IMAGE EVALUATION TEST TARGET (MT-3)

Canadian Inetitute for Historical Micioreproductions / Institut cetnadion de micsoreproductione historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bihiiographically unique, which may alter any of the images in the raproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Cuuverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculécCovar title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en coulaurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches e :/ou illustrations en couleur

Bound with other material/
Relié avec d'zutres documentsTight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, thesa have been omitted from filming/
Il se peut que certaines pages blanches ajoutées
lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliogrephique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminatad/
Pages restaurées et/ou pelliculéas
Prges discolcured, siained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies,'
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponiblePages whoily or partially obscured by errata slips, tissues, etc., have been refilmeù to ensure the best possible image/ Les pages totalement ou partiallement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

The copy filmed here has been reproduced thanks to the generosity of:

Library,
Geological Survey of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keaping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page witli a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hard corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité da:

Bibliotheque,
Commission Géologique du Cansda

Les images suivantes ont ete reproduitss avec ie plus grand soin, compte tenu de la condition ot de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont lo couverture an papier est imprimée sont filmós on commençant par le premier plat et en terminant soit par la dernidre page qui compor:e une empreinte d'impression ou d'illustraticn, soit par le second plat, selon le cas. Tous les autres exempiaires originaux sont filmós en commençant par la premidre page qui comports urie empreinte d'impression ou d'illustration et en termil.ant par la derniöre page qui comperte une telle empreinte.

Un des symboles suivants apparaitra sur la dernibre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent étre filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul -liche, il est filmé a partir de l'angle supérieur gauche, de gauche à droite, et do haut en bas, en prenant le nombre d'images nécessaire. Les diagrammas suivants illustrent la méthode.

FOSSIL INSECTS 0F NORTH A.MERICA,

BY

SAMUEL H. SCUDDER.

IN TWO VOLUMES.
Vol. II.
THE TERTIARY INSECTS.

V'ITH TWENTY-EIGIIT PLATES.

NEW YORK:
MACMILLAN AND COMPANY. 1890.

REPORT

OF THE
 UNITEI) STATES GEOLOGICAL SURVEY
 OF

 THE TERRITORIES.

 THE TERRITORIES.}
F. V. H.AYDEN,

UNITEDSTATESGEOLOGIST.IN.CHARGE

VOLUME XIII.

WASHINGTON:
GOVERNMENT PRINTING OFFICE. 1890.

UNITED STATES GDOLOGICAL SURVEY OF THE TERRITORIES.

THE

TERTIARY INSECTS

OF

NORTH AMERICA.

By

SAMUEL H. SCUDDER.

WASHINGTON: GOVERNMENT PRINTING OFFICE. 1890.

NOTE.

> Department of the Interior, United States Geological Survey. Washington, D. C., May 16, 1890.

On the 27th of September, 1382, at the request of Dr. F. V. Hayden, the completion of the publications of the United States Geological and Geographical Survey of the Territories, formerly under his charge, was committed to the charge of the Director of the Geological Survey by the following order from the honorable the Secretary of the Interior:

Defartment of tie Interior,
 Washington, September 27, 1882.

Maj. J. W. Powell,
 Director U S. Geological Survey:

Sir: The letter of Prof. F. V. Layden, dated Jume 27, bearing your indorsement of July 20, relating to the mapublished reports of the survey formerly under his charge, is herewith returned.

You will please takn charge of the publications referred to in the same, in accordance with the suggestions made by Professor Hayden.

It is the desire of this ofice that these volumes shall be completed and published as early as practicable.

Very respectfully,

> H. M. Teller, Secreiary.

Of the publications thus placed in charge of the Director of the United States Geological Survey the accompanying volume is the third to be issued, the preceding being "The Vertebrata of the Tertiary Formations of the West," by Edward D. Cope, and "Contributions to the Fossil Flora of the Western Territories," by Leo I esquereux.

J. W. Powell,

CONTENTS.

Pago.
Letter of transmittal 11
Iutron etion 13
Locaiities where Tertiary iusects have been found in Amerioa 17
Myriapoda 45
Arachnides. 45
Acarina 46
48
Araneides
Araneides 91
Neuroptera
Neuroptera
94
94
Thysanura
Thysanura
103
103
Termitina
Termitina 117
Ephemerid
118
118
Odonata 124
Paraipennia 146
Trichoptera 176
Orthontera. 201
Forfionlariz 202
Blattarim 215
Phasmida 219
Acridii 220
Locnstarie 227
Gryllides 2.4
Homiptera 4
Coccides 241
Aphides 242
Payllida 275
Fulgorina 278
Jassides 302
Cercopidito 315
Corixidm 343
Notonectidis 346
calgnidide 347
Velildas. 348 350

Hydrobatida

Hydrobatida
Reduvilide 354
Tingidide 357
Acanthides 360
Capsidæ 361
Physapodes 571
Lygaeidat
Lygaeidat 374 374
Coreida 411
rentatomida438
Coleoptera
Anthrividas 465
Scolytids. 468
Curonlionide 471
Otiorhynchidie 475
Rhynchitidw. 481
Rhipiphoridm 482
Tencrionida 483
Bruchidm 484
Chrysomelidx 485
Scarabreida 487
Ptinidie. 491
Buprestidm 493
Elaterida 496
Byrrhidm 499
Nitidnlida 499:
Cryptophagida 501
Cuenjida 501
Erotylide 502
Staphylinidis 503
Hydrophilide 510
Dytiscilas 517
Carabida 517
Diptera 539
Lonchaids 539
Ortalide. 540
Sciomyzida 542
Helomyzida 547
Anthomyida 548
Muscidie. 551
Tachinidae 554
Piaispezidie 555
Conopidı 555
Syrptidie 557
Dolichopodidm 562
Cyrtidia 363
Asilidme 563
Stratiomylim 566
Tipnlidie 568
Chironomids 578
Cnlicida. 582
Bibionida 583
Mycetophilidæ 586
Cecidomyidm 600
Lepidoptera 602
Tineids. 602
Hymenoptera 604 604
Tenthredidida
Tenthredidida
chatcidide 604
Braconida 605
Ichnenmonida 608
Myrmicide 615
Formioida 616
Sphegidat 620
Systematic list of species with their distribition, and comparis.n with other species, living and fossil 621
Plates 665
ludex 723

ILLUSTRATIONS.

Map of Tertiary lske basin at Florlssant, Colorado Paga.
Irontisplece.
Plate I. insects from bone caves and interglacial clayeII, III. Insects from the Tertiary deposite of British Columbla667
IV. Insects from miscellansous Tertiary deposits, in 669-672
amie formation. V-X. Insects from the 'Tertlary deposits of Green River, Wyoming 673 675-686 637 637
XII-XV. Nenroptera fron the Tertiary deposits of FlGrissant.. 699-696
保 fion Tertiary deposits of Flor 6y7-200
Figs. 1-3. Planocephalas aselloides 701-722 95

ERRATA.

Page 15, eleventh line from bottom, for speaimen read individual
Page 28, line eightpen, far specireus read species.
Page 71, nnder Aranea columbite, fur Pl. 11 read Pl. 2.
Page 202. The two paragraphe immediately preceding Forfioularies beloug on page 203, immediately preceding Labiduromma
Page 203, line three, for cricket read crickete.
Page 203, before Labiduronuma, insert the two parsgraphs on page 20\%, immediately preceding Forficularia.
Page 225, line one, for Interspaces read interspace; line two, insert that before above.
Page 244, in table, for 3. Gernuchum read 3. Gerancon; for 13. Amalanchum read 13 Amalancon;
ead 15. Auconatue
Fage 245, under C. absens, the third line should read: Fore wing nearly three times as long as broad. irst oblique vein nearly straight, etc.
Page 248, in three headinge, for Geranchon read Gerancon.
Puge 249, in heading, for Geriuchon read Gerancon.
Page 256, line twenty, befure parte insert except at base
Page 316, lines 5 and 6 , for possibly luminiferous read highly deoorsted.
Page 343, line 4, for in the to-day read to-day in the.
Page 362, line 20, for referred read referable.
Page 446, line 15, and in several places on ancoeeding pages, for punotw read puncta.
Page 610, linee 13 and 14, for abdomen read thorax.

10

LETTER OF TRANSMITTAL.

U. S. Geological Survey, Division of Fossil Insects, Cambridge, March 14, 1890.

Sir: It is a source of great regret to me that the volume herewith transmitted could not have been published during Dr. Hayden's life. It contains the first fruits of an undertaking inspired by him and encouraged by his aid. The extent of the task he iutrusted to me more than a dozen years ago has been, with the interference of other duties, the occasion of the delay in its execution. The material has grown beyond all expectation, far beyond anything that could have been anticipated.

As originally planned, when the Florissant beds were first carefully expluited, the fossil insects other than those from Florissant were first to be disposed of, and the latter were then to be taken up by orders. The plates were accordingly executed (before the completion of the text) with that plan in view, and the first ten plates herowith transmitted contain very nearly all the extra-Florissant insects known ten years ago. Since then their number has perhaps doubled. The succeeding plates contain the lower orders of Florissant arthropods, ending with the Hemiptera.

The text has been made to conform in large measure to the same plan, except that the insects of different localities and of different horizons have been arranged in one systematic series. Descriptions of a considerable number of species have been introduced for completeness' sake which are not figured, but of every one of these drawings ha:e been finished and will bé given in some future publication. The early portion of the text was written many years ago-the Arachnida aud Termitina in 1881, most of the Odonata in 1882, the Ephemeridæ and Planipennia in 1883, and the Trichoptera and Orthoptera in i884; and, as the general remarks prefixed to each group were written on the completion of the study of that group, and would now have to be modified in some slight particulars, I have thought best to let these remarks remain as witten, and to append at the
end of each general parigraph the date of writing. To rewrite the whole would unnecessarily delay the appearance of the work, and the dates will expluin otherwise unaccountable, though generally very slight, omissions of later material.

The new portions of the Coleoptera, Diptera, and Hymenoptera were mostly written a year ago, and during the past year the Hemiptera, much the most extensive group in the volume, have been elaborated. In the four later orders the general remarks an!! summaries attached to the genera, families, etc., of the earlier groups are omitted, because these orders will form the sulject of future separate consideration, and the basis for generalization will then be greatly increased; the representation of these orders in the present volume is very meager, including next to no species from Florissant.

The publication of this volume will give the first opportunity for any good comparisons between the long known Tertiary insects of Europe and those of any other comutry; so far as the lower orders of insects are con-cerned-the only ones here at all fully elaborated-they show that the material already gathered within the last two decades in America is at least as rich as that of the well gleaned fields of Europe. The present volume contains descriptions of 1 specios of Myriapoda, 34 of Arachnida, 66 of Neuroptera, 30 of Orthoptera, 266 of Hemiptera, 112 of Coleoptera, 79 of Diptera, 1 of Lepidoptera, and 23 of Hymenoptera, in all 612 species. For the lower orders, that is, those here fully treated, these numbers are already slightly in excess of those obtained from the European Tertiaries, if the rich amber fauna of the Baltic is excluded; for the corresponding numbers for the European species from the rocks would be approximately as follows: Myriapoda, 1; Arachnida, 24 (recently, however, nearly doubled); Neuroptera, 59; Orthoptera, 36; and Hemiptera, 218; a total of 338 species against 397 for the. American rocks. There is no doubt that this excess would be found even greater in the higher orders by the material already many years̀ in hand; and the extent of the insect-bearing rocks of the West, which as yet have been touched only here and there, is so inmeasurably greater than that of sinilar European strata that only the lack of students in this field of American paleontology can prevent our deposits from assuming a commanding position in the world.

Very respectfully, yours,

Samuel H. Scudder.

Hon. J. W. Powell,
Director U. S. Geological Survey, Washington, D. C.

THE TERTIARY INSECTS OF NORTH AMERICA.

By Samuel H. Scudder.

INTRODUCTION.

"mat creatures so minute and fragile as insects, creatures which can so feebly withstand the changing seasons as to live, so to sperk, but a moment, are to be found fossil, engraved, as it were, upon the rocks or embedded in their hard mass, will never cease to be a surprise to those unfamiliar with the fact. "So fragile," says Quinet', "so easy to crush, you would readily believe the insect one of the latest beings produced by nature, one of those which has least resisted the action of time; that its type, its genera, its forms, nuist have been ground to powder a thonsand times, annihilated by the revolutions of the globe, and perpetually thrown into the crucible. For where is its defense? Of what value its antennæ, its shield, its wings of gauze, against the commotions and the tempests which change the surface of the earth? When the momitains themselves are overthrown and the seas uplifted, when the giants of structure, the mighty quadrupeds, change form and habit under the pressure of circumstances, will the insect withstand them? Is it it which will display most character in nature? Yes! The universe flings itself against a gnat. Where will it find refuge? In its very diminutiveness, its nothingness."

The pages and plates of the present volume bear testimony to the fact that our tertiary strata have preserved remnants of an ancient host, so varied in structure, so closely also resembling their brethren of to-day, that nearly or quite every prevalent family-group in the entire range of the insect-world has already been decenstrated to have then existed. While often fragmentary and crushed, sometimes beyond recognition, a not insignificant number are sufficiently preserved for us to repopulate the past;

[^0]sometimes, too, are they preserved in such a wonderful manner that in tiny creatures with a spread of wings scarcely more than a couple of millimeters one may count under the microscope the hairs fringing the wings.

In attemptin; thus to restore the past world of our insects, two or threo general features have been forced upon my attention, which may well be mentioned here. One of them is the remarkable fact that in lardly a single instance has the same species been found at two distinct localities. These localities, it is true, are in some instances separated by hundreds or even thousauds of miles, and amulogy with the present distribution of insects would lead us to expect more or less profound changes in passing from one to another. But at other times the distance is not great, or at any rate not great enough to make this a satisfactory reason. It is more probnble that the bedsin which they occur are not altogether synchronous; and we are led to believe that in the separation of horizons insects will give more precise and definite distinctions ti, nn may be gained by the study of the plant remains of the saune beds. 'The data at our disposal are not yet sufficiently varied to enable us to speak with any confidence, but when the other groups of Florissant insects, not considered in the present volume, are worked out, and the new material that is a+ hand from the other principal localities has been fairly studied, it may be found that we are armed with a new weapon of attack in solving the immediate succession of the Tertiary series of the West in their finer subdivisions.

Another point to which attention may be drawn is the very considerable rumber and quite extraordinary proportion of species which so far are represented by a single specimen. Leaving out of consideration certain marvelously prevalent forms in the beds of Florissant, such as certain Formicidæ, Alydina, etc., one working these beds, from which many thousands of insects have already been taken, may confidently expect that evjry third or fourth specimen will prove sumething new. A quite similar statement can be made of all, or all but one, of the other localities where insects have been found in our Tertiary deposits: it surely indicates that with all the rich results of the explorations so far undertaken we are only upon the threshold of our possible knowledge. We find a richness of fauna far exceeding anything before supposed possible.

The interest of the Tertiary fauna is further enhanced by the discovery that no inconsiderable proportion of the species in this fauna must be re-
ferred to genera not now extant. Granted that our knowledge of the subtropical forms of this continent (with which as a whole at least our Florissant fauna seems to be akin) is much too menger to be of great service; granted also that in many cases we are forced to establish new genera upon what would be regarded among recent animals as too slender grounds: it is nevertheless true that an unexpectedly large number of forms can not be forced into modern genera already established; in many cases, throughout whole groups, kindred differences from modern types are found which indicate considerable changes of structure in the intervening epoche along parallel lines. In illustration of this we would call special attention to the differences observed in the genera of plant-lice, and, in several places among other Hemiptera as well as among the Coleoptera, to the decided differences in the relative length of varions members of the body. My own belief, which springs from the comparisons instituted in the study of this fauna, is that a much larger proporticn of genera should really have been founded, and that, for every type which may turn up in Central American explorations of the near future identical with those now established upon the fossils alone, it will be necessary to separate from the familiar surroundings in which I have placed it some other of the insects from the same beds.

It should be stated that the larger part of the plates in this volume were engraved before the insects were studied, except in a cursory manner to separate the species; the insects are therefore not always properly grouped, and the legends upon the plates are in part inaccurate.

In the enumeration of the specimens at the end of the specific descriptions the numbers of the obverse and reverse of the same specimen are always connected by "and" without any intervening comma, and this typographical method is employed only for expressing this relation.

In the study of these extinct insects much assistance has been received from friends, to whom my cordial thanks are due; for valuable suggestions from the late Dr. J. L. LeConte, from Baron R. von Osten Sacken, Edward Burgess, Esq., and Drs. G. H. Horn and H. A. Hagen; for the open collections of the late G. D. Smith, Esq., and of Messis. E. P. Austin and Samuel Henshaw; and for important aid in obtaining typical series of modern insects in vatious groups by Messrs. E. P. Austin, P. R. Uhler, E. P. Van Duzee, Edward Burgess, Dr. A. Forel, and most especially Mr. Samuel Henshaw.

LOCALITIES WHERE TERTIARY INSECTS HAVE BEEN FOUND IN AMERICA.

Florissant, Coloralo.-The 'Tertiary lake basin at Florissumt, ${ }^{1}$ already famous for its prolific beds of plants and insects, is situated in a narrow valley high up in the monntains at the sonthern extremity of the Front Range of Colorado, at no great distance from Pike's Peak.

The basin is shown on Sheet 13 of the geologieal athas of Colorado, published by Dr. Hayden's survey, and its outlines are marked with considerable aceuracy, although upon a comparatively smull seale. The ancient lake lies in the valley of the present South Fork of Twin Creek, and of the upper half of the main strean of the same after the South Fork has joined it. Following the old stage road from South Park to Colorado Springs, and leaving it just above the railway station at Florissant, and then taking the road which leads over the divide toward Cañon City, we pass between the Platte River and the Arkansas divide, through the e.tire length of the basin. 'This road crosses the South Platte a short distance, say a kilometer and a half, below the mouth of Twin Creek, climbs a long gradual slope on the east bank of the river to an open grassy glade about 2,500 meters above the sea, and then descends a little more than three kilometers from the river to join the valley of Twin Creek. One scarcely begins the descent before his attention is attracted by the outcropping of drab-colored shales, which continue until almost the very summit of the dionde is reached and the descent toward the Arkansas begun, a traveling distance of not far from 13 kilometers. The shales may indeed be seen for several kilometers on the farther side of this divide, but no organic remains have yet been found in them.

By climbing a neighboring peak, thrice baptized as Crystal Mountain, Topaz Butte, and Cheops Pyramid, and known to the old miners as Slim Jim, we obtained an admirable bird's-eye view of the ancient lake and the

[^1]surromuling region. 'To the sontheast is Pike's Peak; to the west South Park and the canon of the South Plattc, shown by a depression; to the extreme south the grand cañon of the Arkansas; while to the north a few sharp, ragged, granite peaks surmoumt the low wooded hills and ravines characteristic of the nearer region. Among these hills and ravines, and only a little broader than the rest of the lutter, lies, to the south, the ancient Florissunt Lake hasin, marked by an irregular L-shaped grassy meadow, the southern hulf broader nad more rolling than the northwestern, the latter more broken and with deeper inlets.

Recalling its ancient condition it will appear that this elovated lake must huve been a beautiful, though shallow,' sheet of water. 'Topaz Butte, and a nameless lower elevation lying eight kilometers to its southwest, which we may call Castello's Momutuin, guarded the head of the lake upon one side and the other, rising 300 or 400 meters above its level. It was hemmed in on all sides by nearer grasitir hills, whose wooded slopes came to the water's edge; sometimes, eap scially on the northern and eastern sides, rising abruptly, at others gradually sloping, so that reeds and flags grew in the slallow wuters by the shore. The waters of the lake penetrated in deep inlets between the lills, giving it a varied and tortuons outline; ulthough only ubout $16 \frac{1}{2}$ kilometers long and very narrow, its margin must have measured over 70 kilometers in extent. Still greater variety was gained by steep promontories, 20 meters or mcre in height, which projected abruptly iito the lake from either side, nearly dividing it into a chain of three or four unequal and very irregular open ponds, running in a northwest-southeasi direction, and a larger and less indented sheet, as large as the others combined, comnected with the southwesternmost of the three by a narrow channel, and dotted with numerous long and narrow wooded islets just rising above the surface.

The ancient ontlet of the whole system was probably at the southern atremity; at least the marks of the lake deposits reach within a few meters of the ridge which now separates the waters of the Platte and Arkansas; the nature of the basin itself, and the much more rapid descent of the present surface on the sonthern side of this divide lead to this conchusion. At the last elevation of the Rocky Momiain chain the drainage flow of this immediate region was reversed; the elevation coming from a southerly or south-

[^2]ensterly direction (perhaps from Pike's Peak), the lake, or series of lakes, was drained dry by emptying at the northwestern extremity. The druinage of the valley now flowed into a brook which followed the deeper part of its former floor, and the waters of the region linve since eaptied into the Platte and not the Arkansals, passing in their course botween Topaz Butto and Castello's Mountain.

The promontories projecting into the lake on either side are formed of trachyte or othor voleunic lavas, apparently occurring in fissures directly athwart the general course of the northwestern or upper series of lakes, and masses of the same occur at many differont points along the anciont shore, sich as the western corner where the waters of the lake were finally discharged; in the neighborhood of the village; along the eastern wall of the lowermost of the chain of upper lakes, near where this present road divides; and at points along both eastern and western watls of the lower southern lake. In general the trachytic flows seem to bo confined to the edges of the lacustrine basin, but some, if not all, of the mesas or ancient islands of the sonthern lake have trachytic flows over them; and toward the southern extremity of the lake what was once a larger island now forms a rounded hill with steep northern walls, crowned by heavy beds of dark trachyte, and its slopes covered with quantities of vesicular scorix. The rough and craggy knoll imnediately overlooking the present village of Florissant, the reputed scene of Indian combats, ${ }^{\text {' }}$ is witness of hotter times than those; vertical cylindrical holes, with smonth walls, in which a man could hide from sight, funnels scored by heat, mark, perhaps, the presence of former geysers; the basaltic rocks themselves are deeply fissured by the breaking up of the planes of divisions between the columns, affording the best protection to the Ute and Arapahoe warriors. But the very shales of the lake itself, in which the myriad plants and insects are entombed, are wholly composed of volcanic sand and ash; 15 meters or more thick they lie, in alteruating layers of coarser and finer materina. About half of this, now lying beneath the general surface of the ground, consists of heavilybedded drab shales, wit! a conchoidal fracture, and is totally destitute of fossils. The upper half has been eroded and carried away, leaving, however, the fragmentary remains of this great ash deposit clinging to the borders of the basin and surrounding the islands; a more convenient arrange-

[^3]ment for the present explorer could not have been devised. That the source of the volcanic ashes must have been close at hand seems abundantly proved by the difference in the deposits at dhe extreme ends of the lake as will be shown in the sections to be given. Not only does the thickness of the beds differ at the two points, but it is difficult to bring them into anything beyond the most general concordance.

There are still other proois of disturbance. Around one of the granitic islands in the southern lake basin the shales mentioned were capped by from one and a half to two and a half metars of sedimentary material, reaching nearly to the crown of the hill, the lowest bed of which, a little more than three decimeters thick, formed a regular horizontal strutum of small volcanic pebbles atid sand (A and B of Dr. Wadsworth's note, further on), while the part above is much coarser, resembling a breceia, and is very unevenly bedded, pitching at every possible angle, seamed, jointed, and weather-worn, carved and twisted, and inclosing pockets of fine laminated shales, also of volcanic ash, in which a few fossils are found (C of Dr. Wadsworth's note). Theso beds cap the series of regular and evenly stratified shales (D of the same note), and we perhaps synchronous with the disturbance which tilted and emptied the basir. The uppermost evenly bedded hales then formed the hard floor of the lake, and these contorted beds the softer, bat hardening, and therefore more or less tenacious, deposits on that floor.

The excavation of the filled-up basin wo must presume to be due to the ordinary agencies of atmospheric erosion. 'The islands in the lower lake take now as then the form of the granitic nuclens; nearly all are long and narrow, but their trend is in every direction both across and along the valley in which they rest. Great masses of the shales still adhere equally on overy side to the rocks against which thoy were deposited, proving that time aione and no rude agency has legraded the ancient floor of the lake.

The shales in the sonthem basin dip to the north or northwest at an angle of about two degrees, and according to the contouis of the Hayden Survey, the sonthem end of the ancient lake is now elovated nearly two hundred and fifty meters above the extreme nortnwestern point. The greater part of this present slope of the lake border will be found in the southern half, where it can not fail to at once strike the observant eyo, the southermmost margin elose to the summit of the divide being noarly two. hundred meters higher than the margin next the hill by the forks of the road.

Our examination of the deposits of this lacustrine basin was principally made in a small hill, from which perhaps the largest number of fossils have been taken, lying just sonth of the house of Mr. Adam Hill, now owned by Mr. Thompson, and upon his ranch. Like the other ancient isl3ts of this upland lake, it row forms a mesa or flat-topped hill about ten or a dozen meters high, perhaps a hundred meters long and twenty-five broad. Around its eastern baso are some of the famous petrified trees-luge, upright trunks, standing as they grew, which are reported to have been five or six meters ligh at the advent of the present residents of the region. Piecemeal they have been destroyed by vandal tourists, until now not one of them rises more than a meter above the surface of the ground, aid many of them are entirely leveled; but their huge size is attested by the relics, the largest of which can be seen to have been threo or four meters in diameter. These gigantic trees appear to be Sequoias, as far as can be told from thin sections of the wood submitted to Dr. George L. Goodale. As is well known, remains of more than one species of Sequoia have been found in the shales at their base.

At the opposite sloping end of this mesa a trench was dug from top to botiom to determine the character of the different layers, and the section exposed was caretully ineasured and studied. In the work of digging this trench we received the very ready and welcome assistance of our companion, Mr. F. C. Bowditeh, and of Mr. Hill.

From what information we could gain about the wolls in this neighborhood and from a shaft surk obliquely in the side of a hill near the northwesten extremity, it would appear that the presont bed of the ancient Florissant lake is entirely sinilar in composition for at least ten meters below the surface, consisting of heavily bedderi non-fossiliferous shales, having a conchoidal fracture. Above these basa! deposits, on the slope of the hill, we found the following series, from above downward, commencing with the evenlv oedded strata:

SEOTION IN SCUTHERN LAKE.
(By S. IT. Scudder and A. Lakea.)

1. Finely laminated, ovenly bedded, light-gray shale; plants and insects scarce nnil poorls preserved

2. Cosrser, ferruginous sundstore;
3. Resembling No. 1; leaves and insoct remains... 21
4. Hard, compaci, grayish-black shale, breakiog with a conoholdal fracture, seamed iut the miudle with a narrow atrip of drab shale; fragmenta of plants
5. Ferrliginous shale; unfossillferons. 1.5
6. Resembling No. 5, but laving no conoholdal fracture; steme of plants, insects, and a small bivalve mollusk 9
7. Very fine gray ochreons shale; non-foselhferous 0.5
8. Drab shales, interlaminated with finely divided paper shales of tight-gray color; stems of plants, recds, nnd insente 46
9. Crumbling ochroous shale; leaves abundant, insects rare 7.5
10. Drab shales; no lossils 7.5
11. Coarse, ferruginous sandstone; uo fossila 3.8
12. Very hard drab shales, having a conchoidal fracture and filled with nodules; unfossilif-erous63
13. Finely lamianted yellowish or drab shales; leaves and fragments of plants, with a few iusects. 30
14. Alternatiug layers of darker and lighter gray aud brown ferruginoue sandstone; no fossils.. 10
15. Drab shales; leavee, seeds, and other carts of plants, with insecte, all in abundance 61
16. Ferruginous, sorous, sandy shales; no fossils 5.7
17. Dark gray und yollow shales; leaves and ether parts of plauts. 9
18. Interstratified shales, resembling 17 and 18 ; Ieaves and other parts of plants, with insente. 17.8
20 Thickly bedded chocolate-colored shales; no fossils 41
19. Porous yellow shule, interstratitied with seams of very thun dra's-colored shalos; plante 7.5
20. Heavily bedded chocolate-colored shales; no fossils 30
21. Thinly beddel drab shales; perfect leaves, with perfect and imperfect fragments of plants, and a few brokeu insects. 20
22. Thinly bedded light-drab shales, weathering very light; without fossile 20
23. Thick bedded drab shalee, breaking with a conchoidal fracture; also destitute of fossils.. 18
24. Coarse arenaceous shale; unfossiliferons* 9
25. Gray saulstone, containing lecomposing fragments of some white mineral, perhaps caloite ; no fossils 178
26. Coarse, ferrnginous, friable sandstone, with concretious of a oofter material; fragments ofstemsperhaps..
27. Thiuly bedded drab shales, baving a concholdal fracture, somewhat lignitic, with fragments of routs, eic60
28. Dark-chocolate shales, containing yellowish concretions; fillsd with stems and roots ofplants
Total thickness of evenly bedded shales (" D ," of Dr. Wadsworth's note) blove floor deposits which they are unquestionably the most abundant and best preserved, is the thick bed, No. 16, lying half-way up the hill, and composed of rapidly alternating beds of variously colored drab shales. Below this, insects were plentiful only in No. 19, and above it in Nos. 7 and 9 ; in other beds they occurred only rarely or in fragments. Plants were always abundant where insects were found, but also occurred in many strata where insects were eithur not discovered, such as Nos. 18 and 21 in the lower half and No. 6 in the upper half, or were rare, as in Nos. 10 and 14 above the middle and No. 23 below; the coarser lignites occurred only near the base.
The thickest unfossiliferous beds, Nos. 20 and 27, were almost uniform in character throughout, and did not readily split into laminæ, indicating an enormous shower of ashes or a mud flow at the time of their deposition; their character was similar to that of the floor-beds of the basin.

These beds of shale vary in color from yellow to dark brown. Above them all lay, as already stated, from fifteen to twenty-five decimeters of coarser, more granulated sediments, all but the lower bed broken up and greatly contorted. These reached almost to the summit of the mesa, which was strewn with granitic gravel and a few pebbles of lava.

Specimens of these upper irregular beds, and also of the underlying shales, were submitted to Dr. M. F. Wadsworth, of Cambridge, Massachusetts, now of Houghton, Michigan, who caused thin sections to be made from them and has funished the following account of their microscopical structure:

TUFA FROM FLORISSANT.
The method and scheme of classificatiou employed here is that briefly sketched in the Bulletin of the Mnseum of Comparative Zoölogy (vol. 5, pp. 275-287). By this system only do we think that the inclosed fragments could be named, for they contain so few crystals that in most cases the base is the principal thing upou which the decision must rest.
A.-The finer deposit just above the bhales.

A medium-grained gray tufa, containing erystals and fragments of feldspar, augite, etc., cemented by a tine earthy groundinass.

In the thin section it is seen to be an epitome of the volcanic rocks of the Cordilleras. The groundraass holds tragments of basalt, andesite, trachyte, and rhyolite, with detached minerals derived from them.

The basaltic fragments have in part in dense globulitic base porphyritically holdiug ledge.formed plagioclase crystals and a few augite granules. Some of the basalt is quite coarsely crystallized, approaching the doleritic type. Ulivine was observel in some of the fragments, but it is largely altered to a reddish-brown serpentine. Magnetite is abundant. In many of the fragments the groundmass has decomposed to a reddish-brown mass, which is untrauspareut and holds clear crystals of plagioclase. The basaltic fragments have suffered more from alteratiou and decomposition than any others in the tufa.

Of andestte, both varieties pointed ont by us (lou. cit., p. 280) ocenr in this tufa. The frst, which is uearest the basalt in composition, has a brown class as its hase, filled with mierolites. This base holds minute rectangular and oblong erystals of fellespar. Large microlites of angite and grains of magnetite were seen. Fraguents of this are cominon, and are clear and unalterel. The secoud variety of audesite was seeu to have a denso gray micro-felsitic base, holding ledge-formell feldspars and magnetite grains. Some contained the reddish-brown fibers of the destroyed hornbleade. Fragments of this variety of andesite are quite abundant.

The trachyte has a llght gray, felty, and glassy base, some fragmenis showligg besides this only faint traces of polarization caused by incipient feldspars. Other frag. ments show minute, well-formed erystals that appear to be sanidin. Grains of mag. notite occur seattered through the base. This is also quite abmudaut, and it, as wel! as the basalt and andesite, surpasses the rhyolite in amount.

The rhyolite occurs in the form of a more or less clear glass, ofteucellular. The cells are often drawn out in the direction of the original flow, forming a fibrons struct
nre, which when of a grayish or reddish brown color resembles woody fiber. Some of the fragments contain ellipitical cells, and a few shards of watel-clear glasi free from inclusions were seen.

Many crystals, entire or broken, are scattered throughont the groundmass of the tufa. These erystals belong to plagioelase, sanidin, olivine, magnetite, augite, and quartz. But list a quartz was observed; one erystal contained trichites and vapor carities. The trichites are the same as those commonly scen in the quartz of granite, but this appears to have been derised from the lara. The feldspar contains inclusions of base, glass, and microlites, and through these the rock from which the feldnpar was derived can often be told. The angites have the characters of andesitic angite. A little palagonite and one crystal of mieroline were seen.

The groundmass of the tufa is composed of comminuted and decomposed material derived from the lavas before described. In the grominnass trachytic and rhyolitic material appears to predominate.

This specimen ras chosen for description, as it best represented the gentral characters of the tufas.

> B.-Tile coarser deposit just above the silales.

This is nore coarsely fragmental than any of the others, and is composed of a yellowish brown earthy gromdmass, holding fragments of quartz, fe: Ispar, basalt, etc. Some of the fagments appear to belong to the older rocks, but none of them were seen in the section. Under the microscope the thfa is similar to the first one described, but its fragments are larger and sometimes better marked. Somo kaolinized feldspars and a little hiotite were seen. The hornblende in the andesite is in the usual broken forms, with blackened edges.

> C. - A specimen from finer portion of tile dprer contoited hedis.

A gellowish carthy gromimass holding crystals and fragments of angite and fehdspar. On one side is a layer of fins detritns, composed of the same material as the groundmass of the more coarsely fragmental portion. Its microscopic characters are similar to those of A, except that its materials are more decomposed and sanidin is more abmudant. One kaolinized feldspar was observel.
D.-Thiere spectafens of the insfect-siales.

These are brownish and ,rrayish brown shales, being simply the finer material of the tufas laid down in lamine of rarying thickness and coarseness. One is very thinly belded.

This roleanic material lias evidently been worked over by water, but the conditions can of course best be told in the field. So far, bowever, as we can juige by microscopic examination, when the water commenced its work the material was in loose unconsolidated deposits. That it was thrown out as an ash, or rather deposited as a moya near its present location, is the most probable supposition. It seems then to have been taken up by the wares and spread out as it is now found. The reason for this opinion is that the fragments are not worn, as they wonld naturally be if they hid been derired directly from solid rock by water action, and the decomposition is not so great as we shonld expect. The deposition appears to hare been gentle but comparatively .apid, for there is no sign of violence or even of such decomposition as we should expect in slow deposition; and showers of ashes falling on still water or a lake acting on an uncousolidated tufa lank answer best the conditions called for here. it is
probable from the kaolinized feldspars and the macroscopic fragments of apparently older rocks that the latter are present in the tufn to some extent. This can best be explained by the supposition that it was deposited as a moya or mudfow within reach of the waters that have worked it cuer and deposited it in its present position. As we said before, the field evidence must be relied upon mainly in deciding such questions as these.

Cambridge, Massachusetts, April 15, 1880.
Another section, less carefully measured and noted with less detail than the other, was taken at the extremity of one of the promontories jutting in a southwesterly direction into the middle of the upper chain of lakes, about three kilometers west nf th. present post-office. The top of the hill was covered with granitic gravei and loose bowlders of dark scoriaceons trachyte; below this we found, passing, as before, from above downward, the following succession:

> SECTION IN THE NORTHWESTERN LAKE.
(By S. I. Seudder and A. Lakes.)
Decimeters
(estimated).

1. Finely laminated yellow-drabs shales; no fossile
2. Coarse decomposing yellowish ehales; no fossile

3. A:enaceons shales; very lignitic .. 6
4. Heavily.bedd.d, coarse-grained, ornmbling aandstone, of a grayiah-yellow and whitish color, becoming ferruginons in places; partially lignitio.
5. Chocolate and drab colored shales having a conchoidal fractnre, passing-below into whitish paperlike shales inclosed between coarse arenaceons lamina; plants and insects

Total thickness of ehales ahove floor deposits. (Metors, estimated) 15
These measurements, being estimated, are undoubtedly too great. The composition of this bluff is coarser in character than that of the section in the southern extension of the lake. The lignitic beds, which have been used for quarrying purposes, contain numerous fragments of reeds and roots not well preserved. The lower portions of the section correspe nd better with the other than do the upper beds, where it is difficult to trace any correspondence; No. 3 of the northwestern seems, however, to correspond to No. 16 of the southern series. The whitish paper shales lying at the base of this appear to be entirely absent from the southern section, and the distorted beds which crown the mess are not apparent in the bluff, or, if present, are wholly regular. A more careful and detailed section of the bluff (for which we had not time), and particularly the tracing of the heds along the wall of the lake, would probably bring to light better correspondences.

Judging from the present physical condition of the basin, its age is marked as later than the movements whicn closed the Cretaceous epoch and earlier than the last upheaval in the Tertiary, which seems to have taken place during or after Miocene times, but there are no plysical data yet at hand to warrant definite conclusions on this head.

The insects preserved in the Florissant basin are wonderfully numerous, this one locality having yielded in a single summer more than double the number of specimens which the famous localities at Oeningen, in Bavaria, furnished Heer in thirty years. Having visited both places I can testify to the greater prolificness of the Florissant beds. As a rule the Oeningen specimens are better preserved, but in the sar? amount of shale we still find at Florissant a much larger number of satisfactory specimens than at Oeningen, and the quarries are fitty times as extensive and far more easily worked.

The examination of the immense series of specimens found at Florissant has not yet critically covered the whole field. It may, nevertheless, be interesting to make the single comparison with the Oeniugen insect fauna which the number of individuals will furnish. This is indicated by the following table:

Percentage of representation by-	At Florissant.	At Oeninger.
Hymenoptera.	40	14
Lepidoptera.........................	0.04	0.1
Diptera	30	7
Coleoptera	13	48
Hemiptera	11	12
Neuroptera	5	17
Orthoptera	0.25	3
Arachnida...........................	0. 25	0.5
	99.54	101.6

It will be seen that in all the orders that are well represented the proportion of specimens of each is very different, with the sole exception of the Hemiptera, while the same groups (Orthoptera, Araunnida, and Lepidoptera) are feebly represented in both. The greatest difference occurs in the Diptera, which are less than 7 per cent. of the whole at Oeningen and about 30 per cent. at Florissant; in the Hymeroptera, which have less than 14 per cent. at Oeningen and 40 per cent. at Florissaut, due largely to the
prodigious number of ants; while the case is reversed in Coleoptera, which form nearly one-half the specimens found at Oeningen and only 13 per cent. at Florissant. We possess no count of the specimens found at Radoboj, in Croatia, which is regrettable, since the fauna of Florissant appears to agree much better with it than with any other in one or two points, such as the comparatively minor part played by the Coleoptera and the great number of ants; these latter number fifty-seven species in Radoboj, and five hundred specimens have been found of one of them. Still the comparison can not be carried very closely into other departments; for instance, only one rhynchophorons coleopteron has been reported from Radoboj, while they are very numerous and rich in species at Florissant, and local causes must have had much to do with the fauna of each of these localities. It is hardly worth while to institute any inquiries into the proportion of the groups represented at Florissant and in amber, since the nature of the entombment is entirely different.

Since so far as the Florissant insects are concerned only the lower orders are reported upon in the present volume, it may be worth while to present a rapid sketch of the higher orders, to complete in however imperfect a way the partial view of the Tlorissant insect fauna which the volume affords.

About three-fifths of the Coleoptera belong to the normal series and two-fifths to the rhynchophorous division. There are eighty to ninety specimens of Carabidæ, including, perhaps, twenty-five species; many of them are very fine and perfect, especially in the sculpturing of the elytra. Waterbeetles are not so numerous as would be anticipated; indeed, there are very few specimens, with perhaps half a dozen species; there are no large species such as occur abundantly at Oeningen; the largest of omr species, perhaps an Hydrophilus, not exceeding twelve millimeters in lengtl. The Staphylinidæ are rather more numerous than the ground-beetles, with over thirty species, some of them tolerably large. There are half a dozen species of Nitidulidæ. Some sixty or more Scarabæidæ show considerable variety, there being nearly thirty species among them. Nearly as many Buprestidæ have quite as great variety of form; a considerable number of them are large and nearly all fairly preserved, some remarkably perfect; one species, Chrysobothris laydeni, has been described. Elateridæ are more abundant, numbering more than one hundred species, many of them in beautiful condi-
tion; they are abundant in species, over forty having been separated, and are mostly of a medium, none of a large, size. Considerably over one hundred specimens are to be referred to the Meloidæ, Mordellidx, and Malacodermata, but the specimens do not appear to be very well preserved, although about forty species may be distinguished. The Cerambycidæ are very bea tiful, furnishing thirty or more specimens, representing more than hulf as many species; one fine species of a new extinct genus, Parolamia rudis, has already been described, and there are othere equally fine. There are a dozen or more species of Bruchidx, one of which, Spermophagus vivificatus, has been published. Chrysomelidx are not uncommon; thus far I have recognized about two dozen species among the sixty or eighty specimens; one, Oryctoscirtetes protogreus, belonging to a new genus, has already been published.' Nearly twenty species of Tenebrionide have been separated, rarely represented by more than a single specimen each, and there are also a few (from two to ten species each) of Silphida, Histeride, Dermestidæ, Ptinidre, and Coccinellidx, and a single species each of Cleridæ and Telephoridx, the latter already descrioed under the name of Chauliognathus pristinus. Two specimens of Rhynchophera, Anthonomus defossus and Eurhinus occultus, have been described; I have already mentioned the predominance of this type in opposition to the European Tertiaries; the species are very numerons, nearly one hundred and twenty having been separated, with over five hundred specimens, and among them are a goodly number of large and fine species; but some of the minutest are most admirably preserved; especially is this true of the sculpturing of the thorax and elytra; no attempt, however, has yet been made to do more than rudely separate the species, so that no details can now be given.

Nearly a third of all the specimens I have seen from Florissant belong to the Diptera. Culicidæ and Chironomidæ are abundant, but not generally very perfect. Tipulidæ are abundant and admirably preserved; of the larger forms alone there appear to be several hundred specimens, and apparently a considerable number of species; the smaller Tipulidæ, including the Limnobina, are also abundant and well preserved. Many beautiful Mycetophilidæ occur; probably twenty or thirty species. Bibionidæ are the prevailing type among the Diptera; there must be a thousand specimens belonging to this family, and on a cursory view there appears to be no great variety; probably both here and in the ants, as in some gen-
ora of plants, it will appear that there are vast numbers of a single species; a great many specimens are represented by bodies only, or these accompanied by insignificant fragments of wings, but even putting all these aside there remain a goodly number with tolerably perfect wings, and some in which almost every part of the body is preserved; taken as a whole, however, they are perhaps less perfect than specimens of almost any other family. There are a dozen or moro Strationyide, of two or three species, and several species of Midasidx or Hirmoneuridx, one admirable specimen of the latter fainily having been described as belonging to a now genus under the name of Palembolus florigerus. There are nearly half a hundred Asilidæ and Therevidæ, many of them exquisitely preserved, some of great size, and among them a fair variety of forms. Bombylidæ are somewhat less abundant, but show some superb specimens of great size and in wonderful preservation; there are certainly six or eight species. Syrphidæ are more abundant than the last, nearly fifty specimens having been found in which the patterns of the abdominal colors are generally well marked, and among which we find a considerable variety; they have been studied by one very familiar with that group, Dr. S. W. Williston, and the results of his examinntions are given in his Synopsis of the North American Syrphidæ (pp. 281-283), published by the U. S. National Museum. There is a vast host of Muscide and allied groups, of which no account has yet beign taken, and with which no doubt many other forms are still commingled, but three or four species of very pretty Ortalidæ may be mentioned with ten or a dozen specimens, and there are a large number of Empidx.

A few Lepidoptera occur. The butterfies, seven in number, have been described in the Eighth Annual Report of the present Geological Survey. They all represent distinct and extinct genera. Six of the seven belong to the Nymphalidx, the seventh to the Pierinæ. Of the Nymphalidx all but one are Vanessidi. The exception is of special interest, since it belongs to the Libytheinæ, the fanily of living butterflies the most meager in numbers, though found in every quarter of the globe. To be able to add that still an eighth butterfly, found since the others were described, belongs to a second extinct genus of Libytheina (which I have called Barbarothea) is certainly marvelous. Besides these I have set aside about a dozen specimens of perhaps eight species of moths, but they are obscure, mostly of small size, perhaps Pyralidæ or Tortricidæ, and, excepting one described in
this work, have not been critically studied. A single eaterpillar has been found, and the structure of its skin has been studied by Dr. C. S. Minot, ${ }^{1}$ but without any very satisfactory results.

No Hymenoptera have yet been described. About a dozen specimens are referred to Apide and Andrenide; severul species nre represented, but most of them are badly preserved; the largest appears to be a Bombus. Of Vespide and other large wasp-like Hymenoptera about seventy or eighty specimens have been found, referable to about thirty species, one of which is a large Scolin or allied gents; several are Sphegidx, including an Ammopliila; one, which seems to be a Polistes, shows traces of a bluegreen metallic tint; another, apparently one of the Pompilidx, represents a species with a large subapical fuliginous spot on the wing; another, perhaps of the same family, has a circular clear spot in the center of the wing, surrounded with fuliginous. The ants are the most numerous ol all insects at Florissant, comprising, perhaps, a fouth of all the specimens; they form more than three-fourths, perhaps four-fifths, of all the Hymenoptera; I have already about four thousand specimens of perhaps fifty species (very likely many more); they are mostly Formicide, but there are not a few Myrmicidx and some Poueride. I have noticed no Mutillidæ. Ichneumonidx are very numerous; of ninuter forms, having an expanse of wing of less than a centineter, there are nearly two hundred specimens, unusually well preserved; judging from a cursory examination they are exceedingly munerous in species, perhaps cighty all told, and many genera are represented; the larger forms, whose wings expand more than a centimeter, are even more numeruus both in species and individuals, and most of them are very fine, including a great variety, among which are especially noticeable a good assortment of species of Pimpla and allied genera; I have looked in vain for Pelecinus, or any long-tailed Rhysse or Thalesse. The Braconidæ, Chalcididæ, Cy.sipidæ, and Chrysidæ, exceedingly few fossil species of which have erer been described, are very abundant, but have not been fairly separated from each other and from other small species; together they number neany two hundred and fifty specimens and probably fifty species; among others there is a Chrysis, showing metallic green reflections on tho abdomen, and also more than nalf a dozen species of Chalcididæ, with expanded femora, represented by over twenty specimens.

[^4]Finally, there are about sixty Tenthredinida of fourteen or fifteen species and several genera, besides a single species of Uroceridæ.

Animal remuins besides those of insects are rare at Florissant. The most abundant is a species of thin-shelled Planorbis, which is not uncommun, and always occurs in a more or less crushed condition; it is the only mollusk yet found there (excepting a Physa or allied form and a single small specimen of a bivalve, referred to above in the section from the southern lake), and according to Dr. C. A. White is probably undescribed, although very sisnilar to a species found in the Green River shales, differing from it principally in its smaller size.

Fishes rank next in numbers. Eight species have been found, belonging to four genera. Of Anjiidæ we have Amia scutata and A. dictyocephala; of Cyprinodonts, Trichophanes foliarum and T. copei; of Catostomide, Anyzon pandatum, A. commune, and A. fusiforme; and of Siluridæ, Rhineastes pectinatus. All the species have been described by Cope, excepting T. copei, which was published by Osborn, Scott, and Speir.

Several bird's feathers have been found in these beds, and a single tolerably perfect passerine bird, with bones and feathers, has been described by Mr. J. A. Allen under the name of Paleospiza bella, and admirably illussrated by Blake. No other figure of a Florissant animal has yet been published. Besides these, Cope has described a plover, Char.udinus sheppardianus, and writes that a finch is also found in these beds.

The plants, though less abundant than the insects, are exceedingly numerous, several thousand specimens having been studied by the late Mr. Leo Lesquereux. About one hundred and sixty species have been described or indicated, of which the apetalous plants show the larger number, sixtyeight species; the next most abundant group is the polypetalous division, forty species, the gamopetalous having twenty-five, the Coniferæ eight, and the lower plants nineteen species.

Among the exogenous plants the following polypetalous families are represented : the Malvacee by a rare species of Sterculia, besides some flowers with long stamens, which are referred, doubtfully, to the genus Bombax. Of Tiliacer, a species of Tilin has been found. Of Rutacer, one species of Ailanthus and one of Xanthoxylon. No less than ten species of Rhus represent the Anacardiaceæ, and two species each of Paliurus and Rhamnus the Rhamnaceæ. The Celastraceæ show three species of Celastrus and one
of Celastrites, known only by a few leaves. The Sapindacese are very uumerous in individuals; a species of Acer is represented by leaves, flowers, and fruits, but not yet desoribed; leaves of a Staphylea occur with five species of Supindus und one of Dodonen. The flora has a large number of Leguminosa, eleven species occurring, of eight genera, Cytisus, Dalbergia, Cercis, Podogonium, Cassia, Leguminositer, Acacia and Mimosites; Losquereux formerly reterred some of them to Robinia and Colutea. The Rosacce show an Anygdalus, leaves of Rosa, and a species of Spiren, with very finely preserved leaves of an Amelanchier, scarcely distinguishable from some of the varieties of the living species. Numerous leaves of Woinmannia of three species represent the Saxifragacee, and, finally, a species of Aralin aud another of Hedera, the Aralincose.

Among the gamopetalous plants the Ericacere are represented by what is probably Vaccinium reticulatum Al. Br., together with a species of Andromeda; uo less than six species of Ilex represent the Aquifoliacee; two of Diospyros, and one each of Bumelia and Macreightia, the Sapotacea: a species of Myrsine, so common in the Europom Tertiaries, but in our country represented only by this single leaf, the Myrsiner. Convolvulacees show two spocios of Porana, and the Apocynacce a single species of Apocynophyllum. ${ }^{1}$ Oleacere have a flowering branch of Olea and eight species of Fraxinus, one regarded as identical with a European Tertiary plant.

The apetalous angiosperms show a great variety of forms at Florissant, and among them many are referred to species from foreign Tertiaries. A species of Banksia and seven of Lomatia represent the Proteacex; a species of Pimelia the Thymolacer ; one of Santalum the Santalacea. Urticaces are the most numerous of all plants; four species of Ulmus occur, one found also in the European 'l'ertiaries; another formerly thought to be identical with a second Europoan species but now rewarded as distinct, and two others, one of them found also in western Colorato; of Celtis there is one species, whose leaves have a close affinity to the existing \mathbf{C}. occidentalis and its Texan variety; two species of Ficus al identical with European species; but the mass of specimens-nearly or quite one-half of all that have been brought from this locality-represent species of Planera; two species only occur, one identical with a European form; the other known only from Florissant and the White River, and in the former very variable; Lesquereux

[^5]has seen at least two thousand specimens. The Juglandscee are represented by single specimens of Pterocuryn americama and Juglans thermalis, besides two other species of Juglans, one of them Europenn, three of Carya, all Europenn, and one Engelhardtia, also Europem, The Cupuliferte show one species each of Ostrya and Castanen, three of Carpi:ans, one of them European, and seven of Quercus, of which five are European species. The Myricacea are the next most abundant type after Planera, being represented by no less than fifteen species of Myrica, of which six nee Europem. Of Betulacere two species of Betula occur and two of Alnus, one of the latter European. Saliencere are tolerably abundant; there aro four species of Populus, all now regarded as European, though Lesquereux first looked on them as new ; and two peculiar species of Sulix, bosides four identical with Europenu species. Finally, there ave one or two undetermined plants in this group represented by parts of flowers or seeds.

Among the Coniferee there is considerable variety, eight specios oçeurring, of six genera, most of them representel in the European flora. There are, first, two species of Pinus, one European; a species of Widdringtonia; well preserved branches of a Enropean Taxodimn; abundant remains of a European Glyptostrobus; a couple of leaves of a European Polocarpus; as well es two species of Sequoia, one European, the other indigenous. The presence of the last-iamed genus is also well attested by their cones and by the remains of gigantic silicified trunks in an erect position.

Finally, in the lower orders of plants the following have been found: Of the Palme, a large specimen of a Sabal and a fruit referred to Palmocarpon; of the Aracer, a species of Acorns, first described from Spitzenberg; of the Typhaceæ, finely preserved leaves of a Typha; of the Nuiadacer, two species of Potamogeton and one of Nijadopsis; of the Lemnacea, a species of Lemma; of the Graminer, fragments of leaves of Pluragmites; of lilices, numerous specimens of five genera, Splenopteris, Adiantites, Lastren, l'teris, and Diplazium, the last a European species; of Rhizocarper, many specimens of two species of Salvinia; of Musei, one species each of Fontinalis and Hypnum, and of Characeer, two specimens of a Clarat

According to Mr. Lesquereaux, such an assemblare of plants indicates a clinate like that of the northern shores of the Gulf of Mexico at our epoch. "The preponderance of conifers, of shrubs, of trees of small vol xiII- 3
size, . . . gives to the flora a general aspect which recalls that of tha vegetation of uplands or valleys of mountains." Palms are almost entirely absent, only a single specimen of one species of Sabal having accurred, with a fruit of Pahnocarpon. "The leaves of some species are extremely numerous, none of them crumpled, folded, or rolled, as if driven by currents, but flat, as if they had boen embedded in the mnddy surface of the bottom when falling f:om the trees or shrubs along the borders of a lake."

It is remarkable for the almost complete absence of hard fruits, and this, with the presonce of flowers, of unripe carpels of eln and maple, and of well-preserved branches of Taxodium, which in the living species "are mostly detached and thrown upon the ground in winter time or early spring," led M: Lesquereanx to believe that the deposition of the vegetable materials took place in the spring time, and that the lake gradually dried during summer.

To this we may add that the occurrence of Acorus, of Typha, and especially of Potamogeton, leads to the conclusion that the water of the lake was fresh, and not saline or brackish, equally proved by the fish, according to Cope, and by the presence of larve of Odonata and other insects whose earlier stages are passed only in fresh water.
Neither the groups of fishes which have bcen found, nor the water-plants, nor the water-insente, nor the mollusks exclude Mr. Lesquereux's suggestion of the anmal drying of the body of the lake: moreover, certain thin layers are found overlying coarser deposits, which are sun-cracked through and through. But, on the other hand, the thickness of the paper shales, upon which most of the fossil remains are found, and which are composed of uniform layers of triturated flakes of volcanic products, being necessarily the result of the long-continued action of water, excludes this idea. Thrs structure of the rocks rather indicates a quiet deposition of the materials in an unruffled lake through long periods, interrupted at intervals by tho influx of new lava-lows or the burying of the bottom sediments beneath heavy showers of volcanic ashes.

The testimony of the few fishes to the climate of the time is not unlike that ef the plants, suggesting a climate, Piuf. E. D. Copo informs me, like that at present found in latitude 35° in the United States; while the insects, from which, when they are completely studied, we may certainly draw more definite conclusions, appear from their general ensemble to prove the same
or a somewhat warmer elimate. If we inquire what testimony the '~wer orders of Florissant insects bear to the climate of that district in Tertiary times, there is only one answer to be givan: the present distribution of their allies certainly points to a considerably warmer climate than now-a climate which may, perlaps, best be compared to the middle zone of our Southern States. The known living species of the genera to which they belong are in general credited to regions like Georgia in this country and the two shores of the Mediterranean in Enrope, or even more southern districts. Further remarks on this point will be found in the body of the volume.

As noted above, the superabundance of specimens of single species of plants (Planera and Myrica) is repented in the insects, where certain species of Formicide among Hymenoptera, of Bibionidae among Diptera, of Cercopida and of Alydim among Hemiptera, are to be comnted by fifties and hundreds.

The only other genernl feature which may already be noted among the insects is an unexpected paucity of aquatic larva or the imagos of water-insects. Hardly a dozen neuropterous larva have come to hand, very few aquatic Hemiptera in any stage, and of Hydrophilidae and other water beetles no great number. The paucity of nenropterons larve is the more remarkable from the abmanance of Phryganide, while not a single larva-case has been fourd.

As to the age of these deposits, the opinions of Lesquerenx, based on the study of Tertiary plants, and of Cope, drawn from his knowledge of Tertiary fishes, are far more hamonious than one would expect from their known divergence of view concerning the testinony of the fossils to the age of other Tertiary beds in the West. Such disparity of ideas did hold at first, Mr. Lesquereax maintaining in his entier notices of the flora the probability of its later Miocene age; in the Tertiary Flora he placed it in the " Upper Green River" division of his "fourth gromp," together with the flora of Elko, Nevada, the Green River beds being placed direstly beneath them. In Hayden's report for 1876 he refers the Florissant deposits io the upper Miocene. In his review of Saporta's Monde des Plantes, ${ }^{1}$ while still considering this flora as Miocene, he points out certain important relations which it bears to the flom of Aix, in Proverce, then considered as Eocene.

[^6]Bit later, after a more careful revision, drawn from more extended sources, he writes that while, by tho presence of many genera, "there is an evident relation of the Florissaut flora with that of the Europeun Miocene, yet by the affinities and even identity of some of the species with those of the flora of the gypsum of Aix, which, according to Saporta, includes typos related to those of the whole extent of the Tertiaries from the upper Cretaceons to the Oligocene and abo ve, I should rather refer this group to the lower Miocene or Oligocene."

Both Lesquereux and Cope agree in placing the Florissant beds at the same horizon as those of Elko, Nevada, and also those directly above the Fish-cut beds at Green River, Wyoming. Lesquereux has identical species also from Whits River, Colorado, among specimens communicated by Mr. Denton. Cope calls the Florissant and Elko dejosits the Amyzon beds, from the prevalence of that type of fish, and refers them to the "later Eocene or carly Miocene." Mr. Clarence King places the Green River deposits in the middle Eocene, but considers the Elko deposits of the same age. We may therefore provisionally conclude, from the evidence afforded by the plants and vertebrates, that the Florissant beds belong in or near the Oligoceue.

At present no geological conclusions can be drawn from what is known of the insects. So far as specific and generic determinations has proceeded, scarcely anything identical has been found in the Green River and Florissant beds, but some remarkable affinities have been noticed. To attempt, however, to draw any conclusion as to the age of either of these deposits, and especially of that of Florissant, before a closer examination is made would be folly. Almost the entire series of fossil insects from the beds of Aix, Oeningen, and Radoboj requires a careful generic revision, and until this is done it will be difficult to make much use of the information given us in the works of European authors. This should not be considered as reflecting upon the character of these works, for it must be remembered that they were nearly all completed thirty years ago and could not be expected to meet present demands. It is, indeed, probable that the richer American fields, the exploitation of which has only just begun, may yet be found the best basis for the study of the relationship of the 'Tertiary insect fanmas of Europe.

White River:-Fossil insects were first discovered on the lower White Riverin western Colorado and eastern Utah by Mr. William Denton during
his passage down the river on horseback in 1865, and his brief and cursory account of the geological structure of the region is, I believe, the first and only one until the parties of the Hayden Survey entered the region ten or more years later. Brief reports of the geological and topograplical claracter of the country were made by Drs. C. A. White and F'. M. Endlich, and Messrs. G. B. Chittenden and G. R. Bechier. None of these, however, obtained $a^{-} y$ insects, excepting Dr. White, who in a single locality found a few poor specimens. On a visit to the place in the summer of 1889 , however, I was able to rediscover the beds in which they were found by Mr. Denton east of the Colorado-Utah line, and to greatly oxtend the stations at which they could be found. In the two localities on the lower White River where Denton found fossil insects, "Chagrin Valley" and "Fossil Cañon," as he called them, the general topographical features were the same, bluffs cr buttes of a thousand or more feet in thickness being composed of evenly bedded stratified deposits. "Chagrin Valley" must be identified with the valley of Douglas Creek, though it was not here but five or six miles lower down the White River that Denton really obtained his fossils, at a point where, to one traveiing westward, Green River beds first appear in mass and are readily accessible, probably in the immediate vicinity of Cañon Butte, where the old Indian trail on the south side of the river cuts off a sharp bend and passes directly over many favorable outcrops. It was in fact at preciseiy this place that I obtained from the rocks collections agree.ng most elosely in general appearance and character with those secured by Denton This locality is in Colorado a few miles east of the Utah boundary. His other locality is represented by him to be fifty or sixty miles farther down the river, but still at some distancs from its mouth. The distance is no doubt exaggerated, and the locality on the north side of the river, certainly in Utah, not improbably near the mouth of Red Bluff Wash. I made no seareh for this place.

It may in brief be said that the Green River beds in the bluffs on each side of the White River Caiion near the boundary line between Utah and Colorado, but especially on the northern side, are filled for over a thousand feet with insect remains; the highest and the lowest beds respectively yielded me the best results, but hardly a level could be found where patient: search did not reveal some relies, though perhaps of no value; the more prolific beds were oftentimes simply crammed with remains, frequently in
an exquisite state of preservation. Vegetable remains, excepting of a very fragmentary nature, were rure, and most of thy insects, like those obtained by Denton, of a small size; excepting, indeed, dipterous larve, which were found in quite incredible numbers, square rods of stone near the ligher levels being absolutely covered with them in multitudes of places.

The insects obtsined by Mr. Denton and Dr. White at these localities are all included in the present volume, but no reference is made to those found by myself in 1889. The age of the deposit can hardly be said to be as yet deiermined, but the leaves found by Mr. Denton (presumably at "Fossil Cañon"> were regarded by Mr. Lesquereux as more certainly synchronous with those of Florissant than with those of the Green River beds, and in any event all three are of very nearly the same age.

Green River, Wyoming.-All the insects described in this volume from Green River were obtained at a single spot, next what is known as the FishCut, where the railway cuts through the rocks, about three or four kilometers west of the crossing of Green River. Even here they have been found only within the compass of one or two square meters of ground, and by repeated visits this "pocket" has now been entirely chipped away. There is no doubt that other equally prolific pockets will be found in the same immediate vicinity, especially in the more favorable exposures east of the river, as one such was found during the summer of 1889 . It is by no means improbable that the beds at this locality and those at White River may prove to belong to the floor of one and the same Tertiary lake to which King gave the name of Gosinte Lake. About one linndred and fifty different insects have been found here, besides many others not yet described. They are most commonly Coleoptera, this order being represented by fully one-third of the species. Hemiptera and Diptera come next with alnost equal representation, or about twenty-three per cent each. Next come the Hymnoptera with eight per cent. The other orders are about equally and meagerly represented, the Lepidoptera not at all.

Fossil, Wyoming.-A few species of insects have been found in the bluffs facing the town of Fossil at the head of Twin Creek, a tributary of Bear River, bluffs which are famons for the immense number of fossil fish they have furnished. As a rule the insects are scarce, and, like the fish, belong to a very limited number of species, in this case mostly Coleoptera and Diptera. In the present work only two or three are mentioned.

Horse Creek, Wyominy.-At a point three miles south of this creek, which empties into the Green River from the west near its source, and about two miles west of Green River, a thin, hard layer of white limestone was found by Dr. A. C. Peale covered with petrified larval cases of caddisflies, which are described below under the name of Indusia calculosa.

Quesnel, British Columbia.-The discovery of the different localities for fossil insects in British Columbia by the Geological Survey of Canada has been due entirely to the investigations of Dr. George M. Daw'on. On the left bank of the Fraser River, at the town of Quesnel, he discovered a series of clays, sands, and gravels, their upturned edges covered by the valley deposits, in one of which series (a stratum of fire-clay eight or nine inches thick) insects and plants were found, the beds being exposed on the river bank at a low stage of the water. Nearly twenty species of plants were met with, mostly of apetalous families in the neighborhood of the Cupuliferæ, such as the beech, walnut, oak, birch, and poplar, and a considerable number of insects. Such of these as are included in the present report consist of twenty-five species, nearly all Hymenoptera and Diptera, and especially the latter, and, what is very unusual, only a single beetle. Sir Williain Dawson, who determined the plants, regarded theni as to a great extent identical with those from the Miocene of Alaska, but adds: "Whether the age of these beds is Miocene or somewhat older may, however, adınit of doubt." Apart from an uncharacteristic egg-cocoon of a spider, none of the insect remains can be regarded as identical with any found elsewhere.

Nicola, North Similkameen, and Nine Mile Creek, British Columbia.-The other localities at which remains of insects have been found, thougli in smaller numbers, lie at no great distance apart to the south of Quesnel and south of the Canadian Pacific Railway, near our own border. One of these localities is upon the Nicola River, two miles above its junction with the Coldwater, at the base of a series of beds containing coal. Another is on the North Fork of the Similkameen River, three miles from its mouth; the beds here, on the bank of the river, "include a layer of lignite about a foot thick, which rests in black, rather earthy, carbonaceous clays, and is overlain by fifteen feet or more of very thinly bedded almost paper-like yellow gray siliceous shales," which contain plants and insects. The third is on Nine Mile Creek. flowing into Whipsaw Creek, a tributary of the Similka-
meen, where a small section of hard laminated clays occurs with layers of softer arenaceous elay. Seven speries were obtained from the first-named locality, five from the second, and four from the third. The Nicola locality is remarkable for sielding only Coleoptera; from Nine Mile Creek come three species of Colcoptera and one of Hemiptera; while the Similkameen locality, like Quesnel, affords us Hymenoptera, Dipter ${ }_{\text {, }}$, and Hemipterathree species of the last-but no Coleoptera. There can be no doubt, Dr. Dawson informs me, "that the specimens from the North Similkameen and Nine Milr Creek represent deposits in different portions of a single lake. A silicifying spring, probably thermai, must, however, have entered the lake near the tirst-named place, as evidenced by the character of some of the beds, in which fragments of plants, with a few fresh-water shells, have been preserved." The insects of each locality are specifically distinct from those of any of the others As to their age, Dr. Dawson, the only geologist who has studied them, remarks that we shall "probably err little in continuing to call the Tertiary deposits of the interior as a whole Miocene, and in correllating them with the beds attributed to tha same period to the southward in the basin lying east of the Sierra Nevada."

Scarburo, Ontario.-In the vicinity of Toronto, on the north shore of Lake Ontario, Mr. George J. Hinde has discovered vegetable and animal remains in thin seams in clay beds which he regards as interglacial, lying as they do upon a morainal till of a special character and overlain by till of another and quite distinct kind. Ilis account of the locality and the reasons for his conclusions $1, \cdots$ e been given by him in full. ${ }^{1}$ Among the material found by him was a considerable number of the elytra and other parts of beetles, an assemblage indeed larger than has ever before been found in such a deposit in any part of the world, and they are mostly in excellent condition. Twenty-nine species have been obtained, some of them in considerable numbers. Five families and fifteen genera are represented; they are largely Carabidæ, there being six or seven species each of Platynus and Pterostichus and species also of Patrobus, Bembidium, Loricera, and Elaphrus. The next family in importance is the Staphylinide, of which there are five genera, Geodromicus, Arpedium, Bledius, Oxyporus, and Lathrobium, each with a single species. The Hydrophilida are represented by Hydrochus and Helophorus, each with one species; and the Chrysomelidæ

[^7]by two species of Donacia. Finally, a species of Scoiytida must have made certain borings under the bark of juniper.

Most of these are described and figured in the present volume. Looking at them as a whole and noting the distribution of the species to which they seem to be most nearly related, they are plainly indigenous to the soil, but would perhaps be thonght to have come from a somewhat more northern locality than that in which they were found; not one of them can be referred to existing species, but the nearest allies of not a few of them are to be sought in the Lake Superior and Hudson Bay region, while the larger part are inhabitants of Canada and the northern United States, or the general district in which the deposit occurs. In no single i istance were any special affinities found with any characteristically southern forms, though several are most nearly allied to species found there as well as in the north. A few seem to be most uearly related to Pacific forms, such as the Elaphrus and one each of the srdcies of Platynus and Pterostichus. On the whole, the fanna las a boreal aspect, though by no means so decidedly boreal as one would anticipate under the circumstances.

Port Kennedy, Pennsyluania.-The only locality remaining to be noticed is Port Kennedy, in southeastern Pennsylvania, where the clays in the bone caves have furnished about a dozen species of Colsoptera, described by Dr. G. H. Horn, in 1876, but now first figured. His iescriptions are reprinted in the present work, with the results of my own study of the same material.

DESCRIPTIONS OF GENERA AND SPECIES.

MYRIAPODA Linné.

Myriapoda from the Tertiary rocks are almost unknown, a single species a little larger than ours lhaving been figured by Bertkau from Rott under the name of Iulus antiquus Heyden. Other species have been indicated. Serres, for instance, speaks of one found near Montpellier, allied to the living I. sabulosus, and this mention has been quoted by Meyer, Keferstein, and Geinitz. Hope also catalogues one from Aix, and Cotta mentions one, perhaps I. terrestris, from Tharand, Saxony, which is probably a recent inclosure, and is quoted by Brullé and Berendt. - Besides these diplopods Hope catalogues a Scolopendra from Aix, and Keferstein, on the authority of Aldrovandi, mentions a Scolopendra from Glarts, in Switzerland.

The Baltic amber, however, contains a considerable number of species, twenty diplopods having been recorded and most of them deseribed, belonging to the genera Craspedosoma (seven species), Polyxenus (five species), Iulus (four species); and Euzonus, Lophonotus, Blaniulus, and Polydesmus (one species each). The chilopods have a less number of species, fifteen, representing the genera Lithobius (eight species), Geophilus (three species), and Cermatia and Scolopendra (two species each). All these genera excepting Euzonus are represented among living forms.

The single species found in America belongs to the diplopods. (November, 1881.)

Order DIPLOPODA Gervais.

Family IULIDÆ Leach.

As in the case of the Rott species described by Bertkan, the form described below is only referred to the genus Iulus in a broad sense, its preservation being very defective. It is smaller than the European species.

IULUS Linné.

IUlus tellitster.
 Pl. 6, Fig. 15.

Iulus telluster Scudiler, Bult. U. S. Geol, Surv. Terr., vol. 4, 1878, p. 776.
The single specimen is so fragmentary that it ean only be referred to Iulus in a broad generic sense. The piece is composed of ten or twolve segments, probably from near the middle of the body, lying in a straight line and crushed, with no trace of any appendages. The segments appear to be composed of a short anterior and a larger posterior division, each independently and very slightly arched; the posterior division is about twice us long as the anterior, and each is transversely, regularly, and very finely striate, parallel to the anterior and posterior margins of the segments. The foramina can be detected on some of the segments, and by their aid the width of the body can be more accurately determined.

As crushed, the body is 2.3^{mm} brond, but its probable true width is 1.5^{mm}, while the segments nee each about 0.8^{mm} long; the fragment preserved measures 8.5 mm long.

Green River, Wyoming, one specimen, No. 154, F. C. A. Richardson.
The object represented on Pl. 12, Fig. 1, was at one time thought to be a myriapod and accordingly figured, but examination proved it to be the broken section of the cone of S ϵ quiia, not uncommonly found at Florissant.

ARACHNIDES Latreille.

Up to the present writing a little more than two humdred and fifty species of Arachinides have been described as found in 'Tertinry deposits. Of these about one hundred and ninety are true spiders, while the remainder are mostly Aemrina (thirty-seven species), Opiliones (eleven species), or Chernetidx (nine species). All but a single species, Armea columbie, described below, are from European beds, and nine-tenths of them are preservel to us in the Eocene amber. Were this means of restoring the ancient Tertiary fiuma unknown to us, our infornation at the present day vould be bused upon twenty-four species, although in addition to these half a dozen more are indicated by simple reference to genera or families. This number is already exceeded by those deseribed below from a single locality, Florissant alone having yielded more than thirty species. Whether we examine the American or European species preserved in stratified deposits we find an almost total absence of uny but true spiders or Araneides; in ench (including the one herewith figured) a single species of Acarina has been described, though a number of others are credited without description to European strata. In Prussian amber, on the contrary, though Araneides are vastly in the majority, the other groups of Arachnides form 27 per cent of the entire number of species, distributed mainly in the three groups mentioned above.

This greater proportion of true Araneides in Tertiary deposits, a proportion exaggerated at the present day, ean ser reely he well compared to what we find in the older deposits, from the extreme paucity of their remains in the latter. Brodie has found only a single species (whieh he considers a true araneid) in the sceondary stratia of England, and the European Jura has furnished merely half a dozen arachnids (nominal species, perhaps reducible to four), of which only a single one is referable to the Araneides, Hasseltides, considered one of the Agalenides by Weyenbergh. In the paleozoic formations, again, a dozen species are known, all but three of which have been considered scorpions, Phrynidæ or Chernetidæ, or else placed in their vieinity, while one of the other three has not been placed
by its describer among the true zpiders, lout manod Arthrolycosa only from its somewhut markod arameid features. The romaining twe aro comsidered by their deseribers as true araneides and seem to be the ouly trine preenrsors of this group known to us from the paleozoic rocks; the proportion therefore of the Armeides to other Arachuides is reversed between Paleozoic and Cenozoic times.

In the present volumes we are able to more than double the number of Arachnides (apart from the amber inclosures) which are hitherto known from 'Tertiary stratu, and, as we shall see further on, find some interesting points of comparison between the Enropean and American spider famm of Tortiary times. (February, 1881.)

Since the above was written the number of known Paleozoic Arachmides has greatly increased and a large proportion of them have been placed in a distinct order, Anthracomarti Karseh, with eight or ten genera. (October, 1889.)

In the classification of the remains of theso animals, from the alnost complete absence of such characteristic parts as the details of the structure of the ocelli and palpi, it has been inpossible to do much more than to indieate the probable affinities of the species to living types by means of the general resemb! nces which the form of the cephalothorax and abdomen and the relative length of the legs furnish. In a few instances these can hardly fail to furnish us with sufficiently clear evidence, while in others the reference is plainly open to . greater or less degree of doubt, which it is hoped future material will eventually extinguish.

Order ACARINA Nitzsch.

Acarina are by no means rare in Tertiary deposits, the group being better represented than any other Arachnides excepting the true spiders, and it is quite in keeping with this fact that the only arachnid yet discovered in the American strata not belonging to the Araneides should fall in this group. Yet the group is unrepresented even in Mesozoie strata, while the seorpions and their allies, nearly unknown in Tertiary beds, are proportionally abuadant in earlier times. The amber of the Baltic is particularly rich in Acarina, thirty-five species being recorded therefrom, while apart from the Araneides this gromp is almost if not quite the only one represented in the stratified deposits of Europe; feebly represented, indeed,
for we have only one species (referred to Limnocharen) described by Heyden from Rott; another from the same locality hased upon lenf-galls and called Phytoptus autiquas, and a third indiented meroly (Acarus) by Heer, as found at Oeningen. (November, 1881.)

Gourret has latterly described among the arachnids of 'Tertiary Aix a couple of genern of Acarina with one species enelh which he regards as belonging to the Trombirlida. (October, 1889.)

IXODES Latreille.

No fossil species have before been referred to this genus or anywhere near it. The nearest is Acarus, which is only distantly related, helonging indeed to a distinct subfanily. The species of Ixodes, like other ticks, bury themselves in the flesh of animals to suck their blood. (November, 1881.)

Ixodes tertiarius.

Pl. 6, Fig. 12.

Irodes tertiariwe Scudder, Zittel, Handb. d. Palzeont., I, Ii, 733, Fig. 906 (1885).
Although there are few definite salient points in the structure of the single specimen known, its general appearance and its size make it tolerably evident that it belongs to the Ixodide or Ricini and probably to Ixodes proper. The body is of a very regular obovate form, twice as long as broad, with a slight indication of a frontal shield of a triangular shape (not represented in the plate and perhaps illusory), formed by two sulcations meeting at right augles and terminating just within the front pair of legs on either side. The rostrum is not preserved, but the riglit palpus (poorly given on the plate) is slender and 0.2^{mm} long, or rather projects beyond the body to that amount. Nearly all the legs are present, but, the hinder legs of the left side lave been crowded out of place and appear on the right side below those which properly belong there, and which apparently are the upper four there seen. The legs are apparently complete, except the terminal appendages, as they all taper rather rapidly at the end, after the manner of ticks; they are stout, short, and of similar length, extending beyond the body by about the width of the latter.

Length of body, 3.5^{mm}; breadth of same, 1.755^{mm}.
Fish-Cut, Green River, Wyoming. Dr. A. S. Packard, No. 258.

Order ARANEIDES Latreille.

As stated above, by far the harger part of the fossil Arachides known are true spiders, about one humdred and ninety species having been descrihed from the Tertiary deposits of Europe, and more than thirty being added to the total list in this volume. These last are distributed amoug the larger groups as follows: Saltigradæ (ali Attides), three; Citigrada, none; Laterigrada (all true Thomisides), three; Territehurise, none; Tubitelarise (Igalenides, one; Drassides, five; Dysderides, two)=eight; Retitelarie (all Theridides), four; Orbitelaria (all Epeirides), fourteen = thirtytwo. By this it appears that nearly half are Epeirides, and that after these the Drassides are best represented. A compmrison of this result with the fossil spiders of Eurcpe is shown by the following table, in which the percentages of the groups represented are compared in each conntry with the total representatiou in each :

Percentages of graups of Tirtiary spiders in Europe and in America,

This shows that America is far the richer in Orbitelario, and Europe much better represented in Retitelarix, less but still considerably better in Laterigrade and Tubitelarie, while the Saltigrade have an almost equivalent representation in the two comutries.

If, however, we eliminate from the inquiry the species entombed in anber, and cempare ouly tho. 3 recovered from the roeks in which they have been preserved, we shall reach perhaps a more jast comparison, altl:ough the data will be far more meager, Ameriea with its thirty-two species being atually better represented than Europe with its twenty-two species, all belouging to the same five larger groups which are ropresented in America.

Peroontages of groupe of Tertiary spiders in Europe and America, caoluding those found in amber.

Saborders.	Porcentage.	
	Europe.	Amorica.
Baltigradse	0.5	9
Laterigradæ.	20	9
Tubitelaria	23	24
Retitelarim.	41	12
Orbitelariw.	14	44
	98.5	98

The excess of proportion in America of Orbitelarix is here nearly as great as is shown in the former table, but is not so great ns the now heightened proportion in Europe of Retitelariæ, while the Tubitelariæ are now the ones in which the proportion is similar in each, the Laterigradx the only one where the proportion remains nearly the same as before, and the Saltigradx are nearly lost siglt of in Europe, a single species being known.

If now we carry the analysis a little further we shall find more interesting relations, as will appear from the following table, in which all the groups represented in Europe are introduced, and both the total fauna and the species from the strata tabulated:

Number of epeoies of Tertiary spiders found in Europe and in America, by famitiee.

Suborders.	Families.	In Europe, inciuding those iu amber.	In Enrope, excludiog those in amber.	In America,
Salïgradx	Attides.......	14	1	3
	Eresoidæ	2	0	0
Citigradm..............	Lycпөоidm ...	2	0	0
Laterigradu............	Philodromin@ .	4	0	0
	Thomisides.	21	4	3
	Uncertain......	6	0	0
Territelaris............	Theraphosoide........	1	0	0
Tubitelarim	Dysderides.	14	0	1
	Drasilides	38	2	5
	Agalunides	12	3	2
	Hersilioidæ............	:	0	0
	Uncertain	2	0	0
Retitelarix............	Soytodoidæ.............	1	0	0
	Theridides	54	9	4
Orbitelarim.............	Epeirides..............	113	d	14

VOL XIII- 4

Here it appears at a glance that exactly the same groups are represented in the stratified deposits of Europe and America in every instance, excepting the Dysderides, which is unrepresented in Europe and has a single menioer in America. It also appears that only those groups which are represented abundantly in amber (and all of them) are also represented to some extent in the American fauna and (excepting, as before, the Dysderides) in the European rocks. Exception should perhaps be made for the European amber genus Archæa, the position of which in the Laterigradæ is uncertain, and of which Thorell says: "This genus may perhaps for the present best be taken as the type of a separate family" of Laterigradæ (European spiders, p. 232). Six species are known, and they are classed above as uncertain. The relation bronght out in this table is certainly striking, but it should be noticed at the same time that the Drassides and Theridides, and especially the latter, are enormously represented in the Baltic amber, and in comparison with them (though not by any means to the same extent.in comparison with the other groups) feebly represented in the stratifier deposits of Europe and America.

We may venture one further invcstigation, although little weight can be given to it from the meagerness of the data, viz, a cumparison of the percentage of representation of the different larger groups in the different horizons of Tertiary times in Europe with that of Florissant, where all the American species so far known have been found.

Peroentage of groupe of Tertiary spiders of Florissant, Colorado, compared with those of Europe.

Suborders.	Florjssant.	Amber and Aix; Ligurian (Oligocells).	Rott; Aquitanian (Lower Miocene).	Oeningon ; Tortonian (Upper Miocene).
Saltigradix	9	9	0	0
Laterigrada.......	9	16	13	30
Tubitelarire.	24	37	25	30
Retitelarim.	12	28	37	30
Orbitelariæ.	44	8	25	10
	98	98	100	100

As this table shows so great a difference between the percentage of representation in the Oligocene and Lower Miocene of Europe that it can scarcely prove very instrnctive, it still seems to indicate a greater difference between the Florissant deposits and thoso of Oeningen than between the
former and either of the others; and although the proportionate numbers of Tubitelarix and Orbitelarix of Florissant and especially of the former group are more nearly like those of Rott, the representation of the groups in general allies Florissant on the whole with the Oligocene rather than with the Lower Miocene of Europe.

Of extinct genera there have certainly been proposed a very large num1 r for the European Araneidx, more than half the genera to which the species have been referred having been described as new and peculiar to Tertiary times; these genera include about two-fifths of the species. Among the genera are some remarkable forms, such as Archæa and Mizalia, each of which is considered by Thorell and others as representing a distinct family. ${ }^{1}$ Two only of the thirteen genera to which the American species are referred are described as new, and to them are referred seven of the thirty-two species. Other genera, not before recognized in a fossil state, but here recorded from American strata, are Titanœeca, Tetragnatha, and Nephila. To enter into details, seventy-one genera of Araneidx have been described from the Tertiaries, sixty-six from Europe, end thirteen (below) from America, eight being common to both. Of these seventy-one genera thirtyseven are accounted extinct, thirty-five from Europe, and two from America, none of these being found in both countries. The European genera are, as may be supposed, largely composed of amber species, no less than fiftytwo, including thirty-two extinct genera, being confined to amier deposits, besides others which they possess in common with the stratified beds.

If it be asked what indications the fossil spiders of Florissant give as to the climate of that district in Tertiary times, there is but one answer which can be given: that the present distribution of their allus certainly points to a considerably warmer climate than now, a climate which may perlaps best be compared to the middle zone of our Southern States. The known living species of the genera to which they belong are in general credited to regions like Georgia in this country and the two shores of the Mediterranean in Europe; but our own species are so little known that nothing can be said very definitely upon their inmediate relationship with exotic or indigenous forms. The presence of species of Theridium, Linyphin, Tethneus, and Epeira, including two-fifths of the species, has no special significance, but Thomisus, Segestrin, Clubiona, Anyphæna, and Titanœeca, and especially

[^8]Parattus, 'Tetragnatha, and Nephila certainly present an ensemble the indications of whean not be overlooked. (November, 1881.)

Since the above was written a notable addition to our knowledge of the Arachnides of Tertiary Europe has been made by Gourret in a paper on those of Aix, in which among others eighteen species of Araneides are described, including Eresoide (t:vo species), Lycosoidæ (two species), Theraphosoidæ (one species), Dysderides (one species), Hersilioidæ (two species), Urocteoidæ (two species), Enyoidæ (one species), none of which families had before been found in European rocks, and the last two not even in amber. (0 +ober, 1889.)

In the measurements of legs in the Araneides the length of the femur is the distance of the apex of the femur beyond the margin of the cephatothorax, no account being taken of the coxa, unless it is specially mentioned; so too the first joint of the tarsus, which according to arachnologists is consolidated with the tibia, is here regarded (in the measurements) as a prort of the tibia, and the second and third joints of the tarsi are alone ineasured as tarsi, except when, as in Tethnens hentzii and Thomisus defossus, separate account is taken of them.

Suborder SALTIGRADE Latreille.

As in the north temperate zone to-day, so in Tertiary times, the two families of Saltigradæ, Attides and Eresoidæ, are very unequally represented in species, only two fossil species of the latter fumily being known against seventeen of the former. The two Eresoidæ are amber species; of the Attides, thirteen are knowi from amber, one from Aix in Provence, and three from Flor:ssant, Colorado, described below. ${ }^{\text {© }}$ (November, 1881.)

Since this was written Gourret has described one species of each of these two families from Aix.

Family ATTIDES Koch.

The fossil species of this family of jumping spiders hitherto recorded are all confined to the Prissian amber excepting one, a species referred to a new genus, Attoides, described by Brongniart from Aix. The auber species are referred to four genera, Euophrys (one), Gorgopis (five), Propetes (five), and Steneattus (one), besides an undescribed species referred by Menge to Salticus. The species of Gorgopis were formerly referred to Phidippus, a genus richly represented to-day in North America, and it
is therefore interesting to notise that the three species described below and referred to a new and aberrant genus of the family, Parattus, are more nearly related to Gorgopis than apparently to any other known, and that the amber genus contains nearly one-half of the species of this fanily preserved in Europe from Oligocene times. The species of this family are spread all over the world, both in trepical and temperate regions, but seem to be comparatively rare in Africa south of the desert. (November, 1881.)

Gourret has added another species from Aix, referred to an extinct genus, Attopsis.

PARATTUS, gen. nov. ($\pi \dot{\alpha} \rho o s, \ddot{\alpha} \tau \tau \omega)$.

The three species here referred to the Attoidx seem to belong to a distinct genus allied to Gorgopis of the Prussian amber, in that the posterior eyes arc placed far behind the others, but differing markedly from that, as from all members of the family, so far as I know, in two points: (1) The exterior eyes of the first row are placed a little in advance of the median pair of the same row, and (2), more particularly, they are as large as or scarcely smaller than these median eyes. The anterior row, therefore, is formed of four very large, nearly equal and nearly equidistant eyes, arranged in a gentle curve opening forward; the eyes of the second row, so far as known, are minute and situated within and behind and in close proximity to the median eyes of the anterior row, while those of the third row, so far as known, are of medium size, placed at a greater or less distance apart in the middle of the cephalothorax, as in the American genus Phidippus and the amber Gorgopis. The American genus Phidippus is confined to the warmer parts of the continent and to a large extent to the tropics, so that the presence of this somewhat allied genus indicates, se far as such analogy indicates anything, a warmer climate in early times for Florissant.

Table of the dipecies of Parattus.
Ceplialothorax and abdomen well rounded, with convex sides \qquad 1. P. reaurrectus. Cephalothorax quadrate, with nearly streight sides.

Simall species; cephalothorax less than twice as long as broad; abdomen quadrate..2. P.evoeatus. Large species; cephalothorax more than twice as leng as broad; abdomen round ... 3. P. latitatus.

1. Parattus resurrectus.

Pl. 11, Fig. 26 (9 १).
Cephalothorax broad oval, subquadrate, the sides gently convex, the two ends broadly rounded; front regularly semicircular; the two middle eyes of the anterior row very large, circular, situated just behind the front edge; the lateral eyes of the same row nearly or quite as large, circular,
forming with these a very slightly curved row, opening forwards, of equidistant eyes. Eyes of second row from one-eighth to one-tenth the size of those of the first row, situated behind and within the middle anterior pair, so that lines drawn through the middle of the large and small ones would meet in a right angle behind the small ones and leave them distant from each other by about their own diameter; the outer edge of either of the small ones is behind the inner edge of one of the large ones; the eyes of the third row are not discernible on either of the specimens, and on one the lateral eyes, on the other the eyes of the second row, can not be seen.

Palpi of the male with the tip very large, conchiform, as if made of three whorls, the middle twice as large as the other two together and subglobose, the terminal small and globular. Only one palpus is exposed, but the other may partially be seen through the cephalothorax. Abdomen short ovate, somewhat larger than the cephalothorax, being somewhat longer and slightly broader, subacuminate at tip, with a pair of short styles darkest in a broad mediodorsal band. Legs moderately long and slender, subequal, not greatly tapering, furuished throughout and rather abundantly with generally alternate, divergent, long, and tapering spines, fully as long as the width of the joint from which they rise.

Length of body, 4.85^{mm}; cephalothorax, $2^{\text {mm }}$; abdomen, 2.85^{mm}; width of cephalothorax, $1 . .^{\mathrm{mm}}$; abdomen, 1.7^{mm}; longer axis of iniddle section of palpal swelling, 0.8^{mm}; length of whole swelling, $1.45^{\text {mw }}$; length of first pair of legs, 5.5^{mm}; second pair, 5.5^{mm}; third pair, 4^{mm} (() ; fourth pair, 4.75^{mm}. Excepting in the palp the measurements are those of the female.

One of the specimens is a male; the other, the palpi of which are not preserved, is judged to be a female merely from its variation from the other in its larger abdomen. The species is readily distinguished from th, others by the rounded outline of the cephalothorax both on the sides and on the strongly convex front.

Florissant. One d, No. 1081; one 9 , Nos. 8282 and 8459.

2. Parattus evocatus.

Cephalothorax subquadrate, somewhat less than twice as long as broad, slightly broadest posteriorly, with straight, searcely divergent sides; anterior and posterior margins broadly convex, the lateral angles well rounded off; eyes of anterior row large, round, equal, equidistant, the middle ones at less than their own diameter from the front edge and from
each other, the whole arranged in a slightly curving row opening forward; eyes of second row indistinguishable; those of third row rounded oval, obliquely placed, situated each in the center of either lateral half of the cephalothorax. Abdomen slightly longer than the cephalothorax, of the same width, with nearly straight. sides, rounded off anteriorly and tapering to a subangulate apex on the posterior third or fourth. The cephalothorax is blackish in the middle posteriorly, and all the abdomen but the terminal tapering part is nearly black. Legs very poorly and imperfectly preserved, but evidently tolerably stout and furnished $w^{\text {th }}$ h abundant, divergent, tapering, slender spines.

Length of body, 6.65^{mm}; cephalothorax, 3^{mm}; abdomen, 3.65^{mm}; breadth of cephalothorax anteriorly, 1.8^{mm}; posteriorly, 2^{mm}; abdomen, 1.5^{mm}; length of first pair of legs, 7.5^{mm}.

The specimen is presumed to be a female from some faint traces of a slender palpus. The squareness of the form distinguishes this from the preceding species; from P. latitatus it differs by its smaller size and proportionally shorter cephalothorax as well as by the more rounded front of the latter.

Florissant. One q, No. 12005.

3. Parattus latitatus.

Cephalothorax quadrate, nearly three times as long as broad, equal, with straight and parallel sides, the extreme anterior and posterior angles rounded off; front nearly straight between the rounded angles. Eyes of anterior row large, equal, circular, subequidistant, the middle pair situated their own diameter behind the front, the lateral ones at the front, forming thus a curving series opening forward; eyes of second row not discernible in the single specimen; those of third row also doubtful, but apparently represented by a pair of spots considerably smaller than the anterior eyes, slightly nearer together than the middle pair and situated a little in front of the middle. Across the middle of the cephalothorax, or rather a little behind it, is a straight, raised, black line, in front of which the cephalothorax is black in a very large round patch. Abdomen almost globular, shorter than the cephalothorax but much broader, covered profusely with dusky and blackish hairs. Legs moderately slender and long, armed sparsely with very long and slender tapering spines longer than the breadth of the femora.

Length of body, 7.65^{mm}; cephalothorax, 4.2^{mm}; abdomen, 3.5^{mm}; breadth of cephalothorax, 1.7^{mm}; abdomen, 3.2^{mm}.

The legs are imperfect in the single specimen known, and as no palpi are preserved the sex is uncertain. The species differs from both the preceding in its much larger size; from P. resurrectus also in its very quadrate cephalothorax, and from P. evocatus in its globular abdomen.

Florissant, No. 9823.

Suborder LATERIGRAD压 Thorell.

The two families of crevice-inhabiting crab-spiders which have been found fossil in Tertiary doposits, Thomisides and Philodrominæ, are both (the former particularly) common at the present day in Europe and North America. The fossil species beloug mostly to the former, only four species of Philodromine having been recorded, all from amber, while twcaty-one Thomisides are known, not inchuding those described below, all of which also fall here. In this statement the strange amber genus Arehæa is not included, since, though placed by both Menge and Thorell in this group, it differs strikingly from the other members and should form a family group apart from them, having no known affinities with any of the species from the stratified deposits of Europe or America. (November, 1881.)

Two additional species of Thomisides have lately been described from Aix by Gourret. (October, 1889.)

Family THOMISIDES Sundevall.

All but four of the fossil Thomisides described up to the present time come from amber and represent the genora Athera (one species), Clythia (five species), Ocypete (four species), Opisthophylax (one species), Syphax (five species), and Thomisus (one species). Thomisus is also represented, with Xysticus, by two species each in the stratified deposits of Oeningen and Rott, the latter locality furnishing one Xysticus, the former the remaining species. The species described below appear pretty certainly to fall in the Thomisides proper and probably also in the vicinity of Thomisus or Xysticus. The family is widely distributed in all parts of the world. (November, 1881.)

The two species recently described by Gourret from Aix are regarded as types of extinct genera which he terms Amphithomisus and Pseudothomisus. (October, 1889.)

THOMISUS Walckenaer.

