THE JOURNAJ」

or thes

ghourt of grts and ?llinufutururs

FOR UPPER CANADA.
JUエT, 1862.

HOME MANUFACTURES, vs. IMPOR'IED ARTICLES.

One of the advantages of our annual Prorincial Eshibitions, consists in placing before the public eye, where they may meet with the greatest share of attention, those articles of general consumption which might be largely manufactured in the Province, if due encouragement were given to home industry in all its branches. We imported, for instance, in 1861, 321,084 lbs. of starch, yet the raw material from which starch is manufac-tared,-namely, grain,-chiefly wheat and Indian corn,-together with patatoes, are staple productions. Of china, earthenware and crockery, we imported to the value of $\$ 274,369$. This branch of industry is altogether in its infancy in the province, and is one which offers an ample field for enterprise. At the last Provincial Exhitition, there were some good specimens of native art in the coarser varieties of crockery, which will no doubt be much improved on atour nest exhibition. Of glass and glass-ware, we have hitherto had no representation; and this industry is not even referred to in the prize list; yet last year we imported to the value of $\$ 344,527$. Sandstone for glassmaking exists at Williamstown, Beauharnois, and was used for the manufacture of glass some years ago at St. John's and Vaudreuil, but it was found difficult to compete with foreign importation. The rock from which this excellent sandstone is abtained is called geologically the Potsdam Sandstone. We may get look for the introduction of glass-making in Canada. The raw materials are present in abundance, and it is a mere question of time as to the extensive manufacture of all common articles of glassware as soon as a beginning is once mado and public attention directed to the subject. Of the different varieties of candles, we imported to the amount of $\$ 36,227$; and yet we now possess within our own re. sources, much material for the manufacture of common wax, and parafine candles. Our consumption of tallow is enormous; in 1861, the total importation amounted to no less than $3,045,122$ lbs., valued at $\$ 242,474$. It is clear that the demand for the raw material is far beyond the resources of the country to supply, and as it enters the Province free of duty, we may assume that it
is consumed chiefly in the manufacture of candles, on which there is an ad valorem duty of 20 per cent. The Petroleum refineries should now supply as much of the crude material as we require for the manufacture of paraffine candles, which are superior to was; and thus a new branch of industry may shortly spring up in our midst. Salt belongs to the class of free groods; it is an absolute necessity of life, and list year we consumed. $1,697,314$ bushels, valued at more than $\$ 300,000$. Salt is one of those articles which form a very important source of profit to private enterprise, and is in many countries a lucrative source of revenue to government. In the State of New York, the celebrated Onondaga salt springs havo reached an astounding development within the last few years. The amount of salt inspected in 1861, on the Onondaga Salt Springs Reservation, in and adjacent to the city of Syracuse, N. Y., was $7,200,391$ bushels, being equivalent to $1,440,000$ barrels, of 280 lbs . each. The duties collected by the State amounted to $\$ 72,003$, although the duty is ouly one cent a bushel. The disbursements for the support of the salt springs amounted to $\$ 45,000$, and the dividend paid to the lessors of the salt vats reached 20 per cent. aunum. The salt trade of Syracuse is already enormous. This important article constitutes a large share of the return freight to the boats on the Erie Canal, and the vessels engaged on the greatlakes in the transportation of grain and other western productions. The quantity of salt shipped from the Reservation, not forty miles from Oswego, amounted in 1858 to four hundred and trenty millions of pounds, or equal to the load of four thousand canal boats, with cargoes from fifty to one hundred tons. This quantity would ballast one thousand four hundred sailing vessels, with one hundred and fifty tons each. Cnnada obtains much of her salt from importations via the St. Lnwrence from Britain, but there is ample field and opportunity for manufacturing salt within our own boundaries. The shores of the lower St. Lawrence, or of the Bay of Chaleurs would probably, says Mr. IIunt of the Geological Survey, afford many favourable localities for the establishment of salines; the heat of our summers, which may be compared to those of the south of France, would produce a vory rapid evaporation, while the severe frosts of our winters might be turned to account for the concentration of the water by freezing, as is practised in Northern Russia. Although we import salt to an nomount exceeding $\$ 100,000$ from Britain, yet the United States' alt drains us of nearly two hundred thousand dollars per annum. A Salt spring was formerly worked at St. Catherines (1835), but al-
though the brine was of considerable strength, yet owing to the importations of the foreign article the enterprise was not successful. Paper hangings, at 20 per cent. duty, cost us yearly about $\$ 80,000$, of which sum we pay the United States more than $\$ 45,000$. We are glad to know that home manufactures will soon diminish this outlay, and that some very excellent Canadian papers will be exhibited at our nest exhibition. Who would think that our hats, eaps and bonnets cost us more than a third of a million dollars a year, and that we pay the United States upwards a quarter of a million for these necessary articles. It would be at least patriotic to wear a Canadian hat, or a Canadian bonnet, and a great stimulus might be soon given to home manufactures, which are already assuming fair proportions.
Leather cost us $\$ 270,000$ in 1861, and jet we exported $\$ 21,115$ worth of hides. Here we plainly export the raw material and receive back the manufictured article. We pay the United States more than fifty thousand dollars a year for broomcorn, an arricultural production which can be well grown in Canada, and although it is in the class of free goods, there can be no doubt its cultivation would be profitable. Our soap cost us last year fifty thousand dollars, and we imported more than a million pound weight. We have abundance of potash for soft soap, but no soda for the hard varieties. Xet in the salt waters of the Gulf of St. Lawrence, there is a never failing store of sulphate of soda, which by well known processes can be converted into the carbonate. If common salt were manufactured in the artificial salines before referred to, which might be profitably established on the shores of the Gulf, enough soda could be obtained from which a very extensire manufactory of the more common kinds of hard soaps might ultimately spring, and thus one branch of industry would indirectly lead to the prosecation of another equally important. The finer varieties of toilet soaps are generally made from olive oil and soda, hence we should be always dependent to a certain extent on the foreign market. But for allordinary domestic purposes, soaps from animal fat and soda are sufficiently well fitted. Our musical instruments cost us nearly $\$ 140,000$; and $\$ 120,000$ of - of this large sum goes to the United States. The Pianos exhibited at London during the list Provincial Fair lead us to hope that this item will soon be reduced in favour of home manufactures. The progress which has been already made bids fair to show that we may soon expect to be independent of the foreigner for these delightful sources of enjoyment. 'The Exhibition at 'loronto will furnish a spleadid opportunity for native
talent and industry to display itself, and it will no doubt secure a well-earned reward.

Foreign Stationery cost us \$148,074 last year, of which large sum not less than $\$ 65,393$ went to the United States, besides $\$ 24,913$ for paper, for which we paid in the aggregate $\$ 57,826$.

These are manufactures which we may hope so far to produce at home as to diminish materially our dependence on other countries for all kinds except those of the finest description.
Cabinetware and Furniture, which we manufacture largely within our orn limits, nevertbeless cost us last year $\$ 43,957$, of which nearly $\$ 40,000$ went to the United States. Although a duty of 20 per cent. is charged on these articles, yet we are still unable to supply ourselves, notwithstanding the excellent style and cheapness of most articles of domestic use manufactured in the country and a duty of 20 per cent. on importations.
I'be following list embraces the principal articles imported last year. Some of them it is impossible to produce at home; others might from year to year be diminished and a home manufacture sub-stituted:-

Falued at

Cottons	\$5,690,777
Woollens	4,271,276
Sugar	1,627,781
Iron and Hardware.............	1,489,645
'lea	1,867,025
Silks, Satins and Velvets......	921,152
Bar, Rod and Hoop Iron......	713,249
Coal and Coke	732,212
Meats, fresh, snoked and salt,	507,472
Mides and Horns.	545,578

All these items with the exception of Sugar, Tea, Silks, \&c., and Coal, we may hope to reduce as our population increases and manufactures become more developed by the introduction of capital and skilled labour. The field, it will be seen at a glance, is of rast extent, and jet there are thousands waiting for the opportunity to enter upon it. The unfortunate strife which distracts the United States has checked the progress.of one bravch of industry, namely, the Cotton manufacture, which would ere this have taken a firm root in our midst.

In concluding this sketch we wish earnestly to call the attention of our manfacturers to the forthcoming Provincial Exhibition. In anotlier part of this issue we have adverted to the necessity of a complete representation of our industry during the present jear at Toronto. In view of the disastrous civil war which cramps the energies of our neighbours, we should be ready to embrace the opportunity and take our own stard in Manufactures and Art. A well-sustained Exhitition will show what we can do alone, and there cannot
be a doubt that if manufacturers and mechanics will come liberally forward and exert themselves to display their work, it will warm into life a spirit of equally liberal encouragement and a determination to sustain home manufactures and home industry to the utmost degree.

THE INTERNATIONAL EXHIBITION.

(Extracts continued from "The Mechanics Magazine.")

The Eastern Anncxea

Referring to the trophy in class II. Chemical Substances and products, the Rechanics Magazine remarks:
"The anomaly of this trophy is that finer specimens of most of its constituents are to be seen in other parts of the class. Thus we find the most magnificent crystals of red and yellow prussiate of potash, in the case of the Hurlet and Campsic Alum Company, No. 535, and Bramwell \& Company, No. 484. Of the prussiate of potash, we would remark that it fills a very important place in our manufactures. Albeit it is made from such apparently worthless materials as rotten wool, rags, hoofs, horn waste, or any other azotized organic matters. These are mixed with the impure carbonate of potash and iron filings, and, whilst being stirred with an iron rod, submitted to a red heat in close iron vessels, the whole is afterwards treated with hot water, filtered and evaporated, when crystals are obtained of ferrocyanide of potassium. By passing chlorine gas through a solution of the ferrocpanide, the forrid cyanide is formed, or by another process, too elaborate to describe here, cyanide of potassium is the resulting product so much used in olectroplating, gilding, and photography, the finest specimen of which may be seen in the case of Messrs. Hopsin and Williams, No. 530. Again, from ferrocyanide of potassium, or the yellow prussiate of potash and sulphuric acid, the deadly hydrocyanic, or prussic acid, is formed, and prussian blue is an admisture of this same substance with a salt of iron.
"We have already spoken of the utilization of the ammoniacal liquor of the gas works. This leads us to consider the truly marvellous resulte that have been dereloped in the new product, aniline, from coal tar. Not long since gas was the only product that was obtained from coal, of a profitable character. Ooke could scarcely find a purchaser ; tar was a bug.bear of defilement-ponds of it seemed to beg for a hiding place from the anathemas of mankind. Yet from this very tar have we now a series of most valuable and surpassingly beautiful results. Witness the crowns of dazzling beauty made from the acetate of rosaline, the erystals of which, when dissolved, form that brilliant colour, the magenta; in fact, so far as colours are concerned, a fairy-land of etherial blues, and deep rich crimsons, not to speak of violet, reds, and yellows, seem to have issued, at a touch of the chemist's wand, from the styx of all abomination, coal tar. Messrs. Perkins exhibit their beautiful blues, purple, and mauve, as also a jar of coal tar, from which they obtain twelve grains of aniline. On the opposite side is a similar jar, containing one grain of this highly dispersive and wonderful
salt in water, producing in that infinitesimal quantity the colour that has been so much and so long the rage amongst the fair sex.
"Messrs. Maule and Nicholson, the manufacturers of the resplendent crowns of acetate of rosaline just referred to, have the more abundant, if not the finest specimens, of the coal tar products, and apropos of the aforesaid crowns, we must not forget one acid that has been called in to aid their production-we mean the acetic acid. It must appear wonderful euough to the uninitiated to learn that their white wine vinegar is obtained, in the form of acetic acid, from the smaller branches of the oak and other hard woods, and yet more so to learn that it is now also obtained from that apparently useless material that has so long sought a satisfactory destination-sawdust. This dust now finds itself entering the mouth of a long retort through a hopper, is coaxed forward by an endless screw occupying the whole diameter of the retort, and brought under a heat that implies destructive distillation, thus parting with its volatile products, and leaving the retort at the far ead fairly exhausted, it has the satisfaction, whilst assuming its sombre carbonaceous form, of having become the parent of the acetates, whose names are legion, and are of so great a commercial value amongst dyers, as also in chemistry and pharmacy. Sawdust also yields, at the hands of Roberts and Dale, some fine specimens of oxalic acid. The Melinevythan Co. (case 566), as also Messrs. Wright and Francis, shew beautiful specimens of acetate (sugar) of lead; indeed the acetates are exceedingly well represented in this class.
" Passing by, though not without an acknowledgment of their usefulness, the thousand and one products thatconstitute our ordinary list of chemical and pharmaceutical substances, we balt ever and anon at the beautiful specimens of crystalology that has proved our chemists to have been on the qui vive in their contest for the palm with our Continental neighbours, and amongst these unique specinens we would mention those of the bichromate of potash by White and Co., and codeine by McFarlane \& Co., indeed, a list made of even the most noteworthy would occupy far too much of our limited space, so we trust that our readers will find an early opportunity of forming their own estimate of the excellence of this department of our International Exhibition.
"A vast improvement in quality and price is shown in the alkalies, especially in soda. Our readers may remember rending in their catechism of chemistry, in their youthful days, how that soda was made from the ashes of marine plante, but most of them know that now-a-days Salt is the great source from whonce we are supplied with this useful alkali. Salt is a chloride of the metal sodium ; by pouring sulphuric acid upon it the sulphate of soda salt-cake is formed, and the chloxine set free:
"This sulphate of soda is then furnaced with chalk and small coal, the sulphuric acid is thus exchanged for the carbonic acid, and an impure carbonate of soda is the result. Again, lime is made to supply its oxygen in exchange for the carbonic acid, and we have, as a final result, instead of salt (the chloride of sodium), soda (the oxide of sodium), at a price just one-half that of
potash or pearl ashes, which are still made, as aforetime, from the ashes of plants. This manafacture is most ably represented by Muspratt. 571, Gaskell, Deacon \& Co. 520, Hutchinson and Barle, 537, and the Jarrow Chemical Company, 540.
"Soda very appositely leads us to the grand discovery of Sir IIumplirey Dary of ita base, the metal sodium. This has, until lately, been seen only as a curiosity in the laboratories or in choice collections of the chemist. Judge of our astonishment to find that it may le now had for something like 3s. per lb. Exceedingly fine samples of this metal are exhibited by Bell and Co., of Newcastle, as also of aluminum. In connection with this metal, we may mention a new product, fur the first time exhibited to public notice-the silicate of alumina-a beautiful crystalline substance resembling glass. It is formed ly mixing two alkaline solutions of siliea and alumina; from the great affinity of the alumina for the silica, a union is formed between them of a most permanent character. The bases in the mixed solution, however, showing a most energetic action in strong solutions when diluted with water have that action so retarded that they remain in the form of a liquid for some hours, admitting of many useful applications, such as the preserving of stone by induration, and the manuficture of artificial stones, which processes are exemplified in the case, No. 471 , by Mestrs. Bartlett Bros., of Cumden Town, who are alsu manufacturers of very fine specimens of the silicates and aluminates of soda and potash.
"Fecula or starch has been brought of late years to a most wonderful degree of perfection, and the palm is hotly contested by Berger, Colman, Jones, and the manulicturers at the Glenfield and Spring. field Works. Suffice it to s:yy of this product, we never sate finer samples than those exhibited by the manufacturers referred to.
"Our artist colourmen seem to have outdone themselves in the superb collections they display. Windsor and Newton, Reeves, Rowney, and Newman, eich and all deserve the lighest praise for the skill they have shown as manufircturers, and the taste they hare displayed as exhibiturs. Their cases contain most raluable as well as most beautiful specimens, though the exceediogly great value of quantity should nut lead us from a fair judgment of quality, a standard to which the afore-mencioned exhibitors, with others, have so ably and successfully aspired.
"A very unpretending case, yet one whoso contents are of the greatest importance in a sanitary point of view, is that of Cundy, of Battersea, No. 500. We cannot dwell upon it longer thain to say that the permanganate of potash there exhibited is a most powerful and innocuous deodorizer and disinfeetant; its oxidizing powers are beautifully shown by treating pure and impure water; with a small quantity of the fluid each water may be nerfectly pellucid or clear; but if organic matter be in solution, it will instantaneously be oxidized and precipitated as a powder to the bottom, leaving the water colourless; but if nothing of the kind exists in the water, it remains tinged with the pink colour of the fluid, which retains its normal condition.
"Smith \& Co., ense 604, exhibit an interesting collestion of opium products. The opium eiter would, we opine, gaze with bewilderment at the
various products extracted from his quid, the narcotine, codeine, morphia, narceine, and meconic acid, each adding to the physicians' influence over the evils to which flesh is heir. A very nice collection of sen-weed products are exhilited by Stunford, of Worthing, proving the untiring research of the chemist into the most unpromising of substances; we may also, whililst so near the sen, call attention to the fish manure, extribited by Whitworth, case 622. And the products used in sugar refining, in case 501, are worth something move than a glance, reminding us that the extreme whiteness of sugar is derived from the presence of the blackest of all substances, and the sweetest material in creation is made even more pure in its sweetness by contact with a property of grim death's burnt bones. Our readers will find an interesting suhject in the varnishes and their gums, fine specimens of which are exhibited by Wilkinson and Co., 623, Mander Brothers, 562 , and others too numerous to mention. An instance of the offorts exhibitors have made to please the eye with even the most inartistic materials, is to be seen in the case of black lead exbibited by Chick, No. 514, which certaiuly exhibits a high degree of perfection in its manufacture.
"Mr. R. Rumney, of" Manchester, has very patriotically provided a collection of dyes and dyed fibrics, shewing the novelties and improvements that have been introduced since the year 1851. Splendid specimens of madder, garancine, and murexide, with an almost countless number of other dyes, are exhibited in class 2; and as to the gentlemen who have so skillfully and haboriously produced the more rare claeminials, their successes and laurels will be most appropriately discussed by a more technical journal than our own."

The Western Anmexc.

