

We have plaosd ous 2000 of our Bollers during the past three years, and have heard nothing but praise and eatiofaction.

HO BANGER OF EXPLOSIOH,
even temperature of heat.

THE E. \& C. GURNEY CO., Ltd.

"SILICOLITE," (Patent)

a gheap fire and water-phoof elastic foh plasterine houses.
Is nof liable to crack under any strain, and requires no special preparation for painting either in oil or water color. Being a non-conductor of 15 to 20 times less than any other plastering in use. It adheres to any kind of surtace, 15 to 20 times less than any other plastering in use. It adheres to any kind of surtace, and when applied to stone or brick on outside wails will protect them against the
action of frosi. It is npplied in the usual way of plastering, and can be highly finished an one or two coats either with the ordinary tool or with sand paper.
A. J. PIGEON, - Mo. 3 oa Ricimoid Square, Montreal.
 ∞ THE PLAXTON HOT WATER BOILER Most Direct Heating Surfuce. Grentest fire Travel, comscguently nore Heat utilised from fuch. Easiest Cleaned and Managed, and Cheapest Boiler made whtes forggoing points are takicn into consideration.
Intending purchasers should consult us before purclusing. manufactured and suphlied to the trade gy R. : McDOUGALL : \& : CO., GAIT, ONTARIO.

J. M. WILLIAMS \& CO.

иамитом, опт.
 manufacturers
 or the
 ANTHONY
 STEEL TLATE
 FURNACES

- THEY ARE -

Endirelyfreefrom rases and durf
Eacily manatras
Economical and durable.

- Sead Gor Forgece Bock venticled

HOT AIR FURN ACES

"FAMOUS," for Coal, Cast or Steel Radiators

"FAMOUS", for Wood 5 fot long.

 "STEPHENSON," for Wood a jet long:"GEAT", for Wiod a feel 6 inches long.
Quich, Powerful Heaters. Warranted Gas-tight dointe.
semo van eataloguls ano raticks,
MCELARY MFG. CO.,
Lonilon, Toronto, RLentreal, Winnipeg.

WATEROUS ENGINE WORKS CO., LTD.

BRANTNORD, CANADA.

EHNT FOR OATALOGUEP.
\longrightarrow THIS SPACE BELONGS TO -
R. FOMETET

130 BLEURY STREET,
MONTREAL,
AGENT FOR CANAD \mathcal{A} FOR

GRANOLITHIC

For Sidewalks and Floors.
Toronto Offlee: 14 TORONTO ARCADE.
SEND FORCIRCULARS.

TORONTO

Cable address, "PLATE."
CLASS
poline win ine Dominko.

IMPORTING CO.
55 and 57 Viotoria Street, TORONTO.
head office: foot of west market street, toronto.

manufacturere of

Grey Limg Guelph White Lime,
Dealers in Stone of all kinds,
Cement, Plaster, Hair, Sower Pipq, do.
Braycin Orrices : 1088 Yonge St., Foot of Peter St., and Foot of Brock St.
AIKENHEAD \& CROMBIE,
Cor. King ami Yonge Sts.
TORONTO
BUILDERS' HARDWARE.,

Tropkina a Dickinson, B. G. Tistale,

St, Paneras Iron Work, O. Easper,
agents for
Bronze Goode,
Iron Stable Fittinge,
Wra't Yron Stable Fith Brantford. Patent Oat Clecner, Patent Oat Cleaner,
\qquad Norton Door Cheek anul Spring,
Write for Cnuloguc of above Goods. Estimates given on Specinal Hardwaro by any Architect.

A, R. WILLIAMS - Solv Lecilae Forks - TORONTO Exclusive Canadian Agency.
Send for Catalogue. Inontion thit Papor

Tolephone No. 9\%.

THOROLD HYORAULIE GEMEVT MILLS

JOHN BATKLE, Promitetor, THOROLD, - O ONTARIO.

16 Jolun St. N.
D. D. Cmisistie.
D. Hendersom.

LIME AND STONE CO.
.

MAGUIRE'S Ventilating Self-Flushing and Self-Cleaning Trap.

Sewer Pipe,
Chimney Tops, Fire Brick, Fire Clay,

PORTLAND

-AND-
THOROLD CEMENTS always on hand.

Magutrob Filo Drain Trap, partikularly adaped for bosse dratnage and averibend sower ventilation The caly reliable relfoleaniog Trap in the onarket. Owing to the fact that the outke \mathbf{C} is below the inlet \boldsymbol{A} and formed as shown, auy Hiquid or solid matter entering the Trap ID ruust, when it once reaches the lop of seal $\mathrm{D}_{\text {, }}$ flow over and fall clear into the outlet C, not conly increases the velodty of the flow of the water and solid untter through the Trap i by ereating a fill from the sid Trap, bue it is aloo so shoped that it effectually privenu any backmalh through the oullet C into the trap B.

Montreal Terpa Cotta Lumber Co.

 Works at DIatsonneuve, Office 80 St . Peter St. J. Barsalou. President.Porous Terra Cotta Building Material
TT is not excelled by any other material and does not crack or fall to pieces on the application of cold water when red hot. It is also proof against damp, frost, and vermin, and can be sawn, nailed and worked with carpenters' tools. Mortar adheres to it without ether furring or lathing, and makes the house built of it cooler in summer and warmer in winter, and weighs less than half what brick does. It is much better in every way than either wood or brick tor inside walls, partitions, floors, ceilings, furring and roofs, and on the average cheaper than either. It has the recommendation of architects and is certain to reduce the cost of fire insurance.

Further information will be cheerfully given to parties reparing, bailding or intending to build.
Montreal Terra Cotta Lumber Co., Lmime. MONTREAL, QUEBEC.
QUEEN GITY GALVANIZING WORKS

WALTBRS' PATBHT

 METALLIC SHINGLES: :) Ano (: : SIDING PLATES.

Shingles will gitiotee everoly, bullding covered with Shingles will give absolute provection from wind, raln or snow, and give double the sendce of the are firapropf, and make the handsomest roof known. and ensly. pul on.
sewd for particulara
THOS. McDONALD \& CO., 69 TO 75 sherbourne stret,

TOROMTO, ONT.

PUBLISHED MONTHLY IN THE INTERESTS OF

-Tㅍㅍㅍㅛ—

Canadian Architect and Builder a JOURNAL OF MODERN CONGTRUCTION METHODS,

architects, civil and sanitary encineers, plum. BERS, DEORATORS, DUILDERS, CONTRACTORS, AND ING MATERIALS AND APPLIANCES.
C. F. MORTIMIDR, Publishev,

81 King Street West, - TORONTO, CANADA.

atDsonrpxions.

in Che Camadian Akenisect and Bullusk will be meiled to any addras
 advance. The paper will be disconnanued al expiration of termp paid for: it will he continued sutif instrections to discontinuc are received and all
and aryarames are patid,
Failure to rective the paper promptly should be weported to thisw ofice. ADPEATINEMENTG.
 day of the mosith,

EDITOR'S ANNOUNOEMERES.
 nowipaper

AJOINT committee composed of representatives of the American Institute of Architects, the Western Association of Architects and the National Association of Huilders met in New York recently and agreed upon a uniform contract which will be submitted to architects and builders for general use throughout the United States. Should a torm of contract be devised which will meet with the approbation of persons interested, a similar document sbould be agreed upon for use in this country.

THE Government analysts have performed a highly commendable act in securing and analyzing water used for drinking purposes in various parts of the Dominion. The analysis of these samples proves that only about one-third of the drinking water in use can be designated pure. Many of the most impure samples analyzed were obtained from wells situated near school houses, from which probably the school supply of drinking water is obtained. This fact ought to be sufficiently alarming to parents to compel them to adopt sanitary measures to preserve the lives of their children. Could they but know how many cases of typhoid among public school pupils luave had their origin in polluted wel] water there would be less indifference manifested in this important subject.

WE observe with pleasure that it is proposed to erect a suitable memorial to mark the scene of the battle of Lundy's Lane. The Lundy Lane Historical Society has submitted to Col. Otter, of this city, the following suggestion for the proposed moniument : That a space of at least 25 feet square be secured at of near the highest part of the hill, and that suitable access thereto be made from the dooriviy. 2. That a stone tower be erected at a height of pot less than 80° feet square exclusive of flagstaff, and of a width of diameter at the base sufficient to afford a suitable room for the exbibit of relics or trophics of the battles tought in the neighborhnod, the room to have an area of not less than 200 square fect. 3-The material to be of Queenston limestone, but other stone may be used in relief, if compact and durable. The erection of monuments of this
kind to mark important events in the history of the country, will exert a powerful influence on the minds of future generations of Canadians, awakening in them a pride of country which is a necessary foundation to the greatness of any nation. It is surely fitting that the designing of these national monuments should be entrusted to Canadian artists, and we hope that the patriotism which prompts the erection of such a memorial will extend also to the designer.

HARGES of unfairness are being preferred against the City Council of Brantford in connection with the awarding of the contmet for the construction of the new waterworks system. Certain of the Brantford papers, as well as those of outside towns, are alleging that the Waterous Company were given the figures in the American Company's tender, and were allowed to take advantage of this information by putting in a lower tender after the tume specified for receiving tenders had expired. We have no information which would warrant us in expressing an opinoon as to the truth or falsity of these charges. The circumstance, however, recalls the disgracefal proceedings which characterized the purchase by the city of Toronto of a new pumping engine four or five years ago. The wirepulling and trickery connected with that transaction was sufficient to show that the man who can bring the most "influence" to bear upon the aldermen almost invariably gets the advantage of the man who relies upon his reputation for honesty and the figures in his tender to secure hum the contract. We.hope that when the facts of the Brantford case come out, if they ever do, it will be seen that the contract was honestly awarded. If that should turn out to have been the case, everyone will be pleased that a local and not an American company received the contract.

WE desire to say a word or two on the subject of illustrations for publication in this journal. We have of late been compelled to decline to publish many of the illustrations sent to us for that purpose, on account of the lack of merit displayed in design and drawing. We confess that in two or three instances we have published drawings sent us that were by no means up to the standard, but we did so simply because we desired to give all paits of the Dominion fair representation. When we commenced the publication of the Canadian Architect and Bullder we determined to illustrate the best work of which we could procure drawings Although, for the reason given, and from a desire to encourage our readers to send us drawings, we allowed ourselves to be led into publishing some that had but little merit, we shall in future avoid doing so. We have many Canadian architects who are capable of producing creditable designs and drawings, and is not fair to Canadian architecture to publish illustrations that are not farly representative of the best work done in this country. Unfortunateiy the authors of some of the drawings'sent to us appear to be unable to distinguish as beiween good work and bad, so far at least as their own $:$ pfoductions are concerned. If they could thus judge; they certainily would not be so ready to send abroad over this continent and Europe specimens of thitd-class architecture and drawing with their names as authors atlached. In thus declining to publish inferior drawings, we shall be doing a kindness to their authors, and shall feel that we are not guitty of misrepresenting to the outside world the preponderating qualty of the work done in this country. We make this statement with no desire to discourage any one from sending us
specimens of work for illustration. We simpie reserve the right to publish or not, basing our decision in the matter entirely upon the merils of the designs and drawings. We invite those who are capable of good designing and drawing to send us specimens of their best work for publication.

OPINIONS pro and con are being expressed through the columns of the newspapers regarding the practicability of the scheme for the construction of the proposed Trent Valley Canal. Great differences of opinion exist also regarding the amount of traffic which would be likely to find its way through the canal, and the consequent amount of revenue which could be counted on to assist in recouping the Covernment for the vast outlay which would be required to carry out the undertaking. We hope the discussion of the question will continue until all the information possible has been obtained. The necessity for the canal should be established, and also the probability that it will pay the cost of maintenance and interest on the capital used in its construction before any steps are taken to carry out the scheme. It is quite natural that people living and owning property along the route of the proposed canal should be enthusiastic advocates of the carrying out of the work, but inasmuch as the people of the country at large will be asked to shoulder the burden of its cost, the question to be considered is-will the undertaking pay? We are already, for a young country, to lerably well supplied with railways and canals; we are paying a very large sum yearly in interest upon the money borrowed to construct them, and we should absolutely refuse to increase our burdens in this direction without being first satisfied that further expenciture is absolutely required and will make us profitable returns.

