The Institute has artempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significanily change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagėe

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover titla missing'
Le titre de couverture manque

Coloured maps/
Cartes jéographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/

Relid avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou do la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais. lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a éte possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommageesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
 Transparence

Quality of print varies/
Qualité inégale de l'impression

\square
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition avaitable/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc.. have been refilmed to ensure the best possible image/
Les pages tozalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc.. cr:! été f!!mées à nouveau de facon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

"The profit of the carth is for all; the Fing himself is servet br the field."-Eccues. 5, ix.

grorge buckland william medougall, $\}$		$\left\{\begin{array}{l}\text { Emtins and } \\ \text { Propretons. }\end{array}\right.$
VoL. I.	TORONTO, APRIL, 2, 1849.	No. 4.

THE CANADIAN AGRICULTURIST,

AMONTELY JOURNAL or Agricultura, Horticulture, Mechanicaland General Science, Domestic Economy and Miscellaneons Intelixgexce; Published by the Proprietors, W. McDourall and Geo. Bucklakd, on the first of each month, at their Office, near the South-West corner of King and Yonge Streets, Toronto.
Subscription, One Dollar in advance. Advertisements 4 d . per line each insertion.
(crs' Societies, Clubs, or locai Agents ordering 12 copies and upwards, will be supplied at 3s. 9 d . per copy.
4 Money enclcsed in a letter, and adaressed to the "Eiitors of the Agriculturist, Toronto," will come perfectly safe. As we shall employ but few agents this year, those who wish to pay for the last, or subscribe for the present volume, need not wait to be called upon.
$\ldots 5$ Payment in advance being the only system that will answer for a publication so cheap as ours, we shall send the remainder of the volume to noze but those who order and pay for it.
Subscribers who desire to continue the work, win do well to send their orders without delay, for, as we do not mean to print a large edition with the view of laving a suxplus, we caunot promise that at the end of tivo or three months we shall have any back numbers on hand.
Traveilng Agents.-Mr. T. M. Monn is oor Travelling Agent for the Eastern section of the Prorince; Mrr. PALMER, for the Northern; and Mr. JAMES WiLSoN, for the Western; who are authorised to re-
ceive subscriptions for last year's volume as well as for the present.
Local Agenis.-Any person may act as a local agent. We hope that all those who have heretofore acted as such, will continue their good offices, and that many others will give us their influence andf assistanoe in the same way. Any person who will become a local agent may entitle limself to a copy by sending four subscriptions. Those seuding yewelve and upwards will be supplied at 3s. 9d. per copy.

TORONTO NURSERY.

TOR SALE, an extensive collection of FllUIT TREES, consisting of all the choicost sorts of Apples, Pears, Plums, Cherries, Peaches, Grape Vines, Raspberries, Gooseberries, Strawberries, Currants, Asparagus, and Ruubarb Root, \&e:

Also, Ornamental Trees, Flowering Shrubs, Hardy Roses, Herbaceous Flowering Plants, \&c., in great variety.
Descriptive Catalogues, containing directions for transplanting, furnished gratis to post-paid appicants.
gEORGE LESLIE.
March, 1849.
4

CASH! CASH!! CASH!!!

THE Subscriber will pay the highest Cash prices for 1000 Bushels clean Cimothy Sced; 100 Bushels clean Spring Tares; 100 White Marrowfat Pea; 25 Bushels Flax Seed.

$$
\begin{aligned}
& \text { JAMES FLEMING, } \\
& \text { Seedsman and Florist, Yonge Strcet } \\
& 1,1849 \text {. }
\end{aligned}
$$

Toronto, Jan. 1, 1849.

STEDD WIEEAF.

AQuantity of very superior CAPE SPRING wheat, grown by Captax Shay, Oak Hill, Toronto, for sale by the Subscriber, at 7s. $6 d$. per Bushel.

Toronto, Feb. 28, 1849.

> JAMES ELEMHNG,
> Secdsman, Yonge Strect.

PHENIX TOUNDRY,
No. 58 yonge street, toronto.
GEORGE B. SPENCER, (late c. elliot,)
CONTINUES every Branck in the above Establishment, as heretofore; and in addition, keeps constantly on hand a good assortment of Cocking, Parlor, Box and Arb-tigut Stoves, of the most approved patterns.
Also, a Second-mand Engine, with or without the Boiler, 12-horse Power, will be sold very cheap for Cash or short payment.
Toronto, Jan, 26, 1849.
1-tf

MAMMOTH. HOUSE.

New Dry Goods a General Onifiting Establishment,

Opposite the Markiet, King Street East, Toronto. THOMAS THOMPSON respectfully solicits the 1 attention of his numerous friends throughout the country to his large and well-assorted Stock of

STPAPLE AND FANCY DRY GOODS, particularly adapted for the Country Trade, consisting of Woollen Cloths, Blankets, Flannels, Sheeting, Hosiery, Prints, Cloaks, Bonnets, Factory Cottons, Cotton Warp, \&'c., with an immense Stock of Hats, Caps, Furs, \&c.; together with a large and general assortment of

READY-MADE CLOTHING,

suited for the Season, and manufactured on the premises; also, a well-assorted stock of Ladies', Gentlemen's and Children's Boors and SHoEs, of every description, and at unusually low prices; the whole of which, with the Clothing, will be made by the best of workmen, under the direction of experienced foremen, and will be sold at unprecedented low prices.
Farmers and Mechanics, call and try the "Mammoth House,". apposite the Market,
January, 1849.
2
MESSRS. DENISON \& DEWSON, ATTORNEYS, \&c.
New Market Buildings, Toronta. January 26, 1849.

SEVERN'S BOTTLED ALE.

THE Subscriber, having resumed his former business in a convenient locality, with a large stock on hand, of a superior quality, and in prime' condition, would hope to secure a continuance of the patronage and support hitherto conferired upon him.

> J. D. BARNES,
> 6, Wellington Builaings, Adjoining Mr, Sterliag's, King-st.

Tononto, January, 1849

BRON'SE MILLS FOR SALE.

THE Property consists of sixteen feet privilege on the 1 Twelve Mile Creek on the Lake Shore, in the township of Trafalgar, and about seventy-five acres of good cleared farm Land; a large stone and frame Woollen Factory, 82 feet by $3 \pm$ feet, and three stories high, carable of being easily converted into a Flouring Mill; a Grist Mill with one rua of Stones, Smut Machine, and all requisites; two Saw Mills, with Circular Saw and Lumber Yard Railway; a Blacksmith's Shop and seyeral. Dwelling Houses. This property is now let to a yearly tenant for $£ 200$ per year, and would bring on a lease, $£ 250$. Price $£ 2,500$, of which only $£ 1000$ would be required down; the residue might be paid by instalments, as agreed upon.

also,

A Privilege on the same Creek, of 12 feet next above the Mills, with about 75 or 80 acres of land, mostly cleared, and in cultivation, and an excellent Mill Site, with good Roads. Price $£ 100$, of which $£ 300$ would be required in Cash; the remainder by instalments. The option of this.part of the property is offered to the purchaser of the first, and if not taken, it will be sold separately.

ALSO,

Adjoining the a ${ }^{\text {Dove, a }}$ Farm of about 70 acres, in full cultivation, with a large unfnished $D_{\text {welling-House }}$ thereon, and an Orchard of 4 acres of grafted Fruit Trees. Price $£ 700$, of which only $£ 200$ would be required immediately; the rest in ten years. The whole of the above property will be sold together, if desired. For particulars apply (post paid) to S. B. Harmison, Judge H. D. C., Toronto.
'Toronto, March 1, 1849.

STOVES! STOVES!! STOVES!!!

J. R. ARMSTRONG, CITY FOUNDRY,

No. 116 Yonge Street, Toronto,

HAS constantly on hand, Cooking, Box, Parxior, and Coas Stoves, of various patterns and sizes, very cheap for Cash.

Also, a New Pattern Hot-air Cooking Stove, just received, taking three-feet wood, better adapted for the country than the Burr or any pother Stove now in use. It has taken the First Premium at every fair in the United States, where it has been exhibited.
Ploughs, Sugar Kettles, Grist and Saw Mill Castings, Steam Engines, Sleigh Shoes, Dog Irons, and a geperal assortment of Castings.
Toronto, Jan. 26, 1849.

CANADIAN AGRICULTURIST.

Vol. I.
TORONTO, APRIL 2, 1849:
No. 4.

THE CULTIVATION OF FORAGE CROPS.

In a country like Camada, where the winters are not only long, but oftentimes excessively severe, it is a matter of the first importance that the farmer should amply provide himself with the best kinds of provender for sustaining his cattle in a comfortable and thriving condition through that rigorous season. But in order to do this, it is negessary that like the bee, he should make timely provision. The neglect of a few weeks, or even days, in spring, inrolves the loss of a whole year. And this is particularly the case in our climate; spring being but of short duration, the period for sowing is necessarily restricted within very narrow limits. Hence the necessity of making tinely preparation to facilitate the important operations of that season, which to the husbandman is pregnant with interest and hope. In the present paper we propose throwing together a feri hints and obscrvations on the culture of the principal forage crops, reserving for future necasions more minute and systematic descriptions of each particular kind.

1. Tae Turnip.-Foremost among root crops, stands the Swedish turnip, a vegetable which no farmer ought to be without. Although this plant is subject to severe casualties, arising from the depredation of insects and the influence of the seasons, yet the observance of the following simple rules will be generally found successful.
In preparing the soil for turnips and root crops generally, it is highly desirable to give a deep clean ploughing in the fall, and to make a sufficient number of furrows in the proper directions to take off readily the water arising from the melting of the snow and heavy rains of spring. When farm yard dung is intended as a dressing for these kinds of crops, it is generally preferable to plough it in at this time, particularly if it is what is called long or rough,--that is, in an undecomposed state. The manure thus becomes more readily mixed with the soil, and by the repeated pluughing and harrowing in the spring it is brought into a condition adapted to the wants of the young plant, an object, particularly in a dry season, of very great importance. In more
advanced countices than ours, artificial manures are commonly applied to turnips, such as guano, rape, bone dus', \&c. Such dressings are invariably applied in spring, generally in drills with the seed, but not in actual contact with it. As to the precise time and manner of sowing, something must always be left to the character of the season, the state of the land; and we may add, in respect to the latter condition, what is often lost sight of by mere theoretical writers, the means and other varying circumstances of the farmer. As we cannot now enter upon particulars, let it suffice to say, that plants cultivated for their roots should be sown as soon as the soil can be properly prepared, that is a deep and fine tilth obtained, and the growing season about fairly commencing. In most northern climates that is a period admitting of considerable variation-There is danger in being too early in sowing the Suedish turnip, since the leaves are liable in particular states of the atmosphere, to become mildewed, and the bulb consequently suffers both in size and nutritive quality. Indeed, the climate of this country is frequently too dry and parching for turnips of any variety, and consequently such soils should be selected for their culture as possess a porous, moist subsoil, containing calcaroous and erganie matter.
Sowing plenty of good seed in drills from 20 to 24 inches apart, is upon the whole the best mode, as it allows the use of the horse-hoe in keeping the ground free from weeds, and by occasionally stir. ring the soil the power of capillary attraction is inceased, fertilizing gascous matters are evolved, and as a consequence the growth of the plant is more rapidly advanced. There have been several remedies proposed against the destructive effects of the turnip fy, none of which can in all seasons be depended upon. Thick sowing and the application of quick lime to the plants as soon as the smooth leaves begin to appear, will generally prove successful. Care should be exercised in setting out the turnips in the row about nine or ten inches asunder, when the plants have attained a moderate size, leaving such only to siand as are strong and healthy.
2. Mangel-Wurzel.-This plant ranks next to
the Swedish turnip in its ceonomical value to the farmer, and being less liable to depredations by inseets, its culfure is more certain. It has the property of retaining its nutritive qualities for a great length of time when properly preserved; and is an excellent root in spring for cows and young stock, and cven for sheep in smaller quantity. Indeed, during the lambing season, mangel-wurzel, owing to the great juiciness of its root and the large amount of saccharine matter it contains, is superior to the Swedish turnip; milk, and not fatt, being then required by the ewe for the nourishment of her young. Bect, like cabbage, seems better adapted to the heavier soils than turnips, but the mode of preparation and treatment is very similar. The rows should be at least two fect apart, and the plants set out 12 to 15 inches asunder. On rich soils and in growing seasons these distances would be too small. Frequent culture by horse and hand is required through the period of growth. Earthing up of the plants by means of the double mould-bonid plough as formerly practised, is not now approved. It has been found in all tap roots rising above the surface of the ground, that earth laid against them causes the growth of lateral fibres, which occasions a bitter taste and deteriorates the nutritive qualities of the root.
3. Carrots.-This plant is richly deserving cultivation by every man that has only a few acres of ground. The white Belgian variety is recommended for field culture, the tops and roots being much larger than the Orange and Altringham kinds; and on good land under proper claltivation will yield upwards of 20 tous per acre. It is of essential importauce in cultivating carrots and other long, fusiform roots, that the soil should be deeply ploughed; in fact it ought be subsoiled to the depth at least of sixteen inches. This operation should be done in the fall, when the dung should be well incorporated with the soil; since with the carrot it has been found, that if the manure in a fresh state come into contact with the root of the plant, a large growth of lateral fibres and a profusion of leaves are sure to be produced. Carrots delight to grow in deep, warm, light loams, resting on a dry and porous subsoil. As the plant is not of very quick growth, it requires to be sown as early as the season and the state of the land will admit. Drills 18 or 20 inches wide will be found sufficient to admit a light horse-hoe ; and as soon as the plants are about three inches high, they should be thinned out by hand to the distance of six inches from each other. Carrots are adapted to all kinds of live stock; they are excellent for horses, particularly in early spring before any green forage is ready; they are found to promote a lealthy state of the blood and animal
system: and horses having had carrots frequently mixed with their dry food, have seldom been known to go broken winded.
4. Parsnips.-What has been said of the cultivation of the earrot, will also apply to the parsnip. The latter, perhaps, will flourish better on a stronger soil than the former; but in either case the ground must be deeply pulverised, and kept clear of weeds. The highly saceharino juice of parsnips renders them very nutritious for all kinds of animals: some exceptions have been urged with regard to horses, but, we think, without any sufficient evidence. For pigs and milch cows they are cxcellent, giving to the flesh of the former a white colour and fine taste, and to the milk of the latter a peculiar richness, free from any unpleasant flavour, and yielding abundance of the finest butter. It is of importance to observe, that with parsnips in particular, none but new seed should be sown, since it frequently happens that old seed will not vegetate. This is one among the many causes of failure in root culture.
Cabbage.-There are a great many varieties of the genus Brassica, but only two or three have been considered adapted to field culture. As the eabloge cannot be so conveniently stored away and preserved as turnips, carrots, potatoes, \&c., its cultivation for eattle in a climate like that of Canada must necestarily continue very restricted. Notiwithstanding, a small plot of land, well managed, in cabbage, will always be found useful, and may be made remunerative. The best kinds suited to field cultivation, are the large Scottish or Yorkshire, the drumhead, and a varicty called the American. These produce large leaves, which in the course of growth collapse, and form an immense dense head. A very hardy varicty is cultivated in Germany and the north of Europe, called Kohl-rabi, which, while it produces a root like a turnip, sends forth a large number of stems, bearing leaves like a cabbage. Although the root is far less nutritious than the Siwedish turnip, yet, as the plant will resist severe frosts, and bear storing much better than the common cabbage, its cultivation in Canada is well worth a fair trial. All the hardier varicties of the cabbage family, flourish best in soils abounding in clay; but then the ground must be deeply cultivated and well prepared and manured to ensure a heavy crop. Care should be taken to allow sufficient room for the growth of the larger kinds of cabbage; the drills should be from 3 to $3 \underset{2}{ }$ feet apart, and the plants $2 \frac{1}{2}$ feet asunder: we have seen soils in which these distances might, in favourable seasons, be bencficially increased. The frequent working of the ground, particularly in dry weather, is one of the principal secrets of success, not only in cultivating cabbages, but all kinds of root crops.
5. Vetcees.-Vicia sativa, or the common tare,
in a moderate climate like that of the British Islands, ranks amongst the foremost of the forage crops. It is adapted to the heavier class of soils; and being generally cultivated for soiling, it is not allowed to ripen its seed, and is consequently less exhausting to the land than most other crops. The spring and winter varieties of this plant have evidently been produced by the different periods of sowing, since the seed of both kinds seems perfectly alike. We strongly recommend, however, that in this country the spring variety only should be used, and that the ground should be thoroughly prepared by ploughing harrowing, \&ce, that all weeds may be cradicated, and the seed sown as carly as possible. If the season be favourable, with proper management, tares will be ready for cutting before clover; and will be found most serviceable, especially for horses and cows. A liberal application of seed is to be recommended; from $2 \sharp$ to $3 \downarrow$ bushels per acre may be considered ample. It is of importance that the plants should thoronghly cover the ground, that moisture may be retained during the dry season, and weeds prevented from springing up. A thin, patehy crop of tares is one of the greatest misfortunes that could happen to the soil; while a heavy crop is highly ameliorating, by keeping the land clean and restoring back again a large amount of rich manure. Vetches may be made inte excellent hay.
6. Lucerne.-This plant, which has been cultivated from remote antiquity both in Europe and Asia, is richly deserving a sufficient number of experimental trials, with a view to test its adaptation to this country. Adry, deep soil shonld be selected, thoroughly ploughed and subsoiled, with a liberal dressing of well-rotted dung and lime. As early in spring as the weather and the state of the soil will admit, sow in rows about 18 or 20 inches apart, 10 lbs. of seed to the acre. Carefully keep down all weeds. The crop may be mown as soon as in flower and afterwards kept down by sheep, care being taken not to stock hard or tread the ground when in a wet state. Early in the following spring, the intervals between the rows must be horse or hand hoed, and two or perhaps three light crops may be mown during the summer. It will take three years for the plant to arrive at full perfection. The principal thing to be observed in the cultivation of lucerne is to keep the ground clear of grass and weeds, by occasional hoeings, with an mmual top dressing of well-rotted dung, and the application of lime every few years. Treated in this manner, on suitable soils, the plant will continue to flourish for several years, and produce an immense amount of provender.
7. Samfons.-Whether this plart, so extensively cultivated on the challs downs and dry sands of England and France, could be profitably adopted.in
this country, carefully conducted experiments only can decide. It is a plant peculiarly adapted to calcareous soils; its roots deeply :penetrate the earth; in rocky soils they extend a prodigious depth among the crevices and open strata in quest of food and moisture. It may be sown like clover, with a crop of grain, 3 or 4 bushels per acre, and it*will take two or three years before it arrives at full maturity. Sainfoin makes excellent hay, and affords nutritious pasturage for all kinds of stock. It will not bear such frequent cutting as lucerne. Some prefer mixing white clover with it when sown, as that valuable plant does not interfere with the progress of the sanfoin, and gives a good boitom growth. It would be useless attempting to cultivate sainfoin upon thin wet soils, resting oa clay; but on a dry limestone, it is well deserring a trial.

There are several other kinds of.plants cultivated in Europe for forage, which our limits will not allow us even to enumerate. Among thom may be mentioned rape, artichokes, succory, and the fanily of trefoils-all of which are worth an oxperimental tris?: in this country. Since the potato can no longer be depended upon as an article of human food, onfor. live stock, it becomes most important to aseertain. what other roots ean be raised as its substitute. Clover and timothy, which are naturally so well: adapted to the soil and climate of this country, will no doubt continue to constitute the prineipal food of horses and cattle; yct it must be aiknowledged, that to increase the variety as well $3 s$ the annual bulk of provender, would be a meet desirable and valuable acquisition. Wo would ea:dion individuals against making experiments on quirge scale, and against drawing general conelusions from single cases cither of failure or sumegss. Truith can be elicited only by repeated trials, performed under all: the various conditions of soil: and climate. The. neglect of this simple rule his-cceasioned may false and hasty conclusions. Whe strongly recommend this subject to the best consideration of our agricultural societies, and sharil altways be happy to open our pages for communisating results.

PLANTING HOPS.

We submit the follbwing directions for making a hop-garden to an agricultural correspondent who signs himself "A Canadian" in the hope that they: may be useful not only to him, but to others also, who contemplate the cultivation of that plant. We. may on some future occasion treat of the natural history of the hop, its varieties, expense, and modes. of culture, \&c., as practised in England. The cultivan. tion of hops in Canada must necessarily continue ra stricted, siuce the demand is small, and the requisite
number of hands for gathering them can only be olstained in particular localities. This country, however, ought at least to supply its own wants, instead of importing large quantities, as has been hitherto the case, from the United States. Whether the British market will offer sufficient inducement for our farmors to raise hops fur exportation, is a matter at present purely problematical. The contemplated extinction of the excise lans and duty would probably place hops in the satue category as corn-open to a free competition with all nations; yet the low prices that have been oltained of late years in England for this article, seem to warrant no encouraging expectation of our being able to engage in a profitable exportation.