Three species of Thomisides occur in the Tertiaries of Colorado, and apparently all of them (one is mutilated) belong to the true Thomisine, in which the hinder two pairs of legs are much weaker than the others. As the cephalothorax is in all cases poorly preserved or lost, it is impossible to speak at all definitely of their generic relations, and therefore I have placed all of them in the typical genus Thomisus, from which the family derives its name, and which, or Xysticus, it near ally, they closely resemble in general appearance. In all the abdomen is nearly round. It is interesting to find, as observed above, that the species of this family from the stratified deposits of the European Tertiaries have also been placed in Thomisus and Xysticus, though none of them appear to be very closely allied to our species.

This genus is widely spread, but nearly all the species belong to the warm temperate regions of Europe and North America. (November, 1881.)

Table of the species of Thomisus.
Tibise of hinder pairs of legs broader at tip than at hase, and much broader than tho tarsi...1. T. resutus. Tibue of hinder pairs of legs of equal width throughout.

Small species; femora of first pair of lega half as long again as those of second pair ; tersi as broad as the tibiw... 2. T. disjunctus.
Large species; femora of first and second pairs of legs of about equal ieugth; last tarsal joint sienderer thàn the tiblim. . 3. T. defoseus.

1. Thomisus resutus.

$$
\text { Pl. 11, Fig. } 13 .
$$

Abdomen plump, short ovate, about a fourth longer again than broad, the base broad, the sides well rounded, the hinder extremity full, with the extreme apex squarely truncate. Only a fragment of the cephalothorax remains, showing the broad attachment of the abdomen. The two hinder pairs of legs only are preserved, showing limbs of considerable length, bent forward, the femora nearly as long as the abdomen, longer than the tibix and flatiened, largest in the middle; the tibix are straight, completely consolicated with the first tarsal joint as in spiders generally, also flattened, slender at base and gradually though slightly increasing in size apically, a peculiarity which is not shown in the plate; the tarsi are much slenderer, not flattened, and longer than the tibie, the first joint alone being nearly as
long as they; the whole leg is devoid of armature or clothing and none is perceptible on the abdomen.

Length of abdomen, 3^{mm}; breadth, 2.5^{mm}; length of third pair of legs, 5.3^{mm}; its femora, 1.85^{mm}; tibie, 1.65^{mm}; tarsi, 1.8^{mm}; first joint of same, 1.2^{mm}; second joint, 0.6^{mm}; fourth pair of legs, 7.45^{mm}; its femora, 2.75^{mm}; width of same, 0.5^{mm}; its tibix, 1.5^{mm}; width of same at base, 0.25^{mm}; at tip, 0.4^{mm}; its tarsi, 3.2^{mrr}; width of same, 0.1^{mm}; length of first joint, 2^{mm}; second joint, 1.2^{mm}.

A single specimen is preserved, in which all nnterior to the two hinder pairs of legs is lost. The species is readily distinguished from either of those here described by the unequal width of the tibio, as well as for the disparity in width between the tibix and tarsi. As the front legs are wanting, this may not so properly be referable as the others to the Thomisides rather than the Philodromino.

Florissant. Nos. 5502 and 7521.

2. Thomisus disuunctus. .

PI. 11, Fig. 9.

Cephalothorax obscure in both specimens, and apparently preceded by a slender beak, more than half as long as the abdomen and divided into two lateral halves closely united; they seem to be a pair of elongated cheliceres, but are poorly preserved in both cases. Abdomen rounded, short oval, about a fourth longer than broad, with both ends equally rounded. Legs long and slender, the two front pairs longer than the hinder two, the first also considerably longer than the second; the femora are long and slender (the front pair about as long as the abdomen), flattened and tapering at either end; the tibie and first tarsal joint are completely consolidated into a single piece, so that the line of demarkation can not be seen, and are very slender, equal, as long as the femora; the other tarsal joints are together less than half as long as the previous member and scarcely slenderer than it, terminating in a slightly curved delicately pointed claw as long as the width of the tarsus.

Length of abdomen, 1.75^{mm}; breadth, 1.45^{mm}; length of first pair of legs, 4.2^{mm}; its femur, 1.8^{mm}; tibia, 1.7^{mm}; tarsus, 0.7^{mm}; second pair, 2.85^{mm}; femur, 1.2^{mm}; tibia, 1.15^{mm}; tarsus, 0.5^{mm}; tibia of third pair, 1.05^{mm}; tarsus, 0.4^{mm}; fourth pair, 2.2^{mm}; femur, 1^{mm}; tibia, 0.8^{mm}; tarsus, 0.4^{mm}.

The sex of both specimens is uncertain. The species is readily distinguished from the others by its small size, slender and long legs, and the complete consolidation of the tibia and first tarsal joint.

Florissant. Nos. 9677, 10377.

3. Thomisus defossus.

Pl. 11, Fig. 23, ${ }^{\text {s. }}$.
Cephalothorax bent at a strong angle with the abdomen and perhaps distorted in the single specimen known, but as preserved it is of an ovai shape, slenderer than the abdomen, but not much smaller, half as long again as broad, similarly and fully rounded at either end, the sides not strongly convex; it appears to have a median trunsverse constriction and incision. Nothing can be made out of the eyes, but a single large, black, subcircular, palpal swelling (represented of the same tint with the rest and merged with the ceplialothorax on the plate) lies bordering the middle of the front, a little broader than long. Abdomen very brcad ovate, not more than a third to a fourth longer than broad, the base slightly broadest and broadly rounded, the apex similarly rounded and the sides between the well-rounded corners nearly straight; a faint separation into three or four segments can also be seen, and the surface is sparsely covered with minute short black hairs. Front pairs of legs much larger than the hinder, showing that the species is one of the true Thomisina, the femora large, swollen in the middle and depressed, the front pairs much longer than, the hinder pairs nearly as long as, the abdomen; the tibix proper are very distinctly separated from the first joint of tarsi (in the other species it is reckoned with them in the measurements), excepting on the hindmost legs having a distinct oval form of their own, about half as long again as broad; the first joint of the tarsi is only a little shorter than the femora (on these same legs) and with the tibia longer than the femora; it is armed sparingly with long and slender recumbent spines; the second and third joints of the tarsi are subequal, together shorter than the first joint, and besides their sparse clothing of short fine black hairs the tip is armed with a single short blunt claw.

Length of ceplalothorax, 3.5^{mm}; breadth, 2.1^{mm}; length of abdomen, 4.2^{mm}; breadth, 2.7^{mm}; length of first pair of legs (as pisserved), 7.75^{mm}; its femora, 3.5^{mm}; tibia (proper), 1.1^{mm}; (true) first joint of tarsi, 2.4^{mm}; second joint (as preserved), $1^{\text {mm }}$; fenmora of second pair of legs, 3^{mm}; third pair of
legs, 7.15^{mm}; its femora, 2.6^{mm}; its tibia (proper), 0.8^{mm}; (true) first joint of tarsi, $2^{\text {m"n }}$; second joint, 1^{mmm}; third joint, $0.75^{\text {mum }}$; femora of fourth puir of legs, $3^{\text {num }}$; its tibia (proper), 1^{mm}; combined tibia and first joint of tarsi (as preserved), $3 \delta^{\mathrm{mm}}$.

This species is very readily separated from the others by its size, and undoubtedly belongs to it genus distinet from them; the speciulization of the tibia proper is sufficient indication of this.

Florissint. One d, No. 4742.

Suborder TUBITELARI压Thorell.

This group of spiders, given to the construction of silken tubes above ground, is cousidered by Thorell as the most lowly organized of the Aruneides, and it is interesting to find that it is far better represented in the 'Tertiary deposits than any other, comprising more than one-third of the species now known and 36 per cent. of the fossil species of Europe. It is equally remakable for its diversity of form, all the families which are rich in genera in Europe at the present time being well represented in the Tertiaries of that comntry, and particularly in amber, both in genern and species; especially, as we shall see below, is this true of the Drassides, a group which is only surpassed in the number of its fossil species and the variety of its genera by the Theridides. It is, however, neither of these families, but the Epeirides, which predominates in the American Tertiaries, though next to these the Tubitelariee stand pre-eminent, and partionarly the family of Drassides, already mentioned. The same three famiities, viz, Dysderides, Drassides, and Agelenides, which are best represented in the European Tertiaries and are most abundant in species at the present day, are filso present in the American strata, the first by a single species, the second by five, and the last by two, in all one-fourth of the American Araneides. (November, 1881.)

Family DYSDERIDES Koch.

Three genera of this family, Dysdera (four species), Segestria (eight species), and Therea (two species), have been found in Prussian amber, and comprise all the fossil species known up to the present time. To this list we can add from America one species, belonging to the genus most richly represented in amber. So far as known the living species of this
family, which are not numerons, are almost exclusively confined to the Europenn fauna (especially the Mediterranean district) and to South America. (November, 1881.)

Gourret las recently described a species of this fumily from Aix, the first known from the European rocks; it is referred to an extinct genus, Prodysdera. (October, 1889.)

SEGESTRIA Latreille.

A single species is referable to this genus, and with little doubt, as it bears a striking resomblance to the living S. senoculata (Linu.) of Europe. Eight species of the genns have been foumd in the European Tertiaries, all from the amber of the Baltic, and two others are reported as known to Menge from the same source. All the deseribed amber species are smaller than the American species, and have longer legs and more elongated cephalothorux, being evidently more nearly related to one another than to the American form. The living species of the genus are found in southern Europe, northern Africa, and C^{1} ili, with a single one in New Zealand. A warm. temperate climate is therefore indicated. (November, 1881.)

Segestria secessa.

$$
\text { Pl. 11, Fig. } 28 \text { (\&). }
$$

Female.-Cephalothorax short, rounded ovate, about one-fourth longer than broad, with no distinction of cephalic and thomeic areas, the front broadly rounded, obscure, with no trace of eyes. Mandibles very stout, tapering, rounded at the tip, half as long again as broad, half as long as the cephalothorax, and together as broad at base as the front of the cephalothorax. Palpi slender, longer than the cephalothorax. Abdomen rather long ovate, about twice as long as the cephalothorax, aad a little broader, broadest in the middle, tapering only a little toward the base, considerably toward the acuminate tip. Whole body of an almost uniformly dark color. Legs subequal, moderately long, and pretty slender, tapering a little only, the tibix and tarsi furnished above with lateral rows of very long tapering spines which do aot diverge, but lie along the sides base to tip.

Length of body, 9.5^{mm}; cephalothorax, 2.75^{mm}; abdomen. 5.25^{mm}; breadth of cephalothorax, 2.25^{mm}; abdomen, $\mathbf{2 . 6 5 { } ^ { \mathrm { mm } } \text { ; length of cheliceres, }}$
1.5^{mm}; extent of palpi beyond corselet, 3.5^{mm}; length of first pair of legs, 10^{mm}; its femora, 3^{mm}; tibie, 1.5^{mm}; tarsi, 5.5^{mm}; second pair, 9.5^{mm}; femora and tibix, 3.75^{mm}; tarsi, 5.75^{mm}; third pair, $\mathrm{n}^{\mathrm{m}} 6^{\mathrm{ma}}$; femora and tibie, 2.6^{ma}; tarsi, 4^{mm}; fourth pair, 10.2^{mm}; \{emora, 2.4^{mm}; tibix, 2^{mm}; tarsi, 5.8^{mm}.

Florissint. 'Two 7 , Nos. 205, and 1.806 and 1.818 of the Princeton col . lections.

Family DR.ASSīDES Sundevall.

This family is richly represented in '?ertiary species; indeed, excepting Thorididns, more richly than any other family of Araneides, being represeniad i.i. Europe by the genera Anatone (three species), Clubiona (eight species), Macaria (five species), Melanophera (five species), Pythonissa (ton species), and Sosybius (two species), as well as by one species each of Anypheena, Drassus, Erithus, Heteromma, and Idmonia. Every one of these are amber species, excepting one Clubiona and one Macaria from Oeninger. Our own fauna has besides this yielded four species of Clubiona and one of Anyphelia, both genera represented in amber, and one also at Oeningen. The present distribution of the species of this family is over the whole world, but the borders of the Meiliterranean, eastern Europe, and western South Americ.. appear to be far the most richly represented. Some of the genera are confined to one or the other of these regions and nearly all to warm temperate regions. (November, 1881.)

CLUBIONA Latreille.

A number of species appear to fall here, although it is difficult to tell whether they should not rather be referred to the lycosoid genus Dolomedes or its vicinity, so uncertain are the clews we have to their real position; until more satisfictory specimens can be obtained they may be placed here, the more so as the species all bear some resemblance to the amber spiders referred to the same gentis, \mathbf{C}. eversa to C. tomentosa, C. arcana to C. sericea and C. lanata, C. latebrosa to C. attenuata, and C. ostentata to C. microphthalma. The Oeningen species seems to be very different, with its rounded abdomen. Very few genera of spiders are so richly endowed with fossil species as this, Theridium indeed being the only one which surpasses it, and next to it comes Pythonissa, a genus of the same famil; as this. The genus is widely spread in modern times. A few species are common throughout the greater part of Europe, others are confined to the Mediter-
ranean region, a very fow are found in the East Indies, and a very large number are reported from Chili; the genus is therefore mostly confined to warm temperate regions. (November, 1881.)

Table of the species of Clubiona.
Cephalothorax oblong oval, nearly or more than one-half longer than broad.
Last palpal jolut of malo large; abdomen about equally rounded anteriorly and posteriorly, half as long again ns the eephnlothornx .. C. eversa.
Last palpal joint of malesinall; abdomeu taperiug posteriorly and but little louger than the cept lothorax. ..3. C. latebr
Cephalothorax roundish oval, only oue-fuurth or one-third longer than broad.
More than five millimeters long; abdumen mech larger and longer thau cephalothorax .e. C. are ne.
Less than five millitmeters loug; abdomen scarcely larger and but little longer than cephale eth
\qquad

1. Clubiona eversa.

PI. 11, Fig. 22 (${ }^{\circ}$).
Male.-Cephalothorax obovate, equally rounded at the two ends, more than half as long again as broad; the cephalic and thoracic portions not separable; front bluntly romided, the eyes too porrly preserved to allow any statement concerning them. Palpi nearly as long as the cephalothorax, the last joint very large, ovate, subacuminate at tip, the longer diameter almost equaling the breadth of the cephalothorax. Abdomen ovate, half as long again and nearly half as broad again as the corselet, almost equally rounded at the two ends, but largest near the base and tapering slightly more behind than in front. Whole body of a nearly uniform brown, but in one specimen the swollen palpal joint blackish. Legs moderately long, not very unequal, tapering, abundantly furnished with dark divergent spines, about as long as the width of the tibia.

Length of body, 5.2^{mun}; cephalothorax, 2.1^{mm}; abdomen, 3.1^{mm}; width of cephalothorax, 1.65^{mm}; abdomen, 2^{mm}; extension of palpi beyond corselet, 1.7^{mm}; longer diameter of last joint of same, 0.7^{mmm}; length of first pair of legs, 6.75^{mm}; its femora, 2.25^{mm}; tibise, 2^{mm}; tarsi, 2.5^{mm}; second pair, 6.75^{mm}; its femora, 2.3^{mm}; tibiæ, 2.2^{mm}; tarsi, 2.25^{mm}; third pair, 5.1^{mm}; its femora, 1.6^{mm}; tibie, 1.5^{mm}; tarsi, 2^{mm}; fourth pair, 6.6^{mm}; its femora, $2.1^{\mathrm{mm}} ;$ tibiæ, $2.2^{\mathrm{mm}} ;$ tarsi, 2.3^{mm}.

This species is not very far removed from the amber species, C. tomentosa, but is slightly larger than it und has a less tapering cephalothorax.

Florissant. Two §, Nos. 5944; 8551.

2．Clubiona arcana．

Pl．11，Fig． 4 （ δ ）．

Male．－Cephalothorax roundish oval，about one－third longer than broad， the cephalic and thoracic portions completely blended，the front in the single individual obscure with no trace of eyes．Cheliceres apparently pretty large，the palpi very long，longer than the prothorax，the last joint large and swollen，ovate，more than half as long again as broad，and black．Abdomen a little paler than the brownish cephalothorax，long ovate，considerably longer and somewhat broader than the cephalothorax．Legs not very long， tapering considerably，amply provided with more or less divergent slender spines as long as or slightly longer than the femora．

Female．－Cephalothorax ovate，about one－third longer than broad，the cephalic and thoracic portions completely blended．Palpi nearly or quite as long as the cephalothorax．Abdomen sometimes lighter than the cepha－ lothorax，long ovate，considerably longer and sometimes a little broader than it．Legs as in the male，the spines perhaps a little shorter，and on the tarsi arranged to a certain extent in rows，not noticeable on the male．

Length of body，\＆ $5.25^{\mathrm{mm}}, ~ \& 6.65^{\mathrm{mm}}$ ；of cephalothorax，$\delta 1.75^{\mathrm{mm}}$ ，\＆ 2.15^{mm} ；of abdomen，ot $3.5^{\mathrm{mm}}, q 4.5^{\mathrm{mm}}$ ；breadth of cephalothorax，$\delta 1.3^{\mathrm{mm}}$ ，q 1.4^{mm} ；of abdomen，$\delta 1.4^{\mathrm{mm}}, ~ \& 1.75^{\mathrm{mm}}$ ；extent of palpi beyond cephalotho－ rax，$\delta^{\circ} 2^{\mathrm{mm}}$ ，\＆ 2^{mm} ；longer diameter of last palpal joint，$\delta 1.15^{\mathrm{mm}}$ ，shorter diameter，$\delta 0.5^{\mathrm{nm}}$ ；length of first pair of legs，$\delta 7.5^{\mathrm{mm}}, ~ ¢ 6.75^{\mathrm{mm}}$ ；its femora， \＆ 2.05^{mm} ，\＆ 2.4^{mm} ；tibiæ，o 2.9^{mm} ，¢ 2.35^{mm} ：tarsi，$\% 2.55^{\mathrm{mm}}$ ，¢ 2^{mm} ；second
 tarsi，九 2.35^{mm} ，ㅇ 2.15^{mm} ；third pair，九 5.35^{mm} ，ㅇ 5.5^{mm} ；its femora，ठ 1.35^{mm} ，ㅇ 1.8^{mm} ；tibiæ，九 $2^{\mathrm{mm}}, ~$ ㄱ 1.85^{mm} ；tarsi，九 $2^{\mathrm{mm}}, \nrightarrow 1.85^{\mathrm{mm}}$ ；fourth pair，九 7.75^{mm} ， ¢ 8.3^{mm} ；its femora，ठ 2.15^{mm} ，¢ 3^{mm} ；tibiæ，九 2.6^{mm} ，$¢ 2.55^{\mathrm{mm}}$ ；tarsi，o九 3^{mm} ， ¢ $\mathbf{2 . 7 5}{ }^{\mathrm{mm}}$ ．

This species agrees very well in size with C．eversa（only males of course compared），or is slightly smaller，and the legs if anything a little longer；the cephalothorax is rounder and the palpal swelling much more elongated．It is somewhat like both C．sericea and C．lanata of the Prussian amber，but is somewhat smaller and has longer legs than they．

Florissant．One δ ，No．2831；three \uparrow ，Nos．3253，7087，8082，besides a q from the Princeton collection，Nos． 1.807 and 1.819 ．

3. Clubiona latebrosa.

$$
\text { Pl. 11, Fig. 18 (} \delta) .
$$

Male.-Cephalothorax oval, largest behind the middle, tapering considerably at either eud, with no distinction in outline between the cephalic and thoracic portions; front obscure with no eyes preserved. Cheliceres pretty large. Palpi very long, alnost as long as the cephalothorax, terminal joint moderately stout, olpyriform. Abdomen paler than the cephalothorax, much larger than it by reason of its greater breadth, but only about ouefourth longer, largest near the base, tapering apically to a blunt tip, its basal two-thirds covered sparsely with long, stout, dark-tipped, frintly clubbed hairs. Legs long and slender, subequal, the femora and tibie furuished not very abundantly with moderately long, delicately tapering, very finely pointed, slightly divergent spines.

Length of body, 9.1^{mm}; cephalothorax, 4^{mm}; abdomen, 5.1^{mm}; breadth of cephalotho"ax, 1.6^{mm}; abdomen, $2 . \mathbf{6}^{\mathrm{mm}}$; extension of palpi beyond front of cephalothorax, 3^{mm}; length of first pair of legs, 8.75^{mm}; second pair, 11^{mm}; third pair, 9^{mm}; fourth pair, $\mathcal{E} .5^{\mathrm{mm}}$.

This species differs from all the others here described in its tapering abdomen and its proportionally considerably longer legs; the palpal swelling is also slenderer than usual. In its tapering abdomen as well as in other features it comes pretty near the amber species, C. attenuata, being also of the same size; it differs from it in its longer legs.

Florissant. One ठ ${ }^{\circ}$, No. 6492.

4. Clubiona ostentata.

$$
\text { PI. 11, Fig. } 24 \text { (} \delta \text {). }
$$

Malc.-Cephalothorax broad oval, about one-hialf longer than broad, well rounded, with no distinction between cephalic and thoracic portions; front well rounded, but too poorly preserved to show any eyes. Cheliceres large. Palpi very long, fully as long as the cephalothorax. The apical joint very stout, obpyriform, being largest at some distance beyond the middle, beyond rapidly tapering to an obtuse angle; it is blackish and bears within its apical two-thirds a stout ribbon bent in the middle at less than a right angle, the bend broadly curved, and the apical half tapering to a point which extends just beyond the margin of the swolling. Abdomen only a little

$$
\text { voL xill- } 5
$$

larger than the cephalothorax, ovate, largest in the middle, tapering almost equally in either direction, the apex slightly angled, the surface very sparsely clothed with long, extremeiy delicate, tapering hairs. Legs moderately long, delicately tapering, sparsely furnished with scarcely divergent spines about as long as the diameter of the joint on which they are seated

Female--The single specimen is rather poorly preserved, hardly admitting of description. It is stouter than the male. The cephalothorax appears to be roundish quadrate, broadest behind, scarcely longer than broad, the hind margin very broadly, the front sonewhat narrowly, convex. The abdomen is somewhat larger than the cephalothorax, but only a little longer, broadest anteriorly, pretty well rounded behind. Legs much as in the male, but with slight traces of spinus.

Length of body, $\delta 5.4^{\mathrm{mm}}$, \& 4.75^{mm}; cephalothorax, $\delta 2.65^{\mathrm{mm}}$, \& 2.25^{mm}; abdomen, $\delta 2.75^{\mathrm{mm}}$, $\odot 2.5^{\mathrm{mm}}$; breadth of cephalothorax, \& 1.75^{mm}, $\uparrow 2.15^{\mathrm{mm}}$; abdomen, $\delta 1.6^{\mathrm{mm}}$, ¢ 2^{mm}; extent of palpi beyond cephalothorax, o 1.35^{mm}; length of palpal swelling, o 0.75^{mm}; length of first pair of legs, $\delta 7^{\mathrm{mm}}$, $\%$ 6.2^{mm}; femora, o 2^{mm}, \& 1.5^{mmm}; tibie, \& 2.25^{mm}, \& $2.6^{\mathrm{mmm}} ;$ tarsi, \& 2.75^{mm}, \& 2.1^{mm}; second pair of legs, of 5.65^{mm}, ¢ 6.1^{mm}; femora, of 2^{mm}, \& 1.6^{mm}; tibiac, \& 2.25^{mm}, \& 2.25^{mm}; tarsi, \& 2.4^{mm}, \& 2.25^{mm}; third pair of legs, \& 5.15^{mm}; femora, o 1.25^{mm}; tibix, o 1.9^{mm}; tarsi, \& 2^{mm}; fourth pair of legs, o 6.9^{mm},
 $2.9^{\mathrm{mm}}, \circ 2^{\mathrm{mm}}$.

This species is considerably smaller than any of the others, and is further distinguished from them by the near equality in size of the cephalothorax and abdomen It resembles a little C. microphthalma of the Baltic amber, and is of the same size as it, but the cephalic portion of the cephalothorax is not distinguished by a constriction as there, and our species has somewhat stouter legs.

Florissant. Two δ, Nos. 199, 5507 and 5910 ; one q, No. 9624.

ANYPHENA Sundevall.

To this genus I refer a single species, manifestly belongiug in this vicinity, and approaching it, so far as may be judged by the general appearance of the specimen, as closely as any other form. Traces of the eyes can be seen in this specimen, and if correctly interpreted their arrangement is not exactly that of Anyphena, although it is not very different from that
of this and allied genera of Drassidæ. For the present, at least, it may remain here.

A single species of Anyphæna has before been recorded in a fossil state, A. fuscata, found in amber, but it differs very much from our species, and the arrangement of the eyes in particular is altogether different. All the species of the genus now living lave been found in southern Europe and Algeria excepting one, which is reported from the Pacific Islands; and our species thus indicates a warmer climate than the locality at present enjoys.

Anypiena interita.

$$
\text { PI. 11, Fig. } 5 .
$$

Cephalothorax subcircular, the cephalic and thoracic portions wholly blended, the anterior and posterior margins a little flattened, so as to be nearly straight, fully as broad as long, furnished with short, tapering hairs. Eyes apparently formed of two approximated pairs of small ocelli elose together in a slightly curved line opening forward next the middle of the front margin; two slightly larger directly behind each of these pairs, and slightly more distant from each other than either is from the pair in front, and two much larger lateral ocelli situated next the front base of the front pair of legs close to the margin, and forming with the posterior middle eyes a very slightly curved series of nearly equidistant ocelli opening forward. The pair of approximated eyes and the one in their rear are faint and more or less conjectural. If this position of the eyes is correct the spider should not be placed in Anyphena, but would certainly appear to fall near it and Clubiona. Cheliceres very stout, projecting in front of the cephalothorax by half the length of the latter, and together considerably more than half as .broad as it , well rounded apically Palpi of female rather longer than the cephalothorax, moderately stout. Abdomen apparently pedunculate, the peduncle long and slender, the abdomen plump oval, well and very. regularly rounded in front, and but for the rapid tapering of the extreme apex ratl.er more broadly rounded behind. Legs short, subequal, moderately stout, especially the femora, tapering throughout, well armed with pretty large tapering spines of equal length on the whole leg, and about as long as the width of the tibie, sonewhat divergent and irregularly disposed on the femora, beyond arranged apparently in tivo or three rows and scarcely at all livergent.

Length of body (as preserved), 11.5^{mm}; of cephalothorax, 2.75^{mm}; of abdomen (without pedicel), 6^{mm}; of pedicel, 1^{mm}; breadth 0_{1}^{\prime} cephalothorax, $3.1^{\mathrm{mm} \mathrm{\prime} \mathrm{\prime}}$; of abdomen, 4.1^{mm}; length of cheliceres, 1.6^{mm}; of palpi beyond corselet, $3.3^{\mathrm{m}^{\mathrm{mm}}}$; of first pair of legs, 8^{mmm}; its femora, 2.5^{mm}; tibie, 2.6^{mm}; tarsi, 2.9^{mm}; of second pair of legs, 9.2^{mm}; its femora, 2.6^{mm}; tibix, 3.25^{mun}; tarsi, 3.35^{mmm}; of third pair of legs, 7.5^{mmn}; its femora, 2.3^{mm}; tibiæ, 2.5^{mm}; tarsi, 2.7^{mmn}; of fourth pair of legs, 10.75^{mmn}; its femorn, 2.9^{mm}; tibiæ, 3.2^{mm}; tarsi, 4.15^{mmu}.

Florissant One + (and reverse), Nos. 8269 and 8281.
Family AGALENIDES Koch.
This family of Tubitelarise is also fairly represented in Tertiary times, three species each having been found in amber, of the genera Amaurobius and Tegenaria, and one each of Agalena and Argyroneta, besides which Oeningen furnislies an Argyronetr and Rott an Argyroneta and a Histopona. To this list we can add from this country two species of Titanoca, more nearly allied apparently to the amber species of Amaurobius than to any other fossils. Far the largest part of the species of this family are known from Europe, but a few from America. (November, 1881.)

Gourret has recently described a Tegenaria from Aix.

IITANCECA Thorell.

Two species are placed in this genus from their close general resemblance to the type of the same, Hahn's Theridium quadriguttatum of Europe. The genus has never before been found fossil, but is not far removed from Amanrobius, of which three species are known in the European Tertiaries. The living species of the genus are confined, so far as I discover, to the Mediterranean district and central Europe, as are most of the species of Amaurobius, but a few of the latter are reported from the warmer parts of America. As in so many other cases, therefore, the presence of these species indicates a warm temperate climate. (November, 1881.)

Table of the species of Titancoa.

[^9]
1. Titaneeca ingenua.

Pl. 11, Figs. 29, 32 ($\%$).
Cephalothorax oval, about half as long again as broad, largest a little behind the middle, the front not produced but regularly rounded, the lateral curve being slightly convex throughout its course, and thus showing no line of separation between the cephalic and thoracic portions. Arrangement of eyes not determinable. Cheliceres stont. Palpi moderately stout, equal, about as long as the cephalothorax, the terminal joint roundly pointed at tip. Abdomen plump, subrotund, at least four or five times larger than the cephalothorax, being more than twice as broad and fully twice as long as it, slightly more tapering at the base than at the apex, only half as long again as broad, and of a uniform tint, or possibly a little duskier along the medio-dorsal portion. Legs moderately slender, short, subequal, abundantly furnished with hairs, which seem (conspicuously in one specimen, No. 13520, less distinctly in others) to be more abundant laterally than upon the upper surface, and armed with many very long and slender only slightly diverging spines on all the legs, and especially on the femora and tibie of the two hinder pairs. All the specimens appear to be females.

Length of body, 9.6^{mm}; of cephalothorax, 3.1^{mm}; abdomen, 6.5^{mm}; breadth of cephalothorax, 2.4^{mm}; abdomen, 5.9^{mmm}; length of first pair of legs, 8^{mm}; second pair, 7.6^{mm}; third pair, 7^{mm}; fourth pair, 8.75^{mm}.

The shape of the cephalothorax and abdomen sufficiently separate this species from the following, with which otherwise it agrees closely in general appearance.

Florissant. Four 9 , Nos. 9792, 11203, 13520, 14031.

2. Titangea hesterna.

Cephalothorax obpyriform, the cephalic portion a little produced and tapering anteriorly less than the fully rounded thoracic part, and somewhat truncate anteriorly; the front scarcely convex, the posterior border well rounded; the widest portion of the cephalothorax is in the middle of the thoracic part or of the hinder two-thirds of the whole, and it is nearly half as long again as broad. Arrangement of eyes not determinable. Cheliceres stout. Palpi moderately stout, equal, a little shorter than the cephalothorax, the apical joint roundly pointed at tip. Abdomen ovate, about
half as broad again as the cephalothorax, nearly twice as long as broad, but only half as long again as the cephalothorax, tapering apically as much as if not more than basally. Legs moderately slender, short, subequal, abundantly furnished with hairs and with spines, even to the tips of the tarsi, especially on the two hinder pairs of legs, much as in ' Γ. ingenua and with the same thinness of covering above as there, one specimen especially (12977) showing it in the same marked degree as one of the preceding species. As there also, all the specimens appear to be females.

Length of body, 7.1^{mm}; cephalothorax, 2.3^{mm}; cheliceres, 1.5^{mm}; abdomen, 5^{mm}; breadth of cephalothorax anteriorly, 1.4^{mm}; greatest breadth, 2.1^{mm}; breadth of abdomen, $2 . \mathbf{7 5}^{\mathrm{mm}}$; length of first pair of legs, 7^{mm}; second pair, 7.3^{mun}; third pair, 5.5^{mm}; fourth pair, 8^{mm}.

The slenderer form of the whole body and the less disparity in size between the cephalothorax and abdomen mark this species as distinct from the preceding.

Florissant. Four 9, Nos. 5656, 12006, 12977, and Princeton collection, No. 1.809.

Suborder RETITELARI天 Thorell.

Next to the last equivalent group, these spiders, which maie a loose web or snare apparently constructed without any regular plan, are the most mumerous in Tertiary deposits, forming in Europe, as we have seen, 29 per cent of the total fauna. This, as before, is dependent in large measure upon their representation in amber, which contains forty-eight of the fifty-five described species. The number known from the European strata is, however, greater than in any other of the larger groups, while the American species of the same here brought to light are for once considerably less numerous than the European. All the species belong to the Theridides, which is also far the richest in forms at the present day. (November, 1881.)

Family THERIDIDES Koch.

There is no single family of spiders so abundantly represented in Tertiary deposits as the Theridides. No less than fifty-four species, or more than one-fourth the whole number of fossil Araneides of Europe, belong to this group and represent fourteen genera. Theridium is richest, with sixteen species; then follow Thyelia with eleven; Zilla, Micryphantes, and

Ero with five each; Linyphia with three, Corynites and Erigone with two, and Anandrus, ${ }^{1}$ Clya, Dielacata, Euryopus, Flegia, and Schellenbergia with one each. Flegia, Corynitis, Anandrus, Thyelia, Clya, Dielacata, and Schellenbergia are all peculiar to the Tertiaries, Schellenbergia to Oeningen, the others to amber. Nearly all the species are from amber, but beside the Schellenbergia from Oenirgen there is a species of Erigone and two of Linyphia from Rott, and two species of Theridium from Oeningen as well as another from Aix.

America, however, does not bear her proportionate share in this representation, being poorer even than the stratified deposits of Europe, whareas in every other group it is either better represented or falls short by only a single species. There is a single species of Linyphia, two of Theridium, and some egg-cocoons referred for convenience to the compreliensive genus Aranea. That two of the three species known in the perfect state should belong to the genus most highly favored in the European Tertiaries is a point worth noting.

The family is lest represented in Europe (especially in the Mediterranean district) and warm temperate America, but a few have been found in the East Indies. (November, 1881.)

Gourret, in his recent investigation of the spiders of Aix, found but a siugle species of this family among the eighteen Araneides described by him. He referred it to Ariamnes.

ARANEA Linné.

Under this broad generic name are placed notices of some egg-cocoons which are like thoso made by species of this group and which have been found at no less than three distinct localities. I am not aware that any such remains have before been noticed.

> Aranea columbie.
> Pl. $\frac{2}{2}$, Figs. $1,2$.

Aranea columbice Scudder, Rep. Progr. Qeol. Surv. Can., 1876-'77, 463-464 (1878).
Among the stones obtained by Mr. Dawson in British Columbia are several containing the flattened remains of the egg-cocoons of Araneides. There are no less than eight of them, of different shapes and sizes, occurring

[^10]hy pairs, none of them reverses of others. 'They occur on stones numbered 38 to 41 . As the form of the egg-cocoons in Armeides is so various, and the number of specimens found indicates a probability of obtaining at some time the probable constructor of the webs, I have only applied an ancient, brond generic mame to these products of the insect, for the suke of indicating the nature of all the fossil remmins from Quesnel. It is probable that the spider will be fomed most nearly nllied to Theridium, species of which construct pedunculate egg-cocoons not very different from these. The cocoors vary slightly in size, and more in shape, owing no doubt to their varying position when crushed; probably they were globular, or possibly slightly oval in shape; averaging about five millimeters in the longer and four millimeters in the shorter diameter; of a firm structure; testaceous in color, and ling by a slender thread, less, or much less than quarter the length of the egg-cocoon (averaging, perhups, one millimeter in length), to a thickened mass of web, attached to some object or to the insect's web.

That they have been preserved by pairs upon the stones h. no significance, and, indeed, may be due simply to the way the stones were broken; for they lie at varying distances apart, with no sign of connection, and placed with no definite relations to each other. Two of them show no sign of the pedicel, but this is certainly due to poor preservation; and a single one, the least circular (40a) not only has no pedicel, but appears to be formed of a lighter, flimsier tissue, and may belong to a different species. The following are the longer and shorter dinmeter, and length of pedicel, of each specimen:

* Base only of pedicel preserved.

The egg-cocoon of a spider (No. 4201), of exactly the same size, shape, and general appearance as those described above, excepting that from
a break in the stone there is no truce of a pedicel, was found by me in the shales at Green River, Wyoming.

A single specimen (No. 8935), of an egg-cocoon was also found at Florissant, Colorado, having the same general appearance, but with no trace of a pedicel and slightly larger than any of the others, being 6^{mm} long and 4^{mm} broad. It is of course impossible to say that it is the same species.

Still another (No. 1.173) was brought by the Princeton expedition from Florissant, differing in the opposite direction, being considerably smaller and so preserved as to appear broader than long. It is provided with a pedicel 1.4^{nmm} long, but is itself only 2^{mm} long and 2.5^{mm} broad.

Quesnel, Green River, Florissunt.

'TIIERIDIUM Walckenaer.

No less than sixteen fossil species of this genus have been described, thirteen from amber, one from the beds of Aix, at about the sume horizon, and two from Oeningen. Those from Oeningen and Aix are very different from the two here described, and those figured from amber are scarcely nearer, though T. opertaneun bears some resemblance to T. granulatum, and T. seclusum to T. hirtum. The vast majority of the mumerous known living species of this genus are from Europe, but not a few occur in our country, especially in the Southern States, and one or two are reported from other parts of the world. It is therefore almost exclusively a north temperate genus, but is by no means confined to the warmer parts, and its occurrence at Florissant has no special significance as to the climate of the times. (November, 1881.)

Table of the species of Theridium.
Large specios; the cephalothorax much longer than broad (\%)............................. T. opertaneum. Snuall species; the cephalothorax uearly eircular (δ) .. 2. T. sechenm.

1. Theridium opertaneum.

$$
\text { Pl. 11, Fig. } 3 \text { (} \% \text {). }
$$

Female.-Cephalothorax elongated, comparatively slender, nearly equal, about twice as long as broad. Legs slender, imperfectly preserved, not very long, sparsely furnished with rather short delicate spines, not longer than the width of the legs. Abdomen very large, nearly globular, nearly three times as broad as the cephalothorax, of a greenish tinge, though the whole body is brown.

Length of body, 11^{mm}; of cephalothorax, 5^{mm}; breadth of same, 2.2^{mmm}; of abdomen, 6.4^{mm}; length of first pair of femora, 6^{mm}; second pair, 5^{mm}; second tibia, $4^{m i n}$; third femora, $2^{m m}$; third tibis, $2.4^{m m}$; fonth femora, $3.25{ }^{\mathrm{mm}}$.

Besides its very much greater size, this species differs greatly from the other in the form of the cephalothorax.

Elorissant. One + , No. 13521, preserved on a dorsal view.

2. Theridium seclusum.

$$
\text { Pl. 11, Fig. } 20 \text { (}{ }^{2} \text {). }
$$

Male-Cephalothorax stout, square oval, a little longer only than broad, the front brondly and regularly rounded. Cheliceres rather stout, as long as half the width of the corselet, tariaring a little, rounded at the apex, the outer edge straight, the inner rounded. Last joint of palpi nearly as large as the cheliceres, oval, on a stalk as long as the cephalothorax. These two parts are incorrectly represented on the plate, where the palpi and cheliceres appear as one great pieco. Abdomen rather small, oval, narrower than the cephalothorax, but of about the same length. Legs long and slender, the first pair particularly long, and the second pair considerably longer than the fourth, which is unusually slender; all the legs are furnished with numerous spines, apparently arranged in three rows and clustered much more numerously at the distal end of the femora and tibia than elsewhere; the spines are moderately slender and about as long as the width of the joints, separated from one another by about their own length, sometimes a little less.

Length of body, 4.5^{mm}; of abdomen, 2.25^{mma}; width of cephalothorax, 1.655^{mm}; of abdomen, 1.2^{mm}; length of cheliceres, 0.75^{mm}; of first pair of legs, 15^{mm}; its femora, 4.5^{mm}; tibie, 4.5^{mm}; tarsi, 6^{mm}; second pair of logs, 12^{mm}; femora, 3.75^{mm}; tibie, 3.75^{mm}; tarsi, 4.5^{mm}; third pair of legs, 5.25^{mm}; femora, 1.4^{mm}; tibie, 1.1^{mm}; tarsi, 2.75^{mm}; fourth pair of legs, 9^{mm}; femora, $3.5^{\mathrm{mm}}\left(\frac{q}{}\right)$; tibie, $1.5^{\mathrm{mm}}\left(\frac{q}{)}\right)$; tarsi, 4^{mm}.

The species is very much smaller than T. opertaneun, besides having a very different corselet.

Florissant. Nos. 2286, 7816, 9026. All the specimens appear to be males.

LINYPHIA Latreille.

Two species of this genus linve been described from Rott, and one (formerly considereai two) species from amber. The single species we can here add to the number is tolerably nearly allied to the amber species, us well as to L . rotensis of the Rhenish brown coal, though it is much hrger than the latter. The living species are fomed abundantly in alt parts of Europe, excepting possibly the most sonthern, und several species are recorled from Georgin and from Chili. Its presenco at Florissant would rather indicite a mean temperate climate. The species are lively and savige in chanucter, constructing a rather complicated sheet of web, under the middle of which they lie in wait in an inverted position for their prey. (November, 1881.)

Linyplia retensa.

Pl. 11, Figs. 25, 27 (${ }^{\text {f }) .}$
A single male and its reverse represent this species; the reverse was broken, and the pusterior portion figured before its anterior lualf was found; hence the specimen is numbered three times; it is tolerably woll preserved, especially the legs. The better preserved half shows a nearly uniform dusky figure upon the stone, but on the reverse the abdomen is much darker, almost black, and the palpi also are darker than the cephalothomax. The latter is regularly oval, the anterior extremity the more pointed; upon this some ocelli may be seen, of which there are apparently two approximate but independent ones aext the middle, and on one side a pair of confluent eyes of the same size, all next the anterior edge. The last palpul joint is large, subcircular, or sc mewhat pyriform, furnished interiorly with a stout, strongly bent ribbon, and is perched on a stalk long enough to carry it by its own width beyond the magin of tiec corselet. Abdomen regularly obovate, a trifle broader in front than behind, somewhat longer than the corselet, and roundly pointed belind. Legs very long and slender, excepting the third pair, which are short, all the femora rather sparsely furnished with very delicate spines.

Length of body, 7.1^{mm}; of abdomen, 4^{mm}; breadth of cephalothorax, $2^{\text {min }}$; of abdomen, $2.15^{\text {mnn }}$; diameter of palpal swelling, 1^{mm}; length of first pair of legs, 19^{mm}; second pair, 15.5^{mm}; third pair, 6.9^{mm}; fourth pair, 14^{mm}; first pair femora, 6^{mm}; tibix, 7^{mm}; tarsi, 6^{mm}; second pair femora, 5^{mm};
tibire, 5.5^{mm}; tarsi, $5^{\mathrm{mm} 1}$; third pair of femorn, 2.5^{mm}; tibie, 2.4^{mm}; tarsi, 2^{mm}; fourth pair of femora, 4.5^{mm}; tibie, 4.5^{mm}; tarsi, 5^{mm}.

This species differs from L. cheiracantha in its considerably larger size, the absence of distant spines upon the legs, and its much more slender cephalethorax and longer legs.

Florissant. One d, Nos. 12976 and 13212 and 14032.

Suborder ORBITELARI压Thorell.

The symmetrical-web constructing spiders, though not rare in Tertiary deposits, are not so common as their abundance in recent times wonld lead one to anticipate, for, as we have seen, only 8 per cent of the Emropean fossil spiders belong to this group, and all or nearly all of them are Epeirides. In this number are not included two or three species deseribed by, older authors under the name of Aranea, the precise location of which is and must probably always remain uncertain. Thirteen species are credited to amber, tro to Rott, and one to Oeningen. In our own country the case is very different, for nearly one-half of our species (44 per cent) are to be referred to this group, and all also are Epeirides. It is the one considerable point in which the American fama may be contrasted with the European. In Rotialone of all the Emropean localities (where the Orbitelariae form onefourth of the known fama) do we have any approach to the proportionate number of this great group. (November, 1881.)

Family EPEIRIDES Sundevall.

The genera of Epeirides represented in the European 'Tertiaries are Epeira (five species), of which two come from Rott and one from Oeningen, Grea (four species), Antopia (three species), Onca (two species), and Epeiridion and Siga (one species each). The American fama is nearly as rich, richer for once than the amber, whence come all the European species except those specified above, embracing seven or more species of Epeira, four of anextinct genus, Tethneus, and one each of Tetragnatha and Nephila, genera before unknown in the fossil state. Not only, then, is the American fanna peculiar for its richness in species of this fanily, but 1:0 other shows so many novel forms for the 'Tertiary epoch. One of these latter genera predominates in America and the other is a tropica! genus, which lends addi-

[^11]tional interest to their discovery. The species are spread all over the globe in both temperate and torrid regions. (November, 1881.)

At Aix, Gourret foumd but a singh member of this family, which he referred to a distinct gemus called Cercidiella.

TETTRAGNATHA Latreille.

This genns has never before been recognized in a fossil state. Although represented in every continent, it is only in Ameriea and partienlarly in the warmer parts of North America that it is at all ubundant; here some species range north to New Eagland, but it is essentially a genas of the Southern States; these spicers frequent the borders of ponds and hence it is not stauge that we should find them in the lake deposits of Florissant, although their presence there certainly indicates a warmer elimate than the present. The species here described does not appear to have special affinities with the American species with which I have been able to compare it, being stouter bodied than they. (November, 1881.)

Tetragnatha tertiama.

$$
\text { 11. 11, Fig. } 11(\delta) .
$$

Tetraynatha tertiaria Seudder, Zittai, Mandb, A. Paleont., I, ii, 74., Fig. 927 (1885).
A single male and its reverse "epresent the under surface of this species; as preserved, it is of a pale rusty color, the cephalothoracic appendages much darker than the abdomen, which is as pale as the legs, or than the cephalothomex, which is nearly as pale. The cephalothorax is circular or scarcely longitudinally oval, the exposed ventral portion between the hases of the mandibles and legs shield-shaped or heart-shaped. The mandibles are very large, longer than the cephalothorax, broader on the apical thim on the basal half and thus formed of two parts, a basal, straight, equal piece, as broad as the third or fourth legs and about double the length of the coxie, and in apical ovate portion, not unlike the apical joint of the palpi, somewhat longer than the basal portion and fully half as broad again as the front legs. Beyond these, and separated from them by a little space, and therefore supported by a long pedicel, which however is not preserved, are the apical palpal joints, it little smaller than the apical portion of the mandibles and of :bont the sare shape, in the interior of which a strongly curved comeons threnl can be made ont, forming mere than a complete
circle. Tho legs, of which ouly the third and fourth pairs are perfect, are very long, excepting the third pair; the femora and perhaps the tibie have a superior series of altomately diverging, slender, very distant spines, farther from one another than their own lengths. The abdoman is long obovate, subeyliudrical, a little the largest at the base, as long is the cephalothorax and cheliceres together:

Length of boly, 10^{mmm}; of abdomen, 5^{mm}; breadth of cephalothorax, 2.5^{mm}; of abdomen, 2.3^{mmm}; length of mandibles, 3.2^{mm}; breadth of the basal portion, 0.7^{mmm}; of the apieal portion, 1.3^{mm}; greatest diameter of last palpal joint, $1.25^{\text {mm }}$; least diameter of same, 1.15^{mmm} : length of femora of first pair of legs, 8.755^{mm}; of second, 7^{mm}; of third, 3.5^{mm} : of fourth, 7^{mmm}; length of third pair of legs, 9.5^{mm}; of fourth pair, 18.5^{mmm}.

Florissant. One δ, Nos. 5000 and 5898.

TETHNEUS, gen. nev. ($\Theta v \eta^{\prime} \sigma \mu$).

Under this name are here grouped several evidently nearly allied species of spiders, which elosely resemble in general aspect those placed uncirn Epeira, but which differ also from them in certain features, and in these same characteristics appear to differ also from all other Epeirides, to which family they evidently belong. They are compact in form, with short and stout legs of not very unequal length, and in particuiar the fis at two pairs of legs are musually heavy. The second and fouth pairs of legs are of nearly equal length, or the second pair may be slightly longer; the femora of the first and second pairs of legs are at base as broad as or even broader than half the width of the cephalothorax, and the longest legs are loss, generally considerably less, than twice as long as the body. The species are of medium size.

Table of the species of Te thneus.
Cephalie and theracic portions of the corselot soparated by a distinct rectangalar incision.
Last palpal joint of male globose..

1. T. guyoti.

Last palpal joint of male clongated... T. provectus.
No line of demarkation between the two parts of the corselet.
Sinaller species, cephalothorax regularly ghovate...
Larger specles, eephalothorax ovate, nearly pyriform. 2. T. obduratus,

1. Tethneus auyoti.

Pl. 11, Figs. 8 (8), 10 (8).
halothorax roundly obovate, not much loager than broad, broadest bea'm the middle, the cephatic separated from the thoracic portion by a deep incision, reaching nearly to the middle of the whole section; and behind
it is a distinet, short, median furrow. The front is well rounded; nothing can be said of the eyes; the last palpal joint of the male is very large and globose, the basal joints evidently short. Abdomen a little larger than the cephalothorax and of the same general form, but more regularly obovate. Legs, especially in the male, rather short, the femora being also very stout; tibiae and tarsi (but not the femora) furnished with a superior row of irregularly alternating, somewhat divergent, long and slender spines on either side.

Length of body, o 7.75, \& 8.5^{mm}; of cephatothorax, of 3.5, \& 4.25^{mm}; width of same, o 3.8, ¢ 3.25^{mm}; length of abdomen, $\delta 4.25$, ¢ 4.25^{mm}; width of same, $\delta 4$, $\uparrow 3.5^{\mathrm{mm}}$; diameter of last palpal joint, $\delta 1.4^{\mathrm{mm}}$; lengtli of first
 width of femora, ठ $1.2-1$, \& 0.8^{mm}; second pair, \& $11.75-10.5$, \& 14.25^{mm}; its tibia, of $4-3.25^{\mathrm{mm}}$; tarsi, \& $3.75-3.75^{\mathrm{mm}}$; third pair, \& $7.75-6.5$, o 8.5^{mm}; its tibia, \& $2.5-2$, \& 2.5^{mm}; tarsi, s $2.5-2.25$, \& 3.5^{mm}; fourth pair, \& $9.25-8$, \& 12.75^{mm}; its tibia, \% $3.25-2.5$, ㅇ 4^{mm}; tars: of $3-2.5$, \& 4.25^{mm}.

The second measurements of the legs of the male are of a smaller individual. It will be seen that the second pair of legs are proportionately longer in the female than in the male, where they are shorter than in the first pair.

The species is represented by four individuals, one of them in duplicate. All but one are males and, excepting one male, all are tolerably preserved.

Named for the late Prof. Arnold Guyot, to whose kindness I am indebted for the opportunity of studying the Princeton collection of Florissant i isects.

Florissant. ${ }^{\text {P, No. 320; }} \mathbf{\delta}$, Nos. 8265, 8311, and from the Princetoa collection, one δ, Nos. 1.808 and 1.854 .

2. Tetheeus obduratus.

$$
\text { Pl. 11, Fig. } 31 \text { (} \% \text {). }
$$

This species is represented by a single rather poor specimen, pretty certainly affiliated with the others of this genns, but smaller than any of them. The cephalothorax is of a very regular obovate form, nearly half as long again as broad, with a small, circular, dark, central spot; no line of demarkation of the cephalic and thoracic portions can be seen; the front is
strongly convex, but no certaia trace of the eyes can be made out. The palpi. (female) are stont and large, tapering apically, but bluutly pointed. The legs are very stont, but mufortunately hardly any of them perfect.

Length of cephalothorax, 3.6^{mm}; breadth, 2.7^{mm}; projection of palpi beyond front, 2^{mm}; their breadtl, 0.4^{mm}; breadth of fore femora, $\mathbf{1}^{\mathrm{mm}}$; lengh of femora of first pair of legs, $2^{\text {mm }}$; tibie, 3^{mm}; femora of second pair of legs, 2.5^{mm}; tibie, 3^{mm}; tarsi, $3^{\text {mm }}$; femora of third pair, 1.5^{mm}; tiliie, 2^{mm}; tarsi, 2.5^{mm}; feniora of fourth pair, 2.25^{mm}.

Florissant. One \&, No. 7177.

3. Tetineus hentzii.

Pl. 11, Fig. 14 (${ }^{\circ}$).
Tethnaus hentzii Scudder, Zittel, Latulb. d. Palumit., I, ii, 744, fig. 928 (1885).
This species is represented by seven individuals, one of them in dnplicate and all of them males. About half of them are well preserved. The cephalothorax is short ovate, almost pyriform, broadest belind and strongly convex in front, with no demarkation between the cephalic and thoracie portions of the corselet ; although there are traces of the eyes, their position and relations can not be satisfactorily determined. Palpi short, the terminal joint barely separated entirely from the front, very large and globose, a little longer than broad by reason of a broad bulbous protrusion of the anterior extremity, which, however, is not clearly apparent in all the specimens by their mode of preservation; in one specimen the upper anterior extremity, and that only, is covered with rather long and close bristly hairs, forming an open tuft. Abdomen nearly circular, a little longer than broad, only a little larger than the cephaiethorax and of a lighter color than it, with a darker, broad, median patch not so deep, in tint as the cephalothorax. Legs short, stout, tapering, spinous, and hairy throughont, of not greatly unequal length, the femora very stout and tapering more rapidly near the tip than elsewhere.

Length of body, 65^{mm}; widith of same, $3^{\text {mun }}$; length of cephalothorax, 3.5^{mm}; of abdomen, 3.25^{mm} : longer diameter of last joint of pal;ii, 1.4^{mm}; length of first pair of !ags, 13.75^{mm}; its coxa, $\mathbf{i} .4^{\mathrm{mmm}}$; femmr, 3.1^{mm}; tibia, 1^{mm}; first tarsal joint, consolidated with the tibia, 2.75 ${ }^{\mathrm{mmax}}$; the iarsus proper, 5^{mm}; length of second pair of legs, 11.5^{mm}; its coxa, 1.5^{mmq}; femar, $2 . i^{\mathrm{mmn}}$; tibia, $1^{\text {mm }}$; first tassal joint, $2.3^{\text {mm }}$; tarsis proper, $4^{\text {mm }}$; length of third pair
of legs, 7.25^{mm}; its coxa, 0.75^{mm}; fenur, 2^{mm}; tibia, 0.8^{mm}; first tarsal joint, 1.3^{mm}; tarsus proper, 2.4^{mm}; length of fourth pair of legs, 9.25^{mm}; its coxa, 0.75^{mm}; femur, 2.75^{mm}; tibia, 1^{mm}; first tarsal joint, 1.75^{mm}; tarsms proper, 3^{mm}.

Named for the American arachnologist, the late Prof. N. M. Hentz.
This species differs from T. guyoti in wanting a..y distinct demarkation of the thoracic and cephalic portions of the corselet, in the spiny character 6. the femora, and in the longer and more tapering legs. It is also smaller.

Florissant. Seven đ, Nos. 1226, 1447, 3860, 6600, 8533 and 8635, 8689, 14982.

4. Tethneus provectus.

Pl. 11, Fig. 21 (${ }^{\circ}$).
Four specimens, one of them in duplicate and all of them tolerably preserved, represent both sexes of this species. Cephalothorax of female (that of the male too vague for determination of form) rounded subquadrate, broadest and subangulated behind the middle, the rapidly narrowing front almost straight anteriorly, and scarcely more than one-fourth the width of the posterior portion; cephalic separated from the thoracic portion of the corselst by a rectangular incision and by the slightly concave curve of the sides of the anterior half; the cephalic is also distinctly darker than the thoracic region. Nothing ean be said of the eyes. The last palpal joint of the male is large, rounded quadrate, abont twice as long as broad; the palpi of the female are as stout as the base of the front tarsi, hairy, tapering only on the apical half of the terminal joint, rather blintly pointed, extending nearly as far beyond the front as the whole length of the cephalothorax. Abdomen as dark as the cephalic portion of the corselet, in the female plump, rounded, slightly ovate, considerably larger than the.cephatothorax, the apex almost angulated; in the male rounded subfusiform, much longer than the cephalothorax, but not greatly broader. Legs very hairy but without conspicuous spines, the femora very stout, and at, the tip rapidly tapering, the rest of the legs diminishing in size less noticeably than in the preceding species.

Length of body, 6.5^{mm}; of cephalothorax, 3^{mm}; of abdomen, 3.5^{mm}; breadth of cephalothorax, 2.8^{man}; of aindomen, 3.1^{mm}; extension of palpi
VoL XIII—6
beyond front, 9.2^{mm}; length of first pair of legs, 9.25^{mm}; its tibia, 3.25^{mm}; tarsi, 2.4^{mm}; second pair of legs, 8^{mm}; its tibia, 2.75^{mm}; tarsi, 2.4^{mm}; third pair of legs, 5.5^{mm}; fourth pair of legs, 7^{mm}; its tibia, 2.3^{mm}; tarsi, 2.3^{mm}. The measurements are all taken from the female.

This species is of about the samc size as the last, but differs from it in its slenderer form, the shape of the cephnlothorax, slightly slenderer and less tapering legs, as well as in the clothing of the same.

Florissant. One d, three q, Nos. 8141, 13519 and 13522, 13524 ($\%$), 14991 (δ).

EPEIRA Walckenaer.

Only a very few species have been described in a fossil state under this generic name. Heyden figured a Gea krantzii from the Miocene beds of Rott on the Rhine which Thorell cousiders an Epeira and which is about the size of E. delita, but which does not resemble any of our species. Heer figures an Epeira molassica from Oeningen, considerably larger than any of the Florissant Epeire, but perhaps more nearly resembling E. delita than any of the others. Menge names but does not describe an E. eogena from amber, three millimetars long, or of about the size of our smallest species; and finally Bertkau has more recently described and figured a second species from Rott, under the name of E. tröschelii, which bears no small resemblance our E. meekii, with which also it agrees very well in size.

Seven species are heredescribed and others indiented, this genus being the only one represented ion benth cominents in Tertiary times which is richer in species in America: The gemus is found in all parts of the world, and its eecurrence in such numbers in the Florissant beds is a point of no siguificance bemond the comparison just made with the European Tertiaries. (Octolier, 188 L

Table of the upecies of Epeira.
Cephalic distectiy nennerited from the thoracic part of the cephalothorax.
Largo opecies: frout ef emhalentimax exeised in the male E. meehit.
Small specins, firntiad esphaleniaorax regularly convex in the uale2. b. abscondita. Cophalie and therracie pention walt the eephalothorax oompletely blended.

Alntimaen aaveowed inf frome und behind.
\qquad
Front of abiomen quaikate, an broad as in the middle 4. E. cinefacta.
Abtiounen aearly globular.
Larger species; aldomen smaller than cephalothorax is, E. vucanalis.
Smalier epecien ; abdomen larmer than eephalothorax................................ 6. E. emertoni.

1. Epeira meekil.

PI. 11, Figs. 2 (${ }^{\circ}$), 17 (8).

Cephalothorax of the male large, the thoracic portion nearly circular, scarcely longer than broad, and distinctly separated from the cephalic portion, which is subquadrate, expanding anteriorly, the sides scarcely curved, at the extreme front parallel, the front deeply and angularly incised, the whole about half as lurge as the thoracic portion. Cephalothorax of female moderately large, compact, the thoracic portion as in the male, but only a little larger than the square thoracic portion, the latter being equally broad in front and behind, with searcely convex sides and a slightly excised front, and sparsely furnished, especially along the front, with stiff bristles resembling those of the palpi. The cephalothorax is marked by a rather broad, dark, median band and two fainter, lark, extreme lateral bands. Abdomen globular, scarcely longer than broad, a little shorter (δ) or a little longer (o) than the cephalothorax, the median portion very broadly marked with brown, deepening toward the middle. Some of the eyes can be seen at the edge of the front in the female, showing simply that they are of the usual size and the two onter separated by their own diameter. The palpi of the female are tolerably stout, stonter than the tarsi, as long as the cephahothorax, abruptly terminated, and furnished somewhat abundantly with bristles, considerably longer than the wilth of the palpi; those of the male have the apical portion large, hemispherical, and hairy, convexity forward, together nearly as large as the cephalic portion of the cephalothorax, and separated from that by a peduncle as long as it; from the inner edge of one projects a gently subfusiform, slender, areunie ribbon, as long as the width of the terminal joint and direeted forward, with the convexity inward. The tibis are armed above on either side with a row of distant bristles, scarcely longer than the width of the tibia and farther apart than their length; in the female a few scattered bristles also occur on the femora, especially on the front pair. The fourth pair of legs is sherter than the second in the male, equal to or scarcely longer than the second in the female; the third parr of legs is not perfectly preserved in either of the male specimens, but in the female is half the length of the first.

Length of body, \& 7^{mm}, ㄱ 8^{mm}; of cephalothorax, $\delta 2.8^{\mathrm{mm}}$, ㅇ 3.5^{mm}; of abdomen, ot $4.2^{\mathrm{mm}}, \nrightarrow 4.5^{\mathrm{nmm}}$; width of same, o 3^{mm}, \& $4.2^{2 \mathrm{~mm}}$; lengrth of first
 second pair of legs, o 15^{mm}, ¢ 12.75^{mm}; tibix, 九 3.25^{mm}, ¢ 2.5^{mm}; tarsi, \& 6^{mm}, \& 5.5^{mm}; third pair of legs, \& 7^{mmn}; tibiae, \& 1.75^{mm}; tarsi, q $\mathbf{3}^{\mathrm{mm}}$; fourth pair of legs, o 12^{mm}, \& 13^{mm}; tibie, of 3.5^{mm}, \& 3.5^{mm}; tarsi, o 4.4^{mm}; \& 5^{mm}; length of palpi, $\delta 1.75^{\mathrm{mm}}, ~ \& 2.1^{\mathrm{mmm}}$.

This species is readily distinguished from the others of the genus here lescribed by its considerably larger size. It is named after the late Mr. F. B. Meek, much of whose paleontological work was done in conjunetion with Dr. Hayden. ' It resembles in general appearance as well as in size the less well preserved E. tröschelii Bertkau from Rott on the Rhine, but has proportionally longer legs and especially much longer hind legs; the disproportion of size between the cephalothorax and abdomen is also greater.

Florissant. Three specimens; two s, Nos. 9211, 8221, oneq, No. 3204.

2. Epeira abscondita.

Pl. 11, Fig. 7 (δ).
Male.-Cephalothorax subrotumd, the eephalic portion hemispherical, ahnost black, about half the size of the thoracie part and separated from it in the lateral outline by a distinct incision; front broadly and regularly rounded; thoracie portion with well rounded sides, the middle half very much tarker than the rest, forming a broad, median, dark brown band, Abdomen snlmotund, longer than broad, scarcely compressed, of the same size as the eephalothoma, with faint indications of a broad median band, deepest in tint at the extremities of the segments. The eyes can not be seen. The palpi are sessile, the terminal joint appearing just beyond the front, large and globose, perhaps a little broader posteriorly than anteriorly. The legs are stout, especially the femora, not very long, the tibiae furnished with distant, widely divergent, delicaie bristles, considerably longer than the width of the tibia, sitnated on either side. They are not completely preserved, but have been worked out of the stone since the plate was engraved, so that they me more perfect than wonld there appear. The fourth pair, though not completely preserved, is apmaently tonger than the second, as the basal joints are longer.

Length of body, 4.25^{mm}; of cephalothorax, $2^{\text {mum }}$; of abdomen, 2.25^{mm}; wilth of same, 1.8^{mm}; length of first pair of legs, 11.25^{mm}; tibix, 3^{mm}; tarsi, 4.6^{mmu}; second pair of legs, 9.75^{mm}; tiliax, 2.5 $5^{\text {nmu }}$; tarsi, 3.4 ${ }^{\mathrm{mm}}$; third pair of
legs (broken), 5.5^{mm}; fourth pair of legs (broken), 8^{mm}; of part previous to tilia, 3.2^{mma}; diameter of palpi, 0.45^{mmm}.

This species differs from E. meekii in size, in the shape of the cephulothorax, the stouter femora, and nore sparsely armed tibie.

Florissant. One of, No. 7583.

3. Epeira delita.
 PI. 11, Fig. 6 (${ }^{\circ}$ 1).

Cephalothorax rounded obovate, the ceplalic and thoracic portions completely blended, the sides uniformily rounded, the front very conver, with no eyes that can be seen; neither are the palpi preserved, the part figured between the front legs having no relation to the spider; it is judged to be a male from the small size of the abdomen which is ovate, no larger than the cephalothorax, largest in front of the middle, but here slightly narrower than the cephalothorax, tapering slightly behind, and well rounded at the extremity. The legs have very stont femora, those of the front pair tapering in the middle, and both fenora and tibia and even the bassal part of the tarsi, but especially the tibix, armed with very long, very distant, delicate, divergent spinules considerably longer than, sometimes almost twice as long as, the width of the tibie ; the basal joint of the tibia tapers perceptibly. The second pair of legs is represented too long in the plate, though it is unusually long, not greatly falling behind the first pair and exceeding the fourth in length nearly as much as that exceeds the third pair.

Length of body, $4.75^{\mathrm{mm} \mathrm{\prime}}$; of cephalothorax, 2.25^{mm}; width of same, 2^{mm}; length of abdomen. 2.5^{mm}; of first pair of legs, 11.5^{mm}; tibix, 3.5^{mm}; tarsi, 5^{mm}; second pair of legs, 9.8^{mm}; tibie, 3.25^{mm}; tarsi, 4.2^{mm}; third pair of legs, 7.5^{mm}; tibie, 2^{mm}; tarsi, 2.5^{mm}; fourth pair of legs, 9^{mm}; tibie, 2.25^{mm}; tarsi, $3.75{ }^{\mathrm{mm}}$.

This species agrees well with E. abscondita in size, but is readily distinguished both from it and from E. meekii in the uniform character of the cephalothorax and the relative length of the legs.

Florissant. One 8, No. 13523.
4. Epeira cinefacta.

Pl. 11, Fig. 16 (${ }^{\delta}$).
Male.-Cephalothorax globose, blackish, the dividing line between it and the abdomen concealed by the overhanging quadrate front of the
aldomen, and the cephatic and thoracic portions completely blended; possibly it is slightly longer than broad. The eyes can not be made out; the terminul joint of the palpi (as preserved, sessile) is moderately large, globulur or slightly ovate, black, but none of the internal structure can be made out. Abdomen subquadrate, tapering very slightly from in front backward, the front straight with well rom romided, the whole nearly twice as long as broad, the siles nearly straight. Legs closely resembling those of E. delita, the second pair leing unusually long, but oven more than in that species exceeding proportionally the extent of the fourth pmir; the femora are only moderately stout, and, like the tibio, though to a less extent, are furnished with delieate spinules, less divergent but more abundant than usual, exceeding in length the width of the tibie.

Length of body, 3^{mm}; wilth of cephalothorax, 1^{mm}; length of abdomen, 2.25^{mm}; its width anteriorly, 1.65^{mm}; posteriorly, 1.2^{mm}; diameter of last palpal joint, 0.35^{mm}; length of first pair of legs, 9^{mm}; tibie, 2.9^{mm}; tarsi, 4^{mmm}; sccond pair of legs, $8^{\text {min }}$; tibie, 2.1^{mm}; tarsi, 3.5^{mm}; third pair of legs, 4.85^{mm}; tibix, 1.3^{mm}; tarsi, 2.1^{mm}; fourth pair of legs, 6.5^{mm}; tibie, 2^{mm}; tarsi, 2.5^{mm}.

This species differs from all others of the gems here described in the shape of the abdomen, which is elongate, and the sides of which are not rounded but subparallel. In the characteristics of the legs, however, it resembles the preceding. A single male, represented by both obverse and reverse, is better preserved than the figure in the plate would indicate, as the form of the whole abdomen can be seen as well as of the last palpal joint. The figure morever indicates the slapee of the body ultogether wrongly, as the cephalothorax should be smaller and the abdomen should taper considerably behind, as the measurements show.

Florissant. One 8 , No. 8576 and 8806.

5. Epeira velcanalis.

Male.-Cephalothorax nearly globular, scarcely longer than broad, the cephatic and thonacic portions completely blended, but marked by a large semicircular depression anteriorly, occupying a little more than the front. i. e., encroaching upon the lateral margin, and of a darker brown than the thoracic portion. Front somewhat convex, with insufficient trace of eyes. Cheliceres stout, as long as the cephalic portion of the corselet, tapering, bhuntly romed at the tip. Last joint of palpi very large, nearly as large
as the cephalic part of the corselet, blackish, globular, its proximal end as preserved lying just beyond the tip of the cheliceres, the stalk not preserved. Abdomen lighter colored than the cephalothorax, smaller than it, subglobular, a little flattened at luse, with a pair of eabilorsal series of black points in a slightly curving row, its convexity outward; the anal plate darker, circular, not half so large as the apical joint of palpi. Legs long, of very unequal length, the femur much stouter than the tapering parts beyond, furnished rather abundantly with diverging spines nearly to the tip.

Length of body, 3.5^{mm}; of cephalothorax, 1.7^{mm}; of abdomen, 1.5^{mmm}; of eephalic portion of corselet, 0.6^{mm}; of cheliceres, 0.65^{mm}; brealth of cephalothorax, 16^{mm}; of abdomen, 1.6^{nmm}; diameter of palpal swelling, 0.65^{mm}; length of first pair of legs, 7.25^{mm}; femora, 2^{mm}; tibiex, 2^{mm}; tarsi, 3.25^{mm}; second pair of legs, 6^{mm}; femora, 1.4^{mmm}; tiliex, 2^{mm}; tarsi,. $.6^{\mathrm{mm}}$; third pair of legs, 2.9^{mm}; tarsi, 1.4^{mm}; fourth pair of legw, 4.7^{mm}; femora, 1.65^{mm}; tibie, 1.25^{mm}; tarsi, 1.8^{mm}.

This species resembles E. emertoni in general aspect, but is much larger than it, and differs from it in several important points, such as the rotundity and especially the muel greater size of the cephalothorax as compared with the abdomen, and the greater stoutness of the femora.

Florissant. One §, No. 5784.

6. Epeira emertoni.

Pl. 11, Figs. 15 (${ }^{\circ}$), 19 (8).
Male.-Cephalothorax dark brown, subglobose, a little longer than broad, the cephalic only distinguished from the thoracic portion by a slight bend in the curved outline; front well rounded with no sign of eyes; last joint of palpi blackish, very large, globular, more than half as large as the cephalic portion of the cephalothorax, nearly twice as broad as the length of the basal joints, enntaining a falcate ribbon of slender and uniform width, nearly as long as the diameter of the joint, bent at its distal edge, bluntly pointed at the tip, which is situated near the middle. Abdomen light brown, globular, slightity larger than the cephalothorax. Legs moderately long, rather sparsely haired, the femora tolerably stout and furnished with distant, slender, divergent spinules, hardly so long as the width of the joint, and which also appear in one or two places only on the tibie.

Female.-Cephalothorax black, globular, with no sign of distinction between the cephalic and thoracic portions; neither eyes nor palpi are pre-

IMAGE EVALUATION TEST TARGET (MT-3)

served. Abdomen dark brown, especially in a very broad median band occupying fully half the width of the dorsal aspect, short ovate, nearly half as broad again as the cephalothorax, and only aboni one-third as long again as brosd. Legs apparently rather short (they are not well preserved and mostly bent beneath tho body), sparsely haired, with slight trace of spinules.

Length of body, s 2.25^{mm}, $+3.75^{\mathrm{mm}}$; of cephahothorax, s 1^{mm}, \& 1.35^{mm}; width of same, s $0.9^{\mathrm{mm} \mathrm{\prime}}$, \& 1.8^{mm}; length of abdomen, $\delta 1.25^{\mathrm{mm}}, ~ ¢ ~ 2.4^{\mathrm{mm}}$; width of same, $\delta 1^{\mathrm{mm}}, ~ \& 1.8^{\mathrm{mmn}}$; diameter of last palpal joint, \& 0.35^{mmn}; length of first pair of legs, of 4.65^{mm}, \& 3.25^{mm} (plus tarsi) ; tibix, s 1.5^{mm}, o 1^{mm}; tarsi, o 1.75^{mm}; of second pair of legs, $\delta 4.2^{\mathrm{mm}}$, $₹ 26^{\mathrm{mmp}}$ (plus tarsi); tibire,
 of legs, 83.25^{mm}.

It is possible of course that this of and of do not belong together, in which case the male as the most perfectly preserved should be considered the type of the species. It is smaller than any other of the species referred here to Epeira, excepting perhaps the one to which no name is given, and it differs from all in the globular or nearly globular form of the cephalothorax as well as in other characteristics, as will appear on comparing the descriptions. The species is named for Mr. J. H. Emerton, whose papers on North American Arachnidæ have bean of much assistance to the writer.

Florissant. One δ, one q, Nos. 8777, 5117.
A single specimen, apparently a female, which is also provisionally 1 eferred to this species, is considerably smaller than the other female and has more densely hairy legs (almost the only parts preserved), the lengths of which are as follows: first pair, 3.5^{man}; second pair, 3.25^{mm}; third pair, 1.7^{mm}; fourth pair, 3.25^{mm}.

Florissant. One ㅇ, No. 10998.

Epeira s].

Pl. 11, Fig. 1.
A single specimen, figured in Pl .11 , Fig. 1, is the only representative of a species apparently of Epeira, certainly distinct from the others, but too pooriy preserved to indicate more. The ontlines of the body are almost altogether obliterated, and it can only be said that it is one of the smallest species, being larger only than the sinallest specimen referred to E. emertoni, but clearly distinct from that in the much greater stoutness of the femora, which are indeed unusually robust, and the length of the third pair
of legs, which appear nearly to equal the fourth. It is impossible to say to what sex it belongs.

Length of first pair of legs, 5.5^{mun}; of third pair, 7^{mm}; tibia, $\Omega^{\text {mum }}$; tarsi, 2.5^{mm}; of femora and tibia of fourth pair, 4^{mm}; width of its femora, 0.7^{mm}; length of its tibia, $2^{\text {mm }}$.

Florissant. No. 9285.
Epeira sp.
Several specimens represent legs of the same or allied species of spider of about the size of Epeira riparia Hentz; the femora and tibia and the sides of the tarsi are abundantly supplied with longitudinal rows of fine, long, black spines, the claw double. Another preserves the spines alone of the same sort of leg.

Length of femora, 7^{mm}; of tibix, 7.75^{mm}; of tarsi, 3.25^{mm}; of claw, 0.3^{mm}; of spines, 0.75^{mm}.

Green River, Wyorning. Nos. 3, $4^{\text {a }}, 36,4199,4200$.
Epeira sp.
Still another, tron the same locality as the last, slows the hairy, subfusiorm, ovate body of a spider apparently a little smaller than the above.

Length of abdomen, 4.5^{mm}; breadth of same, 1.8^{mm}.
Green River, Wyoming. No. 63.

Nephila Leach.

This interesting tropical genus has never before been found fossil, and although the species here described differs considerably from any with which I have been able to compare it, it is interesting to see some special points of comparison with a common species of our Southern States, as wil! be noticed further on. Its presence at Florissant decidedly indicates a warmer climate than the present, though not necessarily one much warmer

Nephila pennatipes.

$$
\text { Pl. 11, Fig. } 12 .
$$

Nephila pennatipes Scudder, Zittel, Handb. d. Paleont., I, ii, 744, Fig. 926 (1885).
Cephalic portion of corselet square, with ronnded angles, the front margin slightly excised in the middle; two eyes only can be made out, situated posterior to the front margin by nearly their own diameter, of moderate size, less than one-fourth tie width of the terminal joint of the palpus, and placed rather nearer the middle line than the outer edge of the body. Palpi stont, not very long, bluntly rcunded at tip and exteading in
front of the body by a little more than half the width of the front of the corselet. (Those organs are incorrectly given in the plate, which was drawn before the specimen had been properly prepared.)

The first pair of logs are the longest, the third the shortest, and the second aurd fourth of equal length, moderately slender, the first and fourth, and to a less degree the second, furnished at the extremity of the tibie with a brush of coarse divergent hairs, giving this portion of the leg the appearance of being about half as broad again as it should be; all the joints of the legs can not be made out, but, to judge by analogy, the brush would appear to occupy ahout half (the distal half) of the tibia; there appears to be no such brush on the third pair of legs, nor any marked increase of hairiness or stontness of the hairs at the tips of the femora. The legs have also been worked out of the stone since the plate was drawn, so that they are nearly complete, with the exception of the appendages. With this omission the tarsi compose scarcely less than two-fifths of the whole leg.

The thoracic portion of the cephalothorax is subglobular, a little broader than the corselet and just equaling the width of the abdomen at its greatest at the end of the basal third; the abdomen is ohlong ovate, about two and a half times longer than broad, with well rounded apex.

Length of borly, 14^{mm}; of abdomen, 8.5^{mm}; width, 3.7^{mm}; length of palpi beyond the front of hody, 2^{mm}; length of first pair of legs, 26^{mm}; first tarsal joint, 8.25^{mm}; second joint, 2.25^{mm}; of liair-tuft, $3.5-3.75^{\mathrm{mm}}$; second
 tuft, 2.5^{mm}; third pair of legs, 13.5^{mm}; first tarsal joint, 4.5^{mm}; second joint, 1.5^{mm}; fourth pair of legs, 23^{mm}; first tarsal joint, 7^{mm}; second joint, 2^{mm}; of hair-tuft, 4.5^{mm}; diameter of eyes, 0.12^{mm}.

The general resemblance of this spider to Nephila plumipes Koch of our sonthern Atlantic sea-board, familiar to us by the researches of Wilder, will strike every American maturalist at a glance. It is, however, a much smaller species, if the fossil be fully grown, and differs from it in some striking points, very probably of generic importance. The eyes differ con siderably: although the position of only two of those of the fossil speries is known; the corselet is squarer in the fossil, and per contra the abdomen is oval and not quadrate; while the tarsi are umsually long in proportion to the whole leg; the tufts of hairs occur only on the extremity of the tibie. Nephila is essentially a tropical genus.

Florissant. One q, No. 11651.

NEUROPTERA Linne.

Using this term in its large sense, as, for convenience, we lave done here, there is no group, of fossil insects more interesting. In no other, unless it be the cockroaches among Orthoptera, do we find a considerable represeatation in all the rocks which have yielded fossil remains Still the time has, perhaps, not yet come for a careful historical survey of the group, since we are annually receiving large additions to our knowledge of the extinct types, and a considerable number of those known have been insufficiently studied. Such a study, too, belongs essentially to the student of the older types, and would be less appropriate here, for it may certainly be stated with confidence that the types of existing Neuroptera were thoronghly established at the beginning of the Tertiaries. With a single exception, Ballostoma, no large group existed then and has since expired, nor is there a single existing type of any prominence which has not been found in the Tertiaries, muless we look upon the aberrant and until lately hardly known Scolopendrella as belonging here. Yet a large proportion of the genera of Tertiary Neuroptera are extinct; that is, differentiation has gone on with the lapse of time, until the original characteristic features of an early group have been lost and new ones taken their place, and no species referred to in the following pages exists at the present time. The differences between the Tertiary and existing forms are never very great, usually rather small, but they are constant and everywhere found.

The number of known Tertiary Neuroptera is considerable. For the sake of graphic comparison I have presented the facts as far as possible in the following table, where, in the European columns, the numbers at the right are the real total, the others representing those known from the rocks alone (excluding the amber) for the sake of compring more fairly the yield of the European and American rocks. The numbers on the American side represent with a single exception (Phryganea hyperborea from Greenland) the result of my own studies only, and therefore the numerical estimate is presumably more correct than in the European; in the latter I have endeavored to give a fiair statement of the numbers, including a considerable proportion of mere indications, the value of which had to be weighed, sometimes in a somewhat summary manner.

Tabular statement of the known species of Tirtiary Neuroptera.

	$\begin{aligned} & \text { Ameri- } \\ & \text { can. } \end{aligned}$	European.		Ameri(:ill.	European.	
		Exel. amber.	Incl. nimber.		Excl. amber.	Incl. amber.
Ballostoma..........	1					
Lepismatida (Cinura) .	1	0	18			
Poduride (Collembola)	0	0	10			
Thysanura				2	0	28
Termitina				6	10	16
Eubidina				0	0	1
Psocina ...				1	0	13
Perlina..				1	1	11
Ephemorina.				6	1	7
Agrionide....	8	9	10			
Calopterygids.	0	1	2		
Agrionina	8	10	12		
Gomphida	0	3	5			
Exchnidz	2	4	5	\ldots		
Tschnioa ..	2	7	10	\ldots		
Cordulidas.	0	2	2			
Libellu'ide	1	15	15			
Libellulina...	1	* 17	17			
Olonata ..				11	31	39
Sialide.	0	1	2		
Raphidiicle .	4	0	1			
Sialina....	4	1	3	
Hemerobida	2	1	8		
Chrysopida	4	0	0			
Hemerobina.	6	1	8
Ascalaphina...	0	2	2			
Myrmeleontina .	0	1	1
Coniopterygida	0	0	1		
Pauorpida	2	1	4		
Planipennia..........				12	6	19
Hydroptilids	0	0	2		
Rhyacophilida .	0	0	2	-.......
Hydropsychidz.	17	0	16			.
Leptocerida -	2	0	5		
Sericostomidx.	0	0	4			
Limuophilida	t2	†\%	3		
Phryganida..	4	+5	8
Trichoptera.				25	7	40
Total..	63	59	174

Grand total, 237

*Thie number la largely made np of larre., which may be the aame as aome of the imagos.
\dagger Incluiling larval casea.

This table brings to light some curions discordances when the speeies from the American and European rocks are compared. This indeed is marked in every instance where the numbers are considerable on either side, excepting in the Termitina, where we have six American to ten European species. Europe shows a deeided superiority in the Odonata, where thirtyfour species are offset by only eleven species in Ameriea; and it is not a little curious (though not unexpeeted, considering the nature of the deposit) that it is here only that the amber fauna adds scarcely at all to the European preponderance. The American Thysaaura find no counterpart in the European rocks, though the amber fauna counts no less than twentyeight species, while the Ameriean representatives of the Ephemerina (six species), the Planipennia (twelve species), and the Triehoptera (twenty-five species) far outweigh the European examples, Ephemerina (one species), Planipennia (six species), Trichoptera (seven species). This American preponderance is in every instance comuterbalanced when the total Tertiary yield of Europe is brought to view, the Ephemerina showing seven species, the Planipemnia nineteen species, and the Trichoptera forty species.

If the smaller gronps are ennsidered, there are some closer correspondences, as when we find eight species of Ameriean Agrionina to ten in the European rocks, two Ameriean to one European Hemerobidæ and Panorpidæ, two American to two Enropean Limmophilidx, and four American to five European Phryganidæ. The discrepancies, however, are not less marked, for we find of groups unrepresented in European rocks four species each of Raphidiidx and Chrysopidæ, seventeen of Hydropsyehidx, and two of Leptoceridx in Anserican strata, which in the first two instances are hardly or not at all represented in amber. On the other hand, the European rocks show species of Calopterygidx (one), Gomphidæ (three), Cordulide (two), Sialide (one), Ascalaphina (two), and Myrmeleontide (one), where the American rocks are wholly destitute. On the whole, the European rocks, as compared with the Amerean, are rich in Odonata and poor in Ephemerina, Planipennia, and Trie soptera. While, if the entire Tertiary yield of Europe is considered, America nowhere shows a consilerable preponderance of forms excepting in the small planipemian groups of Raphidiide aud Chrysopida, while Europe has a very striking preponderance in Thysanura, Psocina, Perlina, Asehnina, Libellulina, and Hemerobide, having in none of these eases less than four times as nany-species as America. (February, 1884.)

Order THYSANURA Latreille.

All we have hitherto known of fossil Thysanura has been derived from inclusions in amber, ${ }^{1}$ of which about eighteen species of six or seven genera of Lepismatida and ten species of four genera of Podmrida are known; among them are some very remarkable forms. Florissant has yielded two species of this gronp, the first that have been fonnd in rock deposits, and one of them in considerable numbers, repesenting a species of exceptional interest.

Suborder BALLOSTOMA Scudder.

For characters see muder the single species, at the end.

PLANOCEPHALUS Scudder.

Planocephalufs asellodes.
(See tigures in text below.)
Planocephalus aselloides Sendd., Mem. Nat. Aead. Sciences, III, $85-90$ Figs. (1885) ; in Zittel, Handb. Paleent., I, ii, 772, Fig. 972 (1885); Bertk., Sitzungsb. niederrh. Geselisch. Natur. n. Heilk., 18м5, 298 (1885).
Among the retuains of animals in my hands found in the ancient lake basin of Florissant are about forty specimens of an onisciform arthropod, about a centimeter in length, whose affinities have proved very perplexing. This does not result from poorness of preservation, for among the numerous specimens apparently all the prominent externis features are found completely preserved, and even the course of some of the internal orgaus may occasionally be traced; but it puesents such anomalies of structure that we are at a loss where to look for its nearest kin.

It appears to be an aquacic animal. Its body consists of three large subequal thoracic joints, and an abdomen about half as large again as any one of them, with occasional indications of a feeble division into four segments. These are the only jointed divisions that can be found in the body, there being uo distinct liead. The thoracic segments are so considered because each bears a pair of legs, which occur nowhere else. Their dorsal plates aro large, flat longitudinally, and arched transversely, smooth, and deeply and narrowly notched in the middle of the front margin. The first plate, in which the median notch is more conspicuous and open than in the

[^12]others, also narrows and becomes more arched in front, so as to form a sort of hood. The legs are very broad and compressed, und adapted to swimming, which was apparently their use, as there would be no need of such compression to crawl into chinks when the body is so much arched. They consist of a femur, tibia, and two tarsal joints, terminated by a single curved claw. The femur is very large, subovate, inserted (presumbbly by a coxa) in large cavities, those of opposite sides sepnrated by their own width, and situated a little behind the middle of ench segment. The tibia is also very large and subovate, but more elongated and squarer at the ends, being about twice as long as broad, and fringed on the anterior edge by a row of delicate hairs as long as the width of the joint. Of the two tarsal joints, the

Fig. 1, dorsal view; Fig. 2, lateral Vfew: Flg. 3, transverae eectinnal view of Plano cephalns agellatdes from the Oligocene of Floriasant, Colorado, restered, and magnifiod abmut six diameters.

Fig. 1.
basal is a little the larger, being both longer and stouter. Each is armed at the tip internally with a tolerably stout spine of moderate length, and together they are a litt!e longer than the tibia, much slenderer, and quadrate in form. The terminal claw is about half as long as the terminal joint. The hind legs are somewhat stouter and the middlo pair a little shorter than the others; but otherwise they closely resemble each other.

The different segments of the thorax, as stated, are protected above by the development of distinct chitinous plates, the lower edges of which are clearly marked, and extend downward to the concealment, on a side view, of the lower part of the body. The abdomen, however, seems to have no such specialization of the integument of the upper surface. It is stout, apparently well rounded transversely, and tapers to a produced but blunt tip, which is armed with a pair of slightly recurved stout claws, two oi
three times as long as the leg-claws, arranged as if to drag the body backward. The abdomen is faintly divided into four segments, often entirely obsenred. Of these the terminal usually appears shorter than the others, which are subequal.

These divisions of the body are all that appear to have belonged to the animal; and it is the most remarkable fact ia its organization that it certainly had no distinct clitinous heal. This is the more surprising from the clearness with which the thoracie segments are marked. All that one can find preservell is what appears to be a ring of buccal plates terminating muteriorly the alimentary caual, and which was evidently capable of being thrust forward a long distance beyond the body. If it were not for the umsual preservation of the alimentary caunl we should be forced to consider the head as lost from all the specimens, notwithstanding the nearly perfect preservation of the other parts; but in several specimens the alimentary tule can be traced with ease half though the body, terminating in front in these more or less clearly preserved chitinous plates, arranged to forma circle a little smaller than the coxal cavities. What is most remarkable is the extension of this alimentary tube and accompanying buccal plates like a proboscis far beyon! the limits of the body; sometimes forward (apparently through the anterior notel) to a distance in front of the first segment equal to half the lengtl of the latter; more often directed downward as well as outward, perhaps between the front legs, and occasionally extending beyond the body to nearly or quite the entire length of the same. It seems to leave its direct course witlin the body at about the middle of the first thoracic segment, directly in front of which position the buccal plates appear in one or two specimens, apparently in the position of repose. The various positions in which these buccal plates are found ontside the body, both when their comection with the tube is traceable and when it is obscure or fails, shows how perfectly movalle a proboscis the creature possessed. The external parts of the head, then, may be said to have been probably composed entirely of a flexible, extensible membrane capable of protrusion as a fleshy proboscis, separated by mo line of demarkation from the first thoracic segment, and bearing as appendages only a series of buccal plates for mouth-parts, and beyond this nothing-neither cranium, eyes, antemæ, nor palpi. In the alsence of eyes, one would naturally look for the development of tactile organs of some sort; but nothing of the kind is
discoverable on the most eareful special search, muless such an office may be performed by long delicate hairs which seem, in some fow instances, to be seattered distantly over the projected mouth-tube.

A special study of the buccal plates in the twenty-four or twenty-five specimens which best show them gives no very satisfactory explanation of their form and relations. They have been saill to form a ring, becanse in a considerable number they are so arrunged; but it may be doubted whether this appearance is not due to the Haking of the chitinous parts. Like the lips of the motches of the thoracie segments, the buecal apparatus was evidently more dense and thicker than other tegumentary parts, for these are darker colored than the other parts and often carbonaceous. In this condition the central portions seem linble to flake away and leave the thimer edges with ragged fragments of the carbonaceous inuer portions attached, thus frequently forming a sort of irregular ring of dark clitine. On the other hand, it is just as common for fragments to become clipped out from the edges, or for rounded bits to fall out here and there, producing thereby an almost endless variety of present appearances. Among these it is difficult to trace the clew to the original arrangement and form of the plates. One might anticipate that these would have occurred around the central orifice of a proboscis; and if anything of this sort was present it would appear the most probable (thongh extremely doubtful) that there were four sulbtriangular plates of pretty large size, the lateral the larger, nearly meeting by their tips at the center. From specimens, however, which are least broken, it would seem quite as probable that the apparatus consisted of two attingent or overlapping circular plates, placed transversely, densest centrally, which by their consolidation form an oval rounded mass. How such a pair of plates, or compound plates, could have subserved any purpose in the procuring of food I can not understand, but that such is their not unfrequent appearance, especially when seen through and protected by the thoracie shield of the first segment, is nevertheless the fact. It is to be hoped that other specimens may set this matter at rest. Those at hand allow no more definite statement than has been made. About three-fourths of the specimens of this species show the buecal plates more or less distinetly. In all but three they lie outside the body, usually at a distance from it of about half the length of the first thoracic segment. In a fourth specimen they lie half protruding at the front edge of the body.

[^13]These buccul plintes, as already stated, are the only hard purts of the hend, and the only appendares. Indeed, the only clain this portion of the body has to be ealled the head at all is that it is certainly the anterior extremity of the digestive canal. On account of this peenliarity of the organization of the head, the crenture, which is certuinly widely different from anything known, muy be called Phnocephalus ($\pi \lambda \alpha \nu \alpha ́ \omega, ~ \pi \varepsilon \varphi \alpha \lambda \eta$), and on account of its onisciform body, Planocephalus aselloides.

The first impression the sight of this strange headless crenture conveys is that of an isopod erustacean. But the limited number of legs at once puts its reference to the Crnstacea out of question, since no abdominal legs nt all are present. Even in the parasitic Crustacea, where some of the logs are aborted, the same is the case with the segments themselves and with the joints of the legs which remanin. The clear distinction which obtnins between the thoracie und abdominal regions, und the limitation of the jointed legs to a single pair on each thoracic segment scems to lead one strongly to the vonviction that these important elements of its construction place it anong insects. The structure of the legs and the small tapering abdomen furnished with small anul appendages tend to the same conclusion.

Where among insects it should be placed is more questionable. Thinking it possibly a larval form, careful search has been made among all the groups into which it could by any possibility be presumed to fall, viz, among the Neuroptera and Coleoptera, but nothing in the slightest degree seeming to be related to it could be found, and its conspicnons size rendered it the less probable that a kindred form would be overlooked On aceount, however, of its apterous chamater, and the diseovery in recent years of certain curious types of animals (all of them, however, very minute), whose affinities have provoked more than usual diseussion, my attention was early drawn toward certain resemblances which Planocephalus bears to the Pauropida among Myriapods and to the Thysamura, and here, if anywhere, its affinities seem likely to be fomud.

Its passing resemblance to the obtected forms of Pauropoda which Ryder has published under the name of Eurypauropodidx is certainly very considerable, especially when it is remembered that the young of Pauropoda bear only three pairs of legs. The position of the more mobile part of the head of Eurypauropus beneath the cephalic shield is the same that the head of Planocephalus bears to the first thoracic shield; and the mouth parts in
both a.e confined to a somewhat similar circular area; there are no eyes in either, and the legs terminate in a single curved claw.

On the other hand, not only are auteme of a highly organized eluracter developed in Pauropoda, but the upper portion of the head carries a cephalic shield as large and conspicuous as the others; two pairs of legs are developed in the adult on every or nemrly every segment of the body, and always on the abdominal to the same extent as on the thoracic segments, no abdomen being distinct from a thorax as in Planocephalus, but all the joints of the body entirely similar; the legs of the Pauropoda are formed on the myriapodal type, consisting of cylindrical undifferentiated joints, while those of Planocephalus are hexapodal in character, having a clearly defined femur and tibia, and a two-jointed tarsus conspicuously smaller and shorter than the preceding joints, of different form ant apically spined.

The closer, therefore, we compare these two types the less important seem the points of resemblance and the more important the points of divergence between them; for in the clear distinction of the thorax and abdomen, the absence of abdominal legs, and the structure of the legs themselvesfundamental features of its organization- Planocephalus cluarly belongs to the true hexapod type of insects.