T'HE plumbers' strike in this city seems as far from being setted as ever. Indeed an adjustment of the difficulty now appears much moredifficult thanitwould have been when the strike began. Both parties to the dispute have acted in a manner calculated to widen the breach rather than to promote a mutually satistactory understanding. We have so far not seen any statement made as to the grounds upon which the joumeymen ask for such a substantial increase of wages. It connot be said that the plumbing business is in such a prosperous condition as to warrant the employers inincreasing by onefourth their wages bill. On the contrary, the outiook for the master plumbers of this city is by no means bright. The large amoum of speculative building done during the last three or four years has greatly diminished this season, and is not at all likely to revive for some time to come. There are already houses enough erected to supply the wants of tenants for two or three years at least. Building operations in this line will consequently be on a very much smaller scale than heretoforc. The large amount of speculative building done of late created a demand for a cheap kind of plumbing, and induced a considerable number of persons to embark in the plumbing business. As a consequence journeymen found their services in demand. If a continuance of that condition of affairs might be counted upon, there there might be some ground upon which to claim an inerease of wages. Secing that the amount of plumbing required during the next two years is likely to be at least tweaty-ive per cent. less than during the last two years, the action of the journeymen must .be regarded as either very thoughtless or very unreasonable. On the other hand, the refusal of the employes to consult with the strikers or to agree to an
arbitration was in our opinion not a wise procedure. Apart from the question of wages, the unions want to have a hand in regulating the employers' shops. The latter insist that so long as they pay the salaries they intend to manage their affairs in the way that seems to them best. This we think they have a perfect right to do. The members of the union may refuse to work for an employer who thus insists upon being the sole manager of his business, but they have no right to interfere as they are said to be doing with workmen who are satisfied to receive their wages and leave their employers to do the managing. A couple of the strikers have been heavily fined by the police magistrate for alleged intimidation of workmen brought from other cities to fill the positions which they had vacnted. Our sympathies in chis instance are with the strikers; as we cannot see from the evidence wherein the intimidation took place. Since the decision of the police magistrate, however, some of the strikers appear to have resorted to intimidation and even to violence in order to prevent the amployers from carrying out their contracts. The fact that the workmen imported by the masters have had to be guarded by the police, does not reflect much credit upon the methods of the strikers, nor does it tend to arouse public sympathy in their behalf. In conflicts with the employers the unions should discard physical violence and the boycott as likely to defeat rather than promote the objects they have in view. Since the above was written the steam fitters have joined in the strike, and the situation is thus made worse than before.

THE Toronto Trades and Labor Council has resolutely set its face against the movement to instruct the pupils of the public schools in the rudiments of practical mechanics and in the use of tools. The Council recently appointed a deputation to wait on the Minister of Education to endeavor to persuade him not to carry out the proposal. The result of the interview is thus stated in the Committee's report to the Council:-
"Your committee, as per instruction of your body at a recent meeting, secured an interview with Hon. G. W. Ross, Minister of Education for the Province of Ontario, for the purpose of laying before him the views of your body respecting this proposed scheme for introducing manual training in the public school system, with a commencement in the Provincial Model School at Toronto. Your committee were received with that courtesy and urbanity characteristic of that honorable gentleman, and at his instance each member of the deputation, which included the presidem of your body, spoke his views on the subject, and in opposition thereto. During the two hours' discussion of the question in all its phases every reature of the proposed movement on the part of the Ontario Government received ample consideration, and during which the honorable the Minister of Education, while holding strongly to bis contention that no injury to, or interference with mechanical interests was intended or possible through the intended innovation, affirmed his adherence, for the time being at least, to his own view of the subject. Your commiute, failing to convince him of the soundness of the views of your body, or those of your committee, in opposition to the manual training feature already referred to, and, being still satisfied that, if inaugurated, a course of manual training, as outlined by the Minister of Education, will result in no good at all commensurate with the amount of certain harm in an aggravated form which must ultimately ensue to all who live by mechanical callings in Ontario, unhesitatingly recommend that every legitimate effort be put forth by your body, by seeking the active co-operation of all labor organizations throughout Ontario in petitioning the Government, and Parliament when in session, and the taking such other action as may be deemed advisable in opposition to the adoption by law of this scheme on the lines outlined."

We very much regret that we have not before us the arguments presented by the deputation to the Minister in support of their contention that manual training in the public schools would result in "certain harm in an aggravated form, to all who live by mechanical callings." Let us hope that they were more logical than the reason before given by the Council, viz, that such training would tend to swell the ranks of botch workmen. Experieace has demonstrated that youths who have had the advantage of technical instruction previous to entering the workshop, as a rule make more rapid progress and attain to a higher standard of skill than those without such training. :This lact goes to prove that the tendency of the training is to increase the number of highly skilled mechanics rather than to create botches. But supposing the resiult should be the reverse of this, union men who are akilled
mechanics would not suffer in consequence, for the simple reason that a botch can never do the work of a skilled mechanic.

Unfortunately, the labor organizations have devoted all their attention to securing for their members the largest possible remuneration for the least amount of work, regardless of whether they are botches or skilled workmen. No effort bas been made to elevate the standard of workmanshif. No standard of workmanship is required as the condition of membership in the organization. The declaration of American independence begins with the statement that all men are born free and equal. The trades organizations appear to work on the principle that all men-mechanics at least -are equal in their capabilities, and continne to be so during their lifetime. A standard of wages is fixed for all alike. No encouragement is offered to a man to strive to excel in the particular trade in which he may be engaged. For this reason we find about as many botch workmen in the membership of the labor organizations as out of it. Manual training in the schools might be expected to assist in developing a class of educated mechanics whose skill would entitle them to supplant many indifferent workmen of the present day who claim firs-class remuneration for their services, not because of their ability to earn it , but because they are members of a labor organization which demands that they shall have it.

Airepresenative body of workingmen is cerrainly the last quarter from which opposition should come to a movement which has as its object the imparting of a class of knowledge calculated to prove of practical benefit to the boys and girls whose circumstances in life or vhose natural inclinations and adaptability destine that they shall engage in mechanical pursuits. As we pointed out in these columns recently, the class of instruction heretofore given to the pupils of our public schools has tended to overstock the ranks of the professions at the expense of mechanical pursuits. Yet the moment that an attempt is made to correct the error, the persons whose children would be most benefitted thereby are the first to throw obstacles in the way. We can only infer that they would rather see their children strugyling to attan a bare livelihood as lawyers, doctors or some other "genteel" calling than earning a competency in the less crowded through humbler pursuits of life.

We are not surprised ihat the Minister of Education remains unconvinced by such short-sighted reasoning. We hope that he will persevere in his purpose, in which case no one will be less liable to suffer injury than the working mechanic.

WOOD FOR DECORATIVE PURPOSES.

$T \mathrm{~T}$ is evident that much as we know about woods there yet remains much to learn that may be of value in the arts, says an exchange. The secret of making good vencers which will not warp is only now be. coming known, and until lately it was considered impossible to emboss wood; but now beautiful embossed panels, whose work resembles carving and whose richness compares favorably with the most costly art, are found in many places. In these the original patterns are carved by hand, and from these molds are made on which the wood is placed after being properly softened. The wood in these molds is then subraitted to 250 degrees of heat and subjected to great pressure. Such a pressure effectually prevents all shrinkage. Wood may be cut as thin as the 300th part of an inch, but in this state is not useful. That whicn is cut to the thickness of the looth or the 150 th part of an inch and lined with paper is used for the decoration of walls and ceilings. This neither shrinks nor swells, there not being enough of it for the atmosphere to lay hold of. If it is desired to place such a veneer npon a wall, all holes and cracks must be filled with plasier of Paris, and being gloe sized, the wall is ready for the wood in panels. The veneers are made damp with a preparation of glycerine and water which softens them, and when dried leaves them pliable. A checkerboard pattern of curled maple is about as thick as a piece of cardboard. To produce this, strips of wood are first woven in and out and then subjected to heat and pressure, which makes a smooth body, varied in hue as if it were made of two kiuds of wood.

Prof. J. B. Jobnson, of Wasbingion University, St. Loulis, stated that in the physical haboratory of that instituation it is proposed to make exhausive icess on the iransverse streng th or rastous imbers. It is intended to miake these tests standard autbortity for ail engibeering eunutures and for this purpose efforts are being made to ratre from $\$ 2,500$ to \&5:000.

TORONTO BOARD OF TRADE BUILDING COMPETITION.

W ${ }^{E}$ have received from the Secretary of the Toronto Board of Trade a circular in regard to the competition which reads as follows:
The Committee, by and with the advice of their proféssional adviser, have decided, in accordance with suggestions or requests of competitors, to amend the conditions of competition in the following re. spects :

1. The party wall on the eastern side of the lot to be disregarded, and a new wall built entirely independent of it.
2. The point of sight indicated on the plan already furnished to be changed, and to be taken at a distance of 200 feet from the angle of the lot, near the western corner of the custom house.
3. The perspective to be set up from a one-eighth scale instead of from a one-quarser scale plan, as asked for in the conditions.
4. The Committee's professional adviser reports as follows: "ft scems to me that paper 18 taches by 26, as required in the programme (not 36 as your correspondents erroneously quote it), is amply large for all these purposes. It allows a tower 200 feet high ; if a higher tower is to be shown the upper part can be drawn on a flap. Moreover, all the plans, except perhaps those of the basement and first storey, can be shown two on a sheet, if desired. I should not recommend larger paper. It is essential to the convenient handling and examination of the drawings that they shall be made on as small sheets as possible. Moreover if all the plans are on one sheet, as suggested, it is an inconvenience to the archilects, as only one or two men can work on them at a time. Besides, it is a bad plan to change the conditions at this time without necessty."

OFFICE EXBRCISE.

WHILE a pair of dumb-bells or clubs or some form of gymnastic apparatus is occasionally to be found in a business office they are usually provided by some one for his prwale use, and though doubtess efficient in promoting health and vigor as far as used, the office at lauge profits but little by them, and the valuabte stimulus of emulation is almost wholly lost. As a rule if gymnastic exercises are permitted at all they are rather tolerated than encourated, and for an employer to provide anything of the kind for those in his office is very rare indeed. So rare that we do not remember to have heard of i.
We are, therefore, much gratified to learn that Bumham \& Root, architects, of Chicago, have set a most commendable example in this respect by fitting up a large room in their suite of offices as a sort of gymnasium. In response to an inquiry, they say ; "It is used as a lavator 7 and exercise room, and is furnished with wardrobes Indian clubs, dumb-bells, pulling machine, foils, etc. It has a good effect on the health and spirits of our boys," and they add, "who are exceptionally good fellows and deserve all one can do for them." We have no doubt the "boys" reciprocate the feeling, and whether Burnham \& Root in fitting up this room were infuenced by pure disinterested benevolence or an intelligent self-interest, of a wise combination of the two, we believe they will find it merely from a business point of view a very profitable investment.
The restless discomfort which comes from long stooping over a desk or compressing one's liver for hours on the edge of a drawing board, is apt to seek relief in skylarking or idleness, or if the conscious elerk or draughtsman still sticks to hus work it is with reluctant fingers and beclouded brain, and the "output" deteriorates both in quality and quanity.
In such a case five or ten minutes' brisk use of the clubs or chest weights will accomplish more than an hour's skylarking or any amount of loafing. It has a wonderfully good effect in quickening the stagnant car. culation, and a clear head and strong hand take up the work with renewed vigor.
It is surprising what a little vigorous exercise will accomplish it systematically taken. A few minutes once

Vol. I.] The Eanadian Architect and ßeuilder.

or twice a day, at most three times, will soon give most satisfactory results in thealth and efficiency.
We commend this matier of office exercise to the careful consideration of all employers of sedentary em. ployes, and hope the example set by our Chicago friends will be speedily and getterally followed.-Enginuering and Building Record.

THE PROPOSED CHAIR OF ARCHITECTURE.

