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PREFACE,

The matter of the present work ha., with some varia-
tions, been in manuscript for a number of years, and has
formed the s.ibject of an annual course of lectures to
mathematical students by whom the subject has been
well received as one of the most interesting in the earlier
part of a mathematical course.

I have been ind.-.ced to present the worV *-, the public
partly, by receiving from a number ot iiducationiste
inquiries as to what work on Solid Geometry I would
recommend as a sequel to my Plane Geometry, and partly,
from the high estimate that I have formed of the value
of the study of synthetic solid g.omet^r as a m.ans of
mental discipline.

To me it seems to exercise hot only the purely intel-
lectual powers in the development of its theorems, but
also the imagination in the mental building-up of the
necessary spatial figures, ^.d the eye and the hand in
their representations.

In this work the subject is carried somewhat farther
than IS customary in those works in which the subject
of sohd geometry is appended to that of plane geometry
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but the extensions thas made are fairly within the scope

of an elementary work, and are highly interesting and

important in themselves as forming valuable aids to the

right understanding of the more transcendental methods.

It appears to me that it is a prevalent custom to lay

too little stress on synthetic methods as soon as plane

geometry is passed, and to hurry the student too rapidly

into the analytic methods. If math.jmatical knowledge

is all that is required, this may possibly be an advan-

tageous course; but if mental culture is, as it should

be, the chief end iu a university education, this custom-

ary usage is not the best one.

I have found it convenient to divide the work into

four parts, each of which is further divided into sec-

tions.

The first part deals with a consideration of the descrip-

tive properties of lines and planes in space, of the poly-

hedra, and of the cone, the cylinder, and the sphere.

Here I would feel like apologising for the introduction

of a new term, were it not that I believe that its intro-

duction will be fully justified by a careful perusal oi

the work.

Legendre, in his notes to his geometry, proposed to

use the word ' comer ' (coin) for the figure formed by

the meeting of two planes, and he considered thav the

different polyhedral angles should receive special names

as being geometrical figures of different species. Without
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disouMing this idea, I have employed the word 'comer'

to rlenote a solid or polyhedral angle of not lest than

three faces, while I have retained the exprt: sion 'dihedral

angle' in its usual sense. If a dihedral angle be cut by

a plane, this cutting plane necessarily cuts through both

faces, and the figure of intersrctiuu is a plane angle.

Whereas, if any polyhedral angle be cut by a plane

which intersects all its fa^ns, the figure of section is not

a simple angle, but a polygon. Thus the plane angle and

the dihedral have this in common, that they can both

be measured by the same kind of angular unit, while

the affinities of the polyhedral ar :le are with the

polygon.

Moreover, the trihedral angle is a geometrical func-

tion of three pL'ne angles and three dihedral rngles,

neither of which exists without the other, and '-rery

polyhedral angle is a geometrical function or combina-

tion of plane and dihedral angles, and these form its

elements. Hence I have used the term 'three-faced

comer' for 'trihedral angle,' and generally 'n-faced

comer ' for ' n-hedral angle.' This nomenclature is very

convenient ; but if any Teacher prefers the older forms,

he can readily make the necessary change in language.

The rectangular parallelepiped should certainly be

supplied with some convenient name. I have adopted

the term 'cuboid,' as proposed by Mr. Hayward, as being

both convenient and suggestive.
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The second part of the work deals with areal tpIo.

2"' '':' ':-
*»>« -^^«o„s a.ong the are^ o ^and rectangles on characteristic line-segn^ents oftheprominent spatial figures.

-tmg in themselves, form data for subsequent higher

In this are developed the principal rules and formutofor the measurement of volumes and surfaces of th!more prominent spatial iigures which admit of suchmeasurement, and a special section is given to the conB.deration of volumes and surfaces generated by moXgare^s and lines, and to the development of theCem!of Pappus or Guldinus.
'"eorems

of the principles of conical or perspective projection.By the application of these principles in proje ting acrcle into a cone and cutting the cone by a plane !he

The more common properties *,f the conies are theneas ly ob amed through a study of the curve as a p a^e-t.on of a circular cone. The-latter half of this^^- gjven to spheric geometry. The spheric fi^iiL (tnangle and polygon) is considered as the section of"



PBEFACB.
IX

comer by a sphere whose centre is at the apex of the
corner. The study of spheric figures is thus brough

and the eadxng properties of the spheric triangle arethus most easily and directly obtained

Ji^^T"""'^
""\" ^"'''"*^' *° *'" y--«" "--the-mt:cal reader xn the hope that it may prove worthy ofhis careful attention.

^
At the close of the work there is a large collection of

w^h the subjects of inversion and of polar reciproc^
tion in space, are highly suggestive.

I have to acknowledge my indebtedness to Mr. W BSiKs for assistance in reading the proof-sheets
'

'

Qderm-s Collkge,
Oct. 1, 1883.

N. p. D,
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NOTE.

For the benefit of penona not using the author's work on Plane
Geometry, the foUowing explanations are given :_

1. The word line, when un<iualifled, means a straight line ; and
the straight line which exti-ods between two points is called the
join of the points. A curved line is in general called a curve.

2. A line has no necessary limitation in length, and is said to
extend to infinity. A limited part of a line is called a line-iegment.
or sometimes a segment for shortness.

5. The Euclidian idea of space is assumed, viz., that space is
homogeneotu or homeoidal, i.e., that all parts of space are alike, so
that the properties of a figure are not dependent upon its position
In space. Hence parallel lines never meet, or as it is more con-
veniently stated, parallel lines meet at infinity.

4. A cirele is the curre which is sometimes caUed the circumfer-
ence of the circle.

6. Congruent plane figures are those which coincide in all their
parts when superimposed. Congruence is denoted by =
Sgual plane figures include equal areas.

6. A drcumangle is four right-angles, and a straight-angle is two
Tight-angles.



SOLID OR SPA'nAL GEOMETRY.

Part I.

DESCRIPTIVE GEOMETRY.

1. Solid or Spatial Geometrj, or the Geometry of

Space, deals with the properties and relations of figures

not confined to one plane (P. Art. 19).'

The elements of spatial figures are the point, the line,

the curve, the plane, and the curved surface. The first

four of these are defined in plane geometry (P. Arts. 12,

14, 17) ; but we repeat here the definition of the plane,

as upon that definition several corollaries and other

definitions depend.

Def. A plane is a surface such that the join of any

two arbitrary points in it lies wholly in the surface aud

coincides with it.

Cor. 1. A line cannot lie partly within a plane aud

partly without it. For the part within the plane must

have at least two points in the plane, and must there-

fore coincide with the plane throughout its whole extent.

> BefsrenoM nuurked P. are to the Author'! ' Geometry o( the point,

line, and elide In the plane.'

1
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™5r;?' f"
"°^ ""** coincident with a given planemeets the plane at only one point.

2. A plane is not necessarily limited in extent; or, inother words a plane extends to infinity in all its di;ec
tions. For the plane must be coextensive with every
coincident line. ^

Every plane thus theoretically divides all space intotwo parts, one lying upon each side of the plane. The

Tronomy""
*'" ""''"^'^ '' ~°'' ^ ^P^--^

3. In plane geometrj^ the geometric figure is drawnupon the plane of the paper, which properly represents
the plane upon which the figure is supposed to lie. In
spatial geometry, however, we have only one plane, thatof the paper to stand for and represent all the planeswhich may be involved in any spatial figure. This isan unavoidable source of confusion to beginners, as the
pictured figures in spatial geometry are not representa-
tions of the real figures in the same sense as in plane
geometry. '^

Thus equal line-segments and equal angles in a spatial
figure will not, in general, appear as equal segments or
equal angles in the pictured representation. So, also
squares and circles in space will not, in general, appeal
as squares and circles on our single available planefthat
ot the paper. Properly constructed models simplify
matters to a very great extent, and should be employed
whenever available. The construction of .,.oper models
is, however, always difficult, and often impracticable,
and for several reasons they cannot serve all the pur-
poses of a diagram. And hence beginners should ac-
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custom themselveg to reading and interpreting spatial
diagrams. These diagrams can be considered only as
an aid to building up the figure in the imagination/and
faoihty m reasoning from such diagrams will depend
very largely upon the readiness with which the reasoner
can make this imaginary construction. The student is
accordingly advised to give some care and patience to
the constructing of spatial diagrams.
To represent a plane we usually represent a rectangular

segment of the plane, and this generally appears in the
diagram as some form of paraUelogram.



SECTION 1.

The Line akd the Plakb.

4 Theorem. Two planes which coincide in part coin-
cide altogether.

Proof. The part throughout which the planes coincide
must be part of a plane, and must therefore admit of an
indefinite number of arbitrary points being taken within
It, of which no three are in line. These points taken
two and two determine an indefinite number of arbitrary
lines which coincUe in part with both planes. And the
planes thus coinciding (Art. 1. Cor. 1) along an indefinite
number of arbitrary lines, coincide altogether, and form
virtually but one plane.

Def. An indefinite number of lines can lie in one plane.
The totality of these is called a pJaw* of lines, aUhough
the lines, having only one dimension, do not make up
any portion of the plane in which they lie.

5. Theorem. The figure of intersection of two planes
is a line.

Proof. Let U and V be two
planes, and let A and B be any
two points in their figure of in-

tersection. Join A, Bhy A line.

Then, since A and B are two
points in U, the join AB lies wholly in U (Art. 1. Def.).
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For a similar reason the join AB lies wholly in V,

Hence it is common to the planes, and is their figure of

intersection; and thus the figure of intersection is a

line.

Cor. 1. Any number of planes may have one com-

mon line. For if they pass through the same two points,

A and B, they have the join of A and B as a common

line.

Def. A group of planes having one common line is

an axiai pencil, and the line is the axis. In contra-

distinction to this the pencil of lines in a common plane

(P. Art. 203. Def.) is called a, flat pencil.

Cor. 2. As the line of section of two planes cannot

return into itself and form a closed plane figure, so two

planes cannot form a closed spatial figure.

6. Theorem. Through any three points not in line,

1. One plane can pass.

2. Only one plane can pass.

A, B, C are any three points not in line.

1. One planecan pass through

A, B, and C.

Proof. Let the plane contain-

ing A and B be rotated about

the join of A and B.

In a complete revolution this plane passes through

every point in space, and therefore in some position, U,

it passes through C.
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2. Only one plane can pa«» through A, B, and C.

Proof. Take D, E, any points in the joins AC and

BO respectively. Then D and E and their join lie in

U, and in every plane through A, B, and C. Theref-^re

every plane through A, B, and coincides with U, and

forms with U virtually but one plane.

Cor. 1. Any three points not in line determine a

single plane.

Def. Any number of elements so disposed as to lie

in one and the kame plane are said to be complanar or

coplanar. Thus all the parts of a figure in plane geom-

etry are complanar.

Cor. 2. Two intersecting lines are complanar and

determine one plane.

For, taking a point in each line, and the point of inter-

section, we have three points not in line, and the plane

through these is the plane of the lines.

Cor. 3. Parallel lines are complanar.

For they have a common point at infinity (P. Art.

220. Def.).

7. Generation of a plane.

L and Jfare any two lines

intersecting in C, and N is

a third line intersecting L
in B, and if in A. Then

L, M, Naie complanar.

1. When £ and 3f are fixed and N is variable, N
generates a plane.

Therefore, a plane is generated by a variable line

which is guided by two intersecting fixed lines.
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Dtf. Tl triable line N ia called the generator, and

the fixed guiding linea are direetori.

X Let C go to infinity, and L and M become parallel.

Tbambae, a plane is generated by a variable line

guided bj t*o fixed parallel lines.

3. Let the point A remain fixed, while B moves

along L.

Then, a plane is genwated by a variable line which

passes through a fixed point aad is guided by a fixed line.

4. Let the point .<! go to infinity ; i.e. let the generap

tor N, fixed in direction only, be guided by the fixed

line L.

Then, a plane is generated by a variable line having

a fixed direction and guided by a fixed line.

8. Theorem. At the point of intersection of any two

lines a third line can be perpendicular to both.

AB and CD are lines intersecting in O. Then some

line OP is perpendicular to

both AB and CD.

Proof. Let Of be ± to AB,
and let it revolve about AB as

an azis, being fixed, until it

comes into the plane of AB«ad
CD at OE and at OF. Then
AB, CD, EF are complanar.

ZA0E= ZA0P=1;
.-. ZDOEia<Bkl.

Similarly Z BOF = Z BOP= li

and .-. ZDOF ia>a.l.

(hyp)
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Therefore, in reTolving OP from the position OB to
the position OF the Z DOP chongei from leu than a
right angle at DOE to greater than a right angle at DOF;
and henoe at some intermediate position OP is X OD.

Cor. If AB is ± to CD, and OP is J. to both,
we have ee lines mutually perpendicular to each
other.

Def. 1. Three concurrent lines mutually perpendicu-
lar to one another are called the three rectangular axet
of space, and their planes are the rectangular co-ordi-

nate planea of tpace. These three lines admit of length
measures in three directions, each perpendicular to the
other two. Hence, space is said to be of three dimen-
sions, or to contain three dimensions, and it is frequently
spoken of as tri-dimensional space, in contradistinction
to the two^imensional space of a single plane, or of
plane geometry.

Def. 2. A line lying in a particular plane is a planar
line of that plane; and when only one plane is under
consideration, a planar line will mean a line in that
plane.

Def. 3. When OP is perpendicular to both AB and
CD, it is perpendicular to the plane which these lines

determine (Art. 6. Cor. 2).

OP is then a normal to the plane, and is the foot
of the normal.

Also, the plane is a normal plane to the line OP.

9. Theorem. A normal to a plane is perpendicular to
every planar line through the foot r.i the normal.
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OP ia± to OA and OB, and OC i» any line through
complanar with OA and OB. Then
OP i» ± to OC.

iVoo/ Take 0^-OB- any con-

venient length. Join AB, cutting

00 in C, and join PA, PB, PC.
The right-angled triangles POA

and /"OB are congruent, and tliere-

fore PA = PB. Hence the A APB
and ^Ofl are each isosceles, and PC and OC are lines
from the vertices to the common base AB.

Pff-PC'=. BC- CA^OBf- OC. (P. Art. 174.)
and .-. PBf-Off= PC- OC*.

But POB being an, (hyp.)

PIf-Off= OP*=PC- OC.
.•.ZPOCianX

Cor. 1. If O is fixed while OA revolves abnut OP as
an axis, OA generates a plane to which OP is a normal.

Def. A line is perpondicular to a line which it does
not meet when a plane containing one of the lines can
have the other as a normal.

Cor. 2. A normal to a plane is perpendicular to every
line in the plane, and all normals to the same plane are
parallel to one another.

Cor. 3. From any point without or within a plane, only
one normal can be drawn to the plane.

10. Theorem. Of the line-segments from a point with-
out a plane to the plane :—

1. The shortest is along the normal through the point.

I

ii:'
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2. The feet of equs,! segmenta are equally distant from

the foot of the normal, and conversely.

3. Of unequal segments,

the longer lies further from

the normal than the shorter

does, and conversely.

P is any point, and PO is

normal to the plane U, not

passing through P. A, B, C
are points in U.

1. PO is < PA, A heing any point in U other than O.

Proof. Z POA is a 1

;

(Art. 9. Cor. 2.)

.-. Z PAO is acute, and PO<PA; (P. Art. 62.)

and the normal segment PO is the shortest segment from

P to the plane U.

2. Pj±=PB; then OA = OS.

Proof. The right-angled triangles POA and POB have

their hypothenuses equal, and the side PO in common.

They are therefore congruent (P. Art. 65), and OA = OB.

Conversely, if OA = OB, the congruence of the same

triangles gives PA = PB.

3. PC is > P4; then 00 is > OA.

For the two triangles POA, POC, being each right-

angled, give
PC*=PO'+OC';

and PA^^POf+OA';

... PC- PA'= OC - OA*.

But PC>PA; ..OC>OA.

And conversely, if C»C> OA, then PC>PA
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Cor. When PA= PB, OA=OB. Therefore, if PA
is of constant length and variable in position, the foot A
describes a circle having O as centre and OA as radius.

The generation of this circle from a fixed point, P, by a

line segment, PA, of constant length, is similar to that

of the circle in plane geometry (P. Art. 92), except that

in the present case the fixed point is not in the plan^ of

the circle.

Def. 1. The circle described on ITwith the vector PA,

and from the fixed point P, has a relation to the cone, to

be considered hereafter, and we shall accordingly call it

a cone circle to the vertex P.

Evidently any circle may be considered as a cone

circle, and when so considered, it has an indefinite num-

ber of vertices, all lying upon the line which passes

through its centre and is normal to its plane.

Def. 2. The distance of a point from a plane is the

length of normal intercepted between the point and the

plane.

11. Def. 1. The projection of a point on a plane is

the foot of the normal from the point to the plane, and

the projection of a line-segment on a plane is the join

of the projections of its end-points upon the plane.

It follows, then, that the projection of a line upon a

plane which it meets is the planar line which passes

through the point where the given line meets the plane,

and through the foot of the normal, drawn from any point

on the given line to the plane.

Def. 2. The angle between a given line and its pro-

jection upon a plane is taken to be the angle between

the given line and the plane.

i

i .
i|



12 80UD OB SPATIAL GEOHETBT.

Def. 3. The angle between two non-complanar lines
is the angle between two intersecting lines respectively
parallel to the given lines.

Is. Theorem. The angle between a line and its pro-
jection on a plane is less than the angle between the
given line and any planar

line not parallel to the pro-

jection.

The line PO meets the

plane XJ in O; ON te the

projection of OP on U\ OA
is a line through O, parallel

to the planar line L, which is not parallel to the pro-
jection OJT.

Then Z PON is < Z POA.

Proof. From P draw /"^perpendicular to OJT. PN
is normal to the plane U (Art. 11. Def. 1).

Take OA = OiV and join PA and AN.

Since Z PNA = 1, PA is > PN.

And in the triangles POA and PON, PO is common,

OA = ON, and PA > PN;

.: Z POA is > Z PON. (P. Art. 67.)

And as i is any planar line not parallel to ON, the
ZPON, between PO and its projection on U, is less
than that between PO and any line in the plane, not
parallel to ON.

Cor. 1. Since two intersecting lines make with one
another two angles which are supplementary (P. Art
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39), we may say more accurately that the angles, between
a line and its projection upon a plane, are the least and
the greatest of all the angles made by the given line
with lines lying in the plane.

Cor. 2. Since O, P, JT are complanar (Art. 6), and
Z PNO is a -|, the Z OPN is the complement of the
/. PON. Thc.-efore the angle between a line and a plane
is the complement of the angle between the line and a
normal to the plane.

Cor. 3. Let OB be a planar line ± to OP.
Since PN is normal to U, OB is ± to PN (Art. 9.

Cor. 2) ;
and hence OB, being i. to OP and PN, is± to ON.

Therefore planar lines which are perpendicular to any
line that meets their plane are also perpendicular to the
projection of that line upon the plane.

13. Def. A line is parallel to a plane when it meets
that plane at infinity.

Cor. Any plane through one of two parallel lines is
parallel to the other line.

For if Z and JIf be two parallel lines, and the plane U
contains L and not M, it can meet JfcTonly where L meets
M. But L and JIf meet at infinity (P. Art. 220) ; there-
fore 3f meets UaX infinity, or is parallel to U.

Spatial Construction.

14. In making constructions in space we assume the
ability

:

1. To draw through any given point a line parallel to
a given line.
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2. To pass a plane through any given point or line.

3. To make a plane construction, according to the

principles of plane geometry, upon any assumed or deter-

mined plane.

Ex. 1. Problem. From a given point without a plane

to draw a normal to the plaue.

Let P be the point, aaC U
be the plane.

Con. Draw any line OB in

U, and from P draw POX to

OB (P. Art. 120).

In {/draw ON ± to OB;

and from P draw PN ± to ON. PN is the normal

required.

For OB is, by construction, ± to both OP and OH,

and therefore to the plane of these lines, and hence to

PN, which lies in this plane (Art. 9. Cor. 2).

Therefore PN is ± to OB and to ON, and is conse-

quently normal to U.

Ex. 2. Problem. To draw a common perpendicular to

two non-complanar lines.

Let L, M he the two non-

complanar lines.

Con. In M take any point,

A, and through A draw the

line JVparallel to L (Art. 14. 1).

M and N determine a plane,

U, which is parallel to L.

From any point J5 in i draw BC normal to 17 (Ex. 1);

Then, as Zi is parallel to U, BCia Ltc^L.
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Draw CD parallel to £ to meet M in D, and from D
draw DE ± to L.

Then DE is ± to both L and M, or is their common
perpendicular.

For DE is ± to X by construction, and being thus
parallel to CB, EC is a rectangle, and ED is normal to

U, and therefore ± to M.

Cor. Since CD can meet M in only one point; only
one common perpendicular can be drawn to two non-

complanar lines.

BXBBOISBS A.

1. How many planes at least determine one line ?

2. How many lines at most are determined by 3 planes ? by
6 planes ? by n planes ?

S. How many planes at most are determined by 4 points ? by
8 points ? by n points ?

4. Draw a normal to a plane from a point in Uie plane.

5. Tliroagh one of two non-complanar line^ to pass a plane to

be parallil with the other line.

6. Show that the common perpendicular to two non-complanar

lines is the shortest segment from one line to the other.

7. From a given point in one of two non-compI«jiar lines, to

draw a segment of given length to meet the other. The solutions

are two, one, or none. Dis nguish these cases.

8. Oiven two non-complanar lines, to draw a segment from
one to the other so as to be perpendicular to one of them.

9. Given two non-complanar lines, to draw a segment from

one to the other so as to make equal angles with each. Show that

this angle may vary from a right angle to the complement of one-

half the angle between the given lines.
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10. PO meet! the plane U (Fig. of Art. 12) at an angle o{ 80°,

and py Is normal to {7. OA ia t planar line making the angle

POA = 60°. Show that cos AOX=\ VS.

11. PO meets [Tat an angle a, and OiV is the projection of OP
on U. OA '.6 a planar line making the angle PO.il — fi. Show

that COS ^Oi\r=^.
IS. Through the point, where a given line meets a plane, to

draw a planar line to make a given angle with the given line.

Examine the Ihnits of possibility.
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Two Planes— Dihedral Angle— Planb
Sections.

U. Ihf. Parallel planes are such as meet only at
infinity, i.e. which do not meet at any finite point.

Cor. 1. Planes which have a common normal are
parallel. For if the planes meet at any finite point,
two perpendiculars can be drawn from that point to the
same common normal, one in each plane. But this is
impossible (P. Art. 61).

Cor. 2. Planes which are not parallel intersect in a
line not at infinity. This line is common to the two
planes, and is the common line of the planes.
When two planes are parallel, their common line is at

infinity.

16. U and V are two
planes having ABaa their

common line.

Prom any point, P, in

AB draw PC in U and
PD in V, each perpendic-

ular to AB.
The angle CPD is defined as the angle between the

planes 17and V. Therefore:

17

^ ;l
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Dtf. 1. The angle between two planes is the angle

between two lines, one in each plane, and both perpendic-

ular to the common line of the planes.

AB is normal to the plane of PC and PD, and is

therefore perpendicular to CFand DX (Art. 9. Cor. 2).

Hence, if CY be ± to PD, and DX to PC, CT is

normal to V, and DX is normal to U.

And these normals, being complanar, intersect in some

point, E, and the angle CED is the supplement of the

angle CPD. Hence, if we consider CY and DX in the

same sense, i.e. from distal extremity to foot, or vice

versa, the angle CED is the angle between the normals

to the planes, and therefore

:

Def. 2. The angle between two planes is the supple-

ment of the angle between normals to the planes.

When CP is perpendicular to PD, the planes are per-

pendicular to one another, and CP is normal to V, and

DP to U. Hence:

Def. 3. Two planes are perpendicular to one another

when one of them contains a normal to the other.

17. Def. When PC is perpendicular to PD, and

each is perpendicular to AB, the three planes U, V, and

the plane of PCD are mutually perpendicular to one

another. These planes are then called the rectangvlar

co-ordinate planes of space, and the common point, P,

is the origin.

If we assume the x>ositions of these three planes, and

therefore the position of the origin, the position of any

point in space can be determined by giving its distances

from these planes, each distance being affected with a
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proper algebraic sign. This is the fundamental principle
in analytic geometry of three dimensions.

18. If PQ be any line in U, and PR be any line in V,
meeting the common line AB, in the same point, P, PQ
aad PS are eomplanar (Art. 6. Cor. 2) ; and if IT denote
tneir plane, PQ is the common line of U and W PR
IS the common line of IFand V, and AB is the common
line of rand U, and these three lines are concurrent
at P.

Therefore, three planes, no two of which are parallel,
and which do not form an axial pencil, determine one
point, and this point is the point of concurrence of the
three common lines of the planes taken in twos.

This point is at infinity when the three common lines
are all parallel.

Cor. Three planes cannot form a closed figure. For
'he planes determine, at most, three concurrent lines
which, meeting in one common point, can never meet
in any other points.

19. Def. When a spatial figure, 8, is cut by a plane,
U, the combination of elements common to S and Viotxa
upon Ub. plane figure, which is called thepZa»»e sectivnoi
S by U, or simply the section of S by U.

This definition suggests to us a relation existing be-
tween plane and spatial geometry.
Plane geometry may be aptly described as a plane

section of spatial geometry. The plane upon which the
figures of plane geometry lie (P. Art. 11) ig the plane
of section, and the figures themselves may be considered
as sections of spatial figures.

'K
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From this oonneotion we may be led to expect that

relationa existing among plane figures are only particular

oases of more general relations existing among spatial

figures. And hence we naturally look for many analogies

amongst the results of plane and of spatial geometry.

Some of those have appeared already, and others will

present themselves in the sequel. And it is worthy of

note how often the number two of plane geometry be-

comes three in spatial geometry. Thus two points deter-

mine one line, while three points determine one plane
;

two lines in the plane determine one point, while it

requires three planes to determine one point

80. The following theorems are self-evident

:

1. The section of a line is a point.

2. The section of a plane is a line.

Hence spatial figures composed of lines and planes

give, in section, plane figures composed of points and

lines.

Def. Sections made by parallel planes are parallel

sections.

21. Theorem. Parallel sections of a plane are parallel

lines.

Proof. It Ua,ni IP be parallel planes which cut the

plane W, the common lines UWaxiA J/'TTboth lie in W,

and as tTand W meet only at infinity (Art. 16), these

common lines meet only at infinity and are parallel.

Cor. 1. The section of a system of parallel planes is

a system of parallel lines.
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Cvr. 2. The section of an axial pencil in a set of
parallel lines when the section-plane is parallel to the
axis ; in other cases it is a flat pencil.

S3. Theoram. Parallel sec-

tions of two intersecting planes

contain the same angle.

U and V are intersecting

planes, and W and X are two
parallel planes of section, the

sections being the lines BA,
BC, ED, and EF.

(Art. 21.)
Then AB is parallel to DE,

and BC is parallel to EF.

.: Z.ABC=jLDEF.

D^. If TT be normal to the common line of the
planes U and V, the section is called a right uction.
Hence, the angle between two plane" is the angle be-
tween the two lines which form the right section of the
planes.

A system of any number of planes admits of a right
section when all the common lines of the planes are
parallel. In erery case, the term "right section" must
have reference to some particular line or set of parallel
lines.

1 ;1

lr\
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Dihedral Amqlb.

93. When we out two intersecting planes, U and V,

by a third plane, X, we get (Fig. of Art. 22),

1. A point E, the vertex of the angle DBF;

2. The lines ED and EF, forming the arms of the

angle DEF.

Now, Ist, to the plane angle DEF corresponds the

dihedral angle between the planes U and V; and, 2d,

to the vertex E of the plane angle corresponds the com-

mon line, BE, of the two planes, this line being called

the edge of the dihedral angle ; ind, 3d, to the arms ED
and EF of the plane angle correspond the planes U and

V, called the faces of the dihedral angle.

Thus in section a dihedral angle becomes a plane angle,

the faces become arms, and the edge becomes the vertex.

xf the section be a right section, the plane angle and

the dihedral angle have the same measure. And as a

olane angle is generated by rotating a line bout a point

in the line taken as a pole (P. Art. 32), so a dihedral angle

is generated by the revolution of a plane about any line

in the plane, taken as an axis.

The angular measurements are thus the same for plane

and dihedral angles.

24. Def. The plane which is normal (Art. 9. Def. 3)

to the join of two given points at its middle point, is the

right-bisector plane of the join of the points.

Cor. Since a line-segment has only one middle point,

and a ploTie has only one normal at any given point, it
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follows that a given line-segment has only one right-

bisector plane.

A section through the segment gives the segment and
its right-bisector, of plane geometry.

84. Thaortm. Every point upo the right-bisector

plane of a segment is equally distant from the end points
of the segment.

Let AB be a given segment,

and let U be the right-bisector

plane of the segment, passing

through its middle point C, and
let P be any point on U, Then
P is equidistant from A and B.

Proof. Since A, B, and P are

complanar, let the plane W pass
through these points. In the section by W we have
the segment AB and its right-bisector CP; and hence
PA = PB(P. Art. 53).

It will be here noticed that the proof is obtained
immediately by reducing the theorem to depend upon
the corresponding one in plane geometry.

In like manner we readily prove the converse

:

Every point equidistant from the end points of a given
line-segment is upon the right-bisector plane of the seg-
ment.

Cor. From this it appears that the locus of a point
which is equidistant from two fixed points is the right-
bisector plane of the join of the points.

26. Def. The planes which pass through the edge of
a dihedral angle and make equal angles with its faces
are the bisectors of the dihedral angle.

II

11
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The proofs of the following theorems may be obtained

at once by making them to depend upon the correspond-

ing theorems in plane geometry.

1. The two bisectors of a dihedral angle are perpen-

dicular to one another.

For proof, make a right section of the dihedral angle

and apply (P. Art. 45).

2. Any point upon a bisector of a dihedral angle is

equally distant from the faces of the angle.

For proof, make a right section through the point and

apply (P. Art. 68).

3. Any point equidistant from the faces of a dihedral

angle is on one of the bisectors of the angle.

Proof as in 2.

27. Theorem. Any two lines are divided similarly

(P. Art. 201. Def.) by a system

of parallel planes.

L and M are two lines cut

by the parallel planes U, V, and

W. Then L and Jfare similarly

divided.

Proof. A, B, C and A>, B,

C are corresponding points of

section ofthe two lines. Through

A draw the line N parallel to

L, and let it meet the planes at

A, P, and Q.

Then L and JT being complanar (Art. 6. Cor. 4),

AA' is II to PB' is II to QC;

44/
V p •

A'B = AP, and BC = PQ.
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But ACQ is a triangle, a a BP is paraUel to CQ;

.-. AB: BC= al': PQ = A'B' : B'C.

Or the lines L and Jfare similarly divided.

Cor. 1. The parallel planes of a system divide all
lines similarly.

Cor. 2. The segments of parallel lines intercepted
between the same two parallel planes are equal.

88. Theorem. If three concurrent non-complanar lines
be divided similarly in relation to the point of concur-
rence, the triplets of corresponding points determine a
system of parallel planes.

L, M, 2f are three nonKiom-
planar lines concurrent at O,
and are divided at A, B, C, —',

a; B', C, '.., and A", B», C" ',
so that

OA.AB: BC= OA' : A'B' : B'O
= OA!' : A"B" : B"C". cl

Then the planes determined /
by AA'A", BB'B", CCC", etc.,

are parallel.

J'roof. AA' is II to BB> is II to CC,

and AA" ia }i to BB" is W to CC". (P. Art. 202. Cor.)

Let OP be normal to the plane AA'A". Then OP is

^1°^' """^ ^" (^'*- ^- ^°'- 2). a^ therefore to BB'
and BB", and to CC and CC.
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Hence OP is normal to the planes BB'W and GCC\
and the three planes AA'A", BBB", CCC" are accord-

ingly parallel (Art. 16. Cor. 1).

Cor. 1. Since AA' is II to Bff, and AA" is II to BB",

etc., the A AA'A", BB'B", and CCO' are similar. But

the concurrent lines L, M, N determine three planes

whose common point is 0; therefore parallel sections

of three non-parallel planes are similar triangles.

Cor. 2. Sinceanypolygonmaybedividedintotriangles,

and similar polygons into similar triangles similarly

placed (P. Art. 206), it follows that

:

Parallel sections of any number of planes having a

common point are similar polygons.

29. Def. Four non-complanar lines which intersect

two and two in four points, form a skew-, or a graucfte-, or a

spatial quadrilateral.

The sides of the skew quadrilateral and its two diag

onals are six lines connecting four points in space, and

form the six edges of a figure, to be described hereafter,

called the Tetrahedron.