Its probable reference to the Thysanura may be defended on borh negative and positive grounds. There is no other group of hexapods to which it could be considered as nore likely to belong, and there are some special thysanuran features in its structure, anomalous as it is. Since Packard has shown the reasonableness of placing the Symphyla (=Sculopeadrella) of Ryder in the Thysanura, with the Collembola and Cinura as coordinate groups, the range oì the Thysanura has been extended, and as a group of equivalent taxonomic value to the larger divisions of winged insects it has seemed itself to gain a better ratio vivendi. It is not necessary, therefore, in considering the relations of Planocephalus to Thysanura as a vhole, to limit ourselves to points of comparison which it may have to one or another of its subordinate groups, but consider any points of resemblance we may find to any of these groups indifferently. The thoracic segments remind us not a little of some Cinura, while the abdomen as a whole recalls many of the Collembola, its approximated pair of specialized anal appendages being also like the variously developed organs of all Thysanura, and unlike anything we can recall in any myriapod. The legs, in the develop-
ment of the basal joints and in the sualler double-jointed tarsus, are closely related to those of some Cinma-built indeed upon the same general pattern, excepting that in Planocephalus they are specially developed for swimming. In the ciaw of our fossil gemus we lave something decidedly thysamuiform. We have heretofore spoken of the two tarsal joints as each armed apically with an interior spine, but that of the final joint arises from the base of the curving elaw, and takes on more or less its direction, though oaly half as leng as it, eausing it to resemble very elosely the smaller digit of the claw of both Collembola and Cinura, which is always inferior to the larger, and not infrequently, as in Iepidocvrtus, ate., straight instead of curved

Of couse, tho mdimentary character of the head and the entire obliteration of the ceplalic plates render our fossil very distinct from any known type of 'Thysamma. But these features separate it quita as widely fromany other group that may be suggested for it, and, taking into acconnt the considerable development of the tharacic portions, we must look upon Planocephalus as in some sense a lowly form, descended from a type in which the head was developed at least to sone extent, and this renders it mone probable that we have here found its proper place. Moreover when we examine the month-parts of Podura, we find them partia!ly withdrawn within the head, reduced in extemal presentation to a small cirele at the end of a conical protrusion of the under side of the head. Take away the cephalic plates, withdraw the mouth-parts to the same protection of the first thoracie segment which they now enjoy under the eephalic dome, imagine further that the mouth-parts coald be protinded to their original position when covered by a cephalic shield, and we have about the same condition of things we find in Phanocephalus; indeed the extensibility of the mouthparts beyond the thoracic shield seems quite what one mighe expeet after the loss of the hard parts of the head ; and the month-parts of Planocephalus bear much the same relative position to the first thoracie shiold which cnose of Porhura bear to the eephalie shield.

Assming, then, that Planocephahas is a trae hexapod, its genemal relations are certanly with the Thysanma rather than with any other group; while thie character of the legs, the half developed double claw, and the anal appendages specialized to pecoliar use are chatacters which are positively thysamuran. Add to this that we find in Podua something in at remote dogree analogons to the extraordinary mouth-parts of Planocephalus,
which we should in vain seek elsewhere, and the probability that wo find here its nearest allies is rendered very strong, and the more so from the diversity of form and type in this group, since the addition to it of scolopendrella. The disecvery of a collophore or something homologous to it would, we conceive, be decisive on the point ; but the lateral preservation of nearly all tho apecimens of this fossil, and the obscurity of the base of the ubdomen in nearly ail, not only forlid its determination in those yet found, but render it doubtful if it will ever be discover al.

The position of this group, among the Thysamura must be an independent one between the Cinura and the Symphyla and of an equivalent value to them. For such a group the name of Baloosona is proposed, in reference to the remarkable power possessed of thrusting forward the gillet and mouthparts. It would be characterized by the peculiarity named, by the lack of any chitinons frame-work of the head, the equal development of three thoracic segments developed dorsally as shields, and al! separated from a cylindrical abdomen, which is armed at tip with a pair of looks for crawling; legs largely developed and with expanded and flattened fenora and tibie, thie tarsi two-jointed. The prineipal points toward which attention should be directed for the more perfect eluaidation of its structure are the buccal plates and a possible collophore.

Bertkan compares Planocephalus with an inseet from the brown coal of Rott, Rhenish Prussia, described by Heyden as a mite under the name Lumnochares antiquus. This' Bertkau regards as a larval Galgulid, one of the Hemiptera, and he believes Planocepialus something simiiar; but he does not seem to me to justify this latter view, and the abundance of Planocephalus with the absenco of mature Galgulida at Florissant seem an cistacle not easily thrown aside.

Ordinary length when extended, $7-8^{\mathrm{mmm}}$; breadth, $2.5-3^{\text {man }}$; diameter, of mouth-parts, 0.5^{mm}.

Florissant. Sixty-six speeimens, of which the best are Nos. 302, 574 , 3508, 5229, 6933, 7907, 978:2, 9896, 10551, 12807.

Suborder CINURA Packard.

Family LEPISMATID \neq Burmeister.

This group :as heretofore been found fossil only in amber, where eighteen species of six or seven genera are known; but a single species has been found in the shales of Florissant, Colorado.

LEPISMA Linné.

The species provisionally placed here seems to differ decidedly from known types in the structural characte ${ }_{2}$, of the legs, but the single specimen preserved being very imperfect, it is not at present generically distinguished. In the equality of the caudal setæ it is nearest Lepisma, but the legs are very different. The femera resemble closely the broad soxx of some species of Lepisma, and would have been taken as coxæ but for the slender, elongated joint which follows; one of the legs, too, more perfectly preserved than the others, shows the short tarsus following the tibix, and leares no room for doubt that the broadly expanded ovate disks on either side of the body represent the femora, to which succeed a slender, rod-like tibia of equal length and of uniform slenderness. The abdomen consists of ten joints, tapering very gently, but at the extremity more rapidly.

Two amber species were referred to this genus by Koch and Berendt, one of which was thought to be almost identical with Lepisma saccharina, but Menge pointed out that, notwithstanding the resemblance between the two, they differ at almost every point. The group is cosmopolitan.

Lepisma platymera.

Pl. 12, Fig. 18.

A single specimen in :rhich the head, if preserved, is separated from the body, and the greater part of the thorax is lost, but the whole of the abdomen with the caudal setx, some of the lateral bristles, and most of the legs are fairly preserved; the latter do not appear in the figure. The abdomen is slender and only slightly tapering, excepting on the last three segments, which narrow more rapidly, so that the tip of the fabdomen is about half as brcad as its base. The legs are very remarkable for the size and great expansion of the femora and the contrasted linear tibix; the
femora are ovate flattened disks, distally subacuminate, more than twice as long as broad, as long as (fore and middle femora), or even longer than (hind femora), the width of the base of the abdomen; the tibire are as long as the femora and scarcely stouter than the caudal setz, while the tarsi are scarcely if any slenderer than the tibie and less than half their length; a few lateral bristles nearly as long as the width of the abdomen can be seen, indicating that one such projected from either side of each abdominal segment, that borne by the last segment leing somewhat longer than the others. The caudal seter are of nearly equal length, the central slightly longer than the lateral which divaricate gently, and are nearly if not quite as long as the body. Nothing can be made of the detached head extremity more than its slenderness, it being about half the width of the base of the abdomen. Probably the body was fusiforns in outline, slender, tapering from the middle of the thorax more rapidly forward than backward. The last abdominal segment is somew hat abruptly truncate.

Length of abdomen, 5.5^{mm}; breadth at base, 2^{mm}; at tip, 0.8^{mm}; probable length of fore and middle femora, 2^{mm}; their breadth, 0.8^{nm}; probable length of hind femora, 3^{mm}; their breadth, 0.9^{mm}; length of tibiæ, 1.75^{mm}; of tarsi, 0.75^{mm} (perhaps incomplete); length of outer caudal setæ, 8^{mm}; of middle caudal seta, 8.5^{mm}.

Florissant. One specimen, No. 1693.

Family TERMITINA Stephens.

It has generally been supposed that the white ants were present and tolerably well represented in paleozoic rocks, but most of the species which have been referred to this family have been shown by recent researches to belong to the Protophasmida, and the others to various neuropteroid Palwodictyoptera. At least half a doren species are known from the mesozoic rocks, however, most of them coning from the Lias of England, Germany, and Switzerland, the most common type being the extinct genus Clathrotermes Heer, peculiar for its aumerous, transverse, gently oblique crossveins in the costal field and for the dark, quadrate spots which usually accompany these and other cross-veins. If we are to follow E. Geinitz, the species must have been exceedingly variable. Two white ants also occur in the oolite of Bavaria, which Hagen refers to Termes proper. (1885.)

The family of 'Termitina is represented in the Tertiaries of Europe by twenty-nine nominal species. Hagen, however, asserts that several of those purporting to come from amber are in reality copal species, and this, with synonyms and species merely nominal, reduces the actual number to seventeen. It is donbtful if one of these, T. peceme Massal., is a Termes at all, and if it is, its position can not be further defined The number may therefore be considered sixteen; besides this, a species has been indicated without name from the English 'Tertiaries.

Of these sixteen, six come from amber, belonging to three genera (Calotermes two speeies, Termopsis three, and Termes one); six from Radobej, also of three genera (Hodotermes two species, Termes two, and Eutermes two); and three from Oeningen, of two genera (Hodotermes two species, Termes one-the same as found at Radoboj). Besides these there is a Caloternies from Rott, and a Hodotermes from Sclossnitz.

The section eomprising the genera having a branched seapular vein is therefore represented by eleven species (Calotermes three, Termopsis three-from amber only, Hodotermes five), while the section with simple seapular has only five speeies (Termes three, Eutermes two). The nominal and doubtful species (and, it might be added, most of the synonyms) fall into the latter seetion, and should doubtless increase it somewhat. As it stands the first section has two-thirds of the fossil species.

Thirteen of these sixteen species are entered in Hagen's Monographie der Teraiten; the others have since been published; and it is noteworthy that of the eighty-four modern species coutained in this monograph fiftyfive, or nearly two-thirds, belong to the second section; in other words, only 31 per cent of the Tertiary, but 65 per cent of the recent species, belong to the second section.

The additions to the Tertiary Termite-fauna here made are in entire keeping with these statistics; six speeies are described, of which four belong to the first, and two to the second, seetion, raising the number of 'Tertiary species to twenty-two, or about one-fourth the number of recent species.

Of these six species, three belong to a new extinct genus, apparently peculiar to America, but possibly including some of the species from the European Tertiaries; another is referred doubtfully, from want of sufticient data, to Hodotermes, which has yielded species from Radoboj, Oeningen,
and Schossnitz, ns well as among modern types; while the other two probably fall into Eutermes, and are allied to, but considerably smaller than, the species from Radoboj placed with many modern types in the same genus. They are perhaps more nearly allied to, as they certainly agree better in size with, the two species of Termes found living in the neighboring valley of the Fontaine quii Bouille. Calotermes, which has furnished species from amber and the Rhenish basin, Termopsis, which has more fossil (amber) species than recent, and Termes proper, which is represented at Oeningen and Radoboj and in amber and the Rhenish basin, all seem to be wanting in the American Tertiaries. The composition of the white-ant fauna of the ancient Florissant, to which locality the known American fossils are confined, differs considerably from that of the localities known in the European Tertiaries, but resembles that of Radoboj more closely than it does any other, as will appear from the following table of representation:
First division.

Florissant.	Radoloj.
Parotermes insignis. Parotermes hagonii. Parotermes fodinie. Hor!otermes 9 coloradensis.	.
	Hodotermes haidingeri.
Hodotermes procerns.	

Second divixion.

Out of one hundred and fifty-three specimens of amber white ants examined by Hagen only a single larva, and no soldier, was found; all other fossil individuals have also been winged specimens; but it is worthy of speciai :emark that in the collection of twenty-six individuals from Florissant one is a larva. The scarcity of such forms, whether in amber or lacustrine deposits, is easily explained by the habit of life of these creatures.

The very presence of so considerable a number of Terinitina (twentysix specimens, six species') in the Florissant beds is indicative of a much

[^14]warmer climate formerly than the locality now enjoys. Only three species of white ants, and of these only one belonging to the section with branched scapular vein, lave been recorded from the United States north of the Gulf margin, excepting on the Pacific coast, where one or two more extend as far north as San Francisco. Yet seventeen species in all are recorded from North America by Hagen in 1861, and some have since been added to the list; while his South American list (nearly all from Brazil) includes thirtyone species, of which five are repeated from the North American list. Florissant is situated in 39° north latitude, and Hagen says that the fanily only rarely (wenig), and that only in the northern hemisphere, extends beyond the fortieth degree of latitude. One species occurs as far north as Manitoba. (September, 1881.)

Scapular vein branched.		
Submarginal vein prosent..1. Paroterme.	1. Parotermes.
Submarginal vein absent.		2. Hodotirmev.
Scapnlar vein unbranched		.3. Eutermes.

1. PAROTERMES Scudder.

Parotermes Scndd., Proc. Amer. Acad. Arts and Sci., XIX, 135 (1883).
Head rather large, short-oval in form, almost as broad anteriorly as posteriorly, well rounded behind; eyes small, ocelli wanting; antennæ longer than the head, but shorter than the head and prothorax, slender, perhaps slightly broader in the middle than at either end, composed of about twenty equal joints, shorter than broad. Prothorax from a half to a third as long as the head, narrower than or only as broad as it, broader in front than behind, subquadrate, with the hinder angles rounded off. Wings slender and straight, subequal, less than half as long again as the body, four times as long as broad; basal scale obscure in most specimens examined, moderately large, as long as the prothorax, its costal margin convex; costal margin of wing straight nearly to the tip, which tapers to a well-rounded point; marginal and mediastinal veins both present, the latter distinct and reaching nearly to the middle (sometimes only to the end of the basal third) of the costal border; scapular vein running parallel to the costal margin to the tip of the wing and emitting from five to seven very oblique gently curving superior branches at pretty regular intervals, the second arising before the middle of the vein; it also emits a couple of inferior branches
from opposite the base of two of the later branches which strike the apex of the wing, diverging from the main vein no more than the st:perior branches. Externomedian vein also running parallel to the costal margin throughout the g y ater part of the wing, and not so far removed from the seapular as the latter is from the costal margin ; it has four or five simple or forked branches, mostly arising in the basal third of the wing, and with these b:anches takes a remarkably longitudinal course obliquely toward the hind margin and parallel to the inferior apical branches of the scapular vein; it therefore occupies the greater part of the wing. The internomedian vein is reduced to a very contracted area, consisting apparently of only a single forked vein or two in the narrowing basal part of the wing. The feeble character of the externomedian and internomedian veins, as well as of the inferior branches of the scapular vein, prevents their preservation on most of the fossils, at it is only in a few specimens that the whole or nearly the whole can be made ont. There is apparently no net-work or reticulption anywhere on the membrane of the wing. The abdomen is large and ovate, generally broader than the rest of the body.

This genus, which is most nearly allied to Termopsis and Calotermes, differs from each of them in points wherein they differ from each other, and has some peculiarities of its own. It differs from Calotermes in its shorter wings (relative to the length of the body), which lack any fine reticulation, and in its want of ocelli. From Termopsis it differs in its slenderer but yet shorter wings, without reticulation, its uniform scapular vein running parallel to the costa throughout and provided with fewer and straight branches. From both it differs in the presence of distinct inferior branches to the scapular vein, but especially in the slight development of the internomedian vein, the excessive area of the externomedian vein, and the course of the latter, which is approximated much more closely than usual to the scapular vein and emits branches having an unusually longitudinal course. These last peculiarities also separate this genus still more widely from Hodoternes, with which it agrees pretty closely in many points, and in which Hagen places most of the larger Termitina described by Heer from the European Tertiaries, although they do not appear to agree with the characteristics of the genus as given by him, and certainly approach in some of their features the peculiarities of the present genus. It is, however, impossible from Heer's figures alone to judge whether they are really more closely allied
to Hodotermes or Parotermes; a nearer examinution of the types themselves would perhaps decide; but at present larotermes mast be considered peculiar to the Aperican 'Tertiaries.

The species are all o pretty lurge size. They may be separated as follows:

Tablo of the specien of Parotermes.

- Alnomen considerably broader than thes thorax.

Wings produeed ut the apex ; nubuarghal vein short; branchey of the externomedian veln and inferior branches of scapular more oblifne than tho superior scapular branchen..1, I^{\prime}, fusignis, Wings rourded at the apex; suhmaryinal vein long; banches of tho mbuedian rein aud inforior branches of tho neanular as longitndmal as the superior seapmlar branches......2. P. hagenii.
Abdenen no broader than thorax ...3. 1 . fodinte.

1. Parotermes insiunis.

$$
\text { PI. 12, Figs. 13, } 14 .
$$

Parotermes inaignis Scudd., Proc. Amer. Aead. Arts and Sci., XIX, 137-139 (1883); in Zittel, Handb. Palueont., I, il, 773 , Figr 974 (1885).

Head broad oval, of pretty regular shape, but broadest in the middle of the linder half, the front and hind border broadly rounded; there is a slight median iongitudinal suture in the posterior half of the head. Eyes one-fifth the diameter of the head, situated with the front margin slightly more distant from the front than from the hind border of the head and the outer margin just within or at the lateral margin of the head; they do not appear to project strongly above the surface. Antennae scarcely so long as the head and prothorax together, composed of about twenty to twenty-two joints, the basal joints twice as broad as the stem, the others broader than long and equal throughout, not enlarged toward the middle of the antennæ.

- Pronotum nearly twice as broad as long, as broad as the head, the front margin nearly straight with slightly rounded corners, the lind border and sides forming one nearly uniform, broad, semicircular curve; its surface appears to be flat, or at least there is no median impressed line. Mesonotum a fourth broader than long, with in distinct median impressed line, at least in the front half, subquadrate in shape, broadest in the middle of the front half, and tapering slightly and regularly behind, the front margin broadly rounded to the shoulder of the wing. Metanotum about as long as the mesonotum and of a similar shape, but tapering more rapidly behind, and likewise with a median impressed line mbre distinct anteriorly. Abdomen obovate, broad, and about equally rounded at either end, in the middle nearly half as broad
again as any other part of the looly, in length just about equaling the entire thorax. Abdominal :.ppendages obscurely seen in a single individual, where they are tolerably stout, tapering slightly, very bluntly terminated, and about as long as the last ablominal segment. Legs very short, the tibie being shorter than the wilth of the thorax, and armed at tip with a pair of short straight spurs; tarsi not more than half as long as the tibio, but the separate joints are not determinable on any of the specimens.

Wings four times as long as broal, the middle of the front pair reaching the ond of the abdomen, long a .d very regularly obovate, the only difference in the form of the two extremities being in the gentler tapering of the base and the straighter course of the costal margin next the base. The basal scale is triangular, abont as long as the mesonotum, its costal and outer margins each a very little convex. The seapular vein, its superior branches, and the mediastinal are stout, while the other veins are very feeble and ouly appear under favorable preservation. The submarginal vein ${ }^{1}$ is crowded against the margin, but does not run fairly into it before the end of the basal fifth of the wing. The mediastinal vein terminates a short distance before the middle of the wing. The scapmiar vein runs at only a short distance from and parallel to the margin, and emits from five to eight superior branches rumning in an extremely longitudiual course to the costa; nsuaily the first branch is thrown off almost as far out as the middle of the second quarter of the wing, but where the branches are numerous three branches are thrown off before the middle of the wing; in addition to the superior veins two inferior veins are emitted in the apical third of the wing, and strike the lower margin of the wing just below the apex. The extemomedian vein runs subparallel to, but a little divergent from, the scapular, and nearly as far from it as it is from the costal margin, emitting four inferior simple or forked branches which cover the greater part of the hind border with their nervules; from near the middle of the wing a superior branch is also emitted, which is soon lost. The internomedian vein is forked, and strikes the margin near the middle of the basal half.

Althongh in the number of branches to the scapular vein the specimen showing the wings most clearly (No. 7752) differs considerably from

[^15]the others, the vein commencing to branch at a considerably earlier point, all the specimens ngree so well in every other particular that these would appenr to be irdividual variations. It is the largest species of the genus.

Length of body, 11.5^{mm}; breadth of thorax, 2.5^{mma}; of abdomen, 3.3^{mm}; length of antemar, 4.25^{mm}; of front wing, 13.3^{mm}; breadth of same, 3.35^{mmm}; length of middle tibin, 2^{man}; of tursi, 1.25^{mm}; of abdominal appendages, $065^{\text {min }}$.

Florissant. Four specimens, Nos. 400, 7752, 9041, 14400.

2. Parotermes hageni.

PI. 12, Fig. 2.

Parotermes hagenii Scudd., Proc. Auer. Acad. Arts and Sci., XIX, 139-140 (1883).
Head roundish obovato, very regularly rounded, searcely half as long again as broad, broadest at the oyes, whieh are searcely behind tho middle, and are deeply set, their outer border projecting but little beyond the contour of the head. Antemee nearly as long as head and pronotum taken together, composed of about twenty-six joints, subequal beyond tho base, a little tapering at the tip. Pronotum more than twice as broad as long, fully as broad as the head, the front margin slightly concave, the hind border and sides forming a regular broad curve. Mesonotum and metanotum shaped exaetly as in P. insignis, and with a similar impressed line. Abdomen obovate, but with more parallel sides than in P. insignis, being only a little broader than the thorax, and nearly as long as the rest of the body, including the head. Abdominal appendages tolerably slender, equal, bluntly pointed, composed of five or six joints, the last of which appears to be two or three times as long as the others, which are equal; the whole is about half as long as the pronotum. Legs short, but longer than in P. insignis, the tibie being about as long as the width of the thorax, but they are imperfectly preserved on all the specimons.

Wings a little more than four times longer than broad, the middle of the front pair scarcely reaching the extremity of the abdomen, broadest in the middle, tapering almost as much apically as basally, the tip roundly pointed, the costal margin pretty straight until shortly before the tip, the lower margin broadly curved. The basal scale is of the same shape and size as in P. insignis, but with a stronger costal curve. The scapular vein and its superior branches are stout, its inferior branches and the veins below
feeble, so as only to appear under favorable circumstances, being visithe in only half of the specimens before me. The submarginal vein of the frout wing terminates at about the middle of the basal hulf of the wing, and about opposite the origin of the first superior scapular branch. The mediastinal vein extends about to the middle of the wing both in the front and hind wings. The scapular vein is related to the margin ex.cetly as in P. insignis, and has five or six superior branches on the hind wing, six or seven on the front wing; on the front wing they originate at subequal distauces apart, commencing usually at about the middle of the basal half of the wing, but when there are but six branches (which appears to be less commonly the case) the first originates at a greater distance from the base; on the hind wing there is greater irregularity; in one specimen, that figured (No. 8616), there are five brauches on the left hind wing, the first origi:ating heyond the middle of the wing, while on the right wing there is an alditional vein, origimuting far before the second, at the middle of the basal half of the wing; in another specimen with only five veins (No. 8250) the basal branch originates somewhat beyond the middle of the basal half of the wing, and the others follow at subequal intervals; besides these superior there are two inferior nervules arising, the first at the end of the middle third of the wing, opposite a superior branch, and the second opposite the succeeling branch; sometimes a third vein appears beyond these; after parting from the scapular vein these take a longitudinal course and terminate at the tip of the wing. The extermomedian vein rums subparallel to the seapular, diverging slightly from it and being as far from it as it is from the costal margin; it emits two or three inferior branches, the last scarcely beyond the middle of the wing, the basal ones of which appear to be forked, but all having an unusually longitudinal course, being only slightly deflected towards the lower margin. Nothing can be said of the internomedian vein.

This species differs from P. insignis ly its more lateraily disposed eyes, rounder head, differently shaped wings, more longitudimally disposed branches of the externomedian vein, and longer and narrower abdomen.

Length of body, 10.5-12, av. 11^{mm}; breadth of thorax, 2.1^{mm}; of abdomen, 2.6^{mm}; length of antenne, 4^{mm}; of front wing, $13.5-15.5$, av. 14^{mm}; breadth of same, 3.35^{mmm}; length of middle tibia, 1.65^{mm}; of abdominal appendages, 0.65^{mm}.

Named for Dr. H. A. Hagen, the distinguished monographer of the 'Termitim. living and fossil.

Florissult. Seven specimens, Nos. 4629, 4652, 52:24, (f030, 8250, 8616, 14167.

3. Parotermen fodine. PI. 12, Fign. 3, 22.
I'arotermea fodina Sendd., I'roo. Amrr. Acad. Arla and Sel, XIX, 141 (1883).

Head oblong obovate, half as long ngain as brond, the eyes harge, circular, about one-fifth the diameter of the head, slightly projecting beyond the sides, the auterior edge near the middle of the hend. Pronotum trausversely humte, as bromd as the hend, less than twice as long as broad, the front margin regularly and considerably concave, the hind margins and sides forming one uniform strongly convex curve, the anterior lateral mogles romuled off. Mesonotum and metanotum obecurely jreserved, but appurently formed much as in the other species, the mesonotum being of about the same width as the promotum. Abdomen rather long and comparatively slender, scarcely if at all exceeding in width the parts in front, the sides being musially parallel, the tip well rounded, the whole as long as the rest of the body. Aldominal appendages very small, stout, being only a little more than twice as long ins broad, largest in the middle, and tapering either way, the tip blant, the whole not longer than the diameter of the eye. Legs poorly and partially preserved in a single specimen, showing them to be much as in P. hagenii, the lind tibia being only a little shorter than the width of the mesothoras.

Wings four times as long as broal, the middle of the front pair reaching the tip of the abdomen; the exact form can not be made out, but the costal marin is straight mutil very near the tip, and the hind border appears to be 1 mai .n and to make the wing slightly broadest just beyond the middle. The sumarginal vein is unsually long, ruming into the costa only a little before the middle of the wing. The mediastinal tormimates not far beyond the middle The seapmlar vein has five or six hranches in the front wing, generally five in the hind wing, the first appearing always to originate at the end of the basal third of the wing. The inferior nervales of this vein and the course of the branches of the veins below can not be determined in any of the specimens, but there are faint indications of their
presenco, and nothing in them appears to distinguish this species by any marked peculiurities from the others of the genus.

This species differs from the others here described in its considerably smaller size, slender abdomen, and much smaller abdomimel appendages.

Length of body, 9^{mm}; brealth of thomx, 2^{mm}; length of front wing, 13^{mm}; breadth of same, 3.25^{mm}; length of hind tibin, 2^{mm}; of abdoninal appendages, 0.25^{mm}.

Florissant. Four specimens, Nos. 1247, 1253, 7608, 11190 and 14391.

2. HODOTERMES Hagen.

Hagen refers to this genus two fossil species from Oeningen and two from Radoboj. Assmaun also describes a species from Schossnitz, and one of the Florissant white ants is referred here doubtiully. The fossil therefore nearly equal in number the living species, which are all inhabitants of the Old World, the most northern species being found in Egypt.

Hodotermes 9 coloradensis.

Pl. 12, Fig. 6.

Hodotermes coloradensis Scudd., Froc. Amcr, Acad. Arts and Scl., XIX, 142-143 (1883).
Metanotum considerably narrower thm the mesonotum, as long as broad, tapering posteriorly, the front border straight, the hind border rounded. Abdomen ovate, stout, less than twice as long as broad, the sides full, as broad as the mesothorax, posterior extremity rounded. Abdominal appendages long and slender, half as long as the metanotum, composed of at least six or seven joints, slightly tapering, terminating very bluntly.

Wings very long, the middle of the front pair lying far beyond the tip of the abdomen. Submarginal vein absent from all the wings. Mediastinal vein terminating at the middle of the front border. Scapular vein parallel to the front margin, with at least four branches in both wings, and in the front pair pretty certainly five branches, and perhaps six ; the first branch originates in the frout wing at the ond of the basal fourth of the wing, in the lind wing a little farther out.

This species is readiy distinguished from all the other fossil Termitina of North America by its very great size, the length of the wings being double that of any other. Although the specimen is very imperfect, the VOL $x 111-8$
tip and lower half of the wings being absent, as well as the hend, prothorax, and legs, it differs so much from the spocies of Parotermes, in the absence of the submarginal voin und the great length of the abdominal appendages, that it probably can not be associated with them generically. In size and general appearance it agrees so fairly with the 'leriamy species described by Heer, referred to Hodotermes loy Hagen, that I place the species provisionally in the same genus, from which (as from all other genern so far as I know in which the structure of the wings would allow it to be placed), it diffors b_{j} the great length of its anal nupendages.

Length of body as preserved, $0^{\text {mun }}$ (probably it reached about 12); of a^{h} domen, 6^{mm}; breadth of same, $4.5^{\text {mun }}$; length of fore wing, 23^{mmm} or more; of abdominal appendages, 1.25^{mum}; breadth of same, 0.3^{mm}.

Florissant. One specimen, No 6010.

3. EUTERMES Heer.

The remnining species fall into the division of 'Termitina in which the seapular vein is unbranched, and it is uncertain whether they should fall in Termes proper or in Eutermes, the veins below the scapular boing in all cases poorly preserved or wholly obliterated. 'The limited number of untemmal joints in such as have these preserved sufticiently for examination, and the occasional indication of a broad subseapnlar field in others, lead rather to the presumption that they should be placed in Euternes. Two species lave been found at Florissant. The genus has been well known in a fossil state, four species having been described from Radohoj in Croatia and tive fiom Prussiun amber. Indeed, the genns was first founded upon fossil speces, but it was soon seen that many living forms belouged to the same gromp. The existing species, some thirty in number, belong ahost exclusively to the tropics, and especial'y to those of the southern hemisphere.

The two species of Eutermes which have been found at Florissant may be separated by the following fentures:

Table of the species of Euterven.

[^16]1. Eutermes fossarum.

Pl. 12, Fig. 20.
Eutermee fousarmm Scnidd., Proc. Auer, Aoad. Arts and Noi., XIX, 143-144 (188:1).
Head very regularly obovate, a littie broader behind than in front, nearly half as long again ns broud, its posterior border well rounded. Eyos rather emall, situated in the middle lateraliy, projecting but little. Antennie searcely if any longer than the head, wather stont, enlarging away from the base, composed apparently of less than fifteen joints. Pronotum as broad as the head and twice as brond as long, cenisirenlar, the front border scarcely eopeave, the front margins slightly roundod. Mesonctum and metanotum as broad as pronotum, quadrate, equal, about ha's as broad again as loug. Abdomen somewhat longer than the rest of thu body and slightly broader than the thorax, with gently romeded sides and wellrounded tip; no abdominal appendages are diseoverable on any of the specimens. Legs poorly preserved on all specimens; upparently they are of medium length.

Wings rather more than four times as long as broad, the middle of the front pair not roaching the tip, of the abdomen, very aniform and regular, of nenrly equal breadth throughout the midille two-thirds, tho costal margin straight until just bofore the tip. Scapular vein parallel to the margin, the subeostal aroa infumated; veius below the scapular not determimable. The basal seale appears to be small, broad, triangular, its costal border swollen.

Lougtin of body, $6.5-7.5$, av. 7.15^{mm}; of abdomen, $3.5-4.5, \mathrm{av} .4 .15^{\mathrm{mm}}$; breadth of pronotum, $1.2^{\text {mum }}$; of abdomen, 1.5^{mm}; length of untenme, $1.2^{\text {mum }}$; of front wing, $7.75-9.25, \mathrm{av} .8 .25^{\mathrm{mm}}$; brendth of same, 2^{mm}.

Florissant. Five specimens, Nos. 2329, 6049, 7393, 11752, 14980; throe of them in pretty good condition.

2. Eutermes meadi.

$$
\text { Pl. 12, Figs. 12, } 17 .
$$

Entermee meadii Scudl., Proc. Amer. Acad. irts nid Sol., XIX, 144-145 (1883).
Heal very regularly obovat9, broadest just behind tho middle, where the small eyes, scarcely projecting, are situaten, not beader behind than in front, the hind margin strongly rounded, the whole fully luif as long
again as broad. Antennæ nowhere well preserved, but apparently longer and with more numerous joints than in E. fossarum. Pronotum as broad as the head (\%) and very short, probably more than twise as broad as leng, the hind margin not forming with the sides a continuous curve, but in its middle lualf only slightly convex. Mesonotum and metanotum quadrate, broader than the head, the mesponotum somewhat the larger, at least half as broad again as long. Abdomen rather stout, longer than the rest of the body, the sides nearly parallel, the tip broadly rounded, and, as far as can be made cut, unprovided with terminal appendages., Legs moderately long and stout, the tibiæ armed with a pair of spines at apex, the front tibiæ about as long as the pronotum.

Wings long, slender, and uniform, four times or sl:ghtly less than four times as long as broad, the middle of the front pair reaching the tip of the abdomen, broadest at or slightly boyond the middle, the lower border slightly arcuate throughout. Costal margin straight in the basal threefourths of the wing. Scapular vein parallel to the margin, the subcostal area scarcely infurnated. Veins below the scapular not determinable. Basal scale small, triangular, equilateral, the sides straight excepting the costal, which is very slightly convex and prominent.

This species differs from the preceding by its slightly smaller size, squarer pronotum, and differently shaped head.

Length of body, 5.25-7, av. 6.3^{mm}; of abdomen, 2.8-3.5, av. 3.2 ${ }^{\mathrm{mm}}$; breadth of abdomen, 1.5^{mm}; length of wing, $7.5-8^{\mathrm{mm}}$; breadth of same, 2^{mm}.

Named for Mr. T. L. Mead, whose collection of Florissant insects he has permitted me to study.

Florissant. Four specimens, No. 19 (Coll. T. L. Mead), and Nos. 31, 1203, 8062.

A single specimen of a wingless white ant has been found, apparently belonging to this species or to E. ©ossarum. It measures 3.75^{mm} in length, and is of the ordinary form of the worker, with rounded head and constricted prothorax, bearing ingeneral resemblance to the only other known fossil termite larva, figured in Berendt's work, but las the head more produced anteriorly and the abdomen less distended.

Florissant. One specimen, No. 6100.

Family PSOCINA Burmeister.

Until now this group has been found fossil only in amber, but here in considerable abundance, since several of the species are represented by twenty, thirty, or even sixty individuals; and fifteen species are recognized, ajout one-ninth the number of living species known, but nearly one-half as many as the species now living in Germany, according to the latest monograph by Kolbe. These fossil species are divided among ton genera as follows: Troctes, one; Sphæropsocus, one; Empheria, two; Archipsocus, two; Amphientmum, one; Epipsocus, one; Cæcilius, three; Philotarsus, two; Psocus, one; Elipsocus, one. The genera Sphæropsocus, Empheria, and Archipsocus are peculiar to amber; the first mentioned, a most remarkable form, has the front wings developed into the semblance of elytra. It is worthy of note that, while in the existing fauna of Europe the groups to which Psocus and Elipsocus belong embrace about half the species, they include only one-seventh the amber fauna. Hagen and Kolbe are at variance on the interpretation of these facts. The single imperfect specimen so far found in American deposits-the only one indeed in any rock forma-tion-proves to belong to a distinct generic type, remarkable for the wide separation of the ocelli.

PAROPSOCUS gen. nov. ($\pi \alpha^{\prime} \rho o s$, Psocus).

The single insect on which this new generic group is based is very fragmentary, but seems to differ so clearly from other types of Psocina, whether living or fossil, that it can only be recognized as distinct. The head is broad, not including the eyes as broad as long, the nasus prominent, very broadly convex, almost truncate ; the eyes art very large, very prominent, globose, subpedicellate, being strongly constricted at dase, widening the head one-half; ocelli large, exceptionally distant, the outer paired ocelli infringing on the margin of the eyes. Antennæ with the first, second, and third joints successively narrower by one-fourth, the first and second broader than long, not large, the third joint four or five times as long as broad, cylindrical, the remaining joints on the proximal third of the antennæ two or three times as long as broad, smallest at base, apically rounded. Prothorax narrow, pedunculate, free, with its angulate apex overlappiag tiue mesonotum, longer than broad. Mesothorax much broader than the total
width of the head. Fore tibiae slender, longer than and not half so stout as the fore femora. Abdomen very short and stout, tapering very rapidly behind.

Perhaps this genus is as nearly related to Amphientomum as to any other. A single species is at hand.

Paropsocus disjunctus.

$$
\text { Pl. 5, Fig. } 51 .
$$

The single specimen unfortunately shows only an insignificant fraction of neuration, and therein no distinctive parts, but only those which are common to all genera of Psocidæ. So far as can be seen, the head, thorax, antenux, and 'egs are absolutely naked. The plate wrongly shows the left antenna as the tarsus of the fore leg. The third joint of the antenne is shorter than the width of the head between the eyes.

Length of body 1.6^{mm}; breadth of head, 0.45^{mm}; of thorax, 0.75^{mm}; length of third antennal joint, 0.3^{mm}.

Fossil Cañon, White River, Utal. One specimen, No. 33°, W. Denton.

Family EPHEMERIDAE Stephens.

Our previous knowledge of Tertia:y Ephemeridas is based entirely upon imagos and almost entirely confined to the statements made by Pictet and Hagen nearly thirty years ago in their account of amber Neuroptera. Four species of Baetis and one each of Potamanthus and Palingenia were there desoribed, and two years earlier mention is made by Hagen, by name merely, of a second species of Palingenia, but in the subsequent work it is referred to Baetis. Here also Pictet's Palingenia is considered as more closely related to Baetis anomala, for which in his monograph of the Ephemeridx Eaton establishes the genus Cronicus. Eaton also refers the Potamanthus to Leptophlebia. We have therefore from the amber three species of Baetis, one or probably two of Cronicus, and one of Leptophlebia. Besides these, Sendel figures a species which he classes "inter ephemeras minores," and Burmeister says he has seen "zwei individuen der gattung Ephemera" in the Berlin Museum.

From the Tertiary rocks we have only a reference by Schlotheim to an insect from Oeningen, which he says may be an Ephemera or a Phry-
ganea, Heer's undescribed Ephenera oeningensis, and a referenes to an Anstralian species by Wilkinson.

It is not worth while to enter here upon any discussion of the pre-Tertiary Ephemeridæ, but one of the most interesting of modern discoveries is Friés gigantic Palingenia feistmanteli from the coal.

The American remains referred here are rather unsatisfactory, consisting of a single imago and five different species of larve and pupa. The earlier stages have not before been noticed in a fossil state. The least satisfacoory is the imago, which is so rudely preserved that only its three caudal setre of equal length give any clue to its relationship. The larve and pupe agree elosely in atructural features, and, excepting E. interempta, seem to belong to olic genus. The stoutness of the tibix, which are of nearly equal breadth with the femora, and particularly the size of the fore tibix where preserved, indicite pretty clearly that they were burrowing in labit and belong in the neighhorhood of Ephemera and Palingenia; their legs, however, thongh longitudinally hairy, are not laterally fringed, as appears to be the case with such lavve so far as they are known; and the respiratory organs of the abdomen are too poorly preserved to offer any assistance; the legs, however, are ovidently flattened, and hence I have placed them in Ephemera rather than in Palingenia. They seem, however, to indicate the existence here of a distinct type, for they differ from such larve as are known in the form of the body, which is unnsually stout at the thorax and particularly in the mesothorax, tapering anteriorly to such a degree that the head is very small, and it is also not producod anteriorly, or to a slight degree only; the abdomen tapers also either throughout its length or from the middle posteriorly; the respiratory organs, if of the form and position in which they are found in Ephemera and Palingenia, would certainly be clearly seen, whereas no sign of them appears upon the upper surface of the abdomen; there are, however, certain indications laterally which may be referred to them, and if so this would be an additional distinction. The unfringed legs, in which femur, tibia, and tarsus are of nearly uniform diameter, indicate a further difference from known types. So little, however, is known of the early stages of this group that it will be impossible to indicate the nearer affinities of these fossil larvæ until further information of living forms is obtained. (September, 1883.)

EPHEMERA Linné.

The species known only in the inmature stages may be distinguished as follows:

Table of the species of Ephemera.

Onter candal seter fringed on both sides. Midille seta as long as the outer setice.
Seta very much more widely fringed in the niddle than toward either ens; dorsal nbileminal markiuge consisting of light blotuhes on a dark gronnd 1. E. tabifica.
Setie on.y a littie mere widely fringed in the middle than toward the base or tip; dorbal abdomlnai markinge consisting of light lince on a ilark ground. ..3. E. macilenta.
Onter eaulal setie friaged on the inver side only, aud very much more broally in the middle than near the base or tip. Middle seta shorter than the outer setm2. E. immobilis.
Setw of eqnal length and nakel, or not noticeably fringed.
Large species. Head less than half the width of thorax; dorsa' abdominal markings of light lines. .. . E. pumicosa.
Small species. Heal considerably more than half as wide as the thorax; no dorsal abrominal marking

1. Ephemera tabifica.

Pupa.-This species differs somewhat in form from the other larger types, the abdonen being very nearly of equal size throughout and the thorax nearly twice as broad as it, while anteriorly the whole body tapers regularly, as in the succeeding species. The head is rounded quadrate, about half the width of the thorax. The legs are slenderer than in the succeeding species and short, the front pair no longer than the width of the thorax, the hind pair longer, being as long as the head and thorax sogether. The wing pads are blackish, about three times as long as broad, reniform in shape, the inner margin bent in the middle, and the basal halves of the inner margin of the two wings meeting to form an angle slightly less than a right angle, the apical half tapering to a rounded apex. The abdomen is long and slender, the apical joint more than half as broad as the basal, the dorsal surface blotched with large quadrate patches of lighter color than the ground, sometimes central, sometimes anterior and transverse, divided by a median line. The three caudal setre are slender, less than half as long as the abdomen, equal, very broadly fringed on either side in the middle.

Length of body exclusive of sita, 25^{mm}; breadth of thorav, 4.5^{mm}; of middle of abdomen, 2.6^{mm}; length of wing pads, 4.5^{mm}; of front legs, 4^{mm}; of hind legs, 8^{mm}; of setre, 7^{mm}.

Florissant. One specimen, No. 13238.

2. Ephemera immobilis.

Pl. 12, Fig. 5.

Larva.-This is the largest of the ephemerid larve, and is represented by a single specimen and its reverse. The body is stout, largest at the mesothorax and metathorax, tapering rapidly and somewhat rounded in front, tapering gently behind, the hinder half of the abdomen more rapidly than the basal half. The head is sma.ll, about as broad as the terminal segment of the body, transversely rounded oval, less than half as broad as the thorax, and synmetrical, being rounded in front as behind; the mandibles, not represented on the plate, are not so long as the head, moderately stout, nearly straight and tapering. The front legs are nearly as long as the thorax, the femora and tibiæ, which are of equal width, nearly or quite as broad as the length of the prothorax; the tibia is a little longer than the femur and about half as long again as the tarsus, which is also somewhat slenderer. The other legs are longer and a little stouter, but retain the same relations, excepting that the tarsus is much longer, half as long again as the tibia and toward the tip tapering. The thoracic branchix form a pair of triangular equilateral pads, their inner margins straight and attingent at the mediodorsal line, their outer margins convex. The dorsal surface of the. abdomen is ornamented by a pair of approximated subdorsal, longitudinal, curved, white streaks, convexities outward, reaching the posterior but not the anterior border of each segment. The crudal setæ are of unequal length, the outer more than one-third, the middle one nearly one-fourth, the length of the body. They are fringed, the outer ones on the inner surface only, the middle one on both sides by a delicate fringe of hairs, which increases in breadth from either end toward the middle, where the fringe is from a third to a fourth the width of the last abdominal segment.

Length of body, 21^{mm}; breadth of thorax, 5^{mm}; of head, 2.4^{mm}; length of fore tibia, 2.25^{mm}; breadth, 0.6^{mm}; length of hind tibia, 2.75^{mm}; breadth, 0.8^{mm}; length of outer caudal setæ, 8^{mm}; of middle seta, 5^{mm}.

The species differs from the other larvx here described by its greater size and the peculiar fringing of the caudal setw.

Florissant. One specimen, Nos. 8824 and 2828.

3. Fifiemera macilenta.

Pl. 12, Figs. 4, 10.

Larva - The body is stout but not so stout as in the last species, which is only slightly larger than this; it tapers also in a similar munner but is not so rounded anteri riy. The head and mandibles are of similar form and size, but the head is not so distinctly separated from the thorax as in that species, being continuous with the general outline of the body. The legs are considerably shorter than in the preceding species, but while agreeing with them in general structure the fenora are stouter in relation to the tibia. The abdomen is similarly marked, but the stripes are shorter, reaching neither the anterior nor the posterior margins of the segments. The caudal sete are of equal length, nearly half as long as the body, and fringed on either side with shor cilie, scarcely longer than the breadth of the seta.

Length of body, 1.75^{mm}; breadth of thorax, 3.6^{mm}; of head, 1.85^{nm}; length of fore tibia, 1.9^{mm}; brealth, 0.35^{mm}; length of lind tibia, 2^{mm}; breadth, 0.35^{mm}; length of caudal setæ, 7.5^{mm}.

The brevity of the legs and the uniform brief ciliation of the caudal setæ distinguish this species from either of the other larve here described.

Florissant. Five specimens, Nos. 232, 1137, 7280, 10423, 13526.

4. Ephemera pumicosa.

Pl. 12, Figs. 7 (pupa), 15, 16 (larva).
Larva.-This species is both smaller and slenderer than any of the larve described above. It tapers in the same manner as the others, except in being more rapidly expanded at the thorax and in having the abdomen of more uniform width, a peculiarity seen also in the nymph referred to the same species. As in the other species, the head is of the same width as the extronity of the abdomen. The legs are poorly preserved in all the specimens, but seem to agree entirely with their appearance in the nymph. The abdomen is marked as in E. immobilis, but if anything with longer and straighter stripes. All the caudal sete are of similar length, slender, but rather short, being only about one-third the length of the body; they are furthermore distinguished from those of the other species by being naked, as far as can be seen, though one specimen seems to show an apical bristle on either side at the end of each joint of the middle seta.

Length of body, 17^{mm}; breadth of thorax, 4^{mm}; of head, 1^{mm}; length of caudal seta, 6^{mm}.

Pupa.-The form is altogether that of the larva, but the legs are better preserved, slowing them to be as long in this species as in E. immobilis, but to differ in their almost uniform slenderness throughout, the tarsi being scarcely narrower than the femorn. The wing pads are distinctly marked in dark brown and are reniform in shape, of nearly uniform width and nearly three times as long as broad, the basal half of their inner edges meeting at less than a right angle, and the distal halves parallel and approximate along the mediodorsal line, the outer edges gently concave and the tips well rounded. The stone is broken at the tip of the body in the only specimen, so that the caudal seter are not preserved.

Florissant. Five specimens, Nos. 233, 1070, 1516, 10385 (larvæ), 10660 (pupa).

5. Ephemera interempta.

This smallest of the ephemerids from Florissant, represented by a nearly complete ptipa and the terminal segments of what may be either larva or

- pupa, and which appears to belong here, differs considerably in structura! features from the others. The former only will be described.

Pupa.-The body is tolerably stout, largest at the thorax where it tapers forward toward the head, which is fully three-quarters its width. Posteriorly the abdomen remains in its basal half very nearly as broad as the widest part of the thorax, and only tapers rapidly a little before the tip, which is more rounded than usual and scarcely one-third as broad as the thorax The hesd is rounded, a little broader than long; the legs only moderately stout, all the femora subequal and about as long as the head. The wing pads are subtriangular, tapering pretty uniformly to a rather broadly rounded tip aliout half as broad as the base, the inner margin bent close to the base, and the basal portions of the two pads forming an angle much broader than a right angle; they differ therefore altogether in form from the two species of which nympls are known. The abdominal joints are more than twice as broad as long and wholly devoid of the markings which distinguish all the other species. The caudal setæ are about onethird as long as the abdomen, and unfringed. Only the base of the median seta is preserved in the type, but in the other specimen referred here it is as long as the lateral.

Length of body, 9.5^{mm}; width of head, 1.3^{mm}; of thorax, 2^{mm}; length of femora, 1.2^{mm}; of wing pal, 2^{mm}; of setex, 2.5^{mm}.

Florissant. . Two specimens, Nos. 1.582, obtained by the Princeton expedition, and 10706.

Ephemera exsucca.

PI. 12, Fig. 9.

A single specimen, very badly preserved, but showing unmistakably the caudal sete. The whole is preserved as I have seen no other specimon from Florissant, as if drawn on the stone with a pale blue peneil. The body is tolerably stout for an Ephemera, the abdomen tapering a little. The expinded wings are only partially preserved, but are apparently nearly as long as the body. The three eaudal setre are very slender and of exactly the same length, a little shorter than the hody. No ciliation can be detected on them.

Length of body, 9^{mm}; breadth of thorax, 2^{mm}; expanse of wings, 16^{mm}; length of caudal setx, 7^{mm}.

Florissant. One specimen, No. 5587.

Family ODONATA Fabricius.

More than thirty years ago in his work in conjunction with de Selys on the European Odonata, Dr. Hagelı contributed a chapter on the fossil species of Europe, in which about half of the species enumerated (thirtynine in number) belongud to the Secondary and half to the Tertiary period. Since then no one las done more than Dr. Hagen to add to our knowledge, especially of the Secondary species. The time has hardly come, and the species known are as yet perhaps not sufficiently numerous, to enter on any study of the relation of the n econdary and Tertiary types; but it may be stated in a general way thei, cmitting all mention of larval remains, we now know nearly double the number then recorded, and the Tertiary species are considerably in exc as. Of these the larger part belong to the Agrionina. (January, 1882.)

To enter into a few details, the strongly limited gro p of dragon-flies makes its appearance in the Lias in considerable variety and apparently as bighly specialized as to-day, for no less than four tribes are present, the true Agrionidæ and the Cordulidæ alone being absent. Aeschnina are the
most abundant, the Aeschnide being represented by a species of Aeschna at Schambelan and the Gomphide by one species each of Petalura and Gomphoides from England. Calopterygide come next, with one species each of Tarsophlebia and Heteropllebia, both extinct genera, also from England, and finally a species of Libellula from England. The same relation holds in passing upward into the oolite, where the Agrionina art added. Here we have thirty-two species, of which half are Agrionina: four Agrionidx, and twelve Calopterygidæ of five genera, mostly extinet, namely, Isophlebia, two; Heterophlebia, two; Stenophlebia, three; Tarsophlebia, one, and Euphæa, four; three are Aeschnide of the genera Anax and Aeschna; eight Gomphidæ of some undeternined genera, besides Petalura and Petalia; and finally five Libellulidx of about as many genera, yet undescribed. A species of Gomphidx has also been found in the Weulden of England. The lithogruphic slates of Bavaria afford numerous, sometimes wonderfully preserved, dragon-flies, called by the workmen Stangenreiter or Sclıadon-Vügel, which have been carefully studied by Hagen. They lie on the stone with expanded wings and are generally lavgor than modern types; sometimes the most delicate veins are perfeetly preserved. Most of them are referred to extinct genera.

Considering the comparative abundance of this group in the Secondary rocks one would expect to find a better representation in the Tertiaries than is the case, for, even counting all the species founded upon the immature stages as distinct from any of those established upon wings, the Tertiary species are less than twice as numerous as those from the Secondary rocks. The subfamilies are about equally represented, though the Agrionina are a littie in excess, and the species are very unequally distributed among the tribes. Thus there are twenty-two species of Agrionidx of the following genera: Agrion, seven; Lestes, five; Argya, one; Platyenemis, two; Sterope, one ; Dysagrion, three ; Podagrion, one ; and Lithagrion, two, the last four generia being extinct; while there is but a single species of Calopterygida known by a pupal form, from amber, a curious reversal of the proportion in Mesozoic rocks. The Eschnina are more equally balanced between the tribes, the Gomphide being reprosented by six species, of the genera Gomphus, Gomphoides, Ietinus, and Petalura, and the Aeschnidæ by nine; of the genera Aeschna (eight) and Anax (one). The Libellulina, however, have again only a single species of Cordulidx,
but sixteen species of Libellulide, all excopt one, a Celithemis, referred to Libelluln in 1 b broad sonse. Nearly every locality where 'Tertiary insects are found, even including amber, has supplied its quota of this family, and some loculities, stech as Oeningen, have furnished the larve and pupe in great numbers. (1885.)

The Odonata furnish the first opportunity that my studies have afforded of a comparison between the insect fitunas of Florissant and the Greon River shules. The Florissint beds have furnished six species in tho perfect state besides two larve; the Green River shales four speries in the perfect state besides fragments of another, concerning which nothing more can be said than that it prolahly belongs to the Libellulina. Two of the Florissant forms belong to Aeschm, besides one of the larve. All the remainder, four Green River species, and four from Florissant, besides a larva, belong to the Agrionina. The Green River shales are represented by one species of Podagrion and three species of Dysagrion, an extinct genus of the legion Podagrion allied to the genera Podagrion and Philogenia; the Florissant beds by two species of Agrion and two of Lithagrion, an extinet genus with the same alliances as Dysagrion; the species of Agrion are not sufficiently perfect to decide into what subgenus they will fall, but they are cortuinly closely related and appear to be most nearly allied to Amphiagrion or else to Pyrrhosoma or Erythromma. All the Green River species belong then to the legion Podagrion, while the Florissant species are divided between the legions Podagrion and Agrion. The resemblance of the faunas of the two loculities is very apparent, though the species and even the genera âre wholly distinct. Tho facies of both faunas is decidedly subtropical (October, 1882.)

Tribe AGRIONINA Hagen.

This group is the richest of Odonata in the Tertiariss, both in Europe and Anerica, but curionsly the legions into whicl it is divided by de Selys are very differently represented in the two countries. To establish better terms of comparison I have given some attention to the descriptions and figures of the mature European forms, and their study brings out some interesting points.

In Europe the legion Lestes is far the best represented; into this fall Lestes coloratus Hagen from Radoboj, first figured by Charpentier, Agrion
ligen, A. lencosia, mid A. peisinoe, all of Heer and from Oeningen, and probably A. iris Heer of Oeningen; a closer determination is perhaps impos* sible. Into it also fall Lestes vicina Hagen from Sieblos, which appears to be a Lestes in the narrowest sense, and Agrion (Steropo) parthenope Heer from Oeningen, which is either a Sympyen or exceedingly elose to it. 'The logion next best represented is Platycnemis, sirce to the subgenns Platyenemis Agrion antiquam Higen from amber sad Agrion icarus Hugen from Rott pretty cortainly belong. Fimily, to the legion Λ grion belongs Agrion aglape Heer from Oeningen.

In America, on the other hand, the hulk of the species fall in the legion Podagrion, viz, Dysngrion fredericii, D. lakesii, and D. packardii of Green River, Podagrion abortivum from the same, and Lithagrion hyalimm and L. umbratum from Florissant. Tho other two speeies fall in the legion Agrion, viz, Agrion mascescens and A. exsularis.

The following table will show the distribution of recent and fossil species in Europe and North America:

Concerning the present distribution of these "legions," it may be said that Psoudostigma belongs to tropical America, Podagrion and Protoneura to the tropics and South Africa, Platyenemis to the Old World, and that Lestes and Agrion are cosmopolitan. The cosmopolitan groups and the one confined to the Old World are those, and the only oncs, represented in the European Tertiaries; while one of the cosmopolitan genera well repre-

[^17]sented in the Uuited States to-dny has not yet been found in its Tertiary deposits, and three-quurters of the fossil species helong to a legion essentially tropical and two-thirds of whose living representatives occur in America; to offset this, the two other legions which are peculiarly tropical (and one of them exclusively Amorican) aro wholly unrepresented in the American Tertiaries. From what we then know at the present tine the relationslip of the agrionid fauna of the European and American Tertiaries was not nearly so close as the living fiumas of the two countries. (September, 1883.)

Legion PODAGRION de Selys.

To this legion belong most of tlis fossil Agrionina of North America. The species here described are the first that lave been found fossil. The recent forms of this kgion-not a very prolific cae-occur mainly in tropical Anerica, though nearly half the genera and about one-third of the species belong to the East Indies and South Africa. The forms here brought to notice are mostly referable to new genera which find their place in near vicinity to the South American types. One species appears to belong to the South American genus Podagrion. The reiationship of these fossils may be looked upon as well defined. Their nearost living relatives are inhabitants of Brazil, Venezuela, and Colombia.

The genera here represented may be separated in the following manner:

Table of the genert of Podagrion.
Ptero tigma not more than twice as long as broad, surmounting less than two cellules; supplementary sectors few; few pentngenal cellnles 2. Podagrion. Pterostigma more than twico as loug ar, brond, surmounting several cellales; supplementary seuvers unnerous; many pentagenul collules.
Nodul sector arising frem the prineipal at ecarcely one-fifth the distanee frem the nodus to the pterostlgma; pestcostal area exclusively or alinost exclusively filled with peutagenal celle; severa! smplementary sectors between the medinn and subnodnl sueters.......... . Dysagrion.
Nodal sector arlsing from the princlpal at abont one-third the distance from the notios to the pterostigua; postcastal area with teiragounl aml very few or no pentagonal eella; ne perfect sup. plementary suctor between ilie meilian und subuodal sectors 3. Lithagrion.

1. DYSAGRION Seudder.

Dysagrion Scudd., Buil. U. S. Geol, Geogr. Snrv. Terr., IV, 5:3 (1878).
This new type of Agrionina belongs to the legion Podagrion as defined by Selys-Longchamps, having a normal pterostigma, much longer than broad, the median sector arising from the principal vein near the nodus, the subnodal a little further out, ind many interposed supplementary sectors.

It differs somewhat remarkably, however, from any of the genera giver in that author's Synopsis des Agrionines (1862) in several points, as will be seen on reviewing the following churacteristics.

The median sector arises from the principal vein more than one-third the distance from the nodus to the arculus; the subnodal arises from an extension of the ur dus, which in passing below the principal is directed somewhat inueard instend of outward, a somewhat extraordinary fenture; the nodal arises from the principal only as far beyond the nodus as the median originates before it, or searcely more than one-fifth way to the pterostigu:a. The reticulation of the upper half of the wing is mostly tetragonal, and in the discoidal aren very open, while in the lower half of the wing it is mostly pentagonal, and dense apically; this results in part from the great number of interposed supplementary sectors, of which there are several between the ultranodal and nodal sectors, and several between each of the following sectors as far as the upper sector of the triangle; the uppe: of these curve somewhat downward as they approaeh the apical border. The postcostal area has at first two rows of cellules; but it expands rapidly below the nolus, and then has three and afterwards oven four rows. The nodus is situnted at an unusual distance ontward, indeed not very far before the middle of the wing (rather more than one-third the distance from the base), and at is third of the distanes from the areulus to the pterostigma. The petiole terminates at some distance before the arculus and is very slender. The wing is rather full in the middle, and the apical half of the postnrior border is very full, the apex falling considerably above the middle of the wing.

These characters show the nearest alliance to Philogenia, but the genus differs strikingly from that in the position of the nodus, its retreat below the principal sector, the character of the postcostal area, and in the great number of the supplementary sectors, as well as in less important characters, such us the density of the reticulation. It seems indeed to be a very aberrent member of the legion. As the members of this grcup are all tropical, and those to which this is most nonrly allied (as indeed two-thirds of the speecics) are from the Now World, this is an additional instance of neotropicnl alliances in the insect-fama of our Tertiaries.

It is upon the wing that I would establish this genus. Yet fragments of other parts of the body occur with the wings, showing that the legs were voL :III- 9
probably long and slender, furnished with spine-like hairs as long as the breadth of the femora. The abdomen was moderately slender, rather longer than the winge; its ninth and tentli segments a littie enlarged in the ρ, the tenth half (q), or three-quarters (δ), as long as the ninth, and the eighth half as long again ((f), or twice as long (δ), as the ninth, and a litcle more than half as long as the seventh. Tho anal appendages were as long as the tenth segment, rounded triangular (아) or quadrate (δ).

The species of Dysagrion found at Green River may be separated by the characters drawn from the neuration of the wing in the following table:

Table of the speoies of Dysagrion.
Pterostigma at least fonr times as long as broad; qnadritateral longer than broad; middle of the area ocoupled by sopplementary veins between the prinoipel and subnodal sectors filleu with quadrilateral colls.
Ptorostlgma surnounting four cells; quadrinteral uesrly as broad at base as at apex.
Pterostigma surmonnting three cells; quadrlatoisl nearly twice as broad nt apex as at base.
2. D. lakesii.

Pterostigma only three times as long as broad; quadrilateral slightly hroader than long; middle of the area batween tine principsl and subnodal sectors filled with pentagoual cells...3. D. paskardi.

1. Dysagrion fredericil.

Pl. 6, Figs. 2, 5, 6, 9, 10, 14, 17.
Dysagrion redericii Scudd., Bull. U. S.,Geol. Geogr. Surv. Terr., IV, 534-537, 775 (1878).
Several specimens of various parts of the body with wings were found by Mr. F. C. Bowditch and myself in the Green River shales, in a railway cutting by the river bank beyond Green River station. The most important are a nearly perfect wing and its reverse, which preserve all the important points of the neuration. A single antecubital appears to be present, nearer the nodus than the arculus; the principal sector, like the short sector (sector brevis), bends slightly upward just as it reaches the arculus; the cellules in the discoidal area are half as broad again as long, yet the breadth of the wing is such that the broadest part of the postcostal space, between the nodus and the middle of the wing, is more than half as broad as the rest of the wing at that point. The quadrilateral is subquadrate, about half as long again as broad, its upper and lower margins subparallel and its lower outer angle about sixty degrees; pterostigma four times as long as broad, a little dilated, oblique both within and without, but especially pointed above on the outer side, touching the costal margin tluroughout. The wing is wholly hyaline, excepting the infumated pterostigma, which is bordered by
thickened black veins, and surmounts four cellules at its lower margin; the veins of the wing generally are testaceous; there are twenty postcubitals.

Length of the wing, \hat{s}^{mm}; length of part beyond peduncle, 34^{mm}; breadth, 9^{mm}; distance from nodus to tip of wing, 23^{mm}; from arculus to nodus, 8^{mm}; from nodus to imer angle of pterostigma, 17^{mm}; length of pterostigma, $3.5^{m \mathrm{~m}}$.

Another wing from the same beds with its reverse (Nos. 4165, 4166) is very fragh.entary, showing little besides the border of the apical lualf of the wing with the pterostigma, and most of the postenbital nervules. I have here considered it the hind wing of the same species, from its similar size, the exact resemblance of the pterostigma, which also surmounts four cellules, and the indication of a similar profusion of intercalated supplementary nervules. It seems, however, not inprobable that it may prove to be a second species of the same genus, from the great difference in form. The two borders of the onter half of the wing are nearly parallel, and the apex falls a little below the middle. This difference, however, really concerns only the posterior curve of the wing below the apex. The nodus is not preserved. Greatest breadth, 7.5^{mm}.

Considering the fragments of heads, etc., referred to under the genus as belonging to this species, we have to add Nos. 4179, 4180, and 4182 (besides No. 62 of Mr. Richardson's collection) as representing heads; Nos. 4183, 4184, the united head, thorax, and base of wings : and Nos. 4170, $4173,4174,4177,4178$, as parts of the abdomen. The ebdomen shows a slender, dorsal, pale stripe, distinct and moderately broad on the sixth to the eighth scgments, scarcely reaching either border, and posteriorly expanding into a small, round spot; and a faint dorsal line on the fourth and fifth segments, interrupted just before the tip. The appendages are simple.

Length of head (according to the mode of preservation), $4.0-4.5^{\mathrm{mm}}$; breadth of same, 5.5^{mm}; length of thorax, 5^{mm}; of pedicel of wing, 5^{mm}; of abdomen (probably 1^{mm} should be added for a break at the base), 39^{mm}; length of segments 8 to $10,6^{\mathrm{mm}}$; breadth of ninth segment, 2.75^{mm}; of fifth segment, 2.1^{mm}; estimated length of whole body, 55^{mm}.

Named for my friend and fellow collector of Green River fossils, Mr. Frederick C. Bowditch, of Boston.

Green River, Wyoming. Three specimens, Nos. 4165 and 4166, 4167 and 4168,15244 , besides the parts of the body mentioned.

2. Dysagrion lakesii.

A nearly perfect wing and its reverse represent another species of this genus, which is more nearly allied to D. packardii than to D. fredericii, differing from the former principally in the form of the quadrilateral and the shape of the pterostigma, which, although as long as there, surmounts only three cellules. There are two antecubitals, one at, the other a little hefore, the arculus; the base of the principal and short sectors is straight, the cellules in the discoidal area are much as in D. fredericii, the quadrilateral is twice as long as its mean breadth, its basal margin half as long as its apical, and the vein forming the lower margin bent at a similar angle with the inferior vein of the triangle as in D . fredericii; the nodus is placed at one-third the distance from the arculus to the pterostigma. The wing is lyyaline, excepting the fuliginous pterostigma, which is four times as long as broad, surmounts three cellules, and is bordered by thickened black veins; its outer margin is much more oblique than its inner; there are nineteen postcubitals.

Probable length of wing, 35^{mm}; length of part beyond peduncle, $33^{\text {nmm }}$; breadtl, 8^{mm}; distance from arculus to nodus, 8^{mm}; from nodus to tip of wing, 22.5^{mm}; from nodus to inner corner of pterostigma, 15.5^{mm}; length of pterostigma, 3.75^{mm}.

Named for Prof. Arthur Lakes, of Colorado, my companion in exploring the fossil insect beds of the West.

Green River. One specimen, Dr. A. S. Packard, Nos. 259 and 260.

3. Dysagrion packardit.

Pl. 6, Figs. 1, 3, 11.
Dysagrion packardii Scudd., Zittel, Handl. d. Palæont., I, ii, 776, Fig. 979 (1885).
Another species of this genus is represented by a nearly complete front ving, a fragment of a wing and its reverse, and by a tolerably perfect body presumably belonging to it. The wing agrees with that of D. fredericii in form and size, but differs in the following particulars: No antecubitals exist, except in the neighborhood of the arculus, one being present nearly half-way froan it to the base and another may exist in the broken part of the wing just beyond the arculus; the base of the principal and short sectors is straight ; the cellules in the discoidal area are, if anything,
slenderer than in that species; the quadrilateral if of about equal lengtn and breadth, its basal only a little more than half the length of its apical margin and the vein forming its lower margin bent at a much greater angle with the inferior vein of the triangle than in the preceding species; the nodus is placed slightly beyond one third the distance from the arculus to the pterostigma, while in the preceding species it is placed, if anything, at less than one-third that distance; the wing is hyaline, excepting the dusky pterostigma, which is about three times as long as broad, surmounts four cellules, and is bordered by thickened black veins; there are nineteen postcubitals.

The body is slender, the legs slender, but not very long, armed with long hairs, and the abdomen, which is considerably longer than the front wing, is viewed partly from the side and partly from above; the superior male appendages are shorter than the tenth segment, quadrate, apparently of equal length and breadth, with a slightly projecting tooth at the inner tip directed inwards.

Length of entire body, 49^{mm}; head, 3^{mm}; thorax, 8.5^{mm}; fore femora, 4.25^{mm}; middle femora, 5^{mm}; hind femora, 6^{mm}; abdomen, 36^{mm}; second joint, 3.5^{mm}; third, 5^{mm}; fourth to sixth, each 6^{mm}; seventh, 4.5^{mm}; eighth, 2.5^{Lum}; ninth, 1.5^{mm}; tenth, 1.1^{mm}; appendages, 0.6^{mm}; breadth of head, 4.5^{mm}; second to fifth abdominal segments (side view). 2.75^{mm}; sixth and seventh abdominal segments (top view), 1.75^{mm}; eighth, 3^{mm}; ninth, 2^{mm}; tenth, 1.75^{mm}; appendages, 0.6^{mm}; length of wing, 36.5^{mm}; of part beyond peduncle, 34.5^{mm}; breadth, 8.6 ; distance from arculus to nodus, 9^{mm}; from nodus to tip of wing, 22.75^{mm}; from nodus to inner angle of pterostigna, 16.75^{mm}; length of pterostigma, 3^{mm}.

Named for the world-known American entomologist, Dr. A. S. Packard, of Brown University.

Green River. Three specimens, Dr. A. S. Packard, Nos. 146, 147, 252 and 253.

2. PODAGRION de Selys.

Tropical South America claims the 'alf dozen known living species of this genus, most of which have been found in Colombia and Venezuela. The single species we refer here is somewhat imperfect but apparently belongs here, and can certainly not be far removed from it, for it agrees with it in the character of the pterostigma and the supplementary sectors. Except this no fossil species have been found.

Podagrion abortivum.

Pl. 6, Figs. $7,8$.
Podagrion abortivum Scudd., Bull. U S. Geol. Geogr. Surv. Terr., IV, 775-776 (1878).
The specimen represents the apical part of a wing with fragments of the middle portion. The pterostigma is a little more than twine as long as broad, and, although less oblique on the inner than on the onter side, yet lies at an angle of forty-five degrees with the costal edge, and is therefore more oblique than usual in Podagrion; its outer side is arcuate as well as very oblique, but in its entire extent the pterostigma scarcely surmounts two cellules; the outer side is much thicker than the inner, and thickens below as it passes gradually into the lower border, which, like the costal, is much thickened, and appears the more so from being independent of, although in conjunction with, the median nervure. Beyond the pterostigma the ultranodal approaches the principal nervure very closely, so that they are only half as far apart at the margin as below the pterostigma; there are two supplementary sectors, one between the ultranodal and the nodal, arising below the outer half of the pterostigma, the other between the nodal and subnodal, arising slightly farther back; both of these supplementary sectors are straight, but the nodal is slighly undulated after the origin of the supplementary sectors; all the other veins, excepting the extreme tip of the principal, are straight, anc' the reticulation tetragonal. The wing appears to be hyaline throughout, the pterostigma very slightly infumated, the niervures fusco-castaneous, thos . .bout the pterostigma deepening nearly to black. Apically the wing is well rounded, its apes falling in the middle and not at all produced. A species is indicated of about the size of P. macropus Sel.

Length of pterostigma along costal edge, 1.5^{mm}; of same from inner lower angle to outer upper angle, 2.1^{mm}; breadth of pterostigma, 0.65^{mm}; of wing in middle of apical half, 5.5^{mm}.

Green River. One specimen, No. 4169.

3. LITHAGRION gen. nov. ($\lambda t \theta o s$, Agrion).

Subirodal sector originating from the nodus, the median a little more than one cellule previous to it, the nodal at a little less than one-third the distance from the nodus to the pterostigma; the latter is stout, dilated, surmounts about five cellules, its inner border a little sblique, its outer slightly
oblique in the same sense. Reticulation dense, mostly tetragonal excepting in the region of the supplementary sectors of which there are two between each pair of sectors from the ultranodal to the short sector, excepting in the interspace between the subnodal and the median; none excepting the upper ones are curved, and there is also a single very brief one between the short sector and the superior sector of the triangle. Postcostal space simple or nearly so, the inferior sector forming it extending beyond the middle of the wing but not reaching the border. Wings enlarging considerably towards the middle, strongly petiolate nearly to the base of the quadrilateral; this is several times longer than broad, enlarging sirghtly away from the base, the lower side from a fourth to a third longer tian the upper. Nodus situated about one-third the distance from the base to the pterostigma.

This genus is closely allied to Philogenia and Podagrion, the subnodal and median sectors having a similar origin, but it is clearly distinct from either; it differs from the former in the structure of the pterostigma, which nowherc departs from the costal margin, in the straightness of the supplementary sectors, the ooliquity of the apex of the quadrilateral, the greater distance of the nodus from the lase of the wing and the less petiolated and more broadly expanded form of the wing. -In the number and position of the supplementary sectors, however, it closely resembles it. From Podagrion it differs in the earlier departure of the nodal from the principal vein, the larger number of cellules below the pterostigma, the much greater number of supplementary sectors, and the more broadly expanded wing ; it resembles it rather than Philogenia in the structure of the pterostigma, the petiolation of the wing, and the position of the nodus. It differs even more from Dysagrion, which I have plased in the same group, than from either of these two recent genera. Two species have been discovered, both from Florissant.

Table of the species of Lithagrion.
Wings clear ; poatcubitals few
Wings clouded except at base and apex ; pestcubitals numerous
1 L. hyalinum.

1. Lithagrion hyalinum.

Pl. 13, Fig. 4.

A pair of wings, barely overlapping at the postcostal margin and with the tips broken beyond the middle of the pterostigma, but otherwise in admirable proservation, represent t '.is species; they appear to be upper wings.

The wings are hyaline and are petiolated up to the base of the quadrilateral or some distance beyond the first postcostal nervule. Ultranodal sector originating from a cross vein midway between tli3 nodus and the pterostigma, its course regular and not zigzag throughout its extent; inferior sector of the triangle straight to near its tip, where it bends a little upward, running parallel to the margin and terminating in a cross vein, a little irregular near the tip. Pterostigma dark chocolate brown, the bordering veins thickened and black; being broken its form can not be positively stated, but it appears to be nearly four times as long as its median width and considerably expanded on the under surface, probably surmounting four or five cellules; quadrilateral more than four times its breadth at base, its lower side half as long again as the upper, the outer side very oblique. Nodus rather more than one-third the distance from the base to the pterostigma; sixteen postcubitals. Wings rather slenderer than in L. umbratum.

Protaiole length of wing, 33^{mm}; breadth, 6.6^{mm}; distance from nodus to pterostigma, 17^{mm}; from nodus to base. 11.5^{mm}; breadtl of wing in middle of petiolated portion, 1.3^{mm}.

Florissant. One specimen, No. 8619.

2. Lithagrion umbratum.

Pl. 13, Figs. 12, 14.
Two specimons, one a complete wing, the othos lacking only the extreme base and an insignificant fraction of the apical margin, represent this species. Both appear to be upper wings.

The wings are hyaline at base and tip, faintly or distinctly clouded on the disk, the clouded portion having distinct lines of separation from the hyaline area; the inner line is straight and transverse, crossing the wing from the second postcubital veinlet; the outer line is bent or curved somewhat, subparallel to the apical margin, and runs from the middle of the pterostigma to a little beyond the apex of the short sector, bending on the nodal sector. The wings are petiolated very nearly up to the first postcostal nervule, which is placed shortly before the base of the quadrilateral. Ultranodal sector originating from a cross vein a little distance beyond the nodal and shortly before a point midway between the nodus and pterostigma; its course is more or less zigzag at its origin and again in the middle, but is mostly simple; inferior sector of the triangle straight in its basal half,
beyond more or less irregular, increasingly so towards its apex, where it bends upward so as more gradually to approach the border, and finally ends close to the superior sector of the triangle in a cross vein; many of the cellules in the apical half of the postcostal space are broken by cross veins forming a broken supplementary sector here, and the same thing occurs feebly in the interspace above. Pterostigma scarcely more infumuted than the disk of the wing, expanding slightly in the middle, about four times as long as broad, surmounting five to six cellules. Quadrilateral very slender, five or six times as long as its basal breadth, its lower about one-fourth longer than its upper side, its outer side oblique. Nodus rather more than one-third way from the base to the pterostigma; twenty-seven postcubitals. Wings rather stouter than in L. hyalinum.

Length of wing, 34.5^{mm}; breadth in middle, 8.5^{mm}; in middle of petiole, 1.5^{mm}; distance from nodus to pterostigma, 18^{mm}; from nodus to base, 10.5^{mm}.

Florissant. Two specimens, Nos. 6927, 8163.

Legion AGRION de Selys.

All the fossil species of this group, both in Europe and America, have been referred to the genus Agrion, which is by far the richest of its members at the present day.

AGRION Fabricius.

This genus, in recent times one of the largest and most cosmopolitan of the legion to which it belongs, is represented in the rocks by a single species in Europe, A. aglaope Heer from Oeningen, and the two species from America here described. Besides these a single inmature species has been found in Europe (Oeningen) and another in America (Florissant), which are placed in this group as typical of the Agrionina.

The genus is, as stated, cosmopolitan, but its richest representation is in the tropics, and in the northern hemisphere at least it is more richly developed in the New World. The two species here described from wings are not sufficiently perfect to decide into. what subgenus they will fall, but they are certainly dosely related to each other and appear to be most nearly allied to Amphiagrion or else to Pyrrhosoma or Erythromma.

The American fossil species of Agrion which are represented by their wings may be separated as follows:

Table of the opecies of Agrion.
Fonr antenodal cellulea below the short sector; antonodal portion of the costa scarcely arched.

1. A, mascsecens,

Three antenodal cellules below the short sector; autenodal portion of the costa noticeably arched.
2. A. exsularis.

1. Aarion mascercens.

Pl. 13, Figs. 8, 9.
This species is represented by a pretty well preserved specimen and its reverse showing most of the body, a part of the legs and the wings, but the latter confused by the overlying of those of one side upon those of the other. The head is preserved only enough to show its form, which has nothing pecaliar, and the same may be said of the thorax. Seven joints of the slender abdomen are preserved, the secor.d of which indicates that the specimen is a male. The head and thorax with the legs are black, but the abdomen is colorless; the legs are doubled up, the femora about as long as the breadth of the head, and the tibial spines, of which there are seven or eight in a row, are a little shorter than the interspaces between adjacent ones The wings are scarcely depressed at the nodus, the antenodal portion of the costal margin almost straight, hyaline with black veins, the pterostigma normal, rhomboidal, slightly longer than broad, alike on both wings, the only difference being in a slightly greater obliquity of the outer and inner margins (and especialiy of the outer) and the slightly shorter lower margin in the front wing; very pale fuliginous, fading out towards the margins, margined with heavy blackish veins, surmounting a single cellule. The inferior sector of the triangle originates far before the basal postcostal nervule, which is situated slightly nearer the second than the first antecubital nervule. The arculus is directly beneath the second antecubital nervule. There are apparently eleven postcubitals on the fore wing and there are ten on the hind wing. Quadrilatera' f the fore wings with the inner and upper side of similar length and half as long as the lower side; on the hind wings the inner side is considerally shorter than the upper, and the latter nearly three-fifths the length of the lower; four antenodal cellules below the short sector; the petiolation begins unusually niear the base of the wing or considerably before the first antecubital nervure. The nodal orig-
inates rather less than half-way from the nodus to the pterostignaa; the subnodal terminates quite beyond the extreme tip of the pterostigma, the median below its tip, the short sector, which ends in a zigzag course, before the pterostigma and below the origin of the ultranodal; the superior secter r of the triangle, which is straight to the tip, midway between the origin of the nodal and the pterostigma; and the inferior sector of the triangle, which becomes zigzag a little beyond the nodus, terminates a little before the last.

Length of wings, 21.3^{mm}; breadth, 4.6^{mmm}; distance from nodus to base, 7.25^{mm}; to arculus, 3.4^{mm}; to center of pterostigma, 12.5^{mm}; breadth of head, 3.5^{mm}; diameter of eyes, 1.25^{mm}; length of thorax, 5^{mm}; of femora, 3^{mm}; of tibial spines, 0.25^{mm}; of abdomen (seven joints), 24.5^{mm}; of first joint, 0.6^{mmm}; second, 1.8^{mm}; third, 4.4^{mm}; fourth, 5^{mm}; fifth, 4.6^{mm}; sixth, 4.6^{mm}; seventh, 3.4^{mm}; width of last, 1.2^{mm}.

While the venation of the wing proves that this insect belongs in the legion Agrion, the unusually short petiolation of the wirg shows that it can not be referred to Telebasis, and the short spines of the tibie that it can not be an Argia. To which of the numerous subgenera of Agrion it should be referred can not be determined at present, but from the apparent want of postocular spots and the early origin of the inferior sector of the triangle it would appear to be most nearly allied to Amphiagrion or else to Pyrrhosoma or Erythromma. If to the former its affinities are with tropical Anerican forms; if to the latter with temperate forms of either hemisphere.

Florissant. Two specimens, Nos. 6824, 7158.

2. Aarion exbularis.

PI. 13, Fig. 6.

$\dot{\text { i }}$ single nearly perfect wing differs so slighly from A. mascescens that it would appear to belong to the same restricted genus, although from our ignorance of the length of its tibial spines it might be considered an Argia. The wing, which is apparently an upper one, is a little depressed at the nodus, the antenodal portion of the costal margin being somewhat arched, hyaline with black veins, the pterostigma normal, rhomboidal, slightly longer than broad, the outer and inner margins considerably oblique, the outer perhaps the more so, fuliginous, margined, especially within, with heavy black veins, surmounting rather more than one cellule. The inferior sector of the triangle originates before the basal postcostal nerv-
ule or just beneath the first antecubital ; the petiolation therefore begins at this point; the basal postcostal lies midway between the two antecubitals; the arculus is directly beneath the second unteculital nervile; there are eleven postenbituls; quadrilateral with its inner side scarcely shorter than its upper, the latter half us long as the lower side; three antenodul cellules below the short sector. The ultramodnl origimates only two cellules before the pterostigma; the nodul ut sciureely less than half-way from the nodus to the pterostigma; the subnodul terminates just below the tip of the pterostigma, the median below its middle; the short sector, which las a zigze ${ }_{c}$ course in the outer fourth of the wing, terminates apparently below the base of the pterostigma or scarcely short of it.

Length of wing, $21.65^{\text {min }}$ (the extreme base is not represented in the p!ate, although part of it is preserved); breadth, 4.35^{mm}; distance from nodus to base, 7.65^{mm}; to arculus, 3.5^{mm}; to conter of pterostigma, 12.5^{mm}.

This species differs from the preceding principally in the longer petiolation of the wing, the arching of the base of the costa, the number of antenodal cellules beyond the quadrilateral, and the more apical termination of the upper sectors.

Flu.issant. Onis specimen, No. 8146.

Agrion telluris.

Pl. 13, Fig. 10.

Two nymphs, evidently belunging to the same srecies, have been found, and, considering the impossibility of determining to which, if any, of the species of Agrionina found in the perfect state they belong, they are treated as distinct, following the precedent set by Heer, and followed by others. The head is full, well rounded in front, squarely truncate and a little angulated behind, about half as broad again as long, scarcely broader than the thorax ; the antenne, or such parts as are preserved, are very slender, a little shorter than the head, the basal joint twice as stout, about twice as long as broad. The legs are very long and slender, especially the hinder pair, which would reach to the base of the antepenultimate abdominal joint ; the femora are narrowly and equidistantly four times barred with dark bands, the extreme bands at base and apex; the tibies are less than half as broad as the femora and have a broader median dusky band. The dark wing pads a:e long and slender, twice as long as the width of the abdomen, and less
than half as broad, nearly reaching the extremity of the third abdominal segment. The abdomen is equal, scarcely tapering apically, the joints twice as broad ns long, entire, not excepting the last. The enudal flaps or tracheal pads are considerably more than half as long as the abdomen, the middle ono, showing on the left in Fig. 10, long, slender, fusiform, pointed apicully, largest a little beyond the middle; the lnteral pair are much larger and asymmetrical, the inner fange, or the portion of the trachenl pad lying within the median rod, being subequal, but broadest just before the tip, as broad throughout ns the broadest part of one flange of the median flap; the outer flange gradually expanding with a slight convexity from the base to a little beyond the middle, where it is twice as brond as the opposite flange, and then taporing rapidly, regularly, and with'a scarcely perceptible conenvity; to the tip of the median rol; the edges of the pads are delicately dentionlate, distantly on the expanding basal portions, more densely on the apical tapering parts and especinlly on the outer edges of the lateral pads, the denticulations, like the merlian ribs, being black.

Length of body (excluding terminal flaps), $2 \mathbf{2 ~}^{\mathrm{mm}}$; of front femora, 3.25^{mm}; midelle femora, 3.25^{mm}; hind femora, 5^{mm}; hind tibie, 6.25^{mm}; hind tarsi, 225^{mm}; wing pads, 6.5^{mm}; breadth of head, 3.5^{mm}; thorax, 3^{mm}; base of abdomen, 2.65^{mm}; tip of same, 2.1^{mm}; length of terminal flaps, 7.5^{mm}; breadth of lateral flaps, 2^{mm}.

In the present state of our knowledge of the larvo of Agrionide it is impossible to indicate with any certainty the position of this nymph. The absence of any sign of the mask, too, will remain a difficulty when we are more familiar with the living forms, but the small size of the hend and the shape of the antennæ and caudal flaps will afford good points for comparison.

Florissant. Two specimens, Nos. 13525, 14174.

Tribe AESCHNINA Hagen.

This group of larger Odonata seems to have been less richly endowed with species and genera than the other families both in past times and at present. The most recent study of the group by de Selys, which has just appenred, divides the Eschnide proper into five genera and twenty-three subgenera, of which Æschnn, with more than half the subgenera, embraces more than half the one hundred and fifty known recent species and is cosmopolitan. It also embraces all the known fossils from the Tertiaries,
excepting one from Radoboj, an Anax, first described as Eschna metis by Heer. Four fossil species are known from the Old World and two are here described from the New. Of the Cld World types one is merely mentioned by Hagen as found in amber and is represented only by the tip of a wing. A second, from Bornemouth in England, has been figrired by Goss without a name. It appears to belong to the subgenus Basiæschna, but, as it is certainly incorrectly drawn in some particulars, it may be in those, such as the simplicity of the subnodal sector, upon which this suggestion is based. The other two, Eschua polydore and \mathbb{A}. tyche from Oeningen, were described nearly thirty-five years ago by Heer, and are certainly very closely allied, though distinct, as Heer pointed out. They seem to belong pretty certainly to Eschna s. s., and are apparently not far removed from the European E. mixta Latr., as I judge from direct comparisors with the entire series reicrred by de Selys to Eschna s. s., whish I have had the opportunity of studying in the Cambridge Museum through the favor of Dr. Hagen. Heer also directly compares the former to that species, as I subsequently noted. Dur independently formed opinions have therefore completely coincided. 'These two species are also very nearly allied to one of the American forms, which, however, more closely resembles a conmon American species, E. constricta Say. The ottier American fossil belongs to Basixschna. The resemblance of the Tertiary æschnid fauna of Europe and America appears therefore to have been tolerably close. (September, 1?83.)

ASCHNA Fabricius.

All the fossil Eschnina known, excepting one (an Anax), belong to Eschna, two Europear and one American to Eschna proper, and one from each country to Basiæschna. ${ }^{1}$

The species of Eschna from Florissant known ly their wings may be separated thus:

Table of the subgenera of .Eachna.

[^18]2. Brsiceschna.

[^19]
1．Subgenus Esciuna Selys．

This groun of the genus 盾schna is a cosmopolitan one，and includes a larger proportion of the species than any other．To it belong two European and one American fossil species，all closely allied，but the European more nearly related to an existing European species，压．mixta， the American to an existing American species，皮．constricta，than to any others．

Elscuna（Escana）solida．
 Pl．13，Fig． 1.

A remarkably well preserved front wing，the extreme base only lost Wing of rather small size and rather slender，the middle line of the basal half bent at a slight angle with that of the apical half；tip of the wing uni－ formly rounded；nodulus above the principal sector strongly and rather regularly curved，mnch nearer the pterostigma than the base；nodal sector curved rather gently upward in the middle portion of its course but termi－ nating some distance below the apex of the wing；subnodal sectur forked widely a little before the pterostigma，the upper fork turning abruptly upward at its origin；the intercalated sector between the subnodal and median forked below the base of the pterostigma，its upper fork also curved upward and separated at tip from the lower fork of the subnedal by only a single row of cells，as usual；median and short sectors separated in the apical half（or less）by a double row of cells in the discoidal neld below the triangle，first two，then three，and afterwards four or five rows of cells irreg－ ularly disposed．Pterostigma scarcely four times as long as broad，the inner and outer margins very oblique and parallel；color blackish castane－ ous，the bordering veins black．Antecubitals more than twenty－two（prob－ ably about twenty－five），postcubitals fifteen．

Length of wing more thar． 41^{mm}（probably 44^{mm} ）；breadtil， 10.5^{mm} ；dis tance from nodulus to base of pterostigma， 15^{mm} ；length of pterostigma， 4^{nm} ．

This species plainly belongs to the subgenus Eschna．By favor of Dr．Hagen I have compared it directly with all the species referred by Selys to that group，excepting a couple of rare forms，and unquestionably it is most closely allied to $\mathbb{\Phi}$ ．constricta，though closely resembling $\boldsymbol{\text { W．}}$ marchnli．Indeed，the resemblance to A．constricta is closer than I have yet found between any well preserved Florissant insect and any living
type; it agrees better with it than \mathbb{X}. constricta does with any other living form. The nodal sector of \mathbb{E}. solida is not so strongly curved as in \mathbb{X}. constricta, end the pterostigma of the fossil is slightly longer; these are the most important distinctions that were noted.

Florissant. One specimen, No. 8347.

2. Subgenus Basiaschna Selys.

As was stated in the general remarks under Æschnina, Goss's unnamed Aschnid from Bornemouth, England, probably belongs to this group; an interesting fact since, so far as I know, it is exclusively an American group, and one of our own fossils falls therein. It is the only subgenus of Exsclina besides Eschna proper which is known in a fossil state.

Eschna (Basieschna) separata.

 PI. 13, Fig. 15.A complete front wing and its reverse broken near the course of the median secto. and the part below crowded up against the upper portion, so as to confuse the parts next the line fracture.

The wing is of rather small size, rather slender and straight; the tip is slightly angulated rather below the middle of the wing; nodulus placed at almost two-thirds the distance from the base to the pterostigma, scarcely directed backward above the subcostal, below that straight, directed somewhat forward and reaching the subnodal; nodal sector curved rather strongly and somewhat rapidly upward in the middle part of its course, terminating a little distance below the tip of the wing; subnodal sector simple and beyond the base of the pterostigma subparallel to the nodal; the intercalated sector between the subnodal and the median simple, but curved in the course of what would be the superior fork if it were branched, and even more strongly curved than in Eschna solida; median and short sectors separated apically by a double row of cells, but to how far from the margin can not be seen; in the discoidal field below the triangle there are at first two, then three, and afterwards four or five rows of cells, the last arranged in somewhat obscure oblique series. Pterostigma five times as long as broad, both outer and inner margin very oblique, but the outer nuth more so than the inner; the color uniform pale clay brown, but the thickened bordering veins black. Antecubitals twenty-three, postcubitals thirteen.

Length of wing, 44^{mm}; breadth, 10.2^{mm}; distance from base to nodulus, 21.5^{mm}; from nodulus to base of pterostigma, 13.2^{mm}; length of pterostigma, 5^{mm}.

This species differs from \mathbb{E}. solida in its more pointed tip, straighter form, simple subnodal sector, which is separated from the nodal by three rows instead of one row of cells, and by the greater approximation of the nodulus to the pterostigma as well as by the greater length of the latter.

It is very closely related to Esehna janata Say, which Selys makes the type of his Basieschna. The nodal sector has precisely the same curve just before the pterostigma, and it differs mainly in the more arcuate tip of the prineipal nervule intercalated between the subnodal and median seetors.

Florissant. One specimen, Nos. 8164 and 11693.

Æschna larvata.

Pl. 13, Fig. 11.
A single specimen of a larva has been found belonging to this genus and not improbably belonging to one of the species described; but as this can not from the nature of the case be determined it will he best to give it a distinet name for ready reference. The front half of the body is rather obscure, but the outline shows the form with sufficient distinetriess. The body is largest in the middle of the abdomen, scarcely decreasing in size anteriorly, but posteriorly narowing somewhat :apidly beyond the fourth aldominal segment; the outer edges of the posterior borders of the segments are not produced; the three anal valves are distin tly seen, are very slender and finely pointed; one of the legs is preserved, showing that it is slender and of the usual form.

Length of body, 34.5^{mm}; breadth in middle of ahdonen, 7.5^{mm}; at base of aldomen, 6^{nm}; at hase of anal valves, 2.5^{mm}; length of latter, 325^{mm}; of femur of hind (?) $\mathrm{log}, 6^{\mathrm{mm}}$; of tibia, 4.5^{nmm}; of tarsi, 4.25^{mmm}.

Florissant. One spocimen, No. 1816.

Tribe Libellulina Hagen.

Λ small number of species of this tribe oceur in the European Tertiaries.
VOL XIIT-10

Libellula sp.
Pl. 6, Figs. $4,16$.

(Libellulina) Soudd., Bull., U. S. Geol. Geogr. Surv. Terr., IV, 775 (1878).
Fragments of an abdomen in obverse and reverse are probably to be referred to Libeitula only in the broadest possible sense, but they are insufficient to give further determination. They evidently represent four or five of the terminal segments of the body, there being first three segments of equal breadth and a similar length, a little longer than broad, with a slight median carina; and then three others without a median carina and with continually decreasing $l_{\text {u }}$, th, the first of them (probably the eighth segment) half as long as the preceding, but of the same width; the next half as long as the one which precedes it, but narrower, and the last still narrower (but imperfeet).

Length of the fragment, 20^{mm}; of its third (seventh? abdominal) segment, 4.5^{mm}; breadth of same, 3.5 .

Green River, Wyoming. One specimen, Nos. 4175 and 4176.

Suborder PLANIPENNIA Burmeister.

The collections obtained at Florissant embrace eight genera and thirteen species of planipennian Neuroptera. All of the species and four of the genera are new, and belong to four families. The Raphidiida are the most numerous, embracing Raphidia, with a single species, and Inocellia with four; the species referred to Raphidia hardly belongs to it in a strict sense, since the costal vein is excessively short, there are no costal veinlets, and the sector: do not originate obliquely from the radius, but more indirectly by transverse veins; all the species of Inocellia, which fall into two sections, differ from living types and also from the species found in Oligocene amber of the lsaltic in having no transverse series of regular discoidal areoles below the pterostigma. A single species of Osmylus represents the Hemerobide, and differs from living forms, as does also the amber species, in the simple character of the costal nervules, the much smaller number of sectors, and the limited supply of cross-veins in the basal half of the wing, giving this region a very different appearance from its rather close reticnlation in modern types. It may here be noticed that as a very general rule the neuration of the wing is much closer in modern Planipennin than in their Tertiary representatives.