"A very beantiful combination of science and mechanics as applied to the art of engraving is to be seen in the Electrograph engraving machiue of Mr. IIenry Garside, of Coupland-street, Minchester. This is intended for the engraving of copper cylinders used in calico printing. The distinctive feature of this apparatus, apart from its mechanical arrangement, consists in the application of voltaic elecrricity in communicating movemedt to important and delicate portions of the machine. The cylinder to be engriaved is first coated with a thin film of varnish sufficiently resistant to the continuous action of the strongest acids. lly: required number of copies of the original design are then traced on the cylinder by means of a series of diamond points arranged on the machine, in a line parallel to the cylinder. The metallic surfice of the latter thus beeomes exposed at the parts required to be engraved. A bath of nitric or sume ocher potent acid is afterwards used to deep. ent the exposed portions to the extent required, and thus the operation is completed. The diamond points are all in connection with as miwy small miunets, and these are so arranged that intermittent voltaic currents are established in unison with the original design. The result is that the diamonds are withdrawn or advanced at the pro. per moment, and the tracery forms an exnet counterpart of the copy. There are, also, adjustments, which enable the operator to enlarge or diminish
at will the size of the patterns to be engraved. It is unquestionable that this exquisitely ingenions contrivance will interfere materially with the system of band-engraving as pursued heretufore, but. as usual in such cases, the benefits aceruing to the public will be marvellonsly enhanced. It_{t} is not long since we had occasion to speak of a machine iotended for engraving upon steel, and catting cameos. It is to be regretted that this contrivance cannot be placed in the Exhibitiou leside the electrograph engraver above named. Together these machines would point out the only course which, in future, is likely to be open to copper and steel engravers, namely, the more perfect study of designing and modelling.
"As regards the steel-engraving machine, work done by which we have seen and intensely admired, we have no hesitation in saying that it is destincd to revolutionize die-engraving and gem-cutting. It appears to delight-ill we may so speak of an inanimate object-in the performance of the minutest elaboration of workmanship. The Grst process in connection with steel-engraving by machinery is to form, in was, a model of the device to be copied. Of this an electrotype is talken with great care, and from it, as a guide, the machine proceeds to its task. As in the case of Garside's electrograph, the size of the engraving may be varied from that of the model or copy, without difficulty. Vultaic agencies are not, however, used in the actual engraving of the device-mechanical means compassing all that is required in this respect.
"It is probable that when a new Pitent Law shall exist, which will deal more fainly with clever inventors than the old ones have done, this admirable discovery will see the light of day. As it is, the inventor, like many others of his class, prefers seeping the precise mude in which his machine works, a secret.
"Pursuing the subject of automatic machinery yet further, and we come to Thompson's patient uriversal joiner. This is the iavention of Robert Henry Thompson, of H. M. Dockyard, Woolwich. It is an ingenious apparatus, capable of being worked by hand or by steim power, and applicable to a rariety of purposes, as its name implies, connected with joinery. The copying principle is here again emplojed, and thus diversity in the form of work to be produced is uo barrier to its action. It may be used for any description of joiners' work, inctuding gythic heads, elliptic and allother curves. mouldings of whatever form, the strings of stairs, with treads, risers and handrails, together with phain or ornameatal work for cabinet or coach-work.
"With some modifications, and, of course, with a change of entifing tools, the 'uoiversal joiner' may be converted into a general mason, for it does not object, under such circumstances, to deal with stme.
"Mr. Jhompson also exhibits a ' patent treefeller,' and a 'patent sawing-machine,' and these are the natural feeders to the joiner. They perform the rough work, indeed, and the joiner the smooth.
"We have before spoken eulogistically of the sawing, planing, turning, and other machines of Worssam aud Co., of Chelsca, and it would be unjust to omit equally honourable mention of Powis, James, and Cu., of the Victoria Works, Blackfriars-
road, who figure in similar kinds of wood-working machinery. 'The contractors' and builders' combined maciine fur planing, moulding, and edging planks or timbers on all four sides at one time, is a remarkable specimen of an economic contrivance for working on wood. So also is what they felicitously nad accurately designate their 'mullum ins parbo,' or general joiner. 'This machine will saw, plough, growe, rebate, thickness, bure, cross-cut, and strike muldings. In its presence, therefore, the carrpenter must hide his diministed head. Many other machines fur the conversion of wood into the thonsand forms required for cabinet operations, carpentry, pattera-makiag, \&e., are shown by this firm, but space warns as that other mechanical wonders must pass unnoticed if we linger too long among them.
"It is not necessary to tell the generality of the readers of this journal, of the advantage which atteads the existence in engine facturies of ready means for sharpening tools for cutcing iron, or grinding those for cutting wood. The first point is to have stones of the proper grit, and the second, to keep them in good order. This latter is froquently a matter of difficulty, from the inattention of thuse whi use them. Mr. Muir's" qrindstones are, so to speak, self-adjusting and self-repairing. He places two stones in one trough, and these work edge to edge. They are regulated by a right and lel't band screw, and, by means of a cum, a slight lateral motion is given to one of them. The effect of this is to keep the grinding surfaces of both constantly " true," huwever unfairly they may be used by the workmen. The disarreeable, and, from the dispersion of particles of sharp-cutting dust, very objectionable process of turuing down grindstories, is completely obviated in this iustance.
" We have said on a previous occasion that with steam hammers the Western Annexe is well supplied. The name of Nasmyth is of course, inseparably connected with this valuable implement for the forge; and Nasmyth and Co. are representeid extensively at South Kensington. Many modifications of the ste:m hamer hare been made by different makers, with a view to orercoming some of the defects esisting, or said to exist, in its original construction. Of these modifications, Rohert Morrison and Co., Ouse Burn Engine Works, Neweasthe apon-Tyne, display a rather remarkable esample. This is cilled 'The Double-Acting Ste:m Forge If:ummer.' The main point of impruvement in this apparatus is comprised in the fact that the hammer bar and the piston are forged solid torether. In other cases, where a different mode of attachment was adopted, the piston and pistanrod have sumetimes from the violence of repeated strokes, parted company. In this instance such a catastrophe, we need not say, is nest to impossible. The ste:m cylinder is firmly bolted to the single frame which supports the whole. This frame also contains the steam-chest, steam-passares, and the steam and exhazast pipes. The hammer-bar is furnished at its lower end with a claw for holding in the different faces or dies required for various kinds of work.
"The piston is simple in its construction, and two small steel rings fitting into grooves on its circumference make it steam-tight. Above the
piston, the bar is planed flat on one side, a comresponding fiat being left in the crlinder cover. This arrangenent has the effect of keeping the bar and the himmer face constantly in the same relative position to the arvil. On the top of the bammerbar there is a small roller which works in the slot of a lever. Tho lever, with the aid of a pair of links and a slide-rod, gives motion to an ordinery bos slide which admits steam alternately abore and below the piston.
"These arrangements comprise the distinctive characteristics of Morrison's hammer; lout there are other points of detail, and especially with respect to the control exercised over it by the attemant which are worthy the consideration of those who require so formidable ar forge assistant.
"The Kirkstall Forge Company, of Lecds, and 35 Parliamen street, London, are olso exhibitors of steam hammers, and rayidity of action is one of the princ:pal qualifications for which they claim attention to their implements. No douht in many eases this point is a momentous one, becanse the completion of a forging at one heat is very frequently a desiacratum. The machines shown aze massive and well constructed."
american court at mie international Exilibition.

'(From the Mechanics' Magazine.)

"The display of American products at the Grans Eshibition would no doubs have been greater, bat for the present unhappg conflict in that country. As it is, the American Court is well worth a visit, and deserves a caroful stoly. Scicratife men will recognise in the varied and useful inventions which are there eshibited, simplicity of construchiou and beauty of workmanshin: and the unscientific will see much to admire in the appliances by which labour is made easy and toii pleasant. Americon 'notions' are intensely utilitarian. Increased production at the smallest expense of labour, is their maxim. Many of the machines here exhibited are adapted to field and farm labour, and it is no disparagement of our eminent agricultaral engineers to say, ibat, in regud to these implements, the hamicans have been able to hold their owni, and maintain their position agranst all competifors.
"On entering the comrt, which is at the southeast corner of the building, Weod's mowing and reaping marhines occupy i prominent position. Theso are exhibited by Mr. Granston, of King Willian Street, and have attained a large sale in England as well as in America. During the last eight jears, 30,090 of them have been manufictured, 2,500 of which bave beeu sold in Ingland.
"The combined machine for either reaping or mowing is at presant set up as a reaper, but can be easily changed to a power, by removing the reel ind platform. A self:acting rake can be adjusten to the reaper, which will deliver the cat grain in buadles at the side. The rake is worked by a pitched chain which margins the platforin, and cariies the teethed end of the rake round with a smouti and uniform motion, the back end being supported by a double-jointe ! gruide. In its metion it is very simple, there is no loss of power, ind 110 risis of bruising the straw or shedding the grain.

The driver, by the pressure of his foot on a spring, can stop or accelerate its motion, so that, however uneven the crop may be, the bundles deposited by the rake can be of uniform size.
"Next is the mowing machine which grined the first prize at the Royal Agricultural Society's show at Leeds, last year. Apart from the ingenious construction of this machine, it really merits inspection for the beautiful style and fivish of its workmanship.
"These and other kindred machines, are producing a wondrous change on the slow, rude forms of amricultural labour. The application of science to firming is making the land more productive, and it must be a great boon to the husbabdmian to be able to cut down his crops of corn or grass at the rate of twelve acres a day, over ridge or furrow, and on steep hill sides, and cut them closer and better than by the scythe.
"While on the subject of husbandry, Iet the visitor walk straiglit across from these machines, and inspect sowe hay and manure forks manufactured by batcheller and Sons, and exhibited by Messrs. Smith, of Doneaster. These forks look more like elegant toys than implewents for laborious work. They are made of the best American cast-steel, with two, three, and four oval prongs, and are remarkable for lightness, strength, and elasticity. Thes are about half the weight of on ordinary English fork, maintain their perfect shape till woru out, and enable the labourer to do his work with ease and rapidity. They are the most perfect af. ricultural instruments we ever saw.
"In a case adjoining these are exhibited coopers' axes, chopping axes, and adzes, from the Douglas Axe Company, Massachusetts. These tools are of beautiful shape and tinish; the steel is of the finest temper, and, as specimens of American cutlery, will, we think, be unsurpassed by anything of the kind in the Exhibition.
"Drake's Boring and Spacing Machine, exhibited by Mr. Wemple, Albany, N. Y., is a norel and very useful invention for boring blind stiles, or any other wood-wort where a series of holes are required at equal distances apart, doing the work with great accuracy, and saving the labour of spacing and laying it out. The bits, twenty in number, are driven by one continuous belt, instead of separate belts, as in some other machines. The distince between the holes may be varied by sim. ply moving the lever, when the transverse rode regulate the distance of the bits. The macbine, though having the appearance of being complicated, is really very simple aud effective, doing its vork, which otherwise would be tedious, with great rapidity and precision.
"On passing Ward's Ocean Marine Telegraph, which we noticed in a recent number, we found him in the midst of a circle of enquiring visitors, who were taking a lively interest in his invention. Gu a table before him he exhibits two models which are worthy of notice. One is an improved wheel for railway carringes. The trend of this wheel is in form of an $O G$ moulding, which runs with great smoothness, prevents the flange from grating against the rail, and renders it less liable to jump off. 'The other' is a simple substitute for the ordinary castor for table legs and bed posts. It consisty of a ball set in a neat brass moulding, which
runs upon smaller balls at the top, and by vertical pressure moves easily in any direction without the necessity of a joint or the liability to injure the carpet. It is one of those simple contrivances which commends itself to one's approval at first sight, and appears to be on the same principle as a curntable exhibited by the samse inventor in the Farstern Annex, which we have noticed in another column.
Be:rdsler, of Otsego County, New York, exhibits Ewo machines of a very American-like appearance, which hare attracted considerable attention in that country. The haty elevator is intended for uolonding hily into the barn, or on to the stack. The fork or lift, the points of which are three feet apart when open, move on a pivot, and are made to clutsh the hay by tightening a chain. A trip-hook is put into the ring of the chatin, or to unloud by burse-power, a sheaved block is attached to the ridne, and another un to the fluor where the horses are hitclsed, and as they walk of on to the ground, up syes the fork with one-third of a wargon-load at once. The trip-houk is let loose byjerking a catchand, and down goes the hay. By this means a lon of haty may be unlonded by five lifts of the fork. Some coutrast, this, between pitching a fork fuil at a time, under a scorching July sun.
The earth elevatur, ho the same inventor, is on a similar principle. It is meant chiedy for drain cutcing and ditebing, and has the same object in yien, ranid working, and the saring of hard labour. the elevator is hoisted in a gin, and may be worked by hand, Lorse, or steam power. This gin is made of four poles. twenty or more feet in length, secured in a frame at the base and meeting together at the top. Half-way up the poles are secured timbers for a railisay, on whicia a dumping car is made to move, to receive and carry off the earth raised in the elevatur. The lase of the gin is twelve feet square, having wheels to roll upon plank haid on the ground. The railway may be somewhat inclined, that the car maty move by its own gravity. The extreme euds of the railway may move upon wheels, the wheels moving upon a siugle track udernoath. For making embankment or drainios, on a large scale, we think the machine merits attention.
"As one might expect, sewing machiaes are well represcated-those of the lock stitch, the chainstich, and the shuttle machine, with all their gecaliarities. They are successfully exhibited, and firm a great attraction. The rapidity and neatucss with which these machines execute a Tariety of needlework is amazing to those who know unly of the common needle as tire grand makiog and mendirg instrument in the houschold, and the symbol of the most distressing drudgery. Ao we intend to devote a special paper to thee machinos, we pass them ly at present. In class 1, Mr. Fenchtwanger exhibits a thousand speeimeus of minerals; Mr.s Meads, from Lake Superior, and the New Jersey Zinc Co., specimens of dinc ures with their products, pig and bar iron, and stecl. In class No. 2, Mr. F. S. Pease of Buffile, has a variety of mineral and animal oils fir use in lubricating machinery, and as illuminating suronts. "The various oils are shewn to great advantage
a glass cylinders of varicus allitudes, and appear
to attract great atiention. We have coal oil for Jubrication; oil from tior for wachinery; also signal oil, that is, oil which may be used on locomotives, on the foremast of a ship, or on a railway signal; we have oil so limpid that it adants itself excellently to the rapid motions of the sowing machinery, as it never gets gammy. There is a sample of oil from conipressed lard of amazing transparency. The latter goes by the name of winter oil, as at 3° under freczing point it never coagulates, and is admirably adapted for the lamp in cold climates on that account. The engine and machinery oil is equal to sperm, and much cheaper; it stands a greater degrec of heat and a greater degree of cold than sperm oil, and dues not comsume so fast. Mr. Pease has samples of petruleum in the crude and refined state, which canant bo exhilited in the building on account of the fire insurance policy. Therc is, further, an oil shown called 'armaur oil,' which is intended especially for gun locks, and in which our volunteers may perhaps feel am interest on account of their Enfields and Whitworths.
"By the side of these oils are exhibited hops, seeds, wheat, beans, peas, buckwheat, and samples of starch and flow manfinctured from Indiau corn or maize, of which there are sliewn a number of specimens in the ear. The starch is extolled for the gloss it gives to the linea or coiton to which it is anplied. Tho flour is remarkably white and fine. Simples are here, too, of a farinaceous aride manofaciured by the Glencuve Stareh Company, of New York, under the name of 'Maizena.' It is the purost preparation of the finest maize. In as shart time, and without any trouble it can be matie into various forms of diet and is a grood substitute fior arrouroot
" llaving disposed of these odds and ends, we probeed to nutice a feor mechataical cont:ivanaces and, first. near the south-elst entrance one is attracted by a cork-cutting machine inveuted and patented by Mr. Comroy, of Buston, there is one machine which couts the eork into parallelopipedons, and then into smaller figures of the same lind according to the length of bnog or cork required. These smaller pieces are brought in contact with a knife mounted on a circular horizontal disc. The dise is put in motion by a large wheel similar to a cutler's wheel, and a band running over a drum in immediate connection with it; or is may be worked by ste:m power. This dise, by means of gearing, traverses a platform from right to left, and cice versa, by whicil arrangement a cork is no sooner cat on one side than a cork is cut on the other. The square body to be tramsformed into a ronaded is placed in a groove; the wearing seizes it in the manner of a piece of wood in a turning lathe, by its extremities, advances it to the edige of the circular knife, and in an instant the rough block of cork appears a shaped artielo wherewith to stop a beer barrel, a bottle of champague, or a medicine phial. The ease with which this machine does its work is surprising. A clever cork-cucter, working by the hand, can turn out, on the average, eight gross of corks a day. By this machine cau be made fortcen gross of corks per hour. In a diy of ten hours, therefies, two men can produce 20,160 corks or bungs, while iwo men by the hand in the course of the same time
can turn out only 2,304. The corks can be cut in perfect cylinders, or bevelled to any angle required by slightly elevating the horizontal disc. The machinery is very simple, and ingenious through its simplicity.
"A bolt is shown in one part of the court, which bas all the excellency of the rivet, with this advantage over a rivet, that when required it may be moved from its place without any troulle. It is we!l adapted for the framework of locomotives and railway carriages. The bolt passes through an iron frame, or through woodwork, and is secuzed behiod by a nut. But inasmuch as a nut is liable to be untumed in the extremity of the thread of the serew-bolt by vibration, and as many railuay accidents have happened from the fact of bolts having parted for the want of their retaining nuts, in the prosent case the nut is kept in its place by haviog a spring inserted into it, which adapts itseif to the rachet work of a hollow washer. The iaventors are Messrs Lawrence and White, of Neluse, N.Y. Close to the screw-rivet bolt is a contrivance for common land carriages. A coupling iron, which accomodates itself to the osciubations, of a carriage ou a rough road, without inconvenience to the horse or horses, and which, fitted on the fore asle of a four wheeled rehicle, answers all its radical motions, without being pinned like the bolt under the iaslc. It is, in fact, a kind of universal joint, answering to every motion of the carriage or of the hursc, and which, if adopted generally, is likely to prevent many accidents.
"Scholls life-hont is constructed on a norel principle. The model exhibited is rather a rough one. It looks like a great, green porpt:ise, with a lid opening intu its lack. Lnok into the intericr, however, through the lid, and fou discover the arrangements for the accomodiation of a crew and passen-gers-for the silved and the saviours, as the case may be. The object of the hoat is to pass through a heavy surf with salety. 'Lhe internal fittings of the boat are below the centre of gravity and of flotation. They are hung in tie manner of a binnacle compass, that is, be the motion of the external shell or hull of the bont what it may, the persons within are always maiutanod in a horizontal position. Indeed, let the boat turn round and round like a spindle, which is hardly possible, its passengers are nevertheless unmoved. The steering apparatus is within, and so also all the arrangements for a serew propelter. 'Ihis boat has no outer deck; indeed, as we bave said in form it resembles a porpoise in the model, and on a large scale it must be something 'very like a whale.
"There are four exhibitors of pianos, all of New York eity or county. These instruments vie in tone, and power, and in cabinet work, with any in the other cuarts of the building. In power, we suspect that they will carry off the prize against all competitors. We had the opportunity, at least, of listening to a square and a grand exbibited by Stein way and Sons. The internal arrangements of these instruments are novel; the strings are not all in parallels like those in the usual pionos; on the contrary, the bass strings are plazed at acute angles above the tenor and trelje strings, and obtain the fall adsantage of the sounding boaid.

The motions of the hammers are not impeded by this arrangement. The graod has seven octaves, and tope loud enough for a large concert room, and yet, through the mechanical arrangements of the instrument, it can be made to play as softly as if it had been intended for a sick chamber. Amidst the many musical instruments to be found throughout the building, the visitor, curious in these things should by all means see the pianos in the. American court.

TIIE RCONOMIC MINERALS OF CANADA.

(Continued from page 170.)

marbles.

Limestones.