C

INADIAN architects are pleased to be informed

 that it is the intention of the Minister of Education to appoint a Professor of Architecture. The reasons given are not very intelligible nor are they sufficient. That the acoustics of a hall are bad can hardly be laid to the fault of the architect, except in very rare instances. I have never heard anyone but those entirely ignorant of archilecture speak as if the laws governing them were laid down on scientific principles, and could be worked to with absolute certainty. I was under the imprestion that beyond certain primitive rules the science of acoustics was yet in its infancy, and that it was almost impossible to determine what would be the result of certain forms and outlines in a large hall on the properties of good hearing.However, it matters little on what ground the step toward teaching architecture is made. That it is to be taught is the main thing, and we are glad to learn it. With a better trained body of men in the profession, the really able men will have some chance of obtaining the position to which they are entitled. The general ignorance of the majority of the men who call themselves architects has done much to retard the profession and make it more difficelt for the good men to do good work. The inferior men are more capable of doing work satisfactory to the average public than the better educated men, as their work being done by men nearly on the same level in ar with the public is comprehensjble to them; while the work of the thoroughly edocated men is to them like Greek to the public school scholar, far beyond thei intelligence.
Let us hope that Mr. Ross will not hurry the archi. tectural branch too rapidly. He will be able to gain much information on the subject if he will consult those who have more knowledge of the matter than himself. It would also be well to have some understanding with the members of the profession in this country about receiving the pupils of the school in their offices after their course. That the students of the school will require to enter an architect's office for several years to gain practical knowledge will be as much a tact as it is now. No school can turn out trained men in the profession of architecture any more than a seloot could tum out a competent seaman and navigator.

hOUSE DRAINAGE.

THE following instructive paper formed the subject of an address delivered by Mr. Phillips, of this city, to the members of the Toronto Architectural Draughtsmen's Association:
In taking up the subject of house dranage I do not intend to go into it with any degree of elaborateness from a scientific point of view, but merely to touch on fis most salient points, and more especially on the construction part, and to give you some practical hints that may be useful to you in commencing' your carcer as architects, and which will perhaps help you in your further study of the question, a question I meed hardly say of the greatest importance to the architectural profeysion of the present day. Until recent years an architect in planning a building considered he had performed his duty to the drainage part of the plan if be put in a pipe of some shape, and usually as large possible, to carry off the water and soil from the house, and carried the pipe to a pit dug in the ground somewhere or anywhere. All he cared was to get the water and solid matter away. As to the gases, he would have laughed at any one bringing the question up. What did he know or care about the gases? But a change has taken place. An architect in the present day who does not pay special attention to the drainage part of his plan would I think be looked upon as an oddity. It behooves you therefore to make yourselves, as far as possible, thorough masters of this subject.
In planning your drainage system, four objects should be sought: ist. All matter placed in any of the sanitary appliances in the house must be carried with the greatest possible expedition clear of the premises, leaving behind it if possible no deposits of any kind. 2nd. All sewer air must be prevented from entering the house by the channels which serve to carry away the
sewerage. Jrd. As it is well nigh impossible to have house drains absolutely clean, that is devoid of all decomposing matter, all air from house drains, sink, bath, w. e. and other waste pipes, must be kept from entering the rooms. $4^{\text {th. }}$ A constant current of fresh air must be establushed along every pipe in the drainage system, so that all gases that may be in the pipes will be rapidly diluted and carried to the outer air.
As it is not my intention, as stated before, to go into the subject too elaborately, I will take up first the pipes outside of the house ; these may be of fire clay. In your specification you should call for them to be of the best, to be thoroughly salt glazed inside and out, thoroughly sound and free from all blows or other obstruction inside. In inspecting them be particular that the salt glazing is thoroughly done over all the pipe, more espectally in the inside, as it is in the inside the glazing is most required, and it is there that very often the glazing is poorest done. Moreover, the contractor will be sure to try and "bluff "you on this point. Carefully pass your hand round all the inside to see if there are any obstructions or anything that will cause sediment to deposit no matter how small it may be. See that it is thoroughlv sound, and upon no account pass an unsound pipe. The contractor will likely persuade you that the turns the crack to the top side it will not do any harm. Do not believe him, as the crack will be a vent for the sewer gas, which will travel through the disturbed ground

pipes to be covered up till you have inspected every joint and satisfied yourself that each and every one is thoroughly made and tight. 1 have always made it a point myself when the drains are being laid to seo every pipe laid, I consider this point so important. of course you in your occasional inspection of a job cannot see every pipe laid, but you can inspect the outside of all the joints before giving your permission to have the trench filled in. In filling in see that all around the sides and bottom of the pipes are well and solidly packed with small sluff so that there will be the least possible chance of the pipes being disturbed from their position. In making a junction always use a Y pipe, never a square junction, end also let the junction be as near the upperside of main pipe as possible so that by the Y branch the flow of water from the branch to main pipe will be deflected as litte as possible from a straight course, and by keeping it to the upper side of pipe there will be no chance of the branch pipe being air bound if the main pipe should be pretty well filled up with water. Where the pipe is taken through the wall into the building, see that the opening is made thoroughly good and tight so that no gas that may find its way aloug the course of the drain will enter the house. I have known where the pipes inside of a house were tested repeatedly for a leakage, but found to be all tight, and the smell was ultimately found to come in from the outside through the opening made in the wall for pipes to enter.
As to the size of fire clay drain pipes, a very prevalent mistake is to make them too large. I saw recently the plans of a block of stores which came out of an office in Toronto, and the main drain going into the street was figured at 9 inches. This pipe was intended to take the drainage of four water closets, four sinks, I think, and the rain water from the roof. The block consisted, I think, of tive small stores, so you may judge of the roof surface. On calling the attention of the gentieman who showed me the plans to the large size of the drain pipes, he remarked: "Well, it will require it." I showed him that If these four water closets, etc., required a nine inch pipe, what a tremendous size the trunk sewer for such a city as Toronto would require to be.
Speaking of trunk sewers, let me give you the result of the difference found in experiments between the old time praclize and the generally adopted present day practice. An old sewer with a superficial area of 17 feet was tested as to the rapidity of its flow, and its consequent abillty to carry away all impurities and obstructions, and in a 100 fect portion of it was laid a 12 inch diameter pipe. All the water in sewer was deffected. Well, on a brick being laid in bed of sewer, no impression was made on it by the force of water, but immediately on its being laid in the 12 inch pipe the force of water whisked it away, and not only carried it through the whote length of the pipe, but a number of feet beyond, proving conclusively that the more you can compress the water, the more certainly will impurities be carried off.
But it may be said that pipes that would ordinarily be large enough to carry away drainage of buildings, will not be large enough to carry the water away say at the time of a heavy rain storm. There is a percentage of truth in this, but an exceedingly small percentage. To show this, let me give you the case of a 12 inch street pipe sewer with a large number of branch drains delivering into it, the sum of their cross sections being equal to a circle 30 feet in diameter. This 12 inch pipe on ordinary occasious ran about a third full, but during a heavy rain storm covering the whole area of ground drained by these branches, in creased the bulk to only two thirds full, but increased enormously in the rapidity of its flow. An experiment was made with a 6 inch pipe too feet long, the upperend of which was laid in a creek with its mouth entirely covered with the water, so that the water at the commencement of its flow eatirely filled the bore of the pipe. On examining the outlet of the pipe, one would fancy that as the water on entering was always keeping the pipe full, the same head of water would come out at the bower end, but instead of that it filled only 2 inches of the diameler of the pipe. Another case was that of a public building with something over 100 sinks, closets, water spouts, \&c., and haviag a large drain $\mathbf{2}^{\prime} \cdot 6^{\prime \prime}$ diameter which was repeatedly examined, and its largest flow at its outlet was only equal to a sectional area of 5 inches showing that in 3 inch pipe would have been more than large enough to carry the sewage. It has been calculated that a 6 inch pipe will carry the ordinary drainage of a district with 1000 inhabitants.
Taking thesefacts intoconsideration, I would advocate that where you can bave a good fall, say a hall to a foot, that a four inch pipe should be used, and on no accoumt should a larger pipe than 6 inches be used for almost any ordinary building.

Coming to the soll pipes inside a house, do not on any account have anything else but iron. They are all the better of being coated with some solution, though there is an objection to this, in that any blows that may be in the iron are very difficult to discover. Inspect all the pipes closely to see that they are sound and have the joints well made with oakum and lead. As in the fire clay drains, do not if it possibly can be avoided, usè square branches. Inspect the inside of the branches to see that no ridge is there, a ridge sometimes occursing in the casting at the junction of the cones. Another point to be particular about is where a pipe is to be cut to make a short length. Do not allow a jagged edge to be used, as the consequence will be that when the oakum is put in some of it will be almost sure to get into the pipe thus, and form an obstruction. At the junction of lead and iron pipes 1 would advise you to use copper Nanges, as brass is more liable to corrosive action than copper.

ARCHITECTURAL GUILD.

THE Architectural Guild held its monthly meeting at Long Branch on Thursday afternoon, the oth of August. There was a very good attendance and the afternoon was spent in a very pleasant and profitable manner.

ARCHITECTURAL EDUCATION IN THE STATES.

UNDER the above heading the American Architect has a lengthy article on the architectural instruction given in the Massachusetts Institute of Technology. As it is the expressed purpose of the Minister of Education for Ontario to establish a Charr of Architecture in Toronto shortly, the course of study prescribed in the Massachusetts Institute published herewith will be of interest to those who may intend to study architecture in our own country. The regular course, as we mentioned last month, extends over four years, but a special course of two years has been planned for students who cannot devote the longer period to this branch of study. The special course is as follows :

FIRST YEAR

$\begin{aligned} & \text { Graphical Stalises. } \\ & \text { Arehinetarn Hisy. }\end{aligned}$
SECOND YEAR.

Finst term.

Oripinal Design. Oripinal Design
Sketcthing and Water-Coloricg Spectficalions.
History of Ornament. Problems in Construction Worklng-Drnwings and Framjog.

Orteimal D
Ontewal Design. Mechonical and Free.Hand Drawing. and Free.Hand Shades, Shadows, and Perspec. tive.
Common Consinction. YEAR.
Original Deaign. Shecching and Wnier-Coloring Spectfications and Contracts. Fistory of Otrament. Plamning. Iron construction.
Schooks, Thestres, Churches, Venilfation and Heationg Sarveting. Sereotomy
Problems in Construction.
The regular course is the same for all departments of the Institute during the first year, and is confined to general studies, with the single exception of a large amount of mechanical and free-hand drawing. No one is allowed to continue in the department who does not lave credits in mechanical drawing, including geometrical drawing, shades and shadows and descriptive geometry.
The regular course is as follows:

PIAST TERA.	sECOND TERM.
Alpebra.	Alsebra.
Sohid Ceomelry.	Phane Trizonomery.
General Chemustry.	General Chem
Chemical Lentorato	Chemical Laboratory
History of the English Lan* guage.	Political histion since 18 rg . French jor Germant
English Composition.	Mechanical and-Free.Hand
Fresch (or German).	Drawiac.
Mechanicat and Free-Hiand Drawing. Military Dedl.	Miltary Drilt
SECOND	YEAR.
Materials.	Original Dest
Architeciuml History.	Cotmmon Constructions.
Drawing.	Architeetuml History.
The Orders and Elements of Archliecture.	Shades, Shadows and Perspec. dive.
Analytic Cecmetry.	Siketchlog.
Physics,	Diffreminal Calculus
Descriptive Geometty.	Physior.
Polvical Economy.	Englab Rose,
German.	German.
THIRD	YEAR.
PIRRT TERM.	SECOHO TRKM.
Original Des	Original D
Sketching and Water-Coloring	Skeiching and Water-Coloring
Workiog Drawlags and Fmm-	Iron Construclion.
1 ecture on Fioe AM.	俍
lategral Calculuh.	Stereotomy.
German Sutics.	Physical liboratory.
Structural Geology.	Europema History,
Physics: Lecture and Laborn- cory.	Germial. Acoutice

FOURTH YEAR.

- SECOND TERM. Adranced Original Destona,
Sketehing and Water-Coloting Planning.
Schools, theates and churches l'robleros in Conssruction. Spectications and Contracis, Sonsilituitional History. Henting and Venilation. Admnoced Freach

The two-year special course thus includes the mechanical and free-hand drawing of the first year of the reg. ular course, the drawing and design of the regular second and third years, and the more strictly professional. lectures of the second, third and fourth years, with a practical course of its own in trigonometry and graphical statics, without the higher mathematics, which are pursued quite extensively during the four years' course.