There are four species of Chrysopida, referable to two genera, each of them extinct; Chrysopidae have not before been recognized in Tertiary strata, the single species poorly figured by Andrii, and never carefully studied, being much more probably one of the Hemerobide. Theso two genera, called Palzochrysa and Tribochrysa, are allied to the living Nothochrysa, but differ from modern types in the zigzag course of the upper cubital vein, and in its direction, which is through the middle of the wing, as well as by the smaller number of sectors and the entire absence of any transverse series of gradate veinlets; Palæochrysa is represented by a single species, Tribochrysa by three, and the genera differ from each other in the course of the upper cubital vein, which in Palæochrysa is direct and bordered by comparatively uniform cells, while in Tribochrysa it is doubly bent in the middle, and is therefore bordered by very unequal cells. Two species of Panorpidæ have been found, one of which is referable to a new genus, Holcorpa, which differs from Panorpa in the entirc absence of cross-veins, and is remarkable for the spots on the wings. All these liave been discovered at Florissant only. No planipennian Neuroptera have been found in the Green River shales, but the Tertiary beds of British Columbia have furnished a single species of Hemerobidx, belonging to an extinct genus allied to Micromus, and which I have called Bothromicromus; and we have remains of one of the Sialide from beds of Laramie age in Colorado, which is introduced liere.

The unmber of species of Tertiary Planipennia is nearly doubled by the discoveries already made in the American Tertiaries, but the families, and especially the genera, are very differently represented on the two continents; thus the Raphidiide have in Europe only one species of Inocellia, while, on the other laind, the Hemerobide show one or more species each of Nymphes, Sisyra, Hemerobius, and Osmylus. The Chryeopidx, as stated, are unrepresented, although two species are known from the Jura. The Panorpide have one species of Panorpa and three of Bittacus, while there are also two species of Ascalaplus and one each of Myrmeleon, Chauliodes, and Coniopteryx, belonging to families not found fossil in this country. (September, 1883.)

Family SIALINA Leach.

This family is composed of two groups, each represented in our rocks. As they differ somewhat remarkably in history and distribution, such general remarks as can be made will appeir in contrasting the statements which follow under each.

Subfamily SIALID \neq Stephens.

The Sialida are evidently an expiring type. A considerable number of Paleozoic forms have been referred, with more or less reason, to it or its vicinity, and certainly the resemblance of its modern genera to the bulk of the ancient neuropteroid types is greater than can be affirmed of any other modern group. Yet even in the Mesozoic period we knew of comparatively few examples; Hagen refers an undescribed species from the Jura to Corydalus; Westwood figures a Sialium from the Purbecks, and the species given here, belonging to the disputed Laramie beds, is known only by its eggmasses; I have also shown that the larval Mormolucoides articulatus Hitche. from the Connecticut River sandstones is to be regarded as a sialid. In Tertiary times, where the number of insects known is vastly increased, we find no greater representation. One species only, Chauliodes prisca, from the amber, is well known; Gravenhorst and Burmeister speak of a Semblis from amber, which may be the same as Hagen's, above mentioned; and an insect's leg from Rott has been doubtfully referred here. No species of this group has been found in the American Tertiaries. So too we find the existing species very meager as compared with other families of Neuroptera; but that some existed in American Tertiaries can not be doubted by any who will compare our huge living Corydalus with the still more gigantic Corydalites from the Laramie beds. (September, 1883.)

CORYDALITES Scudder:

Corydalites Scudder, Bull. U. S. Geol. Geogr. Surv. Terr., IV, 537 (1878).

The egg-masses thus named were described by me in 1878 , but it was not until the publication of a figure of one of them in Zittel's Handbuch der Palieontologic, in 1885, that their existence in beds of quite similar age in Europe was recognized. On this point I may quote from a letter written me by the Marquis de Saporta in May, 1886 :

Il m'a sufll de jeter les yeux sur votre iggre 981 pour reconnaitre l'identité parfaite de votre Corydalites fecundum nvec des corps fosslles, ayant meme aspect et même composition qui out été reeueillis en assez bon nombre et parfaitoment conservés dars notre terrains a liguites de Fuveau près d'Aix, et justement ces lignites sont maintenant rapportés universellement au Garumnien inférienr, et même plus bas au Onmpanien, ceest à dire, a l'horizon de la craie supéricure. Il est done très intéressant de constater la présence de ces uids our réunious d'œufs de Corylnlis, au méme niveau, en Europe comme eu Amériqne et probablement dans les mêmes conditions de dépôt. Les Corydalites fecundun ont été recueillis it Trets près de Fuvenu dans les lits charbonneux exploités, où ils se treuvent nssociés à des fenilles de Nelumblum. Il est même visible que ces Nelumbium ont vécu sur place et les Corydalites ont du vivre côte al côte et placer leurs coufs dans des mêmes lienx.

Corydalites fecundum.

$$
\text { Pl. 4, Figs. } 5-7,13-16,18-21,23 .
$$

Corydalites feoundum Soudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 537-540 (I878) ; in Zittel, Handb. Paleont., I, II, 776, Figs. 981a, b (1885) ; White, Rep. U. S. Geol. Geogr. Sarv. Terr., XI, 173-174 (1879).

Under this name I have classed an insect which laid some remarkable egg-masses, obtained in numbers by Dr. C. A. White, at Crow Creek, fifteen miles northeast of Greeley, Colorado, in liguitic beds of the Laramie group. These egg-masses are five centineters in length by nearly two in breadth and one in height, nearly equal throughout, rounded and slightly pointed nt the tips, and of a dirty yellowish brown. They are estimated to contain each about two thousand eggs definitely arranged, and coated with a covering of what was presumably albuminous matter, which also surrounds each egg. The close general resemblance of these eggs and of their clustering to that of the eggs referred by Mr. C. V. Riley to the neuropterous genus Corydalus ${ }^{1}$ leave little doubt concerning their probable affinities. Mr. Riley's description is as follows:

The egg-mass of Corydalus cornutus is cither brondly oval, circular, or (more exceptionally) even pyriform in circuinference, flat on the attached side, and plano-convex [brondly convex is doubtless meant] on the exposed side. It averages $3^{1} 1^{m m}$ in length, and is covered with a white or cream colored albuminous secretion, which is generally splashed around the mass on the leaf or other object of attachment. It contains from two to three thousand eggs, each of which (Pl. 4, Figs. 17, 22) is 1.3^{mm} long and aiout one-third ns wide [he figures them of a slenderer form], ellipsoldal, translucent, sordid white, with a delicate shell, and surrounded and separatel from the adjoluing eggs by a thin layer of the same white albuminons material which covers the whole. The outer layer forms a compact arch, with the anterior ends pointing inwards, and

[^20]the posterior ends showing like faint dots through the white covering. Those of the marginal row lie flat on the attached surface; the others grudually diverge ontwardly, so that the central ones are at right angles with said object. Beneath this vaulted layer the rest lie on a plane with the leaf, those touching it in concentric rows, the rest packed in irregularly.'

In the fossil ootheca the mass is much larger and more elongated, and possesses hesides one charucteristic in which it differs strikingly from that of Corydalus (and on which account particularly I lave used a new generic appellation), viz, the division of its mass into two longitudinal and equal halves by un albuminous wall, or rather by double albuminous walls, which may be parted above, leaving as the only connection between the two halves their common albuminous floor. There are indeed a few specimens which show no sign of this division, but a median furrow, or a deeper and more complete sepration of the two halves, is so prevalent that this seems to be the only explanation to be offered for its appearance. Their absence in the few specimens is probably due to lefect of preservation. The common albuminous flooi and the upper and onter alluminous coating are of remarkable thickness, varying from one to three millimeters; but the coating attenuates to a mere lamella as it passes down the median furrow, so that when the mass remained quiet in the position in which it was laid, the lateral halves pressing closely against each other, the combined thickness of the two albuminous walls would together no more than equal the ordinary thickness of the albuminous partition between any two contiguous eggs. That such a partition existed even in those which do not now show it seems probable from the regularity of the furrow in every instance of its occurrence and by its prevalence; some specimens merely show a shap groove along the middle, the halves remaining in complete juxtaposition ; ${ }^{2}$ others again are so completely separated as to be curled over and meet beneath (Figs. 19, 23).

This, together with the fact that the egg-mass is otherwise extremely regular (showing only so little plasticity as to allow one broad side to be straight, while the opposite is a little convex) and neverexhibits the slightest tendency to coil longitudinally. Ceads me to believe that the egg-masses were laid in the water of shallow basins, upon the muddy floors, which

[^21]could be reached by the abdomen of the insect while resting upon a stone or overhanging twig. In this medium the albuminous secretion would expand to the utmost; if the bunch of eggs remained undisturbed, it would present us with the more regular hirudiniform masses that have been found; if rolled about by the disturbance of the waters, the two halves would curl toward eacin other more or less closely, forming a subcylindrical mass, and inclose between their approaching walls more or less of the mud in which they are rolled. This is exactly the appearance of most of them now, inclosing the same substances as that within which they and the accompanying Bulimi and other fresh-water mollusks lie embedded. ${ }^{1}$

These masses differ from those of Corydalus in the extraordinary amount of albuminous matter which surrounds both the entire mass (Fig. 16) and each individual egg (Fig. 7). This is perhaps to le explained by the medium in which they appear to have been laid, and will in part account for the vast size of the ootheca, which are much larger than any mass of insect eggs which I can find noticed. The size of the mass, however, is also due to the greater magnitude of the eggs themselves, which are twice as long as and proportionally larger than those of Corydalus (Figs. 17, 21), and lead to the conviction that we are to look in the rocks of the Laramie Group for an insect of great magnitude, closely allied to our Corydalus, itself the largest of all known Sialina. It can hardly be doubted that it must have been at least double the size of the living type. The number of eggs laid is about or nearly the same as in Corydalus, presuming, in either case, all to be laid at once.

Compared with the eggs, the albuminous substance surrounding them is much softer, more or less friable, and easily removed, being everywhere composed of fibers running in the same direction as the longitadinal axis of the egg. The weathering of the specimens has been syich that in several instances the whole albuminous cap has been removed, and in others a large part also of the interovular partitions, leaving the eggs standing erect, each separated from its neighbors by from one-third to one-half its own thickness. In many cases the eggs can be pulled from their cells; and, although frequently flattened, they may be studied almost as well as if living.

The eggs (Fig. 21) have an average length of 2.6^{mm} and a central

[^22]width of $0.6^{\text {m" }}$; they are nearly cylindrical, but faintly arcuate, slightly attenuated at the anterior extremity, and slightly tumid on the posterior half, at the tip of which they taper rapidly, rounding off to a rather broadly convex extremity, which is flatened or often sunken in a cireular central space 0.1^{mm} in diameter (Fig. 7), ousside of which the surface is ruther profusely filled with very shallow, obscure, circular pits, averaging 0.01^{mm} in diameter. The anterior extromity (Figs. 5, 6) terminates in a slightly elevated, thin, subtuberculate rim, inclosing a terminal portion, whose surface gradually rises centrally to form a truncated cone, and is pitted with saucer-like depressions, gradually diminishing in size up the sides of the central extension; tho latter is about as long as the breadth of its tip; its extremity (Fig. 18), $0.04-0.055^{\mathrm{mm}}$ in diameter, is more or less sunken, with a central circular pit (the micropyle) 0.01^{mm} in diameter; while th: rounded nargin of the extension is made more or less irregular by the sancer-like depressions which surmount it, but have now become of extreme minuteness.

This structure of the anterior extremity of the egra agrees with what was previously known of the egg of Sialis, but no mention of the elevated point was made in Mr. Riley's description of the egg of Corydalus. It occurs there, however, as I find by examination of eggs he has kindly sent me. These eggs of Corydalus (Figs. 17, 22) also show the sunken space at the posterior end, and the sides of the egg are marked nearly as in the fossil, the surface of the latter being broken up by scarcely elevated, slight ridges into obscure, transverse, hexagonal cells, one-tenth of a millimeter long (across the egg) and one-fifth as broad, those of adjoining rows interdigitating.

In the disposition of the eggs also these masses differ from those of Corydalus, for they are arranged in a radiating manner around the longitudinal axis of the ootheca. All of them partake of this arrangement even when, as rarely happons, there are two layers in place of one over parts of the mass; in no case are any of the eggs packed in irregularly, as is the case with a portion of those of Corydalus, according to Riley. As in Corydalus, however, the posterior ends are those which are directed toward the upper albuminous coating, which in many cases shows very slight subhexagonal or circulur depressions or elevations corresponding to the position of the extremity of the egg beneath, just as in Corydalus the posterior ends of the eggs show "like faint dots through the white covering." The outer albuminous coating appears in the fossil to be made up of
us many purts as there mee eggs, the interovilar fibrous muterial extending to the surface of the oothoca, forming walls to deop cells which contain eggs, and which are corked up, as it were, by plugs of albuminous material. These plugs seem to be very similar to the cell-walls, having been composed apparently of viscous theads, also ruming in the same direction as the longitudimal axis of the egg; but in some cases the cell-walls heyond the eggs have become bhekened, while the phigs retain their normal color and sepurate rendily from them.

When the egg-mass was undisturbed, the outermost eggs lay horizontally, and those next the mediun furrow vertically (Fig. 15); the division walls of the cells were therefore thinnest below, and it appears probnblo that the young made their escape nt the bottom of the median furrow, where the outer conting is also thinnest, thongh not so presented in the schematic figure. Whero double layers oceur, the eggs of the upper seem to be in a direct line with those of the lower layer, egg for egg, as if a cell of double length were stocked with two eggs, soparated by an albuminous partition, and in this case the albuminous floor and covering are thinnor than usual, so that the egg-mass is not greatly enlarged nor distorted. When two layers were thus formed, the young larva of the upper layer must have escaped through the emptied cells of the lower.

It only remains to add that with a single exception these masses differ comparatively little in size, most of them being nearly or quite five centimeters long, although some scarcely exceed four centimeters. The single exeeption is of a mass only a little more than fifteen millimeters long, six millimeters broad, and three millimeters high. It shows no furrow, but may represent only one lateral half of an egg-mass, as the walls of one side are steeper than those of the other and look like the sides of a median furrow. This mass is so small that only by presuming one-half to be gone and the albuminous covering to be thinner than usual can it be regarded as belonging to the same species with the others, although evidently of a similar nature. In case it belongs to the same specios, it may be looked upon as probable that a femnle usually deposited all her eggs in a single bunch, but that in this case some accident preventing it, the remnant was subsequently laid in a mass of much smaller dimensions, one-half of which is preserved. This is the view I am disposed to adopt.

Crow Creek, near Greeley, Colorado (Laramie group). Dr. C. A. White. Many specimens.

Subtinnily RAPHIIDIII RE Stephens.

Hitherto only one species of this group lus been found in Tertiny beds, und its earlier existence is unknown; this single instance is Inocellia erigena from amber. Now, however, we find them in the rocks themselves, as five species from Florissant are before us, one belonging probably to Raphidin, the others to Inocellia. This is perhaps one of the most striking of the facts yet discovered in the American Tertiaries; for the known species of this family not only are exclusively north temperate ${ }^{1}$, but nlmost exclusively gerontogeic, the only form knowi from this country east of the Sierra Nevadas being a (probably introduced) Europern species; several, however, are known from the west coast, whose insect fuma is well known to have very strong Europem, or at least gerontogeic, affinitics. A poiat of additional interest is the fact that so many species of Inocellia ure found and only one of Raphidia (and that doubtful), whon Raphidia is very rich and Inocellia very poor in species at the present time. As alrendy stated, the amber species is also an Inocellia. (September, 1883.)

Table of the gevera of Raphldilda.
Pterostigma erossed by veiniots and therefore composed of more than one cell; wings three times as long as broad .. Raphidia. Pterostigma composed of a single ceil; wings more than thres times as long as broad...... 2 Inocellia.

1. RAPHIDIA Linné.

The single species referred here differs considerably from modern forms in the brevity of the costal vein, the absence of costal tral erse veinlets, and other features of the neuration which render its reference to Raphidia doubtful. It can not be referred to Inocellia on account cf the structure of the pterostigna, and it should perhaps be considered as belonging to a distinct genus. If a true Raphidia it is the first one that has been found fossil.

Raphidia (?) tranquilla.

Pl. 14, Fig. 2 (δ).

A single specimen in which the head is wanting and the four wings are overlapping; the neuration is almost exactly similar in all the wings, and they are of equal size, but for the sake of clearness only one of them, an upper wing, has been drawn for the plate.

[^23]The wings aro considerably longer than the abolomen, oval, rounded at the tip, with a gently convex inner margin and a nemrly struight costal margin. The nemration is distinct and black and in the front wings as follows: The pterostigma is small, semi-oval, fuliginous, deepening centrally, situated in the middle of the upical lulf of the wing at the costal margin, cut obliquely by a curving transverse veinlet at its outer extremity. The costal nurgin is scarcely expanded at the base, and the costal vein is exceedingly short, terminating in the margin before the end of the busul third of the wing; this feature, with others in the neuration and the total absence (as fur as can be seen) of costal transverse veinlets, renders it doubtful whether it belongs to Raphidia in a strict senso The subcostal vein therefore forms a considerable part of the costal border and is widely separated from the radius and connected with it by a single transverse veinlet in the middle of the wing. The sectors do not urise obliquely from the radius, but are connected with it by straight transverse cross-veins, making two long and large pentagonal cells in the middle of the wing beneath the radius, equally broad at both ende There are three long discoidal areolets, the uppermost narrow, the middle one shorter than the others, the outer limits of all of them nearer to the apical margin than to the inner limits, making the marginal areoles shorter than the discoidal; all the areolets of the central portions of the wing are large, being few in number, and they approach rather near the margin, with which they are connected by few, seldom and then simply furcate, marginal veinlets.

Length of thorax, 1.85^{mm}; of abdomen, 5.2^{mm}; of wing, 7.75^{mm}; breadth of latter, 2.55^{mm}.

Florissant. One specimen, No. 4383 (δ).

2. INOCELLIA Schneider.

The occurrence of a species of this genus in amber and its present existence only in the north temperate region of the Old World and of our extreme western coast, where the affinities of the fauna are decidedly European, render the discovery of four species in our Colorado Tertiaries one of special interest. It is curious, however, that they differ not only from the modern forms, but also from the amber species, I. erigena Menge, in lacking the regular arrangement of the cells below the pterostigma to form a transverse uniform series of discoidal areoles.

The species may be separated thus:

Table of the species of Inocellia.

Central sector \sim f the front wing (or the sector which traverses the middle of the wing above the cubital ceils) arising from a broken serice of transverse vei; a connecting the ralins and anal vein .. I. I. veterana. Central sector of the front wiag arielag isis the anglo of, and biseoting, the basul cell formed by the junctlon of thd radine and itg basal branch.
Longituliual row of colls below the radius of quat or subequal length.
Front wing aliont two and a holf tlinee longer than broall ; cells jnst nowe the cnbital cella no louger than they and shorter than those in tho row just beneath tue radius; prothorax strongly tajering.. ...2. I. sommolenta. Front wing nore tha.' three times as long as broad; celle just above the cubital cells much longer than they and as long as thoge in the row jnet beneath the ruline; prothorax efual.

Lon: tudinal row of celle next below the radius of very unequal length
4. I. erenta.

1. Inocellia veterana.

$$
\text { Pl. 14, Fig. } 1 .
$$

A single specimen has been found, in which the two front wings are preserved with an obscure body, lacking the head. This front wing is considerably longer than thorax and abdomen together, nearly four times as long as broad, the apical margin well rounded, not at all produced. The venation is distinct, dark castaneous; the pterostigma is of considerable size, faint castaneous, about iour times as long as broad, equal, terminated interiorly by a transverse, exteriorly by a very oblique nervule. The costal margin is straight from the base to the pterostigma with no expansion whatever; the figure of the right wing on the plate is incorrect in this particular, a faint expaided vein being represented where none exists. The subcostal vein runs parallel with the costal vein in the basal half of the wing, and is connected witl. it by four or five transverse or oblique veinlets, then suddenly turns upward and joins it ot some distance before the pterostigma. The radius runs parallel to the costal vein throngheut, and is connected with the subcostai by two or three transverse veinlets. The secters, or longitudinal veins of the central portion of the wing, do not arise at intervals obliquely from the radius as they do in the other species, as well as in the amber I eogena and in modern types, but togother form a broken trarsverse veinlet, curving around from beyond the middle of the basal half of the radius to the anal vein and at intervals from the upper sector. It seems, therefore: to form s. somewhat distinct group of Inocellia. There are two sectors springing from the first sector, one in the middle, the other
in the middle of the onter half, of the wing; beyond the origin of the first sector, or the broken set of transverse veinlets of which its base forms the origin, there are four or five very long subhexagonal cells just below the radius, the third from the base reaching the middle of the pterostigma. The number of sectors is so large that, omitting the marginal cells, there are six radiating series of cells between the radius and the anal vein. The cells of the marginal series are of very varying size and shape, but the veirwhich form them are very rarely forked.

Length of thorax and abdomen, 7.5^{mmw}; of wing, 9^{mm}; breadth of same, 25^{mm}.

Florissant. One specimen, No. 1.385, obtained by the Princeton Expedition.

2. Inocellia somnolenta.

Pl. 14, Fig. 12 (${ }^{\circ}$).
One specimen belonging here, with its reverse, consists of a 'ead and thorax with fragments of legs and wings, among the latter one nearly perfect front wing overlying part of a hind wing. The head is slender and very long oval in shape; the thorax stout with a greatly and regularly tapering prothorax forming anteriorly a very slender neck. Front wing well rounded, rather broad for its length, though its exact breadth can not be told from the broken edges. The neuration is distinct and black, the pterostigma faint, fuliginous, long, and equal, about four times as long as broad, squarely margined basally, obliquely margined distally. The costal margin is nearly straight, gently and slightly expanded, the subcostal vein terminating upon it before it reaches the pterostigma by nearly the length of the latter. Beyond the basal cell, which is bisected by the last sector, and correspords to the cell situated within the broken series of transverse veinlets in I. veterma, there are immediately below the radius three very long subpentagonal cells, the second reaching beyond the middle of the pterostigna. Omitting the cells which border the margin, there are five radiating series of cells between the pterostigma and the anal vein; the cells are fairly large, varying much in shape but rarely more than twice as long as broad, the terminal veinlets next the margin frequently and widely forked.

Length of head, 2^{mm}; breadth of same, 0.8^{mm}; length of thorax, 4.5^{mm}; breadth of same, 2.4^{mm}; breadth of neck, 0.3^{mm}; probable length of prothorax, 2^{mm}; its breadth at base, $1.75{ }^{\mathrm{mm}}$; length of fore wing, 7^{mm}; its probable breadth, 2.5^{mm}.

Florissant. One specimen, Nos. 9373 and 10389.
Another specimen shows the apical half of two overlapping fore wings, which differ so little from the preceding that I place it here at least provisionally; it differs principally in the point of immediate origin of one of the veins terminating in the apex, which in the speeimen first described origimates in the distal, in this specimen in the proximal of the two cells immediately below the pterostigma.

Florissant. One specimen, No. 2603.

3. Inocellia tumulata.

Pl. 14, Fig. 15 (δ).
The species is represented by a single specimen and its reverse in which the entire body and nearly the whole of the four wings are preserved. The head is olscure and ill-defined in part, with no appendages preserved, obpyriform in shape, being broadest in the middle of the anterior half or about three-fourths the length, the front broadly rounded, behind tapering rapidly, so that the base is narrower than the narrow neck formed of the prothoracic segment. This is nearly four times longer than broad, less than half as broad as the head and apparently equal, though the imperfection of the part renders this doubtful. The meso- and metathoracic mass is robust, nearly twice as broad as the head, while the abdomen is only a little broader than the head, equal, and somewhat longer than the rest of the body. The legs, excepting the fragment of a hind femur, are not preserved.

The wings, and especially the front pair, which is considerably longer than the hind pair, are longer than the thorax and abdomen together and more than three times as long as broad. One front wing is almost entirely preserved and separate from the others, so as to be easily studied; the other front wing, of which only a fragment can be seen, overlies the overlapping and reversed hind wings; they do not so closely overlap as to confuse the neuration greatly, and hence nearly the whole can be deter-
mined, or as far as it is preserved. The front wing is long and rather slender, slightly enlarging apically, so as to be broadest at the inner haif of the pterostigma, the apex well rounded, the costal margin straight, at base broken so that one may nct say whether the wings were here expanded or not. The veins of the front wing are black, of the lind wings blackish brown. The prerostigma of the front wings is of moderate size, very dark fuliginous, its proximal margin transverse, its distal very oblique; excepting its tapering apical portion, it is nearly equal in breadth or slightly enlarging in the middle and about twice as long as broad; the figure is here not quite correct. The subcostal vein is straight and strikes the costa at a little more than the pterostigma's distance before the latter; the space between it and the costa is broken by oblique cross-veins, of which only one remains near the middle of the wing. The radius runs close to the subcostal vein, and is connected with it by a single transverse vein at the middle of the wing. Beyond the basal cell, which is bisected obliquely by the last sector, there are, just below the radius, three moderately long pentagonal cells, the second reaching nearly to the middle of the pterostigma. Omitting the marginal cells, there are six radiating sories of cells between the pterostigma and the anal vein; the cubital cells are large and broad, being not more than twice as broad as long, while all the other large cells of the wing are exceedingly long and slender, often several times longer than broad, scarcely, if at all, broader in the middle than at the ends, the transverse veins being comparatively few; the termiual veinlets of the apical half of the lower border are simply and widely forked.

In the hind wings, the lower half only of which is preserved, all the terminal veinlets appear to be forked, and excepting at the upper part of the apex, the sectors, which are broadly sinuons, appear to be very rarely col nected by transverse veinlets even near the border; at least almost none can 1 , detected.

Length of loody, 11.8^{mm}; of t:ead, 1.8^{mm}; breadth of same, 1^{mm}; length of prothorax, 1.6^{mm}; bieadth of same, 0.35^{mm}; breadth of thorax, 1.7^{mm}; length of abdomen, 5.75^{mm}; breadth of same, 0.85^{mm}; length of fore wing, 9^{mm}; its breadth, 2.7^{mm}.

Florissant. One specimen, Nos. 956 and 4330 (δ).

4. Inocellia eventa.

One specimen of this species is preserved in which all four wings closely overlapping one another are attached to a partly preserved body sufficiently preserved to judge by the extremity of the abdomen that it was probably a male, and by its long slender and equal prothorax that it did not differ in this respect from I. tumulata. The base of the wings is too obscure for determination, but the course of the veins renders it probable that the central sector, of the hind wings at least, arises in the angle of the basal cell formed by the junction of the radius and its basal branch; and in the table it has accordingly been placed in that division of the genus. The general featmes of the neuration show at all events that it is more closely allied to I. tumulata than to any of the others.

In another specimen the wings are of equal length, the front pair very long and slender, being nearly four times as long as broad, the greatest breadth in the middle of the apical half, although the greater part of the apical half is subequal, the apex well rounded, but slightly produced, the costal margin straight beyond the (obscure) base. The veins of both wings are black. The pterostigma, apparently alike in both wings, is blackish fuliginous, of moderate size, its proximal margin transverse, its distal very oblique, forming a nearly continuons enrve with its slightly convex lower margin, the whole a little more than twice as long as broad. The subcostal vein is gently curved and strikes the costa at the pterostigma's distance before the latter; the space between it and the costa is pretty broad and filled by numerous straight oblique veins. Below the radius the cell, whose distal extremity lies just beneath the termination of the costo-subcostal interspace, is exceptionally long, being nearly double the length of the cell beyond it, and the cells which lie beneath its distal extremity are bordered externally by a common line which lies benaath the proximal end of the pterostigina; the lower of these two cells being the longer; there is formed an oblique series of large conspicuous areoles like those of modern species but more distant from the apex of the wing. The lind wing differs from the front wing principally in form, the apical half being less equal, and in the shortness of the loigg sul)radial cell of the front wings, which is no longer than the next outside of it; the series of cross-veins originating above at the middle of the pterostigma is more broken, hat falls wholly without the proximal end of the pterostigma, so that the three areoles form a vertical instead of an oblique series;
the cubital cells can not be determined in the front wing, but are apparently, as here, pretty large and broad and rarely if ever twice as long as broad, while nearly all the other large cells (especially in the front wings) are very long and slender as in I. tumulata, the transverse veins being few. The marginal veinlets of both wings are simply and widely forked on the lower, and sometimes on the apical, border.

Length of wings, 10.5^{mm}; breadth, 2.7^{mm}.
This species is evidently more nearly allied to I. tumulata than to any of the others, and differs from it, not only in the points brought ont in the description, but also in the closer venation of the margin of the wing.

Florissant. Two specimens, Nos. 8319, 9391.

Family HEMEROBINA Hagen.

The two subfamilies Hemerobidæ and Chrysopidæ which form this group are oppositely represented in the Tertiaries of the Old and New Worlds. The former are well represented in Europe and poorly represented in this country; the latter are well furnished with species in this country and are murepresented in Europe. The figures stand as follows: Hemerobidx, four genera, six species, Europe, vs two genera, two species, America; Chrysopide, none, Eurnpe, vs. two genera, four species, America. Compare this with their present distribution as indicated by Hagen in his Synopsis synonymica (1866): Hemerobidx, ten genera, forty species, Europe, vs. eight genera, thirty-one species, America; Clurysopidx, two genera, fortyone species, Europe, vs. one genus, thirty-one species, America. Here the relation between America and Eimope is ahmost precisely the same in the two comutries, a relation which finds no sort of explanation in the distribution of the two groups in the Tertiaries. (September, 1 $\$ 83$.)

Subfamily HEMEROBIDAE Stephens.

Considering the abmadance of American Tertiary Neuroptera and the considerable number of Hemerobide (four genera, six or more species) found in the Tertiary beds of Europe-mostly in amber-it is somewhat surprising to tiud only a conple of species in our American Tertiaries. Ono of these, Osmylus, from Florissant, is also represented in amber and the two species agree together in certain features which distinguish them from VOL XIII- 11
modern forms The other, an extinct genus, Bothromicromns, from British Columbia, is very different from any the European Tertiaries possess.

OSMYLUS Latreille.
The species we have placed here agrees somewhat closely with the species from amber, Osm. pictus, referred by Hagen to this genus, but differs from it in its lack of any diverse coloring in the wings, as well as in some minor points of the neuration, as in the distance of the outor series of gradate veinlets from the outer border of the wing, their regular connection with one of the basal branches of the radius, the regularity of the inner series of gradate veinlets, as well as the structure of the cubital region. The two Tertiary species, however, agree tegether, and disagree with living types in the simple character of the costal nervules, the much smaller number of sectors, and the character of the basal half of the wing, where the sectorial interspaces are regular and broken by few and irregularly scattered cross-veins, instead of being so nus .rously supplied as to break up the field into an almost uniform and minute reticulation. The two fossil species would therefore appear to form a section apart. (September, 1883.)

Osmylus requietus.

Pl. 14, Figs. 3, 8.

Three specimens, twe of them with their counterparts, have been found, in which the wings are particularly well preserved, and in which something also cau be made out of the body and the antenne. The body is of the usual form, the slender antenne just about the length of the body, composed of multitudinous cylindrical, smooth joints, a little longer than broad and perfectly equal.

The wings are very large, the extremity of the abdomen reaching only as far as their middle when closed, and nearly three times as long as broad, ' broadest a little beyond the middle. They have the shape of those of Chrysopa, the costal margin being suddenly curved downward just before the tip to meet the upturned curve of the inner margin, which is bent beyond the middle of the wing and meets the costal margin below the middle of the tip of the wing, the latter barely angulated; besides, however, the costal margin is a little expanded near the base; the costal area, broad at the base and made a little more so by the slight deflection of the subcostal
vein near the base and opposite the expansion of the costal margin, narrows very graduully towards the apex, and by the deflection of the subcostal vein next the tip is carried to the very angulation at the apex, filled throughout with very numerous, oblique, straight, and simple cross-veins. The radius runs in exceedingly close proximity to the subcosta until the margin begins to curve decidedly downward, when it unites with it. I have not been able to detect certainly any basal or other cross-vein between the two, though there are in some specimens slight indications of what may be one near the origin of the main sector; they certainly do not occur elsewhere. The main sector originates from the radius near the base of the wing, runs near to and parallel with it to the apex, and is connected with it by many (eight or nine) cross-veins ; from it arise eight or nine parallel, oblique, and nealy straight sectors, making in all about a dozen series of equal oblique interspaces in the wing, broken in the apical half of the wing by a couple of series of gradate veinlets, the outer not very far removed from the posterior margin and subparallel to it, finally merging in one of the basal branches of the radius, and from which spring the marginal veinlets which are usually delicately forked at the very border ; the inner row is parallel to the outer and about as fur from it as it is from the margin. Within this the interspaces are broken by a dozen or more irregularly scattered rather distant crossveins, much as in Osm. pictus of the Prussian anıber, but very different indeed from the living types of the genus, as already stated under the genus. The margins of the wings are sparsely furnished with delicate hairs, and similar hairs may be seen on some of the veins, especially near the margins, but at great distances, or farther apart than the length of the hairs. The hind wing does not differ essentially from the front wing, excepting in the width of the costal area.

Length of body, 9.75^{mm}; of antennæ, 10^{mm}; of front wing, 15.055^{mm}; breadth of same, 5.35^{mm}.

Florissant. Three specimens, Nos. 8839, 13012 and 13537, 13538 and 14168.

BOTHROMICROMUS Scudder.

Bothromicromus Scudd., Rep. Geol. Surv. Can., 1876-777, 462 (1878).
This genus agrees with Micromus in lacking the recurrent vein above the costal vein next the base of the front wing, and differs from it in the very wide expansion of the costal area at this point and in the possession of
numerous sectors. In these respects it agrees with Drepanepteryx, but the wing is not falcate, and notwithstanding the wide expanse of the costal area the recurent nervule is wanting, all the veinlets of this arear arising next the base, as elsewhere, from the subcosta. The wing is shaped much as in Megalomus, to which, indeed, it is closely allied, being broad at the base, very gradually increasing in width apically, the extremity rounded, with no abrupt emargination or falcation, but with the inner angle strongly excised. At the base the costal area is nearly as broad as the remainder of the wing; the costal veiulets are all furcate and apparently connecter, much as in Drepanepter $\quad \mathrm{x}$, by a single line of inosculating veinlets, dividing the area in two nearly equal longitudinal halves. The costa and subcosta run side by side in the closest proximity, but are apparently separated to the apex. Sectors extremely numerous, with a single complete series of gradate veinlets in the middle of the wing, and another, apparently crossing only the lower half of the wing, more than half-way between this and the outer margin; veins and margins very shortly ciliated.

The genus also seems peculiar in the structure of the maxillary palpi, the basal joint of which is half as broad again as long ; the second and third joints subequal, moniliform; the fourth apparently only half ns broad as the previons, but of equal length, and the terminal again slenilerer, but twice as long, being conical, pointed, and unarmed, while the others are furnished on the apical half with scattered setæ. Antennæ submoniliform, the joints near the base of equal length and breadth, the basal joint doubie the width of the others; no hairs can be seen upon the antennal joints.

Bothromicromes lachlani.

> PI. 2, Figs. 7-10.

Bothromicromus lachlani Scudd., Rep. Geol. Surv. Can., 1876-777, 462-463 (1878).
One front wing and a part of the head with its appendages are preserved on No. 36, with a pale, brov. .ish tint to the wing, while the reverse, on No. 37, is wholly colorless. The only parts of the head preserved are one eye and a portion of the other, indicated by a brond, black, annular ring; also a few of the basal joints of the minema, and both maxillary palpi, crossing each other and detached from the head. The wing is strongly expandell at the extreme costal base; beyond this the costal border is straight, with a scarcely perceptile emargination nearly to the tip. The
inner margin is almost equally struight, but faintly convex. The extreme tip of the wing fulls in the middle of the upper half; below it the wing is strongly excised, but well romided at the tip and lower outer angle. 'The shape of the wing, therefore, resembles closely that of Micromus hirtus of Europe. The cubitals are, if anything, more numerous than the veinlets of the costal area, and beyond the origin of the unterior cubital vein ten originate from the subcosta itself in the basal half of the wing. The first and second of these fork and subdivide several times before reaching the margin, or even long before reaching the first series of gradate veinlets, while the third to the ninth are simple, either quite or almost as far as the very margin. The tentl again forks close to its origin, and the onter sectors originate from its upper branch, which is connected with the costa by infrequent cross-nervules. The wing is of a pale woodbrown color, the veins margined with a line of dull, pale yellow, and the darker brown of the interspaces broken frequently by a slightly paler tint, so us to give the wing a minutely blotelied appearance, only visible under the lens. The two series of gradate veinlets are again accompanied by a slightly darker tint, giving the wing the appearance of being crossed by two oblique, dusky lines. All the margins are minutely and sparingly ciliated, and similar black, rather distant hairs are scattered indiscriminately over the wing, both upon the membrane and veins, but showing a certain tendency to follow the course of the latter. At the extreme lower base of the wing they are seen to have their origin from minute papillæ, less than one hundredth of a millimeter in diameter, and averaging a twentieth of a millimeter apart.

Length of wing, 9.5^{mm}; greatest breadth, 4.25^{mm}; breadth at base, 3^{mm}; diameter of eye, 0.45^{mm}; length of joints of antennze near base, 0.09^{mm}; of middle joints of maxillary palpi, 0.075^{mm}; length of maxillary palpi, 0.4^{mm}.

Named for R. McLachlan, Esq, the distinguished English neuropterologist.

Quesnel, British Columbia: Collected by Dr. G. M. Dawson, Nos. 36 and 37 of the collection.

Subfamily OHRYSOPIDAE Brauer.

Although species referred to Chrysopa are mentioned by Andrä from the rocks of Thalheim, and by Berendt in amber, the figure given by the former and the study by Hagen of the material in the hands of the latter
render it more thin probable that no Chrysopidx are yet known from the Europenn Tertiaries. It is therefore all the more interesting that we find at Florissant four species of this group referable to two genera hitherto unknown. (October, 1883.)

The genern may be separated by the following table:
Table of the gencra of Chrysopide.
Upper eubital vein of fromt wing diruet, bordered by comparatively unifuru cells. 1. Palcoohrya. Upper cubital vein of frent wing doubly bent in the middle, bordered by very unequal cellis.
2. Tribochrysa.

1. PALAOCHRYSA gen. nov. ($\left.\pi \alpha \lambda \alpha \pi{ }^{\prime} s, \chi \rho v \sigma \delta \delta\right)$.

The only materials for establishing this genus are the wings, the structure of which does not accord with any known living or extinct type. The shape of the wings is much as in Chrysopa, and they are apically rounded; the costal area of the front wings, narrow at base, rapidly expands and then diminishes, being broadest within the basal fourth of the wing. By the apical union of the costal and subcostal venus the area terminates some distance before the apex of the wings, as in Hypochrysa. The cubital area is unusually broad, the anterior cubital vein running through the very middle of the wing, and the posterior cubital rather nearer the margin than to the anterior cubital, both continuing to the apex of the wing; in consequence of this and of the presence of only a single sector of the radius there are no transverse series of gradate veinlets whatever, but the secondary sectors are to be looked on as cross-veinlets uniting the principal longitudinal veins; one of the basal cubital cellules of the anterior wings is divided nearly equally, as in Nothochrysa.

It is difficult, perhaps, to say to which one of the modern genera it is most nearly allied, but it appears to resemble Hypochrysa as closely as any, though it agrees much more with the fossil genus Tribochrysa described beyond, where the distinctions between the two are pointed out.

Paleochrysa stricta.

Pl. 14, Figs. 13, 14.

Little besides the wings can be made out in the single specimen witl its counterpart which represents this species. The front wings are a little more than two and a half times longer than broad; the costal margin, expanded a little near the base, is beyond that straight until it slopes down-
ward to form the well-rounded tip; the lower margin is ronnded and full, especially away from the base, making the wing broadest beyond the middle. The hind wings are slonderer or abont three und in half times longer than broad, broadest in the middle, the lower margin being uniformly rounded, while the costal margin, not expanded at the baso, is straight thronghout to the apical fourth, where the wing tapers considerably on both sides, being subacuminate, though the extreme apex is well rounded. The neuration, at least below the radins, is essentially the same in both wings, but next the costal margin differs considerably. In the front tvings. the subcostal vein terminates on the costa a little boyond the middle of the apical half of the wing, and is connected with the distant arching costa by seventeen or eighteen cross-veins, the proximal ones of which are trunsverse, the distal somewhat oblique; the radius runs close and parallel to the subcosta throughout the course of the latter, and thereafter at a similar distance from and parallel to the curve of the margin, as far as tho very apex of the wing, connected nowhere to the veins above by cross-veins. In the hind wings the radius and subcosta are so closely united as to be nearly connected, and are so represented on the plate, and terminate together, apparently a little beyond the middle of the apical half of the wing; as in the front wings, the subcosta is connected by cross-veins to the proximate, straight costa. There is a single sector which springs from the radius a little before the middle of the basal half of the wing in the frout wings (nearer the base in the hind wings) and runs midway between the radius and the upper cubital in a regular zigzag; the cells, thirteen or fourteen in number, formed by the cross-veins between the sector and tho radius, as well as all those below, are broader than long and tolerably regular. The upper cubital vein courses regularly through the middle of the wing, and in its basal half, at least in the front wing, is nearly straight, while apically it is noticeably zigzag, terminating in the sector of the radius just before the tip of the wing. The lower cubital vein runs in a uniform course rather nearer the margin than the upper cubital vein, subparallel to the former, and is irregularly straight or zigzag, and also joins the sector of the radins or terminates against an apical cell at the tip of the wing; between the two cubital veins one of the basal cells is divided longitudinally into two nearly equal cells, as in the genus Nothochrysa (but which is not represented on the plate as it should be), where the oblique vein appears on the upper wing;
the marginal nervules are sumetimes simple and straight, sometimes broudly forked, and differ on opposite wings. The vein below the lower cubital, called postcostal by McLachlan, terminutes ahruptly on the hinder margin, opposite the origin of the sector of the radius.

Length of fore wings, 15.75^{mm}; breadth, 5.4^{mmm}; length of hind wings, 15^{mm}; breadth, 4.2^{mm}.

The four wings of this specinen are so werlaigh by one another as to make a medley of veins which are very difficult to disentangle and interpret. It was kindly photographed for me hy Mr. Samuel Wells, of Boston; the lines of each wing on the photograph were then traced separately, and from these tracings the drawings on the plate were made; these I believe to be true representations of the wings with the exception of the double cubital cell of both wings and the cross-veins of the costal area of the hind wing, which are not shown; the lown: half of each wing, however, is more liable to misinterpretation than the upper.

Florissant. One specimen, Nos. 1798 and 734v.

2. 'IRIBOCHRYSA gen. nov. ($\tau \rho i \beta \omega, \chi \rho v \sigma \delta s)$.

This genus, elearly allied to Pulacochrysa, and with it apparently a forermmer of Hypochrysa, is represented by several splecies in the American Tertiaries, which are uncommonly well preserved, though the wings are the ouly parts which are present on all the specimens; and it is therefore mainly upon these that the gemus is fombded The head is nearly twice as broad as long, the front protuberunt, romided, and entire, the basal joint of the antemas stout, bulbous, searcely longer than broad, twice tho dianeter of the stalk, the latter nearly as long as or oven longer thim the body, slender, delicately tapering, composed of simple, cylindrical, apparently maked joints twice as long as broad. The thorax is stout, the prothorax broader than long, tapering anteriorly, otherwise subpuadrate. The legs are slender. The wings extend far beyond the body, and are of the same form as in Cluysopa, the tip rounded or faintly subacuminate; in neuration they resemble closely those of Palzochrysa, but differ from it in one striking feature, and in this approach more modern types like Nothochrysit. In Paleochrysa the upper cubital vein runs in a slightly zigzag course throngh the middle of the wing in a regular, gentle curve nearly equidistant from the costal and inner margin, and terminates at the apex of the wings, no transverse series of gradate veinlets lying between it and the
primary sector. In Nothochrysa it runs in a perfectly straight course a little below the middle of the wing, but higher than in Clurysoph, directed toward but not distinctly renching the middle of the outer half of the lower margin of the wing, and supporting the lower proximal end of one transverse series of gradate veinlets between it and the prinury sector. In Triboehrysa it runs in a decidedly zigzag course, in the same general direction as in Nothochrysa in its proximal half, and then shifts suddenly to a higher level and follows thereafter a zigzag direction nearly parallel to the costa, through the very middle of the wing, joining, that is, the transverse serios of gradate veinlets and making them a part of itself. Tribochrysid further differs from Nothochrysa and agrees with Paliecechrysa in the slender number of socondary sectors or oblique cross-veins, so that the cells are larger and less elongated than in Nothoeluysa and Chrysopa, standing thus at a wider distance from Hemerobius. The result of this movement of the first cubital. vein is usually a striking ineenuality of the cells on either side of it, in contrast to their uniformity in Palieochrysa. There is here, therefore, as in Palmochrysa, no transverse series of gradate veinlets in tho proper sense, as both series are directly united with the two cubital voius. A somewhat similar arrangement may be seen in Nothochrysa fulviceps, although that species differs from these more widely than most of its allies in the multiplicity of its secondary sectors. The same double cubital cell occurs below the second subradial cell as is fomud in Nothochrysia and Palkochrysa

The species placed here seem to fall into two groups, one of the species differing from the others in being of a considerably larger size, having its first cubital vein originate directly from the radius, the proximal cells which lie above it less elongated than in the other species, and the upper (double) cubital cell quadrangnar.

Table of the species of Tribochrysa.
Large species. First cubital vein arising directly frotn the rullus; first transverse vein connecting ralins and first cubital vein lyligg fu direct continatiou of the cross-vein closing the proximal eud of the doublo cubitul coll, making the apier, ns well as the lower, cell qualrangular.

1. T. vetuscula.

Smaller species. First cubltal voin arising from a basal cross-vein uniting the radius and secont cubital vein; first Irunsverse vein counecting radins and first cubltal vein striking the upper margin of the duable cubital cell, making the upper cell pentugonal, while the lower romains quadraugular.
Elongated proximal cells between the main soator of the radias and the first eabital vein, four in number, followed by half a dozen cells of subequal dlameters....................... T, inequalis.
Elongated proximals cells, as above, three in number, followed by five cello vi suhequal diamoters.
3. T, firmata.

1. 'Tribochrysa vetuscula.

Pl. 14, Fig. 9.
The stone on which the single specimen referred here oceurs has unfortmately been broken across the wings, and the apical half is lost; otherwise the specimen would be nearly perfect, the head, thorax, eyes, a.id antenne being well preserved. The antenna are unusually short, being a little shorter than the body and more tapering than usual in this family. The head is well rounded, the eyes neither very large nor prominent, the prothorax tapering a little anteriorly, tho sides a little arcuate, the front slightly concave.

Only the basal half of the wings being preserved, little can be said of them, but the costal margin and area are much as in T. firmata, and the nemation is so peculiar as to separate the species readily from the others; there are about a dozen tranisverso veins in the costal area; the transverse veins uniting the radius and its sector are rather more mumerous than in the other species of the gemus; the cross-vein uniting at base the sector and the first cubital vein strikes the latter so as to form a contimation of the vein closing basally the double cubital cell; the upper of these two ceils is scarcely smaller than the lower; the upper cubital vein arises directly from the radius withont the support of a basal eross-vein; and the proximal echis between the sector of the radius and the upper cubital vein are, excepting the first (which is of irregular shape), not so disproportionately large as in the other speeies, being less than half as broad again as long, about as long as the subradial cells, and only a little oblique, difiering in all these respects from both the other species.

Length of body (estimated), $12^{\text {mm }}$; of head and thorax, $4.5^{\text {mn }}$; antenne, 11^{mm}; length of wingas as preserved, 9.5^{mm}; probable full length, 14^{mm}. presimed breadth, 4.5^{mm}.

Elorissant. One specimen, No. 11204.

2. Tribochrysa inequalis.

Tribachrysa inequalia Sctidd., Zittel, Haudb, d. Palannt., I, ii, 77\%, Fig. 982 (1885).
The single specimen referred here has all the wings superimposed on one another, but in addition a portion of the slender antenne and the large globular eyes can be seen, with faint traces of the head, thorax, and abdomen.

Almost the entire neuration of the upper wing can be made out as well as the lower half of that of the under wing; the front wing is three times as long as broad, the costal margin unformly arched, the basal expausion forming only a regular part of the curve; the lower margin is similarly curved but not very full, the wing being broadest nearly as far out as the middle of the outer half; the costal area is not very broad nor unequal; the subcostal vein terminates at the end of the middle third of the wing, and is comnected with the costa by twelve or thirteen cross-veins, mostly slightly oblique. There are ten subradial cells. The upper cubital vein, which springs from a short cross-vein miting the radius and lower cubital vein, in the middle of its course and somewhat beyond the middle of the wing shifts suddenly to a higher level and follows thereafter a direction nealy parallel to the costal, instead of, as before, the imer margin; in the first half of its course it runs below the middle of the wing, in the latter half above it; consequently the four cells which lie between its proximal half and the subcosta are very much elongated subrhomboidal in form, the first subtriangular, while beyond the shift they are somewhat regulinly hexagonal; on the other hand the cubital cells, scarcely longer than broad at first, become in the outer part of the wing twice as broad as long and also very oblique. The basal cubital cell is divided longitudinally into two mequal parallel cells, the upper the narower; the cross-veins next the lower margin are simple in the basal half of the wiag, simply or doubly forked on the distal half. The postcostal terminates abruptly on the hind margin, slightly farther out than the origin of the sector of the radins, and is connected near the apex by a cross-vein which is the continuation of that closing basally the double enbital cell. The neuration of the hind wing, only the lower half of which is preserved, cloes not differ from that of the front wing in the slightest essential particular:

This species differs from 'T'. firmata, to which it is closely allied, by its larger size, the greater number of cells below the sector (as indieated in the table of the species), and its broader costal nrea.

Lengthi of body, 11^{mm}; of front wing, 14.75^{mm}; breadth of same, 4.8^{mm}. Florissant. One specimen, No. 7982.

3. Tribochrysa firmata.

Pl. 14, Figs. 6, 7, 10, 11.

Two specimens are at hand, each in a pretty good state of preservation, showing head and antemue, the body and wings, the latter generally somewhat confused by overlapping or folding. The head is rather small as compared with the thorax, and well rounded, with moderately prominent eyes, and antenne a fourth longer than the body; the prothorax is also rather slender, tapering considerably, and abouc as long as its posterior breadth. The thorax is stont and the abdomen half as long again as the liead and thorax. The wings are abont three times as long as broad, broadest in the middle of the distal half, the costal margin pretty straight in the middle, rather rapidly sloping basally, and very rapidly curving almost bending downward apically, the apical margin rounded, subacuminate, the apex rather below the middle; the imer margin is regularly and gently curved. The subcostal vein joins the costal (not shown on plate) a little beyond the middle of the distal half of the win.g, and the costal area thus formed is occupied by about a dozen or more straight cross-veins; there are only eight or nine subradial cells, and the cells in the series below this, while agreeing in general character with those of T. inequalis, are less numerous than there, there being only three elorgated cells directly beneath the sector of the radius and only five equiaxial cells in the same series beyond them.

The two specimens show very little difference excepting in size, though on that accom they were at first presumed to be distinct.

Length of body, 8.5-7.75 ${ }^{\mathrm{mm}}$; of antemme, $9.5-10.5^{\mathrm{mm}}$ (in the larger specimen no donbt imperfect) ; breadth of head, $1-0.85^{\text {mu }}$; of thorax, 1.6-

Elorissant. 'Two specimens, Nos. 670, 8792.

Family PANORPIDAE Stepheris.

If the Liassic genus Orthophlebia is to be referred to this family, this group rinst have been as abundant in Mesozoic times as now. Only a few Ter* ${ }^{\circ}$, ecies are, however, known, and those hitherto aescribed have mank. Tt... wings like their ancestors of the secondary epoch. Three species of biontis and one of Panorpa have been described from the European
beds, all but one (a Bittacus) from amber, this Bittacus, the only relic from Tertiary rocks in Europe, coming from Radoboj.

The additions we have here to offer are of some interest. Two species have been found, both of which have heavily spotted wings, more heavily spotted than most living types; one of these, a small species, is referred to Panorpa, though doubtfully, as it differs so much from known types; the other unquestionably belongs to a distinct genus having no special alliances with any known forms. Both come from Florissant. The markings of one form dark, transverse bands on clear ground, of the other large, romdish, pale blotches on a dusky ground. (October, 1883.)

The Florissant genera may be thus distinguished:

> Table of the genera of Panorpide.

Ramules of upper branch of radins inferior ; markings consisting of large pale spota on a dark ground .. Holcorpa. Rammles of upper branch of radius superior or apical; markings consisting of dark transverse bands on a clear ground.
.2. Panorpa.

1. HOLCORPA Scudder.

Holcorpa Scndd., Bull. U S. Geol. Geogr. Surv. Terr., IV, 540-542 (1878).
This name ${ }^{1}$ is proposed for a genus of Panorpida, unquestionably allied to Panorpa, but differing remarkably from it in the total absence of cross-nervules in the wings, excepting, perhaps, at the base. The antenne are probably not very long (they are not completely preserved in the single specimen studied), taper very gradually in size, are composed of joints only a little longer than broad, not in the least degree moniliform, and furnished with recumbent hairs. The wings are not so elongated nor so slender as in Panorpa, very regularly ronded, both pairs similarly formed, the hinder pair shorter than the front pair, as in Panorpa. The costa is thickened, the subcosta extends beyond the middle of the wing, hat does not reach the pterostigma; the radius emits a superior fork near the base of the wing, whieh strikes the pterostigma, or, rather, which, by bending downward and then upward, forms the pterostigma in the middle of the apical third of the wing; the radius again forks in a similar manmer still far before the middle of the wing, the upper branch emitting three parallel, equidistant, inferior branchlets, the uppermost close to the margin next the pterostigma, the lowest striking the apex of the wing; the lower radial branch fo:ks

[^24]below the middle branchlet of the upper radial branch. All these veins, excepting the pterostigmatic termination of the uppermost branch of the radial, are straight. The cubitus is also straight until it forks a little before the middle of the wing; its upper branch is a little curved, and divides just below the forking of the lowest radial branch; its lower branch forks almost ipunediately, emitting at once three veinlets, the middle one of which is nearly conimuons with the main stem, the others curving in opposite senses on either side of it. Below this the veins are not so readily determinable, and their description is omitted until further specimens are obtained; the only variation in the nemration of the two wings consists in the middle fork of the lower branch of the cubitns, which, in the hind wing, is not contimnous with the main stem, but originates a very little beyond the others from the lower fork. The legs are spinons thronghout; the tibiee are also armed at the tip with very long, straight, parallel spurs, and the tarsal joints with short spurs. The abdomen is greatly elongated, the first four joints subequal and nearly as brond as the slender thorax, but as a whole tapering slightly, and not greatly surpassed by the wings, the following joints greatly attenuated, the ninth, or terminal joint, composing the forceps, unfortunately lost.

A fossil species referred to Panorpa, and figured by Brodie ${ }^{1}$ from the Purbeek beds of England (Pakorpa gracilis Gieb.), is very small, and possibly may be more nearly related to Holcorpa than to Panorpa, for while the general arrangement of the veins, with the notable exception of the cubital, is similar to what is found in Holcorpa and ve:y aifferent from their disposition in Panorpa, no cross-veins whatever call be traced. The figure, however, is too zmall, coarsely executed, and is described by Giebel 2 as supplied abundantly with cross-veins! It certainly is not in my copy of Brodie's work.

llolcorpa maculosa.

Pl. 14, Figs. 4, 5.
Holcorpa maculosa Scudd., Bull. 17. S. Geol. Surv. Terr., IV, 542 (1878); in Zittel, Haudb. d. Palæont., 1, ii, 748, Fig. 98! (1885).

A single specimen with hemutifully preserved wings and fragments of the rest of the body. The antemne (which are not fuliy preserved) appenr to have been more than half as long as the wings, the middle joints 0.17^{mm}

[^25]${ }^{2}$ Lus. der Forw., 2i8.
long and 0.14^{mm} broad. The wings are less than three times as long as broad, and very regularly rounded; the costal vein (especially on the front wing) is thickened and covered with closely clustered, minute, spinons hairs, and similar black hairs follow in a single row the hase of the radial and cubital veins. The wings are very dark, with jarge white or pale spots, of which three are most conspicuons, occurring similarly on all the wing* One, of a suliquadrate or subovate form, broader than long, lies searcely beyond the middle of the wing, extending from the costa to the upper branch of the cubital vein; another, nearly as large and similar in form, is subapical, extending from just beyond the last fork of the upper branch of the radial wein to or just beyond the upper fork of the lowest branch of the same; a third, sualler, transversely oval spot, lies next the inner border, below and a little outside the first mentioned, being situated just beneath the forking of the upper branch of the cubital vein; there is also more or less pale clondiness about the basal half of tie wing, and white fleeks may be seen at varions points near the tip, especially below the subapical spot. The abdomen resembles somewhat that of the remarkable Panorpa nematogaster M'Lachl. from Java, where it is greatly elongated, and possesses a curious appendage to the third joint. In the fossil species, the first three joints, taken together, taper gradually and sliglttly, and the third may have had a peeculiar appendage at its tip, as the edge is not entire, but appears deeply excavated in the middle, possibly dne, however, to its imperfect preservation; the basal half of tho fourth joint partakes of the tapering of the abdomen, but its apical half is swollen and its lind margin broadly rounded; the fifth and sixth joints are a little longer and much slenderer than the preceding, subequal and cylindrical; the fifth depressed on either side at the base by a pair of fover, tho seventh again much smaller, linear or not half the width of the sixth, inereasing slightly in size apically; the eighth as large at base as the seventh at tip, enlarging slightly apically, and all the joints together half as long again as the wings. Most unfortunately, the apieal joint is lost. The specimen is evidently a male.

Length of insect (excluding claw of abdomen), 30^{mn}; of abdomen (excluding claw), 23^{mmL}; of front wing, 188^{mm}; breadth of sanve, $5 \mathrm{5}^{\mathrm{mmm}}$; length of hind wing, 16.5$)^{\mathrm{mm}}$; breadtlo of same, $5 \mathrm{5}^{\mathrm{mm}}$; length of (fore or middle) tibial spurs; 1^{mm}; of one of the (hind?) tarsal joints, 1.2^{mm}.

Florissant. One specinen, No. 63.

2. PANORPA Linné.

A single species of this gemus has been discovered in the Tertiaries of Europe (amber) and we add mother from the Florissant beds. The former has the wings of a uniform asli-gray. The wings of the latter are heavily baided, very much more heavily than in most modern types. The living representatives of this gemus helong to the northern hemisphere, and in our own comitry range from Canada to Mexico, so that the presence of the genus at Florissant has no particular meaning.

Panorpa rigida.

The single specimen belonging here shows the tapering, attenuated abdomen of a female with the larger part of most of the wings, of which only the front pair are preserved in any recognizable mamer. These show the nemation tolerably well, and it agrees botter with the living Panorpa than with the contemporaneous IIolcorpa; hut the subensta is unusually short, reaching just to the midalle of the wing, and the cross-veins areofew in mumer. The wing is traversed by rather narrow transverse helts of a dark color, on in clear gromod. placed at equidistant intervals, besides having the entire apex of the wing dank; them belts are straight with straight edges; one traverses the mildle of the wing, me lies outsirle of it midway intween it and tive apieal pateh, and a thiad an far from it tword the base of the wing; the elear area loneween these belts is twice as broad as the belts themselves. The costan is stmot. Tine legs are very long and very slemeler, the tibize mather spansely simed.

Length of wings (estimated), 11^{mm}; brewith of same, 3.5^{mm}; length of abriomen (estimamenl), a^{mm}; (liind ?) tilian, (prohably) 5^{mm}.

Florissumt. Bithe specimen, Ne. 33.

Family TPICHOPTERA Kirby.

> The rarisy of remunu of caldis-flies in the Tertiary rocks of Europe a mot a Tittle surprisimg. Only three species have been figured and a fourth nontioned, all apparently represented by single specimens (from Aix, Parschlug Mombach, and the Isle of Wight). Another species has been deseribed from Greenland by Heer and from Chagrin Valley, Colorado, by unyself. That they were abudant is proven by the deseription of mumer-
ous larval cases from different regions of Europe, but especially from Auvergne in France; it is also proven by their abundance where we should at first little look for them, in the Prussian amber, where, according to Hagen, they are more numerous than any other group of insects, excepting Diptera, and comprise more than half the Neuroptera and Pseudoneuroptera combined. Twenty-five species have been described (by Hagen and Pictet) and several others mentioned (by them and by Kolenati) from amber, a large proportion belonging to the Hydropsychidæ and especially to Polycentropus, of which eleven species are described.

Trichoptera are, however, by no means rare at Florissant, and, as stated above, a single species has been described from western Colorado. Indeed, the Neuroptera from the prolific lake bed of Florissant are made up in large part of Trichoptera, of which many hundred specimens have been obtained. The larger part of them, indeed, are indeterminable, but there are about one hundred specimens which show the neuration of the wings or other characteristic part with some distinctness; and while all the remains of perfect insects from the European rocks are referred to the single subfamily of Phryganidæ, at Florissant Limnophilidæ, Leptoceridæ, and especially Hydropsychidæ, are also represented. The species of this last mentioned group are also much more prolific in individuals, and the preponcheance in species would be even more marked were we able to include here all the species really found, since most of those which are too imperfect to be brought forward evidently belong to this group. All these groups, and indeed all the subfamilies of Trichoptera, are represented in the Prussian amber. Hydropsychidæ are by far the most numerous, as in our own Tertiaries. Then follow in the order of abundance Leptocerida, Sericostomidæ, Phryganidæ, Risyacophilidx and Hydroptilidæ, and Limnophilidæ, the last having but one representative.

While, as we have said, the loulk of the specimens of Neuroptera found at Florissant belong to the caddis-flies, the specific variety of such as will bear, description is not quite so great, as 40 per cent of all belong here; but in relation to any one other large group the number of species greatly preponderates, us the group next in sime in point of species is the Odonata, which has less than 20 per cent. It is not a little curious to compare this statement with Pietet's coneerning the amber caddis-flies: "Of about one hundred and twenty Neuroptera examined by me sixty-
five were Phryganidx, and of fifty species descrilsed by me twenty-two [44 per cent] belong to this family." Of these sixty-five, moreover, forty were referred to the Hydropsychidre. Hagen, with about seven times as many specimens before him, comes to nearly the same conclusion, for he says that nearly 60 per cent of the specimens of Neuroptera are caddis-flies, and thirty-nine of the eighty-seven species of Neuroptera given in his table, or 45 per cent, are referred to the Trichoptera.

In this enumeration no account has been taken of the occurrence of larval cases of caddis-flies in Tertiary deposits, to which reference was made above. Auvergne has been famous for these which form the so-called indusial limestone deposits, so abundant are they. They were described by Bose as long ago as the year XIII (1805) and recently have been distinguished by Oustalet under two distinct names. Hepp also described Phryganea blumii from cases found at Leistadt and Heer P. antiqua from Oeningen. A single one has even been found in amber, with its entombed larva, and Fritsch describes one from the Cretaceons of Bohemia. In this country Dr. Peale discovered similar remains, which I have deseribed as Indusia calculosa. The two fragments of rocks brought home from the loeality in Wyoming formed doubtless the floor of a former body of water and are thickly crowded with cases lying in every direction. It is very probable that at least those described hero and by Bose and Oustalet belong to the Simmophilide. That in the abundant fanna found in the lake Insin of Florissant, including, as we see, a large number of caddis-flies, not a single larval case should have yet been found seems a little remarkable, and the more so since not a few belong to groups, the larve of which are known to prefer standing to running water. It is hardly to be believed that the streams in the neighorhood of this ancient lake abounded in the larve of caddis-Hlies, while the waters of the lake itself were destitute of them. It should be remembered, however (1), that the speeies which construet eases of conspicuous size out of hard materials mostly belong to the Limuophilida, of which Florissant furnishes but one species; (2), that the larve of the prevailing group, Hydropsychide, sore commonly inlabit running water, and that their cases are made of grains of stone affixed to larger stones; (3), that the bottom of the lake in which the insect deposits occur nowhere has shown, as far as I have seen, any sign of stones large enough to have served as a basis for the attachment of the smaller grains
which alone are found, and that therefore the larve of Hydropsychidm must have frequented perforce the neighboring streams, where such larger stone surfaces could have been found. If cases should be found they will be likely to be those of the larger Phryganida (next most abundant after the Hydropsychidx), composed of vegetable fragments. Three species and seven specimens only of this group have been found. (February, 1884.)

Subfamily HYDROPSYCHID天 Curtis.

Although no members of this group have been found in the stratified deposits of the Old World, abont half of the numerous species described from the Baltic amber belong to it, including several genera. It is interesting, therefore, to find that about three-fourths of the Florissant caddis-fies described in this work belong here, and in the material too poorly preserved to bring before the public the greater part also belong here. Here, too, the species seem to be far the most abundant in individuals. Among those described below are not a few very aberrant forms, which I have been at a loss to deternine, as certain of them seem on some accounts to be more nearly related to the Leptoceride. At the present day the subfamily appears also to be the most numerous in species in the northern hemisphere, and they are found all over the world. The larve more commonly frequent rinning than standing water, make fixed cases, and are believed to be to a large extent carnivorous.

Table of the genera of Hydropsychide.
(Only the extinct, newly described genern, in which the fifth apical cell and sometimes some of the other apical cells of the fore wings are wanting, are here tabulated.)
First apical cell present.
Second apical cell present.
Median cellule one-third or scarcely more than one-third as Iong as the wing ..3. Derobrochus. Median cellnte one-half an long as the wing.. Litobrochus.
Second apical cell absent Leptobrochus.
First apical cell absent.
Discoidal cell open. 6. Mesolrochus.

Discoidal cell closed
7. Paladicella.

1. HYDROPSYCHE Pictet.

The two species placed here by us from the American Tertiaries are referred to the genus in its ancient wide sense as representative of the group to which it belongs. No fossils havo previously been referred to it.

Hydropsyche9 operta.

P1. 5, Figs. 52, 53.
Phryganea operta Scudd., Hnil. U. S. Geol. Geogr. Surv. Terr., III, 762 (1877).
A single well preserved specimen with its reverse; the wings are doubled beneath the body, and unfortunately are overlaid by the larva skin of a dipterous insect, obliterating all the important parts of the neuration. On this accomst it is impossible to determine it with any certainty, but it can not be referred to the Phryganidae proper, from its slender antenne and long and slender legs. Renewed study of the specimen since the above was published in the Bulletin leads me to believe that it is one of the Hydropsychida and probably not far removed from Polycentropus, but the venation is too obscure to enable one to speak confidently. The first fork, however, appears to be brief and upcurved, exactly as in Polycentropus and not as given in the plate. The head is detached from the body, and faint tracos of the antenne are preserved, but detached; apparently there are two pairs of spurs to what appear to be the middle tibia, and the spines of the under edge of the same tibiae are numerous. The abdomen is very well preserved on a side view.

Length of body, $8^{\text {mim }}$; (portion of) antennx, $7^{\text {mu }}$; tarsi, 3.5^{mm}; wings, 10^{mm}.

Chagrin Valley, White River, Colorado. W. Denton.

Hydropsyche marcens.

Pl. 15, Fig. 7.

Only twe specimens of this species are known ; it seems to have a somewhat peculiar neuration, but its imperfection induces me to place it in the genus Hydropsyche in a general sense. The front wings are very long and slender, largest beyond the middle of the apical half, the apical margin rounded but with a slight acumination. The neuration is incorrectly given in the plate. No cross-veins can be accurately determined, but it seems apparent that the discoidal cell must be of unusual size, and even larger than the median cellule, which, on the other hand, must be rather smaller than usual. The legs and antennæ are long and slender.

Lengtl of bedy, 9^{mm}; of front wings, $9-9.5^{\mathrm{mm}}$; of hind legs, 6^{mm}.
Florissant. Two specimens, Nos. 1618, 11205.

2. POLYCENTROPUS Curtis.

This is an important gruup of caddis-flies to the paleontologist, since nearly one-half of the many phryganids described from the Prussinn nuber belong to it, and it is interesting to find that we have at least one species in our own rocks. The present distribution of the species is mainly in Europe and North America, where they are numerous, with a few recorded from Ceylon. The larve, according to McLachlan, inhabit shallow, rapid streams, and form, Pictet says, no firm cases until abont to change to pupe. In speaking of the abundance of this group in the amber funna McLachlan says: "Insects referred to Polycentropus in its broad sense seom to have been very common in the Tertiary period when amber was formed; their habit of concealing themselves in the crevices of the bark of trees probably caused their entanglement in the resin and subsequent fossilization." ${ }^{1}$

Polycentropus exesus.

A delicate winged, sparsely clothed species with exceedingly delicate antennæ. The body is moderately slight, the head small; basal joint of antenne very stout, subglobular, the remainder thread-like, reaching back beyond the closed wings, the joints three to four times longer than broad and narrowly ringed with black at the incisures. Legs pourly preserved in most of the specimens, but only moderately slender, the tuisi rather densely spinous. Wings moderately slender, broadest at the anastomosis, the apex rather broadly rounded, tolerably clear, but with heavily infuscated veins; the discoidal is much longer than tho modian cellule, aud the second apical cell is longer than the third and fourth, and of about equal length with the fifth; the anastomosis above the fifth fork lies in a curve subparallel to the apical margin.

Length of body, 7.5^{mm}; of front wing, 8^{mm}; width of same, 2.6^{mm}; length of antennæ, 11^{mm}; of hind tibiæ, 4^{mm}; of hind tarsi, 3.5^{mm}.

Florissant. Nine specimens, Nos. 67, 571, 3143, 7428, 7873, 9549, 10501, 12441, 13529.

[^26]

Polycentropus (\%) eviratus.

Pl. 13, Fig. 7.
A single specimen with its reverse is placed here provisionally simply from its general resemblance to species of this group. A crushed body, heavily scaled wings, an antenna, and a fragment of a leg are all that remain. The body is stout and apparently clothed densely. The antenna is rather slender, tapering, about as half as long as the wings, and composed of joints of equal length and breadth. The wings are folded somewhat, so that their form can not fully be seen, but they arrs apparently not slender and are very densely scaled, concealing all neuration; the costal margin is very gently and slightly convex, curving downward to the apex only at the very tip, the apex far above the niddle of the wing, and the apical margin cblique, straight, not retreating rapidly.

Length of body, 11^{mm}; of front wing, 10.5^{mm}; of antennæ, 5^{mm}.
Florissant. One specimen, Nos. 12239 and 12240.

3. DEROBROCHUS gen. nov. ($\delta \eta \rho o \dot{s}, \beta \rho o ́ \chi o s)$.

A large proportion, both of the specimens and species, of Florissant caddis-flies seems to belong to this new type of Hydropsychidx, which is allied to Polycentropus in many of its features, but is remarkable for the iength of the cells and for the apparent want of any fifth apical cell. The median cellule, which is gene:ally longer than the discoidal, is often onethird, or even more than one-third, the length of the wing, and the lower branch of the upper cubitus runs straight or nearly straight to the margin, bending sometimes near the cross-vein which, near the margin, connects it with the vein below. The uppermost apical cell, as in Polycentropus, is small, and in general the affinity of this genus to that is narked; but the absence of the fifth apical cell is believed to be sufficient ground for generic distinction, as that cell is generally found throughout the family. The cross-vein uniting the upper and lower cubitals is variously situated.

Table of the species of Derobrochus.
Base of first apical cel: of front wing not, or scarsely, farther from the root of the wing than the base of some of the other aplcal forks.
First apical coll almost as long as the sccoul; this ont greatly longer than the third.. 1. D. abstraetus. First apical sell much shorter than the socond; this nearly twice as long as the third.

First apical cell longer thau the fourt!2. D. canulentus. First apical cell shorter than the fourth.

First apical cell enrving upward..4. D. commoratus First apleal cell with no upward curve .6. D. frigesceus.

Base of first apical cell considerably，or very much，farther from the root of the wlog than the base of any other apical fork．
Third and fourth apical colls about equally distant from base．
Second apical cell less tha：one－third as long again as the third．
3．D．aiernus． Second aplcal cell half as long again as the third．．．．．．．．．．．．．

5．D．marcidus．
Fourth apical cell reaching muoh n夭arer the hase than the third．
7．D．craterce．

1．Derobrochus abstractus．＇

A single specimen，preserved on a side view，so as to show the upper half of the under surface of the right front wing，and in addition the urper surface of the whole of the left front wing，overlying the hind wing and confusing the neuration．Little besides the wings can be seen，but the stout cylindrical basal joint of the antennæ appears，followed by a few sim－ ilar but much slenderer joints．The front wing is slender，subacuminate at tip，the costal margin falling toward the tip at about the same angle as the apical margin retreats from it，the apex itself rounded off，and rather above the middle line of the wing．The first apical cell is remarkably long， the fork originating at the end of the middle third of the wing，and of the same length as the third apical cell；the second apical cell is only a little loager．The wing is apparently clear，with the veins narrowly marked with fuscous and faintly irrorate with fuscous at their tips．

Length of body， 9^{mm} ；of front wing， 11^{mm} ；width of same， 3.3^{mm} ．
Florissant．One specimen，No． 9377.

2．Derobrochus cemulentus．

This species is represented again by a single specimen，showing a dor－ sal view of a vague body with outstretched front wings，one of which is nearly complete and tolerably well preserved，showing a portion at least of the neuration with clearness．The wing is not so acuminate as in the pre－ ceding species and the apex is in the middle of the wing．The first apical cell thougit long is shorter than in D．abstractus，but extends farther to ward the base than either the third or fourth cell，these last being much shorter than in the preceding species．The discoidal cell is apparently fully as long as the mediar cellule，but its limits are not clearly marked；the latter is as long as the fourth fork and very slender．The wing appears to be clear with infuscated veins，and the whole costal margin broadly but faintly infuscated．

Length of wing， 8.5^{mm} ；breadth ，${ }^{f}$ same， 2.6^{mm} ；length of median cel－ Iule， 2^{mm} ．

Florissant．One specimen，No． 14444.

3. Derobrochus eternus.

This species is again represented by a single specimen but in a better state of preservation than the preceding forms. It presents a side view with the upper front wing well preserved, and the lower, though visible by drooping, obscure. The legs are tolerably well preserved but confused; they are sparsely clothed with hairs and the tibial spurs can not properly be distinguished. The front wing is slender, broadest only a little way beyond the middle, the apex well rounded, and the apical margin very oblique but full. The discoidal and median cells are about equally long and slender and nearly as long as the second apical cell, which is fully one-third the length of the entire wing. The third and fourth apical cells are of about equal length and nearly twice as long as the first. The anastomesis is very simple, the cross-veins closing the discoidal cell and uniting the sector and cubitus falling together just beyond the origin of the second apical fork. The wing as preserved is clear in the apical fourth but elsewhere irrowte with fuscous, the veins everywhere infuscated.

Length of front wing, 9.75^{mm}; breadth, 4.1^{mm}.
Florissant. One specimen, No. 5308.

4. Derobrochus commoratus.

A species closely allied to the last described, and mainly distinguishable from it by its shorter and much slenderer wings. A number of specimens appear to belong here, but none of them are very well preserved. The body is slender, the legs long and slender, but with rather stout femora, the front legs short and slight. There is a single pair of spurs on the front legs, and two pairs on the hind legs. The front wings are pretty uniformly fuliginous with fuscescent veins; it is very slender, broadest close to the apex, the tip rounded and placed considerably above the middle, the apical margin much less oblique than in D. æternus. The neuration is identical with that species.

Length of body, 8.5^{mm}; of front wing, 9^{mm}; breadth of same, 2.75^{mm}; length of fore femora, 1.6^{mm}; of fore tibia, 1.1^{mm}; of middle femora, 3.25^{mm}; of hind tibia, 2.6^{mm}.

Florissant. Ten specimens, Nos. 2661, 3237, 3343, 3350, 6848, 13539, 13542 and 14170, 14029, 14171, 14312.

5. Derobrochus marcidus.

Pl. 15, Fig. 2.
A slender winged, griseous species, not far removed from D. commoratus. The body, however, is tolerably stout, densely clothed, the head smali, with very slender pale antennæ, the basal joint stout and globular, the other joints slender, about twice as long as broad, and narrowly ringed apically with fuscous. The legs are very long and delicate, the middle and hind tibiæ with two pairs of spurs. Front wings griseous, rather heavily clothed with hairs, especially along the veins, which are thereby duskier; they are slender, well rounded at the apex, and not acuminate, as would appear from the figure, where the wing is partially folded; the neuration is imperfectly shown in the plate. The first apical cell is very small, the third a little longe: than the fourth and much shorter than the second, which is very long, nearly reaching the middle of the wing; the length of the discoidal and median cells can not be accurately determined.

Length of body, 6.75^{mm}; of fore femora, 1.4^{mm}; mid femora, 2.2^{mm}; mid tibiæ, 2^{mm}; hind femora, 3^{mm}; hind tibiæ, 2.75^{mm}; front wings, $7-8^{\mathrm{mm}}$; width of same, 2.75^{mm}.

Florissant. 'Three specimens, Nos. 9416 and 9621, 10106, 12010.
6. Derobrochus frigescens.

$$
\text { Pl. 15, Figs. 6, } 16 .
$$

Derobrookus frigescens Sondd., Zittel, Handb. d. Palmont., I, ii, 779, Fig. 986 (1885).
A somewhat stout bodied but small species, the snallest of the genus, not very heavily clothed with scaies. The head is moderately large and the antennæ very slender, with a large globose basal joint. The legs are only preserved in a fragmentary way in all the specimens. The front wings are tolerably broad, broadest only a little beyond the middle, the apex scarcely subacuminate but well rounded, the apical margin oblique but full; the first apical fork is unusually straight with no upward curve, and the cell not much shorter than the third apical cell; the second apical cell is about twice as long as the third, and the fourth falls about midway between them in length; the discoidal cell and the median are of about equal length with the second apical cell, and are very slender, particularly the median. These features are not all produced in the plate.

Length of body, 6.5^{mm}; of front wing, $7^{\text {min }}$; width of same, 2.85^{mm}.
Florissant. Seven specimens, Nos. 1027, 1718, 2677, 4633, 5433, 10900), 10953.

7. Derobrochus cratere.

Pl. 13, Fig. 13; PI. 15, Fıg. 4.
A moderate-sized species, with dusky wings, the veins infuscated. The body is moderately stout, but no parts are fairly preserved but the front wings. These are moderately slender, the tip rounded, the apical margin oblique and only a little full, the broadest part of the wing near the middle of the outer half; the first apical cell (not shown in the figures) is very small, considerably smaller than the third, which last is only a little more than half as long as the second, which is slightly longer than its stalk; discoidal and median cells very long and wlender and of about equal size.

Length of body, 7-8.5 5^{mm}; of front wings, 8^{mm}; breadth of same, 2.6^{mm}; length of hind wings, 6^{mm}.

Florissant. Four specimens, Nos. 2514, 5059, 14235; and from the Princeton Collection No. 1.947.

4. LITOBROCHUS gen. nov. (λ_{2} гòs, β póxos).

This name is proposed to include a single species of Florissant Hydropsychidæ, allied to Polycentropus and Derobrochus, and especially the latter, but differing from them in some points in the neuration of the wing. Like Derobrochus, there is no fifth apical cell in the front wing, thus clearly separating it from Polycentropus. It differs from Derobrochus in the still more intensified elongation of the interior cells, and in the minuteness of the first apical cell, which is relatively not half so large as in any species of Derobrochus. The anastomosis is also very widely separated, the median cell extending far toward the margin and being half as long as the wing itself.

Litobrochus externatus.

Pl. 15, Fig. 10.

A single specimen shows the body, fore legs, and front wings. It is a tolerably large species with moderately slender body. The front legs are small and the tibia bears a single pair of spurs. The front wings are slender, broadest before the middle of the outer half, the apex produced and nearly
in the middle of the wing, the costal margin falling obliquely to the tip over a considerable area, and the apical margin equally oblique below the apex; tho contrast in the length of the first and second apical cells is very marked; the cross-vein uniting the sector and cubitus falls at the origin of the second apical cell, and the median and discoidal cells originate side by side; nono of the cross-veins are shown in the plate. The wing is clear, excepting for a slight infuscation along the costal edge and the infuscation of the veins.

Length of body, 10^{mm}; of front wings, 10^{mm}; breadth of same, 3.35^{mm}; length of fore femora, 1.7^{mm}; tibiæ, 1.7^{mm}.

Florissant. One specimen, No. 14210.

5. LEPTOBROCHUS gen. nov. ($\left.\lambda \varepsilon \pi \tau \dot{\tau} 5, \beta \rho \delta \chi^{\prime} о \varsigma\right)$.

This genus, which includes only one species, is remarkable for lacking not only the fifth, but the second, apical cell. In other respects it does not differ from Derobrochus, except in having, as in Litobrochus, an extremely long median cell, due, however, not to the extension of the cell toward the margin, but to its basal extension by the earlier origin of the middle branch of the upper cubital vein.

Leptobrochus luteus.
Pl. 15, Figs. 1, 3.
This abundant species is rarely well preserved. It has a slender body, long and narrow wings, very slender legs, and antennæ longer, so far as known, than any other of our fossil species, being much more than twice the length of the body (including the closed wings); the joints are about four times longer than broad, very slender, and the incisures marked with fuscous; the first joint is stout and obovate. The front wings are very long and slender, the apex produced, subacuminate and scarcely above the middle; the first apical cell is tolerably small, and the discoidal cell apparently open; the median cell, however, is closed, and the cell itself exceedingly long, the closure being a little before the origin of the third apical cell, which is not quite so long as the breadth of the wing and shorter than the fourth apical cell; these features of the neuration do not appear in the figures on the plate.

Length of body, 9^{mm}; of front wing, 9^{mm}; breadth of same, $2.2^{\text {nm }}$; length of antennac, 21^{mm}.

Florissant. Sixteen specimens, Nos. 1655, 3638, 3702, 6039, 7030, $7149,7990,8013$ and $10341,8065,8325,8392,8857,9578,10016,10239$, 12014.

6. MESOBROCHUS gen. nov. (μ éбos, $\beta \rho o ́ \chi o s)$.

This is a reculiar group, not only for the limited number of apical cells, the first as well as the fifth being absent, but also for the great and nearly equal length of all the other apical cells and the distance of the anastomosis from the apical margin; indced, nearly or quite a third of the wing at the apex is filled only*with longitudinal and parallel veins, as in some Leptoceride. The median cell, on the contrary, is not very long, as it is in nearly all the other genera we have here considered; the discoidal cell appears to be open, an anomalous peculiarity for one of the Hydropsychida.

Table of the species of Mesobroohus.

1. Mesobrochus letheus.

Pl. 15, Fig. 11.

A small slender species. Body slender, moderately clothed with scales. Antenne with basal joint very large, as long as the head, the rest slender and cylindrical, tapering sensibly to the tip, as long as the body (without the wings). Legs very slender. Wings very long and slender, the rounded apex in the middle line and the margins curving equally to it above and below; second apical cell nearly half as long as the wing, third and fourth stopping abruptly at the anastomosis, which falls just beneath the tip of the subcostal nervure; the discoidal cell is open and the median not very long, reaching as far toward the base as to bring the base of the second apical cell over its center; the neuration as given in the plate is wrong.

Length of body, 6^{mm}; of front wing, 7^{mm}; width of same, 1.85^{mm}; length of antennæ, 6^{mm}.

Florissant. Fourteen specimens, Nos. 544, 1665, 2268, 2520, 2566, 4584, 6884, 7792, 7898, 10720, 10899, 11132, 12015 and 12789, 13540.

2. Mesobrochus imbecillus.

Pl. 15, Fig. 13.

Closely allied to the preceding, but a smaller and comparatively stouter form. The basal joint of the untenna is cylindrical, and though very large not so stout as in that species, but the stalk is as there. Tho legs are a little shorter and less slender. Wings shaped as in M. letheus, but comparatively a little shorter; the neuration appears to be identical with that of the other species (it is wronglv given on the plate), excepting that the anastomosis is even farther tor . the base of the wing.

Length of body, $5.5^{\text {num }}$; of front wing, $6.25^{\text {min }}$; width of same, $2^{\text {mm }}$.
Florissant. Sixteen specimens, Nos. 1306 and 4423, $2177,2364,2984$, 4908, 5462, 6861, 7042, 7568, 7883, 10225, 10407, 10430, 11005, 12234, 13138.
7. PALADICELLA gen. nov. ($\pi \alpha \lambda \alpha \imath o ́ s, \alpha-, \delta i \nLeftarrow \varepsilon \lambda \lambda \alpha$).

Still another anomalous genus is found among the Florissant Hy_{y} dropsychida, in some "espects allied to Mesobronhus, since the first and fifth apical cells are wanting and the other apical cells are nearly equal and long. The other features, however, are very different, partly perhaps from the much greater comparative brevity and breadth of the wing. The third and fourth apical cells are so closely approximated as nearly to touch throughont their length, even to the very margin of the wing. The discoidal cell is closed and relatively much shorter than it would be in Mesobrochus were it closed at the same time; that is to say, the branch of the sector usually furnishing the first apical sector has a much later origin in Paladicella than in Mesobrochus. The name given is not meant to have any reference to the recent genus Adicella.

Paladicella eruptionis.

Pl. 15, Fig. 14.

This species is represented by a single specimen and its reverse, tolerably well preserved on a dorsal view with partially expanded wings. The body is moderately slender and not heavily clothed, the head rather small, front legs not very large. The wings are not slender, broadest before the apical third, with rounded contours, the well rounded apex above tho middle, the apical margin more oblique than the costal as it falls to the apex.

The wing is tolorably clear, slightly infuscated next the costa with fuscous veins. The neuration along the middle of the outer half of the wing is not correctly given in the plate; the vein abovo the lowest forked vein (containing the fourth apical cell) is also equally but not so widely forked, and it does not connect (excepting by a cross-vein) with the vein above, but much farther toward the base with the vein below, its fork containing the third apical cell.

Length of body, 9^{mm}; of front wing, 10.5^{mm}; breadth of same, 4^{mm}.
Florissant. One specimen, Nos. 8422 and 13004.

8. TINODES Curtis.

The single species referred here provisionally is shown by its neuration to belong elsowhere, and is merely placed here for convenience and for want of a better place. Moreover two species have been found in amber.

Tinodes (?) paludigena.
 Pl. 15, Fig. 9.

An interesting little species, apparently belonging near this genus, but in which the neuration is even simpler, though being in large part obscure, the species is placed here provisionally. The body is moderately slender, the legs rather short. The front wings are not very slender; broadest in the middle of the apical half, beyond which the wing tapers rapidly and almost equally above and below to a rounded apex. Only the first and third apical cells are present and both very large and with a long stalk, the veins originating far toward the base. This alone shows it can not be a Tinodes, but the anastomosis can not be made out. The lind wing is considerably shorter than the front wing, broadest near the base, has a pretty strongly curved costal margin terminating abruptly in a pointed apex, from which the oblique apical margin retreating rapidly blends by one curv. in the inner margin; the second and third apical cells only are present, of about equal and considerable length, the latter nearly reaching the middle of the wing; an interesting feature of this wing is a large spreading tuft of dark hairs longer than the width of the thorax, springing from near the base of the costal area.

Length of hody, $5-6.25^{\mathrm{mm}}$; of front wing, 5.5 mm ; of hind wing, 4^{mm}; brealth of front wing, 1.5^{mm}; of hind wing, 1.2^{mm}; length of tuft of hairs, 0.75^{mm}.

Florissunt. Four specimens, Nos. 2142, 6964, 10702, 13137.

Subfamily LEPTOCERIDAE Stephens.

No fossil species of this subfamily have been described, but Hagen mentions several species which he refers to Mystacides and Odontocerum. Two Florissant species are found, which are believed to be most nearly allied to Setodes. The larve of this group are found more often in ranning than in standing water, but frequent both; the case is usually a free sand tube; the members of the subfamily are distributed all over the world.

SETODES Rambur.

This genus, as existing at present, is found well represented in regions as wide apart and as difforent as North America, Europe, and the East Indies. None have before been reported fossil, and the two species we have referred here are so placed more from their general aspect than for any other more solid reason. The form and pointedness of the wings and the general structure of the antenna and legs look evidently in this direction. The larvæ of this group inhabit both standing and rumning waters.

Table of the species of Setodet.

Wings at rest extending far beyond the abdomen S. portionalis.
Wings at rest not reaching
2. S. abbreviata.

1. Setodes portionalis.

Pl. 15, Fig. 15.
A singlo specimen is placed here, the pointed form of the wings, the size, and the whole aspect indicating this group of caddis-flies; the wings, however, are so thickly clothed with scales that no neuration can be distinguished. 'i he body is tolerably slender, the antenne and legs exceedingly long; only a portion of one antenna, as long as the body, is preserved, but this shows no indication whatever of diminution in size; it is rather stont, as stout, indeed, as the tarsi, and the joints four or five times as long as broad, cylindrical, pale brown, with dark brown incisures; the length of the basal joints is not determinable. The legs extend a long way beyond the tip of
the closed wings und are very slender ; the front pair, however, are n_{1}, shorter than the others. The front wings are very slender, densely pubescent, when closed extending some way beyond the tip of the body, the portion so extended tapering to n slender but rounded tip which is near the upper margin of the wing, the costal border being almost uniformly and gently convex, and not falling rapidly next the tip, while the apical margin below the tip is exceedingly oblique until the tip of the body is reached.

Length of body, 6^{mm}; of front wing, 6^{mm}; breadth of same, 1^{mm}; length of antennal joints, 0.5^{mm}; of mid tibix und tarsi together, 4.5^{mm}; reach of hind legs beyond body, 3.5^{mm}.

Florissant. One specimen, No. 11754.

2. Setodes abbreviata.

A single specimen only has been found, closely allied to the preceding hut with remarkubly ubbreviated wings. The body is moderately slender, densely pubescent, the antennæ black, of the length of the body, of the same stoutness as in the preceding, but with joints scarcely so long and densely and very finely covered with hairs. Legs not perfectly preserved but a little stouter than in S. portionalis. Wings very much shorter than the body, very slender lanceolate, the apical portion narrowing, more rapidly below than above, to a sharply pointed tip, black, densely clothed with long hairlike scales.

Length of body, 6.5^{mm}; of front wing, 3.5^{mm}; breadth of wing, 0.65^{mm}. Florissant. One specimen, No. 5218.

Subfamily LIMNOPHILID \boldsymbol{E} McLachlan.

A single member of this group has been found fossil in Prussian amber, a species of Halessus. Besides this, however, several larval cases have been described, some at least of which appear to belong here, as it contains at the present day all the larger caddis-flies which ornament their larval cases with shells and other odd substances. To this list we can now add from America one of each kind, a winged insect and a larval case constructed of grains of stone. The group as it exists to-day is mainly confined to the northern hemisphere, north of the tropics, but it reappears to some extent in corresponding portions of the southern hemisphere, at least in America

LIMNOPHILUS Burmeister.

This genus has never been reperted fossil, and in placing in it the species below the intention is only io indicate its affinities. The genus is boreal and wide spread, and thie larve are generally found in standing water

Limnophlels soporatus.

Pl. 15, Fig. 5.

A couple of specimens are referred here, in only one of which is the neuration sufficiontly distinct to be determined with any probability, and in this it is somewhat obscure and is not fully shown in the plate; nearly all the veins and cross-veins in the oute: half of the wing can, lowever, be traced with more or less distinctness, though the cross-veins are certainly obscure; the neuration, as thus limited, is wholly that of Limnophilus. The front wings are moderately long and narrow, the costal margin ruther strongly arched in the apical half, curving downward to the bluntly acuminate apex, the apical margin sharply and very obliquely truncate Discoidal cellules short, much shorter than its foot-stalk; anastomosis of the lower half of the wing continuous.

Length of front wing, 12.5^{mm}.
Florissant. Two specimens, Nos. 1441, 13007.

INDUSIA Bose.

In certain parts of Auvergne, France, rocks are found which for a thickness of sometimes two meters or more are wholly made up of the remains of the cases of caddis-flies. These have been frequently mentioned by writers and were first described and figured by bosc early in the century under the name of Indusia tubulosa. Oustalet in his recent treatise on the fossil insects of Auvergne, ${ }^{1}$ describes two forms, one from Clermond and the other from St. Gérand, which he distinguishes under the names Pluryganea corentina and P. gerandina, principally from their difference in size und strength, and a distinction in the minute shells-species of Paludina-of which the cases are composed.

These cases, like the somewhat similar ones composed of grains of stone which are described below, are all apparently made by species of Limno-

[^27]VOL XIII- 13
philide, ${ }^{1}$ the larve of which group are remarkable ior the variety of objects they use for the construction of their enses. it would seem desirable at present, whilo placing Indusia in this group, to include in it all larval eases of extinct Triehoptera until they can be more dưfinitely placed or distinguished.

These, howover, are not the only instances of harval cases of Trichoptera found fossil. Hepp, in 1844, ${ }^{2}$ describes some from the rocks at Leistadt, near Dirkhein, under the name of Ploryganea blumii, and Heer a fow yenrs late: in his classic work descri'hes and figures a similar instance from Oeningen, muder the name of Ployganea anticim, in which the case was in part made l:p of bits of sticks. But the most surprising discovery of this sort is that of supposed larval cases of Pluyganide in amber. ${ }^{3}$ According to Dr. Hargon, Pictet thonght them larval eases of a tineid, but Zeller helieved they were trichopterous, the larve still remaning inclosed and appearing to lelong near Mystacides. As phergamia larva are aquatic ahmost without exception, their discovery in amber is certainly surprising. Λ tubn-like larval ease, presmaably trielofpterons, has also been deseribed undo: the name of i'larygaman micacea and figured by Fritsch' from the Cretacoous clay-schists of Komic, Sohemia; and Marion ${ }^{5}$ deseribes larval cases on the leaf of a fossil, Nymphan, in Provence, very like thoso attached to similar leaves to-day.

Indueia calculosa.

Pl. 4, Jig. 4.

Indusia caconlasm Scuda., lun!. U. S. Geol, Geogr. Surv. Terr., IV, but-54:1 (1878); Ann. Rep. U. S.

