Coometride

The habitat of this insect is the same as that of the preceding species, but it ranges a little farther to the livest, and has been reported from Colorado.

Genus DASYFIDONIA Packard

1) Dasyfidonia avuneularia Guenée, Plate XLiii, Fig. 32, 8 .

This very pretty moth occurs from Colorado io California. it is the soie species in the genus.

Genua HELIOMATA Grote

There are reputed to be three species in this genus. Two of them we figure.
(1) Heliomata infulata Grote, Plate XLlil, Fig. 28, $\%$.

The habitat of the specirs is the Atlantic region of the continent.
(2) Heliomata cyeladata Grote, Piate XLiil, Fig. 29, 8.

The moth ranges from the Atlantic States westward as far as Montana. it is nowhere very common.

Genus MELLILLA Grote

(1) Mellilla inextrieata W :alker, Plate XLili, Fig. 33, 8. Syn. xanthometata Walker ; snoviaria Packard.
The insect is a native of the Atlantic States.
Genus CHLORASPILATES Packard
(1) Chloraapilates bicoloraria Packard, form arizonaria, Plate XLiii, Fig. 34, © .

The moth is found in the region of the Rocky Mountains.

Genus PHYSOSTEGANIA Warren

(1) Physostegania pustularia Guenée, Plate XLiii, Fig. 35. 8 .

A native of the Atlantic States, ranging westward into the Valley of the Mississippi.

Genus DEILINEA Hübner

(1) Deilinea variolaria Guenée, Plate XLIli, Fig. 36, 8. Syn. intentata Packerd.
(The specimens figured are contained in the Cullection of W. J. Holland.)
8. Marimopteryx marmorata Packard, 0°.
a. Haematopis grataria Fabricius, \%'
s. Pigea multilineatu Hulst, σ^{7}. Type.
4. Triphosa jornifariaria Grote, of
5. Synelys alabastaria Hübner, \%.
6. Euvis induclata Guenée, ñ.
7. Livis ossularia Hübner, σ
8. I.cplumeris magnetaria Guenee, σ^{7}.
9. l.eptomeris quinquelinearia Packard, $\%$.
32. Dasyfidania avuncularia Guenée, 0^{7}.
33. Mellilla xanthometata Walker, σ°.
34. Chloraspilutes arizonaria Grote, σ°.
35. Physostegania pustularias Guené, of
36. Deilined ruriolaria Guenée, \&\&.
37. Sciagrapha granitata Guenée, ot
38. Deilinea behrensaria Hulst, O^{7}, Type.
39. Philobia emotata Guenée, σ^{7}.
40. Macaria preatomata Haworth, 9.
10. Hydriomena custodiata Guenée, 0^{2}.
14. Hydriomena custotiala Guenéc, σ°, lower side.
12. Cosymbia lunenaria Hâbner, 9 .
13. Eois sideraria Guenee, σ^{7}.
14. Lephomeris sentinaria Hübner.
15. Iemasia duodecimlineata Packard, ơ.
16. Triphusa gibbicostak Walker, 0^{7}. 17. ('hlorochlamys chlaroleucaria Guenée, \circ.
18. Eucrostis incertata Walker, σ^{7}.
19. Racheospila hollandaria Hulat, \&, Type.
20. Racheospila saltusaria Hulst, ठ', Type.
21. Mcsolenca miocillaha Guenée, σ^{7}
22. Erastria anaturaria Walker, σ^{7}.
23. Synchlora liquoravia Guenée, 0^{7}
24. Imaplodes iridaria Guenée. \boldsymbol{o}^{7}
25. Einfidonia notaturia Walker, ot
26. Epelis truncaturia Walker, $\%$.
27. Paola fuluaria Grote, ot' 2.
28. Hetumats infulata imente, of
29. Heliomuta © ycledata Grote, 0^{7}.

3a. Orthotidunia semiclarata Walker, $\%$
31. Orthofidomia vestaliata Guente, 0^{7}.
41. Sciagrapha heliothidata Guenée. $\%$.
42. Sciagrapha mellistrigata Grote. σ°.
43. Macaria s-signata Packard, of.
44. Macaria eromiahta G̈uenée, σ^{7}.
45. Cymatophora ribearia Fitch, \ddagger.
46. Cymatophora inceplaria Walker, σ^{π}.
47. Macaria hypathrata Groter $\sigma^{7 \prime}$.
48. Cymatophora successuria Walker, $\%$
49. Cymatophora courturia Hulst, ${ }^{7}$.

5a. Cymataphora tenebrosata Hulst. J". Type.
51. Sympherta tripunctaria Packard, $\%$.
52. Apacasia definata Walker, σ^{7}
53. Catupyrrha dissimiluria. Húbner, σ^{π}.
54. Calapyrrha coliraria Fabricius, ${ }^{7}$
55. Enemera juturnaria Ciuenée. 0^{7}.
56. Platea trilinearia Packard, C^{7}.
57. Platea californiarnu HerrichSchaffer, ot.
58. Caripela divisata Walker, 0 .
59. Philedia punctomacularia Hulst, σ^{7}, Typu.
60. Nepylia semiclusaria Walker. σ°.

The moth occurs quite commonly in the Atlantic subregion.
(2) Deillnea behrensaria Hulst, Plate XLIII, Fig. 38, ${ }^{\text {o }}$.

A native of the Pacific subregion. The specimen figured is one of the types.

Genua SCIAGRAPHIA Hulst

(1) Selagraphia granltata Guenée, Plate XLIII, Fig. 37, 8. (The Granite Mcth.)

This small moth, which is a common species in the Appalachian subregion, has been described under no less than nineteen naines by various authors. The student who is curious as to the synonymy may consult Dyar's List.
(2) Seiagraphia heliothidata Guenée, Plate XLIII, Fig. 4I, \%. (The Sun-flower Moth.)

Syn. acellinata Guenee; nistorata Walker; subichumbata Walker; duplicath, Packard.

The moth occurs throughout the region of the Great Plains and the Rocky Mountains.
(3) Selagraphia mellistrigata Grote, Plate XLIII, Fig. 42, 8. (The Honey-streak.)

The insect is found in the northern portions of the United States, and ranges westward and southward, being not at all uncommon in northern Texas and in Colorado.

Genus PHILOBIA Duponchel

(1) Philobia enotata Guenée, Plate XLIII, Fig. 39, 5.

Syn. amnlataria Walker; sectomacuhina Morrison; notata Cramer (non Linnzus).

The insect appears to be common everywhere throughout the United States and Canad:I.

Genua MACARIA Curtia

A considerable genus, represented in both hemispheres.
(1) Macaria s-signata Packard, Plate XLIll, Fig. 43, 0.

The species occurs from Colorado westward to California.
(2) Maearia eremiata Guenée, Plate XLliI, Fig. 44, 8.

Syn. retectata Walkeri grudata Walker; retentata Walker; subrinctaria Walker.

The hatitat of the species is the Appalachian subregion.
(3) Maearia hypathrata Grote, Plate XLIII, Fig. 47, \% .

Geometridat

The insect flies in Colorado and adjoining States.
(4) Macaria preatomata Ha worth, Plate XI.III, Fig. 40, 8. Sya. comsppia Walker.
Not a rare species in the Atlantic States.
(5) Macaria glomeraria Grote, Plate XIIV, liig. 3, 8.

The range of this species is the same as that of the preceding.

Genus CYMATOPHORA Hüner

(1) Cymatophora ribearia Fitch, Plate XLIII, Fig. 45, 8. (The Gooseberry Span-worm.)

Syn. sigwatia Guenée; annisaria Walker; aniusaria Walker; gmssuhariuth Saunders.

The gooseberry and the currant are subject in the United States and Canada to the attack of various insects, which do : great deal of damage to them. One of the most frequent causes of injury to these plants are the larve of the Gooseberry.Span-worm, which is represented in Fig. 204. It is, when mature, about an inch in length, bright yellow in color, marked with dark-brown spots upon the segments. The eggs, which are laid by the mature female at the end of June or the beginning of July, are very minute, but upon examination

Fic. 202.-Cywalophors ribeuria, \% • f. (After Riley.) under the microscope are seen to be beautifully ornamented with deep pits or sculpturings. They are pale bluish-green. The eggs are attached by the female to the stems and branches of the plints, not far from the ground. Being :llmost microscopic in size, they rendily elude observation, and this, it is known, accounts for the fact that the insects are ofter, by the transplantation of the shrubs. transferred from one locality to another in which they have been previously unknown. The eggs, having been laid, remain through the summer and fall and all of the succeeding winter in a dormant state, and do not hatch until early in the following spring, when the

Fig. 203. - Egg of Gooseberry Span-worm. a, enlarged: h_{4} natural size. (After Riley.) leaves are beginning to put out upon the bushes. As soon as the

Geometride
eggs are hatched, the larva begin to feed upon the young leaves, and they mature very quickly, the rate of their development being marked by a corresponding devastation of the plants upon which they have established themselves. Pupation takes place at the end of May or in the beginning of June. The caterpillar burrows into the loose soil about the roots of the bushes, or simply criwls under loose leaves, and, without spinning a cocoon, undergoes transformation into a chrysalis, - which is smooth and of il shining mahogany color. In this state the insects remain for about two weeks, when theyemerge as moths, and the cycle

Filt, 204-(iooseberiry Span.worm, a, b, larva; r, pupa. (After Riley.) of life is repeated.

The most effectual method of combating the larva is to sprinkle the bushes with powdered white hellebore. This is a good remedy, not only for the species we are considering, but for several other insects which are likely to occur upon the plants at the same time.
(2) Cymatophora inceptaria Walker, Plate XLIII, Fig. 46, 3. Syn. argillacearia Packard; madestaria ilulst.
A native of the Appalachian subregion.
(3) Cymatophora successaria Walker, Plate XLIII, Fig. 48, $\%$.

Syn. perarcuata Walker.
Form coortaria Hulst, Plate XL.III, Fig. 49, 8.
A widely distributed species, which is not at all uncommon in the Middle Atlantic States.
(4) Cymatophora tenebrosata Hulst, Plate XLIII, Fig. 50, 8.

Geometride

The specimen represented upon the plate is one of Dr. Hulst's types. The moth is found in Arizona.

Genus SYMPHERTA Hulst

(1) Sympherta tripunctaria Packard, Plate XLlil, Fig. 5s, 8.

The moth is found in northern California, and ranges northward into British Columbia.

Genus APrecasia Hulat

(1) Apecasia defluata Walker, Plate XLill, Fig. 52, \quad. Syn. mbanyuaria Walker.
The habitat of the species is the northern portion of the Appalachian subregion.

Genus CatOPYRRHA Hubner

(1) Catopyrrha coloraria Fabrlcius, Plate XLIII, Fig. 54, δ. Syn. accessaria 11 ubner; crucnturia Habner ; atropunctaria Walker.
Form dissimilaria Hübner, Plate XLIII, Fig. 53, ${ }^{\text {o }}$.
The insect, which in the mature form presents many varietal differences, due to variation in the form and shade of the markings, is found in the Appalachian subregion.

Genus enemera Hulst

(1) Enemera juturnaria Guenée, Plate XLIll, Fig. 55, \quad.

The moth is found in the region of the Rocky Mountains, westward to California and northward to Alaska.

Genus CARIPETA Walker

(1) Caripeta divisata Walker, Plate XLIII, Fig. 58, 8. Syn. allopunctata Morrison.
The insect is found in the Atlantic States.
(2) Caripeta angustiorata Walker, Plate XLiV, Fig. 2, of.

Syn. piniaria Packard.
The moth, which is as yet quite rare in collections, is, like the preceding species, a native of the Appalachian subregion.

Genus PLaTEA Herrich-Scheffer

(1) Platea californiaria Herrich-Schaffer, Plate XLIll, Fig. 57. 8.

Syn. umaamaria Guente.

The moth flies from Colorado to California.
(2) Platea trilinearls Packard, Plate XLIII, Fig. 56, of.

Syn. dulcraaria Grote.
The Insect ranges from northern Wyoming to Arizona.

Genus PHILEDIA Hulst

(1) Phlledia punctomacularia Hulst, Plate XLIII, Fig. 59, ${ }^{\text {8 }}$. The Insect, which is found in the Pacific States, is represented on the plate by a figure of the type.

Genus NEPYTIA Huist

(1) Nepytia nigrovenarla Packard, Plate XLIV, Fig. 15, $\%$. The insect is a native of the Pacific subregion.
(2) Nepytia semiclusaria Walker, Plate XLIII, Fig. 6o, δ. Syn. pulchnaria Minot; Allweidaria Packard; pinaria Packard.
The moth occurs in the northern portions of the United States.

Genus ALCIs Curtis

(1) Alcis suiphuraria Packard, form baitearla Hulst, Plate XLIV, Fig. $1, \not \approx$

This insect, which is somewhat variable, is represented in the plate by the type of the form to which the Rev. Dr. Hulst applied the name baltearia. The species is widely distributed throughout the United States.
(2) Alcis metanemaria Huist, Plate XLIV, Fig. 5, 3.

The moth occurs in Arizona and southern California. The figure on the plate is that of the type of the species.

Genus PARAPHIA Guence

(1) Paraphia subatomaria Wood, Piate XLIV, Fig. 10. δ.

Syn. nubecularia Guenée; mammurraria Guenée; impropriata Walker ; er. suprosta Walker.

Form unipuncta Haworth, Plate XIIV, Fig. 1I, \&. Syn. unipunctutu Guenee; triplifunelaria Fitch.
The moth, which is variable in the shade of the wings and the markings, is found In the Appalachian subregion.

Genus PTEROSPODA Dyar

(1) Pterospoda opuscularia Hulst, Plate XLIV, Fig. 18, 9.

The insect is a native of California. The specimen figured on

Gcometride
the plate is the type upon which Dr. Hulst based the description of the specles.

Genus CLEORA Curtls

(1) Cleore pamplnarla Guenée, Plate XLIV, Fig. 4, 3.

Syn. sublumaris Guenée; frugallaria Gienée; collecta Walker; tincharia Walker; frandw/owtaria Zeller.

The moth is a native of the Appalachian subregion, ranglng from the Atlantic to the Mississippi and beyond.
(a) Cleora atrifaselate Hulst, Plate XLIV, Fig. 8, 9.

The specimen figured on the plate is the unique type whleh wils described by Hulst In "Entomologica Americana," Vol. III, p. 214. The species has been overlooked in Dyar's Llst.

Genus melanolophia Hulat

(1) Melanolophls canadaris Guenée, Plate XLIV, Fig. 7, $\mathbf{8 .}$

Syn. sigwaturia Walker; imperfecturio Walker ; rontribwaria Walker.
A common species in the early spring throughout the United States.

Genus ECTROPIs Hubner

(1) Ectropis erepuseularis Denis \& Schiffermoller, Plate XLIV, Fig. 9, ${ }^{5}$.

This species, which is found alike in Europe and America, has an extensive synonymy, for a knowledge of which the student may refer to Dyar's List or to Staudinger \& Rebel's Catalogue. The specles is widely distributed throughout the continent of North America.

Genus EPIMECIS Hubner

(1) Epimeeis virginaria Craner, Plate XLIV, Fig. 28, ${ }^{3}$, Fig. 29, 7.

Syn. horluria Fabriciux; ririvetendruria Abbot \& Smith; disserpharis Walker ; amplaria Walker.

The insect is found in the Appalachian subregion, but is far more common in the South than in the North. I have taken it in Pennsylvanla on rare occasions, but it has heen found in great ithundance by me in Florida.

Ceomarife

Genus LYCIA Hubner

(1) Lycla cognataria Guenće. Plate I. Fig. 17, larva; Plate XI.IV, Fig. 13, 3 .

Syn. spinsturia Walker.
This is a common species in the Attantic States. The larva depicted on the plate is browir. In every brood there are many specimens of the larvax which are green, and some are even yellowish. The moth has in the vicinity of Pittsburgh latterly shown al fonilness for ovipositing upon imported rhododendrons, and the caterpillars have proved troul:csome.

Genus NACOPHORA Hulst

(1) Nacophora quernaria Abbut \& Sinith, Ilatc XLIV. Fig. 14, 9.

The species is not is common as the list, but is not rare. It has the same hibititt, being a native of the Appalachian subregion.

Genus APOCHEIMA Hübner

The genus is found in the hurcal regions of both hemispheres. Only one species occurs in our faunal.
(1) Apocheima rachelee Hulst, Plate XIIV, Hig. 12, ₹. (Rathel's Moth.)

The moth is found in Montinlia, Assinitioia, and northward to Alaski.

Genus CONIODES Hulst

(1) Coniodes plumigeraria Hulst. (The Walnut Spanworm.)

In recent years the groves of English walnuts in southern California have been found to be liable to the attack of a span-worm. which previously had been unknown or unobserved. The trees had up to that time been regarded as singularly immune from the depredations of insect pests, and considerable alarm and apprehension were felt when it was found that a sinall caterpillar had begun to ravage them. The insect feeds also upon the leaves of various rosaceous plants, and upon the oak. The taste for the foliage of the English walnut has evidently been recently acquired.

An excellent article upon these insects was published in 1897

Geomeride

by D. W. Coquiliet in the "Builetins of the United States Department of Agrieuiture," New Series, No. 7, p. 64. From this

Fits. 305.-C. plowiomeria. A. male: δ, female, magnified. (After Coquillet, "Buld. U. S. Dept. Agric." New Series, No. 7, p. 66.)
article we have taken the accompanying cuts, and from it we draw some of the facts herein set forth. In describing the insect Mr. Coquillet says: "The coior of the caterpllar is a light pinkish gray, varled with a darker gray or purplish, or sometimes with black and yellow, but never

Fig. sob. $-C$. plumizoraria. a, larva,
 "Bull. U. S. Dept. Agric." New Series, No. 7, p. 65 .) marked with distinct lines; the piliferous spots are black or dark brown, and the spiracles are orange yellow,ringed with black, and usually situated on a yeliow spot. The worms become full grown in the latter part of April or during the month of May; they then enter the earth to a depth of from two to four inches and form small cells, but do not spin cocoons. The change to the chrysalis takes place shortly after the cells are completed, and the chrysalis remains unchanged throughout the entire summer and until early in the following year, when they are changed into moths, which emerge from the ground from the first week in January to the last week in March. The male moth
is winged, but the fomale is wingless and is so very different in appearance from the male that no one not familiar with the facts in the case would ever suspect both belong to the same specles."

The best means of combating these pests has been found to be to spray the trees, when the caterpillars are just hittching, with a solution of Paris green and water, one pound , ifu poison to two hundred galions of water.

Genua PHIGALIA Dupanc'י!

(1) Phigalia titea Cramer, Plate XLIV

 very common in Pennsylvania.

Genua ERANNIS Hubner
(1) Erannla tillarla Harris, Plate XLIV, I:its. :7; 11 e LInden Moth.)

The species ranges frow the Atiantic coast (1) Hice Rocky Mountains.

Genua CINGILIA Walker

(1) Cingitia catenarla Drury, Plate XLIV, Fig. 21, 8. (The Chain-streak Moth.)

Syn. Aumornalis Walker.
The range of this species is much the same as that of the one which has just been mentioned above.

Genua SICYA Guence

(1) Sicya macularia Harris, Plate XLIV, Fig. 22, δ, Figg, 23, 8, var.

This species has an extensive synonymy, the insects being variable in the amount of red which they show on the yeliow ground-color of the wings. The student who wishes to go into these matters may consult Dyar's List. The insect is very generally distributed throughout our territory.

Genus THERINA Hübner

(1) Therina endroplaria Grote \& Robinson, Plate XLIV, Fig. 26, 8 .

Geometride

A native of the Appalachian subregion.
(2) Therina athaslaria Walker, Plate XLIV, Fig. 27, 3.

Syn. siccaria Walker; seminedata Walker; seminudaria Packard; bibularia Grote a Robiason.

The habitat of this species is the same as that of the preceding.
(3) Therina fiscellarla Guenée, Plate XLIV, Fig. 25, δ.

Syn. Aagitaria Guente ; panisaria Walker; aqualiaria Walker.
The insect ranges from the Atlantic to Colorado.
(4) Therina fervidaria Hubner, Plate XLIV, Fig. 24, 8.

Syn. pullaria Guenee; sciata Walker; invexala Walker.
The moth is quite common in the Atlantic States.

Genus METROCAMPA Latreille

(1) Metrocampa pragrandaria Guenée, Plate XLIV, Fig. 30, 8.

Syn. perlata Guenée; perlaria Packard; viridopcrlata Packard.
The home of the species is the northern part of the United States and southern Canada.

Genus EUGONOBAPTA Warren

(1) Eugonobapta nivosaria Guenée, Plate X!.IV. Fig. 31, 8. (The Snowy Geometer.)

Syn. nivosata Packard.
This is a very common species in the Appalachian subregion. It is particularly abundant in western Pennsylvania.

Genue ENNOMOS Treitachke

The genus is found in both Europe and America. Three species are attributed to our fauna, two of which we figure.
(1) Ennomos eubslgnarlus Habner, Plate XLIV, Fig. 35, 8.

Syn. wivearericeata Jones.
The moth ranges from the Atlantic westward as far as Cclorado.
(a) Ennomos magnarius Guenée, Plate XLIV, Fig. 34, 8. (The Notch-wing.)

Syn. alniaria Packard (non Linoxus); antummaria Maeschler (nom Werneburg); Intaria Walker.

This is one of the larger and more conspicuous species of the family. It is rather a common insect in the northern United States,
\qquad
tes.

Explanation of Plate XliV

(The specimens figured are contained in the collection of \mathbf{W}. J. Holland.)

1. Alcis bultearia Hulst, σ^{7}, Type
2. C'ariputa angustiorata Walker. \%.
. Macaria glomeraria Grote, Q.
. Cleora pampinaria Guenée, σ^{7}.
3. Alcis metanmaria Hulst, 0^{7}. Type.
4. Euchaces Iucala Guenée, σ^{7}.
5. Melanilophia carradaria Guenéc. 0^{7}
-.
Cleors arrifasciata Hulet, f. Type.
6. Ectropis crepuscularia Denis \& Schiffermitller, σ^{7}.
7. Paraphia subatomaria Wood, C
8. Paraphia unipuncla Haworth, Q
Aporheima rachele Hulst. ©
Lycia coghuaria Guenée. 0^{7}.
Nacophora quernaria Abbot \& Smith.?
15 .Vepytia nigrorenari, Packard. ©
16 Phigutia titea Cramer. 0^{7}
9. Erannis tiliaria Harris. σ^{7}
10. Pberospands opuscularia Hulst. २. 7 ype
11. Encheca albervithtu Furnés. 3
12. Euchacca califurniata Packard. σ^{7}
13. Cingilia catenaria Drury, 0^{7}
14. Sicya macularia Harris. of
15. Sicya macularia Harris, var., \circ
16.

fervidaria Hübner. or
5. Therinu fiscellaria Guenée. 0^{7}.
36. Therina endropiaria Grote \& Rolinsum, 0^{7}.
27. Therima athasiaria Walker. σ^{*}.
38. Epimeit virginaria Cramer σ
29. Epinestis. virginaria Cramer, 8.
30. Metrocumpa pragrandaria Gnenée. of
31. Engonohapta nitosuria Guenere. σ^{t}.

Plagodis serinaria HerrichSchedffer. ot
34. Emnonos magnarins Guande. 0^{π}.
35 Ennomus subsignarizas IUumer, 0^{7}.
36. Plugudis keutsingi Grute. 0^{7}.
37. Ania limbata Haworth, ?
38. Hyperitis amiacia HerrichSchæffer. ${ }^{*}$
39 Xanthotype cracataria Fabricius. σ^{*}
to Xunthotype calaria Hulst, O^{*}.

Geometride
and appears on the wing most abundantly in the late summer and early fall.

Genus XANTHOTYPE Warren

(I) Xanthotype crocatarla Fabricius, Plate XLIV, Fig. 39, 3. (The Crocus Geometer.)

Syn. citrina Hubner.
Form exelaria Hulst, Plate XLIV, Fig. 40, 3.
Quite a common species in the A_{1} palachian subregion. The insect shows great variability in the amount of the dark spots and cloudings upon the upper side of the wings.

Genus PLAGODIS Hübner

(1) Plagodis serinaria Herrich-Schieffer, Plate XLIV, Fig. 33. 3.

Syn. subpritala Walker; foscularia Grote.
A common species of the Appalachian subregion, particularly abundant among the Alleghany Mountains.
(2) Plagodis keutzingl Grote, Plate XLIV, Fig. $\mathbf{3 0}, 8$.

Syn. keutsingaria Packard.
The habitat of this species is identical with that of the preceding.
(3) Plagodis emargataria Guenée, Plate XLIV, Fig. 32, $\%$.

Syn. arrogaria Hatat.
The range of the moth is throughout the northern portions of the Atlantic subregion.

Genue HYPERITIS Guenée

(I) Hyperitis amicaria Herrich-Schæffer, Plate XLIV, Fig. 38, 8.

Syn. myssaria Guenée; exsimaria Guenée; insinuaris Guenée; laticiuctus Walker; subsinuaria Guenée; meoninaria Walker; mecwaria Packard; esionaria Walker.

A very variable species, which has a wide distribution throughout the eastern portions of our territory.

Genus ANIA Stephens

(1) Ania limbata Haworth, Plate XLIV, Fig. 37, 8.

Syn. vestitaria Herrich-Schneffer; resistavia Herrich-Schofer; filimentaria Guente.

By no means rare in the eastern portions of our terntory.

Geometride

Genus GONODONTIS Hubner

(1) Gonodontis bypochrarie Herrich-Scheffer, Plate XL.V, Fig. $\mathrm{I}, \mathrm{\delta}$.

Syn. refractaria Guente; mestusatu Walkel.
The insect ranges from the Atlantic coast to the central portions of the Rocky Mountaise. It is very variable in color and in the distribution of the spois and markings.
(2) Gonodontis duaria Guenée, Plate XLV, Fig. 2, 9.

Syn. hamaria (iuenée: agreasnria Walker: adurtaria Walker.
The distribution of this species is coincident with that of the preceding.
(() Gonodontis obfirmaria : iübner, Plate XLV, Fig. 14, 8.
The moth is found in the Atlantic States. It is common in western Pennsylvani:.

Genus EUCHLAENA Hübner

(1) Euchlsena serrata Irrury, Plate XI.V, Fig. 4, of. (The Saw-wing.)

Syn. serroauria Packard: csucicistria Walker.
This rather large and showy species is not at all uncommon in the eastern portions of the region with which this book deals.
(2) Euchlena obtusaria Hübner, Plate XLV, Fig. 3, 8.

Syn. propriaria Walker; decisuria Walker.
Like the preceding species, a native of the eastern half of the continent.
(3) Euchlena effectaria Walker, Plate XLV, Fig. 24, δ.

Syn. muzaria Walker.
A denizen of the Appaiachi:m subregion.
(4) Euchlæna emcenaria Guenée, Plate XLV, Fig. 7, δ.

Syn. deplanaria Waller; arfactaria Grote \& Robinson.
The habitat of the insect is the same as that of the preceding species.
(5) Euchleena astylusaria Walker, Plate XLV, Fig. s, $\%$.

Syn. madusaria Walker: oponearia Walker; vinosaria Grote \& Robinson.
A native of the Atlintic States.
(6) Euchlzena pectinaria Denis \& Schiffermaller, Plite XL: "

Fig. 25, ,
Syn. deductarvia Waither.
Found from the Atlantic to the Mississippi.

Geometride

Genus EPIPLATYMETRA Grote

(1) Epiplatymetra coloradaria Grote \& Rohinson, Plate XLV, Fig. 15,8 .

The insect is common in Wyoming and Colorado.
Genus PHERNE Hulst
(1) Pherne parallelia Packard, Plate XI.V, Fig. 9, 8 Syn. panalleliaria Packard.
The moth is a native of the Pacific subregion.
(2) Pherne jubararia Hulst, Plate XLV, Fig. 20, 9.

The insect occurs in the State of Washington. The specimen depicted in the plate is the type of the species originally described by Hulst.
(3) Pherne placearia Guenée, Plate XI.V, Fig. 21. 3. Syn, willitularia II list.
The habitat of the species is Californi:.

Genus METANEMA Guenée

(1) Metanema inatomaria Guenée, Plate XLV, Fig. 13, 5.

A widely distributed species, found throughout the entire territory.
(2) Metanema determinata Walker, Plate XLV, Fig. 12, 9. Syn. carmuria Packard.
The moth occurs in the northern portions of the Appalachian subregion.
(3) Metanema quercivoraria Guenév, Plate XLV, Fig. 28, $\%$. Syn. eliaria Walker; trilimetrim Packard.
The insect has a wide ralnge in the Appalachian subregion.

Genus PRIOCYCLA Guenée

(J) Priocycla armataria Herrich-Schreffer, Plate XLV, Fig. 6, 3.

Very commonly found in the eastern portions of our territory.

Genus STENASPILATES Packard

(1) Stenaspilates zalisaaria Walker, Plate XLV. Fig. 5, $\%$.

The moth occurs in the region of the Gulf of Mexico, and is common in Florida.

Gsnus azelina Guente

(1) Aselina ancetaria Hobner, Plate XLV, Fig. 23, 8.

Syn. Aubueraria Guente; Aubnernta Packard; howstaria Walker ; poplaria 11 ubner : stygiaria Walker ; atmorolonta Halet morrisowala Henry Edwards.

A very common an:d a very variable species, which is whely distrihuted throughout the entire continent, except in the colder portions.

Genis sY'ssaura Hubner

(1) Bysaaura in'risata Guenée, Plate XLV, Fig. 10, $\%$, var. biciaria Wilker.

Syn. cfhemta Guente: olyowaria Walker ; ryuosus Grote \& Robioson; ses. quilinca Grote: amearia Walker ; puder Grote \& Robinson ; varws Grote \& Robinson ; juniperaraia Packard.

This species, which has a very extensive range in the southern Atlantic and Gulf States, has been frequently redescribed, as a reference to the above synonymy will show.

Genus CABERODES Guenée

(1) Caberodes confusaria Hobner, Plate XLV, Fig. 29, $8 \cdot$

Syn. remissaria G enée ; imbraria Guence; superuria Goente; inefiusaria Gaené ; Aoridaria Guenée ; phasianaria Guenée; inlcrlinearia Guené ; varadaria Walker; arburaria Walker; amyrisaria Walker ; myandaria Walker, etc.

This is a very common moth, universally found throughout the temperate portions of the territory with which this book deals. It is some what variable, but there is hardly any excuse for the application to it of the multitude of names which have been given. The student is likely to recognize it in any of its slightly varying forms from the figure we have supplied in our plate.
(2) Caberodea majoraria Guenée, Plate XLV, Fig. 31, q.

Syn. pamdaria Walker.
This is a larger species than the preceding, with more delicate wings. It ranges from the Atlantic to the Rocky Mountains.

Genue OXYDIA Guenée

(1) Oxydia veaulia Cramer, Plute XLV, Fig. 11, 8.

This moth has a very lengthy synonymy, which we will not attempt to give. It is one of the larger species found within our territory, and ranges from Florida and Texas southward to the Valley of the Rio de la Plata in South America.

Genus TETRACIS Guenée

(1) Tetracis crocallata Guenée, Plate XLV, Fig. 16, \& Syn. allediusaris Walker; aspilwta Guente.
This is a cominon species in the Atlantic subregion.

Genus SABULODES Guene

(1) Sebulodes sulphurata Packard, Plate XLV, Fig. 18, 8. Sya. imitaca llenry Edwards.
A native of the Appalachian subregion.
(a) Sabulodea arcasaria Walker, Plate XLV, Fig. 17, 8. Syn. depontanatit C'rite.
The moth has the same habitat as the preceding species.
(3) Sabulodes lorata Grote, Plate XLV, Fig. 19, 8.

Common in the eastern portions of our territory.
(4) Sabulodes truxaliata Guenée, Plate XLV, Fig. 26, $\%$.

The insect ranges from Coloriado to California.
(5) Sabulodes transverata Drury, Plate XLV, Fig. 34, $\%$.

Syn. Inansmutans Walker; contingens Walker; imnsfindens Walker; gowiaia Guente: transuertews Walker; transpusita Walker; incmrvata Guente.

This is one of the commonest species which are found in the Atlantic subregion. It is very abundant in Pennsylvania in the late summer and early autumn. There is also a brood which appears in the early summer.
(6) Sabulodes politia Cramer, Plate XL.V, Fig. 30, 8.

The moth, which is found in Florida, and southward through the warmer portions of America, has a very extensive synonymy, which will be found in Dyar's List.

Genus ABbotana Hulat

(1) Abbotana clemataria Abbot \& Smith, Plate XLV, Fig. 32. \%, Fig. 33, 8, valr.

Syn. Inansferems Walker: transducens Walker.
A somewhat variable species, which is widely distributed through the Appalachian subregion. It is not uncommon in Pennsylvania.
" Moths, which the night-air of reality blows to pieces."
Clive Holland.-Wy Japanese Hifo.

Ooometride

SUBFAMILY MECOCERATINA: Genus mecoceras Guente

(1) Mecoceras nltocris Crauner, Plate XLV, Fig. 22, 3.

Sya. nimeraria Itubner; peniwemlaria Grote.
The habitat of the species is Fiorida.

Genus ALMODES Guente

(1) Almodes terraria Guenée, Plate XLV, Fig. 27, 3.

Syn. strllidaria Guente; squamigera Felder; batcoblata Herrich.Schafiter; asscroma Druce ; ralvina l)ruce ; rirwhria Grote.

This is a tropical species, the sole representative of its genus found within our borders. It ranges from Florida southward into Central and South Americil.

SUBFAMILY PALYADIN/E

Genus PALYAS Guende

(1) Palyas auriferaria Hulst, Plate XLV, Fig. 36. δ.

The speciinen figured in the plate is the type which wals loaned by the writer to the author of the species.

Genus PHRYGIONIS Hübner

(1) Phryigonis argenteostriata Strecker, Plate XLV, Fig. 35. 9.

Syn. cerwssata Grote ; ohrwssifis Grote.
This moth, like the preceding species, is a native of Florida.

SUBFAMILY SPHACELODIN/E

Genus SPHACELODES Guenée

(1) Sphaeelodes vulneraria Hubner, Plate XLII, Fig. 20, 8.

Syn. Roridensis Hol'ma:.
The moth is found frum the southern portions of North Carolina along the Atiantic coast to Florida, and ranges southward into South Americ:.

SUBBFAMILY MELANCHROIIN/E Genus melanchroia Hübner

(1) Melanehroia eephise Cramer, Plate XLII, Fig. 19, 8.

MICROCONY RESOLUTION TESY CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMATE Inc
1653 Eeat Main Stre
Rochester, New York 14609
USA
(716) 482 - 0300 - Pmane
(716) 288 - $5989-50 x$

Explanation of Plate XLV

(The specimens figured are containest in the eollection of W. Holland.)

Gomaionis hypuchraria Herriwh-Scharficr, ot.
Gonodontis duaria Guenét, O
Euchlema obtusaria Hübner. f.
Euchlarig serrata Drury, ot
Ltenuspilates sulissaria Walker, of.
Priocycla arinataria Herrich-Schaeffer, 0^{7}.
Eu hiona amarnuria Guence. σ^{2}.
Euchlana astylusaria Walker. on 7.
Pherne parallelia Packard. 7 .
Syssaura infensata Guenece, var, bicharia Walker, \%.
Oxydia ąsulia Cramer. 0^{3}.
Metmenna determinath, Walker. \&
Metanema itatonaria Guenée. 0^{7}.
Gonodontis obfirmuria Hlubner. $0^{\text {an }}$.
Epiplatynetra coluradaria Grote \& Rubinson, or
Tetracis crocallata Guenée. \boldsymbol{o}^{7}
Sabulodes arcasaria Walker. of
Sabulodes sulphurata Packard, $\%$.
Sabulodes lorata Grote. 0^{7}
Pherne jubararia Hulst. \&. Type.
Pherive placearia Guenéc. 0°.
Meaneras nitocris C'ranur. of
Azrlina anetaria llubner, d' 7.
Euchlera effectaria Walker. 0^{3}.
Enchlema pectinaria Denis \& Schiffermuller, or.
Suhulodes traxaliala Guenée, of.

- limates terraria Guencée ob.

Metanema quercivoraria Guenée. of.
Caberodes confusaria Hubner. σ^{7}.
Sabulodes politia Cramer. 0^{7}.
Cabervdes mujuraria Guenée. 9.
thbotana clemitaria Abbot \& Sinith.?
Abbotana clemitaria Abhot \& Sinith. of yar.
Sabulodes transtersala Drury, f
Phrygionis argerteostriata Strecker. 8.
36. Paly is auriferaria Hulst. $ه^{7}$, Type.

Found throughout the region of the Gulf southward to South America.
(2) Melanchrola geometroides Walker, Plate XLII, fig. 18, δ.

Syn. morr Lues.
The moth occurs in Florida and southern Texas, and ranges thence southward into Brazil.

SUBFAMILY BREPHIN/E Genus BREPHOS Ochsenheimer

(1) Brephos infans Mœeschler, Plate XLII, Fig. 16, \%. (The Infant.)

This is a boreal insect which occurs upon the White Mountains in New Hampshire, in northern Maine, and ranges thence northwardly to Labrador.

LIVING AND DYING

" Theo let me joy to be
Alive with bird and tree,
And have no hanghtier aim than this, To be a partner in their hliss.

So shall my soul at peace
From anxious carping cesse,
Fed slowly like a wholesome bnd
With sap of healthy thoughts and good
That when st last I die
No praise may earth deny,
But with her living forms combioe
To chant a threnody divine."
Edmund Gossz, -The Farm.

FAMILY EPIPLEMIDAE

" And I will purge thy mortal grossaess so, That thou shalt like an airy spirit go.
Peaseblossom! Cobweb! Moth! and Mustardseed!"
Shakespeare.-Midsummer Night's Dream, 11I, 1.
This is a family of small moths in many respects clusely allied to the Geometride, so far as the structure and general ippearance of the mature insects are concerned. The larva are, however, quite different. The family, has been described as follows by Hampson, " The Moths of India," Vol. III, p. 121:
"Proboseis and frenulum present. Fore wing with vein $1 a$ separate from $1 b ; 1 c$ absent; 5 from or from above the middle of the discocellulars; 7 widely separated from 8 , and usually stalked with 6. Hind wing with two internai veins; vein 5 from or from above the middle of the discocellulars; 8 free from the base.

Larva with five pairs of prolegs and sparsely clothed with hair."

The iamily .s much better represented in the tropics of the New World than in our territory, and even better represented in the tropics of the Old World than of the New. Only four genera are known to occur within the United States, Pbilagraula, Callizia, Calledapteryx, and Scbiliax. Of these we hive selected one for purposes of illustration.

Genus CALLEDAPTERYX Grote

(1) Calledapteryx dryopterata Grote, Plate XLII, Fig. i7, ó Syn. crosiata Packard.
This little moth, which may easily be distinguished by its deeply eroded or scalloped wings, is not uncommon in the Appilachian subregion. It has the habit of alighting upon old rails and the trunks of trees, and, before composing itself on its new station, of waving its wings three or four times upward and downward. This peculiar habit enables the collector to quickly recognize it.

FAMILY NOLIDE

> I would bee anwilling to write anything untrne, or uncertaine out of mine owne invention ; and truth on every part is so deare nnto mee, that I will not lie to bring any man in love and admiration with God and his works, for God needeth not the lies of men."-Topsell., writing upon the Unicorn in The Ifistorie of Fowr.

This is a small family of quite small moths, which have by many authors been associated with the Litbosiida. They are characterized by the presence of ridges and tufts of raised scales upon the fore wings. They frequent the trunks of trees, and the larva feed upon lichens growing upon the bark. The caterpillars have eight pairs of legs and are thinly clad with minute hairs. Four genera occur within the limits with which this book deals.

Genus Celama Walker

Seven species occurring within our territory are attributed to this genus.
(1) Celama triquetrana Fitch, Plate XIII, Fig. 25, ${ }^{\circ}$.

Syn. trinutata Walker ; sexmarulata Grote.
The moths may be found in the early spring of the year, sitting upon the trunks of trees in the forest. They are easily recognized by the three black tufts of raised scales upon the costa of the fore wing.
(2) Celama pustulata Walker, Plate XIII, Fig. 26, 0 .

Syn. nigrofasciata Zeller ; odaurata Morrison.
This species, like the preceding, is common in the Appalachian subregion. It may be at once distinguished from the former by the wide black band running across the middle of the primaries.

Genus NOLA Leach

There are three species of the genus found within our fauna. We select the commonest for purposes of illustration.
(1) Nola ovllla Grote, Plate XIII, Fig. 24, ${ }^{\circ}$.

Nolidet

The habits of this insect are much like those of the species described under the preceding genus. It is fuund associated with them at the same time and in she same localities. The moth has a considerable range in the A:lantic States, and is always very abundant in the forests of Pennsylvania in the early spring. it seems to prefer the trunks of beeches and oaks.

Genus RCESELIA Hübner

(1) Raselia fuscula Grote, Plate XIII, Fig. 27, 8.

Sya. ronspicua I yar.
This moth is a native of Colorado, where it is not uncommon. An allied species, Rxselia minuscula Zeller, is found in the Atlantic States.

Genus NIGETIA Walker

(1) Nigetia formosalis Walker, Plate XIII, Fig. 32, 8.

Syn. melanopa Zeller.
This rather pretty little creature is common in the woodlands

Fig. 207. $-\boldsymbol{N}$. fommosalis, \$. ₹. (After Hampan.) of the Appalachian subregion. It is freely attracted to sugar, and when sugaring for moths in southern Indiana \& have taken it very frequently. In fact, it appears to be commoner in southern Indiana than in any other locality where 1 have found it, though it is by no meins rare in Pennsylvania.

- . . . all you restless things,

That dance and tourney io the fields of air:
Your secret's out! I know you for the souls Of all light loves that ever cansed heartache, Still danciag suit as some new beauty toles! Nor can you e'er your flitting ways forsake, Till the just winds strip of your painted atoles, And sere leaves follow in your downward wake."

Emith M. Thomas.

FAMILY LACOSOMIDAE

"Everything lives by a law; a central balance sustains all."
C. L. Von Kir.r.t.

This is a small family of moths peculiar to the Western Hemisphere. While the perfect insects show structurial resemblances to the Platyplerigidar, the catterpillars, which have the habit of constructing for themselves portahle cases out of leaves, which they drag about with them, resemble in some respects the Psplbidap. The young larva of Ciciunus milsbeimeri, immediately after hatching, draws together two small leaves with strands of silk, and makes between them its hiding-place Afterward, when more mature, it detaches two pieces of leaves and makes out of them a cilse which it carries about with it, and which it can desert at will. When at rest it tics the case to a station selected with a few strands of silk, which it bites off when it desires again to start on a journey among the lranches. The larva of Lacosoma makes a case by doubling a leaf at the inidrib, cuttlng it off at the petiole, and taking it with it als : portable house. There are only two genera of this family in our fauna. It is more ahundinatly represented in the tropics of South America.

Genus CICINNUS Blanchard

(1) Cicinnus melsheimeri Harris, Plate XLI, Fig. 17, f. (Melsheimer's Sack-be:lrer.)

Syn. egenaria Walker.
The species occurs in the eastern portions of our territory. It is not uncomrnon in Pennsylvania.

Genus LaCOSOMA Grote

(1) Lacosoma chiridota Grote, Plate XLI, Fig. 21, 6. (The Scalloped Sack-bearer.)

The distribution of this species is the same as tizat of the foregoing. It occurs quite frequently in western Pennsylv.nnia. Specimens from Florida in the possession of the author are smaller and much darker in color.

FAMILY PSYCHIDE:

"The habiss of insects are very mines of interesting knowiedge, and it is jur. poosibie carefully to watch the proceedings of any insect, however insignificant, withoot feeling that no writer of fiction ever invented a drama of such absorbing laterest as is acted daily before our eyes, though to indifferent spectators."
J. G. Wood.

A family of small or medium-sized moths, the larvac of which feed in a case composed of silk covered with blts of leaves, grass, twigs, or other vegetable matter, which are often arranged in a very curious manner. From this fact has arisen the custom of calling the caterpiliars "'basket-worms." In certain species found in Asia and Africa, these "baskets," or "cases," are spiral in form, and so closely resemble the shells of snails that they were, in fact, originally sent to the British Museum as shells by the first person who collected them. The pupa is formed within the larva-case. The males are winged, but the females are without wings. The female in almost all of the genera is possessed of a very lowly organization, being maggot-like, and in truth being little more than an ovary. She is known to deposit her eggs in the larval skin which lines the sack \ln which she was developed. Copulation takes place through the insertion of the abdomen of the winged male into the sack where the female is concealed. Parthenogenesls is ascertalned to occur in one at least of the genera. The moths are obscurely colored. The wings of the males have numerous scales upon them, but they are in many species so loosely attached that they are lost in the first few moments of flight. In consequence the male lnsects appear to have diaphanous wings.