OUR ILLUSTRATIONS.

ChURCH AT ALMONTE ONT.
STORE FRONTS FOR MESSRS. JOSEPH MCCAUSLAND \& SON, TORONTO-DARLING \& CURKY, ARCHITECTS.

dETAIL FOR VERANDAH

HOUSE AT 399 WELLESLEY STREET, TORONTO.-KNOX \& ELLIOTT, ARCHITECTS.
W. T. Whitepay, architect, late of Vancouver, B. C, has moved to San Diego, California, and opened an office.
Mr. James Wright, architect, ol Montreal, has taken a parter in the person of Mr. Findlay. The firm name is now Wright \& Findlay.

PRRSONAL.

Mts. C. Schreiber, Chief Engineer of Governasent railways, is at presemt on the Pacific Coast.
Mr. Gobeil, kectetary of tha Public Workn Departinent, hat returned io
 health
It is roonowred thet Nr. Callitg wood Sehreiber, Chier Enginetr of Government Railwars, will abonly resign his position, and that Mr. Waker Sheoly, M. P., will be akked til becone
comidered probalte ina Mr, Shanlv will accept.

HAMIETON.

(Correspondence of tho Canadian Ancintect and Duildes.)
CINCE my lose report. I regret to have to say that building prospects in Hamition have not improved. There have beet mo contracts let for tho number of private residenees that were in comemplation in the spring, and very few tenement bulktings have been ereeted this year-so different to previ uus years when whole blocks, were built by those enterprising contuctors, the Pattercon Bros, of this cily. In fret it is undersiood thet tbey don't intend buitding any more for insunbonems speculation, is a number of dwelling houses built by them in this phice remain undisposed of and to let; in fact, they have concluded that the procedure dif not pay. It is quike apparent that the bad result of the strikes is having its effect, and there is little or no work for the building trades, who will bave to face a long winter after a compamatively dide summer, and without the usual provision being made for the ime when there is never work to do. I understand that the same state of things exists in Toronto and elsewhere. One woud think that the unions would scriously consider the position, and change their progratame.
The work on our new City Hall is progressing lavorsbly now that the stone, which is brought from Nova Seotia, is coming to hand, and a number of stonecutiers nind masons have stemdy ensployment on the job. The contractor, Mr. Pigoth, deserves gevat credit for his indomitable energy and perseverance, having had to coniend with the most dotermived opposition of the labor uaions, who made every effort to prevent the work from being carried on In opposition to their absurd resulations.
I ant fad to sec that the action of the Proviaclat Gowermment in engaging a foreign aretbiect to prepare plans for the new Parlit. ment Buildiogs in preference to Canadian talent, is being condensoed, and as the adopled destgns are inferior to those prepared by the Toronio architects, and will cost maly more for the building, there must be a very unplensant reflection for the responsitiof pariles. But when Canadion architects become incorpornted and parties. But when Canadion archilests become incorpe
united as a body ther will not be treated thus unfaitly.
I an glad to say that our Bulling Inspector's book is ordered to be accurately kept in futurc, proper entics being made by the proprietors or their architeets, so that hereatier I can forward you a correct statemient of all new buildings to be crected fa Hamil100.

The steength of fire-cley as a buikding materal says one who ought to know can hardly be estimated. Recenuly a piece of beam Alling, containing about thriee square feet, desigeod simply to be used as a celling and not insended to carry the weight of the floor wowe, was pleoed on tupports and londed with a weteht of 5,000 poonds, which il certied whom any sign of giving. That was about 1606 pounds to the square foot, and the strongest foors now matic are only designed tocanty about 300 pounds to the foot. I didn't see the use of maling the test, as the articie in question cartied no weight but is own, but the airehitect made 4 amd tho clay stoodith. Fire-clay is DOW subjected to a heat of 2000° in baking, is sald to be a greater hean chan its raised in the blase funsices in which it is pioced to redure ore. The uses to which firecclay brick, ithlag and tublog are beting pux mandern fireproof byouding are mpw amoost innumerable, and lhe end fir pot yel,

 PROPORTIONS OP THE PARTS OF TRE STAIRS.
THE breadith of the steps of common stalicuses in private and public buildings. In such bulldings the breatth ought never to be less than 12 inches mor more than is

A step of greatet breathb requires less height than those of kers beendth. The first person who attempted to fix the relauisn belween the beight of the riser and width of the steps was Nows. Elondel, in bis "Coars d'Architecture." K a person walking on a level plape over P space, at cach step and the height which the same person could ascend vertically at one step, with equal ease was H; then, if h be the loeight of the step, and p the width, the relation between p and h must be such that when $p=\mathrm{P}, h=0$, and when $h=11$, we must have p zo.
The conditions are satisfed by an equation of this form; $\mathrm{n}=\mathrm{H}: \frac{p}{\mathrm{p}}$
Blondel assumes 4 inches for P, or the step a persom can make with ease on a teve! plane 12 inches for H , or the beight a vertical step can be mode with equol ease; and puiting these numbers for \mathbf{P} and H , in our equation, it becomes $h=1 / 2$ ($24-\mathrm{p}$, which is precisely Blondel's rule. Wo do not think thats the rise, which is cqual to a level step of a4 Inches is more than if inchos, bat it would be difficult to ascertain the ratio exactly, and the above are so near and ngree so well with our observations on stairs of ensy ascent, when the breadth of tread ineludes the nosing, that thay may be taken from the elements of a practical rule.
Hence, according as the tread fo, or the risc k, is given we have $h=\frac{24-\mathrm{P}}{3}$; or $p=\mathrm{I}_{4}-2 h$.
Thus, if the height of n step be 6 Inches, then $p=12$, und ${ }^{24-12}=6$, the rise for a step thot has a tread of 12 loctes, including the nosing, ought nut to exceed an inch, we lave these general rules:
to find tile rroper rise for tite sters wilen tife tread is given.
From 24 take $1=23$: from the remaindef, 23, substract the breakh of the tread in inctien, and half the differeace will be the rise.
Thus, if the tread be 12 inches, then
23
12
-
2) 11

5\% Inches, the trend required.
to mind the brorer tread wien tile kise por a ster 15 Given.
Subsract twice the nse from 23 and lise remainder will be the proper width of the tead.
Thes, if the rise be 5 inches.
23
$\times 5=10$
13 inches, the treend required.
Agnin, if the rise be 7 inclies, then
$\mathbf{a}_{7}={ }_{14}^{23}$
9 inches, the tread for a sep with a rise of 7 inches,
Defore we set ow the stalts in a bwiding we must cowsider the height of the story and deternime upon the height of rise of the steps, which being done we maxs take the height of the story in ineties and divide the number of inches in the height of the story by the least rise proposod for a step; If the resoin bo froctional, divide the hefght of tho sery by the number, negkecting the fraction, rand the result will be the exact number of steps. For ex. ample, if the height of a story is to be 10 feet 4 inches, and the height of a step is to be not less tham $?$ inches, how many steps will be required in order to ascind to the given height ?
Here (to feet 4 inches) X 12-124 inches.
Now $\frac{124}{7}=$ of steps required ; and $\frac{124}{\mathbf{1 7}} \mathbf{m 7} \mathbf{5 - 1 7}$ inches, the height of the rise. Dut if there be no winders in the stairs, an even number or steps will be more converient than an odd oumber. Tberefone eikher 18 or 16 may be adopted : if we must have $16, \frac{124}{16} \mathbf{7} \%$ inches, which may answer very well; but if we are still confined for room on the plan we must have recourse to winders.
The breadth of a stairense may be from 5 to 20 feet, mocording to the destinalion of the building; bun if the steps be texs than 2 feet 4 inches in lemgit; they become linconvenient for the passing of furakure; and such harrow stairs stould be avokled, even in mall houses.
Whea the beight of a stery is very considerable, resting pleces pecome necessary. In very bigh stories that edmit n sufficient
hearl room, and where the plan or area for the stairs is confined, the stairs may make (wo revotutions in the height of the storythat is, in nscending or descending we may go twice round the newel or well hole; and this becomes necessary, therwise the stept would be coormously bigh. or extravagant foor-room meat be allowed for the stairs.
As grand and principal staitcases require broad and low steps, they thetefore require to be numerous, and admit of only ome rerolurion in the beight of the story, the plan being always pro portioned to the height of the buildlugs.

It may not be anniss to give an example here for a principal building. in order to show the number of steps both in the gmand and is the common staircase.
For this purpose, suppose the story of a house to be 16 feet hig from floor to floor, the beight of the steps of the servants' stairense to be not less than 7 trelies, and that of the grand staircase to be not more than 6 incties.
Now the beigh of the stary reduced to inches is 198, and firs dividing by 7, thus:

$$
\frac{7(192}{274} \text { Therefore, } \frac{192}{274}=71-9 \text { rise }
$$

Then, for the prineipal staits, dividing by 6, thus:

$$
\frac{6) 192}{12}
$$

$$
\frac{192}{92} \text { stepa. } 6 \text { inches tne rise. }
$$

So that the servants' stairs require 37 steps and the grand stait. ense 3a: but the space of area required to execute the common stairs must therefore have two revolutions in the height.
This belng allowed, will reduce the area to half of what it other. wise would have required.
We musi, however, observe that when the height of the story is less than 14 feet the stairs will not admit of two revolutions.

In ptannang n large edifice particular attention must be paid to the situation of the staits, so as to give the most coarenient and ensy access to the sev. eral rooms.
With regard to the lighting of a grond staincase, a lantern-light or a sky.lighe wha a horizontal light under it is the most approptiate.
By introducing these more effect is produced and the light mimitted is more powerful, but, indeed. where one side of the stairacase is not a portion of the exterior wall a laptern or skylight is the only way in which the light can be odmitted.
In slaits comstructed of stonc the steps are made of single blocks : quarter-spaces and half-spatecs are, however, ofen made in two or more pieces and joggled together; but when the material is wood, the risers and trends inust be made of boards, which are fistened logether with glue, brackets and serews: and thesc, though done with the uimost mare, can and these, hough done with the uimost care, can passenger.
10 prevent the stairs from becoming rickety, in ength of time, the steps must havean additional support under them, and, that the appearanee may be both Jight and pieusant, the whole must be confined to as small a space ats possible.
This additional woodwork, which is necessary to the firmeness and durability of the construction, is cnlled the carriagt of the stair.
The earriage of the stair usually consists of several pieces framed togetber, and ach flight of sepps is cenerally supporied by two picees of timber, placed under the steps, and parallel to the wall, being fasoned at one or both cacls to pieses perpendieutar to the walls.
Tho pieces of timber which are thes placed under the steps are called nough strings.
The subject of hand railing is 100 intricatce and would require more space thas is allotted to us to discuss is here.
Note-A portion of the notes on the propertions on the steps nd ricers are the substance of that given by an anoaymous wriker in a English wotk on carpentry and joinery.-D. W. King, in Buldiing.

HOWHANTILLE.

(Comspondence of The Camadian Axciutiect and Buldiza.)
THE private tender of Massrs. Munson is Bunney for thec rebuilding of the Congragational church and vestry has been aecepted by the building committer. Defore its recent destruction by fire this was onc of the fincst ctranches of its size in the Dominion, and a view of the plars which heve been prepared by Mr. Bunney warmane the opinion that it. will undowbedy retain its reputation. The ehareh is to be fiaished and ready for cecupa. its repultation. The e
Our School Board has not decided on any plans yet. Duriag the yeat there has been nothing but wrangling over them, and two or three archicects have been dischargec. Messrs. Power \& Son. archinets, of Kinguon, are now engaged preparing plans, and it is hoped the Board will adopt them and proseed at once to crect the building.

WINAIPEG.