Armprior.-At the mouth of the Madawaska, in McNab, a great extent of crystalline limestone is marked by grey bands, sometimes narrower, sometimes wider, running in the direction of the original bedding, and producing, where there are no corrugations in the layers, a regularly barred or striped pattern. When the beds are wrinkled, there results a pattern something like that of a curly grained wood. The colors are various shades of dark and light grey, intermingled with white. These arise from a greater or less amount of graphite, which is intimately mixed with the Jimestone. The granular texture of the stone is somewhat coarse, but it takes a good polish, and gives a pleasing marble. Mr. W. Knowles has opened a quarry in limestone of this description at Arnprior, and erected a mill for the purpose of sawing and polishing it for chimney pieces, monuments, and other objects. A monument of it has deen erected in the Mount Royal cemetery.Laurentian.

Auguentation of Grentille.-In the township of Grenvillo and its Augmentation, a band of crystilline limestons, which has an extensive run through the country, presents, in many places, a peculiar variety of marble, having a white ground marked with a number of smali green spots, arising from the preserice of serpentine; which occasionally forms angular masses several inches in diameter. This disseminated serpentine, more or less aggregated, usually runs in bands parallel with the beds, and clearly marlss the stratified character of the rock. These bands, as in the case of the Aroprior marble, are sometimes even, and at other times corrugated, giving diversities of pattern in cutting. Sometimes the serpentinc, instead of green, is sulphur-yellow, as in the specimen from Grenville. In many parts of the country, the Laurentian limestones are free from forcign minerals, and give white marbles. These, however, are usually too coarse grained for statuary purposes, and sometimes they are barred with slight differences of color. The specimen from Elzivir, obtained from Mr. Billa Flint, of Belleville, is an instance of this. Many years ago, a mill for cutting and polishing a marble like the specimen from the Augmentation of Grenville, was erected on the Calumet, lot 19, range 3; of Grenville, whero a similar rock occurs; but the demand for tho marblo was not sufficient to make the enterprise protitable,-Lanrentian.

Str. Aramand.-The marbles occur in great abundance in the immediate vicinity of Phillipsburg, on Lake Champlain. They are all easily cut, and take a good polish. Should a milwny, which is projected between St. John and St. Albans, be carried into operation, it is probable there would be some demand for the stone. No quarries have been opened on any of the beds, and these specimens are taken from surfaces that have long been exposed to the influeace of the weather.Quebec group, Lower Silurian.
St. Armand.-About a mile and a half southeastward from Phillipsburg, there occurs a black marble, similar to this specimen. The beds dip to the eistward at an angle of about tirelve degrees; a quarry was many years ago opened on oue of them, which has a considerable thickness. The stone was exported to the United States, and much esteemed in New York, but the opeving of quarries of black marble at Glen's Falls, where there is a great water-power, interfered with the demand, and caused the enterprise to be abandoned.Quebec group, Lovoer Silurian.

St. Josepir, Beavce.-This red marble occurs near the river Guillaume, associated with red shales and sandstones, resembling those of Sillery, near Quebec. The red limestone is succeeded by a band of a peculiar argillaceous rock resembling the gabbro of the Italians.-Quebec group, Lower Silurian.

Caughnataga.-Similar grey marbles, with red spots, occur in the same formation as the rock of Caughnawaga, behind the city of Montreal, and on Isle Bizard ; while beds in the same formation, at St. Lin, in the county of L'Assomption, are wholly red. In all of these localities the rock is flled with fossils, which are plainly seen on the polished surfaces.-Chazy formation, Lower Silurian.

St. Dominique.-The marble of St. Dominique is easily cut, and takes a good polish. It is surprising that situated so near to Montreal, with a railway running near, it has not been applied to rarious purposes in the city, for which a stone not ${ }^{\text {so }}$ good is at present used.-Chazy formation, Lower Silurian.
L'Orianal.-The bed from which the specimen is talen, varies in thickness from three to sis inches; it is near the surface, and is easily quarried, but it has hitherto been but little userl. The locality is a quarter of a mile from the S. bank of the Otcawa, four miles west of L'Orignal village, sisty-fuur above Montreal. The white spots are caused by small bivalve shells (Abypa aplena, filled with calcspar. Of the darker variety there are two bcds, of six inches and one foot respectively, near the surface, and overlying the previous bed. Blocks large enough for chimney pieces aud tables are readily obtained.
Esquimaux Island, Mingan Group.-This drab colored marble occurs in greit quantity on Lisquimaux Island, of the Mingat group, where the stone might be easily loaded on buard of small vessels. It cuts with great facility, and takes a unifurm polish.-Chazy formation, Lower Silurian. Cornwall.-These black marbles, from Pointe
Claire and Coramall, are derived from two beds, each about Coramall, are derived from two beds, eye and Black River formation. Theso are appa-
rently the only beds of the formation that will take a sufficiently even polish to be fit for the purpose. In the higher beds there are patches, which, from being more argillaceous than any other parts, receive but an inferior polish, and produce a bad effect.-Birdseye and Black River formation, Lower Silurian.

Pakeniam.-The Birdseyo and Black River formation at Pakenhana, on the Mississippi, a tributary of the Ottawa, yields a very peculiar dark smoke-brown or snuffibrown marble. The stone takes a good polish; but small pieces of chert are sometimes met with, which renders it necessary to be careful in selecting slabs to be wrought. Mr. Dickson, of Pakenham, on whose property the bed occurs, and from whom the specimen exhibited was rotained, had at one time fitted up an apparatus, driven by the waste power of his saw-mill, to polish slabs for chimney pieces and other uses. But there was, at that time, no consumption for the material in the neighborhood, and no railway for carriage to a distance, and the marble works were abandoned.-Birdseye and Black Ricer formation, Lover Silurian.

Montreal.-The Montreal marble is derived from a bed in the Trenton, and another in the Chakg formation. Slals for chimney pieces and table tops are sawn and'polished by Mr. Hammond and iused for common purposes.-Tienton and Chazy formations, Lower Silurian.

Dunswen, lot 22, rauge 7. - Were the limestones of Dudsweil worked, it is probable grood marble might he obtaincd from them. The specimens exhibited, of cream-white and yellow, and dark grey and ycllow, are from beds that overlie one another. The yellow streaks in both of theso marbles are coniposed of dolomite, while the light ground of the one, and the dark ground of the other, arc of carbinate of lime. When the dark grey approachos biack, which it sometimes dues, aud the yellow streaks are narrow, the marble bears a strong resemblince to the Purtor murble from Northern Italy, sometimes known as black and gold. On analysis, the resemblance between the two is farther sustained by the fict, that in both cases the ground is a pure limestone, and the yellow veins are dolomite. It is not unlikels, that if the rock were extensively quarried, some beds might ve found in which the resemblance to the Portor would be closer than in the specimens eshibited.-Upper Ficlderberg formalion? Devonian.

serpentines.

St. Juserm, Beauce.-The band of serpentine, from differerit places on which specimens havo been obtained, has been traced on the south sido of the St. Latrrence, frous Potton to Cranbourne, a distance of 140 miles; in forty miles of which, it is repeated twice by undulations, giving au additional eighty miles to its outcrop. It is aynin recognized 250 miles farther to the N. E., in Mount Albert, in the Shickshock Mountains; and about serenty miles beyond this, in Mount Serpentine, approaching Gaspé Bay. All the epecimens of these rocks, which have been analysed, contaia small quaratities of chromiom and nickel, and the band is associated in its distribation with soapstone, potstoue, dolomite and magnesite. Tho whole of these occur in large quantities, and in them, as well as in the serpentine, chromic iron
occurs, sometimes in workable quantities. These rocks, or others immedintely near them, contain the metals iron, lead, zine, copper, nickel, silrer and gold ; with the drift gold, derived from these stratil, are fourd platinum, iridusmine, and traceo of merenry. In 1847, these serpentines, from their distribution, were described in the reports of the Geological Survey as an alterated sedimentary rock. All subsequent obserrations have confirmed this, and beautifully stratified masses of it have at length been discovered in Mount Albert.- Quebec gronp, Lenver Silurian.

Nune of the serpentines, and with the few trilling exceptions that have been mentioned, none of the marbles of Canada, hare yet been quarried for econcmic purposes. All of the specimens of them exhibited by the Geological Survey, are consequently from parts of the strata that have long been esposed to the influcnce of the weather, and are of course inferior to the unweathered portions beneath. There appears little doubt that, in time, both the limestones and serpentines will afford a great amount of beautiful material for architectural purposes, and support a great amount of industry.

Rooring slates.

Wation Quarry, Mehiourne, lot 22, range 6. -This band of slate is in inmediate contact with the summit of the serpentine. It has a hreadth of one-third of a mile, and dips about S.E. $<80^{\circ}$. Mr. Walton commenced opening a quarry upoin it in 1800 , and fonnd it necessary, in order to gain aceess to the slate, to make a tunnel through a part of the serpentine. 'To complete this, and to expose a sufficient face in the slate to pursue profitahle working, has requirel two years of time, and $\$ 30,000$ of expenditure. The face now exposed has a height of severive five feet ; but the band of slate crosises the St. Francis and the fall from the position where the guarry is now worked, to the level of the stream, is uprards of 400 feet, the distance being one and a hald miles, so that by commencing an open cutting on the slate, at the level of the strean, t much greater exposure can be ultimately attained. $U P$ to a compratively recent period, the usual coverings of houses in Canadia have been wooden shinglos, fralvanized iron or tin plate, but so many destructive fires have occurred from the use of the first of these, that they are now interdicted in all large towns. Shate, as a covering, costs about one-third more than shingles, but one-lailf less than tin, and onethird less than galvanized iron. In the following table are slown, lst, the size of the slates, in inches; 2nd, the number of euch slates in a square (of 100 square feet) ; and, 3rd, the price per square at which Mr. Waltom supplies his slates, plaeed on the railcoad cars at Rimpond, which is within one aud a half miles of the quarry.

Sizes.	No.	Lrice.	Si\%es.	No.	Price	Sizes.	No.	Irice.
24×16	Sis	St 00	20×10	119	150	$1+\cdots 10$	208	83 61
24×12	119	400 400 4	18×11 18×10	175	400	$11<6$	38	300 300
2 CH	1 36	400	15×9	213	4 (1)	$1+\times 7$	3.4	275
2 O	1:3	400		22	375	1-2	di0	2.5
20×12,	$1+1$	400	16×9	246	375	12<< 7	45.7	250
20×111	17.1	4 cm	160 s	27	3 Gl	120 5	5;33	22 i

The quarry has now been in operation since the spring of 1801; 2000 squares have been sold, and some of the slates have been sent to a distance of 550 miles from the quarry; a quantity of them having been purchased for Sarnia on the River St. Clair. To show that slate, as a covering, is well adapted to resist the influence of a Canadian climate, it may lee here stated that slates from Angers in France, have been exposed on the roof of the Seminary building on the corner of Notre Dane and Francois Xavier Streets, in Montreal, for upwards of 100 vears, without any perceptible deterioration. The strong resemblance between these and the alates of Melbourne, as well as those from Enagor in Wales, may be seen in the fullowing comparative analyses by Mr. T. Sterry Hunt:

	welsh.	French.	Melbourno.
Silica	60.50	57.00	64.20
Alumina	19.70	20.10	16.50
Protozyd of Iron.	7.83	10.98	4.23
Lime	112	1.23	0.73
Magnesia	3.20	3.39	3.64
Potash	4.18	1.73	326
Soda	2.20	1.30	3.07
Water..............	3.30	4.40	3.40
	100.03	100.13	99.63

The prosimity of the serpentine leaves no doubs as to the geological horizon of these slates.-Quebee group, Lower Silurian.
Cleveland, (formeniy Shipton), lot 6, yauge 15.-The Clereland slates are a continuation of the Melbourne band. The Shipton Slate Company opencd a quarry on them in 1854, and found thems to be of superior quality. This quarry is now for salc. The slates of Orford may be on the same band, about ten or twelve miles to the S. E. ; but the geological horizon of the Tring slates is unccrtain, though they probably belong to the Quebec group. The Kingsey slates appear to be lower in the series than the magnesian group of strata.Qubec gronp, Lower Silurian.

Flagstones.

Geongetown, Esquesing.-This is a hard, finegrained sandstone; and the surfaces are eren and parallel. Many of the beds of the band, which is twenty feet thick, can be split into flagstones; which are used in the city of Woronto. Similar flagstones, used at Hamilton, are obtained from the same band there, and an equally good quality can be obtained wherever the band occurs.-Grey band, Mfedina formation, Lower Siluriün.

TYydaulic efme.

St. Catmerines.-The bed which forms the Thorold cement is a dark brown dolomite of the Clinton formation. During the construction of various railway, and other public works, tho quantity of cement manufactured by Mr. Brown averaced 80,000 bushels annually, but at present the quantity made does not exceed one-tenth of the amount. The present price of the cement is from twenty to twenty-five cents per bushel of sixty lbs.-Clinton formation, Niddlic Silurian.

Walierton.-The beds of this deposit are from two to eleven inches thick, occasionally soparated by layers of shale, making in all fifteen feet. Cement has not yet been manofactured from this stone; and none is made within 1.00 piles of the
locality, although there would, no doubt, be considerable demand for it in the neighborhood, were it prepared at the place. The locality is in the bauk it a mill-dam on the Saugeen River, where an unlimited water power for grinding the cement may be had.-Onondaga formation, Upper Silurian.
Lmerause.-This stone occurs in a band of nine feet thick, in beds varying from three to seven inches. The cement is manufactured in considerable quantities by Messrs. Bescoby and Newton. It sets slomly, and hardens during several weeks, after which it is said to possess great strength.Glinton group, Middle Silurian.
Nerean.-Though the rock occurs in Nepean, its produce is usually designated as the Mull cement, from having been manufactured for several years, by Mr. Wright of IIull, opposite to Ottawa. The rock is a limestone holding about 12 per cent. of carbonate of magnesia, and it yields a strong and lasting cement. The bed to which it belongs, has been traced for noarly 100 miles through the country, preserving a very uniform character.-Ohazy formation, Lower Silarian.
Rockwood.-This specimen comes from a band three and a half feet thick, associated with a layer of chert, and separating into beds areraging six inches. It is not worked, but conld be easily quarried, and a good water-power for grinding is retdy at the spot.-Niagara group, Middle Silurian.

Magdalen Rlver.-These specimens of black dolomite are derived from the Mountian Portage, about five miles up the Magdalen River from its mouth. The stone occurs in beds of from two to four inches, interstratified in black graptolitic shales, and yields a very strong hydraulic cement, setting in a few minutes under woter, to a very hard and tenacious mass of a yellowish colour. Similar bands occur at the Grande Coupe, six miles below Great Pond River. The range of the formation containing these bands, being from Gaspé to Quebec, makes it probable that a cunsiderable quatutity of the stones may be obtained from various places along the south shore of the St. Lawrence. The stone differs from that at Quebec, from which Capt., now Major General Raddeley, R. E., first prepared a cement, now manufactured by Mr. P. Giauvreau. This contaias no magnesia, while the Gaspe stone is a dolomite.-Hudson River formation, Lover Silurian.

Brick.

Montreal.-The red bricks of Montreal are manefactured from a blue clay of marine origin, which is interstratified with reddish layers, 'and rons under a deposit of sand. The clay has iseen oscivated to a depth of twenty feet, and may be deeper, as the same formation is known to have a greater thickness in other localities. Its matine origin is proved by the occurrence of sea shells, of about six species in the pure clay, and about thirty in the sand clay immediately overlying it; all probably the same as species now inhabiting the occan. Our knowledge of the fossils of these deposits has been greatly extended by the researches of Dr. Ditwson, of McGill College, who has more than doubled the number of shells known a few years siace, and added to the list many species of Bryozua, Foraminifera, and other sinall forms. The remains of the capeling (Mallotus villosiss) and the lump-sucker (Cyclostomus lumpus) aro
obtained ffom the same clays near Ottawa, and a clay pit of Messis. Peel \& Compte, on Côteau Baron, has yielded ningteen of the candal vertebre of a cetacean, similar to a species discovered in Varmont by tho late Mr. Zadock Thompson, and named by Mr. C. I. Hitcheoek, Beluga Vermontana. On Côtenu Baron these remains were accompanied by one of the pelvic bones of a seal, by sea-shelk, and by fragments of white cedar, Thuyis occidentalis. the locolity is about 140 feet above the level of the sea. In another of ilessrs. Peel and Compte's pits there has recently been found a nearly entire skeleton of the Greenland seal (Bhoca Circanlandica), a species still living in the Gulf of St. Lawrence; from the size of the head, the animal appears to have been six feet long, and full grown. Within a few days, a claypit of Messrs. Bulnuer \& Sheppard has given many of the bones of some other animal, supposed to be a seal, of much smaller dimensions. The brick yards are situated to the north-east of Mount Royal, on a platenu ot consideralle extent; above which, well-marked sea margins occur on the sides of the mountain, at elevations of $220,386,440$ and 470 fect above the sea level, with marine shells up to the last mentioned height.- Allavian.

Manover, Brant, Geological Survey.-The specimens are manufactured from a brownish laminated clay, which buras white, and is underlaid by a considorable deposit of sand. Either red or white bricks are made of this clay, according to the sand used.-Drift.

Toromio, Weite Diacks.-The deposit of clay. from which these white bricks are manafactured at 'loruato, has a thickness exceeding sisty feet, and extonds eastward, at least as far as Cobourg. It appears to be uncontirmably overlaid by a bed, which is three feet thick, giving red bricks. The white brick clay lies in very evea borizontal strata while the other rodulates with the general surfice, not however dascending to the buttom of deep ravines. The average annual manafiacture of white bricks in Toronto is from three to five millions, and the ordinary price at the kiln is from $\$ 5.50$ to $\$ 6.00$ per 1000 . The price of common red brichs is from $\$ 3$ to $\$ 4$ per 1000 , and the averare annual manuficture, including all kinds, is from eight to ten millions.-Drift.

Drain Tiles.

Querec.-II. O'Donell, C. E., Quebec.-These tiles are marufactured by Messrs. W. \& D. Bell, from a deposit of clay, varying in thickness from three to thinity feet, on tho river St. Charles, between one and tw: miles from Quebec. They are used fir main seirers and house drains, in the city of Quelee, where 151,000 feet of them have been laid. They are united by means of rings of the same uraterial, which cover the joints, and permit alterations and repairs without breaking the pipes. When in place, the pipes are capable of resisting a pressute of filty lbs. to the square inch, and, when properly gilased with a cumposition, (the base of which is oxyd of lead), which is applied cither within and withouk, or within only, they remaia freo from the incrustations that are found to grather on the inside of iron pipes. The prices of these drain tiles are:
$4 \mathrm{in} .6 \mathrm{in} . \quad 9 \mathrm{in} .13 \mathrm{in} .15 \mathrm{in} .15 \mathrm{in} . \quad$ inter. dianeter.

表roccoings of Surietics.

LOUAL COMMITTEE FOR TITE PROVINCIAL EXIIIBITION.
The different buildings now boing erected under the several contracts with the Local Committee, for the purposes of the Exhibition, are progressing very satisfactorily, and may be expected to be ready by the 1st of August, the time named for their completion.