Eight genera, including the genus Solenobia, which has by most authors heretofore been reckoned among the Tineida, are attributed by Dyar to this family as occurring within our territory. Much remains to be learned both as to the structure and the lifehistory of these interesting, but obscure, moths.

Paychiste

Genus OIKETICUS Guilding

The genus is found in the hotter parts of Allerid, the typical species having originally been found in Central America. It is also represented in southern Asia and in Austrillia. Three species occur in the United Statesmone in southern Callifornid, another in New Mexico, and a third in Florida. The latter species was named abbotl ty Grote, and the mole is delineated in Fig. 208. The wings are pale smoky brown, with darker

Fili. 208, OiActions adent, δ. $\$$ inaculation at the end of the cell and just beyond in the primaries.

Genus THYRIDOPTERYX Stephens

(1) Thyridopteryx ephemeroformls Haworth, Plate XLL, Fig. 12, 8

Syn. coniferarum Packard.
The cominon "Bag-worm," as it is usually called, occurs throughout thi Appalichian subregion, from the Atlantic to the

Fia. 209. - Thyridopteryx ephemeraformis. (Iag-worm.) a, larva: b, male pupa; c, female pupa; d, male moth; θ, fomale chrysalis in cocoon, showing egge in sifu; f, full.grown larva R y youn $\%$ latve with small conet of silk over them.
(After.)
borders of the Grat Plains. It is a very promiscuous feeder, attacking trees and shrubs of many genera, but, so far as is

Psychide

known, abstaining from the Graminear. It evinces special fondness for the conlfers, and above all for the red cedar and arborvite. It has proved very injurious to shade-trees in some of our cities, and its ravages in St. Louls and Washington have been made the subject of repeated coinment in the literature of economic entomology. A very full and interesting account of the habits of this peculiar insect was published by the late Professor C. V. Riley in the "First Annual Report of the State Entomologist of Missouri," to which the reader will do well to refer. The "bag," or "basket," of the male insect is smaller than that of the female. The males escape from the lower end of the case in the winged form, and having copulated with the females, which remain in their cases and are apterous and sluggish, die. The female deposits her eggs, which are soft and yellow, in the sack where she has her home, and ends her existence by leaving what little of her body remains after the ova have been extruded, as a sort of loose plug of desiccated tissue at the lower end of the sack. The eggs remaln in the case till the following spring, when they hatch. The young larve emerge, and placing themselves upon the leaves, where they walk about on thelr fore feet, with their anal extremitles heid up perpendicularly, proceed to construct about themselves little cones of vegetable matter mixed with fine silk. After a while they cease to hold these cones erect, and seizing the leaves and branches with thelr feet, allow the bag to assume a pendant position. They moult within their cases four tlmes before reaching maturity and pupating.

The remedy for these insects is to simply collect the cases which may ie found in the fall and winter hanging from the branches, and burn them. In one of the parks in St. Louis several years ago, the superintendent caused the cases to be collected, and they were destroyed by the bushel, with great benefit to the trees the next summer.

Genus eURYCYTTARUS Hampson

This is a small genus of very small case-bearing moths, two species of which are known to occur in the United States. E. carbonaria is found in Texas. The other species, which we figure, is a native of the Appalachian subregion.

1'sychide
 (1) Eurycyttarus confederata (inute \& Robinson, Plate I.

 Fig. 16, larval case: Pate XI.l, Fig. 8, \&The insects feed urion grasses and herbaceous plants in the larval state. Whell ready to pupate they attach their cases to the under side of rails, the stringers of fences, and fallen branches of trees. The insect is very common in westerin Pennsylvania and in the city of Pittshurgh.

FIR OUT AT SEA

Far cut at sea - the sun was high,
White veered the wind and fapped the alal :
We maw anow-white leuttertly
bancing liefore the fitful gale
Fiar out at vea.
The fittle wanderer, who hall liss
His way, of fanger nothing kuew;
Settled a white upon the mast;
Then futtered o'er the watera lifue
Fiar out at sea.
Above, there gleamed the lxundles.s sky;
Beweath, the bounulesn ocean sheen;
Between them dan thelutterfly.
The spirit-life, : vast scene,
Fur uut 4
The tiny soul that soared away, Seeking the clouds on fraglle wings.
Lured by the brighter, purer ray
Which hope's ecstatic murning tringu-
Fiar out at sea.

Away he sped, with shinmering slee,
Scarce seen, now lost, yet onward borne:
Night comes with wind and rain, and he No more will dance before the morn, Far out ac seat

He dies, unfike his mates, I ween
Perhaps not sooner or worse crossed;
And he hath felt and known and seen
A larger life and hope, though lost
Far out at sea."
R. H. Hosxu.-lienius.

FAMILY COCHLIDIIDFE

"The rearing of larve . . . when jolned with the entomological eollection, adds immense interest to Saturday afternoon rambles, and forms an admirahle introduction to the study of physiology."

This family, which has generally been known as the Limacodida, is described as follows by Hampson, "The Moths of India," Vol. I, p. 371 :
"Fore wing wilh two internal veins; vein $1 b$ forked at the base. Hind wing with vein 8 arising free, then bent down and usually anastomosing shortly with 7 near the base of the cells; three internal veins.

Larva limaciform, and either bearing series of spinous stinging tubercles, or smooth and segmented, or unsegmented with very thick transparent cuticle; the head, legs, and claspers small and often retractile.

Cocoon hard and compact; round or oval in shape, with a lid for the escape of the imago prepared by the larva."

These curious insects, the larva of which are commonly known as "slug-caterpillars," are better represented in the tropics of both hemispheres than in the more temperate regions. Nevertheless our fauna contains quite a large number of genera and species. Of the majority of these we give illustrations.

Genus SIBINE Herrich-Schzeffer

(1) Sibine stimulea Clemens, Plale 1, Fig. 6, larva; Plate XLVII, Fig. 9, ${ }^{\text {d }}$. (The Saddle-back.)

Syn. ophippiatus Harris.
The green caterpillars with their little brown saddle on the back are familiar to every Southern boy who has wandered in the corn-fields, and many a lad can recall the first time he came in contact with the stinging bristles as he happened to brush against the beastie. Nettles are not to be compared in slinging power 10 the armament of this beautifully colored larva.

Genus EUCLEA Hubner

(1) Euclea nanina Dyar, Plate XLVII, Fig. 25, δ. Syn. nama Dyar (non Herrich-Schaffer).
The moth is a native of Florida. The writer took it in some numbers, in the spring of the year 1884, on the upper waters of the St. Johns.
(2) Euclea delphinii Boisduval, Plate XLVII, Fig. 24, f. (The Spiny Oak-slug.)

Syn. strigata Boisduval; quercicola Herrich-Schoffer; tardigrada Clemens; ferruginea Packard; argentatus Wetherby

Form viridiclava Walker, Plate XLVII, Fig. 29, δ.
Syn. monitor Packard.
Form panulata Clemens, Plate XLVII, Fig. 5, δ.
This is a very variable species. It occurs in the eastern portion of our territory, and is not at all uncommon.
(3) Euclea indetermina Boisduval, Plate XLVII, Fig. 10, δ. Syn. vernata Packard.
The species is found in the States of the Atlantic seaboard.
(4) Euclea chloris Herrich-Schæffer, Plate XLVII, Figs. 15 and 29, 8, Fig. 26, δ.

Syn. viridis Reakirt; fraterna Grote.
The insect has the same range as the species last mentioned.

Genus MONOLEUCA Grote \& Robinson

The insects belonging to this genus are subtropical so far as they are known to occur in the United States. The genus is well represented in Central and South America.
(1) Monoleuca semifascia Walker, Plate XLVII, Fig. 22, 3.

The moth is found in the Gulf States.

Genus ADONETA Clemens

(1) Adoneta spinuloides Herrich-Schæffer, Plate XLVII, Fig. 3, δ

Syn. voluta Clemens; forrigena Walker; nebulasus Wetherby.
This is a common species in western Pennsylvania, and is widely distributed through the Appalachian subregion.
(2) Adoneta pygmaea Grote \& Robinson, Plate XLVII, Fig. 19, \%. (The Pygmy Slug.)

The moth has thus far been found only in Texas.

Cochlididia

Genus SISYROSEA Grote

(1) Sisyrosea textula Herrich-Schaffer, Plate XLVII, Fig. $14,9$.

Syn. inornata Grote \& Robinoon.
The insect oceurs in the eastern portion of our territory. It is not rare about Pittsburgh.

Genus NATADA Walker

(1) Natada nasoni Grote, Plate XLVII, Fig. 13, 3. (Nason's Slug.)

Syn. daona Druce; rude Ileary Edwards.
The moth ranges from the southern portions of the Atlantic coast westward and southward to Texas and Mexico.

Genus PHOBETRON Hubner

(1) Phobetron pithecium Abbot \& Smith, Plate i, Fig. 14, larva; Plate XLVIl, Fig. 6, b, Fig. 7, \%. (The Monkey Slug.)

Syn. abbotana Hülmer; nigricans Packard; hyalinus Walsh; tetriaductylus Walbh; mondescriptus Wetherby.

The perfect insects are quite dissimilar in the two sexes. The larva, which is a very curious object, feeds upon the Rosacea, the Cupulifera, and various low-growing shrubs, as the sassafras, alder, and Spirata. The species is found in the Appalachian subregion, and was quite common in western North Carolina in former years, and may be so still. The larve are generally to be found close to the ground.

Genus ISOCHETES Dyar

(1) Isochetes beutenmbilleri Henry Edwards, Plate XLVII, Fig. $17,7$.

This is a rare little insect, which has practically the same distribution as the preceding species.

Genus ALARODIA Mceschler

(1) Alarodia sloasoniz Packard, Plate XLVII, Fig. 18, $\%$. (Slosson's Slug.)

This remarkable little species inhabits in the larval stage the mangroves which grow in the swampy lands on the southern coast of Florida. A good account of its habits has been pub-
lished by Dr. Dyar in the "Journal of the New York Entomological Society," Vol. V, and indeed the student who desires to know about the habits of this and all other species of the Cocblidiide found in North America must consult the writings of this author, who has made these insects the subject of special and exhaustive inquiry.

Genus PROLIMACODES

(I) Prolimacodes acapha Harris, Plate I. Fig. 9, larva; Plate XLVII, Fig. 8, \%. (The Skiff Moth.)

Syn. amdifera Walker.
The moth has a wide distribution throughout the Appalachian subregion. The larva feeds upon a great variety of shrubs and trees. It appeared to me in my boyhood, when I reared it often, to have a particular fondness for the leaves of the sycamore (Platanus).

Genus COCHLIDION Hubner

(t) Cochlidion biguttata Packard, Plate XLVII, Fig. 4, $\%$. Syn. tetmuspilaris Walker.
A native of the eastern portions of the region.
(2) Cochlidion rectilinea Grote \& Robinson, Plate XLVII, Fig. 27, 8 .

The insect is quite common locally, and has the same distribution as the preceding species.
(3) Coehlidion y-inversa Packard, Plate XLVII, Fig. 21, δ. The distribution of the species is the same as that of the two preceding. The larva frequents hickory.

Genus LITHACODES Paekard

(1) Lithaeodes faseiola Herrich-Schreffer, Plate XLVII, Fig. 2, 3 .

Syn. divergens Walker.
The caterpillar feeds on a great variety of low shrubs and trees: it is especially fond of the leaves of the various species of wild cherry. It is common in western Pennsylvania, and is well distributed throughout the Appalachian subregion.

Genus PACKARDIA Grote \& Robinson

(1) Paekardia elegans Packard, Plate XLVII, Fig. 16, $\%$.

Syn. nisripunctata Goodell.

Megalopygide

The iarvae feed upon a great variety of trees and shrubs, and are commonly found in the deep giens and ravines of the Appaiachian subregion, where there is much shade and moisture. The insect is not uncommon in the vicinity of Pittsburgh.
(2) Packardia geminata Packard, Plate XLVII, Fig. I, \& .

The iarvze frequent places exactly opposite in character to those resorted to by the previous species, being fond of dry open woods, and ilving upon low shrubs and bushes. The insect is a native of the Appalachian subregion.

Genus HETEROGENEA Kroch

(1) Heterogenea shurtleffi Packard, Plate XLVIl, Fig. 20, δ.

This, which is one of the very smailest of ail the Cocblidiida, feeds in its iarval stage upon black oak, chestnut, beech, and ironwood. The genus is found both in the Old Worid and the New.

Genus TORTRICIDIA Packard

(1) Tortricidia flexuosa Grote, form casonia Grote, Plate XLVli, Fig. 12, $\%$.

A native of the Appalachian subregion, the larva feeding on chestnit, oak, hickory, and wild cherry. It is not uncommon in western Pennsylvania.
(2) Tortricidia testacea Packard, Plate i, Fig. 19, larva; Piate XLVil, Fig. 11, \mathbf{t}.

The insect, which has the same habitat as the preceding species, feeds upon the same species of plants. It is not uncommon at light in western Pennsylvania.

FAMILY MEGALOPYGID压

" Simple and sweet is their food: they eat no flesh of the liviag."
C. L. von Kusexi.

This is a small famiiy characteristic of the neotropi di regions, and represented by thre. r four genera, which have a foothold in the southern portions of our territory.

Genus CARAMA Walker

(1) Carama cretata Grote, Plate XXXVIll, Fig. 22, δ. Syn. $p: m$ Butlor.

Dalceride
The Insect feeds in its larval stage upon the red-bud (Cercis). The caterpillars are gregarious at first, but during the later part of their life separate. The cocoon is made in the ground. The Insect occurs from New Jersey and southern Pennsylvanla southward in the Appalachlan region at comparatlvely low elevatlons.

Genu: MEGALOPYGE Hübner
(1) Megalopyge opercularis Abbot \& Smith, Plate XXXVIII, Fig. 25, ${ }^{\circ}$.

Syn. lanujinosa Clemens; sudcitrina Walker.
The moth is found in Georgia and the region of the Gulf States.

Genus LAGOA Harris

(1) Lagoa crispata Packard, Plate XXXVIII, Fig. 23, 8. (The White Flannel-moth.)

The caterpillar feeds upon the flowering blackberry (Rubus villosus), and ranges from Massachusetts southward along the coast.
(2) Lagoa pyxidifera Abbot \& Smith, Plate XXXVIII, Fig. 24, ${ }^{\text {o }}$. (The Yellow Flannel-moth.)

- This is a rare moth in collections. It is no doubt common enough in its proper locality, but thus far few collectors have succeeded in finding it. lts home is on the seaboard of the Southern States.

FAMILY DALCERIDFE

" So man, the moth, is not afraid, it seems, To span Omnipotence, and measure night That knows no measnre, by the scanty rule And standard of his own, that is to-day, And is not ere to-morrow's sun go down."

$$
\text { COWPER. - The } T_{a} \text { 'T, aII. }
$$

Thls is another family which is represented in ou. ta only by a small number of species. Besides the insect known as Dalcerides ingenita Henry Edwards, there is only one other species referable to the family known to occur within the United States. Thls Insect is Pinconla coa Schaus, a moth which is not uncommon In Mexlco, and occurs in Arizona as a straggler into our territory. Dalcerides ingenita is likewise an inhabitant 369

Epipyropida

of Arizona. In Central and South America the Dalcerida ine more numerously found. Of Pinconia coa we give a representation on Plate Vill, Fig. 6.

FAMILY EPIPYROPIDFE

" So, naturallsts observe, a flen
Has smaller fleas that on him prey :
And these have smaller still to bite 'em, And so proceed ad infinilum."

Swift. - A Khafsody.
The Epipyropide are a very remarkable little family of parile sitic moths, of which, as yet, comparatively little is known. Professor J. O. Westwood of Oxford, in the year 1876, published an account of a lepidopterous insect, the larva of which lived upon Fulgora candelaria, the great tree-hopper, which is abundant at Hong-Kong and elsewhere in southeastern Asia. The caterpillar, according to Westwood, feeds upon the white, cottony secretion, which is found at the base of the wings of Fulgora. In 1902 Dr. Dyar described another species, the moth of which was bred from a larva which was found attached to the body of a tree-hopper belonging to the genus Issus. The specimen came from New Mexico, and was taken at Las Vegas Hot Springs. The moth, cocoon, and an alcoholic specimen of the larva are preserved in the United States National Museum. Mr. Champion, the veteran explorer of Central America, who has done so much to instruct us as to the biology of those lands, has recorded in a note in the Proceedings of the Entomological Society of London for 1883 , p. xx, that a similar phenomenon was observed by him while collecting in Central America. There is here a field of interesting study for some patlent observer whose home is in New Mexico. Dr. Dyar named the New Mexican insect Epipyrops barberiana.
"Tle little fleas that do so tease,
Have smaller fleas that bite 'em,
And these again have lesser fleas,
And so ad infinifum."
Swift. As popularly but incorrectly qnoted.

FAMILY ZYG/ENIDA

"Every traveller is a self-taught entomologint."
Oliver Wendeli. Holmes. - The Autorme of the Breahfashotable.
The Zygraida are not very well represented in the fauna of North America. They are more numerous in the Old World than in the New, and the general found In the New World are mainly aberrant. The family has been characterized as follows by Hampson, " Moths of India," Vol. I, p. 228: "Closely allied to the Syutomida, but distinguished by vein $1 a$ of the fore wing being present, except in Anomocotes ${ }^{1}$; vein 8 of the hind wing present and connected with 7 by a bar; veinlets in the cell of both, with wings generally present. Frenulum present except in Hi mantopterus. ${ }^{1}$

Larva short and cylindrical.
Pupa In a silken cocoon."

Genus ACOLOITHUS Clemens

(1) Acoloithus falsarius Clemens, Plate XVI, Fig. 14. 3. Syn. sanborni Packard.
The larva feeds upon the grape and the Virginia cre. r (Ampelopsis). The insect is not scarce in the Atlantic States.

Genus PYROMORPHA Herrich-Schaffer

(1) Pyromorpha dimidiata Herrich-Schaffer, Plate XLVII, Fig. 33, ${ }^{3}$.

Syn. Aeriscidula Clemens.
The insect is not very common. It is a native of the eastern portions of the territory with which this book deals.

Genus TRIPROCRIS Grote

There are eight species assigned to this genus in recent lists. They are all found in the southwestern portions of our territory.
(1) Triprocris rata Henry Edwards, Plate XIII, Fig. 4, 8.

A native of Arizona.

[^13]
Zygenida

(2) Triprocris letercule Henry Edwards, Plate Xlli, Fig. 5, 8.

Has the same habitat as the preceding species.
(3) Triprocris constens Henry Edwards, Plate Xlil, Flg. 16, 8.

The moth occurs in New Mexico.
(4) Triprocris amithsonienus Clemens, Plate XLVil, Fig. 32, ${ }^{\circ}$.

The insect is not uncommon in the southern portions of Colorado, and is found in New Mexico and northern Texas.

Genus HARRISINA Packard

Three species belonging to the genus occur within the United States. Two of these are indigenous to Texas and Arizona. The other has a wide range through the Appalachlan subregion. We have selected it for illustration:
(t) Harrisina americana Guérin-Meneville, Plate XLVII, Fig. 34, 6 .

Sym. exama Stretch.
The habits of this insect have been so well described by Professor C. V. Riley that we cannot do better than quote some passages from his account,

Fig. 2 Io.-H. americana. a, larve; b_{1} papa; r, coccon; d, r, moths. (After Ritey.) which is to be found in the "Second Annual Report of the State Entomologist of Missouri, " at paige 85. He says: " During the months of July and August, the leaves of the grape-vine may often be found denuded of their softer parts. with nothing but the veins, and sometimes only a few of the larger ribs left skeleton-like, to tell the mischief that has been done. Very frequently only portions of the leaf will be thus denuded, and in that event, if we examine such a leaf closely, we shall ind the authors of the mischief drawn up in line upon the yet leafy tissue with their heads all toward the margin, cutting away with their little jaws and retreating as they feed.

Cbolconide
These soldier-like files are formed by worms in black and yellow uniforms which produce a moth popularly known as the American Procris. The eggs from which they hatch are lald In small clusters on the under slde of the leaves, and while the worms are small, they leave untouched the most delicate veins of the leaf, which then presents the appearance of fine network, as shown in the right of the figure (211); but when they become older and stronger they devour all but the larger ribs, as shown it the left of the figure. . . . When full grown

Fif. 211.-/harrisina americaua. 1.arve. (After Riley.) these worms disperse over the vines or forsake them entirely, and each spins for itself a small, tough, whitish, flattened cocoon, within which, in about three days, it changes to a chrysalis, three tenths of an inch long, broad, flattened, and of a light shining yellowish-brown color. In about ten days afterwards the moths begin to issue."

The insect is double-brooded. It is common ir the Appalachian subregion, ranging from the Atlantle to the borders of the Great Plains in the West.

FAMILY CHALCOSIIDE

" Daughters of the air."-De La Fontaine.
This family is represented in our fauna by but a single insect, belonging to the genus Gingla, established by Walker. It is an obscure little moth known as Gingla latercule Dyar. Its habitat is Arizona.

Thysidide

FAMILY THYRIDIDFE

"And yet I will exercina yonr promined patienca by saying a little of the Caterpillar, of the Palmer-fly or worm, that by them you may guess what a workit were in a discourse bat to ran over thone very many flies, worms, and little liviag reatures with which the snu and summer adora and beautly the river.banks anil meadows, both for the recreation ant contemplation of us Asplers : plearures which, Ithiak, myself enjoy mure than any other man that is not of my profession."

Izaxk Walioni, - The Comflent Angler, Chap. V, Pt. 1
The Thyriditir are a small family of moths reveaiing decided aftinity to the Pyralidir. They have been characterized as foiiows hy Hampson, "Moths of lidia," Vol. 1, p. 352: "Moths generally with hyaiine patches and strix on the wings. Palpl obiiquely upturned and siender. Antennx aimost simple. Fore wing with vein $: a$ forming a fork with $s b$ at bise; ic absent; 5 from near lower angle of ceil. Hind wing with two internal veins; vein 8 nearly touching vein 7 just before or after the end ol the ceil. Mid tibia with one pair of spurs; hind tibla with two pairs.

Larva pyraliform, with five pairs of legs."
Six genera are attributed to this family in the last list of the species found within the United States which has been published. Of four of these we give illustrations.

Genus THYRIS Laspeyres

(1) Thyris maculata Harris, Plate XLVII, Fig. 30, δ. (The Spotted Thyris.)

Syn. perspicua Walker.
The moth is a native of the Eastern States. It is not common.
(2) Thyris lugubris Boisduval, Piate XLVII, Fig. 3t, 8. (The Mournful Thyris.)

Syn. sepulehralis Boldaval; necadic Oberthltr.
The range of the species is coincident with that of its only other congener in the United States.

Genus DYSODIA Clemens

(1) Dysodia oculatana Clemens, Piate III, Fig. 10, $3 . \quad$ (The Eyed Dysodia.)

Sya. plowe Walker; fuations ligute \& Kulinsun: munhans Henry Eidwarilo; surna Pageautecher.

The specles is widely distributeu' throughout the entlre United States. It ls very common in western Pennsylvania.

Genus HEXERIS Grote

(1) Hexe, is enhydrie Grote, Plate XLVII, Flg. 33. 8. Syn. retisulima Beutennibilier.
The moth occurs in the subreglon of the Gulf.

Genue mesken Grote

(1) Meekee dyeptereria Grote, Plate XLVII, Fig. 30, 8. The moth is found in Florida and the region of the Antilles

FAMILY COSSIDE

" Bright inseet, ere thy filmy wing, Expanding on the breath of opring. Quivered with brief enjoyluent,
'T was thine for yeara inmured to dwelt Within a lone and gloomy cell, To ent, -thy sole empluyment."- If ifoth Domestica.
The Cossidx, "Goat-moths," or "Carpenter-worms," as they are familiarly called, have sorely puzzled systematists. Some writers have been inclined to regard them as allied to the Tortricidr. We assign them the position in the linear series which is accorded them by Hampson and also by Dyar. They form a very distinctiy defined group, whaicver their relationships may be. They are succinctly described by Hampson in "The Moths of India," Vol. 1, p. 304, as follows: "Proboscis absent; palpi usually minute or absent; antennx bipectinated to tip or with distai hair simple in both sexes, or wholly simple in femalle. Tibix with spurs absent or minute. Fore wing with vein $t b$ forked at basse; ic present; an areole formed by veins 7 and 10 ; veins 7 and 8 forking after the areole; the inner margins usually more or less lobed. Hind wing with three internal veins; vein 8 free from the base or connected with 7 by an ereat bar at end of cell. Both wings with forked veinlets in cell. The female may have as many as nine bristles to the frenulum.

coculda

Larva. Smuoth, with a few hairs; internal feeders, boring galieries in wood or the pith of reeds, etc., and often doing considerabie damage.

Pupa in a cocoon formed of slik and chips of wood."
Six genera are recognized as occurring within our fauna.
Genus zEUZERA Letreille
(1) Zeusera pyrina Linnazus, Plate 1X, Fig. 9, 3. (The Leopard-moth.)

Sya. Ajperasfrima Poda; usculi Linnzus ; Ailaris Yourcroys decipiome Kirby.
This Insect is a native of the Old World, but hus within recent yerrs become introduced and accilmated on Long Island, and has

Fic. 112. - The Leopard-moth. a. dorsal view of larva: b, lateral viow of do.: c_{5} male; d, female; $a_{\text {, burrow in wood made by larva. (A'ier Pike, "Insect Life," }}$ Vol. IV, p. 317.)
multiplied to a great extent in the environs of the city of Brooklyn. It has already inflicted much damage upon trees, and, apparently being firmly est hished, is destined to work still greater injury. It is a promiscuous feeder, but evinces a particuiar fondness for elms and maples.

Coasida

The eggs are generaily laid near the crotch of the tree, alld watch should be kept in the spring of the year to detect their presence and destroy them before they are hatched.

Genus Cossus Fabrlclus

The genus is found on hoth sides of the Atlintic. Cossus cossus Linneus is a large species which does great damage to trees in Europe. As i am writing, my friend, Dr. Ortmann, relates that when he was a boy of eleven, living in his native viliage iat Thuringia, his attention was called to a notice posted by the Bargermeister offering a reward for information which would lead to the detection and punishment of the individuals who by boring into the trunks of a certain fine avenue of birh-trees, upon which the place prided itseif, had caused great injuty to them. Already the Instincts of the naturalist had asserted themselves, and the prying eyes of the lad had found out the cause of the troulle. He went accordingly to the office of the Burgermeister and informed him that he could tell him ali about the injury to the trees. The official sat wide-mouthed and eager to hear. "But you ntust assure me, before 1 tell you, that the reward you offer will surely be paid to me." "Yes, yes, my little nian; do not be in doubt on that score. You shall certainly be paid." "Weli. then, Herr Borgermeister, th : ' oles from which the sap is flowing were not made hy boy: who were after the birch-sap to make beer, but by the Weidenbobrer." 1 A small explosion of official dignity followed. The act of the presumptuous boy was reported to a stern parent, and the result was, in Yankee phrase, a "licklng," which was certainly undeserved.
(1) Cossus centerensls Lintner, Plate XII, Fig. I, s.

The insect is quite rare. It is found in the Atlantic States.
(2) Coseus undosus Lintner, Plate XLI, Fig. 9. 9. Sya. brucei Fronch.
The moth occurs in the region of the Rocky Mountains. The specimen figured was taken on the Arkansals River in Colr ido, near Canyon City.

It is undoubtedly the most attractively marked and most clegant specles found in our territory.

[^14]Conside

Genus PRIONOXYSTUS Grote

There are two species of this genus found in the United States. One of them, Prionoxystus macmurtrei Guérin-Méneville - querciperda Fitch, is a rather rare species. It bores its larval passages in oak. The female, which resembles the female of the other species, is quite large, sometimes four inches in expanse of wing. The male, on the other hand, is quite diminutive. I have never seen a male much more than an inch and a half in expanse of wing. The species has been taken most frequently in recent years in western Pennsylvania by local collectors. The other species, Prionoxystus robinize Peck, is very common. It frequents various trees, but shows a preference for the wood of the common locust (Robinia pseudacacia) and various species of the genus Populus. The male is depicted on Plate XLI, Fig. 11. and the female by Fig. 10 on the same plate. The insect is widely distributed throughout the United States. I have found the males exceedingly abundant about the electric lights in some of our Western cities, as St. Paul and Omahal.

Genus INGUROMORPHA Henry Edwards

Ftc. 213.-Inguro. morphe baselis, $8 \cdot \frac{4}{1}$. Type of shassoni.

Two species of this genus occur within our limits. Both are found in the extreme southern portions of the United States. I. arbeloides Dyar is a native of Arizona. I. basalis Walker, which is shown in the annexed figure, is found in Florida and Mexico.

The general color of the fore wings is pale ashen-gray, with the outer border dull ochreous, marked with dark-brown strix, and broader spots and blotches toward the outer margin. The hind wings are darker gray.

[^15]
Genus Cossula Bailey

Only one species of this genus is known from our fauna. It occurs in Florida and Mexico. Strecker, and subsequently also by Bailey. Druce in the year 1891 applied to it the specific name norax. It is represented in the annexed cut one third larger than the size of life. It is as yet a rare insect in collectlons, only a few specimens having been found. No doubt it is It was named magnifica by

Fig. 214--Cossula magnifica, z. .s. locally common, and when some shrewd observer discovers its haunts and mode of life, we shall all have a good supply of speciinens in our cabinets.

Genus HYPOPTA Hubner

Nine species are said to belong to this genus and are reputed to occur within our territory. They are all Southern or Southwestern forms.
(1) Hypopta bertholdi Grote, Plate XII, Fig. 2, 9.

The specimen figured on the plate came from California. The author has also received it from Colorado.
(2) Hypopta henrici Grote, Plate XII, Fig. 3, 5.

The moth is found in Arizona and New Mexico.

FAMILY ÆGERIIDた

' I' 'll follow yon, I 'll lead you about a round
Through bog, through bash, through brake, through brier." Shakzspeare, Midsummer Aight's Dream, III, r:
The name Sesia being, according to the laws of priority, strictly applicable to a genus of the Sphingida, as has been pointed out on page 6 I , the name of the family which we are now considering must be that which is given above. The name "Sesïde" must yield to the name "Egeriilda." This is on some accounts regrettable, is the former name has for many years been consistently applied to the family by many authors.

Egeside

The name which we use has also been applied by a multitude of writers, and is already well established in use in certain quarters.

The Egeriida are diurnal in their habits, flying in the hottest sunshine. They are very rapid on the wing. Their larva are borers, feeding on the inner bark or the pith of trees and lesser plants. The pupre are generally armed with hook-like projections, which enable them to progress in a forward direction in the galleries in which they are formed. Sorne of the genera have at tion cephalic end a sharp cutting projection, which is used to enable the insect to cut its way out of the chamber before the change into a moth takes place. The moths have been described as follows by Hampson in "The Moths of India," Vol. 1, p. 189: "Antennæ often dilated or knobbed. Legs often with thick tufts of hair; mid tibiz with one pair of spurs; hind tibixe with two pairs. Frenulum present. Wings generally more or less hyaline; fore wing with veins $1 a$ and $i b$ forming a fork at base; $1 c$ absent; veins 4 to 11 given off at almost even distances from the cell. Hind wing with three internal veins; vein 8 coincident with 7."

Ths American species have been very thoroughly monographed by Mr. Beutenmaller, the amiable and accomplished Curator of the Section of Entomology in the American Museum of Natural Hlstory in New York. It is through his kindness that the author is able to give on Plate XLVI of the present volume so many illustrations of the species which are found in our fauna. The student who desires to know more about these things must consult Mr. Beutenmaller's great work.

Genus MELITTIA HUbner

(1) Melittia satyriniformis Habner, Plate XLV1, Fig. I, $\%$. Syn. cucurbita Harrib; celo Wentwood; amona Henry Edwards.
The larva of the insect is commonly known as the "Squashborer," or the "Pumpkin-borer." The insect has an extensive range from New Englard to the Argentine States. It attacks the Cucurbitacea general!y, laying the eggs upon all parts of the plant, but preferably upon the stems, into which the caterpillar bores, and in which it develops until the time of pupation, when it descends into the ground, makes a cell beneath the surface in

Egeride

which it hibernates, and is transformed into a chrysalis the following spring. The moths emerge, according to locality, from June to August. It is said to be double-brooded in the southern parts of our region, but is single-brooded in the Northern States.
(2) Melittia snowi Henry Edwards, Plate XLVI, Fig. 2, 8.

This species is very closely allied to the preceding, but the fore wings are devoid of the met:llic tints which appear in that specles, and there are other minor differences which present themselves upon comparison of the two forms. The life-history remains to be worked out. It is thus far known only from Kansas.
(3) Melittia grandis Strecker, Plate XLVI, Fig. 3, 9.

The insect is reported to occur in Texas and Arizona.

Genus GAEA Beutenmuiller

(1) Grea emphytiformis Walker, Plate XLVI, Fig. 5, 9.

The types of this species are found in the British Museum. Nothing is known definitely as to its true locality, except that the specimens came from the United States. Of course the life-history is also unknown. It is to be hoped that some reader of this book will rediscover the species and let us all know its true history.
(2) Gsea solituda Henry Edwards, Plate XLVI, Fig. 4, 8.

The species occurs in Kansas and in Texas, but the history of its mode of developricit from egg to imago remains to be written.

Genus EUHAGENA Henry Edwards

There is only one species of this genus known at the present time. It was named nebraskse b, Henry Edwards in the year 1881. A male specimen is depicted on Plate XLVI, Fig. 34. The species may easily be recognized by its red wings. Its early history is unknown. I received several specimens of the insect some time ag, rom a friend who sent them to me, but so wretchedly packed tat nothing came to hand but fragments. The wellmeaning sender had done them up in cotton as if they were birds* eggs, and of course they were all smashed. Never wrap cotton about moths or butterflies, and then ram cotton down into the box to make the specimens ride well. Particularly avoid the "ramuning" process.

Genus ALCOTHOE Henry Edwards

(1) Alcothoe caudata Harris, Plate XLVI, Fig. 6, 8.

The larva bore in the roots of various species of clematis. The insect is widely distributed, occurring from Canada to Florida, and westward to the Mississippi. The moths come out in April and May in the South, and from June to August in the North. The larve hibernate in their galleries in zarious stages of growth.

Genus SANNINA Walker

(1) Sannina uroceriformis Walker, Plate X_{L} VI, Fig. 7, 8.

Syn. guinguecaudatus Ridings.
The larval feeds on the tap-root of the persiminon (Diospyros) at a depth of from eighteen to twenty-two inctre under the ground. The species occurs from Virginia to Flor:da, and westward as far as the food-plant ranges.

Genus PODOSESIA Maschler

(1) Podosesia syringaz Harris, Plate XLVI, Fig. 17, 9.

Syn. longipes Moesclaker.
The larve feed on the ash and the lilac. They tunnel their passages straight into the wood for many inches. They cut their way out almost to the surface just before pupating, leaving only a thin layer of fiber to close the end of the gallery; this is broken through by the emergent pupa as it comes forth from its cocoon, and then the pupal envelope is split and the perfect winged insect appears. The moths are on the wing in western Pennsylvania in June, and are to be found on the blossoms of Syringa.

Genus MEMYTHRUS Newman

(1) Memythrus tricinctus Harris, Plate XLVI, Fig. 14, 9.

The larva infest the small trunks of willows and poplars. The moths appear in the latter part of June and the beginning of July; the caterpillars hibernate in their galleries. Transformation occurs in a tough cocoon located at the outer end of the gallery. The species is found in New England and the Middle States, ranging westward as far as Ohio and Michigan.
(2) Memythrua polistiformis Harris, Plate XLVI, Fig. 11, §,Fig. 12, \ddagger.
(The figures in this plate are aken by the kind permission of Mr. William Beutenmuller from the plates illustrating his Monograph of the Sesiidie of North America.)
2. Milittia sutyriniformis Hubner, \&.
2. Melittia snuri Henry Edwards, ơ,
3. Melittia grandis Strecker, \wp
4. Geru solituda Henry Edwards, σ.
5. (icu cmphytifornis Walker, of.
0. . Llatho cosudah Harris, of.
7. Sunnina uroceriformis Walker, ot,
8. Necria apiformis Linnaeus, of.
9. Bembecia marginata Harris, ㅇ.
10. A/emythrus simulans Grote, ?
11. Menithrus pulistiformis Harris, σ^{7}.
12. Memythrus polistiformis Harris. 8.
13. Mempthrus admirandus Henry Edwards, ot.
14. Menythors tricinctus Harris, \&
1.:. Pahnia pracedens Henry Edwards, ㅇ.
10. Purharmonia pini Kellicott, σ°.
17. Podosesia syringe Harris, ㅇ.
18. Sannimudea exitiosa Say, ot'.
19. Vauninuidea exitiosa Say, ㅇ.
20. Vespumina sequovia Henry Edwar 's, δ^{*} '.
22. Synanthedon bassiformis Walker, ot'.
i2. Synanthedon rileyuna Henry Edwards, O'.
23. Synanthedon rileyuna Henry Edwards, \&.
24. Synanthedun pictipes Grote \& Robinson, \&.
25. Synanthedin pyri Harris, ㅇ.
26. Synanthedin tipuliformis Clerck, \&.
27. Synanthedint albicornis Henry Edwards, \&.
28. Synanthedon aconi Clemens. 8.
29. Synanthedon scibula Harris. O.
30. Symanthedon neqlectu Heur: Edwards, \&.
32. Synauticdon rutilans Henry Edwards. O^{7}.
32. Synanthedon rutilans Menr! Edwards. 9.
33. Syuanthecion aureopurpurea Henry Edwards. त'.
34. Euhagena nebraske Henry Edwards. σ^{7}.
35. Paranthrene heuchera Henry Edwards, of.
36. Calasesia cocrinra Betutenmuller. \&.
37. Albuna pyrauidalis, var. montana Henry Edwards, or.

Neriide
The insect, which is popuhirly known is the "Grape-rout Borer," ranges from Vermont to the Carolinas, and westward as far as Missouri. It inflicts considerable dimage upon both wild and cultivated grape-vines. The moth resembles the wasps of the genus Polistes, whence the name.
(3) Memythrus simuians Grote, Plate XLV1, Fig. 10, $\%$.

The insect, which is known to occur from New England to Minnesota, not ranging below the Potomalc and the Ohlo, feeds in its larvai stage upon the wood of the red oak.
(4) Mem;thrus admirandus Henry Edwards, Plate XLVl, Fig. 13. 3.

The habitat of the species is Texils.

Genus PALMIA Beutenmulier

(1) Palmia pracedens Henry Edwards, Plate XLVI, Fig. 15, $\%$.

The moth is known to occur in North Carolina. It is very rale in collections as yet, and nothing is known of its life-history.

Genus FGERIA Fabricius

(1) Eigeria apiformis Clerck, Plate XLVI, Fig. 8, $\%$.

Syn. orspiformis Hufnagel; imbroniformis Denis \& Schiffermüller.
This insect, which in England is known is the "Hornetmoth," because of its resemblance to a hornet, is found abundantly in Europe, but less commonly in North America. Its larva lives in the routs and lower portions of the trunks of poplars and willows, and requires two years in which to undergo transtormation.

Genus BEMBECIA Hubner

(1) Bembecia marginata Harris, Plate XLVI, Fig. 9, $\%$.

Syn. pleciaformis Walker; odyncripennis Walker; rubi Riley; favipes Mulst.
The insect, which is popularly known as the "Blackberryborer," is not at all uncommon. The grub-like larve infest the roots of blackberries and raspberries, and when mature eat tneir way up about three inches through the pith of the dead cane, and cutting their way outwardly, leave only a thin liyer of the epidermis between themselves and the outer air. The pupa is armed at its head with a triangular chisel-shaped process, with which

Nererida

It cuts through the epidermis of the plant, and then wrigyling forward, until half of the body ls extruded, the pupal case bursts, and the moth emerges. The males come out in the early afternoon, the females about four o'clock, copulation occurs almost Immediately, and the female begins to oviposit before the sun sets. The moths appear at the end of July and throughout August in Pennsylvania. The larve overwinter in the canes.

Genus VESPAMIMA Beutenmaller
(1) Vespamima sequois Henry Edwards, Plate XLVI. Fig. 20, 8.

Syn. pinorum Behrens.
This species is said to be very destructive to coniferous trees upon the Pacific slope. The larve do their mischievous work at the forking of the branches.

Genus PARHARMONIA Beutenmüller

(1) Parharmonia pini Kellicott, Plate XLVI, Fig. 16, 8.

The species is found from Canada to New Jersey. The larvae live under the bark of pine-trees. The moths appear in July and August.

Genus SANNINOIDEA Beutenmiller

(1) Sanninoidea exitiosa Say, Plate XLV1, Fig. 18, 8, Fig. 19. 9.

Syn. porrica Thomss ; pepsidiformis Hubner; xiphiaformis Boisduval
This is the well-known " Peach-borer." The larvae infest the trunks of peach-irees and wild cherries near the ground, and also attack the upper roots. The species ranges from Canada to Florida, and westward to the Rocky Mountains. It does a inge amount of damage in peach-orchards.

Genus ALBUNA Henry Edwards

(1) Albuna pyramidalis Walker, form montana Henry Edwards, Plate XLVI, Fig. 37, δ.

This is a variable species, of which several varieties have been described. It ranges from Nova Scotia into New England, and westward to the Pacific in the same latitudes. Nothing is known of its early history or food-plants.

Egerida

Genus SYNANTHEDON Hubner

(Sesia auciorum.)
The name Sesia being properly restricted to a genus of the Spbingide, we apply to the genus tile name proposed by Hobner in the "Verzeichniss Bekainter Schmetterlinge," p. 129. This appears to be the proper and logical method of procedure under the circumstances.

The genus is very extensive. Fiffy-eight species are found in our fauna, of which we deline:te eleven.
(I) Synanthedon rileyane Henry Edwards, Plate XLVI, Fig. 23, 8, Fig. 23.8.

Sya. לmunncipennis Henry Edwards; hyperici Henry Edwards.
The species ranges from the Virginias and Carollnas westward through Ohlo and Illinois ns far as California and Oregon.
(2) Synanthedon rutilans Henry Edwards, Plate XLVI, Fig. 31, 8 , Fig. 32, 8 .

Syn. aurooh Henry Edwards : homioonct Henry Edwards ; Iupiwi Henry Ed. wards : Arplexa Ilenry E.lwsrds; impnopria Henry Edwards; zashingtomia Henry Edwards; madurio Ilenry Edwards.

This insect is known as the "Strawberry-borer." It not only infests the crown of these piants, which it generally destroys, but also frequentiy attacks raspberries and blackberries at the crown of the roots. It ranges from Nova Scotia west ward across the continent, and in the Misslssippi Valiey southward into northorn Texas.
(3) Synanthedon neglecta Henry Edwards, Plate XLVI, Fig. 30,9 .

The insect is found in California and Washington. Its early slages are unknown.
(4) Synanthedon bassiformis Walker, Plate XLVI, Fig. 21, 8.

Syn. Gustrans Grote; consimilis Hensy Edwards; bolli Henry Edwards; enpatorii Henry Edwards ; sexfasciata Henry Edwards; mfirma Henry Edwards: imifala Henry Edwards.

The larva feeds in the stems of Eupatorium purpureum. The insect ranges from New England to Texas.
(5) Synanthedon tipuliformis Clerck, Piate XLVi, Fig. 26, 9 .

The insect, which is found in Europe and Asia, and has also 385

Agorita
heen transporte. to Australia, is an importation into this country from Europe. It feeds in the stems of gooseberry- and currantbushes.
(6) Synentheden pletipes Grote \& Robinson, Piate XLVI, Fig. 24, 8.

Syn. immsihata lienty Edvards.
The larve feed under the bark of plums, wlld and cultivated cherry-trees, peach-trees, the June-berry (Amelancbier), and the chestnut. The eggs are laid on the trunks and the branches of the trees. The moths are on the wing in June and July.
(7) Synenthedon ecerni Clemens, Plate XLVI, Fig. 28, 8.