(Comeapondence of the Cayabuar Ancwitect and Beildin.)
THE building trado in Winnipag has not been very brisk this serson, but the prospecis are very encouraging. Thero are a fow amall private residences being ereeted, butt except the Herdler blosk which is now almost completed, there have not been any business blocks batill thls yenr. Bricklayers and masons havis very tittle to do.
Puinters and plumbers are bnsy. Carpentes are well employed, there being severnl working outside the eity on the stations for the Red River Valley ralitoad, and also on scvernl elevotors that Messrs. Timewell \& Son are archilects for. C. F. Stevens, in eresting n fine residence in fori Rouge Mr. Wheeler is the atethiter.

Messr. OComnor \& Brown, proprietors of the Quecen's hotel are advertising for lenders for alterations and improvements.
The Winnipeg waterworks are pulting down several miles of water service and the city is adding to its dralnage system. Mr. Doidge, contractor, has about nished his block pavoment contrut.
The now buildings for the General Hospital nre nearly fintabed.

O2TA IFA.

(Correspondance of the Canadian Archittict ano Duicorm.) BUILDING operations here hate bece much brisker this sum - uner than for the past ten years. A large number of private residences, sthools, chourches and business blocks are being erect. ed. It is estimated that the tulikling opertions for the present scason will amouns to $\$ 300,000$.
The compelitive designs, under motto, sor the new police station for which $\$ 15.000$ has beem voted, have been befoce the Property Commintec of the Ciny Conscil for the past three weeks, bu up to the present titue they have not been nble to decide upon the most appropriate ptan. Four designs were seat in, and akhough under morto, one of the competitors signed his specification, and in ploce of ruling him out for istegalarities, his plan is sill before the committer. This is one of the benuties of competitions.
The vami of an wethectural association is seriously foll here. An effort has been made at different times to form an architects' suild in this city, bat the troutbic appears to be to define who ar qualified to become members. It is to be hoped that through the Canadian Architrict And Builper the arehitets of the different cities and towns will give their views on the nocessity of

Detail for Verandati.

The contract for the new Roman Catholic church for this city hns been awarded to O. J. Lyous for $\$ 74,500$. It is expected that the foundations will be laid this fall, and the work completed in two years.

For meventy yards of aurfiec provide 1,000 pieces of lath, and cleven pounds of lath malls.
For 100 siuare fee of rool, 2,000 shingles, laid four inehes to the weather, and five pounds of shingle-nalts, will be necessary. Mr, Sylvester J. Campbenl, builder and contenctor, Galt. Ont., has disappeared, teaving a large number of sonnowing creditors.
Mr, John Puedon has been gives. the contract to besila nn ad dltional wing to the asylum a) London, Ont, at a cost of $\$ 20,000$.
Mesers. Harding a Leathorn, of Loadon are inying the new waterworks minias of Goderich. There will be 35,000 feet all told and 47 hydrants.
In extinating amounts of stding and fooring, anlow one.fith more than the surfaces to be cowered for the lap in siding and the matching in the nooring.
The contmet for the construction of a new water-works system at Brantiord has boen given to the Waterous Company, of that sity at the price of $\$ 106, a 7 k$.
There are in Cannda ty loan nod bullding sockelecs, of which 66 have thetr headquarters in Ontarto. The subscribed capital of the Ontario companies amounts to $\$ 72,8,8,225$.

A Braniford paper makes the statement that the members of the London school Doard have bad their pertraits carved in stone and placed ever the winduws in a new bulding, and aro now quarteling with the artist becsuse the didn't mako them appear better looking.
For some time past bullders in Germany have resorted to tho use of a composition of cork, sand. and lime, molded into bricks, for the construction of light partition walls. This is snid to exclude sownd better than ordinary brickwerk, while being light and a good nom-conductor of heat aad cotd.

We leam from the Victerie, B. C., papers that buildiag operations are very brisk in thot city at present. Architects have never been so busy before, the brock and lumber yards have alt they ean do to supply the demand for materinls, and carpenters und brick lajers ane fully employed. Over balc a million dollars woith of new baildings are in course of erection.
The Canadian correspondent of the Liverphol Fournal of Commerce says that " ma all parts of Nova Scotia there is greal nctivity In bullding, and there is scarcely a town or village that does not show material improwement A considerable number of Now Scotians have recently, relmaed from the United States with a Scotians mave recently, reiwned from the United States with a benefit of themselves and their own country.
A brick dwelling with a shingle roos is estimated to last 75 yenrs. and depreciates 5% per cent. per year. The ptastering thercin 20 years, 3Kper centi; painding, 7 years, I4 par cent.; shingles and outside bhnds, 6 per cent.; cornice and base, 48 years, a/s per cenc.
 doors, windows inside INinds, staits and newel, 30 yenrs, 3\% pet cent.; building hariware, 20 years, 6 per cent; sills and boor joists 10 yenrs, 2% per ceat.; dinewsion lumber, 75 years, 1% per cent
Captain Shaw, Chief of the London Fire Brigade, in a tanga sine article on the provection of dwelling houses from fire, says " there is a great deal of faulty construetion in houses in conse. quence of arebitects being seldom employed. Cracked walls are almost sure te give way in case of fire. 'Party' walls should be earried at least three feet above the highest part of the roor. All roofs should be provided with windows or openings by which the inmates of a house could escape in the event of the stairs becomitig impassable. The best moterial for stairs is wrought fron and the worst stone, slince the latter yields to an amount of heat which does not sflect ordinary respiratlon. Whenever a house has both wooden and stone stains the lamates should, in case of fire invariably make for the wooden stairs, as affording the only hope io esenpe.
In joinery, as in all systems of construction, says Viotet-le-Due, the makerial used must regulato the mode or joinine and determine the form, wood being a maverial possessing special properices, that mus be considered in arranging works in joivert as well as those in carpentry; mediscral artisans never abandomed this correet principle. A knowledge of wood ts one of the eonditions requiren of the jomer; after aequiring wilt its texture and strength. The best wood for joinery is oak, on account of its sliffness, the delicacy of is fibres, its uniform hardoess, its dant. bisity and lis beauty. Hence, at least in France duriog the middde nges, oak was exelusively ean. ployed in the joinery of buildings.
The subject of masonwork in freesing weather continues to occupy a good deal of attention in the technieal journats. The stories of the exeellence of stonework thid with hot mortar in Stockliolm and other Northern cities in wanter, and then rillowed to frecre, have moltipled, while, on the otber hand, a recent report by an American engineer, Mr. Emit Kuichling, appews to show conclusively that mortar, particularly if made with coment, and used hot, lost a large part of its strengh; the resistance, as determined by actual experimost, of briguettes of neal cement, mixed hot and then exposed for seven days to the air, bcing, on ama average, only one-righth that of briquettes of the sane cenent, mixed at the samectime, with waler having the tem. perature of the air, and then exposed in the same way. Curiously enough, briquettes made with Portland eement and cold water would not freecic, even at a temperature of thirteen degrees Fahreaheih, unless exposed to the wind, awd the setling process appenred to go on undisterved even at this temperature: while briquettes made of the same cement, mixed with hot water, Invariably trote. With naturm cemens the resisnance to frecting was much less than with the Portand, but no detaits are mentioned on tho subject. The addition of salt to water, sometimes tnade to prevent fregrieg is found to iniure mative comente while port Iand is not affected.-American Arehilect and Duilding Noos.

[ADVERTISEMENT.]

" The pleasing effects attainable by the use of mortar stains hins led to their widespread adoption by the ancbinects and builders, especially In the beauniful suburbat towns adjacers to lofge cities, where the demand for them is steadily upon the increase. Tive character of the coloring matter used is of course an intiport. ant considemtion, and as results are nod always immediotcly teanio fest, too much care cannot be exeressed ia their selection.
fest, 100 much care cannot be exeressed in their schection.
Competitive tests of the defferent brands all point to the "Peobth Mortar Straias" as the nrost desirable. especially th the thorrughoess of is coloring qnatities, permanency and absokite innperviousinss to atumospheric changes.
Neilber heat cold or dampress will cause it to run or bleach, and in no respeet does it altee the condilion of the mortar, quicken the sel, of induce it to erumble.
No more haste therelore is necessary in striking the Jolots than with ordinary white.
Cnreful nantyals abse proves its freedom from all subatances injurious to the workman, and likewise demonstmites the absence of gns, oll nnd all inipurities which tend to hinder the process of hatdening, It is incapable of change and therefore cannot possalbly inerease the white depostt common to brick froms and belng reduced to a smooth paste It assimilates rendily with the mortar while we have the testimony of competent oxperts tha these staina will color one-lifitd more mortar than any in use.

These qooda are beling made by S. Bowen's Sons, iso North , ith street, Pbilladelphia, U. S. A. Camacian dealers can be supplted by M. A I. L. Voken, Torooio, who are the ageats for Canada.

INTERIOR DECORATION.

$T \mathrm{HE}$ instances in which rooms are painted in oil or distemper mainly free hand with elaborate ornaments, says the Painters' Magasine, is increasing. The difference between the undeviating regularity of pounced figures and those executed otherwise is apparent. Free hand treatment may, of course, be advantageously combined with the use of the stencil, particularly where scroils form part of the design, as scrolls demand exact repetition of form.
A somewhat elaborately painted apartment, the scheme being very felcitous, has the wall space in distemper ; the tone or tint of color, which is neutral and of a slightly green hue, is made from lime blue and raw umber mixed with white, the umber being of a golden tins. The color of this wall space is fitted to contrast well with engravings, water colors or oil paintings, as well as with the warm colors presented in the room. The wall is papeled, the stiles being painted in a slightly darker shade of the same color with a touch of Indian red added. This with the perpendicular lines gives surficient distinction to make the stiles appear of an enturely diferent color without being too strong. The dado is painted with a darker tone of color made with raw umber, Brunswick green, Indiam red and white in oil colors. Had the dado been in distemper, hme blue instead of green would have been best introduced into the mixture. The corners of the panels are stenciled with dark brown made from umber, Indian red and black, and the pattern on the panels in a slightly lighter shade of the same color as the panels themselves, sufficiently strong to show the pattern clearly. The lines round panels are done with a strong dark, dull gold color made with ochre and umber alone. The skirting is done with the same color as the corners of the pattern are stenciled with. Underneath the frieze is a picture moulding painted black. The whole of the breadth of frieze is painted the same color as the wall space, but with a little ochre and Indian red added ; the figures are leafage in gold lines bordered with fine black lines.
She partor of a house recently finished has the wall space between skirting and frieze painted without ornament in lavender of a delicate shade. The frieze is a light buff whth leaf design in gilt, veins being outlined in dark brown; a broad line of guilt runs below. The moulded cornice is a lavender tint with upper section a soft light shade of sea green with light blue edge, the moulding picked out with gitt. The grounding of outer stiling of ceiling is of great breadth, painted in with a beautioul shade of lavender bordered by light blue lines and is studded with medallions on a ground of black that presents a beautiful combination of brilliant colors so selected and toned as to have a rich subdued effect. The inner edging has border in leaf on a delicate blue ground in gitt and cherry red. As each end of the ceiling, which is of oblong shape, is a large medallion in broaze colors, the figures conslituting a vase with flowers and foliage, griffins torming the handles. The stucco centre piece shows gilh, sea green and soft pinis beneath the open work, the projecting portions showing a brilliant combination of colors, barmonized and pleasanily contrasted.
The dining room, as well as the library, has always provided anggestive symbolical designs for painters and decorators. The pursuit of game, the netting of 6ish, the husbandman's labors, the vintage and the orchard have formed the subjects of friezes, somelimes in processional form, and are occasionally now introduced, bet general taste would seem to incline against these too direct allusions to the purposes of the room. We have met in the free-hand decoration of a sleeping room a symbol as an ornament for the walls eminently appropriate, naruely, the poppy, the emblem of sleep. The flower itself is well suited for ornament, particularly, as in this case, with a varied disposition of leaves and stalks. The design is admirably treated in blue and red on an ecru ground. Although there are no blue poppies the use of other colors than the natural ones is conventiooslly correct. The friezs is of sulphur yeliow with gilt, and the ceiling, there being no cornice, is of a light bluish tone, with border consisting of band of series of narrow lines in red.
We lately saw a hall the chief wall space of which was
a pale old red, the matting dado also red but of deeper tone : the frieze too was red with an all-over interlacing pattern in paler gold red, outlined heavily with red gold; the ceiling was a warm drab with red gold and pale red interlacing pattern over it, the drab by the contrast civing a distance eflect. The hall foor was painted in an antique red color, and had a central Smyma rug in old reds and ecrus with touches of olive and dull blue. Two portieres, one at the entrance of the staircase hall and the other of the library, were of Indian red cotton canvas. The abundance of red was not displeasing.
A north room with antique oak has a wall paper in two shades of light shrimp of foliage pattern with a frieze of light olive green of the same style paper, separate from each other by an oak picture rail ; the ceiling is a lighter shrimp pink ground with golden olive figures.