These buildings are all of a permanent character, strongly frimed, and with good shingle roofs. The liorse Stables are three in number, each 184 ft. by 32 feet, with stalls and boxes for 200 horses and are placed in the form of a quadrangle, with an open court towards the main Exhibition Building. The Cattle Sheds are in size and position corresponding to the horse stables, with accommodation for 330 head of cattle. A raised open passage, 8 tect in width, runs through the centre of each shed, betreen the two lines of cattle.

These erections stand on the Eastern portion of the Exhibition Grounds-the Stables on the North side of the line of King-strect, and the Cattle Sheds on the South side.

The Building intended for heavy Mactinery and Carritures is 250 feet by 42 feet, standing 60 feet north of the Crystal Palaco, and exactly parallel with it.

Mr. Thomas Storm, of IJoronto, is contractor for the IIUrse Stables, at a cost of : $2: 060$; Mr. F. C. Walker, of ITamilton, for the Cattle Sheds, at $\$ 2,434$; and Mr. J. W. Miason, of loronto, for the Machine Shed, at a cost of $\$ 875$; makian a total of $\$ 6,969$.

The funds placed at the disposal of the Committee, up to the present time, are $\$ 0,000$ from the Corporation of the City of Toronto, and $\$ 1,200$ from the Council of the Agricultural Association*making altogether the sum of $\$ 7,200$, or $\$ 231$ over and above the amomit of the contracts already entered into. Sume nceessary levelling around the Buildings, and other expenses already incurred, will fuliy absorb this balance.

The Municipal Councils of Ontario and Simeoc have been applied to, to contribute their quota towards securing the other necessary accommodir. tion for the Exhilition, such as Sheep and Pig Pens, and Pualtry Sheds. 'The Commitiee look for a liberal response from these counties, ats they are to a certain extent as much interested as the city

[^0]of Toronto, which has already voted for buildings for the past and present Exhibitions the sum of $\$ 26,000$, besides expending several thousand dollars in draining, levelling and planting the grounds.

The Local Committee meets every Suturday, with few exceptions, either at the rooms of the Boird of Arts and Manufactures, or at the Exhibition Grounds.

THE "CITY OF TORONTO ELECTORAL DIVISION

 SOCIETY."A mecting of the Directors of the "City of 'Ioronto Electoral Division Suciety" was held at the rooms of the Board of Arts and Manufactures, on Mondny, the 9 th of June, when the following resulutions were unanimously adopted :-

Resolved-"Tbat the entire funds of the Society, after mecting all linbilities of the year, be paid over to the Proviacial Λ ssociation; thereby securing to the members all the privileges of members of the Association."

Resolved-" That members of this Society, for the present year, be each presented with a copy of the "Agriculturist," or the "Journal of the Board of Aits and Manufactures," at their option."

The annual subscription to this Society is \$1, which may be paid to the Sccretary and Trensurer, Mr. W. Edwards ; or to James Beachell, President; Rice Lewis and J. D. IIumphregs, Tice-Presidents; Col. E. W. Thomson, A. Shaw, R. L. Denison, G. Leslie, J. Gray, J. Fleming, and W. II. Sheppard, Divectors.

TORONTO MECHANICS' INSTITUTE.
A meeting of members of this Institution was held on Tuesday, July lst, in accordance with a Resolution adopted at the annual meeting, on motion of Mr. C. Pearson, for the purpose of "initiating a series of mectings for the discussion of matters of practical interest to mechanics." The first Vice President, Mr. W. Edwards, occupied the chair and explained the object of the meeting.

The meeting was not numerously attended, but several of the mewbers present spoke warmly in firvour of at once proceeding to initiate the mectings, believing that great benefits would eventually result to the mechanic members of the Institute, by the discussion of such topics as are calculated to add to their knowledge of practical matters, and to improve their taste.

Mr. Pearson moved to postpone the commencement of these discussions until about the 1st of October next, and in the mean time to offer two prizes for 1 st and 2 ad best lists of topics suitable
for discussion. This proposition not being agreed to, it was moved by Mr. W. H. Sheppard, and resolved,
" 1 st. That the Directors be requested to give a Class Rnom and light for the purpose contemplated by the meeting, and that the undersigned pledge themselves to meet once a fortnight, as far as may be convenient for them to do so, for the purpose of taking part in or promoting the contemplated discussions."
"2nd. That the meetings be opened by the reading of an original paper, or an extract from some reliable author, upon the subject proposed for discussion, by some person previnusly appointed for the purpose; and that it shall then be the duty of the members present to make such practical remarks, and propose such questions, as may occar to them as bearing upon the subject; to bring forward the ideas of other authors, and to elucidate the subject as much as possible."
"3rd. That the next meeting be held on Friday, the 25 th of July; and that the subject for discussion at said meeting be Heating and Ventilation of Buiddings; and that all members taking an interest in the subject be invited to attend."

Eleven members subscribed their names, when the meeting adjourned.

WHITBY MECHANICS' INSTITUTE.

'lhe annual meeting of this institution was held on 'Ihursday, May 30th, at the hall of the Institute; the president- J. Hammer Greenwood, Esc., occupied the chair.

After reading the minutes of the previous annual meeting, which were adopted, the president read the report of the General Committee, from which we learn that the members number 207 , being an increase of 63 during the year. Seventeen lectures were delivered during the past season, which were all well attended. The library at present contains 808 vols, 153 of which were added by purchase during the year. During the same period two hundred members availed themselves of the use of the library, the number of vols. issued being $2,96{ }^{\circ}$. This is an increase of 61 reading members, and 591 vols. on the present pear. The receipts from all sources amounted to $\$ 85758$, and tho expenditure to $\$ 847$ 83. The auditors' statement shews assets to the amount of $\$ 2,54350$, and liabilities to 1st April $\$ 5280$. The report suggests the increase of the members annual sabscription, which at present is only one dollar.

On motion of Mr. McCabe, seconded by Dr. Ham, the report was adopted. The auditors' report was also adopted, and the thanks of the meeting voted to the retiring officers.

The following were then clected officers for the ensuing year:

William McCabe, President-A. F. McPherson, Fice-President-John Shier, 2nd Vice-FresidentMr. 'Thwaite, Recording Sec'y-Rev. K. Maclennan, Comesponding Secrelary-Jumes Bain, IreasurerII. Fraser, Librarian.

General Commitee.-Messrb. John Ferguson, Mijor Harper, M. O. Donovan, J. Bengough, Alex.

Mason, S. II. Greenmood, Geo. Hopkins, J. H. Perry, James Draper, and G. Y. Smith.

Resolutions were passed instructing the committee to arrange for an excursion trip under the auspicies of the institute, doring the summer, if they deemed the same practicable; presenting the Rev J. 'I. Byrne with a life membership, in voken of his services, and appointing a committee to wait on him therewith; and conveying the thanks of the members of the Iostitute, to the Trustees and members of the Whitby Division of the Suns of Temperance, for the liberal surrender and sale made by them of their interest in the Hall.
The meeting then adjourned.

TIIE PROVINCLAL EXIIBITION.

The speedy approach of the Provincial Exhibition reminds us of the necessity of again calling the attention of manufacturers, artizans and mechanics to the value and importance of securing a complete representation of their sereral departments of industry at Toronto, in September next.

Thero can be no doubt whatever that the Provincial Exhibition of 1802 will far surpass in all details any of its predecessors, and a better opportunity for display has never yet occurred in the history of the Province.
The large amount of prizes devoted to the Manufacturing Department, and the new arrangement which has been adopted by the Board of Arts and Manufactures will no doubt prove acceptable to many who have hitherto been disposed to express disapprobation at the small amounts awarded. A sum exceeding two thousand dollars, varying from thirty dollars downwards, is itself an attraction, but we believe that the spirit of emulation, which is now beginning to be developed, will alone be sufficient to secure for the Arts and Manufacturing Department of our Exhibition in September next a far better representation of the manufacturing industry of the country than has ever hitherto been made.

electric apparatus.

By an ingenious contrivance, an Electric Apparatus is attached to the turnstiles at the entrances of the International Exhibition Building, and com-municating-by means of a line of copper wire laid across the building-with the finance office of the Commissioners. This instrument is worked without battery-power of any kind, the electricity being generated by a magnetic machine of peculiar construction, connecting with the turnstiles in such a manner as to discharge a current at each revolu tion of the stile, registering the passing through of each individual, and establishing a complete check upon the money takers at the door.

O'IIARA'S LIGHT DRATI PROPELLER.

A great requirement of the present age is a means of propelling by steam power canal boats, by some instrument of propulsion not liable to the well known objections of the paddle-wheel, or screw propeller.

The accompanying engraving illustrates an original propeller designed by Mr. Charles O'Hara, of London, England, (formerly of Toronto,) especially for canal navigation, its object being to propel a boat by a comparatively small espenditure of
steam power, by obviating the mechanical disadvanlages of crank movements, lift-water, \&c., and to cause no surge injurious to canals or their banks.

The propeller is represented detached from a vessel in a perspective view in Fig. 4. It is of semi-cylindrical form, resembling one-half of a cylindrical grindstone with its axis attacherl; tho surfaces on each side of the axis are corrugated or fluted, and the adaptation of the propeller and aris

Fig. I

to a vessel and steam-engine is illustrated in Fig. 1. The form of the stern of a vessel for the reception of the propeller is shewn in Fig. 3. The circular surface of the propeller moves close to the surface of the concave or recess at the stern of the vessel as close as possible without touching it.

In Fig. 2 the attachment of the propeller to the cngine is represented, and it will easily be perceived that the action of the piston of the engine
drives the fluted surfaces of the propeller through the water between those points most farourable to direct propulsion, alternately, and thus the ressel is propelled forward.

When it is necessary to back the ressel, the propeller is turned round so that the fluted surfaces are opposite the concave at the stern of the vessel, and the reversion is effected by a simple contripance illustrated in Fig. 2.

Fig. 2

The cog-wheel A is rigidly fastened to the propeller, and the arm B, to which the piston rod is attached, is freed from the propeller by the withdrawal of a bolt which passes through a slot in the arm, and passes into any one of the coge in the wheel; by this arrangement the propelter may be made to oscillate in any position required, and the boat may be suddenly turned out of its course by the action of the propeller.

The inventor of this propeller claims the following adrantages for his invention.

1. Simplicity in structure and cheapness in manufacture.
2. Simplicity and cheapness of engine used in connection with it.
3. Very direct action.

Fig. 4

4. No loss of power by lifting water or displacing it, as is the case with the paddle-wheel and screw.
5. Great reduction in the consumption of fuel.
6. For floating batteries, the propeller is submerged and all the machinery may be placed under the water line.
7. No surge is caused by it in canals, to injure or wash their banks, and no rapid vibrations tending to injure the boat or its machinery.
8. On the shortest notice the propeller may be placed in a position to turn the vessel rapidly out of its direct course.

Patents for this invention have been secured in England, Canada, France, and the United States, and information regarding it may be obtained by addressing the assignee.

Walter O'Hara,
Toronto, C. W.

RECENT CANADIAN INVENTIONS.

Fleming's Farm or Railway Fence. - Tbis Fence is straight and in panels of any convenient length. It rests on the surface of the ground, or rathor the crose-sills which form the base and termination of each panel are partially imbedded in the ground. Two uprights are made to fit corresponding holes in ench cross-sill, in such a manner as effectually to exclude moisture. The uprights are bound together, and also to the upper rail, by a bolt and nut. The panels are then filled with rails, laid the one on top of the other alternately.

The material composing the Fence may be prepared three different ways, according as it is found to be most desirable, either as regards cconomy, neatness, or durability, viz :-
lst. To have it all of sawn lumber.
2nd. To have it partially sawn and partially split.

3rd. To bave it all split.
The advantages claimed by the Inventor for this kind of Fence are various:-
1st. It has the merit (in common with all others made to rest on the ground) over a post and board Fence, viz: that the upheavel caused by frost has no effect whatever, while the rigidity and binding together by the bolt, aided by the cross-sills being imbedded in the ground, enable it to resist effectually a gale of wind that would blow down any other kind of Fence constructed to rest on the ground.

2nd. It is less expensive than a post and board Fence, while at the same time it is equally straight and neat.

3rd. It can be all made of split cedar, and consequently in addition to its cheapness it is more durable.
4th. It can be built on any kind of hilly ground, and be as effectually strong as on the level plain.
5th. It will go less out of repair than any other Fence, and in point of fact requires no repair for many years.
Gth. It can be all taken apart if necessary, and rebuilt at any other place required, with ease and despatch, and without the loss or destruction of any portion of the Fence.
Invented by D. Fleming, Toronto.

Keache's Strapless Skate.-The sole of the Skaie is made of steel, in the usual form. The part on which the foot rests is brass, and screwed to the Skate. The forward part of the Skate, i.e. the part nearest the toe, has two screws inserted in the brass foot-piece, on which is placed an iron plate with two mortices, about half an inch in length, for the heads of the screws to work in, the front end of the mortice being made sufficiently Iarge for the screws to go tbrough. The back part of the mortice, i.e., the part nearest the heel, fits the screw tight, the upper part being bevelled to fit the under side of the screw hend, which holds the Skate tight to the foot when the plate is pressed forward.

The iron plate is fustened to the boot with four small screws, and so adjusted that when the foot is pressed forward the heel of the boot will fit close to the spring. A small iron plate is fixed to the heel of the boot, with a hole for a pin to pass through; also a small mortice for a catch to work in. A spring is worked by a ring, which screws the heel part of the Skate to the foot in the firmest manner, much firmer than is possible to do with elastic straps in the ordinary way.

The Inventor claims that its security and simplicity saves much time in putting on and taking off Skates, which is of the greatest importance to Skaters, particularly in very cold weather.
2nd. The inconvenience and unsightly appearance of straps is done away with, leaving the foot free.

3rd. The greatest benefit to be derived from this method of fastening Skates is that it gives the foot free action, and does awry with the cramping and benumbing the feet, which always occurs in the old method.

Invented by George C. Keachie, Brantford.

[^1]
PATENTS OF INVENTION.

Buread of Agriculture and Statistics, Quebec, 21st June, 1862.

His Excellency the Governor General has been pleased to grant Letters Patent of Invention for a period of Fourteen Years, from the dates thereof, to the following persons, viz:
James Rogers Armstrong, of the City of Toronto, County of York, Iron Founder, for "A new Design of a Cooking Stove, styled "The Maple Leaf."(Dated 29 th November, 1861.)

Elibee Stead, of the City of Toronto, County of York, for "A composition of matters to clarify and deodorize Canadian Rock Oil and Coal Oil."(Dated 26th March, 1862.)
James E. Thompson, Gas Engineer, and Henry Y. Hind, Professor of Chemistry and Geology, both of the City of Toronto, County of York, for "An apparatus for the manufacture of Illuminating Gas from Crude Petroleum or Rock Oil."-(Dated 28th March 1862.)

James E. Thompson, Gas Ingineer, and Fenry Y. Hind, Professor of Chemistry and Geology, both of the City of 'loronto, County of York, for "A Process for the manufacture of Illuminating Gas from Crude Petroleurn or Rock Oil."-(Dated 28th March, 1862.)

Cyrenius Chapin Roe, of the Town of Brantford, County of Brant, Machinist, for "A Horizontal Endless Chain or Rope Horse Power."-(Dated 10th April, 1862.)

Samuel Conover, of the Township of Toronto, County of Peel, Yeoman, for "An article called "The Victoria Concave Washing Machine."(Dated 12th April, 1862.)
David Elon Norton, of the Town of Bowmanville, County of Durham, Machinist, for "A new and improved Straw Cutter, called "Morton's Diamond Straw Cutter."-(Dated 12th April, 1862.)

John Walmsley, of the Village of Berlin, County of Waterloo, Waggon Maker, for "A machine called a "Combined Sower and Cultivatur."(Dated 12th of April, 1862.)

Charles Bodley, of Mount Forrest, Counties of Wellington and Grey, Carpenter and Fanning Mill Maker, for "An Improved Sifter Fanning Mill and Elevatoir."-(Dated 12th April, 1862.)

Moffitt Forster, of the Village of Glen William, County of Halton, Miller, for "An Improved Safety Whipple-'Tree and Spring closed Huld backs." -(Dated 12th April, 1862.)
James Lorenzo Gage, of the Village of Dacotah, County of Halton, Merchant, for "A Bag Fasten-er."-(Dated 12th of April, 1862.)

Robert Parr, of the Township of Darlington, County of Durham, Yeoman, for "A Hair and Fenther Cleanser and Renovator."-(Dated 15th April, 1802.)

James Dalgarno; of Cliatham, County of Kent, Moulder, for "An Instantaneous Adjustment Wrench." - (Dated 15th April, 1862.)

Joseph A. Mardin, the younger, of the Township of Barnston, District of St. Francis, Blacksmith, for "A new and improved Punching Machine, called "Mardin's Punching Machine."-(Dated 22nd April, 1862.)

Edward Long, of the City of Montreal, Carpenter and Joiner, for " A new method of preparingsigns
and plates, designated " Edward Long's Adjustable Letters and Figures."-(Dated 22ud April, 1862.)

Richard Rogers, of the City of Montreal, Plasterer, for "A nev composition of matter to be used in the manufacture of blacking-pots, pomatum-pots or similar articles."-(Dated 22nd April, 1862.)
Ulric Joseph Martineau, of the parish of Longueuil, Llinsmith, for "An improved Metal Ruof, made with galvanized iron or other metals." (Dited 20th May, 1862.)

ABRIDGED SPECIFICATION OF ENGLISII PATENTS.

2783. II. Orte. An improved soap. Dated Nov 5, 1801. This consists of a misture or combination of about 100 parts in weight of finely levigated clay, such as pipe clay, china clay, or other aluminous or ciliceous earths; 20 parts of caustic alkali, such as caustic potash, caustic soda, or caustic ammonia, or the earbonates or bicarbonates of soda, potash or ammonia, corresponding to an equal amount of caustic alkali, and 20 parts of resinous matter, such as ordinary fine resin of a similar nature capable of being saponified. These proportions may be varied accurding to the quality of the soap it is desired to oltain. In preparing this soap, the resinous and alkaline or caustic alkaline ingredients are mised with about 50 parts by weight of water, and boiled tagether, ebullition being continued until the alkali and the resin are combined and saponitied. The saponified mass is then mixed with the argillacious or earthy matters, the whole being worked into a homogeneous paste, which is afterwarls dried, and which is then rendy for use.
2784. G. T. Bousfield. Improvements in electroplating or depositing metals. (A communication.) Dated Nov.5, 1861.
This consists in the use of a solution of fused cyanide of potassa of great strength, in connection with a powerful galvanic curreot, whereby the patentee is enabled to plate iron and other metals rapidly and economically with copper, without the use of either sulphate or cyanide of copper, and without danger or inconvenience to the workmen.
2785. F. H. Schroder. Improvements ial evaporating and in machinery employcd therein. Dated Nov. 6, 1861.
This invention is intended chiefly to apply to the eraporation of the liquid parts from sugar when in a state of syrup, in order to ottain it in a crestalline condition. It is, however, applicable to evaporative purposes generally. The invention consists in placiug the syrup, or other matter to be evaporalcd, in in open pan heated by steam or hot water, let into a jacket or case, in which the pan is placed, nnd in causing a series of concentric cylinders, through which a blast or current of hot or cold air is furced, to revolve in the syrup, a portion of the cylinders being continually in the cyrup and another portion revolving in the atmosphere. The crlinders are each formed with slots running in the direction of their length.