The skew quadrilateral is a plane quadrilateral with

one vertex, and the sides forming it raised out of the

plane.

30. Theorem. The joins of the middle points of the

opposite sides of a skew quadrilateral bisect one another.

ABCD is a skew quadrilateral, AB and BC lying in

a plane different from the plane of CD and DA. AC
and BD are the diagonals.
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E, F, G, Hare middle points of the sides upon which
they lie. Then EG andFH bisect one another.

Proof. EF and GH are

both parallel to AC, and
equal to half AC (P. Art.

202); they are therefore equal
and parallel to one another.

Therefore EFGH is a par-

allelogram, and its diagonals
EG and FH bisect one an-
other (P. Art. 81. 3).

Cor. 1. Let 7 and J he the middle points of the
diagonals AC and BD.
Then ACBD is a skew quadrilateral, and the joins of

middle points of opposite sides are FH and IJ.
Therefore if-zr and /J bisect one another; and hence

FH, IJ, and EG mutually bisect each other.

Cor. 2. A, B, C, D are four points in space, and AB,
AC, AD, BC, BD, and CD are their six connectors.

Therefore if four points in space be connected two and
two by six line-segments, the joins of the middle points
of these connectors taken in opposite pairs are concurrent,
and mutually bisect one another.

I I

1. Draw a line equally inclined to two intersecting planes. Is
the problem definite or indefinite ?

%. It U and Fbe two planes, and U contains a normal to V
show that V contains a normal to U.

'
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8. Two lines may be drawn, one on each of two intersecting

lianes, so as to uialie an augle with one another of any magnitude
from zero to a straiglit angle.

4. If three concurrent non-complanar lines be divided homo-
graphically, the planes determined by the triplets of corresponding

points, all pass through a common line. When is this line at

infinity?

t. If the sides of a skew quadrilateral are equal, the diagonals

are perpendicular to one another.

6. What theorem is obtained from 30 by bringing D to the

plane of .4i?C? '

7. Draw the shortest path from o le point to another so as to

touch a given plane in its course, both points being upon the same
side of the plane.

8. Show that a sicew quadrilateral cannot have four right angles.

How many can it have ?

9. A, B, O, D are four non-complanar points. Show that the

locus of a point wliich is equidistant from A and B, and also equi-

distant from C and Z>, is a Ime perpendicular to both AB and CD.

10. If A, B, G, D, E, F be any 6 pointa in space, a point can be
found which is equidistant from A and B, equidistant from C and
D, and equidistant from E and F.
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Sheaf of Lines and Planes— Solid Angle or
COBNEB.

31. Def. Three or more non-complanar lines meeting
in a point form a skeof of lines, and three or more planes
passing through a common point form a gheaf of planes.
The common point is in each case called the centre of
the sheaf.

The lines and planes which form a »heaf pass through
the centre and extend indefinitely outwards from it, but
usually we have to consider only those portions which
lie upon one side of the centrt, and the centre is then
commonly called the vertex or apex of the figure.

Ip a sheaf of lines the determined planes form a sheaf
of planes, and in a sheaf of planes the determined lines
firm a sheaf of lines. So that practically a sheaf of
lines and a sheaf of planes are only the same figure
differently viewed.

Cor. From Article 27 it follows that the lines of a
sheaf are similarly divided by a system of parallel planes.
And from Article 28 it follows that if a sheaf of three

lines has its lines similarly divided with reference to
the centre, the triplets of corresponding points deter-
mine a set of parallel planes.

32. A non-central scition of a sheaf of lines and the
determined planes is » set of points with their determined

39

:tl

:!
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lines ; and the non-central section of a sheaf of planes

and the determined lines is a set of lines with thdir

determined points.

Thus the reciprocity between a sheaf of lines and a

sheaf of planes is analogous to that between a set of

points and a set of lint.s in plane geometry.

33. Def. If the points in the section of a sheaf of

lines be so disposed as to form the vertices of a polygon

without re-entrant angles, and only those planes of the

sheaf be considered, which, in the section, form the

sides of the polygon, the combination of lines and

planes in the sheaf forms a solid angle, or a polyhedral

angle, or a comer.

L, M, N, K\s a, sheaf of four lines with centre 0. Let

the sheaf be cut by the plane U, giving in section the

points A, B, G, D correspond-

ing to L, M, N, K, respectively.

If the polygon ABCD is with-

out re-entrant angles, the figure

formed by the lines L, M, N,

K, and the portions of deter-

mined planes, LOM, MON,
NOK, KOL, intercepted be-

tween these lines, is a solid

angle, or a comer.

O is the vertex of the corner, L, M, N, K, forming

the edges or axes of the dihedral angles are its edges

;

the planes LOM, MON, NOK, and KOL are its faces

;

and the angles LOM, MON, NOK, and KOL are its

face-angles.

The term comer or solid angle does not involve any
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particular length of line, or extent of plane, or magni-
tude of angle. It involves the existence of a number
of lines forming edges, with the same number of planes
limited by these lines and forming faces, and all meeting
at a common point to form a vertex.

34. A comer may have any number of faces greater
than two, and the same number of edges. The one
figured in the preceding article is a four-faced corner,
or a tetraLedral angle.

A section of a three-faced corner is a triangle; and
as the tria'igle is the most important of all polygons, so
the thrte-faced comer, or trihedral angle, is the most
importrno of all comers.

A corner will be indicated by writing its vertex
followed by a point, and then the letters indicating
points upon its several edges.

Thus the symbol 0-ABCD denotes the four-faced
comer as figured in the preceding article.

I ,|
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Pbofebtiis of Tbihsdbal Akoles, or Thbkb-

faced gobnebs.

30. Theorem. In any three-faced corner the sum of

any two face angles is greater than the third.

• ABC is the three-faced corner.

Proof. If the face angles are all

equal to one another, 'the truth of the

theorem is evident. If they are une-

qual, let the angle LON be > than

LOM.
In the plane of L and N draw OK,

making the angle LOK= LOM, and on

M and K take OB=OD= any conven-

ient length, and let A be any point on L, other than «,

.

Let the plane of ABD cut Nin C.

Then AAOB = A AOD. (P. Art. 62.)

.-. AD= AB,!uaiZADB= ZABD.

.-. Z CDB is > Z CBD, and CB is > CD. (P. Art. 62. 2.)

But in the ABOC and DOC, BO= DO by construc-

tion, OC is common, and BC > CD.

.: Z BOG is > Z DOC, (P. Art. 67.)

and •.• Z AOB= Z AOD by construction,

.-. ZAOB+ ZBOCia >ZAOD+ ZDOC.

Or. ZAOB+ ZBOCia>ZAOC.
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36. ProUam. To find the locus of a point equidistant
from the three edges of a three-faotd corner.

O is the vertex, and L, M, N the edges of the three-
faced corner.

Let P be a point on the required

locus, and PA, PB, PC be perpendic-
ulars upon the edges L, M, and JV
respectively.

In the right-angled triangles POA,
POB, POC, PO is a common hy-

pothenuse, and PA= PB= PO by
hypothesis.

Therefore the triangles are congruent, and OA = OB
= 0(7. And the circle through A, £, C is a cone circle
with and P as two vertices.

Therefore OP passes through the centre of this circle
and is normal to its plane.

Hence the construction : take OA = OB= OC and join
with the centre of the circle through A, B, and C;

this join is the locus required.

Def. The locus just found is a line equally inclined
to the three edges, and is an isoclinal line to the edges.
A plane normal to this line is also equally inclined to
the edges and is an isoclinal plane to the edges.

Cor. Since the edges may be considered as indefinite
lines extending through the verte?. and forming a sheaf
of three, the three measures OA, OB, 00 may each be
taken in two opposite directions, or we can have eight
variations of sign in all. But four of these are the other
four reversed.

Therefore three lines forming a sheaf have four is~-

clinal lines and four isoclinal planes through the centre
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87. Dtf. Corners are tqual when they can be super-

imposed so as to form virtually but one corner. In this

superposition the vertices coincide, and the edges coincide

in pairs, one from each comer.

38. Theorem. Two three-faced comers are equal when
the face angles of the one are respectively equal to the
face angles of the other, and they are disposed in the
same order about the vertices. O • LMN and O' • L'M'N^
are two three-faced comers having /L LOM= /L VOfM*,
/. MON^ A Jl/'0'i\r, 'jL NOL = ^ N'O'L', and having
these disposed in the same orJti- about the vertices; i.e.

so that the order of magnitude of the angles is according

to the same species of rotation for each. Then the

comers are equal.

Proof. Take OA=OB=OC= O'A' = O'B' = O'C, A
and A' being on corresponding edges, etc.

The AAOB = A A'O'B'y and AB= A'B'.

Similarly, BC= B'C, and CA = CA',

and the AABC = A A'BIO.

Therefore when A'BfC is superimposed on ABC, the

centres of their circumcircles

coincide, and the normals to

the planes of these circles at

their centres coincide, and
hence the vertices of the

corners, lying on these nor-

mals, coincide (Art. 36), and
the two corners, coinciding in

all their parts, form virtually

but one corner.
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89. Two triangles may be congruent and yet no^be

SZir """' ""r^tl"- " tunied over i/the pl^
«oir "'7'?""' " ^"'^^^ •""* •'""-^ble in planegeometry, « not always practicable in spatial geometrySuppose the two three-faced corners of the previous

Bide of this plane. Then the triangles are directlv

ButTth r' ')' ^""^^^ "'' superposable and e'SBut If the triangles ^IflC and A^B-C be in the sameplane and be directly sui,erposable while and O'Z
Zl °^^'!^

''f'l"'
"•" P''"'^' «"• •* <> ^'"l O' be uponthe same s.de of the plane while the triangles are Totsuperposable until one of them is turned overTn thePlane^then the two corners, although having correspond.

2TIZT 'r^^'
•"* "°* ««Perposable!and

are not, therefore, equal according to definitionA little consideration will show that in the non-sunerposable case, the face angles are disposed in opSorders about the vertices of the two corners.

™ff '^''l
*'?^«-^^*'J ««"'"» having corresponding

sC^toT tj''"'*'
'"*"°* '""^^ superposaWe 2

^mmetrical figures are related to each other in thes ^e manner as an object and its image in a planemirror, or as the .ight and the left hand; and th"
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m||^t be called right-handed and left-handed figurei if

there were any means of distinguishing between which

hoold be called right-handed, and which left-handed.

In certain ptvts of crystallography the means of distin-

goiahing is apparent, and this terminology is employed.

Two superposable figures can be in perspective with

respect to a centre at infinity, while two symmetrical fig-

ures can be in perspective with respect to a centre which

is the middle point of the joins of corresponding parts.

Cor. It is readily «een that two n-faoed comers may
be superposable and equal, and also that they may be

symmetrical and not superposable.

But where there are more than tliree faces, new possi-

bilities arise, for the face angles may be equal in number

and respectively equal in magnitude, and yet the comers

may be neither equal nor symmetrical.

40. ThMrem. Of two dihedral angles of a three-

faced comer and the opposite face angles,

1. The greater face angle is opposite the greater

dihedral angle

;

2. The greater dihedral angle is opposite the greater

face angle.

• LMS is a three-faced cor-

ner having O as vertex, and L,

M, Naa edges.

From A, any point in L,

draw AB ±to M aai AC ± to

N, and from B and C draw, in

the plane MN, perpendiculars

to M and N respectively, and let these perpendiculars

meet in D. Join OD.
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«re?of Thfdih^r,'""^
1*^"" *"* respectively the meas-

(Art. 16 Def. 1). The A ADB and ^Care ri(tht«D<rledat X, axjd have AD as a conunon side, the triaLgle^Sand ^00 are right^gled at B and 6, and h^ve Llf^common hypothenuse, and the A i^OB and nor
right^ngled at B and C, and have Ofl Z\ "

hypothenuse.
* O^ as a common

1. LetZ^flZ>be>^^CZ); thenZ^OCis >^^0B.
Proof. Since Z ^BZ) is > Z ACD,

therefore. ^B^ is < ^ c^,' and flZ> is <CZ),
and

... BO is > CO, and ^C is > AB,
and •••^^0Cis>Z^05.

Cor 1 If a three-faced corner has two dihedral anelea

:t^has two face angles equal, it has two dihedral an^^les

A^^'^' ^; V
*^'««-*aced comer with three equal dihe-dral angles has three equal face angles, and conversely

Cor. 3. If A, B, C denote the dihedral angles and

ni: i^r *''
"r"*^ '^' '^"«'-' '^^ orderTni;nitude 18 the same for A, B, C, and a, b, c.

^
It wiU be noticed that in this theorem and its corol-k^nes the relat ons between the dihedral angles ^d fSeangles are analogous to those between the angks Tdsides of a plane triangle.

^

I

••.
I

,

^ I
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De/ A three-faced comer with its edges mutually
perpendicular to one another is a rectangular corner or

a rigJU corner. It has all its dihedral angles right angles,

and all its face angles right angles.

41. Problem. Being given the face angles of a three-

faced corner, to construct plane angles which shall have
the same measures as the dihedral angles.

O • LMN ia the given three-faced comer. To draw a
plane angle which shall have the same measure as the

dihedral angle whose edge is L.

Constr. Through A, any point in L, draw a plane

normal to L, and cutting M and N'm S and C.

(« m
In (2) take 0'A'=OA, and through A' draw a line,

K, perpendicular to O'A'. Draw O'B', making the

Z A'0'B' = ZAOB, and O'C, making the angle A'O'C
= AAOG. Also, draw OfW^OfB and making the

ACO'B< = C0B. JoinCS".
The A DA'C constructed with NA', A'O, and OB'

as sides, has the angle (?A'D equal in measure to the

dihedral angle whose edge is L.
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thr^t'J'""^ ^ ^ "T"' *° ^''^ P^*°« °f ^« a°d ^C
Defif f TT' *''' ^'^"^^ ''"S^^ ^* ^(Art. 16.

nn \ V
*" ^^ construction 0'Bf= OB and 0'0'=

0(7, and hence A'S =^ and A'C= ^O; and also wehave made aSfC congruent with OBC.
Hence the A D^O is congruent with 5^C, and the^ i).4'C measures the dihedral angle at i
Similarly, the other dihedral angle may be found.

Cor 1. Since in the foregoing construction only one
triangle IS possible with the given elements, the dihedral

tl'fl "^ ?""'"'' *'°™^' ^'^ """"P^^^^ly ^^-n -tnthe face angles are given; and hence the measures of thedihedral angles are expressible in terms of those ofthe face angles.

Cor. 2. A three-faced comer is given when its faceangks and their order with respect to the vertex we

In «-faced corners where n is greater than 3, the givingof the face angles does not determine the dihedral Miglesand does not therefore determine the form of the comer.'We have the analogue of this in plane geometry, where

three sides, does not determine the form of the polvRonIn general, corners of more than three faces^ notof much importance unless they are regular.

Def. A regular comer has all its face angles eaualand all its dihedral angles equal.
^

42. TlMorem. In any comer the sum of the face
angles is less than a cireumangle.

•? -M

m



40 BOUD OR SPATIAL QEOUBTBY.

Proof. Let the corner have n faces. Cut it by a plane,

and we have, as section, a polygon of n sides, the sum
of whose internal angles is 2 (n—2) ~l«.

Denote, in general, a basal angle of one of the result-

ing triangular faces by B, and a face angle by F.

At each vertex of the polygonal section, three faces

meet to form a three-faced comer, viz. the section itself

and two faces of the original comer.
'. IS is > the sum of the internal angles of the

>2(,i-2) n«. (Art. 36.)

XB-|-SF=2nn«.

section, t'.«,

But

.-. SFi8<41».
Or the sum of the face angles is less than a cironmangle.

43. Let O • ABC be a three-faced corner, and let PS
be normal to the plane AOB, PR normal to the plane

COA, and PQ normal to the

plane BOQ.
The angle <iPR is the sup-

plement of the dihedral angle

at 00, BPS is the supple-

ment of the dihedral angle at

OA, and SPQ is the supple-

ment of the dihedral angle at

OB (Art 16. Def. 2).

Therefore P- QRS is a three-faced comer in which

the face angles are supplementary to the dihedral angles

otOABC.
Also, since OB is normal to the plane SPQ, etc., the

face angles of O • ABC are supplementary to the dihe-

dral angles of P- QBS.
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OfW ' ''"""^ ""' '^P'^ *° * *«"'- °* -^y »u-ber

th«^n
^"""'",'«' '^J^t^d that the dihedral anries in

Cor. 1 Employing the notation of Art. 40 Cop ^

A + a'=:.B + b'=C+c'=...

= ^' + a = B'+6 = c'+c=...=21,.
Now, in any corner «'+6'+c'+... is <4n,; (Art 42^

where n denotes the number of faces.
••• A + B+C+:. is >(2n_4)la.
That is, the sum of the dihedral anrfp« nf a„^

« greater than the difference £tTeS\^:VZynght angles as the figure has faces, and a circumlS
Cor. 2. Making n = 3, we see that the sum of f».«dihed«d angles of a three-faced comer roster t^two nght angles and less than six right anglS!

41 Problem. Given the dihedral angles of a. thr««.faced comer, to construct the face angles

Constr. Take the supplements of the given dihedralangles, and considerinit these aa f=^» .„ 1

°*'**''^

the corresponding dihe^X^s^ Artt/' "^"fsTPWnts of these latter anglfs Jt^.tl,J^'Z
This construction i. evident from the preceding article.
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Cor. 1. It is readily seen that only one set of face

angles can be obtained when a set of dihedral angles is

given; so that when the diherlral angles of a three-faced

corner are given, the face angles are given also ; and the

face angles can be expressed in terms of the dihedral

angles.

C<yr. 2. A three-faced comer is given when the dihe-

dral angles, and their order, are given.

To construct a three-faced comer when its face angles

are given is an3'.c<50U8 to constructing a triangle when

its sides are given , and to construct the corner when its

dihedral angles aie given is analogous to constructing

the triangle when its angles are given. And this latter

is a definite problem with respect to the corner, but an

indefinite one with respect to the triangle.

46. Problem. To find the locus of a point equidistant

from three given points not in line.

Let .4, a, O bo the points, and let \J be the right-

bisector plane of AB, and F be the right-bisector plane

of AC (Art 24. Def.).

Every point equidistant from A and B is on U' (Art.

26. oonv.), and every point equidistant from A and C is

on F. And the required locus is the common line of V
and F. But this line evidently passes through the cir-

cumcentre of the triangle ABC and is normal to its plane.

Hence the locus of a point equidistant from three given

points, not in line, is the axis of vertices of the ciroum-

circle of the three points considered as a cone-circle.

Cm. The three right-bisector planes, of the joins of

three points, taken two and two, form an axial pencil.
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46. Problem. To find a point equidistant from four
given points which are not complanar, and no three of
which are in line.

Jjet A, B, C, D be the four points, and let PO be the
locus of a point equidistant from
A, B, and C. Join D, the fourth
point, to any one of the other
three, as C, and draw the right- -
bisector plane, X, of CD.
As D is not complanar with

A, B, and C, the plane X is not
parallel to PO, and therefore
meets PO at some point 0. But
O is equidistant from A, B, and
C, and it is also equidistant from G and D.
Therefore O is equidistant from A, B, C, and D.
Cor. 1. The line OP is the common line to three

bisector planes, namely, those of AB, BC, and CA (Art
45. Cor.), and X is a fourth plane which goes through
the point O. The two remaining bisector planes, those
of AD and CD, must pass through the same point O.

Therefore the six right-bisector planes of the joins of
four non-complanar points, of which no three are in line,
pass through a common point and form a sheaf of planes!

Cor. 2. The four points can be combined to form four
different triangles, and the lines, such as PO, which pass
through thni circumcentres and are normal to their
planes, all ps^s through and form a sheaf of lines.

Cor. 3. As the line PO can meet the plane X in only
one point, there can be only one point equidistant from
A, B, C, and D.
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BZIBOISBS O.

1. Any face angle of a three-faced comer is gnater than the

difference between the other two.

%. Show how to construct a comer symmetrical with a given

comer.

5. Show that the three bisectors of the dihedral angles of a
three-faced comer have a common line, and that this line Is an
isoclinal to the three faces.

4. There are four isoclini^ lines through the vertex to the three

faces of a three-faced comer.

8. In the figure (2) of Art 41 denote (yA' hyp.

Then A'J) = A'B' =pta,nc; CB" = (ys' =paeee;

A'C =i)tau6; (yO =paeob;
and

C'S^ = as"* = DA'^ + A'C' -20A' A'C cot A (P.Art.217.)

= O'C" -t- CB"" - 2 CC • as" cos a.

.: substituting, and dividing by p<,

tan* e -I- tan'i 6 — 2 tan c • tan 6 cos .4

= sec' c -I- sec' ft — 28ec e • sec i cos a,

whence by reduction and dividing by cos 6 cos c,

cos a = cos 6 cos c -|- sin b sin e cosA
;

or, cos .4 = (cos a — cos 6 cose) /sin 6 sine
;

which expresses a dihedral angle in terms of the face angles.

6. Express a face angle in terms of the dihedral angles.

(Employ the property of the reciprocal comer.)

T. If the face angles of a three-faced comer are each 60°, show
that the cosine of a dihedral angle is |.

•. In 46 where is the locus itA,B, C are in line 7

9. In 46 where is the point if the four points be oomplanar ?

where if three points be in line ?



SECTION 4.

POLYHEDBA.
''

47. Def. A spatial figure formed of four or more
planes so disposed as to completely enclose a portion of
space is a polyliedrou. It is analogous to the polygon in
plane geometry, and its plane section is always some
form of polygon.

The faces of the polyhedron are those portions of
planes which are concerned in forming the closed figure,
but for generality the term is sometimes extended to
outlying parts of these planes.

The adjacent faces meet by twos to form edges, and
the edges are concurrent in groups of three or more to
form comers.

When a polyhedron is such that no line can meet more
than two of its faces, it is convex.

48. Theorem. In any polyhedron the sum of the num-
ber of faces and the number of comers is greater by two
than the number of edges.

Proof. Any polyhedron may be supposed to be built
up by beginning with one face, and to it adding a second
face, and then a third, and so on until the figure is
completed.

Denote, in general, the number of comers by C, the
number of faces by F, and the number of edges by E.

46
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1. Let us start with a single face, U. The number of
edges is the same as the number of corners, and we have
oneface. Therefore the equation 0+^=1;+ lis satisfied.

2. To {/add the face V. In so doing
V loses one of its edges, BC, a.id two
of its comers, B and C, by union with
similar parts of U. So that in adding
Fwe increase F by 1, and we increase
M by one more than the increase of C;
and hence the equation C+F=E+ 1
is still satisfied.

'

3. To C;- and F add W. This new face loses two of
Its edges, DC and CO, and three of its corners, D, C, and
O. Here again we add one face and one more edge than
comer, so that C+F=E+ lis still satisfied.

4 It is readily seen that in adding any face whatever,
that face loses one more corner than edge by union with
other faces, until we come to the last face necessary to
complete the polyhedron.

This face loses all its edges and all its corners, so that
by adding this face we increase the number of iac-a by
1 without interfering with the numbers of edges or cor-
ners. And hence in the completed polyhedron we have

C+F=:E+2.
This beautiful theorem is usually attributed to Euler,

and is known as Euler's theorem on Polyhedra, but it
appears to have been known before his time.
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CtAflSIPIOATION OF PoLYHEDRA.

49. Polyhedra may be classified as follows:
1. Tetrahedron.

2. Parallelepiped, Cuboid, Cube.
3. Pyramid, Frustum of Pyramid.
4. Prism, Truncated Prism.
5. Prismatoid, Prismoid.

6. The five Regular Polyhedra.
7. A number of Semi-regular Derived Polyhedra.

This classification is not exhaustive, and its divisions
are not mutually exclusiire. It includes, however, aU the
polyhedra usually met with.

Polyhedra are not equally important in any sense, and
only a few can be said to be important in a descriptive

The Teteahedron.

80. The three planes which form a three-faced comer
and any fourth plane, not through the vertex, which cuts'
them all, form the closed figure

called a Tetrahedron.

The tetrahedron ABCDhaa
four triangular faces, four
three-faced comers, and hence
four vertices and six edges,
i.e. the six joins of four non- g/
complanar points no three of
which are in line.

-De/ Any face of the tetra-

hedron may be taken as the 6a«e of the figure. The
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three edges which bound the base are then called btucU
edges, and the other three are lateral edges.
The joins of the middle points of opposite edges are

diameters. There are thus three diameters, EO, FH
and IJ.

'

The diameters of a tetrahedron bisect
Al. Theorem.

one another.

Proof. ABCD is a skew quadrilaiend, and BD andAC are its diagonals.

But the joins of the middle points of opposite sides of
a skew quadrilateral bisect one another (30).

Therefore EG, FH, and //bisect one another.

Def. 1. The point of concurrence of the diameters is
the centre of the tetrahedron. And a section through the
centre parallel to a pair of opposite edges u a middle
lection, as EFOH.

Cor. There are three middle sections, and these pass
through the middle points of the six edges taken in
groups of four.

The middle sections are evidently parallelograms, and
they intersect by twos along the < Hree diameters.

Def. 2. A median of a tetrahedron is the join of a
vertex with the centroid (P. Art 85. Def. 2) of the
opposite face.

There are thus four medians, one to each face.

M. Theorem. The medians of a tetrahedron pass
through the centre, and are divided at that point so that
the part lying between the centre and a face is one-
fourth of the whole median to that &oe.

,
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a diameter.

IP is one-third of lA, and P is
thus the centroid of the faceABC (P. Art. 86), and DP is
the median to the face ABO.
Evidently JDP and /J" are "com-

planar, and intersect in some
point 0. Then is the centre.

f^f. Draw JQ II to DP to meet lA in O.
Then, as J- is the middle point of ^, «> Q is themiddle point of AP (P. Art 84 Cor. 2).

point of
^7, and 18 therefoi- the centre (P. Art 84Cor. 2). Hence the medians pass thr h the cent^

'

Again, ^0 '^iQJ, And QJ=iPD.
.: PO=\PD.

ii

ii
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ThB PaRALIiELBPIPBD.

53. Dtf. The panOeUpiped bu lix face., of which
each pair of oppo«ite ones are parallel planea.
The oontraotion ppA will be frequently used for the

word 'parallelepiped.'

Since parallel planes out any other plane in paraUel
lines (Art. 21), and since the planes AC and A'O are
parallel and cut the par^-
lei planes AD' and A'D, it

follows that AB, CD, A'B,
and CD' are all parallel.

Similarly, AD, BC, A'jy,
and B'O are parallel, and
^C, A<0, BD, and BfD
are parallel.

Thus the faces of a ppd.
are parallelograms congruent in opposite pairs, and the
twelve edges are iu parallel sets of four in each set
The corners, which are eight in number, are each

three-faced, and the three edges which meet at any one
vertex give the directions of aU the edges, and these are
ineretore called direction edges.

y ^:,n i' u*"^
^BAD^ZB'A'D', the ^DAC=

^ D'A'C, and the Z B^C"= ^ B'A'C, the comers having
their vertices at A and A' contain face angles which are
respectively equal, but these are disposed in opposite
orders about the vertices.

The same U true for any other pair of opposite cor-
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.y«I!:
"''"•'*• ''"-«" »^ • parallelepiped ^

at most only four varietief o/n! ^' """""y' ''>"« "•
^i>e. Will ^ o^i:rc=;r/er"^'«^^'-'-

all^JpdXtSSe;Sr '?--^'*ve corner..

theo6<«e.
'**'*"'*** *^° °J«««, the «c«, and

angles at one corner o?a ^^
"""' ^ "»« "»"« '•««

Then the representative cor-

°*"*«""««'yseentobe^BC7
^C,^'5C,and.l'£'G

^'^^!^^' ^ ^"« acute,
«» -D^, Care obtuse.

Therefore, if a parallelepiped
has one corner formed of aouTf^^o
resentative corners conl-^

*°»'*''' *'"'«'*''«•• "p.
fec« angles, eacS

^ *"'" ^"^ and two obtu^
Thisi8ana«rf<,^^o„^,g,,^^

(2) JtA, B, Cbltb obtuse A' w n>
Therefore if . „„„.i , .'

-^' ^' C* are acute.

comer cl'5osed\rb J :Tce '", °"^ «'P"'-*»«-
Bentative coders have^h ' *"?'''' **»" °*^«' '^P'^-
face angles. ' ^^' °°* °tt»«e and two acute

This is an obtuse paraaOepiped
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95. Def. The join of opposite vertices in a ppd. is

a diagonal. These are four in number, viz. AA', BB,
CO, and DU (Fig. of 63).

Since AD is II to BC, is II to UA' and equal to it,

AlfA'D is a parallelogram, and its diagonals bisect one

another. Hence AA' and DDf bisect one another ; and

similarly, AA' and BB bisect one another, etc.

Therefore, all the diagonals of a ppd. pass through

a common point, and are bisected at that point.

The common point of the diagonals is the cemtre.

56. Theorem. Every line-segment passing through

the centre of a parallelepiped, and having its end-points

upon the £gure, is bisected at the centre.

Proof. PQ (Fig. 53) is a line-segment passing through

the centre, 0, and having its end-points P, Q in the face

AC and A'O respectively.

Join AP and A'Q. Then AP and A'Q are complanar,

since PQ passes through 0; and the plane of ^Pand
A'Q cuts the parallel faces AC and A'C in parallel lines

(Art 21. Cor. 1).
.-. APia llto-4'Q.

Also, AO= A'O, and ZAOP= Z A'OQ,

and ZOAP=ZOA'Q.

.: AAOP=AA'OQ,

and 0P= OQ.

Cor. The centre of a ppd. is the centre of every cen-

tral section.
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67. As a parallelepiped has three direction edges, threesections my be made normal to each of these edl
IdS. ' ""*"" "'" *" "'"''' "' '"^^-

Oef. 1. If none of the sections are rectangles the

dihedral, are right angles.

2. If one section is a rectangle, the ppd. is aiclinic

^'Z^t^ "'*•' ""• •*" - p«-«'^

3 If two sections are rectangles, the ppd. is mono-c^»jo,^and two sets of four dihedral angles are^
4. If the three sections are rectangles, all the facesare rectangles, and all the dihedral angles are nVhf

S? The fi"
*'^- "r-

"^ ''''' -™-^^iJei.). The figure is then a cuboid.^

th^Z- ^^ ^^l''''^^
0^ the diagonals are equal, and

. InotheT '"" *" "''*'^^^ perpendicula; to' "e

A/: 2. A cuboid with its edges equal is a cube Thefeces of the cube are squares.
The analogues of the ppd., the cuboid, and the cube

Zlf^^-'''^''' parallelogram; the recU^.'

Of i2ic::Xw"rr^^.sr^j?«'- «"• -pp-"-
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The Pybabiid.

58. Def. 1. When a comer of any number of faces

is cut by a plane which cuts all the faces, the closed

figure 80 formed is called a pyramid.

The cutting plane is the base, and the planes which
form the corner are faces of the pyramid. The edges
which bound the base are basal edges, and those which
belong to the comer are laierai edges. The vertex of the
corner is the vertex or apex of the pyramid.

Def. 2. Pyramids are classified into triangular, square,

etc., according to the character of the base. A triangular

pyramid is a tetrahedron.

fi9. Def. If a pyramid be cut by a plane parallel to
its base, the portion lying between the base and this cut-

ting plane is called afrustum of a pyramid.

The frustum has thus two bases, a lower and an upper,

or a major base and a minor base.

From Art 28. Cor. 2, it follows that the two bases of

the frustum of a pyramid are similar polygons.

The Pbism.

60. When the vertex of a pyramid goes to infinity in

a direction normal to the base, the lateral edges become
parallel lines, and the resulting figure is not a closed

figure. But under like circiunstances the frustum be-

comes a closed figure with two cong^ruent bases, and is

called & prism.

If one edge of a prism is normal to a base, all the

edges are normal, and the lateral faces are roctangles.

This is called a right primn.
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oMigtM prism. ^ ^'^^ " an

Prisn.. dependinTupont^S^dTAlTC "' "^ ""'^"^

ThK RbQDLAB PoLrHBDHA.

at the centre of aaph fo„, ,

ven»x. The normal

the figure, Llh^Le'^raTer^r^l^l:''' T"^
«"

isoclinal to the edges of thltlJ^ . * ''^"*'* '" »"

that vertex. ^ * ^*'*'* *°*^ *° the faces of

Jne^f the regular polyhedra is familiarl, known as

63. Theoram.

polyhedra.
There cannot be more than five regular

'. urn- • !

MiA
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oiroumangle, or a face-angle muat be less than four-
thirds of a right angle (Art. 42).
The only regular polygons having their internal angles

less than | of a right angle are (P. Art. 133. Cor.) the
equilateral triangle, the square, and the regular pentar
gon; and these alone can form the face of a regular
polyhedron.