The best time to paint the outside of a house is early in the winter, or in the spring, when the air is cold and no dust is flying.
The first, second and third coats of paint, on the outsides of buildings, should be prepared by mixing the white lead with boiled linseed oil, and alowing each coat to dry hard before applying the next.
A frm in Brooklyn is manufacturing a species of metallic relief for wall decoration, consisting of thin sheets of tin, brass, copper, steel, aluminum or other metal embossed in beautitul paterns, which are simply decorated in colors and nailed on wall or ceiling.
Parts of wood to be painted which are soiled by smoke or grease are to be washed with a solution of saltipetre in water, or with very thin lime whitewash. If soap-suds are used to wash off the smoke or grease, they should be thoroughly rinsed with clean water or the paint will not harden.
Whte or plain ceilings no longer make even a pretence of existing. To paper the ceiling is as absolutely necessary as to conceal the white monotony of the wall. Papers with harmonizing accessonies, as stlings, extensions, corners and centres, etc., are now made expressiy for the appropriate aspect of the ceiling. The sides once settied in character the ceiling arrangement will follow with competent choice, without difficulty or dilemma. The color, tone and harmony of the ceiling establishes the art and beauty temperament of the entirc room-just as sunshine or shadow supplies the comfort or cheerlessness of the day.
We learn from the Builder and Wood Worker that Lee Yoing, a skillful Cbinese carpenter and joiner, has arrived from San Francisco to take charge of the interior beautifying of the new Chinese town hall, at No. 16 Mott street, New York, which is now in process of erec. tion. Lee is said to be the most skillful woodworker in the United States. He can build a box, a table or an entire house without the use of a nail, and can carve any figures on wood as easily as a Chinaman writes firecracker letters. His stock of tools is a curiosity shop to the ordinary American eye. They are of all sizes and shapes, and mostly of roughly wrought iron or steel.
Frequently it is found undesirable to paint stone trimmings of a house which have been discolored; or a stone basement of a wood or brick house may be in the same condition. Monsieur Diebhabert, of Paris, has adopted successfully the method of cleaning the stone on the walls of the quays of the Seine where it flows through that city. To a paste composed of a solution of soda and lime is added a little chloride of lime ; this it mixed to the consistency of honcy and spread over the surface and allowed to remain two or three hours. After this treatment a mixture called sulpho-chlorhydric is passed over the surface with a large gutta percha brush, which forms a kind of glue on the stome; afterwards the surface is syringed with the same liquid. This forms an adherent paste, which is afterwards scrubbed off. The sulpho-cblorhydric mixlore is composed of sulphuric and hydrochloric acids mixed empyrically according to the necessities of the case. The most besmirched stone regains under this trealment its pristine appearance. It often happens that discolored stonework detracts from the effect of the painter's work on the rest of the facade ; sometimes the stone is begrimed with a slimp deposit which resists the application of a color coating.

The moths have taken wildly to the electric light, and, in fact, love it not wisely but too well, says a Brantford paper. Every morning the linemen throw out thousands of these insects froni the globes where they have been attracted by the light and killed by the current. Lineman Harvey Tombinson has selected the most perfect and rarest specimens on his usual morning round, and has now got one of the most complete collections of Canadran moths in the city.

HOT WATER HEATING.

THE motive power gravity which causes circulation in a hot water heating plant is brought into action not by the expansion of the water, but by its contraction. To make this clear, says a writer in the Northwestern Architect, consider that the normal condition of the plant when in operation is with the hottest water in the place and that what takes place in the actual starting of the apparatus is a changing condition. Let us then imagine the apparatus to be filled with hot water and just enough fire to keep the temperature at the top of the boiler constant to be maintained.
In the marginal sketch \mathbf{B} represents the botler, R, a radiator, C a coil, \mathbf{T} a tank, F , a flow or supply pipe and ddreturn pipes. On account of the greator amount of surface exposed, the water in the pipes $\mathrm{d} d$, soon becomes colder than that in F and con tracts, the loss in bulk is "made good, from the tank, and consequently the water in d d is heavier than an equal horizontal section of water in F and B and falls down forcing up an equal bulk not equal weight of warmer water This would be the case even if dd entered the top instead of the bottom of the boiler and if the surfaces exposed were exactly equal it would be impossible to make all other conditions approach equality near enough to maintain a perfect balance and prevent a circulation up ore pape and down another. A single pipe standing up will have a slight circulation up the centre and down the outside so long as the water in the boiler is hotter than that in the pipe.
it should be constantly borne in mind that more motive power in a hot
 water plan! is only to be obtained by an increase of the difference in the temperature of the supply and return pipes and that the increase will either lower the average temperature of the radiators thereby decreasing the amount of heat obtained from them, or will raise the temperature of the boiler and lessen its efficiency by which we mean the ratio between the heat theoretically obbainable from a given quantity of fuel and that actually obtained. Therefore we should look well to the resistances to be overcome and see that the piping is so arranged as to make as little as possible. This end is best obtained by directness, using but few fittings and especially avoiding elbows. Those in common use have been shortened by competitive manufactures until many of them are on a radius of less than one diameter Longer ones can be procured but so few of them are used thai no dealer carries any stock of them and the price is so high that it is probably cheaper to use pipe of such size

that the use of common ones is admissible than it is to buy long ones. Any fitting even a coupling is an obstruction as the flow is diminished by the discharge into it and the entrance into the pipe on the other side of i, these losses can be reduced by reaming the pipe to semblance of the "Vena contracta" but it is difficult to get fiters to do it. As a general thing they either think
it a "uscless refinement " or forget it. To give some idea of the relation between the resistances and the difference of temperature necessary to overcome them the following experiment is reported, it was, however, made for another purpose.

A represents a one inch branch tee with one and one fourth inch inlet and outlet, distance from center to cen ter of branches two and one-fourth inches, the one inch pipes were three feel long the two upper ones connected at their ends with two elbows and a nipple the two lower ones with a return bend. The pipes F and R are the flow and return pipes one and a half inch to the elbows which were directly coinected to the upper and lowe drums of the Walker Pratt boiler. Thermometers were inserted at a, b, c and d, and in a pipe connecting the front end of the drums to give the temperature in the boaler. The temperature of the room was 74 degrees at boiler 183 degrees.

$$
\left.\begin{array}{c}
a=180^{\circ} \\
b=17319^{\circ} \\
c=1 \text { loss } 6 K^{\circ} \\
d=179
\end{array}\right\} \text { loss } 8^{\circ}
$$

The difference between " \mathbf{a} " and the boiler was in part caused by the obstruction of two and one and onehalf inch globe valves which are not fit for any use what ever on a heating plant and should never be put on good work, they were used in this case because they were on and the boiler filled and fired when it was determined to make the experiment, of course the "head" in the case of the one inch pipes is small being only that due to the contraction of a column two and onefourth inches high cosied four degrees in one case and one four and a half inches high cooled three and a fourth degree in the other. If we assume that the losses of heat in the upper and lower circnits are equal it follows that the quantity of water flowing through them varies inversely as the losses in temperature or as sixteen to thirteen. The efiective head in each circuit is practically proportional to the height multiplied by the loss in temperature or as twenty-six to sixteen, the velocities are as the square root of the heads and the sections being the same the flows are in the same proportron, this gives a theoretical proportion of fifty-one to forty. The circulation through the body of the branch tee with the head due to the contraction of a column three feet and four inches high was so rapid that the slow stream of water of $1731 / 2$ degrees temperature flowing in at " b " produced no appreciable effect on the thermometer at " c " although it must have made some difference. The thermometers used were only graduated to degrees and were read to half degrees with difficulty. There are many variations in the man ner of "piping" houses. The manufacturers of "heat ers " all show in their catalogues a large number of small pipes leading from the top and returning to the bottom of the heater and advise their customers to do their work in this way. It is not considered the best way by men of large experience however. It is quite probable that the manufacturers take this course because it requires less skill and judgment to make a plant work this way than it does to proportion the pipes for a "branch" system, and they sell their goods to many dealers who are not experienced in the business. It is more expen. stve in pipe as a rule and makes the ceilar hotter to have many small pipes than to have one large one. The carrying capacity of pipe having considerable length increases as the square root of the fift power of their diameter. Their radiating surface practically as their diameter and the price somewhat faster but nothing near to their capacity ratio.

Moncton, N. B., will discard gas in tavor of the electric light.

Mr. Peter English is negotiating for the sale of the Galt gas works.
The city of London wants a competent assistant water works engineer.
The City Engineer of Halifax, N. S., has recommended the City Council to discourage the use of hopper water closets.
The Brantford, Ont., Electric Light Company have put in a new thirty-five lamp machine which enables them to supply ninety-five lights in the city.
The secretary of the Provincial Board of Health, Dr. P. H. Bryce, states that the Province of Ontario is at present freer from contagious discases than it has been for years past.
The drainage of buildings requires to be carefully looked atter in the intorests of the health of the occupants. A serious attack of typhoid fever was the result of a stoppage of a drain connected with the Carmelite Convent, Montreal.
L. Pasteur, the celebrated French physician has expressed the opinion that the proposed Victoria hospital at Montreal may be erected at a distance of 230 metres

Irom the city reservoir without danger of contamination of the water supply.

The Stratford, Ont, Gas Co. are puting in what is claimed to be the largest gas engine on this continent as an auxiliary to the water wheel in their electric light station. Ordinary illuminating gas is used as fuel.
It has been estimated that a modern brick dwelling of medium size requires about 10,000 gallons of water in its construction, much of which is still present when the workmen withdraw. Heat is of less use in getting rid of this moisture than free ventilation.
Mr. Kirk, plumbing inspector, Toronto, makes the suggestion in the columns of a couple of our American centemporaries that the plumbing inspectors should form an association and meet annually to discuss matters of interest. The surgestion appears to have been favorably received, and will doubtless bear fruit.
The New York board of health will endeavor to deadorize the foul earth thrown up in digging trenches for gas and water-pupes by using bromine. A few years ago says the Sanitary News, the health officer of Detroit, Dr. O. W. Wight, determined 10 try the effect of disinfecting the sewers during an epidemic of scarlet fever and diphtheria. Seventy-five thousand pounds of dissolved copperas were poured into the sewers. Three tons roll sulphur were burned in iren pails and lowered in the sewers and the sulphur smoke and sulphurous acid gas filled every drain and sewer pipe. The result was a great abatement of duphtheria and an almost entire cessation of scarlet fever. It is believed bromine will disinfect sewers quite as effectually and much more pleasantly.

Factory owners at Carlisle, says an English paper, have made no objection to the ulibization of the tall chimneys as ventilators for the sewer of the town. Already twenty-nine are in operation. From experiment made it was found the amount of air passing up the chimney was 16,596 cubic feet, and the velocity was 1,202 lineal feet per minute, or more than a mile in five munutes. On windy days the motion would be quicker. The difference between the air of the sewers and atmospheric air is sugrested when it is said that the latter has occasionally three times the velocity of the former-or in other words, the air from sewers is heavy. No barn can arise to the workers in the factories from the extra employment of the chimneys, and such powerful ventilators must remove the danger attending sewers.
Mr. Alten Pringle in a letter to a Toronto daily paper on the subject of impure water, urges as the best preventative of sickness from this cause, the use of water filters. He further advises his readers to place no dependence on the doctor, as "his interests unfortun ately run exactly parallel with the impure stream." The latter statement thus generally applied is a very rash one indeed. There may be unplincipted doctors who fill their pockets at the expense of the health and lives of their patients, but it is a slander to include all, or even a majority of physicians in this category. The Local and Provincial Boards of Health, which have labored so energetically and successfully to combat disease and to educate the public in the department of sanitary knowledge, are composed largely of medical men. The unwillingness of the public to learn what precautions are necessary against disease, or baving this knowledge, the carelessness displayed m making the application of it, are the greatest hindrances in the way of lessening the extent of disease.