The soils best adapted to the growth of hops are such as are decp and rich in organic matter, resting on moist porous subsoils; yet they must not be wet, as that is a condition the most unfriendly to this plant. The hop delights in a soil containing a large per centage of ime-usually termed calcareouson a dry alluvium, where the subsoil is lept cool and moist by a running stream, the hop will huxuriate. It is of importance that land intended for hops should be deeply eultivated and cleared of weeds previous to planting. It would be uscless to attempt to grow hops on exhausted land without the best cultivation and heavy dressings of rich farm yard manure.

Having properly prepared the land by repeated ploughing and harrowing, the next thing is to mark out correctly at regular distances the hills or spaces where the cuttings are to be planted. This is a suatter of considerable importance, as when hops are planted in straight rows at right angles with each other, not only is the cultivation by the plough or horsc-hoe, rendered more easy and effective, but what is also of equal or even of greater momenta regular supply of light and air is enabled to reach the growing plants. The hills should be from 6 to 7 feet apart. To mark out these sppots accurately take a long line made of strong string and at every six or seven feet, according to the distance determined on, fasten a feather or a piece of coloured worsted. When the line is stretched out, short stiels are to be inserted in the ground under these marks, which thus denote the exact place in which the plants are to be placed. It is dificult to give precise verbai directions as to the "setting out" as it is termed, but streteling the line in opposite directions near the eentre of the field a square consisting of a number of sticks may be formed, and by carciul attention, the whole of the field may be then marked out before beginning to plant. From ten to tivelve hundred hills will stand upon an acre.

Planting should be duye as early in spring as the
season will admit. Cuttings should be obtained from young plantations, and each cutting ought to have two joints of buds, and should be planted in as fresh a state as possible. Three or four cuttings should be planted by means of a dibble in each hill, within the circumference of 12 or 15 inches, the arth well pressed against the plants. The application of dung, unless thoroughly mised with the soil, is not to be recommended for planting in, as in dry weather it would tend to retard rather than promote the vital anergies of the plant.
As soon as the bines (vines) get about two fect high, they must be tied to hort poles previously fixed in the ground Dy means of a sharp iron crow bar. In the second year poles of a larger size will be required-two or three to a hill. It is frequently found injurious to the strength of young hops to use too large poles the first and second years.The circumference of poles, as well as their length, should be considered in adapting them to the strength and capabilities of the soil and plant. In this coumtry, cedar, in point of form and quality, is the best wood for hop-poles, which may be cut from 14 to 16 or 17 feet long, according to circunstanstances. It is most desirable to use poles of a pretty uniform length in the same plantation, otherwise some plants will be shaded by o hers and the demand upon the roots will be unequal.
In case of springs or stagnant water, under-draining to sufficient depth to dry the land is in hop grounds absolutely essential. Water furrows should be made on the surface before winter sets in, which will very much facilitate the exit of water in spring. Hops require frequent manuring, farm yard-dung being the most available kind in this country.Lime applied occasionally to soils not naturally rich in that mineral will be found highly beneficial. It is a principle in hop-culture, as in all row crops that the ground be frequently stirred during the period of growth, and kept perfectiy clear of weeds.

ON THE APPLICATION OF SCIENCE TO AGRICULTURE.

ко. Iv.

COMPOSITION OF SOILS.
It was stated in a previous paper, that soils generally have been formed from the abrasion of the rocks on which they repose. This is the case in regard to the earthy matter of soils, which has been produced.by the action of water, air, frost, \&c., upon the subjacent rocks, causing a disintegration or crumbling down of previously existing materials. Extensive accumulations, however, called drifts, are frequently found on the earth's surface, bearing evident marks of having been washed down or other-
wise transported by water or other agents from great distances. Large fragments of rock or boulders frequently occur among the finer particles of such soils, which will generally enable the careful observer to determine the direction from which the drifted materials here come, and the very formations from which they were disintegrated. These considerations throw considerable light on the aauses which have produced such great variety in the innrganic constituents or mineralogical character.of soils.
The organic matter which is found in variable quantities in all fertile soils, has been derived from vegetable and animal substances-more particularly the former-wnich, undergoing decomposition atter life has become extinet, are intimately mixed with the soil, and constitute the principal cause of its productiveness. A due proportion, however, of the organic and inorganic constituents is necessary in all soils, to adapt them to different crops, and to raise them to the highest state of fertility. From one to sixty or seventy per cent. of organic matter is to be found in most cultivated soils. The latter is an excess formed on boggy or peaty soils, which require the admixture of marl, clay and other inorganic substances, before they can be profitably cultixated. With less than one per cent. of organic matter, a healthy vegetation could not be sustained. It has been calculated that oats and rye will grow and produce a seanty crop on a soil containing one or one and a half per cent. of organis matter-barley, when two or three per cent. is present; but it may be stated that in general a good yielding soil for most linds of grain crops, particularly for wheat, must contain from cight to ten per cent. of decayed animal and vegetable matter. It should be remembered, however, that it is not any definite amount of mere organic matter in a soil which alone constitutes its fertility.
The inorganic constituents of soils deserve particular atiention, as they perform an essential part in the economy of vegetation. We shall notice more fully hereafter the nature of these substances. All soils may be readily separated into three principal parts. 1. That which consists of coarse gravel and suind, comprising fragments of flint, limestone, \&c., with an occasional and variable amount of undecomposed vegetable matter. 2. Finely comminuted sand, denominated by chemists, silex. 3. A portion consisting of very fine powder, hence called "impalyable matter," and consisting generally of the followirg substances, in variable proportions: (1). Aluminous earth, or clay in a state of admixture with other earthy materials, a substance that gives to srils thieir tenacity and capability of holding water, and constitutes the chief value of clay for the pur-
poses of pottery. (2). All decomposed arganic matter, whether of vegetable or animal origin: chemists have given to this substance the name of humus, which, combining with oxygen, forms humic acid, which, again miting with lime and other earths, forms what are designated humates;--these latter compounds are supposed to perform an important part in the economy of vegetation, yielding up their carbon to supply the wants of the growing plant, although them is good reason to believe that the principal supply of carbon is derived from the atmosphere. (3). Silica, which is a compound earthy substance, formed by the union of an clement, silicon with oxygen. It oceurs in a pure form. in quartz rock. The difference between the silica of the impalpable matter, and the silex or sand, previously mentioned, is simply that the one is crystalised and the other not. Silica occurs in nature under different forms, thus adapting itself to the different purposes of the living plant. United with potash, it forms that important and uscful compound, the silicate of potash, which gives strength and smoothess to the cuticle of the stem of wheat and. other cereals-a fact which every intelligent practi-. cal farmer will understand and appreciote. (4). A variety of salts, of which the principal are the following: Carbonates of lime (chalk, commonlimestones, marl, \&c.), magnesia, potash, soda, muriate of soda (common salt), and sulphate of lime or gypsum. All these ingredients are more or less found in the ashes of plants, as well as in soils; and they perform important purposes in the nutrition of animals, whose chief support is derived from the vegetable kingdom. For instance, lime is necessary to formbone in the animal, and to give hardness and strength to the shell of an egg; while soda and potash promote bile, and the muriate of soda, that nourishingsubstance, milk. There are a few other substances not enumerated above, that sometimes occur in soils. in small quantities. Oxide of iron, which is an essential element in the blond of animals, is found in variable proportions; and animat matter, so rich in nitrogen, occurs in all surface soils that are not absolutely sterile.
Host cultivated soils contain from 90 to 96 per cent. of their whole weight, when free from water, of inorganic materials. In peat, and the rich forest soils of this continent, the organic matter of course bears a much higher proportion. Now, this earthy part consists principally of three ingredients. 1. Silica, or sand and gravel, of various degrees of fineness. 2. Alumina, or clay, occurring gener-1ly in shaly or slaty masses, more or less induasted: and intermingled with the soil. 3. Lime, ozourriugas a carbonate, sulphate, or phosphate, in the various rocks and marls that are found near the surfuce.
of the ground. In proportion to the preponderance of any one of these three substances, a soil is said to be light, stiff or calcarcous.
It is of importance to observe, that by a clay soil is not meant a pure clay, si ce no such soils oceur in nature. Even the parcelain clays, which are the richest in alumina, and oceur merely in small patehes, contain only from 42 to 48 per cent. of that earth : the remainder consisting of silica. Soils eontaining 25 or 30 per cent. of alumina, are found generally too heavy for profitable cultivation, and are best adapted to the purposes of pasturage. It may be further observed, that soils contain the three substances above mentioned, in a state of mechanical mixture. With silica and lime, this is always the case, but in the clays, which principally consist of silica and alumina, these materials are united by chemical combination. On a knowledge of these proportions, the following classification and nomenclature are founded, as given by Professor Johnston. We have had frequent opportunities of testing the advantages and correctness of this arrangement for practical purposes.

1. Pure clay (pipe-clay) is composed of about 60 of silica and 40 of alumina and oxide of iron, chicfly in a state of chemical comblination. Such soils rarely occur but in small patches, and are wholly unfit for agricultural purposes.
2. Strongest clay soil, consists of pure clay mixed with 5 to 20 per cent. of a siliccous sand, which readily separates by boiling and decantation. This soil is of a very unctuous nature, exceedingly stubborn, and affords a good material for making tiles.
3. A clay loam contains from 30 to 40 per cent. of fine sand, which may be separated by washing. This admixture renders such a soil more open and friable, and consequently more easily cultivated. When from 40 to 70 per cent. of sand can be separated by mechanical washing, it is called a loany soil, from 70 to 90 ner cent. of sand, it is termed a sandy loam; and when no more than 10 per eent. of pure clay remains, it is considered a sandy soil.
"The mode of examining, with the view of naming soils as above, is very simple. It is only necessary to spread a weighed quantity of the soil in a thin lager upon writing-paper, and to äry it for an hour or two in an oven or upon a hot plate, the heat of which is not sufficient to discolour the paper- the loss of weight gives the water it contained. While this is drying, a second weighed portion may be boiled or otherwise thoroughly incorporated with water, and the whole then poured into a vessel, in which the heavy sandy parts are allowed to subside until the fine clay is beginning to settle also. This point must be carefully watched, the liquid then poured off, the sand collected, dried as before upon paper, and again weighed. This weight is the gnantity of sand in the known weight of moist soil,
which by the previous experiment has been found to contain a certain quantity of water."
Ilitherto we have considered only the elay and sand contained in a soil, while lime is found more or less in all suils, that will pay for cultivation-hence we have
4. Marly serils, which when dried are fourd to contain from 5 to $20 \mathrm{~F} \times \mathrm{cent}$ of lime. The mochanieal prepertics of the marl deperd upon the relative amount of silica atd alumina it contains. Hence we have a sandy, loamy or clay marl. The value of marl as a fertilizer, docs not wholly depend on its percentage of lime; if it alounds in alumina, it would be beneficial on a loose sandy seil, inda pendent of the lime as a mere mechanical mixiture; while sandy marl would in the same maner be serviecable to heary clays.
5. Calcarcous soils are so denominated in consequence of having upwards of 20 per cent. of line. When they contain a sufficient anount of clay to render them what is technically called "food holding land," they constitute the best soils for most agricultural purposes. Professor Jomston gives the following simple directions for determir:ng the amount of lime in a soil, when it exceeds 5 per cent:
"To 100 grains of the ary suil diffused through half a pint of cold water, ald half a wine glass full of muriatic acid (spirit of salt), stir it occasionally during the day, and let it stand over night to settle. Pour off the clear liyuor in the morning, and fill up the vessel with water, to wash avay the eacess of acid. When the water is again clear pour it off, dry the soil and weigh it; the loss will anount generally to about one per cent. more than the quantity of lime present. The result will be sulficiently near, however, for the purposes of classification. If the luss exceed 5 grains from 100 of the dry soil, it may be classed among the marls, if more than 20 grains, among the calcareous soils."
6. Vegetable moulls, which vary much in their texture and composition-from the rich garden mould, containing 8 to 12 per cent. of organic mat. ter, to the peaty soils, having 58 to 70 per cent. together with very different proportions of clay and sanc. To deternine the amount of vegetable matter in these soils, for the purposes of classification, is a very simple process. First dry the soil in an oven, and weigh it; then heat it gradually to a dull ridness wer a lamp or fire, till all the combustible matter is consumed. Again weigh it; the loss will be the amount of organic matter.

SHORT-HORNS IN CANADA.

We have been favored with the particulars of weight, \&c., of the Hon. Adam Fergusson's splendid shorthorn heifer, Blossom, which was purchased and slaughtered last Christmas, by Mr. Philip Armstrong of this city. It will be recollected by seve-
mal of our readers, that Blossom was intended for exhibition at the last Provincial Show, at Cobourg; but in consequence of the injuries she received in the boat coming from Haunilton, arising from the extreme roughness of the weather, :t was deemed inexpedient to take her any farther. Blossom wits bred and fed by Mr. Fergusson, of Woodhill, who has been so honourably distinguished fer a great number of years for his zealous and successful exertions in improving the live stock of this Province, and the advancement of its agriculture. When we look at what lins been done and what is doing by an enterprising farmer seattered here and there, we fondly cherish the hope that the time is fast drawing nigh, when Upper Canada will be awakened to a pereeption of her great natural capabilitics. The suljoined facts will show that among many other advantages, our country is well adapted to the improved breeds $\sim \mathrm{f}$ stock:-

Blossom's total weight, - - 1,559 "
Or 111 stone 5 lbs., at 1.4 lbs . per stune.
We will only observe, in addition to the subjoined extract from the American Herd Book, that the quality of the meat was unanimously pronounced by Mr. Armstrong's customers, to be of the finest description.
"Blossom.-White, bred by and the property of Hon. Adam Fergusson, Woodliill, near Watertown, Canada West; calved 16th Angust, 1843; got by Strathmore out of Beauty, by Snowball (2647), by Lawnsleeves (365), loy Mr. Mason's Charles (127)."

NEW SETTLEAENTS.

LIFE IN THE BUSH.
Gentlemex,-I enclose the sum of 5 s . as my subscription for the Canadian Agriculturist, during the current year.
This portion of Canada is of comparatively recent settlement, and the progress of practical agriculture has hardly extended beyond the first rude efforts to clear land for the purpose solcly of sustaining animal lite. Nevertheless, there are instances-and not a Sew-where an ceonomical expenditure of labour lias been succeeded by the most gratifying result.
During the month of December last, when in the discharge of the duties of my office, I inspeeted four lots of land, adjoining each other, in the township of Glenelg, which were located by Mr. J. Leadingham and his three sons. They commenced operations in the spring of 1847, and at the time referred to they had uprards of fifty acres under crop and well fenced. Their barn-considering the almost total failure of spring wheat-was well replenished. Their stock of cattle, which was very considerable, had comfortable shelter. Their dwelling-a rude shanty-was clean, well-ordered, and each article of
furniture was a specimen of the mechanism of the back-wonds; and their table, in addition to substantials, was stipplied with jellies and preserves. The clief-the most interesting feature in the subject matter of this reference, is the fact, that these thingy were the products, under providential arrangements, of their own labour, expended in converting the forest into a fruitful field. Labour is necessary to human enjoyment.

Yours respectfilly,

Geonge Jackson.
Bentinck, March, 1849.

FENCE-MAKNGG-A NEW PLAN.

Messrs. Editors-I beg to offer a few suggestions with reference to the construction of a cheap and durable kind of fence. In most parts of Cariada where timber is plenty, the common zig-zag rail fence answers the settler for a few years, but as is already the case in some districts where timber has become scarce, some other mode of fencing our farms may be resorted to wit' advantage.

Where the soil is of stiff clay, the following plan possesses some advantages on account of its durability and cheapness. It consists merely of two parallel ditches, with a ridge of earth piled between them : small posts, (usually cedar,) five feet long and from six to eight inches in diameter, are set about six inches in the ground and ten feet apart, in a line where the ridge is intended to be raised; the ditches are then dug about two feet deep and three feet apart, the sides of which are of such a slope as to be capable of producing a tolerably stiff sod from being sown with grass seed. The ridge, which is raised about $2 \frac{1}{2}$ feet high, should, like the ditches, be sloped on cach side, so as to admit eitheof a covering of sods directly or of being produced by seeding. It may be remarked here, that it is important that the work be performed in the spring of the year, when it can not only be done cheaper but rendered less liable to sustain injury from the frosts of the ensuing winter, than if accomplished at a later period. On the posts, which will remain uncorered about two feet, are nailed two boards, one on the top and the other on one side, when the fence will be complete. The advantages of this lind of fence orer a board fence are considerable. First, it effects a great saving of timber; secondly, in low or wet land it answers the double purpose of a fence and drain: finally, it is more permanent, as the posts are less liable to be raised by the frost than those of an ordinary board fence, the earth in which they stand being kept comparatively dry by the ditches, and placed around them in an oval form, will naturally incline from them as the frost works its way under the surface.

I am aware that some farmers will say that "It appears all very well on paper," but I can assure such that fences of this description have been in use in this District for the last four or five years, and thus far show strong evidence of their ultimate utility.
I have not as yet had any constructed on iny own farm, and cannot therefore say from experiencee what would be the expence of such a fence, but am credibly informed that it need not exceed two shillings per rod. But this fence, like many other things that are well adapted to the requirements of
some farms, might prove worse than useless to others. The farmer, before adopting it extensively, had better try it on a small scale-construct it with care and judgment, so that the trial may be a fuir one. The slope of the ditches should depend in a great measure on the stiffiness of the soil of which it is composed, and of course their depth and the height of the ridge will be greater or less as they are more or less slanting.
Near the village of Oshava may be seen some of the fences alluded to, which lave given such general satisfaction that they are becoming more generally adopted in that section of country: the soil is clay with a slight mixture of gravel. Very light or sandy soils would be ill adapted to stech a purpose. Yours, \&c.

Practice.
Whitby, March, 1849.

Expract from L. F. Allen's Valedictory Address before New York Aghicultural Society, Jan. 10th, 1849.-Among the benefits arising from well directed Agricultural education, aside from spreading the requisite learning and intelligence applicable to the chief pursuit of our people, deep and broad among them, the retention of that portion of active capital, acquired by the industry of our Agricultural population, among themselves, would be one inportant consequence. In place of the prevailing and mistaken notion that monied capital invested in agriculture is either unproductive, or less so than in other pursuits, our farners would be taught that, coupled with the knowledge to direct it , no branch of our national industry is so steadily remunerating as that connected with the soil-a fact now practically disbelieved; or why would such amounts of monied capital be continually drawn from the agricultural districts to your commercial cities, to be embarked in hazardous enterprises, or doubtful investments? The merchant, or the speculator may fail-and fail he does, very often -and in his downfall is often buried the toils of a long life of patient industry. But who ever knew a good farmer, of prudent habits to fail? Nay, who did not, with an exemption from extraordinary ills in !ife, ultimately grow rich, and discharge meantime, all the duties of a good citizen? I concede to you the many prominent cases which exist, of wealth rapidy accumulated by bold and successful speculation ; of fortunate, perhaps accidental adventure ; of hoards heaped up by a long course of perseverance in trade, directed by that intuitive sagacity of which but few among us all are endowed, and which so dazzlingly invite our imitation. Yet these are but a few glaring instances, standing out in bold relief among the many who have sunk in the same carcer, perhaps with a ruined peace; happy afterwards to retire, were it in their power, upon the limited possession which they had thrown away, to commence their wasting strife upon the broad sea of adventure.
A second advantage would be, that it would invite, annually, a large class of educated men of capital from our citics, to invest a portion of their wealth in our farms, convinced by the knowledge acquired in a course of agricultural education, that Husbandry was a good business, and intending to parsue it as the occupation of their lives, it would cause a reflus of that capital and population which had been drawn away from agriculture. Nor would such associntions among us detract from the industrious habits of our farmers by their example. They, by the possession of larger estates than we enjoy, might give more of their time to leisure than we are accustomed to spend; but they
must, if good farmers, attend to the daily routine of their affairs, as well as we. They would diffuse intelligence among us ; introduce improved implements, seeds, and stock; and in time, surely exalt the character of our husbandry. They might not, indeed, work at the muck heap, nor guide the plow with their own hands; but they must be capable, from education, to direct the labor of both ; for we nust not forget that the merchant who, from his luxurious cot.nting room, plans his voyages, and directs the course of his ships; or the engineer who projects the rail-way, or the ocean steamer, once perfurmed the duties of a shop boy, or hammered at the auvil. And thus with the farmer : he should be capable of directing the cultivation of the soil to its greatest possible extent of production ; and he will find that, in achieving such result, all the powers of his mind, and the knowledge with which it is stored, will be required.