Syn. acencolum Gennalius.
This is the common "Maple-borer." The larver tunnel in the sap-wood and do a great deall of damage to trees, especially in our larger cities. At times trees are completely girdled by the

Fic, 215, -S, acomi, a, larve: b. cicenons; of male ; d, pupa projecting fromburrow. (After Riley,) galleries made by the insects, and are thus killed; at other times they are so weakened that on the occasion of high winds or storms they are broken off and greatly disfigured. The insects emerge from the pupx earlv in the morning, and may be seet. : : times ill duall swarms about the trunks of the trees, ovipositing upon the bark. The time of emergence is the litter part of May and the beginning of June. The pupx are formed in small cocoons composed of silk and pellets of excrement interwoven upon the surface. Just before the moths emerge, the chrysalids wurk their way, partially out of the tunnels in which they are, and then the outer sheathing of the pupa splits open and the perfect insect crawls forth, in a few moments to be upon the wing; for the development of the power of flight is with this species, as with almost all the Ageriida, exceedingly rapid.

The moth is found from New England as far west as Nebraska.
(8) Eynanthedon aureopurpurea Hienry Edwards. Plate XLVI, Fig. 33, 8

The moth occurs in Texas. No jistory of its habits has as yet been written.
(9) Synanthedon pyri Harris, Plati XI.Vi. Fig. 3i. 8.

Sya. Authteri Henry Edwards.
This is a common species everywhere, infesting the bark of pear- and apple-trees. In the vicinity of Pittsburgh many tries have been killed by these mischievous little creatures.
(10) Eynanthsion ssitula Harris, Piate XI.VI, Fig. 29, 8.

Syn. gnllitorwm Weriwond; haspes Walth; amela IIenry Edwards.
The larva inhabit the bark of chestnut, dogwood, oak, wiliow. hickory, and the gails of oaks. The moth ranges from Canada to Virginia, and westward through the Valiey of the Ohio.
(11) Synanthsdon albisornia Henry Edwards, Piate XLVI, Fig. 27. 8 .

Syn. Aroxima Henry Edwards; matsta Kellicots.
The moth is not known to occur south of the Potomac and the Ohio. it ranges from New England to Oregon. The larve feed upon the trunks and shoots of willows.

Genus Calesesia Bautanmuiler

(1) Caicsesia socsinea Beutenmalier. Piate XLVi, Fig. 36. 8.

The habitar of this rare insect is New Mexico. The male and the early stages are as yet unknown.

Genus PARANTHRENE Hubner
(1) Paranthrene heuchere Henry Edwards, Piate XLVi, Fig. 35, 8.

There are several species in the genus found in the United States, which are ail, as yet, rare in collections, and ittle is known as to their life-history. The present species has been found in New Mexico.

FAUNAL SUBREGIONS

This volume is an attempt to bring together into compact form an account of the commoner and morr s'riking species of

Atgaride

moths which are found in the United States and Canada. The area is vast, and zoologists as well as botanists have for the purposes of science subdivided the region into what are known as "faunal subregions," or "botanical subregions." These subdivisions of the territory are eatirely natural and are based upon a knowledge of the flora and fauna of each area. Both flora and fauna are more or less derendent upon conditions of soil, rainfall, and temperature.

Beginning with the Atlantic coast, we find a large area extending from Nova Scotia, Quebec, and Ontario, southward through New England, the Middle States, and the Eastern Central States as far south as the Carolinas and northern Georgia, Alabama, and Mississippi, westward into Arkansas, Missouri, and eastern Kansas, then northward through eastern lowa and Minnesota, in which, with some slight variations, the predominant features of the vegetation and of the fauna are alike. In a broad way this territory is known as the Appalachian subregion. it has been subdivided into two parts, to the more northern of which has been applied the name Canadian, and to the southern the name Carolinian. These minor subdivisions of the broader suhregion are quite natural, and are based upon the fact that cert:in groups of plants and innimals are characteristic of the one which are not characteristic of the other; yet upon the whole the character of the vegetation and of the animal life of the two lesser areas is in most respects quite similar. The genera are practically the same throughout these territories. It was, when the country was first discovered by white men, a region of trees, except in northern Indiana and parts of lllinois, lowa, and Minnesota, where there were prairies; but on these prairies, where trees grew, they were for the most part representatives of the same genera which were found through the e:stern parts of the domiain. and in many cases were the same species. Accompanying the plants are the insects which feed upon them.

Beginning on the extreme southern portions of the coast of North Carolina and running along the coast of South Carolina through eastern and southern Georgia, northern Florida, and westward along the Gulf of Mexico, we have a strip of territory preserving many of the floral and fannal peculiarities of the Appalachian subregion, but possessing distinctive features of its own.

Egeride

We detect here the influence of warmer skies and the life of the rut-fir-.iff tropics. It is the region of the long-leaved pine, the cyprecs, the live-oak, the evergreen magnolia, and the palmetto. It is t ie subregion of the Gulf. It has a fauna of its own.
I) the extreme southern portion of Florida and on the outlying islands we find established a northern offshoot of the plantlife and of the fauna of the West Indies. The conditions are distinctly tropical here.

A sharp division takes place west of the Mississippi River, at those points where the heavily wooded lands terminate and are succeeded hy the grassy, woodless plains, which lie between the western borders of the Valley of the Mississippi and the eastern ranges of the Rocky Mountains. While the Great Plains are traversed by numerous river valleys, in which there is abundant arboreal vegetation, nevertheless the whole region in part only preserves the faunal and floral characteristics of the Appalachian subregion. The southern part of this territory, lying in New Mexico, western Texas, and Arizona, with which, in part, southern California is identified, has a large number of genera and species which range southward along the plateaus and treeless highlands of Mexico and Central America. This may be called the Arizonian or Sonoran subregion.

The northern half of the belt of the Great Plains is invaded by forms of both plant and animal life which are related to types predominant in the colder regions of the continent. This is especially true where the plains reach a great altitude above the level of the sea. This subregion may be called the Dakotan. It stretches from northern Colorado northward to the British provinces of Assiniboia and Alberta.

West of the Great Plains is a territory traversed from north to south by the ranges of the Rocky Mountains, in which there occurs a commingling of generi and species, some coming in from the far north on the higher ranges, others coming in from the south on the lower levels, and a multitude of forms mingling with these which show the influence of migration both from the Great Plains and from the Pacific slope. The region of the Rocky Mountains is a region in which there are singular complexities, owing to the great differences in elevation. Species of the arctic zone may be found having their habitat within a few

Ageriida

miles of species which are in many cases distinctly subtropical. On the high peaks holarctic genera occur, and in the valleys genera which have their metropolis in Mexico. In a general sense the territory may be called the Coloradan subregion.

The Pacific subregion includes central and northern California and the valleys lying between the coast and the western outliers of the central cordillera. The subregion extends northward into British Colimbia. There is shown here a distinct resemblance to the fauna of Europe and temperate Asia.

Beginning in Labrador on the east and extending across the entire northern portion of the continent into Alaska is a region which we may call the Holarctic subregion, in which the genera and species alike of plants and animals are for the most part the s:me which are found in similar latitudes in the Eastern Hemisphere. In Alaska there is evidence of a distinct connection between the flora and fiuna of Asia. Greenland and Labrador, together with some of the adjacent islands, show remarkable iffinities to the flora and fauna of boreal Europe and the Alps.

Various subdivisions of these broader areas have been suggested, but in the main the subregions which the writer has indicated suffice to show the differences in these tracts.
> ". . . From every chink
> And secret corner, where they slept away The wintry storms - or rising from their tomls To higher life-by myriads, forth at once, Swarming they pour, of all the varied hines Their beauty-beaming parent can disclose. Ten thousand forms ! ten thnusand different tribes ! People the blaze."

Thomson. -Summer.

FAMIL.Y PYRALIDAE

" All multiplicity rushes to be resolved into unity. Anatomy, ontenlogy, $3 x$. hibit arrested or progressive ascent in each kind: the lower pointing to the higher forms, the higher to the highest, from the fluid in an elastic sach, from radiate, mollusk, articulate, vertebrate, up to man; as if the whole animal world were only a Hunterian Museuma tr extibit the genesis of mankincl."-E.akrson.

The Pyralide constitute an enormous complex of subfamilies, genera, and species. They are found in all the temperate and tropical parts of the world, but are more numerous in hot lands than in the colder portions of the globe. Nearly eight hundred species belonging to this family are :already known to occur within the United States and Canadil, and the region will undoubtedly yet yield many new species to science. We cannot in these pages undertake to give even an outline of the gener:a and the species, but we have selected a few for illustration in order that the student, encountering these interesting insects, may be able to at least recognize their relative position in the great suborder with which this :.ook deals.

The moths of this family are described as follows by Sir George F. Hampson in the Proceedings of the Zoological Society of London for 1898, page 590: "Proboscis and maxillary palpi usually well developed; frenulum present. Fore wing with vein $1 a$ usually free, sometimes forming a fork with $1 b ; 1 c$ absent; 5 from near lower angle of cell; 8,9 almost always stalked. Hind wing with veins $1 a, b, c$ present; 5 allnost always from near lower angle of cell; 8 approximated to 7 or :Ilastomosing with it beyond the cell.

Larva elongate, with five pairs of prolegs. Pupa with segments 9-11 and sometimes also 8 and 12 movable, not protruding from cocoon on emergence."

The Pyralida have been divided into a number of subfamilies. Of the subfamilies represented in our filuna, we shall in the following pages give illustrations of a few species which are com-

Pysalide

monly encountered or possess interesting traits. While it is to be wished that we might be able to give a monographic view of the entire family, such a procedure is wholly out of the question, in view of the limits imposed upon us in the matter of space by such a volume as that which has been undertaken.

SUBFAMILY PYRAUSTIN\&

The genera of this family may be distinguished by the fact that the median nervure is not pectinated upon the upper side, or is at most very slightly pectinated, by the absence of tufts of scales in the cell of the fore wing, and by the further fact that vein 10 of the fore wing rises from the cell. In the hind wing, vein 7 and vein 8 almost invariably antastomose.

Fifty-seven genera are found in our territory, represented by two hundred and twenty-four species.

Genus ZINCKENIA Hubner

(1) Zinckenia fascialis Cramer, Plate XLVIl, Fig. 28, 8.

Syn. angustalis Fabricius; vicurvalis Faloricius ; diffastialis Hilibner; albifas. cialis Boisduval.

The moth is found all over the temperate and subtropical regions of both hemispheres. It is common in the southern portions of the United States.

Genus DESMIA Westwood

(1) Desmia funeralls Hübner, Plate XI,Vll, Fig. 37, o. (The Grape-leaf Folder.)

Fig. 216.-Desmia funeralis. 1, larva aecreted between folds of leaf; 2, head of iarva, magnified; 3, pups; 4, male moih; 5, female moth. (Aiter Riley.)
The caterpillar of this pretty little moth feeds upon the leaves
of various wild and cultivated grapes, showing a preference for those species the leaves of which are thin and tender. The caterpillar is of a transparent green color, and is very lively when disturbed. The insects, which do considerable damage in vineyards, may be kept down by crushing the larve and the pupa when found in the folded leaves, which are easily detected. The moth is found from Canada to the Gulf east of the Great Plains.

Genus SAMEA Guenee

(1) Samea eccleaialis Guenée, Plate XLVIII, Fig. 2, 9.

Syn. castellatis Guenee ; tuccusulis Wrilker; diserratis Walker.
The insect is widely distributed throughout the hotter parts of the Western Hemisphere. It is common in Florida and ranges south as far as Argentina.

Genus diastictis Hubner

(1) Diastictis fracturalia Zeller, Plate XLVIII, Fig. 1, 3.

This is a neatly marked species, which is found in Texas and Arizona, and ranges southward into Mexico and Central America.

Genus CONCHYLODES Guente

(1) Conchylodes platinalis Guenee, Plate XLVII, Fig. 60, 3.

Syn. avulatis Guené; crinalis Walker; magicalis Felder; concinnalis
The moth is found in western Pennsylvania and southward through the southern portions of the United States into South America

Gents PANTOGRAPHA Lederer

(I) Pantographa limata Grote \& Robinson, Plate XL.VII, Fig. 38, 3.

Syn. sufinsatis Druce.
The insect occurs from Maine to Patagonia.

Genus Agathodes Guenee

(I) Agathodes monstralis Guenée, Plate XLVIII, Fig. 3, δ. Syn. desigenalis Guenee ; Roridalis Hulst.
The moth ranges from Florida to the Rio de la Plata in South America.

Genus GLYPHODES Guenée

This is allarge genus, represented in both hemispheres by numerous species. We give figures of three.
(1) Glyphodes nitidalis Stoll, Plate XLVHI, Fig. 43, 3. (The Pickle-woim.)

The insect feeds in its larval stage upon cucumbers and melons, into whech the caterpillar bores. A good account of its habits is given \mathbf{b}; Riley in the " Second Annual Report of the State Entomologist of Missouri, " pige 67 . It has, like most of the Pyralida, a wide range, and extends from the southern portions of the United States to the southern portions of South America.
(2) Glyphodes hyalinata Linnzus, Plate XLVII, Fig. 39, 6.

Syn. margonals Stoll; luccrnalis Ilubner; hyalinatahs Guence.
The range of this species is very much the same as that of the last mentioned.
(3) Glyphodes quadristigmalis Guenėe. (The Privetmoth.)

Fig. 21\%, - Glyphodes quadristigmalis. a_{1} luteral view of larva; b_{1} dorsal view : r, cocoon; d, moth; e, lateral view of two segments of larva, enlarged; f_{1} anal segment "! pupa from below, grently enlarged. (After Riley, "Insect Life," Vol. 1, p. 24.)

This moth has in recent years proved at times troublesome as an enemy of privet-hedges in the southern portions of the country. As many as four broods of the moths have been detected in one
rivet-

Explanation of Plate Xlvi

(Unless atherwise indicated, the specimens reprewnted are consained in the collection of W. J. Holland.)

1. Pachardia sominata Packard, σ^{7}.
2. Lithacodes fascinla Schaelfic. ot
3. Adinta spinulurides HerrichSchueffer, 0^{7}.
4. Cochlidion biguttata Packard, 8 .
5. Euclou pernulaha Clemens. 0°.
6. Phobetron pithecium Abbot \& Smith, σ^{7}.
7. Phobetron pithecinm Abbot \& Smith, F
8. Prolimacodes scapha Harris, Q.
9. Sibine stimulea Clemens. ot $^{\prime}$.
a. Eucled indetermina Boisduval, or. U. S. N. M.
10. Tortriculia lestacea Packard. 0^{7}.
11. Tortricidia casintia Grote. \&. U.S. N. M.
12. Vatada nasoni Grote, $\sigma^{\text {ot }}$ U.S. N. M.
13. Sisyrasea textula HerrichSchaffer, θ, U. S. N. M.
14. Euclea chloris Herricb-Schaffcr. Q, U. S. N. M.
15. Pachardia elegans Packard. Q.
16. Isochates beutenmulleri Henry Edwards, Q, U. S. N. M.
17. Alarodia slossomie Packard. $\%$. U.S. N. M.
18. Adoneta pygmaa Grote \& Robinson, ơ, U. 8. N. M.
19. Heterogenea shurtlefi Packarl. σ^{7}. U. S. N. M.
20. Cochlidion y-iniersa Packard. σ^{2}.
21. Monolewca semifascia Walker, ${ }^{7}$.
22. Encled vividiclava Walker. 0^{7}.
23. Euclea dolohinsi Boisduval, of.
24. Euctea nanina Dyar. ${ }^{7}$.
25. Euclea chloris Herrich-Schreffer, ${ }^{\circ}$.
26. Cochlidion rectilinea Grote \& 6a. Conchylodes platinalis Guente, Rohinson. है.
27. Zinchonia fascialis Cramer, of.
28. Eucloa chloris Herrich-Schaffer, Q.

3a. Thyris matculata Harris. © ${ }^{\circ}$.
31. Thyris lugubris Boinduval, o'.
32. Triprocris smilhsunianus Clemens. σ°.
33. Pyromorpha dimidiata HerrichSchaffer, 0^{7}.
34. Harrisina anerricana GuérinMéneville, σ^{7}.
35. Hexeris enkydris Grote, σ^{7}.
36. Mesked dyspteraria Grote, of
37. Deswia j wneralis Habner, σ^{7}.

3s. Puntographe Uimata Grote \& Rabinson, σ^{7}.
39. Gilyphodes hyalinata Linnazus, ${ }^{7}$ ".
4a. (indaphia bicoluralis Guenée. Ot.
41. I'yrausta insoqualis Guenée. 0^{7}. 43. Pyrawsta nitvicilsalis Grote, ©. 43. Glyphodes nitidalis Stoll. 0°. 44. Pyrausta tyrali, Guente. σ°.
45. Evorgestis straminalis Habner, σ^{7}
46. Herculia himonialis Zeller, \circ. 47. Phlyctemia tertialis Guente, of 48. Pyrausta illibalis Hubner, 9.
49. Pyrausta or phisalis Wallicer, of.

5a. Pyrausta funebris Strom, d'.
51. Pyransta unijascialis Peckard.
52. Pyrausta langdonalis Grote, 0^{7}.
53. Pyralis farinali., Linnaus, \circ.
54. Pyrassta pertextalis Lederer, 0^{7}.

55 Pyrausta fumalis Guené, 0^{7}.
56. Pyrausta unimacula Grote \& Robinson. σ^{7}.
57. Pyra:s.rta ochosalis Fitch, M8., ${ }^{7}$.
58. Enstixia pupula Habner. of.
59. Hypsopygia costalis Fabricim, σ^{3}. σ^{7}.

summer in Washington, D. C. The insect has a wide range, being known to occur in the West Indies and Central America.

Genue PHLYCTRENODES Guente

This is a genus well represented in both hemispheres. There are over thirty species found in the United States.
(1) Phlyctienodes triumphalieGGrote, Plate XLVIii, Fig. 5, 2 .

This species, which is found in the vicinity of San Luis Obispo, California, was described by Grote in the "Canadian Entomologist," Vol. XXXIV, p. 295. It does not appear in Dyar's List.
(2) Phlyctienodes sticticalis Linnaxus. (The Sugar-beet Moth.)

The moth, of which we give an enliarged representation in Fig. 218, has beemee in recent years the object of attention in those portions of the West in which the cultivation of the sugar-beet hals hecome an industry of magnitude. It has done consider:ible damage to the crop in Nebraska., There are two and perh:lps three broods produced in a year. The insect multiplies with grent rapidity, and large arens planted with the beet have

Fig. 218,- $1 \% /$ jofornorles shatioulis. 'Twice the sice of life. (After Riley. "Insect J.ife," Vol. V, p. 320.) been defoliated by the caterpiiiars in comparatively a short time. The larva hibernate in cases woven of sllk to which particles of earth are adherent, and which are formed at a small depth under the surface of the soii. By harrowing the ground it has been ascertained that many of the cases are thrown up, and are emptied of the larva by the meadow-larks and other insectivorous birds, or are killed by the frosts of winter. Many of them, however, escipe such treat-

Pyrallem
ment, being possessed of vitality enough to withstand a great degree of cold. It has been suggested that a better way in which to rid the fields of the pests is to apply Paris green to the beets, In a solution composed of one pound of the poison to two hundred gallons of water. The spraying of the plants by the mixture is said to have proved efficacious in cases where the

Fio. 319.-P. sticticalis. a, Jarva, magnified; b, doraal view of seg.nent of do.: c, lateral view of aegment. (After Riley, "Invect Llfe," Vol. V, p. 321.)

Fic. 190. $-P$. sticticalis. 4 outline of larval case; b, cocoon of parasite in larval case; $c_{\text {. }}$ pupa, enlarged. (After Riley, ". Insect Life," Vol. V. p. 333.)
application was made as soon as it was ascertained that the insects were at work upon the leaves. Nature in this case, as in multitudes of others, comes to the assistance of the agriculturist, and there is a parasite which destroys many of the larva. The cocoon of one of these is shown in Fig. 220.

The moth occurs in Europe as well as in America, and it is possible that the insect has been imported from the Old World.
(3) Phlyctanodes oberthuralis Fernald, Plate XLVIll, Flg. 4, 8.

The species occurs in California and Arizona.

Genus TITAN1O Hubner

(1) Titanio proximalis Fernald, Plate XLVIll, Fig. 6, 8.

The moth is a native of California. The genus to which it beiongs is represented in our fauna by a number of species.
"And your spoil ahall be gathered like the gathering of the eaterpillor."
ISAIAH, --xXXIH, 4.

Pysulide

Genua PHZYCTAENIA Hubner

(I) Phlycteenia tertiaiia Guenee, Plate XLVII, Fig. 47, s. Sya. phortios Grote \& Roblason; syringicoia Packard.
This is a common species in the eastern portion of the region. It is very abundant about Pittsburgh. The genus is represented In our fauna by a dozen species.

Genua CINDAPHIA Lederer

(1) Cindaphia bicoloraiis Guence, Plate XLViI, Fig. 40, 8.

Syn. jmislis Walker; iniensalis l.ederer; amicwiutalis herg; fulchrificiates Itampsoa.

The moth occurs from New York and New England southward to the temperate regions of South America. It is the only representative of the genus in our faunil.

Genus PYRAUSTA Schrank

This is a very large genus, which is well represented in both hemispheres. There are ahout sixty species known to occur withln our territory.
(1) Pyraista pertextalis Lederer, Plate XLVII, Fig. 54, 3 Syn. gentilis Grote; thesealis Zeller.
The species ranges from New England to the extreme southern portions of our region.
(2) Pyrausta iangdonalis Grote, Plate XLVII, Fig. 52, 8.

The moth occurs in western Pennsylvanial and Ohio and Indiana.
(3) Pyrausta orphisaiis Walker, Plate XLVII, Fig. 49, 8.

Syn. adipaloides Grote \& Robinson.
The insect is not uncommon in the Middle Atlantic States.
(4) Pyrausta fumalis Guence, Plate XL: II, Fig. 55, d́.

Syn. orasusalis Walker: dadiponnis Grnte.
The species is found in the eastern portions of our territory. It is not uncommon in Pennsylvania.
(5) Pyrauta iliibalis Hobner, Plate XLVII, Fig. 48, $\%$.

Syn. arsaltrafis Walker; euphasalis Walker; gutulosa Walker; fasciadis Walker; subjectaifs Lederer; magnifrralis Walker.

The moth, which is somewhat variable in its markings, is found in the Appalachian subregion.
(6) Pyrausta unifascialis Packard, Plate XLVII, Fig. -i, \& .

Pyralidat
Syn. subolivalis Packard; kircinalis Grote; obnigralis Mulst.
The moth is known to occur in the northern portions of the United States and to range westward to California.
(7) Pyrausta insequalis Guenee, Plate XLVII, Fig. 41, δ.

Syn. sudsequalis Guenée; madetesalis Walker; repietalis Walker; sficitalis Walker.

The species inhabits the Appalachian subregion.
(8) Pyrausta ochosalis Fitch, MS., Plate XLVII, Fig. 57, $8 .$.

This species, which is not at all uncommon in Pennsylvinnia, is in nany collections confounded with P. generosa Grote \& Robinson, which it resembles in a general way. The insect is prevalently smaller than the latter species, and the marklngs are different. The species has been correctly discriminated in the collection of the United States National Museum from P. generosa, and the name applied to it in manuscript by Fitch is there given it. I have used this name in designation of the species.
(9) Pyrausta tyralis Guence, Plate XLVIl, Fig. 44, 8.

Syn. erosmealis Walker; diffisa Grote \& Robinson; bellulalis Hulst.
The species ranges from the Valley of the Ohio southward to Texas.
(10) Pyrausta unimacula Grote \& Robinson, Plate XLVII, Fig. 56, δ.

The insect is common in Pennsylvania and the Valley of the Ohio.
(11) Pyrausta funebris Strom, Plate XLVII, Fig. 50, ${ }^{\circ}$.

Syn. actomaculata Linnarus; slomimalis Walker.
This pretty and distinctly marked species, which in the pattern of jts wings recalls the markings of the genus Alypia, is found in the northern parts of temperate North America and in Europe.
(12) Pyrausta niveicilialis Grote, Plate XLVII, Fig. 42, 8.

The moth is found from New England to western Pennsylvania and the Valley of the Ohio as far west as southern Indiana.

Genus EUSTIXIA Hübner
(1) Eustixia pupula Hubner, Plate XLVII, Fig. 58, 8 .

The insect is found throughout the Appalachian subregion. It is freely attracted to light and also to sugar. It is common in Indiana.

Pyralide

Genu: CORNIFRONS Lederer

(1) Cornifrons slmalis Grote, Plate XLVIII, Fig. 7, 8. The range of the moth is from Montana to Oregon.

nus NOCTUELIA Guenée

(1) Noetuelia thalialis Walker, Plite XLVIII, Fig. 9, 8.

Syn. permiana Walker; gefidilis Walker; novalis Grote: coslamacnlatis Snellen.

The insect is found in the Gulf States and southward through South America.

SUBFAMILY NYMPHULINA:

The insects composing this family are generally found in the vicinity of water, the larve feeding for the most part upon aquatic plants. Four genera belonging to the subfamily are recognized as occurring within our limits. We give an illustration of one of the commoner species.

Genus NYMPHULA Sehrank

(1) Nymphula obscuralis Grote, Plate XI.VIII, Fig. 10, 9.

The insect occurs from Maine to Minnesota, and southward into Pennsylvania and West Virginia.

SUBFAMILY SCOPARIINAE

The Scopariina are represented in our fauna by the genus Scoparia alone. Seven species belonging to this genus are attrihuted to it in the last published list of the Lepidoptera of the United States.

SUBFAMILY PYRALINAE

Five genera belonging to this subfamily occur within our territory. Of these we have selected for illustration specimens representing three of the genera.

Genus HYPSOPYGIA Hubner

(1) Hypsopygia costalis Fabricius, Plate XLVII, Fig. 59, 8. (The Clover-hay Worm.)

Syn. fimbrialis Denis \& Schiffernulller.

Pyralide
This troublesome little species is no doubt an importation from Europe, where it Is very common. It has spread from the Atlantic

Fic. 221.-Hypsopygis costalis. 1-2,
 Riley.) to the Rocky Mountalns. has the habit of infesting stacks of clover-hay, and often does a great deal of damage by weaving its webs of fine whitish silk mixed with excrement in the hay and devouring the leaves. Many cases have been reported in which hay had been rendered entirely unfit for use by the presence of these pests. As the larva feed upon dried clover, it has been recommended to make it a point not to stack new hay in places where the old hay is known to have been infected. Furthermore, as the larve are known to prefer hay which is somewhat moist, it is recommended to make it a point to stack the hay in such a manner that it cannot be subjected to an excess of moisture. This may be done by building the stacks upon a framework of rails elevated a little distance above the ground, so as to permit of the circulation of air beneath.

Genus PYRALIS Linnaus

(1) Pyralis farinalis Linnzus, Plate XLVil, Fig, 53, \%. (The Meal Snout-moth.)

This is a cosmopolitan species, being quite abundant everywhere. It manifests a decided preference for cereals in almost any form, and feeds upon meal, bran, and even the straw and husks. It undergoes

Fic. 232.-Ayrals farinalis. a, moth; δ, lurva cocoon. (After Chittenden, "Bull. U. S. Dept. Agric.," New Series, Vol. IV, p. IIg.) All fgures twice the size of life.
transformation quite rapidly and is known to produce as many as four generations in a year. The caterpillars prefer the dark corners of meal-bins and the nooks of granaries and elevators which are least disturbed, and here will, unless they are detected and their ravages checked, establish centers of infection, from which they will go forth to do a vast amount of mischief. The caterpillars form long cases or tunnels of silk mixed with the debris of their food, in which they are quite effectually concealed from view. The best remedy is cleanliness, and frequent moving of stored products.

Genus HERCULIA Walker

(1) Herculia olinalis Guenée, Plate XLVIII, Fig. 13, 3. Syn. tremtonatis Lederet
The species is widely distributed throughout the United States and Canada. The larva feed upon the leives of the oak.
(2) Herculia himonialis Zeller, Plate XLVIl, Fig. 46, 8. The moth is found from New England to Pennsylvania. It is not uncommon ainong the Alleghany Mountains about Cresson.

SUBFAMILY CHRYSAUGIN/E

This is a small subfamily, represented in our fauna by nine genera. Two of these we have selected for representation.

Genus SALOBRANA Walker

(1) Salobrana tecome Riley, Plate XLVIII, Fig. 11, 8.

This curious little moth feeds in its larval state upon the interior of the seed-pods of the common trumpet-vine (Tecoma). The eggs are deposited when the pods are forming, and the larva develop within them until in the fall, when they become dormant, hibernating in their burrows until the following spring, when they prepare for their escape by making an orifice in the outer shell of the pod and transforming into pupie. An excellent account of their habits has been given by the late Professor C. V. Riley in the "American Entomologist," Vol. III, p. 288. The moth is found in the southwestern portions of the United States, in the West Indies, and in Mexico and Central America.

Genus TOSALE Walker

（I）Tosale oviplagalls Walker，Phate XLVIIl，Fig．33， 8.
Syn．mobilis Grote；anthecioides Grote \＆Robinson．
This is a common insect in western Pennsylvania，coming freely to sugar．It ranges from the eastern portions of our terri－ tory southward into South America．

SUBFAMILY SC゙HGENOBIIN压

This is a small subfar：ily of peculiar moths in which the pro－ boscis is wanting，and which are represented in our territory by four genera and a dozen or more species．Of these we have selected one for illustration．

Genus SCIRPOPHAGA Treitschke

（1）Scirpophaga peratrialis Hübner，Plate XLVIII，Fig． 12， 8.

Syn．serviradiellus Walker ；macrinellus Zellner．
The habitat of this moth is the southern part of Florida．

SUBFAMILY CRAMBIN／E

The Crambina，or＂Grass－moths，＂as they are commonly called，constitute a large subfamily．The North American species have been well described and delineated by Fernald in his little book entitled＂The Crambidæ of North Americi，＂which was published in 1896 ．To this the sident will do well to refer． There are fourteen genera in our territory，and over eighty species． Only a few of these can be represented in our plates．

Genus CRAMBUS Fabricius

（1）Crambus laqueatellua Clemens，Plate XLVIII，Fig．17，古． Syn．semifusellus Walker．
The moth ranges from New England to Texas．Like all the other species of the genus，it feeds in its larval state upon the grasses．
（2）Crambus alboclavellus Zeller，Piate XLVIll，Fig．18，δ°.
The insect is very common in the $A p_{i}$ alachian subregion．
（3）Crambus turbatellua Walker．Plate XLVIll，Fig． 10 \＆． Syn．bipunisilhus Zeller．

The insect occurs from Canada and New (4) Crambus trisectus Willer Syn. interminelus Walker ; This is a very coment ing from the Atlantic to the paific latitudes.

Genus DIATReA Guilding

 (1) Dlatrea saccharalis Fubricius. (The Larger Corn-stalk Borer.) As early as the year 1828 the attention of the world was called to the damage inflicted upon the sugar-cane in the West Indies by the larva of a lepidopterous :nsuct. The author of the paper in which it was described was the Rev. Lansdown Guilding, who was awarded a gold medill by the Society of Arts for his account - of the insect. About thirty years later, attention was called to the ravages of a similar insect in the Island of Mauritius, into which it had been introduced. From the West Indies the insect was transported to Louisiana, and a study of its pernicious habits was accurately made inthe year 1881 by Dr. L. 0.

Fig. 223. - D. saccheralis. c, b, c, varieties of $\operatorname{tar} \mathrm{va}$, enlarged; d, third thoracic segment; e, eighth abdominal seg. ment ; f, abdominal segment from side; g, same from above, enlarged. (After Howard, "Insect Life," Vol. IV, p. IOt.) Howard of the
United States Department of Agriculture. It had been known in Louisiana as a pest since 1855 .

Pyralide

The ravages of the insect are not confined to the sugar-ciane. It attacks with equal avidity sorghum and the stalks of the common Indian corn, or maize. The insect has gradually worked its way northward from the region of the Gulf, having found lodgment here and there throughout the Southern States, and is now known to occur quite abundantly at times as far north as Maryland. It is double-hrooded in Virginia.

The most serious damage is inflicted upon the crop where the larve attack young stalks. Plants which are older and well

Fic. 224.-D. sacchamalis. a, appearance of corn-stalk infested hy larva; b, stalk cut open to show larval tunnel and pupa. (Aiter Howard, "Insect Life," Vol. IV, p. 99.) established, though they may suffer to some extent from the insects, are gener:ally not damaged sufficiently to prevent the maturing and hardening of the grain; but where the stalks are young and quite tender, they fail to mature, are stunted, sicken, and ultimately die. The accompanying figure shows the dwarfed and sickly appearance of such a stalk, which has been inviaded by the borer. The lifehistory of the insect has been briefly given by Howard as follows: "In early spring the parent moth lays her eggs upon the young cane near the axils, and the young borer penetrates the stalk at or near the joint, and commences to tunnel, usually upward, through the soft pith. The larval growth is rapid, and the borer is active,

Pyralidix

and frequently leaves the stalk at one place and enters at another, making several holes in the course of its growth. When ready to transform, it burrows to the surface, making a hole for the exit of the future moth, and transforms to the pupa state. There are several generations in the course of a season, and the insect hibernates in the larval state within the stalks."

The fact that the insect makes its home in the winter months in the dry stalks furnishes the means for most effectually combating its attacks. The remedy is found in destroying the stalks, either by burning them or by gathering them up and feeding them to live stock. It is well known that where crops are rotated, and the stalks are not left stand ng in the fields all winter, the insect does not succeed in inflicting much damage. Careful and intelligent tillige of the soil, cleanliness in the fields, will do much to prevent the increase of these insects, as well as of many other injurious species which might be named.

Fts: 225. - n. saccharulis, a, female, en(After Howard, "Jnsect i, pupa, enlarged. (Aiter Howard, "Jnsect I.ffe," Vel. JV,
p. 95. .) In addition to feeding upon sugar-cane, sorghum, and corn, it has been ascertained that the insect will attack "Gama-grass" (Tripsacum dactyloides), and it is recommended to burn over fields in which this grass grows in proximity to corn-fields. The student who is desirous to know more about this insect may consult the pages of "Insect Life," Vol. IV, p. 95, where Dr. Howard has written at length upon its habits. It is from this article that much of the infurmation contained in the preceding paragraphs has been drawn.

SUBFAMILY GALLERIIN/E

This is a subfamily the larve of at least one species of which have the remarkable habit of making their abode in the hives of

Pyralids
bees, where they feed upon the wax and destroy the young of the insects upon whose industry they prey.

Genue Galleria fabricius

(1) Galleria mellonella Linnæus. (The Bee-moth.)

Syn. cerrena Linnzas; creclla Fabricius; obhquella Walker. The Bee-moth was undoubtedly mitroduced into this country fronn Europe. It is a well-known enemy of the apiarist, and his heen active in doing mischief on this side of the Atlantic for more
 female moth with wings expanded; c, male moth with wings closerd. (After Riley.)
than a century, while it has been known from time immemorial in Europe as one of the most dreaded pests of the hive. The moth is double-brooded, the first generation appearing on the wing in the latter part of May and the beginning of June, and the second in August. We canno: do better than to quote in this connection the following account of the insect which is given by Professor C. V. Riley in the " First Annual Report of the State Entomologist of Missouri," p. 166:
" During the daytime these moths remain quietly ensconced in some angle of the hive, but, as night approaches, they become active, and the female uses her best endeavors to get into the hive, her object being to deposit her eggs in as favorable a place as possible. Wire-gauze contrivances are of no avail to keep her out, as she frequently commences flying before all the bees have ceased their work. But even if she were entirely prevented from entering the hive, she could yet deposit her eggs on the outside, or, by means of her extensile ovipositor, thrust them in between the slightest joint or crack, and the young worms hatching from them would readily make their way into the hive. The moment
the worm is hatched, it commences spinning a silken tube for its protection, and this tube is enlarged as it increases in size. The worm cuts its channels right through the comb, feeding on the wax, and destroying the young bees on its way. When fullgrown, it creeps into a corner of the hive or under some ledge at the bottom, and forms a tough white cocoon of silk mingled with its own black excrement, as shown in Figure 226, b. In due time the moth emerges from this cocoon.

A worm-Infested hive may generally be known by the discouraged aspect which the bees present, and hy the bottomboard being covered with pieces of bee-bread mixed with the black gunpowder-like excrement of the worm. . . . If a hive is very badly infested with the worm, it is better to drive out the bees and secure what honey and walx there maly he left than to preserve it as a moth-breder to infest the apiary. If put into a new hive, the bees may do something; and if they do not, there is no loss, as they would have perished, finally, from the raviges of the worm."

SUBFAMILY EPIPASCHINA:

This subfamily is represented in our fauna by fourteen genera and about thirty species. The insects inaly generally be recorgnized and separated from allied forms by the fact that the celi of the fore wing is adorned by turts of raised scales. We have only space to give an illustration of a single genus and species.

Genus YUMA Hulst

(1) Yume trabalis Grote, Plate XLVIII, Fig. 14, 8. Syn. adulatalis Hulst.
The insect is found in Colorado and Wyoming, and ranges southward into Texas. Almost all of the Epipascbiince found within our territory are native to the West and the Southwest, only a few species being found in the eastern portions of the United States.

SUBFAMILY PHYCITINA:

This is a very extensive group of moths, which have been admirably monographed by the late Mons. E. L. Ragonot of Paris, in the "Mémoires sur les "Lépidoptères," Vols. VII and

Pyralide

Vill. There are represented in our fauna over sixty genera and more than two hundred species. We can give our readers merely a glimpse into thls corner of the field, but trust that what they shall see may impel them to undertake for themselves the pleasant task of diligent exploration, assuring them that they will find here a world of wonders with which to deal.

Genus ACROBASIS Zeller

(1) Aerobasis betulella Hulst, Plate XLVIll, Fig. 15, 8.

This is a commoll species, ranging from New England to Colorado. There are nearly a dozen other species of the genus known to occur in our fauna, and no doult many more which have not yet been discovered and described.

Genus MINEOLA Hulst

(1) Mineole juglandis Le Baron. (The Walnut Case-bearer.)

This little moth lives in its larval stage upon the leaves of the hickory and walnut. It has the habit of drawing together two of the oppositeleaves

Fig. 237.-M. juglandis. a, cuse woven between leaves ; b, case; c, C, wing of M. indigemilla and variety: d, wing of if. juglandis. (After Riley.) attached to the long petiole, and between them it builds a case, whlch is quite straight and is comnposed of silk, attached to which is excrementitious matter, which is neatly and closely applied to the whole. In this case the larva lives until the cooler airs of autumn warn it to leave the petiole of the compound leaf, which will fall presin a half-grown state prepares for the cold winds and icy and perature of winter. When again spring sends the sap up the pranches, and the leaves begin to unfold it cuts the bands up the which held the case in place, and completing its development
upon freshiy grown and sapid food, it is transformed into a pupa, from which the moth presently emerges. The moth ciosely resembles the next species, but the student, by the study of its habits and of the case, which is always straight, and not crooked, as is that of the foilowing species, may at once discriminate it.
(2) Mineola indigenella Zeller. (The Rascal Leaf-crumpler.)

Syn. wetulo Walsh; sclatidia lifusl.
This moth is common in the Valley of the Mississippi and in Ontario, but does not appear to be very common in the Eastern Stites, and is unlknown in the extreme southern portions of our region. It is very common in western Pennsylvanid.

Professor C. V. Riley describes its habits as follows: "It is one of those insects which is hardly noticed while it Is carrying on its most destructive work; for it is most voracious during the leafy months of May and June, and is then nore or iess hid-

Fic. 228.-.1/. indigenclus. a, case; b_{1} cace wrapped in debris of leaves; r, head of larva; d, moth, enlarged. (After Riliey.) which it so effectualiy heips to denude. But the nakedness of winter, though it does not reveal the surreptitious worm, lays bare and renders conspicuous its little house, and these housesthese larval cases - whether closely attached in clusters to the twlgs as in Figure 228, b, or hidden in a few seared and silk-sewn leaves as at Figure 229, are unerring tokens of past injury to the tree, and symbols of increased injury in the future, uniess removed. The bunches of leaves anchored to the tree by strong silken cables and breasting defiantiy every winter's wind are, indeed, significant insignia upon which is written in characters, if not in words-'result of careless cuiture and unpardonahle negiect.'

There is but one brood a year, and the larva, about one-third

Pyralide
grown, invariably passes the winter protected in its case. At this season of the year it is always of a deep reddish-brown

Fic. 3ag. - Clunter of leave hiding larval cave of $1 /$. indi. grorlla. (After Riley.) color. As the leaves expand In spring it rouses from its winter lethargy, and after 'heaving anchor' - to use a nilutical expression-by severing the silken connections of lts case, travels in search of food, and having found it, secures its case again, and breaks its long fast. Toward the end of Miry it acquires its growth, when the earlier brown color frequently takes on a inore or less decided deep green hue. It is in smooth worm with the head and thoracic joints as rep' sented at c. The case at this timi usualiy presents the appearance of Flgure 228, a, being crooked and twisted like a little horn, gradually enlarging, cornucopla-fashlon, from tip to mouth, and reininding one strongly of a piece of bird-dung. It is formed of the worm's excrement and other debris, interwoven with silk, and is completely lined on the inside with a carpet of the last-named material. The worm leaves it for feeding purposes mostly during the night. The chrysalis is formed inside this case, and the moths commence to make their appearance during the fore part of June, and later as we go farther north."

The insect feeds princlpally upon the Rosacea, and is very injurious to orchards, attacking apple-trees, plums, quinces, cherries, and certain varleties of pears, especially the Seckel pear.

Genus AMBESA Grote

(1) Ambesa latella Grote, Plate XLVIII, Fig. 16, 8.

The moth is not uncommon in Colorado. Wyoming, and Utah. It is found in the sage-brush in August.

Genus MELITARA Walker
(t) Melitara fernaldialis Hulst, Plate XLVIII, Fig. 8, \%,

The insect is not at all uncommon in Arizona, and is also sald to occur in Mexico.

Genua zOPhOdIA Hubner

(i) Zophodia grossularise Riley, (The Gooseberry Fruitworm.)

Syn. turtitilla Grote.
The larva of this little inoth, which is glass-green, feeds upon currants and gooseberries as they are forming upon the iranches, hoijowing out their interiors, and often fastening a cluster of them together with a web of silk. The berries attacked by the larva do not generally fall to the ground, hut shrivel up where they are, altuched to the stalk. The caterpillars transform into pupse on the ground, under leaves and among rubbish. There is but one brood

Firs. 2 jo. -2. grosswiarife Moth and cocorn. (Alter
Riley.)

The insect is widely distributed from New England and southern Canada westward and southward into the Villey of the Ohio and the upper portions of the Mississippl Valley.

Genus CANARSIA Hulet
(1)Canarala hammondi Riley. (The Apple-leaf Skeletonizer.)

The larval of this little moth feeds upon the parenchyma, or soft green pulpy covering of the leaves, of the apple and allied

b, enlarged dorsal view of segment: $c_{\text {e }}$ enlarged view of hear and anterior segments ; d, moth. (Aiter Riley.) trees, leaving the framework of veins and velnlets untouched. Sometimes it devours ail of the upper siurface of the leaf and compietejy skeletonizes it; more frequently it oniy eats portions here and there. In the fall of the year orchards are often made to appear quite sear and blighted by the inroads of the minute larva, which are gregarious and are at times found literaliy in millions upon the trees.

The insect has an extensive range, and is found from New

Pyralide

England anu Ontario southward through the valleys of the Ohio and the Mississippi as far as northern Texas.

By weakening the trees the larve cause the fruit to fall prematurely, and not a little damage is thus caused to the crop. It has been recommended to treat trees which are infested by the insect to a dust-bith made of air-slaked lime. It is said that this has the effect of destroying the larva. A better method of procedure is to give the trees a spraying with a very weak solution of one or the other of the co:1-oil emulsions which are in use as disinfectants in orchards.

Genus EPHESTIA Guenée

(1) Ephestia kuehniella Zeller. (The Flour-moth.)