Dr. A. C. Peale, in lis explorations muder the Survey, discovered in depesits, which ie consid ars as probably belonging to the uper Green River group, or possibly to the lower part of the Bridger group, beds of limestone, the upper floor of which is completely covered with petritiod cases of eaddis-flies, all belguging to a single species, which may bear the mane we have applied to it abovo. They vary from 14 to $19^{\text {mun }}$ in length, from 4 to $5^{\text {min }}$ in diameter at their open anterio: extremity, and from is to

[^28]3.2^{mm} nt their posterior end, the thickness of the walls being about 0.75^{mm}. As will be seen by these mensurements, the cases are a little harger at their mouth, but otherwise they me celindzical, taper with perfect regularity, and are straight, aot slightiy curved, as in many phryganid cases. They are completely rovered with minute, rounded; water-wom pebbles, apparently of quarta, genemally subspherical or ovate, and varying from one-third to two-thirls of a millimeter in mean diameter; they this give the eases a grmulated apparanco. Nealy all the cases are filled with caleareous material, but some are empty for a short distance from their month, and in one case the imer lining of this part of the case has a coating of minuter calcarcons particles, ovidently deposited therein after the caso was vacnted. As the present thicknoss of the walls indientes (as also the size of the ittached pebbles), the silken interior lining of the enso must have been very stout. This follows also from the apponmus of one or two which late been erushed, for they have yiolded along longitudinal lines, indienting in pareh-ment-like rigidity in the entire shell. In one of the specimens the outer coating of heavier pobbles has in some way been removed by wenthering, una has left a seabrous surface, appurently produced by minute, hard gruins entangled in the fibrous meshes of the web; it still, however, retains its cylindrical form.

The sizo of the caso, its form, and the materinl from which it is cons.cucted sem to indicuto that it belonged to somo genus of Limnophiide near Anabolia.

Horse Creek, Wyoming. Dr, A. C. Peale.

Subfimily PHIRYGANIDAS Stephens.

This sulfanily of cuddis-flies, comprising the larger speeies, is found only in the northern portions of the globe, and is numerous neither in species nor in genern; nevertheless it is the only gronp of caddis-flios whose remains have hitherto been fonnd in rocky strata, if we excopt the larval cases, of which there is likely to be more or less quostion. And it is not a litie stronge that they lave boen found in several distinct phaces, muging fiom Aix in the Oligocene te Parschlug in the upper Miocenc. Mombnel, the Isle of Wight, and Atmaterdlak, in Greenhma, havo ulso furnishod species. From amber also three species nre known, and now we have threo more species, including thew gencitic form, to add from the sirata of Colorado

It is not, however, as in Europe, the only sulbfamily ropresented in the strata, three others being also represented and one of them much mors, largely. (February, 1884.)

NEURONIA Leach.

A single sniall species of this genus has been described from amber by Pictet and Hagen, which the latter compares with the living N. reticulata. The one here described is the first known from the rocks, and is a considerably larger species, and with somewhat peculiar neuration. The renus is well represented at the present tir? over all North America, and besides is found only in Europe.

Neuronia evanescens.
Pl. 13, Fig. 3.
A single specimen of a large species of phryganid is referred to Neuronia, although the neuration appears to be somewhat abnormal, the cross neuration on either side of the sector not being continuous. The insect is preserved on a lateral view, showing the head and body, the superposed wings of one side, and all but the base of the other front wing extended below the body, together with one hind leg.

The upper half of the overlapping wings is much darker than the lower half and shows some mottling near tho tip, which is not the case in the other wing. The single front wing is of a uniform brownish fuliginous tint, but broadly obscured in the middle of the wing by accident of preservation over a large pale area, in which also the veins are nearly lost. This accounts for the inaccuracy of the drawing on the plate.

The front wings are subtriangular, less than two and one-half times longer than broad, their greatest breadth in the middle of the apical half; the costal margia is gently arched in the apical half, the apex roundly pointed, the apical margin almost straight in the middle half and inclined at a rather sharp angle with the costal margin.

The shape of the wings, as well as the brevity of the discal cell, renders it probable that the species should be referred to Neuronia rather than to Phryganea or Agrypnia, though it is impossible to determino el arly whether there is a cross-vein betw sen the subcostal vein and the costa. The radius has a broad superior arch below the extremity of the subcostal which rendere it probable that it exists, and that it can not therefore be referred to Agryp-
nia. The upper branch of the sector originates earlier than usual, close to the base of the discal ceil, which is shori, as in Neuronia, but only because the cross-veins which terminate are carried to an unusual distance toward the middle of the wing, and are therefore widely separated from the crossveins uniting the sector with the cubitus-an unusual feature in this subfamily, and one which with its other peculiarities renders it probable that it should be generically separated fruiz living types. There is also lacking the zigzag arrangement of the cuhital cross-veins, though their exact relation cen not be determined throughout. The lind leg bears two pairs of tibial spurs, as always in this subfamily.

The length of the body is indeterminable; the length of body and wings together in repose is 24^{mm}; of front wing, 20.5^{mm}; greatest breadth of same, 8.5^{mm}; length of hind tibia, 3.65^{mm}; of hind tarsi, 4.65^{mm}.

Florissant. One specimen, No. 7728.

PHRYGANEA Linné.

Species of this genus are by no means unknown in a fossil state; indeed it is the only genus of Phryganide which has heretofore been represented in the rocky strata by remains of the perfect insect, and while only two species are known from amber, four have been described from Tertiary rocks'(Aix, Mombach, Parschlug, and Greenland) and a fifth indicated from the Isle of Wight. Very likely some of these may be fourd to belong elsewhere, but their large size would lend a probability to their proper reference here, since this genus and its allies contain the largest of the caddis-flies. We have here a single species to add, represented wholly by wings, but very well preserved. The genus is mostly confined to North America and Europe.

Phryganea Laberacta.

$$
\text { Pl. } 13, \text { Fig. } \delta(\delta)
$$

An excellently preserved front wing, lacking only a fragment broken from the lower outer angle, represents a male. It is c." a nearly uniform smoky brown tinge, with much darker distinct veins, and delicately mottled with faint, pale, circular dots which are larger and therefore more noticeable than elsewhere in the upper outer half of the wing, and are absent from the center. It is of about the size of our common Neuronia semifasciata (Say) but of a different shape, being subquadrate, about three times longer than
broad and only slightly broader apically than basally. The apex is slightly pointed and the onter margin apparently slopes more rapidly below than above the apex. Though not shown in the plate, the subcosta is united near the tip to the costa by a cross-vein, and just below the apical cell thus formed the radius has a well-marked distinct arch. The cross-vein closing the cell is not shown in the plate, nor the cross-vein just below it, into which, rather than directly into the cubitus, the first nervule below the lowest branch of the sector runs. The lower cross-veins also do not appear on the plate; they run, as in the modern Phryganea grandis, with a slight jog where they cross the basal branch of the upper cubital, obliquely from the base of the second branch of the upper cubital toward the arculus. Indeed, the venation of the lower half of the wing closely resembles that of the modern European P. grandis, which is slightly larger than the fossil species. This differs from that in only one or two points; the first apical sector parts from its stem at the middle of the discoidal cell, the lower border of the cell is as full as the upper, and the cell itself is proportionally shorter.

Two other specimens agreeing in neuration with the preceding, but with the lower nervule of the upper branch of the superior cubitus forked represent females. Like the male they are represented only by upper wings, one of them perfect, the other broken squarely at the tip by the breaking of the stone in quarrying; one is a little lighter in color than the male, and, as it were, bleached out at the apex, while the other is much darker, almost of a blackish chocolate, many of the minute spots of the mottling, especially in the upper part of the wing, appearing quadrate rather than circular. The fourth (female) fork is nearly as deep as the third, extending slightly more than half-way to the base of the branch.

Length of wing, o 20.25^{mm}, \& 19.5^{mm}; of discoidal cell, o \& 5.5^{mm}; breadth of wing, $\delta^{7 \mathrm{~mm}}$, $+7.3^{\mathrm{mm}}$.

Florissant. Three specimens, Nos. 407 (δ), 1016, 3897 (ㅇ) .

LIMNOPSYCHE gen. nov. ($\lambda i \mu v \eta, \psi v \chi \eta$).

This nume is proposed for a genus which differs somewhat remarkably from any Phryganidæ, but which agrees at the same time in its main features with the subfamily of Phryganida proper. In his monograph on the Trichoptera of the Europeau fauna, Mr. McLachlan lays muclı stress on
the importance in generic characteristication of the presence or absence of specified apical cellules, of which the sill complement in the anterior wing is nine; of these three belong to the area of the sector. In !' e present genus we have an additional apical cellule in the field of the sector, one of the ramules of the lower branch of the sector being divided. In all other species of Pliryganidx proper, to which there can be no doubt that this genus belongs, both the ramules extending to the margin from either side of the eross-vein closing the discoidal cell are simple; in Limnopsyche the upper is branched, so that there exists an "apical fork" between the "first" and "second" apical forks of McLachlan's terminology. This, however, is not the only peculiarity; the anastomosis is broken into three instead of, as in true Phryganidæ, two parts, the cross-vein uniting the sector and cubitus lying far toward the tip of the wing, while the remainder of the anastomosis has its normal place near the middle of the wing. Moreover, the median cellule, which, as in other Phryganidx proper, is open, extends nearly to the base of the wing, interrupting still more markedly the anas tomosis of the lower half of the wing.

Alhough only a portion of the neuration can be determined in the single pretty large species referred here, this differs so much from the existing genera of true Phryganidæ that its separation from them is indispensable.

Limnopsyche mispersa.

Pl. 13, Fig. 2.

There are three specimens provisionally referred to this species, but in only one can the neuration be traced sufficiently, and it is upon this, which is figured, that the species is founded. It shows a dorsal view with indistinet traces of different appendages, but with the wings of one side expanded. Especially this is true of one; it is an upper wing, but toward the lower mar. in a portion of the hind wing, crumpled and folded, is more or less mixed with it, so that the figure is not perfectly clear or probably correct at this point. The main features of the neuration have been pointed out in the description of the genus, but a few special points may be added. The wing is about two and a half times longer than broad, the costal margin well rounded, bringing the rounded apex down nearly to the middle of the wing, the lower margin (apparently) full. It is pale brown without mot-
tling; the discoidal cell is very long and slender, nearly one-third the length of the wing, and occupying alnost exactly the middle third longitudinally. First apical sector arising from the middle of the discoidal cell; cell between the sector and cubitus of uniform widt't and running almost exactly through the middle of the wing, terminating some way below the apox ; cross-veins uniting the sector and cubitus more than half-way from the e d of the discoidal cell to the border. As the other cross-veins are in their usual place, the anastomosis is widely scattered, whence the specific name.

The other specimens are poorly preserved; they agree with the preceding in size and present no characters in opposition to it. They show in addition portions of the antenne, a slender stem arising from a rather stout basal joint; in both, however, the antenna are broken shortly beyond the base.

Length of body, 8^{mm}; of front wing, 8.25^{mm}; breadth of same, 3.25^{mm}; ength of hind wing, 7^{mm}.

Florissant. 'Three specimens, Nos. 809, 8606, 8995.

ORTHOPTERA Linne.

Although a group of great antiquity, some of its divisions (especially the cockroaches) being abundant in Paleozoic as in Mesozoic rocks, this order of insects is feebly represented in Tertiary times. Part of our lack of familiarity with the relics of those days is due to their rare occurrence in amber, act largely due to their generally weak and brief flight. Indeed, hardly a dozen species of the entire order are known or inlicated from this source, and less than forty species, including all mere references as distinct forms, from the European rocks. This number is nearly equaled by the American species described in this volume, but this fact is largely due to the great preponderance of Forficularix, which comprise more than a third of the species. The numbers in the different groups are, perhaps, too small to render a particular comparison useful, but we may note that the European rocks have representatives of each family excepting the Phasmida, while the American furnish specimens of all but the Mantides. No Acridii have been found in amber, and of Locustarise only larve; Forfienlariæ and Mantidx are said by older authors to have been found in amber, but none are now known, the undoubted amber remains being confined to Blattarie, Plasmida, Locustarie (larve), and Gryllides.

In comparing the European and American Tertiary orthopteran faunas some interesting points may be noted. 'The resemblance of both faunas in a neurly equal degree to warm temperate or subtropical $t y$ pes is not a little curious, combined as it is with a distinct differentiation of character; for even where the same subfimilies are represented, as they generally are, the genera of the two continents are widely different. In the few cases where species have been placed under the sime generic heading it has usually been by the use of the genus in the broad sense, indicating merely subfamily affivities, and the species themselves are widely different. The resemblance between the two countries is perhaps most marked in the

Forficularia, though the European species have been very imperfectly presented as yet. Perhaps the most marked peculiarities in the American fauna as distinguished fre n the Europenn are the abundance of Forficularie of a common type, the occurrence of Conocephalids, and the absence of Mantides, 'Tettigide, Decticidæ, and the burrowing as well as the slender Gryllides.

As a whole the Orthoptera of Florissant and the Green River deposits indicate a warmer, not infreauently in specific cases a much warmer, climate than now appertains to that region, though this is true to a less degree of the saltatorial Orthoptera in general than of the others. (July, 1884.)

It is not a little surprising to find so many American species, no less than eleven being already obtained from Florissant, a number more than double that of the European Tertiary species, and all apparently belonging to one type, not now in existence. It is not impossible that a nearer study of the European fossil species may prove that they also belong here, as one may notice in them the same simplicity in the character of the forceps.

Some of the Florissant species are of very large size, much larger than any which are found in temperate regions, and the presence of this type in such abundance, and represented in part by such gigantic forms, is a clear witness to a considerably warmer climate than now obtains in the same region even at the level of the lower plains.

Family FORFICULARI E Latreille.

Fossil earwigs are not unknown, but have been imperfectly studied. Heer gives wood-cuts of two, Forficula recta, which he compares with Forcinella annulipes (Luc.) Dohrn, and F. primigenia, compared with the common earwig, i. e., Forficula auricularia Linn; he also mentions a third, F. minuta, compared with Labia minor (Linn.) Leach. These all come from the Miocene of Oeningen. ${ }^{1}$ Long ago Serres spoke of a species allied to Forficula parallela Fabr. and F. auricularia Linn. (both the same species), of which many specimens had been found at Aix in Provence. ${ }^{2}$ Perhaps Mr. Oustalet, when he resumes again the riublication of his memoirs on the fossil insects of southern France, will acquaint us more perfectly with this insect; but I saw no specimens of Forficulariæ in his hands in 1873. One,

[^29]perhaps two, species are also reported from Prussian amber. Keferstein ${ }^{1}$ speaks of an amber species, referring to Burmeister (Handb. Entom.) but the latter mentions only some crickets ("Acheten") " of the size of F. minor." And Germar writes that up to 1856 but a single specimen of an earwig had been found in amber, a larva agreeing so completely with the full-grown larva of Forficula auricularia that description and illustration were superfluous. ${ }^{2}$ Gravenhorst also refers to a German species from amber. ${ }^{3}$ Finally Diassalongo describes and fiprures' a species from tho Tertiaries of Monte Bolca, which he calls Forficuta bolcensis, and which again he compares to F. auricularia Linn. This species, which in point of fact is much nearer \mathbf{F}. albipennis Muehlf, than F. auricularia, seems to be a true Forficula. The same may perhaps be said of Heer's species, or at least of the two which are figured (note are described), or they may belong to the same group as the American species, though one at least of them is much smaller than any we have found. But in Heer's species we have only a few abdominal joints and the forceps from which to draw any conclusion.

A couple of species have been found in rocks older than the Tertiaries, Baseopsis forficulina Heer ${ }^{5}$ from the Lias of Schambelen and Forficularia problematica Weyenb., ${ }^{6}$ found in the Jura of Solenhofen. Although the figures given of this latter insect are very obscure, Weyenbergh says it is an earwig "sans le moindre doute," and of one of the seven specimens found he says it " montre à l'extrémité de l'abdomen les deux crochets, dont l'ensemble représente une sorte de pince, et qui caractérisent le genro Forficula."

LABIDUROMMA gen. nov. ($\lambda \alpha \beta i 5$, ov $\rho \alpha$, , ö $\mu \mu \alpha)$.

In first describing an earwig from Florissant I referred it hesitatingly to Labidura; a second species was subsequently placed in the same genus from its resemblance to the first. In my study of the much more abundant and better material now at hand I was at first inclined to refer not only these two species but all the others, including a considerable variety of forms; to the old genus Forficula, the structure of the antennæ in particular

[^30]according more closely with Forficula than with Labidura. But one point after another showed such distinction from Forficula that the species seem more correctly presented when placed in a distinct genus. Whether all belong there is perhaps questionable, especinlly when the extreme members of the genus are compared. Moreover, all the claracters upon which the genus is founded are not to be found in all the species here described, as preserved in the specimens at hand; but in the order in which I have arranged them they show such a gradual passage from one to the other that notwithstanding the diversity in general aspect and in size between the first and the last, I can find no good characters in their imperfectly preserved structure by which they should be separated. The genus is without doubt nearly allied to Forficnla, but it is impossible to place it there, or indeed in any known existing genus of Forficularie on account of the grent size of the eycs. These are not only as large in front as in Cylindrogaster and Sphongophora, but instead of being shut off from the posterior half of the head, as in all living Forficularia known to me, they extend to the posterior margin, as may be readily seen in Figs. 3 and 12 of Pl. 16 ; that is, instead of being anterior they are lateral. The genus is also peculiar for the great simplicity of the forceps, which are long and rather (sometimes very) slender, and, with a single exception, where there is one basal tooth, they are entirely unarmed. The antenuæ, where they are preserved, show some diversity of structure and it is partly on that account that I have hesitated about keeping them together; but as a general rule they are comparatively short, not extending backward beyond the closed tegmina, rather coarse, the joints about as numerous as in Forficula, the basal joint not very long nor stout, the joints in general shorter compared to their width than in Forficula. All the species, with perhaps one exception, are winged, and all have tegmina of the normal form. It is not a little curious that several specimens have the wings fully expanded, and these show in all their main features the same characteristics as the strangely folded wings of earwigs to-day, showing that the type was fully developed in this early Tertiary period. One may notice, indeed, a slightly greater simplicity of structure here and both greater simplicity and greater uniformity of character in the forceps of the fossil species, which seem to betoken an approach toward the origin of the type, but it is a mere suggestion, or scarcely more than that.

One of the species here described, certainly distinct from the others, is so imperfectly preserved that no name is given to it. The others may be distinguished by the following table:

Table of the speciet of Labiduromma.

Specien of large size with very long forceps (the total length nearly or quite $\boldsymbol{2}^{\mathbf{r u m}}$). Male forceps almost one-half as long as body ..1. L. aria. Male forcepa seareely more than one third the length of body 2. L. bormanai.

Species of sinaller aizo and shorter forceps (only a little axceeding 20^{mm}). Ilind margin of last ahdominal agment of male atrongly angulated; no pygidinm percoptlible.
3. L. martale.

Ilind margin of last ablouinal aegment of malo straight or nearly straight; pygldinm ilistinet and sometinies large.
Mala forcops with large projeating interior touth at base
4. L. commixlum.

Male foreeps with no projeating lusal tooth.
Mule forceps narrowing alunst fron baso L. tartiarium.
Male forceps with equal parallel sldes for some distance from baso.
Malo forceps eomparatively slender, with diatiact and tolerably strong falcation.
6. L. gllberth

Male foreeps broal beyond the base, with weak faloatlon..............7. L. exanlatum. Species of much smaller size und ganerally still shorter forceps (the total length about 15^{mm} or leas). Malo forceps stout at base, much smaller and equal bogoad , L. lithophilum. Male foreeps slender and delicate thronghout.

Male forcepa less than half as long as abdomen 10. L. infernum.

Male forceps fully half as long as abdomen. .. 11. L. Labene.

1. Labiduromma avia:

Pl. 16, Figs. 5, 22 (δ), 3, 11, 23 (\%).
Head small, rounded triangular; antenne in no case well preserved, the longest fragments scarcely reaching the tip of the tegmina, the basal joint not precisely determinable, but apparently about twice the diameter of the stalk and subglobular; the proximal joints of the stalk are cylindrical and from two to three times as long as broad, so that if composed as usual in this genus the antennæ could not have extended beyond the tip of the tegmina; palpi shorter than the diameter of the head, nearly as stout as the antennæ, the joints half as long again as broad. Pronotum nearly circular but subquadrate, apparently longer than broad, and narrower than the head in the female (where it is better preserved than in the male specimens) and the opposite apparently in the male, where it seems to equal or surpass the head in breadth. Tegmina together considerably broader than the head, and square, of equal length and breadth; folded wings protruding beyond the tegmina to a distance of three-fourths the length of the latter. Legs moderately stout and not very short, the second joint of the tarsi apparently cordate. Abdomen equal with parallel sides. Forceps simple but of great
length, in the male as long as the abdomen beyond the wing tips, somewhat depressed, with the basal third straight, its basal half with struight und parallel sides, its apical lalf narrowing on the inner side, the whole imer margin pinched and perhaps a little cromiated, but not toothed nor beaded; the distal two-thirds very gently and slightly areate, searcely tapering, the eurve increasing slightly towned the bluntly rounded tip. In the female they are a little shorter, much slenderer and apparently cylindrical thronghout, scarcely attingent at the base, witle no pinching of the inner edge at the base, and very regularly and gently tapering to a more delisate but still bluntly roundel point ; the areuate curve is if anything a little stronger, and commences from the base, though the stanght basal portion of the male is sometimes indicated by the origin of the arcoation (on the outer edge) at a little remove from the base. Pygidium of the male (not shown in the figures) triangular, longer than broad, half as long as the greatest breadth of the foreeps, the apex broadly, bhutly rom led; in the female as long as broad and as the base of the forceps, more or less slightly truncate and rounded a. spex.

Length of body, excluding forceps, $\delta 19^{\mathrm{mm}}, \& 18-19^{\mathrm{mm}}$; breadth of abdomen, $3.5-4^{\mathrm{mm}}$; length of front and middle femora, 2.5^{mm}; tibiæ, 1.75^{mm}; tarsi, 1.5^{mm}; of hind femora, 2.8^{mm}; tibia, 2.3^{mm}; of foreeps, 88.5^{mm}, ¢ 6.5^{mum}; breadth of same at base, ot 1.4^{mm}, q 0.7^{mm}; in middle, $\delta 1^{1 \mathrm{~mm}}, ~$ ¢ 0.4^{mm}.

This is the most interesting of the Florissunt species on account of its great size and the long and simple forceps. It is twice as large as any living species of Forficula.

Florissant. Eight specimens, Nos. 11740, 13544 and 13545, 13547 (δ), 2855 and 3567,3832 and 5532, 5438, 8022, 11209 (q).

2. Labiduromma bormansi.

Pl. 16, Fig. 1 (${ }^{3}$).
In the two specimens referred to this species the head and pronotum are badly preserved, but so far as cau be seen appear to be much as in L. avia in relation to each other and the combined tegmina; the prothorax is, however, certainly larger, though slightly, than the head, and the antennal joints at a short distance from the head are three or four times as long as broad. The tegmina are large with broadly rounded posterior edges, and the body with straight parallel sides; the las: segment is as broad apically
as basally, mud the hinder edge is straight. The forceps of the mule (female unknown) ure very long, flattened, struight on the basal three-fifths (they are given with a slight eurve in the plate), and beyond gently sickie-shaped; they taper very gently and with entire regularity to a bluntly rounded, slightly angulated tip, excopting that the basal third or more has on tho inner margin a thinmer, blade-like, straight flange, increasing the width liy nearly one-fourth. Pygidiun small, triangular, equilateral, with a blunt upicul angle.

Length of body, excluding forceps, $\left\{18^{\mathrm{mm}}\right.$; breadth of nbdomen, 3.5^{mm}; length of forceps, 6.3^{mm}; breadth at baso, 1.2^{mm}; in middlo, 0.75^{mm}.

This species is slightly smaller than the proceding, but resembles it closely, the forceps of the male lunving about the size of those of the femme of L. avia, though their flatuess and mode of curvature, and espocially of the lasal opposition, evidently indicato a male.

Named for M. A. de Bormans, of Switzerland, the well known student of Forficulurix.

Florissant. Two specimens, No. 11180, Priuceton Collection, No. 1.603 (δ).

> 3. Labiduromma mortale.
> Pl. 16, Figs. 2,0 (δ), 20 (().

Head small, well rounded, a little produced anteriorly; antemix moderately slender, probably considerably less than half the length of tho body, the basal joint small, scarcely stouter than the third or fourth joint, less than twice as long as broad, its apical half cylindrical and squarely truncate ; the sixth joint considerably longer than the first, and seareely more than three times as long as broad; palpi shorter than the diameter of the hend, the joints about twice as long as broad. Pronotum suborbicular, a little smaller and no broader than the hoad, slightly broader than long. Tegmina together considerably broador than the pronotum, perhaps almost twice as brond, the apical edge nearly straight, roundod only next the outer edge. Wings extending, when folded, as far beyond the tegmina as the length of the latter. Legs not long nor stout, the middle pair situated nearer the hind than the front pair, and of about the same length as the former, the femora flattened, about twice the width of the tibia. Abdomen with nearly parallel sides, a little broadest just behind the middle, the third and

with very bluntly roundec apex. Forceps of male broken in the only specimen seen, but evidently pretty long and moderately stout, the portion (halfi) remaining being as long as the last two segments of the abdomen, straicyt, equal, separated at base by the pygidium, with a very stout, sharp, triangular, interior tooth mbutacing the pygidium, and with two minute distant, teeth or tubercles beyond; in the female distant at base, straight, flattened, simple, unarmed, tapering regularly, with not the slightest inward curve, to a bluntly rounded tip, one-third the width of the base. Tllis peculiarity reminds me of a specimen of Labidura riparia I have seen with perfectly straight and laminate forceps ${ }^{1}$.

Length of body, excluding forceps, $\delta 17.5^{\mathrm{mm}}, q 17.5^{\mathrm{mm}}$; breadth of head, $\delta 2.25^{\mathrm{mm}}$; of pronotum, $\delta 1.75^{\mathrm{mm}}$; of closed tegmina, $\delta 3^{\mathrm{m} \cdot}$: of abdonen δ 3.5^{mm}; length of forceps, δ (broken) 4^{nm}; q $3-3.5^{\mathrm{mm}}$; breadth at extreme base, $\delta 0.8^{\mathrm{mm}}, \nrightarrow 0.75^{\mathrm{mm}}$; at tip, $\mp 0.25^{\mathrm{mm}}$.

This is the only one of our American fossil spacies with toothed forceps.
Florissant. Three specimens, Nos. 3877 (δ), 1832, 11208 ($(\%)$.

5. Labiduromma tertiarium.

Pl. 16, Figs. 18, 21 (δ), 15 (8).
Labidura tertiaria Soudd., Bull. U. S. Geol. Geogr. Surv. Turr., II, 447-449; III, 259; IV, 519.
A singlemale specimen (Fig. 18), found oy Mr. Jesse Randall, and brought home by the Survey under Dr. Hayden, formed the basis of the following description: The head, which is badly preserved, is of about equal length and breadth behind the labrum, so that as a whole it is longer than broad, but it is slightly narower than the pronotum, and has large eyes, reaching back: nearly to the hind border-characters which are scarcely in keeping with the reference of the insect to Labidura; with no other genns, however, does it accord so well. The untemm are too fragmentary to furnish us any clew to their structure, and of the mouth parts nothing can be determined. The pronotum is of about equal length and brendth, quadrate, the anterior angles bluntly rounded, the posterior border vary broally convex, the margin nowhere elevated; there is a slight bit distinct median sulcation, fuding posteriorly. The rest of the thorax is of the same width as the pronotum; the tegmina are twice as long as the pronotum, squarely docked the the ; the folded wings reach more than half as far agnin beyoud the tip of the teg-

[^31]mina, and in the specimen examined are partially opened on the right side, so as to show incompletely the peculiar rayed arrangement of the nervules. The legs are short, the femora broadest in the middle, the tibixe modera, ely slender and slightly bowed; but the tarsal joints are too obscure to deiermine their structure; the faintness of the legs prubably shows that they were paler than the body, which is of a griseous orown. The joints of the abdomen can readily be distinguished, although a portion of some of them are injured, and especially of the third segment; this renders it impossible to decide certainly whether plications were present on this segment, but there are no signs of any either on this or on the better-preserved second segment; it would seem as if such piications should be seen, if present, at least on the second segment, for the abdomen is preserved on a partial side view, and the portion of the second segment where plications are to be looked for is perfectly preserved. The albdomen appears to have been equal as viewed from above, although the greater fullness in depth of the middle joints gives the specimen a great height in the middle; the last segment is large, scarcely narrowing. and furnished with a pair of stout, straight, tapering, bluntly-pointed forceps as viewed from the side, not so long as the t_{f} gmina, and apparently curvod inward at the tip. The insect is slightly smaller than the common Labidura riparia (Pall.) Dohrn.

Length of body, excluding forceps, 17^{mm}; of head, 2.2^{mm}; breadth of same, 1.75^{mm}; length of pronotum, 1.9^{mm}; breadth of same, $2^{\text {mu }}$; length of tegmina, 3.6^{mm}; extent of folded wings beyond tegmina, 2.5^{mm}; length of hind femora, 2.75^{mm}; of hind tibie, 1.75^{mm}; of forceps, 2.5^{mm}.

Since the above description was published I have seen and studied four or five more specimens, serving to modify and extend the characters before given, as follows: The head is fully as broad as and not narrower than the pronotum. The antenne reach back to the posterior margin of the closed tegmina, and their joints are cylindrical and about four times as long as broad. The pygidium is rounded subtriangular and moderately large. The forceps of the male are very simple, being straight, with parallel sides at the very base (as far as the tip of pygidium), then narrowing rather uapidly on the inner side only, the blunt apex incurved. Of the females all the specimens are imperfect, but in the one figured the forceps appear to be laminate, tapering, entirely simple, and not incurved at the tip; the apical parts, however, are exceedingly obscure and may be wrongly
interpreted. The resemblance they show to the female of L. commixtum leads one, however, to believe this the correct view.

The species resembles the preceding, especially in the female specimens, but the forceps of the male differ considerably.

Florissant. Five specimens, Nos. 2779, 4925, 14688 (δ), 8334, 9228 (夆).

6. Labiduromma ollberti.

$$
\text { Pl. 16, Fig. } 14 \text { (}{ }^{\text {§ }) .}
$$

Heal small, subtriangular, with well-rounded contours. Antennæ reaching to the tip of the tegmina, apparently fourteen-jointed, the basal joint obscure, the middle joints four times as long as broad, a little larger in the middle than at the ends. Pronotum quadrate, scarcely broader than long, distinctly smaller than the head, and scarcely lialf as broad as the combined tegmina; posterior margin broadly rounded. Wing-veins with more widelyspread forks before the median break than in L. exsulatum. Legs short, the middle pair midway between the others and a little smaller than the hind pair, the femora broad and flattened, twice as broad as their corresponding tibiæ. Body moderately broad, with straight parallel sides; the last segment three-quarters as broad apically as basally, the apical margin nearly straight, the sides well rounded. Pygidium minute, triangular. Forceps large and long, the basal two-fifths broad, equal, straight, simple, attingent, beyond falciform, much smaller, tapering to the iniddle of this portion, beyona it equal, the tip bluntly romnded and a little contracted (δ); comparatively slender, straight, parallel-sided at the extreme base, beyond tepering regularly by excision of the inner margin, the tip slightly incurved and bluntly terminated (o).

Length of body excluding forcens, $\delta 15.5^{\mathrm{mm}}$; breadth of head, 2.3^{mm}; of pronotum, 1.5^{mm}; of combined teginita, 4.5^{mm}; of abdomen, 3.8^{mm}; length of forceps, $\delta 4.5^{\mathrm{mm}}, \mp 3.25^{\mathrm{mm}}$; breadth at base, $\delta 1.95^{\mathrm{mm}}, ~ \& 0.8^{\mathrm{mm}}$.

The species has a more modern look than any of the others, and in none are the forceps more falciform, reminding one to some degree of Forficula auricularia. It is named for Mr. G. K. Gilbert, of the U. S. Geological Survey.

Florissant. Three specimens, Nos. 4736, 7352 (${ }^{\text {() , }} 8782$ (f$)$.

7. Labiduromma exsulatum.

Pl. 16, Fig. 12 ($\%$).

Head transversely obovate, only a little broader than long, the front considerably and triangularly produced, the hinder edge almost straight in the middle. Antenne barely reaching to the extremity of the tegmina, composed of ten joints, the first rounded obpyriform, nearly as broad as long, and not greatly stouter than the succeeding, the others cylindrical, the second scarcely longer than broad, the third and fourth lialf as long again as broad, the fifth nearly and the sixth more than twice as long as broad, the seventh three times as long as broad, the remainder as long as the seventh. bue increasing very slightly in slenderness to the tip, which is very bluntly rounded. All the joints are not shown in Fig. 12, which represents the specimen in which the antennæ are best preserved. Terminal joint of palpi about twice as long as broad, equally rounded at each extremity, about half as broad as the antennæ. Pronotum suborbicular, a little broader than long and somewhat narrower than the head, the posterior margin well rounded. Tegmina together nearly twice as broad as the pronotum, each twice as long as broad. Wings with the main rays continuous in direction in the outer half of the wing, the branches appended interiorly and not diverging strongly at base; in the interior half widely forked, the forks continuously divergent. Legs moderately short, subequal, rather slender, the middle pair apparently inserted nearer the front than the hind pair, the tibie about half the width of the femora. Abdomen slender, with parallel sides in the male, fullest beyond the middle in the female. Last segment similar to the penultimate and scarcely smaller, its posterior margin gently convex. Pygidium unapparent. Forceps about as long as the last three segments, laminate, nearly straight, directed backward, the basal third straight and equal, subattingent, the remainder tapering slightly and equally with a slight falcation to a blunt, sometimes slightly incurved tip (δ); or apparently somewhat stouter and coarser than in the other sex, straight, laminate, tapering throughout with no falcation; only lateral views, however, have been obtained (q).

Length of body, excluding forceps, $\delta 16.5^{\mathrm{mm}}, \nrightarrow 15^{\mathrm{mm}}$; breadth of head, ठ 2.2^{mm}; of pronotum, $\delta 1.9^{\mathrm{mm}}$; of combined tegmina, $\delta ~ 2.5^{\mathrm{mmn}}$; of middle of abdomen, $\delta 3.5^{\mathrm{mm}}$, $\uparrow 4.25^{\mathrm{mm}}$; length of antennæ, 6^{mm}; of furceps, $\delta 4^{\mathrm{mm}}$, \& 3.25^{mm}; breadth at base, o 12^{mm}; at tip, o 0.35^{mm}.

This species is closely related to L. gilberti, but may be distinguished, at least in the male, by the lesser falcation of the forceps. The legs, too, are shorter and smaller, and the joints of the antenuæ less numerous. The sexual difference in the forin of the abdomen may be due to the mode of preservation, but is apparuutly real.

Florissant. Ten specimens, Nos. 9201, 11172 and 13002, 13549 (δ),

8. Labiduroma lithophilum.

Pl. 16, Fig. 19 (${ }^{\text {(}}$).
Labidura lithophila Scud. . Tr. S. Ge ol. Geogr. Surv. Terr., II, 259-260 (1876).
A sperimen from Florissant (sent me by A. E. Fone) and figured on the plate was formerly described by me in the following terms: It is a female; the body is much flatter than that of Labidura tertiaria, the abdomen being equal on a side view, and the whole surface appears to be minutely punctulate; the form of the head can not be determined; the antennæ approach in length the body [the first joint nearly cylindrical, scarcely enlarging at the tip, about four times as long as broad]; the comparative or actual !ength of the succeeding joints can not be determined; the prothorax has its hinder margin entire and flat; the regmina are a little longer than the prothorax, their hinder edge straight and apparently oblique; the wings appear to have surpassed the tegmina; the lers are very short (especially the femora) and not stout; the abdominal joints are of equal length; the forceps are peculiar, having the appearance of being strongly bowed, although the specimen is a female; they are very stout at the base, rapidly and regularly diminish in size on the basal half (which is about equal in length to two-thirds the last abdominal joint), beyond which they are equal, about half as stout as the base, apparently bent rather strongly inward, and very broadly rounded at the tip, a \%orm of forceps I have never seen in any living earwig.

Length of body, including forceps, 14.5^{nmm}; of antennæ, 11^{mm}; pronotum, 1.85^{mm}; tegmina, 2.5^{mm}; hind femora, 1.8^{mm}; forceps, 2.25^{mm}.

The portion of the description included above in brackets has since been proved incorrect on closer study, and the whole of the antennæ in Fig. 19 incorrect. The additional specimens are very imperfect and only serve to show the general resemblance of this species to the others of the series.

Florissant. Three specimens, Nos. 231, 316, 8837 (δ).

9. Labiduromma sp.

Pl. 16, Fig. 24.
A single specimen showing the terminal half of the abdomen represents a species evidently distinct from the others by the form of the forceps; but as a fair view of even these is not presented no name is attached. The specim in shows the side view with the ventral somites turned back so as to slow the body in double its width. The forceps have the aspect of those of a female, and appear to be entirely simple, slender, cylindrical, tapering on the basal third and beyond equal, the tip apparently a little incurved.

Length of forceps, 2.3^{mma}; width (or depth), 0.25^{mm}.
Florissant. One specimen, No. 5278.

10. Labiduromma infernum.

Pl. 16, Fig. 7 (${ }^{\text {o }) .}$
Head roundish, of about equal length and breadth. Pronotum orbicular, apparently of the same width as the head. Tegminatwice as long as broad, together at least half as broad agan as the pronotum, the hin's edge a little rounded, surpassed only a little by the folded wings. Legs moderately long, the middle and hind pairs subequal and considerably longer than the front pair, the femora about twice the breadth of the tibiæ. Abdomen full, tapering posteriorly, the last segment a little longer than the others. Forceps as long as the last three segments of the abdomen, slender, subequal, regularly arcuate, and bluntly pointed at apex (δ). The only specimen be-- ing preserved on a side view a good opportunity is not afforded to determine upon the form of many of the parts. The sex is determinable by the number of abdominal segments.

Length of body, excluding forceps, 11^{mm}; of forceps, 3^{um}.
Florissant. One specimen, No. 2604 (δ).

11. Lariduromma labens.

Pl. 16, Figs. 13, 16 (δ), 9 (immature).
Head suborbicular, of about equal length and breadth, the posterior margin somewhat flattened, the mouth parts roundly and not very strongly produced, the eyes very large, occupying the entire breadth of the head, the margin being nearly continuons with the outer nargin of the prothorax.

Antennæ rather stout, the basal joint stout and tapering, the second short, the third, fourth, and fifth subequal, the fourth as long as and the sixth longer than the first and cylindrical. Pronotum subquadrate, broadening a little and regularly from in front backward, the angles well rounded off, at its broadest a little narrower than the head, with a median impressed line. The specimens hardly show with certainty whether the species was winged or not, but there are some signs which can hardly be satisfactorily explained unless it were provided at least with tegmina and that the tegmina were obliquely truncate at the tip, so as to form an obtuse angle with each other when closed, the angle open backward. Metathorax considerably broader than the head. Legs rather short and rather slender, the tibiæ more than half as broad as the femora. Abdomen rather long and slender, with parallel sides, of about the same width as the metathorax, the segments subequal, about three times as broad as long, the whole surface very weakly and distantly punctate. The last segments, seventh to ninth, decrease rapidly in size, together forming a half circle, so round and regular is the curve of the extremity of the body. There is a small, bluntly rounded pygidium. The forceps of the male are very slender, almost as slender as the antennæ, cylindrical, equal nearly to the tip, about as long as the last five segments, the extreme base directed inward, beyond nearly straight and slightly divergent, the apical fourth incurving slightly and tapering a very little to a blunt point.

Length of body, excluding forceps, 10.25^{mm}; of forceps, 3.4^{mm}.
Florissant. Five specimens, Nos. 5004, 6318, 7118, 11674, 14471 (δ).

Family BLATTARIE Latreille.

Although this group of Orthoptera is the most richly represented of all insects in the Paleozoic series, and has a great variety of forms in the Secondary rocks, most of which are much more nearly related to existing types than their predecessors of Carboniferous and Permian times, yet very few species, and those imperfectly preserved, are known from the Tertiaries. A few species occur in sumber, and two or three others in various deposits. Only three species have been found in this co-ntry, and no one of them is well preserved. They all appear, however, to belong to American types, and to such as are now found only in the warmer regions. (June, 1884.)

PARALATINDIA Saussure.

This peculiar genus, which is nearly allied to the equally striking Latindia, and from which Saussure considers it should only be distinguished subgenerically, is known only by a single species from Mexico; Latindia comes from Mexiso and Brazil. The occurrence of a fossil of this group, differing considerably from the known species, is a curious fact.

Paralatindia sausiurel.

Pl. 6, Fig. 25.

Prothorax concealing the head, smooth, well rounded, triangular, a little broader than ling, broadest posteriorly, the hinder margin nearly straight, the front strongly convex, almost produced, the lateral angles rounded. Tegmina extending beyond the extremity of the abdomen by about the length of the pronotum, together considerably broader than the pronotum, the costal margin pretty strongly arched. Mediastinal vein almost completely aborted, the scapular running parallei to the margin in the basal half of the wing, and furnished from the very base with slightly oblique, frequent, distinct cross-veins running to the margin and forming rhonboidal cells about twice as broad as long; the next vein is connected with the scapular by transverse, not oblique, tolerably distant cross-veins, and similar cross-veins appear more or less in the apical half of the wing. The oblique fold characteristic of this genus is clearly shown in the detached wing thrown partly forward, but the species differs from the living type in its greater size, considerably larger wings, the extreme brevity of the mediastinal vein, and the frequent distinct and little oblique branches of the scapular vein; nor is the pronotum in the least hairy.

Length of body, 5.5^{mm} q ; of pronotum, $1.85^{\text {ma }}$; breadth of same, 2.25^{mm}; length of tegmina, 5.2. m^{mm}; breadth of overlapping tegmina at rest, 3.5^{mm}.

Named for the distinguished entomologist, Dr. Henri de Saussure, of Geneva, Switzerland.

Green River, Wyoming. One specimen, Dr. A. S. Packard, No. 137.

ZETOBORA Burmeister.

This genus has not before been found fossil, and the species at hand in some particulars more nearly resembles a Blabera; but its size accords so much better with the species of this genus that it would seem more properly placed here. Both Zetobora and Blabera are American types and characteristic of the warmer regions.

Zetobora brunneri.

PI. 17, Fig. 12.

A species is indicated about the size of Z. monastica Sauss. It differs from the ordinary forms of Zetobora in the regular form of its pronotum, which resembles that of a Blabera, and is scarcely broader behind than in front, very broadly rounded in front, rounded and not angulate laterally, and a little less than half as broad again as long; it is narrowly and delicately marginate but nowhere distinctly reflexed, perfectly smooth, and completely covers the orbicular head; it is light colored but edged narrowly with black. The tegmina are thin and provided with closely approximate multitudinous dark veins ; their exact length can not be determined. The legs are moderutely slender and show a few signs of delicate spines in such a way as to indicate that others not seen existed, and therefore nothing can be said of them.

Length of body, 17^{mm}; of pronotum, 4.6^{mm}; breadth of same, 6^{mm}; length of tegmina, 20^{mm} ? ; of middle femora, 5^{mm}.

Named for the distinguished orthopterologist, Dr. Carl Brunner von Wattenwyl, of Vienna.

Florissant. One specimen, No. 5122.

HOMGOGAMIA Burm.

A single fossil species is referre ${ }^{-}$here, and it is interesting to find that one of the few species described from the European Tertiaries has been referred by Heer to Heterogania, a name then used to include both Polyphaga and Homœogamia. The species of Homœogamia are few in number and found only in the warmer parts of America.

Homeogamia ventriosa.

Pl. 17, Fig. 8.

Homaogamia ventriosus scuild., Bull. U. S. Qeol. Geogr. Surv. Terr., I, p. 447 (1876).
The remains upon which this species is based consist of the apical portion of the ventral surface of an nbdomen. Five segments are seen in natural juxtaposition, showing that the apical portion of the abdomen was very regularly rounded, almost exactly semicircular, the terminal segment prssenting no break in the regular continuity of the curve. This segment was ample, broader than long, and probably neither very tumid nor greatly keeled; for in the present perfectly flattened condition of the fossil there is neither break nor folding of the integument; the two segments following this are very strongly arched (the penultimate being semicircular) and greatly contracted at the middle, so that this portion is not less than half as long as the lateral parts; the anterior border of the antepenultimate segment is straight along the middle; the segment anterior to this is also arched, though not strongly, is oppositely sinuate (as are to a less extent the segments posterior to it), and also much contracted in the middle, so as to be less than half as long as at the sides; while its predecessor is slightly arcuate in the opposite direction (probably exactly transverse in life), and equal or subequal throughout. All the segments are uniformly, rather abundantly, and very delicately granulate throughout. There is no trace of cerci, but the place where they should occur is too broken to assert that they did not exist externally ; still the conformation of this region would lead one to suppose that they must have been excessively minute, and perhaps altogether concealed within the segments, as in Cryptocercus Scudd.

Length of fragment, 8^{mm}; width of same, 12.25^{mm}; length of terminal segment, 3.6^{mm}; width of san.e, 6.3^{mm}; length of antepenultimate segment in the middle, 0.6^{mm}; at the sides, 1.85^{mm}.

I have referred this species to Homœogamia with some doubt; on some accounts it would seem to be coore nearly allied to Polyphaga; but as the specimen is too fragmentary to allow of more exact determination I have preferred to place it in the New World genus rather thas in its close ally, which is restricted to the Old World. Cockroaches of snch large size are indigenous in warm climates only.

Florissant. One specimen, Mr. T. L. Mead, No. 8.

Family PHASMIDA Leach.

Fossils of this family are among the great rarities. Yet they have been found even in carboniferous times, as has been abundnntly shown by Brongniart. In a collection of over three thousand amber insects possessed by Menge a dozen only belonged to this family and represented three different genera. But excepting in amber, they have never before been recovered from Tertiary deposits. The single specimen round at Florissant is not very far removed apparently from the curious amber genus Psendoperla, but is more nearly allied to forms peculiar to the warmer parts of Anerica. (June, 1884.)

AGATHEMERA Stål.

This genus is composed of few and exclusively American species having a rather stout, compact, and brief form for Phasmida. All the genera in the immediate vicinity are also American, and none of them have before been found fossil.

Agathemera reclusa.

Pl. 17, Fig. 11.

The brevity of the legs, aborted condition of the organs of flight short mesothorax, and comparatively stout abdomen not tapering apically make it tolerably certain that the species here found fossil belongs to the group formerly classed in Anisomorpha, and is more nearly related to Agathemera than any other known genus. The head is quadrate, stout, a little longer than broaij; the pronotum is composed of a larger quadrate piece, narrowing rapidly in front of the insertion of the legs, posterior to the contraction about equally broad and long, but with it half as long again as broad; mesothorax a little broader posteriorly than in front and twice as broad as the head, bearing tegmina with rounded tips just reaching its posterior margin, the segment of equal length and breadth and a little longer than the other segments of the thorax; metathorax tapering apically, nearly as long as its greatest breadth, but shorter than the mesothorax, and bearing small functionless wings, not surpassing its borders. A slight raised median line on the front half of the thorax. Abdomen stont, enlarging a little in the posterior half, all the segments broader than long by about an equal amount. The last segment of the abdomen is not preserved,
but the specimen would appoar to be a male. The legs are moderately stout, the hind femora reaching to about the tip of the fourth aldominal segment.

Length of body, 20^{mm}; of head, 1.5^{mm}; of pronotum, 2.75^{mm}; of mesonotum, 3^{mmm}; of metanotum, 2.6^{mm}; breadth of head, 1.25^{mm}, of 1^{1} ronotum, 1.75^{mm}; of mesonotum, 3^{mm}; length of fore and middle femora, 3.25^{mm}; of hind femora, 4.75^{mm}; of hind tibie, $5^{\text {mm. }}$.

Florissant. One specimen, No. 5817.

Family ACRIDII Serville.

Only ten Acridii have been published as found in the European Tertiaries and nost of these belong to the Edipodidx or have been placed there. The exceptions are (Edipoda nigrofasciolata Heer, Gomphocerus femoralis Heer and Acridium barthelemyi Hope which are probably Truxalide, and Tetrix gracilis Heer which is certainly a Tettigidea. The six species we have found in America are all Truxalide and Edipodide, so thut all but one of the known species belong to these two groups, the Edipodida having half as many ngain as the Truxalidæ in general, though the two groups are equally represented in America. It is not a little remarkable that no Acridide proper have been found fossil. This group has a vast development in the United States, and together with Phymatidx and Pamphagidx, likewise totally unrepresented, is even richer in tropical regions. The subfanily best represented may be considered more than any other a denizen of the temperate regions. (July, 1884.)

Subfamily TRUXALIDF Stål.

Nearly a third of the known fossil Acridii belong to this group, and, as stated above, it contains one-half of the Americen species. The reference of Acridium barthelemyi Hope from Aix to this gr sup is, however, somewhat doubtful, the species being imperfectly described. Edipoda nigrofasciolata Heer from Radoboj seems to belong here rather than to the Edipodidæ, for the vena intercalata is wholly absent and its close resemblance to the large subtropical genus Scyllina Stål renders it probable that it belongs to that group; a new resemblance is thereby discovered between the Radoboj fossils and types of the warmer parts of America. (July, 1884.)

TYRBULA gen. nov. (τ v́ $\beta \neq \eta$).

This nune is proposed for a group of Truxalidae evidently falling in close proximity to Syrbula Stal, having linenr antemue, onlarged apically, and hind tibire well provided with spines. 'The antenne are more distinctly clubbed that in Syrbula, the club being about twice the dimeter of the stalk, composed of seven or eight joints of which tine last two are very small, forming a rapidly tapering tip. The hoad is less prominent than in Syrbula and the eyes considerably smaller, being considerably shorter than the infraocular parts of the cheeks ; otherwise the general aspect of the insect is the same. The genicular lobes are as in Syrbula. The hind tibie are nbundantly spined, in one species even much more abundantly than in Syrbuln.

Table of the spenien of Tyrbula.
Spines of hind tibies exoeedingly numerone, thelr basal half hardiy tapering.........I. T. muiliepinosa. Splnee of hind tibiæ less numerons, tapering uniformly throughout2. T. russelil.

1. Tyrbula multispinosa.

Pl. 17, Fig. 13.

This species is represented mainly by fragments of lind wings and hind legs. Of the former nothing more can be said than that they appear to have had a faint smoky tinge with numerous black, delicate veins, and that when closed they extended a very little beyond the tip of the abdomen. The hind legs are long, moderately slender, the tibie armed with exceptionally numerous spines which are blackish, of uniform width to beyond the middle, and then tapering, mainly by the excision of the under edge, giving them a slightly upturned appearance, five or six times longer than their breadth at the middle, and so closely set that the interspaces and the spines are of equal breadth; they decrease in length very regularly toward the base of the tibia and to a slight extent toward the apex; but just how many thore are or how far they extend toward the base the imperfect nature of the only specimen preserving the tibia forbids determining; it seems probable, however, that the number exceeds twenty-five. The specimen from Florissant, preserving the femur, is placed here because its size agrees perfectly with the other specimens and its form indicates the relationship. If it is correctly placed, the femur is stouter and less delicately attenuated than in the next species.

Length of femur, 17.5^{mm}; breadth of same, 3.5^{mm}; length of hind wings, $23.5^{\mathrm{mm} .}$; of longest tibial spines, 0.8^{mm}.

Green River, Wyoming. Two specinens, Nos. 138 and 140, Dr. A. S. Packard; No. 51, Prof. L. A. Lee. Florissant. Colorado. One specimen, No. 14720, collected by Miss C. H. Blatchford.

2. Tyrbula russelli,

PI. 17, Figs. 1-4.
A couple of excellently preserved specimens, exhibiting a side view, show most of the body, the antennæ, closed tegmina with inderlying wings, front ind hind legs, and part of the middle legs. The head is not very prominent, with rounded vertex, moderately full retreating front, eyes rather small, superior, oval, considerably shorter than ths distance from their lower edge to the base of the mandibles; the antenne are nearly half as long as the body, straight, very slender, the apical fifth expanding to a club of twice the diameter of the stalk, the middie joints of which (Fig. 1) are nearly twice as broad as lcng and microscopically densely punctate. The pronotuin is twice as long as the head, the posterior lobe not projecting very far; the tegmina are slender, broadly rounded apically, rcaching when closed the tip of the abdomen. The legs are all very slender and delicate, the front femora not much stouter than the tibix, the fore and middle tibire with : double row of delicate, short, rather frequent spines. The hind femora scarcely reach so far as the closed tegmina, but are slender and graceful, with the middle external field well defined by superior and inferior carine or angles, with indications of having been twice annulate with narruw, dusky bands in the distal hali, the outer annulus nidway between the inner and the apex; hind tibia fully as long as the femora, very slender, armed with a large number (about eighteen to twenty) of delicate tapering spines, considerably longer than the width of the tibix, but nore distant (Fig. 4) than in the preceding species; they are much broken in the specimens. Tarsi with delicate crowded spines.

Length of body, 23^{mm}; of pronotum, 4.5^{mm}; of antennæ, 10^{mm}; width of cluk, 0.4^{mm}; length of tegmina, 18^{mm}; width of same, 2.7^{mm}; length of fore femora, 5.5^{mm}; fore tibix, 5.25^{rm}; hind femora, 14.5^{mm}; width of hind femora, 2^{mm}; length of longest tibial spine, 0.5^{mm}.

Florissant. Two specimens, both apparently females, No. 14175, and the one figured, the latter obtained by Mr. Israel C. Russell, of the U. S. Geological Survey, for whom the species is r.med.

GOMPHOCERUS Thunberg.

Heer describes a species of this genus from Oeningen. It is of small size, like most of those of temperate America and Europe, while the species here provisionally referred to it is very much larger. I have also seen a species from Aix, labeled as a Gomphocerus by Heer, which may, perhaps, be more nearly allied to Leptysma or Arnilia. Gomphocerus and its nearer allies are rather characteristic of, or at least are at present better known from, temperate regions, and are found around the entire globe. (July, 1884.)

Gomphocerus abstrusus.

Pl. 17, Fig. 6.

This species is placed here because of its general affinities as indicated by the front half of the body, which, as seen on a side view, is all that is preserved. it does not seem, on several accounts, to belong in the genus, but it plainly comes near it. The head is large and protuberant, with a prominent veitex, sharply angled as seen on a side view, with a rounded, retreating face. Antenca slender, very slightly enlarged to a faint elongated club at the apex, nearly reaching to the tip of the pronotum. The latter short, with quadrate deflected lobes, the inferior margin straight. Tegmina large, dusky, with the interspaces isetween the longitudinal veins broken at base by straight cross-veins into pretty regular square or subquadrate cells.

Length of fragment, 21^{mm}; of head, 4.5^{mm}; length of face, 5.5^{mm}; length of antennæ, 8^{mm}; of pronotum, 5^{mm}; height of same, 4^{mm}.

Florissant. One specimen, Nos, 635 and 11736.

Subfamily GEDIPODIDAE Stal.

To this subfamily belong most of the fossil Acridii and half of the American species. Heer in his Tertiairgebilde and his Urwelt der Schv: jiz describes half a dozen species from Oeningen and Radoboj, referring them all to the old genus Edipoda. Serres mentions a species from Aix which
he compares to CEdipoda coerulescens, and I have seen an undescribed form from Aix in the hands of M. Oustalet which is apparently allied closely to Chimarocephala. Of the Radoboj species described by Heer, O. nigrofasciolata, as stated above, is probably a Scyllina and not an odipodid. O. melanosticta is perhaps an Hippiscus, and O. haidingeri a Dissosteira, or certainly very close to it. Of the Oeningen species which Heer describes, O. fischeri looks somewhat like a Chimarocephala, and O. germari (not described) is said by Heer to belong near Pachytylus. O. oeningensis is too obscure to say that it belongs in this family. The larger part of the European species would therefore seem to have decided American affinities, Chimarocephala, Dissosteira, and Hippiscus being distinctively American.

Of the Anerican species, one is referred to Edipoda only in a general sense; the two others belong to new genera, one near the end, the other next the end of the series, in the viciaity of Chimarocephala and Encoptolophus, American genera.

The family finds its greatest development in tree north temperate regions of the world, and is remarkably abundant in forms in North America, and particularly in the warmer and more arid parts of the United States. (July, 1884.)

NAisTHACIA gen. nov. (Nanthace + grasshof, ner, Otoe).

This name is proposed for a genus of Edipodidx which is allied to Encoptolophus, but in which the upper ulnar vein of the preanal area of the hind wings does not extend nearly to the margin of the wing but terminates before the middle, as it does in the tegmina, in a fork which extends above to the radial and below to the lower ulnar vein.

Nanthacia torpida.

A single specimen of this has been recovered, showing a hind wing only, in which the anal area is closed and the preanal almost fully exposed. The principal radial vein runs in close proximity to the costal margin, and it is connected with the veins above by very short cross-vcins, and near the tip of the wing by a stigma, as in Encoptolophus. It has two principal oblique forks, the inner arising only a little within the middle of the wing and terminating on the ulnar a little before the outer margin, the other arising rather less than a third of the way from the former to the apex and ter-
minating in the middle of the apical margin ; the interspaces above the latter fork, above the base of the former and the postradial area, are filled with frequent stout and straight cross-veins, while the interspace betweea the radial branches is filled by more distant, often oblique, straight veins, forming squarish cells. The membrane appears to have been hyaline and the veins and cross-veins distinct and black.

Length of wings, $\mathbf{2 2}^{\mathbf{m m}}$; breadth of preanal area, $\mathbf{2 . 3 5}{ }^{\mathrm{mm}}$.
Florissa :- One specimen, No. 9100.

(EDIPODA Latreille.

A number of European species have boen referred to this genus, but only in a broad sense, and, as I have stated above under the family, may most of them be more definitely placed. Here, however, must fall both 0 . œeningensis Heer and the American species described below, as belonging to the genus in its widest sense, and the Aix species mentioned by Serres may also probably find a place here, as Serres compares it to the type of the genus. In its most limited sense the genus is confined to the Old World. (July, 1884.)

Edipoda preffocata.

Pl. 17, Fig. 5.

The single specimen found represents the basal half of a hind wing overlying a similar part of an obscure front wing. By the venation and markings it appears to belong to the Edipodidæ, but it is too imperfect to judge more closely of its affinities. The wing was a large one, fuliginous, with at least three parallel and equidistant curving rows of paler (or brighter) markings in the form of rather narrow bands, the middle one apparently in the middle of the wing the broadest and discontinuous, crossing most of the wing; the inner one, midway between this and the base, narrower and crossing the upper half or less of the wing. In the anal area the intercalary veins run far is toward the base of the wing, and in the outer half become broken into two or even more, so that several rows of cells lie between the anal rays next the outer portion of the wing.

Length of fragment, 23^{mm}; probable length of wing, 30^{mm}; its probable breadth, 18^{mm}; breadth of tegmina, 4^{mm}.

Florissant. One specimen, No. 7389.

$$
\text { VOL XIII- } 15
$$

TAPHACRIS gen. nov. ($\theta \dot{\alpha} \pi \tau \omega, \dot{\alpha} u \rho / s)$.

This peculiar genus appears to fall in the Eremobide or neur this group of CEdipodidæ, the intercalary vein of the tegmina being absent, but it does not agree with any of the known genera of that tribe. The head is large and well rounded, smooth; the vertex of moderate width, the eyes large, not prominent; antennæ cylindrical, uniform, slender, not reaching the extremity of the short pronotum. Pronotum stout, rather short, very slightly and regularly expanding from in front backward, the lobes of equal length, the anterior divided in the middle by a second transverse incision, the very slig't median carina not extending to its anterior half, which is produced and angnlate; tip of pronotum obtusely angulate. Tegmina longer than abdomen, the costal area broad at base but not convex; the simple subexternomedian arises in the middle of the wing and the oxternomedian vein has five branches beyond it, with simple cross-veins in the interspaces and no reticulation; there is no intercalary vein ; the internomedian vein terminates just before the origin of the subexternomedian in a large, triangular cell (surrounded by irregular reticulation), from the lower angle of which springs a broad fork, the inner branch of which terminates at the end of the short anal vein far within the middle of the wing. The wings are as long as the tegmina, the preanal portions repeating close!y, especially in the branches of the externomedian vein, the characteristics of the tegmina.

Taphacris reliquata.

Pl. 12, Figs. 8, 19.
The vertex is a little less than half the width of one of the eyes, as seen from above. Antennæ composed of about thirty-two joints, each about twire as long as broad, the whole reaching close to the tip of the pronotum. Pronotum slightly longer than its greatest breadth. Tegmina slender and nearly equal, the scapular vein closely approaching the costal margin at about three-fifths the distance from the base, the mediastinal terminating at aboui two-fifths the distance, the area above it forming a regular triangle broad at base and gradually narrowing, filled with oblique, but toward the base rather irregular, veins. The tegmina appear to have been more or less obscurely testaceous, and perhaps more or less blotched, but the veins are
distinctly marked; the wings are also testaceous aleng the costal_margin, but elsewhere hyaline with blackish veins and no sign of intercalary veins between the anal rays.

Leugth of body, $33.5^{\mathrm{mum}} ;$ of head, 2.5^{mm}; of antennex, $9^{\text {mim }}$; of pronotum, 7.5^{mm}; of tegmina, 30.5^{mm}; breadth of head, 4.5^{mm}; of pronotum in front, 5^{mm}; behind, 6.75^{mm}; of middle of tegmina, 4^{mm}.

Florissant. Two specimens, Nos. 404 and 4643 (\ddagger), 7507.

Family LOCUSTARI $£$ Latreille.

Like the Acridii, this family of Orthoptera is not well represented in the Tertiary rocks; no specimens of either have been found in amber, excepting a few larve of this family. Yet almost all of the larger subfamilies are present both in Europe and America. The Conocephalide, however, which are represented in America by two species, have none in Europe, and per contra, the Decticidæ, which have three species in Europe, do not occur in America. Two of the European species can not be placed, Locustites maculata Heer from Parschlug and Decticus exstinctus Germ., from the Rhenish coal. Ten species, including two referred to only by generic names, have been found in the European Tertiaries, and five in America, besides indications of others. Unlike the Acridii, the European and American species show few points in common, the species which are referred to the samo subfamilies being widely separater. (July, 1884).

Subfamily PHYLLOPHORIDEE Stå.

The only European species of this group, which is best represented in warm, temperate, and tropical countries, is Phaneroptera vetusta Heer from Oeningen, and it is widely distinct from the single American species referred here. (July, 1884.)

LITHYMNETES Scudder.

Lithymnetes Scndd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 532-533 (1878).
A stout-bodied genus of Phyllophoridæ, probably belonging near Steirodon, but differing from the entire series into which Steirodon and its allies fall in the great length of its ovipositor, which is at least as long as the abdomen; while in Steirodon and its allies, so far as I know them, it is seldom more than two or three times as long as broad; it is also peculiar
in the disposition of the principal radial branch of the tegmina. The head is large, full, well rounded; the eye small, almost circulnr, its longer diameter at right angles to the extremity of the vertex. The pronotum shows no sign of having its lateral borders cristato or even crenulate, but this may be due to imperfect preservation of the single specimen at hand, on which it is impossible to determine the form of the lateisl lobes. Tegmina much longer than the body, densely reticulated, very ample, expanding at the very base, so ns to be nearly equal before the extremity; this is destroyed, but is evidently formed somewhat, end perhaps exactly, as in the Steiro ton series, since it tapers on either border, but more rapidly on the imner than on the costal margin, its curve indicating that the apex of the wing is above, and probal,ly considerably above, the middle. The scapular vein, in the middle of the basal half of the wing, curves strongly toward the costal margin, nearly reaching it beyond the middle of the same, and thence following nearly parallel and in close proximity to it; in the broader part of the costal area, beyond the subcostal vein (which acts in a similar manner), it emits three or four branches, the larger ones of which fork and, with the branches of the subcostal vein, strike the costal border at equal distances apart; all these branches are straight, and are connected by irregular, weaker cross-veins, while the interspaces are filled with a still weaker, dense mesh-work. The externomedian vein, parallel to and separated distinctly from the preceding, emits the principal branch where the scapular curves upward; this branch continues the basal course of the main vein, is straight. forks at about the middle of the wing, each fork again branching at a iittle distance beyond, the branches of the upper fork striking the border of the wing where it seems probable the apex falls; all the branches of this fork curve a little, but only a little, downward; the second branch of the externomedian vein is emitted shortly before the middle of the wing, and does not reach the margin, dying out shortly beyond the middle of the wing. The subexternomedian vein runs above the middle of the remaining portion of the discoidal area, and emits four inferior branches, at subequal distances, the first of which forks and the second originates opposite the principal branch of the externomedian vein. Apparently the anal area is pretty long. Wings apparently extending beyond the tegmina. The legs are short, slender, the fore tibie apparently furnished with a moderately broad obovate foramen, the hind tibie of equal size throughout,
slightly longer than the hind femora, and the latter scarcely extending beyond the abdomen. Ovipositor long, broad, saber-shaped, a little upcurved.

This is one of the largesi Tertiary Locustariæ known, if not the largest.

Lithymetes guttatus.
Pl. 17, Figs. 14, 15.
Lithymnetes guttatus Scudd.. Bull. U. S. Geol. Geogr. Surv. Terr., IV, 533-534 (1878).
This is the largest insect I have seen from the Tortiary shales of Florissant, and is remarkable for the markings of the tegmina, which are covered throughout (with the possible exception of the anal area and the extreme base of the wing, which are obscure) with minute, circular, equidistant, pale spots, situated between the nervules; they have a mean diameter of half a millimeter, and a mean distance apart of one and a half millimeters. The head is full and regularly rounded on a side view, with no prominences. The antennæ appear to have the usual structure, but the second joint is small, and the thickness of the joints above the front of the prothorax is 0.45^{mm}, already diminishing to 0.3^{mm} at the posterior border of the same; they are broken shortly beyond this point, so that tieir length can not be determined. The mean diameter of the eyes is scarceiy more than one-third the shortest length of the genæ. The costal margin of the tegmina is gently convex, with a regular curve throughout, or until close to the tip; the inner margin has a similar though slighter convexity; the principal branch of the externomedian vein passes through tine middle of the wing. The legs are all slender, the hind femora very slight, but little incrassated toward the base, the hind tibix slender, equal throughout, armed at tip with a pair of small, moderately stout, black-tipped spurs, the hind tarsi about two-fifths the length of the tibio, the claw very slight. Ovipositor broad, gently curved, at least as long as the hind tibix, of nearly equal size upon the part preserved.

Length of body (excluding ovipositor), 37^{mm}; depth of head, 12.5^{mm}; larger diameter of eye, 1.85^{mm}; shorter, 1.35^{mm}; distance from lower edge of eye to upper edge of mandibles, 4^{mm}; length of preserved part of tegmina, 45.5^{mm}; prohable length of same. 55^{mm}; distance from base of tegmina to front of head, 13^{mm}; from same to base of principal branch of externomedian
vein, 14.5^{mm}; breadth of tegmina in middle, 16^{mmm}; length of fore fomora, ${ }^{1}$ 9^{mm}; middle femora ${ }^{1}$, 10^{mm}; hind femora, 19^{mm}; fore tilier, 9.5^{mm}; middle tibix, 10.5^{mm}; hind tibie, 21^{mm}; fore tarsi, 7^{mm}; hind tarsi, 8^{mm}; apical spurs of hind tibiex, 1.75^{mm}; claw of hind tarsi, 0.9^{mm}; greatest breadth of hind femora, 3^{mm}; length of ovipositor (broken), $18^{\text {rim }}$; breadth at base, 3^{mm}; at a distance of 14^{mm} from base, 2.35^{mm}.

The specimen is preserved on a side view, with the left (npper) tegmen and the ovipositor drooping, the other parts in a natural attitnde, the legs drooping.

Florissant. One specimen, No. 11557 (q).

Subfamily PSEUDOPHYLLIDE Burmeister.

The Tertiary species described by Heer from Greenland under the name of Locusta groenlandica falls probably in this family; but there is no close connection between it and the American species described below. The distribution of the family at the present day is in general similar to that of the last named. (July, 1884.)

CYMATOMERA Schaum.

This tropical or subtropical Old World genus derer not properly find a representative in the American rocks, but the species here described, to imperfect for separate diagnosis, appears to fall in its near vicinity and is consequently referred here provisionally. No fossil species is known.

Cpmatomera maculata.

$$
\text { Pl. 17, Fig. } 7 .
$$

A couple of spotted fragments from near the base of the tegmina of a locustarian are placed here provisionally, because they agree better with the group represented by that genus than with any other, though they plainly can not belong to Cymatomera in any strict sense. The better of the two fragments shows the base of a broad wing, with dark brownish, longitudinal veins, spreading widely, and the spaces between them or their branches broken by very frequent, long cross-veins into short but very deep quadrangular cells, while the whole surface, largely independent of the

[^32]cells and even of tho veins, is heavily blotched with irregular spots of paler or deeper brown. The largest and deepest of the spots is central, following the here approximated radial and ulnar veins.

Length of the fragment, 8.5^{mm}; breadth of the same (probably nearly the breadth of the base of the wing), 12.5^{mm}.

Florissant. Two specimens, Nos. 1724, 2844.

Subiamily CONOCEPHALID E Stdl:

Although unknown in the European Tertiaries, this subfamily of locustarians, pretty well developed in the southern' half of the United States, and far more so than in Europe, is represented by two forms from the Tertiaries of Florissant, not distantly allied to forms still existing in our country. (July, 1884.)

ORCHELIMUM Serville.

This genus, not before found fossil, and represented in North America by a considerable number of species, especially in the warmer portions of the United States, is found in the shales of Florissant, a large species having been disinterred. In its broad sense the genus is widely distributed over the globe, but in a narrower one, in which our fossil will fall, it is, I believe, peculiar to America. (July, 1884.)

Orchelimum placidum.

$$
\text { Pl. 17, Figs. } 16 \text { (} ₹), 18,19 \text { (} \delta) .
$$

Though obscurely defined, especially in the very parts which are necessnry to examine for close determination, the specimens at hand have so clearly the aspect of an Orchelimum that we may safely consider them as belonging to that modern genus, which Stal unites with Xiphidium. The species is a very large one, larger even than 0 . concinnum Scudd., which is the largest known to me, and has the angulated fastigium (seen on a side view) and retreating face characteristic of the genus. The folded tegmina and wings extend some distance beyond the abdomen, and the ovipositor, which is well preserved and permits one to see that the upper and lower blades are of equal length, is peculiar for its length and bluntness of tip. It is also much slenderer than in 0 . concinnum and less curved, in which respects it approaches Xiphidium.

Length of body, s 31^{mm}, ? 28^{mm}; of tegmim, $+29^{\mathrm{mm}}$; of hind femur, o 23^{mm}; of ovipositor, 16^{mm}; breadth of latter in middle, 1.1^{mm}.

Florissant. Two specimens, Nos. 13551 (($), 7748$ and 13550 (9).

LOCUST'A Linné.

This genus, which occurs in the Old and New Worlds alike, but in the New World only in the western portion of onr conntry, has never before been found fossil, several species referred to Locusta belonging elsewhere. Locusta grenlandica, as stated, is probably one of the Pseudophyllide, and the Locusta mentioned by Serres as found at Aix is, to judge from his reference, one of the Decticida. A single form has been found at Florissant not unlike the living species. (July, 1884.)

Locusta silens.

PI. 17, Figs. 9, 10.

A single specimen showing the base of the abdomen, with a side view of the folded wings and tegmim and a portion of the hind femur, indicates a species of true Locusta about as large as L. occidentalis Thom. from California. The arrangement of the veins in the tegmina, though confused by the overlapping of the wings, is nevertheless distinctly that of Locusta proper; this does not appear in the plate, where the mediastinal and internomedian nervules are not shown, and the scapular vein made to do duty as the costal margin. The wings were apparently obscurely griseous and perhaps longitudinally streaked as in the recent species mentioned. The hind femora were slender just as in Locusta, but along the middle of the outer face in the thickest portion is a distinct though very delicate carina showing in some parts, as in Fig. 9, a very delicate spinulation. The modern species mentioned has no mid-lateral carina.

Lengll of tegmina, 42^{mm}; width of same, 7^{mm}; probable length of hind femora, 32^{mm}; width of same, 3.5^{mm}.

Florissant. One specimen, No. 7544.

Subfamily GRYLLACRIDID St_{E} Stal.

This family has been supposed to have a great antiquity, but this may be doubted, since I have shown elsewhere that several of the species from Carboniferous deposits referred here belong rather to the neuropteroid series. We find, however, several Tertiary species referred here, two from Radoboj,

Gryllacris charpentieri Heer and G: ungori Heer, us well as aroferenco to the genus by Cupellini of a species found in the Italian I'ertiaries. A single American species has been found. (July, 1884.)

GRYLLACRIS Serville.

All the 'Tertiary members of the family have been referred loosely to this genus, and it is with tho samo looseness, nocessary from its imperfect state, that the single Florissant species is also referred to it. The presence of this form at Florissant is indicative of n much warmer climate than found at present in that latitude. (July, 1884.)

Gryllacris cineris.

$$
\text { Pl. 17, Fig. } 17 .
$$

Though no Gryllacris proper and differing considerably even from the fossil species which have been referred here, the only specimen is too obscure to speak very positively of its affinities. The insect is of very stout form, the head large, appressed, flattened behind, convox in front, the eye tolerably large, twice as long as deop; the thorax stout, the abdomen very stout, fill, tapering apically, the legs rather small, the tegnina and wings moderately ample, about as long as the body. Tegmina with a nearly straight costal margin, a prominent shoulder near the base, the tip well rounded and a little produced, the inner margin rather full; the mediastinal veins with their fan-like distribution occupy the basal third of the costal border; the scapular vein terminates on the same margin a little before the tip, and emits equidistant, parallel, o olique, superior branches throughout its course; the externomedian runs parallel to the former; in the latter half cf the wing it emits inferior, longitudinal, parallel branches which occupy the whole tip of the wing, and from before the middle a single branch with one or two superior nervules parallel to the others; the nervules below this have also a longitudinal direction, but their attachments are obscure. The neuration of the hind wing is similar, but the mediastinal and scapular areas are excessiv ly narrowed, while the lower areas are expanded as in most orthopterous hind wings. The plate is in error in making the terminal portion of the externomedian vein branch from the scapular vein.

Length of body, $\mathbf{2 5} 5^{\mathrm{mm}}$; of hend, 3^{mm}; depth of same, 6^{mm}; length of tegmina, 27^{mm}; breadtli of same, 8.5^{mm}; of wing, 11.5^{mmm}.

Florissant. One specimen, Nos. 4499 and 4642.

Locustarife sp.

Among the Orthoptera unticed in tho Green River slates is a tibia and frogment of the attuched femmr of what is apparently the middle leg of a Locustarian about the size of a Phylloptera.

Green River, Wyoming. No. 15233.

Family GRYLLIDES Latreille.

Fossil species of this family are not numerons; only a single species has been fully described from umber, and a second figured from Oeningen. At Aix, however, they appear to be tolerably abundant, for Serres mentions no less than seven species, of which two are Gryllotalpre (Heer also montions a Gryllotalpa from Oeningen), one a Xya, while he compares the four othe:s to species of Ceanthus, Gryllus, and Nemobins. Heer's Oeningen apecies is probably a Nemobins and the amber species one of the Trigonidii.' We lave also seen a conple of species of Nemobius from Aix in the hands of M. Oustalet at Paris. Our own species, three in number, all appear to belong in close proximity to one another and to the Gryllida proper, but require for their proper elucidation to be classed in a distinct genus. They nll come, curiously, from the Green River beds. (June, 1884.)

PRONEMOBIUS gen. nov. ($\pi \rho \delta$, Nemohius, nom. gen.).

Having the facies of Nemobins, hut with the hind femora entirely devoid of spines, or even serrulations. The species seem to differ considerably in certain points, but as they all agree in this particular, which is unique, not only in this tribe, but among Gryllides generally, they are placed together.

The species may be separated as follows:
Table of the species of Pronemobins.

[^33]
1. Pronemobius induratus.

PI. 6, Fig. 18.

This species, much the largest of the three here deseribed, is represented by two hind legs and a portion of one of the tegmina, foumd in proximity to one of the legs. The wing, shown in the figure, has a portion of the costal field displayed on tho left with three or four parallel veins curving towned the nargin, one of them forked-an unusual eircumstance; and on the right the larger portion of the basal half of the dorsal field, where the simplicity and flowing course of the veins, in which no tympunum is constructed, indicates a femule. The neuration, however, is very difforent from the prevailing simpletype of the Gryllide proper and much more closely resembles that of the Uryliotalpide or of some Eneopteride, the oblique veins of the middle of the wing, whose courso is toward the lateral margin of the field, being offshoots of a couple of basal veins whose obliquity is toward the inner margin. The hind fenom are rather slenderer than usual among Gryllidx, but not so slender as in the Eneoptcride and allied subfamilies, rather sparsely hairy above and with the suter face dusky, and marked by pale, oblique lines. The hind tibia is present in only one specimen and a little incornplete, so that one ean not say whether it is longer or shorter than the femur; it is uniformly and rather sparsely laired thronghout.

Length of fragment of wing, 7^{mm}; of hind femur, $11-12^{\mathrm{mm}}$; breadth of same, 3.25^{mm}; of fragment of hind tibia, 8.5^{mm}; breadth of same, 0.9^{mm}.

Green River, Wyoming. Two specimens, Nos. 136, 139, Dr. A. S. Packard.

2. Pronemobius tertiarius.

Pl. 6, Figs. 13, 21, 23.

Nomobius terliarius Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 774 (1878).

This species was first described from legs only, by which it was judged that the insect must have been rather smaller than our common Nemobius vittatus (Harr.), its hind femur being 7^{mm} long, broad, and stoit, especially near the base, where it measures 2.1^{mm}; its upper half is covered with exceedingly delicate, recumbent hairs directed backward; there are also a few hairs upon the slender hind tibia, which is broken just where it begins to enlarge, showing signs of the upper spines; this portion is about three-
fourths the lengt! of the femur. The front femur and tibia, which are each only 2.25^{mnn} long, also indicate a smali' species, and one that is unusually free from spines, no hairs even being discernible on this front leg.

Since then other and more perfect specimens have come to hand, including some a little larger, showing its size to be about that of the recent speries referred to. The body has the same general form. The head seems to be a little longer in proportion to its breadth, the eyes perhaps a little smaller, the basal jcint of antenne the same. The pronotum is of the same form, but both head and pronotum are only sparsely clothed with very short hairs. All the winged specimens are females, and the tegmina are about three-quarters the length of the abdomen, much more delicately constructed than in Nemobius, the veins being more frequent and much slenderer; on the costal field they run perfectly parallel at a slight angle from the lateral iugle between the fields; on the dorsal field they are less numerons, heavier, staright, and parallel, but more frequent and weaker than in Nemobius vittatus. The wings are fully half as long agnin as the abdomen. The ovipositor is short, not reaching to the wing tips, slender, and straight. The hind femora are slaped as in Nemobius, hairy, the hind tibie shorter than the femora, enlarging a jittle toward the tip, and hairy, but without a trace of spines; the hind tarsi are ahout half as long as the tibie, the first joint longer than the others combined, all of them eylindrical.

Length of body, 9.5^{mm}; tegmina, 6^{mm}; wings, 9.5^{mm}; ovipositor, 3.5^{mm}; hiad femur, $5{ }^{\mathrm{mm}}$; hind tibia, 4.5^{mm}; hind tarsi, 2.5^{mm}.

Green Rivor, Wyoming. Seven specimens, Nos. 18, 20) (collected by F. C. A. Richardson); 4183 (collected by S. H. Scudder); and Nos. 135, 141, 142 and 144, 143 (collected by Dr. A. S. Packard).

3. Pronemobius smitilif.

$$
\Gamma^{\prime} 6, \text { Fig. } 22 .
$$

Two specimens of this species are preserved, one showing a side view of the whole body, the other a nearly ventral view of the hinder half; both appear to be females, but the hinder portion of the abdomen is lost with the ovipositor, the length of which can not be determined, unless some obscure marks behind one of the specimens are to be considered as indicating that it was short as in P. tertiarius. The head as seen on a side view is as long as the pronotu.n, like which it is very delicately, almost imperceptibly,
scabrous and hairless; the eyes are small, scarcely more than one-fourth the diameter of the head; the tegmina less than twice as long as the pronotum ; the wings very long, reaching twise as far as the tips of the hind femora; the hind legs unisually slender and smooth, neither femora nor tibix heing even hairy; the tibixe are not eularged at their extremity, and the hind tarsi are about half as stout as the tibie, with a long basal joint.

Length of body as preserved, 7^{mm}; probable entire length, 8.5^{mm}; length of pronotum, 1.6^{mm}; of hind wings, 8.5^{mm}; of hind femora, 3.5^{mm}; breadth of same, 1.1^{mm}; length of hind tibiæ, 2.5^{mm}; breadth of same, 0.2^{mm}.

Named after Prof. S. I. Smith, of Yale College, who has contributed to our knowledge of the Orthoptera of New England. The species is smaller than the preceding, has proportioially much longer wings and a smoother integument.

Green River, Wyoming. Two specimens, Nos. 134, 145, Dr. A. S. Packard.

HEMIPTERA Linné.

With this group we reach the most important section of the present work, since it of all the lower orders of insects was fa. the most abundant at Florissant. As, however, the group is divisible into two great suborders under which, separately, such general statements as seem appropriate regarding the relative representation of the families will be given, we reserve here only a brief remark or two upon the relation of the two suborders.

I presume it can not be far wrong to state that the homepterous fauna of any given region of considerable extent in the north temperate zone is to the heteropte \quad us fauna as about one to three, or, in other words, that about 25 per cent of the hemipterous fauna is homopterous. These figures are the result of the comparisons of several faunal lists. In M: Uhler's List of the Hemiptera of the United States west of the Mississippi (the geographical area of our present work), the Homoptera hold a still more insignificant place, forming scarcely more than 13 per cent of the whole. In tropical countries a very different proportion obtains, the Homoptera holding, or nearly holding, their own beside the Heteroptera, and subtropical countries or those which feel the direct influence of their proximity show an intermediate position; thus in Berg's Enumeration of the Argentine Hemiptera the proportion of the Homoptera to the whole is almost exactly 30 per cent Now, it is precisely this proportion, $40: 93$, or 30 per cent, which Heer found. the fossil Homoptera to hold in his first essay on the fossil Hemiptera of Oeningen and Radoboj. A careful enumeration of the fossil Hemiptera of Europe to-day gives the Homoptera 34 per cent of the whole fauna; but, if those from the amber (which greatly heighten the proportion of Homoptera) be excluded and we reckon those of the rocks only, the Homoptera have 27 per cent. On the other liand, if we take ouly the fauna of the Oligocene of Europe, inciuding the amber, the proportion of the Homoptera amounts to 41 per cent. This clearly indicates an approach to tropical relations. Our own Tertiary fauna is almost exclusively Oligocene, and has been found in a
multitude of minor points to show distinct tropical relations, and it therefore becomes of peculiar interest to learn the numerical relation herein of the Homoptera to the Heteroptera. Now here, much as in the Oligocene of Europe, we find the Homoptera claiming 40 per cent of the whole hemipterous fauna. The significance of these figures can hardly be doubted.

The number of Tertiary Hemiptera of the whole world is now to be reckoned at 569 , of which 355 are Heteroptera and 214 Homoptera. The abundance of Hemiptera in our Western Tertiaries may perhaps fairly be pietured when we remember chat Heer in his first elaboration of those found in the rocks of Europe enumerated 133, and that in the present work, the first elaboration of those of America, the number is alnost exactly double, 2:5.

In studying this group I have been greatly aided by many kind favors from my friends, Mr. P. R. Uhler, of Baltimore, and Mr. E. P. Van Duzee, of Buffalo.

Order HOMOPTERA Latreille.

The variety of forms referable to the familiss of Homoptera that have been found in the American rocks is not a little surprising, and it includes some remarkable forms. All the families are represented excepting the Stridulantia, and this exception is the more noticeable because the presence of this family has been signalized in several instances in the European Tertiary rocks, and species believed to belong here have even been found in the Mesozoic deposits. Yet two families, Coccidæ and Psyllidæ, occur with us, and have not yet been found i.: European rocks, though Cocider are known from the Baltic amber. In all we find represented six families, thirteen subfamilies, fifty-five genera, and one hundred and twelve species in the four hundred specimens that have been examined.

The families Coccidæ and Psyllidæ, however, are very feebly reprosented by a few examples only, the great bulk of the fossils both in Europe and America belonging to the four families, Aphides, Fulgorina, Jassides, and Cercopidx; in each of these, with the possible exception of the Jassides, the variety and abundance of forms is greater in America than in Europe, even iucluding the types from amber, while a comparison of the rock deposits alone would show a vast preponderance on the American side. In individuals the Cercopidæ easily hold the first rank, and this appears to be true in Europe as in America; next follow the Aphides, for which in variety of type and in interest America far excels. The Jassides appear to
present relatively the least interest, but the absence from American deposits of one whole divisir: of that family, the Membracida, is rather surprising in view of their presence (though rarely) in European deposits and their relative abundance in America to-day.

The following tabular enumeration of the species and genera occurring in the European and American Tertiaries nay serve to present in a clearer light the agreements and disparities between them. The American list is drawn from the descriptions in the present work, while the European is from miscellaneous sources, and includes all those genern and species which have been merely indicated is nocurring in certain deposits, and so it might fairly be considerably reduced. It should not be overlooked, moreover, that it includes all the amber forms :

Summary list of known fossil Homoptera.

Families.	America.		- Eиrope.	
	Gonera.	Species.	Genera.	Species.
Coccidie ..	1	1	6	9
Aphides..	15	32	4	20
1raylidide	2	2	0	0
Fulgorina	16	29	7	18
Jassides ..	11	21	9	24
Corcopide.	10	27	4	24
Stridulantia.	0	0	1	7
Total	55	112	31	. 02

If we exclude the amber forms and compare the fauna of the rocks only, we shall reach a very different result, as the following table shows:

Table of fossil Homoptera from rock deposits.

	America.		Europe.	
	Genera.	Species.	Genera.	Speeles.
Coccidar.........	1	1	0	0
Aphiden..	15	32	3	s
1'syltida	2	2	0	0
Fulgorina	16	29	3	3
Jassides ..	11	21	8	18
Cercopidu.	10	27	4	21
Stridulantia..	0	0	1	6
Telut	55	112	13	56

This table shows clearly how poorly the Aphides and Fulgorina are preserved in the European as compared with the American rocks.

It has been necessary to establish a large number of new generic groups to contain the American forms, which perhaps would not have been the case to the same extent had a really good selection of existing tropical American types been accessible; for the affinities of nearly the whole homopterous fauna of our Tertiaries are plainly subtropical. It is curious to see how highly developed some apparently extinct typas were in that day ; the family groups were quite as trenchant as now, and while we find in some, as in Aphides, marked departures from modern structure, it in no way appears to affect the family characters or to mark any approach toward the neighboring groups. Some genera now apparently extinct seem to have attained a high degree of differentiation, as witness Aphidopsis among the Aphides, Diaplegma among the Fulgorina, Palecphora, Lithecphora, and Palaphrodes among the Cercopidx ; of all of these there ware several species, and more than occur in any other generic group excepting Agallia among the Jassides, which is equal to the least prolific of them. As a general rule it is also in just these genera that the individuals are the most abundant, notably among the Cerropidæ, which as a family is almost twice as numerous as all the others together, though the least among these larger families well provided with generic distinctions; for the three genera, Palecphora, Lithecphora, and Palaphrodes, with their fifteen species, not only outnumber in specific types the other seven genera of Cercopidæ (twelve species), but they contain more than nine-tenths of the individuals of this family which have passed under my eyes.

Family COCCIDA.

The only fossils of this group hitherto known are some that occur in amber. Tluree species referred to Monophlebus were described and figured by Germar, and Menge has since added short descriptions of half a dozen species referred to Aleurodes, Coccus (2), Dorthesia, and the extinct genera Ochyrocoris and Polyclena. To these we are able to add a single species from Florissant.

MONOPHLEBUS Leach.

This is an Old World genus which has never been detected living in America. The species are largely from tropical regions, but a single one is recognized from Europe. On this account there is special interest in the voL xill- 16
occurrence of three species of this group in Prussian amber, described by Germar in Koch and Berendt's great work, and it is still more interesting to find a species apparently belonging to this genus from the shales of Florissant, Colorado.

Monophlebus simplex.

The single specimen referred to this genus agrees better with the fossil than with recent types. It is a fairly well preserved body, with the dorsal surface uppermost, but slightly turned to one side; the wings partially expanded, and all the legs of one side showing excepting the tarsi; unfortunately no antennæ are preserved. The head is small and subcircular ; the thorax large, subquadrate, tapering abruptly in front to the width of the head, which is hardly more than half the width of the thorax. Wings of the shape of those of M. pinnatus from amber, about three times as long as broad, well rounded, showing with distinctness only the subcostal vein which runs from near the base toward the costa, on approaching which it follows the thickened margin almost exactly parallel to it to the extreme tip of the wing, much as is seen to be the case in M. pinnatus, though here separated more widely from the shoulder of the wing at its base; besides these there are only visible the base of the median vein from which the subcostal takes its rise, running but an extremely short distance into the heart of the wing, and a mere spur of the lower vein which arises barely before the subcostal and runs into the heart of the wing a less distance than does the oblique basal part of the subcostal. The legs are subequal in length; the tibie a little longer than the femora and scarcely slenderer; all are slight. The abdomen is long oval, well rounded behind, and composed distinctly of nine joints, of which the penultimate is very slight but the proceding ones subequal, with no signs of any lateral or terminal appendages.

Length of body, 3.25^{mm}; breadth of same, 1^{mm}; length of wing, 2.5^{mma}; breadth, 0.8^{mm}; length of hind femora, 0.7^{mm}; hind tibix, 0.75^{mm}.

Florissant. One specimen, No. 7561.

Family APHIDES Leach.

One would hardly suppose that objects of such extreme delicacy and minute size as plant lice would be found in a fossil state. Yet they are by no means infrequent, and have even been found in the Secondary deposits of England; for in Brodie's work two objects which appear to be wingless
forms are figured, and besides these another winged plant louse of a diminutive size, showing the characteristic venation of the group. In the Tertiary rocks a considerable number of species have been found; most of these have been referred to Aphis (twelve species) and Lachnus (eight), and so belong, like the bulk of living species, to the subfamily Aphidinæ; but the Pemphiginæ are represented by a Pemphigus from Oeningen and the Schizoneurinæ by a Schizoneura from amber. Besides occurring in these localities they have also been found at Radoboj, Aix, and Ain, in Europe, and we can now add several localities in our own country. That they are not scarce in amber is shown by Menge's collection, which in 1856 included fifty-six specimens. But these are few compared with the number from Florissant, where more than one hundred specimens have been found, about seventy of them determinable, though in the other American localitiesGreen River and Quesnel, British Columbia-only two or three specimens have occurred. Indeed, by the present publication the number of known fossil species is doubled.

There are some remarkable features about the Florissant forms. The mass of them belong, as is the case with those from the European Tertiary rocks, to the Aphidinæ proper. But both here and in the Schizoneurinæ, to which the remainder appertain, we are met by two remarkable facts, one that the variation in the neuration of the wings is very. much greater than occurs among the genera of living Aphidinæ and Schizoneurinæ, and greater also than occurs in the known Tertiary forms of Europe, requiring the establishment of a large number of genera to represent this variation; and, second, that at the same time there is one feature of their neuration in which, without an exception, they uniformly agree, and differ not only from the modern types but from the European Tertiary insects. This feature is the great length and slenderness of the stigmatic cell, due to the removal of the base of the stigmatic vein to the middle (or to before the middle, sometimes even to the base) of the long and slender stigma, and its slight curvature; it is a fact of particular interest in this connection that in the only wing we know from the Secondary rocks precisely this feature occurs, as illustrated in Brodie's work (see Pl. 4, Fig. 3). So, too, the cubital space is largely coriaceous, so that the postcostal vein may be considered as exceedingly broad and merging eventually, without the intervening lack of opacity, into the stigma proper. As a general rule the wings are also very long and narrow and the legs exceedingly long. In all these charac-
teristics the American plant lice appear as a rule to differ from forms so far described from the European Tertiaries. The single winged species figured by Berendt from amber, however, shows precisely this character us fir as the length of the stigmatic cell is concerned, which is about two-fiftlis the length of the wing. These figures are incorrectly copied by Buckton, with the remark that the neuration is alonormal, which it certainly is in his figure. It will be interesting to know whetber the other species of the Baltic amber will show a similar departure from the condition of the stigmatic cell in modern types. Not a single one of the Florissant forms can be referred to an existing genus.

> Table of the genera of Aphides.

[^34]15. Pterostigma.

1. CATANEURA gen. nov. ($\kappa \alpha \tau \alpha \dot{\alpha}, v \varepsilon v \rho \alpha \dot{)}$).

Head very small, apparently destitute of frontal tubercles. Antenuæ unknown. Fore wings with the stigmatic vein arising from the middle of the stigma. Cubital vein twice forked, the first time for from its origin, which is ruar the middle of the proximal half of the space between the base of the first oblique and stigmatic veins, the second time about as far beyond the origin of the stigmatic as that is beyond the first.fork of the cubital vein. The second oblique vein arises a little nearer the first oblique than the cubital vein, the first at a slightly less angle, the first discoidal cell between them about three times as broad on the lind margin as at the base. Legs moderately slender, the hind femora about half as long as the fore wings. Abdomen broad ovate, apparently with a shoit and stout cauda.

Table of the species of Cataneura.