This thought will bear a little examination. The farmer is apt to think that the professional man, or the merchant, lives an easy and luxurious life. In many instances their families may do so ; but with the eminent and successful man of law, or science-the artizan, or merchant himself, such supposition is a great mistake. There are not, under heaven, a more laborious class of men than these. Labor of body, and of mind is theirs-and that incessant. See thein early, late ; in season, and out of season-their whole energies devoted to their several callings, withont rest, or intermission-and far too frequently, to the premature wasting of life itself. It is no wonder that such industry, directed by good education, (and by this term I mean the entire training of the boy to manhood in its most extended sense,) and stimulated by landable ambition, should lead to success. Yet with all these appliances, the labors of such men are often disastrous; and if not so, after a life of anxiety, their toils too frequently end with but the means of a slender support.Compared with these, the tolls of the farmer are light. Physical labor he endures, it is true, and often times severe labor, but his mind is easy. He enjoys sound rest, and high health. He has mueh leisure; in many cases more than is for his good. He has abundant time to discuss politics, law, religion-everything, in fact, but what relates to his own profession, on which subjeet, I lament to say, his mind seems less exercised than on almost any other. Now, let the same early education be given to the young farmer of an equally acute intellect that is given to him who chooses professional, meclanical, or nercantile pursuits-education each in lis own line. Let them start fair. Apply the same thought, investigation, energy, and toil, each in his particular sphere, and beyond all question agriculture will, in the aggregate, have the adiantage -and for this reason, if no other: : there are few contingencies connceted with agricultinre. Its basis is the solid earth, stamped with the Divine promise, that while it remains, seed-time and harvest shall costinue; while commerce, and trade; mechanics, and arts are liable to extraordinary aud continual aceident. Look ait the devastations by tlood, and firc-of ship, and cargo, upon ocean, lake, and sea, and river ; conflagrations in your towns andecities; and the thousand other casualties which almost daily occur-ali which are a dead sink upon labor and capital not agricultural, and the risks of the hisbandman are scarce one to ten, in the comparison. Rely upon it, Farmers, you are on the safe side.

But, I hear some one remark, "Why, if agriculture, through the improved education proposed, holds out such alluring advantages, all our young men will rush into it, and competition will destroy it." Not the slightest danger. Our young men arealready running into the other trades and professions, where competition is zuivous; and all we ask, is the opportunity to
get a share of them back again. Besides, there is no fear that the other avenues of industry will not be filled; for, in the constitution of our natures, there will alrays be enough unquiet spirits born into the world which the farm cannot hold, to keep the busting part of it in motion.
Another, and a prominent advantage which we should receive from good agricultural education, would be, that of more stability of character in our farming population. It is proverlial among traveled foreiguers in this country, and it would be a subject of wonder auteng our staid people at home-if an American could wonder at anything-that we are the most changing people in the world. We, as a population, have fer, scarce any, local attachments. This, to an extent, is a true, although a severe censure: It arises, no don:jit -and naturally enough, too-from the wide extent of national domain of which we are the possessors, and from the natural sterility of much of the soil in our older communities, which cause an effort, and a laudable one, too, to better their condition in our rural population. But more, I imagine, from the low standard of agricultural improvement, and a mistaken estimate of the vaine of the soil, and its application to the products which proptrly belong to it. But, no matter what the cause. The fact is so, and it is a defect in our national character. How many among us but will, with a slight tempting offer,sell his homestead without remorse, break up the cherished associations of his life-turnhis back upon the graves of his kindred, and his children -his birth-spot-the old hearth-stones of his boy-hood-his family altar, and even the brave old trees, which have, life-long, waved their branches over his childish sports, and shawdowed bis innocent slumbers when weary of his play, all-all, pass ont of his hands, like a play thing of yesterday, unwept and unregretted, for the fancied advantage of a fresh spot in a strange and a newer land.
report of williay hawres, esquire, on mafing and s.iving manune.

Black River, October 11th, 1848.
To the President of the St. John Agricultural Socicty.
Sin,-As your Society has offered a premium for the best report on making and saving manare, I will tell you my own experience in the matter, not to get the premium, but for the purpose of assisting you in your efforts for the improvement of farming among us, of which, I must say, there is great need. I have ofton beeu filled with pain at seeing the poor cattle shivering in their stalls, in barns where they are exposed to every wind that blew, and the manure thrown out of a hole in the wall, there to lie, and have all the geod washed out $n f$ it, not only by the rain, but by the dripping from the roof; and this, I am sorry to say, is a true picture of nine out of ten of all the barns in the country which Y have scen.

Now, I will venture to say, that no farmer, however hmmble his circumstances, but might keep his cattle on far less feed, and double the value of his manure, by merely placing the cattle with their heads inwards, on the south side of his ba.n, with close boarding before and over them, and ther,, throwing over the manure a shrd, ten fect wide, covered with slabs, or spruce bark, if slingles cannot be afforded.
I followed the fashion of the country when I first hegan farming, but foumd that my cattle took the horn distemper, and wouid not thrive as I thought they should. My mannre was also mixed in winter with layers of snow, and all the substance was washed out of it in Spring, so.I did not perceive the land to be much the better for it. I tired of this, and sasr that I must either change my plan, or give up farning.

I therefore built a barn on the following plan. It measures 36 by 26 feet, and fronts to the South, with large doors at both ends, and a passage running along the south side. On that side the land falls away, so I brought the roof close down to the ground. By doing this I got breadth enough for a cow-house, and a ma-nure-house behind. The cows stand with their heads to the barn, maid feed them from the thrashing floor. I sank the floor o^{f} the manure-house considerably, and left it open at cach end, so that I can drive a team right through. My manure never freezes now, and my cattle being inade comfortable, thrive in a yay they never did before.
As I have found that turnips and carrots can be raised to advantage in this country, I intend to make a root-ceilar in the midale of my barn, about five feet decp. I think the turnips will keep there, if well covered with straw, and they will be at hand for feeding the cattle.
Ihave this year a compost heap of the following dimensions-fifty-six feet long, thirty-three feet broad, and five feet high. It is composed of 136 loads of green seaweed, with about the same quantity of black bog-earth, and as much good vegetable monld ; the two last mentioned I mixed together. I placed this and the seaweed, in alternate layers, of eighteen inches, and find that it heated, until the whole became one mass of very beneficial manure.

Wishing the Society the success it so well deserves; I am Your Obedient Servant,

William Mawees.
Potato Disease. - The potato disease being a subject of such universal and paramount importance, it is nothing more than right that any little experiments which may have been tried upon the suggestions, from the failure in the crops of preceeding years, should be publicly communicated. It was presumed by many last year, that the failure might be owing to a degen-. eracy in the vegetable life of the fruit, from its being continually replanted from year to year: and by some theorists this circumstance was stated to be the cause of the discase, and they recommended as an obviating mean, that the seed in the apple of the potato should be planted, so as to rear a fresh stock. This suggestion has been submitted to an experiment by a gentleman in Coleford this year, and the result is as follows:-In April he sowed the seed, it grew and the haulm looked perfectly healthy, and flourishcd well, until about the latter end of tugust, when considerable symptoms of the disease appeared, and all at once the haulms went perfectly dead and rotten; on digging up the potatoes every one was in a pulp of putrescence. So much for soring the seed. Last year the same gentleman amalgamated salt with the soil and planted the potatoes in it, the result was a plentiful crop, but small in size, this year he adopted the same plan, and a total failure in the produce has been the consequence. He also last year set off a portion of ground where he well mixed in lime and soot, a good average was then reared in a healthy condition-and this year, from the same procees, all were uiseased. I have read from the accounts this year that in well manured land the -disease has proved to be greater thinn in a less rich soil-this does not hold good here, for I have known several patches of meadov land that have been riresh dug up this year and plauted without having been manured at all, and a geveral failure in the crops has been the re-sult-and vice versa. Now from all these conflicting circunstances, no definite conciusion can possibly be derived. We see the same soil rearing a tolerable crop one year, and failing in the next-rich soil and poor soil at equal disadvantams. About a month after the potatoes were planterd this year, a weel of excessive hot weather came $\mathrm{ia}_{\text {, then much rain and a considera- }}$
ble lower temperature, then followed again a few hot days, and shortly after the disease was observed in the haulm, herein I think lies the secret.-Atmospheric change is the potatoe de-Vastator. It is with deep regret we announce that the later crops of potatoes here have turned out on an average, to be only about half good. It is a singular fact that the potatoe should be the only bulbous rooted vegetable afficted, we find the artichoke, turnip, carrot, and parsnip, and the roots of the dahlia and other globular rooted flowers appear to be sound and healty in structure, and remarkably fine this year.-English Paper.

Mr. Ingledew's Report on Tunsip Culitiva-tion.-The mode which I adopt in the cultivation of turnips is as follows:-I take land from which I had previously taken a crop of oats, without manure, from sward; this I plough over in the Fall. In Spring, I plough across, and harrow thoroughly. I then run out drills two feet apart, into which I put thrty double horse-loads of barn manure to the acre ; this I cover about two inches by opening new drills. On the top of these drills, after being a little flattened, I sow about $1 \frac{1}{2}$ Ibs. of seed per acre, with a seed sower,--if by hand, a small opening must be made for the seed with a hoe. The seed should be sown when the land is dry, and shortly before rain, if possible. I have found the best time of sowing to be from 5th to 20th June. The best remedy I have found for the fly is thick sowing, although I understand that if bran be sown on the young turnips when wet with dew, they will suffer less. So soon as weeds appear I pass a cultivator between each drill. When the plants put forth the rough leaf, which is generally about the tenth day after sowing, I pass along the drills with a hoe, striking out all but two plants in each six inches. About ten days after, I thin out to six inches, filling up vacancies with the plants thus drawn. On the last thinning depends much of the future growth. It is done with both hoe and hand, the tops of the drills being nearly levelled, and the soil being well cleared away from the plant leaving the tap-root only in the ground. If the carth was not well cleared away from the turnip, it would not attain half its size, besides being more liable to be injured by grubs and worms. After this operation, the young plants will fall down and appear to wilt, but the inexperienced need not be discouraged, as in a few days they will start again with fresh vigour.

They may now be left to themselves for some weeks, until they begin to crowd, when they should be thinned to trelve inches apart-the drawn turnips affording an excellent food for cows, hogs, \&c., as well as for market purposes. The hoe should then be drawn through between every plant and the cultivator passed up the drills. A light furrow might also be opened with a plough to carry off the water. They will seldom require more.
The expense of cultivating an acre of turnips after this mode, may be sumned up thus:
Ploughing, Harrowing, and Drilling-
4 days, at 15s.................. £3 $0^{\circ} 0$
Manure, carting \& spreading, 900
Cultivation, one day in all,... $010 \cdot 0$
Hocing and weeding,............ 0150
I estimate the turnips as worth, on the ground, Is. per bushel, which is, 640
bushels,.. 32
50
-leaving nett profit,........................ $£ 18$ 15 0
-besides having two months' valuable feeding from the drawn turnips and tops.

Carrots are cultivated nuch after the same manner, with the exception that the land ought to have another ploughing, and about ten loads more of manure. The
hand is also to be used instead of the hoe in weeding and thinning.-From the St. John Agricultural Society's Report for 1848.

Small Lots.-The editor of the Haverhill Gazcte gives a very good and profituble account of a quarter of an acre of land, and says:
"We are great friendsto manufacturers, that we may have something tosend abroad to purchase the produce of the South and West; but afier all we consider our own agriculture to be the solid foundation of our prosperity, anda few people are so much engaged in other employments that they cannot do something to increase the sum total of agricultural produce. A good garden does much to supply the wants of a family.

An orchard is an ornament-its fruit is a great luxury, and affords a great deal of nourishing food, and few enterprises and more profitable than cultivating fruit trees. Every traveller from lere to Newburyport may see an orchard of a quartce of an acre by the side of the road, for which two hundred dollars have been offered and refused, and for the fruit of which at a single harvest, as it hung upon the trecs, sixty dollars have been paid. We can show the lot of onefourth of an acre, which affords space for a comfortable cottage, an abundance of garden regetables, eight or ten bnshels of potatoes, and six bnshels of Indian corn for a year's crop."

Benefits of Agricuitural Sectremtes.- We have often remarked, says the Albany Cultivator, that the great benefit of agricultural associations, is the opportunity they afford for bringing together the people, with their animals, articles and products, by which all may be compared and the particular improvements possessed by each may be seen and adopted. Mr. Fletcher, in his address before the Windsor (T t .) Agricultural Suciety, in speaking of their exhibitions says :..." It is very desirable that every improvement in hesbandry, and the most successful systems of agriculture, which are known to but a few comparatively, should be generally known and universally adopted.Here, the best agricultural products are exhibited, as an example and incitement. Here, we have an opportunity of viewing and comparing, the best of our flocks, and herds, of different breeds, to ascertain their relutive value ; and here, are exhibited, the most improved, the best specimens of agricultural implements. There, we see the rapid improvement in the mechanic arts, the handmaid of agriculture. Here, we may see the difference between the limb of a tree for a plow beam, with a knot to it for a coulter and share, and the fine plow of the present day. Iiere, we may learn from the modern implements how to save time and strength, and accomplish a greater amount of work. Here, the farmers of the couaty assemble once a year; become acquainted, promote kindly feelings; converse freely with each other, on those subjects most interesting to them. What can be better calculated to teach us to do well ?"

On the Preparation of Cattle Food.-At the recent Smithfield Cattle Show, I promised to afford early and definite information relative to an experiment at Triningham between eight Scots, one-balf fed, with boiled linseed, the other with raw.
Assured that you will readily afford the medium of your paper, I beg to state, that the bullock.s, after three months feeding, were submitted to public inspection at North Walsham, on Thursday last, and that the superiurity was awarded to the rav feed, by a grcat majority of farmers.

But, admitting the fattening properties of both systems to be equal, the cold must possess the greater advantages :-ist, because firing is dispensed with, -

2ndly, because the mixture does not turn sour,- and $3 \mathrm{rd}^{\prime} \mathrm{y}$, because the cattle eat it without waste.

It is my intention to continue the experiment until the animals are reads for market, but with respect to the rest of my cattle, I shall substitute the cold for the hot food.

The object of either process is to form the linseed into gelatine, and to incorporate it with any substance, or fibrous material, that will act as a vehicle to the stomach, and as a reconveyance to the mouth for rumination.

Gelatine, proper for cattle feeding, is obtained either by boiling linseed reduced to fine meal 5 or 10 minutes; or by soaking it 25 or 30 hours in cold water.

The method of making the cold compound with which the bullocks in question are fed, is precisely the same as that described for hot in page 234 first cdition of my book, and in 245 of the second, viz :-

The half of a large tub being conveniently placed, a bushel of pea-straw, \&c., or hay and turnip-tops cut into chaff, is put in. Two or three hand-cups-full of jelly are poured upon it, and stirred up with a threepronged fork. Another buskel of the turnip-tops, chaff, \&c., is next added, and two or three cups of the gelatine as before; all of which are then expeditiously stirred and worked together with the fork, and a rammer. It is then pressed down as firmly as the nature of the mixture will allow, with the latter instrument, which completes the first layer. Similar quantities of the turnip-top-chaff, \&c., are thrown into the tub, the jelly poured upon it, and so on till the copper or vessel in phich the gelatine was formed, is emptied. The mass is lastly pressed down with a copper lid, and in a few hours, the chaff having absorbed the mucilage, the compound is given to the cattle thee or four times in addition to as many turnips as they like to cat. The proportion, up to this date, has been one pail full of hoseed meal to eight of water. Next month it will be one to seven, with about two pints of barley or peameal added by degrees while the compound is being made. Afterwards more linseed and barley will be used. By this means the present cost of eighteenpence a head per week for the artificial ingredients, will be increased to about half-a-crown.

In adhering to these regulations, I have never failed to obtain ample remuneration for grazing, independent of the box manure, which is beyond price.

I exhibited also at North Walsham, a Dutch heifer that cost $£ \leq 10 s$. a short time before last Christmas. She was fed according to the above system, at the rate of two shillings and three-pence per week for linseed till June, when an uulimited quantity compounded with grass pulse, grain, or turnips, was daily placed before her. During this time, however, she consumed on the average only 30 pints of linseed, and 35 of barley or peas per week, the value of which was $£ 416 \mathrm{~s}$. This sum added to $£ 214 \mathrm{~s}$. for the previous six months compound, amounts altogether to $£ 7$ l0s. for the year.

The heifer is considered to weigh about 70 stones of 14lbs. Three weeks since I refused £ 30 for her. On Thursday last $£ 29$ were only offered. Taking the latter sum as the criterion of value, and deducting the original cost, leaves $£ 2010 \mathrm{~s}$. for twelve months maintenance upon the exclusive produce of the farm, besides the manure, which I repeat, is beyond price.

To prevent misunderstandings, I think it right to state, that the heifer never had a calf, and that she was onc of six purchased at $£ 810$ s. each. They were equal as to size and breeding. One died, and the others were sold at the end of six months for $£ 19$ each. Therefore, had this heifer been then disposed of, she also would have repaid $£ 10$ 10s., whereas by retaining her six months longer, her value only increased $£ 10$, though at an catra cost of $£ 22 \mathrm{~s}$. for compounds.

It will be seen that the heifer required $£ 2$ 12s. less for the last half year than for the former. We may, therefore, reasonably expect, that if kept another halfyear, a proportional decrease would occur. Depending, however, upon the economy of the system, and believing that a net profit will be obtained from the present value of e29, I intend to exhibit her at Norwich during the mecting of the Royal Agricultural Society in July, as a powerful illustration of the advantages derived from "fattening cattle with native, instead of forcign produce."

The weight of the heifer iu June was estimated with the others, at 54 stone of l+1bs.-now at 70 . Then the price was calculated at 7 s . - now at 8 s .3 d . per stone. Therefore, had not the worth of the meat been increased, loss, instead of gain must have been noted ; and as the increase is only is stones or $10 l \mathrm{bs}$. per week, some idea may be formed of the loss sustained in rearing and fattening cattle for Christmas shows, and prizes, at ten, fifteen, or tyenty shillings per week, for oil-cake, \&c. \&c.

I have published many similar returns to the above, and know from experience that the quickest generally prove the most profitable. But in the present instance, I desire to shew, that foreigners possess cattle prone to fatten with our own :- that meat can be raised from linseed, compounds at one third less than the cost for cake; and that through the growth of linseed with summer and winter feeding in boxes, nearly all the expenditure throughout the country for artificial manure, and for cattle food, might be avoided.
It can scarcely be necessary to remind the British farmer of his position with respect to foreign competition; and of his sure destruction unless he strikes into new and improved paths. Lethargy, prejudice, and antiquated notions, must give way to a vigorous exercise of common sense. The requisites for rearing, feeding, and fattening cattle must be grown at home,manure be economised,-and employment be afforded to the weaker portion of the population, which can all be mainly secured by the cultivation of flax, use of the seed, and summer, as well as winter feeding in boxes.

As further proof of the great utility of the system, I will just state that' Ψ sold lately a fat yearling heifer for
 ham exhibition, worth more than the average of three-year-old store stock.

If incentives were wanting to the adoption of my plan, the fact that $22,473,233$ qrs. of grain, 510,377 head of cattle, and $1,268,040$ cwts. of provisions were imported from the lst of January, 1846, to November 5th, 18.15 , ought to stimulate us at least to attempt to sten the approaching tide.-Jokn Warnes, Trimingham, Norfolk.-Farmer's Herald.

Hints for April.-This is the manth of activity. Commence plowing carly, and do every thing wellput in barley, oats, and spring wheat without delay, and in the very best manner. Clear meadows and sow plaster carly. Cart out all the manure, for corn, potatoes, ruta bagas, beets, and carrots. Mix manure well with the soil by repeated harrowings. Plow deep, and with straight, even, and very narrow slices, and the field will then look like a garden. Keep animals from pasture till it is grown-let cattle have plenty of roots. Repair fences, clear meadows of sticks, and-stones, and save a week at the grindstone next haying-pulverize the scattered droppings of cattle over meadows and pastures. Give vigilant attention to sheep and young lambs-the latter, when chilled, may be dipped and rubbed in blood-warm water, rubbed dry, fed sparingly, and soon restored.

Uncover tender grapes, raspberries, stramberries, Sic. Clean and dress asparagus beds, strawberry beds, and raspberrics. Transplant stravberrics. Put out
cultings of grapes, gooseberries, currants, and quinces. Graft plums and cherries very carly, etc. Examine peach trees, and kill the grub at the root.

Give good and regular attention to milch cows and young calves-see that the former are milked clean, and that the latter are regularly fed.

Milch cows which have sore teats, should have them washed regularly with cold water just before milking, which will soon cure them.

Repair farming tools, and get them ready for usepaint will protect them from the weather.

Examine cellars, and keep them clean and healthy -pick out rotting apples-see that vegetables are leeping properly.