Syn. gitonclla Drace.
This wretched pest, the original habitat of which is not known, has within recent years caused a great deal of trouble and expense to millers and dealers in grain on both sides of the Atlantic. It is believed by many European entomologists to be of American origin, but this cannot be proved. Others hold that

Fig. 132. $-E$. kuthnicllo, (All figures greatly enlarged.) a_{i} larva; b_{1} pup.i; r_{1} moth: d_{1}, enlarged head of larva; c, enlarged segment; f, moth at reat; front wing, howing characteristic inarkings ; $h_{1}, j_{\text {, neuration of wings. (After Riley, }}$ "Insect Life," Vol. II, P. 166.)
it is an importation from the Orient, and it goes under the name of the Mediterranean Flour-moth in some localities. Wherever the creature came from, it is a decided plague. Rapidly multiplying, it takes possession of mills and grain-warehouses, and

Explanation of Plate Xlilil

(Unless utherwise indicated, the specimens figured are contained in the collection of W. J. Holland.)

Diastictis fracturalis Zeller, or, U. S. N. M.
Samea ecclesialis Guenee, $\%$ U. S. N. M.
Agathodes monstralis Guence, 0^{7}, U. S. N. M
Phlyctenodes oberthuralis Pernald, σ^{7}, U. S. N. M.
Phlyctonodes triumphalis Grote, $\%$, U. S. N. M.
Titanio proximalis Pernald, O^{7}, U. S. N. M.
Cornifrons simalis Grote, ơ' U. S. N. M.
Melitara fernaldialis Hulst, of U. S. N. M
Noctwelia thalialis Walker. ơ. U. S. N. M
Nymplula abscuralis Grote, \uparrow. U. S. N. M.
Salobrama tecoma Riley, 앙․
12. Scirpophaga parstrialis Hübner, \%, U. S. N. M.
3. Herculia olinalis Guenée, 0^{7}. U. S. N. M.
14. Iuma trabalis Grote, ㅇ, U. S. N. M.
15. Acrobasis betulella Hulst, \&. U. S. N. M.
16. Ambesa letella Grote, ol^{7}.
17. C:rambus loqucatellus Clemens, of
18. Crambus alboclavellus Zeller. ©
19. Crambus surbatellus Walker, q.
30. Crambus trisectus Walker, q.

Archips cerasivorana Fiteh, \&, U. S. N. M.
Tortrix albicomana Clemens, o', U. S. N. M.
Amorbia humerosana Clemens, 7 , U. S. N. M.
Platynota flavedana Clemens, $\xlongequal{\circ}$, var.
Platynota labiosana Zeller, \uparrow. U. S. N. M.
Commophila macrocar pana Waleingham. σ^{7}, U. S. N. M.
Encosma dorsisignatasa Chemens, 0^{7}.
Conopis groteana Pernald. r^{3}.
Ecdytolopha insiticiana Zer..rr, 9
Archips purpurana Clemens, or'.
Archips parallela Robinson, of'.
Archips posaceana Harris, q.
Tosale oviplagalis Walker, or.
Archips argyospila Walker, ㅇ, U. S. N. M.
Cenopis pettitara Robinson, q, U. S. N. M.
Alleva awrea Fitch, os, U. S. N. M.
Attrua gommata Grote, O', U. S. N. M
Semioscopis merricella Dyar, \uparrow.
Eulia alisollana Robinson, $\%$.
Epogoge micona Walsingham, or, U. S. N. M.
Stenoma schlogeri Zeller, d̛, U. S. N. M. $^{\text {I }}$
Anaphora popeansile Clemens, 0^{7}.
Acrolophus plumifrontellus Clemens, O^{7}.
Yponomewla multipunctella Clemens, od', U. S. N. M.
Adela bella Chambers. O^{7}

seems to defy attempts to eradicate it. Each female lays from six to seven hundred eggs, and the process of generation seems, where buildings are warm, to go on continuously. Moving and airing the wheat does no good, as the insect seems to multiply in the pipes in which flour is transported in a mill from one place to another by air-pressure. Much damage is done by the habit which the larve possess of gnawing the fine gauze of the screens in a flourmill.

When the insect has once established itself in an elevator or mill, the only remedy appears to be to shut down, and thoroughlyclean the place from top to bottom, and keep shut down and go on cleaning until not a nook or cranny is known to harbor the larva, cocoons, or moths. The accompanying illustrations,

Fig. 233.-a, Enlarged view of cocoon of Flourunoth from below, showing pupa through thin silk which was attached to a beam. b, Cocoon viewed from above, with meal clinging to it. (After Riley, "Insect Life," Vol. II, p. 16\%.) which are taken from the pages of " insect Life, Vol. II, will enable the student to recognize this creature in its various stages of development.

Thus far it has not become universally distributed throughout the country, but it his appeared in alarming numbers in some parts of Canada and New England. In England, Germany, and Belgium its attacks have been the subject of frequent comment. It shares an unenviable reputation with another species of the same genus, which we shall presently speak of, and with a species of Flodia, of which we shall also have something to say.
"Bee to the blossom, moth to the flame;
F.ach to his passion; what 's in a name?"

IIElen Hunt Jackson. - linity of Jinnities.
(2) Ephentia cautella Walker. (The Dried-currant Moth.) S;-n. cakiribllla Zeller; pasublla Barrett; desmetelle Walker.

This insect, which in many respects closely re-

Fic. 334 E. cantella. Larva, Iwice size of life. (After Chittenden," Bull. U. 5. Dept. Agric." New Ser., No. 8, p. 8.) sembles the preceding specles, like it ls destructlve to stored food-products. It ls known to feed upon Zante currants, raisins, cacao-beans, or chocolatenuts, on flax-seed, flax-meal, and figs. It is regarded as probable that upon occasion it may develop a tendency to feed upon alnost any substance which, containing nutriment, accords in its general character with the commodities which have been named. It is especially likely to attack dried fruits of any kind in which there is sugar or oil. That the Insect has been introduced from abroad into our fauna is beyond reasonable doubt. Its ravages on the other side of the Atlantic have been described by writers long ago, while its appearance In this country seems to date from about the time of the Atlanta Cotton Exposition.
Just as most of the common weeds in our fields are of European origin, having been brought over in the seeds which were originally Imported, or at a later time in the hay and straw which are used to stuff crates and packing-boxes, so many of the destructive insects, whlch have greatly multhplied in Amerlca, are foreign in their origin. It ls not without reason that the government malntains a set of officers, whose function it is to inspect vegetable importations fo:

Fic. 235.-E. cantella. a, moth; b, vena. tion of wings ; d_{1} eggs. All figares enlarged. (After Chittenden. "Bnll. U. S. Dept. Agric."" New Ser., No. 8, p. 8.) the purpose of quarantining those which appear to be likely to introduce insect pests. Had the custom of quarantining plants been instituted earlier, otr farmers would to-day be huppier.

Pterophoride

Genus PLODIA Guenee

(1) Plodia interpunctella Hubner. (The Indian-meal Moth.) Sya. see Fitch.
The larva of this moth has a propensity to feed upon almost anything edible which comes in its way. It feeds upon Indian meal with particular avidity, but does not disdain grain of any kind, whole or ground. It breeds in all sorts of dried fruits and vegetables. It eats English walnuts, is said to invade beehives, and is known at times to damage herbariums and to attack collections of dried insects. There is nothing which seems to come amiss to its appetite, and

Fic. 236,-P. interponctella a, noth; b, pupa; r, larva: d, front view of head of larsu: c, lateral view of segment of lerva. All fixpures enlarged. (After Chittenden, "Bull. If. S. Dept. Agric.," New Ser., No. 4, p. 1 19.) it is, when established in a house or store-room, a veritable nuisance. There are, according to the temperature of the huilding which it inhabits, from four to seven generations a year, and the reader of these lines will do well to remember that if the thing has establis itself under his roof it will require industry, patience, and great regard to cleanliness and order to get rid of it.

FAMILY PTEROPHORIDE

"Nature never did betray
The breast that loved her; ' t is her privilege, Through all the years of this our life, to lead From joy to joy."

Wordsworth.

The Plume-moths, as they are called, constitute a comparatively small family of elegint insects, in which the wings are divided in such a manner as to suggest feathers. The hind wings are generally trifid, sometines quadrifid; the fore wings are generally bifid, sometimes trifid. The larvie are slow in movement, clumsy in appearance, and live on the surface of leaves. They

Pteroporident

are generally hairy. The pupx are very remarkable, being soft and hairy like the caterpillars, and attached in pendant position by the cremaster, very much as the chrysalids of some butterfies, though a few have rudimentary cocoons in the form of strands of silk thrown about them. There are six genera and about sixty species of Plume-moths known to occur in the United States. We can take space to represent only one of these species.

Genus OXYPTILUS Zeller

(1) Oxyptilus periscelidactylus Fitch. (The Grape-vine Plume.)

An exceedingly readable and very Interesting account of the habits of this insect, which is universally distributed over the whote Appalachian subregion, is

FIG. 237.-The Grape-vine Plume. a. larve; 8 , pupa; $c_{\text {, }}$ en: Plume. a, larve;
larged view of process on back of pupa; d, moth; e, lateral view of segment of larve. (After Riley.) glven by the late Professor Riley in the "Fourth Missouri Report." The moths may generally be found in vineyards and about grape-vines, when they are beginning to put out their leaves. The eggs are laid on the branches before they begin to blossom, and about the time the third bunch of grapes on a given shoot is beginning to mature, it will be found that the terminal leaves have been drawn together with a few strands of silk, and in the tangle thus prepared, under cover from heat and rain, will be found the curious little caterpillars of the Plumemoth. The accompanying cut, taken fro:n the paper of Professor Riley to which allusion has been made, will serve to tell the story better than can be done in brief compass by words. The damage done by the insects is not usually very great, and it is an easy matter for the vine-grower, when he discovers the leaves drawn together in the way pointed out, to pluck off the end of the shoot and destroy the insects.

FAMILY ORNEODIDE

"Vary clone and diligent looking at living creatares, even through the best microscope, will leave room for new and contradictory discoveries."

Gzorger Eliot.
This is a very small family of moths, represented in our fauna by but a single genus and species. The moth has both the fore and the hind wings divided into six plumes, as is the case In all the insects of the fanily.

Genus ORNEODES Latreille

(1) Orneodes hexadactyla Linnæus. (The Six-plums Moth.)

The moth, which measures half an inch in expanse of wings, is found in Europe and in the cooler portions of North America, exclusive of the arctic regions. It has been reported to occur as far south as Missouri, but is more commonly found in New England, New York, Canada, Manitoba, and the Northwestern States on the

Fic. 238. - O. hexaductyla. 孛. Pacific coast. It is nowhere apparentiy a common Insect, or else is overlooked by collectors on account of its small size.

FAMILY TORTRICIDFE

" Die Kritik aimmt oft dem Baume
Rappen und Bluthen nit cinander." Jean Paile Richter.

The Tortricida constitute a very large assemblage of genera and species. Because of the habit of the larva of many species of rolling up the leaves of the plants on which they feed, these insects have been often called "Leaf-rollers." Many of the larve live in the inside of the stems of plants, or burrow in fruits, and the famous "jumping-beans" of New Mexico and Arizona are simply the seeds of a species of Croton or Sebastiania in

Terwicida
which is lodged the larva of a species of Tortricid, which has the power, by changing lts position on the inslide of the seed, of making the seed move. In the case of Croton seeds the Insect is Cydia saltitans Westwood; in the case of Sebastiania seeds the Insect imparting the motion to the thing is the larva of Enarmonia sebastiania.

It is quite imposslble for us in a work of the present scope to give even an epitome of the nearly five hundred species of Tortricids which are at present known to occur within the limits of the United States and Canada. We shall content ourselves wlth an account of a few species, which will serve to show the reader what a mine of interesting inquiry presents itself to view in this single family of beautiful littie moths.

Genus EUCOSMA Hubner

(t) Eucosma scudderiana Clemens. (The Misnamed Gallmoth.)

Syn. atignrana Clemens ; afusona Zeller.
The moth was called "the Misnamed Gall-moth" by Professor Riley because Clemens

Fig. 139.-E. semdderiana. as moth; b, larval skin protrading from a gall of the Goldenrod. (After Riley.) hald given it a specific name which implied that it was a denizen of wil-low-trees or willowgalls, when in fact it has been ascertained to live in the galls of the Goldenrod (Solidago). The insect is not uncommon in western Pennsylvania, and is possibly an inquiline or intruder in the galls, which are produced by another species, Gnorimoscbema gallasolidaginis Riley.
(a) Eucosma dorsisignatana Clemens, Plate XLVIII, Fig. 27, ${ }^{3}$.

Syn. similana Clemens; distigmana Walker; dinuma Zeller: gradutana Walsingham.

This is a common specles in the Appalachian subreglon. It is found abundantly in western Pennsylvanla.

Genus ANCYLIS Hubner

(1) Ancylis comptana Frolich. (The Strawberry Leafroller.)

Syn. comperama Walker: fragarie Walsh \& Riley.
Thls little insect has proved a very destructive foe of the strawberry In parts of the Misslssippi Valley. There are two broods annually. The insects roli up the leaves, and feeding upon the tender parenchyma, cause the plants to wither and dry. So bad have the ravages of the larver proved in some places that horticulturists have been led to abandon growing strawberries in those localities. The insect is found in

Fit. tq0. - A. complana, a, larva, nateral size; b, enlarged view of anterior portion of larva; c, moth; d, anal segment of larva. (After
Ritey,) Canada and in the portions of the United States Immediately south of the Great Lakes. Although the moth occurs in western Pennsylvania, no great loss from its attacks has as yet been reported from this part of the country.

Genus ECDYTOLOPHA Zeller

(1) Ecdytolopha inaiticlana Zeller, Plate XLVIII, Fig. 29, 8.

The larva of this species has the habit of boring under the bark and causing gall-like excrescences to appear upon the twigs of the common locust (Robinia).

Genus CYDIA Hubner

(1) Cydia pomonella Linnæus. (The Coddling-moth.)

This well-known and most destructive little insect is estimated to inflict an annual loss upon the fruit-growers of America which amounts in the aggregate to tens of millions of dollars. Every one is familiar with the pinkish worm which is encountered at the heart of apples and pears. But for every apple and pear

Tortriclde
which survives the attacks of these insects and develops sufficiently to come to market and to the mouth of the consumer, there are scores of apples

Fic. 241.-C. gnmonella. a burrow in apple; 0 , point where egy is hadi; of full. grown hrval d, pupa; f, moth at rest; f, moth with wings expanded; A_{1} eniarged head of larva; i, cocoon. (After Riliey.) and pears the development of which is entirely rulned, and they fall to the ground undersized and worthless. There are two broods of the insects annually. The second brood hibernates in the cocoon. We quote again from Riley: "The same temperature which causes our apple-trees to burst their beauteous blossoms releases the ceddling-moth from its pupal tomb, and though its wlngs are still damp with the imprint of the great Stereotyping Establishment of the Alnighty, they soon dry and expand under the genlal spring-day sun, and enable each to seek its companlon. . . . The moths soon pair, and the female flits from blossom to blossom, deflly depositing in the calyx of each a tiny yellow egg. As the fruit matures, the worm develops. In thirty-three days, under favorable clrcumstances, it has become full-fed; when, leaving the apple, it spins up in some crevice, changes to a chrysalis in three days, and lssues two weeks afterwards as moth, ready to deposit again, though not always in the favorite calyx this time, as 1 have frequently found the young worm entering from the slde."

The best remedy for the coddling-moth is to destroy all windfalls and immature fruit lying upon the ground. Make it a duty to keep the wind-falien fruit garnered up once a week and fed to the pigs. Let the pigs into the orchard, if possible. Bind bands of hay about the trees. The caterpillars will form their cocoons among the hay in preference to any other place. Once a week crush the hay with the cocoons in it, and move the band up and down. Burn the wisp of hay if it gets full of cocoons, and bind
on another. The coddling-moth is an importation from Europe. Not all the live stock brought into America from Europe, biped or hexapod, has furned out well.

Gemus Alceris hubner

(1) Alcerin minut E.jon.int. (The Green Apple Leaf-tier.)

The ..f., © is is miset | e n the early spring upon the
 live and 14 :- unt
 turlea, dinpyta to tho round and very nimble when dislowering th:...seth. yuicixlv jpun a strand of silk. The a ve.alis, as shown in the . nine xed cut, his a peculiar horn-iike buss or projection at the upper end. The insect does much damage in the spring by preventing the proper expansion of the leaves in the terminal buds and by devouring the blossoms. The writer has for several years been greatly interested In observing the manner in which these pernicious little creatures

F10. 242.-Alicreis minnta. at larva; o, pupa; o, moth; d, folded apple-ieaf concealing pupan, (After
Riley.) have steadily robbed him of all fruit upon a couple of dwarf pear-trees which are growing at the rear of his city home. It has been found that a thorough spraying with a strong infusion of tobacco st.ms and slaked lime brings their work to a speedy end, and it is recommended to fruit-growers to resort to the application of this old-fashioned remedy when needed.

Genus EPAGOGE Hubner

(1) Epagoge tunicane Waisingham, Piate XLVIII, Fig. 40, 8.

This rather neatly marked moth, which may be accepted as a good representative of its genus, inhabits the Pacific subregion.

Genus CENOPIS Zeller

(1) Cenopis pettitana Robinson, Plate XLVIII, Fig. 35, 9. The habitat of this species is the Appalachian subregion.
(2) Cenopis groteana Fernald, Plate XLVIII, Fig. 28, o .

The insect is not uncommon in the Valley of the Ohio.

Genua ARCHIPS Hubner

(1) Archips rosaceana Harris, Plate XLVIll, Fig. 32, 9. Syn. vicariama Walker ; gossypiana Packard; ancticana Maschter.
This is a common species found all over the northern portions of the United States and southern Canada. The larva inflict considerable damage it times upon roses and the foliage of allied plants.
(2) Archips purpurana Clemens, Plate XLVIII, Fig. 30, 0. Syn. gurgiana Robinson: ïntneriana Grote.
In many respects this species is very closely allied to the last mentioned, from which it may be distinguished by the darker, more smoky color of the primaries. It has the same distribution as rosaceana.
(3) Archiys cerasivorana Fitch, Plate XLVIII, Fig. 21, 9.

The larva of this insect, as its name implies, Is addicted to feeding upon the leaves of various species of wild cherry. It is found in the northern portions of the United States and southern Canada.
(4) Archlpa parallela Robinson, Plate XLVIII, Fig. 31, $\begin{gathered}\text {. }\end{gathered}$

The species ranges from New England westward into the Valley of the Mississippi.
(5) Archipa argyroapila Walker, Plate XLVIII, Fig. 34, 9.

Syn. furvana Robinson; v-signatana Packard.
The species, which is not at all uncommon, ranges through the northern portions of the United States from the Atlantic to the Pacific.

Genus PLATYNOTA Clemens

(1) Platynota fiavedana Clemens, Plate XLVIll, Fig. 24, 9. Syn. concursama Watker ; latrruma Robinson.
The moth is a native of the Appalachian subregion.
(2) Platynuta labioaana Zeller, Plate XLVIII, Fig. $25,9$.

Yponomeutide
The insect is found in the southwestern portion of our territory, having been reported írom Colorado and Texas.

Genua TORTRIX LInnæus

(1) Tortrix alblcomana Clemens, Plate XLVIII, Fig. 22, 8. The moth fiies in the eastern portions of our region, being commoner in the Atlantic States than elsewhere.

Genus eulia Hübner

(:) Eulla alisellana Robinson, Plate XLVIII, Fig. 39, 9. The insect is common in the Valley of the Ohio. It occurs in western Pennsylvania, Ohio, and Indiana.

Genua AMORBIA Clemens

(I) Amorbia humerosana Clemens, Plate XLVIII, Fig. 23, 8. The species is indigenous in the northern portions of the Appalachian subreglon.

Genus COMMOPHILA Hübner

(I) Commophila macrocarpana W;ilsingham, Plate XLVIII, Fig. 26, $\%$.

The insect is a native of the Pacific subregion.

FAMILY YPONOMEUTIDA

"Thus hath the candle sing'd the moth." Shakespeare. - Merchont of Venice, I, g.
This is a family of moderate size, represented in our fauna by twenty-two genera and over sixty species. The species have a characteristic facies, which when once recognized will enable the student to readily separate them from their allies. We are able to figure only three species, owing to the necessary limitations of space.

Genus YFONOMEUTA Latreille

(1) Yponomeuta multipunctella Clemens, Plate XLVIII, Fig. 44, 8.

Syn. ondinaterlus Walker; enonymella Chambers; orbimaculella Chambers; wakarusa Gaumer.

Gelechilde

The insect is found in the Appalachian subregion, but more particularly in the southeastern portions thereof.

Genus ATTEVA Walker

(1) Atteva aurea Fitch, Plate XLVIII, Fig. 36, 3.

Syn. compla Clemens.
The insect is common In the southern portions of our region, being distributed from the Gulf States southward and westward in o Mexico and lands still farther South.
(2) Atteva gemmata Grote, Plate XLVIII, Fig. 37, 0. Syn. fautmosa Zeller; faridana Nemoregen.
The moth is found in the warmer part: 0^{-}Florida.

FAMILY GELECHIIDA

"He buildeth his house as a moth." Jok. $-x \times x$ vii, $_{1} 88$.
This is a very extensive family of sinall moths which possess habits of considerable interest to students. Many of them are

Fig. 243.-P. operculiflit. a_{1} wection of tuber showing eye and eggs deposited abot it, mataral aize; b, egy, dorsal view; $c, e g g$, lateral view, greatly eniarged; d, k, mines of larva in potato $;,$, pupa at end of mine, seen through akin of potato, omewhat reduced: c, Jarva, dorsal view ; f, larva, lareral view ; g, larva, third abdominal segment, lateral view ; h, dn., dorsal vlew, still more eniarged; i, pupa; l_{1} moth, enlarged. (After Riley, "Insect Iife," Vol. IV, p. 239.)
known to be more or less injurious to vegetables, in which they either burrow in their larval state, or upon the foliage of which they prey. We can speak of only a few of them.

Genus PHTHORIMAEA Meyrick

(1) Phthorimexa operculella Zeller. (The Potato-moth.)

Syn. terrella Walke:! c/anella Boisduval; tabucella Ragonot.
This insect, represented in Fig. 24.3, the ravages of which upon potatoes in Algiers and other Mediterranean countries have been well known for many years, and which has more recently caused much mischief in New Zealand and Australla, has quite recently found lodgment in California, having been apparently accidentally imported from Australia. In Algiers it is known in certain years to have destroyed fully two thirds of the potatocrop. It is a dan-
gerous and annoying pest. The best remedy for it is said to be the total destruction of infected potatoes, and the protection of the stored tubers from access by the ovipositing fenrales.

Genus GNORIMOSCHEMA Busck

(1) Gnorimonchema gallasolıdaginis Riles. (The Solidago Gallmoth.)

The man who has loitered by the waysides in the country must often have noticed the manner in which the stems of the common golden-rod are frequently swollen and enlarged about two thirds of their length from the root. This swelling may be caused by the larva of several insects, but one of the most frequent causes of the abnormal growth is the larval of a litule moth to which the above sesquipedaHan name has been given. The life-

Fig. 244-Galls of the Solidago Gall-moth. (After Riley.) a, section of gall showing barrow at d, larya at f; b, gall, opening at c. history of the insect was carefully worked out by Professor
Riley, and from his interesting paper upon the subject, contained

Gelochaid

in the "First Missouri Report," the accompanying cut has been taken. It shows a gall as It appears from the outside, and also a section of a gall, revealing the home which the larva constructed for itself in the enlargement of the stem.

The moth is very common in many parts of the country, but particularly in western Pennsylvania.

Genus ANARSIA Zeller
 (1) Anarsia lineatella Z.eller. (The Peach-twig Borer.)
 Syn. pruniclla Clemens.

The insect which we are considering was In all probability introduced into California, where it is now most firmly established, from

Fig. 245.-A. lineutrilla. e, new shoot of peach withering from attack of larva: δ, larve, enlarged; is pupa, enlarged. (After Marlatt, "Bull. U. S. Dept. Agrico," New Ser., No. 10, P. 11.) Asia, probably from Japan. The eggs are deposited at the point where the leaves are attached to the stems, or where the stem of the fruit is located. The larve make minute burrows under the bark of the twigs and into the stem of the fruit, and thus cause damage both to the trees and to the peaches. The insect is double-brooded. The larva are secretive, and hide so effectually that it is said to be very difficult to detect them. The insect remains in the pupal state about ten days, when the moth emerges. The imago is about half an inch in expanse of wing. The fore wings are of a heautiful gray color, clouded on the costa with darker markings. The insects of the second generation hibernate as larve in their burrows in the bark of the twigs.

A very full and excellent account of the habits of this insect has been published in the "Bulletin of the United States Department of Agriculture" by Mr. C. L. Marlatt. It is
from this paper that we have been with great kindness permitted to draw the illustrations which are herewith given.

As a means of combating this pest, it has been recommended to spray the peachtrees, just as the leaves are beginning to open in the spring, with a solution of one pound of lime and one pound of Paris green mixed in two hundred gallons of water. It is also recommended to spray the trees in February, or even in January, with kerosene emulsion, which is said to penetrate the little burrows in which the larvæ hibernate and kill them. The latter method is undoubtedly preferable.

Fig. 246.-A. lineatella, a, moth wish wings expanded; b, c, moths with wings folded. All Ggures enlarged, (After Marlatt, "Bull. U. S. Dept. Agric.," New Ser., No. 10, p. 12.)

CUPID'S CANDLE
${ }^{\text {ec }}$ Round her flaming heart they hover, Lured by loveliness they go Moth-like, every man a lover, Captive to its gleam and glow.

Old and yonag, the blind and blinking, Fascinated, frenzied things, -
How they futter, never thinking What a doom awaits their wings!

It is all the same old story, -
Pleasure hang npon a breath:
Just a chance to taste of glory
Draws a legion down to death.
Fire is dangerous to handle;
Love is an uncertain flame;
But the game is worth the candie
When the candle 's worth the game! "
Felix Carmen, in life, Vol. XLI, p. 494.

Xylorictide

FAMILY XYLORICTIDÆ

A smali family which contains in our fauna two genera and nine species. The group may be represented by Stenome schlegeri Zeller, which is portrayed on Plate XLVIII, Fig. 41, by a male specimen. The insect is very common in the Appalachian subregion, and is particularly abundant in western Pennsylvanla.

FAMILY ©ECOPHORIDA

"Entomology is a sciebce, not a pastime."- Westwood.
This is another comparatively small family of interesting insects, numbering in our fauna about ninety species, which are distributed into thirteen genera. We can represent only a couple of them, for the purpose of showing the readers of " The Moth Book" what they are like.

Genus DEPRESSARIA Haworth

(1) Depressaria heracliana De Geer. (The Parsnip Webworm.)
 anal extremity of pupa; c, moth, enlerged; f, umbel of parsnip webbed together by the larva, natural size. (After Riley)

Syn. heraclei Retzias; umbellama Fabricius; wmbellella Zetterstedt; pastinacella Duponchel; owtariella Bethune.

The Parsnip Web-worm is an importation from Europe, 428

Blantobanide

where it has been known from time immemorial as an enemy of umbelliferous plants, A full account of the insect is given by Riley in "Insect Life," Vol. J, p. 94. To this the reader may refer. The remedy for the insect is to gather the portions of the piants which have become infested, and to burn them. The insects, many of which conceal themselves in the stems or are hidden In the foliage, are thus most conveniently destroyed.

Genus SEMIOSCOPIS Hübner

(1) Semioscopia merricella Dyar, Plate XLVIII, Fig. 38, $\%$. This ls not at all an uncommon insect in western Pennsylvania. There are numerous specimens in the collection of the writer whleh have been taken during the past twenty years.

FAMILY BLASTOBASII)A:

This is a considerable family of minute moths, as representative of which we have selected for illustration a specles of the genus Holcocera, to which Professor Rilcy applied the specific name glandulella, because it infests acoms. The Acorn-moth is an inquiline; that is to say, it takes possession of the remnants of the repast left in the acorn by the grub of a weevil, which has developed within the fruit

Fit. 248. - M. ghandulello. ac. acorn showing tarva; b, acorn showing opening left for moth; c, enlarged view of head of larva; d, laseral view of segment: C, dorsal view of segment; f, moth; g, nodule to which antenna articulutes. (After Riley.) and forsaken its burrow in order to undergo transformation elsewhere. Between the weevil and the larva of the moth very little is left of the contents of the acom, and farmers who expect to derive sustenance for their hogs from the oak-mast are often disappointed. The accompanying cut shows the different stages in the development of the larva, and also the moth. The insect is quite common in Pennsylvania, Ohio, and Indiana.

FAMILY ELACHISTIDE

This is a large family of moths, many of which are almost microscopic in size, but all are very beautiful. One of the larger
 specles we have selected for illustration. It lives in the galls which lts presence produces in the stems of the Falselndigo(Amorpba fruticosa). It belongs to the genus Walshla, and was described under the speclific name amor. phella by Clemens. In its habits it reminds us somewhat of the noth with the frightful name which lives in the galls of the Golden-rod, about which something has already been said. The accompanying cut, which has been taken from Professor Riley's "Second Missouri Report," shows at a a figure of the female moth enlarged. The larva, which is a soft white little affair, is delineated at b, and the figures c and d show the galls as they appear. The insect is found in the Appalachlan subregion.

FAMILY TINEIDE

"Lay not up for yourselves treasures upon earth, where moth and rust doth corrupi, and where thieves break through and steal; but lay up for yourselves trea. sures in heaven, where reither moth nor rust doth corropt, and where thieves do not break through nor steal."

MATTHEW, -VI, 19, 30.
The Tineida are a very great family of moths, some of which are of moderate size, but most of which are very minute. Among them there are many insects which are exceedingly beautiful, although they are so small, while many of them have great economic importance, being destructive or beneficial. Of a few of these we shall take opportunity to speak briefly.

Genus bucculatrix zeller

(1) Bucculatrix canadenaisella Chilmlers, (The Birchleaf Bucculatrix.)

This little insect in its larvai stage is known to infest the leaves of the birch and the wild cherry. The caterpillirs feed upon the parenchyna of the leaves, attacking both the upper and the lower sides, and completelyskeletonizing them. Forests of birches In New England are known to have been completely stripped of living tissue in the fill of the year, in such a manner as. to suggest that a fire hild passed over the trees. The larve are sluggish in their movements, when disturbed dropping down by a silken cord. The cocoons are white and ribbed, is represented in the annexed figure. They turn dirk after they have been spun up for some time. The insect is not uncommon in Rhode Island, and is

Fig. 250. - R. canadensisellu, a, skeletonized blrch-leaf; b, pseudo-cocomn; r, larva; d, head of same; e, anal xegments of do.: f, anal segment of gupa; g, cocioon with extended pupal skin: h, moth. All figures magnified. (After Packarcl, " Inseet L.ife," Vol, V, p. I4.) known to occur throughout New England, northern New York, and Canada. It probably has even a wider range, and may be found in the mountains of Pennsylvania, where its food-plant is abundant. The best account of its habits has been given by Professor A. S. Packard in "Insect Life," Vol. V, p. 14.
(2) Bucculatrix pomifoliella Clemens. (The Apple-leaf Bucculatrix.)

Syn. fomonolla Packard; curvilineatetla Packard
The minute moth, a greatly enlarged figure of which is given in the annexed cut, has the habit of denuding the leaves of apple-

Timeld

trees of their parenchyma. While it does not appear to have wrought great destruction generaily, nevertheless there are \ln -

Fig. 251.-B. pomifolisila. a, cocoons clus. tered upon end of twig ; b, cocoon, breatly enlargedi s, moth, very greaty magaified. (Alter. Riley.) stances on record where it has done much damage In orchards. The larvie have the hablt of forming their cocoons in company, attaching them to the twigs In great clusters, as represented in Fig. 251. This fact has led to the recommendation that the trees, when infested, should be lightly pruned all over in the fall, and the twigs carefulily coilected and may be a partially effective remedy. Another remedy is to thoroughly spray the trees with coal-oll emulslo: or with linseedoil. The greasy application is said to destroy the pupe in the thin papery cocoons.

Genus TINEOLA Herrich-Scheffer

(1) Tineola blaselliella Hummel. (The Clothes-moth.)

Syn. erinella Treitschke; destructor Stepheus; biselliella Zeller; lavarislla Clemens.

There are several species of Tineid insects which attack garments made of woolen fiber and furs. One of the commonest and most widely distributed of these is the insect which we are now considering. In Penns ylvania and in Maryland and southward, so far as observation shows, this is the commonest ofthe "Clothes-moths." The damage, it is needless to say, is not done by the

Fia. 252.-T: biselliclla. (After Riley.)
imago, or perfect insect, but by the larva, or caterpiliar. This is represented in ali its destructlve ugiiness in the annexed cut. its food is animal fibers, and it constructs for itseif a cocoon of bits of wool or hair, in which transformation into a pupa finaily takes place. it is partiai to ail animal hair. it feeds upon furs, wooiens, carpets, horsehair mattresses, and even to some extent upon silken fabrics, though it has no positive preference for the latter. The insect, like all the others of its class, has been introduced into this country from the Old World. in a separate articie the wrlter will speak of the best method of preventing its ravages.

Genus TINEA Linneus

(1) Tinea pellionella Linnaus. (The Fur-moth.)

Syn. Ravescencella llaworth; mendolla Zelter; dwbiella Stainton: griserlla Chamlers.

This insect makes for itself a movable case in which it travels about in the iarvai stage. its food is very much the same as that of the preceding species, and it is equally destructive. The moth differs from the palc-coioredCiothesmoth in having the fore wings darker. They are, in fact, quitegray, mottled with darker

Fic. 253- T. prliomella. (Atter Ritey.) gray, as shown in the cut which we have herewith caused to be reproduced. A comparison between the figures of this and the succeeding species will enable the student to readily discriminate them. The iower left-hand figure gives a good representition of the case made out of bits of hair in which the caterpillar performs its migrations. The insect is many-brooded, according to the temperature of its domicile. in the warmer parts of the country the processes of generation no doubt go on continuously.

MICROCOF RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APRLIED IMAGE Inc
1853 Egst Wain Street fochertiv, New York 14609

USA
(716) $482-7300$ - Phone
(716) 208 - 5989 - Fgr

Tineide

In the colder parts of the country winter arrests development temporarily.

The insect is widely distributed all over the continent, and in fact all over the world.

Genus TRICHOPHAGA Ragonot

(1) Trichophaga tapetzella Linneus. (The Carpet-moth.)

The nature and habits of this species are very closely allied to those of the last two species of which we have spoken. Like them, it was originally introduced into America from the Old World. It differs from them in the larval state in that, instead of simply making a cocoon for itself out of bits of hair as the Clothesmoth, or forming a movable
Fig. 254 - T. tapetella. (After Riley.) ciase for itself as the Furmoth, it weaves together, out of the debris of the material in which it is cirrying on its ravages, long galleries lined inside with strands of silk. These long, tortuous galleries, cut through the pile of carpets, are familiar objects to the careful housewife, whose horror and anxiety have often been expressed to the writer. It is one of the sad prerogatives of the entomologist to be made from time to time the recipient of the household woes of his neighbors, who discover that the moth and the buffalo-bug "corrupt," and that the white ant and the cockroach "steal."

The perfect insect, as shown in the annexed cut, is in appearance a very different moth from either of the foregoing species.

CLOTHES-MOTHS

"The moth shall eat them up like a garment, and the worm shall eat them like wool."

ISAIAK. - Li, 8.
From the accounts which have been given in the preceding pages of the three species of Clothes-moths, the ravages of which are commonly encountered in the household, it has been learned that they may each be discriminated from the other by the hahits of the larvx. The Carpet-moth makes a gallery of the substance
\qquad
on which it feeds; the Fur-moth makes a small portable case, which it carries with it; while the insect which we have called the Clothes-moth lives for the most part free until the time of pupation, whers it constructs for itself a cocoon out of bits of fiber.

All of these three species are equally destructive, and there is no quesiton which is more frequently asked of the writer than how best to destroy the i.ssects when once they have found lodgment in a house, and how to prevent their attacks.

All of these creatures "love darkness: better than light, their deeds being evil." When it is suspected that furs or garinents are infected by their presence, the first step which should be taken is to expose them to full sunlight, the hotter the better. Garments in which moths are known to exist should be hung up in the open air. And this airing and exposure to sunlight should not be for an hour or two, but, if possible, it should extend over a number of days, and should take place in the latter part of May or the early part of the month of June, at which time the female moth is engaged in ovipositing. Where it is impossible to air and expose to sunlight the fabrics which have been attacked, as is sometimes the case with carpets in dark corners, they should be thoroughly saturated with benzine. It is needless to say that this operation should never be undertaken in the presence of a candle or other exposed light. Furniture in carpeted rooms should in the spring of the year be removed from the place where it has long stood, and the spot should be thoroughly sponged with benzine. A solution of corrosive sublimate in alcohol, so weak that it will not leave any white mark upon a black feather which has been dipped into it and afterward dried, may be applied effectively to carpets and to fabrics which are exhibited in museum cases. At the Carnegie Museum we make it a rule to spray all substances which might be exposed to the attack of moths, when hung in cases, with a solution of corrosive sublimate and strychnine in alcohol.

In carpet warehouses and in establishments where woolen goods are stored in quantity it is well to hare on the roof of the building an apartment fitted up with large air-tight chests. Into these chests, or compartments, fabrics supposed to have been attacked by moths may be put and exposed for twenty-four or

Tineide
more hours to the fumes of carbon bisulphide. This fluid should be placed in large quantity in shallow pans at the bottom of the disinfecting-chambers, in such a way that it will not come directly in contact with the fabrics. Being volatile, the fumes will gradually fill the entire chamber, and will destroy all animal life. Inasmuch as carbon bisulphide, as has already been stated elsewhere in this book, is, when mixed with atmospheric air, highly explosive, no lights should be allowed to come near the chests, or the apartment in which the disinfection is taking place. The writer has in his own household inade it a rule in the spring of the year to take all rugs and have them placed in a large chest about four feet long, three feet wide, and three feet deep, at the bottom of which there is a slatted support beneath which is a long, shallow pan. Into this pan the bisulphide is poured. The rugs are loosely placed in the chest, and then it is closed tightly and they are left there for forty-eight hours.

The storage of furs and woolen garments during the summer months is an important matter. The one thing to be perfectly ascertained before placing garments in storage is that they are thoroughly disinfected and that not a single female moth capable of depositing fertile eggs is present. This fact being known with certainty, all that it is necessary to do is to place the garments in clean air-tight receptacles and close them up so that nothir. $g^{\text {c }}$ can get into them. Garments may be put into perfectly tight paper bags with all openings pasted shut with a piece of tough paper. The boxes in which tailors send home garments are good storage receptacles, provided the garments are free from pests when put into them and provided every opening in the box is pasted shut with a piece of paper. It is not an altogether unwise precaution to put in "moth-balls" or crystals of naphthaline or bits of camphor, but it must be borne in mind that neither naphthaline nor camphor will kill the larvæ of moths that have once found access to the garments upon which they are in the habit of feeding. A great deal of money has been uselessly expended upon such substances, when all that is necessary is simply to insure the exclusion of the pests.

The annual loss occasioned by these minute yet most annoying insects is vast, and it is not unreasonable to say that their mischievous depredations cost the citizens of the United States

Tineidse

annually a sum of money which is enough in amount at the present time to ply the interest upon the national debt.

Genus ADELA Latreille

The moths of this genus are remarkable for the enormous length of their antennx in proportion to their size. We have represented one of the commoner species on Plate XLVIII, Fig. 45. It received the specific name bella at the hands of the late Mr. V. T. Chambers. The base of the antenna is black, and the extremity is white. This fact has prevented the photographer from getting a full representation of the length of the organ in our cut. This is much to be regretted, and the student must add in his imagination to the antennee, as they are shown, a thread-like extension, extending fully three aighths of an inch beyond the apparent ending of the organs as depicted. The moths may he found in sh.ided wor 1 June feeding upon the flowers of Asclepias.

Genus PRODOXUS Riley

The reation of the insect world to the life of plants has been the subject of a great deal of interesting inquiry in recent years. 1- has been discovered that many genera and species depend for : . . Irurtif cation and consequently for their continued preserva-
upon the agency of insects. Without the kind attention which they receive from the tiny creatures of the air, they would not produce seed, and the race would speedily become extinct. One of the most beautiful illustrations of the interdependence of the world of plants and the world of insects has been discovered in the case of the Tineid genus Pronuba. This insect has become specialized to a remarkable degree, as we shall have occasion to show in speaking of it. In fact, without its agency the pollenation of the plants belonging to the genus Yucca is never accomplished. But, curiously enough, associated with it and closely resembling it superficially is a genus of moths which does not possess the power of pollenizing the Yucca, but which is represented by many species the larvar of which feed in the stems of the various species of Yucca. The Yucca plants depend for the perpetuation of the species upon the moth Pronuba. The moth Prodoxus depends upon the Yucca plants for life, and thus

Tineld

indirectly upon the labor of Pronuba. The whole story is one of the most interesting in the annals of insect life, and the student who is curious to know all about its interesting details should consult the fourth volume of "Insect Life," where Professor Riley has with minute patience worked out the wonderful story, with all the skill of a Sherlock Holmes.
(1) Prodoxus quinquepunctella Chambers. (The Bogus Yucca Moth.)

Syn. decipiens Riley; paradoxica Chambers.
This little moth, which superficially resembles Pronuba yuccasella, has no maxillary tentacle such as is found in the latter insect. Its absence

Fig. 255.- P. quinquepunctellia. a, larva; b, head from above; c, d, left jaw and antenna; c, pupa; f, infested stem, showing burrows, castings, cocoons, and pupa-shell, h. All eulargrd. (After Riley.) is characteristic, in fact, of all the species of the genus. The ovipositor is homologous to that of Pronuba, but is a stronger instrument intended for making incisions in the tender bark of the stem, while the ovipositor of Pronu$b a$ is a long, slender organ which is used to thrust the erg into the ovarian cavity of the growing seedvessel.

The larva of the various species of Prodoxus are without feet, quite maggotlike, and remain in their burrows in the stems of the Yucca plants, not descending to the ground to pupate, as do those of Pronuba. The pupx, when the time for emergence arrives, protrude themselves from the stems, and the moth escapes from the pupal skin, very much in the way in which the same act is performed by various species 'of
wood-burrowing Æegerians. The cut, Fig. 255, tiaken from the writings of Professor C. V. Riley, has more value as an explanation of the facts in the case than a whole page of verbal description would have. The species of the genus Prodoxus :lll appear upon the wing before those of the genus Pronuba the former having no function to perform in connection with the fertilizition of the flowers, and being on the spot to oviposit while the flower-stems are still soft and easily capable of being cut into by the ovipositor of the

Fic. 256.- P. quingnetunc. aila. a, moth with wings folded: b, moth with wings expanded; c_{1} enlarged maxillary palpus.
(After Riley.) female, while Pronuba must wait until the tissues of these portions of the pla operations which the perpetuation of are ready for the peculiar and the insect call for.
(2) Prodoxus marginatus Riley.

The accompanying cut serves to show the characteristic features of this species of the genus. The figure at a gives a view of
 the last abdominal segment of the female magnified twenty-six diameters. The basal joint of the ovipositor is represented at $b j$ o, the terninal joint at $t j o$, and the cviduct at ov. Figure 6 repre-

Fig. 257.-P. marginatus. (Aft Ritey, "Insect Life," morgimarus, (After times is given at pr., and by it (3) Prodoxus y-inversa Riley.

The main characteristics of a third species of the genus are given in Fig. 258. The left front wing is represented at a, the hair-line beneath serving to show the natural size of the wing. By looking at the figure upside down the reader will understand why the specific name which was given to the moth originally suggested itself. The genitalia of the male moth are represented at b enlarged fourteen diameters. This view is taken from above

Tineid
and gives the dorsal aspect of these organs. At c we have a lateral view of the same parts magnified eighteen diameters. The ovipositor of the female is
 sect l.ife," Vol. IV, p. 373.) shown at d exserted from the anal joint of the abdomen. At e there is given another lateral view of the tip of the ovipositor much more enliarged. This view shows the peculiar salw-like structure of the organ, by help of which incisions are made in the soft outer bark of the growing stems of the Yucca. Both this and the preceding species are found in Callifornia.
(4) Prodoxus reticulata Riley.

This pretty little moth, the habits of which are much the same as those of the preceding three species, is a native of the State of Colorado. The figure represents a female with her wings expanded, and the drawing is magnified more than three times the size of life. The insect is undoubtedly, so far as the mark-

Fic. 259.- P, reticulata. (After Riley, "Insect Life," Vol. IV, p. 374.) ings of the wings are concerned, the most attractive species in the entire genus.
(5) Prodoxus coloradensis Riley.