First discoidal cell more transverse than longitudina); oubital vein very distant from the sligmatic, approanhing the second oblique vein..1. C. absens. First disooidal ceil as longitudiual as transverse; oubital vein approximating the stigmatio rather than the seoond obilque veln. ..2. C. Nileyi.

1. Cataneura absens.

The single specimen shows little beside the wings folded flatly over the back, but the head and thorax and one of the femora are also preserved. The fore wing is about three times as long as broad. The first oblique vein is straight and very long, parting at the postcostal at an angle of about thirty-five degrees; second oblique vein slightly sinuous, parting from the postcostal at an angle of about forty-five degrees; the first discoidal cell between them very long considering that it is more transverse than longitudinal, the base moderately narrow, the apex, as measured on the hind margin, about three times as broad as the base. Cubital vein taking an exceptionally low course, so as to be very distant from the stigmatic vein throughout, first forking half-way to the hind border, then bent outward. Stigmatic vein arcuate and divergent at base.

Length of body, 4^{mm}; of fore wing, 6.5^{mm}.
Florissant. One specimen, No. 607.

2. Cataneura rileyl.

The head with part of the antennæ, the thorax with most of the legs and one wing, and, obscurely, the abdomen are preserved in the single example known. The fore wing is about three and a half times longer than
broad. The first oblique vein is straight and parts from the postcostal at scarcely more than forty five degrees, and the second oblique, which is also straight, at as little less, the first. discoidal cell being, nevertheless, only moderately long and narrow, and more than three times as broad on the hind margin as at buse. Cubital vein broadly arcuate, occupying the middle of the space assigned to it, first forking at scarcely more than a third way to the hind margin and ayain at less than half-way to the tip. Stigmatic vein parting very narrowly from the stigma, so that the stigmatic cell is very slender and nearly or quite a third the length of the wing.

Length of body, 4^{mm}; of fore wing, 6^{mm}.
Named for Dr. Charles Valentine Riley, whose researches on the grape root aphid, Phylloxera, to mention only this, are widely known.

Florissant. One specimen, No. 2916.

2 ARCHILACHNUS Buckton.

Arohilachnus Buckt., Monogr. Brit. Aphides, IV, 177 (1883).

The head appears to be without frontal tubercles, and the antennæ are slender, almost as long as the body (perhaps longer), with the basal joints as in Aplis. Fore wings with the stigmatic vein arising from the middle of the stigma. Cubital vein twice forked, the first time at a moderate distance from its origin, which is near the middle of the proximal half of the space between the base of the first oblique and stigmatic veins, the second time as far beyond the origin of the stigmatic as it is beyond the first fork of the cubital vein. Second oblique vein arising a little nearer the first oblique than the cubital vein, at an angle of about forty-five degrees with the postcostal, the first at a distinctly less angle, so that the first discoidal cell between them is about six times as broad on the hind margin as at the base. Legs moderately stout, the hind pair about as. long as the fore wings. Abdomen broad ovate with a short and moderately stout cauda.

The genus was not separately characterized by Buckton. I do not see any special relation to Lachnus.

Table of the specipe of Arohilachnus.

Large and stont species. Cubital vein bent at its firat furcation, otherwise ntraight...1. A. pensatus. Small and slender species. Cubital vein gently arouate throughout the tirst two-thirds of its course.
2. 4. mudgoi.

1. Archilachinus pennatus.

Pl. 18, Figs. 1, 15-17.
Arehilachnue pennatus Buckt., Monogr. Brit. Aphides, IV, 177, PI. 133, Fig. 3 (1883).
As preserved, the head and thorax are uniform and considerably darker than the abdomen. The body is stout. Fore wing more than two and n half times longer than broad, with the posteostal vein thick, straight, and uniform, running into the very long and fusiform stigma, and separated by a narrow space from the margin, which is gently convex, and so a little more distant at base. First oblique vein arising at one-third the distance from the base of the wing to the stigmatic vein, straight, parting from the postcostal at an angle of about sixty degrees; second oblique vein arising very close to the first, straight, or very slightly sinuate or arcuate, parting from the postcostal at an angle of forty-five degrees; first discoidal cell much widened distally, being five or six times broader on the hind margin than at base. Cabital vein arising twice as far from the second as the second from the first oblique vein, with its first branch completeiy parallel to the second oblique vein, first forking at a trifle more than one-third the way out, and again about half-way from the first fork to the apex of the wing, varying in individuals, at the first fork bent slightly but beyond almost perfectly straight. The stigmatic vein is arcuate and parts sometimes widely, sometimes narrowly from the stigma, so that the stigmatic cell is of variable slenderness, though always more than a third as long as the wing.

Length of body, 4^{mm}; of fore wing, 6.6^{mm}; hind femora, 2.5^{mm}; hind tibiæ, 3.75^{mm}.

Florissant. Five specimens, Nos. 177, 4615, 6993, 9221, 12727.

2. Archilachnus mudgei.

The single specimen is excellently preserved on a dorsal view, except that the overlapping fore wings are somewhat confused, lying upon the top of the back, and that one wing is doubled upon itself. The body is rather slender, the head and thorax darker than the scarcely perceptible abdomen and apparently mottled. Fore wings with the postcostal vein and stigma as in A. pennatus, the first oblique vein arising at a litule more than onethird the distance from the base of the wing to the stigmatic vein, but otherwise like the second oblique vein, as in A. pennatus; the first discoidal cell
is much more open, but how much the condition of the specimen does not show. Cubitul vein urising scarcely fiuther from the second oblique vein than the lutter is from the first, forking much as in the preceding species, but passing in a gently arcuate course midway in the space allotted to it. 'Ihe stigmatic vein parts gently with a considerable arcuntion, but not very widely, from the stigma, the cell being apparently nbout one-third the length of the wing.

Length of body, 3.5^{mm}; fore wing, 4.75^{mm}; hind femora, 2.4^{mm}; hind tibia and tursi, 4.6^{mm}.

In memory of Benjamin Franklin Mudge, the Kansas geologist and paieontologist.

Florissant. One specimen, No. 13328.

3. GERANCHON gen. nov. ($ү \varepsilon \rho \alpha \iota o ̀ s, \dot{\alpha} y \kappa a \dot{v}$).

Wings only known. Fore wing with the stigmatic vein arising from the middle of the stigma. Cubital vein twice forked, the first time very far from its origin, which is near the middle of the proximal half of the space between the base of the first oblique and the stigmatic veins, the second time scarcely behind the base of the stigmatic vein. Second oblique vein arising muny times nearer the first oblique than the cubital vein and close to the former, the first discoidal cell between them about ten times broader on the hind margin than at the base.

Table of the species of Geranchon.
Cubital vein runniug considerably below the middle of its area, its branches straight1. G. davisii. Cubital vein runaing through the mirdle of its area, its braucbes arcuate.................2. G. petrorum.

1. Geranchon davisii.

Only the wing is preserved and the base is broken, but it may be judged to have been fully three times as long as broad. The postcostal vein is very broad and straight, merging into the slightly thickened fusiform stigma; next the base it is rather far removed from the costal nargin. The first oblique vein parts at an angle of about sixty degrees with the postcostal and is straight; the second at an angle of forty-five degrees and is straight nearly to the tip, which is lost but appears to bend outward, so that the first discoidal cell between them, very narrow at base and broadening at tip, is excessively different in width at its two extremities. Cubital vein faint at its
origin, but apparently arising four timos as firr from the second oblique as the second from the first; it forks at somewhent less than lualf-way to the hind border and runs by a sories of bends at along distance below the midaite of its area, forking a second time nearly as far from the first as the first from its root. The stigmatic vein is arcuate and diverges rather widely from the stigma, but the length of the stigmatic cell can not be determined,

Length of fragment, 3.5^{mm}; probable length of wing 4.4^{mm}; breadth, 1.4^{mm}.

Named for Prof. William Morris Davis, of Harvard College.
Florissant. One specimen, No. 14053.
2. Geranchon petrorum.

Pl. 2, Fig. 6.
Lachnus petrorum Sendd., Rep. Progr. Geol. Surv. Can., 1875-'76, 279 (1877).
A fragment of a wing is suffici, 2tly preserved to show that it should be referred here, while the exact position of the veins is different from that of the other species. The wing is unusually slender ; the postcostal vein thickens apicully as it merges in the stigma; the first oblique vein is straight; the second originates very close to the first, runs parallel to it only at the very base, and then bends pretty strongly outward, striking the margin of the wing nearly as for from the tip of the first oblique vein us half its own length; the origin oi the cubital vein is not clear, but it is apparently not far out, in which case it runs parallel with the second oblique vein until it branches in the middle of the wing; the lower of these branches almost retains the course of the basal part of the veins, but diverges slightly from the second oblique vein, terminating very far from it on the border of the wing; the main stem, diverging from the first branch rather widely at first, almost at once runs parallel to the lower branch, and when it has continued a less distance than the main vein before its furcation, divides, the two forks diverging but slightly at base, and then very gradually converging until they are no farther apart than the bases of the firat and second oblique veins, and the upper fork almost touches the stigmatic vein (probably by some displacement); together they diverge a little from the lower branch of the cubital vein; the stigmatic vein is very conspicuous, passing by a broad sweep into the heart of the wing, diverging from the stigma at a greater
angle than does the second oblique; unfortunately the tip of the wing is broken, and more than the apical half of the outer border is also wanting.

Length of fragment, 4^{mm}; estirated length of wing, 5^{mm}; width of same, 1.65^{mm}.

Quesnel, British Columbis. Dr. G. M. Dawson. One specimen, No. 19.

4. SBENAP'HIS gen. nov. ($\sigma \beta \beta^{\prime} v \nu v \mu$, Aphis).

Head without frontal iubercles, the front thansverse. Antennæ very slender, at least nearly as long as the body. Fore wings with the stigmat: 3 veii arising from the middle of the stigma. Cubital vein twice forked, the first tince at a moderate distance from its origin, which is at or a trifle outside the middle of the space between the first oblique and stigmatic veins, the second time opposite or scarcely beyond the base of the stigmatic vein. Second oblique vein arising nearer the first oblique than the cubital vein but at varying relative distances, always close to the first oblique vein, the first discoidal cell between them being four or five times broader on the hind margin than at base. Legs slender, varying in length but shorter thatn the fore wings. Abdomen ovate. Some specimens seem to shew a short stout cauda, which others arpear to lack, and occasionally short cornicles may be detected which are apparently of uniform diameter.

Table of the species of Sbenaphis.
Second obliqne vein arising midway, or mbont midway, between the first oblique and cubital veins.
Second oblique vein arising much nearer the first oblique than the cubital vein.
Base of sccond discoidnl ceil twice as wide as that of the first; cubital zeiu running barely neazer the stigmatio than the second oblique vein ...2. S. whleri.
Base of second diecoldal cell nearly thrice as wide as that of the first; onbitai vein rnnning very mnch closer to the stigmatic thmn to the second obliqne vein 3. S. lases.

Sbenaphis quesneli.

$$
\text { Pl. 2, Figs. 4, 5; Pl. 18, Fig. } 12 .
$$

Lachnus quesneli Scudd., Rep. Progr. Geol. Surv. Can.. 1876-77; 461-452 (1878).
The original description, with certain omissions and changes to correspond with the phraseology here employed, was ac follows:

The remains which are preserved are a pair of overlapping front wings with torn euges, but with all the imporiant parts of the neuration, and some of the vains of the hind wings. The body is completely crushed and all
other members are absent. The parts which can be studied are thus very similar to those found in Geranchon petrorum, described above, from the same bed. Owing to the absence of the margin, the shape of the wing can not be determined The postcostal vein is thick throughout, but broadens apically; the first and second oblique veins are both perfectly straight, originating scarcely farther apart than the width of the postcostal vein and diverging considerably. From the position in which the wings are preserve? (one front wing almost exactly covering the other, and the two inclos between them both hind wings, also almost exactly superimposed) the : "sit and second discoidal veins of the two front wings and the two oblique vet...s. of each hind wing form a medley of almost confluent lines, so that it is a little difficult to determine to which of the four wings and to what part of that wing each of the eight veins belongs; regarding the veins of the hind wings there may, therefore, be some error in the statement to be made, but there can be little doubt of the position and relation of the veins of the front wing, which appears to lie uppermost. The cubital vein originates at a distance beyond the base of the second oblique barely greater than the distance at which the latter is placed from the first; it makes an angle with the postcostal vein of tess than forty-five degrees; is nowhere in the least degree sinuous, but is bent very slightly forward at each forking, rather more at its first than at its second; sends off its first branch at slightly less than a millimeter fromits base; forms with it an angle of twenty-five degrees, and at an equal distance farther on emits its second branch at a similar or slightly smaller angle; both the branches are perfectly straight, and the upper branch of the last fork lies midway between the lower branch and the stigmatic vein; the latter is similar to that of G. petrorum from the same beds, but is not so strongly curved; the first branch of the cubital vein also divides equally the space between the second oblique and the lower branch of the last fork of the cubital vein. The oblique veins of the hind wing originate at no greater distance apart than the first and second oblique veins of the front wings, are a little less divergent than they, and equally straight.

Length of fragment of wing, 5^{nmm}; its probable complete length, 6^{mm}; breadth of same, 1.35^{mm}; distance from base of front wing to the origin of the stigmatic vein, 4.1^{mm}.

To this may be added, from specimens obtained at Florissant, that the body is stout and plump and the hind femora as long as the breadth
of the thorax. In one specimen the abdomen is narrower than, in another broader than, in a third of the same width as, the thorax. The first oblique vein makes an angle with the postcostal of about fifty-five degrees and is straight; the second one of forty-five degrees and is sometimes straight, sometimes arcuate, and the base of the first discoidal cell being very narrow it is about four or five times broader on the hind margin than there.

Length of body, $2.75-4^{\mathrm{mm}}$; of fore wing, $3.5-5.5^{\mathrm{mm}}$, the last partly estimated.

Quesnel, British Columbia. Dr. G. M. Dawson. One specimen, No. 34 ${ }^{\text {a }}$. Florissant, Colorado. Three specimens, Nos. 2234, 3577, 9269.

2. Sbenaphis uhleri.

Body large, stout, the head and thorax darker than the abdomen, which is broader than they. Wings three times as long as broad, the postcostal straight, thickened uniformly, and running into the very long and considerably fusiform stigma. First oblique vein straight, set at an angle of fiftyfive degrees with the postcostal; the second oblique vein sinuous, placed at an angle of forty-five degrees with the postcostal; the two veins moderately close only at base, so that the first discoidal cell is four or five times broader on the hind margin. Cubital vein faint at base but originating about twice as far from the second oblique vein as that from the first, arcuate on its basal half, straight and longitudinal on its apical, occupying with its branches the middle of its allotted space, first forking at less than one-third the distance to the hind margin, again opposite the base of the stigmatic vein and less than half-way from its own first fork to the apex of the wing; in its passage it approaches the stigmatic only a little more closely than the second oblique vein. Stigmatic vein parting very slightly and gradually from the stigma, so that the stigmatic cell is very narrow and about one-third the length of the wing.

Length of body, 4.75^{mm}; of fore wing, 6.75^{mm}; breadth of same, 2.25^{mm}.
Dedicated to my good friend, Mr. Philip R. Uhler, without whose faichful and disinterested work the student of American Hemiptera would he sadly at a loss.

Florissant. Two specimens, Nos. 2327, 11202.

3. Sbenaphis lassa.

This small species is represented by a single individual, with nearly all the legs preserved in an unusual manner, but the wings not so completely. The body is black throughout, the hind femora longer than the abdomen, the hind tibiæ as long as the body. The wings have the postcostal vein and stigma precisely as in the last species. The first oblique vein is straight or at the tip slightly arcuate, parting from the postcostal at an angle of about fifty degrees, the second oblique vein distinctly arcuate on its apical half, parting from the postcostal at an angle of forty-five degrees, and separated from the first by a slightly wider interval than in the other species described ; the first discoidal cell is about four times as broad on the hind margin as at the base. The cubital vein, arising nearly three times as far from the second oblique vein as the latter is from the first, takes a course above the middle of the area left to it, approaching very close to the stigmatic vein; it forks first about quar:or-way to the hind margin and again about opposite the stigmatic vein, which, with the stigmatic cell, is as in S. uhleri.

Length of body, $\mathbf{3 . 2 5}{ }^{\mathrm{mm}}$; fore wing, 5.5^{mm}; fore femora, 1.15^{mm}; fore tibiæ, 1.7^{mm}; middle femora, 1.4^{mm}; middle tibiæ, 2.3^{mm}; hind femora, 2^{mm}; hind tibiæ, $3.25{ }^{\mathrm{mm}}$.

Florissant. One specimen, No. 12994.

5. APHANTAPHIS gen. nov. (α pavzos, l phis).

Head without frontal tubercles, the antennæ being inserted in sublateral pits; they are longer than the fore wings, very slender indeed, the third ioint very long. Fore wings with the stigmatic vein arising from the mid le of an exceedingly slender and tapering stigma, the stigmatic cell nearty half the length of the wing. Cubital vein twice forked, the first time at a v ry slight distance from its origin, which is scarcely before the middle of the space between the first obliqua and stigmatic veins, the second time hulf way thence to the tip of the wing. Second oblique vein arising slightly nearer the cubital than the first oblique vein, the first so near the base of the wing as to be very short, and the first discoidal cell between them only about twice as wide at the hind margin as at base. Legs long and slender, the hind tibiæ and tarsi nearly equaling the length of the wings.

A single species is known.

Aphantaphis exsuca.

The fore wing, which is exceptionally preserved, is long oval, almost three times as long as broad; the postcostal and all the space between it and the costal margin filled with pigment, so as to be exceptionally broad, tapering until it expands again into the long fusiform stigma. First obligue vein very close to the base, short, straight, parting from the postcostal at an angle of at least seventy degrees, not twice as long as the breadth of the base of the first discoidal cell ; second oblique vein arising far from the îrst at an angle of fifty degrees, straight until near the tip, where it bends considerably to meet the margin, so that the first discoidal cell is hardly more than twice as broad on the hind margin as at the base. Cubital vein feeble, but uniform throughout; hardly so far removed from the second oblique vein at its origin as that from the first, first forking hardly one-sixth way to the hind margin, again fully half-way to the tip of the wing, running slightly nearer the stigmatic than the second oblique vein. Stigmatic vein arising opposite a point about one-third the distance from the first to the second forking of the cubital vein or less, far before the middle of the stigma, having a broad sweep, so that the stigmatic cell, though not narrow, is four-ninths the length of the wing.

Length of fore wing, 4.5^{wm}; breadth of same, $1.6^{\dot{m} \mathrm{~m}}$; length of antennæ, 6^{mu}; hind tibiæ and tarsi, 4^{mm}.

Florissant. One specimen, No. 1215.

6. SIPHONOPHOROIDES Buckton.

Siphonophoroides (pars) Buckton, Monogr. Brit. Aphides, IV, 176 (1883).

Antennæ inserted on distinct and prominent frontal tubercles, the first two joints forming together a stout, subconical mass more than twice as long as broad; the remainder of the antennæ slender, filiform, much longer than the body, as long as the fore wings, all the joints and especially the third excessively long. Fore wings with the stigmatic vein arising from the middle of the very long and slender fusiform stigma. Cubital vein twice forked, he first time tolerably far from its origin, which is usually at about one-third the distance from the base of the first oblique to that of the stigmatic vein, the second time about as far again beyond the stigmatic vein as that is beyond the first fork of the cubital vein. Second oblique vein aris-
ing somewhat but not greatly nearer the first oblique than the cubital vein, the first at a considerably wider angle, so that the first discoidal cell between them is from three or four to six or eight times as broad on the hind margin as at the base. Legs slender, the hind femora half as long as the fore wings. Abdomen ovate, rather broad, well rounded apically, with very short and stout cornicles in at least one species, but no cauda.

Buckton gave no characteristics of his genus apart from the specific description; his supposition that the abdomen was pointed was due to his taking the faint signs of the first oblique veins as the sides of the abdomen in the figure which formed the basis of his determination.

Table of the species of Siphonophoroidee.
Second oblique vein parting from tho posteostal at an angle of torty-five degrees...1. S. antiqua. Second oblique vein parting from the postcostal at au angle of thirty-ive degrees.

First branch of cubital voln dlatant from the second oblique velu.2. S. rafinesquei.
First branch of eubital veln elosely approximated to the second obllque vein3. S. propingua.
Siphonophoroides antiqua.
Pl. 18, Figs. 3, 5, 7, 10.
Siphonophoroidet antiqua Bnckton, Monogr. Brlt. Aphides, IV, 176, PI. 133, Fig. 1 (1883).
This is far the most common of the Florissant Aphides, and many of the specimens are very fairly preserved. They are uniformly dark colored, or the abdomen may be a little paler or more obscure than the rest of the body. The wings are pretty slender; fully three times as long as broad. The postcostal vein is moderately thick, uniform, and running without break into the very long fusiform stigma; it is separated by a moderately wide and regularly decreasing space from the costal margin. The first oblique vein is straight and parts from the postcostal at an angle of fully sixty degrees; the second oblique is straight in its basal half, arcuate or sinuate beyond, parting from the postcostal at an angle of about forty-five degrees at a moderate distance from the first oblique vein, the first discoidal cell between them being about four times as broad on the hind margin as at the base. Cubital vein arising farther, generally about half as far again, sometimes almost twice as far, from the second oblique as that from the first oblique vein, very longitudinal in course, first forking at about twofifths the distance to the lind margin and again at about half-way between the first forking and the tip of the wing. running about twice as near the stigmatic as the second oblique vein. Stigmatic vein arising nearer the first
than the second fork of the cubital, sometimes to a considerable degree arcuate at base but beyond horizontal, so that the stigmatic cell is both long and slender, from a third to two-fifths the length of the wing. Hind legs about as long as the antennæ.

Length of body, 4^{mm}; fore wing, $5-6^{\mathrm{mm}}$; breadth of same, $1.5-2^{\mathrm{mm}}$; longth of antennex, 5.5^{mm}; legs of one individual as follows: fore femora, 1.5^{mm}; fore tibiæ and tarsi, 2.25^{mm}; middle femora, 1.25^{mm}; middle tibie and tarsi, 2.15^{mm}; hind femora, 2. 25^{mm}; hind tibie and tarsi, 3^{mm}.

Florissant. Fifteen specimens, Nos. 1079, 1339, 1867, 2396, 2881, $3029,5747,7934,8889,9574,10205,11562,13562,14450$, and, from the Princeton Collection, 1.986. Besides these, Nos. 1703, 3284, and 5491 from Florissant, should probably be referred here.

2. SIPHONOPHOROIDES RAFINESQUEI.

The greater part of the creature, excepting the abdomen, is preserved in the single specimen obtained. The antenuæ are nearly as long as the hind legs and considerably longer than the wings. The wings are very slender, fully four times longer than broad. The postcostal except at base is straight, slender, and runs uninterruptedly into the exceptionally slender fusiform stigma. The first oblique vein is straight, or slightly arcuate, and parts from the postcostal at an angle of nearly sixty degrees; the second oblique vein is also straight or slightly arcuate, is moderately distant at base from the first oblique, and parts from the postcostal at an angle of forty-five degrees, so that the first discoidal cell is four times as broad on the hind margin as at the base. The cubital vein arises more than twice as far from the second oblique vein as that is from the first and only a little less than half-way from the first oblique to the stigmatic vein, forks about two-fifths way to the hind margin, and with its first fork runs completely parallel to and distant from the second oblique vein; it is bent at its fork and thereafter runs longitudinally, forking again about half-way to the tip and running close to the stigmatic vein. This last arises very mach nearer the first than the second cubital fork, and except at base is but little arcuate and very longitudinal, so that the stigmatic cell is exceptionally slender and nearly half as long as the wing. Legs very slender.

Length of fore wing, 5.25^{mm}; breadth of same, 1.25^{mm}; length of antennæ, 6.5^{mm}; of hind femora, 2.5^{mm}; hind tibiæ and tarsi, 3.75^{mm}.

The eccentric Constantine Rafinesque-Schmalz made the first attempt to classify American Aphides.

Florissant. One specimen, No. 1667.

3. Siphonophorohes propinqua.

The single specimen on which this species is lased is not so well preserved as the last. The antenne are broken in the middle, but were apparently of a similar length. The wings are slender, fully three times longer than hroad. The postcostal is very broad, straight, and minterrupted. The first oblique vein is straight, and parts from the postcostal at an angle of about fifty degrees ; the second is straight at base, beyond considerably arcuate, separated by a narrow distance from the first, and placed at an angle of scarcely forty degrees with the postcostal, so that the first discoidal cell between them is very long and slender, and is about four tinies as broad on the hind margin as at the base. The eubital vein arises nearly twice as far from the second oblique as that from the first, forks at rather less than one-third way to the hind margin, and is very areuate in course, so that though its first fork approaches exceptionally near the second oblique vein, the main stem reaches only twice the distance from the stigmatic vein. This last vein arises opposite a point on the cubital vein one-third way from the first to the second fork, and, strongly arcuate, passes at once far into the wing, and then becomes longitudinal, the stignatic cell being pretty large and long, about two-fifths the length of the wing. Legs very slender.

Length of fore wing, 5.5^{mm}; breadth of same, 1.5^{mm}; length of fore femora, 1.75^{mm}; fore tibix and tarsi, 2.5^{mm}; hind femora. 2.25^{mm}; hind tibie and tarsi, 4.2^{mm}.

Florissant. One specimen, No. 3738.

7. LITHAPHIS gen. nov. ($\lambda t \theta o s$, Aphis.)

Head rather small with short frontal tubercles on which the antemme are seated in close proximity. The first two joints of the leiter as in Siphonophoroides, the remainder also as there, but if anything even longer. Fore wing with the stigmatic vein arising from the middle of the stigma. Cubital vein twice forked, the first time very far from its origin (which is about a third way from the base of the first oblique to the stigmatic vein)
and about opposite the base of the stigmatic vein, the second time apparently ubont half-way to the tip of the wing. Second oblique vein arising slightly nearer the first oblique than the cubital vein, at rather more than half a right angle with the postcostal; first oblique vein parting much more widely, about eighty degrees, so that the first discoidal cell between them, very narrow at base, is six or more times wider there than on the hind margin. Legs moderately slender, the hind femora shorter than the abdomen, which is no broader than the thorax, twice as long as broad, and rounded.

A single snecies is known.

Lithaphis diruta.

The body appears to have been pretty uniformly colored. The proportions of the wings can not be determined, but the insect was one of the sualler species. The postcostal is parallel with the costa, moderately slender, especinlly just before the long and tapering stigma. The first oblique vein is very transverso, parting at an angle of about eighty degrees with the postcostal, and straight; the second oblique vein, arising rather close to the first, is slightly arcuate and parts from the postcostal at an ancle of fortyfive degrees, so that the first discoidal cell is many times broader on the hind margin than at the base. The cubital vein arises less than twice as far beyond the second oblique vein as that beyond the first, is rather straight and stiff, first forks at less than a third way to the hind margin and again about half-way to the tip, approaching the stigmatic rather than the second oblique vein. The stigmatic vein urises scarcely beyond the first furcation of the cubital, and, strongly arcuate at first, reaches widely into the wing, the stigmatic cell being large and long.

Length of body, 3^{mm}; antenne, 5.5^{mm}; wing (probable), 4.5^{mm}.
Florissant. 'Three specimens, Nos. 3785, 12112, 12476. A specimen from Green River, No. 82, Prof. L. A. Lee, may perhaps helong here.

8. TEPHRAPHIS gen. nov. (тє甲рóc, Aphis).

Siphonophoroides (pars) Buckton, Monegr. Brit. Aphides, IV, 176 (1883).
Head apparently much as in Lithaphis, lout the front tubercles are uncertain. Antennæ constructed basally as there, separated at base by their own width, much longer than the fore wing. Fore wing with the stigmatic vein arising rather before the middle of the unusually broad
stigma. Cubital vein twice forked, the first time very near to its origin (which is about two-thirds the distance from the first oblique to the stigmatic vein), and about opposite the base of the stigmatic vein, the second time at varying distances from the first. Second oblique vein a little nearer the first oblique than the stigmatic vein, unusually transverse, the first scarcely more longitudinal, so that the first discoidal cell botween them, broad at base, is not more than twice as broad on the hind margin. Legs slender, the hind fomora nearly as long as the abdomen, the rest of the leg about two-thirds the longth of the fore wings. Abdomen short oval, well rounded apically, no broader than the thorax. Both species are very small.

Table of the apecies of Tephraphis.
First discoidal cell only half as broad again on the hind margin ns at baso, the first and second oblique veins very ueariy paraliel 1. T. simplex. First discoidal cell twioo as broad on the hind margin as at base, the first and second obliqne velus distinctly divergent 2. T. walshif.

1. Tephraphis simplex.

Pl. 18, Fig. 4.
Siphonophorọides simplex Buckton, Monogr. Brit. Aphldes, IV, 176-177, P1. 133, Fig. 2 (1883).
This is one of the smallest of the Florissant species. The antennæ, twice as long as the body, taper to a slender thread, scarcely visible on the stone. The body has the abdomen very pale and indistinct, but the rest much darker, and the legs are uniformly dark. The wings are slender, at least three times as long as broad. The postcostal vein is very heavy and straight and the stigma, hardly broader, is very long. The first oblique vein is straight and parts from the postcostal at an angle of about fifty-five degrees; the second oblique is very distant from the first, parts from the postcostal at an angle of about fifty degrees, and, at first straight and therefore almost parallel to the first oblique vein, is afterwards a little arcuate, so that the first discoidal cell is about half as broad again on the hind margin as at its base. The cubital vein, a little farther removed from the second oblique vein than the latter is from the first, runs with its first fork in a straight course, parallel to the second oblique vein, forks at one-fourth the distance from the base, and is considerably angulated, running afterwards completely parallel to the stigmatic vein, and forking again about half-way to the tip of the wing. Stigmatic vein arising closely subsequent to the first forking of the cubital vein, parting abruptly and curving
strongly, passing a variable distance into the body of the wing, and then running longitudinally; it nowhere approaches closely the cubital vein, and the stigmatic cell is at the most scarcely one-third the length of the wing.

Length of body, 2.4^{mm}; antenne, 4.75^{mm}; wings, $3.5-4^{\mathrm{mm}}$; fore femora, 1^{mm}; fore tibies and tarsi, 1.25^{mm}; middle tibie and tarsi, 1.5^{mm}; hind femora, 1.2^{mm}; hind tibie and tarsi, 2^{mm}.

Florissant. Three specimens, Nos. 519, 670², 2153.

2. Tephraphes walshi.

Pl. 18, Fig. 18.
Little is preserved but the overlapping fore wings and these imperfectly. They show the insect to have been very small with slender wings, probably just about three times as long as broad. The first oblique vein is straight, and parts from the postcostal at an angle of fifty degrees; the second is also straight and parts at an angle of forty degrees, and the distance lintween the two being great, the first discoidal cell is wide, but on the hind margin twice as wide as at base. The cubital vein arises only a little farther from the second oblique vein than it is from the first, and at about two-thirds the distance from the first oblique to the stigmatic vein ; with its first branch it is completely parallel to the second oblique vein and straight, forking first at about one-third of the distunce to the hind margin ; it is not abruptly bent at this fork, but curves rather rapidly to gain a longitudinal course, and forks again a little less than half-way to the tip of the wing. The stigmatic vein arises scarcely beyond the first fork of the cubital and curves rapidly to a longitudinal course, but the relative length of the slender stigmatic cell can hardly be determined.

Length of specimen, 4.22^{mm}; probable length of wing, 3.5^{mm}.
The late Benjamin D. Walsh was one of the first students of our Aphides.

Florissant. One specimen, No. 8085, lying entangled with Pterostigma recurvum.

9. APHIDOPSIS gen. nov. (Aphis, ${ }^{2} \psi / 5$).

Head provided with short, broad, and uniform frontal tubercles, between which, a space more than equaling the breadth of the antennæ, the front is rounded and slightly advanced. First joint of antennæ distinctly narrower than the frontal tubercles, scarcely longer than broad, scarcely narrow-
ing apically, the second much smaller, subconical, the remainder very slender, filiform, much longer than the fore wings, the third joint alone as long as the whole body. Fore wings with the stigmatic vein more than usually longitudinal, arising from before the middle of the very narrow and elongated stigmn, so that the very narrow stigmatic cell is more than a third as long as the wing. Cubital vein twice forked, the first time far from its origin (n third or half way to the extremity of the first branch), which is usually about midway hotween the first oblique and cubital veins, but varies to some extent, and in any cuse only a little before the origin of the stigmatic vein, the second time not far from half-way from the first forking to the apex of the wing. Second oblique vein arising nearer the first oblique than the stigmatic vein, sometimes only to a slight extent, sometimes twice as near it, generally very straight, the first oblique at such an angle with it that the first discoidal cell between them, pretty wide at base, is from three to six times as wide on the hind margin of the wing. Legs very slender, the hind femora fully reaching the tip of the abdomen, the rest of the hind legs only a little shorter than the fore wings. Abdomen rounded ovate, somewhat broader than the thorax, fullest behind, with an extremely short and rather stout cauda, and very short and remarkably stout conical cornicles.

Table of the species of Aphidopsis.
Fore winge more than three millimeters long.
Cubital vein arcuate throughout.
First cubital branch much nearer to the sccond cubital branoh than to the second obliqne veis. Cubltal vein approachigg the stigmatic vein very olosely; fore legs longer than midde
legs..1. A. subterna. Cubital vein not approaching the stigmatic vein very closely; fore lege shorter than middle lege.. . . A. hargeri. First cubital branch equidıstant from second cubital branch and second oblique vein.
3. d. Iutaria.

Cubital vein angularly bent at furcations.
Expanse of wiugs nine millimeters or less ; first discoidal cell normaliy divergent.
4. A. margarum.

Expanse of wings eieven millimeters or more ; first discoidal cell not very divergent.
5. A. dalli.

Fore wings less than three mililmeters long... A. emaciata.

1. Aphidopsis subterna.

Head and thorax testaceous, slightly mottled with pallid. Antennæ as long as the fore wings. Wings slightly less than three times as long as broad, the postcostal moderately light, running uninterruptedly into the very slender elongated stigma. First transverse vein very slender, nearly
straight, but slightly arcuate, parting from the postcostal at an angle of at least fifty degrees; second oblique vein hardly heavier, very feebly arcurte, and parting from the postcostal at an angle of forty-fivo degrees; it is moderately distant at base from the first oblique vein, so thint the first dis. coidnl cell between them is only about four times broader on the hind margin than at the base. Cubital vein arising half as far again from the second oblique as it from the first oblique vein and only about one-third way from the latter to the stigmatic vein; it forks about one-third way to the hind margin, and its first fork is completely parallel to and somowhat distant from the second oblique vein; near its second fork it appronches twice as near the stigmatic vein as the recond oblique vein. Stigmatic vein not reaching far into the wing, arising from a quirter to a third the distance from the first to the second furcation of the cahital vein, so that the stigmatic cell is slender and about two-fifths the length of tho ving. Femora pale, tibie and tarsi dark. Abdomen plump oval, of a pale coior, mottled with large, roundish, dark spots arranged in mediodorsal and lateral rows on the posterior portion of the segments ; there are faint indications of a slender, slight, and rather short canda, and distinct marks of cornicles in conical hillocks at the extreme outer sides of the here angulated abdomen.

Length of body, 3.75^{mm}; antennæ, 5^{nmm}; fore wings, 5^{mm}; fore femora, 1.3^{mm}; fore tibie and tarsi, 2.5^{mm}; middle femorn, 1.1^{mm}; middle tibire and tarsi, 2.4^{mm}; hind femora, 2^{mm}; hind tibiae and tarsi, 3.3^{mm}.

Florissant. Six specimens, Nos. 219, 740, 1307, 2151, 7426, 8896.

2. Aphidopsis hargert.

The single specimen which represents this species is preserved upon a side view, with the wings somewhat crumpled. Enough, however, can be seen to distinguish it from the preceding species in that the cubital vein runs at the ordinary distance from the stigmatic, though still distant from the second oblique vein, and though the stigmatic vein descends as deeply into the wing as in A. subterna. The origin of all the veins is the same, but the second oblique is more arcuate and its arcuation confined mostly to the apical half. But the principal difference is found in the relative length of the legs, which though stouter are also longer and have the middle pair slightly longer than the fore pair, instead of the reverse. The legs are remarkably preserved and show the single jointed tarsus and claws with great distinctness, showing them to be constructed much as in Callipterus.

Length of body, 3.5^{mm}; wings (partly estimated), 4.75^{mm}; fore legs, 4.1^{mm}; femur, 1.45^{mm}; tibia, 2.25^{nmm}; tursus, 0.4^{mm}; middle legs, 4.55^{mm}; femur, 1.75^{mm}; tibia, 2.4^{mnn}; tursus, 0.4^{mm}; lind legs, 6.5^{mm}; femur, 2^{mm}; tibia, 4^{mm}; tarsus, 0.5^{mm}.

To the memory of the faithful paleontologist, Dr. Oscar Harger, of New Haven.

Florissant. One specimen, No. 11360.

3. Apiidopsis lutaria.

Head and thorax rather darker than the abdomen, the femora rather lighter than the tibie. Antenue a little longer than the fore wings. Wings fully three times longer than broad, the postcostal vein stout and running with scarcely any diminution of size into the long and very slender stigma. First oblique vein straight or scarcely arcuate, parting from the postcostal at an angle of fifty degrees; second oblique vein regularly arcuate, parting from the postcostal rein at an angle of forty-five. degrees, and moderately distant from the first oblique at base, so that the first discoidal cell between them is ubont three or four times broader on the hind margin than at the base. The cubital vein is apparently about as far from the second oblique vein us it from the first oblique, first forks at about one-third way to the hind margin, and has throughout a gently arcuate curve by which it approaches pretty close to the stigmatic vein. This arises far back in the stigma, almost reaching the first cubital fork, is gently arcuate and has a very longitudinal course, so that the stigmatic cell is both slender and very long, not much less than half as long as the wing. Legs very slender indeed, the fore pair nearly as long as the wings and longer than the middle pair, the hind tibix and tarsi longer than the body.

Length of body, $3.5-3.8^{\mathrm{mm}}$; antennæ, 5.75^{mm}; fore wings, 5.25^{mm}; fore legs, 4.8^{mm}; femur, 1.8^{mm}; tibia, 2.6^{mm}; tarsus, 0.4^{mm}; middle legs, 4.25^{mm}; femur, 1.6^{mm}; tibin, 2.25^{mm}; tarsus, 0.4^{mm}; hind legs, 6.6^{mm}; femur, 2.6^{mm}; tibia and taisus, 4^{mm}.

Florissant. Three specimens, Nos. 7433, 8773, and from the Princeton Collection, 1.834 .
4. Aphidopsis margarum.

1'I. 18, Fig. 8.
This small and slender species is very dark, almost black as preserved, and pretty uniform. The antenne so far as preserved are excessively slender and rather shorter than the wings. Wings about three times as long as broad, the postcostal vein heavy, uniform, and straight, meroing into the stigma, which is twice as broad, but very long and slenderly fusiform The first oblique vein is perfectly straight and parts from the postcostal at an angle of fully seventy-five degrees; the second oblique vein, also perfectly straight and rather distant from the first, parts from the postcostal at an angle of furty-five degrees, so that the first discoidal cell is about three times as broad on the lind margin as at the base. Cubital vein very stiff and angular, it and both its branches being rigidly straight; at each furcation it is bent, forking first at rather more than a third way to the hind margin and again about half-way to the apex of the wing, not approaching closely to the stigmatic vein; the vein originates at more than half-way from the first oblique vein to the stigmatic. The stignatic vein arises far back, about midway between the forks of the cubital, and is very longitudinal, so that the stigmatic cell is narrow, and exceeds a third the length of the wing. Legs very slender.

Length of body, $2.5-3^{\mathrm{mm}}$; antenne, 3.4 ${ }^{\mathrm{mm}}$; wings, $3.75-4^{\mathrm{mm}}$; middle legs, 2.6^{mm}.

Florissmit. Three specimens, Nos. 5380, 12190, 12683.

5. Afhidopsis dalli.

The head and thorax darker than the tolerably uniform abdomen. Antenne at least half as long again as the body. Wings apparently abont three times as long as broad, the postcostal slender, the stigma pretty large and very long. First oblique vein straight, or nearly straight, parting from the postcostal at an angle of about fifty-five degrees; second oblique rather distant firm it, parting at an angle of forty-five degrees, and likewise nearly straight, so that the first discoidal cell between them is little more than twice as broad on the hind margin as at the base. Cubital vein arising more than twice as far from the second oblique vein as that from the first, and about midway betwien the latter and the stigmatic vein, first forking when hardly
less than half-way to the hind margin, bent at the first furcation, and passing -exceedingly close to the stigmatic vein, the upper branch of the final fork in direct continnation of the main steri. Stigmatic vein arising at about one-third the distance from the first to the seeond fureation of the cubital vein, very longitudinal, so that the stigmatic cell is rather slender and very long, fully two-fiftlis the length of the wing. Legs slender, the femora tolerably stout, the fore and middle legs of equal length in all parts.

Length of body, 3.5^{mm}; antenne, $6.5^{\mathrm{mm}} ;$ wings, $5^{\mathrm{mm}} ;$ fore legs, 3.9^{mm}; femora, 14^{mm}; tibiæ and tarsi, 2.5^{mm}; middle legs, 3.9^{mm}; femora, 1.4^{mm}; tibie and tarsi, 2.5^{mm}; hind legs, 5.1^{mm}; femora, 2.25^{mm}; tibiæ and tarsi, 2.85 mm . Another specimen had a body 4.75^{mm} long, with wings nearly 6.5^{mm} and hind femora 2.5^{mm} long.

In honor of Mr. Willian Healy Dall, the malacologist, well known also for his studies of fossil invertebrates.

Florissant. 'Two specimens, Nos. 9135, and from the Princeton Collection 1.1091.

6. Apiidopsis emaciata.

This diminutive species is represented by a single specimen with spread wings, without antemae or legs. It has an expanse of only six millimeters or less. The head and thorax are uniformly dark, the abdomen muiformly light colored. The wirgs are as long as the body and more than three times as long as broad. The postcostal vein is broad, but not darkly pigmented, as usual, and the stignai large and distiuct. First oblique vein straight, parting from the postcostal at an angle of about seventy-five degrees; the seeond oblique also straight, parting at an angle of about forty-five degrees, but though the wing is slender, the discoidal cell, narrow at base, is several times as broad on the hind margin as at base. Cubital vein arising about midway between the first oblique and stigmatic veins, and twice as far from the second oblique vein as this from the first; it first forks at some distance from the base, and is strongly areuate, approaching much nearer the stiguatic than the second oblique vein. Stigmatie vein arising very far back, almost to the first fureation of the cubital vein, and, reaching down far into the wing at the start, it gives a very large stigmatic cell, almost half as long as the wing.

Length of body, 2.5^{mm}; fore wings, 2.5^{mm}.
Florissant. One specimei: No. 6405. It comes from the uppermost layers.

Aphidopsis sp.
 Pl. 18, Fig. 11.

A single specimen and its reverse is the only instance of an immature plant-louse among the numerous remains of this family at Florissant. This is excellently preserved, and agrees so well in the strucure of the autennæ and legs and in the form of the abdomen with the species of Aphidopsis, a prevailing type among the Fhorissant forms, that I venture to place it here; the more so as in the markings of the abdomen, well represented on the plate, it bears a striking resemblance to A. subterna, the most common species of Aphidopsis. Short conical markings on the outer sides of the fifth visible abdominal segment evidently mark the position of former cornicles.

Length of body, 4^{mm}; antenne, 4^{mm}; fore legs, 3.7^{mm}; femur, 1.6^{mm}; tibia and tarstis, 2.1^{mm}; middle legs, 4^{mnn}; femmr, 1.3^{mmn}; tibiat and tarsus, 2.7^{mm}; hind legs, $3.5 ?^{\text {?mm }}$; femur, 1.25 ? $^{\mathrm{mmm}}$; tibia and tarsus, 2.25^{mnn}.

Florissant. One specinien:, Nos. 1044 and 4271.
10. ORYCTAPHIS gen. nov. (bovuror, Aphis).

Fore wings with the stigmatic vein arising from the middle of the exceedingly long and fusiform but moderately broad stigma. Cubital vein (by analogy with the others) twice forkel, the first time very far from its origin (which is nearly midway between the base of the first ohlique and stigmatic veins) and rather before than behind the base of the sigmatic vein (the plate is wrong in this respet), the second time uncertain, as the only specimens are not well preserved here. Second oblique vein arising many times nearer the first oblique than the cubital vein, so that the first disco.dal cell narrow at base is several times wider on the hind margin. Lugs moderately slender: Abdomen, as far as can be seen, relatively long and slender.

Table of the species of Oryctaphis.
Oblique vein searcely divergent in basal half, afterwards distinctly divergent. Oblique veins as divergent in basal as in apical half

1. Oryctaphis recondita.

Pl. 18, Fig. 14.

$\mathrm{H}:$? and thorax black, abdomen very light. Wings apparently rather mo 3 ! $4, \ldots$ three times as long as broad, the postcostal stout, and the stigna vity clar gated. First oblique vein straight and parting from the posteostal at an "agle of forty-five degrees; so also does the second oblique vein,
which arises in close proximity and scarcely diverges from the other in the first third of its course and then bends outward, so that the first discoidal cell must be three or fonr times broader on the hind margin than at the base. Cubital vein arising four times as far from the second oblique vein as it is from the first, and yet not quite half-way from the first oblique to the stigmatic vein; it first forks only a little less than half- way to the hind margin, and no second furcation can be seen, as the wing is broken. The stigmatic vein arises opposite the first furcation of the cubital vein and curves well down into the wing, so that the stigmatic cell is large, but its relative length can not be determined.

Length of body, 5.5^{mm}; wing, 6.25^{mm}.
Florissant. One specimen, No. 4475.

2. Oryctapilis lesueurif.

Head and thorax black, abdomen exceedingly pale. Wings apparently about three times longer than broad, the : ostcostal vein very heavy, angulated in the slightest possible manner next the oblique veins, the stigma very long and slender. The first oblique vein parts from the postcostal at an angle of fifty-five degrees, and is faintly sinute; the second, arising close to it, is arcuate apically, but otherwise straight, and parts from the postcostal at an angle of forty-five degrees, so that the discoidal cell between them is about four times as broad along the hind border as at the base. Cubital vein indistinct at base, but apparently arising four times as far from the second oblique vein as this from the first, and about midway between the first oblique and the stigmatic vein; it first forks at almost half-r. ay to the hind border, and in passing to that its first fork gradually approaches the second oblique vein. The stigmatic vein appears to arise about half-way between the two furcations of the cubital vein, but no mor ${ }^{3}$ can be said of it from its imperfection on both wings. The fore legs are very slender.

Length of body, 4.5^{mm}; wings, 5.5^{mm}; fore fomora, 1.1^{mm}; fore tibix and tarsi, 1.5^{mm}.

In memory of the early American paleontologist, Charles Alexandre Lesueur.

Florissant. One specimen, No. 9405.

11. SYCHNOBROCHUS gen. nov. ($\sigma v \chi v o ̀ s, ~ \beta \rho o ́ \chi o s) . ~$

The fore wings with the stigmatic vein arising from the middle of the stigma and very longitudinal. Cubital vein at least once forked, far from base, and opposite the base of the stigmatic vein, arising nearly midway between the first oblique and stigmatic veins; beyond it is too poorly preserved in the only specimen known to be certain whether it forks again or not. Second oblique vein arising four times as near the first oblique as the enbital vein, at an angle of less than forty-five degrees with the postcustal vein, the first oblique, which is nearly parallel to it, curving ontward in the latter part of its course, so that the first discoidal cell between them is excessively long and arcuate. Abdomen long and narow, narrower than the thorax, twice as long as broad, and well rounded apically.

Sychnorrochus reviviscens.

PI. 18, Fig. 6.
One of the very smallest of the Λ phides, unfortunately showing of the appendages only one wing. The head and prothorax are light colered, but darker than the abdomen, which shows darker transverse bands on the posterior halves of the segments. The wings are only slightly longer than the body(the albdomen being longer than usual), perhaps slightly more than three times as long as broad, the slender postcostal vein parallel throughout with the costa, the interspace more or less clouded with pigment, the stigma moderately broad and very long, reaching nearly or quite to the extreme tip, of the wing. The oblique veins are both remarkably long aud of nearly equal length, curving outward apically, and extending so far that even the first terminates well in the outer half of the wing; they arise close together, the first at an angle of scarcely more, the second of scarcely less, than fortyfive degrees with the postcostal, and are nearly parallel, the discoidal cell being therefore arcuate and abont two or three times as broad on the hind margin as at the base. The cunital vein is faint and obscure, apparently arising at a little less than half-way from the first oblique to the sigmatic vein, and four or five times farther from the second ohlique than it from the first oblique vein; its first forking ean not be satisfactorily determined, but it appears to he far from the base and a very little in advance of the stigmatic vein; it has the same sweep as the oblique veins. The stigmatic
vein arises tolerably early, and is considerably arcuate at base, afterwards longitudinal, the stigmatic cell being nearly or quite a third the length of the wing.

Length of body, 2.5 ${ }^{\mathrm{mm}}$; fore wing, 2.75^{mm}.
Florissant. One specimen, No. 314.

Subfamily SOHI/ZONEURIN E Passerini.

12. SCHIKONFUROIDES Buckton.

Sehizoneuroides Buckt., Monogr. Brit. Aphides, IV, 178 (188:3.)
Fore wings with the postcostal vein distant from the margin and curved in an opposite sense. Stigmatic vein arising very early, near the proximal end of the long stigma, so that the stigmatic cell is fully two-fifths the length of the wing. Cubital vein once forked far beyond the base of the stigmatic vein, and at a long distance from its own origin, which is near the middle of the outer half of the space between the first oblique and stigmatic veins, the second oblique vein arising twice as near the first as the cubital vein, but not very near the former, though somewhat nearer than represented on the plate, diverging from it at a slight angle, so that the first discoidal cell between them is nearly or quite four times as broad on the hind margin as at the base. Abdomen long oval, no broader than the thorax, about twice as long as broad, and a little pointed apically.

A single species is known.

Schizoneuroides scudderi.

Pl. 18, Fig. 2.

Schizoneuroides scudderi Buckt., Monogr. Brit. Aphides, IV, 178, Pl. 133, Fig. 5 (1883); Seudd., Zittel, Handb. d. Palwont., I, 11, 780, Fig. 988 (1885).

The greater portion of a body with the wings of one side represents this small species. The body is mottled and barred with dark brown. The wing is represented on the plate with altogether too full a hind margin, for the wing is really more than three times as long as broad. The middle of the base of the first discoidal cell is midway between the base of the wing and the stigmatic vein. The first oblique vein is straight, and parts from the postcostal at an angle of fifty degrees; the second gently sinuate, at an
angle of forty-five degrees with the same; the discoidal cell about four times as broad on the hind margin as at the base. The cubital vein forks about at its middle and then rather widely.

Length of body, 1.8^{mm}; of fore wing, 4^{mm}.
Florissant. One specimen, No. 315.

13. AMALANCON gen. nov. ($\alpha \mu \alpha \lambda i s, \alpha v \varkappa \omega \dot{\alpha})$.

Head considerably narrower than the thorax, quadrate, with the front triangularly and roundly produced to a considerable degree; no frontal tubercles. Antemme about two-thirds as long as the body, tapering, the third joint relatively stout, about as long and at base fully as stout as the fore tibiec, the first and second joints not one-half broader. Rostrum as long as the thorax, very slender. Fore wings very narrow, with the stigmatic vein arising very far back in the long stigma, so that the stigmatic cell is nearly half as long as the wing. Cubital vein once forked, far beyond the base of the stigmatic vein, and a long way from its own origin, which is at some distance before the midille of the space between the first oblique and the stigmatic veins; second eblique vein mrising somewhat nearer the first oblique tham the stigmatic vein, diverging firm the former slightly, so that dire inst discoidal cell between them is onlor two or three times as broad on the lind margin as at the bast:

The name is given witin meference to the weakness of the cubital vein, which it shares with Anconatus.

A singie species is known.

Ashalancon lutosus.

P1. 18, Fig. 13.

The dark hend and theax of an insect are all that remain of the body with a part of the leeng and most of one fere wing. The thickened postcostal wein is very slightity sinuous and blends apically into the stigma. The first obliqque vein is straight and at an angle of fifty degrees with the postcostal ; the second aiso straight and at ${ }^{\circ}$ an angle of forty-five degrees with the same, the first discoidal cell being two or three times broader on the hind margin than at the base. The cubital vein, exceedingly weak, has
a course midway in the space between the second oblique and stigmatic veins, and forks abont half-way to the tip of the wing. The stigmatic cell is long and slender. The whole wing is very narrow, but its exact proportions are uncertain; probably it is more than three times as long as broad.

Length of fore wing, 2.75^{mm}.
Florissant. One specimen, No. 340.

14. ANCONA'TUS Buckton.

Anconatus Buckt., Monogr. Brit. Aphides, IV, 177 (1883).
Head rather small, subquadrate, broader than long, the front entire and straight. No frontal tubercles. Antennæ apparently much shorter than the body, very slender, separated by twice the width of the basal joint, the first and second joints quadrate and suecessively smaller, the third half the width of the first. Wings narrow, the stigmatic vein arising at about the middle of a pretty large and long stigma, so that the stigmatic cell is generally about a third the length of the wing. Cubital vein very feeble, once forked before, generally considerably before, the stigmatic vein and at a moderate distance from its own origin, which is in the second fouth ol the space between the first oblique and stigmatic veins. Second oblique vein arising about twice as near the first oblique as the cubital vein, diverging considerably from the first oblique vein which is unusually transverse, but the first discoidal cell is only three or four times as broad on the hind margin as at the base. Legs moderately stout but long, the middle femora being nearly as long as the width of the lody, the hind femora as the length of the abdomen. Abdomen stout ovate, considerably broader than the thorax, broadest behind the middle, somewhat pointed apically, with no canda, and only short cornicles.

Table of the species of Ancowatus.
Cubitai vein ferking a long way before the stigmatio vein, and arising only a little before the middle of the space between the first obiliqne and stigmatie veins.............................1. A. dorsuosus. Cubital vein forking oniy a little before the stigmatic vein and very far from its origin, which is at abont the middle of the proximai half of the space between the first oblique and stigmatie veins.
2. A. buoktoni.

1. Anconatus dorsuosus.

Pl. 18, Fig. 9.

Anconatus dorsuosus Buckt., Monogr. Brit. Aphides, IV, 177-178, Pl. 133, Fig. 4 (1883).
This large species is represented by several specimens, all tolerably complete with more or less spread wings. In all the body is unifornly dark, but in none is the form of the wing shown. The postcostal vein is more or less slender, and merges into the greatly elongated subfusiform stigma, which fades ont slortly before the tip of the wing. The first oblique vein is straight and parts from the postcostal at an angle of about seventy degrees, while the second is more or less arcuate after a short distance from the base and its general course is at an angle of forty-five degrees with the postcostal, though the first discoidal cell is apparently only a little more than three times as broad on the hind margin as at the base. Cubital vein arising scarcely before the middle of the space between the first oblique and stigmatic veins and, rumning midway between the second oblique and stigmatic veins, forking at some distance before the stigmatic vein (in which the figure is not quite correct) and at about the ond of one-third of its course. Stigmatic cell very slender, the stigmatic vein being only gently arcuate, and the cell nearly a third the leng'th of the wing.

Length of body, 6^{mm}; of fore wing, 8^{mm}.
Florissant. Three specimens, Nos. 3228, 4827, 11175.

2. Anconatus bucktoni.

The body is deep black, with pale blotehes on the abdomen of one specimen, which may be only flaws in the carbonaceons matter. Excepting the wings and fragments of legs, no appendages are preserved, unless it be one of the cornicles, a slender, equal, not very long, black stem protruding on one side at the place of the cornicle, and less than one-fourth the width of the abdomen. The form of the wings can not be determined, but apparently they are very narrow. The postcostal vein and stigma are as in A. dersuosus. The first oblique vein is straight, and diverges from the postcostal at an angle of fifty degrees; the second, equally straight, as far as it can be seen (not over one-half its course), at an angle of forty degrees; the stigmatic cell not wholly determinate but perhaps wider at base than in Λ.
dorsuosus and exceedingly long, being nearly half as long as thas wing. The cubital vein arises at about the middle of the proximal half of the space between the first oblique and stigmatic veins, takes a course in the space open to it, a little below the middle, and forks only a little before the stigmatic vein, far from its base and very low down, the inferior branch being short.

Lengtl of body, 3.5^{mm}; of fore wing, 7.5^{mm}.
Named for my friend, George Bowdler Buckton, Esq., whose monograph of the British Aphides is a monument of patient work.

Florissant. Two specimens, Nos. 2067, 14289.

15. PTEROSTIGMA Buckton.

Pterostigma Buckt., Monogr. Brlt. Aphides, IV, 178 (1883).
Head and antenne precisely as in Anconatns, excepting that the basal antennal joints are slenderer, bo that the frontal space between the antenue is several times their width. ${ }^{1}$ Fore wings exceptionally narrow, with the straight postcostal vein distant from the convex margin, the stigmatic vein arising before the middle of the long, curving and tapering stigna, so that the cell is nearly two-fifths as long as the wing (it is shorter than would appear from the plate). Cubital vein very feeble, once forked well before the base of the stigmatic vein and at no very great distance from its own origin, which is near the middle of the space between the first oblique and the stigmatic veins. Second oblique vein arising close to the first and many times nearer it than the cubital vein, sinnous and diverging from the straighter first oblique vein at a considerable angle, so that the first discoidal cell between them is abont four times broader on the hind margin than at the base. Legs very slender, but not very long. Abdomen pretty regularly oval, apically rounded.

Table of the species of Pterostigma.
Bases of the seeond obliqne and stigmatio veins laardly more dintant than the extreme breadth of the

Bases of the second oblique and stigmatio voins more than half as distant again as the extreme breadth of the wing..2. P. nigrum.
${ }^{\text {' What }}$ Buckton took for a rostrum of three joints is a broken part of the rigbt antenna.
VOL XIII- 18

1. Pterostioma recurvum.

Pl. 18, Fig. 18.

Pterostigma recurvum Buekt., Monogr. Brit. Aphides, IV, 178, P1, 133, Fig. 6 (1885).
A single specimen with expanded wings lies entangled with a species of Aphidinx (Tephraphis walshii). The basal joints of the antenne are preserved, and show the characteristics mentioned under the genus. The fore wings are nearly three times as long as broad, with scarcely any fullness along the hind margin, being exceptionally symmetrical. The thickened postcostal vein is almost straight, with the slightest possible curve from the margin, and in the middle of the wing blends into the exceedingly long, slender, and arcuate stigma, which curves around the tip of the wing nearly to the middle line; the costal margin is considerably arcuate at base and distant from the postcostal vein. The oblique veins as far as preserved are nearly straight and considerably divergent, but the second is only preserved in its basal half or third; it diverges from the postcostal about forty degrees, the first as much as fifty degrees. The cubital vein is very faint throughout, but arises about six times as far from the second oblique as that from the first, and at only a short distance less than half-way from the first oblique to the stigmatic vein; it has a very longitudinal course and forks narrowly, well before the base of the stigmatic vein and at from one-fourth to one-third the distance from its origin to the extremity of its lower branch. The stigmatic vein parts gently from the stigma and for most of its course is straight, the stigmatic cell being narrow, broadest apically, and nearly two-fifths as long as the wing. The openness of the first discoidal cell apically cem not be detormined, but seems to have been three or four times as broad here as at base. The abdomen seems to be oval, scarcely broader than the thorax, and shows no signs of cauda or cornicles.

Length of body, 4.25^{mm}; of fore wing, 5.75^{mm}.
No part of the wing is displaced by pressure, as suggested as possibly the case by Buckton; on the contrary it is exceptionally undisturbed; but as drawn on the plate the extreme base of the stigmatic vein is not given (and is in reality very faint and only visible in certain lights), while the apparent short vein close to its base is foreign to the wing. The obscure cubital vein was overlooked when the drawing was made.

Florissant. One specimen, No. 8085.

2. Pterostigma niorum.

Only the body, somewhat distorted, and one fore wing are preserved, which do not permit so completo a description as of tho preceding species. The wing appears to be about three times as long as broad, and with the same symmetrical form seen in the preceding species. The postcostal vein is thick and struight, blending into the considerably thickened stigma. The ohlique voins are each very gently arcuate with the opening townd the stigma, unusually oblique and little divergent, the general course of the first being searcoly more than forty-five degrees with the postcostal, that of the second not above forty degrees; the second is more sinmous and terminates fully as far out as opposite the base of the stigmatic vein, the first opposito the base of the cubital, so that the cell is at least four times as wide on the hind margin as at the base. The cubital vein is very faint, especially toward the base, but arises four or five times as far from the second oblique as the latter from the first oblique vein, and scarcely less than half-way from the first ohlique to the stigmatic vein; it has an exceedingly longitudinal course and forks very narrowly far before the base of the stigmatic vein, but just how far the single specimen does not permit deciding. The stigmatic vein parts rather rapidly from the stigma and is strongly arcuate at base, but the form of the stigmatic cell ean not be made out. The body is very black and uniform throughout, the abdomen short ovate, and well rounded, with no sign of cauda or cornicles.

Length of body, 3.5^{mm}; of wings, 5^{mm}.
Florissant. One specimen, No. 6090.

Family PSYLLIDAE Latreille.

This little family of leaf fleas, closely allied to the Aphides, but always winged at maturity and showing some curious resemblances in neuration to the Psocide among Neuroptera, seems to be best represented, like the Aphides, in temperato regions. Hitherto it has not been found fossil, but the shales of Florissant have now yielded remains of two species belonging to two different groups and representing extinct genera allied to Psylla, Pachypsylla, and Psyllopsis.

Table of the genera of Payltida.
Stem of the eubital vein before its fork as long as the stem of the subcestal vein.........1. Necropsylla. Stent of the cnbital vein before its fork distinetly shorter than that of the subeostal vein..2. Catopsylla.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences

1. NECROPSYLLA gen. nov. (verpc 5, Psylla).

This name is proposed for a species belonging to the subfamily Aphalaine, which shows a close resemblance to Psyllopsis. As there, the wing is membronous. The petiolus cubiti is of the same length as the discoidal part of the subcosta, and the general relation of the principal nervures is the same ; it is only in minor details that it differs here, such as the exceptional length of the upper branch of the subcosta and the transverse course of the lowest branch of the cubital. But the most striking difference is in the form of the wing, which in Psyllopsis is pretty regularly obovate, the widest part of the wing in the middle, the apex well rounded. In Necropsylla, on the other hand, it is subtriangular, the broadest part just before the apex, which is very broadly rounded; both upper and lower margins are neurly straight. Little is preserved besides the wings.

When first noticed it was thought to belong to the Psocidæ, near Psoquilla and Sphæropsocus, and was accordingly figured among the Neuroptera.

A single species is known.

Necropsyila rigida.

Pl. 12, Figs. 11, 21.

Head broad, fully twice as broad as long, rounded, the nasus strongly pronounced, orbicular, very large. Whole body stout, the prothorax apparently at least three times as broad as long, the abdomen tapering a little only, and furnished at the tip with a short, slender, conical, bluntly tipped style. Wings two and a half times longer than broad, wedge-shaped, being. largest near the tip and narruwing pretty regularly toward the base, though more rapidly on the basal third than beyond, the costal nargin arched, the tip very fully rounded, the inner margin perfectly straight. A principal vein runs through the middle of the wing; at the end of the first third it divides into two forked stems, the cubital and subcostal, each of them forked for the first time opposite each other at about the middle of the wing; the subcostal forks only this time, its upper offshoot curving at once up toward ald then following close to the costal margin, where it descends into the apical margin; the cubital runs in a straight course midway between the former and the veins below. The lower brauch, on dividing,
sends one offshoot along the middle of the wing, which forks at a little more than half-way to the tip, the forks eurving a little downward; the other offshoot parts widely from the upper, but when it nears the inner margit, at a little beyond the middle of the wing, it is connected by a cross vein with the margin, while it itself passes with a strong curve to the apical margin just beyond the limitz of the straight inner margin. Besides these veins there are two others, which are obscure and may originate independently or from this central vein near the base; the upper strikes the upper margin a little before the middle of the wing and runs parallel to the upper offsioot of the principal vein ; the other, the anal vein, which is more uncertain, strikes the inner margin a little nearer the base, reaching it with a similar but reverse obliquity.

Length of body, 3^{mm}; breadth, 0.75^{mm}; length of wing, 2^{mm}; beeadth, 0.78^{mm}.

Florissant. Four specimens, Nos. 310, 349, 7598, 12017.

2. CA'TOPSYLLA gen. nov. ($\varkappa \dot{\alpha} \tau \omega$, Psylla).

Belongs to the subfamily Psyllinæ, in which the petiole of the cubital vein is distinctly shorter than the discoidal portive of the subcostal. It is most nearly related to Psylla itself, and indeed differs from it only in the excessive length of the cubital cells, which are more than a third the length of the wing, and besides are of very simple and similar structure, in which respent it agrees better with J.achypsylla, recently described by Riley, though the cells are not so long as there and the two sides of the wing are more symmetrical in form, the apex of the wing falling exactly in the middle line; the upper cubital branch falls barely below the middle of the apex of the wing. The wing was pretty evidently membranous, and its broadest portion is in the middle of the outer half, before which it decreases regularly and gently in size, both front and hind margins being nearly straight.

A single species is known.

Catopsylla prima.

Wings fully twice as long as broad, largest in the strongly rounded apical half, decreasing rerobarly in size toward the base. Lower fork of subcostal vein forming with its stem a regular, very gently arcuate curve and terminating considerably above the apex of the wing, its upper branch
diverging from it angularly toward the costal margin just before the end of the proximal third of the wing, and just before reaching the margin bending abruptly ontward parallel to the lower branch, not really reaching the margin until toward the apex of the wing. In the cubital vein the lowermost fork makes a continuons, regular and rather strongly arcuate curve with the discoidal portion, striking the margin just before the middle of the wing ; the upper branch of the lower fork parts from this just about opposite the forking of the subcostal, while the upper fork, not so wide as the lower, arises at three-fifths the distance from the base of the wing, making the inclosed cell of uusual length for Psylide; the upper branch of this fork falls scarcely below the apex of the wing, and the tips of the cubital forks fall at subequidistant intervals along the margin, the lower cell the wider.

Length of body, $3^{\text {n.m }}$; wing, 2.5^{mm}; breadth of latter, 1.2^{mm}.
Florissant. One specimen, No. 6712.

Family FULGORINA Burmeister.

This family is fairly well represented in Tortiary deposits and by a considerable variety of forms, all the subfamilies being represented except the Tropiduchida, Derbida, and Lophopida; and, what is curicas, each of the subfamilies is represented both in European and American strata, excepting only the Issida, confined to Enrope, and the Achilida, found only in America, each by a single species, the one in Radoboj, the other at Florissant. In Europe the Fulgorina are represented by Pcocera in amber, the Dictyopharida by Pseudophana both in amber and at Oeningen, the Cixiida by Cixius in amber, the Delphacida by Asiraca at Aix, the Ricaniida by Ricania in amber, and the Flatida by Flata, also in amber. The only one of these genera recognized in America is Cixius, and that doubtfully; but these subfamilies are far better represented, and in some instances by new and peculiar types. . Thus of Fulgorida we have Nyctophylax, Aphana, Lystra, and Fulgora, all with more than one species, from various localities; of Dictyopharida, a Dictyophara from Florissant; of Cixiida, not only Cixius but Oliarns, Diaplegma, Oliarites, and Florissantia, all but the first peculiar types and Diaplegma with no less than seven species-all these from Green River and Florissant; of Delphacida, Delphax, and Planophlebia, the latter a remarkable extinct type from British Columbia; of Ricaniida

Hammapteryx, a new genus frem Green River; and of Flatida, two species of Lithopsis and one of Ficarasites, both new types and from Green River. America is therefore far richer than Europe both in the number and diversity of its fulgorine fauna, but especially in the latter. About half the European species have been referred to Cixius alone, and, as we have seen, Diaplegma, a genus of Cixiida, is the most abundant American type.

Subfamily FULGORIDA Stả1.

This group, which includes among its members the lantern-fly and other light-giving, or presumably light-giving, insects, has heretofore been found fossil only in amber, three species of Poocera having been described therein. Now, however, we are able to add from the American rocks a considerable numbsr and variety of forms, referred to four different genera, one of them, Nyctophylax, extinct and composed of large species with recurved snout.

NYCTOPHYLAX ger. nov. ($\nu v \varkappa \tau o \varphi v i \lambda \alpha \xi$).

Large bodied insects, nearly allied to Enchophora. The head presented a recurved process of subequal diameter (as seen from the side) and tolerably stout, exceeding a little the diameter of the head; it was directed upward and a little backward, not reaching the posterior margin of the head, very bluntly pointed, laterally carinate. Legs short and moderately stout, the hind femora not surpassing the middle of the abdomen, both femora and tibie apparently carinate or tetraquetral throughout. Tegmina considerably surpassing the abdomen, densely reticulate in the apical fourth only. Type, N. uhleri.

Table of the species of Nyctophylax.
Larger epecies (tegmina twenty millimeters la length). Extreme tip of the recarved process of the head eeparated from the summit of the head by nearly twice Its own greatest diameter..1. N. uhleri. Smaller species (tegmina fifteen militmeters in longth). Extreme tip of the recurved precess of the
head eeparated from the smmmitof the head by not more than ite own greatest diaurter.. $2 . N$, vigil.

1. Nyctopiflax uhleri.

$$
\text { PI. 10, Fig. } 11 .
$$

This is one of the largest of the Homoptera known in a fossil state, and from the development of the frontal process was not improbably a noctilucous insect. It is preserved on a side view; the fracture of the stone has removed a portion of the front, but has fortunately left intact the posterior
connection of the process to the vertex, by which it is seen to be here abruptly bent backward, but at the same time upward, so as to leave an angulate opening between it and the head. The head is streaked with pale, relieved by dark along the incisures, and the process is longitudinally marked in the same way, the carine being dark. The tegmina are broad, expanding triangularly, roundly angulate at the apex, which is in the middle of the upper half, and surpass the abdomen by about one-fifth their length; they are dark but mottled with lighter colors, and in the apical reticulate portion the nervules and cross-veins are heavily marked with white, breaking this part of the wing up into pretty regular, rectangular and longitudinal, fuliginous cells of very equal breadth, but varying in length from one to three times their breadth. The legs are dark; : narked longitudinally with paler colors, and the dark abdomen is much paler in broad bands at the incisures.

Length of body, $20{ }^{\mathrm{mm}}$; height of thorax, 7^{mm}; length of process beyond the head, 3^{mm}; breadth of same, 1^{mm}; length of tegmina, 20^{mm}; their breadth, 8^{mm}; length of fore femora, 4^{mm}; iore tilix, 5^{mm}; hind femora, $55^{\text {mum }}$; hind tibix, $7^{\text {mm }}$.

This striking insect, the possible light bearer of the ancient Florissant nights, is named for my friend Mr. P. R. Uhler, who has done more than any one else to illumine the path of the student of Hemiptera in our country.

Florissant. One specimen, No. 11771.

2. Nyotophylax vigil.

Pl. 19, Fig. 8.
This species seems to differ from the preceding, so far as can be seen, only in its smaller size and the shorter and more abruptly recurved process of the head, the apex of which only reaches a point opposite the middle of the eye, and is removed from the summit of the head by scarcely its own greatest width. Unfortunately this part was not exposed on the stone when it was drawn, and the front of the specimen, which is preserved in nearly the same position as in that of N . uhleri, is broken to almost precisely the same extent as ti: we. The markings are throughout the same, excepting that the pale bands at the incisures of the abdomen appear to be narrower.

Length of body, 16^{mm}; height of thorax, 4.5^{mm}; length of process beyond the head, 12^{mm}; breadth of same, 0.9^{mm}; length of tegmina, 14.75^{mm}.

Florissant. One specimen, No. 12088.

APHANA Burmeister.

To this genus are provisionally reforred a couple of species which belong in this neighborhood, but probably not together. No other extinct species have been referred to this group, which is essentially subtropical.

Aphana atava.

Pl. 5, Figs. 96, 97.
Aphana ałava Scudd., Bull. U. s. Geol. Geogr. Surv. Terr., III, 759-760 (1877).
A single finely preserved specimen, giving the upper surface of the bod \ddot{j}, the displaced tegmina of one side, and a part of the niddle leg of the opposite side, is referred provisionally to Aphana. It plainly belongs to the true Fulgorina, and seems to agree better with Aphana than with any other genus concerning which information is at hand, but it is much smaller than the species of Aphana (as it is larger than those of Poocera), and differs from it in the structure of the head and the brevity of the tegmina. The head is small, being scarcoly more than one-third the width of the body, the eyes not prominent, the front scarcely angulated, and the vertex of about equal length and breadth ; it is marked above with two longitudinal blackish stripes, and the thorax with a median, and, on either side, a broad, lateral, black stripo, all of them bordered by paler parts and the median marked with a median pale line. The front of the thorax is strongly and regularly convex, and the posterior border of the mesonotum is rectaxgular. The tegmina are about three times as long as broad, with nearly parallel borders, the tip roundly pointed; the apical fifth is filled with fine, closely parallel, longitudinal veinlets, extending from the tip of the radial vein to the inner border, forming an area of equal width throughout. The radial vein is parallel to the costa throughont. The ulnar veins originate almost exactly as in Acrephia, but the upper one does not fork before the middle of the wing, when it sends downward a single shoot, while the lower forks almost immediately, and again emits a vein beyond the middle of the wing. The wing itself is apparently diaphanous, but is mottled lightly with faint fuliginous along the costal border, and more heavily, but irregularly, with dark fuscous on the basal half of the wing, especially next the extreme base, and in a rather broad and straight but irregularly margined and oblique band, crossing the wing from just below the sutural angle equally
backward and outward. Middle leg moderately stout; femur and tibia of equal width, straight, apparently with sharp edges. Abdomen full, rounded, broad, the extremity broadly rounded; it is dusky, especially beyond the base, the neighborhood of the spiracles darker, the fifth to the seventh segments with a medio-dorsal (or medio-ventral?) raised line marked in black.

Length of body, 9.5^{mm}; breadth of head, 1.8^{mm}; of abdomen, 5^{mm}; length of tegmina, $10^{\text {mim }}$; width of same, $3.5^{\text {mum }}$; length of femora somewhit doubtful), $2^{\text {mm }}$.

Chagrin Valley, White River, Colorado. One specimen, W. Denton.

Aphana rotundipennis.

Pl. 6, Fig. 27.
Aphana rotundipennis Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 772 (1878).
This name is proposed for a couple of wings which seem by their obscure venation to belong in the same group as the last. They differ, however, in having a strongly bowed costa, which is curved more apically than near the base, and continnes very regularly the curve of the well-rounded apex; the commissural border is perfectly straight; the principal veins fork near the base, so that there are a number of longitudinal veins a short distance therefrom; no transverse veins are discernible, nor oblique veins at the costal margin, but the longitudinal veins all fork at a similar distance from the apex, so that the apical fifoh of the wing is filled with still more numerous longitudinal veins; the tegmina are broadest just beyond the middle.

Length of tegmina, 6.75^{mm}; breadth of same, 3^{mm}.
Green River, Wyoming. Two specimens, Nos. 175 (F. C. A. Richardson), 4187 (S. H. Scudder).

LYSTRA Fabricius.

The specimens that are piaced here are very obscure and imperfect, and when better ones are obtained the species will very probably have to be removed elsewhere, and perhaps even to another subfamily; but what can be made out reminds one of this group as well as of any other, and they are therefore placed here provisionally, though it is plain that they do not belong together. No fossil species besides these have been recorded.

Table of the species of Lystra.
Lateral eulel of mesonotnm parallel. ... L. L. riohardsoni.
Lateral sulci of mesonotum posteriorly convergent... L. Leei.

1. Lystra 9 richardsoni.

Pl. 6, Figs. 24, 30, 34; 1Pl. 7, Figs. 1, 3.
Lystra f richardsoni Scudd., Bull. U, S. Geol. Geogr. Surv. Terr., IV, 772 (1878).
I have before me a number of specimens of a large fulgorid, suparently belonging near Lystra and Pococera, but which have been preserved only in a fragmentary condition. Enough, however, remains to show several features: the vertex between the eyes is half as broad again as the eyes, and at least as long as broad, projecting beyond the eyes by more than the diameter of the latter and well rounded. The scutellum is large, fully as long as broad. The longitudinal veins of the tegmina are rather infrequent, forking rarely, and even toward the apex seldom connected by cross-veins; apparently all the principal veins branch at about the samo points, viz, near the middle of the basal and of the apical half; the tegmina somewhat surpass the abdomen. The body is broadest at the second or third abdominal segment, and tapers rapidly to a point, the segments being equal in length.

Length of body, 16^{mm}; probable length of tegmina, 15.5^{mm}; breadth of abdomen, 5.5^{mm}.

Named for one of the earliest coilectors of Green River fossil insects, Mr. F. C. A. Richardson.

Green River, Wyoming. Eleven specimens, Nos. 67, 119 (F. C. A. Richardson), 40, 41, 109 (L. A. Lee), 121, 123 (A. S. Packard), 4076, 4207 and 4208, 4212, 4217 (S. H. Scudder).

2. Lystra leet.

$$
\text { Pl. 7, Fig. } 2 .
$$

A species is indicated of about the same size and general form as L. richardsoni, preserved so as to show a dorsal view with the greater part of at least one of the diaphanous tegmina and the thorax, but not the head nor other appendages. The mesonotum was broad and well rounded in front, contracted behind, nearly twice as broad as long, with the interior third of each lateral half separated by a straight oblique sulcus from the parts without, as deep as the median sulcus, and apically curving abruptly inward to it; scutellum moderately large, truncate basally, triangular and almost equiangular, the apex produced finely to a point, the sides slightly concave.

Tegmina somewhat surpassing the abdomen, the longitudinal veins in goneral much as in L. richardsoni. Abdomon much as there.

Length of fragment, 11.5^{mm}; probable length of body, 10^{mm}; length of tegmina, 10.25^{mm}; breadth of abdomen, 5.25^{rm}.

Named for Prof. Leslie A. Leee, of Bowdoin College, a diligent collector of Green River fossil insects.

Green River, Wyoming. One specimen, No. 119, Dr. A. S. Packard.

FULGORA Linné.

The species placed here are so referred only because, appearing to belong to the subfamily of which this is a typical member, they can not be more definitely placed. No other fossil insects have been referred to this placo.

Fulgora granulosa.
Pl. 6, Fig. 35.
Filgora granuloba Scudd., Bull. IJ. S. Geol. Geogr. Surv. Terr., IV, 771-772 (1878).
A single specimen and its reverse show only the thorax and abdomen of an insect belonging to the subfamily of Fulgorida, but of which little more can be said. The thorax is large, globose, and black; the scutellum is about half as large as the thorax, longer than broad, and rounded at the apex; the abdomen tapers gently, its apex about half as broad as its base, and is provided with a pair of overlapping, black, roundish, oval plates, giving the appearance of an additional segment. The surface of the thorax and abdomen is thickly and uniformly granulate with circular, aark-edged elevations, averaging 0.04^{nm} in diameter; the scutellum lacks this marking, excepting at the edges, which are more minutely and profusely granulate.

Length of body, 8.5^{mm}; of thorax, 2.75^{mm}; of scatellum, 1.4^{mm}; of appendages, 1^{mm}; breadth of thorax, 2.5^{mm}; of scutellum, $1.25^{5 \mathrm{~mm}}$; of second segment of abdomen, 2.2^{mm}.

Green River, Wyoming. One specimen, Nos. 49 and 131 (F. C. A. Richardson).

Fulgora populata.
 Pi. 7, Fig. 16.

The dorsal view of a headless insect with overlapping wings but no other appendages. The mesonotum is transverse, about three times as broad as long, posteriorly truncate, anteriorly broadly rounded so as to be
only one-fourth as long on the sides as in the middle, tho surface smooth or microscopically scabrous, with exceedingly scattered, pale, circular spots or pustules about 0.03^{mm} in dimeter. Scutellum large, nearly as broad as the mesonotum, and almost three-fourths us long as broad, the sides slightly concave, the apex produced and pointed, the surface sinilar to that of the pronotum but with fewor pustules. Buse of the tegmina and particularly of the clavus apparently very finely granulate, tho neuration obscurely preserved, the tegmina apparently just renching the tip of the abdomen.

Length of fragment, 7^{mm}; of mesonotum, 0.6^{mm}; breadth of same, 1.7^{mm}; of abdomen, 2.8^{mm}.

Green River, Wyoming. One specimen, No. 111, Dr. A. S. Packard.
Fulgora obticescens.

$$
\text { Pl. 19, Fig. } 1 .
$$

A small specimen appoaring to belong in this subfamily, though certainly not in Fulgora, in which it is placed only in its ancient broad sense. A dorsal view is presented, showing little besides the body and some of the veins of the tegmina, which reached to the extremity of tho abdomen. The head was half as broad as the thorax. . The thorax was large and rounded subquadrate, the scutellum also large and rather bluntly angled posteriorly, the abdomen lighter colored than the rest of the body and conico-fusiform with broad, pale incisures. The fore legs were slender and linear, and the longitudinal veins of the diaphanous tegmina rather distant with scanty cross-veins.

Length of body, 4^{mm}; greatest breadth, 1.25^{mm}.
Florissant. One specimen, No. 12069.

Subfamily DIC'TYOPHARIDA Stảl.

A considerable group of mostly tropical forms, of which the only known fossil species are those mentioned below.

DICTYOPHARA Germar.

Two species of Pseudophana Burmeister, regarded by Stal as the same as this genus, havo been described from the European Tertiaries, one from immature specimens in amber, the other a winged insect from Oeningen. The species added below is placed in this genus as typical of Dictyopha-
ridn, to which the insect appears to belong. The genus is now confined to warm countries, but is found in botls worlds. Heer compares the Oeningen fossil to a species found living in Georgia.

Dictyophara houvel.

Pl. 21, Fig. 16.
A pair of specimens, both seen upon a side viow, which appear to belong together. Head not protuberant in front of the oyes, well rounded. Rostrum renching to the base of the posterior legs; it is poorly represented on the p'ate in a too curved line. Dorsum of thorax well arched. Legs moderately long and of medium stontness. Tegmina four times as long as broad, surpassing a little the length of the body, rather slender and subequal, the apex subacute, obliquely su btruncate bolow. Wings ample, the veins of the anal area divergent, arenate, apically distant, the outermost, falling on the border at the middle of the apical half of the wing, narrowly and very deeply forked.

Length of body, 14^{mm}; height of samo, 4.5^{mm}; length of tegmina, 12^{mm}; ireadth of same, 3^{mm}; length of rostrum, 4.5^{mm}.

Named for the Boston geologist, Thomas T. Bouvé, Esq.
Florissant. Two specimens, Nos. 126, 4348.

Subfamily CIXIIIAA Stâl.

Abont a third of the fossil Fulgoride of Europe have been referred to this subfanily. They are all from amber and are considered as species of Cixius. To this we can now add from American rocks twelve species of at least five genem, three of them, Oliarites, Diaplegma, and Florissantia, regarded as extinct types. They all belong in the vicinity of Cixius and Oliarus, and one of them, Diaplegma, has as many as seven species. The modern species of this group appear to be world wide in distribution.

CIXIUS Latreille.

To this genus as typical of the subfamily only two forms are here placed, which can hardly belong in the same genoric group. Many fossil species are known in amber, but none from the rocks have before been referred here. Both the species here described and figured are very imperfect.

Cixiusi nesperidum.
 Pl. 6, Fig. 10.

Cixius $/$ hesperldum Scudd., Dull. U. S. Geol. Geogr. Surv. Terr., IV, 772-773 (1878).
A single fragment, representing a nearly perfect tegmen, with obseure venation, is probably to be referred to Cixius, but is unsatisfactory; the costul border is gently and regularly convex, the tip well rounded, with no projecting apex; the tegmen appears to increase very slightly in size to a little beyond the middle, up to whicu point the borders are nearly parallel; the course and branching of the nervures, so far as they can be made out, seem to indicate an insect allied to Cixius, but no cross-veins can be seen

Length of tegmen, 6.2^{mm}; its greutest breadth, 2.5^{mm}.
Green River, Wyoming. One specimen, No. 38, F. C. A. Piclardson.

> Cixius 9 proavus.
> Pl. 19, Fig. 14.

An insect apparently allied not distantly to Florissantia elegans and but little smaller than it, but with considerable difference in the neuration of the tegmina. The head is not preserved, but must have been at least as narrow as there, the thorax being transverse but triangular and longer than in Florissantia, although its apex is angularly emarginate, receiving the broadly angled base of the very large, otherwise trianguhur seutellum, which has a fine mesial sulcation. Tegmina surpassing the abdomen moderately, with no pteroztigma, the first cross-veins, at which the longitudinal veins are forked and new cells arise, crossing the middle of the apical two-thirds of the wings, beyonci which point the longitudinal veins run unforked to the margin, so that there are but a basal and an apical series of cells, the latter, about eight in number, striking the apical margin; there appear to be a fow dusky spots in the middle of these apical cells.

Length of body as preserved, 10^{mmu}; breadth of same, 3.75^{mm}; length of tegmina, 10.5^{mm}.

Florissant. One specimen, No. 1.705, Princeton Expedition.

OLIARUS Stål.

A single species is referred here provisionally to indicate its apparently nearest alliance among living forms. The genus has never been found fossil, but all of the known fossil Cixiida are nearly allied to it.

Ohinhus ${ }^{\text {q letensis. }}$

PI. 7, Fig. 18.
'ihe species pheed hero provisimally can certainly not belong hero, as the sentellam is only tricarimate, and the veins of the tegmina are smosth and continous. Evidently, however, it comes near it, to judgo from the course of the venation. The head, of which only the part lying between the cyes is presorved, is very small and narrow, little prominent; tho thorax, not properly shown in the plate, transverse, equal, short, angularly bent, so that the base of the scutullum being ahost as sirongly angulate as its tip, the sentellom is dimond-shaped; it has three very deliente carine, the lateral ones divergent. The tegmina are three times as long as brond, considerably surpassing the abdomen, diapl:anous, with a dusky roundish spot just below the costal edge in the middle of ihe apical two-thiris ; just before it the man longitudinal veins first fork and are mited by cross-voins in a rigway manner, anil they agrain fork and aro to some extent ugain umted half way from here to the tip.

Length of body, 6^{mmn}; breadth of scutelhm, $1.75^{\mathrm{mm} \mathrm{\prime}}$; length of tegmina, $7.25{ }^{\text {"'m. }}$.

Green River, Wyoming. One specimen, No. 112, Dr. A. S. Packard.
Possibly in tinis vicinity should be phaced the wings figured, Pl. 7, Fig. 10, which from their obsentit, and becanse of their being longitudinally folded I am mable to place definitely.

DIAPLAGMA gen. nov. ($\left.\mathcal{S}_{1 \alpha \pi} \pi \lambda \varepsilon^{\prime} \mu \alpha\right)$.

This mato is given to an extinct group or Cixiidn allied to Cixius and Oliarus with peculiar neuration. 'The insects are amall mul slender hodied, with protuherant, $i^{\text {ointed }}$ head, antemme apparently much as in Liburnie, agents of Delphacida, long and slender legr, and elongrate wings largest in the middle of the apical half or even third, with strongly and regrularly romded apex. The suturn clavi is very long, and the ambl veins unite in one far hefore their tip; the radial vein forks near the middle of the wing, and each of the forks sends at its tip a claster of two or threo curved indepeudent branches to the costal margin far out; the two whar branches, which separate close to the lase of the wing, usually fork further out than the radiai, the upyev loranch of the fork of the upper ulnar vein just striking
the apex of the wing, the lower branch erossing the uper branch of the fork of the lower uhaw vein and reforking hotween the forks of the latter in a somewhat peculiar monmer, someti:nes connected by eross-veins to the lowar hameh of the lower ulnar fork; the lower ulan branch forks a little emblier than the uprer and directly opposite the end of the mited anal veinis. Vonntion of hind wings so far as seen agood deal as in Cixins, but the forking of the upper veins heyond the cross-veins is so deep us to run finirly $\quad 1 \rho$ to these cross-veins.

Seven species are recognized in our 'Tortiary deposits.

Table of the speries of Diaplegma

The two main branelton of the ulune ein furking diesticily farther ont than the firat rallal furastion. Apical, ralial, and ninar veinlete reastiag the margin iwnivo in umber I. D, haldemani, Apieal, radial, and ulunt volulota reaching thos uargin not over ton in number.

Upor fork of lower nluar vein interruphed in its rugular conrse when it meets the upger

 viatlug !n contso.
'Togmina nearly thren timen as long as broad. \qquad \therefore D. renerabile.
'l'rg:ninu nearly or quito four thass as loug as broal.
Csons-veins uniting tho ulitar branches conshlorably farthor from the apox of the whag Than the hreallh of (lan wing whero they oceur...... D, vecultormm
Cros. velun nuiting (ho ulnur branches only as far from tho apox of tho wing as tho
 The lower ulanr velu forkiug almont exandly opposite the fureation of the radlal.....7, D. obdormitum.

1. Diaplegma haldemani.

The antemme are abolit as long as the triearimate sentellum. The tegmina are about thre and a half times longer than hroat, with very straight costa, hargest in the midtle of the apical third, searcely marrowing buseward 'The radial rein forks exatetly at the middle of the wing, the lower ulane luanch at some distance beyond; the upper radial branch is two, the lower three forked, sime the first of its forks agrain subdivides. Opposite the fireation of the upper radial hameh the upper ulame hranch forks widely, its upper lnameh, an musmal tiremmstanee and perhmps intividual, forking narrowly, its lower erossing to the center of the lawer ulat fork, where it divides in two, the upper branch again forking, but there is no connection with the lowermost ulnar nervile.

Length of hody, 4^{mmm}; of tegmina, 4.15^{mm}; width of smae, 1.15^{mm}; length of fore tilhise, 1^{mm}; tarsi, 0.45^{mm}. ,
vo: xII1- 19

In memory of the pioneer American naturaist and philologist, the late Samuel Stehman Haldeman, Esic.

Florissant. One specimen, No. 2237.

2. Diaplegma veterascens.

'I'here is but a single specimen of this species, butt in it one of the tegmina is admirably preserved. These are ε little more than three times as long as broad, broadest in the middle of the apical half, before which they narrow very regularly and very gently, and beyond waich the apex is rather sharply rounded. ' t he radial vein first forks at just about the middle of the wing, the lower ulnar at some distance beyond it; there are three clustered forks to the upper radial, two to the lower, and the cells formed by them are rather sleader though short. The upper ulnar branch and its upper fork are distinctly bent where they join, and the lower fork crosses to the center of the lower ulnar fork and there divides in two, without continuing to the lowermost ulnar nervule.

Length of body, 4.5^{mm}; tegmina, 4.2^{mm}; width of same, 1.3^{mm}.
Florissant. One specimen, No. 10680.

3. Diaplegma abductum.

$$
\text { Pl. 15, Fig. } 8 .
$$

The tegmina of this species are less than three and a half times longer than broad, very unitormly rounded at the apex, the costal and inner borders almost exactly parallel in the outer half before the tip and straight. The radial vein first forks at just about.the middle of the wing, the lower ulnar scarcely before the end of the middle third; there are three clustered forks to the upper radial, the last one very strongly arcuate at base, but not connected by a cross-vein to the lower radial, which has two forks, and all their cells are short but slender. The relation of the ulnar branches to each other is peculiar: the upper uhar branch is simply, symmetrically, and narrowly forked as far beyond the end of the middle third of the wing as the lower ulnar before it; the adjacent forks of the two branches are now united by a ciss-vein immediately beyond the furcation of the upper ulnar, the two forks are angulated at the pcint of touch, and this cross-vein, slightly shifted outward, runs as a longitudinal vein through the middle of
the lower ulnar cell, and is aprarently united, immediately after its departure, to the lowermost ulnar branch by a cross-vein parallel to the base of the upper fork of the lower ulnar branch.

Length of body, 4.8^{mm}; tegmina, 4.1^{mm}; breadth of latter, 1.25^{mm}.
Florissant. One specimen, No. 31J.

4. Diaplegma venerabile.

Two specimens of this species show, olle a side, the other a dorsal, view. The tegmina are nearly three times as long as broad, the costal border more than usually arcuate, which has the effect of shostening the wing. The radial vein first forks well before the middle of the wing, and the lower ulnar branch only a little beyond the midd'e; the upper radial is three, the lower two-branched, the cells made by them moderately broad. The upper ulnar vein rums in a straight line to the apex of the wing, and opposite the first fork of the upper ciadial beanch sends a cross-vein to the upper fork of the lower ulnar branch, crossing it and emitting in the middle of the cell of the latter a couple of approximated veins, running longitudinally, but it can not be seen to continue to the lowermost fork of the ulnar.

Length of body, 3.75^{mm}; of tegmina, 3.7^{mm}; breadth of same, 1.2^{mm}; length of hind tibiæ, $1.35^{1 \mathrm{~mm}}$.

Florissant. Two specimens, Nos. 2161, 4824.

5. Diaplegma occultorum.

The fore temora laterally mesially carinate. Tegmina nearly four times as long as broad, slightly broader on the apical than the basal half. The radial buanches just below the middle of the wing, its branches rather distant, the upper three, the lower two-branched, striking the costal margin over a little more than the apical fourth of the wing. The ulnar veins divide close to the base of tico wing and searcely diverge, the upper branch exactly midway beeween the lower branch and the radial vein, and searecly or not at all disturbed in running straight to the apex, its lower member acting more as a cross-vein, abost opposite the tip of the sutura clavi, uniting it to the upper fork of the lower branch, and crossing in a bent arcuate line to tho lower fork, omitting midway and approximately two subforks, and then bending upward continues distinctly to the lower fork. All the veins with long, distant, stiff hairs a little farther apart than the length of the hairs.