Strans in various Parts.-All horses are liable to these accidents, but they more frequently happen to those that are employed in field sports, such as hunting or coursing. The parts of the animal that are commonly affected are, the pastern, flexor or back tendon, and shoulder. In the hind leg, the fetlock, stifle, and round bone. I have devoted a considerable part of my time and study to these cases, and have always found inflammation to prevail or affect the parts leess or more aecording to the severity of the strain; nexd am fully persuaded that reduction of blood, cooling physic, with fomentation and emollient preparations applied to the parts affected, prove the most effectual and expeditious mode of cure.

Strains proceed from an uusual or violent extension of the muscles, ligaments, and tendonons fibres that surround or sover the joint; consequently, whatever means are used, time and rest are indispensably yiecessary to complete the cure.

In whatever part or joint the strain may happen, take from two to four quarts of blood, according to the violence of the strain and strength of the animal, and give the after mentioned medicine:-

Barbadoes aloes, in powder, six drachms.
Rhubarb do. half an ounce.
Nitre, two ounces.
Tincture of ginger half an ounce.
The above should be divided into two parts. One part should be given in a little gruel immediately after the accident is discovered, and the other part should be given in six hours after. The animal should get bran mash and warm water, and be keptas quiet as possible, After the first medicine has done operating, one ounce of nitre and tro ounces of cream of tartar should be given in a little gruel every day, for four or five days, to keep the bowels open. The part affected should be well rubbed with hog's lard, and the following bath laid on:-Take a considerable quantity of dried camomile flowers. Add as much boiling water as will swell them, but not more than the flowers cau contain, that the juice or strength be not lost. Then mix a gill of rinegar to the bath, and apply it to the part affected as warm as the animal can bear it. This bath should be repeated every day for three or four days. A little warm water should be added occassionally, to keep the bath moist. If the aceident should happen in a part where a bath cannot be applied, the part affected should be fomented frequently with comomille tea, with some vinegar and sugar of lead mixed in it. After the bath or fomentation lias been used as long as it is thought necessary, or till the mflammation has apparently subsided, the following bracing mixture should be used:-

Spirit of sal ammoniac, trio ounces.
Camphorated spirit of wine, two ounces.
Sugar of lead, two ounces.
The above ingredients should be mixed in a choppin of water, and the part affected should be well rubbed with the mixture triec a-day for several days and bandaged up middling tight. Observe to shake the mixture well every time it is used.

For a strain in the shoulder, I have found a rowel in the chest to prove very serviceable; or, if a horse should be strained in the stifle or in the round bone, 1 would recommend a rowel to be put in the thigh, and the other means used, as I have directed above. If any hard strelling remains after the inflammation has subsided, and the animal in the way of recovery, blistering will be the most effectual means of removing it.

In all cases of strains, the animal should be put into a roomy place, where he can step about at his own con'?nience or as he may feel himself able, as it is better to bring the affected parts gradually into action. For if the animal be forced on io exertion when he first begins to recover, it will almost to a certainty renew the complaint, and retard the progress of the cure probably three times as long as might otherwise be required. I could add a number of recipcs for strains. which I have tried, but think it quite unnecessary, for the means which I have pointed out are easily obtained, and are what I have proved to be the most successful; but as I have before observed, whatever means are used, TrMe and rest are indispensable.

Strains and hurts in the kidneys occasionally happen to farm horses, and are generally caused by extra exertion in drawing a loaded cart through a boggy place. The injury may be known by the following symptoms:-The animal will be very weak in the back, will yield to the pressure of the hand on his loins, feel difficulty in making water, the urine often dark coloured, and sometimes mixed with blood. This complaint is often attended with fever and loss of appetite. In this case I would recommend the following medicine to be given every day for four successive days. For each dose take-

Salt of tartar, one ounce.
Cream of tartar, two ounces.
Nitre, two ounces.
The above should be given in a bottle of camomile tea, with some honey or treacle in it; and strengthening plaster should be put on the loins. For which take common pitch and tar, an equal quantity of each, to be melted aud mixed together, and applied over the loins, quite warm. A piece of woollen cloth should be put over it while warm, and make it adhere to the part. I,et the animal get bran mash and warm water.Webb's Farmer's Guide.

On tife Pig.-By judicious care and geod feeding, pigs can, in a comparatively small space of time, be fattened to an enormous size. Hogs have been made so fat that theirskin was fifteen inches above the bone. In the Worcester Journal, May 6, 1841, Mr. Walker, of Malvern, is recorded to have killed a Hertford sow, weighing 61 stones 8 lbs., measuring 7 feet 9 inches in length, and 6 feet 3 inches in girth behind the shoulders. She fattened so rapidly that she was killed in 14 weeks from the time that her young ones were taken from her. Dr. William Westmacott, in his "Scripture Herbal," says, "In most countries, as in the wood-lands of Worcestershire and other places, where hogs feed on acorns, the swinc's flesh is rendered hard and sound. One peck of acorns, with a little bran per day, it is said, will augment a feeding hog one pound per day in weight for two months together. But it is good to macerate the acorns first in water, and if they be powdered or ground small, they will fatten pigeons, turkeys, peacocks, \&.e. Oak-mast cxceeds all other mast of the forest; for the hams from Westphalia and other parts of Germany, are of those swine that feed on acouns; but it is best to give pigs a few peas after thicm."

In Wade's "British History" it is stated that, a gentleman in Noifolk put six pigs, of nearly equal weight, on the swine food and litter for seven weeks. Three of the lot were lept as clean as possible mith curry comb and brush, and were found to consume in seven
weeks fewer peas by five bushels than the other three, yet weighod more when killed by two stones and four pounds upon the average,-a strong argument in favor of keeping pirs clean. From Mr. Boswell's experiments on the feeding of swine, we find, that during an equal space of time, the increase in the live weight of five pigs fed on steam-boiled food was 4 cwt . 2 qrs. 7 lbs ., at an expense of $£ 619 \mathrm{~s}$. 4 d ., while the increase in the live weight of pigs fed on raw food was only 2 curt. 2 qrs. 21 lbs ., at an expence of $£ 58 \mathrm{~s}$. 6 d .-a result highly favorable to the practice of feeding swine on steamed food.
"In fattening pigs," says Mr. J. Steele, "I have ahways found a mixture of barley and peas-meal, moistened with milk in sufficient quantity to make it of a drinkable nature, to be the best; the pigs must be rung to make them lie quiet; the sty should be warm and airy, and the sun not suffered to scorch their backs, as thin skinned white pigs are blistered by it, which not only renders them of an unsightly appearance, but retards their thriving. They should be protected from exposure to cold winds, cold rains, sleet, or snow-a subject not sufficiently attended to on many farms, where they are allowed to lie in heaps, shivering with the cold, in which case it is utterly impossible they can thrive. On the other hand, when they are kept constantly in a close pestilential atmosphere, their constitution becomies undermined, they look delicate and siekly, like consumptive subjects, and never arrive at any size or weight for their age. These extremes should be carefully avoided, and they should have an open-barred door, permitting a current of fresh air incessantly to set in and purify the place, conducing to the animals acquiring a vigorous habit and a doubly increased size. Too much cleanliness cannot be observed; for nothing tends more to their well-doing than dry feet, a dry bed, and sweet air."

The dung of swine is a cooling, rich manure for dry sandy ground, but from their eating numerous weeds, which pass too soon through their intestines to allow of their seeds being destroyed, this manure is not fit for arable lands, but is very good for the roots of fruit trees. Some time ago the Duke of Portland commenced strengthening and promoting the growth of trees in the grounds about Welbeck, by putting pigs in the plantations, and confining them within certain space till they had rooted up the ground at the foot of the trees, and of course manuref the soil. They were then removed to the other parts of the plantation, and confined in the same way, and were fed meanwhile upon potatoes, large quantities of which were bought for that purpose. Mr. J. Hawkins tells us that a method has lately been adopted in some parts of the United States of procuring oil and spermaceti from pigs. They are killed and hoiled altogether, to extract all their lard, which is then converted into stearine and elain. The oil thus procured is of a remarkably fine quality, and well adapted for inbricating machinery.-Agriculturist Monthly Journal.

Exploynest of Arsenic in Agriculture.-The following is the restult of the investigation of a commission appointed at Rouen in Dec. 1842, having for its object to determine the best process of preventing the smut in wheat, and to ascertain whether other means less dangerous than arsenic and sulphate of copper (both of which are extensively euployed in Great Britain). were productive of equally good results. The commission is of opinion-1. That it is best not to sow seed without steeping. 2. That it is best to make use of the sulphate of sofia and lime produce, inasmuch as it is more simple and economical, and in no way injurious to the health of the sowers, or inimical to the public health, and that it yields the most productive and soundest wheat. 3. That as arsenic, sulphate of
copper, verdigris, and other sultphate poisonous preparations can be advantageotisly replaced by sulphate of soda and lime, the use of the poisonons preparations should be interdicted by the Government.- The proportions of sulphate of soda (Glauber's salts) and lime recommended as a substitute for arsenic in the prevention of the smut are as follows:-Dissolve 22 oz. of sulphate of soda in hot water, and slake 43 llbs . of fresh and well-burnt quicklime in the ordinary way, by pouring on it small quantities of cold water; place 22 imperial gallons of the seed wheat in a cask or other suitable veesel, and throughly water it with the solution of sulphate of soda, stirring well the whole time, so that the whole of the seed may be well moistened, and there be a slight excess of liquid left; then sifted in the slaked lime, stirring well until each parti. cle of seed be covered with lime. The seed is now ready for sowing. Shouid the seed be kept for a fers days after it has undergone this preparation, it will be advisable to stir it occassionly, to prevent heating. Carefully conducted chemical analyses show that wheat, the produce of seed prepared with arsenic, does not contain any of that deleterious substance, whilst wheat, the produce of seed steeped in a solution of snlphate of copper (the most efficient preventitive of smut), contains a notable quantity of copper. The cheapest way is to purchase the anhydrous, or dry sulphate of soda, of the alkali manufacturers, which contains twice as much real sulphate as the crystals, whilst it may be obtained at about the same price. In this case, half the quantity of sulphate of soda above mentioned will suffice, and additional water may be supplied, equal in weight to that of the dry sulphate employed, thus compensating for the water of crystallisation contained in the crystals. The proportion of water above indicated may then be added, and the process followed out. Thus, instead of 22 oz . of crystals, use 11 oz . of dry sulphate of soda, and 2 galls. 11 oz. (or rather better than 2 gallons and $\frac{1}{2}$ pint imperial) of water.-E. Henry Durden.

Purchase of Honses.-Nothing requires more caution than the purchase of horses; and we give the following hints, which are extracted from the excellent volume "On Horrses," published by the Society for the Diffusion of Useful Knowledge:-
"In the pirchase of horse, the buyer usually receives, imbodied in the receipt, what is termed a warranly. It should be expressed thus: 'Received of A. B. forty pounds for a gray mare, warranted only five years old, free from vice, and quiet to ride or drive.' It is important to observe that the age, freedom from vice, and quietness to ride or drive should be mentioned, because warranty as to soundness alone does not include these. Many disputes have arisen as to what ought to be termed sound or unsound. A horse is sound in whom there is no disease, nor any alteration of structure which impairs his natural usefulness, and he is unsound if he labours under any disease, or had any accident that has impaired his natural usefulness by an alteration of the structure of any part of his body. The term unsoundness does not apply to any original defect in the temper of the horse, or any deficiency in the strength and powers of the animal. The principal circumstances which constitutes unsoundness, hesides the great number of actual diseases, are broken knces, which may indicate a stumbler, though not always; for any horse may meet with an accident, and the knee may now be quite well, though it requires great judgment to distinguish in this case. Contraction of the foot is sometimes, but not always, unsoundness; for $1 t$ is occasionally natıral, and not a fault. The following defects are considered to indicate unsoundness; Lameness, through any cause ; pumicill foot; sand-crack; spavin; splent;
thickening of the lack sincws of the leg; thrush : ossification of the cartiluges of the foot; defects or disenses of the eyes; coughs, roarings, brohen wind, or any defeers of the hurgs; quidding, or imperfect mastication; cribliting; liting; liching; restiffiness.
"In order to complete the purchase, there must be a transfer of the animal, or a memorandum of agreement, or the payment of earnest-money; the least sum will suffice for earnest. No verbal promise to buy or sell is binding without one of these; and the moment either of these is effected, the legal transfer of property or delivery is made; and whatever may happen to the horse, the seller retains or is entitled to the money. If the purchaser exercises any act of ownership by using the animal without leave of the vender, or by having any operation performed or done to him, or medicine given, he makes him his own. The warranty of a servant is considered to be binding on the master.
"A man should have a more perfect knowledge of horses than falls to the lot of most persons, and a perfect knowledge of the vender, too, who ventures to buy a horse without a warranty. Where there is no warranty, and a defect is discovered after purchase, an action may be brought on the ground of fraud; but this is difficult to be maintained, for it is necessary to prove that the dealer knew the defect, and that the purchaser was deccived by his false representation. If the defect was evident, the purchaser has no remedyhe should have taken more care; but if a warranty was given, it extends to all unsoundness, palpable or coucealed. Although a person should ignorantly or carelessly buy a blind horse, warranted sound, he may return it-the warranty is his guard, and prevents him from so closely examining the horse as he otherwise would have done; but if he buys a blind horse, thinlsing him to be sound, and without a warranty, he has no remedy. The law supposes every one to exercise common circumspection and common sense. If the horse should be afterward discovered to be unsound at the tome of sale when the warranty was given, the buyer may return it and recover the price; but this proof is requisite; coughng on the following morning will not be sufficient, except the horse was heard to cough previous to the purchase, for the horse might have caught cold by cluange.of stable. Although not legally compelled to give notice to the seller of the discovered unsoundness, it will be better for it to'be done. The aninal should then be tendered at the house or stable of the vender. Should the latter refuse to receive him, he may be sent to a livery-stable; for, in case of action, the expense will be recovered with the price; and it will be prudent for the buyer to refrain from any medical treatment. If a person buys a horse warranted sound, and discoveriag no defect in him, and relying on the warranty, resells him, and the unsoundness is discovered by the secoud purchaser, and the horse returned to the first purchaser, or an action commenced against hum, he has his claim on the first seller, and may demand of him not only the price of the horse, or the difference in value, but every expense that may have been incurred. When an action is brought, the larsuit is usually very intricate; a fair trial of the horse is allowed. and a certain time specified; but ir is not always easy to ascertain whether the fault lies with the horse or his rider, and sometimes the dealer, as well as the buyer, is hardly used. If the horse is detained after the specified time of trial, he is supposed to be sold, and with all his faults.
"In London, and in most great towns, there are repositories for the periodical sale of horses by auction. They are of great convenience to the seller, who can at once get rid of a horse with which he wishes to part, without waiting month after month before he obtains a purchaser, and who is relieved from the fear of having the horse returned on account of breach of the
warranty; because in these places only two days are allowed for the trial, and, if the horse is not returned within that period, he cannot be returned afterward. They are also convenient to the purchaser, who can thus find a horse that will suit him, and by which, from this restriction as to the returning the animal, he may, perhaps, obtain 20 or 30 per cent. below the dealer's prices. 13ut although an auction may seem to offer a fair open competition, there is no place at which it is more necessary for a person not much accustomed to horses to take with him an experienced friend, heedless of the observations or mancuvres of the bystanders, the exagyerated commendations of some horses, and the thousand faults found with others. There are also always numerous groups of low dealers copers and chanters, whose business it is to delude and deceive."
The Captral of Agriculture.-As statistical facts form the basis of our reasonings and conclusions, it is highly important that they should be accurately stated. Mr. Spackman, in his "Analysis of the Occupations of the People," estimates the farmers' capital at 500 millions of pound sterling, being a fraction over $£ 1015 \mathrm{~s}$. per acre on $46,522,970$ imperial acres. My own calculation and impression is, from the perusal of sundry evidence on the subject, and from facts within my own knowledge, that the average would not exceed $£ 8$ per acre, even if it attained to near that amount, which 1 very much doubt, when we set off pgainst a few rich gardens and hop grounds an immense extent of very poor grass lands. If I am correct this deduction alone would diminish Mr. Spackman's estimate of the farmers' capital by 128 millions, a most important iten. Perhaps you, or some of your talented correspondents, will throw a little more light on this interesting subject. Am I right in calculating that the farmers' gross produce per acre is considerably under $£ 4$. If so, his capital would only be turned over once in tro years, which I apprehend is correct. I believe the slowness of return is one principal cause of farming being so slow a way of getting money, or rather, in some cases, so quich a way of losing itI. J. Mechi, Tiptree-hall, near Kelvedon, E.ssex, Jan. 3.-Agric. Gaz.

Salt for Cattue.-In giving salt to neat cattle or sheep when stall-feeding, care should be taken not to give too large a quautity, or so much as would relas. the bowels. If hay that is given to animals has been salted when storing, every farmer should be aware that this would be sufficient salt for the animals consuming it. One gallon of salt put to the hundred bundles of hay when storing, will never act injuriously upon any animal fed on this hay, as some of the salt may be lost, For hay that has been injured in curing, perhaps double this quantity of salt might be applied, but damaged hay should not be given to amimals that were stall feeding for the butcher. The object of giving salt to animals confined in stalls in winter, and fed on dried food, is to licep their bowels in a proper state, without scouring them. When such aninals get a proportion of roots, however, there is not much danger of anything rrung with the bowels. We have unquestionable authority that a due proportion of salt may be given to stall-feeding animals with excellent effect, but of course, the farmer requires to be careful that too large a quantity is not given, whether in the bay, or in any other way. There is no part of the farmer's business requires closer attention than the stall-feeding of cattle to make it profitable. Without this, food nay be wasted, and the animals not improved, and unless they are constantly: improving by the food given to them, and the mode of management adopted, something must be wrong, and a loss is almost certain to be incurred instead of a pro-fit.-Agricultural Journat. (L. C.)

Tor Diessing.-Every farmer and gardener knows that a generous application of manure, whether plowed in or spread upon the surface, is of great benefit to the crop. Green, unfermented manures, we have found, always were most efficacious when plowed or dug in; but in regard to fermented manures, many think that they aremost useful when spread upon the surface.

A writer in the London Gardener's Chronicle has some good ideas upon this subject, which have been approved by some of our best horticulturists. Few persons, says he, are aware of the immense importance of top dressing. The merits may be classed as follows: 1st: they may be made capable of transmitting a vast aunount of food to a suffering tree (for instance) in a very speedy way. 2ndly: they retain a steady permanency of moisture, in spite of adverse circumstances without stagnation. 3rdly: they are the cause of a series of annual fibres which are of much importance to tender trees. 4thly: by means of such, continueg systematically, trees may be planted in shallower soils than without them; this tends to the production of much better ripened wood. 5thly: If a check is needed through rampant growth, or total absence of fruit, the removal of the dressing in summer will supersede the necessity of root pruning.
The above reasons which the writer adduces, refer principally to trees and shrubs, which are, to all intents, fixed or permanent crops. We have, however, often thought that the application of decomposed manure to the surface for annual crops, such as Indian corn, was better then ploughing it under. Many farmers harrow it in to pretty good advantage. We once ploughed in a quantity of green manure from the barn-yard, and spread on the surface a quantity of srmented manure. A part of this was harrowed in, but some circumstance, we have forgotten what now, prevented us from harrowing the whole piece. We planted it to corn, and at havesting it was observed that the corn where the fermented manure was not harrowed in, was much the best. This, to be sure, was only one experiment, aud an accidental one at that; but its resuit accords with the belief of very many farmers.-

Prg Manone.-We have great confidence in the following statement, made at a late meeting of the Frome Agricultural Society, by S. Pocock, of Thoulstone Farm:-"Well knowing the excellence of pig manure five years ago, I was induced to try it solely for turmps. I tested it against guano and bone dust. The result was quite equal to the guano, and beat the bone dust hollow. ky farm is one part clay, and another sand : I found the same result on both. a I have also the management of a farm in Hannpshirea poor thin soil, and there the manure was equally good. I have continued to use it ever since with the same beneficial results. To carry but my plan, convenient farm buildings are necessary. I have a large dry shed, in which, first of all, I put a layer of dry coal ashes, about a foot thick and four feet wide, to which the deposit of the pigss is taken, both liquid and solid; and as soon as it begins to noze out, I put on more ashes, and so on till it gets to about four feet in thickness. I then again commenced a fresh layer, and so on ; after lying some time it is turned two or three times, and then it is fit for drilling. I have put in this year 45 acres of turnips with nothing but this manure, and the result is now open for the inspection of any who may choose to see it. I find the droppings of three pigs, carefully preserved, to he ample for two acres, and quite equal to three sacks of bone dust per acre. I am not speaking theoretically, but from experience; and I consider, if we can get such valuable manure for nothing but the labour, it will be much better than putting our hands in our pockets and paying 23s. or 30 s. for artificial manure."