Fig. $\mathbf{2 6 0}$ is devoted to the illustration of the salient specific features of a fifth insect belonging to the genus Prodoxus. As

Fig. 260.-P. colonadensis. (After Riley, "Insect Life," Vol. IV, p. 374.) the name implies, this species, like the preceding, is found in Colorado. The front wing is shown four times the size of life, the hair-line below the figure indicating the natural size. The genitalia of the male are shown at b viewed from above, and at c viewed laterally.
(6) Prodoxus cinereus Riley.

Tineide This species is known to breed in the flower-stems of Yucea wibipplei. The hest w.y in which to set the species before the

Fis. 261. - R remereus. a, larva: b, head and first thoracic joint; r, anal hooks; d, pupa: c, pupal shell protrucling from stulk; f, aflult female: g, side view of clasper of aciult male. All p. 306.) (After Riley, 'Insect d.ife," Vol. V,
reader seems to be to reproduce, as we have done, the figure given by the suthor of the species, in which its characteristic features are carefully depicted. It is found in Callifornia.

Genus PRONUBA Riley

(i) Pronuba yuccasella Riley, (The Yucca Moth.)

No discovery in recent years has been more interesting to students of insect and plant life than that which was made in 1872 by Professor Riley, of the intimate relationship which subsists between the beautiful plants, known as Yuccas, and the genus of moths to which the present species belongs. It has heen ascertained that the fructification of the various species of Yucca is alinost allsolutely dependent upon the :igency of the fem:ile moth; and, strangely enough, it has also been ascertinined that the poilenation of the flowers is not the result of mere accidentalattrition of the wings and other organs of the insect when engaged in seeking for nectar in the flower and when engaged in liying her eggs, but that she deliberately collects the

Tineida

pollen with her mouth, which is pecullarly modified to enable her to do this, and then applies the pollen to the stigma with in-

Fic. $362 .-P$. yuscosella. a_{1} lar. va: b, female moth with eloved wings; 6 , do, with wings expanded; d, side view of larval segment e_{1} head of larya from below ; f_{1} du. from above; $g_{\text {, thoracic leg of do. }}$ i A, maxilla; f_{1} mandible: j, spinneret and fabiad palpi: $A_{\text {, }}$ antenna, enlarged. (After Riley, "Insect Life," Vol. IV, p. 360.) finitely better care than it could be done by the most skilful horticulturist using the most dellicate human appiances.

There are several species of the genus Pronuba, and they hold a positive and well-ascertained relationship to the varrious species of the plants in the economy of which they perform so important a function. Pronuba yuccasella pollenizes in the Eistern States the blossoms of the common Yucca filamentosa, and on the Western plains it performs the act for the blossoms of Yucca angustifolia. Yucca brenifolia is pollenized by Pronuba syntbetica. Yucca urbipplei is pollenized by Pronuba maculata. No doubt there are other species of Yucca which will be ultimately discovered to have species of Pronuba which are adapted in their organs to the work of pollenation according to their peculiar requirements.

The larva of Pronuba, after it has attained to full size, drops to the ground, having three pairs of thoracic legs, which enable it to move about and burrow into the earth. It then undergoes transformation into the pupal state. The chrysalis, which is depicted in Fig. 263, has the back armed with peculiar spinous processes, which enable it to make its way through the loose soil.

The student who desires to become fully acquainted with this interesting chapter in insect life must consult the altogether admirable papers written upon the subject by Professor Riley, to whom we are indebted for almost all that we know in regard to the

Fig. 263.-P. yuc-
asella. 1, mate chry-
Fig. 263.-P. yuc.
casella. I, male chrysalis; m, female ehrysalis. (After Riley, "Insect Life," Vol. IV, p. $3^{68 .}$) subject. These papers may be found in the Publications of the St. Louis Academy of Science, the "Fifth

Annual Report of the State Entomologist of Missouri," and in the fourth and fifth volumes of "Insect Life."

Genus ACROLOPHUS Poey

(1) Acrolophus plumifrontellus Clemens, Plate XLVIII, Fig. 43, 8

Syn. Aombycina Zeiler.
As a representative of this well-marked genus, quite a number of specles of which are found in our fauna, we have selected the specles which is most common in the Appalachian subregion. The other species are mainly Southern and Western.

Genus ANAPHORA Clemens

(1) Anaphora popeanella Clemens, Plate XLVIII, Fig. 42, 8. Syn. agrotipenwella Grote; scardina Zeller.
The Insect ranges from the Atlantic States to the Rocky Mountains. Ther are other species in the genus, which are found in the South and the West.

FAMILY HEPIALJDAE

This family is conposed of large or moderately large insects. They are very peculiar in thelr structure, and are now by systematists generally accorded a position of inferiority at the bottom of the series of lepidopterous families, being regarded as representing an ancestrill stock. Some go even so far as to deny that they are lepidoptera a! all. This is, however, an untenable position.

Genus STHENOPIS Paekard

(i) Sthenopis argenteomaeulatus Harris, Plate XLJ, Fig. 14. 8. (The Silver-spotted Ghost-moth.)

Syn. aryentala Packard; alni Kellicott.
The larve feed at first upon the roots of the alder, and then enter the stems. The insect is found in the northern portions of the United States and Carada. The moths have the habit of dancing in the air at sunser, and perform very peculiar gyrations over the spot where oviposition is to take place.
(2) Sthenopis quadriguttatus Grote, Plate XLj, Fig. 13, 8.

Syn. semiaumitur Neumagen \& Dyar.

Hopialse

The range of this species is the same as that of the preceding. it occurs rather ihundintly in Assiniboia and Alberta.

Genus heplalus Febricius

(1) Hepialus hyperboreus Muschler, I'late XLl, Fig. 15, 8. Sya. pulicher Grote: Marghishami Ilenry Edwarda.
The moth is found in New England and southern Canada.
(2) Hepislua grecilis Grote. (The Graceful Ghost-moth.)

This specles, the neuration of the wings of which is represented In the text at Fig. 12, is not an uncommon species in the northern portions of our territory.
(3) Hepialus lemberti Dyar, Plate XLl, Fig. 16, 8. (Lembert's Ghost-moth.)

The moth is found in Californla. It is not as yet common in collectlons.

FAMILY MICROPTERYGIDAE

Thls family is represented in our fauna by two genera of minute insects and six specles. They are remarkable because revealing certaln anatomical features which are believed to point to an ancestral connection between them and other orders of insects. One of the remarkable features which they reveal is the persistence in them of mandibles in the pupa, which are lost in the imaginal form in the genus Micropteryx, which is not represented in our fauna, but are persistent in the genus Eriocepbala, which does occur in North America.

We have arrived at last at the end of our necessarily compacted but rather extensive survey of the families of moths represented in the fauna of the United States and Canada. We have thrown the doors of our subject open to the curious. We have thrown them wide open. Much has been omitted which might have been said; possibly some things have been said which will have little interest for the general reader; but, upon the whole, we feel, in bringing this book to its end, that we have given :t fuller and more complete review of the whole subject to American students than has ever been essayed in any book by any

Micropiazygida
other writer. Throughout the task has been to a large degree it labor of love, with the purpose of popularizing knowledge and helping those who have eyes to see and e.urs to hear, to understand something of the wonders of a world which becomes the more wonderful the more we know of it .

TIIF. FINAt. GOAI.

- O, yet we trunt that somehow good Will be the final guat of ill,
To pangs of nature, sins of will, Defects of doubl and taints of iloond;

That nothing walks with aimless feet; That not one tife shall be destroyed, Or cast as rubbish to the void, When God hath made the pile connpiete:

That not a worm is cloven in vain, That not : moth with vaill desire Is shrive :, a a fruitless fire, Or but subs " . . another's gain." Tennyson, - In M/emoriam, I , tIt .

THE END
When the moon shall have faded out from the sky, and the sun shall shine at noonday a dull cherry-red, and the seas shall be frozen over, and the ice-cilp shall have crept downward to the equator from either pole, ind no keels shall cut the walters, nor wheels turn in mills, when all cities shall have long heen dead and crumbled into dust, and all life shill be on the very list verge of extinction on this globe; then, on a bit of lichen, growing on the bald rocks beside the eternal snows of Panama, shall be seatted a tiny insect, preening its antenna in the glow of the worn-out sun, representing the sole survival of animal life on this our earth, a melancholy "bug."

INDEX

A
Abagrotis, genus; orretica, 380
Abahnealin, Bomolochs, 38
Abbot, John, 19
sbbotars, genus; clemetaria, transducens Iranserens, 353
bboti Oiketicuetron, 36
Ihbotti, Sphecodins ${ }^{361}$
borevistells, Catocalin. s68
Abdomen, 14, 18
bdominalis, Pygarctia, 136
Abortivaria, Dyepteris 3 :3
Abromtola, genus; ovalis urentis, 849
abrostoloides, Pectes, 241
Abrupta, Raphia, I
beinth, The, 328
beinthiats, Tephroclystis, 328
beorpenlis, Hormisa, n8z
byynthita, Tephroclystin, 328
ccepta, Pruva, 852
acceastaria, Catopyrrha, 342
acericols, Apatels, 153
acericolurn, Synanthedon, 386
aceris, Apatele, 133
scerni, Synanthedon, 386
whata, Apantesia, 130
whatina, Olene, 308
Achatinalis, Bomolocha, 86
schatodes, Phous; zen
Achemon, Pholus, 6
Acherdoe, genus; ferraria, ornmta, 934
"Achets Domest
Acheta Domestice" quoted, 140
Acoloithus, genus; falancius, ianborni, 371
feopa, genus: caring, 163
Acorn-moth, The, 429
Acrian, Estigmene, 124,123
Acrobatia, genus; bettulelth, 408
Acrolophus, genus: bombycins, plumifrontel.
1us, 443
Actias, genus, 86; lunt, 87, 88
Actinotin Renus, 172; ramosula, 173
scutalis, Phipromopus, 345
acutarin, Doryodes, 245
cutilinean Schinia, 127
Acuapennis, Mameatra, igs
Adelocephala, genus, 96 ; bicolor, distigma, o6
Adelphapratis, cenus, 90; bicolor, distigma, of
adipalcides, Pyraust; prasina, 179
Adipaloides, Pyrausta, 307
adjuncta, Samestra, 194
Admetoris, tenus: oxymorus, 106
admirandus, Memythrus, 383
Adoneta, penus: ferrigera, nebulosus, pygmien, epinuloides voluta, 363
adoptiv, Catocale, 167
adulatais, Yuma 407
dunbria Gonoda, 259
duniaria, Gonodontis, 330
averas, Fenurgis, 3

Agerin, genus: paiformis, crabroniformis, vespiformis, 3^{83}
skenid Famiy, 83, 36, 379
elinati, Ketanems, 3j'i
met, tenus; ambigur, boiteri, einnamo-
met, occidentrif, Redobended, Kosy,
mula, Epizeuxis, 8o. Symanthedin, 137
min, Epizeuxis, 80: Symanthedon. 38
emulataria, Thilobsa, 339
equilinea, Ipimorpha, zto
equosus, Syssatra, 352
Erea, Plusia, 137
esculi. Zeuzers. ${ }^{3} 37$
asionaria Hypen 176
asionaria Hypentis, 349
etheria Thappochares, 140
ffinis, Herse, 43 , 0_{3}
Tumen, Euco ${ }^{\text {Hen }}$
Agapema, вenus, $86 ;$ galbine, 86
agariste, Erebus, 379
Aparistide, 3. 84, 32, 40,332 , E.3
Agathoden, genus; designalim, floridnlis, mon. etralis, 393
gilis. Feltia, 186
gremona, senus; anilis, semquistriaris, $9: 4$ greasticol, Gonodontis, 350
agripping, Catocals, 360
agrotipennelia, Anaphora, 443
agrotipennis, Melioptis, $\mathbf{3} 8^{4}$
Agrotiphila, genris; incognite, 191
Agrotis, genus: badinodis, i8:: geniculate
idonea, suffusa, telifera, ypeilon, 182
aholah, Catocala, 668
aholitha, Catocale, 36
Alanthus, 82
andems, genus; arkillaces, bipunctins,
randipuncta, xylins, 24
labaste, Catocala, 369; Peridroma, 183
Alarodia, senus; slossonize, 366
Albofascia, Schinia, 38 , 366
Blburufa, Aphinia, 328
albata. Clemensia, 158
albertis. Lodis, $1: 9$
albescens, Hyloicus,
albicans, Opharus, 130
albicoma, Harpyia, 299
albicomeng, Tortrix, 423
albicornis, Synanthedon, 387
albicosta, Euchretias, I35
Ibridula, Eucnsio, 108: Estigmene, 125
abifascialis, Zinckenis,
lbifrons, Symmeriste, 306
abifusa, Mamestre. 93
albiline, Heliophila, 101
albipennis, Euxom, iso
Bipuncta, Platysenta. 163
albisignalig. Bomolocha, 280
alboclavellus, Crnmhus, 402
abofescia, Gluphisia, 300
abolinenta, Symphinx, 96

Index

Iboplagiate, Triatyle, 280 bopunctata, Caripeta, 343 bodyma, aishalopha, 203 abooignate, Gypochros, 33 albovenosh, Araionche, 188 albovittata, Eluchoca, 322
album, Copablepharon, 222 syramidalis, $3{ }^{2} 4$ Alcsris, gentr: mslivorana, minuta, vac. Acsins, genu, variniana, 421
Alcis, genus; baltearia, metanemaria, mulphuraria, 143
Alcothoe, Benur; caudata, 382
Aleptina, genus; incs, 62
aleucis, Schinia, 287
Alcxicles, penus; aspersa, 1 gs
algens, Hillia, 166
slia, Granhiphors, 20
alinda, Hylesia, 90
alipellana, Eulia, 473
allediusaris, Tstracis, 353,104
allani, Syneda, $\$ 59$
filotria, genus; elonympha, 272
Amodes, genus; assecoma, balteriate, cal.
vina, rivularia, squamigers, stellidaria terraria, 354
alni, Sthanopis, 443 Ennomos 348
alniaria Ennomos,
alope, Erinnyis, 58 pometaria, restituens, 326
Alsophila, genus; pometaria,
alternata, Syngrapha, 24°
alticols, Syngrapha, 24.
Alyis, genus, 143 ; 2,32, 143 , dipseci 1431 disparsta, 143, 144: edwardsi, 14 gracilsnts, 144; hudsonica, 143; langton. 143, 145; lompuini, macaculloch1, 143 ; mari 143, 143 ; 1 . 43 : matuts, 844 ; octomaculats, 143, 144 ; quadriguttais, T4; 1 143. if45; sacramsnts, 145 ,

Alypiodes, gentu; bimaculata, trimaculate $\$ 45$
mintit, Catocals, 348, 368
matrix, Catocala, 263
smaturnia, Erastria, 333
Ambera, genus: letella, 410
ambigua, Fmilia, 137
mbigualis Gaberans, 184
Ambulycinas, 41, 42, 34
Amelanchier, 386
smells, Campometrs, 276
Ameria, menus 337.
americalis, Epizeuxis, 280
americana, Apatela $1 \$ 3$; Epicnaptera, 314 Harrinia, , lophy 293 : Neuron mica, Catocaln 269
micara, H (indaphia, 107
amiculatalis, Melittia, 380 amoena, Melitulitens, Amonaris, Euch fens, 24 Amorbia, genus; humeroeant, 423 Amorpha fruticosa ${ }_{1} 3^{\circ}$ amorphslla, Watshia, 4.3° ampelophage, Pholiss, 63 Ampelopsis, 66, 70, 72, 144, 378 Amphion, genu2, 72: nessus, 75 amphipyroidel, Litebrarid Don, 100 ampla, Autograpis, 40 , amplaria, Paralelis. 273
amplise A Pen 318
ampluн, Axen Hadera, Amyna meavs; octo, orbica, tecte, 242
anyntor, Ceratomis, 4y
myriarna, Caberudes, 332
Ancreon Ode to an Incect, quoted, s91
Anal angle, is
Anaphota, renus; agrotipenselia, propeanelis
meardina, 443
Araplodes, genus: iridaris, rectaria, 337
Arartia, genus; hneatella, prunislla, 426
Antart, genus; Black-mooned, Catocaine, cordigera, 19socycla, 199 : nigrphinate, 198 nivaris, perpurs, sicherdsoni, Richardson s. schamherri, Schaenhsrr's, 199
Anatomy of mothe, 10
Ancetaria, Aselina, 3ss
anchocslioiden, Rhynchagrotis, 178
Anchocelis, genus, digitelis, 216
ancocisconensis, typpa, comptana, con-
Ancylis, genus;
fisxana, 4%
andremona, Hypocala, 2,7, Andrewais, 2,2
messalina, Catocala, 26
Indromedie, Hyloicus, 10
Anepimeheton, genus: lipartits, 24
Anepicheton, genus, mpartits, Copibryophila 162
ancuina, Desylophis, 296; Mamestrs, 195
angulalis, Palthis, 285
angulidens, Autographit, 33
angulifers, Callokamia, 86
angulote, Lophodontr, 205 203
angusi, Catocals, 262;
angustiorata, Canpeta, 342
Anquatipennis, gents: filimentaris, Imbate, renistaria vestitaria, 349
anilis, Agnomonia, 274
Animota penus, 94: astymone, pellucida
rubicunda, o3: enatoria, stigms, 94:
Virginian, 95 : virginientis, 94,13
aniusaria, Cymatophore, 34°
anna, Apantesis, 130
Annaphila, genus: diva, tithonint, 246
ennexa, Feltis, 187
anniagria, Cymatophort, 340
annuarace Conervula, is
Anomin genus: srose, 244
Anoms harifolis, $\$ 36$
Anonse, Cocytius, 44
Anompeotes, genus, 371
Anorthodes, genus: prima, 164
entreus, Cocytius, it
Antapinga, genus; dimidiata, 230
Antenne, $3,4,13,18$; of Eriocephatid lar.
ve, 8: of Telien polyphernus, 13
antsnnate, Xylina 206
anthoeciondea, penus; canalis, ins.xacta, 27
Antiblemina, gentu; canalis itaccles, 109
Anticarsis, penus; gemmatihis, 275
Anticarsi, Estigmens, 123
ontinymphe, Catocala, 267
antiphole Halinidote, 137
antiqua, Notolophus, 300
Ants, 147
Anytus, genus; Obacure, obecurus, privatus
Sculptured, sculptus, 19 t
Aon, genus: nocturiormet, wubequaria, 342 Aprecasis, genus; detuata, ghaia, snna, arge,
Apantetil, genus, 29 ;
130; anizonensi, blakei, bolanderi, 131 ; cers.
132: behri, caichs, 130 ; colornte, 133;

Index

Apantesis-Cowismord
determinata, dinurice, 3 ; decolorata docta, ${ }^{131 ;}$ dodyei, 133 : doris, ed wern ${ }^{130 ;}$ 130; excclas, favorita, firurata, ed warici, incompleta, 132 in incarnatorubra, 130 incompleta, 133 incorrupta, isi: inter. media, $x a 9$; liturate, Iap; Jugibris inter. mexicana, 131: michabo, mines, 133 ; mormonica, 131; nais, 132; ners, 130 nevadensis, 13% ochracea, 130 ; oithone 120: Ormata, 130 ; otiosm, 131: parthenice, proximersephone, ${ }^{230}$; phalersta, 331 rectiline, 2 20! $132 ;$ radians, 132 : shastaensis, speciosa, $132 ;$, sandersi, 130 : 1.31: virgo, 130 : virgicugona, turlanns willimmai, $13 z$; virguncula, 132 ; viltata,
Apately, gemus
aceris, 153 : alharuf, 157 , 197 ; acericcia,
brumosa, 157; connecta, 156; dact, 153 .
153 ; fragilia 156 ; furcifers, dactylina,
grises, 256 ; hasta, 155 ; impleta, impresse
inclars, 157 i innotatis, interruptapresso
ispusculina, 154 ; lithospila, 156 ; bobelise,
issinluteicoma, is7; morula, iss ; noctivaga,
155 ; populi, is4; pura, 153 ; occidentalis,
salicis, 157 : ${ }^{2}$ spectang , quadrata, 150 :
telum, ulm, spectans, superans, is6
Apatelodes, zenus; vinnula, 156
203: torrefacta, 208 ancica, hyalinopuncta
Apex of wing, 18^{208}
Apical patch, 18
apicalis, Areialophm, 293
apicelis, Fruvg, ${ }^{252}$
apiformis, Eustrotia, 347
Apifomis, Argeria, 383
Smith's, 159 : Tonthedtat, ish; pyralis,
Apocheima, senus: red, 153
Aporaphita, genus; rachelee, 345
Apple-leaf Skeletoniz 70
Apple-len Tier, The Greene, 41
aprica. Tarache, 251 Treen, 421
qnamarina, 25
aquilonaris, Happyia, 250
Aracirnis, genuspyia, 290
picta, zuni, 134
arzerix Rich, Palthis, s8s
arcirix, Richia, 190
arburaria, Caberodes ${ }^{2}$ arna, 37
arcuraria, Saberodes, 35 ,
Archips, genus; arcticana
sivorana, furvana sosp, arkyroapila, cera-
lintnerana, parallelg goshypiana, gurgitans,
vicariana, v-signatara, purana, masaceana
arcifera, Schinia, 138
Arctia, Renus, it4, 1,34; aurifennis, caia
transmnntana, utahensis, wiskotti, 134
arctica, Hadrna, 169
arcticana, Archips, 48
Arctidie, 24, 31, 114
Arctoetaphyloe toment lucidus, terloni, 78
Arctoetaphylas Drepanentosa, 8n
arefactaria, Euch, 372 ; Hadena, 157
arge, Apantesis, 30,350
argentata, Hatisidota
argentatus, Esucles, 16 , 38 ; Sthenopis, 443 argentorn, Gucles, 165
argenteostrimta, Phry
a"gillaces, Alabama, 243: Jexis
arzillacearia, Cymatophora, 341, 205
Arxillophora, genus; furcilia, 355
argus, Automeris, 89
argyrospila, Archipe, 43a
arizonaris Chophela, 300
arijonensis, Aparasplates, 338
armata, Fota, 198 132 ; Gloveria, 31
armataria Pricy 178
mrriger, Heliothis, 3221
ammillata, Hypocrisias, 36
Army Worm, The, 200, 36
Army Worm, The Pall, 174
Aron, genus, 305
arrogaria, Plagodis, 349
arroan, Trama, 776
Arsilonche, genus; ainoy
Artace, gerus gus; bibovenosa, colomda, 15
artemis, Hemileuca, punctistiga, rubripalpis, 315
arvalis, Axer:19, 38 , 2
Asclepias, 135,437
Asdrubal, Preudosphinx , 57
Ashmead, William H, víi,
Asimina tribobe 46
asopialiy, Palthis, 385
aspersa, Alexicles, Is
assecoma, Almodes, 35
assimnitis, Euthises, 354
246 Euthisanotia, 232; Trichotarache,
associans, Noctua, 185
assocista, Hetcrocampa, 209
astarte, Hetcrocampa, 997 ; Sphinx, 55
asteroides, Cucullia, 208
Asteroscopus, genus; borealis, soo
astricta, Peridroma, i82
astur, Opharua, 130
astylusaria Casymbolus, 56
astylusaria, Euchlena, 350
aterrima, Pachyliz, 60
Atethmix, genus; rectif
athabusca, Syneds, rectifacia, eubuste, 350
athasiaria, Therin, 348
athena, Estigmene, 123
athereo, Heterocarnpa
atomaria, Phoberia, 273 ; Ogdocanta
atra, Heliotropba, 173 ; Ogdocanta, 141
Atreiden, genus, 40; plebeja, 40
Atreus, genus, 49
atricincta, Piatysenta, 163
atricincta, Noctua, 184
atapennis, Dehana, 344; Oncocnemis, 176
atritcs, Schinia ${ }^{238}{ }^{103}$
atrivenosa, Olene
trocolorata Azelinos
atroliturata, Cladorn, 353 ; Euatroma, 339
atropunctaria, Catopyrris.
atropurpurea, Euxosy, 189, 342
Attacinet, $80,8_{1}$
Atteva, genus; aurea, compte, fastuose, suge, Cosmogemmata, 424
auge, Cosmosoma, 98
aulea, Arachnis, 364
aurentiaca, Incita 124
aurantiaca, Incita, 246
aureila, Catocal is, 366 yaodia, 375
aurcola, Symanthedon
aureopur purea, Synanthedon, 38 ,
auricinctaria, Stelonomma, 553
aurferaria, Palyos, 354
uripennis, Arctit, 134 ;
aurivitta Cydosia, 15 ; Siavana, 175
aurora, Hyparpax, 290
auroses, Qutomeris, 80
aurotus, Philosamla, 8 s
australis, Baileys, ios

Index

artholed, Apantewis, 151
Iutographa, Fenut 337 ; ampla 40 ; anguidant, 39 , batiger, 4 , 2es, wremes, cutre, aytus, echinocyuis puns, inclum fratain, hamifors, in chding 310; omege, omicron, ∞, on, 3jat: oxygum ow, 130: precationis, perudormmm, ques tionis. as: rectangula, s39; zo anionio sutile, s3: velacts, 330 ; implex, 540 tubrevis, s3; recinit, 339 : verrues, ss viridiajgnata, 330
 laris, fabricil, io, pamina, varia, selleri sephrris. 80
autumanes, Pelescrits, 38433 : Lephygms,
autumatis, Hydriomerat,
atumnaria, Ennomos, 3
avuncularía, Dasyfidonia, 33
Axenus, senus; emplus, avilis, ochrecous, till ${ }^{31}$ ris, Hemorrhagia, 63
Ay-Ayc 77
axalne, Darmpea, 6
Axeling. exenus: ancetaria, atrocoloratie honestaris, hubnararis, hubnarata, mor risonats, peplaris, atygiaris, 352
Arenic senus implors st

B

babayara, Catocala, ©63 5 Shiaurs, 390
badicollis, Semiophors, 180
badinodis, / grotis, is
bedipenniz, Pyrusta, 39
badistrige, Homohadons, 176
Bad-wing, Thu, 3 3
Bat-worm, The, 36 t
Batiny, J. S., ${ }^{36}$ australis, doubledayi, ophBaileya, Nentis; aus
balfeyi, Xyling, 307
balanitis, Choríagrotis, 185
balluca, Phutia, 237
baltearf Alcis, 23
balzeolat, Almodes, 35
baltimoralis, Bomolochs at 6
Balas senuf; malana, obliquifers, 163
Berathre, genus; curialis, occidentitita, 106
Darberiana, Bpipyrops, 370
Barnes, Dr. Wialam, ix
barometricus, Ufeus, 191
Saral dreh, 38: ine, is 28; Euxom, 180: In puromorphe 178
Giffive. Grene, 108
bationt, Autogrepha
pariline, Hidera, 168
Bacijodes, gentis; pepite, 814 in sis Basilome, genus;
pusctutiswims, of
pawitriens, Notodonts, ses
baveiformis, Symanthedoo, 38
b-ntren, Apantenis, 132
Bata, 147
vean, Thragmatobia 136
panti, Noetur, 185
permoth,
Berger, The, ${ }^{3}$ at
behrensaris, Dilines, 3 formis, 541
behri, Apentesis, I3I
behri, Didarys,
baltrodans Andrawith 175
balfrarei, Holomeling 116
belle, Adela, 437 ; Utatheise, 139
belladonne, Dymocnerils, 33
belicusla, Lithecodin, sis
boliulalis, Pyrauta, 308
Bollura, genus; densm, gontyoides, melano
pyin, vulnifica, 511
bemarm, Holomaline, 136
Beloved, The, 365
mbecis, cenus faviper, marginate, ody
neripennif, plecivefromis, fubi, 383
benjennlis Bomolocha, sith
bekei, Cinortes, 301
Bessule, cenus; Juxs, as
Berthold, Hypoptt ${ }^{379}$ Bertholdia, Fenus: Orote's, trigone, 140
Fatmolhed, The, abs
betulelle, Acrobnsis, 40 .
Beutenmuller, W. $31,32,36,380$
beutenmullari, Isochattes, 366
biance, Cstocela, 365
bibularia, Therina, 348
bicarrea, Noctus, Ifi
biclaria, Sysagura, 135 90; Discrisim, 193,
Lexis. 105
vicolormo, Orthomia, al7
biuoluraria, Chloraspitates, 33
bicolorats, Eufitonla, 337° Hydriomens,
331 ; Neleucania, 503
bidentate Nerica, 296
biferalis, Hvienula, 583
bifidalia, Geberasa, sh4
biguttata, Cochlidion, 167

ilineats, Fakania, 33I; Heterociampe, 997
biliturallus, Crambus, 40
bilnbu, Autographe, 338
bimaculats, Alypis, I44; Alypiodes, 143.
Autceraphe, s39; Holomeline, 116
pimetris, Pippons, 1 Is
binocula, Tarache, 151
bipartite Arepischetos, 145
biplann, guntmotis, 547
punctellus, Crambus, 405
ipuncting Alabams. 343
pirivara, Hydriomena, 331
Mseliella, Fineoln, 43
biserinta, Encule 357
oistraaris, Doryodes, 245; Parallelia, 173
iundate Heterocampe, 208
fivittere, Ectypis, I 3 ; ; Hormisa, tha
Black, The Capifornisn, The White-striped,
328: Woodland, 329
biakei, Apantesia, 131
blanda, Preudogire, 16
Platobesid r, 56,439
Bleptina, genus: carndrinati cloniarelis, as
bcerheviax, Xylophanes, 75
Boisduval. J. A., 30
bolandern, Apanteais, 13
Boll-worm, The, 322
bolteri, Amilie, 117, Euchretian, 85
Bombycis, genus: Improvisn, tearli, 304
Bombycide, Femily, 1s, 25, 34, 315
bmbyciformis, Eutolype, 178
bombycina, Acrolophus, 443
bomlycoides, Lapare, $\$ 3$
Bombyx genus; mori, 315
Bonolocha, genus: thalineatis, echatinuls foisignalis, baltinoralis, benignalig, biju galis, caducalis, dampostila deceptalis

Bomplochs-Cowinswod
etictais, fecialis, laciniose. lentiginome, madefactalis, manalicingas, kentisinoma, IIf, profecta, scuteliaris, toreuta, tera, 886
P ooke about North American Moths, 37 Healis, Asterosconus, soo: Happyi, apo: Hemerocampu zon: Ilyphoraia, ias
Borer, Tho Peach-twig, 436
Bravardia,
mastice, Autoin, 143
Broeding larvegrapha, a38
Broeding larveg
Brephos, genus, infans 35
revis, Schinia, isf 8 , 355
Grevicomis, Holomeline, 116
brevipennis, Eusom, 18S
Bride, The, 266
ridghami Hedena, 166
rillians Eupseudrinorphz, a3
rispis, Catucala, 264
Gronth M useum, Trustees, ix
brontos, Cerntomis, 48
Grooke, The, quoted, 321
Brother, The, 153
Arowning, E. A., quated, 31, 378
Brown-tail Moth, The, 309
bruceata, Rachela, 334
brucei, Cossus, 577 : Hnmorrhagia, 64:
Phragme whia, 126 ; Schinis, 229
Bruceia, cenus; hubbardi, pulverina, 108
brumoma, Apatula, 157
brunneicilimenucha, 10 s
brunneipennis, synaneuca, 330
Bryant, W. C., quoted, in, 385
Bucculatrix, eenus; Appie.lcaf
canadentionly
ncatella, smmitoli
Huck.moth, N1; Neved
Budyeon, Mins, Acheta Domestica, quoted, buifa
buifaloensia, Hemorthagia, os $_{3}$
bullula, Pteratholix, ${ }^{245}$
burgeed. Hadena, I' 6
Busck, A., ${ }^{38}$
Butierfy Bronk, The," 4
Byron, quated, 309

c

Cabereden, genus; amyrisaria, arburaria confumaria, foridaris, imbraria, ineffusaria nterlinearia, majoraria, myandaria, pandaris, phatimaria, remissaria, superarim, varadiarin, 358
Cable, W. Wrinatis quoted, 80: 31
cadurninalis, Hypenula, 283
cadmerola, Hypoprepia, 10
caduce, Cargian 300
cabch, Turuptians,
celaria, Xanthotype,
Cienurgia, genus; advera, convalescent
purgata acons, 257
caruem, Dresteria, 35%
cassonia Tortricidin, 368
cahiniteft, Ephertia, 414
caia, Arction, th4
calaminea Erinnyis, 60
calaminef. Ophaderes, 376
integerrime gentu, 55; astylus, excecatus
arun, 56 , 20, myops, pavoning, ronace

Celewedia, serus; coccine
Calidory, Noctus, is.
colora, genus; cubersis, laqueata, murio color, sireaked, strigua, 130
alifornia, Leptarctia, 181
anformiaria, Eois, 336; Platea, 342
Philercme, 336; Euchura, 398
alifornica. Citoce
Hemileuca, os; Malqus: Estigmene, 129 18: Pheosia, 305: Pha, 313 : Orrhodia Samia, 84 205: Phrysanidia, 291
californicus, Melicleptria, 230
Calledapteryx, senus; dryopterata, erosiata 356
calleta, Callosamia, 86
Callitrichoides, Phiprosopus 345
Callopist kenus, 356
Callopatria, genus; finridensis, 252
80; promethen, 8_{4} : angulifera, calleta,
pretnen, 04
208 復, cenus, 207 ; survimacula, nupers,
Calophasia, genus; strigata, 170
alpe, genus; canadensis, Canadian, puppurascsns, sobria, 236
calvina, Almodes, 354
Calymnia, genus; canescens, orina, 210
"Cambridge Natural History,"
campestris, Eutron, iso
Campestris, Eitzoa, ISo
mima soma, jenus; anella, integerrima
cana, Cleinensia, 108: Dasylophia
Hemerocgropa, so6; Lapara, s3 396 canedaria, Melanulophia 344,53
canadensis, Calpe, a 36; Celerio, 76; Hyloicus 51.
cantidensiselle, Bucculatrix, 431
canslis, Antiblemma. 375
Candens, Orthodes hammondi, 412
candens, Orthodes, 203
Canescens, Cayminia, 219
caniplega, Ellida, 500
Canker. worm The Fall
canningt. Philosamia, 82 $\mathbf{8 2 6}$; The Spring, 324
Capit, genus: curvatn, 85
Capnodes, genus; punctivena, 277
caprotina Estigmane, 125
capsella, Graphiphora, 304
Capticols, Synedi, 250
Capture of specimens, 10
cara, Catocala, 148,263
conviva, senus; bilunata, 164 : civica
multifers, 164 , 165 ; fidicularia, meralis.
multifera, 164: punctiven ufostriga,
caradrinalis, Bleptina, s 8 s
Carama, genus; cretata, pura,
arbonaria, Eurycyttarus, 3^{5}
Cargida, genus: cadmia, obliquilinea,
mospla:
pyTrha, 301
Canca, 58
arice, Cocytius, 44
canna, Acopa, 16
divisa, genus; albopuoctata, angustiorat
Cavishta, piniaria, 342
Carmen, Thomas, quoted, sio
Carmen, Felix, quoted, 42
Carnegie, Andrew, Dedication to,
Camesidea, genus, 188
carneoln, Eustrotia, 34
ampina, Catocisla, 261; Eucereon, 100
Haploa, 118; Protoparce, 45

Index

Carpenter-worns, 375
Cappet-moth, Tha, 414,14
carpinifolia Epicnaptera,
Carter, Sir Gilbert T., 54
carye, Hatisidota 138
centa Crambdia, 104
castoliats, Samea, 303
Cantniden, 3. 4
Catabons, genua: lineoleta, miscellus, 163 Cataloguel and Lists, at ${ }^{0}$
catalpa, Ceratomiz, 48
cataphracta, Pupaipema, 114
catenaris, Cingilia, 347
Caterpillars, 8 , Coloretion of, ρ; gregatious, 9
catharint, Semiophorn. 180
Cetocals, genus, $79,147,148,260$; sborevie. ella, 168 : adnptiva 367 ; agrippint 960 ; holish 688 . apolibah, 265 , alabum, 260 mateis, 288 ; amstrix, 263 ; amica; 160 andromache, 267 ; angui, 262 ; antinymphe, 167; muguate, 264: murelik, 266 ; babayages 63 ; badis, 267 : benalis, 266 , 268 : biancu. s63: briseia, 304 ; celifornice, carn, 263 i atrolins, 262 ; celia, 365 ; cerogama, 266 ; cleopistri, 263: coccinati, 263; coelehs, 65: concumbens, 163: consors, 366; eratisgi, 268; dejecta, 261 ; delilah, 267 ; desdemons, 267 ; demperata, 261 ; eliza, 06; epiona, 6 ' formula, 6 : fratercula cole tracilis aso; proteians, 964 grynce pot, Eracilis, 269; Groteianm, 264 ; grynca, 269; hinds, 265; fliabis; i65; illectin, 167 ; intubens, a6s: insolabilis, 26a; jaquenetta 169: judith, 369; lecrymose, 65 ; hneella 69; lucians, 263 ; miratona, 361 ; magdalent 67; marmornta, 263 ; menkei, 204; mnuta 69; mopan, 265; muliercula, 267 ; nebracke, 63; nebuloss, neogama, 266 ; nerisia 36: nurus, 363 ; obscurn, 262; ofivis, 369; acuinta, 263 ; paleogama, 266; parta, 64 ; pulina, $26 x$: phalenga, pintrix, 66 polygarna, 268: preciart a69; pura, a64 68: sapho 360; ecintiltions, 266 ; merena 67; similis, 368 ; somnus, etretchi, 263 ; ubneta, \$66; subviridia, s62; tristis, 362 : ultronim, 165 ; unijuga, 364 ; ux0r, verrifing, 365 ; vidus, vidunta, 26 r ; whitneyi, 268
Catopyrihs, genua; mecessiris, atropunctaria colormei, cruentaria, distimileria, 342
caudata, Alcothoe, 38
catelia, Ephestin, 414
Cartethia, penus, 61 ; grotel, 6
eanothi, Samis, 84
Ceanothus thyrsiflorus, 8
Celama, senua; nigrofasciats, obaursta, pratulata, cexmeculata, trinotats, triquetrana, 357
Celerio, genus, 75; canadenaib, ct ampeneri, daucus, epibhu, galii, intermedia, lineat oxybaphi, 76
celeus, Protoparce, 45
celfa, Cetocals, 26
Celiptern, genus; discises, elongatus, frustuhim, 275
Cenopis, genus; groteana, pettitans, 422

cephinc, cephanchoia, 104
cepanics, Apantetio, 39
Certupore" genus; stylata, 177
cerarive. ana, Archips. 428
Cerathotia, genus; tricolor, 15

Coratnexmpldis, Pemily, s4, 31, 70, Ho, 24 ritornia, genus, 47; arnymtor, 47; brontes ; cataln=, quadicicornis, 47irapenti nus, 48; utmi, 47; unduloes, it
Cercla, 369
cereant, Gilleris.
cerclte, Galleris, 406
erinthe, Chamyrts, 55
Censyi, Sphinx, 34
cerivans, Hadena, 160
Cerma, genus; cort, festa, 162
serogermis, Catocals, 66
ceromatica Scopelowoma, 218
erusata, Papa pemp, 214 : Phrygionis, 354
Cerwra, genus; multiscripta, ecilucripta, $\operatorname{se\theta }$
cervinh Euherrichit
Chis meosidite, Family, 373
chamanerii Celerio, 76
Chamber, V. T., 37
Chamyris, genus: cerintha, 150
chandlen, Oncocnemis, 176
Chapmatr, T. A., 8
characta, Hadens, 167
Cyarmdri, senus; circuiifer, contigua, iga
decors, 153 : deridens. 153: diapulat felina, 15 if illudens, pyt
chercia, Hybuicus, so
hinnanthi, Adita, 177; Protoperce, 45
Chionanthut, 46, 51
chiridota, Licoomma. 35
Chimenorramma, Oenus, 46: jasminearum rotundattw, 46
Chlorativilates, genus; arisonaria, bicolop aria, 338
Chloriden, genus; shexie, epectand, vire tocens, 292
Chloris, Eucles, 365 genus: chloroieucaria, den
Chlorochiamys, genus: chloroleucaria, 6 chlorolouc简部, Chlorochlamys, 336
chlorontigmin, Hadena, 168
Cheephora, Renus; fungorum, 116
Choerilus. Denrase, tun
Choerocampina, Sunfamily, 75
choriona, folomeline, 116 , 15 intioferens, $18 s$
Chrytaugina, Subfamily, 401
chrywellus, Schnia, 237
chryeorthcen, Euproctia, 30
Chytolita, zenus: morbiditis, a 8
Chytonix, genus: iaspis, palliatricule, 161 balis, Oncocnemis, 176
Cimsus, genus; eqenaria, melabeimeri, 359 Cille genus distems, 244
cimbicformis, Hemorrhagis, 6
Cindaphia genua; arniculatalia, bicoloralia incensalis, juhalis, pulchripictalis, 397 cinertacens. Heterocampa, 297
cinerea, Epidernad. 170 ; Harpyis, 299 Misogada, 2g7; Xylina, 206
cinereolrans. Schiaura, 298
cinereolis, Ogdoconts, a4z; Selicanis, an 6 cinereomiculata, Evion, 1 po
cinereus, Prodoxus, 442
cincmila, Frinnyis, 59 , cateris, bumeralis, 347
cingulat, Herse, 43
cinculifera, Homop
infuriera, homoptera, 578
cinnomomea, simsitia
circulifer, Chartadra, isa
Ciris, genus: wiltoni, 23.3
Cirriobolina, genus; deducta, incandeacens, puvitensis, mexicans, 859

Cirhmphanus, tenus; triangulifer, s3 sindix senus; inepta, norboa, sabulona, Cintuane inctes, ${ }^{23}$

Cit roronia, enus, mexicans, sepalis, segi mpulchralia, 97
citrina, Xanthotype, 349
citronellus, Rhovophora, 224
civics, Caralrina, 16 E
clandestina fiaphigiturats, gerinata, 324
clandmistina, Sluphisia, 300 ; Noctus, 184
elartais, Pnoterpisus,
clarise, Cumacla, 107
Clasaificution of moths, 22
alaciens, Hadens, 10%
clavana, Euconma, 418
elaiform spat, is
ciaviplenis, Pachnobit, 180
Claviplens, Manestra, 192
Graceful, 6ruce's, 64; Colifornian 64:
Graceful, 6,1; Humingebird, 62; Snow-
emation Abhota, 6
Clomatis, Abpotand, 33.3
comatis, $7^{8 /}$
Clemensis Hrackenridge, $88,30,37$
rrorate, genus; abaka,
opetra, patein, phiocina, umbrata, 10 人
Cleore, Catocala, 263
Latition fininsciata, collecta, fraudunaris, tinctaris isia, pampinisia, fublu-
Cloosiris, genury, 344
clientia, genus; populi, 205
chentiq, Yrias, 277
clonimatis nt, 133
clorinda, Daranss, 68
Clorinda, Darapsa, 68
clotho, Pholus, $67,432,434$
Clover-hsy Worm, The, 309
elymene, Haplom, The, 390
c-ntigram, Noctu, H^{4}
enotua, Darapa, 68
cos, Pinconia, 360
coacculata, Tephroclystis, 328
coccinate, Catocala, 149, 26
coccine, Caboscain, 387 , Ptychogiene, 130
cochineftascia Prothyrmia, 248
Cochlidion, Fmmuly, $8,9,23,33,364$
tetrapilaris yus; biguttats, rectilines tetraspilaris, y-inversm, 367
cachryni, suson, 180
acyus, genus, 44; antone; antitus; carics:
Coddling moth; jatrophe; medor; tapayua, 44
Coddling-moth, The, 410
Conebs, Apantesis, $130 ;$ Catocala, 268
anocalpe, genus, continotata, fervifactaris,
gibbocostana, ceneiformis, stigularia, 33 , comnatw, Xylomiges, 297
cornataria, Lycis, 345
collaris ppet, 18
collaris, Noctue, 184
colona, Haplos, 318
colormd Hapras, 118
coloradaria, Epiplaty 139
coloradensis, Epiplatymetra, 331
Colorndie, 15
coloradus, Hyloicus, 91 ; pandorn, o1
colorarin, Catopyrris 52
colorata, Apanteria, 132
columbit, Stumin, 84
comacin, ernus; clarus, fuscipes, murins, cmplex, texana, 107
and haplome $t 8$
ommvidea Hetiophit, 30