Length of body, 4.2^{mm}; tegmina, 3.8^{mm}; breadth of same, 1^{mm}; length of fore femora, 1^{mm}; fore tibise, 1^{mm}; fore tarsi, 0.6^{mm}.

Florissant. Three specimens, Nos. 2706, 5394, 7326.

6. Diaplegma ruinosum.

A single specimen and its reverse preserved on a side view represent this smallest species of Diaplegma. A portion of the neuration is obscure, but it is otherwise in good condition. The vertex projects but very slightly beyond the eyes. The tegmina are four times as long as broad, the veins heavily haired, the hairs generally set nearer together than their length. The forks of the radial branches are exceptionally short and broad, and the cross-veins uniting the ulnar branches unusually far out, almost farther out than the basal fork of the upper radial branch; radial tirst forking at about the middle of the wing. Hind tibier and the basal two joints of hind tarsi armed beneath with a pair of stout, not very long, black-tipped spines; first joint of tarsi equaling the next two, the middle one very brief.

Length of body, 3.75^{mm}; tegmina, 4.3^{mm}; width of same, 1.05^{mnn} : length of fore femcra, 1.2^{nm}; tiliæ, 0.8^{mm}; tarsi, 0.45^{mm}; hind femora, 1.1^{mm}; tibiæ, 1.5^{mm}; tarsi, 0.9^{mm}.

Florissant. One specimen, Nos. 611 and 4558.

7 Diaplegma obdormitum.

The specimen representing this species is not so well and continuously preserved as the others of the genes, but differs from them in one, or two important points. The tegmina are slightly more than three times longer than broad; the most peculiar feature is the late division of the radial vein, which is only at a distance from the tip equal to the breadth of the wing, and almost exactly opposite the normal division of the lower ulnar branch or opposite the tip of the anal vein, while the arrangement of the subordi-nate reticulation and furcation of the ulnar area is almost the same as that of D. occaltorum. The broken state of both wings does not certainly show how the radial vein is divided, which it would be interesting to know on account of its early character; but it would appear as if the tip of the uppermost ulnar fork cur:ed upward, which with the late furcation of the radial and the absence of any branching in the area preserved would indicate that its ultimate branches must be many fewer than in the other species.

Length of body, t^{mm}; tegmina, 4^{mm}; breadth of same, 1.25^{mm}.
Green River, Wyoming. One specimen, No. 127, Dr. A. S. Packard.

OLIARITES gen. nov. (Oliarus).
This name is proposed for an insect formerly placed by me in Mnemosyne, one of the Dictyopharida, but which a renewed study seems to show to belong in the vicinity of Oliarus, among the Cixiida. The head was apparently not more than half as broad as the thorax, perhaps much narrower. The thorax was transverse, equal, arcuate, into which the pretty large subtriangular scutellum with its convex base fitted. The tegmina were wholly diaphanous, very greatly surpassing the abdomen, enlarging apically with slight, fine, but smooth and in no respect arenaceous veins, all the longitudinal veins connected near the middle of the wing, but not in a line, with the cross-veins, at or beyond which each of them forked to a greater or less extent, the forks, at least in the upper half of the wing, upcurved on approaching the margin, where they are again forked and united by many cross-veins, so that the wing becomes weakly reticulate shortly before the margin.

Oliarites terrentula.

Pl. 7, Fig. 17.

Mnemosyne terrentula Scudd., Pull. U. S. Geol. Geogr. Surv. Torr., IV, 773 (1878),
A single specimen is preserved, with an indistinct body, broken in front, and the greater part of one of the tegmina. The body is moderately broad ovate, the tip of the abdomen rounded and slightly produced. The tegmina are regularly enlarged toward the apex and rounded at the extremity, not at all truncate; the interior branch of the radial vein forks near the middle of the wing, and just beyond the first subapical transverse vein; both its branches fork before they have passed more than half-way to the marginal row of elongate cells.

Estimated length of body, 6.5^{mm}; breadth of same, 2.25^{mm}; length of tegmina, 7^{mm}; breadth of same, 2.25^{mm}; their extent beyond the abdomen, 2.2^{mm}.

Green River, W yoming One specimen, No. 31 ${ }^{\text {d }}$ (F.C. A. Richardson).

FLORISSANTIA gen. nov. (Florissant, nom. loc.).

This interesting genus appears to be allied to Cladodiptera, with very nearly the same general neuration of the tegmina, but differs strikingly from it in the much narrower head. The head is only half as broad as the
thorax, and, as viewed above, the eyes make up one-half of this narrow part; the front projects abruptly in frout of the eyes by one-third their length, is well rounded anteriorly with brief parallel sides; the oyes are moderutely large, not very tumid. The thorax is transverse, arcuate, equal, short; the scutellum very large, triangular, pointed, with nearly straight but slightly arcuate sides, attenuating the apex. Legs slender, the hind tibise armed externally with three distant prominent spines. Tegmina membranous, ample, the longitudinal veins first forking about the middle of the wing, the radial here dividing into two branches, which throw many apical branches to the costal margin at and beyond a pterostigma; the uhar branches, a little farther on, subdivide into many forks, connected at their origin by cross-veins, and most of these forks, without another series of cross-veins (such as occur in Cladodiptera), again divide shortly before the apex. Abdomen broad, abruptly tapering apically to a bluntly pointed tip.

A single species is known.

Florissantia elegans.

PI. 19, Fig. 12.

Two specinens with their reverses present a very fair view of this delicately veined insect, but the one figured dees not show the head. The body, shaped like that of a diminutive Cicada, is of a uniform dark color with pale abdominal incisures; the thorax is minutely and distantly punctate; the scutellum finely sulcate down the middle; the legs are slender and apparently longitudinally streaked with pale, and the tibial spines are black. The tegmina are about three times as long as broad, the pterostigma situated just before the middle of the apical half, rounded, subquadrate, a little longer than deep; the cross-veins uniting the longitudinal series are mostly opposite the proximal end of the pterostigma, and the apical forks of the longitudinal veins are about as long as the pterostigma.

Length of body, 12.5^{mm}; breadth at base of abdomen, 4.6^{mm}; breadtb of head between the eyes, 0.85^{mm}; length of tegmina, 12.25^{mm}; hind femora, 3^{mm}; hind tibiæ, 5.5^{mm}.

Florissant. 'Two specimens, Nos. 1.104 and 1.751, 1.783 and 1.789, Princeton Collection.

Subfamily DELPHACIDA Stâl.

The only European fossil insect hitherto referred to this group is a species from Aix referred by Curtis to Asiraca, to which seven years later Giebel gave the specific name tertiaria, and Heer that of obscurum, referring it to Cicadellites, one of the Membracida. In America, besides an obscure species referred to Delphax, we have an extraordinary insect, with a very strange type of neuration, from British Columbia.

DELPHAX Fabricius.

A single fossil has been referred to this generic group, but only in its wide sense as typical of the subfamily.

Delphax senilis.
Pl. 5, Fig. 95.
Delphax senilis Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 760 (1877).
A fairly preserved specimen with spread wings, but with almost no characteristic sculpture. The head and exposed part of thorax are blackish; the rest of the body and the wings, especially the tegmina, dusky. The head is less than half as broad as the thorax and short. The thorax is broad and rounded, and the body nearly equal, though enlarging slightly posteriorly. The tegmina are slightly narrower and considerably longer than the body; equal, and at the tip broadly rounded; they show no trace of neuration, but the preservation of the whole is perhaps too obscure to expect it. The wings are a little shorter than the tegmina, crumpled and folded, and show a few longitudinal veins, and others, which, from the nature of the preservation, can not be traced. Legs and appendages of the head are wanting.

Length of body, 2^{mm}; tegmina, 2.4^{mm}.
White River (probably Chagrin Valley, Colorado; possibly Fossil Cañon, Utah). One specimen, W. Denton.

PLANOPHLEBIA Scudder ($\pi \dot{\lambda} \alpha \dot{\alpha} v o s, \phi \lambda \varepsilon ́ \psi$).
Planophlebia Sculd., Rup. Progr, Geol. Surv. Can., 1sic-1d78, B, 1si-ldd (1879).
This name is proposed for a genus of Fulgorina apparently belonging to the Delphacida, but differing from all Homoptera I have seen in the remarkable trend of the principal veins of the tegmina, nearly all of which, and certainly all the branches of the radial, us well as most of the branches of the uhar vein, terminate upon the costal margin, the costal areole being very brief, or less than one-third the length of the tegmina. The radial vein branches very near the base of the tegmina, and its lower branch again a very little way beyond, all three of the brunches running in a straight course parallel to one another, and embracing at tip the middle third of the margin. The ulnar vein forks near the outer branching of the rudial vein, the upper branch soon dividing again, the lower dividing beyond the middle of the tegmina, all the brancli s running parallel to those of the radial vein.

I know of no homopteron the veins of whose tegmina trend as in this genus; indeed it appears to be quite abnormal in this particular. Nor can Mr. Uher, to whom I submitted a drawing, find any form whose branched veius run toward the costal margin; but 1 have in vain attempted to believe that I have interchanged the two margins of the tegmina In point of neuration the tegmina approach most closely, as Mr. Uhler has pointed out to me, to those of Amphiscepa bivittata (Say), but even from this it differs widely.

Planophlebia gigantea.

Pl. 2, Fig. 16.

Planophlebia gigantea Scudd., Rep. Progr. Geol. Surv. Can., 1877-1878, B, 188 (187:)).
The specimen is very fragmentary, consisting of an upper wing, of which the whole of the costal border as far as the tip, and the basal half of the inner margin, can be made out; but only three patches of the surface with its accompanying veins are preserved-a piece next the base, crossing the wing; another near the middle, which crosses rather more than threequarters of it from the costat margin backward; and a greatly broken patch at the upper half of the tip; but from these pieces nearly the whole of the neuration, as given in the generic description, can be determined. The costal vein appears to be forked close to the base, with branches running close and subparallel to each other. There are five branches of the ulnar vein, terminating above the middle of the apical margin of the teg-
mina, but below that the veins are wholly obliterated. The sutura clavi must be very brief (as we should, perhaps, expect it to be in a wing with so short a costal areole), since no sign of it appears on the basal patch; it must terminate before the branching of the uhar vein. The tegmina are of very large size, the costal margin regulurly and gently arched, the inner margin almost straight, and the apex very regularly convex, at least on the upper half.

Length of frag ent, $\mathbf{2 3 . 7 5} 5^{\mathrm{mm}}$; estimated length of the tegmina, $\mathbf{2 5}{ }^{\mathrm{mm}}$; breadth in middle, 9.5^{mm}.

Similkameen River, British Columbia. One specimen, No. 77, Geological Survey of Canada, by Dr. G. M. Dawson.

Subfamily ACHILIDA Stâl.

No fossils have heretofore been referred to this subfamily. and it is with doubt that a single species from Colorado is here regarded as a member of it.

ELIDIPTERA Spinola.

A singie species doubtfully referred here has been discovered in the Oligocene of Florissant.

Elidipterra reqularis.
PI. 19, Fig. 13.
This curiously veined insect would appear to fall in the neighborhood of this genus. The whole of the neuration can not be made out, but the longitudinal veins are few and distant and apparently wholly unconnected by cioss-veins until just before the apical margin where the cross-veins form, with apparently the tip of the radial nervure, a continuous vein which approaches the margin in the outer hulf of the wing, then curves and follows subparallel to the outer margin, with which it is connected by equidistant veins forming apical cells but little longer than broad, excepting ut the costal margin, where the vein diverges from the border and the connecting veins become very oblique. The legs are slender, stiff, and straight, the hind tibiz unarmed, the hind tarsi delicately and very briefly spined at the tip of each joint.

Length of body, 4.25^{mm}; breadth, 1.5^{mm}; length of tegmina, 4^{mm}; of hind tibiæ, $1.1^{1 \mathrm{~mm}}$.

Florissant. One specimen, No. 12785.

Subfimily RICANIIDA Stâl.

- A species of Ricanin las been described by Giebel from amber; besides this the only fossils possibly referable to this group are those mentioned below, one of them of extruordinary character, so that in all probability it should more properly be referred to a distinet subfamily, so greatly does it differ from all Fulgorina in the multiplicity of the principal longitudinal veins at the base of the wing, the branching of the veins of the clavus and the irregular reticulation of part at least of the corium.

HAMMAPTERYX gen. nov. ($\tilde{\alpha} \mu \mu \alpha, \pi \tau \tilde{f} \rho v \tilde{\xi})$.

Tegmina exceptionally broad, sulbtriạngular, with strongly rounded apex, produced more above than below. Costal margin somewhat arched at the base, the costal vein distant from it, rumning into it considerably beyond the middle (where it turns rapidly upward), and comnected with it by numerous oblique veins. Radial vein forked at the base of the wing, and each branch again dividing before the middle, all the offshoots of the upper and the upper offshoots of the lower branch with a strong superior arcuation at the tip of the costal vein, giving the wing a knotty appearance. Uhar vein also divided at base, each of its branches immediately dividing and again a second time at or before the middle of the wing, while both rudial and ulnar nervules still farther subdivide so that multitudinous veinlets reach the border; they are further mited intimately by three series of cross-veins like the gradate veinlets of Hemerobidx among Neuroptera, but here subparallel to the outer margin, one set, the weakest and shortest, in the middle of the wing, the second and third series on either side of the middle of the outer half, but distant from each other. The anal area is occupied by delicately and longitudinally branching veins, whieh nowhere tend to unite apieally.

Hammapteryx reticulata.

Pl. 6, Fig. 34.

A pair of tegmina of which only the upper third is shown in one of them, while the other is nearly perfect. The two outer series of eross-veins are equidistant in the upper half of the wing, but below it approach each other by the gradual removal of the outer away from the border, the middle series being parallel to the border in this part of the wing. Within this
middle series of definitely arranged cross-veins all the longitudinal veins and their brumehes are united by cross-veins all the way to the base; these are straight and transverse except between the costal and upper radial veins, where the wing is more or less reticulate. The wing is more or less fuliginous, with two small, faint, round, pale spots on the costal border on either side of the curious areuation of the veins.

Length of tegmina, 11.5^{mm}; breadth, 6.3^{mm}.
Green River, Wyoming. One specimen, No. 117, Dr. A. S. Packard.

Subfumily FLATIDA Stâ.

Gravenhorst and Burmeister have both reported species of Flata as found in amber, but nono were described or mentioned by Gernar in Berendt's great work, neither have any been reported from the rocks. The genus Lithopsis, however, which I formerly regarded as one of the Tropiduchidn, appears to belong here, the two anal veins in the clavus being distinctly separated throughout. . I have now another species to add to that first described.

LITHOPSIS Scudder ($\lambda 1 \theta o s$, ö $\psi \imath 5$).

Lithopsis Soudd., Bull. U. s. Geol. Geogr. Surv. Terr., IV, 773 (I878),
Body oblong, stout, and apparently cylindrical anteriorly, tapering and probably compressed posteriorly. Head broad and short, the front not produced beyond the eyes, broad, transverse, very gently convex. The united thorax and scutellum of about equal length and breadth. Tegmina surpassing considerably the tip of the abdomen, two or three times as long as broad, beyond the middle barely tapering, the sides subequal, the apex rounded, the costal margin gently convex; margino-costal area broad, brondening regularly toward the apex, and throughout its length traversed by very frequent transverse veinlets, which become more and more oblique toward the apex of the tegmina, where they aro supplanted by the similarly close branches of the longitudinal veins; these are united at the origin of the forks by transverse veins in continuity with the cesta itself. The radial vein is branched at the base of the tegmina, the inner ulnar vein at some distance before the middle of the wing, and both branches of this vein and the lower branch of the radial vein fork again at half the distance from the first fork of the inner ulnar vein to the tip of the wing, but they are not connected at this point by transverse veins. Wings as long as the tegmina.

This genus reminds one of the South Ameriann gemus Alcestis Stal, but differs decidudly from it in the form of the tegmina, the absence of oblique inferior ramuli to the inuer uhar vein, the course of the annl veins, and the structure of the head.

Table of the apecies of Lllhopsis.
Tegnuimu less than three timen an fong an bromi.
C. Ambriata.

Tegmina more than three them an fong as broul.

2. L. elongata.

1. Lithopsis fimbiata.

PI. 6, Figs. 36, 3 :.
Lithopsia Ambriata Seudd., Bulf. U. S. (Iedl. Oeogr. Surv. Terr., IV, 774 (1878); in Zittel, Mandl. d. I'nlumat., I, if, 78I, Fig. IM9 (1885).

A tolerably well-preserved specimen, with its reverse, together with th:e fingment of a wing, are the principal ${ }^{2}$. - sis for this species. The vertex between the eyes is more thin twice tho width of the eyes, and is marked by a slight, median, longitudinal carina; the front of the vertex is nearly straight, does not protrude beyond the eyes, but is retracted next them, making it very broadly convex. The thorix is considerably broader than the head, but the condition of the specimens doos not allow is more definite statement. The tegmina are the best preserved remains of the animal, being perfect, although somewhat obscure, partly from the veins of the underlying wings ; they are more than two and a lalf times longer than broad, the costal margin, especially its basal lulf, moderately curved, the commissural margin almost perfectly struight, the apex slightly and obliquely subtruncate, so as to throw its well-rounded apex below the middle; near its extremity the mar-gino-costal field occupies more than a third of the ireadth of the tegmina, being double its width near the base; the first branching of the inner ulnar in is as far from the apex of the tegmina as the second branching is from the base; and the third branching, where, and where only, the longitudinal veins are united by cross-nervures, is midway between the second branching and the apex; close to the apical margin there is an inconspicuous fourth series of furcations.

Length of body, 9^{mm}; of tegmina, 975^{mm}; breadth of the same in the middle, 3.65^{mm}; next the third branching of the longitudinal veins, 3.25^{mm}.

Green River, Wyoming. Three specimens, Nos. 143° (F. C. A. Richardson), 4185 and 4189 (S. H. Scudder), 118 (Dr. A. S. Packard).

2. Lithopas elongata.

Pl. 6, Fig. 28.
A single one of the togminn is preserved. It differs from that of the preceding species by its far greater slenderness, being considerably more thun three times as long as broad; the costal murgin is strongly shouldered at the buse, und beyond is very gently und faintly concave, the apex well rounded as in $[$, fimbriata; the marginal area of final division of the longitudinal veins is relatively much broader than in the preceding species, and the principal veins are more longitudinal and less oblique.

Length of tegmina, 9^{mm}; breadth in middle, 2.75 $)^{\mathrm{mm}}$.
Green River, Wyoming. One specimen, No. 90, Prof. L. A. Lee.
FICARASITTES gen. nov. (Ficarasa, nom. gen.).
This name is given to an insect which apparently belongs in this family in the neighborhood of Walker's genera Dmadax, Epora, und Ficarasa, and especially the last named, but from whose imperfect condition little more can be said. The costal area of the tegmina is narrow but supplied regnlarly with rather numerous oblique veins. The radial vein is scarcely branched, the ulnar divided near the base of the wing, the upper branch ugain in the basal half and both at the middle of the wing, beyond which there are further subdivisions; cross-veins very few.

Ficarasites atigmaticum.

$$
\text { P1. 6, Fig. } 20 .
$$

The specimen representing this insect was so macerated in final deposition that the parts are separated, crmmpled, and overlaid, and it is difficult to make out the whole of any one organ. Apparently the body and the tegmina wore each about $10^{\text {mum }}$ long. The latter were furnished with a very small blackish fuliginons stigma at the tip of the costal vein at about the end of the middle third of the wing ; the apical half of the wing was abundantly supplied with cross-veins.

Green River, Wyoming. One specimen, No. 144, Prof. L A. Lee.

Family JASSIDES Amyot-Serville.

With only a single exception all the fossil species of this family that have been recognized in 'Tertiary deposits of any kind have been drawn from the subfanily Jassida as Still separates thom. This is equally true when we extend the ground to America, which possesses half as many species as Enrope, and is the more remarkable since the Membracida, now such a prevailing type in North America, is nowhere traced in the rocks, thongh in Europe a single Oeningen species, imperfectly preserved, has been referred here by Heer. So, too, the vast proportion of forms in both worlds belongs to the series allied to Jassus and Bythoscopus, and not to that of which Tettigonia is the type, so that the resemblance of the Tertiary fama in the two worlds is not slight, though the same genera appear rarely to be preserved.

TEITIIGONIA Fabricius.

This genus, excessively abundant in existing species, especially in the tropics of the New World, has not been recognized in the Tertiaries of Europe. A single species from White River, Colorado, has been referred here, but its generic affinities are wholly uncertain. Not so, however, with the ones now added from Green River, Wyoming, and Florissant, Colorado, which are unmistakable members of the genus, at least in the broad sense in which Signoret employed it. Their presence in Florissant and Wyoming is in keeping with the tropical or subtropical aspect of the Tertiary insect fauna of these places.

Tahle of the species of Tettigonia.

Larger species; tegmina ornamonted with a broad dark band aronnd tha apical margin but with no cross baurls.. T. priscomarginata. Sualler species; togmina with no broad anical tuarginal band but with distinct cross bands.
blasai balf of termina with in broad, dark, median streak lis entire length2. T. pridcotincta. Median streak of tegmiua not extendugy beyond the basal fourth................ T, T. priscovariegata. *. The fonrth species, from its inferlection, is not here noted.

1. Tetitigonia priscomarginata.

Pl. 7, Fig. 4.
A single specimen aud its reverse with partially expanded tegmina. A species is indieated of about the size of our Aulacipes irroratus Fabr. sp., and with a head of probably the same forn. The head is scarcely shorter than the transverse thorax, and the tegmina are fully three times as long as
broad. The neuration does not show clearly; there is no diminution in breadth before the r - idly rounded apex; the tegmina appear to have been clear and light color sd on the disk but broadly obscured at base, at the margins, and along the principal veins, and on the apicai third broadly margined droughout with brownish fuliginous, fading gradually Dasally.

Length of head and thorax, $3 . .^{5^{m m}}$; tegmina, 9^{mm}; brealth of latter, $2.75{ }^{\mathrm{mm}}$.

Green River, Wyoming. One specimen, Nos. 34 and 35, Prof L. A Lee.

2. Tettigonia priseotincta.

PI. 19, Fig. 9.

Head, as viewed from above, rounded, subtriang alar, the front strongly convex, the ocelli situated on the vertex, the surface of the head and thorax uniform, the scutellum roundly aiggulated belind. Tegmina barely reaching the tip of the abdomen, pale with bold dark markings, as follows : A broad subequal stripe follows the outer edge of the sutura clavi to the middle of the wing, where it unites faintly with a narrow stripe which has followed the commissural margin to the tip of the sutura clavi and distinctly and broadly with a smali round spot on the middle of the costal margin; the markings on the outer half of the wing are somewhat irregular, but may best be described as taking the form of a broad and rude \mathbf{X}, one bar running from the center of the wing, just out of contact with the basal markings, to the lower apex of the wing where the margin is clouded with fuliginous, the other crossing the whole wing obliquely and recurved on the costal margin. I do not find any existing species with markings at all similar, the nearest approach being that of T. bella Walker from Silhet.

Length of lody, 7.75^{mm}; breadth of head, 2^{mm}; of abdomen, 2.5^{mm}; leugth of tegmina, 6^{mm}; breadth, 2^{mm}.

Florissant. Two specimens, Nos. 7628, 12996.

3. Tetticonia priscovariegata.

A single specimen is pieserved, of which only one of the tegmina may certainly be claimed for the species. This is very long and slender, three and a half times longer than broad, in the apical fifth tapering rapidly to the rounded tip which is in the middle of the inner half of the tegmina; it is pale with blackish brown markings, which consist, first, of a narrow mar--
gin around the entire wing, broader on the costal than the inner margin, and, second, of a series of spots connected niuth the margin: a small quadrangular spot longer than broad on the inner margin next the tip of the scutellar margin; opposite it a corniform spot, its broad base seated on the outer margin, its curved apex directed baseward along the middle line; across the middle of the wing and ba:ely reaching either margin, with a slight obliquity from within outward and apexward a deeply incised subreniform spot, the outer half the larger; and midway between this and the apex a small elongate spot seated by its brcac side upon the outer margin.

Partially overlain by this wing, but in any case out of normal relation to it, is a broad oval abdomen, on the opposite side of which is a very stout rounded femur, and attached to it a strong, curving, apically enlarged tibia.

Length of fragment of the tegmina, 6.5^{mm}; probable complete length of same, 7^{mm}; breadth; $2^{1 \mathrm{~mm}}$.

Green River, Wyoming. One specimen, No. 127, Dr. A. S. Packard.

4. Tettigonia obtecta.

Pi. 5, Figs. 58, 59.
Tettigonia obtecta Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 761 (1877).
A single specimen, with the merest fragments of wings and no legs, but otherwise pretty perfect, belongs, with little doubt, to this family, although its generic affinities are decidedly uncertain. The heid is not quite so broad as the body, bluntly angulated in front (at an angla of about one hundred and thirty degrees) ; the eyes are rather small, the beak stout and about as long as the head. The abdomen is moderately stout but long, tapering to a blunt tip; the segments, eight in number, growing longer apically, the seventh being twice as long as the second.

Length of body, 7.6^{mm}; breadth of same, 2^{mm}; length of rostrum, 0.65^{mm}; diameter of eyes, 0.28^{mm}.

Chagrin Valley, White River, Colorado. One specimen, W. Denton.

BY'THOSCOPUS Germar.

The Mincene beds of Radoboj, Croatia, and the Oligocene strata of Aix in Provence, us well as the amber deposits of the samd age in Prussia, have each furnished a species of Bythoscopus, to which we can add one from the presumably Oligocene shales of White River, Colorado.

Bythoscopus lapidescens.

$$
\text { Pl. 5, Fig. } 94 .
$$

Bythoscopus lapidesoens Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 761 (1877).
A single specimen, broken at the edge of a stone, and so preserving only the abdomen and part of the wings. The abdomen is long and slender, composed of nine segments, the extremity indicating that it is a female. The wing (the tegmina appear to be entirely absent) reaches the tip of the abdomen, and the apical cells are from a third to nearly half as long as the wing, the upper the longer; the apex is produced but rounded.

Probable length of body, 5.5^{mm}; length of fragment, 3.5^{mm}; breadth of abdomen, 1.5^{mm}.

Chagrin Valley, White River, Colorado. One specimen, No. 44b, W. Denton.

agallia Curtis.

To this genus, now found in both worlds, and never before found fossil, I refer several of Florissant species with little doubt, except that most of them are of too large size.

Table of the species of Agallia.

Large species (body exceeding eight millimeters iu length); a cross-veln aniting the radiai veln to the margin in the outer half of the wing.
Tegmina more than three tlmes as long as broad.
Apical ceils of tegmine twioe ns long as bread
Apical ceils of tegming in levisii.
Apical ceils of tegmina only half as long again as broad............................2. A. faocida. Small apecies (body less than five milimeter in3. A. instabilis. margin ..4. A. abstructa.

1. Agaliia lewisif.

Hi. 19, Figs. 7, 21.
Head relatively small, narrower than the thorax by reason of the forward narrowing of the latter, broadly rounded. The thorax is very finely wrinkled transversely. The tegmina are fully three times as long as broad, the costal margin broadly and pretty regularly convex but more rounted at the extremities than in the middle; the ulnar vein forks (and is united to the radial) at the end of the proximal third of the wing, and the latter rans into the costal margin a little before the tip, sending a cross-vein to the margin at about the middle of the apical half of the wing, opposite which a
VOL XIII-20
pair of elongated subapical cells are formed between the radial aad upper ulnar veins by their union through a cross-vein shortly before the marginal cross-vein; considerably more than half-way from this first-mentioned cross-vein to the apex of the wing cross-veins cut off the tour apical cells. The hind wings show in their upper half two forked veins united by a crossvein opposite the middle of the cells thus formed, and the lower, similarly, to the simple vein which follows it.

The large size of the insect and its relatively small head make it somewhat doubtful whether it should be retained in Agallia.

Length of body, 8.5^{mm}; tegmina, 5.5^{mm}; hind femora, 2^{mm}; hind tibiæ, 3.5^{mm}.

In memory of the late lamented and talented geologist, Henry Carville Lewis, of Pennsylvania.

Florissant. Four specimens, Nos. 307, 8293 and 8725,13582 , and from the Princeton Collection, Nos. 1.801 and 1.805 .

2. Agalila flaccida.

Pl. 19, Fig. 18.
This species is closely allied to the last, differing principally in the denser structure of the tegmina, in which the neuration less plainly appears, and in the brevity and relative breadth of the apical cells. The shape of the tegmina is the same, being nearly equal throughout with broad apex, in contrast to the more oval form of the succeeding species; they are a little more than three times as long as broad, and the central apical cells are hairdly half as long again as broad.

Length of body, $7.25^{\mathrm{mm} \mathrm{\prime}}$; breadth of thorax, 2.5^{mm}; lenyth of tegmina, $5.5{ }^{\mathrm{mm}}$; breadth, 1.65^{mm}; length of hind tibiæ, 3^{mm}.

Florissant, Colorado. Three specimens, Nos. 7858, 7979, 10158

3. Agallia ingtabilis.

Pl. 21, Fig. 1.

This is a stouter species than those which have preceded, with relatively shorter tegmina. A single specimen is preserved, with one of the tegir :na expanded. The extremity of the abdomen has disappeared, so that the length of the animal can not be determined, but its great breadth can be seen by comparison with the width of the tegmina. The legs are slender.

The costal margin of the tegmina is greatly thickened and regularly and considerably arcuate, giving an unusually ovate shape to the whole, which is increased by the somewhat pointed though rounded apex. The tegmina, which are less than three times as long as broad, appear to be tenuous, and the veins, though net the sutura clavi, are very indistinct. The body is uniformly dark and parallel-sided.

Breadth of body, 2.5^{mm}; length of tegmina, 5.75^{mm}; breadth, 2^{mm}; length of hind tibiæ, 3.25^{mm}.

Florissant, Colorado. One specimen, No. 78.

4. Agallia abstructa.

Pl. 10, Fig. 5.
Head as broad as the uniformly broad thorax. Tegmina barely extending to the tip of the abdomen, long oval, almost three and a half times as long as broad, the costal border regularly and very little arcuate, the apex strongly convex; the ulnar vein forks at the end of the proximal third of the wing, and the upper branch is immediately united by a recurrent crossveir, longer than the pedicel of the upper ulnar, to the radial vein, the latter running into the margin not far before the tip but uniting with it by no cross-vein; scarcely beyond the middle of the wing the radial and upper ulnar veins are united by a bent cross-vein, from the middle of which springs a veinlet, dividing the area betweer them, and at just about half-way to the tip all the veins are united by a transverse series of gradate cross-veins, beyond which the discontinuous longitudinal veins diverge, producing apical cells distinctly broader at the margin than at base.

Length of body, $4.5^{\text {mm }}$; tegmina, 3.7^{mm}; breadth of body, $1.5^{\text {nm }}$; tegmina, 1.1^{mm}.

Florissant. One specimen, No. 2658.

GYPONA Germar.

The only reference of a fossil to this genus is in my first mention of the Homoptera collected by Denton on the White River, as belonging to genera "allied to Issus, Gypona, and Delphax." Since then these have been described under the genera Aphana, Delphax, Tettigonia, and Bythoscopus. The one now described below is referred here only in a general a:id vague sense, as it is too ill preserved to speak of it with confidence.

Gypona cineroia.

Pl. 19, Fig. 4.
The head and thorax are decidedly darker than the abdomen, and the spread, but crumpled, elytra are scarcoly visible as distinct from the color of the stone except for their slightly darker edges. The head is not more than half as broad as the thorax (which shows that it can not strictly fall into Gypona), with small and rather prominent eyes. The elytra are very slender, extending beyond the abdomen, with only slight and feeble traces of neuration, and apparently very tennous. The wings are a little shorter but broader, and so more ample.

Length of body, 8.5^{mm}; tegmina, 8^{mm}; breadth ol thorax, 2.5^{mm}.
Florissant. One specimen, No. 14229.

JASSUS Fabricius.

Two species of this genus have been described from the Prussian amber, and several others (compared with different existing forms from those with which the former were compared) have been indicated by Gravenhorst from the same source. It appears, however, not to have been recognized in the rocks, and the species here referred to it is too imperfect to be sure of the correctness of the reference.

Jassusf latebre.

$$
\text { Pl. 20, Fig. } 19 .
$$

The head has much the form of that of Jassus spinicornis from Prussian amber; the thorax is very faintly and not very finely nor closely punctate; the tenuons and diaphanous tegmina extend a little way beyond the tip of the abdomen, and are apparently almost three times longer than broad; they are traversed by rather distant lougitudinal veins, of which five reach the apical margin; the character of their furcation and anastomosis can not be determined wit? certainty, but wherever it can be traced appears to agree with the simpler types of Jassus.

Length of body, 3.5^{mm}; breadth of same, 1.2^{mm}; length of tegmina, 3^{mm}.

Florissant. One specimen, No. 6639.

THAMN()TETTIX Zetterstedt.

No species of this genus have been hitherto recognized among fossil insects. The larger species here described certainly belong here or in the immediate vicinity, the neuration of both tegmina and hind wings closely agrecing, as well 'as such other details of bodily structure as can be seen. The small species is placed here with mor's doubt, since it is too poorly preserved to determine with any confidence.

Table of the species of Thamnotettix.

Larger epecies; more than three millimeters in length.
Reiatively atont bodied, with tegnina barely three thmes as long as broad............ T. mutilata. Relatively elender bodied with tegmina cousiderably more than three times as long as broal.
2. T. gannetti.

Smaller speciee ; less than three millimeters in length .. T. fundi.

1. Thamnotettix iuutilata.

$$
\text { Pl. 7, Fig. } 6 .
$$

A single specimen is preserved, showing only a part of the head but the whole dorsal view of the rest of the body, with one of the tegmina partly expanded. The body is long ovoid, very regular in shape with full abdomen, hardly pinched posteriorly, but with full rounded curve. The thorax is transverse, and the scutellum large for this genus, being if any thing a little longer than the thorax The tegmina are barely three times as long as broad, with interrupted dusky maculæ along the outer half of the costal margin, and slight signs of the same along the inner inargin. The hind tibix are obscurely seen through the body, and appear as if very densely spined with excessively minute and short spines, very different in character from those of living types.

Length of body, 4.55^{mm}; breadth, 1.4^{mm}; length of tegmina, 3.75^{mm}; breadth, 1.25^{mm}.

Green River, Wyoming. One specimen, No. 73, Prof. L. A. Lee.

2. Thamnotettix gannetti.

$$
\text { Pl. 6, Fig. 33 ; Pl. 7, Fig. } 5 .
$$

Two specimens, differing a littic in size, seem to belong together, both preserved in a similar manner, showing a dorsal view with spread tegmina, and wings, though in one case part was covered when the plate was drawn. The body is rather slender, the abdomen tolerably full, but pinched
apically, so that the last two segments are much narrower than the preced-ing. The transverse thorax, as in the preceding species, is slightly shorter than the unusually large scutellum. The tegmina are considerably more than three times as long as broad, the veins and cross-veins rather heavily markeu: there are four apical cells, which are more than twice as long as broad. The venation of the upper half of the hind wings (all that is preserved) is precisely the same as that of T. simplex of Europe, excepting that the lower cross-vein is strongly oblique instead of transverse.

Length of body, 3.3-4.1 ${ }^{\mathrm{mm}}$; breadth of abdomen, $1.15-1.5^{\mathrm{mm}}$; length of tegmina, 3.1-3.5 (\%) ${ }^{\mathrm{mm}}$; jureadth, 0.85-0.85 (8) ${ }^{\mathrm{mm}}$.

Green River, Wyoming. Two specimens, Nos. 116, 120, Dr. A. S. Packard.

3athamnotettix fundi.

Pl. 19, Fig. 20.

Head roundly angulate in front, the thorax small. Tegmina slender, elongate, surpassing a little the abdonen, about three and a half times longer than broad, the costal edge nearly straight, the longitudinal veins few, distant, and faint, the substance of the wing being slightly coriaceous, or only partly diaphanous, as in our green and unicolorous living species.

Length of body, 2.85^{mm}; tegmina, 2.65^{mm}; width of body, 0.85^{mm}; tegmina, 0.75^{mm}.

Florissant. One specimen, No. 3412.

CICADULA Zettervtedt.

No fossil species of Jassida have yet been referred to this genus, and the present reference of a somewhat obscure species is by no means definite.

Cicadula saxosa.

Pl. 6, Fig. 26.

A species is indicated of about, the size of our C. sexnotata, but with more opaque tegmina. Only the part of the head between the eyes is preserved, giving it a more distinct and quadrate appearance than would be otherwise the case; the front is broadly rounded. The thorax is more than twice as broad as long and the posterior angle of the scutellum is slightly more than a right angle. The tegmina are opaque, showing scarcely any veins, and these only longitudinal, the sutura clavi terminating in the middle

- of the apical half; they are considerably more than three times as long us broad, subequal throughout, with well romeded apex. The abdomen is long oval, largest about one-third way from base, tapering beyond to a bluntly poirited tip.

Length of body, 2.75^{man}; greatest breadth, 0.9^{mm}; length of tegmina, 2.5^{mm}; breadth, 0.75^{mm}.

Green River, Wyoming. One specimen, Nos. 114 and 126, Dr. A. S. Packard.

ACOCEPHALUS Germar.

Heer has described two species of this genus from the Miocene beds of Radoboj, and two of our American fossils are referred dubiously to the same group, though they differ considerably from each other in the general form of the body. Heer's species, too, strictly interpreted, should be placed elsewhere, though they are certainly near Acocephalus.

Table of the speoies of dcooephalus.
Slender speoies; body more than three times as loug as broad. 1. A. ada. Stout species; hody less than three times as long as broad. ..2. A. callosue.

1. Acocephalus ader.

Pl. 6, Fig. 29.
Acocephalus adew Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 771 (1878).
Two specimens represent the body of apparently a species of Acocephalus. The head projects forward in a triangular form, is rounded at the extreme apex, a little broader than long, and nearly twice as broad between the small eyes as its length in advance of them. The body is slender, the abdomen slightly tapering, rounded at the apex. The tegmina extend a short distance beyond the body with parallel longitudinal veins.

Length of body, 5.25^{mm}; breadth of head, 1.4^{mm}; of middle of abdomen, 1.3^{mm}.

Green River, Wyoming. Two specimens, Nos. 72, 100, F. C. A. Richardson.

2 Acocerfalus callosus.

Pl. 19, Fig. 15.
Although the figure seems to show a bluntly rounded head very uncharacteristic of Acocephalus, it evidently results from the mode of preservation, the body being crushed on a three-fourths view, obscuring the angularity of the front, which a careful examination of the specimen itself
seems to show. The eye is smail, as there. The tegmina are hyaline, apparently reaching about to the tip of the abdomen (the whole of which is not preserved, but can be rendily restored in the main), and has few longitudinal veins connected, a little beyond the middle and again more than half-way to the tip, by series of cross-veins. The legs are rather short and moderately stout, the middle tibix only half as long again as the tarsi.

Presumed length of body, 6.5^{mm}; breadth, 2.5^{mm}; length of tegmina, 5.5^{mm}; middle tibiæ, 1.7^{mm}; tarsi, 1.2^{mm}.

Florissant. One specimen, Nos. 11307 and 14385.

JASSOPSIS gen. nov. (Jassus, nóm. gen.).
Allied to Thamnotettix. The thorax is rounded subuuadrate, as long as broad, and the scutellum not more than half as long as the thorax. The veins of the tegmina are peculiar in that the radial parts from the costal vein and the ulnar vein from the sutura clavi at similar and very short disiances from the base; there are but three apical cells.

A single species is known.

Jassopsis evidens.

Pl. 19, Fig. 16.

The single specimen is preserved so as to show a dorsal view with the tegmina unequally expanded. The head is lost but was relatively narrow, to judge by the anterior tapering of the thorax. The body is very dark and uniformly so, the posterior angle of the scutellum a right angle. The tegmina were seminpaque, with the veins heavily marked, the sutura clavi terminating in the widdle of the wing; they are three and a half times longer than broa?, and the costal margin is strongly arcuate, especially distally, so that the apex falls at about the middle of the lower half of the wing and is roundly pointed; cross-veins unite the principal nervures where tine radial vein forks at about three-fifths the distance from the base of the wing. The abdomen is subconical, tapering pretty uniformly almost from the base, with pretty straight sides, the tip bluntly pointed.

Length of body (without head), 3.2^{mm}; breadth of abdomen near base, 1.1^{mm}; length of tegrinina, $3{ }^{\mathrm{mm}}$; breadth, 0.855^{mm}.

Florissant, Colorado. One specimen, No. 5188

CCELIDIA Germar.

The only species of this group hitherto reported fossil is one described below from British Columbia. 'To this we now add another species from Wyoming. It is an American type best developed in the tropies, but not unknown in the southern United States.

Table of the opecies of Calidia.
Tegmina lens than three times as long as broad 1. C. ootumbiana.

Tegmina were than three times as long as broad .2. C. wyomingonais.

1. Ccelidia columbiana.

PI. 2, Fig. 13.
Celidia columbiana Seudd., Rep. Progr. Geol. Snrv. Can., 1877-1878, 185B (187\%).
A pair of tegmina, in which most of the venation can be made out, with a crushed body and crumpled wings, represent a species of Coelidia or an allied genus, with rather broad tegmina. The veins of the tegmina are nearly parallel to the gently arcuate costal margin, are equidistant from one another, and are united by cross-veins near the middle of the apical half of the tegmina, the lower ulnar vein, which runs only a little below the middie of the wing, forking at this point; the upper of the apical areolets, however, is considerably shorter than the others; the two ulnar veins are united by a cross-vein in the middle of the basal half of the tegmina, while not far from the middle of the tegmina the ulnar and radial veins are similarly united. The tegmina do not taper apically, the extremity is rounded and obliquely docked, and the sutura clavi is short. The hind wings are provided with an unusual number of cross-veins.

Length of tegmina, 8^{mm}; breadth, 3.25^{mm}.
Similkameen Kiver, British Columbia. One specimen, No. 75, Geol. Surv. Canada, Dr. G. M. Dawson.

2. Celidia wyomingensis.

Pl. 4, Fig. 8.

A dark species appears to be indicated, the head and thorax being black and the veins of the tegmina heavily marked with dark fuliginous. The tegmina are well rounded, about three and a quarter times as long as broad, the costal margin regularly and pretty strongly convex; the pedicel
of the upper ulnar branch is slightly shorter than the cross-vein uniting it to the radial ; the radial is parallel to the cosin throughont ; a second crossvein unites the radial and upper ulnar where the former forks, as fur from the first cross-vein as the width of the wing, nud the apical series of crossveins is half-way between this new cross-vein and the apex of the wing.

Length of tegmina as preserved, 7.5^{mm}; as restored, 85^{mm}; breadth, 2.5^{mm}.

Twin Creek, W yoming. One specimen, No. 6 ${ }^{\text {b }}$, Dr. A. C. Peale.

DOCIMUS gen. nov. ($\delta i \boldsymbol{\prime} \kappa \mu \boldsymbol{\mu})^{\prime}$).

This name is proposed for an insect with somewhat remarkable neuration, which reminds us somewhat of that of Walker's East Indian genus Isaca. 'The sutura clavi is very long, reaching to the middle of the outer balf of the wing, while the apical cells, the ouly wholly diaphanous part of he wing, are very long, occupying fully the apical third, and are very few in number, only three reaching the apical inargin, and all being bounded away from the middle line of the wing by remarkahly arcuate and divergent veins, giving somewhat the aspect of a Psyila to the wing. The body is very stout, with a full abdomen, well rounded behind, and in no way pointed.

A single species is known, or possibly two.

Docimus psylloides.

Pl. 19, Figs. 6, 17.

The head is not preserved. The thoras is faintly punctate. The tegmina are fully two and a half times longer than broad; the ular vein forks very close to the base, and where it is united by a cross-vein to the radial these two are united by another oss-vein in the middle of the wing, beyond which the space is separatei into two longitudinal cells; the radial ends near the apex in a strongly arcuate fork, which at first curves downward into the heart of the wing and then turns upward, the cell opening on the costal border at the edge of the apical border; opposite the origin of this fork the next and the last veins are abruptly but roundly bent and send cross-veins directed obliquely inward to the intermediate vein from the angles, beyond which they divaricate.

This description is based wholly upon the sperimen illustrated in Fig. 17. That given in Fig. 6 and two others are too imperfect to deterinine that they certainly belong herc, but they may form a second species of the genus with less strongly curved veins.

Length of body, 6.75^{mm}; breadth, 3^{mm}; length of teginina, 5.5^{mm}; breadth, 2^{mm}.

Florissant. Four specimens, Nos. 4625, 4747, 9299, 10479.

Family CERCOPIDE Leach.

This was the prevailing type of Homoptera in Tertiary times, at least if the number of individuals be regarded. At Florissant they nppear to form three-fourths of the whole bulk. As compared with Fulgorina they were there slightly less numerous in species and genera, but five times as as numerous in individuals. Most of the extinct forms have been referred by authors and especially by Germar and Heer to the existing genera Cercopis and Aphrophora, but, ass we shall see, these references were so far incorrect that in several instances they belonged to the alternate subfamily and not to that to which they were referred.' So, too, one insect found in the Isle of Wight Tertiary is referred to an existing form, but probably without sufficient reason. As to our own species, some of them. are gigantic, nearly all large, and by far the greater part of them allied to types now found only in the tropics of the New World, and yet I have been unable in any instance to refer them to existing genera, though doubtless some of them will be found so referable. The lack of sufficient tropical materials in the museums of this neighborhood compel the description of several genera as new which may prove still extant.

Subfamily OERCOPIDA Stål.

The larger part of the fossil Cercopidx that have been described have been referred to this subfamily, but in several instances, as will be pointed out, the reference is incorrect. Thero remain, however, several species of Cercopis, a Cercopidium, and a Triecphora (this latter regarded as an existing

[^35]species by Woodward) from the European rocks and from amber, while in our own country by far the larger proportion of the Cercopida belong to this subfanily, and, excepting three species rograrded as belonging to Cercopis, one each from British Columbia, Green River, and Florissant, all are referred to extinct generio types; these include seventeen species and six genera, one of them, Petrolystra, with two species, gigantic and possibly luminiferous insects, which must have been one of the striking features of Florissant Olincene entomology; another, Palecphora, with six species, five of them from Florissant and one from Green River, was the prevailing homopterous type; Cercopites is known only from Green River; the remainder, with the exceptions noted, only from Florissant, and one of the prettiest, Prinecphora, was by no means rare. As a whole the aspect of the cercopid fruma was decidedly tropical.

CERCOPITES gen. nov. (Cercopis, nom. gen.).
Head relatively small, including the eyes hardly more than half as broad as the thorax, not appressed, but prominent. Thorax more or less hexagonal, much broader than long, the front border transverse or nndate, the base trumeate; scutellim equiangular. Tegmina large and well rounded, but little more than twice as long as broad, with convox costa, the tip slightly narrowed and sharply rounded, the radial and ulnar voins forking once each with no apparent apical cells, the radial forking scarcely before the middle of the wing, and before forking running at no great distance from and parallel to the margin.

Two species are known, both from the Wyoning Tertiaries.
Table of the specirs of Cercopites.
Smaller species, the wings expanding abont eight millinetors; front margin of thorax straight.

1. C umbratilis.

Larger speeies, the wings expanding abost twenty millimeters; front margin of thorax undate or blooncave

1. Cercopites umbratilis.

Pl. 7, Fig. 9.

The single specimen is rather obscurely preserved, showing an upper surface with spread wings. The body is stout, the abdomen full and rounded; the front margin of the thorax is straight behind the head, bat
retrents slightly at the sides, so as to give it a slightly convex aspect. The body is dark and uniform, the tegmina the same but slightly lighter over the disk; the costa is very strongly onvex.

Length of body, 2.75^{mm}; breadth, 1.1^{mmm}; length of tegmina as preserved, $3.5^{\text {mum }}$; as restored, $3.8^{\text {mum }}$.

Green River, Wyoming. One specimen, No. 108, Dr. A. S. Packard.

2. Cercopites calliscfns.

Pl. 6, Fig. 32.

Head suborbicular, with seareely protruding eyes, n little broader only than long; the ocelli are obscure, but what are appurently these are farther removed from each other than t.oon the eyes. Thorax broadest in the middle of the anterior half, from which point it rapidly narrows both in front and behind; base straight ; front margin broadly concave except for a slight and angular middle prominence, which broaks the carve in two. Body dark fuliginons. 'Togmina pallid, bat with a darker costal margin and a similar but broad apieal band; the veins show with tolerable distinctness, though they are generally very obsenre in the wings, which show a neuration in all respects typical so far as visible.

Length of body, including elosed wings, $11^{\text {mim }}$; breadth, 3.5^{mm}; length of tegmina, 8.5^{mm}.

Green River, Wyoming. One specimen, Nos. 104 and 115, Dr. A. S. Packard.

CERCOPIS Fabricius.

A number of species have been referred to this genus from the European Tertiaries, but, as mentioned below ander that subfamily, they are mostly referable to the Aphrophorida. It is doultfinl whether any of the species of trie Cereopina should be classed generically with those here placed in this gronp, and which are known by their tegmim only; the form of the wings, as well as their neurntion, differs considerably, but mutil more of the structure enu be determinel it has seemed best to class them here. It may be noted that the radial vein branches sooner than in Cercopites.

[^36]
1. Cercopis selwyni.

$$
\text { Pl. 2, Figs. 14, } 15 .
$$

Cercopis selvyni Scudd., Rep. Progr. Geol. Surv. Can., 1877-1878, 184B-185B (1879).
A pair of nearly perfect tegmina, reverses of zach other, represent a species allied, but rather distantly, to the gigantic species of Cercopida described by Heer from Radoboj. It differs from them all in neuration, in the form of the costal border and of the apex. The portion of the wing below the straight sutura clavi is broken away. The basal half of the costal margin is strongly and rather uniformly arcuate, but more strongly close to the base; the apical half of the same is nearly straight; the apical margin is a little obliquely and roundly excised, gen ${ }^{+1}$ y convex, the tip roundly angulated. The costal vein parts from the conmon trunk close to the base and follows slose to the margin, terminating at about one-third way to the tip; the radial vein is directed toward the middle of the outer half of the costal border, until it forks, a little before the middle of the wing, when both straight branches run subparallel toward the tip; the ulnar vein also forks once, half-way between the base and the fork of the radial vein, and its straigh branches, with those of the radial vein, subdivide the outer half of the wing subequally, all being evanescent toward the apical margin; the sutura clavi reaches as far as these veins are visible.

Length of wing, 16.5^{mm}; breadth of wing at tip of sutura clavi, 5^{mm}; length of sutura clavi, 14^{mm}.

Nine Mile Creek, British Columbia. One specimen, Nos. 64 and 65, Dr. G. M. Dawson, Geological Survey of Canada.

2. Cercopis astricta.

Pl. 7, Fig. 15.

Reverse and obverse of the greater part of one of tho tegmina of a much smaller insect than the preceding represent this species; no part of the clavis is preserved nor even quite up to the sutura clavi. The costal margin is very strongly convex, the curve being strongest in the middle so as to appear bent; the apical area is equally full above and below, or only a trifle the fuller above, the margin strongly convex. The costal vein can not be made out, and the radial is almost equidistant from the margin, and relatively only about half as far as in the precer'ing species, before it
forks, when, after reaching their widest, the two forks run exactly parallel to the costal margin, fading in the darker outer third of the wing; the branches of the uluai' vein originate as in the last species, and are parallel to the radial branches, all being also equidistant.

Length of tegnina, 9^{mm}.
Green River, Wyoming. One spscimen, Nos. 110 and 125, Dr. A. S. Packard.

3. Cercopis suffocata.

Pl. 19, Figs. 2, 3.
A single one of the tegmina of an insect with the clavus gone, but very different in its markings from anything known. Its simple neuration allies it directly with the other species referred here; the radial, however, is distant throughout from the margin. The costal margin is very regularly and considerably convex, and the apex very strongly rounded, produced, and almost pointed. A broad and uniform 'belt of dark color follows the costal margin at the base for nearly two-fifths its course, in striking contrast to the generally pale color of the wing, and distally joins a similar transverse and slightly oblique bar crossing the wing as far as the sutura clavi; all the base of the wing, dark or light, is finely and distantly punctuate, as shown in Fig. 2; a secord transverse and similarly oblique dark band, slightly broader, crosses the wing just before the apax, its inner border just striking the tip of the sutura clavi.

Length of tegmina, 8.5^{mmin}; breadth at tip of sutura clavi, 3^{mm}.
Florissant. One specimen, No. 262.

> PETROLYSTRA Ŝcudder (π ह́z $\rho o s$, Lystra, nom. gen.).
> Petrolystru Scudd., Bult. U. s. Geol. Geogr. Surv. Terr., IV, 530-531 (1878).

One of the most striking instances of tropical affinities in the Tertiary shales of Florissant is found in the presence of two species of a gonus of huge Homoptera, rivaling the famous lantern-fly of South America in size, but differing in neuration and other features from any genus hitherto described. At first glance one would think that it belonged to the Fulgorida, a subfamily which, with Stridulantia, includes nost of the larger forms of the suborder, and to be somewhat nearly allied to Paralystra; but it differs from this, and, so far as I can determine, from all Fulgorina, in the minute-
ness of the scutellum, and must be referred instead to the Cercopida, although larger than any species of that group which I find noticed, while in comparison with the temperate forms of that subfamily it is gigantic, most of our own species not exceeding one-fourth its length. The name is not very well chosen.

The body is robust, the head large, apparently flat above, about twice as broad as long, but considerably narrower than the thorax, the front regularly and very broadly convex; clypens about half as broad as the head, somewhat convex, coarsely carinate down the middle with distinct lateral transverse ruga; ocelli indeterminate; rostrum shorter than the breadth of the tegmina. Thorax broadening posteriorly, continuing the curve of the head; the front margin rather deeply and very broadly excised, so that its middle is straight and the lateral angles are rather sharply angulate; the hind margin with very oblique sides, so that these, if continued, would form less than a right angle with each other, but toward the midde line incurved, so that the thorax is rounded posteriorly and excised in the middle. Scutellum very small, scarcely more than half as long as the thorax and rather longer than broad, tapering more rapidly in the basal than in the apical half. The fore tibize apparently unarmed, and of the same length as the fore femora; the apical tarsal joint of same legs tumid, longer than the other joints combined, of which the second is less than half as long as the basal joint, the whole leg only a little longer than the breadth of the tegmina; fore coxæ apparently in close proximity. Tegmina large, nearly equal throughout, the inner base angularly excised next the posterior border of the thorax, the apex well rounded, a little produced anteriorly; it was apparently coriaceous, with little mark of any excepting some of the principal veins, which are elevated. The base of the costa! part of the wing is so expanded, to give equality to the wing, that the radial vein at its base is very near the middle of the tegmina, and continues so until it forks in the middle of the basal half of the tegmina; its lower branch continues its course subparallel to the costal margin, while the upper branch curves upward and follows close to the costal margin until, like its fellow, it is lost in the membrane near the tip of the tegmina; the sutura clavi runs straight to the posterior border beyond the middle of its outer half, and midway between the two the radial originates, forking almost immediately, the forks dividing the inner area equally between them, and in the middle of the outer half of the
tegmina united to each other by a cross-vein, to which they bend; they too are lost before the tip. The wings are not sufficiently preserved to characterize, but appear to agree in general character with those of Triecphora. Abdomen more than twice as long as the rest of the body, tapering regularly to a pointed extromity.

Table of the species of Petrolystra.
Pale hands of tegmina occupying harilly more space than the dark ground.

1. P. gigantea.

Pale bands almost supplanting the normal dark ground of tegmina
..2. P. hercs.

1. Petrolystra gigantea.
 P1. 20, Figs. 5-7.

Petrolysira gigantea Sendll. Bull. U. S. Geol. Geogr. Surv. Terr., IV, 531-532 (1878); in Zittol, IIandb. I. Palwont., I, ii, 781, Flg. 992 (1885).

Two nearly perfect specimens, reverses of each other, were picked up by a child just as I reached the quarries at Florissant, on my first visit to them, and another, a fragment of a wing, was afterward found in the same place. The head was apparently dark-colored, the thorax not so dark, delicately and softly shagreened, with a slight median carina The tegmina are almost similarly rugulose; the costa of the same is pretty strongly convex at base, very slightly convex beyond the middle of the basal half; the posterior border is slightly excised at the tip of the clavus, and the outer margin is oblique, being angularly excised at the posterior angle, although rounded throughout. It is dark, darkest at base and gradually grows lighter, more fuliginous toward the tip (although all the specimens do not show this), and is traversed by four equidistant transverse pale bands, the basal one reduced to a spot in the middle of the extreme base, where it occupies about one-third the width of the wing; and the apical one rather clondy, half as bread as the breadth of the tip and as far from the tip as from either border, equal, two or three times as broad as long, sinuous or lunate; the other two are more distinct, with sharply defined borders and irregularly sinnous; the outer of the two traverses the entire wing, touching the costal border, however, by only the tip of the rounded extremity, while it expands upon the posterior border ; the inner of the two is rounded at either extremity, fails of reaching either border, and is constricted just beneath the radial vein ; both of these bands average in width the breadth of the interspaces.

The specimen given in Fig. 5 is presumed to be a hind wing belonging to this species, but is so folded that the course of the neuration can hardly be determined; if it is correctly given the hind wing must have been banded like the fore wing.

Length of body, 23.5^{mm}; of head, 3.75^{mmn}; of thorax, 4.5^{mm}; of abdomen, 15.25^{mm}; width of head 7^{mm}; of clypeus, 3.6^{dm}; length of rostrum, 8.5^{mm}; width of thorax behind, 85^{mm}; length of scutellum, 3^{mm}; its breadth at base, 2.5^{mm}; length of tegmina, 29.5^{mm}; width next base, 10.5^{mm}; near tip, 8.5^{mm}.

Florissant. Three specimens, Nos. 62, 411 and 412, 11241.

2. Fetrolystra heros.

Pl. 20, Fig. 8.

Petrolystra heros Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 532 (1878).

A single specimen shows one of the termina in a good state of preservation, together with both fore legs. It differs from P . gigantea in the broader bands of the tegmina and in the form of the latter, the posterior border being slightly fuller at the base, so as to make that part of the wing proportionally broader, while the posterior angle of the tip is not obliquely excised, ma':ing the extremity truncate rather than pointed. The bands have expanded so as to occupy the larger part of the wing ; thie basal spot occupies the enti": base from border to border (excepting the very rout) as far as an idique transverse line, subparallel to the inner basal edge of the wing, and distant from the root nearly half the width of the wing ; it also infringes upon that bordering line by a large semicircular excision in the middle ; the apical spot is very nearly as long as broad, and stops just short of the margin on all three sides of the apex, and in the middle of the wing breaks through the intervening dark stripe into the outer of the two middle bands; these two middle bands are also much broader than in the other species, but not to so great a degree as the extreme bands; they reach from border to border, and are united to each other and to the basal spot along the sutura clavi; the wing therefore has the appearance rather of being pale, with three transverse dark stripes, which are broad (and the outer two triangular) on the anterior half of the tegmina, narrow, sinuous, and broken on the posterior half.

Length of tegmina, 28.25^{mm}; width at base, 10.8^{mm}; at tip, 7.2^{mm}; length of fore femora, 4.5^{mm}; fore tibiæ, 5^{mm}; fore tarsi, 2.75^{mm}; first tarsal joint, 0.8^{mm}; last tarsal joint, 1.7^{mm}; claws, 0.5^{mm}.

Florissant. One specimen, No. 11829.

LOCRITES' genl. nov. (Locris, nom. gen.).

Body stout. Head large, protuberant, well rounded, not angulated in front, though subtriangular. Thorax transverse, more than twice as broad as long, truncate both in front and behind Scatelhun moderately large, equiangular, the angles sharp. Tegmina large, full, about two and a half times longer than broad, with strongly curved costal margin, tapering considerably in their apical half, the apex romndly angulated; the radial vein forking well before the middle of the wing and before that widely separated írom the margin, midway between which and it the costal vein runs; ulnar vein much as in the species here referred to Cercopis. Both middle and hind femora are about two-thirds as long as their respective tibix. Abdomen stont, tapering conically in the apical half.

To this genus evidently belongs Cercopis haidingeri Heer from Radoboj, Croatia, which is slightly larger than the larger of the two species from Florissant we place here.

Table of the species of Locrites.
Larger speoies; tegmina nniformly mottled in generally distributed blotshes................1. L. oopei.
Smaller species; markings of tegmina confined to obscure transverse darker bands in the basal twothirds of the wing .2. L. wohiled.

1. Locrites copei.

Pl. 21, Fig. 19.
In one of the specimens referred here, the one figured, the dorsal surface is shown, but with many of the ventral parts showing through. The tegmina, however, as in many of the insects from Florissant, appear as if bleached out, and the real markings lost; for these we have to go to the second specimen, preserved upon a side view, which shows a delicate mottling of dark, circular or transverse, minute spots, more or less clustered into larger but still small roundish blotches, pretty evenly distributed, but absent from the extreme tip; the sutura clavi is very distinct and heavy,
and the whole of the clavas obscure. The head, thorax, and scutellum appear to be uniformly and deeply sulcate (or carinate, if No. 9374 is an obverse).

Length of body, 15.5^{mm}; of tegmina, 14^{mmu}; breadth of thorax, 5.5^{mm}; combined tegmina, 10^{mmm}.

Named for Prof. E. D. Cope, of Pliiladelphia, the distinguished and versatile paleontologist and collaborator of the Hayden Survey.

Florissant. Two specimens, Nos. 9374, and of the Princeton Collection 1.903.

> 2. Locrites whitei.
> Pl. 21, Fig. 17.

The single specimen and its reverse represent the dorsal surface of an insect with closed wings. The head is relatively broader than in the last species, with a similar though much slighter mediodorsal sulcation; the ocelli appear to be nearer together than to the eyes. The body is black, and the tegmina dark fuliginous, but permitting the black abdomen to be seen through them; the distal half appears to be uniform, but the basal half to be transversely banded by broad darker bars, between which and between the basal bar and the base the tegmina are slightly lighter than the normal ground, accentuating the bands.

Length of body, 13.25^{mm}; tegmina, 12^{mm}; breadth of thorax, 5^{mm}; combined teginina, 7^{mm}.

Named for my colleague, Dr. C. A. White, one of the paleontological collaborators of the Hayden Survey.

Florissant. One specimen, Nos. 8313 and 8314.

PALECPHORA gen. nov. ($\pi \alpha \lambda \alpha i o ̀ s, ~ ' ̇ ُ r \varphi o \rho \alpha i)$.
Allied to Triecphora in neuration, but with a more slender habit and relatively far smaller clavus. Head suborbicular, about half as broad as the thorax, the front well rounded, in no sense angulate, with a slight longitudinal carina; ocelli posteriorly placed, much nearer together than to the eyes. Thorax rather broader than long, the front and posterior margins truncate, the sides angulate, so as to be as a whole transversely liexangular, but more or less rounded, so as often to appear suborbicular; marked indis-
tinctly with a faint median sulcation and in the middle of the lateral halves, anteriorly, with posteriorly converging similar carina, to be seen only in clear specimens. Scutellum moderately large, subequiangular, slightly broader than long, the sides faintly concave, continuous with the angles of the thorax, the base truncate, the tip sharply pointed. Tegnina long oval, the clavus occupying not more than a fifth of the whole, which is fully two and a half times as long as broad, tapering caly at the extreme tip and roundly pointed slightly above the middle line, the costal margin pretty strongly convex ; the costal vein appears to be lacking; the radial with its outer fork runs in one continuous line parallel to the costal margin throughout and at a moderate distance from it; its inner fork parts from it a very little beyond the middle of the wing, the ulnar forking considerably before the middle; all these branches parallel and united by subcontinuous crossveins parallel to the apical margin, from the middle of each of which the longitudinal veins continue to the margin, one or two of the upper ones (and especially the second) usually widely forked, forming apical cells nearly a sixth the length of the wing; besides this, straight but rather strongly oblique cross-veins connect the upper radial branch to the margin; all of this minor venation is sometimes obscured by the opacity of the membrane. Wings a little shorter than the tegmina, of the usual form, the marginal vein continuous; second and third longitudinal veins united by a straight crossvein beyond the middle of the apical half of the wing, the second bent down to meet it ; third and fourth similarly united scarcely beyond the middle of the wing, the fourth deeply forked, almost to the cross-vein, the lowor branch abruptly curved at base. Legs short and slender, the fore and middle pair of nearly the same length, the hind pair a little longer; all the femora and particularly the hind pair very short, not reaching the sides of the body, scarcely broader than the slightly enlarged apex of the tibix; tibix longer than the fenora, in the hind pair twice as long and with two pairs of spines; tarsi considerably shorter than the tibie, in the fore and middle legs shorter, in the lind legs longer, than the femora; in the hind legs the first joint is slightly shorter than the third, nearly twice as long as the second, the first and second with short spines at the apex beneath; third joint at base half as wide as the second, enlerging in the apical half. Abdomen full, long ovate, bluntly pointed.

This genus is the most abunduntly represented in individuals of my of the Homoptera of Florissant. It is also rich in species. In neuration it agrees very closely with Triecphorı and Tomaspis, but is much slenderer than they, has a pattern of coloration (explained under the first species) peculiarly its own, while the hind tibie have two pairs of spines, and the tarsi are apically spinous in a simitur manner. The length of the terminal tarsal joint and the orbicular form of the hoad are also characteristic.

Six species have been recognized, which may be separated by the following table :

Table of the species of I'aleephora.

Of inrge size. Fore winge more or less diatinctly spotteal,
Apieal spots connected hy a liand bordering the whole ajrex.
A distinct spot in the center of the basal hulf of the wing 1. P. maouluta. No spot in the center of the hasal half of the wing patefucta. No band bordering the npex.

Veins of the toro wings distinct, espechaty the cross-veits on the onter hali of the costal border; spote numerous and usmaliy distinct 3. P. marvinei.
 of the sutura clavi distinct.
Most of the spote of the margine of the wing traceable but olosenre, excejting as above.
4. P. commидis.

Most of the apote of the margins of tho wing wholly ohliterated, except an above, bat the base of the costa asually infuscated. .5. P. provalens.
Of medium size. Fore winge auicolorons 6. P. inornata.

1. Palecphora maculata.

Pl. 20, Figs. 10, 17.

This is the most profusely spotted of all the Palecphore. The head and body are uniformly dark, and the wings membranous and without markings, but the tegmina are generally very distinctly and always very abundantly marked with dark fuliginous, subequal spots on a pale ground. There is a heavy basal striga on the costal margin, thickening distally, all within the basal fifth of the wing, and accompanied by a triangular opposing clond on the scutellar margin, rea..ing the tip of the scutellum and leaving between it and the basal striga only a narrow, longitudinal strip of pale ground at the base of the veins; next the opening of this, at the basal parting of the veins, is another longitudinally triangular spot; at the middle of the wing, seated on the costal margin and on the sutura clavi but not invading the clavus, is a pair of further spots subquadrate or subtriangnlar, their apices directed obliquely inward and towards the apex ; in the
same median region is another subquadrate spot in the clavis seated on the margin and generally limited interiorly by the anal vein, along which it may send shoots in either direction ; at equal and not great distances from the upical margin is another pair of transverse subquadrangula spots close to but not fairly seated upon the costal margin and sutura clavi, which are sometimes connected by a narrow fringing band which hugs the apical margin, though this band is sometimes reduced to an apical elond which barely reaches the spots on either side. The spots may thus be designated as basal, subbasal, median (costo-median, suturo-mediun, and clavo-medinn), subnpical, and apical. The neuration of the tegmina can rarely be distinguished except in the most general wiy as regards the main veins, hut where the markings are most obscure, as in specimens which have somewhat of a bleached appearance, the minc. neuration of the apex of the wings can be discovered faintly.

Length of body, 10.5^{mm}; of tegmina, 7.5^{mm}; brealth of thorax, 3.5^{mm}.
Florissant. Ten specinens, Nos. 622, 3016, 345×, 3534, 3734, f34t, 11237, 13324, 13557, 16351.

2. Palecphora patefacta.

Pl. 7, Fig. 7.

In this species, the only one yet found elsewhere than at Florissant, the markings of the tegmina are much the same as in P. maculatn, but are somewhat reduced, and, what is more remarkable, the subbasal spot is absent; this point seems to be sufficiently clear, though the outspread tegmina are preserved in a fragmentary manner, curiously most perfect just where the spots eccur, as though the pigment bore some part in their preservation No veins are visible.

Length of body, 10^{mm}; of tegmina, 8.5^{mm}; breadth of thorax, 3^{mm}.
Green River, Wyoming. One specimen, Nos. 1 and 143, Prof. Leslie A. Lee.

3. Palecphora marvinet.

Pl. 20, Figs. 11-13; Pl. 21, Figs. 9, 12.
This species is remarkable for the great distinctness with which ordinarily (the considerable distinctness invariably) the complete neuration of the apical half of the wing is seen, as described under the genus. The
markings of the tegmina ure usually very distinct, especially those of the inner margin, where the subupical spot is most conspicuous. Both basal spots are present, but the scutellar much reduced and often obscure; the subbasal is always absent, as far as I have seen: of the median spots the costo-modian is never prosent, und the suturo-median generally obscure, often removed away from the suture and frequently absent, while the clavo-median is always present and generally distinct; the subsuical spot of the costal margin is nover more than faintly indicated if present, and the apical marginal band invariably absent.

Length of body, 10^{mm}; of tegraina, 8^{mm}; breadth of thorax, 3.5^{mm}.
Named for the late Archibald Robertson Marvine, one of the active and acute geologists of the Hayden Survey.

Florissant. Eleven specimens, Nôs. 1683, 3090, 3801, 4256, 4431, 5761, 6484, 8743, 9158 and 9254, 12978, 13578.

4. P.ilecphora communis.

II. 20, Figs. 3, 20, 21.

This species is closely allied to the last, hardly differing from it except in the obscurity, not always absolute, of the neuration of the tegmina, indicating a more coriaceous texture to the same. It is slightly smaller as a rule; though some specimens are as large as many of P. marvinei. The spots of the tegmina are also much the same as there, but though the lower subapical spot is sometimes the only one which is conspicuous it usually shares its distinction with all the others of the inner margin, while rarely are any of those of the costal margin seen at all, except the basal one, the costo-median being almost invariably absent and never conspicuous, being wrongly represented as of much too deep a tint in Fig. 3; the subbasal spot and apical band are never present, and the suturo-median spot is never more than a faint cloud.

Length of body, 9.25^{mnn}; of tegmina, 7.5^{mm}; breadth of thorax, 3^{mm}.
Florissant. Thirty-four specimens, Nos. 159, 2087, 4476, 4759, 5189, $5720,5862,5911,5950,6524,6636,7496,8037,8098,8894,8937,8969$, 9218, 10681, 11009, 11767, 12468, 12471, 12984, 13000, 13568, 13570, 13577, 13580, 13581, 13584, 14187, and of the Princeton Collection 1.320, 1.826 and 1.830 .

5. Palecthora pravalens.

Pl. 20, Fig. 1; I'l. 21, Fig. 2.
This species, by far the most common of all the Homoptera of Florissnnt, is least heavily marked among all those Palecphore which show plainly the inferior subapical spot. This is usuully present, and sometines, though very rarely, distinct, while the other spets are almost wholly obscured or appear as clouds, except, indeed, the superior costal spot, which uppears as a thickening of the base of the costu slightly enlarged distally, and is rarely absent, usually tolerably distinct, almost alwnys slender, and the costa is sometimes a little thickened boyond the enlargement at the normal spot. The species is one of the lurgest in size, but only to a slight degree.

Length of body, $10.5-11^{\mathrm{mm}}$; of tegmina, 8^{mm}; breadth of thorax, $3-3.5^{\mathrm{mm}}$.
Florissant. About seventy-five specimens, among which the best are Nos. 543, 829, 13($44,3315,5239,6050,6807,7742,8008$ and 8081,8035 , 10383, 11236, 11762, 13567, 13576, and from the Princeton Collection $1.710,1.838$.

6. Palecthora inomnata.

Pl. 20, Fig. 15.
In striking contrast to the other species of Florissant F'alecphoræ, this species is represented by a single specimen, which differs greatly from them. It is of considerably smaller size than the others (which are very uniform in this particular), and shows but the faintest trace of markings, while the whole of the tegmina is fuliginous instead of pallid, with scarcely perceptibly darker tones at the extreme tip (not given in the figure), and at the position of the inferior subapical and costo-median spots; the sutura clavi is distinctly marked by a dark line.

Length of body, 7.5^{mm}; of tegmina, 6^{mm}; breadth of thorax, 2^{mm}.
Florissant. One specimen, No. 609.

This genus is closely allied to Palecphora, having precisely the same neuration in the hind wings, but differing principally in the form and structure of the tegmina. These are less ovate in form, the margins being almost or quite parallel and the apical margin symmetrically rounded, instead of
having the apex above the mividle ; the costal margin also is much thickened, and in one species at least armed with short bristles; though the substance of the tugminn is temons, permitting the veins of the wings beneath them to be ruadily visible, at least in their lover half, the whole is minutely thongh feebly und distantly punctante, more conspicuons on the basal than the apieal half.

Table of the species of Litheephora.
Costal margin of tegminn distinctly thickenell.
Tegmina with the costal margin bristled and a large pallid pateh just beyond the midde. 1, L. setigera. Tegmina with tho costel margin thickened but not bristled and with no pallid patch. . 2. L. diaphana. Costal margin of tegmina net distinctiy thiokened.

Tegmina withont costal markings.. 3. L. unicolor.
Tegmina with costal markings... 4. L. murata.

1. LITEECPHOR/ setigera.

PI. 20, Fig. 22.
A single specimen is known, obtained by the Princeton College Expedition. The wings of tho right side are partly expanded, but the anterior extremity of the body is much broken; the margins of the tegmina are remarkably pasallel, the costal edge fringed with very short spinous bristles; the apical margin is very regularly romeded, the apex falling in the middle. The body is black and the tegmina pale fuliginous, with a large roundish pallid pateh on the costal margin, crossing about two-thirds of the wing, its imer border at the middle of the wing.

Length of body (partly estimated), 7.25^{mm}; breadth of thorax, 2.75^{mm}; lengtit of tegmina, $6^{\text {mum. }}$.

Flowissant. One speeimen, No. 1.121, Princeton Collection.

2. IITHECPHORA DIAPHANA.

Pl. 21, Fig. 13.

A single specimen is known, preserved on a dorsal view with the tegmina and wings half expanded. The body is dark brown, the teginina upparently diaphanous or almost so, at least in the lower half, for the veins of the wings show through them perfectly; the costal margin is nearly straight, but has a slight and constant convexity, so that the two margins are not quite parallel ; this same margin is much thickened, more so in the
hasal half than the other species, but there is no sign of spinous hairs, and the tegmina are more pointed at tip.

Length of body, 8^{mm}; of tegrmina, 7^{mm}; breadth of thorax, $2 . \boldsymbol{i}^{\mathrm{mmm}}$.
Clorissan:. One specimen, No. 30.

3. Lithecphora unicolor.

Pl. 21, Figs. 4, 5, 11, 14.

This seems to be an abundant species, if all the specimens I have roferred to it belong here, but not a single one is well preserved, and if correctly placed it must have been an exceptionally delicate insect. The most that caal be said of it in distinction from the other species is that the tegmina are slender, fully three times as long as broad, with tolerably distinct veins throughout, the costal border slightly curved at oxtreme base and gradually fulhing to join the apical margin on the apical fourth of the wing, the arex slightly produced and perfectly symmetrical ; they show no signs of thickening of the costal margin and were evidently without markings. The hind tibia appenr to be longer than in the other speciea.

Length of body, $7.25^{\text {min }}$; of tegmina, $5^{\text {mun }}$; breadth of thorax, $2^{\text {men }}$.
Florissant. About fifty specimens, of which the best are Nos: 1970, $544^{\circ} 00,11103,12447,13337,14178$.

4. Lithecphora murata.

Pl. 21, Figs. 3, 8.

This species is larger than the preceding, which it much resembles, differing from it in imitating to a certain oxtent the markings chameteristic of Halecphores. The tegmina are slender, nearly threo and a half times longer than broad, with the costal border strongly shouldered at base and scarcely declining at tip, the apex broadly and symmetrically rounded and in uo way produced; the venation is very feeble and the murkings, dark on a light ground, consist of a basal costal striga and two clondy transverse streaks, only on the costa at all distinct and there obscure, dividing the wing into nearly equal thirds. All the specimens are poor.

Length of body, 9^{mm}; of tegmina, 6.5^{mm}; breadth of thorax, 2.9^{mm}.
Florissunt. 'Three specimens, Nos. 912, 11007, 12776.

PRINECPHORA gen. nov. ($\pi \rho i v, \dot{\varepsilon} \varkappa \varphi o \rho \alpha \dot{\alpha})$.

Allied to Palecphora, but of a still slenderer form, and in markings resembling Triecphora, than which it is far more slender. Head half as broad as the thorax, less than half as long as broad, very bluntly rounded, and in uo sense angulate in front, the middle with an exceedingly slight longitudinal carina. Thorax as in Palecphora, as also the scutellum, excepting that it is equiangular. Tegmina slender, almost three times as long as broad, with nearly parallel sides, relative'y straight costa and broadly rounded symmetrical apex ; clavus occupying about one-fourth of the wing, terminating in the middle of the outer half of the same; neuration obscure but apparently with rather long apical cells. Wings and neuration ns in Palecphora, but the fourth longitudinal vein not quite so deeply forked and the fork more symmetrical. Legs very imperfectly preserved in the specimens known, but apparently a little longer than in Palecphora. Abdomen very full, tapering, the apical segments pinched.

A single species is known, one of the prettiest of the Florissant Homoptera.

Prinecrhora balteata.
Pl. 20, Fig. 14.
Head and thorax finely granulated, the eyes apparently margined narrowly with black. Tegmina similarly but less conspicuously granulated, blackish fuliginous, deeper in tint on the basal than on the apical half, marked with two broad, pale, transverse hands, whicli are broadest on the costal margin; the first occupies the base, crossing the entire wing, and is bounded outwardly by a curved line, angulate at the sutura clavi, which runs from about the end of the basal third of the costal nargin inward; the second, sometimes narrowly connected with the first along the costal edge, runs from the costal margin to the sutura clavi as the amalgamation of two spots: a circular one resting on the sutura, its inner edge at the center of the wing, and a triangular one, its base seated on the costal margin and its apex about the center of the circular spot.

Length of body, 7.75^{mm}; of tegmina, 6^{mm}; breadth of thorax, 2.5^{mm}.
Florissant. Four specimens, Nos. 8886, 9198, 11774, and from the Princeton Collection, 1.604.

Subfamily APHROPHORIDA Stâl.

Very few fossils have been referred to this group of Cercopidæ, as compared with the other, although in temperate regions at the present day the Aphrophorida are in excess. Heer and others have described a number of species from the European Tertiaries, both in the rocks and in amber, and these have all been referred to the single genus Aphrophora. There are, however, a number of others regarded by Heer as species of Cercopis, which must certainly be referred to the Λ phrophorida, if his figures are at all correct ; such are C. fasciata and C. pallida, probably also C. oeningensis and perhaps C. rectelinea. The sar.e is true of Germar's C. melæna from amber. As already stated, the species from Florissant I formerly regarded as related to Ptyelus turn out to be true Cercopida, but there nevertheless appear at this same station not only an obscure form temporarily referred to Aphrophora, but two other forms of considerable interest, one of which appears to be a distinct type, which I have called Palaphrodes, with several species, most of them tolerably abundant; the other, a single specinen, which must be referred latitudinally to the highly specialized existing Clastoptera.

Stout bodied, of oval form. Head well rounded in front, nearly twice as broad as long, reaching on either side posteriorly the more sloping portion of the front of the anterinily angulate and rounded thorax and therefore considerably narro. er than it. Ocelli as far from each other as from the eyes. Thorax hexangular, the lateral sides the shortest, and after that the central portion of the posterior border, which is slightly shorter than the oblique portions, the whole thorax half as broad again as long and not carinate. Scutellum rather small, equiangular, all the sides straight or the lateral slightly concave. Tegmina broad oval, but little more than twice as long as broad, the costal margin strongly arched; the apex rounded but more or less acuminate, the neuration much as in Aphrophora. Wings ample, well rounded, with no apical emargination, a little shorter than the tegmina; the second and third and also the fourth and fifth longitudinal veins united by straight transverse or oblique cross-veins at equal distances from the margin, at about the end of the middle third of the wing, the third and fourth by a similar vein at about the center of the wing.
'This onus seems to fall somewhere vetween Cephisns and Avernus, but the k.ucture of the hind legs is not known. It was an abnndant type in the Florissant basin, five species being already known, most of them by a considerable number of examples.

Table of the species of Palaphrodes.
Middle of the tegmina traverserl, at least on the costal edge, by a black band; uo long baso-oostal etripe.
Middle stripe of tegmina dietiactly traversing the wing transvoreoly withont change of brendth; nsuration distinct .. 1 . vincta. Middle stripe of tegmina not distinctly traversing the wing transversely withont change of breadth; ner tion indistinct
Midde strine of togmina coufined to a spot on the nestal edge and this usually semewhat obscure .. P. вbsaura. Middle stripe of tegniua directed obliquely outward.

Subapical cestal st ripe of tegmina moderately oblique and moderately broad, with irregular margins ... P. irregularis.
Subapical cestal etripe of tegmina very oblique, very alonder, with sharpty tetined straight
 Middle of the tegmina travereed by a pale band; a long and broad baso-eostal dark atrif *.
5. P. transversa.

1. Palaphrodes cincta.

Pl. 20, Fig. 16; Pl. 21, Fig. 15.
Body uniformly dark colored, the incisures of the abdomen paler. The species is distinguished by the markings of the tegmina and the distinctness of the neuration, the latter due to its being traced in black throughout the apical half of the wing; the ground of the tegmina is pale, perlaps diaphanous; the base is blackish, making here a large triangular patch with very irregular outer outline; across the middle of the wing, separated from the basal patch by the length of the latter; is a broad, equal, straight, transverse, blackish stripe or bar often deepest in color on the costal half or becoming fuhiginous on the inner half; its edges, and especially its upper, are tolerably straight. It is followed at an equal distance on the costal margin by a slender, oblique, black, and narrowing stripe just before the apical cells, generally running about half-way across the wing, parallel to the hind margin.

Length of body, 9.5^{mmm}; breadth of thorax, 3.3^{mm}; length of tegmina, 8^{mmm}; breadth of closed tegmina together, 5.5^{mmn}.

Florissant. Thirteen specimens, Nos. 208, 582, 6908, 11238, 12094, 13555, 13573, 14234, perhaps 1632, and of the Princeton Collection 1.505, 1.813 and $1.841,1.815$ and 1.839 .

Specimen No. 208, figured on Plate 21, has been mislaid and was not examined at the time when this description was drawn up.
2. Palaphiodes obsoura.

$$
\text { Pl. 21, Fig. } 18 .
$$

This species differs from the preceding, to which it is most nearly allied, mainly in the obscurity of its markings, which in general follow the position of those is P. cincta. Unfortunately the most deeply marked specimen was figured, and its color has been somewhat deepened on the plate, so that the differences do not there clearly appear; ordinarily, however, besides the obscurity of the markings, the middle transverse stripe is also broadened, and so, as it were, diffused (not at all the case in the individual figured), and the subapical oblique stripe becomes a far broader, short, quadrate bar on the costal margin. It appears to be ordinarily a smaller species than the preceding, but one individual is nearly as large as the largest of that species.

Length of body, 9.25^{mnn}; breadth of thorax, 3.2^{mm}; length of tegmina, 7.5^{mm}; breadth of closed tegmina togetber, 5^{mm}.

Florissant. Six specimens, Nos. 452, 4287, 4404, 11239, 13321, and of the Princeton Collertion 1.816.

3. Palaphrodes irregularis.

Pl. 20, Fige. 2, 18; Pl. 21, Figs. 6, 7.
This species, with P. cincta the commonest of the genns, appears to differ from it very decidedly in the form, extent, and position of the darker markings beyond the basal; they occupy, indeed, so much more room where they are well developed as to cover more space than the lighter parts, so that the tegmina might quite as well, or better, be regarded as dark with light markings; the median belt occupies on the costal margin precisely the same position as in P. cincta, but in passing across the wing it immediately and considerably expands, rarely, however, without being more or less broken and blotched with pale; at the center of the wing its expansion tends to break it up into two forks, nud the commissural portion is highly variable; in general, however, the proximal fork is far more intense and distinct than the distal, leaving between it and the basal patch of the tegmina an often well defined, constantly narrowing, transverse, white band, broad on the costal margin, reduced nearly to nothing on the inner, and
generally narrowing abruptly as the sutura clavi is crossed; the distal fork is directed toward the tip of the sutura clavi, but is dissipated and broken into flecks before reaching it; the subapical, slender, oblique, costal stripe is much as in P. cincta, but runs in the opposite direction and is more variable and almost always accompanied by an opposed, large, fuliginous, subquadrate, subapical cloud on the inner margin.

This appears to be one of the largest species, but is subject to considerable variation, one of the specimens referred here being one of the smallest.

Length of body, 11^{mm}; breadth of thorax, 4^{mm}; length of tegmina, 8.8^{mm}; breadth of closed tegmina together, 6^{mm}.

Florissant. Twelve specimens, Nos. 43, 854, 2101, 3864, 5058, 8233, 8536, 10364, 10689, 12090 and 12472, 14200, and of the Princeton Collection 1.836.

4. Palaphrodes obliqua.

Pl. 21, Fig. 10.
This species, which seems to be rare, is slenderer than the others, but related pretty closely to the last, though it las some peculiarities tending in another direction. The body is uniformly dark, and the ground of the tegmina dark with the same dark basal patch found in all the preceding species; in this, however, the median band is not developed into two forks, as in the last species, with the proximal fork the stronger, but there is no sign of a proximal fork unless a slight general cloudiness in this direction may be looked on as a relic of the same; the distal fork, however, is well developed, united, or almost united with, and in any case directed toward so as to involve, the subapical spot of the inner margin found also in the last species; in addition, as if in recognition of the superinduced rbliquity of the median band, the subapical costal striga has become more oblique than in P. irregularis, and there is a slight, slender, transverse marginal cloud.

Length of body, 10.5^{mm}; of tegmina, 6.25^{mm}; breadth of thorax, 3^{mm}.
Florissant. Two specimens, Nos. 8887, 9531.

5. Palaphrodes transversa.

This species, represented by only a single specimen, differs much more widely from the others than they among themselves. It is broader oval than they, and the markings are quite differently located. The head and body are light instead of dark, with a straight, broad, transverse, dark belt
crossing the linder margin of the thorax, but not involving the pale scutellum. The tegmina are marked at base by two very broad, dark, longitudinal stripes, one following the costa for the basal two-fifths of the wing, and here bent inward half-way across the tegmiua; the other, most intense in color as soon as the scutellum is passed, and not extending so far out as the costal patch, occupies the base of the clavus; the pale inner base of the corium is therefore nearly inclosed with dark bands; outside of these basal markings, which extend nearly to the middle of the wing, is a broad, transverse, equal, pretty sharply edged, subapieal, dark band, most intense in tone on the costal half.

This insect differs so much from the others that I suspect it will he found necessary to separate it generically from them.

Length of body, 10.5^{mm}; of tegmina, 7.5^{mm}; breadth of thorax, 3.5^{mm}; of closed tegmina together, 6^{mm}.

Florissant. One specimen, No. 4521.

APHROPHORA Germar.

Half a dozen species or more referred to this genus have been found fossil in amber, and at Oeningen, Aix, Radoboj, and at Greith, in the rocks; they have been mentioned or described by. Berendt, Gravenhorst, Germar, Heer, and Giebel. The single one here added, very imperfectly known, is placed here only as the group giving its name to the subfamily.

Apiliophora sp.
 Pl. 19, Fig. 10.

To Aphrophora as typical of the subfamily I refer some imperfect specimens which bear a certain general resemblance to Palecphora, but which have a rounded front to the thorax, showing that they should be brought in this division. None of them are perfect enough to enable one to draw from all a proper description, for they appear to have been fragile insects. The structure of the legs appears to be as in Palecphora; the tegmina to have been delicate and semi-transparent, and to have had a large subapical costal cloud.

Length of body, 10^{mm}; of tegmina, 8^{mm}; breadth of thorax, 2.5^{mm}.
Florissant. Six specimens, Nos. 1360, 3102, 3474, 4379, 11008, 14022.
vol xill- ${ }^{32}$.

CLASTOP'TERA Germar.

It is not a little surprisiner to find in the Florissant shales a species of this highly specialized form. Apparently the tegmina were not so remarkably convex as in modern types, but the presence of this genus indicates once more how thoroughly the present general features of insect form and structure were established even as early as in Oligocene times. It is the only fossil species known. The genus belongs to the New World, and especially to the tropics, but at least a couple of species are found on our southern Atlantic coast.

Clastoptera comstocki.

Pl. 19, Fig. 22.

The head was mostly concealed under a flake of stone when the drawing for the plate was made, since removed, showing it to have had a front margin very regularly and very broadly convex, black like the very transverse thorax. The form of the dark, testaceous scutellum is not quite fairly given in the plate; half as broad at base as the thorax, it is sharply and regularly triangular, almost or quite as long as the width of the thorax, and sharply pointed posteriorly. The tegmina are about twice as long as broad, apparently nearly flat (wholly flattened on the stone), less than the apical third diaphanous, the remainder semicoriaceous and testaceous, the neuration obscured and even the sutura clavi scarcely perceptible, the clavus apparently narrower and less broadly rounded at apex than in our living forms.

Length to tip of tegmina, 2.8^{mm}; breadth across closed tegmina, 2^{mm}.
Named for J. Henry Comstock, professor of entomology in Cornell University.

Florissant, Colorado. One specimen, No. 6655.

Order HETEROPTERA Latreille.

Of the twenty families into which fossil Heteroptera may be divided only five are remarkable for the abundance of their representation in the existing fauna. These are the Reduviidæ, Capsidx, Lygæidæ, Coreidæ, and Pentatomidæ; and these samo families are also well represented among the fossils, containing together about four-fifths of the total heteropterous fauna. Indeed, the only other family which can be regarded as at all abundant in Tertiary times is the Physapodes, the known species surpassing those of the

Reduviida. Of these six families the Lygreida were then the most abundant, containing a littlo more than 25 per cent of the whole, followed hard by the Pentatomida with a little less than 25 per cent; the Coreida come next with 15 per cent, followed at nearly sinilar distance by the Capsidx with 9 per cent. The Physapodes have 7 per cent and the Reduviida only $4 \frac{1}{2}$ per cent, mainly because America is so strangely poor in this group, having indeed but a couple of species, the only groups at all common in America being the four with the highest percentages. Here the relative percentages in the two worlds are very different, as will appear from the following table, the Lygæidæ having 33 per cent of the whole American fauna against $19 \frac{1}{2}$ per cent in Europe; the Pentatomida 24 per cent in America against $25 \frac{1}{2}$ per cent in Europe, these two striking contrasts combining to give the Lygæidæ the total preponderance, hitherto enjoyed by the Pentatomidæ; the Coreidæ 22 per cent in America against $9 \frac{1}{2}$ per cent in Europe, and the Capsidæ 9 per cent in America against 10 per cent in Europe.

Families,	North America.		Europe.	
	Genora.	Species.	Genera.	Specios
Corixilm	2	3	1	2
Notoncatidre...........	1	1	1	3
Nepida	0	0	2	4
Belostomatidiu	0	0	1	2
Naucorldro	0	0	2	2
Galgulidæ.............	1	1	1	1
Saldidw...............	0	0	1	1
Velidim	2	2	1	1
Hydrobatidm.....	2	3	2	2
Limnobatlda.........	0	0	2	2
Reduvildm	2	2	7	14
Nabidm	0	0	2	7
Aradidı................	0	"0	1	5
Tingidida.............	3	3	4	5
Acanthidse	1	1	0	0
Capsida................	7	13	13	20
Physapodes	: 1	3	4	21
Lygaida	26	51	6	39
Coreida	14	34	12	19
Pentatomidw	16	37	14.	61
Total..............	80	154	77	201

Of the other smaller families the only ones which surpass more than five known fossil-species in all are the Nabidx with seven species and the Tingididæ with eight; of these thero have been found in America no Nabidx whatever and the smaller half of the Tingidida. Other families not found in America are the Nepidæ, Belostomatidx, Naucoridx, Saldidæ, Limnobatidx, and Aradidx, all but the Saldida having more than one species in Europe. On the other hand the only family found in America and not in Europe is the Acanthiidæ with a single species. The remaining sinaller families represented on both continents vary in their numbers from one to three in America and from one to four in Europe.

If, however, we omit from this enumeration the forms which have been found in amber, aud thus compare those of the rocks only, as in the following table, we shall meet with somewhat different results.

Table of fossil Heteroptera from rock deposits.