New Variety of Wheat.-Advices from St. Petersburgh mention that a new variety of wheat has been recently discovered and cultivated in Bessarabia. It is called the Kolus, or large-eared wheat, on account of the peculiar beauty of its cars. At present it is limited to mere seed-wheat, and fetches twice the price of the ordinary Arnautka. One other and more important pecularity of this grain is, that it is less affected by drought than any other varieties. At the same time, it possesses several other features, being distinguished by its greater fertility, its deep amber colour, and its early ripening. The important discovery was made by a peasant of the name Bulatevisch in the village of Troitzk, in the district of Bender, who, being a strict ohserver of nature, detected in his crops certain ears which were longer and became ripe carlier than the rest of the crop. These were collected, and sowed separately, and the result was an abundant harvest, and the introduction of a new and valuable variety of wheat. The Russian Government, it is to be hoped, will not let such an opportunity pass of rewarding one so deserving of a substantial mark of its favour. The event has created a great sensation amongst the agriculturists and dealers in grain, and the wheat well merits being named after the discoverer.

Lime vs. Insects.-I beg to assure your correspondent that lime may be applied with the most perfect safety to his trees, shrubs, \&c. ; and will also prove certain destruction to the slug tribe. With res. pect to the quantity, that must depend on the nature of the soil. In April last, having then receatly obtained possession of a garden, \&ce., that had been greatly neglected, and was overrua with slugs, 1 spread quick lime over the whole, (vegetables, shrubs, grass, and orchard,) at the rate of abont 80 bushels to the acre, so that all through that month we appeared to be in the midst of winter, with the ground covered with snow, even she evergreens being white. The result was, that nec a slug was seen till the rains of October, and but pe:y ferw then. The vegetables have been pretiy grod, and the growth and vigour of the evergreeus have been quite remarkable. The soil is clay. February would be a very good time to lay on the lime.-Gard. Cliron.

- Sore Shoclders, sec.-Farm horses are liable to be injured on the shoulder or back with the collar or cart saddle. In these cases styptics are commonly used to dry up the wound, which is quite contrary to the. nature of this kind of sores. Lime water and linseed oil are what I have found most beneficial in these cases. It may be prepared in the following way:-Put two quarts of water upon two quarts of anslaked lime; let it stand tlil the ebullition is over, then pour off the liquor for use; and add five gills of linseed oil and two ounces of sugar of lead. Mix them well together, and keep the solution in a bottle for use. When the animal comes in from work at night the sores should be washed with soap and water, dried with a soft towel, and dressed with a feather dipped in the mixiure. This process sloould be repeated every night till the sores are healed, observing to shake the mixture well every time it is used.

When a horse is injured by the harness, it is necessary to examine what part of it caused the injury, and get it removed by altering the stuffing of the collar or saddle, that it do not press on the sore; for if a wound be constantly irritated, it is hardly possible to heal it Too few that have the charge of horses consider properly how little is the cause that irritates aud injures them, and makes them either dull and spiritless or refractory and spiteful; and I would therefore enforce on those who work them, the incumbent duty that devolves on them to adjust the harness for the care or comfort of the animal as much as possible.

forticulture.

FRUIT TREES-BEST VARIETIES, \&c.

We have much pleasure in directing the attention of our correspondent J. C. B., and that of our readers generally, to the following valuable communication from an experienced Nursery-man in the vicinity of this city, on the important subject of Fruit Trees-the best method of planting-including the most suitable varieties for the climate of Canadr; together with many useful hints and general directions. As the writer has been for several years extensively engaged in the Nursery business, our readers may depend upon the accuracy of his statements, and place the utmost reliance on the soundness and practicability of his instructions.

Toronto Nursery, Kingston Road, March 12, 1849.

Gentlenen,-The season for transplanting Truit Trees has aggin arrived. In compliance with your request, I now send you a few remarks, the result of twenty years' experience and observation in this neighbourhood. If they be the means of directing the attention of a single individual to this important subject, the task will not have been in vain.

In favourable years, and on dry soils, Fall planting is to be recommended; but in general, Spring is reckoned the best time for this operation. To have a reasonable anticipation of success, it is necessary that it should be done carly: to get the roots perfectly established in their new position, before the weather becomes dry and hot, it is necessary that tramsplanting be attended to at the earliest practicable moment. Spring is the busy season of the year, but the time and labour bestowed on the procuring and planting out of a quantity of Fruit Trees must be considered as advantageously expended.

The value of a good Orchard is not yat fully appreciated in this country. It is pleasing, however, 10 witness the increasing interest manifested in this subject. Every owner of a piece of land, however small, should think it an imperative duty to plant out some trees. Independently of numerous other considerations, the positive profit, and augmented domestic comfort, resulting to the proprietor, from the ready sale and high price that good fruit commands, ought not to be overlooked. The facilities with which fruit trees of first-rate excellence can be procured, the easiness of their culture, and the favourable nature of Canadian soil and climate, are cogent reasons why every family in the land should enjoy an abundance of choice fruit. Moreover, Canada has a right to share, with other parts of North Amer:ca, the profit and honour of having her fruit shipped to all parts of the world.

It is superfluvus to insist on the necessity of cultivating good fruit; this is universally acknowledged; yoir readers only require the subject to be brought seasonably mader their notice, to induce them to give it that attention which its merits claim. Even if confined to our own markets only, the demand will steadily increase. The progress of civilization and refinement, the increase of population, and the accu-
mulation of wealtn, invariably increase a demand for choice productions of the garden and orchard, faster than they do the means of producing them.

Nussery eatalogues usually contain a large amount of useful information in regard to fruit trees generally. If not deemed egotistical, I would recom. mend the descriptive catalogue of the "Toronto Nursery," lately published, as useful for occasional reference, and as containing some valuable hints for the best methods of transplanting, and the general management of trees. For the benefit of such of your readers (of which it is to be hoped there is a large number) as contemplate planting out trees this spring, the following brief directions will in general secure success-if carefully followed:-

Have the ground for your orchard securely fenced; the admission of hogs or cattle always proves fatal to the growth of young trees. If equally convenient, the aspect should be southerly, with as much declivity as at all times to prevent the lodging of superabundant moisture. The ground musi be ploughed, and the furrow so deep as to turn up part of the subsoil. It will also be of much advantage to cross-plough and harrow it. The trees may then be planted; and according to the careful mode in which this part of the work is performed, much of the future thriftiness of the tree depends. In this case the old axiom, that what is worth doing is worthy of being done well, holds strictly true. The effects of proper transplanting are permazent. No subsequent amending of the soil can realize the advantares of having the operation properly performed in the first instance.

Let the holes be dug three feet in diameter, and twenty inches deep. Throw the subsoil aside, and put into the bottom of the hole sufficient fine friable surface mould, to bring it to the proper depth to receive the tree. Prume off carefully all bruised or broken portions of the roots: although trees be raised in the best manner out of the nursery, it is impossible to pervent the spade coming in contact with and bruising some of the lateral roots. Place the tree in a perfectly upright position, spreading out with the hand the roots horizontally in their natural order; fill in with anely pulverized surface soil, gently shaking the tree to fill up all vacuities. When the roots are covered, throw in a pailful of water, fill up with the remainder of the earth, press it firmly down with the foot, and the operation is complete. The tree should then stand about two inches deeper than in the nursery rows. Deep planting should be avoided; it is ruinous to the growth and vigour of young trees: after transplanting, the upper roots should not be more than three inches under the surface.

Mulching, in technical language, should by no means be neglected. This consists in putting a quantity-say a wheelbarrow-load-of long manure on the surface, around each tree. Allow this to remain till the following spring, when it may be spaded into the ground at the extremity of the roots. This practice is recommended in the extract from Downing, in your last number; but it is productive of such beneficial results that I cannot, at the risk of repetition, refrain from urging on your readers the necessity of its adoption in all cases.

To promote the vigorous growt: of the transplanted tree, let the wood of last year's growth be cut off from two-thirds to at least one-half of its
growtl. By this mearis the aseendiug sap is concentrated, and strong leading shoots freely developed, forming the limbs of the future tree. This cutting-in of the young wood is not to be repeated in future years; the main object in doing so at the period of transplanting, being to give a fresh impetus to the growth of the tree, which was in some degree cheeked by its removal.
Having said this much on the propriety and modus operanaii of transplanting fruit trees, I will be brief in advising a selection of suitable sorts for general cultivation. When trees are procured from respectable, well-established nurseries, the selection may in general be safely entrusted to the proprictors. The opportunitics they enjoy of properly estimating the value of orchard products, the desire to establish and maintain the character of their own establishments, are motives sufficiently strong to induce them, when the selection is left to them, to do their best for the satisfaction of their customers. In the following list, none are included but such as have come under the personal notice of the writer, and all the sorts therein enumerated may be depended on as thriving well, and being in all respects adapted to this latitude.

THE APPLE

Is more generally known and universally esteemed than any other fruit. It is not a native of North America, but has been perfectly naturatized, and in the Northern States and in Canada succeeds better than in any other part of the workl. Good rarieties are now extremely numerous, and no excuse is left for the cultivation of poor inferior sorts. It accommodaies itself to almost any variety of soil, but in a deep heavy loam it is most productive, and attains the greatest perfection.
Earrix Apples.-Red Juneating-Early August, the best eating apple known-Early Strawberry, Keswick Codlin, excellent for cooking from the beginning of July-Summer Queen, large and fine.
Autuan Frutr.-Early Crofton or Irish Peach' Apple-Fall Pippin, "a noble fruit"-St. Lawrence, Fumeuse or Snow. These two varieties had their origin in Canada, and for fall fruit cannot be surpassed. Ribston Pippin, in Europe a winter fruit of great excellence, but not keeping here after the end of October. Toole's Indian Rareripe, Hawthorndean, begins to bear very carly-a handsome fruit, and very productive. Pumphin Sweetinglarge and productive.
Winter Fruit.-Rhode Island Greening, the most useful and saleable apple in cultivation. Nothing superior to this famous variety has yet been discovered. A gentleman in Toronto last winter sent 35 barrels of this fruit to Glasgow, where they were sold at 35 s. sterling par barrel, leaving him a clear profit of $\$ 4$ per barrel. Baldwin, the best market apple in Boston-Esopus Spitzenburg-Welland Pippin-Yellow Bellfower -Hubburdonn's Nonsuch, an early winter fruitBlue Pearmain-Tolman's Sweeting, productive and superior for baking-Ponme Gris, the finest dessert apple, and a long keeper--Swar--English Golden Pippin, small, but a long keeper and fine flavourAmerican Golden Russet, will keep till the end of June.
In an orchard, apples should be planted at the distance of 30 feet, requiring about fifty trees to the acre.

THE PEAR,

Like the apple, is not indigenous to North America, but was introduced by the early settlers. It is a hardy, long-lived tree, and succeeds well here. New varieties to an almost endless extent, have recently been raised in Europe and the United States. Being cullivated on a more limited suale than the apple, I will only enumerate a few, whose merits cannot bo disputed. The soil best adapted to the growth of the pear, is a strong elay loam; light sandy soils should be deepened by trenching and liberal admixture of clay. They should be planted at the distamee of 25 feet apart, for standard trees. For a garden, pears wrought on quince stocks are now in much estimation. In this way they do not attain great size, but come early into bearing-generally the second or third year after being budded. Ten feet apart is ample space when on quince stocks.
Summer Pears.- English and French Jargonelle -Summer Bonchretien-Summer Bell-Madelaine Virgalieu or White Doyenne.
Fall asd Winter Pears.-Steven's-Genesee, Bartlett, Buerre Diel, Buerre Gris, Napoleon Buftum, Hazel, Chaumontelle, Orange D'Hiver, Winter Bergamot, St. Germain, Jersey Gratioli.

PLUMS.

The Plum thrives best on a rich clay soil. It succeeds so admirably here, and the fine sorts are possessed of such a rich luscious flarour, that a few choice rarieties should be cultivated by every one. In Toronto market, plums of the best varieties are readily sold ait four to five dollars per bushel, a price which handsomely remunerates the grewer. The following varicties are all of great merit:

White Egg or White Marmum Bonum, Green Gage, Prince's Imperial Gage, Bolmar's Washington, Duane's Purple, Coe's Golden Drop, Smith's Orleans, Huling's Superb.
An ornamental variety of the Plum, the Doubleflowering Sloc, is a remarkably liandsome shrub. In spring, when covered with a profusion of small double blossoms, it is universally admired. This is worthy of a conspicuous place near the houses of such as possess the taste to adurn the neighbourhood of their dwellings.

CHERRIES.

The culture of Cherries commends itself to every grower of fruit, from the farmer with his hundreds of acres, to the merchant and mechanic, with their village lot. The fruit is ripe at a season of the year when no other is to be had. Nothing surpasses it in beauty, delicacy and richness for the dessert, and some varieties are of great value for cooking and preserving. The tree grows rapidly, comes carly into bearing, is of a regular, handsome sliape, and well adapted for shade and ornament. It combines in an eminent degree utility and beaty. The following are all of great merit:- May Duke, Large Red Biggareau, Napoleon Biggareau, Black Eagle, Black Tartarian, Elton, Yellow Spanish, Transparent Elkhom. For preserving, Downing's Late Red and Morello are considered the best.

PEACHES.

Although the crop of Peaches in this neighbourhood is somewhat precarious, and not always to be depended on, yet a few trees of the early sorts are worthy of a place in cevery garden. In some parts
of the country, particularly west of this, it thrives well, and bears abundantly. I have occasionally seen as fine peaches as could be desired, grown in this neighbuouhood. I am of opmion that if none but the folluwing or simular early sorts-were grown, there is elery reason to believe that the cultuvation of this delicious fruit might be attended with more suecess:-Early Thllotson, Early York, Early Crawford, Large Early Red Rareripe, Yellow Allberge, Royal George.

It was intended to have noticed briefly what may be called the minor fruits-such as vines, strawberries, \&e.-but this communication having extended itself to a greater length than was anticipated, I will postpone thein notice, and that of urnamental trees, shrubs, \&e., to a future number.

The pruning of orehards should be done in March or early in April. Young trees require but little pruning; it is enough to keep the heads in proper shape, and to remove branches that cross or interfere with others. All suckers and side-shoots should be removed. Old trees, the heads of which have grown dense with branches, should be thimed out, to admit the sun and air. This improves very much the size and flavour of the fruit. In doing this, a pruning saw should be used. The limbs should be cut close to the tree, and the cut smouthed over with a sharp knife. No pruning should be done, if it can be avoided, after the sap has commenced flowing. The plum, cherry, and other trees, apt to give ont gum, which is termed "bleeding," slould not be pruned till midsummer.
In conclusion: it is difficult to persuade a great number of persons, that for transplanting, trees are not the better for being too $l_{i} \cdot g e$. Many insist that the larger the better; but my experience, and that of every observing cultivator, has convinced me that this is highly injudicious. Apple trees about six feet high, and three, or at most four years from the graft, are the most suitable for transplimting. Pears and plums the same. Cherries, two or at most three years from the inoculation, and peaches one year. Having been planted, they shoudd be carefully tied to a stake, to prevent them being blown about by the wind, and the land-or at least the land about the trees-cultivated and occasionally manured for four or five years. This system will ensure healthy, hundsome trees, and bring them rupidly forward into a productive state.

> I am, Gentlemen,
> Your obedient servant,

George Leslie.

CULTIVATION OF THE GOOSEBERRY.

To the Editors of the Canadian Agriculturist.
Gentlemex,--I send you the following brief obscrvations on the cultiation of the gooseberry, in reply to the inquiries of "An Amatéur."

The gooseberry in Canada is not one of those fruits that will grow and bear good crops except a good deal of pains be taken to prepare the soil, which ought to be a deep, rich loam. It is generally found that the gooseberry will do best in a situation that is partially shaded from the mid-day sum; at the same time, it will not do to be planted under the drop of trees. They require regular pruning; cutting the young wood well in, and leaving the centre of the bush free and open to admit light and air;
which will be a great means of preventing the fruit from being attacked with the mildew. The gooseberry is also subject to the altacks of the green caterpillar ; the unly safe cure fur which is to gather them off carefully with the hand, and repeat the operation every morning until you clear them off. There are a great many varicties of the gooseberry cultivated in England; some of the sorts attain to a very large size. The Roaring Lion has been known to weigh over an ounce and a half. But the kinds best adapted for Western Canada are those of a mediun size. The following varieties I consider suitable for a small garden:-

Red-Warrington, Crown Bob, British IIero. Grech-Larre Green Hairy, Green Bottle. White -White Smith, White IIoney. Fellow-Golden Yellow, Rilton IIero, Britamia.

James Fleming.

Toronto, March 16, 1849.

FORMATION OF HOT-BEDS.

Thinking that a few directions on this subject might be useful to some of our subscribers at this season of the year, we copy the following practical instructions from Mrs. Loudon's interesting work on Gardening for Ladies.
Many kinds of manure may be used in making hot-beds, but the principal materials in use in most gardens are stable manure, dead leaves and $\tan :-$ The first of these, which is by far the most general, cumsists partly of horsedung, and partly of what gardeners call long litter, that is, straw moistened and discoloured, but not decayed. 'lhe manure is yenerally in this state when it is purchased, or taken from the stable, for the purpose of making a hot-bed.

The necessary quantity of manure is procured, at the rate of one cart load, or from twelve to fifteen large wheel-barrowfuls, to every light, (as the gardeners call the sashes of the frames,) each light being about three feet wide; and this nanure is laid in a heap to ferment. In about a week the manure should be turned over with a dung-fork, and well shaken tugether; this operation being repeated two or three, or mure times, at intervals of two or three days, till the whole mass is become of one colour, and the straws are sufficiently decomposed to be torn to pieces with the fork.

The size of the hot-bed must depend principally on the size of the frame which is to cover it; observing that the bed must be from six inches to a foot wider than the frame every way. The manure must then be spread in layers, each layer being beaten down with the back of the fork, till the bed is about three feet and a half high. The suiface of the ground on which the hot-bed is built, is generally raised about six inches above the general surface of the garden; and it is advisable to lay some earth round the bottom of the bed, nearly a foot wide, that it may receive the juices of the manure that will drain from the bed. As soon as the bed is made, the frame is put on, and the sashes kept quite close, till a steam appears upon the glass, when the bed is considered in a fit state to be covered three or four inches deep with mould; observing, if the bed has settled unequally, to level the surface of the manure before covering it with earth. The seeds to be raised may
pither be sown in this earth, or in pots to be plunged in it.

The proper arerage heal for a hot-bed intended to raise flower seeds, or to grow cucumbers, is 60^{n} : but melons require a heat of 65^{\wedge} to grow in, and 75 to ripen their fruit. This heat should be taken in a morning, and does not include that of the sun in the middle of the day. When the heat of the bed becomes so great as to be in danger of injuring the plants, the obvious remedy is to give air by raising the glasses; and if this br not sutticient, the general heat of the bed must be lowered by making excavatinns in the dung from the sides, so as to reach nearly to the middle of the bed, and filling up these exeavations with cold dung, which has already undergone fermentation, or with leaves, turf, or any other similar material which will receive heat, but not increase it. When the heat of the bed falls down to 48° or lower, it should be raised, by applying on the outside fresh coatings of dung, grass, or leaves, which are called linings.

When hot-beds are made of spent tanner's bark or decayed leaves, a lind of box or pit must be formed of bricks or boards, or even of layers of turf, or clay, and the tan or leaves filled in su as to make a brd. Where neatness is an object, this kind of bed is preferable to any other; but a common hotbed of stable manure may be made to look neat by thatehing the outside with straw, or covering it with bass mats, pegged down to keep them close to the bed."
'the above mode of preparing hot-beds, recommended by our fair authuress, will answer well for growing melons and cucumbers, but if cabbage plants, lettuce, or radishes are required, the bed need not have more than 13 inches of manuie. The soil put on the hot-bed will require to be at least one foot thick; on the surface of this sow the seed, and give plenty of air as the plants adrance in growth.

Horticulture, \&cc.-It is truly gratifying to the lovers of horticulture and botany, to see the number of structures, from the unostentatious glazed pit to the magnificent conservatory, which have appeared around us within the last few years.

I am fully convinced that, generally speaking, there is no class or profession, which can erect and keep in repair, and worl at less expense a small greenhouse or vinery, than the farmer. There are many landlords, I know, who would object to farmers having structures of the kind, as they consider them superfluous, and not in accordance with the farmer's vocation. May I ask, why may not the farmer have his little greenhouse or pit to grow a few early grapes or potatoes, or his wife and daughters, a few ericas, camellias, or calceolarias? he pays his rent, and manages his farm well, therefore I assert that he has as much right, if he chooses, to erect a small house or pit, as his landlord his extensive conservatory. I know there are some landlords who object to their tenants enjoying the sports of the field, or in fact any enjoyment at all; but would have them continually plodding on in their daily vocation of tilling the soil and attending their stock without iny recreation at ill; however such fancies have their own reward, for (have always seen that where the most generosity and liberality exist, the best tenants and good management abound.
The various papers which follow on this subject will show what can be performed at a small cost and little
room; it is true that the produce cannot be great, at the same time many little luxuries can be obtained, which although intrinsic in value, are gratefully received as presents, and give pleasure to the donor to be able tn give a dish of fruit weeks before the out door season would allov.