Commephila, Renus; mecrocapgan, 42
Complicate, Apantesin, isti Heliophila
Compona, gonus; fidelimima, olympia, so Compronite, 101,232
compressipalpis, Plusioclonta, 2.33
comptana, Ancylis ${ }^{424}$
comptaria, Yenuris, 4 to
Comstock, $\mathrm{f}, \mathrm{H}, 3{ }^{3}$
comstock, H, H., ${ }^{29}$
conchiformin, Behrentia, 17
Conchylodes, senus; ciancinnalis, crimalis
magralis, ovulalis, platinals sos crinalis
concinne. Schisurs, platinalis, 30
cuncinnalte, Conchylotes
concinnimacula, Euatrotis, 39
concisa, Epizeuxis, 28o
concuraris, Euchlent, 350
concumbens, Catocmia, 263
condensata, Venutis 422
confederata, Eurycyitarus, 36
confine, Eucerean 100
confexana, Ancylis, 410
confluens Graphiphors 20
confuke, Haploa, itg: Morriconia, ion
confusaria, Caber,dee, $33{ }^{\circ}$
congermana, Mamestra, 19
conqria, Estinmene, ${ }^{123}$
coniferaram, Hyloicus,
coniteraram, Hylorcus, 52; Lapara
Coniodes,
conjungens, Craimbodes, 345
connecta, Apstele is6, 66
consecutar hatele, 156
conscria, Macaria, 330
Conaervula, renus anorionta, ais
consimilis, Synanthedon, 38 ,
consita, Haplos 118
Consors, Catocala, 260
Consort, The 266
Raectio, Drasteria, 237: Haclens 168
conspecta, Shhisurn, 208
contipata, Mamestra, 195
onterte, Euchalcis 109
contigu, Charadra, 137 ; Haplon, 119
contingert, Sabulodes, 353
continue, Gnophela, 200
contracta, Homopyralis, as6; Schinia vas
contrahens, Himelia, 204 , Mamestra, 103
contribuaria, Melanolophia, 344
convalescens, Cenurgia, 37
convexipennis, Cucullia, 208
Convive, Caradrina, 165
convolvali, Hers 9
cosirtaria. Cymatoph
copablepharon, 341
gipenne, a2z zenus; album, grandia lon-
Copibryophita
Copicuculia, zenus; propingus, 16
Copidryas, genus, 141; cosyra, 142; gloveri
${ }^{2} 41$
Copppanolis, genus; cubilis, 177
Coguillet, D. W.,346
corn, Lerma, 163
cordigera, Anarta, 10 asia, 275
Cordigera, Anarta, 198
Corm-stalt genus; simalis, 399
corn-stali, Metarer, The Larger, 403
corollaria, Automeris, en
Cortisem, EHen Mack,
320

Index

Cotmin, genus; diccolor, infumata, paleaces, Comonoma, Eenus; aure, melittin, omphale,

Coudde, Family, 53, 38, 375
Consule penus magnitica, noran, 370
Comer eenus; hrucei, centeranila, undosis, 377
contimaculalis, Noctuslis, 59
contalis, Hypapygia, 309
Conymbin, sefus; lumenaria, pendulinarda quadriannulata, 333
cosyrth, Copidryan, 14
Cotton-worm, 43
Cowper, quoted, 369
Coxa, 1415
crabromitormis, Ereria, ss
Crumbidia, renus; allegheniensin, ceste cephalica, fithotioides, palida, uniformie 104
Crambinat, Subfamily, ${ }^{\circ}$ os Cram
Crambus, genus: alboclavellus, 40\%: biliturellus, 403 ; bipunctollus, 402 ; 8 anccatus, inteminollus, 40,1 : lapuetellus semifumellus, 40 s trinectus, 403 ; turbatellus 402
crameri, Erinnyis, 50 ; Pechylia, 60
crantor, Pholut, 66
crasatus, Flathypens, 88
creatipen, Fodacra, 178
cranutcula, Drastera, 257
Cratazgus, 68
craturatate, Orthodes, sos
crepurcalisia Betropis. 344
ereesonane, Ctenucha, 102
Cresonin, genus, 57; intstabilis, juglandis pallens robinmoni. 57
cretata, Carama, 368
crinella, Tineols, 43
Crinodes, zenus: beskei, 301
criapate, Lequa, 369
crocaliata, Tetracis, 355,340
crocatani, Aantion, 340
Croces, Prapha, genus; norriani, 204
Crocoth, genus, 115
Crocots, genus, 115
arotehi, Pseudalypis, Ejs: Trichoselius, sa6
Crotom 417 ylorniges, 197
Cruciler, 130
cruentaria, Cetopyrihe, 548
crusteris, Preudecontia, 235
Ctenucha, zenus, 101: brunnes, cressonana latreillena, multifaris, rubroecapus 102 venoes, 101; virginice whangham, 10 cubensis Calidots, 139
cubilis, Copipasolis, ${ }^{177}$ ago
Cuculifera, bordered, convexipennis, intermedia, Inter mediate, apeyeri, Speyer's, 808
ucurbitie, Mafittia, 380
cule, Graphiphore, 804
culta, Autographe, 238
cumatilis, Schinic, 287
cunes, Hyphantria, 153
cupes, Trichosellus, 86
cupide, Rhynchagrotis, 178
Cupid's Candle, 427
cupressi, Isoparc
Cupuhfere, 366 , 106
curta, Aiarts, ${ }^{100}$
curvilinetala Bucetsiatrix, 43
curvimacula, Calocampa, so
Custard-Appie, 386
custurtiats, Hydromens, 3.13
Cyathim. Etyus; Derling, pallide, percara 161 cycledata, Heliomats, 33 3
Cydia ranus pomonelta, 4 ro: maltitans. 4 :
Cydois, sonus; aurivitta, imitells, majuscuig, ${ }^{3} 55$
Cymatophora, genus: aniusaria, annicarta
340: arcillacearia, coortaria, 341 ; cromsu-
iarita, 540 ; meeptaria, mixdestaris, perar
casia, tensbromate, 141 .
cymatophoroides, Pieudothyatirs, 30
cynics, Orthodes, 203
cynthit Philonamis, 8 s ,
D
dectyling Apatela, 153
dsedalut, Porotagrotis, 18)
Dagaer (Dagger-moth), American, 153; Burgiar, 157 ; Chieftain, Consected, 150
 Delightiful, ${ }^{\text {i }} 50$; Fingered, 15% Gray, 156; interrupted, Lobetis, 155 ; Lupina, 159: Printed, 157 ; Ouadrate, 156 : Redlish-white smeared 157; Streaked, 186; Unmarked, 155; White-veined, 159 ; Yellow haired, 157
Dahan, genus; atripennis, 103
Dehli heeperioides, 3
dahurica, Apantegis, 131
Dacerid, Family, 35, 35, 360
Delcertidse, genue ; ingenita, 300
dama, Spraqueia, ese
damalis, Eutoispe ${ }^{777}$, 86
damboyi, Gluphisia, 300
Dandy, The, 153
Dandy, Tbe, 153 68; esalese, chreritus, clo sinda, criotus. myron, pumpinatrix, pholus 68 ; verticolor, 60
Derpids, eenus; procinctus, 196
Daritie, zenus; thetis, 88
Dark, World of the, 77 (Dart-moth) Acom, 185 ; Added 187
Dart (Dart-moth), Acom, 185; Added $187 ;$
Benil, 180; Bleck-fronted, 187 Breck-
 girdled, 184: Black-lettep, 183; Collared, 184; Catocaline, 178: Clandeatine, Conired, 184; 189; Fillet, 109 ; Finland, i8s: nint, 189; Fillet, 109 Fleace-winged, Four-toothed 188 ; Purtive, 190 ; Fuccous, 187; Great Alack, Great Brown, Grea Griy, Ise; Grester Red, Green-winged, 179: Havilah, 184 ; Inelegant, Interfernh 119 ; Lester Red, 178 ; Masters, 186 ; Muduy, 180; Norman's, ${ }^{181}$: Obelnk, 100 ; 8 ; Pale 187; Ohve, 188: Pale-banded, 181; Palewinger. 183 ; Farental, 100 ; Pink epeckled, 185: Fincid, 178; Polished, 188: Rasce, 187 Remperi, 188; Red-breasted; Rosy; Reddish-speckied, 180 ; Riley s , 187 ; Roay, 183; Rubbed, 188; Scrinbled, 581; 18 , 180 ; vinged, 188; Sigmotd, ${ }^{178 i}$ Sinkity, 183; Soothsayer 184 : Subsothic, Swordsman, 186; Temellate, Tippling, 180; Tripart, 187; Two-spot 170 ; Uncivil, 18s; Vancouver, 186: Variable, 180; Venerable, Voluhle, 186. White-winged, 189; Ygllow-bellied, 100 : Yellow-streaked, 384 ; Yellow-toothed, 188; Ypailon, 182

Inde:

Danerin, quored, ise
Denyidonis, conus; sunculario, 138 form intern punctats, cana, cuculis. dem, intern, punctita, aurnata, thyetifol Desyipoudes
Dstann, lucens, meadi, as: s94; miniatre, son: pore 393; intenerrima daucus, Colorio, 763 porspicue, 294
david, Hakidota
dayl, Oncocnamls, 17
Dey-tphing, White-banded, 6
decepts, Parudoglita, 816
deceptaliw, Bomolochs, sis
decernens, Peltia, Isy
decin Leptartite Ias
Zersers, 3y6
eciantia, 376
declartin, Euxom, 350
de'ivin, Eplaxise 180
doun'r, Eunoa 180
deculort, Herses, 3
decolorate; Apantesia, 133
cecort, Charindrin, 153
decornlis, Pariprapts,
deducta, Cirrhobolina, 250
deductaria Euchiens, 330
definita, Hernermcam; a, jes
deforntin, Bcparthería, iso
defuats, Apmectia, 34^{3}
Detlines, genue, 71 inscriptum, in
tentata, variolaria; behren:aria, 339 ; In.
dejecta, Catocale ${ }^{2}$, ${ }^{3}$
delecta, Tarmehe, 218
deleta, Epigltan, 119
delicista, Traches, 172
daliah, Catocale, 86%
delinquens Epidroma, 274
dojphini, Euclea 365

15:

deniest Mamertra, 19
densarin, Chilory 3 II
dentint, Apherochiamys, 115
denticuinili, Epixetris, 53 : Qloveria, 31 I
dentifern, Eutelian 3 sis
donturert, Rutelia, Peudohes
deplanmig, Euchlenat is
depontannta, Sabulode 33 s
oprestaris, genus; herricliana, heraciei
ottenpala, pastinacelin, umbelis 7e
eprivata, Chlorochlamys, 136
deprivata, Chiorochiamy
Derrime, renus;,benriette, stellate,
descherof, Phoois, sos stellats, 234
deademons Catocaln, 869
feserts, Illices, Ite
deagralis, Agathoden, 303
designata, Gypeochnoe, 313 ; Echinia, 218
Dismia, genus, funcratio, 392 , 318
desperata, Alypia, 144: Catocale, 36 :
Destruction of insecta by electric tiphts,
destructor, Tineole 438
dearetelin. Ephestia, $4 x$
detemminata, Apantesis, iss; Metinema, 152
detract, 1 , 18 Am
detrahern, Trama, 376
Deva, ernus, 236
devertitrix, H^{36} dena, 160
devergens, Syngrapha, se
devis, Scopelusome, 218

Diacriais, forwi, ti4, 139 bicolor, se , man butum parrdis, Red. nod, rubow, Ruddy, fufule
Diallam, simus, futem, 137; Werdering, is

Diatictic, sentiv: hinesta, trria, 34
Diatron,

Dict yosomn, obtitertitilus, mocharalis, 403

diecki, A panteris, 13: 99
Diervilit, 6.1
difinisalis, Zinckenis, 3os
difinis, Hismorthacia, 63
difitalis, Pyrausta, 30a
Dilophonots, Eenus, oo
dilucturnta, Semiophora, ita
dimidiati, Antaplare, sas; Leptaretis, ItI
Pheonis, agsi Pyromornha, 175 It
dimautiva, fëlincs, s3i: Holomelins, 114
dimmocki, Marnestra, I93
ione, Apanteais, 135
Dioptid ${ }^{\text {Pamily, }}$ 35, 33, 29 I

Diphthert, ernu; fallak, 160
diphtheroifies, Microccelis, 160
dipanci, Alypia, 143
Dircetis, genus; py mabsiuacula, 178
dia, Gritella, pyiman, as
Discal mark, 220
disciora, Celiptere, 173
dincistrima, Platyperigen, 64
discivaria Parastichtio, 817
discolor, Commis, 217
discoloralis, Renld, ald
discopilata, Eufidonit, 337
discors, Hadens, 68
discrets, Gnopheif, 990
disputry Sorthetrit, jos
diaparets, Alypis, 143, 144
dioposite, Xylins, 806
dispuls, Charadre, 206
dimerptaria Epimecia,
dividens, Magusa, 175
Iisamilaris, Cutopyrfis, 34 a
dissona, Fisxas, 180
distria Malacoeoms, 3 :3
diatem, Cilla, ${ }^{344}$
dintirmans, Eucomata, 96
divismans, Eucoarna, it
dive, Anraphila, ${ }^{3} 4^{6}$
divaricuta, Lifyus, 173
Sypeda, Lithacodes, 36\%: Schinia, 218
diveralinesta, Eustroms, 3ap; Polis. 172
divide, Magues, 173
divisa, Doryodes, 345
divisata, Caripeta, $34 x$
Dota, genus ; mmple, 309
docts, Apantaas, 131
dodgei, Apmateais, isa; Mamettre, Igs
Dodis, Gentis; atberte, is 9
Dolba, sentis, 46; hyleus, 46
dolif, Hyloicts, 4
dolon, Xylomis 52
domingonis, Erinnyis 107
dominicate, Prinnyis, $\$ 9$
doris, Apantestis 13 E
dormirignatana, Eucome
doryodes, genus: acutaris, biatriaris, divisa,
promptelis, 245

Indos

dxablay, Delloy, ste
Doukite mount. is.

osy
Didd eximent Moth, The, 414
Druce, Herbert is to
drupectarum, Thingotorne, 36
drupifertinm, Fyloicus, is
drurch, Herme 43
Dryobote Int 178
fryootere Calledapters, 336
duryors, Oogodontis, 350
dubia Extimimne, 82
dubtalis, Tinet, 431
dubitanc, Hedons sot
dubitats Triphoen, 33 s
ducte, Hadons, so
dulcearis Lithotom, 3430
duodecirnimata, Venumis, sst
duplictete sciatrephie, 339
Oyar, Harriton $0 ., 12,33,29,39,33,34135$ 3^{8}
dyari, Heploa, 112
dybus, Adtographn, ish
Oyeosnarals, enus; belicionnt, as

faseits, montan, oculatenn, 374i plena

375

dyapteraria, Neskes, 17 s, 12
Oympertia, Bunte: mbortivaritit, 3^{11}

E

aspen, Kodiosoma, 133
occlonialis, Gamet, 303 , 419
Bedytolopha, genus; inditiciare
ehinocyta,
cho, gevrarcia, 123 detoreta, musina, scefconte 130
Betropis, Eanus; crppuctiaris, 344 , TwoRetypia senu
banded, 83.3
elictells, Bormbochs, 286
damsad, Gchiture, 39 ,
ductalis Lomancilies, 98_{3}
cduse Jompptert, 277°
edwarda, Alypin 143 i Apantenis, 139

600: Jynade 260
fectaria. Quchlons, 35°
fincitelis, Pyrnusta, 30°
curualis 8pispuxim, 238
anat Clinnus. 350
Sits, of moths, 4
entinterint, Proudohasis, os
ale, Euchnties, 133
Elachistidis, Pancily, 16, 439
lestre, Homipucs, 92
legans, Odgatotis io4, Pygarctio, 36 elogantalis, Pangrapte, 254
elimste Somiophore, 6
Eliot, Georye, quot

${ }^{300}$ Erinnyis 58
lonyate, Tephroclystio, 3 e
viountits, Coliperem as
sion, Dictyewont, 4

31
mplaytiformes, Cont 3H1
Snermonis cabeetiane, 41
and of All, 44thorina, 349
phemara conti, Juturmit, 34
nanavil, Orthodes, 203
motat. Philobin 330
Endiah sparrow, os
nhydris, Haxern, 75
annomury, aubiandly, 337
 magnacius tiverwaricenth, suhtimarise 348
anueluata, Syoolyt. 333
 316: consecularia, inductets, omalaris, 336; consecutari, 136 ; ptaloaris, 134
 Rophoropteryx, senus: thymkiroiden, 339 Qperoge, renus: tunicent, 421
Byeria, sonus; fermi, truncetaria, 337
epheineralocmis, Thyndopenfitils, citutalla,
 desuetilis, 414,
ephippratus, 品位, 36
ephyrate, 8 yeatart, 332 , criotertio 19
pidoman, sonus; cinerea, 199
Epidroms, gonus: delinquens, 274
Epictan, genus; declive, delets, pastilicass, epilat.
probt syntomeide, 09
fiomei pitacie, vaus; amplaria, virinaria, 144
pornenia Paychornorpha, 232
opiona Catocala. 160
pionoines, Pangupta ass
pipenchins,
oppotymet $\mathrm{Pamily}, 3,34,336$
expyropidit, Fatily, Es, 35, 378
popyropos, ronus, batberiane, 370
Eppyrope, ronus, fiverus. hictuous, lugue bria, 68
Siveuxis, menus, mula, americyis, coacia ${ }_{2}$ fo: denticulatio, 28 g, aturaliw, hamin ioldot, Iubricalis, molliers, ph aurrectalis colitilis, 281 i moriptipanais, currectan 350
Erannil, senus; tificria, 349
Bretrit, mus: smaturarn, 333
Eratermiden,
Erobus, Drasteris. 237
arechtes, 1
aructalis. Plathyperse, el
eractiteta, Macarts 330
ornmitoidan Hyioicts, 40
eromitus ifylocis, 40
erichto Dristeria, 237 , alope, st; exicut, ${ }^{4} 0$:
Erisayle, renus, 37, stidope, sent cicu, do

 meranne, $35,30:$ obecure, phatarts ploperio idn penzus, rustica, 90
Briocephsia, genus, 444

Indez

inats Copethylodet, ses
riocephnide.

crotice A byrausia, is
arreto, Supronerpinus,
reate gybactr, 194
cton, Xylophanes, is
 abids, i1s: antigune ahona, califormice caproling, congrua, dubis, klatmi, matahastrina, mpxucans, packardi, is3; porma, Is patuderminea, rkkeckeri, whita. olum, Itmon
toly, IImmorrhana, 62
fubaphe, sunus, 115
Suceron, Eenus, carolina, cunfio. Ploridan, toe
Euchation, eentu; altionsta, antica, bolter, efter Motstecolored, Inupuna, Jregor, orpannanis, perimvil, pudena, 155
Euchalcts, guris; contexte, lasture, put
Euchlantiatella, venusta, s, 17
Euchlona, genus; mennenaria, arefactarla antylusaria concinaria, deciantis, deduc
 ptopriars, terrate opmatia poprarn estre, vinocarie, wence
onus; alhovittata, californlata, 3ab; hucets, 3ag: propriatis, reciprocate
Eucirrovelis, cenuw; pamplas, ins
Sucles, wonus aryentatus, ehloris, delphinit ferrugnea, freterna, indetermina, monitor nans, nanins, penulate, quercicola, tri gita, thrdigrede, vemate, viridiclava virions 305
Euctide, fenus, sis: cuspidon, intaralaris 435
fucrptocnsmis, renus; Ambriaris, obvle, 190 ucomma, genuy: afueans, clevene divit mans, durcisimatans gradustans ato nearn, scudderiana, gmilana, 118
Etserntas, senus, grathta, incertien, oporaria, ${ }^{3} 36$
sucymatose, Eenus; impleta, indoctrinata Intestinate. 388
Fuddilinea, ganal; her riniste, 330
ndial enut; blecriate, mondica, Plain colond, un
199-cotig, onus; pernttente, sigmoides 119
suerythrm, tenus; phame, trimaculate, 1 so undonia, fenus; bicolorate dicong firloniate notatiaria, quadripunctsrit, 337 Eutenia, burifolis, procers, 149
suronobarte, fouvs: nivosaris nivosets, 44 cuhapena, yunts: sebrakion, sis
Cuharysy, penus, sio
uherrichis, onua; cervina, mranitosa, gran
itora, mollioims, rubicunds, 35
Euhyparpar, Sonus; roeat, so
Uuis, fenus; alisolians, 423 ,
patuleta, 新us; fammiciacta, patruelis
petula, 149
rionymblle Yponomdians, ses
Suppymus, 137
Enpanyctia, renus; hirtelle, spinome, 536
Euparhoros, Etnus; nubilis, is
euptitonii, Symanthedon, jB5
Euphanere, perus, 329
Buplexin, genus; lucip 307, 19

Fuppobe senus; ticontiones, ite uprocth firvas; chrymorthoen, see
phoverpirus, menus, it: errito, evterge. phaton, 74
Supatufomippha, fen us; brillians, is
upaudosorns, tenus donfun, immaculate. in valut urn, nives, 8nowy, 139
quryalus, samia, 4
wrycyttaras, menus; cerbonaria, 36s: eonpuachementids
Fuscixia, zenus; pupula, sot
utroma, werus; atpoculorata, Aliverailuneta, foltanatum, prunata, ribeciark, tranpu. 1al usin, 329
Eutrotia, Eonus; atbldule, spicoen, Dpiaga, carneold concinnimacuin, inlractatula, muscoulsh, musta, nigritule, synochitis,
Eutitis
Eutalis, genus; dentifers, pukherrima, 242
Enterpe, suproserrinus, is: Syntomeira, oo Rrals, unto, s.1a tuthyatire, genus
Eutoly
Eutolype, pontus; borsbyciformis, dimalis Euver
Euvema, genus; clio, In.
bumat genus, ${ }^{387}$ albipennis, atropurpurea, banail, S9; 2 brevipennis, 135; campestris, 189; ch reornaculala, 100; cochrand, depliciens, Jecolur, ISo: detaril, ths div-
 invule lutulents mairi, iro, memeris Jst: nísipen fis, iso: obelincuides, ochrosumter, 100 ; olivalis perpolits, permonats prtyochrous, qumiridentat., s8s; redimicu E, 100; repentis, Ing: sexptillat 100 eptata, tergellats, citubatis, 189; turric z90; velleripennis, siss; verticalis, ite
evanilalis, Hypena, ${ }^{3}$:
evelina, Catocala, 261
evictia, urrizonis, 106
excecatus, Colasymbulus, 56
excecatus, Calasymbulus,
excala, Apantenif, iJa
expansa, Nephelodes, 190
expulte, Euxom, s89
expultrix, Preudothyatirs, so.
exuccatus, Crambus, 493
ex. ${ }^{2}$ thatia, Hyperitis, 349
Exsuperata, Paraphis, 143
Exterior line, is
externs, Galgula, 249
axtimia, Caradring 163
Etrunes, fewophi, 200
Exuvia, larval,
Exyra, fenus; semicroces, 148
Eyes; of cals, 78 ; of moths, 18, 15; of noc. tumal mimity, 57 ; of owis, is

F

fabricii. Automeris, B9
Cabula Drepans, $j 21$
(Adus, Setia, on
Pagitana, genus; liters, lucidate, nivel Palatartur, pliqus, 218
Pala, gemus, ptycophora, 233
Palcaria menus; bilineats, 32 s
falcata, Peudanarta, 195
falacialis, Renis, 283
Fall Web-worm, IS3

Indoz

ano nup 4.4
Femilies nif Norin Ansorieun mathe. Rey to, 84
Por ont at yan, sta
farinate Syraks 4ee
fathhems, Merneetri, ine
feciatien zymuati, 307; ZAnctemh, see

faciatu, pholus, ${ }_{7}^{7 s}$
face ala, Lishoecod
fexemintari, Molipotis, is
fertwoes Attera, 484
Punal tutbertions, 36
foustina, Cotorele 16
fountinula lilics, 100
fevortie Apantecis, $3 s$ s
form, Bpelia, 317
feriath, fommonche, all
termes, Eidrtor, S_{1}
Pitis. P.i 17
Felitar Fis ${ }^{37}$
decerment is ise; allis, 136 ennexn,
16; malafis 169 ; mortionians certi.
clarate, atipincoe, subpothice, vancourvi-
enats, venerabilis, volubilis, $t 16$

Penari, fraws; dimen, londpes, cevors 331
feneltr. Trise of
Penia : tarcuindus,
Pannica, Noctus, 183
Pontonia, senus; marthenia, tesalls, urbide, 300
Peralis senut; jocoes, if1
crmald, C. H., 31,17 , 17
Fernstdeltion oubiemily, 357
fermaldiotis, Mollearn, 410
feroz, Byntomelita; te
ferrerts, Achordos. 314
Cormane, Euclas, 305 ; Lephodonte, 395
ferrutinoidet Pachnohit, 180
tervidaris, Therins, ist 8
(ervifactirit, Canocelpe, 332
(cems. Amolita, 144

entivoides, Olinis, 165
Bew, Pachylis, 60
beus perlusculate, 100
Fdelimimm, Compora,
Hdiculatie, carnarine, 164
Gdonitere, Eundonis, 359
firnate, Apanteit, isi
thimentsta, Anis, 349
Pillip, The Three-spotied, 327
fimbralis, Hypoopydte, 390
fimbriati, Bexempocnems, 190
fimetarie, Pemairella, 3
fincliaris therin 445
Pichen, senus; enthen, Yoverrite, yosemite,
170 , Autorrepha
taditaris, Thering, 34
flemmans, Ptychrglate, iso
farmmicincte, Eumestleta, . 9
fammiferm,
Plannel-moth, White, Yolisw 369
lave, Preudsnerts, 175
flavago, Xenthis, 114
leversin, 418
Auicans Erinnte.

Forveter, Callormian, is: Bifherpotted
 Wittel4 144
(ormpen, Ohiphits, soe
ormaee, Polychryila, sis
ormonila, Nintin, 33°
ormula, Catocells, 15
(ormesis, Oroter, ist
orrlmen, Fhoberit, st
oti funa; armate, minortete, 198
(ractitine Apanteme, isis
ractimnet, Hedmes 168
recturalis Diestictia, 593
ramilio, Apacyla, 116°
ratile, Apatographe, ise
irater, Sophia, 153
ratericula. Catocela, sty
raterne Eucies, 301
raudulytiaria, Cloorth, 344
reninus, 46, 51
Tynulam,
ringon, 18
rupalisith, Gleore, 344

Puitworm, The Goomber
futetorutn, Malaconoms,
ruve, senus; ecceptim, spicalis, truncatule
ess, Hypoperpin, 106
ulormeandelirta, 370
ulipinoes, Phramatobit, 186
ulminats Porigonics, sos
ultarit, Paote, 335
ulva, Kodineomis, 1 I
ulvicollin, Bcepeis, 101
ulvorave Hatidate, 138

(unebris, Pyrauth, 30 है
underati, Dranis, 30
funerea, Pygoctentiche, if1
ungrum, Chophors, 11
unctit, Papaipema, 314
urciferm, Apetele, 155
urcilla, Argillophorm, ass; Panthen, $3 g$
ur-moth The, 435
urtivas, Euxom, 100
urvine Archipa, 4 童
usce Porruatrotis, 189
uscimacute Olina its 308
useciper, Comacla, 10%
yormis, frocohs, 33 早 4efthecyls, Onyenimin, is

39

G

 a fivisilia, $9 \mathrm{~S}_{4}$

Chirut, fyapoma, it
mubpertife, vece 349, hepara, partita, stianne Hemerrplanes, 60
elif, Celorio, 16
challorts, ide inis, Chorimowchoms, 41 A. 485
allortion wout; corvant, cerelia, mallionelis
soblipituse sod
fallivorum, Evinanthy, 403
Sallivornm, sinthethedon, 3 n
42s mosh , The Minnumed, 4J ; The sulidaro,
anis.
tarmani, Griphiphore, 20
caus bionnis, ose
Ounh, Powncolon, ys; Rhodophors, 3 as
gataline Fenus, jos
Caltidetidm, Femily, 36 , iff, 424
olkflis, Noctuslit, 100
ominats, Clactors, 134 ; Tophnoclystls, 388
-uminatus, Sphink, 13
fummate Artave, 48
Emamatilia Anticaraid 27 J
evneman, Pyrautis. 10
anicula, Drepuna, 10.
eniculate Aprotis, 38
gentilh, Parastichtls, 1
copmeter, Crocut, 139 : Pyrmutata 109
Fivelined, JJ3; Harvey's, $\mathbf{3 2 7}$; 8nowy, jas;
Crometion, 150
fomptrick, Paracomia, $: 14$
Coomerind, Family. $\%$, $15,14,328$
Cometrinh, Shbfamily, $33,34,322$
womptrodies, Malanchrole, 14 : Puncr. 7ta
${ }^{3} 34$
wormen, Hyparowehra, 494
Frmanal Lhomoin, 106
ibbonnait, IIjpens, al7

jivoom, Nactate, 306

gison, catrocalos 5
Ghonelle, Ephoth; Graceit
Biver-tpoted, 44J
Lembert's,
44:
tabiaris, Prophila, 175
cladiata, Foitis, 880°
cian punus linulta, erice, viaticia, a 16
Gla y y-nin, Pdwardh, t36; Freckied, \& 10
ciacovaria, Namester 893
Gledituchion 06
slomsralis, Pyrauita 108
Fomerath. Mracuita, jo8
Oloveri, Copidryan, itr; 8imia 64
Cloverta, penus; arisonensiv, detata, how.
Gral, pojth, $3: 1$
Gluphisis Puralane-moth, Is
cluphisia, gonus; albofacia, avimaculs ciandatint, danby, formoes, rupte, sep entrionstis sovers, slomon, trilineate
Giyphodi, 300
yphoded, menus; hyalinata, hyalinatalis lecernalin, marginalis, nitidalis, quad. Fretimuntis mas

inden

Qaopm; vinurulat 160
4! 1 量

Comints he 175.
foniate. Sabulodes, iss

ofrimarla, mifrectar ise meotuant
Gooweriry rult-worm, ith
Coon inf -pan.worm, the, 140
Condius, Hylolene, it
tans, genus immanis, Mnp-vine, nket

ontrmides, Botlum,
Comynide, Bomund irn, ity
Eonypiant, Archipe ted, J3s
racilenta, Alynta, 48
racilior, Leptomeris 44
Treilis, Catocala, is: Hemorthagla, IJ; Hepdilus, 444
rradeta, Martion, Juo
tradustana, Fucarm, 484
Drep, Apatala, iss
Orepecta, Evaus mamifica, is
Orammorien, Eenus Hnichi, is
Cramizuadia, ranus, 60
ermandirum, Malipotis, 116
rindis, Cop, bippotis, 216

rtanitata, gelartaphia, 130
granitons, Euhotrichia,
Crapalent Polder, The, 102
Oraph-ving Plumb, The, 416
fraphica, Bymeda, 13
ulas
viad tarmant, hibisci, inscion, ingtablis
Cramp-moth, oroble, oviduce, 294
Crawimothy, ses.
crata, Euthisonotion a33; Olizis. $t 4$
Sratata, Eucroatis, 136 , 338
cratulate, Menolrace, 33a
Crane-mood, 6 6 , 33a
Grem Applates Tiver, Tha, 43
Iflice, Apatela, is6; Hypopacha, jts
Illice, 88
risoocincta, Othoden, se
rownlarth, Zophodia, itt
srote, A. R., Cymatoplorts, 14°
motyan, Cenopis. J0, 3t, 33, 14, 35, 36
rogtai, finmortherte. 6 Ji , Hemlance
Lycomorphs, tot; Praphidia, 89% 98;
notitna, Catocal, 364 phicia, 89
srotelth ionus; dik, 864
Groundlin; Duaky, Red, t6
aryma, Catocals, 369
(uontian, Hyilriomanis.
Guandi, A., $19,32,36$
Gumei, Catorale, $6 t$
Guilding relliptics, t3e
cuilding Lanadown, 40J
rularis Euxos, to
Gumppentarercempa, 30 t
eurgitiona, Archipe, 34
Putketa. Piatyprovis, sa6; Spraguela. Iss
Juttulos. Pyrarta 307
yyaratie, Heterogremme 384

Index

Cymaneladus, 96
yrasoshors, senus; soed, 305
ynephora, sums; sod, 305 , deaigrate yoocitate, impauperate, propugnsta, pro pugnaris aitellates, 332
Gypsy Moth, The, ${ }^{\text {sos }}$
Gyros, genus; muls, 249

H

hebilis, Catocslan, 968
Habrosyne, genus; scripts, 303 Abertan, 167 ; adena, arix, arcica 160; arat 167备putatrix, arcicalines. 168 ; Biackbanded. 167; bridghami Bridgham's, 166: Broken-lined, Burgen', burgeng, cerivans, 168; characta, 107 , chloromigmb, 168,
 169 Dark Arhen, 170 ; Dark Deatroy. Derk-potted, Dark-winged, 107 ; Detroy. ing, devantatrix, 169 ; diseors, 168 ; Dotiblo* bended, 167 ; dubitans, ${ }^{\text {108 }}$ Western, 169 ; Iractilines, $168:$ Great Western, 169 ; Green-spotted, 108; Hall-Moon, 169 ; mats, ing, 168: hill 167 incs ind loculaten, 163 ; hateritia, 108 : 48 marshallanis, 169 ; miselmactate modics 167 ; molochins, 168 ; Mullein. 169; Neumaten's, 166; nigrior, Northern, 169 : oblivioss, $168 ;$ occidens, ordinaris, 169; passer, Passerine, RodWinged, 108 ; emilunata, Speckled Gray 169: sputstrix, 168 isubcedens, 167 tranisfrons, 166, Turbulent, turbueata 167; verbascoides, 169 ; versuts, 167 vinele, $170 ;$ violuces, Viaiet, 167 ; Whood colored, 169
Hadenella, penus, 162 ;
pergeatizi, wounactis, 162
Hematomis, enonus; mexicana, uniformis, 107
Hematopeis, genus; grataria, saniaria, suc - cemarion 332

Hamortherit, cenus, 02,$72 ;$ sthra, arilleris, $03 ;$ brucen, 64; buffaloeneis, cimpiciformis diftinis, 63 ; etolus, Tracisi, fote, malsi, 63 ; pyramu 63i papalie, 04; pelnstus, 63; pyramua, 03; rubarg, 04 ; thetis, 04 ; thysbe, 63 uniformis, 63
botitete Gypeochres, 332
hageni, pospammat 47
haticarnis, Laparn, 33
Haticarmis, senta, ins, 137; annulifascia, 13^{8}; sitiphola, ${ }^{137}$; argentista carym. I3s; daviai, 137: fulvonsva, 238 , 137: Euttifera, 138: harrisi, I37; Fickory, longe, long fatred , inted is. Teaselin, siver-3potted,
ated, teasellaris, 137
falpinc, Charles 6 , quoted, 310
hamaria, Gonodontis, 350
Mmifers, Autogriphe, ${ }^{3} 38$
 13, 14, 35, 30, 37, 98, 103, 114, 140, 151 $38,34,35,30,37,30,306,311,315,330$ $392,356,364,372,374,375,330,391$
Haplo, genua, 187 ; Nocontas, 118 ; Lyman's. sio; carolins, elymene, colona, comm, 118; oonfuss, 119; consita, 118; contizu 110; dyar interruptomarina

Harpyit, setus: albicoms, aquilon
ing, cinares, wolopendnna, 290
, 1 ?
Harrig Threc-apot, 130
harrisi, Halisidota 137; Lapara, 53; Pygoc
tenuchm, 111
Harrisimemna, 149, 159 : trimbnata, 150
Harrining, genus; smericana, texaris, 372
harti, Sywyrhypenn, 283
haruspice, Noctug, is4
harveista Nannia 327
harveyi, Heliophide 201 57
hasdruhal, Pserdom
hasta, Apatela, 133
hatalin, Nocturnaplers, 320
Hawkinoth, 78; Clemens; sa; Five.Spotted.
Head: anatomy of, 19, is; Larval,
hebres, Polygrammate, 160
hebraicum, Polygrammate, 160,161
Hebrew, The 160
heiligbrodti, Syasphinx, of
Helinca genus: diminutiva, 131
Ieliochilus, renus. parndoxus; 392
Heliodes, genus; restrictalis, ${ }^{230}$
Heliolonche, genus; modicels, infulate, 3.3
feliontran, yenus; mitis. obliquats, 230
Heliophila, genus, s00: abilinea, 201: com-
moides, 203; complieate, 201; extranea, moo; harveyi, a0:; heterodoxa, 1apidaria 102: minorate, 301 ; multinea, 203 pasudergyria ubpunctata, puncta, 300
Heliosea, menus; pictipennis, 230
heliothidata, Scingraphia, 339 as2; nuchslis
Heliothis. genus; arnig scutosus, 124
Hefiotrophs, genus: tra, roniformis, 17
helva, Orthosin, 217
Hemerocampa, cenus, $305:$ borenlis, cans, fosi dennite, leucostigms, obliviusa, vetuste, 306
Hemeroplanes, genus, 60 ; galianna, licastus, parce, 60
Hemiby, oo enus. Edwards', edwardsi, i33: Preckled, labecule. i39; quereus, translucida, 138
Hemiteucs, genus, of ; artemia, califoruics, oa; eloctra, grotei, maia, meuncesen, or: tricolor, os proserpina,
yavapai, 92 Eubfamily, 80, 8s,
Hemileucins, Symanthedon, 385
hemizon, Hypopta, 379
enric, Hypopta, 379
hepart, Galgula, 247
Heppilide, Family, is it 36,443 tepialus, genus; cricilis, hyperbo
berti, micelachani, puicher, 44
hert, Pseudohazis, 03
heraclei, Depressarin, 428
horteliana, bepresmaria, 428
herbimacula, Manestra, 195 , olinalis, tren
 Herder, Dat Led
herili, Feltis, IB0, 304
herministe, Eudeilines, 320
herminimite Episeuxis, aso
herminioiden Episelsxis, W., 17
Herme, senus, 43; sfinis, eingulata, convolvuli, decolork, drurai, pungens, 43

Indez

heriliste, Mowleuce, 330
Heterocampa
 manteo, mense mollis, obligus, cinerascens, pulvere, memiplaga, aubalbicus, olivatus, imi, umbrata, vari abaloicts, turbide
Heterocers, defined, 3 ,
heterodoxs, Heliophilh, 202 ,
feterogenes, eraus; shurtleff. 368
eterogramm, genus; gyanalis, pyramusalis, rurigens, 284
Heteropacha, genus: riloyans, 374
cterophlepe, genus; hexaspilata, quadrinotaka, triguttaria, 337
heucherse, Paranthrene, 387
hexampilate, Heterophlems 37
Hexeris, genus; enhydris, neticulina, 375
hibiscl, Graphiphort, ${ }^{204}$
hieroglyphica, Noropuis, 233
hilarit 2eusera, 376
hili, Hadena, 167 ; Hypocala, a7a
Hillis, genus; algens, 166
hilliana, Noctua, 183
Himantopterus genus, 371
Himelg, genus; contrahens, thecata, aps
himonatis, Herculis, 40
Hippia, genus; paclcardi, 296
hipcina, Homog pacicardi,
hircinalio, Pyrausta, 319
hirtella, Eupanychis, 376
hirtipe, Zosteropodis, 201
hitrio, maramalus, 342
Hoboken, 147
hochenwarth, Syngrapha, 240
Holcocera, genus; glandulelia, 4 ag
Holland, Clive, quoted, 353
hollandaria, Racheospita, 336
Holmes, O. W., quoted, 3. $37!$ be, 1 , ria, birmactitate chariona, belfregel, comis, diminutiva. Ehrman's. Five-d, brevi immaculata, Least, Plain-vinged istted, obecure, opella, ostenta, rubricosta, Show Tawny, 115
Homoglea, genus; carbonarin, hircing, arg
Homohadena, genus; badistriga, 176
Homopters, genus cingulifers, oduse, in tenta, involuta, lunata, putrescens, saun
Homopyrnis, unenta, viridans, woodi, 278
Homopyralis, genus; contracta, tactus, zonata
250
honesta, Jodia, 215
honestaria, Arelina, 352
Honey-locust, ${ }^{6}$
hopfferi, Gnophola, 130
Hope, 289
Horman, senus: thrinn, 100
Hormist, genus; sborptalis bivittate, nu-
bilifascis, 282
hormon, Hypeoropha, 250
Hormoschist, renur; pugenstecheri, 253
Hornbeckiann, Phohus, Oy 2
Home, R, H., quoted, 363
horrids,
horrida, Zab, 277.
hortulan. Feltion, 186
hortuana, Feltid, 186
hospes, Symanthedon, 387
howard, L, O., viii. 403, 405
howiandi, Syneds, 31 I
hualmpai, Hemileucs, os
Huber, Ita
hubbardit Brucein, 898
huonernis, Aselint, 35
hubnereta, Azeline, 15 :
hudsoniea, Alypis, 145: Syneda, 260
Hulst, Rev. G. D, 33, 34, 36
humeralis, Cinglit 347
humilis, Schizurg ang, 423
humbli, Hypens, 98
Huxlay, Thomat Henry, quoted, ss
hyalinata, Glyphodes, 394
hyalinatalis, Glyphades, 394
hyalinopunct Apatelodes 193
hyalinus, Phobetron, 366
yamia, genus: perditalis, temilinenta, sea.
punctata, urnbrifascia, a 54
Hyblra, genus: mirificunn, puers, saga, 388
hybrids, Ophideres, 276: Utetheisa, 119
Hydria, genus; undulata, 309
birivata, genus; autumnalis, bicolorsta,
oirivata, custodiata, gueneata, lascinata,
latirupta, rectangulata, sordidata, sinecio anta, 3,31
hydromel. Lito
youx, Dulba, 46
Hylozia, genus, 90 : alinda, 90
meds, sentus, 40; albescens, 50; andromedre, 50; canaderisis. 51; chersis, 50: drupiferarum, sa; eremitus, 40; eremitoidea; 40; gordius, 51 ; insolita, 52 ; knamize, 58 ; 52; oreodaphine, 50, 49, 50; luscitions, pinastri, 53 ploto, 50 , perelegans, $5 t$;
Sa; separatus, 50 ; sequoies ${ }^{53 ;}$; surdida, 49:
Hyloicus kalmis, so, vashti, 50
hypathrata, Mararia, 330 ,
Hyparpax, kenus; aurorm, perophorvides,
rosea, venus, venusta, 290 , gerophan,
hunuli, 287 evanidalis, germanalis,
Hypenula, genus; biferalis, cacuminalis,
Hpacalis, 283
straguis torsenus; georgics, sitipennis, straguia, tortuosn, 294
hyperporeus, Hepilus, 444
Hyperitis, qenus; esionaria, amicaris, ex. simarim, insintiaris, laticincta, neonaria, neominarion nysaris, subsinuaria, 349
Hyphantrin, genus, ıa3, zaj; cunca, 123 ; pal-
Hyphorais; punctatisaims, ra3; textor, xz4
Hyphoraia, genur; borealis, parthenos, 128 Hypocala, genus; andremona, hilli, a7:
hypocastrina, Zeuzers, 376
hypochraria, Conodontig, 35
$\underset{\text { I } 36}{\text { Hypocrisiss, genras; armillata, Least, minims, }}$ ${ }^{136}$
Hypopacha, genus; grisen, 3 t
ypoprepin, genus; cadaverosa, fucosa menlta, miniata, plumbea, auhormata
tricolor, vittata, 106
Hypopta, genus; bertholdi, henrici,
Hyppe, fenus; ancaciaconensis, ${ }^{379}$
contrart, aylinoides, 171 ,
Hypaopygia, genus; costalis, fimbrialis, 309

I

Ianasea, genus; lignicolor, lignigera, virgata
ap8
aspis, Chytonix, 16I
Ichneumon-flies, 69
dones, Agrotis, 182

Iadex

Jnette'a Hair, 310
Janiphte, Eninnyis, 5
jantis, Semiophorm, too
Jopan, 70, 307
paquenetts, Catocais, 169
faspidia rum, Chlencirramma, 66
Jaspidia, genus: lejndula, Marbled-green teratophorm, White-spotted, 160
Jatropha, 88
jatrophe, Cocytius,
fob, quoted, quoted, 170
jocista, Andrewn, 424
jocasta, Andrewnia, 272
Jodia, Fenus; 171
oker, The, 171
oker, The, ${ }^{171}$
forulle, Rothechildia, 82
unnita, Pogocolon, 73
Ubartaria, Pherne, 35 I
udith, Catocalsis, 758 ; Noctua, 18 ;
udith, Catocals 262
uglandis, Crettonia, 57; Mineala, 10
fuglana, 87
ugum 16
ulialis, Cindaph 225
Jumping beans, 4 , 39%
jumping be ns, 417
uncta, Noct Mamestra, 192
unctaris, Orthofidon
une-berry, 80 iconia, 337
uniperaria, Sya
uno, Hemileuca, on, 352
Jussieun, 67
jussiouse, Pholus, 67
juturnaria, Enemera, 34^{2}

K

Kalmin, 5
Kalinise, Hy yloicus, 5 t
Kentie, quoted ylus,
Kentucky Coffec. 14
kevtzingaria. Plawodi, 06
keutzingaria, Plakodis, 340
Kijling tomilies of North American mothe

klapen, Eitigmene,
tricolor, genus; eavesi, fulva, nigra,
tricolors 133
Kuebelel, Symanthedon, 38
kuehniella, Ephestia, quoted, 359,368
L.