HOW TO SEASON TIMBER.

H° OW to season timber so as to prevent the ravages of dry rot is something in which bullders gencraily are interested. According to R. F. Francius, to preserve pakk timber from dry rot it should be laid in large pilles in sall water for a whole year, mand so as to be complectly covered will the water. By this means the anlt penetrates the wood and the consequence is that it remanins always free from dry pot and lases twice as homk as \boldsymbol{h} woold do withom this proparation. It the wood can be put into sca water perfecily pare and free from anf earth deposit it is so much the bettet, and on the coast li may be bess keps in basins dug for the purpose. Care must of course be taken to hy it so that it canno? drin away. Where salt is very abundant, wood may be seasoned by covering to with a dick layer of that matctal, when the nir is by covering it with a thock layer of linat Thie salt, also destrovs dry dinmp and roggy, without heary rain, The sait aiso destroys der repeatedly with slrong brime made hot. New wood may be pre. repeatedy with slrong brine made bois. New wood
pared for use in the some manner. - Afctat Worker.

The Geneva, N. Y., Courier contalins the following reference to the Dunaing boiler, of which the Waterous Compnany, of Brantford, Ont, are the Canndian manuffaturecs :-"The Courier is pleased to refer to the Incomparable Dunning bolter, the sales of which are almost phenomenally large and are constanaly iacreasing. The indussry has been elosely walcted by many Genevn eitsens who have woted the steady and firm lacrease of phant, mectioery, etc. The number of boilers now in use ol the dranu. faeture le probably larger thon that of any other stenm henting device.

 and nathos of dermott or fervons conifrolfing the tookt.

Jindsay, Ont.-A large opiera house is to be lvill here. Saxmia, Ont.--It is proposed to build a new separate school here.

Stratimoy, Ont.-The Baptists will build a new church to cost $\$ 5.000$
Georgetown, Ont.-There is tolk of pulting in the cleelris light here.

Belinevilin:, Ont:-Impravements to St. Thomis' church are conteruphated.
Bompanymle, Ont,-The congregalion of Trinity church will rebuild at once.
Peterfonougil, Onts-An actlition goxjo feet will be made to he bndge works.
Madoc, Ont,-A by-low granling $\$ 8,000$ for Ω high sehool has been earried.

Pout Aktiluk. - There is a proposal to spend $\$ 175,000$ on a system of waterworks
OTrawa, ONT:-A new inon bridge is to be built over the Choudicre Rirer, P. Q.
Penetanguisilene, Ont,-A company has been formed to build a large hotel at Shean's Point.
REGINA, N. W. T.-About $\$ 00,000$ worth of brick buildings will be ereeced liere before the cold weather sets in...
St. Marr's,Ont,-The Town Council is visiting and inspecing the watcrworks systems of other municipalities with the view of cstablisting a system tere.
LONDON, ONT-The Board of Works contemplates an expenditure of $\$ 20,000$ on streel inprovements the present season.-The erection of a Norrtal school is being agitated here.
ArLaick, Ont,-Subseriptions are being taken to mise money lor a memortal window to be erested in the wew Presbyterian church in memory of the lave P. M. Noirn, M. P. P.
Sthatrord, Ont.-Having got the electic Wghn, an agitation is on fool for a system of sewemge. The Coupcil wants tenders for an iron bridge with stope abutments to cover a span of hity feet.
Kingston, Ont.-St, James' church is to be improved at a cost of $\$ 0,500$. The seming capacily will be doubled.-Tenders for the construction of a dry dock at Kingsion will shortly be asked for, at an estimated cost of $\$ 300,000$.
Incersoch. Ortr.-Mr. Ed. Wessela, C. En, of this place, is prospecting and surveying the country around Ingersoll for the purpose of finding suitable water and site for \mathfrak{n} system of water works for that place.
HABtILTON, Ont.-A $\$ 5,000$ addition is to be made to the Barton street school. The congregation of St. James Reformed Episconal eturch will huild a fine new chuteh at once, -A move. ment has been started with the object of ereeting in this emy an asylum for inetriates. Rev. Dr. Serton can give pariculars.
Winnipes, Man.-Tenders are invited for the encetion of sta tion houses on the C.P. R., Pembina nad South-western branches. On the I'embina bminch stations will be built at Deloraine, Boisse vain, Killarney. Thornhill, Pilot Mound, Lakivierc, Crystal City, Clicarwater, Cartwright and Litte Penbina. On the Sowthwestern branch stations will be put up at Treherne, Hollind and Glenboro.

Tononto, Ont.-Ptans have been prepared for a new building for the Torinto Conscrvitory of music, designed to accommodote 2,000 pupils.-The following permits for the erection of new buildings have been issued from the office of the city commissionet during the last month: John Kidd, 2 storey and nttic r. c. dwell ing, Seatonish, cosi $\$ 2,000$: B. Hancrof, pr. detiehed a stoney and natic brick dwellings. Bloor st. near Huntey, cost $\$ 50,000$; Thomns Skippen, pr. s. d. e. c. dwelling, Baldwin sh, \cos 52,500 ; Ald. W, Hith, pr. 3, d. a storey and altic ble dwetiongo Mnjuland st., cost \$1,000; W, G. Holcombe, a ps. s. d. a storey
 Loan and Investment Co, 3 storey bk. factory, Lombard street ; Mr. Folntid, pr. s. d. 2 storey and attic r. a dwellings, Willion st., cos $\$ 3,000$; Consumers' Gos Ca, 2 storey bik, boliter hoose, Berkeley St. cost $\$ \$ 0,000$; E. M. Moore. pr. \& d. 2 storep and ntilic r. e dwellings. Bleeker sh., cost $\$ \mathbf{2 , 7 0 0}$; Coasumpers' Ga Co., a starey ble meter howse, Front st., cost $\$ 20,000$; Mr. Mutr pr, \& d. a storcy nad attic ble dwellings, Mutunl \& Maitlandsts. cost $\$ 0,000$: Mrs. Lawson, 5 att. a storey and atific bk. dwellings Altert st., cost $\$ 6,000 ;$ I. I. Blain, pr. s. d. a storcy and nttie ble divertinge, Rose Ave, cout $\$ 6,000$; Ir. W. We. a storcy and attic bl
 dweyshe, Shaibourne si, cost 77,000 C. R. Runde a. Con, fire $\$ 20.000$; T. V. Gearier, pr, att. 2 storey and attle ble dwelpoys $\$ 20.000$; T. V. Gearing, pr, all. 2 shey and athe bik, dwelimg
 Mr, O'Relly, pr, alt. a storcy r. c. dwcings, Agres and Chesimul sta, cost $\$ 3,000$; G . Nobig, 3 storcy ble store, Optario st, and Whiton Ave., cost $\$ 1,400 ;$ Mr. Black, 5 att. a storey and attic bk, dwellings. Gecrard st, west, cost $\$ 6,000:$ J. H. MeKimnon, 2 norey and atile ble. dwelling. Invis st., oont $\$ 6.500$; Thomas Thomason \& Sons, alkerations and additions, King street, cast, cost $\$ 2,000$; Mr. Sharper ph. S. d. bik houtes, Mahland sh, cost 77,5000.-Torotuo Uaiversity is to have a sis,000 builling added 10 it fer blological study, -The Toroalo Normal School will have $\$ 20,000$ improvements added to it.

MAKING BLINDS.

By Owen D. Magwnis.
A there nre icw mechanites oulside of sash and blind shops who A. know how to properly make a pair of outside bilinds, the foltowtit description showing how to corwnemce and carry thwoughn job of this kind may prove useful to any one wion may have a paitr to make:

Having the fame stuat (generally 5 K/ Inches thick in ordinary work,) sawn to the necessnry lengths and widthe, the first operation is to wind the suiles in this way: Take a pair, and having marked the Gace, skles and edges of eoci, by ome-which we wil call the left silie-on the bench with the face edge from you and procted to take a fore plase shaving of each top and bottorm

corner on the stile as shown on the left hand side of the blind A. Do the same with the right hood silie keeping the face edge to you lastead of from you like the hast. When the raik are corned finto these stites the blinds win be in wind aboul a X inch or the cop right hand corner will hang in when the bilind is hung on its binges.
The stiles for the right hand blind are similar, or in other words, the stiles are all taced allke and can be turned end for end without allering the face marks or wind.

The reason for winding the stiles is this: When the blinds are elosed the left hand bind B from the inside touches the window frame at the bottom outside corner, and the top stiek out as the frame winds, and when the right hand blind (from the outside) if puiled to, the top cutside comer presses the top ovuside comer of
he kift hand blind and draws it in ngainst the franae and the catch at the bottom holds the joint tiphily togelver, making the blinds level close against the frame and n tight joint on tho relinte.
When laying out the sifles for mortising make the mortise the same width both edges, as the lenon fills lt enitirely, nad there are no wedges used ns they are Mable to wark loose witl the consiant wetling and drying of the weather. The shoulders of the mils are lseld to the edges of the silies by pins diven ithough tive monllse and tenon when the frame is in the clamps
Culting the slats should be wery carefinity done, and one or two of them should be tried in the frame, briaging the shoulders up with a couple of handscrews to see they work freely in the troles before pinnigg, and they should be placed oval and the edget propety sounded. The rods should nexit be cut ond worked to the usual shope nud the ends rounded to the same shape as the edges.
helore wiriag the slats place them all together and whit a try square mark the position of ile staples (both points) on the poorest edges, and then difve them in. The slats can then be fastened oo the red which is marked from the stile, and the slots placed in the frame which is primed and cleared off.
This is the simplest method of making blinds by hand. They are, however, usually mode in faciorles by a much quicker pro. cess, but il there be any builder stuek for one or even a polt of blinds, the nbove will aid himio makiog a sure job.

RECENT CANADIAN PATENTS. syotem of Wator Sumply.

Claim,-1a, The pipes A, B, C and E, connected 1ogether, as described, In combination, with the glove-valve F, armaged substansially as and for the purpose specified. and. The pfpes A, B, C and E , connected together, as described, in combination with the globe value F and rod \mathbf{G}, arranged substantially as and for the
he purpose specified. 3nd. The pipes A, B, C and E, ronnecied logether, as deseribed, in combination with the globe valve F, rod G, and rellef vaive H provided whth a lever I nad ndjustative weight J, substantially as and for the putpose specified. 4th. Tho pipes A, B, C and E, conneeted together, as tescribed. In combl nation with the globe value F; red G, relief valve H provided with a lever I and edjusuble wetght I, and set-serews K mod I., sub. stantially as and for the purpose specified.

Urater Loakimgo Doterior. -
No. 28.899. Thomat Houlgrave. Toronto, Ont., dated iqult Apill, 1888.

Claing, ist. The combination of two daphragoms A. A, each conslsting of two suludiaphragms a and $a I$ connected by a wire E unbstantiolly as and for the porpose set lorth, and. The comblnation of the diaphougms A, A, the oonneeting wire E, the tight ening rod D and the centre-pin $C_{\text {. }}$, substantialily as and for the purpose set forth. 3rd. The combination of the diaphrogms A_{1} A. the connecting wire E and the :elescope pipes F, substantilly as and for the purpose set forth. 4th. The combinaiton of the leakige detector, the stot A of the eap H, the sound unining chamber f, the ensilug I, the key. rod K and the cock $\|$ of the water amin, substantially is and for the parpose set forth. sth. The combination of the cap H, the custing I. the key rod K and the cock J, substantimith as and for the perpose set forth. 6ib. The combination of the cock J, a box L filled with sawdest, and the Kon iod K, subsunatally as and for the purpose set forth.

The pillars used in the St. Clair tunnel will be mado from the ad G. T. R. car wheels.
The Marble Denlers' Association of Rutland, Vt, at a recent meeting eleeted as a director Mr. G. A. Sanford, of Halifax, N.S., who has been dead for several years.
At the Clecianat Exposition Canada makes a fine display of enre cotta, tiles, bricks, building stone, black and coloroll mar. bles, ect.