There is generally some sunny corner or convenient spot, where a small house can be placed, if near the house so much the better, as by the great improvements which have taken place of late years in the system of heating by hot water and steam, the fire of the kitchen or sitting room will perform the office with little cost and extra trouble. A house fifteen feet long, and twelve feet wide inside, will produce much if properly managed, for fruits, plauts, and vines, and two glazed pits, eight feet by seven feet, will be ample.
If fruits are the object, the house should have a pit cight feet wide in the front part of the house, built of brick set in cement, so as to hold water for bottom heat, and a galvanized iron tank against the back wall, to heas the atmosphere of the house. In a house of this kind vines in pots could be grown so as to come in early, and ripen their fruit before the vines pianted outside are brought into the house in the end of April. A few dwarf peaches or nectarines also in pots; cucumbers in boxes on the tank at the back, while a hanging shelf and the front would contain a few pots of strawberries or French beans. The pits could be planted with early potatoes, so as to be ready by January, when another planting is made of the same, followed by cucumbers, melons, or vines, in pots according to the fancy of the owner.

If on the other hand, filowers are preferred, an upright glass in the front would be requisite, with the entrance in the centre, and a stage on each side, with galvanized tanks under each for heat. I would not advise the cultivation of plants that require a strong heat, but the more hardy denizens of the Cape, Australia, and China, among which some of our most magnificent exotics are found, many of these would only require the exclusion of frost, and plenty of air on all occassions when safe. A house of this kind, with little care and trouble, would give a continued succession of flowers.

First, in the autumn, the beautiful Chrysanthemums, followed in the middle of winter, by the Chinese primrose, Primula sinenses, camellias of all sorts, hyacinths, jonquils, tulips, narcissus; succeeded in spring by cinerarias, fuchsias, calceolarias, pelargoniums, epacrides, and Anstraliau plants, until the vines are brought into the house, and the weather sufficiently warm to allow of the plants being turned out of doors, for the vines to be accommodated with the temperature most congenial to them, when a ferw balsams, coxcombs, and other annuals can be admitted to fill the stages.
The pits would preserve during winter, verbenas, heliotropes, and othei half-hardy plants, for bedding out in spring.
Such a house would be erected for $£ 20$ or $£ 25$, and the pits in proportion. Glazed lights can now be purchased at from 9 . to 1 ls . per square foot, painted and all ready for putting up; a common carpenter could make the rafters and put the frame work together, and a bricklayer complete the remainder.

As I said before, the structure could be heated by the kitchen or house-fire, or from the boiler that cooks the food for the cattle: or at a small cost a boiler and pipes might be purchased; or the old smoke flues could be made if preferred, which, after all, are perhaps the best.-Thomas Keir Short.-Farmer's Herald.

Nothing is bestowed on man in this life, without great labour.-Horace.
Labour relieves us from three great evils-indolence, vice and want.-Volaire.

We think it right to inform our readers, that the following article is one of a series, from the pen of a gentleman of high scientific standing, whose critical acquaintance with the theory and practice of Chemistry, as well as Natural Philusophy generally, we hope to see oceasional proofs of in the pages of the Agriculurisit.

SCIENTIFIC NOTICES.

NO. I.

ON THE SUBSTANCES THAT FALL FROM THE ITEAVENS.
The consideration of these bodies may be divided into two parts. In the first we shall treat of those substances which are solid, and not easily altered in form; while in the second part will.be included those that are either fluid originaily, or may be rendered so by the application of heat.
In the first part we shall therefore speak of the socalled sulphur rains; the root, fish, frog and corn rains; as also of meteoric stones. In the second we shall describe the different forms under which water is separated from the atmosphere, and shall thus embrace the subjects of rain, hail, snow and frozen rain; and shall append to this a short account of clouds, from which these bodies are originally derived, as well as of fogs ath mists.
The phenomena are so constantly occurring, and so erntinually attracting our attention, that it is e.itraordinary how few persons ever give themselves the trouble of enguiring cither into their real nature, or into the canses that produce them. The following series of articles may perhaps scrve to give some of our readere, who may not have paid particular attention to the mater, a elearer insight iate the nature of these phenomena than they at present possess.
T'o commence with the first on our list, "The sulphur rains." How musually prevalent is the ilem that sulphur or brimstone oecasionally falls from the sky! We find the same idea extending in all countries-for in almost every part of the would the phenomena has been observed, under precisely similar circumstances. We find, indeed, that in some localities the so called sulphur rain is of much rarer occurrence than in others: thus, in some parts of England the Jellow deposit which characterizes the phenomena is scarcely cier seen, while in every part of Canada it appears ceery year.
Sometimes the quantity of the yellow substance that falls is so great, as to cover the whole ground with a thin coating, like snow ; but it is more generally only seen on the surface of water in butts and tanks, or on the edges of puddles. The substance floats casily on water, without immediately becoming wetted; and it is in such situations a; the abovementioned, that it more readily attracts our attention.
It is not to be wundered at that this substance should have receiced the name of sulphur; ;its yellow colour, its granular structure just like common flowers of sulphur, and its burning when thrown into the fire, are sufficient reasons for the prevalence of the opinion regarding its composition. If it were
sulphur, howerer, we could perhaps only account for its presence in the atmosphere by supposing that it had been ejected from some active voleano, and brought to us by the winds. Were that the case, however, these sulphur rains would probably occur at one season of the year just as well as at another; while we find, on the contrary, that they oceur, at least in this country, almost exclusively in Juno or July. It does occasionally happen, particularly in some parts of the world, that these sulphur rains are observed in April or Scptember, or other summer months; but by far the greater number take place in those above mentioned; from which we may conclude that there is some cause existing every year at that particular period which produces the phenomena.
A microscopical examination of the yellow substance affords us immediate insight into its nature, and we find it to consist of minute grains of the yollen of plants. The substance that we generally find in Canadn, is the pollen or fructifying principle of the different species of pine, the flowers of which arrive at maturity and produce abundance of pollen just about the time when these sulphur rains are usually observed. The cones being charged with this light substance, if a high wind should arise and drive through a pine forest, it will naturally earry with it, by the agitation of the trees, a large quantity of the pollen, which will not be deposited from the air for a considerable time, or will perhaps only be carried down by the first rain that falls. We find, indeed, that on the side of a pine forest from which the wind blows, there is no yellow substance to be found, while it extends for miles on the other side in the direction of the wind. All doubt as to the origin of the substance may be removed by collecting some of the sulphur rain, and also some pollen from the cones of the red and white pine, when, on examining them both with a tolerable mieroscope, they will be found to be exactly the same-the powder in both cases consists of small particles, not perfectly globular, but rather kidney-shaped, a form that is peculiar to the pollen of all pine trees. All plants produce pollen, the grains of which vary very considerably in shape, each plant having a peculiar form of pollen; and hence we can easily determine from the shape of the grains, the plant from which the polien is deriyed; and as some plants come to maturity and prodüce pollen at different seasons, it may orcasioually happen that a sulphur rain will bo at other seasons than that mentioned alove as the common one, and which will be found to consist of the pollen of other plants than pines.

That the yellow substance called sulphur rain, does not really consist of sulphux, has been proved since the time of Scheuclizer, but the idea of its being so remarkable a substance was too attractive to be easily relinquished. It has been stated that lightning when passing over a wall or other surface sometimes deposits a quantity of sulphur, and it has also been stated that these sulphurs, or to speak more correctly, pollen rains, are observed principally during thunder storms, and hence the one has been supposed to depend on the other. The observation is probably correct, but the explanation of the circumstance seems to be, that the period when the pines become loaded with pollen is that part of the summer when electrical storms are prevalent, and as they are usually either preeeded or followed by
violent gusts of wind, we can easily understand why the two phenomena appear together.

Whether sulphur is ever deposited from the ntmosphere seems to be a matter of doubt; it is by no means impossible, when we consider the immense quantities of vapours of sulphur produced by volcanoes, but the only authentic record of any such precinitate or deposit that I lave met with is in one of Berzelius' Annual Reports (I unfortunately cannot lay my hands on the article at this moment). The substance was examined by a competent chemist and proved to be sulphur.
In the years 1785 (in the month of October,) and 1814 (in July,) a curious phenomenon was observed in Camada, which has received the name of the dark days; during the prevalence of this peculiar appearance, a yellow substance was observed floating on water, which is described by Chief Justice Sewell in his excellent paper on the subject, as having consisted of sulphur. He attempts to explain the phenomenon by the assumption of a volcanic eruption in Labrador; but whatever may have been the cause of the darkness, and other circumstances (such as a fall of ashes, \&c.), there is no ground for supposing that the yellow substance observed was anything but the pollen of some plant or other, especially as storms of wind, thunder and lightning, prevailed for a considerable time.

HI. C.

ROAD MAKING.

To the Editor of the Canadian Agriculturist.
Sir-The most important improvement that our country requires, is improved Roads. We have got canals enough for a while-let us now have good roads to get at them. No country cin prosper until its principal thoroughfares are thoroughly improved; and unless we very soon get good roads and railways in Canada, we will be behind all the civilized world. See how our neighbours to the south go a-head!-and go to Europe, especially Britain, and see what roads and railways they have there!
I am glad to sce a general Bill brought in below, for Joint Stock Companies in making roads and bridges. I hope they will make it as liberal and encouraging as possible for contractors.
Many people dread and object to being obliged to pay tolls on a good road. Why should they, when they can travel with double and treble the load, with more ease, more speed, and more comfort, than they did before? Why, the very saving in tear and wear of wagon, harness and horse-flesh, would more than pay for the toll-bars. What a difference in spring, betwixt a good Macadamized or planked road, and mire and mud to the axie!-and that is generally the time when it is our special interest to get to market. It would be a great improvement if our roads were even drained on each side and gra-ded-much better still if a portion were Macadamized or planked. Where materials are at hand, I should think Macadamizing the roads the most advisable. Is there no machine for breaking stones for roads? I have never heard of any but hammers and human hands. Still I think, in this wonderful age of discovery, some machine might be contrived, with the prever of a small steam-engine, to move along, which would break the stones wholesale for roads, at a cheap rate. I wish some mechanical
genius would set his brains to work, and produce something effective for the purpose I have mentioned. No doubt it can be dond.
W. F.

Brockville, Fcb. 19, 1849.
Dear Sir,-I was much struck with an article in the last number of your excellent journal, entitited "Ice in hot ashes," in which a traveller deseribes his having found heary crystals of ice, resembling shark's tecth, and all set in oxe way, among a heap of warm ashes; and the aforesaid traveller compares the formation of ice in such a locality to the production of the same substance in a red-hot crucible, an experiment which has lately been made. Now, with all due humility, I would beg to remark that in the experiment alluded to, the vessel has to be made very hot-nearly red, and it seems probable that if the ice in Mount Xtna had been produced from is similar cause, the incautious traveller would hive burnt both his fingers and the soles of his fect, which he does not mention-in fact he says the ashes were warm. I should be sorry to throw the least doubt on so curious a circumstance, but I may perhaps be permitted to ask whether the abovementioned traveller may not have mistaken for ice, the beautiful transparent crystals of Colestine or sulphate of strontia, which are very heavy, are as clear as water, have very much the appearance that he describes, and are found in great abundance on the sides of the craters of volcanoes?
Hoping I may be wrong in my supposition,
I remain
Incredulous.
The Electric Ltget.-The electric light must not be considered a new discovery. One of the earliest experiments performed by the aid of the galvanic battery was the producing of an intense light, by transmitting the electric fluid through the interral between two points of charcoal. Nor is the attempt to adapt the electric light to purposes of general illumination anything new. Seven years ago, an American patented an invention for this purpose; but obstinate difficulties were in the way. It was necessary to procure charcoal of a peculiar kind, unvarying in the density of its substance; and to regulate the voltaic current in its passage aeross the charcoal points. Any variation in the condition or position of the points, or the slightest diminution in the voltaic current, produced a change in the degree of quality and colour of the light so as to render it unavailable for practical purposes, and indeed, it often occurred that one of the points falling from its position, left the surrounding space instantly in. utter darkness. Mr. Staite, the patentee of the yew invention, however, reduces coke to impalpable powder, makes it into a paste with water, forms it into sticks, and exposes it to violent heat. He then dips the sticks into meltec sugar (the chief constituent of which is clarcoal), so that eve.'y minute interstice may be filled up, and exposts it to leat again. The result is a carbonaceous mass of density superior to any that can be obtained from wood, and which can easily be obtained in the form of straight sticks, an impossibility with charcoal made from wood. The other desideratum, viz. a steady light, dependent on a regular flow of electricity and the maintainance of certain given relations of position between the two carbomaccous points, required certain mechanical appliances of a self-acting kind. Thus, in order to the development of the light, it was necessary that the two charcoal points should be
first brought into contact; then separated and maintained (notwithstanding the variation of the charcoal points as the result of the electric action) at a given and unvarying distance from each other. These objects have been accomplished by passing the electric current itself through a coil of copper wire surrounding a bar of soft iron. The bar becomes magnetised, and is adapted to rise or fall as the current is strong or weak. 'lhese motions of rising and falling act upon the escapement, by means of which an equal current of electricity is alnays maintained, and the charcoal points held at a distance from each other proportionate to the passing amount of electric current. Thus the difficulties of this invention are said to be overcome. It has been stated that it amounts only to one-twelfth of the cost of gas-but this with regard to expense, is doubtful. The advantages of the light are, that it does not deteriorate the air of the apartments in which it is employed, and will not blacken or soil the most delicate fabrics, being unacompanied by smoke or vapour; there is no danger from fire; its light is white, and exhibits objects in their true colours; its intensity is much greater than that of gas, and may be employed on mailway tras , on board ships, and in mines, without danger of explosion.

TIIE ECONOMY OF CREATIVE POWER.

The I.ord of hosts, wonderful in council, and excellent in working."-Is. xxime, 29.

It is a thing observable through every province of nature-a pincinde to which every science lends its authority, that the pomer of Gud, infinite in its develupmunt, is infinituly cconomized in its operation-a principhe to be traced in every manifestation of force in inamimate matter, and uader wery form of independent meticu. All that we call design in natual things has in some way a direction to it. The very weed undur unr feet shews it in the form of its stalh; and the tree of the forest shapes out its trunk, moulds its branches and tapers the very stems and fibres of its leares, in obedience to it. That economy of creative power which thus manifests itself in the works of God, infinitely perfect in its degree, has its remote but visible type in the imperfect husbandry of our efforts, which impels us to use the simplest possible means of effecting that which we have to do, and which is implied in what we call the best muans of doing it. In us this economy has for its ouject. the preservation of our living powers; and for its immediate origin, a sense of lassitudes and fatigue, for that end especially implanted in every living thing. In him by whom this sense was laid upon us as a law, but whose own arm is "not straitened," and who "fainteth not, neither is weary" (Ps. xl. 28), that which in us he has made a necessity of nature, is but a principle of wisdom in operation.
let us now seck if there be any evidence by which it is given us to perceive the operation of this principle in the architecture of the heavens. Let us listen if, in the stillncss of the universe, there be not a corice re-ch:oed from worlds which, "without speech or language," tratcrse its unfathomable regions, and stars which silently repose in its depths-the voice of revelation: "by II" wisdom hath lie made the heavens, anc. stretched them out by his understanding."

It is a high privilege thus to beable to commune with God in his works-to feel (as it were with a sense of the anderstanding) his wisdom guided the hand of his power. It is to enjoy here a linowledge of which, little though it be, that of heaven, as far as it includes the mssteries of creation, cannot but le a continua-tion--to hold here a few links of a chain which proceeds from the throne of God. And although now it is to the silent monuments of nature that the researches,
of science are limited, and in respect to these although now we see but as " through a glass darkly," yet is there a spirit of devotion which, regarding these things as beginnings, with a faith almost invigorated into knowledge, anticipates, walking in this twilight,-the day light of heaven-when we shall see "face to face," and "know even as we are known;"--a time when to the soul, now released from the corruptible body, in some degree (however slightly) schooled by the instruction of faith and knowledge, and no longer straitened by the imperfections of sense, the works of Grace, the works of Providence, and the works of Nature, shall present, under one vast but simple and united scheme, the equal evidence of God's mercy, his wisdom and his power.-Moseley's Astro-Theology.

Etcmag and Engraving in Black Marble,-An interesting feature connected with the manufacture of black marble, is the depicting, by the application of an acid, representations of figures, fluwers, ligyptian hieroglyphies, and other objects upon a polished surface. The method employed in doing this kind of engraving is similar to that pursued with respect to copper, viz., by first tracing with wax or varnish upon the marble the object intended to be represented; then, when the preparation is perfectly set, with a point marking in the finer parts of the figure, it is then covered with an acid, which bites off the polished surface of the marble, which was not covered with the preparation, leaving those parts which were covered standing in slight relief; the wax is then cleaned off. Thus it will be seen that any one with a hnowledge of drawing could practise this part of the art; not so, however, with regard to another style of engraving on marble, which I will nıention, and which is peculiarly English, such productions fromabroad being unknown There is no preparation of wax, or application of acid used here; the entire process is done by graver's points and diamonds, hence called the "diamond engraving." It must be observed, that for effect in this work, the artist is confined toa most limited space, viz., from a black polished surface to a grey ground, the natural colour of the marble before it is polished. -The Builder.

Wheribannows.-The greater the diameter of the wheel of a barrow, and the smaller the axis or spindle on which it turns, the less power will be required to drive 'it forward; for the friction is proportionately reduced.

The diameter of the wheel might be increased with manifest advantage to double that now employed, for even then it would be below the point of draught or impulsion, (the hand of the labourer,) and the nearer it can be brought to a level with this, the more efficiently he exerts his power.

The breadth of the wheel's periphery, or felloes, might be also increased tro inches advantageously, for as it is aloays employed upon a surface in some degree suft, such an increased breadth mould decrease the depth to which the wheel of a loaded barrow usually sinks into the soil, and would proportionately decrease the power required to overcome the augmented opposition. In a wheelbarrow so constructed, a man might more with more case S cwt., than he now impels 5 cwt., which is a full barrow load.

If a wheelbarrow be made of wood, the feet and handles should be clasped with iron, and its joints strengthened with bands of the same metal. If so guarded it will outlast tiso others left unprotected.
l3arrows are now very frequently employed, made entirely of wrought iron, and Mr. Stration informs me that they weigh $92 l \mathrm{bs}$, being but little heavier than common wooden barrows. The wheels are of wrought , iron, 16 inches in diancter, and the ends of the gud-
geons or spingles run in brass bearings. This reduces the friction, or makes, in customary parlance, the barrctw "run light." The face of the felloes is from $\frac{1}{2}$ inch to 3 inches, according to order. They seem to have been approved by those who have used them, both in this country and in the West Indics, but I have never had aia opportunity myself of testing their quali-ties.-Gardener's Almanack.

Am Churn.- Some time ago we gave a notice of a newly iuvented churn, called the " A tmospheric Churn." 'The principle of its action, in bringing butter, was the forcing a stream of atmospheric air through the cream during its agitation, while being churned. It mas a patent, and it is said a right to make and vend it in a single state, has been sold for ten thousand dollars.
It seems, horever, that the principle of forcing air throngh cream, in the process of butter making, is not new. If this be the fact, all that the patentees can hold, is their mode of forcing the air through, and not the principle of it.
Mr. Nathan N. Barlow, of IIomer, N. Y., has published a communication in the last Boston Culuvator, on the subject of atmospheric churns, accompanied with a draving of one, which he says be invented in 1536 . IIe found, by experiment, that although the mode he adopted brought the butter rather quicker than the enmmon mode, he could not collect the particles of butter that formed together, into a mass without much trouble, and that the dash churn still took precedence, and he applied the principle to that. This he says was a great improvement; for it not only causes the cream to change sooner, by communicatine a stronger ebullition than can be obtained from the simple dash churn, while those who have them in use, declare they obtan a larger proportion of butter, detcrmined by actual weight.
I construct the handle of the common dash, hollor, with a ferule at the top, and insert in that ferule a calve that opens outwards, (downyards?) so that when the dash is raised, the air draws in, and when it descends, the valve closes; and thus you perceive that the air is drawn into the churn by the vacuum formed by raising the dash, and by the operation of churning there is a continual curreut of air passing through the cream in the churn.
We perceive, by the cut in the Cultivator, that there Is a short tube inserted through the lid of the churn, through which the air escapes. Thus by using Mr. Sanlow's invention, you have an atmospheric churn, thich combincs all the advantages of the old dash churn, with the new atmospheric action. All that you need do is to have a hollow handle made, with a valve or clapper fixed into its upper end. If you wish to be a little nore systematic, you can have a thermometer set into the side in such a manner as to communicate with the cream, and by keeping the crean at a temperature of fifty-nine degrees, you will have ail the requisites of a philosophical churn. Then, with a lot of good thrifty cows to yield good rich cream, and a good hund to clurn, and a good neat wife with good clean hands to work it in a goou thorough manner, you will nave real gnod butter-no mistake,-Maine Farmer.