28i7. E. Loomes. Improved machinery for monlding bricks, tiles, and oller like articles. Dated Nov. 10̈, 1561 .
This consists in adapting to the lower end of the pug mill shaft one, two, or more eccentrics, cams,
wipers, \&c., in combination with moveable stops, against which the clay or substance to be moulded is pressed by the cams or wipers as they move round. By that means the clay is squeezed between the curved surfaces of the wipers and the stops, and will thereby be forced out of the mill through the apertures provided for the purpose, and will be pressed into or through moulds or dies.

COST OF SHIPPING PETROLEUM TO LIVERPOOL.

In answer to numerous questions respecting freight of Rock Oil, \&c., we publish such information as we have been able to obtain from reliable sources:-

1. The Well to Wyoming Station, 40c. to 50 c . per barrel.
2. Wyoming to Sarnin, free of dockage and storage

	"		28c. per barrel.		
4.	"	Monitreal,			"
5.	"	Quebec,		38 c .	"
6.	"	Portland,		60 c .	"

$\$ 10$ per car of (58 barrels) is charged for unloading and dockage at these three last-named ports.
7. Freight has been taken this season at $\$ 4$ per. barrel from Sarnia to Liverpool.
8. Crude oil has recently been purchased at the wells by some of our merchants, at 25 c . to 30 c . per barrel.
9. Barrels average 40 wine gals., and weigh about 350 lbs . These rates are in actual operation, and may be relied upon. Nothing comparatively has been slipped from St. Clair ports below Sarnia, which, via Great Western Riilway, is the favourite route on the St. Clair river; costing, as shown, about 78c. per barrel from the wells to Sarnia, which, with the price of the oil, 30 c ., and freight thence to Liverpool, $\$ 4$, would bring the cost per barrel in Liverpool harbour to $\$ 5.08$.
The flamilton route has not been tried, shippers preferring the Lower Canadian ports and Portland.
With regard to our canals, a vessel of 200 tons burden, drawing 8 feet 9 inches of water, has just returned from a trip to Montreal, paying for towage and other fees (no lockage) from Toronto to Montreal and back, the sum of $\$ 160$. The length of locks on the St. Lawrence Canal is 200 feet, width, 45 fect; average depth of canal, 9 feet. Locks on the Welland Canal* (in passing up to the St. Clair) length, 150 feet, width, 26 feet 6 inches; depth, 9 feet.

[^2]Shipments of oil by the Great Western Railway during the year:

January, 1862.................	11,775	barrels.
February, "	2,211	"
March,	4,750	"
April,	1,438	"
1st to 23rd of May..............	3,744	،
	22,908	"

Equal to 956,320 wine gallons.

SHIPMENTS OF PETROLEOM.
From the Toronto Globe.
Several cargoes of Patroleum have now cleared for European ports from Canada, and in a month or two the prices will be well established. Until these shipmevts arrive, the market can hardly be tested, as what has hitherto been shipped, last fall and winter, has only been small lots of 20 to 50 barrels as samples. We notice the following shipments: the barque "Prince of Wales," from Sarnia, with 2,800 barrels for Queenstown; part of this cargo was lost in the canal the barge striking the locks. The brigantine "Suow Bird," cleared from Queboc for London on the 28th ult, with about 1,450 barrels. This vessel is owned here by G. II. Wyatt, and A. M. Smith \& Co., as well as the eargo, with the exception of 500 barrels shipped by Myles \& Co. The schooner "Gulnare," owned by Messrs. Myles \& Co., is now loading 1,100 lar. rels for themselves and Messrs. Matthews \& McLean of this city. The brig " Chieftain." loaded at Sarnia for Qucenstown, Ireland, with about cqual to 1,700 barrels. In addition, we understand, the schooner "George Laidlaw" is going to load for Messrs. J. E. Ellis \& Co., of this city, for London. She will likely load at Sarnia and fill up at Quebec.

The freight paid was $\$ 4$ per barrel "from Wyoming station to Liverpool. From Quebec to Liverpool, $\$ 2$ per barrel of 40 gallons; and to London, $\$ 250$ per forty gallons. The rate of insurance on good ocean vessels, without deck load, is from 2 ? to 3 per cent.

SMITH \& JONES' NAPITTIFMETER, OR BENzine Detector.
We have received a copy of a little pamphlet, written for the purpose of explaining the construction and mode of operation of a "Benzine Detector," invented and patented by Florace J. Smith and Woodruff Jones. The inventors say:
"The want of a ready and reliable means of detecting dangerous and explosive Coal or Petroleum Oil, has long been felt. The great competition, which exists at present, induces many refiners to sell as "NonExplosive Coal "that which is entirely unsafe to be used in the family, and the numerous accidents which have occurred with such articles, have created a prejudice in the minds of many against all oil, which can only be removed by having a simple means of testing the quality of any that is offered for sale. Since refined Petroleum is comparatively a new article, aud its properties but little understood by the public at large, it is very natural that it should be looked upon with suspicion.
The difflculty of detecting a dangerous oil is great. The crude or unrefined oil consists essentially of three ingredients, which are to be separated by the process of refining; these are Benzine or Naphtha, Illuminating Oil, and Lubricating or Heavy Oil. The properties of these when separated are very different and distinct, but when mixed, it is difficult to detect the quantity of each, or even, in many cases, the admisture. They each differ materially in specific gravity; the Benzine marks 65° on Beaume's hydrometer, the Illuminating Oil 45°, the Heary Oil 35°; but they may be mised together in all proportions, and the specific gravity of such compounds will generally be a mean between the gravities of the several parts. Thus, if we mix Benzine and Heavy Oil we can obtain a liquid of a gravity of 45°, exactly that of Illuminating Oil. Now, since the danger is due to the presence of Beuzine, on account of the vapor which 50 readily arises from it and its great inflammability, such a mixed oil would be very dangerous to use in a lamp, and even in the viclnity of a flame it might erplode. It is thus clearly scen that gravity is no test. What, then, shall be the test?"

It appears to us that the apparatus Messrs. Smith and Jones suggest is open to a very serious oljection, which can however be easily remedied. The construction of the instrument ensures the formation of an explosive mixture of Benzine and atmospheric air within the bos bolding the Petro leum. The flime used in testing for the presence of Benzine vapour would very probably in some instances travel down the space between the wick tube and the outer tube, and thus communicate at once with the explosive misture immediately over the Petroleum, setting the latter on firc. The difficulty may be obviated by placing a piece of fine copper gauze through which lame will not travel at the top or bottom of the space between the wick tube and the outer casing. We submit this suggestion to the attention of Messrs. Smith and Jones, or else we should fear that their new "Benzine Detector" would in some instances bo. come an " Explosive Napitmometer."

BRITISI PUBLICATIONS FOR JULY.

AMERICAN PUBLICATIONS FOR JUNE.

Fmerson \& Flint's Manual of Agriculture, for the School, Farm, and Fireside, $12 \mathrm{mo} .$. .
$\$ 075$ Swan \& Co. Fetridge's Hand-Book for Travellers in Europe and the East, with a Map embracing Colored Rontes of Travel, 12 mo
Phin's Open-Air Grape Culture: a Practical Treatise on the Garden and Vineyard Culture of the Vine, and the Manufacture of Domestic Wine, 12 mo .
Spencer.-Education; Intellectual, Moral and Physical, 12 mo
Tafel's Investigation into the Laws of English Orthography and Pronunciation, 8vo p.
Trollope's North America, 12 mo
275 Harper \& Dios.
100 C. M. Saxton.
100 Appleton \& Co.
100 Hesterman dCo
060 Harper \& Bros.

Silettex gltitifs.

A COURSE OF SIX LEOTURES

On some of the Chemical Arts, with Reference to their progress between the Two Great Exhibitions of 1801 and 1862, by Dr. Lyon Playpair, C. B. 1. R. S., Professor of Chemistry in the University of Lidinburyh.

Lecture I.

Distillation of Coal; espectally in its Relation to tme Production of Gas and to the Furmation of Paraffine.
Ladies and Gentlemen, - In ancient Jewish times, the son of Sirach, in Ecclesiasticus xxxir. 20 , has the following passage:-"The principal
things for the whole use of a man's life are water, fire, iron, and salt, flower of wheat, honey, milk, and the blood of the grape, oil, and clothing." If it were not that chemistry has advanced so much in recent years that this definition of the son of Sirach no longer represents the comforts and enjoyments requisite for our advanced civilization, I would show you that ench of these substances, eithor in their actual production or their improvements, depend upon the chemical ants; but it is the very progress of chemistry which has rendered this definition of little siguificance to us at the present time. No science bas done so much as chemistry for penetrating into the secrets of nature and discovering those applications in the arts which are so necessary for our daily comforts. It would be impossible for me to attempt in a courso
of six lectures to go over the range of the chemical arts. All that I can do is to take a few selected examples, and to refer to those chiefly with a view of showing you their progress between the Exhibition of 1851 and the Exhibition of the present year. But it would be coutrary to the usual habits of this Institution, were I to confine myself simply to an explanation of the progress of these arts, for I cannot assume that the audience whom I have the honour to address are perfectly familiar with the arts themselves, and, therefore, can be interested by a mere account of their progress. I therefore propose, with your permission, to describe to you, generally, the nature of these arts in a popular manner, and then to refer to the discoveries which have recently taken place with regard to them.

When we examine the application of science to industry, we find that these applications benefit industry generally in one of three ways-first, by adding to buman power, either by furnishing sulbstitutes for brute labour, or by affording tools and methods for results formerly difficult or impossible, as, for example, when we use gunpowder in blasting rocks, and in the course of a few minutes can perform what would require ages of brute labour. It very often happens in this application of science to diminishing the efforts of brate labour that natural forces are employed, as, for instance, when Ilercules was obliged to clean out the Augean stables, not by using a pitchfork, but by turning the waters of the Alphreus into it and sweeping it ont by the use of this natural force. The second method in which science benefits industry is by producing economy in the time necessary to attain the result. Historians record as an example of wouderful dispatch the feat of Sir Robert Carey, who rode from London to Edinburgh to tell James the First that he was the King of England by the death of Elizabeth, and who occopied, is his weary ride, from Thursday to Saturday night. By means of the electric telerraph we can now despatch a message to the northern capital in much less time than the groom of Sir Robert Carey could have saddled his horse. The third advantage which science renders to industry is in the economy of material. There is nothing so characteristic of chemical improvement as the uses which it makes of waste products. A philosopher justly defined dirt as being merely matter in a wrong place. Put it in the right place, and it becomes a utility. The substances apparently the most worthlesis today, are even elegant utilities to-morrow. For instance, the parings of horses' hoofs, the horns of cattle, and cast-off woollen garments of the inhabtants of the sister isle, are mixed with scraps of old iron, and grace the dress of the courtly dames who wear dresses dyed with Prussian blue. All these substances when properly applied become important utilities. In all the manufactures to which I shall hare to draw your attention in this short course of lectures, you will find that one or other of these three forms of benefitting industry is very apparent, sometimes appearing oltogether, sometimes offering only one of the adrantages.

I select to-day the manufacture of gas, not that that manufiacture has made any decided progress during the last ten years as a chemical art-it has made very little progiess-but its economy is better understood, and its science is also better com-
prehended. But I select it because I shall show you in the next lecture that the materials which were extremely waste and noxious in the manuficture of gas have all been utilised-at least, most of them have already been utilised; a few of them remain still to be utilised-and that they havo produced important, common, and even elegant utilities. I therefore, commence to-day by giving you an exposition of the manufacture of gas.

No great diseovery in the industrial arts starts into the world without giving abundant indications of its approach. There is no such thing as an industrial invention starting up full grown and panoplied in armour as Minerva did from the brain of Jupiter: it crceps into the world by slow degrees and by many indications foretells that it is ap. proaching. So with the manufacture of gas. The Persians, ages since, saw gases coming through the soil; they set fire to them and worshipped them as holy fire. In our own country gases constantly came from the coal measures below the surface of the earth; and Shirley describes, in 1659 , how he obtained these gases and set fire to them, and how illuminating they were. Sir James Lowther, in 1733, actually took the gases coming from the coal measures and conducted them away by pipes, and be burnt them at the surface and showed that they were combustible and highly illuminative. Clayton, the Dean of Kildare, in 1739, distilled coal in a retort, and he got what he calls "a phlegm, a black oil, and an incondensible spirit," This spirit is what we now know as gas. He could not in any way condense this spirit, so he collected it in bladders, and he pricked holes in the bladders and lighted the issuing gas for the amusement of his friends, Lord Dundonald did nearly the same thing on a much larger soaie in 1786; but it was Murdoch, iu 1792, who gathered up these isolated threads of science and spun them into a rope capable of supporting an industry. He showed how the knowledge previously acquired might be applied in the preparation of gas, and how that gas might be used for the pupose of illumination. It was not, however, till 1812 thai this industrial art took root in London, and then so little was knowa about it that it is recorded that a lady of fashion, seeing a brilliant gas-lamp burniog at Ackerman's shop in the Strand, insisted upon taking it awny, light and all, in her carriage. It was no wonder that at that time gas did not be come very popular; it was extremely bad; it had a nasty fetid odour resembling that of rotten eggs; it produced intolerable smoke when burning; it discoloured cottons, from the sulphurous acid which was formed in its combustion; it eat of the backs of books, and it produced languor and hendache. Luckily it had advocate in Winsur, who thought that all these defects were advantages, and who inspired the public with his own enthusiasm, and who gradually extended the art in spite of these disadvantages; but what was much more important, it had a man of scienco in Cleyg, who admitted the defects, and immediately applied his great skill to remore them; and it is owing to the great labours of Clegg in improving the manuficture of gils that we possess its escellence at the present day.

I need scarcely demand your attention to this as an important subject, becanse it must be quite
obvious to what an enormous advance civilization took when the coal gas became cheap and commun. It has improved morality and lessened crime, by making every passer-by in the street a detective policeman. The art of street lighting was discovered as early as the fiurth century, when Antioch was lit up by oillamps; and even at that time--as early as the fourth century-tho art of strect-ligliting showed its advantages by ending unsecmly brawls. We read at that time of a controversy between a Luciferan and an Orthodos, which contisued in the midst of a crowd of people uatil the lamps were lit, when the disputints spat in each other's faces and retired. From the fourth century up to the fifteenth, or, perhaps, the sisteenth century, the art of street-lighting scems to have been lost; and it was only in the sixteenth century that streets' began again to be lighted by oillamps. Now we hnve froul thirty to furty thousand of these street lamps in London alone.

I nur ask your attention a little to the chemistry of cmal gas.

Coil gas is obtained by the distillation of common coal, or by the distillation of coals highly bituminous, as they are called-that is, which give out hituminous products in their distillation. Coal consists of cirbou and hydrogen largely, of osygen and nitrogen in smaller quantity, of sulphur a slight quatity also, and of incombustible matter and ashes.
When the coal is heated in a close vessel-that is, when they are distilled-at first the oxygen contained in that coal acts just as the oxygen that is ia that fire: it burns some of the consticuents of the conal. It unites with the hydrogen of the coal and forms water. Just as the oxygen there [referring to a small portable furnace burning on the lecture table] unites with the hydrogen of the coal aud produces water, so does it in the close retort. It unites also with part of the carbon and furms carbonic acid, as it does in the open fire-place. But sown the oxygen of the conl is exhausted, and then the hydrogen, which is in large quantity, divides itself partly between the carbon and produces the illuminating gases and the liquids which I shall afterwards describe, and which are called hydrocarthoms; and the rest of the hydrogen goes to the nitrogen aud forms ammonia, and this ammonia we shall afterwards have to deal with also.

We will now take a simple case, which is an exact model of the manufacture of conl gas on a large scale. I have here an arrangement which will take a little time to act, and therefure I ses it going just now. We have put coal in that retort, and it is connected with a receiver here. You will find, after as short time, that a liquid, which consists partly of water and partly of tar, comes over into the condensef. Our large bottle there is the condenser which wo employ for this purpose. It produces, first, gaseous products; second, crude coal oil, which is commonly known by the name of tar; and it produces also a watery portion which contains awmoniacal salts. To-day we have nothing to do with the crude coal oil, or with the watery portion: that will be the subject for the next lecture. All that I bave to direct your attention to now are the gaseous products; and these are divided into three divisions. The first class of gaseous substances produced by the distillition of
coal consists of hydrogen, carburetted hydrogen, and carbonic oxide; and these are classed as diluents, for a reason which you will presently see. Then there are, secondly, illuminants, which consist of olefiant gas, and two substances called propylene and butylene. And, thirdly, there are impurities which are also gaseous, which are carbonic. acid, sulpharetted hydrogen, and nitrogen. We can readily show the differences in the nature of these gases. I hare collected these gases in a separate state here. I first have got hydrogen, which is one of the substianees classed as diluents; and I will take these different gases and show you that they have very different properties as regards the parpose of illumiation. I can easily pass at little hydrogen through here, aud then you will beable to see, when we get the draught sufficiently, the amount of light it is capiable of affording. We will just allow r little gas to pass through before we ignite it. Now, you see there is very little illamination there; in fact, the little illumination which is produced there is derived from the dust and the material upon the burner. Now, we will take carbonic oxide, which is another of these gases, and you will find that there is very little illumination here too. In this caso we are obliged to bura it without a burner. You see there we have produced only a blue flame, without much illumination. Now, I have got here some marsh gas, or carburetted hydrogen, and you will find that this, also, is not much of an illuminant. They are all classed there as diluents. I have now here olefiant gas, which is a strongly illuminating gas. You see there that olefiant gas is very illuminating. I have here common coal gas, and you will see the great differences between these different gases. You sec that coal gas, which contains all these gasesdiluents as well as illuminants-is not so illuminting as olefiant gas. In that way you can compare the value of these gases as they are placed on the table.