Equilateral Triangle.

A comer may be formed of 3, 4, or 6 equilateral tri-

angles, and may therefore be three-, four-, or five-faced.

1. The three-faced comer gives the regular tetrahedron,
with 4 faces, 4 comers, and 6 edges.

2. The four-faced comer gives the regular octahedron,
with 8 faces, 6 corners, and 12 edges.

3. The five-faced corner gives the regular icosahedron,
with 20 faces, 12 corners, and 30 edges.

Square.

Only one comer, a three-faced, can be formed by squares.
4. This gives the cube, with 6 faces, 8 corrers, and 12

edges.

Regular Pentagon.

Only one comer, a three-faced one, can be formed.
6. This gives the regular dodecahedron, with 12 faces,

20 comers, and 30 edges.

These are the five regular polyhedra.

63. Euler's theorem, Art. 48, gives

F+C=E+ 2.

Now the numben denoted by J!" and O are evidently
interchangeable, while E remains the same. That is,

•Trm!J--mht^n' <̂ >9m mm.
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« the number of foces in2 °^ "T*" " t''^ ""^e
nuniber of faces is he ^le r^h T'^'^*^"'

^'^ '^'^

the first polyhedron, whiS:helmS^;„V^« """"' ^^

the same in both.
"umoer of edges remains

These polyhedra may be nall«H
other, as either may ??foSer}illr''T'' °* *««'^

of reciprocation, the chanS „f I
"'''"' ''^ » ''"rt

planes into points
^^ "^ ^"•*' «*° Planes, and

P^'i^.Sne^^cfnt: l^tht '' -' ^^-^^'"
points be joined in eve^ wl •!

""'' *"«* ^^^^
Poin.. whiih lie on adlnTLr^he 1

"^ T ""^^
edges of a polyhedron whiph,-/' ^°"'' '•""» the

polyhedron "^ '" reciprocal to the original

w/obSrn;Thi53;t:o^:f.r ^ ^'•^ »—a^.

hedron is the recinrocal nf *k r
"*** ^^^ octar
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the remaining lines. The piece of cardhoard may now

be folded along these lines to form the intended figure,

and the edges be fastened together with glue.

The figure drawn on the cardboard is called a net.

The net for an obtuse parallelepiped is given in the

diagram. The faces are denoted by U, V, and W, those

having the same letter being opposite, and therefore con-

gruent parallelograms. The edges which come together

are denoted by the same small letter. Those having

the same letter attached must, of course, be the same

in length. The three obtuse angles concerned are

denoted by A, B, and C. All the other angles are then

known.

If the angle C were acute, as indicated by the dotted

lines, the ppd. would be acute. And the same results

would be obtained by making either Aoi B acute.

As the net is drawn, the ppd. will be triclinic. If the

U faces be rectangles, the ppd. will be diclinio ; if both

17 and Fare rectangles, it will be monoclinic; and if all
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the faces be rectangles, the figure will be the cuboid •

and if all squares, the cube.
'

The accompanying diagrams give nets for the regular
polyhedra other than the cube.

Nets for prisms and pyramids and frusta need no
description.
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xaBoni D.

1. The teoM of • polyhedron ue 3 sqiuue* uid 3 trimnglei.
Find the number of edgea and of coraen and claaify the flgon.

». If an n-hedron haa aU it« face* trianglea, the number of iu
oornenIa}()i + 4).

». If P, Q,S,Sbe the centrolda of a tetrahedron, the ncipro-
cal having P, Q,JI,St vertices has the same centre aa the original.
Alao the diameten and medlana of the two tetrahedra coincide,
except in length.

4. In the regular tetrahedron the diameten are perpendicular
to one another.

». If the diameten of a teirahedron terminate in the centree
of the faces of a cube, then the edges are diagonals of the faces.
Thence show how the cube may be transformed into a regular
tetrahedron.

6. If AA', SBi, CC, and DDi are diagonals of a cuboid, show
that the middle points of AB, BC, GA', A'B>, B'C, and CA are
C(>mplanar.

Find the form of the section through these points.

T. The join of A' with the middle point of AB, and the Join ofC with the middle point of BC, divide each other into parU
which are as 2 to 1 (Ex. 6).

•. Thecentresof the adjacent faces of a ppd. are joined. What
oloMd figure is formed r Describe iu characteristics.



SECTION 6.

The Cone, the Cyukdbb, akd the Sphekb.

spatial figures having curved surfaces, and they are^fre^quently apoken of as the three rmnd Miee. ^ ""

The cone and the cylinder can be wneratpH >.„ *i.
motion of a straight line and th«l

«*"*™'**^ ^^ t^e

called r«/ed«.r/aci
' '^ *'" ""-^^l^ently

*>S:r^:«' "* * "'^'^ ''"^-' ^"* '^ -^-of
-De/ A surface which can be irenenib.H K^ !.» ,

tion of a plane figure about an JZ7Ti^T,ZtZa awfoM of motulton. ^ '
"

Tk« iphete U • .urtac ot nvolulioo.

The Cone.

61
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ourre, not eomplaiwr with the point, generates » eont, or
has a oone as its locus.

is a fixed point, and APB is a fixed curve not oom-
planar with the point. The
Tariable line L passes through

0, and meets the curve APR
Then L generates a cone.

Cor. Since L is unlimited
in length, the cone extends in-

definitely outwards upon both
sides of 0, and is not a closed

figure.

D«/. 2. is the centra of
the cone, and the two parts

into which it divides the cone
are called the two nappei or
*htett of the cone.

The fixed curve APB is the director, and the line L is
the generator of the cone.

Any line which coincides with the generator in any of
its positions is called a generating line.

Thus every line passing through and lying on the
conical surface is a generating line.

68. The director may be any form of curve. If it

becomes a line, the cone degrades into a plane (Art 7. 3)

;

a,nd if the director becomes a point, the cone becomes the
line through that point and the centre.

Thus the line and the plane may be looked upon as
limiting forms of the cone.
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69. When the director U a circle, and the centre ia
a vertex to that circle as a cone^irole (Art. 10 Def 1)
the cone U a right circular cone, and the line through
the centre of the circle and the centre of the cone i. the
axis of the cone.

The circular cone is a figure of revolution, and is themost important of all cones.

The word 'cone' as hereafter employed will mean anght circular cone, unless otherwise qualified.

70. Let C (Fig. of 67) be the centre of the circular
director ^^fl Then CP is constant, and CO is con-
stent, and OCPis a T Therefore the ^ POC U constant
lliis angle is the aemi-verlical angle of the cone
Hence a circukr cone is generated by a line which

revolves about a fixed axial line while meeting the latter
in a fixed point and at a fixed angle.

Cor. 1. Every section of a circular cone, normal to
tne axis, is a circle.

Cor. 2. Every section of a circular cone, through the
axis, 18 two lines intersecting at a fixed angle the vertical
angle of the cone.

Cor. 3. Every section of a circular cone through the
centre is two lines; for the plane meets the cone alone
two generating lines.

Cor. 4. Any point on the axis of a circular cone is
equidistant from the surface on aU sides, and the axis is
thus an isoclinal line to the surface.

71. Theorem,

oomplanar.
Only two generating lines of a cone are
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Proqf. Since the generating linea aU paM through O,
any two of them are oomplanar.

Let any two particular generating lines meet the
director circle in A and P. The plane of these lines
meeU the plane ox the circle in a Une (5), and as a line
can meet a circle in only two points (P. Art. 94), the
plane of OA and OP has only two points coincident with
the circle, and therefore only two generating lines lie in
this plane.

78. Theorem. A line which is not a generating line
can meet a cone in only two points,

Proof. Let Jf be the line, not passing through O; and
let the plane U pass through 0, and contain if. If U
outs the cone, it contains two generating lines; and since
it contains M, the two generating lines are oomplanar
with M, and meet it in two points, and in only two
points; and these points are common to Jf and to the
cone.

Therefore, the line Jf can meet the cone in two, and in
only two, points.

78. If the two points in which a line Jf, which is not
a generating line, meets a cone become coincident, the
line becomes a tangent line to the cone, and has one point
only, a double point (P. Art 109. Def. 2) in common
with the cone.

The plane determined by a tangent line and the generat-
ing line through its point of contact is a tangent plane
to the cone, and touches the cone along this generating
line, which, as it represents the union of two lines, is a
double line.
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theae two cone. beoon.e coincident, and torn, but ole

The CruNDBB.

not complanar with the line.

fV- 2. A circular cylinder is generated bv one of apair of parallel lines while revol^ne at a fixX, T.
about the other parallel as a ^Z^^ii'LTrr^^'^Z
line IS the axis of the cylinder.

The fixed

Car. 1. The cylinder, as defined, is not a closed figure

onlTlw!;.^
"" "^ ""* * "'""^ *'yl^'J« twice, and

axSl'e.aiS:' " *'^"''" '''''"'' --"^ *<• t^e

fl -s^i
t̂*^ '•'
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The Sphebe.

76. Dtf. A vfi\ert is the locus of a semicircle which

revolves about its limiting centre line as an axial line.

BAD is a semicircle, and AB
is its limiting diameter. When
ADB revolves about AB as an

axis, the semicircle generates a

sphere of which OD is a radius.

Cor. 1. All the radii of a

sphere are equal to one another.

Therefore,

Dtf. A sphere is a surface

every point on which is equi-

distant from a fixed point within called the centre.

Car. 2. The sphere is a closed figure, so that to p&ib

from without the sphere to within, or from within to

without, it is necessary to cross the surface.

Car. 3. A point is within a sphere, on the sphere, or

without it, according as its distance from the centre is

less than, equal to, or greater than the radius of the

sphere.

Car. 4. Two spheres which have the same centre and

the same radius coincide in all their parts and form

virtually but one sphere.

77. Theorem. Every plane section of a sphere is a

circle.

Let BEP be the plane section and P be any point on

it (Fig. of 76).
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Then, being the centre of the sphere, OPis constant,and P lies in the plane of section
Therefore (Art 10. Cor.) the section is a circle.

thf?\
'^^'^ 1*"*!°" ^^ " P'^"" ^'""'"Kh the centre ofthe sphere .3 the largest circle producible, and is called

ciZ "^ '*' ^""" ^" "*''«' '^'^^-^ - -2

^ ^'"'•*Ar**
"'"''* °' * 'P^^'* •"" 't« "entre coinci-

cSes.
'"'"' " °''"'^' °* "- °^ '»« ^eat

in only?,:^i.ts^
"" "" ""* '^ ^^'^^'^ '" *-' "<^

iW If a line meets a sphere, any plane containiiiKthe i„,e pves m section a circle cutting the line; anSIfthe crcle cuts the line twice, and twice only, so a lin^can meet the sphere in two, and in only two, ^ints

fhf*-^ . "^ii"*
*?'"'* •"^**' * '?•>"« " » •«««»' line, andthe part within the sphere is a chord

A secant through the centre is a centre line, and itschord 18 a diameter.

when It passes through the centre it is a diuZralplal

fj*' •'^T"^.
^''''J°'"°f*''« centre of a sphere with

cSord
^'"' °' * "'"' •" P^'P^-dicuL to the

7«J*lf^^^*
"^""^ '''"'** '"'<*"*1« point is C- (Fig. of

76) i then OC U ± DE. *
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The plane of O and DE gives in section a circle with
DE as chord, and O as centre. And C being the middle
point of the chord, OC is J. DE (P. Art* %. 4).

Cor. 1. Diameters of the same small circle bisect one
another, and being chords of the sphere, the join of the
centre of a small circle with the centre of the sphere is

normal to the plane of the small circle, i.e. to the plane
of section.

The converse of this is evidently true.

Cor. 2. Lines through the centres of small circles

and respectively normal to their planes meet at the
centre of the sphere.

Cor. 3. The plane normal to any chord at its middle
point contains the centre of the sphere.

For this plane is the right-bisector plane of the chord,
and therefore contains every point equidistant from the
end points of the chord. But the centre of the sphere
.3 equidistant from the end points of the chord.

80. Problem. To find the centre of a given sphere.

Itt Solution. Draw, on the sphere, two small circles

whose planes are not parallel, and draw normals to the
planes of these circles at their centres.

These normals meet at the centre of the sphere (Art.

79. Cor. 2).

2d SoltUion. Draw any three non-parallel chords and
their right-bisector planes.

These planes have the centre as their common point
(Art. 79. Cor. 3).

Cor. 1. In the first solution, if the planes of the
circles are parallel, the normals also are parallel; and
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Co»". 2. In the second solution if f».« u j
parallel, so also are th«ir , T* u ' ^® *'''°'^« a^e

«orml to a, okort

"

"^ * ''™°""' Pl"«

i;^»-
... ., u. . . rc'to:s.r"i-*

TM. pl«e is » tangent plane to the sphere.
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Cor. A tangent plane is normal to the radius to the

point of contact.

83. Theorem. Through any four non-complanar points,

of which no three are in line, one, and only one, sphere

can pass.

Proof. It is shown in Art. 46. Cor. 3, that one, and
only one, point is equidistant from four given non-com-

planar points, no three of which are in line.

If this point be taken as centre, and its distance from
any one of the given poii^ts be taken as radius, the sphere

so determined passes through the four given points.

Cor. 1. Four non-complanar points, no three of which
are in line, determine one sphere.

Cor. 2. Spheres which coincide in four non-complanar

points coincide altogether.

Def. Four or more points so situated that a sphere

can pass through them are con»pher%c, and when these

points form the vertices of a figure, the figure is inscribed

in the sphere, and the sphere circumscribes the figure.

When a sphere has all the sides of a skew polygon as

tangent lines, the sphere is inscribed to the polygon, and
the polygon is circumscribed to the sphere.

With a polyhedron it is different. For a sphere may
have the edges as tangent lines, or the faces as tangent

planes, but not both.

The sphere having the edges as tangent lines is the

tangent sphere to the edges, and the one having the faces

as tangent planes is the tangent qahere to the faeas.
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edges tangent H;eX ail ";'.r"''P''''"''' »!' i*"

the «dt ^^'i'c%^'';r- f» - order, and ?:e

of indefinite leng^L ' ^ ''' considered as lines

be^pei;ailret"ott":::r^^^^^^^ ^^^ --

poSr;Ssrtt„xvro\tr" "- - ^ ^-
is not complanar with the givenU^''

'""'*' "^°'^ ^"'^

JL's ^'*an1 let'
"" *"""" '"'•»"''-*• Then

sacting onlJe "pWe .JTaL^Th 'T* ""^^ -*«'
gent plane. '

'""^ ""^^^ determine a tan-

Therefore, a sphere can touch a Plane at a .



72 SOLID OB SPATIAL OEOMETBT.

line AB becomes a tangent line at one point, and the

line CD a tangent line at another, and these two tangents

are not complanar.

Therefore, a sphere may touch two non-complanar

lines at any two given points, one in each line.

85. Thaoram. The figure of intersection of two spheres

is a circle, and the common centre line of the spheres

passes through the centre of the circle and is normal to

its plane.

Proof. Let and 0' be the centres of the spheres,

and P be a point on their figure of

intersection PQB. Then OP, and

(yp, and 00' are constant for all

positions of P. Therefore, P lies

on a cone-circle to which and 0*

are vertices, and hence 00' passes

through the centre, O, of the circle,

and is normal to its plane.

Cor. 1. OP and CP being given, CP decreases as OC
increases, and vice versa. When OPC is a right angle,

the tangent planes to the two spheres are perpendicular

to one another, and the spheres intersect orthogonally.

Cor. 2. When P comes to C, the circle PQB becomes

a point upon the line 00'.

Therefore, when two spheres touch, they do so at a

single point, and the common centre line passes through

the point of contact.

86. APBR is a sphere with as centre and 0> any

point without the sphere. O'P is a tangent line from
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a, touching the sphere at P. PQR i, the small circlethrough P, whose plane is normal to 00'.

1. 00' and OP are constants, and
^ OPO" is a right angle, since O'P
is a tangent (Art. 82). Therefore
O'P is constant, and P always lies
on the small circle PQR, which is
a cone-circle to O and O'aa vertices.

Therefore all tangent lines from
a given point to a sphere are equal.

2. O'P is the generator of a cir-
cular cone which touches the sphere
along the small circle PQR, and 0' is the centre or ver-tex of the cone.

Def. The cone of which O'P is the generator is thetangent cone for the point 0'.

The circle PQR is the circle of contact, and its planeu the polar plane of the point O' with respect to thesphere; and the point 0' is the pole of the plane.
3. When O' comes to A, the tangent cone and the

polar plane of O' unite to form the tangent plane at Ahence a tengent plane is a double plane representing th^m.t«g form of the tangent cone, and the limiting^si-
tion of the polar plane as the pole comes to the sple^^.

Evidently, then, a tangent plane is the polar plane to
Its point of contact.

f »"o lo

from t^."T "'" ^""^ '^' '°°"'' °' " P"'"* '"l»'<'«t«'t

which do not form an axial pencil , i.e. from three p aneswhich form a sheaf.
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Let ABC, AOD, ADB be the planes having A as their

common point.

Let the internal and external bisecting planea of the

dihedral angle whoie edge js

AB be denoted by ah and AB
respectively, and similarly for

the other dihedral angles.

Also, let A, denote_the com- —
mon line of ab and oc. Then,

as every point on ab is equidis-

tant from the planes .^BCand

ABD, and every point on ac

is equidistant from the planes

ACB and ACD, every^)oint _
on the intersection of ab and ac, that is, on A„ is equi-

distant from the three given planes.

The line A, is thus inclined to all the planes at the

same angle, and it will be called the internal isoclinal

line to the planes.

Again, every point on AB is equidi8tant_from the

planes ABC and ABD, and every point on AC is equi-

distant from the planes ACB and ACD.
Therefore, every point on the common line of AB and

AC, that is on the line A^, is equidistant from the three

planes, and A^ is ao external isoclinal line to the planes.

Similarly, A^ and A, are external isoclinals to the same

three planes.

Therefore, the required locus consists of the four

isoclinal lines to the planes. These isoclinals pass

through A, the common point, and form the centre

locus of a sphere which touches the three concurrent

planes.
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Cor. Each isoclinal line is the common line to three
bisector planes which form an axial pencil, viz.

:

At of ^,ii^ ^; ^, of ab,AC,AD;

A,oi(K, AH, AD; and A^, of od, AB, AC.

88. Problem. To find the centre of a sphere which
shall touch four planes so situated as to form a tetra-
hedron.

Employing the notation of Art. 87, we have four iso-
clinal lines to three of tjie planes, at each vertex of the
tetrahedron, or 16 in all. These are ^ B„ C„ D, as
internal ones, and A,, A., A^ B.. B.. B^ C„ C., C* D.,
A. D„ as external ones.

Denote the planes opposite A, B, C, D hy a,
fi, y, 8,

respectively.

Then A, is the locus of a point equidistant from
A y, 8 ;

and B, from a, y, S. Therefore, a point equidis-
tant from y and 8 lies upon both A, and B„ and hence
these lines intersect, and C, and D, pass through the
point of intersection.

Hence (1) A„ B„ C„ D„ meet to give one point
required.

Similarly, each of the following groups of four lines
gives a point equidistant from the four planes:

(2) A B., C„ D.
; (3) B„ A„ C., A i

(4) C„ A., B„ D. ; and (6) D„ A^ B^ C^.

Again, A^ is the locus of a point equidistant from
P, y, 8, and B, from o, y, 8.

Therefore, A^ and B, intersect in a point equidistant
from a, A y. 8, and C< and D. pass through this point



76 80UD OH SPATIAL aBOMETBT.

Hence these line* meet in groups of fonr to give thiee

points eqaidistant from the four planes ; namely.

(6) A^ B„ C* A; (7) ^« C„ B. A; (8) ^ i>- B« «7.-

Thus eight spheres, in all, can be found, each of which

shall touch four planes so situated as to form a tetra-

hedron.

1. If the dlieotor flgan in the generation of » oone (61) tea

polygon, what flgora ! fonned f

t. Show that the oone it a limiting caw of an n-taced comer,

and explain how.

t. If the radios of a iphere is the generator of a circular cone,

the flgnre of Intenection of the iphere and cone is a circle.

4. The centra locna of a iphere which toochei a plane at a given

point is a normal to the plane at the given point

(. What ii the centre locui of a iphere which toachei a line at

a given point? which touchei two parallel linei? which touchei

two Intenectlng linei ? which touchei two intenecting plane* t



Part II.

ABEAL RELATIONS INVOLVINO LINE-SEGMENTS
ABOUT SPATIAL FIGUKES.

89. The theorem in plane geometry that the square

on the hypothenuse of a right-angled triangle is equal to

the sum of the squares on the sides, the theorem that

the -ectangle on the parts of a secant line hetween a

point and a circle is equal to the square on the tangent

from the point to the circle, and others of this nature,

express areal relations, involving line-segments of plane

figures.

Many important relations of a similar nature exist

among the line-segments connected with spatial figures.

These we propose to consider in this part of the work.

77
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SECTION 1.

The Skew Quadrilateral and the
Polyhedron.

90. Theorem. In a skew quadrilateral the sum of the
squares on the sides is greater than the sum of the
squares on the diagonals, by
four times the square on the

Join of the middle points of

the diagonals.

Proof. ABCD is a skew
quadrilateral, and AC and
BD are its diagonals, having
I and J as their middle

points.

D/is median to A CDA, and B/is median to A CBA.
.-. CD'+DA^+ CB'+BA'=2 {CP+DP+CP+BP);

or, iAB' = iCP + 2DP + 2BP.

But IJ is median to the A DIB

;

.: 2DP+ 2BP= iBJ'+ 4:IP;

or, XAS'= 4CP + iBJ'+ 4IJ*

= CA' + BD!'+ AIJ'. Q.E.D.

This important theorem is true of all quadrilaterals,

whether plain or skew (P. Art. 173).
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THE SKEW QUADRILATERAL. 79

91. For the tetrahedron let us adopt the following
notation

: Taking ABC as the base and D as the vertex,
denote the lateral edges DA, DB, DC by a, b, and c
respectively, and the basal edges BC, CA, AB by a„
bi, and c, respectively. Then a and Oi are opposite
edges, etc.

Theorem. In any tetrahedron four times the snm of
the squares on the diameters is equal to the sum of the
squares on the edges.

Proof. The skew quadrilateral with its diagonals
forms the tetrahedron.

The results of Art. 90 give

:

4 Z/»= a» + c«+ ai» + c,»- 6" - 6,«, (Fig. of 90.

)

4 Jf/f'= 6» + c»+V+ c,' - a'- a.',

4 £<?« = o» + 6»+ Oi« + 6.>- c>- c,'.

Therefore, by addition,

^iIJ' + FH' + Ea')=a'+b' + c> + a,' + b,' + c,';

or, denoting, in general, a diameter by d and an edge
bye,

4 5tP=Se«.

Cor. In the regular tetrahedron, all the aiameters
being equal, and all the edges being equal, gives,

5eP=3d«, and2«' = 6e';

.-. e' = 2cP.

So that if the diameter is equal to the side of a square,
the edge is equal to the diagonal of the square (P. Art
180. Cor.).
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92. Theorem. In any tetrahedron, nine times tie square
on a median is equal to the dif-

ference between three times the
sum of the squares on the con-
terminous edges and the sum of
the squares on the remaining
edges.

Proof. In the tetrahedron
D-ABG, P is the centroid of
ABC. Then DP is the median
to the face ABC.

Bisect AP in Q. And AQ = QP= PI=^AI.
DQ is median to the AADP;

.: AI>'+ DP'= 2A^ + 2DQ'. (P. Art. 173.)

Also, DP is median in the A QDI;

.: DQ' + DI' = 2QP^ + 2DP'.

And eliminating 2>Q» between these relations, we
obtain

3DP'= AD' + 2DP- ^AP.
But •.• ^7 is median in the A ABC, and DI is median

in the A BCD,

.: 2 AI' = AB'+AC-2 BP= c,' -^ b,'- ^a,',

and 2 i>/» = Z>B» -r i)C"- 2 S7»= 6»
-J- c«-^a,>;

whence 3DP'=.a' + b' + <^- |(a,« -|- 6,»+ c.»),

or 9i)P' = 3Sa»-SaA g.jt.D.

93. Theorem. In any tetrahedron, nine times the sum
of the squares on the medians is equal to four times the
sum of the squares on the edges.
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^as vertex, 9<=3a' +3ft» +3c' -a,'-V_o..^as vertex, 9«./= 3a' +3V + 3c,'-„.»_6^ .j.'
ias vertex, 9m,'=3«,» + 36. +3c,»-„» _6,._^:^a« vertex, 9<= 3a.» + 36,V3<- - „» .j _,,'

9 5w'= 42el

4i''=24«.f
"*' ''^''' tetrahedron 92«'=36<rd

and denoting it by p, we ' ave
^ '^^'

tetSin?;?"' * '"'^^'^^ -^>« "^ the regular

And ""=T;:r^^^*^^^=*^^-

scrltd?phtvrtrft°" "^ ^^^« *^« ''™-
inscribed?A^%Tr„V?rL*?= ^I'f .f^^' ^'^J'^e
and r respectively,

-R':p':r"=9:3:i.

(Art. 62.)

(Art. 91. Cor.)

;i^:il
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The Paballelepiped.

95. Denote the direction edges by a, b, c, and an edge

in general by e, and a diagonal in general by d.

Theorem. The sum of the

squares on the diagonals

is equal to the sum of the

squares on the edgbS.

Proof. Since the faces

are all parallelograms, and

AB is II to B'A', AC to

C'A', etc.,

AA" + BB" = Aff + BA'^ + A'B" + B!A\

Similarly,

CC + DD" =Ciy + DC" + CD" + D'C*.

Whence, by addition,

Sd*= AB» + Ci)"+ 4'B" + C"2>" + BA'^

+ D'C^ + B'A* + DC*.

And BA>*-\-CD''=BC'-\-CA"+ A'D''^D'B';

and B'A' + CD' = DA' +AC + CB" + B'lV.

.: Sd2 = 2€». <J.K.D.

Cor. 1. As the edges are separable into three groups

of four equal edges each (Art. 53),

2cP= 4(a« + 6' + c').

C<n. 2. In the cuboid the diagonals are all equal, and

Cor. 3. In the cube o = 6= c

;

.-. d» = 3e».
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point as the projection of the middle of sr A > T'
middle point of RQ.

^^' **• '* »« t^^e

.-. OP=OR+OQ.

AcZroT,- '" ^'^- (2) construct the faces ^AL, aad O^', disposed as in the figure.
'

Draw CR, BQ J. on ^O, produced if necessary.

^51

1«
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Take OP=OR+ OQ, and draw PT ± to AO.
With O as centre and OA' as radius, describe a circle

cutting PT in T. Join AT.

AT IB the required diagonal.

Proof. OR is the same for both figures, and so also

is OQ, and therefore OP; and AO being the same in

both, AP is the same in both.

Also, or of Fig. (2) is made equal to OA' of (1).

.-. A OPToi (2) = A OPA'ot (l),and PT= PA'.

Hence A APT ot {2)=AAPA' of (1),

and ^Tof (2)=-<14'of (1).

In like manner any other diagonal can be constructed.

Cor. Let the face angles about the vertex A' be all

acute, and the figure is an acute ppd. (Art. F .).

Denote

Z BA'C by X, /i CA'O' by v, and Z O'A'B by /x.

Then, Fig. (2),

Z BOCi = \,Z COP=tL, A BOP=v.
Now,

AT' = AP' + PT' =(AOi- OPy + OA"- OP'

= ^0" + 2^0 • OP+ 0^"

= o' + 2a (OQ + OB) +0A''.
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But,

OQ =:6C0S„, 05= CC0S^
.•^J" = ^4"=a»+ 6' + c' + 26ccosA + 2c«cos^

acute face angles
''"'"''* ^^^i"? tl»ree

ob^:st;^S:e^'^^^r^--o-,,ee
«' + 4' + C + 26ccosA-2c«cos;.-.2a6cos,
a+6'

+ C-26ocosA + 2eacos^-2a6cos.,
a'+ *' + c^-26ccosA-2oacos^ + 2a6cosv.

For the diagonals of an obtuse ppd it i, n„isaiy to change throughout the algebraic L if

""""
cosine te-m.

"'B^urjic sign of every

«enHe,orwlthitspro^r^^ ''^""" '^ '""«" '" 'ta proper

Under a difft^nt1L« fV°,"'^
"^»'* "* »•

of these .ight have faSTl,eft Jo T" " ^"

m ri

I
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But if OX, or, OZ, the direction lines of the cuboid,
meeting in O, be taken as the
three rectangular axes of space
(Art. 8. Def. 1), OA is the pro-

jection of OP on OX, OB is the

projection of Of on OY, and OC,
of OP on OZ.

Therefore, the square on any
line-segment is equal to the sura

-f the squares of the projections

of the segment on any three

mutually perpendicular lines.

98. Denoting OA by a, OB by 6, and OC by c; also
Z POA by a, Z POB by

fi, Z POC by y, we have

OA'

'""••V

cos'«=i^ =
' OP'~a'+b'+c''

with the symmetrical expressions for cos'/S and cos'y.

.-. C08'a-|-oos';3-|-cos'y=l.

Bef. The angles a, fi, y are direction angles of the
line OP, and determine the direction of OP relatively to
the three axes. The cosines of these angles are the
direction cosines of OP.
These angles are interdependent, and the result of this

theorem shows that the sum of the squares of their
cosines is unity.

Cor. The position of a point, P, in space is known
relatively to the origin 0, and the axes OX, OY, OZ,
when we are given OP, and the angles which OP makes
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SoiToVo^ ut;;?/r ^^'l
th" length of the

are the direction edgSof * T^, 1°' *^- P«'J«<'«o„a
diagonal. * ' °^ "^ ''"'«'<1 »' *hich OP is the

-Stj^Sgeter;"'*^ "'-*'''« -'"ing i„to

Thb Octahedron.

I».« «t «t.™„.i.„ „, tT'Z..^ • ,'k'cl. U..
«"* «1^ .r th.«„ .. .^,"J»

" «• ~1<II. poiM o,

faces. ^ J^ning the centres of adjacent

from the nature of a ppHArt '*'*''"''«"'' ""^ hence
37) the octahedron may be
tnolmic, diclinic, monoclinic,
right or regular; the ri^ht
octahedron coming from The

J?" """""'• I-^ ^»y oc-
tahedron, the sum of the
squares on the twelve edges
«equalto twice the sum "^f'he .,u..es on the three diameters ^,^^,^,^^

.'M .

I

y
Kit*

III

I

i
iJ
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Proof. The section along any two diameters, being a
parallelogram, gives

AA"+ fifl" ^Aie Jf BA" + A'B^ + BA\

BB* + CC" = BC" + OB'*+&C' + Cff,

CC" + AA" ^ AC* + CA" + A'C" + CA*.

Whence, by addition,

2^AA" + BB" + CC")= 2 5d»= Se*.

Cor. If the octahedron is regular, all the edges are
equal and all t.he diameters are equal, and therefore

d» = 2«',

and the section ACA'C is a square.

The Reqclar Dodecahedron.

101. Let AE AB, and AO be the three edges which
meet to form the corner of a regular dodecahedron. Let

Q be the centre of the face ADB, and be the centre of

the circumscribed sphere.



THK REGULAR DODBCAHEPUOW. 89
Since all the faces are lonimiPnt nr/i

^ABE^Se-. and B. ^2BJI^2AB.os3e'^,.^,^,
Then, flP=iB£.V3 = i«v3coH36-.
Also, : BPA=1, AP'=.AB>-BP;

O'
^/"=e'(I-Jeos'36°).

• AA>.AP=AT (Art. P. 169");

Whence, i?=___ilV3_
VJ3-4cos'36°

"

Or ^=
i^ ex 1.401268...

and

But

. .
*V sin 6° sin 66°

Again, we have,

••• P = eV{l-401268*-0.26j

= 8x1.309016...,

cos 64° * sinse-

•• '•= eJlr401268'-—i__|
* I 4 sin* 36°

)

= 6x1.113516....

'8

I

! I

^•^ll
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BZBBOISBS F.

1. Two opposite edges of a tetrahedron are perpendicular to
one another when of the remaining edges the sums of the squares
upon opposite edges, taken in pairs, are equal.

1. What does the theorem of Art. 91 become when the four
Tertices of the tetrahedron Iiecome complanar ?

5. What does the theorem of Art. Oil become when D comes to
the centroid of thn triangle ABC?

4. Show that the tangent of the angle made by an edge of a
regular tetrahedron with one of the faces is y/2.

6. In the cube, P is the middle point of AB, and jS is the
middle pofait of A>B> ; show that the acute angle of the section
through P, D, 8\a cos"' jy/lO.