Labecula, Hernihyalea, 139
labionane, Platymota, 139
labrusere, Pholus, oy
laciniosa, Bonnolocha
Lecosom, Einolocha, 6
Lecosomide, Family, ita, 350
lacrymode, Cetocala, ; 35, 359
lactata, Haploa, 118
lacteolaria, Leuculodes, 310
lactipennis, Tarache, ast
acustrata, Mesoleuca, 330
Eetulla, Ambeas, 410
oviget, Lomanaltes, 28
Gigonate, Zanclognatha, 281
Inganiella, Tineola, 432 pyxidifera, 369
anceolata, Tarache, ${ }^{42}$
angsonatis Pyrausta, 351
langtoni, Alypin, 143, 145

Languide, Melicieptria, a 10
lanuginose, Megritopyre, 36
apara, gents, 53 ; bombycoides cana, conj-
Laphygm, genus; , harnif, pineum, 33
macra, plagiata, signifernalis, frugiperda
Lapidaria, Heliophils ${ }^{2} 194$
Lappet, collar and thoulder, is
laquesta, Calidota, I 19
laqueatelua, Crambus, 102

Larye: food of, 6
Lasiocampides Fymens, 331
lasanotin, Erinnyis, 58, 9, 24, 34, 31
Latebraria, genus; 58
laterana, Platyus: amphipyroides, 270
atercule, Gingla, $37{ }^{42}$
lateritis Halena, 168
latex, Mameatra, 194
laticincta, Hypcritis, 34 C
aticinerea, Xyling, 207
atielavia, Autographa, 240
atipes, Remincrisia, 128; Gnophela, 200
latirupta, IIydriomen
Lathoses, genus; pula, 33
latreillana, Ctenucha, uraina, 200
audahilis, Mamentra, ios
Latugher, The, 152
Latacea, 8 s
Leaf-rollers,
lecontel, Haplon, 11
Lege of moths, 14; 15
lemberti, Hepialus, 44
lenti, Leptarctia, I21,
Leoptiginord-mo Bomolocha, 286
leopidurd-moth, The, 376
Lepipolys, Jaspidia, 160
Leptarctia, genus: cerifot, 17
diata, lena, $1 \neq 1$ galifornix, decin dimi-
Leptina, genus, 162
leptinoides, Schisurt, 290
eptomeris, genus, gracilior
quinquelinearia, rubrolinearis, magnetaria,
ta, entinaria, surnria 333 , mbrolinea
lepusculina, Apatela, I54, 333
Lering, renus; incamata, robinsoni, 112
leucocycla, Anarta, 190
leucophraph, OLemerocampa, 308
eucophasa, Olene, jo8
Leucostigma, Hemerocampa, 308
Levculodes, genus; iacteolaria, 31
libatrix, Scoliopteryx, is 5
ibatirx, Scoliopteryx, 215
libers, Mamestra, 251
hbocedrus, Hyloicus,
Libraries, Readere in, os
liburna, Scolecocamp, 08
licestus, Homemplanes, 60
licentiosa, Eupolia, 199
Liehen-moth; Allgehenian, 104 ; Banded, 100
Blus-Green, Crimson-bodied, IIt: Druce's,
Mo; Funereal, Ini; Little White, 108:
Mowse-colored, Ioy; Narrow-banded, 108
107: Painted, io6; Pale, Pearly-winged,
104; Scmrlet-winged, 106; Yellow-blotched,
110
ligata, Mamestra, 195
igni, Scolecocampa 195
isnicolor, Ianasa, so8; Hadena, 60
lipnigera, Ianassa, 208
flacina, Mamestra, 194
lima, Phurys, 75

Indez

bupini, Merolonche, 159: Synanthedon, 383 Lapinus, 64, 124
urcitions, Hylotcus, s:
Lniats, genus; nijrogutiata, 175
hutritis, Mamestra, 192
fuatrans, Byninthedon, 385
hataria Ennomos, 348
Heticom Apetels
utulenta, Euxom, 89
|uxa, Bewtha, 22 I
Lycia, genus; cognataria, eperataria, 345
Lycomorpha, genus; grotei, falmeri, gholus 10:
ycoperiic: Protoparce, 4
Суman, H. H., 37, 118
Lymire, genvi edwark. 1,100
yncea Pachyina, 60
lynx, Schinia. 2a7

M

Macaria, genum, 339; coner"*4, 340; eremiata 39 gomeraris $340 ;$ g es 4, hy, hypethrate 330: preatometa, 340 ; reiectata, retentate e-igrata, mbeincteris 3.39
meceullochi, Alypia, 143
macglashani Hepialus, 444,
macmurtrei, Prionoxystuw, 37^{8}
macre, Eaphygms, 374
macrinelhus, Scirpophage, 408
Macrocarpane, Commonhila, 423
Macronoctua, genua,
mactata, fiscenm 167
meculata, Hslisidota, 837; Thyris, 574
maculicollis, Opherus, 139
marlaria, Synanthedon, 38
madefactulis, Bomnlocha, 286
marietcsalis, Pyrausta, 306
madusaris, Euchlena ${ }_{1} 350$
Mrenas, genuz; vettalis, 12
mestoes. Catocala, 36
mardalena, Catocia s67; Nycteropheta 52.3
magicalis, Conchviodes, 303
magnarius, Ennomom, 348
magnetaria, Leptomers, 333
magnifica, Comsula, 379 : Graperia, 225
Maguta, genus: angustipennis, dienidens, divarionte, divida, 175
maik, Hemileuce 91
maisi, Euxom, 189
miajoraris, Caberodes, 35
majuscula, Cydosia, 353
Malncosoma, genus; americana, 313 calilornics, 313 i decipiers, $312 ;$, iustris, drupacearum, erma, sustris, sylvaticoides, pervertit, preudoneustris,
malana, Balsa 163
manna, Bals, 163 , oregone, sag
malefida, Peltí, 187
malivorans, Alceris, 4a
Mamestra, genus, Io1; acutipennis, 195 adjuncta, $194 ;$ albifuge, $193 ;$, Ahed Enguina, 195 : Brown-winged, 196 , chenopodit, 193 ; claviplena, Cloudy, 19s: Clover, congermens, 193 ; constipate, 195 contraria, Counin-Gcrman, 19:. Daring demissi, 304 desperata 193 , detracta, 192: dimmocli, Dimmock', 193 , pispar gred, 192: dodgei, 195: Empurped 59 , Farnhimis, soa: Fluid 194 ; Fured-epot.

Index

Mamentra-Cowsinned
102: glaucovaris Grand, grendis, Harneamed, 193; herbimacula, 105: Hitched, infecta, innex, imbrifers, 193: indicans, tex, 104: Liudapi Juncimacuia, 192, ber, ros; lipata, ros: tiecina filios: 104. Liquit, liquide, lubens 104: Luatral, Jutrilis, meditet; 102; Modern, neguean, neoterice to6: nevade, Nevadan, 103; olivacea, Olivace: oun, 105: Painted, picta, 193: purpurissata, 192: redix, 193: Jenigera, 105; rose Rosy, 103; rugose, Rugone, 104: Snaky, itrigicollis, 195: Studied, 10a; subjuncte, 19.3; Euffusa, 19a; teligere, 195: trifolii, 193; mmurseris
mamnurraris, Paraphia, 343
Mandibles of Larvee,
Manetta. 75
manifeatolabes, Serniophora, 18 a
manteo, Heterocampa, 297
manto, Olene, 308
Manual for the Study of Insecte," by
Maple-borer, The, 38
Maple-borer, The
Maple-trees, os
letor, 24, genus; histrio, inficita, venti-
Marble, 242
Margin of winge, 33
marginalis, Glyphode
marinalis, Haphorin, 304
marginata, Hembecia, 383; Schinie, 228
marrinatus, Prodoxus, 439
marginiders, Papaiperte, 214
manins, Misorada, 297
Matriposa, Alypia, 143, 145
Marlatt, C. L., 425
marmoprata, Catoca; marmorata, 332
3.32 (3 morata, Marmopteryx,
parshallana, Hadena, 169
Mambe, genus, 56
Marvel, The Clnaked, 161; The Green, 160
mefoni, Rhododipse, 225
materna, Ophideres, 276
Matigramme genus; pulverilinea, 276
Matthew ${ }^{\text {quated, }} 430$
metthew, Scepsis, 101
matuta, Alypia, 144
mestutin, Rhodophurr, 22
meadi Dasyspoudien, 228
Meal Snout-moth, The, 400
Mecoceras, genus;
sularia, 3 , nitocraria, nitocris, penin-
fecoceruine
Median shede, Subfamily, 35
medite, Mamestra,
medor Cxytius, 44
Meriopyge, genus; lanuginosa, opercuitis
subcitrina, ${ }^{3150}$
Megslopvgidae, 8, 25, 25, 3 68
elappha, genus; abosigma, americana apicain, incarcerata, inclusa, indentats
melancholice, Erinnyis, 293
mejancholics, Erinnyis, sn
troides mors genu; cephise, 354; geome
Melanchroiners, 35
Melanolophis, subfamily, 34
imperfectaria, sign canadaris, contribuaria Selanomm: emu; suricint 344 melanopa melanopyg Bellurs, 111

Melicleptria, ;enus: californicus, menguida, pulenipennis, sueta, 230
elipotis, genus; arotipennis, cinis, feaciohria, grandirena, hadeniformis, jucunde, mbolaris, pallegcene, perteta, sinuatio Ms8
Melitarn, genus; fernaldindis, 410
Melittis, Cosmosoma, of
3\%o: genus; amaena, ceto cucurbite, 340: grandis, $30 ̂ 1$; styrinilormis, 380; Mellilis, senus
Mellilis, genus: inextricata, soviaris, san.
thometata, is 8 thometata, 338
mellistrigata, Sciagraphia, 339
mellonella, Galleria, $35{ }^{1}$
melsheimeri, Cicinnus 406
Mcmythrus, penus, 382 : admirandus, 38 polistiformis, 3^{82}; simulans, $3^{83} 3$; tricmetu 382
menas, Hetcrocampe, 207
mendice, Eurlulc, 327
Mendocino, Seturnia, so
Mentha, 40
menthastrina, Estigmene, 123
meraisil Caradrina, 164
meriana, Erinnyis,
Merolonche, genus, 58 , $\$ 0$
mericata, Paleacrita, $\mathbf{3 2 4} 159$
merricella, Scmioscopis, 324
Merricic, P A., $1 x, 118420$
Merrick, H. S., ix,
Meskea, genus; dyspteraria, 375
Meskele, Catocala, 364 ; Platysenta, 163
gesoleuca, genus; brunneíifiata, fammifera, gratulata, heriliata, intermediata, lacue, gessalina, Andita, 330
messainna, Andrewsia, 372
mesturata, Gonodonti
Metalepsis, Genus; cornute 350
metallica, Tarache, asi
Metamorphoses, 4
Metanema, genus; seliaria, carnaria, determinata, inatomaria, quercivoraria trifinearia, 351
Metanemaria, Akis, 343
fetaponia, genus; obtux, ottwsula, per. getava, 250
Metathetis, Haemorrhagia, 63
metonalis, Philomet monetifera, asa
Metrocampa, genus: 282
grondaria, viridoperlata, is periata, premexicana, Apantesis, 131: Cirrh

Citheronia, 97: Listigmene, 123: Hism tomis, 107
michabo, Apantesis, 1,30
Microcoelia, genus, $15 \mathrm{j}, 160$; diphtheroides
Microrbled, obliterata, 100
Microgaster, 69
Micropterygidse, Family, 26, 444
Micropteryx, genus, 444
Midget 5
Griateful, 166 Epotted, 156: Feative, 165 Mikanis scanden
mititaris Haploa, 118
mima, Campometr, 274
mine A A antesis, 130
Sineola, genus, 408; indigenella, 409; jug
lancis, 408 ; nebulo, selatella, 400
minjana, Rhododipas, 225
minians, Nephelodes, 190
miniata, Hypoprepia, 106
minima, Hypocrisias, \&36; Puetotomya, 90

Inder

minimalig, Dhychagrotis, 175, 179; 2an. elocinth
minitart. Datang a9 foliophite 30 minorate, Fota, 178 , sainophit, 208 35 minute, Alceris, $4: 1$; Catocela, 369
minute Acerig, 4s1;
mirificum, Hyblest, sis
mincoum, Cathbona, 163
mimeloldes, Hitedena 867
Miencined Gall-moth, The, 418
Misognat, genus; cineres, mifin, sobris. unicolor, 297
mitis, Haliophans, aso , 57: Syanthedon,
modesta Pachysphins,
387: Ulolonche, 108
modestaris, Cymatophorm, 341
modica Hadens 167
modice itm, Heliolonehe, 230
modificu, Oryphiphora, 204
moilatian B copelonom,
mollis, Heterocempa, 29?
mollis, metextermpheria, 253
nolochins, Hadent, 168
Yolta, iarval, 8
Comophens, genus; comstock, 172
nonsche, Prilura, 309
Monardia,
monets, Polychrysia, 236
monetifers, Metathorase, 252
monilis, Hypeorophs. 256
monitor, Euclee, 365
mocsodon, Autogrephs, 33^{8}
Tonoluwe, penus; semifnecin, 365
monotroge, Belenig, 377
mopea, Catocals aos
montrans, Arbund 324 - Byoodia, 57
montanatum, Bustrom, 330
Montgomery, James, quoted, sos
Moore, Thomina, quoted, 304
mortidalis, Caytolitg, 282
morbota, Cimuta, 250
mori, Bombyx, 315
pormonice, Apantetion, 131
Yorrenis 58
Kortis, Rev. J. G., 18 , confues 197' evicte
aribopis, genua, $196 ;$ conivea, 197 sectilis
t96; iniructuo
vomerins, 196
vommerns, 1 ge , sg
morrisoni, Emophith, 200
morrisonitn, Feltia, 186
mors, Melanchroit, 355
mortus, Echinio, sal
mortworum, Autogtephe, 330
mitule Apatels, 15
Mothe; Achain, 130; Acorn, 429; Acraed, 123: Ahinda, 90: Anna, 13° Arge, 130° Astur, 130: Carpety 434. Chain-streak, 347 ; Cio, 133: Clymena, 118 ; Colon, 118 ; Cors. $161 ;$ Cosyrt, $14{ }^{\prime}$ Cottonn worm, 143 ; Divermoline ${ }^{32}$ i Dried-cusrant, Pist: Echo, tas; Pall Wob-worm, 1 :5! Flour, fis: Vur, 433 Granite, 39 : Gypey, 508 ;
 Horrow 176; Hert 93; fiecuet, 06; imperia, 97 ; Indienmonal, 425: 10 , 8o; Juno, $92 ;$ leopard, 376 ; Minden, 347: Jang s7: Mati', 333 : Mnoen, ${ }^{347}$, Michabo, 130 ; Milk, weed, 351 Oithont, 1s9; Pandore, 9 : Parthenice, tap; Percephond, 130: Plum 3a9; Poly: phemus, I, Potato, as: Privet, 304: Mexican Wamut-: 87 : Pine-devil, 97 Rony Maple- os; Royal Wanut-, ofi

Mothr-Contimend
Eand-dune $14 y^{\prime}$ Ecallop-shen, ise: Ax o)ume, 417 ; Slóf, 567 ; 8otidago Call, 425 gpothe Fail Web-worm, 114; Stimi, 04 Suras-beet, 305; 8un-hower; 350; Yuces
Moth Bong, 310
Mur Jolin, 149
muir, Gyrac, 140
muliercula, Catocala, 367
mutifarim, Ctenuch, sos: Morrisonia, 197 multifert, Caradrint, 164
mullibuta, Heliophia, 90
multihresta Pipen, 333
1t.4.423
muitucr.je Dinsteria, 397
mundentis, Porveagrotis, 187
murelis, Patphiditi, 177
muricina, Stretchin, 205
muricolor, Calidota, 130
murlna, Comacla, IO7: Euchatias, 155
muscoanle, Buatrotia, 24
murts, Eustrotia, 347
muntelina, Dchiaura, 200
musaria, Euchlans, 350
musint, Ecpantheria, 120
pyandanit, ceberodes, 35
Meinda incioum, 99
myope Calasymbolus, $\$ 6$
Myountiv, 134
mymn, Darapsa, 68

N

Nacophort, genus: qucmaria, 545
Nadats, genus; gibboch, 296
nais, Apantesiv, 132
nana, Suclea, 365
Nanina, Etuclea, 365 ,
Nepmit, Litholratia, 307
nepan, Dhorutis
Narthecophor, genus; pulverea, 35
namoni, Natad. 366
Namin, Natade, 301
nasutaria, Phiproeopus, 245
Natads, genus; deona, mesoni, rude, 366
natatrix, Isogona, ${ }^{256}$
nebraske, Cetocala, 363 ; Euhagena, 381
nebulo, Mineala, 400
nebulosa, Catocala, 166
nebulows, Adonets, 365
necopine, Papaipema, s14
neglects, Synanthedon,
Neque, The II
Neleucanis, zenus; bicolorata sos
Nelpho caroling, 200
Neoceatnitdre, 3
neogame, Catocals, 249,260
neonaria, Hyperitit, 340
neoninaria, Hyperitis, 349
Nephelodes, genus; expansa, minians, vobria
aubdolens, violens, 190
Nepytis, senus; nigrovenaria, pellucidaria
pinaria, pulchraria, semiclusarim, 343
nerea, Apantetis, 130
Nerice, genua; bidentata, 296
Nerium odorum, $\$ 0$
sesrat, Omia, $3^{\circ}{ }^{\circ}$
newsu, Amphion, 72

Neumnegenia, gerus; poetica, 235
Neuronia, genus; americans, 196

Inder

dap: ${ }^{104 x}$ 9: Yuece
nevade, Memestra, 293; Thrris, 17 vertene Ci Apantenis, 231; Hemileuca, os neras Illice ion, 110
nicotians bro, 810
Nigutic, genur; formonalis, mplanope, 35

nify Kocionomm, 233; Peridfome
migricath Phobetron 366 (ioma, is
nifriceps, Noctue, $18{ }^{366}$
ni gror, Hadens, 160
nitripennia Euros, 18
nigrivern, Schinia, 8%
nitritula, Eustrotia, 847
nigrofaciatia, Celamis, 357
nigronava, Eetyonthoptera, s4
nigroputtsta, Luena, 133
nifrolunate, Aract, 175
nigrovemaria, Nepytis ${ }^{19}$
nimia, Orthodes 303,343
niobe, Seirarctia, 13.3
nitela, Papaipem, 213
nitens, Orthoden, 203
nitida, Schisure, 208
nitidulis, Glyphodes, 394
nitocraria, Mecoceras, 334
nitocris, ococeran, 354
nivaria, Anarta, 190
niveiciliapstationoma, 130
niveiciliantitu, Pyrauita, 306
nivecoericest, Ennomos, aty
nivomarice, Eugonobapte, 346
nivotati, Eurgonobepta, 346
nobilis, Schinis, a88; Tosits, 308
noctivara, Apatela, 157
Noctus, genus, 163 ; associans, 185 ; stricincta, 184: beata, 185 ; bicarnea, 183 ; inncta clandestina, colifris, 184 ; c.nigrum, fen, nics, 18_{3}; trandia liaruspice, hovile, 184 fucund, il $:$ i illapas, 185 ; intractata, jucundia, 183 ; juncte, 184 : Jubricane, 185 ; usicops, 184 ; normannians, oblat, obs tuse 183 ; patefacta, 184 ; perconilua color vicaris; plecta, ubstrigete, uni-
Noctuelis, genua:
novalis, peruviana, thatiacis, 300 elidalis,
Noctuide, Family, 7, thalialis, 390
noctuiformis, Aon, 234; Tuerta
Notid genus; ovilla, 357
Nolids, Family, 24, 34, 357
Nonagria, senus; Lirge, oblonga, permacma,
nondeacrip, Yellowiah, 211
notitescriptus, Phobatron, 66
notatia, Philobis, Eufidonis: Tephroclystis, 328
nottatia, Eufidonia, 337
notatella, Nycterophsta, $2 a 8$
Notch-wing, The, 348
cenus, 294 ; besitriens, simplaria,
Notodontidae, Pamily, a5, 33, a9a
Notolophus, penus; sntiqua, nova, jo
norax, Cossula, 379
normani, Crocigrapha, so
normanniana, Noctua, is
Noroptis, genus; hieroglyphica, 23 I
nova Notolophue, 306
novalis Noctuelia, 399
nubilifacis, Paraphia, 343
nubilifascia, Hormise, sisa
nubis. Euparthenos, s7:
nundire Hetiothis, 224
nupera, Calocempa
Nurse, The, 66 , 908
unia Cetocala 36
Nytithi, Preudohstis, os
Nyctealide, Pamily, serayana, as
Nycteropherta
notatelis, aas ienus, fura musdalens,
Nyetobis, sente; limitats, lobophorata vernata, 324 ,
Nymphul, genu; obectralia, 39
Nymphuline, Subfamily, 390
Nigas aylvatica, $16:$
nyyuria, Hyperitis, 3

0

obaurata Celams, 337
oberthuralis, Puxon, 100
oberalis, Plathypensenodey, 396
obfirmaris, Gonodontis, 367
oblate, Nuctus, 163 , 35
oblinita. Armtel 157
Sphids, Fagitana, II7; Heterocampa, a97;
obliquats, Heliophana, 130; Pleroms 206; Sphidu, ar:
obiquelta, Galleris, 406
obliquifera, Balsa, 163
ohlitertinets, ficrocrelis 300
oblivioen, Hadens, is, 1 Ko
oblonga, Nonagria, 168 ; Hemerocampa, 305
obnikralis, Pyrausta,
obrutsata, Phryuinnis, 39 A
Obseura, Appteta, it3; Citocala, aka; Erin.
nyis, s9; Holomelin, 115 : Pseudoophina 57
breuralis, Nymphula, 300
obscuras, Anytua, $19!$
oblus, Noclus, 183 ; Metaponin, so
obtuaula, Metaponia, 350
obvia, Eucoptocnem, 350
occate, Oncocremis is, 109
occidens, Hadena, is
occidentalis, fimilis.
Pachyaphinx, 57. 137; Apatela, 255;
occidentate Barath
occidentig, Epicnaptera, 196
oceltits, Sphinx,
Ocelli, is
Ocellinata, Sciagraphia, 330
ochosalis. Pyrausta, 398
ochraces, Apantesio, 130; Platyprepin, is
Ochria, genus: sauzait
ochreipenria, Zanclognatha, aris
ochrogaster, EukO:, 199
octomacuyna, 242
308 14. 14. Pyraura,
ocuistans, Dysodia, 374
oculainx, Prectes, 441
oculea, Telen, 87
Ode to sin Insect, 291
Odontratis, genus; elegans, 294
odora, Erebus, 179
Odymeripennis, Bembecis, 3 费
Ohlenschla, Family, 36, 42 .
comearia, Syssaurated, 303
ceneiformis, Comocelpe,
Genotrus, Erinnyis, 50 , 332
Ogdrconta, genus; stomari
Oiketicus, penus; abboti, 36 , cinereols, 4 :
oithona, Apanteril, ze9

Index

optenta, Folomellat, ils
otione Apeatene, 13
ovelte Abrostole 40
oviduc, Grephiphore, 204 ovills, Noter 357
Owplagatio, Tonde 102
Orppomition, Time of, 5
Ovulatia, Conchylodes, 303
oxybaphi, Celarto, 76
Oxycnomis, genus; fuoinacula, ase
Oxydis, zenus; veiulis, 392
oxye, armma, Autorraphe,
oxymorus,
Oxyptilus, genus; parlscetdactylus, 416
Oromedin, gtavs, 108

P

Pachnobis, genus: claviformis, ferruginoides, hitoralis, oniliana, pectinata, keddioh, aticarum, Willow, 180
Pachylis, senus, oo; atortims, erameri, Deus, lynces, undatifacio, veneauslensie 60 Pachyaphine. genus, 36 i imperator, modenta, occidentalia, princeps, 3
pacificaria Eois, 336
Packard, A. S. P. P. 30, ${ }^{31},{ }^{33}{ }^{31}{ }^{34}{ }^{33}{ }^{35}{ }^{243}{ }^{243}$ 206;
peckard, Estigmene, 12 , Schinla, 228
Packerdia, genus; elogans, $367 i$ erminata,
368 : nigripunctata. 367
Pectes, genus; abrontoloides oculatrix,
pygman $24 x$
penulata, Eucles, 365
aqenatecheri, Hormoechista, 253
Paladt, gen"9: scurlotina, 229
palsogams, Catocale, 266
Paleace, alencrit, genvs; auturna
ericeilicras, 13
Palindis, kenus, if rinicata, 373
pallens, Cresconia. 57
pallencens, Melipotir, 25
pallialis. Bomolocha, s*6
palliatricula, Chytonix, ${ }^{269}$ Cyothime
Erinnyis, $50, \mathrm{Hyphar}$.3ria, 124
pelfidior, Palpidia, $10 s$
puidulus, Sphinx. 55
palmeri, Lycomorphs, 101
palmer-worms, 11 ,
Palmis, genus: procedens, ${ }^{383}$ Inypena, 88
palpi, 7, 13 pollidior, 10
Palpidia, genus, palidior, 203
Pathis genus: anguialis, mopiatis, araciothumitis, 285
Palyadins, gubfamily, 354
Palyas, genus; auriferara, 354
paming, Automeris, 80
pampina, Eucircedia, 215
pampinaria, Cleors, 344
pampinatrix, Darapsa, 68
Panapoda, genus: carneiconte, comblente
and
Panchryi, genus: purpurigern, 236
pandaria, Caberodes, $35:$
pandara, Caberodes, ${ }^{3}$.
pandorus, Pholuse 63
Pangrast, pents: decoralis, elegantatis opionoides, seometroides, recusans, 254 apinaris, Thering, 348
Fanthes, gunus; Eistern, furcilla, portiandim, Wentern, 15 :

Index

Pooth enua: tulearis 315
арарріта теой,
gete, (urcate, itt: ing cantuphrita, cerrub. ding mecopina, nitaik 213, 213: marimi. ifgein. 283
paphin The The 40
paphia, Tila, 83
paradorics, Prodozus, 43 B
paradoxit, Histiochilut, ses
arninith cunts, 188
Parallotic, Archips, tsy; Olene, no:
parallefin, Pherne, amplisima, bistriaris, 971
parallalia
parmathria, Pherne, 3 g ,
Parmphia, renus: heuchern, 38
mommurrerin, nubeculeria, impropriate triplipunctirit, untularif, subatomaria , unpuncta, untpunctate
Paratemia, Eenus; reomatrica, plantaginis,
${ }^{13}{ }^{134}$ mitised larva, 60
parcest Herneppis, digelvaria, mentilis, 217
parentalis, Richis 60
Pareuchotes, pemy 100
inguiats, 114 ; tenert enencis, Gray-winged
Winged, 134; tenern, I34, 135; Ysllow
Parharmonia, penus; pini, 384
parora, fenus texens, ess
parth, Catocale, 164
parthenice, Apantenis, 120
parthono, Hyphortia, IJ8
partita, Helgula, 847
paritilicane Pop 168
patinacelit. Depremeris
oapulalla, Ephestia, 414 , 48
Patayum, p. 18
patalis, Xy ${ }^{2}$. 18
pttefacte Noctin, 197
putsile, Ciemenale, 18
patibilis, Danteria, 557
patruelis, Eumpettora, suo
patula, Eumestita, 349 : Porocamrotis, sis
paukin, Catocala, 561
pavitanaia, Cirrhobolina, 59
pavonina Calaymbolus, 56
Panaip Wob-worm, The, ist
Peach-twier The, 384
peactinstwig Borer, The, 428
pectinite, Pachnobin, 180
pelarue, Hacmorrhatis ${ }^{180}$ pelfio,jelia, Tinea, 433 , 6 peliucide, Anisote, 43
pellucidaria, Nepytis, 343
pendulinarinnyis, 59
pendulinaria, Coaymbia, 33.
penirnularin Mecoceras, 354
pennsylyanice 866
pepita, Banilode Euthyatira, 304
pepita, Basilodet 34
pepediformis Azeling, 35 ,
perangulation Bomminoidea, 384
perarcuata, Cymatophore, 286
perattenta, Eumatophore, 348
percars, Cyathimit, 161
Percnoptiot, genve; fuviata, 180
perconthe, Noctu4, is,
perditatis, Hyamin, ss
perolegana, Hyloicus, 51
perinus, Metaponim, iso
percentilis, Hiadendin, iss
riocpide ", mily, 34, 35, ste
wrum, in onophorte, is
 ecules ortonil, 1.3; inotmis, Firm 183 , ISe; eimplari
Perigonicents; vecors, ranthioiden, 165
Pertgonici, spats; furnimans, sos
Peritaphs, senus; prime, sos
mothe sontainar information th to
mothe sis
pertarin, Metrocampyptilus, 416
perlarin, Totrocampla, 348
perlet, Matrocmpa, 345; Remigio, 74
perlovin, Buchretis, 28
perlineets, Ventuet, 3 s.
parrubens, Xylorrigen,
periucidufe, Pyromorphe?
permaculate Turuptions, 128
permajna Nonarim, is:
pmophoroiden, Hyparpax, 399
perplex. Eynanthedon, 305
perpolita, Euxos, 188
perpure, Anarta, $\mathbf{t} 99$
permephons, Apantetis, 177
perica, Senninoides, 130
Penimmon 87, 342,
personate.
perspicus, Detana, 189; Raphia, 153
perstriali, Ecirpophat: Thyris, 374
pertextshis, Pyrmusta, 107°
peruviana, Noctuelia, 197
pervers, Kalacosom, 37 ,
pettitand Cenopis, i2s
perulata, Xylina, 206
phealis, Eyliseuxis,
phealis, Episeuxis, sto
Phalenostol, gentinus, 74
phatange, Catocyis, lerentioiden, Ist
phalaris, Catociu, 266
phalaris. Erinnyis, 59
phatianaria, Caberofies 132
phamm, Euerythre, 150
Phams, Euerythre, 180
Pheocym, senus; lineol, Juciforn, of diata, portlandia, rimon, deacherei, dimiPherne, penus; jubarmons, mellis
1elia paralloliaria, placeacio 351 , paralPhigalia, genus; revocate sha 3 gI
títeris 34 , revocala, strgacarin, tites
Philaptauls, Parus, 356
Philodis, senus; punctomecularia, 343
Philoreme, genus; californiata, 150
goctomerus; emulataria, enotita, notate
philodinacurata, 339
Philodinetre Clomenis, 10 :
metonalis, sonus; goasalis, longihbris,
Philosamia, zenus, os; aurotus, canningi,
85; cynthin, 8s, हs; ingularis, pryeni, vesta
Falkert, 领,
Phiprosopus, eenus; ecutalis, callitrichoidea
Phlyctenia, 245 genus; plectilis, syrinricole
tertialis. 307
Phlyctrenordes genus; fuecalis, 305 ; oberthuralis, 306; wordids, sticticalis, tetrasonntis
Thoberia
Phoberia, getus; atomaria, forrigens, in-
phobetron, orthosioides, 273
cana, nondecriptus pin, bvalinus, nigri-
tylu, 366 scriptus, pithecium, tetradac-

Index

Holus, wans, sy; cehemon, A8 arpelo phate 85 , clotho, 81 erantop, sidact

 ctis of

phom, Prychoolune, 88
Threm, Fintin, yonus; benns, brycel, fuldel-
 yarrond 818
Mrymonidis, ${ }^{317}$ musa; callfornca, is
Phryponis, punus; rementeotrita, cermenata
obrwithe 354
Phthoimp pintis, 485 opprculalla, 404 42s; cotanelit tebacolt, tormile, 4is
phifh Eunsi ama vincurumo i9s
Phycitine, Sublamily, 409 ara 10
phyonte cania, gonus,
patrig, Catorals, 86
picticlo-worm, The, 30
picts, Arrechnts, 114 : Erinnyis, so; Minseetrs. 393
pictipennis, Holiones, 230
pictipes, Symanthedon, ${ }^{386}$
thers Plowmwn, quotm, ast
Plow, Unus; mustilineste, 333
pintrisy Nepytin, 34
pintatr, Hyloweus, $\$ 3$, 60
Pinconis runus; com, 36
pineum, Lapart, 33
pini, Parharmonis, Carlpeta, 143
Piniont Aher, 106 ; Bailey's, Brond Aehen, Dowdy, sef; Green Gray, sod; Namblean, Seppy, Thexter's so9; Wanton, se6; Warm Orey, 107
pinorum Veapamims, $3^{2} 4$
pdperis, Erinmyis, 59
Pippone, genus: h (mistri, atI
pithecium, Phobetnon, 366
pityochromus Plagionnimicus, ass
pltyochronat, Suros, 82
placearis Pherve, 311
placids, Kyncharrotis, 19 Noctum, 15
platomimicts. genul; pityochromus, 335
plamodis gutu: arroperia en.jurgataris oncularis, keutsingaris, wetteing, etri
mark tubgrivata. 349
lantigenis, Partamia, 134
Plantago, ${ }^{3} 50,115,134$
patagrotis, eraus; premen, 170
Platanta, 59,369
lakes. Strusi catifornisis, 345 : dulcearia trilinetrin, $343 i$ urcentria 340
crasatu, erectalis oberatis, palonlit, cabra, 189
arelis Conchylodee, 303
latynots, tenus; concurams, Aavedsn
 Platy
Matypreple, genus; guttetn, ochracen, vir ginalis. 13 :
Latypterytida, Family, 24, 34, 330
latypenta, senus; abipuncta, stricilime indigens, meskei, viders, 163
plebeje, Atrides, 49
oleci formis, Bembecin, 3 发
plects, Noctum, $18{ }^{5} 4$
plectilis Phlyctenia, 398
plent, Dyeodia, 375 , 210
fleonectypters, fenus; floccalis, irrecta, pyralis, 246

Poromat conus; oblequts,
phicatul, Ofous sis
Pudia, ewnul; Interpunctells, men, 48
plotis Hypicus, 31
plumber, Hypoppopin, 306 ; Itice, tee
plumbitmbrte, Sprapuois, ast
plumbe, The Ofypevine, 41
Plumanta, 8
plumeric, Puadouphins 59
plumifrontellus Acrolophus, 448

Plutidonta, senus: comproedjaiply, is.
rimid z3s
luto Xylophanes,
Poophite, genus; quadrifiaris, 17
poderre, Evnus; crasaipes, 19
Podoreqis. Penus; lonsipen, syringw, jt
poncila, Hy loicus, 31

Yecte 13
Polis, the diverifineats, thepids, Theodore's theodori, Varted-banded, 89
Poling b. C.i to
polnticormis Nemythrun 38
politis, 8abulodes, 353
Polychrysia, genur, formons, monte, trabe
polygame, Catocela, 260
Polyamist, The, 68
Polymonum, 139 sonus; hebrene, hebraleum
160 olymatr, sum
polyphemus, Teles, \&s
pometeris, A jopphile, 326
pomifohelia, Buccuiarra, 430
pompenala, Alaxandeculatnx, 431
popeanella, Anaphorw, 43
poperne Apatela, 154; Cleouris, sog
Popntus, 39, 13g, 395
Poroangrotis, genus ${ }^{2}$ dedalus, frises, muri
nula, patuls, rileyans. eqpteatrionalia, tripwrs, vetust, worthingtoni, 169
orphyrit, Helieidote, 138
ortims, genus; reghe, 106
Portherit, kenus, 305
Porthatrf, pernus; dispar, fostian, eos
portandin, Panthich, 66
ponticatus, Pholus, ∞
preacuts, Platyperigen, is
privecodens Palmis, $3 \mathrm{IB}_{3}$
prwelare, Catorala, 360
presrindaris, Matrocempa, 344
praxtomate, Mecaria, 34°
prasinta, Adelphagrotis, 189
precetionis, Autortraphe, 33
preat, Platariotia, ${ }^{890}$ prime, Anrothodes, 164; Eotigmene, sal Perigrapha sos
princept, Pachyaphinz, 19
Prinom, 46

perde, mobinie, 39^{8}
percin, robntw, 198
Privet-moth, The, 10
probe, Discrisia, 180
Probosecis, 19
procinctus Dercide, 196
proclivis, Rhisagrotis, 1 is
Prodenid, genus; commeling, ornithogalli,
prodetrns, Orthodes, ses
len, batheen
palple, in-

78: Juandte,
pidn, Theo d, 191
setan, tribus,
mebralexm,

Proborive prive; cinerrus, 441 is aloradmeis peridoriea, quinquopunctarinatus, 4.19: predorice, quinquopunctalia, 43is: fiet:

wormenta, Triphow, 318
moinm, thdmminal, anal, 3
promethes, Catimuni undifors, waphe, 367 promptella, bipyodes, 44
proasctus, genus; typica, ide
44A: viccesolis 441; meculata, sythetica,
propinquecesolls, Copicueulis, sos
propingus, Copicucultis, sos
propinctulis, Rivula, 345
propinquilimes. Domas, 138
propriaris Buchocis, $\mathbf{j} 2 \mathrm{~s}$; Euchlena, 30
popputis, sympistia, sto
proputratit, Oyplochroe, 139
proverpira, Hamplochroa 336
roeppinun, Emenus, is,
fisvofacitite, 73, 78, 73, 75: ciarlais,
Protambulyx. © 73
Prothymis, evnus; s4; strigila, cartori, 54
phodarialis, smipipurpurineifascis, orxyín,
Protoparce. minus, i4: caroling
carollna Dunavin? Linneus:
ooperaic; nicotian; coletti chionanthi; fy,

Protonis, ferus, 43, 45 ; ruatica sexte, is
protumnumatig, 2 ir
proxima, Apanteniclornatha, sit
prosimalis Apantenif, isz; Synagthedon, 387
prunata, Euatroma, 396
prunimilg, Ansmita, 436
Pryer Henry, 70
pryer Philogamis s?
virideace wenus; grotel, muralio, retumene
vindescons, 877
Preudalypita, genus; crustarion, is3
peudalypit, genus; crotchl, is
fiava, fingio, ing: crocea, falcata, Palcata
preudanthaci, Rengus; Yellow, 875
peeudanthracis genus; corecias, 378
peudermings, Estimmene, 08
paeudogemma, Autoriaphe, ose
Pseuduetona, fersun; blanda, decupta, telata,
Pueud
aeudohanis, 及enur, 93 ; denudata, eglentori-
Pua, hors, nut talli, pica, thastasnaig, os
Prewdolimiscodes, fenus, is?
peudonya, Renus; minime, 90
pheudoneustria, Malacosomi, 38.
Peudorxyia, genus, vernata, 245
Proudorthoninx, genus; veriabitis, 16
ol mocurninx, glumusiv, 57: sistrubal, hasdruhal,

Pweudothvatirn, genus;
expulirix, 104 senus; cymatophonoides paidil, Olovertia, 32 I
Paidium pyrifore, 140
Peilura genup; monache, soo
Paychids, Family, 7, B3, 15,360
ptolearim, Eois, 314 ; epimenis, 130
ptelearis, Eois, 334
Pterretholix, senula; bullulk, 243
terophoridse, Pin, 128
Pteropnodis, Fenu: Fa, 25, 37, 415
Ptychoglene, senus; opuscularis, 34
phralane, senus; coccings, finmmara, ptycophora, Fala, sis, tenumarro, 820 prober. Sysimura, 350°
podans, Euehmida, 135: Euthyatira 10 pulortit, Aparala, I 150
puering 0 bethe 30
pulchall Xyoder, 904
pulcher, Xepialut, 197
pulcher, hepingu, 444
pulchrarin, Nenytis, 4_{1}
pulchnpennis, Melicispe 14
oulehrioictali, Cindeptria, 110
multata, Labhrsmes, Sophim, $\$ 07$
pultaria, Therine, 149
pulverem, Kintefocempe, 297; Narthecophorn, pulverit
pulvailine Mationamma, :76
pulverina, Brucrin, 108
puncturta, IA. $\$$
punctatiosime Baphis, 206: Diectide, ins punctlotrigu, Aptace, 15: 97; Hyphantria, 121 punctivens Artace, 3 is
punctomacularia, Fhiledis7: Canndring, 855 pungrens. Horse, is
Pupe. 9
pupillarig, Sygyrhypens, of s
pupule Eustixin, 149,30 s
pura, Carams, 364; Catoinle, s4; Utetheire,
purgate, Cenurgia, osy
purpurana, Archipw, 4as
purpuratcena, Calpe, is6
purpurigerm, Panchryema, if 3
purpuritista, Mamesyim, 16
pustularia, Physostegani 190
purtulata, Culam, 357; Opharus, 839
putnami, Euchaki, 8,37
putremuns, Homopters, s7s
Yrarctí, ©enu; apdominalls, skrans, Efo
vivid, Orange-bodied, spraguef, Sprigere's,

pygmes, Adoneta, 365: Dircetla, sf 4 ;
Pyoctenuchs,
yoctenuchs, ferug: funerew, harris!, pyr
pyrnalida, Peminalie, votive, ifi
Pyralina, Pamily, ar, 85, 36, 246, 302
Pyrnils, genum; farininis
pyralis, Xpharetra, iso: Pleonectypterm, 146
pyramidald, Albuns, ${ }^{25}$
pyramidolden, fyrophile, 849 , 173
pyrarnut, Hemorrhanta; 6_{3}
pyramusalis, Heterogramma, Is 4
Prausta, Renus; mdipaloides araltealis,

fumalis efvencalis, so8: euphoemalis, facialis,
fumalis, 397: funshris, gensrose 308 307: hincinalis, alomeralis, 3ns: guttulosa qualis, jos: lanudonalis ilicalis, 397: inse 39s: magniferatis, 307 ; 307 ; madetenalio nigralis, ocheramig, octomacititias, obormbusalis, orphiralis, pertextetis, 30 N sepletalis, 398 ; subjectalia, 397 ; subolivelis
ubuequslis, 398: thespalis. 107 ; yrati
308; urifaciailis, 397 ; unimmcula, 308 rati
pyraustinae, Subfamily, 302
pyri, Synanthedon, 387
Pyrina, Zeuzeru, 376
378 orpha, genus; dimidiata, perlucidula,
378
Pyroph
colored, genus; plabelle, Gray, Mousepolored, pyramidoides, repressug, tragoprokin, Cargid.
Pytrhia, getus; 301
pyrrhoura. Pyıoctenuche, isf

Indox

prenint, Opedere 185 pynation. hasen 36

rumpros, Anvilut iss ariadraminlate, (rosymbic, 333 quedricornis, cytomis, quadrapontate Huxce, isf quadritiarts maphils, 174 gundryuttili, Alypia, 144 aryadrimuttats, cohmppis, 443 quadmintale, Hotgrophlogre, 329 quadripuncteris, cuhciont, 317
 Druwn, 201
quingurcaudatus, Amnina, 3 光 quingue lineart, opombis, 3,3 quinquemacuisils, Prodoxis, 43s quentil Apantelte, 131
quarcicolm, Euclea, 3ts
querciperde, Prionoayatus, 37s
quercivorpha, Motamema, 13
guercus, Ifeminyelos, is
quarnaris, Nacophore, 345 ,
k
Rechola, panus; brucente, 334
Fachelo, Apochetme, 345 tilandarien evaris. saltuegrin. 316
radisns, Apantenit, 132
radia, Manmetre, 193
Ragonot, E. L., 37. 408
smourla, Actinotis 173
 Lephis, fenu; abruptin, coloredinds, Bex uote. frimet, perminate, 153
Rescal Leal-crumplar, The, 40
rathe, OHAT, 166
ratipa, 8yaphine, 6
Retierdey Jnma, 10 s
reciprucate, Rucharen, 385
conditari. 8ynelyw, 313
rectantule, Automphin, 35
rectanpulate, Hydriontme, 332
rectaría, Anaploder 337
rectifacis, Atethmis, $3 s 0$
rectilines, Apantemis, 189; Cochlidion, 36
ecurvalis, zinciremis, 398
recurans Pangrapto 354
redimicula, Euxoa,
refractaria, Comodont.o, 3 Jo
refuete Nannis, 397
revain, Citheronis, ${ }^{3}$
regis, Cithoponis, 97 Porrims, 286
recuintrix, Xanthopartis, 211
Relict, The, 163
relicta, Catocals, 149,96
Remigh rents; indentata, latipon, perlace repande, taxans, 274
remiles, Phrapmatiobia, is
romimaria, Caberodes, 35 , fllecists, gener kenis, fenus; discols
Reniform apot, 8 s.