Now, when we examine what is the chemical nature of these gases, we soon get an explanation of the reason of their different illuminating values. The amount of carbon contained in olefiant gas is 80 per cent., the amount of carbon in carburetted hydrogen is 75 per cent., and the amount of carbon in carbonic oxide, which burns with that blue flame, is only 43 per cent, Therefore, the illuminating properties of the gisses are in proportion ta the anmount of carbon which they contain. I think that I can show you this by a simple experiment. I have here hydrogen-a gas which I showed you before. You have seen that it burns with very little flame. I should tell you that the reason that it produces very little flame, is that it produces a gaseous substance in burning. In the act of burning it forms water. Now, gases require a very high temperature before they are luminous, and the products of the combustion of hydrogen is steam; and that product requires such a high temperature to become luminous, that hydrogen is only faintly so. But solids, on the other hand, become luminous in the dark at 700 degrees, and brightly so in daylight at from 1000 to 2000 degrees. Now, I want you to understand the nature of the experiment I aun going to make, before I put it in operation. I have here hydrogen burning as you saw before, and producing simply steam, and therefore
not producing much light, because that product is gaseous. I will now turn that off, and I will produce the combustion in this tube with peroxide of barium. The peroside of barium will supply the flame with oxygen, and form water exactly as is produced when the gas is burning in the open air; but at the same time, during the act of formation of this water by the oxygen of the peroxide of barium, there is a solid to be heated to redness. We will now heat the peroside of barium. I have wrapped it up in tale. You see now that water is being produced, and gradually as the heat gets up you will see that the action will become much more perceptible. This tube is rather too emall for me to apply as much heat as I desire. The water is now being formed in the presence of a solid. What a brilliant amount of light the gas gives out on account of the solid being at the same time heated to redness. You see, therefore, that when we form exactly the same product under the conditions under which a solid becomes heated, a large amonat of illumination takes place. I want to show you that in another way, and in a very instructive way. I have here a means of passing hydrogen through this row of bottles. I now can pass hydrogen through these various vessels, which contain various volatile liquids. Now, this hydrogen will, on its passage through the liquids, suck up portions of these vartious preparations, and we shall charge the gas with solid matter, and in this way obtnin an illuminant. The liquids through which it passes are chlorochromic acid, chloride of antimony, and bencule. The first two will give solid oxides to be heated to redness; the latter will give solid carbon, and the hydrogen in all cases becomes illuminating. Unfurtunately, however, I cannot continue this instructive experiment, for some air has entered into the bottle since the commencement of the lecture, and produced an explosive atmosphere.
The fact which I want you to notice is that there are illuminants in coal gas, which are illuminants because they contain so much carbon-that in proportion to that carbon they are illuminating; that as that carbon is small in quantity, they are merely diluents, and dilute the gas without in any way illuminating it.

And nuw I must explain to you what is the action of these diluents. These diluents which are described on the diagram, and which you have seen, are the oxygen, and the carbonic oxide. Their object is to sweep the gas out of the retort, and prevent the illuminating gases being decomposed by the heat. In distillation a large quantity of the illuminating gases is being produced, Wut they may be deconmosed by the red-hot vessel; and unless there were those diluents formed at the same time to sweep out these illuminating gases, it would be impossible for the gas to preserve the lighest quality.
I will now, before we go into any further experiments, describe to you the general conditions of the coal manufacture. First, we have to try to get a large amuunt of illuminating ingredients mised with enough diluents to protect them in their formation, and to enable them to be burat without smoke and without smell; and second, we have to try and remove the noxious gases and impurities.
The first condition or process in the manufacture is distiliation. For this purpose there ars certain
retorts which are represented on that first diagram. These retorts may be made of iron, as in our experiment, or they may be made of earthenware as they are represented in the diagram. In these retorts is placed coal, which varies in amount from 12 cut. to one ton, according to the size of the retorts. The fire overlaps the retorts, as it is doing in this case of the gas manufacture which is now going on as experimentally, and heats the coal gradually. The substances which are formed are partly tar, which comes over as the tar is now ooming over into this condenser, partly water, and partly the gas which is also going over. If you follow these retorts you will see that there are certain stand-pipes. These stand-pipes conduct the gas up into what is called the hydraulic main. The stand-pipes are generally about five inches in diameter, and dip into a large cylinder or pipe, which is fifteen or sizteen inches in diameter. There is a curring over as you observe, so that the pipe dips into tar water, which condenses in this hydranlic main. By this arrangement the ends of the pipe are sealed up by the water in the main, but can bubble through it. The gas comes over here, and the surplus tar passes over into what is called the tar-well by meansof this small pipe which conducts away the tar and water into the tar-well. And now the gases, having come out of the retorts, pass through the series of pipes which are represented in the next diagram. The object of those pipes is to cool the gases. They expose a large surface to the cooling influence of the armosphere. Sometimes water is poured on them, but usually they are merely exposed to the air. This condenses the coal-tar and water which the gas still retains in suspension. Now, the gases pass after that through what is termed an exhauster. The use of the exhauster is tinis-thatin passing through that system of pipes a considerable friction is caused, and that friction would retard the flow of the products were it not that this exhauster is used, which prevents the friction kecping the gas back into the reiorts. If the gas were retained for any time in the retorts, the heat would decompose the illuminating gases and convert them into diluents, and, therefore, this exhauster is employed. After passing through the exhauster, the gas traverses what is termed the scrubber. This scrubber is merely a large cylinder filled with coke, which is sometimes dry and sometimes has a quantity of water passing over it. This washes the gas and reinoves many of the impurities from it. It acts mechanically also, by taking away the tar and removing it from the gas. The gas having passed through the scrubber, it now goes through a very important piece of apparatus which is termed the purifier, and which I must now show you hero. You see here a vessel containing different shelves. These shelves are covered with lime, and the lime has the power of absorbing two of the constituents of the gas, which are very injurious: first, the carbonic acid ; and secondly, the sulphuretted hydrogen, both of which are serious impurities. The milk of lime, or lime, which is employed for this purpose takes away the sulphuretted hydrogen, which in itself has a bad smell, and which, in its combustion, produces sulphurous acid and decolourises drapery and other matters when it comes in contact with then; and the lime also remores the carbonic acid which, even when present to the
amount of only one per cent., diminishes the illuminating ralue of the gas six per cent. But the ammonia is not removed by this operation.
In recent years, another plan has been employed for purifying gas, and it is to this I would like to drair your attention. The new process consists of passing the gas through a misture of sawdust and fron. The oxide of iron takes avay the sulphuretted hydrogen by producing water and forming sulphide of iron; and after it has acted for some time, the passage of air through the misture restores the sulphide to the state of oxide depositing sulphur, so that the purifying agent can be repeatedly used till its pores get choked with sulphur.
I have here the means of showing you how completely this plan of oxide of iron mised with sandust purifies the gas; and it is this which, not entirely, but to a great extent, is employed to the csclusion of the lime purification. I bave here a bent tube containing oxide of iron and sawdust. the coal gas which I turn on is forced to pass through a saturated solution of sulphuretted hydrogen, so as to become fully charged with that noxious gas. I first allow the gas to pass, not through the iron, but at once through a solution which I have here as a test for sulphuretted hydrogen. In this solution I have a little nitro-prusside of sodium, which is an extremely delicate test for sulphuretted hydrogen-so delicate, that if I were to take a lock of lady's hair, dissolve it in an alkali, and put it into this liquid, it would immediately assume a purple colour. You see [after passing the unpuritied gas into the test water] the solution has now become of a purple colour, showing the presence of sulphuretted hydrogen abundantly in the gas which we are employing. Now, having shown you that, I will tury this off and pass the gas through the oxide of iron and sawdust intervening; aud you will observe that, at all events for a considerable time, it will pass through the solution and produce very little coloration. It has produced a trace. We are passing it too quickly, The least quantity does it, but, you see, not nearly so rapidly as before the gas passed through the purifying misture. The smallest quantity-the most minute trace passing will produce the coloration, but you notice that scarcely a sensible coloration is produced, and we get nothing at ali like this effect [referring to the coloration eaused by the unpurified gas]; so that the oxide of iron has the puwer of taking out the sulphuretted hydrogen, and producing sulphuret of iron, and relieving the gas from the preseace of this noxivus ingredient. There is another substance, however, present as an inpurity which this process does not remove; it dues not remove the bisulphide of carbon, or the compound of carbon and sulphur, which is always present in gas. The bisulphide of carbon, CS_{2}, which is present in coal gas, has lately been removed by passing it over heated lime; the water of the lime is decomposed, and sulphuretted hydrogen and carbonic oxide produced; and then this sulphuretted hydrogen can be removed by the ordinary lime-purifier in the manner which is shown in this esperiment. Dr. Smith has, within the last few weeks, intruduced a second plan for removing the carburetted hydrogen by passing the gas through an solution of oxide of lead in sawdust. I need not fullow the gas through the rarious other mechanical
contrivances for collecting it and distributing it through towns. After the gas is purified it then passes through the gas-meter, where it is mensured, into the gas-holder from which it is distributed to towns. There is an ingenious arrangement here, which is interesting. The diagram sbows a gas governor or register which regulates the quantity of gas which is to be given out at rarious times during the day. If you look at that little diagram in the centre, you will see that the amount of gas used varies according to the time of dily. During the day it is almost a dead level ; abrut nine o'clock, at this time of the year, the gas hegins to be lighted, and you see how rapidly it goes up till about eleven o'clock; people go to bed about that time, and then it as rapidiy descends till about day-break, when it goes up a little further. Now, the plug by rising and falling determines the amount of gas which shall be given out during the different hours, and according as it is lowered in the tube, or is allowed to asceod, so the quantity of gas escaping into the town is regulated.
I want you now, for a moment, to consider what is the chemistry of the ordinary candle, not that E am going to do what has been so often and so successfully done here by Dr. Faraday, but I propose merely to draw your attention to a very important discovery in the manufacture of candles, which has. been introduced within recent years. If candles had followed instead of preceded gas manufactureit would have been said that they were the greatest discovery of modern times. A pruperly censtructed candle is merely a portable gas-works, requiring not costly or complicated apparatus; it is a means by which a very pure gas is produced litule by little, as we desire to burn it, and in this respect forms an interesting illustration of the subject I have brought before you.
Candles and lamps differ only by one being fed: with a liquid oil, the nther having an oil liquefied for it as is desired. The heat of the cardle liquefies a certain portion of oil which is drawn up by the wick, and is there converted into a gas, and is burned. The earliest candles that were introduced were, no doubt, torches. We read of Ceres instituting the search for her daughter Proserpine by the light of two burning pines, which were merely a rude substitute for our modern invention. The history of the candle is tempting, but 1 cannot enter upon it. I would simply draw your attention. to this diagram, by which you will see the manner in which it acts as a portable gas-works. Here I have a diagram of the candle. This represents the liquefied fat which is drawn up into the pores of this carbonised wick, which you must consider as so many small gas-retorts. The fat or the wax is constantly distilled, and forms the gas which burns in the ordinary fame of the candle, the gas being produced as it is required, and needing no purification. If it were possible to take the most illuminating ingredient of conl gas, which is olefiant gas,- that ingredient which conteins 35 per cent. of carbon,-if it were possible to take that illumniating ingredient and to condense it into a solid, we should have the highest conditions for the manufacture of coal-giss. Liebig, as early as 1841 , said in one of his letters that it would certainly be esteemed one of the greatest discoveries of the age if any one should succeed in condensing coal gas.
into a white, dry, odourless substance, portable, and capable of being placed upon a candlestick or burned in a lamp. This was in 1841. In 1851, at the Exhibition, Mr. Young exhibited a substance termed "paraffin," that had formerly been made from peat, or from the distillation of wood in small quantities, and he eshibited a single candle made from it. Now, this paraffin is nothing but olefinnt gas in a solid form, that is to say, it is isomeric : it is of the same composition exactly as olefiant gis, and is simply olefiant gas, if you will allow the "bull." in a solid state. When coal is distilled at a lower temperature than that necessary to form gas, there first comes over an oil, which contains in solution a solid. This oil itself is called paraffin oil, it is in reality of the same composition as olefiant gas, that most illuminating gas which I showed you. When it is conled it deposits a solid substance known as paraffin. Now, it is rery interesting to observe that all these three are the same in composition. This oil is liquid olefine, the solid body is also an olefine, and is termed paraffin. The ordisary olefiant gas, which gives an illuminating character to our coal gas, is the same substance in a gaseous state; or, rather, is not the same substance, but a substance of the same composition. In 1851 I was so struck with the one candle that was exhibited in the Exhibition that I gave one of the Friday evening lectures here upon the subject, nud stated that it was probably the germ of an industry which would become a very important one. It has now grown so large that the Bathgate Chemical Works, for the manufacture of paraffic and parafin oil, rank among the largest chemical works in the world. If you will go now to the Exhibition of 1862 you will see enormous blocks of this solid wax produced from coal. Here is the coal from which it is derived--the bog-head coal: it certainly does not look much like coal, and has promoted great discussion as to whether it is a coal or a schist. This bug head coal, and othor coals, when slowly distilled, produces an oil, from which this beautiful solid wax called parafin is prepared. It is, as I have explained, of the same composition as olefiant gas, and from it are now produced those beautiful wax candles which we ordinarily burn, and which are the perfection of the manufacture of coal gas, because each of these contains the illuminating material of coal gas in a condensed and solid form, so that when the candle is burned little by little, this olefine is changed from its solid state to its gaseous state, and is consumed. This paraffin is a beautiful wax, melting at 120 or 130 degrees; it produces a beautiful white light, on account, in fact, of producing the true olefiant gas. The oil also has the same qualities. You observe it burning bere, and you mast distinguish this from what are termed the parafin cils which are now ordinarily sold in commerce, and which come from Canada and other parts; they contain various volatile bodies which take fire at ordinary tomperatures, and which are extremely dangerous; they may be as dangerous as camphine or benzole on the application of a light. Paraffin oil made from coal does not burn at ordinary temperatures, it only burns in the presence of a wick, and is perfectly safe, carrying up, by the slow capillary attractiou of the wick, a certitin quantity of the oil in contact with the beated surface,- - old. fiant gas being thus gradually produced, so that
you have the true perfection of an illuminating gas formed in the lamp.
In the next lecture I propose to follow out that tar and water which are now in the condenser, and to show you what beautiful utilities they have been converted into; we shall take the ammoniacal salts produced from the water, and the beautiful coal-tar coluurs which are formed from the tar.

an artificial substitute for india rub. BER AND GUTTA PERCHA.

by s. walton.*

Numberless attempts have been made to produco a material possessing the qualities of India-rubber, and this material, together with gutta-percha, has been distorted into all forms, and has been compounded, in a most heterogenous manner, by a host of experimentalists seeking to produce a cheaper material, but no valuable results have been arrived at. The cheapest base for experiment had, I humbly submit, been neglected. It is well known that linseed nut and poppy oils possess that nature, which distinguishes them from lubricating isils, of becoming concrete on exposure to the atmosphere; that is, that when spread in a thin layer on a surface of wood or iron, they dry or change into a thin skin. This change which is erroneously called Arying, is produced by the absorption of oxpgen and the disengagement of carbonic acid, and is, in reality, only a change of their elementary constitution.

This property of absorbing oxygen rapidly is not considerable in the crude or raw linseed oil, but it is sery greatly increased by boiling the oil, that is, exposing a large quantity of raw oil to a strong heat in a cauldron, with a small per centige of metallic oxide of lead added. It is then called "varnish," and has a more viscid character, and is also rather more highly coloured. A latyer of this oil requires from 6 to 24 hours to dry or change into a skin-like substance, according as the state of the atmosphere is more or less favourable.

I cannot do better than give to you a detailed account of the circumstances which combined to bring this subjcet before my notice. Whilst engaged, about two jears ago, in a series of experiments on the manufacture of artificial leather, it was of the greatest importance to the success of the material that it should have a coat of fine varnish, which, whilst drying quickly, possessed the flexibility of India rubber. Copal varnish has always been acconated the best varnish, but made with drying oil combined with gum copal at a high temperature. it will not, of course, be dry until the action of osidation has reduced the oil contained therein into a solid film. Whilst revolving in my mind this knotty difficulty, and presenting every phase of it to careful thought, it suddenly occurred to $m e$ that if the oil was first dried into a skin, like those I had often seen on paint cans, but, like other people, had before considered as waste, was dissolved in a volatile solvent, like India rubber sheet -that the semi-resinous material would immodiately on the evaporation of the solvent, resume, like India rubber, the form it was in prior to solution. By dipping panes of glass into linseed oil, and allowing the films or liyers to dry, then re-
peating the process, I imitated the manufacture of India rubber from the milk, and thereby produced a solid elastic substance, composed of many layers of perfectly oxidised oil. Up to this stage I had done nothing new or original, for the oil sheet manpuficturers bave for more than a century waterproofed linen by layers of oil. But to treat this semi-resinous matter and render it available to purposes of manufacture, will be admitted to be perfectly new, and I now proceed to describe the inrention. IIaving accumulated a quantity of solid oridised oil by drying it upon extensive surfaces of any kind, such as prepared cloch, stretched in frames, as described in my patent of the 27 th $J_{n a}$ uary, 1860 . I then scraped or peeled it off by suitable means.
At first, as before stated, my attention was solely directed to the attainment of a speedily-drying, flexible varnish at a moderate temperature, but very few experiments with this oxidised oil led me to notice its rubber-like qualities, which I at once ennceived might, with further manipulation, and with some combinations, be developed more fully, and become a very valuable substitute for that article.

Encouraged by success at every step, I proceeded, and soon found that by crushing the solid oxidised oil obtained in sheets as described in my patent, and working it thoroughly in hot mixing roils, I produced a substance which required only the cohesive nature, which in the early part of this paper we noticed as existing so strongly in India rubber. The addition of a small proportion of shellac soon gave that which was wanting, and I found in my power a material singularly like caontchouc when worked into dough, and which could be rolled on to fabrics in the same manner and with the same facilty-giving a perfect waterproof oluth, unlike oil cloth, but having the rubber linish and flexibility. Pigments could easily be added to give colour; the addition of resins gave other, or rather varied proportions of adhesion, useful as affording the means of uniting fabrics as by rubber. Fibre, whether flock or corl, mised in and rulled into sheets, gave me samples of kamptulicon and other floor cloths.
These experiments were made more than two years since, and some of my earliest samples are now on the table before you-together with many of more recent date which I have yet to refer to; and besides them you bave eimilar productions in rubber, which will enable you to make a comparison. Although I had thus accomplished more than my first auticipations, my primary object was yet unrealized, and I had, day by day, proofs of how entirely I was dealing with a substance of which the characteristics were entirely unknown to us. Various were the solvents tricd to dissolvo it. Obtained from oil it was unaffected by oil; no longer did it retain any unctuous matter, one of the greatest proofs practically of which is, that whilst any oil or greasy matter will destroy India-rubber very speedily, yet they have no effect on this; the two may bo well combined. For a long time was I baffled in every attempt to find a solvent. Any heat short of carbonising it had no effect on the material, and here was evident a great advantage over rubber for practical purposes, if other desiderata were accomplished. At length I was able to
dissolve this converted oil in alcohol and wood spirit-thus did I obtain the firat varnish. Suffcient success had thus attended my labours to justify, at any rate in my own, perhaps sanguine mind, my patenting the discovery in England, France, Belgium, and America, and taking and fitting up works fur the production of the material. But yet much renained to bo achieved; the process was slow, the solvents were expensive, and did not offer all that was desired in the way of varnish. It was also desirable to obtain a medium state answering to the India rubber cement or dough capable of being worked by the guagespreader which I have this evening described to you, and in which it would dry as rapidly, that is, within a fer minutes of its passing the machine, this last requisition creating no small part of the difficulty. Sume months more of diligent experiment led to more definite results, and at length I was enabled, by experiments which involved much time and labour, to perfect the solution in the distillates of coal, preferring the usual rubber solvent, naphtha. Thus was the material brought still further into a state so nearly resembling rubber solution or cement, that eren those most accustomed to the manufacture thereof could not distinguish one from the other, and in all respects it could be treated in the same way. Samples of the varnish, of the cement, and of the dough, I have also the pleasure to present to your notice. I would here remark that the success of this discovery is mainly due to the perseverance of my partner, Mr. Richard Beard, junt., who, with the same energy he derotes to the business department of our works, more especially under his care, has rendered me great assistance in these and later experiments.