6. In the cube, DK is ± from i>upon the diagonal BBf ; show
that DK=^ey/i; and that CK = e.

7. In the cube, the join of the middle point of AB with B',
and the join of the middle point of AD with D>, divide each other
into parts which are as 2 : 1.

•. The angle between two diagonals of a cube is cos-' j.

9. In the cube, the angle between a diagonal and a face is

cos-i

10. In the cuboid, the angle subtended at the centre by the
middle points of two contermhious edges is

cos-i o» / v'(Sa + 6»)(o» + c»),

with variations in the letters for the different cases.

11. In the cuboid, the angle between diagonals is

co8-> (aS - ft" + c»)/(o« + 6« + c«),

with symmetrical variations.
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U. m the cuboid, thexfron, a vertex upon a diagonal U
a Vfti + cV Vo' + 6^ + 51,

with uymmetrical variations.

len"h,o" e'^ger''*^""'
^"^ ""^ "«• ^* "-'. - <«««.«

14. If the semi^iameters of an octahedron be a. 6, c, .„d
^ (»c) = X. ^ rea)= iL, and .<; (aJ) = ,,

then the squares of the edges are

a' + »'±2a*cos„ ft» + c.± 26ccosX, c» + a.± geacosM.
W. In a right octahedron, the cosines of the dihedral angles are

each divided by ct'V^ + V^c'' + c-^-,_

upo" at: ™^::;f
^o'^". *e perpendicular fro. the centre

^
17. In a regular otcahedron. the cosine of a dihedral angle

i» -W« if SfetL^eCist^ur "'"""" '"*''' ^'^'' »'i

19. A section of an octahedron paraUel to any face is a hexagon

oJiL^: rriiric-^^L^. ^'-^ ^•'-^ -

»

--^
M. In a regular dodecahedron,
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23. In a regular dodecahedron,

f =

24. In a regular dodecahedron, if £) be the dihedral angle,

25. In the regular dodecahedron show that II B' exceeds 16*^

by 3e'.

26. In the icosahedron, S = eJ(^^^\;

. = eVr-±^)-and. = .V(^^)-
27. In the icosahedron if D be the diliedral angle,

cosZ) = iy/5, or sin/) = |.

28. A sphere touches one face of a regular tetrahedron exter-

nally, and the three others internally. Show that its radius is

ip; and that the distance from the further vertex at which it

touches the three faces is ^ y/S.

29. If a regular cube and octahedron be circumscribed to the

same sphere, their vertices are conspheric.

80. If a regular dodecahedron and icosahedron be circumscribed

to the same sphere, their vertices are conspheric.



SECTION 2.

The Sphekk.

102. Def. If p be any point, and a line through Pineete a g.ven sphere in A and B, the rectangle p7i>B
2vr:pht"'"'^'-

°' ''' '-'''
" -'^^ -p- - s^

Cor. A point is without a sphere, on the sphere op

reste'ttotreTf' " *'^ ^^^^^ "* ^'^^ P"^* "ithrespect to the sphere is positive, zero, or negative.

103. The power of a fixed point with resneot to .given sphere is independent of the direction of the Huewhose segments for. the rectangle which .ellt the

oince .^, j3^ b are m line P A n n ^
complanar, O being the centre of the sph^e!^ '

"^ "'

The section by this plane is a great circle with ,secant 1- t^^ugh P cutting thfcirc in ltd

cTntfelY?,„awJ^rp;" ^^is^^^^
^^^ the same

^
' *^-^-J^B IS constant for pvBrvgreat circle, and therefore for the sphere.

^

Cor. If ^ and B become coincident, the secant linebecomes a tangent, and the rectangle PApTT
the square on the tangent.

^ ^ **"'"""''

98
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Therefore, the power of an external point with respect

to a given sphere is the square on the tangent from the

point to the sphere; and all tangents from the same

point to the same sphere are equal.

IM. S and S' are two circles with centres A and

B and radical axis L
(P. Art. 178).

L«it the whole system

revolve about the com-

. mon centre-line AB as

an axis, while retaining

the fixed relations of the oj

several parts.

The circles describe

spheres, and the radical

axis, L, describes a plane

normal to AB.
Also PE-PD = PE' • PD' remains true for the spheres.

And since P may be any point on the plane described by
L, the power of P with respect to each sphere is the

same.

Def. The locus of a point of which the power is the

same with respect to two given spheres is the radical

plane of the spheres.

Cor. 1. Evidently, the radictu plane of two spheres

is normal to the join of their centres, and divides the

distance between the centres so that the difference of

the squares on the two parts is equal to the difference

of the squares on the conterminous radiL
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r,Jiu'-^' J^l ^f^"*" *° *"" "P''"**' *«>'» any pointon their radical plane, are equal.

Cor. a The plane of the circle of intersection of twospheres is their radical plane.

deJStth^e^L^^efillSt^I^r-"^^*^"

A point whose power with respect to 5, and ^, is thesame is on the plane U,. and a point whose power with
respect to S. and ^, is the same is on the plane U^Therefore a point whose power with respect to S„ sZand

. , .i the same is on the common line of U„ and Kand IS evidently on the plane U^.
"*

Therefore, the radical planes of three spheres have acommon line, and from any point on this line tangents
to the spheres are equal.

We shall call this line the radkal line of the three
spheres. In a section through the centres of the spheresthis line gives the radical centre of the three resulting
great circles.

uitmjf

Cor 1. The radical line of three spheres is norm^ >
tne plane through their centres.

,.n?T 1 '^^'^

^'f
"^''^^ P^^""' *° *°»' ^Phe^s inter-

sect by threes to form four axial pencils.
The axes of these pencils may be denoted by i.^, I^

A«, and Z„; La, being the common line to U^ U» and

nn?^' ^^ .'^^^J^",
^'" "'""*' *^* P'*"« ^" in one point

only, and it evidently me^ts U„ and U„ in the same ^int.
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Therefore, there is, in general, one point from which
tangents to four given spheres are equal ; or of which
the power is the same with respect to four given spheres.
This is the radieai centre of the four spheres.

XZliBOISBS a.

1. Two wcantti are drawn through the same point, P, within a
sphere, and meet the sphere in A, B, and C, D reapectirely. Then
PA-PB = PCPD.

a. If a, b be the parte into which the plane of a small circle
divideu the diameter through ite centre, the area of the small circle
is wab. I

S. If three spheres intersect two and two, the planes of the
small circles of intersection form an axial pencil.

4. If four spheres intersect two and two, the planes of the
circles of intersection pass through a common point.

C. Where is the radical centre of four spheres whose centres
are complanar ?

«. Under what condition will four spheres have a line of radical
centres?

(The spheres are then coaxal.)

7. The tangent cones, common to three spheres taken two and
two, have their vertices coilinear.

8. The tangent cones, common to four spheres taken two and
two, have their vertices complanar.

9. If P and Q be two points in the line L, and U and V inter-

secting in jif be the polar planes of P and Q with respect to a
sphere, then every plane through Jf is polar to some point in L

;

and L and Jf are perpendicular to each other.

10. Any rectilinear flgui > has a corresponding rectilinear figure
such that every side in the first figure has a aide perpendicular to it

in the second.



Part III.

volumes, are necessarily equal
' "" '''^"'»
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SECTION 1.

POLYHEDBA.

J

T

107. Theorem. Two cuboids with congruent bases

have their volumes proportional to their altitudes.

BACD and F-EOA
are two cuboids having

their bases congruent. Then
vol. B •ACD : vol. F- EOH
= BD:FH.

Proof, li this propor-

tion is not true, let

vol. B-ACD: vol. F • EQH=BD : FI,

where J7 is different in length tiomFH; and first let

FI be less than FH. As a general caae let BD and FH
be incommensurable.

Take some u.l. (P. Art. IfiO. 3) less than IH which
will measure BD, and divide BD and FH into parts

equal to this u.l. One point of division, at least, must
fall at some point, J, between / and H.
Through all the points of division pass planes parallel

to the bases. These divide the cuboids B-ACD and
F- EGJ iato congruent and therefore equal cuboids.

.•. vol. B . ACD : vol. F- EGJ -BD-.FJ
and vol. B • ACD : vol. F-EGH= BD-.FI (hyp.).

.-. vol. F- EGJ: vol. F-EGH= FJ: FI.

W
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But vol. F. EOJ< vol. F. EQH;
.. , .

••• PJia<FI;
wniob IB not true.

Hence FI cannot be less than FH. And in like manner
It .s shown that FI cannot be greater than FH; aJ
tiSore"

""
"' '' """' *" ^^"''^ *» ^^' -d

vol. B
.
ACD

: vol. F . EOH= BD : FH.
Cor. Cuboids which have two dimensions in each re-specfvely equal have their volumes proportional to their

st^JCrZT °? ""''' «'*"'^"y' " ''"•^•'^ ^i'J» con-stant base has its volume varying as its altitude.

108. miMrem. Two cuboids are to one another as thecontinued product of their three dimensions.
Let X, F denote two cuboids whose dimensions are

respectively abc, and a'b'c'.

Then X:Y=ahc:a'Vc<.

^of. Let Pbe a cuboid whose dimensions are a, b, c'and Q be a cuboid whose dimensions are a b' c'
Then Xand Phave the face ab the same/and P and

fl« J' i '^' *^" '^'"'' ^'^'^ « «"d F have therace b'c' the same.

P
P= e:c<,

Q = b:b<

(Art. 107. Cor. 1.)

F= o:o'.

Whence, by compounding the three proportions,

X: T=abc:a'b'&.
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Cor. 1. A generalised statement of the theorem is,

the volume of a cuboid varies as the continued product

of its three dimensions.

Cor. 2. When the cuboids are similar, their homologous
edges are proportional, and if a', 6', c' be homologous to

u, b,e,

abc ^ ^ 't.

a'b'c''^ a"^ b"^ e"

Therefore, two similan cuboids are to one another as

the cubes upon two homologous line-segments.

Or, the volume of a cuboid of constant form varies as

that of the cube on any one of its line-segments.

109. In measuring volumes we take as a unit the

volume of the cube whose edge is the unit-length. This

volume is the iinU-v(Aume, and it will be denoted by u.v.

The three units of extension are thus interconnected,

so that the giving of any one of them gives all.

Thus if a cube has its edge taken as the u.l., the area

of one of its faces is the u.a., and its volume is the u.v.

If the edge of a cube be n unit-lengths, each of its

faces contains n' unit-areas, and its volume contains n'

unit-volumes (comp. P. Art. 151).

110. Theorem. The number of u.v.a in a cuboid is

the continued product of the numbers of u.l.a in its three

direction edges, or its three dimensions.

Proof. Let X, F be the cuboids having their three

direction edges expressed by a, b, c and o', 6', c'.

Then X:T=abc:a'b'c<. (Art. 108.)
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Then Y contains one
Now let a'= 6'=:c'= oneu./.

M-». And hence

:

The number of „.„« i„ A'=the number of u.l.n in
« X the number of «.;.s in 6 x tl^ number of u.U in cIhis result 18 generally expressed by sayine that thevolume of a cuboid is the product of^ts'^threedLen
s.^ns. an expression of which the full meaning U^":"

Cor If a, 6, c be the three direction edges of a cu-bo.d aj denotes the area of the face whos'e edges ata and b, and c ,s the altitude to that face taken L
Therefore, the volume of a cuboid is the product ofthe area oi its base multiplied by its altitude.

in. The product form of three quantitative symbolswhere the symbols denote line-segments, is to Z-^^^
preted as the volume of the cuboid havi;g for its "tCcbrec^ion edges the line-segments denoted by'' these

voSmeT7^ "P'-^*'''"'^ ^ <^' (« + 6)a6, etc., denote

JidTo be !fTh ^'^ ^''°'"*'*'^' """^ '''' consequentlysaid to be of three dimensions even in algebra.
This exhausts the geometry of space as we know itfor space has, for us at least, only three dimensions

112. Expressions such as cibcd, or o»6> or a?hc Ptn
are m ai^bra, ,aid to be of four dimensl'n Lwtn
JnX'rtrr^^""*^^^'

""' ^--P-etation'is possS

They may be then said to belong to a hypotheticalor imaginary something, which to us canS noS
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exiitenM, but which ia ipoken of as geometry of four

dimenaions, or as apace of four dimensions.

In using the symbols and forms of algebra to deduce

geometric relations, expressions of four or of higher

dimensions may occur as intermediate steps in some
transformation, but never as final results.

The associative law in algebra which tells us that

a • fte, aft • e, 6 • oc are equal, tells us in geometry that the

measure of the volume of a cuboid is independent of

which face is taken as a b^e.

The expression a'b is the cuboid having the sqxiare on

side a as base and b as altitude, or the cuboid having the

rectangle ab as base and a as altitude ; and these are the

lame cuboid differently viewed.

The forms Va6c, Va'S, etc., are not geometrically

interpretable ; but -Vabcd is an area.

The form y/abe denotes a line-segment, the edge of

the cube whose volume is equal to the cuboid whose

dimensions are a, 6, c.

Parallelepiped.

113. Theoreui. A parallelepiped is equal to the cube id

which has its baso and altitude respectively equal to

those of the parallelepiped.

We prove this theorem by showing that any parallele-

piped can be transformed, without change of volume,

into a cuboid having a base and altitude equal to those

of the ppd. Let A • A'BD be a triclinic ppd.

Cut it by a plane, EFO, normal to the direction edgeAA'.

This section 'jj a parallelogram, and BFJE, CQF, FEA',
etc., are Is.
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th?"!"*^' SJ^^t?'"'
^^' A'E'~AE, and through E' pa.,the plane E'PO' II to EFO.

'^
Then the corners A-BDE and ^'.B'Z)'£' are evi-den ly congruent, .ince they are composed of equal faceangle, di.po.ed in the same

order. And if the figure
A • BOE be .0 placed that
A coincide, with A', AD
with A'D>, and AB with
A'B', this figure will co-
incide completely with
A'.^O'E', and the ppd.
AC is transformed to the

the base EH' ,s equal to the base An', and the altitude
remains unchanged.

•"umuo

Again, by passing a plane normal to the direction edgeEBot the monoclinio ppd. we transform it into a cuboidm which the volume is unchanged, and the base and
altitude are unchanged.

Therefore any ppd. can be transformed, without change

Lnlw T.'
'"*»/ «"^'d having its base and altitude

equal to those of the ppd.
Therefore a ppd. is equal to the cuboid having it.base and altitude equal to those of the ppd.

„i ^°^l'Z," "" PP^- ' ™* *^ " •» impossible to cm it bv theplanejm normal to AA', then BFG ioTy be anrpLe le«Inclined to AA' than the face ABC is. We'thus t^r^Z Teppd. tato another triclinic ppd. less oblique than the oriri™i asecond «.=Uon may now be n.ade> normal to a direcUonX 'orU not a second, a third, etc.
^"^

'

5'

I

ip3

1:
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C<yr. 1. The volume of a parallelepiped is the product

of the area of its base by its altitude.

Car. 2. Similar ppds. are to each other as the cubes

on homologous line-segments.

Cor. 3. A ppd. of constant form varies as the cube on

any of its line-segments.

Prism.

114. If a cuboid or a monoclinic ppd. be divided into

two triangular prisms by a plane passing through a pair

of opposite edges, which are normal to a face, the

prisms so formed are congruent, and therefore equal.

But if a plane be passed through opposite edges of a tri-

clinic ppd., the two prisms formed are, in general, not

congruent, but symmetrical, and they cannot therefore

be shown to be equal by superposition. We proceed to

show that they are, however, equal.

115. Theorem. The two triangular prisms into which

a parallelepiped is divided by a plane through a pair of

opposite edges, are equal.

Let A-BDA' be a tri-

clinic ppd. A, A', C, C
are complanar, and their

plane divides the ppd.

into the triangular prisms

A-BCA'a.niC-ADC.
These prisms are not

congruent. But, as in Art.

113, transforming the triclinic ppd. into the monoclinic

ppd. E • FHE', we transform, without change of volume.

.// yi B'/f /f
/

1/

•
j

r !/r 1/
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f«,™ ^
And these new prisms, being right prisms

fZl ^^^'"T '"
l^*^'

^'^ •'°"«"^«"*' '^'^d therefore
equal, and each is one-half the monoclinic ppd

Therefore, the original prisms A BCA' and E . FOEi
are equal, and each is one-half the triclinic ppd.

.5se:.iof^^!.ts:;:t:tff^r^

rfitSeig:."^^*^^^"-'""'*^^"^^^^--"^

^rn ^' J^u'"^
^^^^ *" *^« »'««« °f the ppd., andj4CZ> as the base of the prism C-ADO, these figureshave the same altitude.

"gures

Therefore (Art. 113. Cor. 1), the volume of a prism isthe area of the base multiplied by the altitude

nri^r^ P "^t^" fi""'
""^y ^ •"^''^«<i '°to triangular

pnsms, Cors. 1 and 2 are true for all prisms.

ri"m •

^^ ^""^ *^" expressions for the volume of a

vol. = area of rt. section x lateral edge,

vol. = area of the base x altitude.

.._
area of rt. section _ altitude

area of base iatewTed^

tn^J'Vp^J^*''!
^'^"'^ ''^»"' *°'l ^^ ^ the alti-

£Lt ^'^ IT^".
'^^' °* '^^ ^"ele between the

lateral edge and the altitude.

But as the altitude is normal to the base, and the
lateral edge .s normal to a right section, this is the

1st,

2d,
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angle between a right section and the plane of the base.

Calling this the angle of obliquity of the prism, we have

:

The area of a right section of a prism is equal to the

area of an oblique section multiplied by the cosine of

the angle of obliquity.

Of Lamina.

117. To fix our ideas, let AETN be a trapezoid with

Sr II to AN. Divide its i side AE into any number of

equal parts, and through the points of division, B, C, D,

etc., draw lines II to AK
On these lines and the bases

^JTand JSrconstruct the series

of internal rectangles BP, CQ,

DB, ES, ••• and the series of

external rectangles Aa, Eb, Cc,

Dd—.
The area of the trapezoid

evidently lies between the sum of the external rectan-

gles and the sum of the internal rectangles.

Now, any external rectangle as Cc is congruent with

an internal rectangle below it, CQ; except that the

lowest external rectangle has no corresponding and con-

gruent internal one, and the uppermost internal rectan-

gle has no congruent external one.

Let E denote the sum of the external rectangles, and

/ denote the sum of the internal ones. Then

E-I=OAa-CIES.
.: the difference between the sum of the external

rectangles and the sum of the internal rectangles is leas
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than the lowermost external rectangle; and this is true
however many rectangles be formed.
But the lowermost rectangle can be made as small aswe please, by making its altitude sufficiently small: ie

L l""^
*^® '"™^'' °* P^"^^ i"*° wl»i«l> we divide^£ sufficiently great. And hence the area of the tratv

ezoid IS the limit of the sum of either series of recta.^
gles as the number of rectangles is indefinitely increased.

118. Now, let AETSr be a vertical section of a frus-
tum of a pyramid (Art. 59), in which AN and ET are
sections of the bases. Divide AE into any number of
equal parts, and through the points of division pass
planes parallel to the bases.

On the figures of section construct a series of inscribed
prisms BP, CQ, DR, ES-, ,r^d a series of circum-
scribed prisms, Aa, Bb, Cc, Dd—.
The volume of the frustum lies between the sum of

the internal prisms and the sum of the external prisms.
Jiut any external prism, except the lowermost, has a

congruent internal prism below it, and any internal
prism, except the uppermost, has a congruent external
prism above it.

Hence if E denotes the sum of the external prisms,
and /of the internal prisms,

-^— 1= prism Aa — prism E8
= vol. of lowermost external prism

— vol. of the uppermost internal prism.

And this is true, however many equal parts AE is
divided into.
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Therefore, the volume of the frustum differs from the
sum of either series of prisms, by less than the volumes
of the series of prisms differ from each other ; that is,

by a quantity less than the lowermost external prism

;

and this difference may be made as small as we please

by dividing AE into a sufficiently large number of parts.

Hence, the volume of the frustum is the limit of that

of either series of prisms, when the number of prisms
is indefinitely increased.

Cor. This theorem is exceedingly important, for the
least consideration will show that nothing in the inves-

tigation requires that AE, or any edge, should be a
straight line, and hence that the theorem holds true

when the boundary of the figure, between the parallel

bases, is composed partly or wholly of curved surfaces

;

also that the theorem is true when one or both bases
reduce to lines or points.

119. Def. When a spatial figure is cut by two indef-

initely near parallel planes, the prism, having one of

the sections as base, and the distance between the planes

as altitude, is called a lamina of the spatial figure.

When two figures are confined between the same two
parallel planes, the laminae determined by two indefinitely

near planes, parallel to the confining planes, are corre-

sponding laminoe.

Usually the plants which determine a lamina are

supposed to be infinitely near, so that a lamina is one of

the prisms of the preceding article, taken at its limit.

Cor. 1. From Art. 118, it appears that two figures

which have all corresponding laminae equal are them-
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selves equal; and two figures which have aU corre-
sponding laminsB in the same ratio are themselves in
that ratio, the one to the other.

Cor 2. Since corresponding laminae have the same
altitude, their volumes are proportional to their bases i

.
and hence corresponding laminse are equal when corre-
sponding sections are equal; and corresponding laminae
are in the same proportion to one another as are the cor-
responding sections.

The Pykamid.

m. Theorem. Pyramids are equal whose bases are
equal and whose altitudes are equal.

Proof. Let the trian-

gular pyramids, D • ABG
and S-EPG, have their

bases equal, and also their

altitudes equal, and let

them be so placed that
their bases are compla-
aar, and their vertices are

upon tb ^ same side of thi.s

plane, x'hen Z> and JT lie

in a plane parallel to the
plane of the bases.

Let abc and efg be corresponding sections.

Then (Art. 28. Cor. 2)

A o6c :iA ABC, and A e/jr ^ A EFO.
But (P. Art. 218. 2), A o6c : A ABO =<af:AB>.
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And since DA and DB are cut by parallel planes, AB
is II ab.

.: aV:Aff=Ha?:DA\

And (Art. 27) Da: DA = he: HE;

.-. aJt^:AIP= Da?:DA*=H^:HB?=ef':EF*,

or Aabc:AABC=Aefg:AEFG.

But A ABC= A EFG

;

(hyp.)

.-. AaAc = Aefg.
1

And as corresponding laminse are equal, the volumes

of the pyramids are equal (Art. 119. Cor. 1).

And since all pyramids may be divided into triangu-

lar pyramids,

Therefore, any two pyramids are equal whose bases are

equal and whose altitudes are equal.

Cor. Two frustums of pyramids which have their

two bases respectively equal and their altitudes equal

are themselves equal.

121. Theorem. A triangular prism can be divided into

three equal pyramids.

Proof. A • BCD is a triangular prism. Pass a plane

through the points A, C, and E, and another plane through

C, D, and E.

The prism is divided into three equal pyramids.

For C • FDE and E CAB have their bases DEF and

,*BC equal, and their altitudes the same as that of the

prism. These pyramids are therefore equal (Art. 120).

Also the pyramids C • ADE and C • ABE have tbeit
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bases ADE amt ABE equal (P. Art. 141. Cor. 1), and
have their vertices coincident.

Therefore they have the same
altitude and are equal.

And the prism is thus divided

into three equal pyramids.

Cor. 1. As each triangular pyr-

amid is one-third of the corre-

sponding triangular prism, and as

every prism can be divided into

triangular prisms

;

Therefore every pyramid is one-third of the prism
having the same base and altitude as the pyramid.

Cor. 2. If B denotes the area of the base of a pyramid,
and h denotes its altitude,

vol. of pyramid= I hB.

Cor. 3. Pyramids with equal bases are to one another
as their altitudes, and pyramids with equal altitudes are
as their bases.

• 122. Theorem. The frustum of a triangular pyramid
may be divided into three

pyramids, two of which have
the bases of the frustum as

their bases, and the altitude

of the frustum as their alti-

tude, and the third of which
is amean proportional between

the first two.

ABCDEF is a triangular

frustum.

»
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The plane through A, E, F outs off the pyramid
A • DEF, whose hase DEF is the upper base of the
frustum.

From the remaining figure the plane through Ay E, C
outs off the pyramid E ABC, whose base ABC is the
lower base of the frustum.

We have left the pyramid E • AFC.
Join BF and CD.
The pyramids B • AEC and F- AEC having the com-

mon base AEC are as th^ir altitudes, and the altitudes

are as P£ to PF, or BC to EF.

.: BAEC:F.AEC=BC:EF.
Again, the pyramids C-AEF (whio)i ^s the same as

F-AEC) and D-AEF having the common base AEF
are to one another as C7Q is to QD, or AC to DF.

But, since the bases are similar (Art. 28. Cor. 2),

BC:EF=AG:DF.
.: B- AEC: FAEG= F. AEC: D-AEF.
Or the pyramid F- AEC, or C- AEF, is a mean propor-

tional between the pyramids E-ABCasA A- DEF.

Cor. If Band B' denote the bases of the frustum,

and h the altitude,

vol. of EABC=\hB, vol. of ADEF^ \hff,

and . •. vol. of F-AEC=ih VBB'.

The volume of the fristum is accordingly :

vol. = |A jB 4- B' + vitS\.

123. The volume of the frustum may also be found as

follows

:

Let be the vertex of the pyramid from which the
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frustum 18 formed, and let OP be the altitude of the
pyramid. Also let 0P> be the altitude of the pyramid
O DBF, which is removed in forming t'.ie frustum. Then,
The frustum = pyr. OABC- pyr. ODEF,

and OP-OP = h.

Since any area may be expressed as a square, letV=BoT the base ABC, and b" = Bf or tU base DBF.
Then OP:OP=OA:OD= AB:DB^b.b',

and OP-OP.OP=b-b':b.
.: OP(b-b')= bh.

0P=. .__ . .

6-6''
-^, and OP-

=*'*

and
6-6

fruf t. = ^ OP. 6»- 1 Oi" • 6"

= **(f5|i;)=*Mo'+ 6'«+66')

= iHB + B'+ VBB').

Cor. The volume of a frustum of a pyramid is the
sum of the two bases and a mean proportional between
the bases, multiplied by one-third
of the altitude.

124. Def. A triangular prism
with non-parallel bases is called a
truncated triangular priam, or a
wedge.

Let ABC, DEF be the bases of
the wedge, of which ABC is nor-
mal to the lateral edges.

Through D pass a plane II to
ABC and draw AP X to BC.

4,

5-

\

11
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The wedge » the priRm A -BCD + the pyramid
D-EFOH. But the prism = A ABC x AD; and the

pyrami -\APx trapezoid EH,

~\AABC(BE+ CF-2AD)

;

.-. vol. of wedge = \AABC(AD + BE+ CF).

Or if «„ e„ tt denote the edges, and B the area of a
right section,

vol. "iB(«, + «,+ «,).

135. Thaorein. If a tetrahedron be cut by a plane

which bisects two edges and passes through an opposite

vertex, the volume of the tetra-

hedron is equal to four-thirds of

the prism having the section as

base, and the perpendicular from

any other vertex on the plane of

section as altitude.

A BCD is a tetrahedron, and

E and F are middle points of

AB and AC respectively.

AP is perpendicular upon the

plane EFD.
laen -.-EF is II to BC, and bisects AB, £^ is one-half

BC, and AAEF= \AABC (P. Art. 218. 2).

The pyramids having these triangles as bases have D
as a common vertex;

.-. tetrahedron A • BCD= 4 tetr. A DEF

= \APADEF. Q. . D.
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lae. Dtf. A polyhedron with two parallel polygonal
baseb, and all its lateral faces plane rectilinear figures
and all its lateral edges the joins of vertices of opposit^
bases, isaprifmofoid.

This definition includes the prism, pyramid, and froi-
turn of a pyramid as special cases, and is more general
than any of these.

When none of the faces are triangles, the figure is the
frustum of a pyramid, or a prismoid, according as the
lateral edges are, or are not, concurrent when produced.

127. ABCD and EFO are parallel bases of a prisma-
toid, md AEB, EBF, FBC, CFO, etc., are triangular
faces, which, in the figure given, are seven in number.

Q

I* n denotes the number of sides in one base, and n'
in ine other, it is readily seen that the number of faces
cannot be greater than n + n'.

I I
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But if an edge of one base be connected by lateral

edges with a parallel edge of the other base, two trian-

gular faces become a quadrangular twie, and the whole

number of faces is reduced by one. Thus, if EF were

parallel to AB, the edges AE, EB, and BF would be

oomplanar, and the two triangular faces AEB and BEF
would become one quadrangular face, AEFB.

If two other edges of the bases become parallel, a like

reduction may take place, and the whole number of faces

be reduced by two.

And finally, if the b^es have the same number of

sides, and each edge in one base be connected with a

parallel edge in the other, all the faces become quadran-

gular, and the £gure becomes a frustum of a pyramid or

a prismoid, according as the edges, wuuk produced, are

or are not concurrent.

Even with the same bases, however, the general appear-

ance of the figure will vary with the difforent ways of

connecting the vertices of the bases by the lateral edges.

188. D^. Take H, I, ^ etc., middle points of the

lateral edges, AE, BE, BF, etc., respectively.

Since /// is parallel to AB (P. Art. 84. Cor. 2. 2) and

/J is parallel to EF, and JiT to BC, etc., it follows that

H, I, J, etc., lie in a plane which bisects all the lateral

edges, and is parallel to the bases. The section by this

plane is called the middle section.

The middle section contains, at most, n + n' sides,

there being always as many sides as there are faces in

tlie prismatoid.

The middle section may contain re-entrant angles,

although no such angles are found in either base ; and
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it will frequently haTe suoh angles when the Immi are
polygons of different species, or when their rertices are
connected in some particular order.

Cor. The middle section bisects the altitude.

188. FWufiw of tht primMtoid. Take P, any point in
the plane of tuo middle section, and join it to A, D,
E, H, and N. Denote the altitude of the prismatoid by h.

Then, P
.
ADE is a tetrahedron, and PNH is a section

through a vertex, P, and the middle points, H and N,
of two ppposite edges.

.-. vol. of p. ADE = } ft X A PNH. (Art. 126.)
Similarly, by joining P to all the remaining vertices,

B, C, F, etc., and to the remaining middle points /, j; K,
etc., we have.

Sum of all the tetrahedra of which P- ADE is the
*ype = }A X (the sum of the A of which PNH is the
type), or

S (P ADE) = i AS (A PNH).

f^^ik

1m

Hk
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But S (A P^H)= the area of the middle section, and
denoting the area of the middle section by M,

S{P-ADE)=lhM.
Now, after removing all these tetrahedra, we have left

two pyramids having P as a common vertex, and the
bases of the prismatoid as their respective bases. The
altitude of these prisms being J A (Art. 128. Cor.), their
volumes are ^hB and {hB', where B and B' are the
areas of the bases of the prismatoid.

.-. vol. of prismatoi^ = -(B + B' +4 3f).

Cor. The prismatoid is equal to four pyramids, two
having the bases of the prismatoid as their bases and half
the altitude of the prismatoid as their altitude, and two
having the middle section as their bases and the altitude
of the prismatoid as their altitude.

Cor. The formula of the present article is known as
the prismoidal formula. On account of its extremely
wide range of applicability it is the most important of
all formute connected with the determination of the
volumes of the more prominent spatial figures.

.

The following examples are some illustrations of its
application.

(a) Prism. Here the two bases and the middle sec-
tion are all congruent.

Hence, vol. =
|
(B+B+ 4 S) = hB. (Art. 116. Cor. 2.)

(6) Pyramid. The upper base vanishes, and ;'ie mid-
dle section is one-fourth the lower base.
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(Art. 121. Cor. 2.)
rol.=-y(li:.0 + B)=ihB.

(c) Fruiium of a pyramid.

Let B, B' be the bases, and Jtf be the middle section.And since any area may be expressed as a square, let

Then 2m= b + b'.

.: im'=ijU=b' + b'' + 2bb'

= B + B' + 2VbS.

liS + B' + iAf)=^(2B + 2B'+ 2VBS)

=
I
(B+ S' + VbF). (Art. 122. Cor.)

(d) Tetrahedron, in terms of a middle section (Art
61 Def. 1) and the length of the common perpendicular
to the edges parallel to the section.
In this case, which has an important subsequent appli-

cation, both bases vanish, and we have

vol. =pj|/:

Reottlar Polthedra.

130. A regular polyhedron of n faces is divisible into
n congruent pyramids whose bases are the several faces
ot the polyhedron, and whose altitude is the radius of
the in-sphere to the polyhedron.
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Hence, if n be the number of faces, B be the area of
a face, and r be the radius of the in-sphere, we have

vol. =5 Br.

(o) Regular Tetrahedron.

B= -y/3, r=:^ey/6, andn = 4.