A Process of bardenisg Hides.-The following patent process for hardening hides, extracted from Examiner Pag's Report, will be found not a little interesting. The hide is hardeued and rendered as transparent as horn.
In the first place they are submitted to the sweating operation, or liming, for removing the hair. They are then submitted to the action of pormerful astringents, such as sulphuric acid, alum or salts of tarter dissolved
in water at a high temperature. During the operation of cleaning the hides of the oil, they are rubbed or friction is applied in any convenient yay, whereby the hide becomes thickened; and after this process is finished they are rinsed in warm water and dried. After being dried they are submitted to the action of boiling linseed or any drying oil, and retained in the hot oil until a yellow scum appears on the surface of the hides, when they are withdrawn. If it is desired to impart color to the material, as staining it in imitation of tortoise shell it is done while in the oil bath, and when removed from the bath it is suhmitted to pressure in moulds for the formation of yarious articles, as knife handles. \&e., for the article when it comes hot from the oil bath, is very soft and pliable but when allowed to cool becomes hard and susceptible of high polish.

Nef Saw Fifing and Setting Macmine.-Messrs. Norton \& Cottle, of Holmes Hole, have recently patented a machine for filing and setting sars, which is very valuable, enabling the operator to set and whet the tecth of saws in such a manner that every tooth will be equal in size aud length, the pruportion being graduated by an index, and so adjusted as to suit the teeth of sars of every description. Saws that have been used and become useless in consequence of bad filing can be recut and made as valuable as new. The set is attached to the machine in such a manner, that when the filing is completed, no alteration is required in the adjustment of the saw to complete the setting. The inventors have found, by experience, that the hardest saws can be set without breaking or injuring the teeth. Sars considered in a measure useless, having passed through this machine, are said to work perfectly easy, and perform much faster than those filed in the usual manner, and the teeth being all of an equal length, will not require filing as frequently. These machines, if not too expensive, we think will come into extensive use.-Far. \& Mec.

Seming Macurne.-Mr. Lerom, of this city, says the Transcript, has invented a" liotary Sewiog Machine," whick will sew a yard a minute, with the "fast stitch" made in sewing the scams of pantaloons, \&e. The workmanship is excellent ; and unlike that of other similar machines, the stitch will not pull out. It seems as strong and perfect as the best sewing by hand. The machine is simple in its construction, small and portable, and not likely to get out of order. To housewives and tailors we should think the contrivance would be one of great utility.

An Atnospmertc Mlath Telegrapy.-Among the nev things claining a patent in Washingtou, is an invention of Mr. Van Vechten, of the Torando Demociat, N. Y., who claims the discovery of a plan by which mail aud all express matter can be transmitted one thousand miles an hour, by means of an Atmospheric Telegraph. A tube is formed of a given size and length, and by means of an air pump, a carriage is propelled of a cylindrical form,-the air operating on a piston head or driver, which is in the rear of a train of cars.

Coatma Telegraph Wires.-Mr. B. H. Green, of Princeton, has patented a machine to coat telegraph wires, after the same are stretched ready for use on the posts. The composition at once insulates the wires, and prevents them from rusting. The machine, weighing about eight pounds, is hung on the wires, and drawn along by a cord from post to post. The brashes used in coating supply themselves with the composition.

momestic amo fliscellancons.

SPEAK GENTLY.

BY 1. BATES.
Speak gently!-It is better far To rule by love, than fearSpeak gently-let not harsh words mar The good we might do here!

Speak gently! Love doth whisper low The vows that true hearts bind: And gently friendship's accents flow; Affection's voice is kind.

Speak gently to the little child! Its love be sure to gain;
Teach it in accents soft and mild;It may not long remain.

Speak gently to the young, for they Will have enough to beai-
Pass through life as best they may, 'ilis full of anxious care!

Speak gently to the aged one,Grieve not the care-worn heart.
The sands of life are nearly run, Let such in peace depart!

Speak gently, kindly, to the poor; Let no harsh tone be heard;
They have enough they must endure, Without an unkind word!

Speak gently to the erring-know, They may have toiled in vain-
Perchance unkindness made them so; Oh win them back again!

Speak gently! He who gave his life To bend man's stubborn will,
When elemems were fierce with strife Said to them, " Peace, be still."

Speak gently !-'tis a little thing Dropped in the heart's deep well; The good, the joy which it may bring, Eternity shall tell.

Accidents in the Family.-Fractures.-The most inexperienced eye can often detect that a bone is broken, for sometimes the skin is wounded, the muscles are torn, and the bone is plainly seen, with perhaps one end protuading theulgh the wound; but independent of this, when the skin is not broken, the limb is evidently seen to be deformed, bent, one portion forming an angle with another, and it is obvious this cannot occur without fracture of the bone. But whether a fracture is plaiuly discerned or only suspected,' the treatment to be employed till the arrival of a medical man is very simple. The limb, if it be a limb, is to be laid in the position easiest to the patient: the casiest position must evidently be that in which the limb is, as nearly as possible, in its natural condition, when the broken bone has no weight to support, and the ends of the bones are prevented from rubbing on each other and the surrounding parts. Therefore, if the leg be broken below the knee, the plan is to put the leg and thigh quite straight, while the patient lies on the back; but if left to itself in this position, the foot must evidently fall to one side or the other, and turn one broken end of the bone upon the other, so it is necessary to
keep the foot straight up, either by holding it there, or by means of pillows placed along each side of the limb; and it may be convenient to know that, when the assistence of a surgenn cannot at once be procured, very excellent pillows may be formed extempore, by making some large linen bags, and half filling them with sana, previously dried and sifted; one large bag should be laid under the leg from the knee to beyond the heel, and depressions made in it for the calf and the heel; two or three other bags, longer and less broad, should then be laid on either side of the straightened leg; and by this means the limb is kept quiet, and in a convenient position, till such time as the surgeon can arrive and "set" the limb by applying splints, which are merely mechanical contrivances, of a less rude kind than the sand pillows described, but serving the same purpose, viz., to keep the ends of the bones together without permitting movement.

Again, when the collar bone is broken, and which may be suspected when the patient camot raise the hand to the head, it is obviously very important to take off the weight of the arm by means of a sling, and this often gives much relief. A sling should also be used if a fracture of the upper arm is suspected. If a fracture of the lower arm is suspected, the best way is to lie down in bed, and to place the fore arm on the large sand-bag already mentioned, with the arm bent, and the thumb kept up, or, indeed, in any easy position. With regard to all fractures, it is difficult to go wrong, if it be remembered that the principle is to put the limb in the position it would be in were it not broken, and to prevent one end of the broken bone from rubbing upon the other. If the surgeon cannot at once attend, it is often very useful to apply cold water or cold lotions continually to the part, by means of linen rags, to keep down the inflammation, in addition to employing the means just mentioned.

Disiscations. - When a limb is out of its socket, it is advisable to replace it as soon as possible, and therefore medical aid should be immediately sought for; -beyond this simple remark we shall say nothing, because without much description it would be impossible to tell when a dislocation had occurred; and even then such imperfect knowledge would be dangerous, as a dislocation might be mistaken for, or complicated with, a fracture, and the remedies necessary tor the former would do incaleulable mischicf to the latter.
Contusions, or Severe Bruises.-In all contusions the dark appearance, and the successive changes of colour which occur in this, are owing to blood poured out from ruptured vessels. In the treatment of contusions, the first thing is to keep down inflammation by meaus of leeches, cold evaporating lotions (such as one part of spirit of wine and six parts of spirit of Mindererus), and to mitigate pain by laudanum fornentations in the intervals of the applications of the lotions. When the culour begins to change, the absurbtion of the blood may be accelerated by rubbing the part briskly with camphor liniment, or any common stimulating application.

Sprains.-In the treatment of sprains the most agreeable runedy is rest, with constant application of warm flamels dipped in warm laudanum, or warm poppy fomentations; aftervard the part may be bandaged with a broad linen roller.

Wuunds.- When a severe incised wound (i. e., a -ut with a sharp instrument) has been inflicted, and medical attendance cannot immediately be obtained, the attention must first be Jirected to the bleeding: supposing the wound to be on the arm or leg, if there be a mere oozing, a simple trickling of the blood down the limb, then it will probably sooustopof i.self; linen dipped in very cold water may be applied, and it is of great importance to elevate the limb, so that gravity may not assist the flow of blood: thus if the wound be on the leg, the person should lie on the bed, and the
leg be raised high on pillows; if the arm be the part injured, it should be held above the head; but, supposing the flow of blot do be more violent, supposing it to gush out in a large stream, as it would from a large cut vessel, it is necessary to stop such a jet, else so much blood may be lost as to induce alarming fainting; the best plan is to put the finger or fingers boldy into the cut, and press upon the part from which the blood seems to come without any regard to the pain it may give the patient; the fiuger must not be removed till the surgeon arrive and tie the wounded vessel with a ligature. When the bleeding has stopped, or nearly so, the next object is to bring the sides of the cut into contact, so that they may unite: this is done by means of adhesive plaster, long stripes of which are applied, so as not merely to cover the wound, but to draws its sides together; a very little reflection will casily show any one how a particular cut is to be dressed, as the covering it with plaster is technically termed. If the nound be not merely a simple ent, but complicated with a severe bruise, the straps of plaster must not be firmly applied, the sides of the cut must not be forcibly pulled together; indeed if the contusion be very great, and the bleeding moderate, it may be better not to apply plaster at all, but to use warm poppy fomentations for twenty-four or thirty-six hoirrs, or to apply a bread and water poultice.
Scalds and Burns.-Scalds, when caused by boiling mater, will, it is obvious, be always the same depree of severity; directly a scald has happened, it is advisable to prevent the action of air upon it, and this is done by sprinkling it thickly over with flour, or covering it with cotton wool, which must not be removed till the seald is well, which will be probably in ten days or a fortnight. When scalds are caused by water not boiling, the lead liniment recommended for slight burns is the best application.

Burns, are much more dificult to treat, as they may be of very different degrees of severity; in the slighter kinds, in which there is merely redness and blistering of the skin, cotton vool or flour may be used, as in scalds; or the following liniment may be constantly applicd, viz.:-Take of undiluted Goulard's solution of lead (liq. plumb. diacetatis), $\frac{1}{2}$ ounce; olive oil, $\frac{1}{2}$ ounce; water, Sounces; mix the oil and lead solution, shake them well together, and add the water; make a liniment, to be applied by a camel's hair brush to the burned places, or spread upon linen and applied to the parts.
If the burn be more severe, and if a part or the whole of the substance of the skin be destroyed, the turpentine liniment is prefurable; if this cannot be obtained from a draggist, then flour should be applied as before. When four is used to burns and scalds, and the part is hept quict, the pain soon ceases. If after a burn the face be deadly pale, and the puise unfelt, a tea-spoonful of wine or brandy, accorditg to the age of the child, should be given from time to time.
Means to be used in Recovery from Drouning and Sulffocation.-When a persou has been telen out of the water, and is ins msible, he should be conveyed as speedily as possible to the nearest house or cottage; but if there be no residence near, that is to say, within troo or three minutes' waik, it is necessary to use the measures for restoring animation on the spot; although recoverable when talen from the water, the patient may die in ten or fifteen minutes transit, is waut of certain necessary measures. It is necessary that every buly should know that death occurs in drowning becanse the water prevents the entrunce of air into the lungs; the small quantity of water which gets into the luugs is of no consequence, and still less that which passes into the stomach, which occurs during life, or if the body be not drowned alive; coisequently, the direction sometimes given in old books of holding the head down, in order to druin off the water, is not only
useless, but positively hurtful; but if death occurs from the want of air, it is obvious that the thing needful is to restore air to the lungs as fast as possible, and this is done by artificial inflation. The patient should be laid in the bed, and hot bottles may be applied to the feet; but while these are geting ready inflation must, if possible, be commenced: in the absence of a regular apparatus, it can be readily performed with a pair of bellows; one person shonld close the muuth, and one the nostril of the patient very accurately, and in the open nostril the muzzle of the bellows should be inserted by another person; then the nostril slould be pressed round the muzzele, so that when the air is blown it may pass through the nose, and not out into the apartment; directly the position is rightly attained, the bellows must be worked, and the air from them will pass into the lungs; the blowing must be very gentle, else some larm may be done to the structure of the lungs; the rising of the ribs will at once announce that the chest is filled with air; then the bellows must be removed, the nouth and nose opened, and the abdomen and ribs pressed upon so as to expel the air; then the bellows must be used again in the manacr described, and the series of changes persevered in for a loner time, or till recovery occur; during this time warmth may be applied by means of hot boitles, friction, \&ce. When a house is some may off, and the bellows cannot be procured, inflation may be performed by any person closing the nostrils of the insensible man, and then applying his mouth that of the patient and blowing into the luags, then pressing down the ribs as before to expel the air, and then blowing in again. Before the operator breathes air in, he sloould make three or four deep inspirations and expirations, so as to change the air in his lungs, and get it as like atmospheric air and as free from carbonic acid gas as possible. These means should be persevered in for a long time; hope should not be given up, for recoveries have occurred under very untoward circumstances.
Suffocation.-In many cases the inflation described above is the remedy applicable here also: thus, if a person be suffocated in a brewer's vat, or by any mephitic gas, the body should be brought into the air, and the above-mentioned process immediately be had recourse to; medical aid, of course, will always be speedily obtained.
[For the recovery of persons drowned, or suffocated by non-respirable gases, experience has shown that to throw suddenly and violently several huckets of water successively against the spine is a mode of concussion which will be found successful if life be not extinct. This method of treatment is of vastly more importance than the inflation of the lungs by bellows, rolling the body upon a barrel, \&e., tueither of which can be relied on sith half the certainty of resuscitation. So soon as by this method the signs of life become unequivocal, by commencing respiration, groans, or involuntary motions of the head or limbs, indiciting sensibitity to the concussion upon the spine, the body should be wrapped in blankets, and heat applied, as directed in the foregoing section.]
The Scenery on the St. Latyrence.-Lofy and foaming aie the surges which a gale of wind raises on the wide surface of Lake Untario. The traveller from Toronto to Kingston is quite as liable to certain disagreeable sensations as his friend on board the Atlantio liuers. After a night of decided misery, how delightful. it is to rise out of bed, ascend to the hurricane deck of the mail steamer, and find her ploughing her way through calm waters between those lovely wooded islands which defend the quays of the latter city f:om the swell of the lake. Kingston is situated on an inposing eminence at the point where the majestic St. Lawrence flows out of Ontatio in a stream twelve miles
wide. The morning was without a cloud, the sun pouring down his rays from a summer sky, as we steamed past the batteries of Fort IIenry and entered the region of the "Thousand Islands." Tha river, of great depth, yet clear as a Highland stream, reflected the foliage of the trees in its glassy surface, and gently laved the rocky banks with the waters which were displaced by the revolving patdle-wheel. This archipelago, it is said, contains 1,500 islands, a considerable number of which are low and densely wooded, but the greater part are composed of bold cliffs, rising abruptly from the water's edge in most romantic forms. The caverns and grottocs, the deep arborvita groves, the natural पuays of rock, the pine woods, the odoriferous banks of wild flowers, the maple shades, the creeks and capes and promontories of these islets, vividly recalled to our mind the descriptions of Fairyland, that mysterious paradise which filled us with such varied emotions in the days when we were young. Well might the wandering Algonquin steering his canoe in these channels, before the white man drove him to the north, murmur a prayer to the Great Spirit that he would inhabit a like lovely region for ever after death. On passing this Canadian Eden, the scenery of which is unequalled on any of the American rivers, the St. Lawrence contracts to about two miles in width, and flows on majestically between well cultivated banks. This is the only part of the frontier where the provincials can bear comparison with their democratic neighbours in point of enterprise and prosperity. The British villages are actually about as populous as those on the American side. Brockville and Prescott are thriving little towns, rivalling even the busting Ogdensburg, a place of considerable trade in the state of New York. The appearance of the river here is truly magnificent, as it sweeps swiftly along in one unbroken stream of crystal-like purity more than a mile and a half wide. A very short way farther down the channel contracts again, the current becomes stronger, and a certain bustle on board the steamer warns the passengers that "the rapids are near." A sudden bend, meanwhile, revealing the commencement of the Galop Falls, che least important of the obstructions to the navigation. Not many miles below them, a strong foree of sailors again musters at the wheel, the waters acquire renewed vigour, and thesteamer, like an Indian on the track of his enemy, darts down the splendid rapids of Long Sault. Away she goes on the top of the angry billows, scarcely avoiding the sharp pinnacles of rock which rise out of the foam in frightful proximity to the vessel. Dark forests nod funercally over the boiling waters, which are now tossed aloft by some sudden rock, and anon rush with fearful impetuosity in the circle of a whirlpool. Several islands civide the river at this point, on passing each of which a momentary glance is obtained of the roaring cataract beyond them, The quiet surface of the Lake St. Francis, an expansion of the river below Cornwall, affords a striking contrast to the stormy scene above. Here you meet the upward bound steamer, and pass the rafts of timber on their way to the depot at Quebec. At Coteau du Lac, the roar of angry waters again is heard, and the frail bark once more quivers under the buffeting of the waves. The exciting rapids called the Cedars and the Arcades follow in quick succession. At one spot during the descent of the former, there is a whirlpool close to the navigable channel, into which a single erroncous turn of the helni would hurry the vessel, to be dashed in a few moments to a thousand pieces. What a sublime spectacle it is to witness the fury of the impeded waters from the deck of the steamer, as she purstes unscathed her serpentine course in the midst of danger! At Lachine, on the opposite side of the Lake St. Louis, the traveller disembarks, and after a short ride comes in sight of the lofty towers, which proclaim to
the inhabitants of wide spread plains, that the exiles of the Roman Catholic Church are predominant at Mon-treal.-Correspondent of the scottish Press.
A Bryouac in Canada.-Baptiste, halting, strikes his axe in a tree, and tells us we shall in that spot spend the night. Whereupon the half-breed and the Canadian, leaving their tabogins, cut a couple of splinters out of the next pine, which, with their axes, they fashion into rude spades, and clear a space in the snow about twelve feet square, and three or four in depth. Meanwhile Baptiste has cut down some firewood, which is laid across the middle of the space, and has also, by some inscrutable means, discovered a spring in the neighbourhood, from which the kettle is filled, and hung over the fire depending from a long stick, the further end of which is thrust in the snow. Jenkin and I have employed ourselves in cutting down all the young fir-trees-sapins, the Canadians call themwithin reach; and strippung off the branches, whichlook like plumes of green ostrich feathers, we strew them on each side of the fire for a bed, stick some around the snow walls of our residence to act as tapestry, and thatch a small roof overhead, to keep off falling snow, with the remainder. The space on one side of the fire is allotted to our retainers, the other to us; and, spreading a buffalo robe over the sapins, we lie down and change our wet mocassins and leggings; then we unpack the tabogins and pile our provisions around-the flour, biscuit, coffee, pepper, tea and coffee, butter, and onions. We had brought a small keg of brandy with us, which was always stuck in the snow over Jenkin's head. Boniface makes pea soup; Da Fini fries pork and onions in the pan; we unpack our canteen and get our knives and forks ready. But Jenkius and I hated fat pork like a couple of rabbis, but we managed, notwithstanding, to make a dinner; and then, tired with our unusual exertions, rolled ourselves in our blankets, stretched our feet to the fire, and slept like tops, leaving our three friends jabbering and eating on the other side of the fire in full vigour.-Fraser's Magazine for January.

Kiluing a Moose-Deer.-When we had gone about four or five miles, Baptiste suddenly stopped, and, pointing to the snow, nttered the word "Ravage." We all rushed eagerly up, and there, in the snow, were the tracks of the huge animals-a deep furrow, indented every foot or so with the print of their hoofs. Instantly our guns were loaded, and off we went like maniacs, Baptiste leading, the rest scrambling and panting along, sometimes losing a snow-shoe, and stooping to tie it (no easy matter when the strings and your fingers are both frozen), sometimes slipping into some treacherous hole. At last the Indians stopped, and looked rouud at us with a face of disappointment, which, on reaching him, was casily accounted for; for a line of snowshoe tracks came up from another direction, and then went off on the ravage-we had evidently been forestalled. Very crest-fallen andill-tempered we followed in their path, to have the melancholy satisfaction of discovering the authors of our disappointment-our "infernal sell," as Jenkins called it-expecting to find them cutting up their game. But while running on the tracks we saw a fre to the left, and, going up to it, found two ragged Irishmen sitting by it broiling venison. They told us they lad killed the moose, two in number, half a mile further on, and had returned here to encamp. Neither of them had a hat, and their cluthes were too thin and ragged to defend them even from the cold of the same season in England; yet, thus insufficiently clad, the hardy fellows had ventured into the forest to take Winter, in his sternest mood, by the beard. Jenkins was very indignant at the "bogtrotting rascals," as he called them, daring to kill "our moose,"
and uttered some sentiments on the occasion, quite in unison with the conqueror's forest laws. However, his bark was worse than his bite, for he presently proposed giving the said bogtrotters a horn each of grog, which the poor fellows were very glad of; greatly to the disgust of Mr. da Fini, who had conceived a violent batred towards the unfortunate men, and scowled at them like a demon: his indıgnation afterwards reached a climax on our giving them peas to make sour. -10 .