Not only has this singular product been thus assimilated to rubber for uses on fibbrics, or combined with fibre for floor cloths, but still more strange, it is capable of being worked with pigment and vulcanised exactly as India rubber has been described to be, and forms a hard compound like vaicanite and elonite, excepting that the sulphur is not necessary. Pieces thus hardened are also placed on the table before you.
Itaving now explained the means of obtaining, treating, and applying this oxidised oil-its wonaerful similarity to rubber must, I think be apparent to all. I then submit that the process of solidification of the oil is identical with the drying and solidification of the rubber on the clay moulds I have in this paper referred to, with this difference, that with the rubber it is an evaporation of the fluid which holds the particles in suspension, in order that they may coalesce, and thus, of course, thero is a loss of weight, whereas with the oil there is an increase of weight (ascertained by accurate experiments) from the absorption of oxygen. Cherreul confirms this point in hisresearches on oil painting.
The applications of my prepared oxydised oil are not limited to its uses as a substicute for rubber, as will be seen by the following list, but before passing on to its other applications, we will notice ite advantages over rubber. 1st. The great difference in price which must ever exist from the facility with which one can be produced in the natural state over the other, for abundant as are the various trees yielding caoutchonc, the dificulty
of collection, and scarcity of labour in regard to quantity olltained, must always keep up the price of naturil rubber, whilst the linseed from which the oil is ubtained cata be so easily and cheaply cultivated.
2nd That being unaffected by oil or grease it is more duable tain rubber in many of its applications, enilecially where used in various manufactures, sich as cards for carding wool, printers' blankets, \&e. That also for purposes where rubler is injured hy tesapcrature, this is unafiected. And kast, "hourh not least, its durability, inasmuch as it is free from those elements of decomposition which, it is admituted, are set in action by the very process latit it is necessary for the rubber to undergo in course of manafacture, not to notice the naancrous ennbiatations therewith in use, in too many instances, ou accuant of the high prise of the pure material.

IIST OF APRLLCATIONS.

Surface Fubrics.-Clothing, carriare aprons, oart sheeta, sail envers, bath sheets, nursing aprons, sponge layas, do.

Intitution Lenthers.-Carriage lining, chair corers, bont ind shue leathers, trunk covers, saddlery, bags, reticules, \&e.

Comumm Sarfuce Fabrics.--Packing eloths and papers, cart-sheeting, tarpauling, briattice cloths for cillieries. \&e.

Dumbere Textures.-Clothing, mail lags, hospital sheetinu, wird cloths, printors' blankots, water and air bedn, tusthions, fe.

Mrum/uchering Purposes.-Packing for steam, water, and gas pipes, valves, machine banding, those pipes, tulbing for cariying beer, Sce, tax-spinners' thomes, calendering and embossing bowls, sop tulpes, telegraph supports, or insulators, trank kiniurs, ship sheathieg, reof coverings, shoe soles,

ILini Compomimds (of any colour).-Knife and fork limulles, surgical instrument handles, surgical and dental appliances, tubing for chemical vessels, picture frames, trays, mouldings, furniture omamentition, paneling, vencers to imitate marble, Evory, ebony, and ocher woods, \&e.

Nifiscelluncoms.-Washable felt carpets, kamptulicon (1f way colour), stair coverings, toilet mats, table moms, se.

Fluxibe quick-drying varnishes. Paints for carriages. Patinting or printing floor cloch, table chuth, tu: (will dry in a few minutes) enamels of any c..hmur, fur enamelling papier maché, metalk, \&:

We: now pass to the aldvantages to be derived in the nse of the materiat onder consideration, for some of the parpuses in the firer, ing list, to which builed oil has hitherto been appliod; and first we notice the importint article of leather cloth, commonl" called Anerican leather cloth. This is prepared by coating the fatrie with oil boiled to a thick susistency, mised with black pigment. This is spread on colton fabrics, which is placed in in tomperature of, say 120 to 150 degrees, for a day, th dry or oxidise we wil coating. For convenience of han ing, these are in twolve-yard lenghes, and this operation has to be repeated for five or sis nuccessive diys, aceording to the thick. ness of the corating recquired, and lastly, in the
same manner, a coat of copal varnish is given, each of these requiring the same length of time to dry. Thus seven to eight days were requisite to prepare the cloth for the embossing rollers. By the use of oxidised oil, properly prepared, you have all the same qualities as are obtained by allowing the oil to oxidise on the surface of tho cloth, avoiding the consumption of so much heat and time, as well as injury to the fabric itself-with the adrautage of being able to spread each coat successively, the solvent evaporating as when used with rubber, while it passes through the machinc, the length not being limited to twelve gards, and chere remains only to apply a cont of virnish to incrense the brightness of the surfice. Thus in one day can be done, not only the work of seven, but a greater quantity by working increased lengths. For onl-dressed cart sheets, ommibus and other driviag aprons, waterproof packing materials, and a host of other such purposes, this preparation is most suitable. And lastly, we have the important use as a varnish, either as such or to mix with pigment, as a paint. We all know the time requisito for ordinary paint to dry-ulis wo equally well know is the time requisite to dry or ritther oxidise the oil in the paint. The spirit, be it turpeatine or orber solvent, would quickly eviporate. The cuats of paint on doors and walls are but coats of oxidised oil, ciarged with pigment. as perfect and pliable skin as the coating of a fabric, if too mnch pigment has not been used. If then you complete the oxidation previously, and dissolve the oridised ail so as to render it fit for application by the spreading machine of the manuficturer, or the paint brush of the painter, when the solveat evaporates, which it does very rapidly, yau have a hexible, tough, waterproof coating, which will be dry enough for succeeding coats within half an heur.
In earriage painting, floor cloth minuficture, and kiodred articles, months are now comsumed, which might well be saved. The patterna of felt on the table are printed with colours thus prepared, and some pieces of wood, painted at the carriage factory of Messis. Holmes, are also here.

I an conscious how imperfectly my task has this evening been accomplished, but I hive shuwn you how nallogous a substance this materitial is to the elastic gums. In conclusion, I ber to thank you for the Eind attention you bave given me, and mast apologise for the many defects and deficiencies which exist in this paper. Many of them would, I Hatter myself, have been obviated hat iar the disastrous fire which occurred at our worlss the week befure last, at which time I was enrraged in preparing these particulars, and this has prevented my circfully reviewing the sheets before submitting their contents to you. Such a fatalitity will, I amsure, be an adequate excuse, and this must also be given as a reason why so poor a display ol sam: ples is phacel for your inspection, our stock having been entirely destroyed And I would add that, not being waterproofers ourselves, the samples are more roughly finished than would be the cass if produced by more esperienced hands.

We hope to have our works in order in about a month, and then we shall be most happy to demonstrate to any one interested, the applimability of this new material to the purposes specified.

APPLICATION OF ALUMINIUM TO PRAC'IICAL
The constant appearance in our jeweller's shop of fancy articles of aluminium is beginning to draw very general attention to that valuable-but not admitted precious-metal. A few years ago(1855) small specimens were handed about and examined as curiosities from Deville, the French chemist's laboratory, with great interest. It is true it had been discovered eight and twenty years before (1827), by Professor Woehler, of Gottingen; but people then heard the announcement of the elimination of the metallic base of clay, with little more than that ordinary indifference with which the description of a merely new element is commonly received. Deville, whose name is everywhere familiar fir his many valuable labours, however, in lis investigations of its characters, found that it possessed pecaliar and curious properties, and he unhesitatingly stated his impression that it was a metal destined to occupy an important position in the requirements of mankind, as soon as means could be found of obtaining it in manufacturable quantities.

In his first statements (1855) he drew attention to its power of resistance to all acids save hydrochloric, to its fusibility, its beautiful whicish-blue colour, and the fact of its undergoing no change of lastre or colour by the action of the atmosphere or of sulphuretted hydrogen. Its density as low as glass, he furesaw would insure many special applieations, while superior to the common metals in respect to the innocuousness of its compounds with the feebler acids, and intermediate between them and the precious metals it was evidently a fitting material for dumestic purposes. "And when it is further remembered," he added, then, "that aluminium exists in considerable proportions in all clays, amounting in some enses, to one-fourth of the weight of a very widely-diffused substance, one cannot do otherwise than hope that sooner or later this metal may find a place in the industrial arts."

This prevision seems to be realising itself every day, and a forcible proof of the rapid strides made in its economic production is afforded by a comparison of its past and present commercial prices. A few years ago it cost 60 l . per lb., while from the Sluminium Works recently established at Newcastle, in our own country, it is now supplied at less than sisty shillings. Every step taken in the reduction of the prime cost of a raw material widens the range of its adaptability to ornamental purposes in the arts, or useful applications in the manufactures. It is malleable and ductile, being reducible to very thin sheets, or capable of being drawn into rery thin threads. In tenacity, it is superior to silver, and in a state of purity it is as hard. It files readily, and is an excellent conductor of electricity, and combinations of it, with other metals, have already been used with advantage. Tbe most important of these compounds is aluminiumbronze, formed of one part of aluminium with uine of copper. This bronze possesses great malleability and strength, Professor Gordon'sexperiments giving the following relations of wires of the same diameter: iron, 100; aluminium-bronze, 155 ; copper, 68. This immeuse tenacity and strength confer on this bronze admirable qualities for the working parts of machinery where great durability is required, and notwithgtanding its higher price than that of
ordinary metals, the quantity of aluminium required is so small, that it is snid that practically the cost of the bronze does not exceed that of ordinary brass or gun-metal bearing.

Another property of alnminium is its extreme sonorousness, and this has also bad very serviceable application in the construction of musical instruments. So highly sonorous is it, that a mere ingot suspended by a fine wire enits, when struck, a clear and ringing sound.

The metal can be beaten out into leares for gild ing, or rolled in the same way as gold or silver, and it can be drawn out into wire fine enough for the manufacture of lace. It is also easily run into metallic moulds, or, for complicated objects, intc moulds of sand. It is very finely susceptible of What is technically called "matting," by being plunged into a weak solution of caustic soda, and then exprsed to the action of nitric acid. It is also easily polished or burnished by a polishing stone steeped in a misture of rum and olive oil. When aluminium is soiled by greasy matters it can readily be cleaned with benzine. Soiled by dust onls, india-rubber or very weak soap and water may be used.

The process ofsolderingaluminium also is worthy of note. The solder used is composed of zinc, copper, and aluminium, and the pieces of the article intended to be joined must bo "tinned," as in ordinary soldering with tin, with the aluminiumsolder itself. The pieces aro then exposed to a gas blow-pipe or other flame; but in order to unite the solderings, small tools of the metal itself must be used. Tools of copper or brass, such as are employed in soldering gold and silver, are not permissible, as they would form coloured alloys; moreover, no flux whatever can be used, as all the known substances employed for that purpose attack the metal, and prevent the adhesion of the pieces. The use of the little tools of the aluminium is an art which the workman must aequire by practice, as at the moment of fusion the solderings must have friction applied, the melting taken place suddenly and completely.

In comparing the price by weigbt of this with other metals, its greater buls must be borne in mind. Thus comparing it with silver, the bulk of a given weight of aluminium is nearly four times that of the same weight of silver, so that if one ounce of silver were required for an article, four similar articles could be made of one ounce of aluminium. Its lightness is, as we have before observed, one of its prigeipal qualities ; the specific gravity of platinum is $21 \cdot 5$, of gold $19 \cdot 5$, tin $7 \cdot 3$, while that of aluminum is only $2 \cdot 6$. The lightiness which it communicates to the bronze, whose durability, hardness, and immense strength nearly equal that of the best steel, renders probable ite future estensive use in the construction of buildings, the manufacture of ordinance, and other objects where strength and lightness are required to be combined.

Having witnessed how admirably the French have applied this metal to ornamental and finciful objects, it will be a matter of future interest to watch the developments of its applications, as a British manufacture, to more solid and practical objects.*-London Revicw.

[^3]
COLOURED MATERIALS,

CONSIDERED WITII REFEKENCE TO THEIR APRLICATION TO INTERNAI, DESIGN.

THY J. TOHNSON, ESQ.*
The use of Colour for internal decoration is universally recornized. No apartment is considered complete without it. Form is not sufficient in itself, and painting is the means usually enployed to give effect, and render apartments ploasing ind satisfactory to the eye. There are many other ways, however, by which variety is obtained for internal decoration. Plastering, papering, and furniture, all add to and increase the effect. These are resources at ever: 7 one's command, and can be altered or varied according to the taste of individuals.

Then there are imitations of natural materials or inferior substances often introduced very skilfully in the representation of the most beatatiful woods, marbles, \&ic., in epery variety. Mariy writers have condemned this mode of finishing as filse and inadmissible, where truth is to be regarded in building as in other things. It is dificult, however, to cirry into practice many of the theories pot forward, even though the arguments in favour of these theories seem plausible, and at the satue time almost conclusive. For my part, I admire and respect this manifestation of truth in Buidding. I should be glad to see it universilly adhered to; and I wish that the desire to obtain so much for noney was less universal: we might then hupe that our ornamentation would be more gennime than it now is. I fear, however, that this will never be entirely accomplished. We have now become so accustomed to admire what is false of a superior order for the sake of ormament, in preference to that which is genuine of an inferior order, timat we shall never be able to do without veneering, grmining, and the various othor imitations of the present diy, in some degree.

Whon anything becomes yeneral, and is understood cully is imitation, it is said to be no decep. tion. It is said that the gilding of wood or other material is quite legitimate, betanse it is no longer underetogd to mean that the whole substance is gold, but that the gold is only a film put upousome ofler substance for the sake of giving a nore hil liant tifish It must be remembered that this film or onter coat of gold is genuine.
If this species of ormanentation be a'lowable in one thaterial, itthough that be very costly, it seems to me (hat it is pardonable in any other so long as it is understood. For this reason we must admit. venearing to be legitimate, and in many instances staceon and cement, if not graining.

When imitations are resorted to, there are three general conditions which, I think, should be olsservod. 1 quote them from a paper road at the Architectural Institute of Scotland by Mr. T. Purdic. Jhey are:-
"1. That they be not employed when the matedial ropresented would of itself be out of place or inappropriate.
" 2 . Ihat no olyject be painted in imitation of one material which, from its form, construction,
or application, was obviously or necessarily composed of another.
"3. That no imitation be employed in positions: where we are entitled to expect that the real material should be ased, or where the discovery would create disappointment."

In connection with painting as applicable for internal decoration, the rules observed in the chromatic decoration of the New York Crystal Palace are the most concise and useful I have met wilh. They are:-
" 1. Decoration to be subordinate to construction in all cases.
" 2 . Features of main construction to be of one prevailing tint.
"3. The prevailing colour of ceilings sky hlue, the monotony prevented by the introduction of orange (the natural complement of blue).
" 4 . Rich and brilliant tints, in small quantities, to be empluyed to attract the eye to the articnla tions and noble portions of the members, ruther than to the members themselves.
" 5 . All natural beauty of colour existing in any material should, if possible, be brought into play by asing that colour itself, instead uf covering it with paint of another hue.
" 6 . All ornamentation to be consistent with the construction.
"7. White, in large quantities, in all cases of simple composition, not only to give value, by contrast to a few colours employed, but to reflect light and cheerfulness to the work."
l.et us now consiler how far the real materials (yenerally imitated only) may be iutroduced in urdinary designs, and how far materials of an iuferior order maty be made beautiful in themseives, without their being any necessity for covering with veneers or painted imitations.

I believe that there are beauties in many of the materials commonly used in the constraction of buidings, which may be made to tell in the general desigri, and produce an equally pleasing and more truthful effect, if properly ard careîully arranged, than lyy any amount of initation; and when materials, although superior to others in their beauty, of themselves cannot be introdured on account of expense, those used do mostly pussess sufficient beatuty, and may be made to substitute them in design as well as construction.

When suffisient funds are allowed the drebitect or Designer, there is not so much difficulty, There are abundant resonrces in nature. We tind materials of almost every variety of colour and tint. Diluble, stune, and wood are to be had in infinite variety; and when wrouglat into finished and polished surfices are most benutiful, and fir superior to auy painted surface which the ingeanity of min can invent or the skill of the artisi exceute.

Colour is also made successfully to form a part of our Artificial Manofacture, as brick, thito, and the ceramic art generally.

We have recently seen some very successful applications of natural materials, both as to colour and form.

No one has, I think, visited the new Church of All S:aints in Margaret street, without being struck with the extraordinary and beautiful effect of the decoration. It is universally admitted by persons of acknowledged tasta, and those who have no pretensions to Art are able to see that there is a superior benuty to that which they are accustomed to. It must be because the colour of the natural materials is superior to any kind of painted decoration. Yet all the materials used are not of a costly character. Some of the most simple and inerpensive are introduced. Brick, tile, deal, d.a., are used, and no attempt made to concenil them.
Who would wish that the stained deal should be painted in imitation of oak? Or that the other materials of a less costly and inferior order should have been painted over, instead of their natural fiees being exposed to view? There are beaties in all the materials used. The inferior serve to set "ff, by comparison, the more custly, and increase the effect. How much greater is our admiration when we can sec that the materials used to produce this effect likewise slow us the construction. and convince us that all thes splendour is not. artificial, but real and lasting! this mode of de coration is ne which I think should be well studied; and although the limits generally to the expense of other works will nut admit of such custly materials being introduced as in the example just named, still a great deal may be dune with simple and inexpensive materials; and, by wellstudied and careful arrangement of natoral colour aide effect, as mach trath may be expressed.
I think the same rule may be carried out to a creat extent, and that successfully, in the internal designing or finishings of our domestic architecture.

Why should light and dark wiods be commonly usell, in combination with each other, in our joinery? Wood may be stained of various shades from light tudark. The dirt or dust dies not shour more ons stained wood than it does on paint, and can beas easily eleaued and refresthed by peciodical chats of varnish. Those parts subjeec to constant wrar and tear can be prorected hy more durable material, such as finger plates, de.
Durss made up of light deal panel with darker maserial for the rails and stples, or varied in the staining, would, I think, look as well as tho ordinary graining. Good and well seasoned materials Would have to be ased, athed the j inere's work well fitted and constructed. Mouldions. of a superior character, and in some cases gilt, mightit be usta for the pariels, \&e. Dark and durable wouds might be used in parts most exposed to wear and tear.
Treads of stairs mirht lee framed with oak nosinge, if not at first, at least when necessary to reacir the nosings.
Skirtings varied by using dirk and hard woods fir we lower part of pliuth, lighter wood above, alid finished with superior mouldings.
Window boards and nosings of vak.
This must be taken as suggestive only. It would, undinbtedly, be more expensive tham the common merhind of pairting, when extreme cheapuess is required; but I think it would, ia many catses, bo beter than graining, and cheaper in the long run.