.•.vol.=|.Jv3-AeV6

Cor. As the expression for the volume may be writ-

****
3 W/2) '

**'*'^**""® *^® '^^^ °^ tl»e side of a square

whose diagonal is the edge of a regular tetrahedron is

three times the tetrahedron.

(6) Regular Octahedron.

B= ^e»V3, r= |eV6, n = 8.

.-. vol. = } • i • I . e»V18 = i«-V2-

Cor. This volume may be written |^(eV 2)'.

Therefore, the cube on the diagonal of a square whose
side is the edge of a regular octahedron is six times the
octahedron.

(c) Regular Dodecahedron.

By the methods of plane geometry, we find the area
of a regular pentagon with side e to be

'-*'^{l^^-
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Also, .=^(254^>j_^^

.-. vol. = 5e\/| 3jf_V5 _ 25 4- 11 V5 1

\(6-y6 40 j

=
f(15

+ 7v6).

(d) Regular Icosahedron.

••"'-ffVpl-^)

121

20.

1. If a plane parallel to the bases, and midway between th.™be passed throueh the nrism nf A-f i.>i
"wiween them,

sections of the three pyrZds.
'' ""'""'^ """ "«" °* ""«

«. Apply the conditions of Ex. 1 to Art 122.

8. A plane of section passes through the middle points of th.

». Apply the prismoidal formula to find the volume of a wedge.

*),.* li^
^'*™°''^ •""' '"*'' ''"^* parallelograms with anijle e and
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S. If a regular tetrahedron and a regular octahedron have the

same edge, the octahedron is four times the letrahed'on.

9. AA', BB', CC, DD', being diagonals of a cube, show that

the plane through DBC cuts oC a pyramid whose volume is one-

sixth that of the cube.

10. The direction edges of a cuboid are o, !), c. and a plane

passes through the three distal extremities of these. Show that

the area of the section is J Vo»ii« + hH^ + d'd'.

11. AA', BB', etc., are the diagonals of a ppd. Show that a

plane through DBC cuts off a pyramid which is one-sixth the ppd.

IS. The direction rJges of a ppd. are a, b, c, and the a.igles

between them are /. (6c) = ?., i^ {ca) =11.,/. (a6) = '. Then the

vol. is

abcy/{l -cos'X-cosV-cos'i'H-acosXioSMOOBi'}.

OA, OB, OCare the direction edges;

Z COB = \,Z COA = n, AAOB = ».

Let CP be normal to the plane of AOB,

and PQ, PR be Xs upon OA and OB.

vol. of ppd. = OA-OBaiar- CP.

(P. Art. 215.) o^

OOPS are concyolio, and OPis a diameter

of the circumcircle

;

OP
sin r

(P. Art. 228.)

and CP
^V sm"i'/ sini>

Bnt

and

, vol. = 06 VCc" si"' » - Q^")-

QB»= 0Q»+ OBl'-iOQ- OBcotr;

0<^ = (? C0E» ih and OJJ» = c> cos» X.
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Whence, by substitution,

vol. = aftc v{ 1 - cosa \ - co8» ^ - cos» . + 2 cos X cos /i cos »}.'

11 Show from the character of the result in Ex. 12 that il inany ppd. \, ^ , are all acute, all vertices except the one oppositeO have one acute and two obtuse angles, etc.

14. With the vertices of a ppd. as centres, equal spheres are
descnbea to cut the ppd. Then the volume removed by all the
spheres is equal to that of one of the spheres.

1». Show that space may be wholly divided up into regular
octahedrons and tetrahedrons, and that there will be twice as many
of the latter as of the former.

The area of a parallelogram whose sides are a, 6 and angle
ff IS ab sine, or 86^(1 - co8»#), and the volume of the ppd is
a»cv(l - cos^A - cosV - etc.). On account of the analogv in
form, the expression : - cos'a - cos^ - etc. is sometimes called
the square of the sine of the solid angle OABC, and it usually
appears m the matrix form

1 cos A

cos A 1

cos It cos V

The analogy however, is one of form only, as there are no func
tions of solid angles really corresponding to the sine, cosine, tan-
gent, etc., of plane angles.

cos^

COSv

1

!

ii



SECTION 2.

Cone, Cylinder, Sphebb.

The Cone.

131. The cone of Art. 67 is not a closed figure, and

consequently does not admit of measuremeut for volume.

But if the cone be cut by a plane which does not pass

through the centre, and whjch makes, with the axis, an

angle greater than the vertical angle, a closed figure is

formed by the conical surface and the plane. It is this

closed figure that is called a cone in relation to stere-

ometry.

The centre of the cone is, in this relation, called the

apex or vertex, and that portion of the section plane

which forms a part of the enclosing figure is the base of

the cone.

The word 'cone,' whenever having reference to stereo-

metrical relations, will mean this figure.

132. As the director curve may be of any form, and

as the plane of section may assume different relative

directions, the variations in the cone are unlimited.

If the cone be circular, and the plane of section be

perpendicular to the axis, the figure is the right circular

cone ; and this is the most important of all the cones.

The base is a circle, and the axis of the cone passes

through the centre of the circle.

124
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A right circular cone is generated by a right-angled

triangle while revolving about one of the sides as an axis.

The other side then generates the base (Art. 9. Cor. 1),
and the hypothenuse generates the conver 8urfar*e.

133. The cone may be looked upon as the limiting form
of a right regular pyramid, when the number of sides in

the base is indefinitely increased, and the length of each
side is correspondingly diminished.

But the volume of any pyramid is one-third of its

altitude multiplied by the area of its base

;

Therefore, the volume of a cone is one-third of its

altitude multiplied by the area of its base.

Cor. If the base be circular and its radius be r, its

area is irr". And if h be the altitude of the cone, the

vol. =|»r*A.

134. The frustum of a cone is the limit of the frus-

tum of a pyramid, and its volume is therefore

But if r and r' be the radii of the bases,

B = m',B' = vr", and y/BW= nrr'.

.-, vol. = \Th(r' + r>' + rr').

The Ctlindek.

135. When the cylinder of Art. 75 is cut by two parallel

planes which cut completely through the surface, a closed
figure is formed, which is the cylinder of stereometry.
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When the planes are perpendicular to the axis of the

cylinder, the figure is a rigfu cylinder. Otherwise it is

an oblique cylinder.

136. It is obvious, from the definitions, that the

cylinder is the limiting form of the prism, when the

number of sides in the base is indefinitely increased and
the lengths of each side correspondingly diminished.

Hence the measure of a cylinder is the area of the

base multiplied by the altitude (Art. 116. Cor. 2).

Cor. If the cylinder be circular and right, and r be
the diameter of the base,

v»l. = irr'h,

where h is the altitude.

The Sphere.

137. ABCD is a tetrahedron in which the edge AB
is equal and perpendicular to the edge CD, and KJ,

joining the middle points of these edges, is the common
perpendicular to them.
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Also, K'BQT is a sphere having its diameter

We shall prove that corresponding laminse of the tet-

rahedron and of the sphere are in a constant ratio, by

prov'ng tliat corresponding sections are in a constant

ratio.

Proof. Let parallel planes pass through AB and CD.

Then KJ is a common normal to these planes, and if the

sphere be placed between the planes with K'J' parallel

to KJ, the planes will touch the sphere at K' and at J'.

Let the sphere and tetrahedron be relatively go placed,

and let EO and RQT be corresponding sections of tb'

figures (Art. 139).

Then EFGHia a rectangle, and QRT is a circle, and

KP= K'F'.
„ KP_AE_EH
^""^ KJ~AD~DC'

nsa

"^ Kj'
DF
-DB-

EF
-AB'

.'. by multiplication

KPPJ EF. EH
KJ' AB' AB'

Also, denoting the radius of the sphere by r,

K'PPJ'^ fg ^l irP'jy ^l QQBT
K'J" K'J" it' KJ' »- 4r»

Therefore . KPPJ=K'P
aEG ^AB!
OQBT 4»T>

P'J',

= a constant

i
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Hence the corresponding sections of the tetrahedron
and of the sphere are in a constant ratio; and the vol-
umes of the tetrahedron and the sphere are in the same
ratio.

Cor. 1. The tetr. : the sphere = AB : 4wr'.

But the tetr. - 1AV x mid. sec. (Art. 129. d.)

= \r.AB?i

.: vol. of sphere = ^vt'.

Cor. 2. The expression for the volume of a sphere
may be written | • 2r • irr*.'

But 2r is a diameter of the sphere, and^ is the area
of a great oirole. Therefore, 2 r • Trr* is the volume of the
nght circular cylinder which circumscribes the sphere
Hence a sphere is two-thirds of its right ciroumscribinR

cylinder.

138. As the prismoidal formula applies to any portion
of the tetrahedron confined between planes, each parallel
to AB and CD, and since laminte of the sphere hold a
constant relation to corresponding laminae of the tetra-
hedron. It follows that the prismoidal formula applies to
any portion of the sphere limited between parallel planes.

Thus, applying the formula to the whole sphere, we
have ^ '

S= 0, B' = 0, J(f=^, andA = 2r.

.-. vol. =^ (0-1-0 -f-4,rr')= |^.
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tw!;*!: ^-^ ,^ '^'*'°" °' * •?•"'" ^nclo'ed betweentwo parallel planes is usually called a ,o„« of the Vpherebut if one of the planes is a
'pnere,

tangent plane, the zone be-
comes a segment of the sphere.

140. Volume of a tone.
liOt a sphere be cut by par-
allel planes, given in section,
in the diagram, by AS and
CD; and let XY denote in
section the plane which is paraUel to the cutting planesand half way between them. ^ ^ '

The data usually furnished from which to find the

bases, and the length of their common normal AC. or the

CD t^lV"":
^""^ "^-"^ - -PP°- AbAc'^1VV to be the known quantities.

We have, O being the centre of the sphere,
OA' + AB>= OC+CD'= OX'+ XT*,

since each expression is the square on the radius 'of the

•• 0A' + AB' = (0A + 2AXy+CD*

Hence
= (OA + AXX'+ XT'.

AB'= AAX'+CD> + 4 0A.AX
= AX'+XT' + 20A.AX.

••*OA.AX=AB'-CD'-iAX'

ndhenoe =^AB'-2XT'-2AX'i

2Xr'= AB'+CI>'+ 2AX'.

Iff
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Now, w • XT* ia the area of the middle section,

and w • AEf and w • CI^ are the areas of the bases,

and 2AX is the altitude of the zone

;

Or, denoting the radii of the bases by r and r', and the

altitude by h,

vol. = iirfti3r«+ 3r«+Mi.

Ctyr. If r => 0, the zone becomes a segment, and its

Toluinei8|irA(3r» + A»).

141. The expression ^for the volume of the zone may

be transformed as follows:

Draw DELtoAB.

3AB' + 3Cjy + AC=2iAEf+CD^ + AB-CD)
+(AB-CDy+ ACi

and ^wACiAff+CLf + AB-CD)

is the volume of the frustum of the cone which has the

same bases and altitude as the zone.

And AC being the projection of BD on OC, if we

denote the angle between BD and AC by /3,

AC=BDcoBfi.

.: \w AC Biy = ^ir Biy COB

p

= sphere on BD as diameter x cos /3.

Therefore, the zone exceeds the inscribed conical frus-

tum by the sphere on the slant height as diameter

multiplied by the cosine of the semi-vertical angle of

the cone.
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MXMBonms 1.

^^Lf^T" '^* '"'"""' "'
" 'P""" O "'"• "•»t of th« circum.icribed cube

i (8) with that of the Inicribed cube.

«HhJrT .""."
TlH"" °' ''" *"•" "'"" ">" •" ">. circum-cribed regular tetrahedron.

"^.um

t, A cone clrcunucrlbe. a .phere and ha. iu rttnt height equal

^ the^dlameter of Iu ba«,. Show that vol. of cone : vol. of ,p2e„

vol. of cone removed U | Uie vol. of .phere removed.

••

f
"y'tadej of radius n pane, centrically through a gphereof radlm. r. Show that U.e volume removed from the .phere ta

1 »T«(1 - C08»»). Where sin « = ?.
r

6. A clroular cone with Mml-vertlcal angle . ha. Its vertex attte centre of a sphere of radius r. Show that the volume common
to the cone and sphere U j ,r» (1 - cos a).

7. A right circular cone has It. vertex lengthened out Into aInear edge equal and parallel to a diameter of the ba«,. Show^t the volume is one-half that of the circumscribing cylinder.(The resulting figure U known as the common conoid.)

a. A cone whose wml-vertical angle is 46° has the diameter of

fourth of the sphere Ues without the cone.

••The cone of Ex. 8 has Its reml-vertlcal angle equal to «•
then the part of the n)here lying without the cone ta

J»T«(1+C0»2o)«.

Hil

THE END.



SECTION 3.

142. In this section we propose, under three heads, A,

B, and C, to explain and illustrate some special methods

of measuring volumes, by applying these methods to the

cone, cyliuder, sphere, and some other spatial figures.

A. Spatial Figoties generated by the Motion

OF A Plane Figure.
t

143. When a variable plane figure moves so that a

fixed point lying in its plane describes a line or curve

not complanar with it, the plane figure describes or

generates a spatial figure.

The plane figure is then the generator, and the line

or curve is the path of the particular point which de-

scribes it.

The case as here stated is too general for use, especially

in elementary geometry or by elementary methods. We
therefore subject the elements of the description to

certain conditions, usually as' follows.

(1) The generator is a closed plane curve, being in-

variable in form, while being either variable or constant

in dimensions.

(2) The path is a line normal to the plane of the

generator. This line will be called the aa!»».

(3) The generator preserves its orientation, i.e. any

fixed line of the generator is invariable in direction ; or

132
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any fixed point in the generator describes a line or curve
complanar with the axis. This line or curve, whoseform depends upon the nature of the variation of the
generator, is a guide to the motion of the generator, andforms the director.

Thus if the nature of the variation of the generator
18 given, the director is also given; and if the director
18 given, the nature of the variation is given.

144. Let PQR be a variable circle, whose centre, Cmoves along the fixed line AB normal to the plane ofthe circle. AB is the axis.

(1) Let P, any point on the circle, be guided by thehxed director line L, which meets ABiaD
Then, evidently the generating circle describes a conehaving D as vertex and AB as axis.
The radius CP is in a constant ratio to DC.
Hence a variable circle, whose centre moves on a fixed

line normal to its plane, and whose radius varies as the
distance of the centre from a fixed point in the line,
describes a cone. '
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(2) If the generating figure in case (1) were a polygon,

the figure generated would be a right pyramid.

(3) Let P move on the line M parallel to AB.

The circle describes a cylinder, and a polygonal genera^

tor describes a prism.

(4) Let P be guided by the circle, Z, to which AB
is a centre line, and EF a diameter.

The circle PQB then generates a sphere whose diam-

eter is EF.
If O be the centre of the director circle, it is evident

that CP* +G0'= OP^= constant.

Therefore, a variable pircle, whose centre moves on

a line normal to its plane, and whose radius so varies

that the sum of the squares on the radius and on the

distance of the centre of the circle from a fixed point in

the line is constant, generates a sphere.

(5) If the generator in case (4) were a polygon, the

figure generated would be a polygonal groin; the most

common groin is the square one.

In a similar manner many other figures may be gener-

ated, such as the oblate spheroid, the prolate spheroid,

the hyperboloid, the paraboloid, the ellipsoid, etc.

146. Consider a number of equidistant points along

the axis. Let the generator at these points be taken as

bases of prisms or cylinders whose altitudes are the dis-

tances between consecutive points.

We have then a series of prisms or cylinders, of equal

altitude, inscribed in or circumscribed about the spatial

figure, as the case may be.
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But (Art. 118) the volume of the spatial figure is the
limit of either series of prisms or cylinders, when their
number is indefinitely increased and their altitudes cor-
respondingly diminished.

Hence if we can obtain an expression for the total
volume of any number of such elementary prisms or
cylinders, we can deduce the expression for the volume
of the spatial figure, by imposing the condition that
the number of elementary prisms or cylinders shall be
infinite.

In carrying out this operation we assume the two fol-
lowing relations, which are pr>.ved in almost any work
on algebra

:

(A) 1 +2+3+... + „=j„>+ ^„.

(B) V+ 2' + 3'+...+n'=in' + in' + in,

where n denotes any positive integer, and the series
extends from 1 to n.

146. Let X be a closed plane figure, which remains
mvanable in form while varying its dimensions.
Let a given point P be

guided by the line AH, and
let a point Q move on AC.
Then X describes a spatial

figure, a cone or pyramid,
having some position of the
generator at B, as above.

Let X denote the area of
the variable figure, X, at any stage in its variation, and
let B denote the area of CDE, the final stage of X
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Then X:B= PQ" : HC. (P. Art. 218. 6.)

And from similar triangles, APQ and AUG,

P(^.HC=AP':AH*.

X=
AH*

r-B.

Denote AH by h, and let AH be divided into n equal

parts, and let AP be m of these parts.

Then

and

AP^.'^.AH,
n

.-.xi^.B.

But the elemental cylinder, or prism, on X as base has

- • AH, or -, as its altitude, and therefore its volume is
n n

Bft.HL'
n'

This expresses the volume of any element, a particular

one being got by giving a particular value to «». m = 1

gives the first element, lying next A; m = 2 gives the

second, etc., and m = n gives the last, lying next H.
The sum of these elements is

j^f l'+ 2' + 3'+ ...+»' >

This holds true for all integral values of n. When
we go to the limit by making n infinite, the fractions
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2^
and— become zero, and the sum of the elements

becomes the volume of the spatial fig„re (Art. 145).
•• volume = JJS/i.

As S may have any closed form whatever, this expresses the volume of any species of cone or pyL"which forms a closed spatial figure.
^^

bu!*Lvw
*'•'

»f.°"**'°8 ««"«'. ^. of constant form,but variable in dimensions, be
guided by the axij OA, and by
the circular quadrant CQA as a
director, O being the centre of
the quadrant.

Let ODE be the generator in
the position in which O lies in
its plane, and let S denote the
area of CED, and X denote the
area of the generator in any
position.

Then, since PQ is ± to OA,
PQ'= 0^-0P>= OC- OP'
X:S=Pg>..0C;

(P. Art. 218. 5.)

oc oc
Now, denote OA by r and divide it into n equal nartsand let OP be m of these parts.

^ ^^'

Then OP=^r,mdOO=r.
n

But

S.
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The elemental cylinder having X as base has - for

altitude, and its volume is therefore

'<^S)-
The sum of these is

^^r i + 1 + l+...n

I n

terms l* + 2»+

at the limit, when n becomes infinite.

And the volume generated while moving over the

whole diameter is

vol. = tr5-

The value of this expression for volume depends upon

the value of S.

1. If 5 is a circle, its area is irr», and the figure gener-

ated is the sphere.

.-. vol. of a sphere = I irr*.

2. If iS is a square, and the middle point of its side is

at 0, the area is it', and the figure is the common groin,

and its

vol. = |t';

since the groin extends only from O to A
3. If ;S is a regular hexagon with a vertex at C, we

have a hexagonal groin, and its volume is r" -^3.



SPATIAL FIG0BX8. 189

148. By varying the form of the generator, and also
of the director curve, a great variety of spatial figures
may be described.

1. With a circle as director and an ellipse as generator,
QB being the major axis, we get the oblate spheroid; and
with QR as minor axis, the prolate spheroid.

2. With an ellipse as director, and major axis as axis,
and an ellipse as generator, we get the ellipsoid; with
circle as generator we get the prolate spheroid.

3. With parabola as director, and a circle as generator,
we get the paraboloid of revolution ; and with ellipse as
generator we get the elliptic paraboloid.

( 1

1

I. i

BXEBOISBS J.

The axes of an ellipse being a and 6, its ana is wab.

1. Sliow that the volume of a prolate spheroid is irab*, where

». Show that the volume of an oblate spheroid U }ira»6, where
a>6.

8. In the figure of Art. 147, if CQA were a quadrant of an
elUp8e,and 0^ = a and 0C= ft, then I^ + 2P^=i Hence
find the volume of an ellipsoid when the axes of the generating
ellipse are b and c at the position S.

4. In Art. 146, if P«« = c . AP, where c is a constant, show that
the volume described is one-half that of the circumscribing cyUnder.

5. OC is an axial line cut by a curve hi O and C, and PV is a
perpendicular from a point P on the curve to the axis OC IfPM = a{OJir-OC~ OM'), show that the volume described by the
curve in a revolution about the axis is

V\t of that of the circum-
scribing cylinder between and C.
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B. FiQUBES OF Revolution.

149. When a plane figure revolves about an axial line

lying in its plane, the plane figure generates a spatial

figure bounded wholly or partly by curved surfaces,

and called, from its mode of generation, a Jigure of

revolution.

Under the same circumstances the area of the plane

figure generates a volume of revolution, t.e. the volume

of the figure of revolution.

The area of a plane figure may be considered as

the limit of the sum of a set of elements, composed of

inscribed rectangles with equal but indefinitely small

altitudes.

In revolution, these elements of area describe or

generate elements of volume, whose sum has for its

limit the volume of the gen-

erated spatial figure.

150. Let AG be a rectangle,

and let it revolve about the

axial line PB, parallel to AD.

The volume generated by the

rectangle AC is the difference

between the volumes generated by PC and by PD.

But the vol. by PC= TT • PS» • BC,

and the voL by Pi)= «• PA' BO;

.: the vol. by ^C= X • BC(PB*- PA')

==,r-BC{PA + PB) {PB- PA).

I
1°

Q
A O

P R
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If Q be the middle point of AB, PQ is the distance of
the centra of the rectangle from the axis of revolution
and „

'

PB + PA = 2PQ;

.-. vol. by AC=2w PQBCAB,
- area of AC x the circumference of the circle traced
by the centre of AC.

Therefore, the volume described by a rectangle in one
revolution about an axial line parallel to its side, and
which does not cross the rectangle, is the area of the
rectangle multiplied by the length of the path of its
centre.

Cor. 1. When the axial line passes through the cen-
tre of the rectangle, the length of path described by that
centre is zero, and hence the volume described is zero.
From this it appears that if a revolving plane figure

is crossed by the axis of revolution, the parts of the
figure lying upon opposite sides of the axis generate
volumes which must be taken in opposite senses, or with
opposite signs.

Cor. 2. From the figure we have 2PQ= 2PA + AB •

soidhenoe 2ir-PQ = 2 ,r- PA + IT- AB.
'

But when AC is an elemental rectangle, and we go to
the limit by indefinitely diminishing AB, PQ has for
its limit either PA or PB, these being finally the same.
Hence, if the elemental rectangle AC is to be taken at
the limit, PA may be taken for PQ.

161. Volume of a cone of revolution. The rectangle
AC revolves about AB as an axis.
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The triangle ACB generateB a cone of revolution ; the

rectangle generates a cyl-

inder; and the triangle

ACD describes that part of

the cylinder which remains

after the cone is remoTad.

Onretake P, Q, any near

points, which at the limit

become coincident, and draw

PR, QS, perpendicular to AB, and PT, Q V, perpendicular

to AD.
Then PS, being an elemental rectangle of the triangle

ACB, generates an element of the cone; and PV, in

like manner, generates an element of the portion of the

cylinder which remains after removal of the cone.

But vol. of element by P5= ir-i'iP.PE.

And vol. of element by PV= ir{PR + FB)PT-PF.
And from similar triangles PRA and QEP,

PR^QE PR^PF.
RA EP' PT PE

element by PS _ PR
element by PF" PR + FB'

And this relation being true for any, and therefore for

every, pair of corresponding elements, is true for their

sums.

But at the limit, when Q comes to P, PR and FR
become the p<<,me.

...the limit of |f5l2255^?.jL^=l.
S (elements by PV) 2

Or, cone by ABC : figure by ACD = 1:2.
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The quadrant DPA,

Whence it followR that the cone is one-thin' of the

cylinder.

Remark. In the foregoing inveetlgatlon we might, according
to Cor, 2 of Art. 160, have taken the element deicribed by i>Ka«
being w-iPBPTPF, since the element U flnaUy to be taken at
iU Umit.

158. Volume of a sphere,

and its circumscribed square

DBAC, revolve about CA as

an axis.

The quadrant generates a

semisphere, and the square

generates the right circum-

scribed cylinder.

On the arc DA take P and

Q, any near points which at

the limit approach to coinci-

dence.

Draw PR, QS, perpendicu-

lars to CD, and PT, QV, per-

pendiculara to DB. Produce

DC, making CO = DC
The rectangle PS, being an

element of the cirf'e, describes

an eltment of <.• sphere, and the rectangle PV for

similar reasons describes an element of that part of the
cylinder which lies without the sphere.

The volume of the element desc-ibed by PS is, at its

limit when Q comes to P, 2w CR- PR- RS; and the
volume of the element described by PVia, at its limit,

ir{CR + CD) • PT- PF.
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at It
clg"""* by PS 2 PR RS CR

' element by PF"" PT PFCR + CD
But the ADPR and POR being similar,

CR+CDPR^
pt'

PR
rd'

OR
PR' PR

And the PEQ and PRC being similar at the limit

when Q approaches P,

RS^PE^PE^PR
PF" PF^ EQ CR'

.'. at It, element by PS = 2 x element by PV.

And this being true tof each, and therefore tvery pair

of corresponding elements, is true for their sums.

Therefore the volume generated by the quadrant is

twice the volume generated by the figure DPAB.
Or the volume of a sphere is two-thirds that of the

circumscribing right cylinder.

Cor. 1. If r be the radius of the sphere, the volume of

the circumscribing cylinder is irr*-2r; and hence the

volume of the sphere is Jirr*.

Cor. 2. From the foregoing investigation it follows

that wherever Q is taken on the arc, with CA as axis,

the volume generated by the segment of the circle,

DSQP, is two-thirds the volume generated by the rec-

tangle DSQF.

103. Volume generated by an isosceles triangle revolv-

ing about an axis which passes through the vertex but

does not cross the triangle.
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the^L/rOfl ^ '''''^' *•*' ''^ " '^' "'^°'^" "bo-twie axis OD pasting
through the vortex O.

Let PQ meet OZ) in D,
and draw the altitude

OJt, and project /», B, Q,
on O^ at A, C, and B.
Also draw QE parallel

to OD.

TheZAPD=^ROD,
and hence, a PEQ^ A ORD.

Therefore, OD.PE=OR.PQ.
'^ £^PEQ^AOCR,
•»* fQCR=OR.EQ;

.: OD.CR.PE=OR'.EQ=OR'.AB.
Now^ the vol. described by A OPQ = vol. of cone byOP^+vol. of cone by DPA -rol of cone by OoL- vol. of cone by DQB, ' ^

= i'0D(PA'-QB') = \^.0D.2CR.PE
^iir. OR'. AB.

JtZT'!^'' "^f
""" ^"^'^^^' •" °"« revolution, byan isosceles triangle revolving about a line through itevertex, and lying without it, is the continued product

the area of the square on the altitude, and the constant f J.

thf^' ^* T'^'^*''"* P«'"t« ^. -B, C, etc., be taken inthe arc of a circle of which O is the centre and OL sa centre line not crossing the arc
The AAOB, BOO, . . ., are all isosceles and congruent.

\u

i

'I V
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The volume described by these triangles in revolving

about OL as axis, p being the common apothem, is

J p'» (pr. of AB on 0L + pr. of BC on OL + ...).

But at the limit when the number of points A, B, C ...

is indefinitely increased, and the distance between them

is correspondingly diminished, the generating figure be-

comes the sector of a circle, p becomes the radius, and

the sum of the projections of the bases of the' triangles

is the projection of the arc, and the figure generated is

a sector of a sphere.

Therefore, the volume of a sector of a sphere = | irr* x

pr. of the generating arc on the axis.

Cor. If the generating arc forms a semicircle, its

projection on the axis & 2r, and the figure geqerated

is a sphere. . ^^j ^f ^ gpjjgre = !»/».

EXXBCISBS K.

1. Solve Ex. 6 of Set I., by the principle of 163.

5. AX is an axial line, and PM is a perpendicular to this

line from a point P on a curve which starts from ^. If PM'
= cAii, wliere e is a constant, show that the volume described by

one revolution about AX, is one-half that of the circumscribing

cylinder.

I. The volumes of the circumscribing cylinder, the sphere, and

the cone with the same base and altitude as the cylinder, are as

the numbers 3, 2, and 1.

4. The volumes of the cylinder circumscribing a semisphere,

the semisphere, and the cone with base and altitude of the cylin-

der, are as the numbers 3, 2, 1.

6. A plane cuts a sphere, and its circumscribed cylinder parallel

to the base ; then twice the volume of the segment is equal to the

volume of its circumscribing cyliuder and twice the volume of the

sphere on the altitude of the segment as diameter.
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G. Thboeem of Pappus oe Gcldinus foe
Volumes.

1«5. The mean centre of a system of complanar pointsfor a system of multiples is defined (P. Art 240^^ thepoint of intersection of two lines, L and M, for which

S(a
. AL)= 0, and 2(a • AM)= 0;

where ^ is a representative point, AL and .Of represen-
tative perpendicnlars from A to L and M res^^ZZand a a representative weight or number
Also (P Art. 241), if be the mean centre of thesystem, and Z be any line complanar with the system

2(o.^Z) = 5(a)0/;.

We have to deal here with the mean centre of theaxea of a figure, and later on with the mean centre ofthe perimeter of a figure.

we. When a plane figure has an axis of symmetrythe mean centre of the figure lies on this axis.
^'

For every point in the area upon one side of the axis

eo™T *'•''' " ' P**'"* "P°" *••« "'l'^' "ide exactly
corresponding ,n every respect. So that if L be thi

Th; eTrnr'n^"/' ^^ corresponding ^intwe have AL +A^= o. And since the whole area isjpresen^d by pairs of such correspondingtleZt;
S(a

.
^)= 0, or i passes through the mean centre.

Cor. 1. When a figure has two axes of symmetry them^ centre of area is the point of intersectiorS Se

i!

I 1
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This is the case with the square, the rectangle, the

rhombus, all regular pdlygons, the circle, and some other

figures.

157. If the area of a figure be supposed to be made

up of elemental squares, the centres of these squares,

being their mean centre of area, will represent the points,

A, B, C, etc., in a system of points, and the areas of the

several squares will represent the weights.

But since the squares are all equal, the weights are

all equal, and may be left out of consideration. With

this understanding we have for the mean centre of area,

S(AL)= 0, where L passes through this centre; and

S(AL)= n. OL, where is the mean centre, L is any

line not passing through 0, and n is the number of

elements under consideration.

108. Theorem. The join of the mean centres of two

systems passes through the mean centre of the system

composed of the two taken together.

This theorem is almost self-evident.

For if S(o' • A'L) = and S(a" • A"L)= denote the

two systems, and L is the join of their mean centres, we

have at once

%(a'-A'L + a"-A"L)=Oi

which is of the type S(a • AL)= 0.

Cor. If any number of systems have their mean

centres collinear, the mean centre of the system com-

posed of all taken together lies on the line of coUinearity.

159. Theorem. The mean centre of a parallelogram is

its geometric centre, i.e. the intersection of its diagonals.
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Let ABCD and EFGH be two congruent parallelo-
ga^s.^upe,posable with ^ on ^, ^ on'L, G of? a^

i on C J onT^ '''T".'
^""^ ^^° -Perposable with

Hence the mean centre of each is the geometric centre
Cor. In like manner it may be s'aown that when anvfigure has a geometric centre, that centre is dso themean centre of its area.

****

160. Mean centre of the area of a triangle. Let BDbe a median to the triangle ABC. DraAp ^nd OHtwo near Imes each parallel to AC, and draw^/^^
parallel to BD. ^^' *''

The parallelogram ^^is anelement
of the area of the triangle, and the
sum of the areas of these elements,
when taken at the limit, is the area
of the triangle.

But as BD bisects EF and IJ, it
passes through the mean centres of all
the elements of which £?^ is a type « o c

lieforir itT- '??•' *'' ''^"*'" "' '^'^ °* *»»« trianglelies on Bi); and as ,t lies on both of the other mediaLthe centre of area of a triangle is its centroid.
'

Def. On account of the foregoing, we shall call th«mean centre of area of any figure itsLJd
cent'™ n?*"""'

'^1'' Orthogonal projection of the meancentre of any complanar system is the mean centre otthe projection of the system for the same multiples



160 BOUD OB SPATIAL QKOMKTET.

Let A, B, C, ••• be the elements in the plane U, and

A' S', C, ••• be their projections on the plane V. Take

i/any line in U, through the mean centre 0, and let L'

and O' be the projection of L and O on V.

Then S(a-A&)= 0. (P. Art. 240.)