Food of the Cminese. - A late traveller Mr. Williams, contradicts the popular impressions thist kittens and puppies are an ordinary food of the Chinese. He says:
"A few kittens and puppies are sold alive in cages, meving and yelping as if in anticipation of the ir fate, or from pain causeldy the pinching and handing they receive at the hands of dissatisfied customers. Thise intended for the table are usually reared upon rice, so that if the nature of their food be considered, their flesh is far more cleanly than that of the omnivorous hog; few articles of food have, however, been spidentified with the tastes of people as kittens and puppies, rats and snails, have with the Chinese. The school geographies in the United States usually contain pictures of a market-man carrying baskets holding these unfortunate vietims of a perverse taste, (as we think) or else a string of rats and mice hanging by their tails to a stick across his shoulders, which almost necessarily conveys the idea that such things form the usual food of the people. Travellers hear beforehand that the Chinese devour every thing, and when they arrive in the country, straightray inquire if these animals are eaten, and hearing that such is the case, perpetuate the idea that they form the common articles of food. However commonly kittens and puppies may be exposed for sale, the writer never saw rats or mice in the market during a residence of twelve years there, and heard of but one gentleman who had seen them; in fact they are not so easily caught as to be either common or cheap. He once asked a native, if he or his countrymen ever served up lau-slu-tang, or rat-soup, on their tables; who replied, that he had never seen or eaten it, and added, 'Those who do use it, should mix cheese with it, that the mess might serve for us both.' Rats and mice are, no doubt, caten now and then, and so are many other undesirable things by those whom want compels to tuke what they can get; but to put these and other strange eatables in the front of the list, gives a distorted idea of the every-day food of the people."
Wonderfut Discovery.-We find in the Boston Atlas an interesting communication from a correspondent in the copper mine region of Lake Superior. One of theo details some remarkable discoveries which have been recently mide a few miles interior from the mouth of the Ontonagon River :-" A large mass of native copper, the weight estinated at seven tons, was found in the loose ground. A vast amount of labour had been expended upon it Every inch of it had been battered and hammered over, and attempts had been made to pry it up, and place it on a platform. All this was the labor of a race of beings long since passed away. There is too much chill manifested for the present race of Indians, and yet thè workings are too ancient to be those of white men. Many loads of rude stone hammers are found buried below the surface-are abundant proofs that in stoning up a cellar, it was found more convenient to use them than to throw them out. Hemlock trees, two feet in diameter, and, from examination, two and three hundred years old, are growing over the workings, aud have to be felled to enable the miners to excavate the earth. Remains of charred wedges, and levers, aud copper gads, are found under
these trees and under the principal mass. These ancient workings can be traced for more than haif-a mile through the forest, and an expdnditure of \$50,000 at this time would not pay for the accomplishment of the like amount of labour. Their great antiquity would seem to carry us back to other times. Yet it is not impossible that the present Indians may be the descendants of those who wrought them."

Benefits of Macmivery.-Fifty years ago wages were no better, in fact less, than at the present day, and comforts and luxuries of life were far more difticult to obtain. Articles needed by the poor man, cost in those days of comparative freedom from machinery, from twice to three times what they do now, and often more, and you will find that the greatest reductions are in those articles to which machinery has been most successfuliy applied.-There is no article of luxury or comfort to which machinery has been extensively and successfully applied, of which the poor man cannot now get nirre for a day's labour than he could before such application of machinery. Salt is now less than one-third; iron less than one-half; shirting and calicoes and cloth generally from one half to one fourth; pins, needes, shoes, hats, everything in similar proportions.

Forty years ago, such articles of use or ornament as locks were seareely known, and could be afforded by the rich only. Farmers' waggons were chiefly sleds; their houses, cabins; their chairs, stools and benches; their bureans, pins drove in the wall or poles hung across; and their windows often an old sheet or blan-ket.-Yails and glass cost money in those days, and labour commanded little.
Since machinery has been applied, better roads, turnpikes, railroads-mall of which are a species of ma-chinery-have been constructed. Steam has been made to propel the boat and the great ship, and to give power to the mill, to the jenny and the loom. Production in many articles has been more than trebled, and everything the labourer needs has fallen, while his wages have risen or remained stationary. The clock, which the farmer had not and could not afford, now adorns the mantel of his poorest tenant, and summons him to his meals.
There have been less improvements in agricultural implements than in machinery for manufacturing pur-poses-but this is the age of improvement. Let machinery be applied to husbandry also. Let bread and meat be as cheap as clothing, and if the distributing is not as equal as it might be, let us rejoice that if the rich man has more, so also the poor man has much more.
The cottager has now, by the aid of machinery here, what great kings have not in Africa, and what the kings of England had not before the introduction of machines. The great Alfred sat upon a three-legged strol, while many an Euglish or Amexican tenant now reclines on a gilded sofa. If the poor of England and America are not so well off as they should be, machinery is not at fault. It has saved them from much greater misery, and the reforms which they need are chiefly governmental and social.-Scientific American.

Stone Cuttring.-Mr. C. Wilson has invented a new stone cutting machine, propelled by steam, and said to be capable of doing the work of 100 men. Only one has been made, and that is in use at New Haven. It is thus described : "The cutting instrument is simply a half-dozen circular saws fastened firmly by an axle running through the centre. These sairs are made very hard, and theteeth rather Jarger than the ordinary size. When firmly adjusted, it is forced rapidiy over the surface of the stone, smoothing it very evenly."

(F)itors' Notices, Kir.

Tononto Nurserx.-We beg to call the attention of our readers to Mr. Leslie's advertisement in our advertising columms. Having an extensive stock of the varions kinds of fruit trees, of the best varieties adapted to this climate, the genuineness and proper naming of which may be depended upon, together with the usual assortment of ornamental trees, shrubs, flowers, \&e., we consider the enterprising proprictor of the Toronto Nursery highly deserving a large share of the patronage of the Canadian public. Mr. Leslie has unfortunately sustained a heavy loss by the recent burning of his extensive green-houses; notwithstanding, we are happy to be informed that he will still be able to execute any orders with which he may be favoured. We hope that so laudable a spirit of private enterprise, combined as it is in a new country with a large share of public utility, aud promotive of the ornamental and beautiful, will not fail to receive its just measure of reward.
W. M. P., Cornwall.-Remittance-papers forsarded, with thanks for his friendly co-operation.
G. L., on the Cultivation of Asparagus ; too late for the present number.
Leicesterensis.-In consequence of the late arrival of your valuable communication, we must defer it till our next. Many thanks for your rood wishes and exertions on behalf of the Agriculturist.
Skirving's Swede Turnip.-This valuable variety, so highly esteemed in England, may now-be obtained, for the first time in Canada, at Lyman, Kneeshaw \& Co.'s, of this city, who have just received their usual stock of garden and agricultural seeds direct from England.-See advertisement.
Ventilation.-We beg to acknowledge the receipt of Mr. Sheriff Ruttau's interesting work on this important subject, which shall receive a notice in our next.
C. B., Cobourg.-The first parcels were sent to the stage office to be taken in charge by Mr. Ruttan, who was returning home. But it was found he had left, and he gave no instructions as to how they should be sent, and thinking they might miscarry or be injured, we thought it best to send them in the usual way by post. The last No. was sent by stage in a box.
C. P. J., Clarke.-Your communication on ploughing was received and laid by for correction, and-when - given to the printer, sufficient matter had been set up for this No. It shall appear in our next.
T. C., Guelph,-Remittance-your communication in our next.
J. R., Three Rivers.-Request attended to.
H. W., Wellington Square.-Remittance received.
N. N., Peterboro'--ditto, ditto.
R. Y., Port Sarnia.-papers sent according to your directions, though from the difficulty of making out some of the names, it is probable-errors will occur.

Correspondents will know that their letters have been received, by the receipt of their papers, as we send to none but those who order them. It is unnecessary, as well asimpossible, to notice the receipt of every letter; only those requiring reply, will be noticed in this place.
An Old Countraman.-Thauks for your useful hints, and friendly rishes; the sulject of da aining is, as you say: " of the utmost importance, aud forms the fouthdation of all agricultural improvement." We will take up the question in its details, at our earliest convenience, giving the resalts of our experience in reference to the principles of draining, expence, and the effects produced. In the meantime, we should be glad to be favoured with the opinion of such of our readers, as have practised draining in this country.

STATE OF THE MARIEETS.

England.-The Canada brings nerss from Europe, to the 10th of March. The British grain markets were dull, and prices looking down. Importations continued larger. Wheat from 6s. 10d. to 7s. 2d. per bushel of 70 lbs . Flour, 25 s , to 25s. 6d. A fair trade doing in American cured provisions. We hear from correspondents, that in several parts. of England the wheat was looking indifferently, suffering from the devastations of slugs, wiremorm, \&c. The winter had been mild and open. Much distress in the hop distriets, arising chiefly from unprecedentedly depressed prices. Hops, 40 s . to 50 s . per evtr. Great efforts are being made for the repeal of the malt and hop duties, the influence of which is now felt to be serionsly oppressive. Butcher's meat lower than for many years; from 2 s . 6 d . to 3 s . 9 d . per stone of 8 lbs . Upon the whole, the present condition of the British farmer, under the free trade policy, seens gloomy enough.
New York, March 27.-Flour dull, with downward tendency; \$5.27. to \$6.25. per barrel. Wheat, \$1.12. to $\$ 1.30$. per bushel. Rye, 60 c . Corn, 50 c . to 57 c . Oats, 33 c . to 35 c .

Montreal, March 27.-Nothing of importance doing. Sale of Flour to a small extent at 23 s ., to be delivered in May.

Tononvo, March 29.-But little wheat or other kinds of grain has come into this market for some time past, owing chiefly to the state of the roads, occasioned by the breaking up of the frost; yet the supply is sufficient. Prices may be said to have a downward tendency. The ice is fast breaking up in the bay, and our steamboats will be put on their different routes in a few days. Let us hope that the approaching season may restore to us a large share of our wonted avimation aud prosperity.

CHOICE FRUIT TREES.

ROSEBANK NURSERY, NEAR AMHERSTBURG, CW.

THE Proprietor has for sale a most extensive assortment of all the choicest kinds of Fruit 'Trees, consistius in part of 190 varieties of Apples, 130 of Pears, 70 of Peaches, 70 of Plums, 50 of Cherrics, 10 of Apricots, 10 of Nectarines, 25 of fireign Grapes, native Grapes, Quinces, Gooseberries, Currants, Raspberries, Strawberries, Almonds, Chesnuts, Filberts, diflberries, \&c. \&c.
Also a fine collection of Ornamental Trees and Shrubs, Roses, Tulips, Hyacinths, Poonies (Tree aud Herbacious), Sce. \&c.
New duscriptive priced Catalogues will be sent to all post-paid applicants. Specimen Trees of every variety cultirated, have been planted out, which are mostly in a beariag state, and from which the scions have been cut, offering a guarantee of the correctness of the kinds, which fer Nurseries possess.
Trees will be carefully packed so as to carry any distance with perfect safety, a small extra charge made for packing, and they can be forwarded with dispatch to any part of the Province by the Propeller "Earl Cathcart," which will ply regularly during the season between Amherstburgh and Montreal, touching at Port Stanley, Toronto, Kingston, \&c.
Orders should be sent early, to insure their going by the first trip of the Propeller, Cash or proper reference should be sent with the order.

JAMIES DOUGAL, Proprietor.
Rosebank, near Amherstburgh,
March 23,1849 .
4-2ins.
JOHN M. ROSS, igent for
MALL'S PATENT MOULDING \& PRESSING MACHINE.

also fortife

genesee, Agricultural seed and
IMPLEMENT WAREHOUSE, nocyester, n. y.
City Wharf, Church Street, Toronto, March 20, 1849.

SEEDS! SEEDS!! SEEDS!!!
GROWTH OF IS48.

JUST RECEIVED by the Subscribers, zia New York, their usual supply of fresh ENGLISH GARDEN, FIELD \& FLOWER SEEDS, among which will be found the following varieties of

TURNIP SEED.

- Purple-top Swede, Skirving's do. White Globe, Early Stone,

Yellow Aberdeen, White Flat, Green Round,
Red do,

100 Varieties - including Annuals, Biennials and Perennials.
Country Merchants supplied with any particular sind of Seed they may require, put up in papers, upon moderate terms.

LYMAN, KNEESHAW \& Co.
Toronto, P5arch 24, 1848.
4

IIOME DISTRICT AGRICULTURAL SOCIETY.

THE SPRING EXHIBITION, of this Society, will 1 be held in the City of Toronto, on Wednesday, May $9,1848$.

GEO. DUPONT WELIS,
Honorary Secretary.

GARDEN AND AGRICULTURAL SEEDS.

THE Subscriber begs to inform his friends, and the public in general, that his stock of Fresh Garden and Agricultural Seeds for the spring sowing is now complete. The Subscriber's long and practical acquaintance with his business enables him to select only such kinds of seeds as are most suitable for this cimate. The vitality of each sort is fully tested before offered to the public; new varieties and such as are raised in greater perfection in Europe, are araually imported from sources that can be relied on.
Country merchants. and others, wishing seeds to sell again, can be supplied on the most moderate terms.

JAMES FLEMING,
Seedsman and Florist, Yonge Street.
Toronto, Jan. 1, 1849.

ADELAIDE ACADEMY, FOR THE EDUCATION OF YOUNG LADJES.

Corner of Bay and Wellington Streets, TORONTO.

THE next Session of Adelaide Academy will com1 mence on Thunsday, the 4th of January, with Lectures on Chemistry and Astronomy.

Pupils are received at any time during the year, except from the 1st of July to the 24th of August.

Competent and experienced Teachers are engaged to give instruction in all the solid branches of an English Education, in Instrumental and Vocal Music, Drawing, Painting in Water Colours, Oil Painting, Miniature Painting, \&c.
Lectures will be given to the classes in Natural Philosophy. Chemistry, Astronomy, Physiology, and Biblical History.
The Academy is divided into four Departments, with experienced Teachers over each.
Board, 10s. per week............... £0 10s. ¥\% Week. Tuition in English Studies......... 10 "Quarter. Board, and Truition in English

Studies........................... 260 "Annum.
Papils attend the Church which their Parents or Guardians direct.

REFERENCE

Is politely permitted to-
The Honourable The Chief Justiee.
The Honourable Robert Baldwin.
The Honourable MIr. Justice Sullivan.
The Honourable J. H. Price.
Henry Ruttan, Esq., Sheriff N. D.
W. B. Jarvis, Esq., Sheriff H. D.
W. S. Conger, Esq., Sheriff C.D.

Rev. Dr. Richey, Rev. E. Wood, Superintend't. of Missions, Rev. H. Esson, A.M., Professor in Knox's College, and to numerous Patrons throughout the country.
Cards giving particulars, cau be obtained at this Office, or at the Academy.
J. HURLBUKT, A.M.

Principal.

Toronto, 14th December, 1848.

FRUIT AND ORNAMENTAL TREES. 15.89.

PUBLIC attention is invited to the extensive and well-selected assortment of Fruit and Ornamental Trecs, grown at the TORONTO NURSERY, for sale in the ensuing Spring. Persons about to phant Trees are respectully requested to visit the grounds and examine the stock, which, for extent wat varicty of lars, well-grown, halthy Trees, of the most appruved rariclics, now equals any establishment of the kind between this and New-York. The groumds now contain more than I'wenty Acres, planted with all descriptions of Nursery productions.

FORTY THOUSAND APPLE-TREES,

and upwards, four and five years from the graft, are now ready for sale, with a proportionate number of the most desirable sorts of Pears, Plums, Cherries, Peaches, Nectarines, and Apricots. Also, GrapeVines, Guoseberries, Currats, haspiverries, Strawberries, Rhabab, and Aspatagu: Routs. Many of the fiust rarieties of Pears may be had on Quince stocks, now so much esteemed for garden culture.

The collection of Oruamental Trees, Flowering Shrubs, and Hardy Roses, is quite extensive, and contains ail the hardy varieties suitable for PleasureGrounds and Shrubberics. Also, a large stock of Dahlias, Herbaceous and Green-house Plants.

The suppiy of Hedge Plants is also wortby of special notice. Uprards of 100,000 plants of Euglish Thorn, Privet, \&c. can now be furnished.

Nurserymen commencing business, in want of Specimen Trees and Plants, and persons purchasing in large quantities to sell again, are supplicd on liberal terms, and will find it to their advantage to give this Nursery a call.

Trees grown here are better adapted to the Canadian climate than those brought from the Suuth. Trees sent out by boats or other conveyances are invariably freshly dug, and many Farmers can have them tahen up and put in their own wagous while on the ground, thereby avoiding all risk of failure after transplanting.

A new Descriptive Catalogue, containing directions for successful Transplanting, has lately been published. and is furnished gratis to all post-paid applications.

Orders from a distance, accompanied by a remittance or a satisfactury reference, will be promptly and punctually attended to. Articles sent out are currectly Jabelled and securely packed, to secure safe trausmission to any part of che Epper and Lower Province.
gEORGE LESLIE.
January, 1549.
By Her Majcoty's Rayal Letters Futento BUTTER'S PATENT

BRICK AND TILE MACHINE.

THHIS Machine grinds the Clay and moulds the Brick directly on the pallets, by Horce Power, and delivers them ready to be put ints the shack or pile, making from 25 to 35 per minute, s.ccording to the length of the iever the harse is attuched to, thereby saving 35 per cunt. more manual labuur than any oth. machine extant. Terms made easy. Orders fromptly attendud to, and Hachines set in operation In any part of the Province. For further particulars apply to Mr. Thos. Anderson, Yonge Street; Mr. Nim. Grores, Riclmund Street, TOrunto; or Mr. Henry Beek, Builder, No. 11, Richmond Street, Toronto.
Јап. 1, 1849.

THE TORONTO
Carriage and Light Waggon Ifenufacto
130, King Stree't vest, (Established-1832.)

OWEN, MILLER \& MILLS, wheme menion.

T_{1} VERY descripuiun of Carriage. Iight Waggon, 1 Sleigh, kept on haud for sale, and built to or of any pattern.
RJP Painting, Trimming and Repairing, done in best manner, on reasonable terns, and with the utn despatch.
$2{ }^{\circ}$ For Sale-Lace, Patent and Plain Axletr Springs, Lamps, Bands, Patent Leather, and o Carriage Trimmings.
January 1, 1819.

NEW CARRIAGE FACTORY

 WILLIAMS \& HOLMES,IIAVE REMOVED their City Carriage Reposi to 142, YONGE STREE', where they 1 started a Manufactory in all its branches. Pal wishing to purchase for Private or Public Busin are requested to give them a call before purchas elsewhere, as their facilities are such as to enable ti to manufacture cheaper than any other Establishn in Toronto.

Toronto, Jamuary 1, 1849.
N.B.-The public are particularly invited to at spection of their Lumber and other Building Mater as none but the very best will be used.

CANADIAN

patent henip, flax, is 0il mill

NOTICE TO EARMLRS.-Wanted to purcl for Casi-

> 10,000 Bushels Flax Seed 1,000 Acres Hemp Straw. 1,000 Aeres Flax S:raw.

The Prcprietors of the above es ablishment hat secured by Royal Letters Patent the invention 0 entirely new process, especially adapted to this coun for the preparation of Hemp and Flax, hereby notice, that they are now ready to enter into eng. ments, to an unimited extent, with all persons wisl to sow the same. Those parties willing to contract the ensuing season, will please make applicatior once to the Proprictors, either at the Wcrks, uppa the Deer-Park, on Yonge-Street, or at the OI No. 22, Wellington Street, Toronto.

$$
\text { MICGEE } \underset{\text { Proprictor }}{\&}
$$

January, 1849.

SHOE AND LEATILER STORE.

DINIEL FARAGIIAR begs to inform his frif and customers, that he has opencd a Shue Leather Sturc, at No. 222, Yonge Street, 'Toro where he will be prepared to furnish all kinds of w in his line at the most reasonable prices. Havi Tannery of his own in active operation, he can sul the Trade and others with as good an article of Leat and at rates as low as can be obtained elses here.

DANIEL FARAGHER.
Јап., 1849.