A correspomient of the Montreal Gasefle writes concerning the depreciation and in some cases total loss of plant used in the construeiton of the Panama Canal, owing to negleet and earelessness on the part of those in charge of the work. Quite receatly, says this writer, a new 4.000 kilo. grac. or moveable crase, went of tire lime near the Culebre eal They cost $\$ 3,500$ ench. Down the sitght embankment il went. Tive intelligemi foreman of that section, instead of making an eflort to recover ht , simpiy buried h by ordering in A traln of dumpluag cars. The crane was buried and rempins buried. Its burial sinuplified the whole matter. It was not his, and the company had dorens ldle. Words fail to conver any iden of how machinery has been used there. An engineer tokt met that three.fourths of the $\$ 30,000,000$ worth of machineryon the Isthmus is rusting and suuch of it is useless, vilueless even as old metol. owing to tas location. The Canal company takes credk for $\$ 30,000,000$ worth of machinery on the Isthrous.

ROBERT MITCHELL \& CO.

Montreal Brass Works, Montreal, manumactureas op
Church and other Gas Fixtures,

BRASSWORK

of all kinds, jacluding
ENGINEERS', PLUMBERS, GAS and STEAM FITTERS SUPPLIES.

HZATING APRARATUS
Put up and buildings equipped with AUTOMATIC
FIRE EXTIMCUISHERS.

The "Daisy"

Warden King \& Son

 MANUFACTURERS OF SPENGE PATENT HOT WATER BOILERS

The "Sectional," "Champion" and "Daisy"-the leading Hot Water Boilers of this continent. 3,000 in woe. Sond for tertinemitats and pricece. manupactureks ahu goli agents in camada for
The New York Safety Dumb Waiter, (MNORMMs' PATHINT) $^{(1)}$
This Waiter is very favorably known in the United States; it is the most complete thing of the kind, being also cheap, substantial and durable. No house should be without one. Descriptive pamphlet sent on application. manupattuenel also of
Soff and Oreenhouse Pipet and Fittings, Steam and Hot Water Fittiage, Plumbers' Waros, Cofumnat, Birders, ofrouiar and etraight iront staire, and all hiade of House and Mashinery Castinge.

UNVENTILATED BATH－ROOMS．

AN unfortunate occurrenie，which was lately the subject of a coroners＇s in－ quest，may now serve to introduce some remarks on the hygiene of the bath－room， with special reference to its frequent abuse when warm water is the means of ablution．About a fortnight since a gen－ theman aged seventy－four years was found sitting dead in a warm bath，which he had entered a short time previously．Accord－ ing to the medical evidence death was due to syncope，induced in all probability by the heat of the room．Here，doubtless， a predisposing cause was also at work －namely，the advanced age of the deceas－ ed，which would render him the more susceptibility to the always rather depress－ ing influence of warm bathing．Add to these unfavorable，if unavordable condi－ tions，the presence of a stifing，steam－ laden atmosphere，and we need not feel surprised at a statement by the coroner that deathe in similar circumstances are not uncommon．Now that almost every house of moderate rental has its bath－ room，the size and ventilation of the apartments are matters of some import－ ance．There is too great a tendency to think that any odd corner may be used for this purpose，and that the first and only necessity is to have the required water－ supply laid on，and for the short time dur－ ing which the bath is used the quality of atmosphere is quite a secondary matter． It should not need the teaching of a series of fatal accidents to impress an opposite principle．Clearly a 500 m which，in conrse of use，becomes rapidly charged with water vapor should exceed rather than come short of the minimum cubic space（say 800 cubic feet）required for each inmate of a normally constructed house．With regard to ventlation，ancient prejudicos in favor of closed doors and windows and solid walls have to be com－ bated．These have，however，been pretty generally overcome in the case of sitting－ －rooms and bed－rooms，and should not prove insuperable in the case of the bath－ room．There is no necessity for the in－ troduction of cold air from without，for a sufficiently pure atmosphere can usually be obvained from the interior of the bouse， and an outlet funnel with revolving cowl is all that is required for extraction of the old air and excess of water vapor．Seeing therefore，that the remedies are apparent， we may hope that in foture builders and houscholders will agree to employ them against the now too evident risks of a warm bath at home－Lancet．

BUILDING MATERIALS．
 \section*{工DABER}

call of canco jots．
 if and thleker；prekligphen ios．．．．

1×10 and is comoson．

1 noch clar and ppeck．．．．．
inch drussing and beter．

Cill canmint．．．．．．i．．．．．．．．．．．．．．．．
1）and thichtat cutting ip plank．．．．．
mech triog
I 1 loch Moring．．．．
 suquare，（10 fotit）row oningies，per
 gke，ptrome equivanali．．．．．．．．．．．

Specipl widhaf．per tquare．．．．．．．．．．．．．．
talld geotationd．
Mill cull boards and scantling，．．．．．．．
Shipptans cuili buards，atocke．．．．．．．．
Shippiag cull bourds，atocke

Coulut up panka， 14% and thicker，diy	
Pieks，Rmerican inspoction	
Three uppers，Aenerican intpection．．． Cedtr for Heck pariog，per cerd． Cedtar tor Ket Mang． 4×14, per M．．．．．	
B． 1.	
1／8 inch flocriog，Preutil．．．．．．．．．．．．${ }^{\text {as }}$ os	
dre	
dres	
dreosed．	16
Beaded theetion，dreeter	10
CXX sawn shingle	
Sawn malh．．．．．．．．．．．．．．．．．．．．．．．．．．	
Red oak．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	so
Whate．．．．．．．．．．．．	
Cherrif Na 1 and 2，，．．．．．．．．．．．．．．．．．so so	
BRIOK．－V M．	
Common Yalling ．．．．．．．．．．．．．．．．．．．．．． Good Ficing：	
Stene：	
Lomanon Rabble，Per Toise，delivened Farge fat	
Foundetico Plocka，＂Cubic Foor．．	
Slate：Roofing（\％בpxarr）．	
grean．	
＂${ }^{\text {＂}}$ unfadin	
black，Latug	350
unfodic Deck	
ading banck，Non．	
Tiks，A Berfom，WM．．．．．．．．．．．．．．．．．．．	
Bame ：	
Per Laxd of th Cubic Yarda．．．．．．．	
Whit lead，Can ．．．．．．．．．．．．．．．．．．．．． 6	
as	
Adian，Eng．	
Yellow octue．．．．．．．．．．．．．．．．．．．．．．．．．．．	
Yellow chame ．．．．．．．．．．．．．．．．．．．．	
Dtack，lemp ．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {if }}$	
Varabih，couch，	
Shellae，＂1 \quad＂．．．．．．	

CEMRNT，LIATE，et Lime，Per Borsel of a Wuehela，Grey．： Ptater，Cacined，New＂Bromsikit． Hair，Plesurest per bafy． $\stackrel{\text { in }}{n}$ Thorold， Ore Natto HARDWARE．

Refined，\％\％roo lb，or ordikary sise．．．

Puscie menali，
Anchor，
Chain cobles，

MONTREAL PRICES．

安

FOUNG是
HPRROYBD POLLEI STILR HINGB
For Box Frame W／ndows．

 hel
on the end of phetiee，whitch is released meds rite up to
the pulley box in taking out the tash．The attetion the pulley boxi in taking out the sash．The attention。
arehitects and buifders is called to these binges．For architects and buitders is called to these binges．For
further information and price apply to the inventor，

J．EI．YOUNG，

IIT KIHE ST．WEST，－HAMILTON，ONT． AGENTS WANTED．

THE＂NOVELTY＂

Steel Plate Warm Air Furnace． the acme of Construction． More good points than any heater on the market． Powerful，economical and perfect in operation．
It produces more heat from the coal con－
sumed than any ofber heater．
It is the most successful of all furnaces in heating isolated country houses．

Send far Cataloguc．Estimales furnished．

 Torontio Purnace Co．8 \＆ 10 Queen St．East，－TORONTO
anupacturers of
olloe movement hot air neaisters．

QuEENSTON CEMENT WORKS

BEST CEMENT IN CANADA．
For testimonials，samples，terms，etc．，address
ISAAG USHER \＆SON， THOROLD，

ONTARIO．
THIS SPACE BELONGS TO
PETER－LYALL，
BUILDER AND CONTRACTOR，
Dealer in Building Materials，
MONTREAL，
QUEBEC．

ASBESTOS ROOF SEEARHIING

 BOTH WOOD AND LROM, STOPS LEAKS AND BEGAY, AND MAKE8

A SUPERIOR ARTICLE AT A LOW PRICE IS SURE TO BECOME POPULAR.

A SIMGLE TRIAL OF OUR ASBESTOS ROOF SHEATHMH WILL GUABANTEE ITS FUTURE USE.

DIRHOXIONS FOR AREMTING.
Its fire and water-proof component parts are combined as follows :-3-PLY-1st. A stiong foundailion of saturated Ashesios Wool. 2nd. A water-prool layer of Vege-
 are subjected to hydraulic pressure and formed into an solid impermeable sheel, and when put on coated will fire and water-proof Cenvent-Paint
2-PLY -Has ome hayer less of Feth and Wool and Vegetable Gum
The merits of this Roofng are that ifts inexpensive, durable, adapted to steep or flat rooss, portable, convenieat, fire-proon, will nor mildevw, can be used over odd shingise or tin. pot altected

me manyfacture under newton's patent, new yark gity.

Office of New York Board of Fire Underwiters.
115 Broadway. New York, April 15, 1894.
Dear sina, - The lasurance rate on bulldings covered with NEWTON'S Prepared Roofing. painted with one coat of Vietona Cement-Paint, sanded, is the same as the regater slate on tuetal roofs.

Yours truly. JAMES HARRISON Suph. for New York Board of Underoniters. 16 St. Heori Street, Montreal, Aprid 7, 1888.
VICTORIA ROOFING CO: DEAR Suss,-We stripped off the old shinglas of our warehouse last foll and put on your
Patent Asbesios Sbeathing mod conted fit with your Fire and Water.Proof Cement-Yaint. patent asbesios fideathing job, ight ond handsome. No icicles stick to the eaves.
hammond \& CRANDall.

Sweep the boands of the rool clean of all mails, chips, ele, then commence at the eaves or
gutter to lay the roofing; nail the lower ends, using ordmary hait mails wilh thin hemds, shiedded gutier 10 ay the roofing; nail the lower ends, using ardinary lath mails winh hin hends, shieded ofy tip caps, Then eet the second sheet lap over the kirst stheet two Inchess, betog sure to paste chimneys, gullers, elc.

Upon flat rools nails should not be more than one and one-hall inchea apart from cenire of caps. and two inches on seeep toofs. The roofing thould recolve a coat of Cement-Puint the Dar ir is Laid, unkess k geis met; if enught in a shower wait until the Sheathtag dries before coating and sanding. The Roosing Cemeni-Praint shoula be applied in strips from radge so raves. begin-
 SEE What THE IMSURANCE COMPAMIES THERE THi*K OF IT:

TENERENCES:
Towle \& Michaud, 7 Sh Crial Sirect. Montreal. Geo. Hedderson \& Co., H16 Welinanton Street, Ottawa. Gillour \& Co. Ottowa. . M. Touccy, General Supt. N. Y. \& Hartem R. R. S. M. Bisceli, General-supt. Penasylvanio R. R. Co., N. Y. N David Sterconson (Brewing Ca, New York City. Old Domition Stearmshlp ${ }^{\text {Co.. N. Y. Y. }}$.
Eagle Manufacturimg Co, Divenport, Iowa. Eagle Manufacturing Ca, Davenport, Iowa
Hunting
Con
Cor and
Car Leske Iron Works, Jersey Clys, N. J.

Price, put on by us in Toronto, finished and coated with Victoria Fire and Water-Proof Roofing Cement-Paint, $\$ 4.50$ per hundred square feet.
VICTORIA ROOFING CO.
BMITD تOR OIRÖULARE.
66 Adelaide Street East, TORONTO.

 SECTIONAL HOT WATER

PATMINT and steam
Patentrd 1836 In Canada And The United States, Tue Rest hot Water Radiator In The Mitixet.
 B

GARTH \&. CO.,

Vol. I.] The Ganadian Architect and ßeruilder.
[No. Vill.