But AL, BL, CL, etc., are all parallel, and A'L', B'L',

on, etc., are all parallel. Therefore, the

and hence
Z (^AL A'L') =Z{BL- B'L')= etc.,

A'L''

BL
'B'L

P,m;

.: S (o • JlL)= =pS(a • A'L'),

o, i(a-A'L')= Oi

and L' passes through the mean centre of the projected

system. And as this is true for all directions of L and

L' in their respective planes, 0' is the mean centre of

the projected system; or the projection of the mean

centre of the system in Uis the mean centre of the pro-

jected system in V.

162. Def. Let us call, in general, a figure of the type

of the cylinder or prism, but with non-parallel bases, a

cylindroid. .

Suppose a system of near equidistant planes parallel

to the axis to cut the cylindroid. These divide it into

laminsB parallel to the axis. Now suppose a second set

of planes, parallel to the axis, to cut the first system at

right angles, and to have the distance between consecu-

tive planes the same as in the first system.
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These planes divide the oylindroid into elementary
prisms on square bases. These form the prunnatic eZments of the figure, and the sum of their volumes, at thelimit as their bases are indefinitely diminished and theirnumber is correspondingly increased, is the volume ofthe oylindroid.

J?f' M
^^-^ * ''y^*"'^«'»d having the base ABH nor-

T 1° fn u*'*'
'"•* ^^^ ^^ ^^^ "Wique to the axis,

iwet T^y be a prismatic element,
the area of whose base is ft and let
the line CD be taken parallel to the
common line of the planes of the
bases, and let AB be the orthogonal
projection of CD on the lower base.
Draw QF± to AB, and FE nor-

mal to the base ABH. Then FE
is parallel to QP, and meets CD in
some point E. DrawER± to PQ
Join EP Then EP is ± to CD, and EBQF is a rect-
angle, and EF= QR. ^ * '*''*

The volume of the prismatic element PQ is

P-P<i=PPR+p-RQ=^.PB^p.EF
And since the bases of all the prismatic elements have

MP-PR)-h-S,{P)EF.

d.f"/J^^^i^^u'
** '^' ""'*• *•»« ^"I"'"^ of the cylin-der HK, whose base is ABH, and altitude EF

In order that this may be equal to the oylindroid wemust have 5(^ • P^)= o ; and as every element PRisZ

U
,1
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a constant ratio to the corresponding element EP, and

j3 is constant, we must have t(EP) = 0.

Or CD must pass through the centroid of the upper

base, CGD, of the cylindroid; and (Art. 161) AB
passes through the centroid of the lower base.

Hence, however the directions of the planes of section

which glTO the bases may vary, provided they do not

meet within the limits of the cylindroid, the volume

remains unchanged, while the distance between the

centroids of the bases remains the same.

Cor. The volume of a cylindroid is the area of a right

section multiplied by the distance between the centroila

of the bases. i

164. Let the plane figure X, invariable in form and

dimensions, move from a position AB to another posi-

tion CD, in such a manner that its

direction of motion, whether follow- ^
ing a line or a curve, is always

normal to its plane.

Take two near positions of X as

at OH and JK, and consider these

as bases of a cylindroid forming an element of the figure

generated by the motion of X If P and Q be the

centroids of the bases, the volume of the elementary

cylindroid, GK, is XPQ, where X is the area of the

generating figure.

And at the limit, when P approaches indefinitely to Q,

the sum of the oylindroids is the generated spatial figure,

and the sum of the elements PQ is the path of the

centroid of X.
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Therefore, when a plane figure, invariable in form anddimensions, moves in a path which is at every ins^t

dr'L *'\P''"' °' '""^ «^'«' the wholTtou^e

S,sl Pf^'"o-ed over by the centroid of the fi^re.This IS the s atement of the theorem as first given byPappus (about 300), and afterwards reproduced bvGuldinus (1577-1643), and usually called affer h^snamt
Cor When a plane figure revolves about a complanar^.s the direction of motion of the centroid iT at altimes necessarily normal to the plane of the iigure andthe volume described in one revolution is the aTa o'f tSj

S^ltS^
'""^^^^"^^ ^^ *•"« ~^----^t

wiSutlt^'rhi'/''"'"''
"'""* * """'P'^"" ""« lying

Tl^find^rs'vSl'e^'^
^"^^^*^' '' ''^"^'^ ^" -'*- """^

Let r be the radius of the generating circle, and E bethe distance of its centre from the axis Thek

vol. = 2»-i? . ,rr»= 2>rVi?.

BXBRCISBS L.

1. Find the posiUon of the centroid of a gemlcirole.

2. The circle which generates an anchor ring is dividBri h, .dmmeter parallel to the axis, compa™ the voluj djfnL'bvthe outer and the inner half of the circle.
"escnoed by

8. A semicircle revolves about its limiting diameter An,segment whose chord is parallel to the axiaf linrdelcribi
'
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4. The diatance from the centre ol • circle to the centrold ot

any wpnent, ii—, where c ta the hall chord of the segment, and
3 8

5 U iU area.

5. The distance of the centrold of a segment from lu chord la

3S 2e

where c' is the chord of half the arc, and ti is the versed sine of

the arc (P. Art. 176. Cor. 1).

6. An arc of a circle revolves about Ito chord ;
the volume

generated is
i{4e«»-3(c»-,^)S}.
8 V

The figure generated is called a circular spindle.

T. The centrold of a semicircle is at the distance^ from the

centre of the circle.

S. A semicircle revolves about a tangent at its middle point.

The volume described is

i,r»(3ir-4).

9 A square with side » revolves about a line through one

vertMC, mailing an angle » with a side, and not crossing the square.

The volume described is ir»«(8in » + cos »)

.

10. A plane cuts through a right circular cylinder so as to out

one base only. The volume of the portion removed is

^{}c»-(r-»)5};

where ft is the height of the convex part, r is the radius of the

cylinder, aou », c, and S denote the versed sine, semichord, and

area of the segment of the base.

This figure is called an tinflruJa of a right circular cylmder.
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SECTION 4.

Plaiohetrt—The Measurement op the Abeas
OF Surfaces, oe Superficies.

185. When a spatial figure is bounded by plane faces
only, the area of its surface is the sum of the areas of
its faces.

For such figures no special method is required outside
of the processes of plane geometry.

The area of a curved surface is usually derived from
that of a polyhedron by going to the limit, and suppos-
ing the number of polyhedral faces to be indefinitely

increased while the size of each face is correspondingly
diminished.

.

In some curved surfaces, however, we may suppose
the surface to be brought to coincide with a plane by a
sort of unrolling of the surface without stretching or
distorting it in any of its parts. Such surfaces are said
to be developable ; and when the surface is brought to
coincide with a plane, it is said to be developed on the
plane.

Thus a sheet of paper may be rolled into a cone or a
cylinder, but it cannot be bent into a sphere.
The cylinder and the cone are accordingly developable

surfaces, while the sphere is not.

It is readily seen that none but ruled surfaces can be
developable. Ruled surfaces are not, however, all devel-

166
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opable, and those which are not bo are called $ktw sur-

faces.

166. Development of the conical surface.

Let O be the centre of a circular cone, and Xi be a

generating line.

On L take any point, P, and through P draw the

cone-circle APB with O as yertez.

With any point, Q, as centre, and QD = OP as radius,

describe an arc, DE, equal in length to the circumfer-

ence of the circle APB.
The figure QDE, a sector of a circle, is the develop-

ment of the conical surface lying between the centre

and the cone-circle APB.
It must be remarked that the construction here given

is theoretical only, since we have no method in elemen-

tary geometry of constructing an arc of one circle equal

in length to a given arc of another circle, when the

circles have different and incommensurable radii. This

diflloulty will not, however, vitiate any application to be

made of this principle.
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jg-

i^or the closed cone 0.>IPB ; • -T

curved surface =
J CW.

168. Frustum of a right circular cone.

area « sector Q/)^ _ gector QOe.
Or, denoting the circumference of apb by c,

2 area= OP. C-0/).c.
But 0/'=iV + Qp;and-0-^=C^.

Op c'
. :^_C-c
Qp c '

and

or

(P. Art 195. 1.)

2area=i^.C+C^(C_c),

area of surface = ^Pp(^c+ c).
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Or, if A be tiie height of the oylinder, and r be the

radius of the base,

convex surface « 2 wrh.

170. Area of the surface of a sphere.

Let ./IB be a quadrant of a circle which generates a

semisphere by revolving about

OB as an axis.

Take two near points on the

curve, P and Q, which at the

limit come into coincidence, and

draw the chord PQ. This chord

describes the convex surface of

a frustum of a cone, and the area

of the surface is

iP(i(2wPp + 2wQq), (Art. 168.)

where Pp and Q? are Jj upon OB.

Take B, the middle point of PQ, and draw Rrl.toOB
and join RO, and also draw QS± to Pp.

Then the surface described by PQ is

2wPQBr.

And on account of the similar APQS and ORr, the

surface described by PQ is

2ir- OB -pq.

And the convex surface described by a system of chords,

forming the sides of a regular polygon, is

2w OB -l^pq).



R'AHIMCTRT. 169

But at the limit when P cornea to Q, the apothem, OJt,become, the radius, and the polygon become, the cZtand the surface described by any arc, Pg, is

2wrx proj. of the arc on the axis.

Now, 2»r is the circnferf-nce traced by A a pointon the circumscribed .ect^n^-ln ^n,0. and the projection
of the arc is equal to Jjf:-

*

Therefore, the cor.., x surface Ao^yyh^A by the arc PQ
18 equal to the conv,;.x ..urfar.) diMcril.e.l by DE

Hence, if a sphere and it.-c .c-macribed right cylinder
te cut by two pla;..., par.Ilei to the bas.s of the cylinder,

planes is the same for the .sphere as for the cylinder.

Cor The area of the surface of a sphere is e<
'

,

that of the curved surface of its circumscribe<i ...M
cylinder. ^

Therefore, the area of the surface of a sphere is

4irr',

or four times the area of a great circle.

JJ\ ^* T{ ?""'*" " 'P'*^'* "^ circumscribing aconsphenc polyhedron with an indefinite number of verysmall faces. Considering these faces as bases of pyiimids having their vertices in common at the centre ofthe sphere, the sum of these pyramids at the limit, whenthe number is indefinitely increased, and the size of eachl^e IS correspondingly diminished, is the volume ofthe sphere, and the sum of their bases is the surface
of the sphere.
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But each pyramid is \Bk, and their sum is \^(Bh).
Or writing S for SB, and r for h,

where V is the volume of the sphere, and S is the area
of the surface.

Theorbh op Pappds or Guldinus for
Surfaces.

172. For convenience we shall call the mean centre

of the perimeter of a plaice figure its centre offiyare.

The general theorems respecting the mean centre as

developed in Arts. 158 and 160 apply to the centre of

figure in the same manner as to the centre of area.

173. Two equal line-segmenl'! .IB and CD, are con-

gruent whether A is placed on C, and B on D, or A on D,
and B on C, and hence the centre of figure of a line-

segment is its middle point.

Then, in any rectilinear figure which has an axis of
symmetry, the sides exist iii congruent pairs which are

symmetrically disposed upon opposite sides of the axis

of symmetry.

And hence if A and A' denote the middle points of
two sides forming a symmetrical pair, AL= —A'L, or
AL + A'L = ; where L is the axis of symmetry.

Therefore, S (AL) = ; or i passes through the cen-

tre of figure.

H^noe, when a rectilinear figure has an axis of sym-
metry, the centre of figure lies upon that axis.
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Cor. When a rectilinear figure has two axes of sym-S ""'"* "* '''*^"*'''*'°'' ^ '^^ ''-trf of

174. Let AOB be a cylindroid having the base AUrrnormal to the axis, and the base CGDoblS^^t^
Suppose the convex surface to be

^
divided in very narrow strips of
equal width throughout, and paral-
lel to the axis of the cylindroid and
equal in width to one another; and
let 6 denote the breadth of one of
these elements of surface, and let
ST denote the line along the middle h
of the strips. Then ST is normal
to the base ABH.

Let CD be parallel to the common line of tie planesof the bases, and let AB be the projection of CD o. the

irlw ^!. SZ Z"^ *" ^^ ^"'^ ^^-L '0 ^^ ^-araw JS.V Xta ST, and jom ES
Then, EVTF\s a rectangle, and VT= EF.
The area of the element represented by STia

h'ST,oTb. EF+ b . SV.

And the sum of these elements, of which the nn«
represented by ST in the type, is,

"'"'

^{b.EF) + %(b.SV).

J^lf^Sr^'^"'' *"' '^*^ '' '""^ circumference of

Therefore i(b.EF) is the convex surface of thecyhnder, or prism, whose base .s ABH, and whose aSS

ii; i
^ 111

K fi
>!l 1

» «
f<-



162 SOLID OR SPATIAL QBOUETBT.

tude is EF. And that this may be equal to the whole

convex surface we must have S(6 • SF) = 0.

But as all the elements have the same width, b is

constant, and SV:8E'\s constant;

.-. 5(B5) = 0;

or, CD passes through the centre of figure of the upper

base ; and hence AB passes through the centre of figure

of the lower base.

Therefore, the area of the convex surface of a cylin-

droid is the circumference of a right section multiplied

by the distance between the centres of figure of the

bases.
'

175. Let the plane figure X, invariable in form and

dimensions, move with centre of figure on the path

OPQB, and so that the direction

of the path is at all points normal

to the plane of the figure, and let

OH and JK be two near positions,

which at the limit come into coin-

cidence.

The surface of the elementary cylindroid OK is the

circumference of Xx PQ; and the area of the surface

of the figure generated by the motion of X is

S(PQ) X circum. of X.

But S(PQ) is the path OPQB—, and circumference of

X is constant.

Therefore, the area of the surface described by a plane

figure, invariable in form and magnitude, which moves

so that its direction of motion is at each point normal to
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its plane, is the circumference of the generating figure
multiplied by the length of path described by its centre
of figure.

Cor. When a plane figure revolves about a complanar
line as axis, the direction of motion is necessarily normal
to the plane of the figure, and the surface described has
for Its area the circumference of the figure multiplied by
the circumference traced by its centre of figure.

Ex. To find the surface of an anchor ring The
centre of figure is the centre of the generating circle,
and the circumference traced is 2itR.

.: area of surface = 2«t . 2«-/i= A:-^Rr.

176. The two theorems which go under the name of
Guldin s theorems, but which were discovered by Pappus
express relations of the highest importance in mathe!
matics both pure and applied. They enable us to find
the centroid of a generating figiire when the volume of
the generated figure is known, or the centre of figure of
a generating figure when the area of the surface of the
generated figure is known, and vice versa.
Thus knowing the volume of a sphere, we can readily

find the centroid of a semicircle, and knowing the sur-
face of a sphere enables us to find the centre of figure
of a semicircular arc.

BXXBOIBBS H.

™»ii TV* ".'r^*
^••"'"'''K »n "nchor ring a divided by a diameter

parallel to the axis. Show that the difference between the sur-
face, described by the outer and the hiner part la eight Umes the•"» of the genenting circle.
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S. The conyex surface of a cone is wn; and the entire surface
is wr(r + i)i where s is the slant height, and r is the radius of
the base.

5. The entire surface of a conical frustum is

»{»(• + n) +»* + »•,«}•

4. The areas of the surfaces of the regular polyhedra are
as follows

:

Tetrahedron, ^y/S; Cube, 6«'; Octahedron, i^y/3; Dodeca.
hedron, e«15V(l + W^): Icosahedron, e«5VS.

6. The distance between the centre of a circle and the centre

of figure of any arc of the circle is^ where I is the length of

the arc, and c and r denote as usual.

6. The area of the surface of a circular spindle is

7. The convex surface of an ungula of a right circular cylinder ii

-(2cr + r^r^.J). 8eeEx.lO. K.



Part IV.

PROJECTIONS AND SECTIONa

w\

SECTION 1.

Pbbspbctive Projection,

If the spatial pro ection be cut by a ok, p v .,,

» Ih. di„..i„„ o, ., ,„,.„, i. p„p,^^„
166



166 SOLID OfL SPATIAL GBOMKTEY.

the plane of X, but oblique to V, the projection may be

called the ant-orthogonal projection of X oti V.

In what follows in this section, projection will mean

projection with O finite unless otherwise stated, and the

projectioii will mean the figure of section.

178. We observe that in a way projection and section

are reciprocal processes, as by projecting a plane figure

we get a spatial one, and by cutting the spatial one by

a plane we return to a plane figure.

And this passing from one plane figiire to another

through a spatial figui'e may be repeated as often as we

please.

179. Since the generator L is unlimited, the spatial

figure extends to infinity on both sides of the centre, and

admits of section on either side or section on both sides

by the same plane, examples of which will occur here-

after.

180. The following theorems are fundamental

:

1. A line projects into a line.

For the spatial projection of a line is a plane, and

every plane section of a plane is a line.

2. The point of intersection of two lines projects into

the point of intersection of the projections of the lines.

Hence the projection of a plane rectilinear figure is a

plane rectilinear figure having the same number of sides

and vertices as the projected figure.

3. A curve projects into a curve, and a tangent to the

curve into a tangent to its projection.
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181. Let O be a centre of projection, and let CTand Vl« two p anes neither of which contains O,J7bZcommon line is AS.
wuose

Through O pass a plane parallel to V, and let it meetUm I. Then / ,s parallel to AB Take P «n„ .
>n

/, and let OP be the axis of an axfa 1"[Csection of this pencil by Uis the flat Tnci PORSand since OP meets r at infinity, Se ec^i^n ^t th«

er."(lrt^^/i.V" " ""'"' ^"^^^""
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Hence the flat pencil on 17^ with vertex at P projects

into a parallel system on V, and the direction of the

system is that of the axis OP.

Dtf. P is the vanishing point on U for the parallel

system on V, or it is a vanishing point for V, i.e. for

some system uf parallels on V; and /, which is the locus

of vanishing ;.jints for different systems of parallels on

V, is the » I. <.ahing line on U, or the vanishing line for V.

Similarly, by passing a plane through O parallel to U,

we obtain the line J, on V, as the vanishing line for U.

Thus either plane may be taken indifferently as the

plane of the figure, and the other plane becomes the

plane of the projection, or the plane of section. The

operation of projection is thus completely reversible.

Car. 1. Any point is projected to infinity by taking

the plane of section parallel to the join of th&t point

with the centre of projection.

Cor. 2. Any line is projected to infinity by taking

the plane of section such that the given line may be the

vanishing line for that plane.

Car. 3. If P goes to infinity along /, OP becomes

parallel to AB. But the flat pencil whose vertex is at

infinity is a set of parallels.

Therefore, lines parallel to the common line of the

planes project into lines having the same direction, i.e.

into a set of parallels.

Car. 4. If the planes CT^and Fare parallel, the figure

and its projection are similar (Art. 28. Cor. 2), and

parallel lines project into parallel lines.
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188. Application. ABCD is a rectangle, and EF is
parallel to AB. Then the intersections P, O, Q of pain
of diagonals are evidently

^^
in line. But AB and EP
meet at », and so also

do FE and CD. And if

these points at oe be pro-

jected into the finite, we
obtain the theorem.

If a line be drawn in-

tersecting opposite sides of a quadrilateral, the diagonals
of the three quadrilaterals thus obtained have their inter-
sections collinear. For, the rectansle can be projected
into any quadrangle whatever, by making a proper
projection. r t~

183. Theona. Anhar-
monie relations are un-
changed by projection.

Let ABCD be a range
on the plane U, and let

A'B'CD' be its projection

on rfrom the centre O.

ABCD, A'B'CD; and O
lie in one plane, and the theorem is reduced to that of a
flat pencil.

But 0\ABCD\ = OlA'B'OD'i. (P. Art. 304. Cor. 3.)
.-. \ABCDl = lA'B'CD'l.

Or the anharmonio ratio of ABCD is unchanged bv
projection. ' '

if
-.ii-
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Cor. 1. Any given range can be considered aa having
oome from some other range having the same anharmonio
ratio

i
and any range and its projection are homographio.

Cor. 2. If ABCD be a harmonic range, and D be
projected to infinity, the projection of B bisects the join
of the projections of A and C.

184. AppliccUlon. To show that a diagonal of a tetrar

gram is divided huriuunically by the other diagonals.

In the figure of Art. 182, project the diagonal EF to
infinity (Art. 181. Cor. 2), E going in the direction AD,
and F in the direction AB.
Then ABCD becomes a parallelogram, and is the

middle point of the diagonals, and therefore the middle
point of AC. But since O goes to infinity, AOCO is a
harmonic range.

Therefore, AOCO is always a harmonic range. Similar
proofs may be obtained for the other diagonals.

185. Theorem. Any angle less than a straight angle
may be projected into any required angle less than a
straight angle.

Let APC be the given angle lying in the plane U, and
let A and C be the points where its arms meet the
plane of projet^tion V.

With AC as chord describe on Fa segment of a circle

ABC which shall contain the required angle, and through
B, any point on this segment, draw BP. The centre of
projection is at any point on the line BP, as at 0.

For the planes BPA and BPC contain the given angle
APC on U, and the required angle ABC on F.
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Cot. 1. Since B is any point on a circle, and i»

any point on the line BP, Q lies on tl... surface of a
cone whose centre is P, and
of which OPB is a gener-
ating line, and the circle

ABC the director curve.

/ be anyCor. 2. Let
line in U.

Through / draw any
plane, W, and take V par-

allel to W. From any point
on W, I is projected to in-

finity on V. But IT cuts
the cone in a curve, QOB,
and any point in this curve
lies at the same time upon
the surface of the cone and upon the plane W.

Therefore, from any point in this curve the ZAPC is
projected into a given angle ABC, and any line / is
projected to infinity.

Hence any number of points can be found all lying on
the plane section of a cone, from which as centre a given
angle of a plane iigure may be projected into a required
angle and a given line of the same figure be projected
to infinity. '

186. Any quadrilateral may be projected into a rect-
angle.

For if we project the external diagonal to infinity, and
an angle of the quadrilateral into a right angle, the
figure becomes a parallelogram with one right anrie
«.e. a rectangle.

* * '

>ir
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187. Theorem. Any line-segment may be so projected

that any point on the line of the segment may become
the middle point of the projection.

1. Let the point divide the segment internally.

LetAB be a given segment and C be an internal point

in it. Take D, the harmonic conjugate to C (P. Art.

309), and taking any

point O as centre of pro-

jection, join OD, and

project the range upon .i

line, L, parallel to OD.
Then since D goes to

infinity, C bisects the seg-

ment A'B'.

2. Let the point D
divide the segment exter-

nally. Take C, a har-

monic conjugate to the

given point D, and join-

ing OC, project the range

upon any line ilf parallel

to 00.

Then, since C goes to infinity, D" bisects the segment

A"B".

In this projection we notice that no part of the pro-

jected segment lies between A" and B" in the finite, but

that the projection of the line-segment AB extends from

A" upwards to C" at infinity, and thence returns, from

below, to B".

We have thus reversed the segments of the original

line, so that the finite part ACB extends through infin-
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ity, and the infinite part BDA becomes finite • and tl.„«D represents the external po.nt of bisection of"b thL

s^=;i££t=:?.£n--^

.£i^s^r^^i--r:Tf-
Let C be the given point in the circle, and let ACRbe^^^a^eter, and ECr. chord perpendieulallolhU

On any plane parallel to ECF nroipot fi,»ACB so that C may be the JZTI'B' by 1
""•"^"*

In this case no part of the circle goes to infinity andthe projection is a closed curve.
mnnity, and

wit?ont^t i '""t
""^^ ^ *° P^°J«''*^'J *h-t a»y pointmthont It may become the centre of the figure of'prl

Apply the principle involved in 2
In this case the circle becomes two curves whinJ.« end to infinity in opposite directions, and whilhtnot meet one another. The diameter 1b projec inta common ax s to the two curves, and the pSt on 'fthe given point bisects the nart of tha

^ •'^''"°'' °*

intercepted between the curves
"'""""'" ""^

ISBBCISBS N.

1. Show that a tetragram may be projected into a rectangle
8. A given line may be projected to infinity and •. ^angles be projected into required angles.

'*" «"™

• Iff

! S'

t Til
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S. ABC ia a triangle/and DE is parallel to AC, D being on

BC, and E on AB. CE and AD intersect in 0. Then BO is

a median ; and if BO meeto DE in P and ^C in Q, BPOQ is

a harmonic range.

4. ABC is a triangle, and AD, BE and CF are parallel, D
being on BC, F on AB, and £ on AC. Show that

AE:EC = AF- BD-.BFCD.

t. A chord of a circle is projected to hiflnity. Show that the

pole of the chord becomes the point of intersection of tangents

which touch the projection at infinity.



SECTiOJV 2.

Plane Sections.

188 The definition of a plane section, and some
general facts w.th regard to it, are given in an earlier
portion of this work (see Arts. 19 et seq

)
Evidently the pla„e section of any polyhedron is apolygon, and the plane section of a sphere is a circle

Such sections offer no distinctive features other thanwhat belong in general to polygons and circles
But when we make plane sections of the cone or

cylinder, we are introduced to curved figures which are
not circles, and with which we have not hitherto become
acquainted.

w^d

These we propose to consider.

Plane Sections op the Cibcular Cone.
189. The spatial projection of a circle, from a centre

of projection for which the circle is a cone-circle, is a cir-
cular cone. The section of this cone by a plane, variable
in direction, ,s a variable curve, which, in passing through
several distinctive phages in its variation, constitutes a
class of plane curves which are known as conic sections
or simply conies.

'

Hence a -ircle may be projected into any conie: and
conversel .y conic can be projected into a circle.
And^ thus any conic may be projected into any other

176
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Classification of Conics.

190 Let be the centre of the circular cone O AKB,

L being a generating line, and let F denote a plane of

section passing through any

point Q. Then,

1. When V is normal to

the axis of the cone, the sec-

tion is a circle, DGQ, or C.

Now, let a tangent to the

circle, C, at Q be drawn in

the plane V, and let the

plane revolve about this tan-

gent line as an axii Then,

2. When V makes with

the axis of the cone an angle

less than a right angle, and

greater than the semivertical

angle of the cone, the section

is an Ellipse, E.

In this case the section-

plane, V, cuts completely

through one nappe of the cone, and does not meet the

other nappe. Hence the ellipse consists of a single

closed curve, as represented by the figure E.

3 When F makes with the axis of the cone an angle

equal to the semivertical angle of the cone, the section is

a Parabola, P. ^. ,•

In this case V is parallel to a single generating line,

and cuts only one nappe of the cone, but does not cut

through it, pjid thus the curve extends indeaaitely out-

wards in one direction.
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The parabola is consequently a single curve, but not aClosed curve.

4. When r makes with the axis an angle less than the
8enuvert.cal angle of the cone, the section is a Hyp^Ma.In this case r is parallel to two ge„erati„V lines

Tnt^^Lr " ''"*'' "'^'^ "'"' ""« ^-*her, an' cutsmto toth nappes of the cone, but does not cui through

Therefore, the hyperbola, H, consists of two curves, orrather two branches extending infinitely outwards inopposite directions, and separated from one another by afinite interspace, QQ'. ' *

181 DegraOed forms. All the conies may take what
are called degraded forms, that is, forms wS Iheyassume a« limiting forms, under the sequence of varia-
tion, but which are not visible curves.

1. Suppose that while the different directions of thesection plane, which give the several conies, remain thesame, the section plane moves up to
Then, (a) The circle and ellipse deduce to a point

called ^pcnnt-circle and a poinMUpse respectively Ofcourse there is no final distinction between a point circleand a point^lhpse, but their names indicate their origin.

J2.^^1
^^'*"' "^'^^ ^^"^^^^ ^'°'"^' ^ tangentpkne to the cone, and touches the cone along two cofnci-dent lines; and thus the parabola degrades into two

coincident lines.

J'JJ^^ v'''' °^J:^'
hyperbola gives in section two

generating lines which make a finite angle with one

H
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another, and the hyperbola thus degrades into a pair of

intersecting lines.

Hence a pair of intersecting lines is frequently called

a rectilinear hyperbola.

Let V be the plane which gives the hyperbola H, H
(Fig. 190), and let F' be parallel to Vand pass through O.

V gives in section the rectilinear hyperbola wliich cor-

responds to H, H; and if we draw OT to the middle

point of QQ', and by parallel projection in the direction

TO, we project the hyperbola H, H upon the plane V,

we have, on that plane, a hyperbola and its correspond-

ing rectilinear hyperbola. The two lines which form

the latter are then called the asymptotes of the former.

2. If O remains fixed while Q moves up to O, the

ellipse becomes a double line-segment, and is called a

line-ellipse.

192. From the generation of the various conies, as

now explained, we deduce—
1. That the circle is a special form of the ellipse, and

that properties of the circle are special cases of more

general properties belonging to the ellipse. And as on'v

one direction of the plane of section, relatively to L.ie

axis of the cone, can give the circle, the circle has only

one form, or all circles are similar to one another.

2. That the parabola stands intermediate between the

ellipse and the hyperbola, and is the form through which

one of these curves passes into the other. Also, since

only one direction of the plane of section relatively to

the axis of the cone can give the parabola, the ci /ve has

only one form, and all parabolas are similar to one another.



COMMON PROPERTIES OP CONIC8. 179

3. That both the ellipse and the hyperbola are varia-
ble in form, the ellipse varying from the circle at theone limit to the parabola at the other, and the hvperlmla
varying from the parabola at the one limit to the form
of two coincident lines at the other.

4. That all the cor cs have many properties in common.

CoMMOJf Properties op Comes.

193. As a line can meet a circular cone but twice ^72)
so a line can meet a conic section in two and only twopom 8. When these two points become coincident, the
line becomes a tangent line, and the point of contact isa double point.

The conies constitute a distinct class of curves. Beinethe simplest curves that it is possible to have, they are
called curves of the first order.

All curves not conies belong to a higher order, and
cannot be obtained as sections of a circular cone by aplane, nor as sections of any cone, one of whose .ections
is a conic.

Cui-ves are classified according to the number of timesthey may be met by a line under the most favourable cir-
cumstances, and all curves other than conies can be metby a hne in more than two points, either real or imag-
inary. °

Cor. A tangent to a conic lies completely without the
conic, except at the point of contact.

w?- ^.v
*

l^'^'"^'
^""^ ^-^^^ '« * tangent cone

touching the sphere in the small circle BEC.

I
•11

Sii

iA,
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Denote the plane of BEC by U, and let F be a

plane of section of M« cone, touching the sphere in S,

and meeting U in the

line DH.
Let >rdenote the plane

containingthe axis of the

cone and being normal

to DH. Then W is per-

pendicular to both U
and V.

AQP is the conic

formed by V, and P is

any point on this conic.

BD is a centre line of

the circle BEC, and is,

the common line of U
and W, and SA is the common line of W and V.

This latter line, SA, is the principal axis of the conic,

or simply the axis, and it is perpendicular to DH.

The conic is evidently symmetrical about the axis SA,

or the principal axis.

Draw PH J. to DH a,i\A PJtf parallel to DH.

Then, P, M, D, H are complanar, all lying in V, and

JIfff is a rectangle, and therefore PH— MD.
Join PS and PO, and pass a plane through P, par-

allel to U, giving the circular section GPF, and meeting

TTalong the line OF.

Then BEC and OPF being cone-circles with as

vertex,

0P= OF, and 0£=0C;

CF=EP= SP. (Art. 86. 1.)
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SimUarly, SA = CA.

But, from similar triangles CAI) and FAM,

CF:MD=CA:AD,
0' SP: .H= SA:AD.
But the ratio 8A : AD is independent of the position

of P on the conic, and remains constant while P juoves
along the conic.

Therefore, denoting this constant by «, we have

SP
-pf-f—

e = a constant.

Hence a conic, considered as the locus of a variable
point, may be defined as follows

:

A cotic is the locus of a point which, being confined
to one i.lane, so moves that its distance from a fixed
point (5) is in a constant ratio (e) to its distance from
a fixed line {DH), all being complanar

This definition is usually adopted in analytical conies,
and it is suflSciently general to include every conic.

Def. The point 8 is the focus, and the line DH is the
directrix. A is the vertex of the conic, and the constant
e is the eccentricity.

PM is an ordinate to the principal axis, and PS is the
focal distance of the point P.

195. Let the accompanying figure represent the sec-
tion by the plane W.
A second sphere, Z', n. ,y be drawn, to touch the cone

and the plane V at S'. Then BC and E'C repr> ..enting
the sections of the circles of contact, the planes of these

j*^

iSfi
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circles are parallel, and they cut the plane V in parallel

lines represented in suution at D and D'. Hi'nco the

conic has two foci, S and S', two vertices, A and A', and

two parallel directrices represented in section by D
and ly.

The figure as here drawn applies particularly to the

ellipse, but it may serve us a type for all the other conies.

In the parabola one vertex, focus, and directrix are at

infinity.

In the hyperbola the second focus is given by the

point of contact of the sphere Z".