Carburetted Gas in Lomitone

At the last meeting of the city Cummission of Sewers, Deputy Lott moved that it be referred to the engineer and the medical officer, to examine and report whether the light from the gaslamps in the public streets was increased or diminished by the carburetting process recently applied to them, and whether the light thrown upon the footways was not, as he subnitted it was obscured by the shadow of the boses containing the material used in the process. In the course of a discussion on this sulject, Mr. Haywnond engineer to the Commission, read a letter addressed to him by Mr. Massey, secretary to the Great Central Gas Company, complaining that the Carbaretting Company, in applying their process to public lamps within the city, were pieking out a lamp here and there for the purpose, to the inconvenience of the company. Mr. Massey also stated that a few dirss ago, as the Carbureting Compauy's men were fitting one of their naphthal buses th a lamp in Queenlithe, it exploded. This, he added, was the third accident of the kind that had occurred rithin the last three weeks. The directurs of the Great Central Company had directed him to call the most serious attention of the Cours to an instance of explosion in a bracket lamp in Harrow Alley. Had, he said, one of the numerous lamps fixed in the rear of the same premises ignited, instend of the lamp in question, the great probability was that oecuring as it did late in the night, the whole block of houses and lnildings used as cattle sheds, would have been burnt down. The owner of the property had made a communication as to the risk sle was incurving, and expressing great fear and anxiety fir the future. Dr. Abrabam said probably the accidents relerred to which were exceptional, were due to mismanarement, and therefire preventable. At all cevente, they were not of a nature to induce the eommissioners to alkadon the carburetring process, by which a great saving of money was lefing effected in the public lighting, and which, he believed, would be eventually adopted over the entire metropolis. Mr. II. Lowman Taybor held that the saring of money was at the expense of light, for he had observed on a recent occasion, lite at night, a sort of twilight gloom in places where the process was in use. Besides, it was ohvious that the boxes coutaining the naphetai attached to the pablic lamps, threw shadows on the ground. Dr. Abraham said it was well known, low: befine the earburetting process was adupted, that ar advaneed hours of the night, there was always a pancity of gas, consequent upon the companies relaving their pressure. The sutject, on the notion of Deputy Ifartison, was eventually referred to the General Purposes Committee, for deliberate isquiry and report.-London Engincer.

Valuable Substitute for Metul.

Adamas as a substitute for metal in the manufiacture of gas-burners has frequently boen mentioned, and it has also been stated that the same sabstance was equally applicable to varinus other purpuses for which metal has been employed. The
use of the "adamns" burners has recently become very general, and Mr. Leoni, the inventor and manuficturer of them, has now succeeded in introducing adamas taps and adamas machine bearings, the working of which has given the greatest satisfaction to those who have employed them. The mode of manufacture consists in reducing the silicate of magnesia to an impalpable powder, and then moulding it into the desired form, and annealing it, the result being that with the greatest ficility the utmost precision may be oltained. When employed for taps, the advantare is that an article is produced upon which neither heat nor acids have any effect, at a mercly nominal price, and it is anticipated that at no distant period "، adamas" stean-cocks will come into general use, to which purpose the material is undoubtedly well adapted, since upon a trial of a couple of ordinary adamas beer-taps (the price of which will be but 1s. or 1s. 3d. to the retail customer) the one began to leak at a pressure of 65 pounds to the inch, and the other strod upwards of 80 pounds, without being affected. But the purpose to which the material may be considered as more especially applicable is for the manufacture of machine berrings, the test which it has stood in this direction being certainly all that could be desired. A steel spindle was run in an adamas bearing for 100 entire days consecutively, at a speed of about 1500 revolutions per minate, yet neither the spindle nor the bearing show the slightest appearance of wear, and several other experimental tests have proved equally satisfactory.

But as a single practical application is preferable to any amount of experimental testing, it may be stated that at the works of Mr. II. Grissell, the well known engincer, a bearing has been for some time in use, and appears to succeed completely.

They use it as a fan bearing as a substitute for Babbitt's patent white metal bearing, brass having been previously proved to be quite inapplicable, owing to the great friction and resulting heat, and although the shaft makes nearly 1000 revolutions per minute, it is found that the "adamas" bearing remains quite cool, requires oiling but once a day and shows no appreciable signs of wear. In the position in question the life of a Babbett's bearing is five weeks, and it is confidenty believed that the "adamas" will last for more than as many months.

Andine in Plotography.

Aneline colours, when dissolved in alcohol, and thickened with varnish, have been used with success in tinting albumenized photographs, and are suitable for transparencies on glass.

A New Discovery,

M. Luis Lucas, a gentleman well known for his scientific attainments, on Thursday last received a select circle of visitors at his house, to exhibit and explain the principle of an apparatus of his own invention, by which a physiological fact of great importance is rendered apparent, viz., the direct action of the living frame on the magnetic needle. The apparatus itself is of extraordinary simplicity. A single element of hunsen's battery has its poles in conmunication with an electromagnetic bobbin, surmounted by a graduated disc, bearing a mar-
netic needle which oscillates freely round the centre, as in the common compass. This part of the apparatus is protected by a glass shade; the plate may be raised and lowered at pleasure by a wheel and rack. The conducting wires, after communicating with the bobbin, branch out towards the operator, and are connected together by a loose metal chaiu, The apparatus being in this state the needle remaing perfectly quiescent, until the operator takes hold of the chain, either with one hand or both, when the needle at once begins to move, describing ares of from ten to ninety degrees. No principle lither. to admitted into physical science can aceount for this strange phenomenon, and we are compelled to adnit a physiological action capable of producing such motion. The experiment was varied in many ways in our presence, and we were ourselves allowed to test our individual power on the needle. That the cause of the motion was of a physiological nature was further proved by the circumstance that the oscillations of the needle varied in intensity according to the persons experimenting, and even according as the same person might be differently affected either by tranquility or a warm discussion, such different states naturally modifying the sus. ceptibility of the nervons system. Stranger still, some persons present produced the oscillations by merely touching the chain with a glass rod about two metres in length, glass being, as our readers know, a non-conductor. Whatever explanation may hereafter be given of M. Lucas's discovery, one fact seems even now indisputable, namely, that the buman body may directly influence the needle; what consequences may be erolred therefrom time alone can show.-Galignani.

Strange Spontancous Combustion.

The Woodstock (C.W.) Tinees reports \AA remark. able spontaneons combustion which occurred re. cently in that place. It appears that at the close of the day's business operations, the practice of the parties in whose premises the case happened, las been to rub the counter with linseed oil, Ieaving the oil to penetrate the wood during the night, to be cleaned off in the morning. This is done with cotton rags, formed into a ball secured tightly. In the present instance, the rags or balls of cotton cloth after use were left on the end of the counter, unconnected with any substance that would readils take fire, and the only mischicf that resulted was the disfigurement of a portion of the counter. But one of the two balls ignited. The inference is that the one that burned was rather more tightity tied. IIad the premises been consumed, the ofi gin of the fire would forever have remnined a mystery. From this occurrence a lesson may he gathered, namely, that rags saturated with linseed or in fact with coal oil, and allowed to remnin in a compact condition, are linble to talke fire. The rags in the case under notice, had not been long in use, and, with the exception of the oil, were free from any other substance.-American lailuay Revicu.

Most avimal and vegotable oils have a strong affinity for oxygen, and when their surfaces are sufficiently extended they will absorb it, so rapidly as to take fire. But coal oils hare no affinity for oxygen, and will not absorb it, hence they are not
liable to take fire by spontaneous combustion. This property adapts these oils to preserving metal from rust, and to many other uses.-Scientific American.

Art and Manufacture.

Flasman was always proud of his early works in connccion with Wedgewood. He felt that, in wedding Art to Manulicture, in producing, for example, his beautiful chessmen, or his exquisitely formed cups, he was aiding in disseminating a taste for Art and a love of the beautiful. It is to be hoped the time will soon come, when every article of domestic use may be obtained of tasteful design; none the dearer because elegrant, appropritte, and harmonious. 'I Lu bring this about, we want, not merely educated Art-workmen, but an Art-educated public. If people will not buy vessels of beautiful form, or carpets of harmonious tints and sensible, trathful patterns, we may be be sure that manufacturers will cease to produce such, and will content themselves with those works of questionsible taste which command more favour. Uniersal Decurator.

Phenic Acitl.

M. Lemaire has investigated the nature of this substance-one of the numerous products of the distillation of coal-tar. In a paper read before the Academy of Sciences, he stated that anatomical spacimens and animals might be preserved in a fresh condition in vessels smeared over on the inner surface with phenic acid, provided that the vessels are hermetically sealed so as to prevent the removal of the air contained in them. The bodies of animals injected with an aqueous solution of phenic acid, may be kept without any alteration in atmospheticair. In this manner, M. Lemaire says, the borly of a man may be preserved at an iusignificant expeose. This acid is also useful as a curative in tinea, scabies, and otber diseases. In the latter malaly, acetic acid is added to the phenic acid for the purpose of eaabling it to penetrate beneath the epidurmis to the roots of the hair.-Am. Gas Light Junrnal

Stcel for Fire Boxes.

Steel has been fior some time successfully used in fre-box p'ates on the Scottish Central Railway, and Mesers. Cammell and Co.'s steel has been similarly used, fur a long time for fireboxes on the Great Western Railway of Canadia. On the last named live two boilers for heavy freight engines have been made.

Minecial Gils nind their Uses.

A sample of the Canadian oil has been formarded to Dr. Muspratt for analysis, and he finds each 100 parts to yield upon distillation-of light coloured naphetha, having a specific gravity of 794,20 parts; he:avy yellow naplitha, with a specific gravity of 837,50 parts ; lubricating oil, rich in parnfine, 22 parts; tar, 5 parts; charcoal, 1 part; and loss, 2 patt $=100$. From this it will be seen that one half of the crude oil consists of at illuminating fluid of great purity and absolutely safe, and by extracting the lighter spirits from the 794 naphtha, as is stated to be so successfully done by the Asphaltum Company, and leaving more of the paraffine in theso naphithas, it would not be diffionlt to bring into the market, from every 100 gallons of the crude oil, 80 gallons of good quality illuminating
oil, and in addition to which there would be the profits derivable from the lubricating oil and the mineral turpentine, so that the treatment of the oil cannot fail to be remunerative to those engaged in the business. At present sulphuric aeids and alkalies are, no doubt, dear in Canadia and Enniskillen the place at which the wells alluded to are situated has not very great accomodation for getting the oil to markot, but these are obstacles which in the course of a few months will have eutirely disappeared. So far, all that has been thought of is the rendering of the crude oil marlsetable principally as an illuminating oil, becruse in this form it would be most readily saleable in the Canadian market, but some disadvantages rould result from treatment in this way, and consequently if a market be secured in Europe the profies would be much larger. Ihe product which Dr. Muspratt inaccurately describes as light-coloured naphtha is really a similar product to that sold as benzole, which is the basis of the very beautiful colours described by Dr. Crace.Cilvert, F. R.S., in a paper recently read by him before the Suciety of Arts. The socalled heavy yellow naplitha is an inexplosive illuminating oil, which would seil readily at the price of the best paraffine oil; it is, in fact, a guperior kiad of Belmontine oil, and if its more vialuable portions were removed by bleaching it would be be difficult to distinguish it from Belmontine. As the raw material for the manufacture of gas, the Canadian oil is especially valuable; in fact, the crude oil can scarcely be distinguished from the hydrocallon, used by Mr. John Leslie, of Conduit. street, London, for the instantineous manafacture of gas of high illuminating power, and proposed by him to be exported to a! parts of the world. It could even be used as a substitute for coal itself in stoves which are constructed for burning it; usually, however, preference would be given to the manufiacture of gas, and then to use the gas as the heating medium. The perroleum oil is also useful as a wood-prescrver, and when forced through the pores. as in Burucherie's process, will last for a very lougthened period without showing signs of decaj.

Destruction of Small Rirds cansing Ahrme

For sereral seasons, and particularly the last, there was found to be a scarcity of breadstuffy in France. This state of things caused greai alarm, and meinorials were presented from some of the departments to the Minister of Agriculture, the Legislative Chamber and the Emperor. An elaborate report has been made on the subject, ia which the destruction of small birds is charged with being one of the leading causes of deficient crops. The destruction of small birds has gone on increasing, and in a corresponding ratio has also proceeded the increase of those insects and reptiles which prey on the crops of grain and all kinds of vegetable food; and on these insect tribes the small birds live. 'ro that degree of alarm has the public mind been brought that inquiry and investigation have been instituted, and have demonstrated the fact that the destruction of the beautiful feathered songsters may, if continued, lead to something like pusitive famine. This document has been translated and is being circulated in England, to aid in arresting the wanton destruction of birds in that
country. It was the subject of a paper recently rend before the National IIistory Society of Regate, from which we cut the following:-"Although the sparrows levy a small contribution on the farmer's grain, yet the far greater portion of their food is from injurious insects, and the whole of the food they give to their young is from the tribe of insects. At the beginning of the world man would have succumbed in the unequal struggle if God had not given in the bird a powerful ausiliary-a faithful ally-who wonderfully accomplishes thetask which man is incapable of performing-in fact agairst lis enemies of the insect world man would be powerless without the bird."-Moore's Rural New Yorker.

- Oil TRegion of Pensylvania.

Appended to a report on the Oil Region of Pensylvania, in the Oil City Register, of May 15, is the following recapitulation:

> "Number of wells now lowing.

Number of wells that fornerly flowed and pumped
Number of wells sumb and commenced 358
Total 405
Amount of oil shipped................... $1,000,000$ bbls, Amount on hand to date............... 92,450 bbls. Present amount of daily flow 5,717 bbls. Average value of oil at $\$ 1$ per barrel $\$ 1,092,00000$ Average cost of wells $\$ 1,000$ each $\ldots \quad 495,00000$ Machinery, buildings de., from $\$ 500$ to 57,000 each

500,000 00
Total number of refineries
25."

The Iron-Plated Navy of France,

The Revue Contemporaine states that the plan of the first iron-plated frigates was signed March 20th, 1858, long before the matter was approached by England or any other country. There are now four of these firigates alloat, the Gloire, the lnvincille, the Normandic, and the Couronne, all of which have been tested at sen, with the most satisfactory result. Fach of these has an armament of thirty-six rifled guns, of which thirty-four are in the battery, which is plated with iron from end to end. Two guns only are placed on the upper deck and will carry four miles. The crew is composed of 570 men , the engines are 900 horse power, and the length of the ships is 231 ft . Besides these there are four ironplated batteries, intended not for sea but for harbour defences; they are the Peiho the Saigon the Paixhans and the Palestro; these are not yet quite complete. Two more iron-plated frigates, on a plan different to the Gloire are building, the Magenta, and Solferino. Besides these there are ten other frigates of 1000 horse power building in the Imperial dockyards, and six new floativg batteries have been ordered by private builders, and are being pressed on with all haste. The iron fleet of France thus consists of 16 frigates, afloat or nearly completed, and ten floating batteries.

Cowper Cole's Cupola Principle.

Arrangements are nearly completed at $\mathrm{Her}_{\mathrm{Ma}}$ jesty's dockyard at Sheerness, for the construction of a new iron-cased steamer, to be built on Coles's cupola principle, with two shields. The dimensions
of the vessel are as follows:-length between perpendiculars. $185 \mathrm{tt} \cdot$; length of keel for tonnage, 148 ft ; extreme breadth, 42 ft ; breadth moulded, 41 ft . 9 in. ; depth in hold, 19 ft . 10 in. ; and burden in tons, 1385. She will draw about 16 ft . of water formard, and 17 ft . aft. Her stem will be constructed somewhat after the pattern of the Defence and the Resis. tance iron-cased frigates. What has been chiefly kept in view in the design of the vessel, is to com. bine great speed with great power of resistance.

Foreign English.

The following choice specimen of English composition is daily distributed in the Western Anner of the International Exhibition. "Balthasar Dan. zer, manufacturer of Bellows a Munic, recomends his theuv-pre-du-cing apparatus made for the irrigation of tender plants and calculated fi destroying plant lice. Price L4. s. 15. His second apparatus intended for domestic use serves for the pur pose of destroying bugs batles cock reaches and all other noisome chaters in house a Kitehens Pr: 6s. 6d."

Cohesive'Strengiln of Metalsg \&c.

Cast iron, 42,000 pnunds; iron bar (best Swedish and Russian), 81,000 pounds ; ordinary 68,000 pounds. Steel bar, soft, 120,000 ; razor tempered steel, 150,000 pounds. In steel, and willow wood, the cohesive andrepulsive strength appear to be nearly equal. Onk will suspend much more than fir ; but fir will support twice as much as oak, probably on account of the curvature of the fibres of oak. Although iron, at an average, is four times as strong na oak, and 51 times as strong as deal or fir, yet it is more liable to accidental imperfections; and when it fails it gives no warning of its approaching fracture. Wood, when it is crippled, complains, or emits a sound, and after this, although it is much weakened it may still retain strength to be of service.-J.B.

Microscopic Writing.

Amongst the mechanical marvels of the Exhibition is a machine exhibited by Mr. Peters for microsenpic writing, which is infinitely more wonderful than Mr. Whitworth's machine for measuring the millionth of an inch, which excited such natonishment in 1851. With this machine of Mr. Petere", it is stnted that the words "Matther Marshall, Bank of England," can be written in the two-and-n-half millionth of an inch in length, and it is actually said that calculations mede on this data show that the whole Bible can be mritten twenty two times in the space of a square inch.

Substitute for Cotton.

Tme Conserva Plant.-It is met with in every ditch and pool, especially in old clay pits, and in most slow streams. It is of a soft substance, and in pure water, where the threads grow long, resembling tow. But in maddy waters, where they are short, it is not unlike cotton ; which being carefully collected and dried, turns whitish, and has sometimes been used for it, cither as wadding, or to make towels and napkins, for st ling beds, and for makiog paper. In every country there is a great annual waste of cotton used in wicks for candles and lamps, and, in order to economise cotton for the future, I strongly commend this plant, as a substitute, to the parties most interested.

[^0]: : The sum of $\$ 1,000$ had been voted by the Munteipnl Council for the Counties of York and l'enf, (owards the Prize List of the next Exhibition; the Conncil of tho Λ ssocjatim, theretore, felt it to bo their duty to vote to the Local Committee a sum equal to timat

[^1]: Copper containing twenty-four per cent. of phosphorus, will resist a strain of 45,000 los. to the square inch.

[^2]: Tho Welland Camal is 28 miles in length, and has a rise of 334 feet from Lako Onturio to Lako lirie, through 37 locks of 150 foot in Jength and $201 / 2 \mathrm{in}$ width, and is passable from luke to lalie by vessels $1 ; 4$ feet, over all, 26 fect beam, and 9 feet draught, stowing 3,000 burrels of four under deck.

[^3]: * A very interesting piper on Aluminium, by Mr. P. Le Nepe Foster, will befound it the Society of Arts Journul, vol. vif, p. 102