renisers, Mamentrs, 101
repande, Remigia, 274 : 5
repentinus, Ceratnmia, 48
repentis, Euxon, IBo; Yrias, s7
repletalix, Pyrautia, 308

[^16]
mbrowapis, ctonucha, ies
gupto, Noteis, sto
micin, lodic, ats
minctudis H'
micilita, pomorthasis, 8\%, is
fulfpetus, Khynchatoite
rufotin be, Caradrina, is, 478
pufuls Diepriarina, ${ }^{3}$
nugifons, Bitis, 1014
rupten, Channatre, 194
rupta, Chuphicis, 100
furiotic: fialerorramma
sos: Mopnod, gpreked, Clvil, Convivial, rutica, Crinn yis spockind, 184
douphinx, sy so: Protoparce, 45; Paru.
rutila, Aturagrap
Futitan, Bynanthedon, jlis

8

Sabal palmetto, $1: 2$
depontana fentia; Areasaria, contingone,
gepontarsita, poniasa, imitata, incuryata, tranamutant sulphughta, irmafindena, ruxalizta, iss eranapowta, trangyertema bulonatiata, 39
Back.betrye Ma, 2ss; Tuerta, $14 t$
sacrimantl, Alypis, Ios Bcalloped, 250
Saddle, back, The, It,
anc, Hybles, ass
andict, finus; interpuncta, alls
sallcarum, pachnobin, zto
sabiceti, Sphins. 35
eabicis, Apatela, is9
Gailow; An Eucosms 41
Even-lined, sisp: Lis; Amointed, ss8:

louf, io: \&ifis Rouside, isi Round
olo: Uniated, \#18, Sloping, amudred,
Salobrana, renus tecarie,
salturarim, Renus; teconie,
samburi, Zothect, ith, 330
Sambucus, irs, 110
Samea, genus; cagtellatis, dinertalis, eceloct
smmid, Evaun s, ${ }^{30 .}$
cecropen
cocropra, 8, columbia, euryand
anborni, Acoratit 8
anmuineala, Prychagtens
santuivepla, Prychoplene, iso
anhivianote, Amilia, 137
Eaniptri, Hymoictupaia,
fonimi, ferus; quinquecasdatus, urocur formic, 3 ha
pernics riphinus; xisiona, pepaidiformis
persice ziphinformis, 284
aporin, Trlocnemis, ess
sappho, Catocala, 6
natollitis, Pholus, 8.
satursta, Schinia, st
Gaturnid Eenus, A ; mendocino, so
Saturniding, Family, is, Ix, 44, j1, lo
atyricum, Uferss is
atyriniformis, Moliteis
cucio. Peridroma, stis, $3 t 0$
Esuer. kraut, 3.10
saunderit, Apanteais, 1an; Homopterm, spe
ancelite, Ochria, 114
sarea, Syneds, iso
cubri, Prathypena, ofy
egbriuncula. Dpotaryule 870
rad innects, (od ypon by inpy ailuw collared, The Wute coliarng, iol
care ' Forteracendee, js?
scardina, Anaphore its, ase
rarletina, Palede, 14
cepajs, pmus, 100 fivivicollis, matthed packerd, monidiaphane, Wrighti, 391
chaus, W, J
Bchifas, tenum, $3 s$
fantit, Fents, ast, acusiknee sa7: albe-
 tracti, si, curn, carymilus eat; comdiverrens, cumasilis, 38 ; deaimats as, theata, jyng ainim, jut, jerina san; nikfiren ent, marainat, morth 289; peckardi, rivuloas, ins, nundina satureta, separata, simples. foweisinct,
tertia, thureau, sall, trifacia, sprame

concinna, conapecta, asoi cinereofrons ipmomere, 20 ; loplinomdes, musteline, op; msids, sob; olenificats, spo; unicornis,
schlerkerf, Btenoma, 425
chemherf, Anarta, 190
chwarzionim, Subfanily, sos
Bciarraphis, Honus, ${ }^{300}$
heliothitiala masil duplicata, mpanitata
torets subcolumbatasata, ocslinata, son
ciata Therima, 34
cintillans, Casocilu, ass
cirpophaga, senus; macrinallus, peritialts,
selome Canidia, $40:$
ecitipennis H , 18 s

cituling Symanthedon, ${ }^{290}$
scobialis, Episcuxis, of
Scolococampe, sents:
Scolioptetyx, fenus; ;ibutris, ifad, s44
scolopendrina, Harpyia, 209, is
Scoparia, fenus, 390
Scopariine, Subimily, 100
Scopeloarma, zenus, it
scotchmen, walkeri, is
Bcotommen,
scotograrnma, senus; inconcinna, infureate,
cribmarina, 198
ecribonia, Ecpantherta, 120
acripte, habroisume, 303
criptipennis, Epireuxis,
cudderiana, Ewcomm, 420

cutelitris Bomolocha, 98
cułosus, Holiothin, 394
Seckel pear 417
Seckel pear, 410
eectilom, Morrisonit, 206
tedate, Tartche, 35
Seirarctia, renus; ech
selecta, Autorraphat echo, niobe, 8 s
Selenis, genus; monotrupa
Selicanis, genus; cinereola, sif
empiaperta, Tricholita, sos
cemiauratus, Sthenopia, 4
semiclarata, Feitia, $186:$ OTthofidonia, 99
aemiclunaria, Nepytia. 3a\%
cmicfocrea, Exyra, 48
semirlaphana, scepsis,
gemifacia, Monoleuca,

Indez

cemiflave, Xanthoptors, 54
semifusellus, Crambus, 40
emilineme, Hyarnis, ssu
semilunat, Hacra, 14
seminuiaris, Therina, 348
Semiophora, genus; bedicollis, catharina ditucidula, eimata, janualis, maniferto-
labes, opacifrons, tenobniers, ise
Semiotcopis genus; merricella, 429
semiplaga, Heterocampe, 397
emipurpurea, Prothymia, 34^{8}
senatoris, Anisota, 94
sents, Haemorrhagra, 6
sentinaria, Leptomeris, 333
separata, Schinia, 327
separatus, Hyloicus, sois, 300: Porosagrotis,
187
epulchralis, Citheronia, 97: Thyris, 374
Sequoia, 53
Sequois, 5 Hybicus sa: Vespamime, 384
serena, Catocela, 96
sericez, Glaen, 218
sericcifersta, Paleacrita, 324
serinaris, Plagodis, 340
serrata, Euchlana, 350: Trichopolia, 199 ucrataria, Euchlans, 330
terriradiellus, Scirpophaga, 402
Sesia, genus, 6x, 370: fadus, tantalus, titan 63
Sesidids, Family, 379
Sesiinae, Subfamily, 37
esquilinea, Syssaura, 352
esquistrianis, AMnnmonis, 274
Sctting-board, 30
Scting-needle, is
severa, Gluphisia, 300
sevorsa, Fenaria, 33
sexatilis, Euxoa, 10°
sexfaciata, Synanthedon, 385
exmaculata, Cclame, 357
sexpunctata, Hyamia, 23
exsignata, Protopance, 45
exza, Prote quoted
, 43 sharp, David, quoted, 3, 17, Po Sheep-moth, Nuttall's, o.
Sizvant, genus; auripennis, repanda, 27. Sibine, genus; ephippiatus, stimulea, 364 siccaria, Therina, 348
Sicya, genus; maculara, 347
Sideraria, Eois, 33^{6}
ajgmaria, Cymatophora, 340
sigmoides, Euteretarrotis, ${ }^{1} 79$ Tricholita, 203
signsta, Desylophia,
sugnataria, Meianolophis,
sionificans, Amilia 137
significans, Amilia, 137
silago, Xenthin, 214
Silk-culture, The Histary of, 316
Silk-moth, The Ailarithus, 8a; Ceanothus,
Columbian, Glover st, Mendocino, so;
Orizabi, 88; Spice-Gush, 84: Tulip-tree,
86: Zephyt, 80
smalis, Comifrons, 39
similens Eucosma, it8
similis, Alypit, 143; Catocala 268
simpleris, Notodonts, 203: Peridroma, i83 simplex, Autographa, z40; Comacla, so7:

Xylomiges, 197
ingule Peeudanertas, 383
sinualis, Melipotis, ass

Sister, The Little, s6o
itelista, Gypsochron, 332
Six-plume Moth. The, 41
Bx-letonizer, The Apple-leaf, 41 i
Skinna- Henry, ix
slossoni, Gluphisis, 300
slousonit, Alarodia, 366
Slug: Monkey, 366; ${ }^{3}$ Naeon's, 366; Pymeny,
36 ; Slosson's, 366 , Spiny Oak-, 365
mall Angle Shaden, 172
smerinthus 54
mith, Herbert H. 30 $0,33,33,34,118$
mithi, Grammodea, 374
Gmythe, Ellison, 63.
Snout-moth The Meal, 40
nnoviaris, Mellitis, 338
snowi, Melittis, 3^{81}
sobria, Calpe, a
36; D
oobria, Calpe, ${ }^{236}$; Drasteri山, 237; Eois, 335
Nephelodes, 100
socia, Syneda, 250
Olaracese 45
olanella, Phthorimara, 423
Olenobia, genus, 360
Solidego, $101,117,126,232,418$
Solidago Gall-moth, The, $423{ }^{4}$
colituds, Gren, 381
Somitios, in body of larvas, 6
mmnus, Catocala, 263
urdids, IIyloicus, 40; Phlyctenodes, 305
sordidata Hydriomens, 33 t
enrorius, Hemileuce, of
Southey, quated, 17
stellata, Derrima, 224
Stendupilates, genus; salisaria, 351
Stenoms, genus; schlegeri, 428
Sthenopis, genus; alni, argentata, argenteo-
maculats, quadriguttistus, semisuratus,
443
Stibedium, renus; spumosum, 234
3ticticalis, Phlycternodes, 305
stigma, Anisot3, 94
stigmata, Dryobota, 17 t
stigmosa, Peltia, 186
stimulea, Sibine, 364
Stinking Caterpillars, 90 ; spines, o
Stiria, genus; rugifrons, 334
stragula, Hyperzachra, 304
Strawherry-borer, The, 30
Strecker, Herman, 30, 52
Streno'jms, genus; lunitines, 147, 276
Streno min, genus; luminite, 147, 276
stret hi, Catocalis, 363 ; Syneda, a60; Utetheisfor 117
Stre chin, genus; muricina, 30 S
striata, itice, 109
triatella.
trigate, Calophatia, 170 ; Euclen,
Eucalyptere, 344; Rancora, 300
strigatisfie, Phigalie, 347
trigicollis, Mamestra, 105
strigils, Pholus, 6 (13: Calidota, 130
Melalopha, 303 , 332
trigulera, Conoculpe
stypiaria Arelina, 352
tylats, Cerspods, 177
stylobitit, Campometris, ${ }^{2} 6$
Stylopodi, genus; cephalic象, 320
spadix, Cistuss, 356
Span-worm; Goosedherry, 340; Walnut, 345

Index

Sulimwi, English, 325
Specullong. The, 320
specioss. Apa se of, killing, mounting, to specioxth, \mathbf{H}
sjectanda. Clil undes. 233
spectans, Ap11:1a, 156
Spectre, The 11 :1a,

Spermacoct, 75
speyeri Cucullia
154 odes, genus; floridensis, vulneraria 354
Sphecodina, Eenus amily 354
Sphida, genus; obliqua, ablotti, 70
Shingidra, $12,25,30$, obliquata, 21
Sphinx, genus, 54, 30,41
geminatus, jamaicensis, s5: ccrisyi, 54 aphthalmica, pallidulus, saiceti, iri, 54 tuline 5
Phinx, Abbot's, 70; Abbot's Pine, 53 ;
Achemon, 60 ; Alope, 58; Ash, 46 : Azalea
56: Bomb, 71 : Big Poplar, 52 : Blinded
S6: Bombyx, 53, Catalpa, 48; Cerisy's,

53: Cramers, s9; Cypress, 48: Domingo,
horned, ${ }^{58}$, Euterpe, 74 ; Fig, 60 ; Four.
73: Giant Gray 71 Gordin, 67: Gaura,
of; Hermit, ${ }^{\text {72 }}$: Gordian, 51 ; Grote's,
Huckleberry, Hermit-like, 49 ; Hog, 68
51; Lemer Vine, 67 ; Lettered, 69 : Laurel,
st; Lintner's Pine, s3: Madam; Lintner's,
58! Mourning, 61; Nessus, 72; Neumargen's
So; Obscure, 59; 'Occult, 7s; Neumagen'
Papaw, 46; Phacton, 74; Pine szi: Pluto
25; Rustic, 45; Satellite, 65: Sequia
Silver-spotted, 60 : Small eyed, 52
Strecker's, $3:$ Striped Moming, 76
Tersa, ${ }^{751}$ Tomatn, 45 : Twin-snot, ${ }^{26}$
Wancouver, Soi Vine, 67 , Walnut, 15
banded Day. 63: Wild Poplar, s7i White-
banded Day:, 73 ; Wild Cherry, ${ }^{2}$; Yellow-
pilomela, Carailrina
Spinneret,
spinose, Eupanychis, 226
apinuloides, Adoneta, 365
spirea, 237, 366
"Spirs, Euxoa, 18
"Splitters", and "Luinpers," 112
Sport, The, 152
Spots on trings of noctuid moth, is
Spragueia pygarctia, ty6; Schinia, azo
plumbifimbriat, trifarianattata, onagrus,
spumorum, Stibed 1 , 252
spuraria, Leptomeris, 333
Spurs, tibial 14 , 33
sputatrix, Hadenas
squamigera, Almodes
s. zigmata, Macaria, 339
subzequarim, Apacasia, 342
subabicans, Heterocampa, 297
subatomaris, Xylomikes, 197 subatomaris, Paraphis, 343 subcinctaria, Macaris 107 subcitrina, Magaria, 3.39 ubitrina, Megalopyge, 369 subdolens, Nephelodes, 190 ubfiava, Nophalia 199 ubpothica, Peltia, 18 subjecta, Ilice, 100 subjectadis, Pyiausta, 397
subjuncta, Hadenella, 16s; Namentra, 103
submarina, Cleora, 344
subnata, C, Scotogramma, 198
subolivalis, Pyrain, 266
zubornata, Hymoprepis, 39 .
aubpartita, Gypprepia, 106
subprivata, Plagodis, 34
subpunctata Heliophila, 30
Subrexions, Faunal, 3^{347}
subsequalia, Pyrausta,
suboignartus, Ennomos, 348
subsinuaria, Hyperitis,
substrigeta
349
Substrigata, Noctum, 184
Subterminal line, is
subusta, Atethmia, 220
ucceruaria, Cymat, 261
332 Cymatophora, 341: Hematopsis, uillrak
Lueta, ${ }^{2}$, quitept 269
sufuse Agrotis, 182 ; Mamestra, ${ }^{2}$,
Sugusalis, Pantographa, 303
Sugar-beet Moth, The, 305
Sugar-cane, ${ }^{403}$
sulphurg for moths, 146
sulphuratia, Alcis, 143
${ }^{8}$ suphurata, Sabulodes, 33
superaria, Caberud 150
suppressaria, Eeis 35
surrectalis, Epizeuxis, 28
sutrix, Tompcontia, 250
Sweetheart, The, ${ }^{263}$
Swift, quoted, 370
Swordgrass; American, Dot and Dash,
sylvaticoides, Malacota, 234
sylvaticoifles, Malacosoma, 31
Symmerista, genus; albifrons, 296
Symphoricarpus, 62 , tripunctaria, 342
Sympistis, genus; 62,63
Synanthedon, zenus. properius, a29
amula, albicornis acericolum, acerni, 3 6
ureopurpurea, 387 ; ${ }^{387}$ tassiformis, areola, ${ }^{38}$ boli brunneipennis, consimilissiformis, bolli, gallivorum, 387 ; hemizons, eupstorii, 383 387; hyperici, imitata, imone, 385 , hospes 385 ; inusitata, 386 ; karbelei, ${ }^{2}$; infirma lusirans, madarie, 385 ; modesta, 3 , neglecta, perplexa, 385 ; pictipes, 3 37? proxima, pyri, 387 ; rileyans, rutilans, 385 scitula, 387 ; sexfesciata, tipuliformis, rashingtonia, 38 s
Syneda, genus; iquorarim, tricoloraria, 336 athabasca, 260 , adumbrata, alleni, 259 ; edwardsi, 260 ; capticola, divergens, 250 : hudsonica, 260: graphica, 259: howlandi
${ }^{260}$ 20,
reconditaria, 33,
ennucleat
gens ha, genus, alticola, devergens, diver
synochitis, Eustrotia, 240
Syntomeid, genus; epilais, euterpe, ferox, Syomere, 99
syrtcosia, 24, 31, 98
Syringa, Amila, 137
syringa, Pod
yringicola Posesia, 382
Syssaura, Phlyctania, 307
infensata, juniperurisus, biclaria, ephyrata
puber. sesquilinca, cemearia, olysonaria,
jyssphinx, genus o6. 352
brodti, raspa, White-lined, of

Index

Sysyrhypens, senus; hard, oreiforalis, pupilarise 382

T

tabecelly Phthosimea, 425
tectus, Homopyritis, 236
twinta, Preudoglena, 316
talidiformis, Crambodes. 163
centalus, Sesia, 42, 67, 62
tapayuse, Cocytius, 44
tapetsell. Trichophaga, 434
Tupinostola, genus; variana, 216
Taruche, genus sprica, binocuia, delecta, erantriotden, favpencia, lictipenmis, isnceo ata, libedis, metailica, sedata, terminima Cuta, virginalis, 251
Tarsius spectrum, 77
Tarnus, 14, 15
Taylor, J., quoted, 333
tearli, Bombycia, 304
Tecoma, 40, 401
tecome, smobrant, 401
tecta, Amyna, 243; Orthodes, 203
Telea, penus, 87 ; fenestres, oculem, paphis, polyphemus, 87
elifera. Agrotis, 182
eligera, Mamestra, 193
tenebrifers, Semiophora, 180
enebronat. Cymitophors, 180
tenera, Pareuchates, 134
Tennyson, Alfred, quoted, 22, 445
tennilacia, Ilice, 109: Oncocnemis, 176
cenuimargo, Ptychoglene, 110
tenuis, Hemorrhagia, 63 ; Isogona, 256
tepida, Xylina, 207
ephra, Olene, 308
ephroclystis, genus, 327: Ebsinthiata, ab
yynthiata, coaguleta, elongate, geminate
minutata, notate 328
erntophora,
terloon, Artonotus, ${ }^{7}$
Terminalis Pyooctenuchs, 112 ; Utotheisa, 819
terminimscuis, Tareche, 251
terraria, Almodes, 35
eerrille, Phthorimes, 423
terrifica, Setagrotis, 18 :
tersa, Xylophanes, 73
sertic Schinis, 128
tertialis, Phlyctenis, 397
tessellaris, Falisidota, (13)
tersellata, Euxoa, ${ }^{189}$
testecee, Tortricidia, 368
Tetanolita, genus, 283 ; myneralis, 284
etracis, genus; allediusaria, aspileta, crocelleta, 383
tetradactylus Phobetron, 366
etragonalis, Phlyctenodes. 395
etrampilari, Cochlidion, ${ }^{36}$
exana, Comacle 107; Hurrisins
Horame, 100; Parora, 255; Remicia, 374
textor, Hyphantria, 124
textule, Sisyrowes, 366
thalinhis, Noctuelin, 300
Thalpochares, genus; etheris, 249
thaxteri, Xylins, 207
thecata, Himelle, 204
heodori, Polis, ${ }^{1}$
Therasea, genus; fiaviconta, $23!$
Therint, genus, 347: equaliaria, athasiaria, 347: fervidaris. puitaris, scista, seminudaris, seminudata, ticcaria, 348
thesealis, Pyruusta, 307
thetic, Humorrharia, 6_{4} Daritis, 98
Thoman, Edith M., quoted, 358
Thomeon, James, fuoted, 331, 390
thoracica, Malecotoma, 313
thoracicoldez, Malacosoms, 323
thorates, Xylophanes, 75
Thorax, $14,{ }^{18}$
thorenui, Schinia, 228
Thyyatirid Re, Family, 25, 34, 303
thyatiroides, Eosphoropteryx, 237; Dosylo phim, 296
Thyreion, genus; roses, a3
Thyrididx, Family, 34. 35, 374
Thyridopteryx, genus; coniferarum, ephe-
mereformis, 361
Thyris, genus; fugubris, maculate, Mournful,
nevidw, perapicua, repulchralis, Spotted 374
Thysania, genus; zenobia, 270
thylbe, Hiemorrhagia, 69
Tibion,14, 13
Tiger, 78 Bean'is 126 Blake's, is1;' Bruce's, i26;
 Intermediate, 12,0 , bella, $125:$ Labrador Mexican, i31; Nevida, 131, - mater iso Phyllire, 13z; Ranchman's. 128; Ruby, 126; Small, ${ }^{134 ;}$ St. Lawrence, ${ }^{1288}$ Straipht-lined ${ }^{\text {r } 20 \text {; }}$; Virgin, 1a9: Virginian, Vestal, 127; Williams', 132; Yarrow 's, 127 Zuni, 124
riangulatum, Eustroms, 320
triangulifer, Cirriophanus, 334
tianis, Disutema, 24!
Tilia, 300
ilis ria, Erannis, 347
timsis, Xanthopastis, 231
inctaria, Cleora, clle, merdelin, pellionelia, 433
Tineidas, Pumily, 6, 25, 26, 37, 43
Tineole, genua; bizelicila, bistellicila, crinelle destructor, ianariella, 432
tipuliformis, Syranthedon, $3 \mathrm{~B}_{3}$
titan, Sesia, 62
Titanio genus: proximalis, 306
tites. Phigalia, 347
titearin, Phigalia, 347
togata, Orthodes, 203; Xanthis, 214
cogata, Orthocies. 303; Xan
Tolype, genus; velled, ${ }^{312}$.Historie of Serpents," quoted,
Toptell, "Historie of Pour-footed Beasts," quoted, 357
toreuta, Bomolochs, 286
Tornacontia, genus; sutrix, 230
torrefacta, ApatelodeA, 202
Tortricide, Family, 21 25, 37, 41\%
Tortricidia. genus; cesonia, fiexuons, tetaeee, 368
Tortrix, genus; albicomana, 423
tortuose, Hyperrachre, 294, Tomale, genus: planglis, 402
oxocampa, genus: victoria, 973
trabalia, Yurna, 407
trabea, Polychryaia, 36
Trachet, genus: delicata, 172
Tragedy of the Night.moth, 100
tragopoginis, Pyrophila, 171
Trams genus; arrose, detrahens, 976
tranquile, Zotheca, 219
transducenc, Abbotana, 333
transferens, Abbotans, 331
tranisfinden, Sabriloden, 353
transirons, Hedens, 166
transmontana, Arctia 138
transmutans, sarctia, 134
transpocita, Sabulodes, 33
transversata, Ellidades, 3 g3
Transverte, anterior line, 18 ; posteri33 8
trentonalis, Horculia, 40 ,
Trichoclen, genus; antica, 100
Trichocosmia, genus; inomsta, 220
Tricholita, genus; semiaperta, 210
Trichophatis, genus; tapetzelin, 434
Trichopolia, genus; serrata, 100
Trichosellus, genus; crotehi, cupes, a26
Trichotarache, genis; assimilis is6 22
tricinctus, Memythrus, 38 ,
Hypoprepia, os, 233: Hemileuca, o3
tricoloraria, Synchlors, 136 , 133
trifariana. Spragutia, 136
trifascia Schinia, 227
trifolii, Mamestri, ${ }^{227}$
trigoni, Bertholdia, 140
rgonophora, genus; periculosa vom
neum, ${ }^{2 I}$
trilinearia, Heterophleps, 32
trillinearia, Metanems, 35 F ; Pistea, 143
trimaculata, Glyphisia, 300
trinotatat, Celamp, 359, 143; Euorythra, 120
Triocnemis, Celama, 357

tripartita, Dasylophis, 187
tripartitus, Sphinx.
riphose, genus; dubit
andubitata, pro
riplipunctaria, Paraphia, 341
nprocris, genus, 371 ; constans, itatercuis
\$72; rata, $371:$ smithisonianus, 372
Tripsucura dactyloides, 403
tripunctanis Syus; opipara, 230
ripunctana, Sympherta, 342
trisectus, Craminus, 337
tristis, Castocaleus, 40
Tristyis rocaln, 162
triumphin fenus; Phlyctoplagiata, 220
Trochanter, 14, 5
truncatitia, Epelis,
truncatula, Fruva, 337
truxaliata, Sobulof 332
Tubercles, larval, 8
Tuerta, fenus: noctuiformis, sabulows, 143
tumida, Peudanthuecia, 228
tunicana, Epaguge, 41:
turbins, Apantesis, is:
turbide. Heterocamp, 402
turbide. Heterocampa, 297
urbulenta, Hedens, it
Turkey, Shooting wild, 4
turris, Ethooting wild, 148
Turuptiana, genus;
ducta, 12r \quad cexa, permaculata, re
ypha intifolia, 51
yphon, Pholus, 6 g
ypice, Pronoctum, iss
yralis, Pyrautat, 108^{3}

U

U-brevis, Autogtapha, ast
cus, senus; barometricus, plicutus, satyri.
ulmi, Apprala, 855 ; Caratomia, 47: Hstero. Ufolonche, genua; modenta, los
Ulosyned, genus; valenta, Igo
ultronia, Catocatis, 265
umbeliana, Depra, 265
umbellana, Depresqaria, 428
umbre, Pyrthia, at 4 , 428
umbrata, Clemensis
umbrifascia Hyarnia, 254 Heterocampm, 297
uncanaria, Platea, $148{ }^{254}$
Underwings, The, ${ }^{142}$ 260;
Aholibah, the, 265: Arrippina, 260 Copper, 173 ; Andromache, 267, Americar1 263 ; Augurta, 264; Babeyaga, 26 ; Angus' 267: Bianca, 262 ; Briseis, 204, Ci, Badia 263 ; Carris's, 26 t ; Celig, 363 ; Cleopatra 263: Clouded, 266; Darling, 263 ; Dejected 267; Delilah, Desdernona, 267 ; Dejected, 260; Evelina, Faintly Green, $26 r$; Faustina 264; Glittering, 266. Gloomy, 26:; Graceful, 260; Grnte' 1 , 264; Hawthorn, 268; Hraceful, Judith, 362 ; Litile, 265 ; Inconsolable, Magdalen, 267 ; Mirbled; Luciana, 26_{3}; 264: Mopsa, 26 ; Marbled, 263 ; Meske's, Obscure, 262; Old. Mother, 264 : Mouming, Olivia, 36_{9} : Once-married, Oldwife, ${ }^{266}$ 26t; Phalanka, 266; Pure, 364; Robineon', 169: Rosalind, 264; Sappho, 360; Scerlet, 26s: Serene, 36 ; Sleepy, Stretch's Tearful, 261 : Ult porias, Verrill's, 263 Whitney's 367 ; Widow, Widowed, 265 $\begin{array}{ll}\text { Whitney's, } & 268 \text {; Yellow banded, } 261 \text {; } \\ \text { Yellow }\end{array}$ undatifascia, Pachyl, Youthful, 266
undifera, Prolimacoies, 65
undosus, Cossus, 377 , 367
undularis, Ypsia, 278
undulata, Hydria, 320
undulosa, Ceratomia, 48
ngues, 14,13
un, 2, Gunidionta, 236
unicolor, Eudule, 327; Mitogals 297 ;
Noctua, 84
unicornis, Sch
unifoscis, Schizura, 208
unifascialis. Pyraust
uniformis, Crempasta, 307
Hzmorrhagia, 63 , 04 ; Hematomis, 107:
unijuga, Catocain, 36
unilineata, Homoptera, 278
unimacule, Pyraptast, 278
unimode, Xylina, 209
unio, Euthisanotia, 232
unipuncta, Heliophit, soo; Leucania, :75:
Paraphia, 343
unipunctata, Paraphia, 343
urocerif Abrostols, 240
uroceriormis, Sannina, 382
Urahensis, Arcti 209
Otheis, senus, 114; Ths Beautiful, The omatrix, unor, Catucala, $\mathbf{3}$ g. V
vaccinil, Autographa, 230
vacciniivorana, Acerns, 42
Vaccinium, 56
vagans, Ditcrisia, 128
Valens, Ulosyned, $\$ 37$
Valeria, genus; opina, 172
vancollaverensis, Feltia, 186; Hyloicus, 50

Index

varsderia, Caberodes, 33
號, Automeris, 89; Heterocampa, 997 , OLicin, 105
varisinlis Preudorthosin, 216
varlans, Tapinostols, 216
variolans, Alceris, 421
variolaris, Deilines, 33
varus, Sysenars, 35
vashti, IH yloiets, 30
vau, Molalophat, 195 ,
vecars. Orthodes, 203 ; Perigen, 165
vecors, Porocolon, 13
rega, Porocoion, 73
velata, Orthodes, 203; Rhynchegrotis, 178 velleda, Tolype, 31 a
velleripennis, Euxo4, iss
vellifers, Bomolochs, 386
Fenstion of winge, 36
venersbilis, Peltis, 186
vonesuslensis, PachyHa, 60
venoes, Cienucha, roi
ventilator, Marasmalus, 24
venus, Hyparpax, 290
Venusia, genus; cambrice, comptaria, con-
clinataf, perlineata, 328
venusta, Eucizalcis, 237 ; Hyparpax, 299
verborcoides, Hadens, 160
Verbena, 163
vermiculats, Gnophela, 390
vernsta, Euclea, 365; Nyctobia, 324; Palee-
crita, 314
verrillians, Catocala, 263
verruce, Autographs, 13
versicolor, Darapes, 69
versute, Hadena, 167; Pseudorgyia, 145
verticall, Euxoa, 18
Vespamima, genus; pinorum, sequoire, 384 Vespiformis, Beruis, 383
veipiformis, ALgeri,
vestatint Orthofidon
vestalis. Haplow, $118 ; \mathbf{M}$ genes, 1 a
ventitarim, Ania, 349
vesulis. Oxydia, 332
vetusti, Hemerocampa, 306 ; Porosagrotia, 187
vistic. Gles, 218; Orthofidonia, 337
Viburnum, 62, 6.3
vicaria, Noctu3, 184
vicariank, Archipa, 42
vicins, Marnestre, 295
victoria, Platyecnte, 103
vidua, Catocala, 26 I
viduate, Ctocala, 26
vinculum, Phurys, 275
vinola, Hadena, 170
vinnula, Apatela, is6
vinetaria, Euchlena, 350
violacer, Hadenu, 167
violans, Nephelodes, 199
viralis, Hedens, 168
vireacens, Chloridea, 312
virgata, Ianssas. 298
virginalis, Platyprepia, 128 ; Tarache, 251 virginaria, Epimecis, 344 virginiensis, Anisota, 94, 85 virgo, Apantesia, i2o
virgo, Apantesia, 1 ,
virtians, Homoptert, ays
viridescens, Pxsphidia, II7
viridiclava, Euclea, 365
vindis, Eucles. 3ns
viridisisnatin, Adtograche, 239
vincoperiska, Metrocampa, 348
Vridula, zotheca, 219
Vitacie, 6t, 65, 70
vitis, Pholus, 67
vittata, Apantelis, 132; Hypoprepin, 806
vivide, Pygarctia, 136
volupin, Rhododipen, as
voluts Adoneta 36;
vomering, Mortisonis, 106
votiva, Pygoctenuche, its
v-fignatans, Archipe, 42a
vulneraria, Sphacelodes, 334
vulnifica, Bellurs, 211
W
Waingcot; Commin, 293; Dark-wiager, Palse, ion; Heterodox, 202; Lesser, zo1; Many-lined, 202; White-l
Wakaruse Yponomeute, 423
walkeri, Philommin, 82; Scopeloaoma, ats
Walking as a Fine Art, 370
Walnut Case-bearer, The, 108
Walnut Spar-worm, The, 145
Walshin, genus; amorphelia, 430
Walsinpham, Lord, 37, 38
walsinghami, Ctenucha, 10
Waltun, Izaak, quoted, 374
washingtonia, Synanthedon, $3^{3} \mathrm{~s}$
Whshingtomians, Xylins, 20,7
Wasp.moth; Double-tufted, 99; Edwards', too; Lesser, 99; Polka-dot, 99 ; Scarlet -Fieb-worm, The Parsnip, 428
Heb-worm, The Parsnip, 428
whitneyi, Citocal 35,268
Whittier, J. G., quoted, 292320
Wife, The, abs
willinmsi, Apantesis, 132
wilsoni, Ciris, 2,33
Wings,
wiskotti, Arctin, 134
Wittfeldi, Alypia, 143, 144
Wood, Rev. J. G., quoted, 360
woodi Homontera, ${ }^{17} 7^{8}$ Brown
Wooding, Beautiful, Brown, Pletcher's wrieving 197 Wood-nympi, beantifu, Pearly, 33
Woolly beart, 115,123
Wordsworth, Fuoted, 415
worthingtoni, Poroengrotis,
wrighti, Gluphisia, 300; Scepsis, 10 :

X

Xenthic, genus: flavago, silago, togeta, 214 xanthioides, Periget 165
Xanthometais, menus; regnatrix, timais, 231
Xanthoptere, genus; nigrofimbria, 248 terniflava, 240
XAnthothrix, genus; neumageni, 238 cro cataria, 349
iphiaformis, Sanninoidea, 38
Xylins, genus: antennata, 206; baileyi, so? cinerem, disposita, 206, innominate, Latici neres, 307 ; petulca, 206: pexata, tepids thaxteri, unimnds, washingtonians, so
xyhing, Alsbama, 243
zylinoide, Hyppe, 17
Xylomiget, genus; cognata, crucialis, doloa Retcher, indurita, pathlis, perlubens pulhella, simplex, iubapicalis, 397

Xylophanes, genus, 75 ; horhavis, emesuz Xylorictide, pamily, 46,458 \mathbf{Y}
Yarrowi, Phrafmatobia, : $: 77$
yavapai, Hemileuca, o?
y-invera, Cochlidion, ${ }^{2} 67$; Prodoxus, 430
ponomeuta, genus; euonymelia, multi-
punctella, orbimaculella, ordinatellus, wa-
kirina, 473
$\mathbf{Y}^{\text {ponian, penusids, }}$ Fandily, 26, 58,423
ypilion, Astotia, $140,18{ }^{3}$
Yims, senus, clientis , 82
Yucci, 477 ;
Yucca, 437 ; angustifolid, filameniose, 442 ;
Whipplei, 440,442
Yucen-moth, 448
Yuccanelia, Fronuha
Yumn genus; dulatalis, trablelia, 407

2

Zale, genus, horride, 179
salinecria, Stenispilitees, Zanclognatha, pernus;, is vigat
minimailiz, ochreipennis, paits, Bituralis, zes, Achatoies, 212 ; Plodis, ithmualis, 28 I zelatella Mineola 400 Podia, 415 Znller, I. C., 37 zelieri, Automeri
zennbis, Thysanis, 8
zephyria, Automeris, ${ }^{270}$
Zenzere, kenus; ssculi, decipiens, hilaris hypocastrina, pyrina, 376
Zinckenig, gents; albifacialis, angustalis, diffascialis, fascialis, recurvalis, 398
zonata, Homopyralis, as6
Zophodia, genus; grossularia, turbitelia, 4 yz
Zosteropodia, genus; hirtipes, sos
athecs, genus; sambuci, tianquila, viridula ${ }^{219}{ }^{2}$

[^0]: Kinmern

[^1]: * 1 suppose you are an entomologist?"
 "Not quits so ambitious an that, sir. I should like to put my eyes on the individual entitled to that name. No man can be truly called an entomologist, sir; the subject is too vast for ony single human intelligence to grasp."

[^2]: *Cambridge Nintural History, Vol. VI. p. 366.

[^3]: - No good character hae bees abown ot precent for the enparation of she Ccophoside and the Blestobacids.

[^4]: " And there's never a blade nor a leaf too mean To be some happy cresture's place."

[^5]: -The specimens used on Plete XVI. Figs. 10 end 7. both unfortamately developed crease on their abdomen between the time when they were eet up for the photographer and the time when they were photographed. The obdomen in both capos is normally

[^6]: - The entomologist need not relax his endeavors day or night. Mothing is night employment."-A. S. Packard.

[^7]: " Yon night moths that hower where honey brims over,"
 JeAst Ingelow. Sungs of Seven.
 179

[^8]: "Place and time requiring, let this insect fly. It hovers round the wick-with the wind of its wings the flame is extinguished."

 Südraka, The Mrichchakati, or. The Toy-care.

[^9]:
 firditu imhiris Limmatus, :
 Zashe hurribis InImere es
 Lituprosupus /utihas Grote di Rulanwon, o'

 Cimpmentat millis liarvery o'
 I Intionrais s. menastilix Huhnur. v^{*}.

 1 rias repentis Gerute. ©
 Jrins licntin (irrter. ot

 /rigond matatrit Chemive, तो

 Zandighatha lituralis llumare, of

 lioniad disotheradis Guenée. or
 Indhisu angulalis IInbuer. O
 Hetorigramum pirannusalis Walker, of.

 Epizuxis scathalis Grute. 8 .
 Episeuxis luhriculis Geyer. Q.
 Philonctra metomulix Watker, 0^{*}.
 Hormisal hirilthal Grote, J. U. S. N. M.

 C.apis curadd Gratc. $\%$.

[^10]: - The 13aron was an entomologist. Both the Fontenette thought we should tre fascinated with the beauty of some of his cases of motha and butterfies."
 C. W. Cabler.

[^11]: " It was brown with a golden gluss, Janette,
 It was finer than silk of the floss, my pet:
 ' T was a beant inl mist falling down to your wrist,
 'T was a thing to be braided, and jewelled, antl kissed-
 'T was the loveliest hair in the world, pet."

[^12]: Palhis asopialis Guenée, $\{$.
 Gabirasa ambigualis Walker, δ^{3}.
 Bomolocha masalis Walker, \circ.
 Bomolocha badtim malis Guené, ?.
 Bomolocha abalinealis Walker. σ^{7}.
 Bomolocha madefactalis Guené, σ^{7}.
 Bonolocha bijugalis Walker. δ^{7}.
 Bomolocha deceptalis Walker, ${ }^{7}$.
 Bomolocha toreuta Grote, d".
 Bomolocha scutellaris Grote. 8.
 Bomolocha edictalis Walker. δ^{7}.
 Hypeno humuli Harris, δ^{7}.
 Нурена bиmuli var. 0^{3} :
 Plathypena scabra Fabricius. 0^{7}.
 Vy:teola lintiserama Speyeri of.
 Brephos infans Mosclaler. of.
 Cilledapteryx dryopterata Grote. 0^{7}
 \therefore elanchrosa geonetroides Waiker, of.
 Melanchriva cephise Cramer, of
 Sphaceloxles viditeraria Hübner, 0^{*}.
 Dyspheris ahordiz'aria Herrich-Schaeffer, O^{7}.
 N yetobis limitata Walker. ot.
 Cladora atroliturata Walker. 0^{*}.
 Rachela briceata Hulst. δ^{7}.
 Paleacrita vernata Pcek.
 Paleacrita vernata Peck, $\%$
 Eudule mondica Walker, or
 Eudule unicolor Robineon, or
 Heterophleps triguttaria Herrich-Schaffer. 0^{7}.
 Encymatoge intestinata Guenéc. \&
 Nannia refusata Walker. ${ }^{7}$.
 Tephroclystis absintiata Clerck. o^{7}.
 Venusia comptaria Walker, σ^{7}
 Hydria undulatu Linnaus, of
 Hydriomena latirupla Walker, σ°
 Philereme californiata Packard, O^{\prime}.
 Gypsochrou sitcllata Guenée. O^{2}.
 Rhoumapterg rubrosuffusata Packard. δ^{7}
 Rheumaptera l ct i la Denis \& Schiffermūiler, or
 Rheumaptera "astata Linneus. ơ
 Rhesmaptera hastata Linnaus, var. of.
 Eustroma diversilineata Hubncr. of
 Eustroma atrocolerata Grote. 0^{3}.
 Gypsochroa designata Hufnagel. ot
 Triphasa progressata Walker. ${ }^{\circ}$
 Mesoleu: a hersiliada Guenér. of
 Mesolenca gratulata Walker. 0^{7}.
 Percnoprilota fuviata Hübner. of
 Mesolenca intermediata Guenée. o'
 Mesolenca lacwstrata Guenée. 7.
 Hydriomena autumnalis Strömever, δ.
 Hydriomena speciosala Packard, ox
 Eustroma prunata Linneus. ${ }^{\circ}$.
 Hydriomena sordidata Fabricius. δ^{7}.

[^13]: 1 Genera found in Asia and Africa.

[^14]: 1 The common Garman name for the cossus.

[^15]: " I recogaize
 The moths, with that great overpoise of winge Which makes a mystery of them how at all They can stop flying."
 E. B. Browning. -Aırora Leigh.

[^16]: uphetaris Amplis, 18 cmition, Aain. 149
 retrictily Helioder ase netorets, ciambithe 394 peparnong Paphiale 319 puterta, Cytincla, sha Focertata, Mararia, 399 Fetphtala, Maczin, 3t reticulat, prodonum, 44° tretingeuhum, if
 rcveyme, Nycteols, os
 procute, fhtelle 34
 Tubruguntante, 980

 Thorla, Apanteris, is is
 prodarialls Prothymia, 34
 thododitan, 173 mesoni, mileient, vohpis,
 Bhadophors, semus; citronolks, tooids.
 ghadowe matutine fulis, sas
 thatout, Erinnyta, 39
 Rhopalocern, 3
 Shymchagrotie, patus; altomsta, 190; ancho ciluides, cupide, ilvipennis, its: mini mitia, 17x, 179 ; placide, nuppectus, valate
 1htale, Cymatophore, 34°
 ribetaría, Eurtroma, 380
 phamboni, Arartig ioperentalis, 100
 Ruchter, Jean Pauk, quated, 417
 Hickeokent, Eptigumene, 123
 richarkna Alypion, 143, I43
 Miley, C. Aypis, 143, 143, 154, 195, 301, 22.3,
 -1, 33, 239, 243, 200, 231, 335, 36\%,

 Hh ,inh Heterapacha, 314 : Porvagmotis, il7; Cynanthedor, 385
 Rimoti, Phoodi Cos propincualis, 345
 Rivala, penus; propinç
 Hivularis, Almodes, 354
 Robinis, growdacmeta, 178,410
 Robinis, proudacactis, 378 ,
 Rubiniseon, C. T, 89, 30,37
 nobinsoni, Catucete, s6s: Cremonls, s7
 Derint 111
 Ropitila, genva; conspicus, fusculs, minusculs.
 opationia, Autokraphe, $23 t$
 Romenem, is, 354, 366, 410

 robacearum Calaymbolu
 rowalind d. Cat. als, 168
 roes, Euhype rpax, sos; Hyparpse, nob:
 Mameitra, 103; Orete j31; Thyreion, 228 roweitigcta, Echinia, 829
 Rothechid, Hon. Walter, ix, it
 Rothechid Hon. Water, in, if
 है, Chlenogramme, 40
 Rotunal Wainut-motif, 6
 mbent Hernorrhagis, 64
 rubt, Bernbecia, 38
 rubicunds, Aniwote, o5: Euherrichic, 135
 tubre, Diactisis, 188 : SAmia, 84
 tubricosa, Phrammatribis, 196
 rubricusta, Holomelina, ils
 tubripalpis, Artace. 313
 rubrolinestia, Leptomeris, 335