Thus in the ellipse the curve lies between the direc-

trices, while in the hyperbola the directrices lie be; ween

the vertices of the two branches of the curve.

•^
. ^
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fi™-" ?-*\''. "'^'' °' ^'^ "«• «on.idered as a planengure, Z is the ncircle and ^ i» • , '^

angle AOA. Therefore, AS^^A'S' (P. Art IT,

^UVtoThe"*
""''

!!"• "'« -nilarlv'.it.ut wU^reapect to the corresponding vertices
Also, drawing ^'JT parallel to CA,

A'S'= A-ff=A'T=AS = AC.
Therefore, the triangles I^A'T anH n>j/^

gruent, and ^rZ)'= ^n „,*>;!, "^ ^^^ *^ «°n-

situated with «rpe1f 'to th/
'"*"""/" """""^''^

vertices.
^ ^ corresponding foci and

jirjtrix^.dtCortU'':irrrr;nt^^^^^^^^^^^

me iMi, 18 an axis of symmetry of tl curve

In the parabola one axis is at infinity.

val^Jof'tetrSt;' ''' ''"''' '' '^^^"'"-'^ ^ «>«

In the figure to Art. 194,

^= SA:AD=CA:AD.
1. Let AD be infinite. Then e-O «nH fi,« i „

.3 parallel to the plane U, and tL^^ni'c t tlf"
^

Th refore, the eccentricity of a circle is zeroIn this case both spheres touch Fat the centre of the

!';

:''
>\ i

f 1 J
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circular section, and the foci of the circle become coinci-

dent at the centre of the circle.

2. Let AD= CA. Then e = 1 ; and the triangle CAD
being isosceles,

^ADC=ZACV= /.BCO= ZOBC.

Therefore, AD is parallel to OB, and the conic is a

parabola.

Hence the eccentricity of the parabola is unity. In

this case a second sphere cannot be drawn in any finite

position so as to satisfy the conditions for a focus.

3. When AD is < oo and > CA, the value of e lies

between zero and unity. The ZACD is> the ZADC,

and the plane V, being inclined to the axis of the cone

at an angle greater than the semivertical angle of the

cone, cuts through one nappe and gives the ellipse.

4. When AD is <A0 and>0, e lies between unity

and infinity ; the angle ADC is greater than ACD, and

the plane V, being inclined to the axis of the cone at an

angle less than the semivertical angle of the cone, cuts

into both nappes and gives the hyperbola.

198. When the centre of a circular cone goes to

infinity, the cone becomes a cylinder, and the only possi-

ble plane sections are the

circle, the ellipse, and two

parallel lines representing

the parabola and hyperbola.

The ellipse, including the

circle as a particular case,

is the most important of

the conic sections, and we propose to develop some of its
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more prominent properties, through its relationship to
the circular cylinder.

Let ADB be one-half of the right section of a circular
cylinder, and let AEB be the corresponding half of an
oblique section of the same cylinder. Then ADB is a
semicircle with AB as diameter, and AEB is one-half
of an ellipse.

From C, the centre of both the circle and the ellipse,
draw CD and CE perpendicular to AB, .ue former in the
plane of the circle, and the latter in that of the ellipse.
Then ED is a segment of a generating line of the cylinder.
On the ellipse take any point P, and draw PQ parallel

to ED, and QO parallel to DC.
The AECD and POQ are similar, and CD = CQ =

the radius of the cylinder, and CD is > GQ.
Therefore, ED is > PQ.
j^it CE'=CD'+DE'=Cq^+DE', and this is >CQ»+

Whence CE is > CP.
Or, CE is the longest segment from C to the ellipse,

and is the semiaxis-major of the ellipse.

In like manner it may be shown that CP is >CA;
or that CA is the shortest segment from the centre to
the ellipse, and is the semiaxis-minor of the ellipse.

These axes are perpendicular to one another.

199. On account of the similar triangles, PGQ and
EDC (Fig. of 198).

PG:GQ=EC:CD.
But EC: CD is constant for a constant direction of the

plane of oblique section.

.•. PG : (?Q= a constant.
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Hence the following construction for an ellipse ; AQD
is a quadrant of a cirrae with cen-

tre C, and C^Q is a chord ± to AC.

Take OP, a constant multiple of

GQ. The locus of P is an ellipse

whose semiaxis-minor is AC.

Again, draw PH ± to CE and

let CQ meet HP in R.

Then, from similar triangles

SPQ and CGQ,
RP^PQ.
GC GQ'

...||=^= constant..

And PH is a constant part of BH; hence the the-

orem

—

If on a chord of a circle, perpendicular to a fixed

diameter, a point be taken so as to divide the chord in a

constant ratio, the locus of the point is an ellipse, and

the fixed diameter is the major or the minor axis of the

ellipse, according as the point divides the chord inter-

nally or externally.

Def. The circles which have the major and minor axes

of the ellipse as their diameters are the major and minor

auxiliary circles to the ellipse.

200. In the figure of Art. 198, let AEB be a semicircle

with AB as diameter and C as centre, and let CE be

perpendicular to AB.
Project orthogonally on any plane, V, passing through

AB Then GQ = OP cos POQ, and as PGQ is a con-
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stant angle, GQ is in a constant ratio to GP and is less
than GP.
Hence Q lies on an ellipse of whicli AB is the major

axis.

Therefore, the orthogonal projection of the circle on
tny plane not parallel to its own is an ellipse.

This result also follows directly from the statements
V

.
Art. 190, since, in general, the perspective projection

of a circle on any plane which cuts through one nappe is
an ellipse. But in the case of perspective projection the
same diameter of the circle does not project into an axis
of the ellipse.

201. Conjugate diameters. Let ADBE be a right
section of a circular cylinder, by the plane U, and let
adbe be an oblique section by the plane V. Also let AB
and DE be perpendicular diam-
eters of the circle, and FO be a
chord parallel to AB.
Now let the whole figure on

Uhe projected ant-orthogonally

(Art. 177) on V.

Then e is the centre of the
ellipse and o6 and de, the pro-

jections of AB and DE, are a
pair of conjugate diameters of
the ellipse,

And EG is bisected at H. Whence, from the nature
of parallel projection, /gi is bisected at A, and is parallel
to ab.

Therefore, de bisects all chords parallel to 06 ; and in
like manner ab bisects all chords parallel to de.

ft

ll



188 SOLID OB SPATIAL 6E0METBT.

Hence, when two diameters are conjugate, each bisects

all chords parallel to the other.

Cor. 1. Conjugate diameters are such that each is

parallel to the tangents at the extremities of the other.

Cor. 2. Conjugate diameters in the ellipse are the

parallel projections of orthogonal diameters in that circle

whose projection gives the ellipse.

Manifestly an indefinite number of pairs of conjugate

diameters may be found, and each diameter has one, and

only one, conjugate.

Cor. 3. When the plane V is parallel to ABox DE,

db and de are perpendicular to one another, and become

the principal diameters of the ellipse.

202. Siace Aa, Bb, etc., are generating lines of the

cylinder, they are lines of contact of tangent planes

(Art. 73). Let four tangent planes to ths cylinder touch

it at Aa, Bb, Dd, and Ee. The section of these by CTis

a square, whose sides are parallel to AB and DE; and

this section remains constant in area however AB and

DE may be drawn, provided they are diameters which

intersect orthogonally.

The section of the tangent planes by F is a parallelo-

gram whose sides are parallel to ah and de.

. Now (Art. 116), the area of the square is equal to that

of the parallelogram multiplied by the cosine of the

angle between U and V.

Therefore, the area of the parallelogram is uaaifected

by any change in the position of V, which does not

change the inclination of that plane to the axis of the
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Hence, in any given ellipse the parallelogram formedby tangents at the extremities of conjugat'e diameters;

taken in both length and direction, is constant.

Cor. If a and 6 denote the semiaxes, and a' and 6'
denote a pair of conjugate semidiameters, and 6 be theangle between them,

u 17 oe ine

a")' sin e=ab.

Let fh„ \7 ^ '^•*" ** "«^* *°«'«« t° »"« another.Let the whole be projected
orthogonally upon a plane, V,
passing through AB, and in-

clined to f/- at a fixed angle,
And let CP', CQ' be the pro-
jections of CP and CQ respec-
tively.

CP^nA^rS>
'"^- ^"- '^' ^""^'^ ' '^ semiellipse, and

B fS "^ ^ P^"' °' semi-conjugate diametersDraw P£ and «2^± to AB, and join P£! aj ryjn
Then PJandQ'i.are±to^5;and since POQUarfgftangle OP=£P, and £C=«2^. Also, PP'^iSeand QQ' = PQ gin <, =. p^, 3;^ ^

"«"' «"» «•.

A' d CP« -I- CQ" =C1?+ EP^- PP"
+ CF' + FQ>- QQ1

= ^(^P'-{EP'+Fq?)siti'e
= CP~ (2- sin' e)
= a constant.

:

'4

11
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Therefore, the sum of the squares on a pair of con-

jugate diameters of an ellipse is constant.

Cor. Denoting the parts as in Art. 2u2. Cor.,

o"+ 6'' = a»-|-6'.

The results of Arts. 202 and 203 are known as the

theorems of Apollonius.

804. Let V be a plane, cutting a circular cone so as

to give an ellipse, and let P be any point on the ellipse.

P is a point on the cone.

Let Z be the sphere which touches Fat the focus 8,

and 2" be the sphere which touches Fat the focus S'; also

let K denote the circle of contact of Z with the cone,

and K' denote the circle "of contact of Z'.

Draw through P a generating line of the cone. This

line cuts K in k, and K' in k', and at these points touches

the spheres Z and Z*.

But K and K' being cone circles to the vertex 0, kk'

is constant for all positions of the generating line.

But Pk= PS and Pk' = PS', being tangents to the

spheres.
... iSP+ PS' = a constant.

Therefore, in any given ellipse, the sum of the dis-

tances of any point on tl e curve from the two foci is

constant.

205. The result of the preceding article furnishes a

convenient practical method of drawing an ellipse.

Over two plus placed at S and S' put a loop of inex-

tensible thread, and keep it stretched by a pencil at P.

The locus of P is an ellipse of which S and S' are

the focL
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thflrt V^^v?'
''°^'* °* '^""^ "^'"K constant, andthe part SS' being constant, it follows that SP+PS' i.

constant. t^ « «-> w

Cor. By considering J!^^?a«^p
the phase when i» comes
to .4 or to B, we readily
s«e that iSB+BS'=AB, -Ts" c 5—
a^^hence that the whole length of thread is 2^^', or

306. Let PT be a tangent to the ellipse at P, and let
Q be any point, other than P, on this tangent Thensmce the tangent has only one point in commonSthe^cu^ve (Art. 193. Cor.), QS' cuts the curve in some

Then, SQ+ QS' is >SR+ US';
°' SQ+QS'i9> SP + PS'.

Sit PT.
''^' -^^ '-'"'' ''' ^"^ ''^ - «^-»'

thJw1°'!' ^ *"^ "'"P*"' *•>« ""«« fr°°» the foci to

Lrsigfnr
*"* °' ^^ **"^"* ^'^ «^^^^y -"-<»

207. • ©Qa^ is a circular cone ; APOB is an fillmtiV
section, and CPB and £«i. are circularZlZ cutting
the elliptic section m the lines PM and QJV:CD and £^are diameters of the circles, and AB is the

CD^n^S^^"' Pr.^?'i'°'^' to ^ and to the lines0£» and £2?" respectively.

ii

a
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Therefore CM- MD > P^n, and EN- NF= QIP.

But AAMDsA AlfF, and AENB =;A CMS.

.: AM:MD= AN.NF;
and MB -. CM= NB : EN.

Therefore, by multiplication,

AM- MB-.MD- CM= AN-NB:NF- EN;
or AM- MB : PM'=ANNB: QN'.

In a similar manner it

is proved that a like rela-

tion holds true for the

hyperbola. Therefore,

In the ellipse and the

hyperbola, if perpendicu-

lars be drawn from points

on the figure to the prin-

cipal axis, the squares

on these perpendiculars

are proportional to the

rectangles on the parts

into which each perpen-

dicular divides the prin-

cipal axis.

Again, let A'P'N' be a parabolic section,

is parallel to 00, and EM' = ON'.

But from the similar A ^'Jlf'i^and A'N'H,

A'M' : M'F= A'N' : N'H.

And 1:EM' = 1:0N'.

.: A'M' : EM' • M'F= A'N' : ON' - N'H;

or A'M' : P'M" =A'N' : (^N".
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Hence in the parabola, the squares on perpendiculars
from points on the figure to the axis are proportional to
the parts of the axis intercepted between the vertex ofthe parabola and the foot of each perpendicular.

Dtf. The perpendiculars of this article are called
ord»xote» to the principal axis, and the segments intowhich they divide the axis are called «6*aM«. So that
in the ellipse and hyperbola the square on any ordinate
« in a constant ratio to the rectangle on its absciss*.

In the parabola, however, one abscissa is infinite, andwe have only the finite one to consider. Then, the squareon an ordinate is in a consta.it ratio to its abscissa.

B3USBOISB8 O.

1. Show that the area of an ellipse is raft.

Show how to cut it by a plane «, that the section may be a cirele

then s/-11T::Z1^'^'^'^ °' ''""'' *»<»'- '00'.

(Art. 192 2), the fundamental properties of the parabolamay be obtained from those of the ellipse by supposing
that one focus of the ellipse goes to infinity, while the
other focus remains at a finite distance from the vertexWe shall, however, obtain these relations by means of
the perspective projection of the circle.
In the accompanying diagram, the right-hand figure is

the projection of the left-hand one, and for the sake of
convenience in comparison, a point and its projection
are denoted by the- same letter in both figures

|1

M
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!i:

In (I), BBf is a tangent to the circle APB, touching

it at B, and BAK ii a centre line. B'PQ is any secant

line from £', and PT and QT are tangents meeting at T.

B'Via A tangent from B' touching the circle at V, and
TK is perpendicular to BA.
The circle is projected into a circular cone, and the

plane whitj gives the parabola in section touches th^

circle at A and is parallel to the tangent BB", and BBf
is projected to iafinity.

T " T
a) ai)

In the projection (II), A becomes the vertex A of the

parabola, and BB' goes to infinity (Art. 181. Cor. 2), and
hence the lines through B in (I) become a system of

parallels in the projection (II), and thus in (II) KAOoc
is the axis of the parabola, and TVHao is parallel to

the axis.

So, also, the lines through B' in (I) project into a

system of parallels in (II); that is, QPB' and FB'
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Kow in (T^
9' is pole to VB, and therefore Qtfi'B' i,a harmonic range (P. Art. 311 2)

Hence 1. In the parabola, any line parallel to the

ten^^nt (K») at Us vertex. Thus PQ is bisected by

given by PQ, but its position Ir at infinity.
Again, in (I), T is pole to PQ, and TVHB is a harmomc range (P. Art. 311. 2)

chord (PQ) meet upon the diameter to that chord (ThIa^d the part of the diameter intercepted between thechord and the point of meeting of the tangents is Wseddby the curve
. TH is bisected at Fi

het^Kiln^' T" *'' P"'^ "' ^ <P- ^rt. 267), anduence KAOB is a harmonic range

i^rHeS :

° ^"^' ""^^^ ^^ ''^™°-''' -<» ^ bisects

any SnftoT'"'"'
'' *T *^"^^"*^ »" '''^^ f'O""

fZ^v "'"'''"' ^""^ * perpendicular be drawn

s^pLTLrth: Jot Tth*'"^
'-'

'' *»•«
-^"

the cho^rd Of contacV(';Q;tbt?.^d7r;e^^^^^^^^
the curve. KG is bisected at A.

"^

':'
I

II

U il

m
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809. Since the circle can be projected into any conic,

and anharmonic properties are projected without change,

all the properties of the circle which depend upon

anharmonic or harmonic relations are equally true for all

the oonics.

Thus the theorems in plane geometry, given in Arts.

311. ')12, 313, 314, and many of the following ones, are

trui hen we read conic for circle.

To enter any further into this subject is beyond the

scope of this work. The student who desires to pursue

this most interesting subject will find it fully developed

in Salmon's ' Conies,' or Cremona's ' Projective Geometry,'

or in Ponoelet's great iwork, the < Traits des propri^t^

projective des figures.'

EXBBOI8B8 P.

1. In the parabola, prove that the tangent at any point on the

curve makes equal angles with the axis and the line joining that

point to the focus.

t. P being .> point on a paraltola, if PM be drawn perpendicu-

lar to the axis and PJV perpendicular to the tangent at P, the part

jrj\r intercepted on the axis is constant.

8. The tangent nt the vertex of r parabola bisects the part

of any other tangent lying )>etween the point of contact and the

axis.

4. The tangent at the vertex of a parabola, and the perpendicu-

lar from the focus upon any other tuigent, meet the latter tangent

at the same point.

6. In the projection of Art. 208, if TK (1) projects into the

directrix, then will project into the focus.



SECTION 8.

Spheric Geometky.

form a figure which ies ontLZ" "'•' "" "'*''«'«

manner as, plane figure Lru;':irr„;"
the .a.„e

called .pA«„e,,^',:"tZr",'' ^^ """'' «»f"«^ "
On account of fhi °'.f

*"""«' "'"•/«'« </eowe<ry.

surface upon which it Ho» " """""^ 'Jpon the spherical

-y chanS inth?;:irofTt "^^'"^ ^"^--

ShS:^~-^«-"Se^^i:e;
anrZe";ra:":K:nror;vr^^ ^--^
the methods employed are mn/ ,

*''"'"*""' ^''d »*

are also fundame'S differeTs
" '"^ ''''^- ^"* *^«-

seq'uel
'"""''"* "^'°«'- -" be exhibited in the

theprop„tieso, rela onaof r ^"'^ * comparison of

-ii
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the properties which belong to a figure in consequence of

its lying upon n ^here.

Hence all spheric figures are supposed to lie on one

and the same sphere, just as all the figures in plane

geometry are supposed to lie on one and the same plane.

The radius of the particular sphere is altogether arbi-

trary, and, except in the case of metrical theorems or

problems, the radius may be left out of the consideration.

The centre of the sphere will be referred to as the

centre.

212. Every section of a sphere by a plane is a circle,

and when the plane contains the centre of the sphere,

the section is the largest circle in this way obtainable,

and is called a great circle of the sphere.

It will appear hereafter that when a plane figure

involving the line has an analogue in spheric geometry,

the line is represented by the great circle. And as there

can be no straight line in connection with any spheric

"gure, we shall, for the sake of the analogy, commonly
speak of a great circle as a spheric line. Then all other

circles are spheric circles.

Any limited part of a spheric line is a sjpAcnc arc, and

parts of other circles are circular arcs.

213. The spheric line, unlike a planar line, returns

into itself without passing to infinity.

Evidently the spheric line divides the whole spherical

surface into two congruent parts, just as the planar line

may be said to divide the whole plane into two congruent

parts. The parts of the plane, however, extend to infin-

ity, while those of the spherical surface do not.
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We have here a fundan,e„tal distinction bet,veen plane

sphere, not in line with the cent;e, determfne with thecentre one plane, and therefore one' spheric line"'*'

*''

Jhus like a planar line, a spheric line is determined

tte7ntr
'"''''" ''''''''' ''^y- -* -"i- ;;th

And through any two points not coUinear with th«centre, one, and only one, spheric line can p2 .

"

When two pomts are in line with the centre the th,«

anTS^'^'wr
°"^^ °"^ ""^' ^ ^^'^-^^^^roPi^esZ:and throngh th:s any number of planes can pass, rivlSm section the same number of spheric lines

^
Un«'"'r ^ir ««'>'°«try, any two points determine onehne, unless the points be at infinity For in thTs latter

We see, then, that for two points to be coUinear with

ioLtT".
%"/P''™ ^^°"'^"7' '^ analogous to "wo

Thus ,nf ";
•

"
°pp°"*^ '''"''«°"«' - pi-«g-XThus spheric lines passing through a mir nf «„ f

C«-. Any number of points on a sphere, no two ofwhich are coUinear with the centre, and no thl of

I

i
'ti!
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which are complanar with the centre, determine as many
spheric lines as there are groups of the points taken two
and two.

The corresponding theorem in plane geometry is, that
any number of points, no two of which are at infinity,
and no three of which are in line, determine as many
lines as there are groups of the points taken two and two.

215. The normal, through the centre, to the plane of
a great circle, meets the sphere in two opposite points
which are end-points of a diam-
eter.

These points are poles c|f the
great circle ; and in relation to

the poles the circle is called the
equator.

Thus every spheric line has
two poles, and any point on the
sphere, considered as a pole,

has £.n opposite pole, and an
equator.

Thus AB, in the figure, is normal to the plane EOFH,
and passes through the centre 0, and meets the sphere
at A and at B. Then A and B are poles of the spheric
line EOFH, and reciprocally EQFH is the equator to
the poles A and B.

Evidently the angle AOE, subtended at the centre
between a pole and any point on its equator, is a right
angle, and the spheric arc AE is one-fourth of a whole
circumference.

If a quadrant of a great circle has one extremity fixed
at A while the other moves over the surface of the



BECTIOS OF TWO PI,ane8.
201

point A as pole. ' ^^'"^ '« ^^e equator to the
Hence the quadrant AE is thfi «,» •

fixed, ^ will describe a circle ?»o '^" '^^^^''S ^
hearc^P,,„athereforei\27;V''^«Phere. A,

IS a coneKjircle to ^ a^ vertex ,n^ v ' ,
'*"«*aat. ^i?©

^B, and therefore paralLuo the /
P'""' '^ ""^""^J <«

And as A an,! b .
^* ^^^^^ °t EOFH

t^e spheric 2llf?^ran-;^e «P^ere frof .,,,
constant arcs, ^/> or Bplt^ '"'"^'^ ''^^ '"eans of
--le PRQ, andtheaf/^jp'^T^r ^^^^^ *" *"«
radius.

*'° ^'^' ^ also fiP, i, jtg ,„j^^^^

whS.^:::jX^^^^^^ ^PJ^ene radii

of any great circle are poleTto all ^ . •''
^""^ *^« P^l^"

Planes are parallel to if^fl^^^^clf^^'
^^-

SBcnoK OP Two Planes.

planes, two spheric linos whlh'^ ''''*'°" ^^ «>«««

-^^^£rZ:^VS^^— -e lineoy tJieir intersection with the
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sphere the two spheric lines AEBF and AOBH, inter-

secting in A and B, and mutually bisecting one another.

The angle between these spheric lines is equal in

measure to the dihedral angle between the planes which

give rise to the lines. But if FOFH be the equator to

A, EO and 00 are each perpendicular to AB, and there-

fore EOQ measures the dihedral angle between the

planes, and hence also th? angle between the spheric

lines.

But the angle EOO = (xcoEO)-i-EO; and since EO
is supposed to be constant,, our investigations being con-

fined to one and the same sphere,

Therefore, the angle between two spheric lines is

proportional to the arc which they intercept upon the

equator to their points of intersection as poles.

Cor. 1. If, through A, tangents to the spheric lines

be drawn, .4r to AEBF and in its plane, and AS to

AOBH a,nd in its plane, the angle TAS is equal to EOO,
and is the angle between the spheric lines.

Therefore, the angle between two tangents drawn to.

two spheric lines at their point of intersection is the

angle between the spheric lines.

Cor. 2. When the angle EOO is a right angle, 00 is

normal to the plane of AEBF, and G" is a pole to the

circle AEBF.
Therefore, two spheric lines are perpendicular to one

another when one of them passes through a pole of the

other; and in this case each passes through both poles of

the other.

217. The spheric figure AEBOA, formed by two

spheric lines between their points of intersection, is a
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Evidently every lune is aiicompanied by an opposite
congruent lune, as AEBGA and AFBUaU.A Iny two
spheric hnes divide the whole spheric surface into fourlunes which are congruent in opposite pairs.
We have the analogous case in plane geometry, whereany two nitersectin," lines divide the whole plane intofour sections, which, although extending to infinity, may

properly be said to be congruent in opposite pairs
It will be seen from this and other cases that the

tTvt ifh r'"
P''"' ^"'^ 'P'"'"« geometry is desciip-

tivp rather than metrical in kind.

Three Planes _ Section of Thkee-paced
Corner ok Trihedral Angle- Spheric Tri-
ANGIE.

218. Just as a plane section of any corner is a planepolygon with a side corresponding to and given by each
face of the corner, so the section of a corner by a sphere
with .ts centre at the vertex of the corner is^a spheric
polygon, whose sides are parts of spheric lines, and thenumber of whose sides is the same as that of the faceslorming the corner.

In spheric as in plane geometry the most important
polygon IS the triangle.

In plane geometry three given lines can form but one
triangle, since they determine at most but three points
But, as every spheric line meets every other spheric line

M:

'Ml
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in two points, three spheric lines, which are not concur-
rent, determine six points, and these may combine in
threes to form eight spheric triangles.

Therefore, any three non-concurrent spheric lines divide
the surface of the sphere into eight triangles.

219. Let AHA'G, BIB'J, and GFOE be three non-
concurrent spheric lines. They meet in the six points
A, B, C, A', B', C of which A is opposite A', B opposite
B", and C opposite C".

The eight determined triangles are

ABC, ABd, AB'C, A'BC,

A'B'C, A'B'C, A'BC, AB'C
Since A is opposite A', etc., the arc AB = the arc A'B'.

Similarly, arc BC= arc B'C and arc CM = arc CA'
Also, as ACCA' and
ABA'B' determine two
planes, the angle at A is

equal to the angle at A';
and so also the angle at

B is equal to the angle at

B', and the angle at O to

the angle at C. And thus

the opposite triangles ABG
and A'B'O have all their

parts in the one respec-

tively equal to the corre-

sponding parts in the other.

superposable. For taking the centre as a pohit of refer-
ence, ABC and A'3'C are in opposite orders of rotation.

But the triangles are not
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them; but this operation i«M, ''"P*"'»P<'m
^Wie figure. 8ph'eri;tl';,e t;^ -f^^^^^^

- a
are symmetrical, or conjuaate t^ I ? ^" "^"«'
are evidently produced bTtt: .

*°°*''"'' "'"^ they
cal three-fi'corS havtT""' °' *"° "^"""^'"^
centre (Art. 39). ^ * ''°"'">°° ^«tex at the

^^^'^ ^^-^oal or conjugate in

^'^Canrj-T' ^^^ ^"-^ ^'^'^' ^'C^ and A'B^,

220. Let ^BC? (Fie of 91 on u
formed by section of the three f^.^

* 'P'''"" *"*»»!«
The angles at A, B and O wf '"'"^ ^

"
^^^•

tively those of th Three dSe^r^r "T"'^ ^'« '««?««-
are called the a««?ea of thPt ^"^^'' °^ "'« '"'^e'-.

cienoted by A, B, i'Ml the l^Sc' cf 1 "^™"^
called the sides of the triangleTdfSf ' ^"/ ^^ ^'^
Here two views confront S '*''""''' ''^ «' *' "

COJ:rxr;cuo ii"r^^^^^^
-'^ --- to he

of the sphere is invSS Ind o
'

T""
°' *^^ '^<«»«

fined to some one sphere whote'adrr""^ ''' "'"'-

mmable with reference to the unTt 'f
""'''' *'"^«*«'-

On the other hand if our
"

!
'""'''"" e'nployed.

to have no reference 2'/theTnX„lH" '"' '^^"'*« -«
take for the side of the spheres V'' "*'^'"«' ^« """^t
but its ratio to the radios

^''' °°* *''« ^'^ itself,
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Spheric geometry then ceases to have any distinct

relation to the sphere, except in name, involves no rela-

tion of length, and becomes a geometry of direction

only.

In what follows we shall not confine ourselves exclu-

sively to either view, but shall adopt that wJiich serves

our purpose at the time.

In the majority of applications, however, the second

one is the only view that can be adopted.

Thus in applying the results of spheric geometry to

the visible surface of the heavens, anything like a linear

unit is out of the question.

According to the second view, a spheric triangle con-

sists of six parts, all angles.

Three alternate parts, called the angles of the triangle,

are respectively equal in measure to the dO><?dral angles

of a three-faced corner, and the remaining three, called

the sides of the triangle, are respectively equal to the

face angles of the same corner.

And thus all the relations which exist between the

dihedral angles and face angles of a three-faced comer,

exist also between the angles and sides of a spheric

triangle.

The adaptation to a triangle described on a given

sphere is easily effected; for it is only necessary to

express the sides in radians and then multiply the result

by the radius of the sphere.

221. In any three-faced comer the sum of two face

angles is greater than the third (Art. 35).

Therefore, the sum of two sides of a spheric trian-

gle is greater than the third side; and the difference
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between any two sides o. _ „j

the third side of the triangle.

207

ipheric triangle is less than

»n!?h'" """T '^'^ '^""^"^ ?**•> f«"n O"^" point toanother, on the surface of a
sphere, is along the spheric line
through the points.

Let ^ and S be the points, and
C be any point on the spheric
join AB. With ^ and JB as
poles describe circles PCD and

?Slrdraw 7' ? '""'* ^.-y point on the circle

Then XRB is a spheric triangle, and

AP+PB>AB.
(221)

Therefore, P lies without the circle OCP ^r,A *u
circles /V2) and QCE touch at C.

' *''''

B. Then the path from A to D may be brou<.ht f„
extend from ^ to C by turning the Zoi^PCnlTt
Its centre A, until i> comes to C. In a similfr way th!

But by this change the whole path is shortened bythe distance DE That is. the path is shortened by

rrSSrrr°'^^^^----*^e spheric liS

In like manner, each part of the path is shortened bv

IHi
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Hence the path ia shortest when every point lies on
the spheric line from ^ to B.

Cor. 1. When two spheric circles touch, the spheric

line through their poles passes through their point of

contact.

Cor. 2. When two points on a sphere are in line with

the centre, an indefinite number of equal shortest paths

may be drawn from one point to the other.

223. In any three-faced corner, considering two face

angles and the opposite dihedral angles, the greater face

angle is opposite the greater dihedral angle; and con-

versely, the greater dihedral angle is opposite the greater

face angle (Art. 40).

Hence in any spheric triangle, considering two sides

and the opposite angles, the greater side is opposite the

greater angle; and conversely, the greater angle is oppo-

site the greater side.

Cor. 1. If a spheric triangle has two equal sides, it

has two equal angles ; and conversely, if it has two equal

angles, it has two equal sides.

Cot. 2. The order of magnitude of A, B, C, the angles

of a spheric triangle, is the same as that of a, b, c, the

sides of the triangle.

Heuce sphe 'c triangles, like plane ones, are equi-

lateral, and isosceles, and scalene.

224. When the three face angles of a three-faced cor-

ner are given, the dihedral angles also are given (Art.

41. Cor. 2); and conversely, when the dihedral angles
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SeSiloS/'"
*"' "*'" "^ "" »''"" (^^- ^ Cor. 2).

1. men the sides of a spheric triangle are civen the

This case holds also for plane triangles.

.nin^t*" ^'" *''""' *"»'" »' » "Pheri" triangle aregiven, the sides also are given, and aU the pj^ Z
mel'S diff"

""' ^°^. '"' P^""* *"'^«>«''' """l this funda.mental difference between spheric and plane geometrv U

tZZtL^'T "P'^"" ^--tr/has nrZ;'
similar figures, a theory which plays so important a mrt

tensors, and therefore involves the consideration of near

are angles there is no place for linear extension andhence no similarity exists beyond absolute equalUy
Similar spheru> triangles might be drawn upon spneresof diiferent radii, but the comparison of thes^ although

^XMSU)«~^' '-'- '^^-^ - «Phet

tha?a cfZLrrArt/r "' ''' '^' ^"^'^^ ^ '^^

Hence the sum of the sides of a spheric trianwle isless than a circumangle, or if we introduce the radU
18 less than a circumference. '

Corl. When two sides of a spheric triangle become

Srsa^S'-*"^
""'' '''' -"^«^- -'^'he'Ce

Cor. 2. When e. h side becomes a right angle, the

Jill
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planea forming the faoei of the corner become the rec-

tangular co-ordinate planea of space (At. 8. Cor.), and
each angle beoomea a right angle.

Hence a apheric triangle which haa each aide a right

angle has alao each angle a right angle. Such a triangle

ia a quadrant<U triangle.

Cor. 3. If two aides of a apheric triangle be produced
to meet, a second triangle ia formed which ia aaid to be
eo-lunar with the first. These two triangles have an
angle and the opposite aide respectively equal, while the
remaining two sides in the one are supplementary to the
corresponding aidea , in the other, and the remaining
anglea in the one are supplementary to the remaining
angles in the other.

Cor. 4.

trianglea.

Any apheric triangle haa three colunar

236. The polar triangle. When the vertices of one
spheric triangle are poles to the aidea of another apheric

triangle, the first triangle ia aaid

to be polar to the second. And
the second triangle ia also polar

to the first.

Let A', S, C he poles of a,

b, c respectively, and let a', b', c"

be the sides of the spheric tri-

angle having A', B, C as ver-

tices.

Since O is pole to AB, CO is ± to OB (Art. 216)

;

and since A' is pole to BC, A'O is ± to OB.
Therefore, OB is normal to the plane of OA' and OO,
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and B u therefore pole to th« .„i. • • •

u, to 6'.
*~'* *° *"• 'Phwio join of A'C ; that

toir^ST: s:s ;rt '•" *--- poie.
•econd triangle ar^",e°trrf' ^'^ ^*'*'''«'' "^ *»>'

t-o triangles areXitt'olt
"' *'" '"'' '"'^ '^^

«etofeighttriangles,^"rJ,'V'r.:,? '•'**'''"'"•' °"«
•et; and e.er, trfang e of one' ^t t ''™""* * '"^'"'d
the other set as a pofar triple

** *'''^ *"*°»1« «'
It 18 easily seen, howevsr fi,„'* *

set are conjugate Art 2^' 1^ t?
*"''"'^^" '"^ -*»""

oolunars of these. So that if w
'"""'"'"» "« are

tnangle formed from thiS J;.!'T' *'"'* *''« "P^'^ie

oonsideredasbeingthetri!!^? .'P''*"'' ""«« *« to be
eachofwhosesidLaee^^^^^^^^^

«em,K,ircumference, then eLh ?n>,
''^^* ''"^^^ »' a- polar triangle (a trian^^Ltro^.t^f '" ""

Pol^/io'oLrotr;^^^^^^ ''''•^ ^'^'^ I'eing
and BO is normal 1 th«

,"''' *° '''^ P^^^e of cf
between two pilesIs th

^ f *• ^"* ^^e angS
between norml to the n^

^"PPl««'e«t of the anSe
the angle betweL^ltris ^he "

'\ ""'' ^>' ^^
angle between the normafsir;:sidec'°' '''

'^'' "»«
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Or the sum of an angle of a spheric triangle and the

corresponding opposite side of the polar triangle is a

straight angle.

Cor. ^+«'=B+6'=C+c'=^'+a=B'+6=C+c=«-.

228. From the preceding article,

^+ B + C+ o' + 6' + c'= 3ir.

But (Art. 225) a' + 6' + c' > and < 2ir

;

.•. .4 + B+ C is < Sir and > ir.

That is, the sum of the angles of a spheric triangle is

variable, lying between the limits of two right angles

and six right angles. And hence, in every spheric tri-

angle the sum of the angles exceeds two right angles.

The amount by which the sum of the three angles

exceeds a straight angle is called the spherical excess of

the triangle. If we denote it by E, we have

E= A-\-B+C-ir.

229. It has been shown (Ait. 219) that conjugate

spheric triangles, although having all their corresponding

parts respectively equal, are not superposable, but corre-

spond to one another after the manner of the right and

the left hand.

Hence in the determination of a spheric triangle from

its parts, there is always the kind of ambiguity which

results from not knowing whether a particular triangle

or its conjugate is the one required.

This ambiguity disappears in the case of an isoscciles

spheric triangle, for this triangle is conjugate to itself.
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This follows from Art. 41. Cor. 2, and Art. 224

Let^^BC^^B^C' be ,.0 spheric triangles in which

Place C on C and C^'
along CU. Since 6' = 6,
^' coincides with A. Also,'

sinceziC= ZC, the side
a' will lie along the side
a, and as a'= a, B' will
coincide with B.

And as ^ and S determine only one spheric line A'B,~ "'*' ^^' ^""^ *^^ *^^«^- coiLide in :S' thet

Therefore, the triangle ^SCis riven wT,«« *
and the included angle'are given (rj. t^^^y''

'''''

thftl^S'tSTaSlt'
^^^^" ^'^"^ *-° -«'- -^

Let A and S and the side c be given

rivIn'V'"'.?''"' f ^"^ *' ^""^ *^« '""l^ded angle e isgiven for the polar triangle, and therefore the wlwtriangle is given (Art. 231).
P^ *'

Hence the original triangle is given.

lit 11

«l
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233. Let ABC be an isosceles spheric triangle with

CA= CB, and hence the Z -4 = Z B.

Draw the spheric line D'CD to the middle point, D,

of the base AB. Then CD
is median to the base.

The triangles ACD and

BCD having AC and AD
respectively equal to BC and

BD, and the included angles

A and B equal, are conju-

gate.

Therefore,

and

/.CDA = Z.CDB=-\,

ZACD = ZBCD.

Hence the median to the base of an isosceles spheric

triangle is the right bisector of the base, and the bisector

of the vertical angle.

Hence, also, every point on the spheric line D'CD is

equidistant from A and B, distance being measured along

a spheric line.

In the same manner as in plane geometry (P. Art. 54)

it is shown that every point equidistant from A and B,

and lying on the spheric surface, is on the right

bisector of the base AB, i.e. on the spheric line

D'CD.

Cor. In spheric geometry the join of A and B is

either ADB or AD'B; i.e. there are two joins whose sum

makes up the whole spheric line.

The bisector of one of these joins evidently bisects

the other also ; as at i> and D'.
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ptadolmpA ' ""^ """'•"« ^1« on th,

••• CD is <OA.

«' OA «d „. .,s "«.rf tvr, °^"°*

Then,
P^isKPFA.ji'p,

and ^^.
^^''+^^' (Art. 221.)

Therefore, adding, i'^ + C4< e^ + p^

••• C4 is < CiS?.

line ^, C^tnulSH 'ZtifZ '''
T'''^ until E comes to i>', opposit'S

''*"'^'^ ^ ^'^'^

comXifcutaTorthf \^'"' '^""^ ^ ^^ ""^e a

' """ •"'''«^« as i)^ increases, untO

i^
M
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E comes to D', when it has its maximum value. It then

decreases until E returns through B to D, at which

position CE has its minimum value.

Cor. 1. Sinca all spheric lines are of >;he same length,

or contain the same angle, the greatest and least spheric

arcs from a point on the sphere to any spheric line, AB,

are the parts of the spheric line perpendicular to AB,

which are intercepted between C and AB.

Cor. 2. If two equal spheric arcs be drawn from a

point on the sphere to, a spheric line which is not its

equator, they are equally inclinei to the longest spheric

arc from the given point to the given line, and lie upon

opposite sides of it.

236. As in a plane triangle, so in a spheric one, when

two sides and an angle opposite one of them are given,

the triangle may be ambiguous. Owing to the facts,

however, that any two spheric lines intersect in two

points, and that the sum of the angles of a spheric tri-

angle is not a fixed quantity, the condition for ambiguity

is much more complex than in plane geometry.

Also, unlike a plane triangle, a spheric triangle may

be ambiguous when two angles and a side opposite one

of them are given.

The Ambiguous Case.

237. In the following examination we assume that

the relative magnitudes of the parts given are such as

to determine a real triangle, so that we shall not be

concerned with conditions which lead to impossible or
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Z^ '-''-''''' ^^^ -^ conditions a« ea.il,

cases, Lofdin^ i! iis Is
'""^ ""^^''* ""'^^^ ^''^^^

a right angle!
''' '^"^ *°' °' »«^t« than,

sphSe^i'nSTt'S'T 1^* ^? ^"'^ -^^ •'^ *-
A^D. ThLSr'aTdiw'th ''\^ '^ ^ P°'^ "^

making the angle clpif^,^"^
the spheric line APD,

«pherif line4a .Ifi Hhe ^^r^O "^'%^"'^ ^'^^

a right angle. ^ ''^^ greater than

Take any point C" between
A and C, and any point C"'
between CandZ>.
Let the side 5 be measured

from ^ along the arc ACD
and let the given angle A
be the angle at A. Then a
IS drawn from some point
on the arc ACD to the arcAPD or AED or ^Qz>

Case I. Let^ = ^c^, <j.

is tCftZ:.ST^^' *° ^^^ (A^'- 234), and

Pei>end1c„'la=;frr; S''
^""^ ^^^ ^ ^ *^^ ^^ot of the
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Two equal arcs can be drawn from C to APD, one on

each side of UP (Art. 234), and the triangle may be

ambiguous.

For a case of ambigiiity, however, a must be < OA,
i.e. <b.

.: ^ < i, 6 < I, a •< 6 is ambiguous.

2. Let b = AC= I, and let P be the foot of the per-

pendicular from C.

Then evidently the case is ambiguous if a is less than

AC and greater than CP, and CP, being on the equator

to .4, measures the anglp A (Art. 216).

"> A
.: A<^, u = ^, a\. , is ambiguous.

3. Let b = AC, > f. Then the case will be ambiguous

if a<C"D.
.-. A<i, 6 > I, o < (ir — 6) is ambiguous.

Cor. In all the foregoing cases it is readily seen that

the ambiguity disappears when the triangle becomes

right angled by a being drawn perpendicular to the arc

APD.

Case IL Let A be the angle CAE= f.

Since C is a pole of AED, from any point on ACD,
two equal spheric arcs can be drawn to AED, one lying

on each side of AC and equally inclined to it (Art.

234). The two triangles thus formed would be conju-

gate and not ambiguous (Art. 229). But if the point

C be taken, all spheric arcs from C to AED are equal,

and the triangle is indeterminate.

Therefore, with u4 = I there is no real ambiguity,

but when 5 < f and a > 6, and also when 6 > I and
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a>(»-6), two triangles are obtained which are rnr,i„gate; and when 6= ,, the triangle is indetelSate
^^"

Case III. Let A be the angle CAO^t Si„. .^.
angle CAQ is greater than a right anrfe the I !
spheric arc from any point on ACDSoJ • 'Z^^d.cular to AQD, and is therefore not alont^cS

"^^

X „,
*'^<' ^^A one on each s de of CO' rArt 9qfiCor. 2), and the triangle may be ambiguous.^ ^t1 caseof amb:gn^ty,^however. C'Q' must better Zn'cS,

••• ^ > I, 6< I, a >(^_ 6) is ambiguous.

pefdir^f^---^;----Pj^
L'Sr " "

i'
'"^ ^'^^^ ^« -'J greater tZSBut^CQ be.ng on the equator to A measures the angfe

.-. -4 > I, 6 = I, a < ^ Ig ambiguous.

a lies between C"Q'> and O"^
"•'"Diguous if

•• -4 > I, 6> f, o > 6 is ambiguous.
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238. The resulta of the preceding article are collected

in the following table

:

6<l 6 = 1 6>|

^<! a<b
ambiguity.

o>.<l<6
ambiguity.

o<(»-6)
ambiguity.

^ = !
o>6<(»-6)

conjugate.

a = b

Indetenninate.

a < ft > (» - 6)

conjugate.

A>i a >(» - 6)

ambiguity.

a<A>b
ambiguity.

a>b
ambiguity.

We see from the table that ambiguity occurs only
when A is not a right angle.

239. By making use of the polar triangle we can
readily investigate the cases of ambiguity when two
angles and a side opposite one of them are given. For
when a triangle is ambiguous, its polar is ambiguous, id

vice versa.

The table corresponding to that of the last article is

here given

:

B>1 B=! B<i

«>I
A>B

ambiguity.

A<a>B
ambiguity.

A>(t-B)
ambiguity.

o = l
A<B>(w-B)

conjugate.

A = B
indeterminate.

A>B<(t-B)
conjugate.

«<l
^<(ir-B)
ambiguity.

A>a<B
ambiguity.

A<B
ambiguity.
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In he fig^e of AH. 1Z7, let ^ be a right angle.

2 I .f r '/.^'° "r ^' *"•* ''^'^ "des are right angles

<f. an'dlifCr*'
*"'*^''">'- But, also, 4ru.'

that',."
"' " "' '"*' '""' °' ^-l-^ ^o- « 8-ter

cL'^S^^^T. •^''" *>*' '^'"»^"'' •« <I. and

When 6 = ,, both a and 6 are equal to,.When6>i, 6and c are > ,, or a and c are - , orand a are > f.
~ *' °'

And the theorem is proved

than, a straight angle.
Let CDF be a lune, and let £F be

equator to C aud 2).

Through (?, the middle point of EFdmw the spheric line AB, meeting the
sidesof the lune inland A Then
i^-OM IS a spheric triangle.

fw y^l^*'"
"ongnient, and therefore

'^'^OAB=^DBA,.ndZCBA = ^DAB,etc
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Then ^CAB^r ^CBA = ^CAB^ ^.BADm,^,

and CA-\-CB = CA-\-AD^-ir.

Therefore, if the siun of two angles is a straight angle,

BO also is the sum of the two opposite sides.

Kow take Bl, anj point between B and D, and draw

the spheric arc AB.
Then

/.ABB + ^BAB + ii-BBA > ir; (Art. 43. Cor. 2.)

and /LABB = /iCAn.

.-. Z.CAB-ir^BBA>ir.

Also, CA^Cn>CA-\-CB>T.

Therefore, when the sum of two angles is greater than

a straight angle, the sum of the opposite sides is also

greater than a straight angle.

And since these sums decrease and increase together,

the theorem follows.

Hence \{A + B) and \{a + h) are both > !, both

=1, or both <|.
This relation is commonly expressed by saying that

\{A-\-B) and |(a + 6) are of the same affection.

BZBB0I8BS Q.

1. The area of a spheric triangle is fr*, where J? is the spherical

S. The area of a spheric polygon is {S4 - (n - 2)»}t*, where

ZA is the sum of the angles, and n is the number of sides.

8. The area of an equilateral spheric triangle is one-fourth that

of the surface of the sphere. Show that its angle is 120°, and find

Itaside.
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4. itB ta upherio MO, and Ctaiu middle point Theloooaof
P, luch that ZAPC = ^ BPC, U two spheric line* perpendicular
to one another. Prore thU, and tuu lu analogue in plane
geometry.

5. If the direction from ^ to B, two places on the earth, U
estimated along a spheric line, and in terms of the angle which this
line makes with the meridian of the first place, show that If .il andB have different laUtudes and longitudes the direction from AtoB
Is not the opposite of the direction from B to il.

«. If a spheric triangle be formed by cutting a three-faced
comer by a sphere, the centre of the sphere being the vertex of the
comer, show (1.) that the isoclinal line to the edges of the comer
gives the centre of the circle circumscribing the spherical triangle •

(11.) That the isoclinal line to the faces gives the centre of the
inscribed circle of the triangle.

7. What are given by the external isoclinal lines to the comer.'

i. A spheric line is described by a quadrant which has one
extremity fixed (216) ; what Is the analogue in plane geometry?
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mSOILLANBOUS BZIBOnBS.

1. Non-psrallel lines do not neoeuarlly Intaneot.

t. Two cirolM In ipaoe may paa within one another and hare
two, one, or no point* In oommon.

t. From the definition o{ a tangent (P. Art. 100) show that
the Ungent to a circle lies in the plane o{ the circle.

4. A plane which Is normal to the common line of two planes
is perpendicular to both planes.

•. If any number of planes meet In parallel lines, the normals
to these planes, from the same point, are complanar.

6. The sum of the normals from a point A to the planes U and
V is the same as that of th^ normals from B to the same planes.
Show that if P be any point In the line AB, the sum of the normals
from Pto U and K is constant.

T. Show that Ex. 6 holdb good for any number of planes, U,
V, W, etc.

8. If the sum of the normals to the planes U and V be the
same for any three points, A, B and C, It is the same for every
point In the plane of ABC.

9. The right-bisector plane of the common perpendicular to two
lines bisects the join of any two points, one on each line.

10. A perpendicular Is drawn to the base of a regular pyramid
and meets the faces, produced where necessary. Then, the sum of
the distances of the points of intersection from the base is constant.

11. Find in a given plane, a point equidistant from three given
points.

19. Determine on a given Ihie the point which la equidistant
from any two given points.

IS. The bisecting plane of a dihedral angle of a tetrahedron
divides the opposite edge into segments which are proportional to
the areas of adjacent faces.

14. The shortest chord through any point within a sphere ia

normal to the diametral plane containing the point.
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u.el"rrcir" *" • ""'' '^ • -« ^ • «•«•.. «>^ ..

II. The Venice, of a cuboid are con.phcrlc.

How many such pendlTIn aU ?
"" """ '""" »» "^i*' Penoll.

^j»^
WUt U the locu. o, a po,„t equidistant from two given

^^•J.

What
,. the locu. of a point equidistant f„m two complanar

pulr*" " "•" "^"^ °' » JX""' equidistant from two given

W """" " ""' '""" °' " P°'»' ^-iU'dUtant from th«e pa^Uei

-fw tut^"i:.irSsS: "-" "-- » «-- p---

=

^ «^ Th„.ughagiven line pas. a ph.e pen^ndicuiar to a given

m "^T " ''"" ""'^^ " ''""^ -™'- »» « «i- line

infL^L'^raS^thr:'"T '"" «'-" -'--
given point..

"^ " '""^* centre-iine paae. through the



226 SOUD OB SPATIAL QKOMBTRY.

50. GlTen a plane and any three point., show that a point may

beTound in the plane such that it. joins with the given point, shall ,

make equal angle, with the plane.

51. Through a given point draw a line to intereect two given

non-complanar line..

SS. Through a given point, P, in a plane d"^." P'»°" '^
which diaU be at a given di.tance from a given point, Q. What

are the limito of powlble solution?

SS. Draw a line from a point, P. to a plane, M, which diall be

parallel to the plane N, and of given length.

S4. Given L, M, N, three non-complanar line., draw a line to

interJt L and i.^ and be perpendicular to i^. To be paraUel

*°S6 Throu^ a given point to draw a line which .hall meet a

given Une and a given circle not complanar with the Ime.

Se Two poinU are upon opporite side, of a plane. Find ae

po"; inZ^lane for wlich the dlflerence of iu distance, from tiu.

given point. .haU be a maximum.

S7. In Ex. 88 find a point to the plane which diaU be equidi.-

tant from the given polnto.

M. Cut a given four-faced comer by a plane my that the action

shall be a parallelogram.

S9 L and Jf. two non-complanar Une., meet their common per-

pendicular in A and B. If P be any point on L, and Q on M,

pq> = AB' + AP' + B<P -iAP- BQ cos #,

where » is the angle between the lines L and M.

40 Oi.thecentre,eanedge, and^avertexof appd.,andP

ta any point. Then, 2PA» = 8 P0> -h i 2««.

41 1. the centrold, and o is a aide of any triangle, and P 1.

any point to space. Then, 7.PA* = 8 P0» + i 2o'.

48
oi.thecentre,Ai.avertex,and«i.anedgeofatetrahe-

d,^ and P is any point. Then. SPA« = 4 P0» + i SA
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^ciprocal. o, these lines^Z^t ^^,:' "" '^'»""' <" ">«

diagonals, by eight times^es^Z^l ,? •^."^' °» «"> &"

<«"C«X^e'd;:Lr"""^''^°'-"'-'' O'acutoldP

46. Two spheres may have two «...
cones. Distinguish the oases, and eX^Z^ T"""" *"«="*
have oontact of the same and oTopSte k^r " ""' '^''''^

the^'t^Xtralte'rrr*"*' "«'•'"• «'-"'«
planes. ' '^^ '*''"» »' «=<>°tact, form a sheaf of
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U. M P be any point within a paraUelepiped whose dlagonata

are AA', BBf, etc., the pyramids

PABCD + P- A'B'CI)' = J the ppd.

What if P be without ?

66 If o 6 c <J be the four altitudes of a tetrahedron, and

o' 6', C, d' be the corresponding perpendiculars from any point to

th^ faces, show that
„, ^.^..^^^^abed

H. ASCD is a tetrahedron, and P is any point

etc., meet the faces in a, b, etc., then

Aa Bb Ce Od

U. Three mutually' perpendicular lines pass through a fixed

point in a sphere. Show that the sum of the squares of the three

determined chords is constant

69 In Ex. 68, the sum of the squares on the sU segments Into

which the chords are divided by the point, is constant

M. A spherical sheU sU inches in diameter has the interior

cavity one-haU the volume of the sphere. Find the thickness of

the shell.

61. Three equal spheres touching each other he upon a table

and a fourth equal sphere resU upon the three. How far is the

centre of the fourth from the table ?

6>. In Bx. 61, the radius of the fourth sphere is n times that of

the others. What is the case when n = 1 - |v3?

66. A sphere touches each of three mutually perpendicular con-

current lines. Find the distance from the centre of the sphere to

the point of concurrence.

A oyUnder of revolution whose section through the

axis is a square is an equilatercd cylinder; and the cone

of revolution whose section through the axis is an equi-

lateral triangle is an equilateral cone.
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JitJf "°u
'^"""*"' <=°n« ""d an equilateral cyUnder be in-

scribed in the same sphere,

(1) The surface of the cylinder is a mean proportional between
the surfaces of the sphere and cone

;

alZ^S^Z' "'k*'
"^"""^

'" ' """ P«>PorUonal between
the volumes of the sphere and cone.

„^i'^ equilateral cone and an equilateral cylinder be circum-
scribed about the sphere,

thi slii^twr °'."" °^""'**' * '"^ proportional betweenthe surfaces of the sphere and cone

;

(2) The volume of the cylinder is a mean proportional betweenthe volumes of the sphere and cone.

^J!^'J^ ^ P°'"** on a centre line of a sphe>,., such
that OP.OQ = IP, where O is the centre of the sphere
and R 18 the radius, the points i' and Q are inverse
points with respect to the sphere. And when two
tigures are such that every point in the one is the in-
verse of a corresponding point in the other, the figures
are inverse to one another (P. Art. 260).

of taveraion""""
°' ' "°'""' '=°'"P''^ "=•"'" tl^x^h the centre

67. The inverse of a circle is a complanar circle, unless the first
circle passes through the centre of inversion.

nJLJ^" 'Tr °' " P''*" *• " 'P'^'"' "«^«" »»»« fl™t "PherePMses through the centre of inversion, when its inverse is a plane.

in^rsi^.'
'°''™' "^ " "'""' " * "P'"'" "^"«h the centre of

m A sphere which passes through a pair of Inverse points with
i««l«ct to another sphere cute the other orthogonaUy.

71. A q>here which cuts two spheres orthogonally has its centreon the radical plane of the two.
«« y nas its centre

,(.._.
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n A cube clrcuiMcribed to a aphereta inverted with respect to

the sphere. Show that the spheres produced pass by threes through

common points and cut one another orthogonally.

n The locus of a point with respect to which two spheres can

be inverted into equal spheres is a sphere having a common radl-

cal plane with the two.

74. The locus of a poln., with respect to which three spheres cui

be inverted into equal spheres is a circle.

Tt There are two points, real or imaginary, with respect to

which four spheres can be inverted toto equal spheres.

16. What is the locus of a point from which two given spheres

subtond the same angle ?

77. What is the locus of a point from which three spheres sub-

tend the s,>L-ie angle ? i

78. Th-: oins of the foci to any point on a hyperbola are equally

inclined to the tangent at that point.

79. If an ellipse and a hyperbola have the same foci, the curves

intersect orthogonally.

80 A sector of a circle revolves about a diameter parallel to the

chord of the sector. The volume described is f«* sin », where 2 1

is the angle of the sector.

81. The volume of a segment of a sphere is

i »r« {2 - 8 cos * + cos" «},

where 2 « U the angle subtended by the ..egment.

88 A plane figure, invariable in form and dimensions, moves

with'lts centre on a path which is incltaed to iu plane at » constant

angle, .. Show that the volume described is the area of the figure

X the length of path x sin a.

88. The generator of Ari;. 143 does not preserve its orientation,

but revolves about the path. Show that this does not affect the

volume described, if the eentrold is confined to the path.
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U. A square, side *, moves with its centre on a cirele and it.plane I^rpendicular to the path, but revolve about thriath « ^axis. Show that the volume described ig 2 rr^, if r> J »v^.

„, »: A'^'^f?
""* ^^^^^ by a quadrant wtaUng about one

pLreSmCr"**"" ^^"- '''' ^- '- ^ -'^"^ •"

A plane through one of two inverse points, normal to
the join of the points, is the polar plane to the other
point, and tbs latter point is the pole of the plane, with
respect to the sphere of inversion.

the-poi" piLr^'/""
°" ""^ '^'^ P'-" °' «- *»- « «es on

87. The polar of a line is a line at right angles to the given line.

catton.^'^'^"
"""^ "" ^"^"^ °* ^''- "^ " '""' <" P°'" "<='P«^

^^ML Show that the tetrahedron may be a polar reciprocal to

90. A sphere touches the twelve edges of a cube. What is the

nnlV '^! ^!t'*^"''
°' '"'^ "'° P"'"** ''°'° » P""" centre are pro-pmional to the distances of each point from the polar planHf the

M. The centre locus of a sphere which cuts two given spheresorthogonaUy is their radical plane.
^

n,»?:J^r''*°!r.'°*'^
"' * 'P''*" '"='' '=»'• three sphere,

orthogonally IS their radical line.
f >=•»

94. All the spheres which cut two spheres orthogonaUy passthrough two fixed points.
8""»uy pass

M AU the spheres which cut three given spheies orthogonally
pass tirough three fljted points.

b""»"/
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96. A tphtn which cuts four spheres orthogonally 1. fixed.

WhatexcepUon?
,., j ,„ Art

9T. AU the spheres, which have contact of 1*«> ""^ (P. Art

29l"with two given spheres, are cut orthogonally by one and the

same sphere.
, , .

98 All the spheres which have contact of like kind with three

givensphere. are cut orthogonally by the same three spheres.

99. A line is cut harmonically by a point, a conic, and the polar

of the point with respect to the conic.

100 A Une is cut harmonically by a point, a sphere, and the

polar ptane of the point with respect to the sphere.

In crystals, whether formed in the laboratory or by

gW geological processes, we have examples of natural

polyh^Tra. These a*e forms derived from pr«ms or

parallelepipeds by transformations closely allied to polar

Liprocatifn, the replacement of corner or pomts by

pJes. In crystallography the relative direction of the

plane which forms a fa«e of the crystal is oi vr^^
Lportance; its distance from the centre is only a sec-

ondary consideration.

Through the centre of the cube let the three rectan-

gular axes of space be drawn parallel t", «>« ^u^"*^"^

^ges of the cube, and let them be denoted by X, F and

Z Every plane cuts these axes either at fimte points

o^ at infinity, and hence every plane makes on these

axes three intercepts, which may be finite »' ^"fi^^^J*;

Denote the intercepts by x, y, z, where these letters

denote measures on the respective .*««'
^jj^^^^ . ^

equal or unequal in value. The giving of these inter-

cepts determines the relative direction of the plane.

If a plane which forms a face of a crystal is parallel

to the face of the original cube, it is looked upon as a



MISCELLANEOUS EXEBCISE8. 283

^
Wl^ Show that the plane (., „ ,; ^ p,^„, ^ ^ ^^^ ^^^

10.. Show^hat the p,a„e (., ,, .) ,, p,^,,, ^ ,,^

V /'. '' " "" "" ^"^ """'" " "«' «'«<"»'• value.
01 the Intercepts f

108. Show that the plane (x u - »^ i. „- n .

(- «. - y. «).
». - *) is parallel to the plane

104. The planes (2, 1, n and r i i i\
one another.

^ •' '^ and {_ }, i, j) ^re perpendicular to

onetofhe?''"" ^'" "' '^ '"'' ("• "' "al) ^ l-T-ndlcular to

ingTacefo?r::,L'
'

'

' ^ " " '="""= '•^' -" -*'« «>« «--

IW. Write the faces of the cube in the parametric notation

the^-rh'd^o;.'- ''' °'' ^ «'=°"''»' ("• «• -). •- « 'ace of

(i.To)turocrrn r-
^' '^ ^^ "•- --«

^
^-^ ^^ ^o.

thetl^'^«:,rwh^.«f,:''-',r^«te" truncates a comer of

andcon.^^^rlr^lXforLr"'''"^'^''^-"'^'
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^ZToSZ^T^^ a„,e. ,o™«i, What U ....

'"m. Show that the plane (1, 0, 0) truncate, the corner ol the

ocliL^nTaTthat (' 1. 0)\runcate. an edge of the octahedron

llj A plane with three unequal parameter. beveU a oornerof

thl^be De^ribe the operation of beveling a comer of the cube.

114 The plane having two parameter, equal and the third un-

equal aU LfnTfinite, cut. the comer of the cube in a way which

wrbecall^tmnco-bevelment. Define thU term.

UB By what change doe. a tmnco-beveling plane of a comer

of a cube become a truncating plane of the edge ?

ii« The cube admit, o^ eight truncating plane, to the oomen.

iJiribe^e C^™«1, on the .uppoeltion that all «.e«, plane.

^J^T^m the centre, and the face, of the cube are corn-

er r^^" admi. . Jelve^;^^P-^^^
DMcribe the figure formed by there plane., vm"

'1TT:L figure .oe. the plane (1. 1. 0) belong. ^
plane (1, 0, 1) ?

.. ^

119 How doe. the plane (a, 0,0) cut the octahedron?

i« The cube admits of twu beveling plane, at each of Ito twelve

eaS" ZT^^o.. and de«=ribe the flg«e « whichj.e.e face.

nl, mi. i. the Wtn^hexahedron, or four-frced cube.)

m To what figure do the pUne. (1. 2, 0) and (2. 1, 0)
belong?

,«. a -The cube admit, of three trunco-beveling plane, at each

coml;. Ho^rany face. ha. the figure to which there plane.

l'*l°°B^
> _.-., >u> rliannaed in two different

*• ^'"'rdrriS^V^rrenrin'^.e'r^ng^odific.tionof
way., and dereribe ^^*™ ^ j^ ^^la »„ the octahedron?

t^rjfeSL^^rrt^^'-^ octahedron.)



MI8CBLLANEOUS EXEB0ISK8. 286

Wrt^'.r" 'f'
'^'""" °' "" '^'*"''« P'«"» «t ewh comer

(Thi. te the hex»ki..oot«hedron, or .ii.faced ocUhedron.)

(1.1! 2)''L7ongV'^"'
'" "•" "'"" ('• '• ''^^ (•• '• ")• (»• 2. 8).

Kgures formed from the cube by putting in aU the
possible planes given by varying the order of the param-
eters in any one symbol, as (1, 2, 3), (2, 3, 1), (- 2 1 3^
etc are called kolohedral figures. Those formed byputting in one-half the possible planes, in alternate pos^
tions, are hemihedral figures.

in. One beveling plane i. put in at each edge of a cube ao as to
Jlteruate the position, of the*, plane,. 8ho"that tte rZCfl8-«jill have pentagon..,ace,. Cmi, i. the pentjl^^':!^

lJ^!!^'J^°Z*'^V^''
'**™'"^«'° '« » hemihedral form derivedfrom the cube, and give it, mode of d-dvaUon.

a,^^ r",!""^
'^'^*' "' "^"' ^^"^^"e P''"'""' »t "•ch comer.W^ied in alternate poBiUon,. Write these plane, and ,hov,™owthey are applied. (The figure is the pentagonal icoei-tetrahedronO

«•. The cube admits of six beveling planes at four comen alter^.n^p^ition. Write th^ plane,. (T.e figure 1,^hlT

^d .. ^, 7 be the direction angles of p (Art. 98). ahoy, thaioo,a = Ap, co,;S = *p, andcogy = /p.

./. """w mat

180. Show that p = 1 /VA» + ja ^. p_

131. Show that co,. = A/v'v+^+P. with ,ymmetrical ex-preMions for cos p and oo, 7.
="»"" «x-

IM. If « be the angle between the normal, to two plane.
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lit. Bhowthtt

oof» =(»*' +W + «')/Vt(»' + *' + '')(*'*+*" + '"^J-

1«4. The angle between the pUnee (1, 1, 1) »nd (1, 1,- 1) to

coe-'i.

lU. The angle between the planei (1, 0, 0) and (1, 1, 1) to

co»-4v^.

Ite. Find the coelne of a dihedral angle of the regular tett*.

hedron.

1«T. Find the codne of the dihedral angle of a regular octahe-

dion.

in. Find the oodne of the angle between a face of the cube

and that of the octahedron.

IW. The type plane (1. 2. S) cut. the cube. Find the angle

between two adjacent planee, and alw between one of thewi planes

and an adjacent face of the cube.

140. Find the angle between (1, 2, 8j and (1, 1, 1).

141. The edge made by the planes (a, 6, 0) and (6, - o, 0) to

truncated by the plane (6 + a, 6 — o, 0).

14a. Determine the raUos of the Intercepts of any plane which

beveto the edge of the rhombic dftdecahedion.

14S. The face of a pentagonal dodecahedron being (0, 1, a) with

necessary variations, show that for the regular figure a=K-k/6± 1).

and thence show that the cosine of a dihedral angle of thto figure

toW*-
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