Families.	North America,		Europo.	
	Genera.	Species.	Genera.	Spectes.
- Corixidmo ..	2	3	1	2
Notoneetidm.	1	1	1	3
Nepidm	0	0	2	3
Belestomatidm.	0	0	1	2
Nauceridm	0	0	2	2
Galgulidæ...	1	1	1	1
Saldidm.	0	0	0	0
Veliidæ	2	2	1	1
Hydrobatida	2	3	0	0
Limnobatidx.	0	0	1	1
Reduviidw .	2	2	6	12
Nabidæ .	0	0	2	5
Aradidm...	0	0	1	2
Tingididæ ..	3	3	3	4
Aeanthidso...	1	1	0	0
Capsidø......	7	13	1	1
Physapodes....	3	3		18
Lygaidæ ...	26	51	6	37
Coreidm.	14	34	11	18
Pentatomidm	16	37	14	50
Total..	80	154	58	162

The principal change which may be noted here is the alnost total extinction of the Capside in the European representation which shows but a single species; the Saldidx and Hydrobatide do not appear and the Aradidæ are notably reduced. The greatest contrasts between the Europem and Americun rocks, with an almost equal total numbor of species, ${ }^{1}$ is seen in the Capsidæ, which have 8 per cent of the total fauna in America, 0.6 per cent in Europe, and the Coreida with 22 per cent in America and 11 per cent in Europe ; these are the only cases of striking contrast in which the American fauna is the richer; the others are the Reduviida, 1.3 per cent for America, 7.4 per cent for Europe; the Nabidæ, none for America, 3 per cont for Europe; and the Plysapodes 2 per cont for America, 11 per cent for Europe. The contrasted balance of the Lygeidx and Pentatomidæ is well seen, America laving 33 per cent of Lygrida and 24 per cent of Pontntomidæ, Europe 23 per cent of the former and $8!$ per cent of the latter.

Very little change appears in the smaller familiss (a relatively small number of which occur in amber) except in the entire absence of any representatives of Hydrobatidx and Saldidæ, the former occurring in America. It is also surprising to see how little the larger families (with a single exception) are affected by the now table, amber having but the meagerest possible contribution to offer to the Pentatomidx, Coreidæ, Lygæida, and Physapodes, while the single exception noted above of the Capsidx is a startling one, amber furnishing nineteen of the twenty European Tertiary species.

It may be worth while to extend some of these comparisons in a different direction, that of existing American faunas. There are, I believe, but three opportunities for such comparison. First, Mr. Uhler's Check-list of the Nortl American Heteroptera (1886), which embraces all species known at the time, including the Mexican and West Indian; second, the same writer's valuable List of the Hemiptera of the region west of the Mississippi (1876), which represents par icularly the geographical region of our Tertiary fossil Heteroptera ; and, third, Mr. Distant's contribution to the Biologia Centrali Americana (1880-'89), which has a decidedly more southern aspect than Uhler's general list. Distant's work has progresied only through the larger families (in reverse order to that followed here) and indeed at this writing the supplement to the first volume is not complete, and accordingly in what

[^37]follows I have omitted all consideration of that, to make the comparisons more equable. For the same reason, in ordor to use the last work at all, I have instituted comparisons only between the fumilies there elaborated, and have used the family groups in the same sense as there, except only that I have regarded his Pyrrhocorida as a group of Lygaidae.

These four families are indeed the very ones, and, as will be seen, the only ones which assume any importance in the American Tortiaries; and a comparison of their interrelation as to numbers can be shown succinctly by the following table, which exhibits the relative percontage of representation of each of these families in the different regions and times as represented in the published lists-the only available ones, and which may be supposed to represent, not the numbers, but the relations with tolerable accuracy :

Families.	American 'lurtiary.	Uhler; Western List.	Uhler ; General List.	Distant; Central America.
Capsidm	9.6	11.0	25.0	27.3
Lygaidm...	37.8	31.4	19.2	17.7
Coreidm..	251	23.1	21.6	21.7
Pentatomide.	27.4	34.5	34.1	33.2
Total	90.9	100.0	99.9	93.9

The correspondence of the numbers in the tho two columns is even less remarkable than the disturbance of the relative percentages of the Capsida and Lygacide of the western list when compared with those of the Amcrican and Cintral American forms; the merest indication of such an overturn is shown in the comparison of the nearer American and the more distant Central American lists ; but the overturn is still more complete and in the same direction when we compare the existing and the fossil fauna of the West. The relative representation, then, of the four principal families of the Tertiary Heteroptera of the western half of our continent agrees conspicuously better with the relative representation of the existing fauna of the same geographical region than with that of the other regions of the same world. Either the physical conditions of the region in question have remained since Oligocene times in the same relative contrast to those of the other regions under comparison, or the present Heteropterous fauna of the West shows a decided relation to that which existed on the same ground in Tertiary times, or both.

As in the Homoptera, and for the same gencral reasons, it has been found imperative to establish in the Heteroptera a large number of new generic groups to treat them on the same principles that guide the zoloogist. Characteristics of structure in antagonism to those prevalent to-day in the same groups run throughout large divisions, or even fauilies, and must be taken into account if we are to do justice to the facts. Bringing these thus into prominence will servo the useful purpose of stimulating inquiry into their meaning and origin, which the data at present at hand seem inadequate to explain. That many of these oxtinct types attained : high degree of differentiation is readily seen by a glance at the talular view at the end of the voiume, where a large number of the genera will be found to have beon reprosented by a half dozen or more species each, some of them at the time very abundant in individuals.

Family CORIXIDAE Douglas and Scott.

This family, which first appears in the Tertiaries, ${ }^{1}$ is very poorly represented there. Only two European species are known, one each from Oeningen and Stösschen. The latter species, very small and probably immature, is hardly recognizable except as a water-bug of some kind. That from Oeningen, referred like the other to the existing and wide-spread gemus Corixa, is, intermediate in character between the two species of Corixa from Florissant we are able to add here. But the most interesting form which we give below is the strange insect from Florissant, unfortunately but imperfectly preserved, which seems to combine some of the characters of Corixidæ and Notonectide, and to form the type of a new genus, probably most nearly allied to Sigara.

PROSIGARA gen. nov. ($\pi \rho o ́$, Sigara, nom. gen.).
This is a very curious, robust, new form of Corixide, which seems more nearly related to the gerontogeic Sigara than the almost cosmopolitan Corixa. It is, however, clearly distinguished from either in the great size of the head. [This is given, however, as much too large in the plate, where the femur of the left fore leg is confounded with it.] The head is even larger than in the

[^38]Notonectidæ, subrotund, but embracing the thorax posteriorly as in Corixa; it has a median sulcation. The thorax is remarkably large, broader than the lead, only about twice as broad as long, well rounded, posteriorly truncate, separating off a large triangular scutellnm (again like Notonecta) whose posterior sides are convex and the apex rounded; it is only a little shorter than the thoax and about half as broad as it. The hemelytra are broad and well rounded, the clavus very broad, the membrane indistinguishable from the corium, the apex well rounded, the tips of the opposite pairs overlapping as in Sigara; the veins are numerous and divergent like the rays of a fan. The legs are long and slender, the middle pair nearly as long as the body, the tarsi biarticulate, the joints subequal.

A single species is known.

Prosigara flabellum.

Pl. 22, Fig. 12.
A single specimen, showing a dorsal view. The whole body is dark gray and the hemelytra delicately mottled, through which the dusky veins, growing darker apically, make their way, and, radiating in the broader apical part of the corium, from which the membrane is indistinguishable, form the most conspicuous feature of the markings; none of the last, however, appear in the clavus. The tarsus of the middle legs is not shown in the figure.

Length of body, 6^{mm}; breadth, 1.85^{mm}; length of tegmina, 3.5^{mm}; breadth, 1.4^{mm}; length of middle (?) leg beyond side of body, 5^{mm}.

Florissant. One specimen, No. 1098.

CORIXA Geoffroy.

As stated above, two European species of this widely distributed genus are known from the European Tertiaries, to which we are able to add two others from Florissant with well defined characteristic markings.

Table of the species of Corixa,
Tegmina more than four times longer than broad. C. vanduzeei.

Tegmina less than four times louger than broad. 2. c. immersa.

1. Cgrixa vandlzeei.

PI. 22, Fig. 17.
A very pretty species of about the size and form of C. alternata Say, but more nearly allied to C. interrupta Say, not only in markings but also
in the form of the costal field. I have seen but few of our many species of this genus, but Mr. Uhler, viho has seen only the figure of the present species, informs me that it shows most resemblance in markings to C. prexusta Fieb. of Europe. The thorax is dark and more or less mottled with pale, a mottling which appears to have a transverse disposition, but the condition of none of the specimens allows one to say whether it is as reguserly disposed as on the hemelytra or not. On these the costal field is p will with a dusky vein extending down the middle, and is very broad juut veyomid the base, being in the middle of the basal half equal to one-thirit the entire breadth of the hemelytra; beyond it narrows, and opposite the oblique termination of the corium is lightly marked with the faintly and delicately undulate narrow, dark, bands of the rest of the hemelytra; these are somewhat broader than the intervening pallid spaces, and traverse the corium and clavus alike with more or less but ordinarily not much irterruption at the suture; on the membrane these darker bands become shattered as if by a jar which has almost but not quite destroyed at once their transverse and their linear character.

Length of body, 7.5^{mm}; of tegmina, 6^{mm}; breadth of closed tegmina, 2.5^{mm}.

Named for Mr. E. P. Van Duzee, of Buffalo, a careful student of our native Hemiptera, whose assistance has been of great service in the study: of the fossil forms.

Florissant. Five specimens, Nos. 3219, 3409, 3665, 5178, 7269.

2. Corlia immersa.

Pl. 22, Fig. 10.

A robust form with more obscure markings than the preceding but very similar in character. The head and thorax are dark and uniform, and the hemelytra may best be described as dark, traversed more or less distinctly, more distinctly-distally than next the base, with pale, tremulous, continuous threads, which cross corium and clavus alike but are stopped by the costal field, which is slender and nearly equal throughout; on the membrane the markings are shattered and present precisely the appearance they do in C. vanduzeei ; the markings bear much resemblance to those of \mathbf{C}. hellensii Sahlb. of Europe, as figured by Snellen.

Length of body, 6^{mm}; of tegmina, 5^{mm}; breadth of closed tegmina, 2.85^{mm}.

Florissant. Three specimens, Nos. 1456, 2238, 6978

Family NOTONECTID E Stephens.

This family of water-bugs makes its first appearance in the Tertiaries, and then in very scanty numbers. But four species are known, all of them referred to the existing genus Notonecta, which has now a wide distribution. The three known European fossil species have been reported respectively from Kutschlin, Rott, and Aix. The fourth is the species from Florissant, described below.

NOTONECTA Linné.

A single small species of this genus has occurred at Florissant of a similar size as, but of a more robust form than, the species described by Deichmüller from Kutschlin; a second larger species has also been described by Heyden from Rott, and a third has been indicated by Hope from Aix. Existing species of the genus most abundant in temperate regions are found nearly all over the world.

Notonecta emersoni.

$$
\text { Pl. 22, Fig. } 11 .
$$

A small species, of which possibly only immature individuals are at hand. The smaller showing the dorsal surface is certainly so, and the other showing the ventral surface is not clearly determinable in this respect. The description is taken mainly from the larger. It is of a very regular oval form and is apparently mature, since on one side is seen the edge of the hemelytra, or what can hardly be regarded otherwise. Fringes of combed hairs are directed obliquely backward on the sides of the abdomen, and the median forked line on its posterior portion seems to indicate the hemelytral suture of the upper surface seen through the body. The hind legs are of the usual type, terminating in a blunt point-blunter than appears in the figure, and are minutely fringed with delicate short spines. The femur, tibia, and first tarsal joint are subequal.

Length of body, 4.2^{mm}; breadth, 1.85^{mm}; length of hind legs, 5.35^{mm}.
The species is named for the Massachusetts geologist, Prof. B. K. Emerson, of Amherst.

Florissant. Two specimens, Nos. 3857, 10729.

Family GALGULIDAE Westwood.

The only fossil hitherto known as belonging to this family is an insect from the brown coal of Rott, described by Heyden as a mite under the name Limnochares antiquus, but shown by Bertkau to be a galgulid, and probably only a larval skin of one at that. Bertkau also regards the Florissant fossil, described above as a Thysanuran under the generic name Planocephalus, as a very similar creature and probably a larval galgulid, but in this I can not follow him; nor are any other Galgulidæ known among the mass of insects found at Florissant. In the similar beds at Green River, however, a single insect is preserved (all but the abdomen) which seems to present characters which show it to be the nearest related to Pelogonus, which, however, I know only from description and the figure of Dufour. The present species is very remarkable for several points: the form of the head, the absence of any sign of eyes on the upper surface of the same (darker patches at the outer limits of the head probably indicate their existence at this point beneath), the flattened bodr, and the long, rod-like legs, the front pair longer and larger than the others, but quite similar in character (except for lacking a tarsal joint) and in no way raptorial. It shows certain resemblances to Aphelocheirus, but on the whole seems rather a member of this family than of the Naucoridæ.

> NECYGONUS gen. nov. (ข'ยหvร, yovฑ́).

Body broad oval. apparently much flattened. Head subsemicircular, more than twice as broal as long, the front border strongly and uniformly rounded, hind border truncate, nearly as broad as the thorax, the eyes apparently wholly inferior, sitaated at the posterior outer angles. Rostrum long, lancet-shaped, not very sharply pointed, the last joint about a fourth of the total length. Antennæ long and slander, considerably longer than the width of the body, the last joint nearly as long as the tarsi. All the legs long, slender, rod-like, similar, the femora nowhere swollen but twice
as broad as their tibix, which equal or surpass them in length, the fore femora considerably longer than the middle pair; all the tarsi equal, but the fore tarsi two-jointed, the others three-jointed, the joints of each subequal.

This genus differs markedly from Pelogonus, to which it appears to be the most nearly allied, in the great length of the fore legs, which seem to show a relationship to the Naucoridæ, though they are in no sense raptorial. It is also peculiar for the want of eyes upon the upper surface of the head. The legs are smooth.

A single species is known.

Necygonus rotundatus.

Pl. 7, Fig. 8.
Although the abdomen is wanting, the form of the anterior part of the body, with the anterior position of the legs, would indicate that the creature was of a short oval form, very likely twice as long as broad. The flat body, both head and thorax, are of a slightly granular texture, and of a dusky color, uniform for body and legs, except that the head is slightly darker than the rest.

Breadth of body, 3.5^{mm}; head, 2.5^{mm}; length of head, 1^{mm}; rostrum, 2.6^{mm}; antennæ (as far as preserved, detached from the body), 4^{mm}; fore femora, 3.25^{mm}; tibiæ, 3.75^{mm}; tarsi, 1^{mm}; middle femora, 2.75^{mm}; tibiæ, 2.65^{mm}; tarsi, 0.9^{mm}; hind tarsi, 1.2^{mm}.

Green River, Wyoming. One specimen, No. 107, Dr. A. S. Packard.

Family VELIID无 Douglas and Scott.

Westwood states that species allied to Velia occur in the Secondary rocks of England, but there is no figure of them, and this is the only mention of their occurrence before the Tertiaries. Similarly their only mention in the later series is by Serres, who says that at Aix a spe cies of "Gerris' occurs which he compares to Velia currens. - In our own Tertiaries two species have occurred, at Florissant, each apparently belonging to a distinct and extinct genus; these I have called Palæovelia and Stenovelia.

Head much as in Microvelia, small, subtriangular, with rounded angles, a little broader than long, plunged to the eyes in the roundly emarginate prothorax, and continuing the curve of its rapidly narrowing sides, the part in front of the eyes a little shorter than they. Thorax pentagonal, the sides subequal, the lateral faces straight, the front concave, the posterior faces still more concave but a little shorter than the others, the median posterior process not reaching far back, rather acute. Body widest at the posterior sides of the thorax, the abdemen tapering but little, i_{i} its posterior third roundly narrowing, terminating in a bifid plate, the posterior part of the abdomen bluntly conical, and the entire body having a long ovate shape. Hind legs very short, only reaching the tip of the abdomen, the femora and tibix of nearly equal length, the tarsi longer than either, the tibie and first tarsal joint both armed at the tip with prominent delicate spines, the tarsi three-jointed.

A single species is known.

Paleovelia spinosa.

Pl. 22, Fig. 13.

The single specimen appears to be seen on the ventral surface only, showing a pale gray abdomen, while all the other parts are black; the thorax and base of abdomen are clothed not very densely with exceedingly fine, short, dark hairs directed laterally outward, while beyond, an obscure dotting on the abdomen would seem to indicate similar but erect hairs. The legs are pretty thickly beset with fine, stiff hairs, the apical spines of the tibia and first tarsal joint about as long as the width of the joint, the tibix also with an apical or preapical spur fully twice as long.

Length of body, 3.65^{mm}; breadth, 1.85^{mm}; length of hind femur, 0.8^{mm}; tibia, 0.8^{mm}; tarsi, 1.2^{mm}.

Florissant. One specimen, No. 13325.
2. STENOVELIA gen. nov. ($\sigma \tau \varepsilon v o ́ s,{ }^{1}$ Velie, nom. gen.)

Body robust, blunt oval. Head narrow but not very small, rounded subquadrate, about half as large as the pronotum, but rather longer than it, the

[^39]moderately large eyes at the very base. Antennæ four-jointed, about reaching to the base of the middle legs, the joints of nearly equal length, but the first and fourth a little the longest and the second shortest, the first cylindrical and moderately stout, the last oval, the others obovate and a little slenderer. Pronotum faintly set off from the rest of the thorax as a transverse piece more than twice as broad as long, the thorax as a whole pentagonal, the posterior border being subangulate and the posterior sides of the pentagon only slightly oblique; front margin straight and longer than any of the others, though the thorax narrows forward rather rapidly. Legs short and stout, the fore legs about half as long as the others, the hind pair the longest, though the middle and hind femora are subequal ; the hind tibiæ longer than the middle tibiz or than the femora, while the femora and tibix are equal in the fore and niddle legs, or the tibia is only slightly longer than the femur in the middle legs; tarsi three-jointed, the joints tolerably long, the last a little shorter than the others. Abdomen oval, well rounded, the last two joints sometin 's produced. No trace of wings.

A single species is known.

Stenovelia nigra.

$$
\text { Pl. } 22 \text {, Figs. 8, } 14 .
$$

Whole body uniformly dead black; the pigment in some cases has broken in flakes from the legs, especially the middle and hinder pairs, giving them a mottled appearance which is purely accidental. The whole body, including the legs, uniformly smooth, with no trace of hairs or spines.

Length of body, 3.75^{mm}; breadth, 1.65^{mm}; length of antennæ, 1.1^{mm}; fore femora, 0.75^{mm}; tibiæ, 0.75^{mm}; tarsi, 0.35^{mm}; middle femora, 1.2^{mm}; tibiæ, 1.3^{mm}; tarsi, 0.8^{mm}; hind femora, 1.2^{mm}; tibi $\mathrm{m}^{2}, 1.4^{\mathrm{mm}}$; tarsi, 0.8^{mm}.

Florissant. 'Twenty-three specimens, Nos. 875, 878, 1934, 2936, 3020, 3268, 3866, 6497, 7565, 9243, 9499, 9563, 9589, 10344, 10691, 10787, 10945, 12074, 12098, 12099, 12936, 14025, 14981.

Family HYDROBATID \neq Stål.

This family was perhaps known in Mesozoic times. Oppenheim, indeed, figures two species which he refers to a new genus Halometra, supposed to belong here, but which Deichmiiller has shown should be referred to the Acridii, among Orthoptera. Perhaps here, however, belong unfigured and undescribed forms from the English rocks referred by Westwood to

Hydrometra In the European Tertiaries Germar figures two insects he regards as immature and as belonging to Hydrometra or Halobates, or both, and which also appear to belong to this family. Burmeister further says that Serres mentions a "characteristic Hydrometra" from Aix, but as a comparison will show, he has evidently written Hydrometra for Ploiaria, and that is quite another insect. In our own country we have a couple of species from Wyoming and Britislı Columbia belonging to an extinct genus, Telmatrechus, described below, related to Hygrotrechus, found in the North Temperate zone of both worlds; and a species of Metrobates, a genus peculiar to eastern North America.

TELMATRECHUS gen. nov. ($\tau \dot{\varepsilon} \lambda \mu \alpha, \tau \rho \dot{\varepsilon} \chi \omega)$.
This genus is closely allied to Hygrotrechus Still, and, combining as it does many of the features of this genus and Limnotrechus Stål, may well have been the lineal predecessor of both. The antennæ have the first joint only a little longer than the second. The eyes are not at all prominent.. The thorax is relatively shorter than in Hygrotrechus. The legs are very long, the tibiæ of each pair of legs about as long as the femora of the same legs, an equality which I have not found in any other genera of Hydrobatidæ; in the fore legs the equality is perfect; in the middle legs the tibize are slightly longer, in the hind legs slightly shorter, than the femora; the lind femora are slightly longer than the middle pair; so far as can be toid from the imperfect remains the tassi of the middle and hind legs are very much shorter than, not a half or probably a third the length of, their respective tibiæ. The posterior lateral edges of the sixth abdominal segment are produced to a tooth precisely as in Limnotrechus.

Two species are found in the western Tertiaries.
Table of the species af Tolmatrechus.
Body stont, with almost regularly tapering abdomen.. T. stali. Body slender, with nearly equal abdomen, tapering distiuctly ouly at the extremity...2. T. paralletus.

1. Telmatrechus ståli.

$$
\text { Pl. 2, Figs. 11, } 12 .
$$

Hygrotrechus ståli Scudd., Rep. Progr, Geol. Surv. Can., 1877-1878, 183-184B (1879).
The thorax seems to be shorter than in Hygrotrechus, with the limits of the prosternum more visibly marked from above; the eyes do not appear to be so prominent, and the first antennal joint would seem, from the
position of the others, to be shorter than in Hygrotrechus. The insect is of nbout the same size ns our H. remigis (Say). The head, as seen on a side view, is small and rounded; thorax minutely seabrous like the liead, narrowing rather rapidly and uniformly, the posterior limit of the prosternum marked by a slight depression next the anterior coxæ, the whole thorax considerably longer than broad. Abdomen tapering, the apical angles of the sixth segment produced to a sharp but short spine, reaching the middle of the succeeding segment. Antenne nearly (perhaps quite) as long as the head and thorax together. Fore femora equal, stout, as long as the thoras; fore tibie of tlie same lengtl; middle and hind legs very slender; middle femora considerably more than twice as long as the fore femora, the tibie nearly three times as long as the fore tibix and of the same length as the lind femora; hind tibiac a little more than twice as long as the fore femora; first joint of hind tarsi about one-fifth the length of the hind tibis. On one of the specimens, preserved on a dorsal view, a line is seen proceeding from either side of the thorax, directly in front of the middle coxer, and passing toward and nearly to the middle of the hinder edge of the second abdominal segment with some distinctness, accompanied on the second and third segments by other lines which seem to indicate the v in s of the tegmina, the first mentioned line being the sutura clavi; but all trace of lines is lost beyond the third segment, as if the wings did not extend over more than half the abdomen; on the specimen preserved on a side view, they appear to extend to the hind edge of the sixth abdominal segment. Attached to the posterior extremity of the abdomen is a pair of stout lappets, nearly straight, but curving slightly outward, equal, about twice as long as broad, rounded and very slightly produced at the tip.

In a specimen (No. 70) which I have considered an immature individual of this species, but which may possibly be a Metrobates, the middle and third femora are of equal length.

Length of body, 19.75^{mm}; of head, 1.5^{mm}; of thorax, 5^{mm}; breadth of anterior extremity of thorax, 175^{nm}; of posterior extremity, 3.5^{mm}; of sixth abdominal segment, $2^{\text {min }}$; length of fore femora, $5^{\text {mim }}$; of fore tibie, $5^{\text {man }}$; of middle femora, 12.5^{mm}; of middle tibiæ, 14^{mm}; of hind femora, 14^{mm}; of hind tibie, $11.5^{\text {num }}$; of first joint hind tarsi, 2.3^{mm}; of abdominal lappets, 1.3^{mm}; breadth of hind femora, 0.35^{mm}; of hind tibiæ, 0.2^{mm}; of hind tarsi, 0.15^{mm}.

I name this interesting species after my lamented friend, Dr. C. Stål, of Stockholm, whose marvelous industry and keen insight into the structure of Hemiptera is known to all entomologists.

Three miles up the north fork of the Similkameen River, British Columbia. Three specimens, Nos. 70, 71 and 72, 73. Geological Survey of Canada, G. M. Dawson, collector.

2. Telmatrechus parallelus.

Pl. 4, Fig. 1.

Two specimens are at hand, neither of them quite perfect. The species differs markedly from the preceding (with which it agrees in size) in the almost perfectly parallel sides of the abdomen, which is of the same width as the thorax ; it tapers only on the last two segments. The head as seen on a side view is perhaps shorter than in T. stali, and very much smaller than the thorax; as there, both it and the thorax are minutely scabrous. The whole body is of a tolerably uniform dark testaceous color, and the segments of the middle of the abdomen are about equally long and broad, while in T. stali they are nearly twice as broad as long.

Length of body, 20^{mm}; breadth of thorax, $\mathbf{2 . 7 5}{ }^{\mathrm{mm}}$; of sixtl abdominal segment, 2.25^{mm}; length of fore femora, $5-5.5^{\mathrm{mm}}$; fore tibiæ, $5-5.5^{\mathrm{mm}}$; middle femora, $11-13^{\mathrm{mm}}$; hind femora, $13-15^{\mathrm{nm}}$.

Twin Creek, Wyoming. Two specimens, Nos. 14601, 15076.

METROBATES Uhler.

A single species of this genus is known, inhabiting the eastern United States. A much larger and somewhat slenderer form appearing to belong here occurs in the Florissant beds. It was provisionally referred by me to Halobates before Metrobates was known to me autoptically.

Metrobates eternalis.

Pl. 22, Fig. 15.

Body considerably elongated, but solely by the prolongation of the mesonotum, which is about twice as long as broad, t^{\prime}. is separating at considerable distance the fore and after legs; the abdomen is no longer than vol xill- 23
the width of the thorax and tapers rapidly to a point; the wings are slender, pupaform, ovate pads luving a subhasal circuhr macula, a central, longitudinal costal striga, and just boyond it a strongly oblique, subtriangular, costal patch, all pallid on a blackish ground; these do not cleurly appear on all specimens. 'The head is not well preserved on any specimen. The legs are very delicutely covered with short and exceedingly fine recumbent hairs, and fringed beneath with an nlmost equally delicate series of short distant spinules.

Length of borly, 7^{mnn}; breadth, 1.75^{mm}; length of fore femora, 2^{nmm}; tibie, 1.6^{mm}; tursi, 1.1^{mm}; middle femora, $4.25-6^{\mathrm{mm}}$; tibia, 43^{mm}; tursi, $2+{ }^{\mathrm{mm}}$; hind femora, $3.5-5.5^{\mathrm{mm}}$; tibie, 4^{mm}.

Florissant. Three specimens, of which one is immature, Nos. 55̃25, 10723, 12782.

Family REDUVIID\& Steph \sim ns.

This family, to which so considerable a share of our north temperate bugs belongs, is represented in the European T'ertiaries by a number of species and genera belonging to no less than five different subfanilies. All the genera are modern types. The Reduviina are the more common, Harpactor having six species at Oeningen and Radoboj, Evagoras one at Oeningen, while species of Reduvias (in a broad sense) are mentioned as occurring at Aix and in amber; the Piratina are represented by a Pirates at Radoboj; the Acanthaspidina by a Platymeris in amber; the Stenopodina by two species of Stenopoda at Oeningen, and the Plowiina by a Ploiaria said to occur at Aix.

Curiously enough, the family is very meagerly displayed at present in the American Tertiaries. At my first examination many species were placed here provisionally which a closer study showed to belong elsewhere; and even the "Reduvius" described from the Green River beds belongs, as I have elsewhere shown, rather to the Corizida. There remain only a couple of forms at Florissant, eaeh known only by a single specimen, to represent this great family. One belongs to the Acanthaspidina, but shows no affinity to the single member of this group known from amber, the other to the Saicina, and both must be referred to extinet genera, in direct and complete opposition to the European Tertiary Reduviidæ as we know them to-day.

Subfamily ACANTHASPIDINA Stål.

The only species hitherto found fossil in this subfanily group is one described muny years ago as n Platymeris by Germar, and was found in Prussian amber. The one given below is the first from the rocks.

EOTHES gen. nov. (${ }^{\boldsymbol{\eta} \omega} \mathrm{\omega}_{\boldsymbol{\theta}}$).

A genus of Acanthaspidiun of unasually slender form. Head only a little longer than broad, the eyes of modercto size and prominent, the purt in front of them about twice as long as the postocular part, the front truncate and slightly emarginate; ocelli large, situated opposite the hinder edge of the eyes, separated only by their own diameter or slightly more than that. Antenne apparently seated on small prominences somewhat in advance of the eyes, the prominences with a small exterior spine; first joint longest, longer than the width of the thorax, second and third joints subequal, and a little slenderer and shorter than the scarcely incrissated terminal joint, the whole nearly two-thirds as long as the body. Thorax as a whole cuneiform, tapering forward regularly but not strongly, the sides almost straight, the tapering portion scarcely shorter than its breadth, unarmed; scutellum very tapering, pointed, but hardly produced into a spine. Legs long and slender, wholly unarmed, similar in form to those of Opsicœetus, the first hind tarsal joint nearly twice as long as the second and third together. Hemelytra slender, with no prominent veins, the corium elongated externally, the membranal suture very oblique and sinuous.

Apparently nearest to Opsiccetus Klug, this genus differs from it in its much slenderer form, the want of a strongly constricted neck, and the stoutness of the terminal joints of the antenne; the structure of the tarsi is also peculiar.

A single species is known.

Eothes elegans.

Pl. 26, Fig. 5.

The whole body is dark, but is marked laterally by a black stripe which follows the outer margin of the thorax viewed from above, from the base of the hemelytra forward, and appears to cross also the head, following the inner margin of the eye and terminating on the front, the whole tolerably straight and continuous, with a slight angle in passing from the
thome to the homl; besides this the disk of the thoma is darker, leaving of a lighter color nearly the whole anterior lobe mill the onter posterior angles within the black stripe, and tho whole thorax is rather distantly and heavily punctate with black; the scutollum is also light colored, marrowly margined with blnckish on all sides, but heavily in the lateral angles. The hemelytra have the corium dasky und the membrune fuliginous, the former with the veins punctate in black. Legs pule and miform, except that the tips of the tibie and the tarsi are dusky; these are also clothed with excessively fine hairs.

Length of body, 10.15^{mm}; breadth of thorax in front, 1.08^{mm}; ut greatest, 1.75^{nm}; of abdomen, 2.25^{mm}; length of nutemne, 5.6^{mm}; their apienl joint, $1.5 .5^{\mathrm{mm}}$; fore fencma. 2.65^{mun}; middle femora, 2.75^{mm}; hind femora, 3.4^{mm}; hind tibie, 4.45^{mm}; tarsi, 145^{mm}; first tarsal joint, 0.9^{mm}.

Florissant. One specimen, No. 12tic9.

Subtamily SAICINA Stàl.

The species described below is the only one of this subfamily which has ever been recognized in a fossil state.

TAGALODES gen. nov. (Tagalis, nom. gen.).
Body elongated, of nearly uniform width. Head, including the eyes, considerably broader than longs, advanced considerably and rather broadly in front of the eyes; no ocelli; rostrum considerably longer than the head, the basal joint longer than the two subequal apical joints. Thornx rapidly tapering in front, the head separated from it by a short constricted neck, broadest posteriorly and slightly broader than the abdomen, and here angulate, the angle not produced laterally as a spine; scutellum triangular, of about equal length and breadth, the posterior angle more acute than the others by the slight emargination of the sides, but not produced into a spine nor even pointed. Legs long and slender, unarmed, the femora and tibir of nearly equal length, those of the hind legs much longer than the others, all the tarsi very short, very slender, cylindrical, armed with a pair of claws.

A single species is known.
Allied to Tagalis Stal, from which it differs in the relative brevity of the thorax and the absence of any median constriction, the simple angular posterior termination of the scutelluin, the absence of spinulation on the fore
femora, and the cylindrical claracter of the tarsal joints. 'Tagalis is known to me only by Stal's description.

Thaalodes inermis.

Pl. 20, Fig. 15.
A single specimen is preserved, seen on a dorsal view with the wings of one side lost, of the other partially expanded. The head and thorax are very dark and uniform, the hemelytra with the corimm, like the abdomen, dark testaceous, the membrune pale fuliginons; the veins of the membrane show a pair of very elongated parallel loops running more than half way to the margin, the ruper the broader and more distinct (the lower not shown on the plate). Lateral edges of the scutellum slightly marginate, the scutellum -itself with fuint transverse sulcations; surface of the thorax slightly and brondly rugulose. Legs pale testaceons, the femorn duskier toward the apex.

Length of body, 11.75^{mm}; breadth, 3.1^{mm}; length of hemelytra, 7^{mm}; middle fomsa, 4^{mm}; tibia, 4^{mm}; tarsi, 1^{mm}; hind tibix, 5.8^{mm}.

Florissant. One specimen, No. 2696.

Family TINGIDIDÆ Fieber.

Nearly all the principal European Tertiary deposits have furnished a single, but only a single, species of this family of delicate Hemiptera. That at Aix is only known as yet by Serres's reference to a species of Tingis, which he compares to T. cardui, now placed in Phyllontocheila. Novák figures a species of Monanthia from Krottensee, Heer a very obscure Tingis from Radoboj, and a species from Oeningen, well marked with long anteunæ, in one place as a 'I'ingis, in another as a Monanthia, which is more correctly referable to the latter; but what is of greater interest is an amber species referred to Tingis by Germar which belongs to the genns Eotingis established below for in Florissant species, with exceptionally long antenure. A species of Monanthia also occurs at Florissant, apparently nealy related to the Oeningen form but with stouter antenna, and an obscure form from the same locality is probably referable to Piesma.

PIESMA St. Fargeau and Serville.

No fossils have heretoforo been referred to this genus, which forms a group apart among the Tingidide, anil which is better known in the Old

World (Europe and Africa) than in the Now, but a single specimen from Florissunt seems to be referable here better than elsewhere.

Piesma? Rotunda.
Pl. 23, Fig. 6.
A single insect, poorly preserved, and showing a dorsal view is dubiously referred here; if correctly, then the extreme convexity of the costal area of the hemelytra is characteristic of the species, as I find no modern type with so rotund a form. The head projects censiderably in front of the eyes in two parallel processes nearly as long as the rest of the head; the head is only a little narrower than the quadrarguiar thorax, which is nearly a third broader than long and tapers slightly forwaru. The abdomen is subcircular. The legs and head appendages are not preserved, but the ${ }^{-}$ hemelytra slightly surpass the abdomen, and the membrane, which occupies about a third of them, is filled with very faint and very large cells, through the meshes of which three or four oblique veins pass to the margin; the costal margin is followed immediately by a slight vein comnected with the costa by feeble cross-veins, making subquadrate cells.

Length of body, 3.5^{mm}; including hemelytra, 3.75^{mm}; breadth of thorax, 1^{mm}; abdomen, $1.65^{\text {wu }}$.

Florissant. One specimen, No. 7617.

MONANTHIA St. Fargeau and Serville.

As stated under the fanily, two species of this genus have been found in the European Tertiaries, one at Oeningen and the other at Krottensee, and were so referred by their describers. They differ considerably from one another, and the species we add here differs as much from each as they from each other. The characteristic features of the Oeningen species are the long antenne, which are as long as the width of the closed hemelytra, and the very narrow head; of the Krottensee species (which seems to approach M. quadrmaculata Wolff sp. and M. wolffii Fieb., both of Europe; see the figures by Suellen), the sinuons costal margin of the hemelytra and the sinuous narrowing of the thorax; and of the Florissant species the at first biseriate, afterwards triseriate, arrangement of the reticulation of the costal area, and the tumid form of the regularly tapering thorax combined wit?: the broad head.

Monanthia veterna.

Pl. 23, Figs. 5, 9.
Body uniformly dark, the head and thorax with much the same form as Eotingis, the thorax being largest just in advance of the rounded base and tapering forward, the head included, giving it mnch the form of a Xya anong Orthoptera; as in Eotingis, there are no lateral vesicles; the abdomen is ovate and broader than the thorax. Antenne nearly as long as the width of the abdomen, or slightly shorter than the head and thorax together; first two joints sinuiar and stont, the first a little longer than broad, the second of equal length and breadth, the third slender and elongated, nearly as long as the thorax, the fourth clavate, as long as the first two together, but not quite so stout as they and as naked as the rest of the antemna. Legs rather short and stout, the hind femora just reaching the edge of the hemelytra. These extend somewhat beyond the abdomen and are somewhat coarsely reticulate, biseriately arranged on the basal half of the costal area, tris 3riately beyond.

Length of body, 2.7-3 ${ }^{\mathrm{mm}}$; breadth oí thorax, 1^{mm}; abdomen, 1.2-1.4 4^{mm}; length of antemne, $1.15^{\text {mur }}$.

Florissant. Six specimens, Nos. 2349, 3881, 4387, 6787, 7819, 9672.
EOTINGIS gen. nov. ($\operatorname{\eta }^{\prime} \omega \bar{s}$, Tingis, nom. gen.).
Head triangular, about equally long and broad; antenna of excessive length, ahost as long as the body and very slender; the great length largely due to the prolongation of the middle joints, the last joint very delicately enlarged so as to be faintly clavate, the club very long and slender. The pronctum is short, narrowest in front where it equals the head, truncate both at base and apex. 'Thorax tapering forward with no vesicular enlargements. Abdomen oval. Legs very long and slender, all the femora of nearly equal length, the tibie of similar length, the whole leg nearly as long as the tegmina. These ara broad and very long, extending well heyond the body, irregularly and more or less finely and uniformly reticulate thronghout, the broad costal area as irregular as elsewhere.

The genns perhaps falls in the neighborhood of Gargaphia Stail.
Two species are known, one found in Prussian amber, E. quinquecarinata Germ. sp., with cirinate and regnlayly tapering pronotmm and the cos-
ta! area of the hemelytra of uniform width; and the species described below. from Florissant with smooth and tumid pronotum and the costal area of the hemelytra unlarging apically. They differ aiso in the length of the last antemal joint.

Eotingis antennata.

$$
\text { Pl. 23, Figg. 1, } 3 .
$$

Two specimens, both tigured, were all that were seen of this species when it was described; one shows a dorsal view, the other lies more upon its side; of the former. the median projection in front of the head, shown upon the plate, is a mistake, and the two appendages cail not be regarded as antenne, a portion of one of which crosses the right fore femur; the righthand apparent appendage of the head is probably the rostrum, but its apparent distal half is a mere discoloration of the stone at a different level; the left hand one is probably the left fore femur, a broken fragment of which or of a tibia appears as if attached below to the pronotum. The color appears to be nniformly dark, the legs perhaps a little paler. The last antemal joint is as long as the elongated middle joints, but it enlarges gradually toward the tip, and then, at a distance from the tip of twice its breadth, suddenly diminishes and is rounded off. 'The prothorax is largest a little behind the middle, and tapers considerably in front, being tumid whether viewed laterally or from above, but especially the former; it is well rounded posteriorly, trancate anteriorly, and smooth. The hemelytra extend far beyond the abdomen, and are filled with an entirely irregular reticulation, in which the meshes are approximately of the same size and of about the diameter of the antennal club; the longitudinal vein delimiting the costal area runs parallel to and distant from the costal margin in the basal half of the hemelytra, and then diverges gradnally from :t in a graceful curve.

Length of body, $3.65^{2 \mathrm{~mm}}$; including togmina, 4.5^{mm}; of tegmina, 3.75^{mm}; breadth of thorax, 1.1^{mm}; length of antenne, 3.75^{mm}; hind femora, 1.25^{mm}.

Florissant. Four specimens, Nos. 2698, 4365, 5596, 10763.
Family ACANTHIIDA Leach.
The only fossil that has ever been referred to this limited group is the one described below.

LYCTOCORIS Haln.

This genus, found in the north temperate regions of both the Old and New Worlds, but more abundant in the latter, has not before been fonnd fossil. The single species from the Green River beds which we place heve was formerly referred, doubtfully, to Rhyparochromus.

Lyctocoris terreus.

Pl. 7, Fig. 20.
Rhyparochromusf terreus Seudd., Bul!. U. S. Geol. Geogr. Surv. Terr., IV, 770-771 (1878).
A single poor specimen apparently belongs to this subfamily, but is too imperfect to locate with any precision. The body is of nearly equal width, but with a full abdomen. The head is broken, but is as broad ai base as the tip of the thorax, has a rounded-angular front, and its surface most minutely punctulate. The thor x was broadest behind, the sides tapering slightly, and gently convex, the front border broadly and shallowly concave, the hind border straight, more than twice as broad as the median length, the surface, like that of the head, vith faint distant punctures. Scutellum rather small, triangular, pointed, of equal length and breadtin, about as long as the thorax, its surface like that of the thorax, but with more distinct punctures. Abdomen full, well rounded, and very regular. Tegmina obscure (but perhaps extending only a little beyond the scutellumi).

Length of body, 4^{mm}; of head, 0.6^{mm}; of thorax, 0.6^{mm}; of seutelhum, 0.7^{mm}; breadth of head, 1.1^{mm}; of thorax, 1.5^{mm}; of abdomen, 2.1^{mm}.

Green River, Wyoming. One specimen, No. 419\%.

Family CAPSIDA Westwood.

With the exception of a Miris, reported over half a century ago from Aix and never yet deseribed, all the European fossils of this group known u, to the present time are from amber. Thus Gravenhorst long ago referred half a dozen species from amber to Miris and Capsus, and Germar later described as many as thirteen species of Phytocoris from the same deposits. These genera were then used in a far broader sense than now, and the figures of Germar show at once that several genera are to be found among
them. If we were to base our judgment on the comparisons with the modern species which Gravenhorst and Germar in nearly every case instituted, we should reach the conclusion that the Capsina alone had been found, and that no less than half the divisions which Renter founded in this subfamily were present and a large number of genera. Thus of the Plagioguatharia we have Harpocera; of the Oncotylaria, Hoplomachus (two species) and Oincotylus; of the Cyllocoraria, Etorhinus and Systellonotus; of the Capsaria, Capsus, Orthops, and Lygus ; of the Phytocoraria, Honodemus, Dichrooscytus, and Phytocoris ; and of the Loparia, Lopus; in all a dozen genera, and there is at least one other among those species figured by Germar which were unaccompanied by comparisons with modern types.

In America we have four of these divisions represented, viz: Cyllocoraria by Closterocoris ; Capsaria by Capsus (two species) and Pœcilocapsus (five species); Phytocoraria by Aporema; and Loparia by Hadronema; while Bryocoraria, not recoguized in amber, is represented by two species of Carmelus and one of Fuseus. All of these come from Florissant.

It thus appears that we may recognize among the fossils every one of the divisions instituted in the family by Reuter that have any considerable present development of species, excepting only the Miraria, and to cover the possibilities of this also there are two species of Miris not referred to modern genera, one mentioned by Gravenhorst from amber and one by Curtis at Aix. .It may also be noticed that the assemblage of fossil forms shows as a whole a leaning toward American types, moro noticeable, however, among the American than the Earopean forms, the more striking being in the development of the Loparia and Bryocoraria. Not too much stress, however, should here be placed upon these considerations, as a reexamiuation of the amber types is necessary before certain conclusions can be drawn, and the affinities of several of the Florissant forms is vague at the best.

CLOSTERUCORIS Uhler.

A single species exists in a living staie in our western Territories, with which a single striking and not uncommon Florissant species agrees well in structure but from which it differs considerably in markings. The terminal joints of the fossil species appear to be relatively longer and the second joint relatively shorter than in the existing type.

Clobrerocoris elegans.
Pl. 24, Fig. 7.
Head subquadrate, lighit colored, with a black patelı posteriorly next the eyes. Antennæ with the first joint black, as long as the thorax, stouter than the tibix, the remaining joints blacki fuscous, the apical paler, second joint half as long as the hemelytra, third a little longer than the fourth, and with it nearly as long as the first two, the whole as long as thorax and hemelytra combined. Thorax more tumid at the base than in our living C. ornatus, but otherwise of the same shape, the base slightly more than twice as broad as the apex, pale, with a median and on each side a lateral, broad, deep black stripe, broadening posteriorly; scutellum pale, except for a broad, dusky transverse band at base. Hemelytra pale, except a slender, deep black, costal stripe extending the whole length of the eorium, and a dark fuscous belt which occupies the whole clavus and, as that of one side unites with the other, follows down the inner margin of the hemelytra, fading out on the more or less but generally sliglttly infumated nembrane, the membranal suture sometimes heavily infumated or infuseated. Legs pale fuscous, the tips of the hind femora and to a less extent the bases of the hind tibie broadly and heavily obscured, as are also to a less depth all the tarsi and the tips of the tibie.

Length of body and closed liemelytra, 7.25^{mm}; breadth of thorax at base, 2.4^{mm}; length of antenne, 9.7^{mm}; first joint, 1.5^{mm}; second joint, 3.5^{mm}; third joint, 2.5^{mm}; fourth joint, 9.2^{mm}; hemelytra, 6.75^{mm}; hind femora, 3.65^{mm}; tibiæ, 4.85^{mm}; tarsi, 1.15^{mm}.

Florissant. Eight specimens, Nos. 2181, 2533, 4288 and 4369, 8864, 12979, 12981, 14202, 16419.

CARMELUS Distant.

The two species from Florissant described below agree so well in general features with the two species of this genus from Panama figured by Distant, and especially with C. purvus, that I place them here, though they do not agree with lis descriptions as regrads the mennar, the second joint being relatively longer than he deseribes it, though no longer than given in both his figures. They are certainly not far removed from Phytocoris involutus Germ. from amber.

[^40]Thorax taperiug regulariy with straigit oblique sides1. C. gravatua
Thorax more or ifse tumid, the laparing sides distinctly cenvex

1. Carmelus gravatus.

$$
\text { Pl. 24, Fig. } 10 .
$$

Body very regularly oval, the hinder extremity the broader. Head triangularly but rather broadly produced in front of the eyes; first joint of antenne a little shorter than the head, second about two and a half times as long as the first, the succeeding together as long as the second. Thorax uniform fuscous, darker or lighter in tone, the surface smooth, the base about two and a half times broader than the apex, the apex roundly and weakly emarginate, the base gently and regularly convex, the sides oblique and straight. Scutellum dark, the lateral edges transversely pectinate. Hemelytra uniformly dusky except for a deeper tint at the outer extremities of the clavus and cunens.

Length, $5{ }^{\mathrm{mm}}$; breadth, 2.25^{mm}.
Florissant. Eight specimens, Nos. 3669, 5300, 6220, 10418, 11230, 12457, 12475, 14208.

2. Carmelus sefositus.

Pl. 24, Fig. 6.
Bedy ovate, larger at the anmerior than at the posterior end or of equal size. Head scarcely advanced in front of the eyes, broadly rounded; first joint of antenne about as long ias the head the mesond about two and a half times longer timon first. the rucceeding together as long as the seeond. Thorax miforming dark the surface smooth, the base two and a half times as broad as the apex, the apex gently, regularly, and roundly emarginate, the base very gently eonvex, almost transverse, the oblique and namawing sides distinctly, sometimes considerably, convex, giving a roundnes ${ }^{+}$o the front of the body. Scutellum dark. Hemelytra dark, slimuty linkier at the outer extremities of the corium and cunequs, the membrane bintly finliginons.

Lengtii. 5.5^{mm}; breadth, 2.2^{mm}.
Florissunt. Three specimens, Nos. 8206, 11017 and 13558. 12103.

FUSCUS Distant.

To this genus, founded on a species from Guatemala, I refer with much hesitation a single form from Florissant, which bears a close general resemblance to the species I have placed :n Cumelus, but has much shorter and
stouter hind legs. The first joint of the antenne of the fossil, however, is stouter than in Fuscus and the second joint not so distinctly incrassated at the apex.

> Fuscus? feciatus.
> Pl. 22, Fig. 5.

Head rather broadly angulate in front; first joint of antennæ distinctly shorter than the head, moderately stout and uniform; the second joint relatively slender, scarcely larger apically, about three times longer than the first. Rostrum reaching the coxæ of middle legs. Thorax punctate, blackish fuscous, posteriorly two or two and a half times as broad as anteriorly, both base and apex nearly truncate, the sides oblique, straight: Scutellum of the color of the thorax. Hemelytra dark, the color intensified along the inner margin of the clavus and at the outer extremities of the corimm and cunens. Legs lusky, the hind femora stout, twice as thick as the tibiee and shorter than they.

Length, 6^{mm}; breadth, 2.25^{mm}.
Florissant. Five specimens, Nos. 430, 4563, 4741, 13308, 14201.

PCECILOCAPSUS Reuter.

This grenns, fairly rich in species in both the United States and Mexico, and peculiar to the New World, appears to be represented at Florissant by five tolerably closely allied species, wheh hear no close resemblance to any of the amber Capside The first antennal joint in all is of a similar, the second of a somewhat dissimilar, length.

Table of the speries of P'treilocapsus.
Narrowing sides of thorax convex ; second joint of antenne twice or a little more than twice as lung as the lirst.
Thorax smonth; tegmina heavily marked; clavneolsenre.............................. 1. P. fremontii.
Thorax punctate; teguima faintly marked; clavns cluar...............................2. P^{2}. vetcrandur. Narrowing sides of thorax straight; second joint antenne much less or mueh more than twee as long as the tirst.

Second jont of antennis three times as long am the first.
Thorax smooth; neutellum sharply augled.........4. P. tabides.
Thorax punctate; seutellum roundly angled...5. P. ostentus,

1. Peecilocapsus fremontit.

$$
\text { PL. 24, Fig. } 3 .
$$

An elegant and well marked speries not distantly related to P. ornatulus (Stil) of Mexico, but differing in the markings and in the miform thorax.

Head uniformly dark, the sides of the frontal prominence full; basal joint of antenne barely shorter than the head, rather slender, a little thickened apically; second joint about two and a quarter times longer than the basal joint, scarcely incrassated apically, the slender succeeding joints together about as long as the second. Thorux more than twice as broad at base as at apex, the apex emarginate, the base regularly arcuate, the tapering sides distinctly though not strongly convex, the whole blackish infumate, and smooth, in no way punctate, which is exceptional in Pocilocapsus. Scutellum pale with a black edging. Hemelytra pale or light colored, with the whole of the clavas black, a large, transverse, fuliginons cloud at the outer extremity of the corium crossing the interior half of the hemelytra as a narrow and vague stripe, and again endarging, but more obscurely, at the imer termination of the corium, and accompanied by a much smaller infuscation of the outer tip of the cunens.

Length of body, 6.75^{mm}; breadth of thorax, 2^{mm}; length of second antennal joint, 1.7^{mm}.

Named for one of the earliest scientific explorers of the Rocky Mountains, Gen. John C. Frémont.

Florissant. Five specimens, Nos. 8631, 9500, 12284, 13554, and of the Princeton Collection, 1.845.

2. Pecilocapsus veterandus.

Pl. 24, Fig. 9.

Head lutt slightly produced in front of the eyes, dark; basal joint of antennæ distinctly shorter than the head, a little incrassated apically ; second twice as long as the first, its greater size distally than proximally scarcely perceptible, the slender sncceeding joints not fully preserved on either specimen; rostrum nearly reaching the hind coxe. Thorax fully two and a half times broader at base than at apex, but otherwise shaped exactly as in P. fremontii, the color blackish fuliginous, the surface prunctate with molerately distant minute black dots. Scutellum of the color of the thome. Hemelytra pallid throughont but the imer edge infuscated, and slight infumated spots at the outer tip of the coriam and cuneus.

Length of body, 5.8^{mm}; breadth of thorax, 2.1^{mm}; length of second anteunal joint, 1.45^{mm}.

Florissant. Three specimens, Nos. 8648, 8849, 11785 and 12076.

3. Pecllocapsus veternosua.

This species closely resembles P. fremontii, but differs somewhat in markings and much in the form of the thorax and the length of the second antennal joint. The head, which is dark, is rather acutely produced in front of the eyes; basal joint of antemne almost as long as the head and moderately stout, the second a little slenderer, slightly larger distally than proximally, exceptiomally short, being scarcely half as long again as the first joint, the succeeding joints about equal and together as long as the second. Thorax fully two and a half times as broad at base as at apex, the apex roundly and shallowly emarginate, the base regularly and gently convex, the sides oblique and straight, the surface a little irregular butimpunctate as in P. fremontii, somewhat obscurely mottled, dark colors prevailing posteriorly, paler anter:orly. Scutellum generally pale but with both extreme base and apex more or less infuscated, the sides transversely pectinate. Hemelytra marked as in P. fremontii, but much less heavily and in particular the clavns less obscure.

Length of body, 5.8^{mm}; breadth of thorax, 2.35^{mm}; length of second antennal joint, 1.1^{mm}.

Florissant. Two specimens, Nos. 2107, 8113.

4. Pecilocapsus tabidus.

Pl. 24, Fig. 8.

A single specimen represents this species, not so well preserved as the others. Thie head is large, the part in front of the eyes exceptionally large, well produced, and with a broad rounded apex ; first joint of antemme moderately slender, equal, a little shorter than the head; the second joint exceptionally long, being almost or quite three times as long as the first, slender, and equal throughout ; third joint half as long as second. Thorax less than twice us broad at apex as at base, anteriorly truncate, posteriorly gently and regularly convex, the sides oblique and straight, the surface smooth, withont punctures, more or less mottled and infuscated, as is also the scutellnm, which, however, is more uniformly infuscated or infumate, and has a sharp, apical angle. Hemelytra nearly pallid, but with the clavus more or less obscure, and the onter apex of corium and cnneus each with a small, distinct, triangular, fuscous spot.

Length of body, $5^{\text {min }}$; brealth of thornx, $2^{\text {mm }}$; length of second unteunnl joint, $2^{m m}$.

Elorissant. Three specimens, Nos. 6968, 9730, 10592.

5. Peecllocapsus ostentus.

PI. 24, Fig. 2.

The head is short and rounded, but very little produced in front of the eyes; first joint of antemme slender but short, no longer than the head, which it surpasses only a little; second fully three times as long as the first, slender and equal; third two-thirds as long as second. Thorax fully twice us broad at apex as at base, anteriorly emarginate, posteriorly searcely convex, the sides very oblique and straight; it is as long as the scutellam, delieately punctate, and blackish. Seutellum of a similar color, its apienl angle rounded. Hemelytra obscure and indistinct, but apparently darker at apex than at base.

Length of body, $6.3^{\text {m"m }}$; breadth of thorax, 2.25^{mmm}; length of seeond antemal joint, $1.3^{\text {mim }}$.

Florissant. One speeimen, No. 13560. No. 7911 may also belong here, and if so the hemelytra are marked very much as in the preceding speeies.

CAPSUS Fabrieius.

This genus (in an extended sense) has been recognized in amber by Berendt and Gravenhorst, but no fossil speeies have been deseribed. The species described below are placed here dubiously, at least as regards the sense in whieh the genus is now ordinarily restricted. Each has a very very short thorax, similarly formed.

Table of the species of Capsus.
Less than five millimeters in leugth. First antennal joint scarcely broaler than the second.

1. C. obsolefactus.

More than six millimeters in length. First antennal joint half as broad again as the second.
2. C. lacus.

1. Capsus obsolefactus.

PI. 23, Fig. 13.
Head small, considerably and triangularly produced in front of the eyes, where it is angulate; first joint of antennæ slender, of about the length of the head, the second fully twice as long as the first, slender, and
nearly equal, the following subequal and together longer than the second. Thorax very faintly and distantly punctate, short, truncate in front and behind, or somewhat emarginate in front, the base more than twice the breadth of the apex, the sides oblique and nearly straight; scutellum moderately large. Legs slender but not very long. Hemelytra fuscous like the body, the membrane small and pule fuliginous.

Length, 4.75^{mm}; breadth, 2^{mm}.
Florissant. Three specimens, Nos. 851, 3480, 4500.
2. Capsus lacus.

1l. 22, Fig. 9.
Head small, roundly and not very strongly produced in front of the eyes; first joint of antenne rather stout, nearly or quite as long as the head, the second much slenderer, equal, as far us preserved neurly twice as long as the first. Thornx very obscurely punctate, truncate at either extremity or a little and roundly emarginate in front, the base more than twice, probably two and a half times, broader than the apex, the sides strongly oblique and straight. Legs rather stout and not long.

Length, 65^{mm}; breadth, 2.5^{mm}.
Florissant. One specimen, No. 128.

APOṘEMA gen. nov. ($\alpha \pi(\rho \eta \mu \alpha)$.

I am unable to decide upon the precise position of the insect here con. cerned, though it appears to belong in or near the Phytocoraria. The liead, which has been uncovered since the plate was engraved, is less than half as broad as the thorax, but more than twice as broad as long, and thus exceptionally small. The thorax, about twice as broad as long, is posterionly truncate, while the front narrows rapidly but with a rounded curve to the narrow neek; it is not carinate. The scutellum is of large size, equiangular, with perfectly straight sides. The tegmina are slender, with gently convex costa, the apical margin oblique, but the neuration can be made out in the single specimen known neither here nor in the wings. The hind legs are rather long and slender, the femora extending far beyond the sides of the body and apparently as long as the breadth of the base of the abdomen, the tibie still Jonger with a row of very short and inconspicuous VOL XIII- 24

Phoiographic Sciences
Corporation

(716) 872-4503
distant spines. Abdomen ovate, constricted at the base, rather broadly rounded, and not produced apically.

A single species is known.

Aporema prefstrictum.

Pl. 20, Fig. 4. -
The body is of a dark and tolerably uniform color. The surfaces of the thorax and scutellum are smooth, but the edges of the latter transversely wrinkled. The hemelytra are light colored or pallid, witio more or less infumated costal edge, which expands into an infumated spot at the tip of the corium and of the cuneus, in the former case large, in the latter small; the inner margin is scarcely infumated and the membrane clear. Legs blackish.

Length, 6.5^{nm}; breadth of thorax, 2.65^{mm}; abdomen, 2.85^{am}; length of hind tibiæ, 2.5^{mm}.

Florissant. One specimen, No. 9900.

HADRONEMA Uhler.

This genus so far as known is represented by a single spẹcies, found in the Rocky Mountain region and in Mexico. The larger species here added to it appears to agree better with it than with any other with which I have been able to compare it, though it is doubtful whether it really belongs here.

Hadronema cinerescens.

Pl. 24, Fig. 12.

Head small and rounded, scarcely at all advanced in front of the eyes, uniformly scabrous; first joint of antenne moderately stout, not more than half as long as the head, the second slender, slightly incrassated in the apical half or less, less than three times as long as the first joint, the third about two-thirds as long as the second. Thorax scabrous like the head, truicate at each extremity, less than twice as broad at base as at apex, the oblique sides gently arcuate, the color of the liead and thorax uniform black. Hemelytra not well preserved, the legs moderately slender, stouter and shorter than in the modern H. militaris Ulil.

Length, 6.6^{mm}; breadth, 2^{mm}.
Florissant. Two specimens, Nos. 2980, 13559.

Family PHYSAPODES Duméril.

These minute flower insects have been found in considerable numbers in Tertiary deposits. Aix, Oeningen, Rott, and amber lave each yielded more than one species of Thrips, fitteen in all, of which neari, half come from Rott. Besides this Rott has furnished four species of Heliothrips and one of Phlœothrips, while an extinct genus Calothrips is represented r.t Aix by a single species. In our own country they have been detected only in the White River beds, where one species each of the genera Melanothrips, Lithadothrips, and Paleothrips have been found and are described below; the last two of the genera are extinct.

MELANOTHRIPS Haliday.

The only species of this genns that has been found fossil is the one described below. So far as I know Melanothrips has not been observed this country among recent insects, but only in Europe; but so little in attention has been paid to our native species of Physapores that this is of little significance.

$$
\begin{gathered}
\text { Melanothrips mxtincta. } \\
\text { Pl. 5, Figs. 90, } 91 . \\
\text { Melanothrips extineta Scudd., Bnl. U. S. Geol. Geogr. Surv. Terr., I, } 241 \text { (1875). }
\end{gathered}
$$

Head small, tapering; the only appendages visible are the antennæ; these are only sufficiently preserved to recognize that they are very long and slender, longer than the thorax. The thorax is rather small, quadrate; wings nuarly as long as the body, fringed on the costal border as in Palæothrips fossilis. The abdomen is composed of only eight joints, but is very long and very tapering, fusiform, the last joint produced, as usual in the physapods; the third joint is the broadest; of the wings only the costal border and a prut of one of the longitudinal veins can be seen; there are no remains of legs.

Length of hody, 2.2^{mm}; of anten..te, 0.8^{mm}; of head, 0.14^{mm}; of thorax, 0.5^{mm}; of abdomen, 1.56^{mm}; greatest breadth of abdomen, 05^{mm}.

Chagrin Valley, White River, Colorado. One spesimen, W. Denton.

LITTHADOTHRIPS Scudder ($\left.\lambda_{2} \theta \not \alpha^{\prime} 5, \theta \rho i \psi\right)$.

Lithadothrips Scudd., Bull. U. S. Geol. Geogr. Surv. Turr., I, 2e1 (1875).
Allied to Melanothrips Haliday. The head is large, broad, globose; the eyes exccedingly large, globose, each occupying on a superior view fully one-third of the head; the antenne very slender, equal, as long as the thorax, the joints eight or nine in number, cylindrival, equal, scarcely enlarging toward their tips. The prothorax is no larger than the head, of equal breadth with it, the whole thorax shaped as in Palæothrips. Only fragments of the wings remain, sufficient to render it probable that they agree well with the character of the group to which Melanothrips and Eolothrips ielong. The legs resemble those of Palmothrips, but are slender and appear to be rather profusely supplied with hairs. The abdomen differs considerably in the two specimens referred to this genus. In one it is very broadly fusiform, the tip a little produced, nine joints visible, the apical furnished with a few hairs, and bluntly rounded at the tip; the other has the sides equal, the apex not at all produced, but very broadiy rounded, only seven or eight joints vaguely definable.

A single species is known.

Lithadothrips vetusta.

$$
\text { Pl. 5, Figs. 88, 89, 102, } 103 .
$$

Lithatothrips veturta Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., I, 222 (1875).
The specimens, both of which represent the upper surface of the body with fragments and vague impressions of the nembers, are too poorly preserved to add anything to the above description of their generic features excepting the following measurements:

First specimen : Length of body, 1.76^{mm}; of antennæ, 0.6^{mm}; of thorax, 0.62^{mm}; oí abdonen, 087^{mm}; breadth of head, 0.28^{mm}; of thorax, 0.52^{mm}; of abdomen, 0.56^{mm}; length of fore femora, 0.37 mm ? breadth of same, 0.14^{mm}; length of hind femora, 0.42^{mm}; breadth of same, 0.13^{mm}.

Second specimen: Length of body, 1.96^{mm}; of antennæ, 0.76^{mm}; of thorax, 0.56^{mm}; of alodomen, 1.10^{mm}; breadth of head, $0.3 \mathrm{~s}^{\mathrm{mm}}$; of thorax, 059^{mm}; of abdomen, 0.59^{mm}.

Fossil Cañon, White Rịer, Utah. 'Two specimens, W. Denton,

Paleotirips Scudder ($\pi \alpha \lambda \alpha \lambda^{\prime}{ }^{\prime}$, $\theta \rho i \neq$).

Palcothrips Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., I, 2:2 (1m75).
This genus is allied to Aolothrijs Laliday. The head is small, globose ; eyes rounded, much smaller than in Lithadothrips; antenna slender, fully as long as the thorax, not more than seven-jointed, the joints cylindrical, subequal: Prothorax considerably larger than the head, the thorax as a whole very large, stout, and tumid; fore femora very stont, scarcely more than twice as long as broad; fore tibiae also stout, a little longer than the femora; the other legs are moderately stout, long, reaching beyond the tip of the abdomen, with a few scattered rather short spinous hairs; the hind tarsi three-jointed, the last joint smaller than the others and all together two-sevenths the length of the tibia. Fore wings unusually broad, broadest apically, whste their breadth more than equals one-fourth of their entire length, provided with two longitudinal veins, dividing the disk into three nearly equal portions, connected in the middle by a cross-vein, and with either border by other cross-veins at about one-third and two-thirds the distance from the base to the tip of the wing; the wing is heavily fringed, especially along the hind border. Hind wings veinless, nearly as long, and at the tip nearly as broad, as the fore wings. Abdomen nine-jointed, half as long again as the thorax, rather tumid, scarcely or not at all produced apically.

Paleothrips fossilis.

$$
\text { Pl. 5, Figs. 104, 105, } 115 .
$$

Palaothrips fossilis Scudd., Proc. Bost. Soc. Nut. IList., XI, 117-name ouly (186i) ; Bull. I. S. Geol Geogr. Surv. Terr., I, $222-223$ (1875) ; in Zittel, Handb. d. Palzont., 1, il, 784, Fig. 999 (I88.).

Head small, tapering a little in front, where, however, it is broadly rounded. The antenne are certainly seven-jointed, and none of the apical joints show any indication of being connate, the last joint being of the same length as the two preceding it, tapering, and bluntly pointed; none of the joints show any enlargement in the middle, but the middle joints are slightly larger at the distal extremity than at the base; they appear to be destitute of hairs The prothorax is subquadrate, a little broader than long, with rounded sides; the fore femora are unusually stout, as long as the width of the prothorax. The longitudinal veins of the fore wings approach each other somewhat abruptly in the middle, where they are united by a cross-
vein, and at the tip of the wing they curve away from each other; the two cross-veins on the lower third of the wing are respectively slightly farther from the base of the wing than the corresponding veins of the upper third; the fringe on the posterior border is largest near the tip of the wing, where the hairs are abont three times as long as those on the costal border. The first hind tarsal joi it is scarcely longer than broad, cylindrical; the second of about the same length but decidedly broader at apex than at base; the apical joint is nearly globular, smallest at base, as large in the middle as the base of the other joints. There are a few hairs at the tip of the abdomen and a few sho:t ones on the hind tibie; the apical ones stouter than the others, resembling spines; but the insect appears to have been unusually destitute of hairs, excepiing on the wings, where not only the edges but also all the veins are fringed.

Length of body, 1.6-1.8 m^{mm}; of antenne, 0.58^{mm}; of fore femora, 0.32^{mm}; breadth of same, $0.14^{\text {mun }}$; length of fore tibias, 0.32^{mmn}; of hind femora, 0.38^{mm}; brealth of same, 0.11^{mm}; length of hind tibie, 0.42^{mmp}; of lind tarsi, $0.12^{\text {mun }}$; of fore wings, 1.4^{mmn}; of hind wings, 1.27^{mm}; greatest breadth of fore wings, 0.37^{mmm}; length of prothorax, 0.16^{mm}; breadth of same, 0.32^{mm}; length of whole thorax, 0.64^{mm}; of abdomen, 0.92^{mm}; greatest breadth of the same, 0.37^{mm}.

Fossil Cañon, White River, Utah. W. Denton.

Family LYGAEIDE Westwood.

This family has been recognized in the Secondary rocks by somewhat obscure fragments in England and Germany, but in Tertiary deposits the family is comparatively abundant and widespread. Curionsly enough, only two species have been recorded from amber, and in Menge's Collection the family was represented by but one. Three-fourths of the known European species are those described by Heer, who referred them to few genera. it is difficult to place the lare number of those which have been recorded, but to judge in part by the living species with which some of them are compared it is plain that the Myodochina should claim about one-lalf of them and the Lygæina the larger part of the remainder, the others being distribautble among the Cymina, Blissina, and Heterogastrina. In all there are thirty-seven species credited to six genera.

In our own country the numbers are largely in excess of this, fifty-one species being recognized, showing this family to have been one of the more important among Tertiary Heteroptera. The disposition of these in their respective subfamilies has been effected only by their evident affinities in general strncture with existing members of these subfamilies, not by a demonstration of those definite characters (mostly relating to the position of the stigmata) upon which these subfamilies were founded, as that would he impossible. The result shows no small resemblance to the characteristics of the European Tertiary fauna, the prevailing type being the Myodochina and the next the Lygaeina, but beyond this the resemblance fails to extend greatly, the prevailing fanily having nearly 73 per cent of the whole, while in Europe they claim scarcely more than 50 per cent; and again the Lygreina have less than 16 per cent of the whole, while in Europe they have about 35 per cent; further, none of the other subfamilies which appear in Europe are found at all in America, our other groups being Geocorina, Oxycurenina, and Pyrrhocorina, which find no place in Europe. But werhups the most remarkable result of the investigation of the American forms is the large number of new generic types found to be necessary in the Myodochina, where, out of the twenty-one genera only four (with but five species together) are regarded as identical with existing types. In the Old World a single species found at Oeningen has been considered the type of an extinct genus, Cephalocoris, not found with us; but undoubtedly, to judge from the illustrations and descriptions, a more searching examination would bring out a different condition of things. Besides this, Heer las established a magazine genas, Lygeites, for all the members of the family for which he conld find no place; it evidently comprises very diverse forms.

Subfamily LYGAEINA Stål.

This group of Lygeidæ holds the second rank among the fossils both in Europe and America, but its relative and absolute importance is greater in the Old World than in the New. In Europe a considerable number of species, ten or eleven. are referred to Lygæus, not including those which plainly do not belong here, but it is probable that only one of the species of Heer's magazine genus Lygæites belongs here, most of the others being more probably Myodochina; to this we may perhaps add his extinct gemus Cephalocoris. All of these scem to belong to the division of Lygæaria.

In our own Tertiaries I lave referred all the species to the modern genera Lygrus (three) and Nysius (five), the former belonging to the division Lygearia, the latter to the Orsillaria. The resemblance between the Tertiary Lygrina of Europe and America is therefore not very strong.

LYGAUS Fabricius.

This ole genus having given birth to the family name, a considerable number of fossils have been referred to it. Nine lave been described, one each from Aix and Krottensee, two each from Oeningen and Sieblos, and three from Radoboj; Serres also refers to four, and Curtis to one, species of the genus at Aix, and Berendt and Gravenhorst credit the genus to amber. Three of these unnamed forms, however, are compared to certain living species, which show that they can not belong here, and the species from Krottensee, L. mutilus, is certainly not a Lygaus, so that only ten or eleven species at the most, named and unnamed, can be claimed for the European Tertiaries. In America we have three, all found at I'lorissant.

> Table of the species of Lygaus.

Anterior separatel from posterior lobe of thorax by a distivot though fino tuberculate ridge.
Anterior and posterior lobos not distinctly separated.

1. L. stabilitus.

Thorax distinctly though sparsely punctnred ...2. L. obsolescens,
Thorax smooth ..

1. Lygeus stabilitus.

$$
\text { Pl. 22, Fig. 10; Pl. 24, Fig. } 16 .
$$

Head strongly but roundly produced in front of the pretty large eyes, the surface finely rugulose, uniform black-brown, the antenne uniformly fuscous. Thorax with anpliated lateral margins, which are finely marginate, the front margin considerably, regularly, and roundly emarginate; surface of posterior lobe coarsely, faintly, and distnutly punctate, of anterior much like the head, the two separated by a slight indented carina, giving it a: aberculate appearance; the anterior lobe is dark like the head, the posterior paler but obscurely so ; the seutellum in color and surface structure is like the head. The hemelytra are dark obscure, with a broad faint band crossing them when closed just beyond the tip of the scutellum, very much as in Dysdercus cinctus of the same beds, which but for the presence of ocelli this species greatly resembles.

Length of body, $8.5-9^{\mathrm{mm}}$; antennx, 3.5^{mm}; breadth of thorax, 3^{mm}. Florissant. Three specimens, Nos. 11020 and 11235, 11219, and of the Princeton Collection, Nos. 1.811 and 1.821.

2. Lyoeus obsolescens.

$$
\text { Pl. 24, Flg. } 15 .
$$

Head strongly but roundly produced in front of the large eyes; the surface smooth, uniform; antemme longer than in the other species, uniformly fuscous. Thorax with nearly straight sides, the anterior outer angles rounded, the front margin regularly, roundly, though not considerably, marginate; surface uniformly, very sparsely and coarsely punctate, the scutellum similar. Color of whole body uniform or nearly so, but with faiut signs that the disk of the thorax was lighter than the rest and that a lighter but obscure and narrow band crossed the closed hemelytra and scutellum at the apex of the latter.

Length of body, 10^{mm}; antennæ, 4.5^{mm}; breadth of thorax, 3.5^{mm}.
Florissant. Three specimens, Nos. 421, 104.j4, 11218.

3. Lygeus feculentus.

Head but little and roundly produced in front of the eyes, the surface smooth, inore or less mottled, the antenne fuscous, the second joint much darker than the succeeding. Thorax with scarcely ampliated, oblique lateral margins, the front margin gently and roundly emarginate, the whole surface smooth, fusco-fuliginous, with a pair of oblique and divergent paler lateral clouds; scutellum smooth, the disk and base fusco-fuliginous, the rest obscure pallid. Hemelytra fuliginous with no transverse pallid band, but with a narrow, pallid stripe following the sutara clavi.

Length of body, 9.75^{mm}; antennæ, 3.75^{mm}; breadth of thorax, 31^{mm}.
Florissant. One specimen, No. 1.835, of the Princeton Collection.

NYSIUS Dallas.

No fossil Heteroptera have been before referred to this genus, which . is found all over the world, from Greenland to the Cape of Good Hope, in the East Indian and Pacific Islands, and in North and South America Five species occurring in the Florissant shales belong here or in the near vicinity, and may be separated by the following table:

Table of the apecies of Nyaina.

Antenaw distinctly more than half as long as the body.
Ifead distinetiy loager than broad; body reiatively stender \qquad 1. N. rinctus.

Head disthetly broader than long; body relatively stout 2. N. veoula. Antenne nearly or quite half as long as the body, but not more.

Antennue half as long as the body.
Thorax tapering eonsiderably, the apex harilly more than balf as long as the base; membrane distinetly infumated 3. N. trituk.

Thorax tapering but little, the apex fully two-thirds as loug as the base; membrane apinarently clear 4. N. tirrer.

Antenme distinctily less than half as long as the boily... N. stratus.

1. Nysius vinetus.

Body slender, three times as long as broad; head and thorax black, the abdomen blackish fuscous, untenne and legs very dark testaceous. Hend considerably longer than broad, well rounded, heavily punctate. Antemas distinctly more than half as long as the body, the basal joint stout, the remainder slender, decreasing regnlarly and slightly in size from the second to the fourth. 'Thorax rapidly tapering forward, the apical nbout half the length of the basal margin, both truncate; surface heavily punctate. Apex of coritum reaching scincely beyond the middle of the abdomen, corinm infuscated; merabrane clear with distinct fuscons veins.

Lengtil of body, i^{mmn}; intennæ, 3.6^{mma}; breadtli of thorax, 2^{mm}.
Florissant. One specimen, No. 7310.

2. Nysius vecula.

Pl. 22, Fig. 7.
Body as compared with the preceding species relatively stont, being somewhat less than three times as long as broad; whole body with the legs blackish fuscous, antenne slightly paler. Head broader thim long, rounded subtriungular, smooth or scarcely punctate. Antenne distinctly more than half as long as the body, the basal joint moderately stout, projecting considerably beyond the front, the remaining joints slender, the apical barely incrassated and as long as the penultimate. 'Thorax tapering regularl, and considerably, the apical considerably more than half as long as the basal margin, both truncate, the oblique sides without ampliation; the surface rather delicately punctate. Hemelytra with corium infuscated, reaching somewhat beyond the middle of the abdomen; all the veins delicately punctate.

Length of body, $5.5-5.6^{\mathrm{mm}}$; antennæ, 3.75^{mm}; breadth of body, 9.6^{mm}.

Florissunt. Seven specimens, Nos. 3601, 3739, 4886, 11522, 11549, 13153, and from the Princeton Collection 1.828.

3. Nysius tritus.

$$
\text { Pl. 23, Fig. } 20 .
$$

Body slender, fully three times as long as broad; the head and thorax black, the abdomen blackish fuscous; corium and clavus of hemelytra blackish brown with a large, t:iangular, clear, pallid spot occnpying the basal half or more of the corinm, and also another smaller, trinngular, pallid spot at its extreme apex ; membrue fuliginous. Head subrotund, broader than the apex of the thorax, apparently broadly angulate in front, the surface smootll. The antenne half as long es the body, the apical joint slightly incrassated. Thorax tapering rapilly and regularly from base to apex, the apical hardly more than half as long as the basal margin, both truncate; the surface heavily punctate, as is also that of the scutellum; veins of the hemelytra also punctate.

Length of body, 43^{mm}; antenna, 2.15^{mm}; breadtl, 1.35^{mm}.
Florissant. 'Two specimens, Nos. 6142, 12465.

4. Nysius terre.

II. 23, Fig. 31.

Body moderately slender, rendered less so by its slightly oval shape; head and thorax blackish brown, the abdomen a little paler; legs and antennæ dark testaceous. Head small, distinctly broader than long, rounded, with the eyes narrower than the apex of the thorax; surface smooth. Antenne latf as long as the body, the basal joint projecting but little beyond the front of the head, the apical slightly incrassated and fully as long as the penultimate joint. Thorax tapering gently from base to apex, the apical fully two-thirds as long as the basal margin, both truncate; the sides hardly ampliated; surface heavily punctate, as is also the scutellum. Corium of hemelytra reaching nearly the middle of the apical half of the abdomen, dark fuscons, with a very large, rounded, blackish fuscous spot in the niddle of the apical margin; the membrane apparently clear.

Length of body, 4.1^{mm}; antenne, 2^{mm}; breadth of base of thorax, 1.25^{mm}.

Florissant. Two specimens, Nos. 4606, 7064.

5. Nysies atratus.

PI. 23, Figs. 14, 27; II. 25, Figs. 2, 8.
Body rather slender, being about three times as long as broad. Head rounded, subtriangular, of about equal length and breadth, or, if anything, a little broader thm long, with the eyes slightly broader than the apex of the thorax, suooth. Antenne less than half as long as the body, the stont basal joint projecting slightly beyoud the front of the heal, the encond joint very slender, the others grudually inerissated, so as to be fully half as broad again in the middle of the npical joint as in the midde of the second joint, the apical fully as long as the penultimate joint. Thorax tripezoidal, thpering from base to apex grudually and regularly, with struight sides, sometimes a little ampliated, the apical distinctly more than one-half as long as the basal margin, both truncate, or the apical very slightly und roundly emarginate, surface coarsely punctate like the scutellim. All the femora rather stout, the fore and middle pairs of nearly equal length, the hind pair a little longer, smooth; all the tibiae slightly longer than their respective femora, slender: Coriun of hemelytra with the npex reaching beyond the middle of the abdomen, testaceous, with blackish fuscous blotches irregularly distributed; all the veins of the corium and clavas distinctly punctate; membrane nearly clear with testaceous streaks along tho veins.

Length of body, 4-5 m^{mm}; antemax, $1.75-2^{\mathrm{mm}}$; breadth of body, $1.5-1.7^{\mathrm{mm}}$
This is the commonest of the Lygaide at llorissant.
Florissant. T'wenty-five specimens, Nos. $902,1349,1671,3576,4853$, 4931, 6123, 6177, 6365, 6542, 7540, 10381, 10825, 10888, 10960, 11140, $11164,12065,12463,12751,13158,14023,14181,14432$, and from the Princeton Collection 1.840.

Subtamily GEOCORINA Stial.

A single speçies referred below to Geocoris is the only fossil form ever recognized in this fanily.

GEOCORIS Fallén.

This cosmopolitan genus, rich in species and about equally developed in the Old and New Worlds, is more prolific in the northern than in the southern hemisphere in the New World, the opposite in the Old World. It has never been recognized in a fossil state, but a single species appears to
occur at Florissent, whers its striking brondth of head and stout fore femorn distinguish it from all other forms.

Grocoris infernorim.

1'1. 23, Figs. 17, 26.
Head broadly romed in front withont the least sign of being produced, in which it differs strikingly from all existing species I have been able to examine ; twice as broad as long, witu the small eyes just as broad as the front of the thorax ; antenne shorter than head and thorax combined, very slender, cylindrical, with no enlargement anywhere, the second joint longest, the third and fourth successively shorter. The thorax is nearly or quite twice as broad as long with gently convex sides, senreely narrower in front than behiad, and the angles hardly rounded; the surface is very feebly punctate. Hemelytra with the corium hardly reaching beyond the middle of the ubdomen, very opaque fuscous with pale patches or streaks following the course of the veins; membrane invisible. Legs short, the fore femora (when turned sc as to see the broader face) very stout, rotund, not more than half as long again as broad. Abdomen very broad and full.

Length, 3.25^{mm}; breadth, 1.45^{mm}.
Florissant. Six specimens, Nos. $5610,5734,5864,5888,6483,1315 \cdot$.
Subfiamily OXYCARENINA Stål.
This group, much more highly developed in the Old World than in the New, las never been found fossil there; but here we have an extinct genus, Procrophius, in the shales of Florissant, with three species.

PROCROPHIUS gen. nov. ($\pi \rho \rho_{0}$, Crophius, nom. gen.).

The brevity of the antennæ and of the corium at once distinguish this from any living forms of Lygaide with which it would appear to be related, and with which from its abundance in the rochs we should perhaps the more expect to find relationship. The brevity of the corimm distinguishes it from Ischnorhynchus with which its general form agrees, especially with the Central American species, and I can find nothing nearer to it than Crophius, from which it differs decidedly in the antennæ. The head is triangular, shorter than broad, together with the eyes of the same breadth as the
narrowed apex of the thorax, which is broadest at extreme base, or close to it, muck broader than long, and tapers forward with greater or less rapidity and regularity. The hemelytra have the outer extremity of the corium reaching not far beyond the middle of the abdomen, and the legs are very much as in Cropluius. The antennæ are at most only a little more than a third as long as the body, the first joint, short and not surpassing the head, the resi slender and nearly cylindrical, the second the longest, the third and fourth equal in length, but the last slightly incrassated.

Three species occur at Florissant, one of them in great abundance.
Tabln of the species of Procrophius.
Hemelytra with no distinct series of punctures.
Hemelytra uniformly or almost nuiformly obscure

1. P. commanis.

Hemelytra clear with a broad costal thickening... 2. P. costalis.
Hemeigtra will distinet series of puactures followiog the uain vains........................ P. languens.

1. Pronrophius communis.

Pl. 23, Figs. 13, 18, 28, 29 ; Pl. 24, Fig. 1.
The antennæ of this species are much stouter than in the next, and a_{2} so relatively shorter The head is more than half as $1 . \mathrm{ig}$ as the thorax, or a little more than that, very bluntly angled in front; thorax about as long as the anterior breadth, at least half as broad again posteriorly, tapering with great uniformity so as to shew but little curvature to the sides, the surface nearly smooth, entirely without constriction next the base. Hemelytra dark and obscere, occasionally with obscure lighter patches below the costa! field and next the middle of the membranal suture; membrane clear.

This is one of the commonest species of Lygæida at, Florissant
Lengtl of body, 3.5^{nmm}; breadth, 1.5^{min}; length of corium, 1.5^{mm}.
Florissant. 'Twenty specimens, Nos. 193, 258, 1209, 1404, 1570, 2388, $4313,4577,4602,5722,5832,6205,6246,6873,7330,11184,11222,11652$, 12061, 12458.

2. Procrophius costalis.

$$
\text { Pl. 23, Fig. } 8 .
$$

This species differs from the preceding in the slenderer antennæ, the more rounded sides of the pronotum, and the character of the slightly relatively longer hemelytra. The thorax is rather stouter than in P. communis, being nearly twice as brocd as long, with gently rounded sides, which at
the sams time taper rapidly; the surface smooth. The hemelytra are light colored, excepting for an equal, not very broad, costal thickening of a testaceous color, which appears to bo characteristic. The abdomen seens to be ordinarily fuller in the apical half than in P. comınunis.

Length, 3.4^{mm}; breadth, 1.5^{mm}; length of corium, 1.75^{mm}.
Florissant. Five specimens, Nos. 5952, 6367, 6394, 7062, 9937.

3. Procrolhius languens.

$$
\text { Pl. 23, Fig. } 23 .
$$

A single specimen has been separated from the others on account of certa. 7 characteristics which appear to be poculiar; unfortunately the appendages of the head are not prespried, but the head itself appears to be longer and more produced than in either of the other species, and the thorax of the same form as in P. communis, tapering as rapidly and with rectilinear sides, but it is perhaps a little shorter than in P. communis and.its surface a little less smooth. The hemelytra are clear throughout, and show lines of punctures along the course of the principal veins which can not je made out in either of the other species. The abdonen has the form of that of P. costalis.

Length, 3.4^{mm}; breadth, 1.5^{mma}; length of corium, 1.5^{mm}.
Florissant. One specimen, No. 6239.

Subfamily MYODOCHINA Stål.

As has been stated above, the vast majority of the American foril Lygacida belong to the present group. A remarkable feature to be noticed in then-nct embracing all the species, but certainly most of them-is the brevity of the antennæ, rarely half as long as the body, and usually much shorter than that. They are extraordinary, too, for the very large proportion which can not 'je referred to existing genera, and for their general resemblance as a whole to subtropical types. The members of the first group, the Myodocharia, seem to form, with few exceptions, a type apart, in which the posterior lobe of the thorax does not broaden from behind forward, being as a whole narrower, or at least no broader, than the anterior lobe when the latter has ampliated sides, the opposite being ordinarily the case in modern types. With a single exception or two they all como from Florissant.

Table of the genera of fossil Myodochina.

Antcrior and posterior lobes of thorax with independcat latersl ourves.....(Div. Myodocharia.) Mildle femors as long as the width of the body at their insertion 1. Ligyroooris. Middle femora shorter than the width of the body at thoir insertion.

Anterion iobe of thorax with the sides arcnate.
Minute species, less than fonr inillimeters in length..........................2. Stenopamera.
Larger species, not less than five millimeters in length.
Anterior nuch longer than postorlor lobe of thorax.
Antemme no longer than head and thorax ; terminal joint no broader than middle of second joint \qquad 3. Catopamera.

> Antentio as long as heal, thorax, and scutellnm ; terminal joint incrazsated.
4. Phradopamera.

Anterior lobe of thorax a little shorler than the postorior..................... .5. Cholula. Anterior lohe of thorax with the sides oblique and straight.

Anterior and posterior lober of tho.cas about equally long
Larger corme. Antenne wors than half as long as body; head as broad as middle of thorex; abdomen laterally expaniled 6. Lithocuris.

Smaller forms. Antemne only hatf as long as hody; head much narrower than middle of thorux ; shomen nut laterally expanded....................7. Caphocoris.
Posterior lube of thorux distinctly shorter than anterior.
Posterior anargin of thorax angulate, the posterior lohe thice as loug in the midde as at silles. .. 8. Eucorites.
Postorior margin of thorsx truncsite, the posterior love of equal leagth throughout
Antenne ns long ne head nud thorax together, or longer; hend longer thar liroul9. Procoris.
Antennie shorter than head and thorsx together; head broader thon leng.
10. Ctereacoris.

Anturior and posterior lobes of thorsx diatinguishabe only, if at all, by the transvarse inpressed line of the upper surface. \qquad
\qquad(Div. Rhyparochromaria.)
Eyes bmall, giobular; hesil not broaler than front of thorax.
Minute species, usually less than 4 mm (in one instance as much as 4.5^{mm}) in length.
Autemne ouly as long as head and thorsx together.
Anterior horder of thorax very muoh shortor that the posterior ; or, if not, much longer than the length of the thorax.
Corium of hemlytra roaching only the middle of the abdomen...11. Trapezonatus.
Corimm of hemelytrs reaching distlactly beyond the middle of the abslomen.
12. Linита.

Anterior border of thorax but little shorter than the pasterior and of the same length ne the thorax. \qquad 13. Rhipiarochramar. Antenue fully half as long ne lody.

Seoond joint of antenme ecarcely longer than thirl or fourth .14. I'achynerus.
Sucond joint of antenne inuch longer than either of the ancceoling...... 15. Tiromerus. Larger species, nsually more than 5^{mm} (in one Instanee as little as 4.7 mm) in length.

Antenne ueariy or quite half as long as the boly, the last joint ecarcely or mot incrassatent. 16. Lithochromus.

Antemie not or acaroely longer than head and thorax together, the last jeint nwanlly a little incrassated.
Second joint of antenme longest.
Thorax considurably less than twice as liroad es long............. 17. Cuptorhromus.
Thorax mush more than twise ss brosd as loug....................... ts. Prolygate.
Last joint of antennm longeat.
Eyes at base of head; thorax punctate; sides of abdonen expanded, nsually beyond the closed hemelytra..19. Necrochromas.
Eyes in middle of heal; thonx bmooth; sides of ab lomen nut expan led laterally bnyond tie hemelytra...20. Exitelus.
Eyes large, lenticular, half as long as the thorax; head oousidurably broaler than the front of the thorax.

2i. Cryptoohromas

1. LIGYRGUORIS Stål.

This Ámerican genus, best developed in Mexico and Central America, where seven species are recorded, and which also extends into the United States, where two species are known in the eustern portions, seems to be represented in the Florissant sbales by one species, though the obscurity of the single specimen makes the reterence somewhat doubtful. No extinct forms have before been recognized.

Ligyrocoms exsugtus.

Pl. :4, Fig. 5.

The single specimen that is referred here is very poorly preserved, but differs markedly from all other specimens; in general the aspect of the insect is that of a Ligyrocoris, and I have accordingly placed it in that genus. The head appears to be of the same width as the thorax, which is subquadrate, narrows very little forward, and is rather broader than long. The antennæ are slender, and if turned backward would reach about half-way to the tip of the clused hemelytra. The fore and middle femora are very similar in character, the middle pair slightly the longer, moderately stont, of nearly equal width throughout, the hind femora longer still and perhaps a little slenderer, reaching nearly to the tip of the abdomen. Hemelytra with the membrane reaching far beyond the tip of the abdomen, the veins dusky; the whole body is of a uniformly dark color.

Length of body, 5.25^{mm}; including the closed hemelytra, 7^{mm}; breadth of body, 1.6^{mm}, length of hind tibire and tarsi, 4^{nmm}.

Florissant. One specimen, No. 12925.

2. STENOPAMERA gen. nov. ($\sigma \tau \varepsilon v o ́ s$, Pamera, nom. gen.).

A genus of Myodocharia in which the anterior lobe is not only several times longer than the posterior, but which by its bulla' 3 form is even wider than it, the posterior lobe being reduced to a mere narrow belt. The whole insect is of compact oval form, less than three times longer than broad. In the last respect it reminds one of Trapezus, but in its principal features it seems to be most nearly allied to Pamera. T':e antennæ are scarcely longer than the extreme willth of the looly mind scarcely have the upical joint YOL XIIt- 5
incrassated; the first joint scarcely surpasses the liead, the second is the longest, and the others successively shorter.

Two species may be separated among the fossils found at Florissant.
Table of the spanies of Stenopamera.
Corinm of hemelytra dark with pallid subcestal streak and median patch.
S. tenebrosa.

Corium of hemelytra pale with darkeued marginal stripe
. S. subterrea.

1. Stenopamera tenebrosa.

$$
\text { Dl. 23, Figs. 16, } 24 .
$$

Head rounded subtriangular, of about equal length and breadth, less than half as broad as the thorax at its greatest ; antenne about as long as head and thorax combined. Thorax with the sides strongly convex and almost angulate in the middle, in front of which it narrows rapidly, the truncate anterior margin shorter than the length of the thorax and harilly more than half its greatest breadth; surface nearly smooth, transversely and finely pectinate. Hemelytra with the corium reaching rather beyond the middle of the abdomen, very dark, but not so dark as the thorax, with a distinctly and sharply pallid sutura clavi and pallid streaks, especially in the subcostal region and in the middle of the outer membranal margin, but also often extending from the base outward along the costal margin.

Length, 3.55^{mm}; breadth of thorax, 1.45^{mm}.
Florissant. Nine specimens, Nos. 1448, 4597, 5736, 6217, 6373, 7397, 7675, 11301, 12446.

2. STENOPAMERA SUBTERREA.

PI. 33, Fig. 7.
This species differs from the preceding in no conspicuous feature and agrees with it in size. The front margin of the thorax appears, however, to be a little and roundly emarginate and the sides slightly less prominent. The hemelytra are pallid with a pale testaceons thickening of the costal margin of the corium and a faint line of punctuation along the principal veins.

Length, 3.25^{min}; breadth of thorax, 1.2^{mm}.
Florissant. Three specimens, Nos. 4887, 6140a, 7473.
3. CA'TOPAMERA gen. nov. ($\boldsymbol{\alpha} \boldsymbol{\tau} \boldsymbol{\tau} \omega$, Pamera, nom. gen.).

Head subtriangular, roundly angulated in front, slightly broader than long, with the eyes as broad as the apex of the thorax ; eyes situated at the base, small, globular ; antenne slender, no longer than the head and thorax together ; beyond the basal joint (which just surpasses the head) of almost exactly uniform width, the joints of very nemly equal length, each from four-fifths to five-sixths the length of the preceding. 'I'horax about half as broad again as long, considerably longer than the head, tapering from the posterior margin of the anterior lobe forward, the sides ampliated, base truncate, apex more or less but broadly emarginate. Legs moderately stout, the middle femora not more than two-thirds the width of the body at their insertion. Abdomen vory full, well rounded.

- 'Two species occur in the Florissant shales.

Table of the speoies of Catopameru.
Corium of hemelytra reachiog the middle of the apioal half of the abdomen \qquad 1. C. angheyi.

Coriam of hemelytra reaching scarcely beyood the middle of the abdomen. .2. C. brailleyi.

1. Catopamera auoheyi.

PI. 27, Fig. 7.
Whole body of a nearly uniform dark color; the antenne a little paler. Head smooth or finely corrugated transversely. Thorax faintly punctate. Hemelytra just surpassing the extremity of the abdomen, the corium reaching the middle of its apical half, fusco-fuliginous, sparsely but distinctly punctate, the punctre showing a tendency to a linear arrangement along the veins; membrane clear. Abdomen with the sides slightly paler than the middle.

Length of body, 5^{mm}; antennæ, 2.15^{mm}; breadth of thorax, 1.55^{mm}; abdomen, 2.05^{mm}.

Named in honor of Samuel Aughey, geologist of the Hayden Survey.
Florissant. Four specimons, Nos. 1716, 2042, 9590, 12033.

2. Catopamera bradleyi.

PI. 26, Fig. 1\%.

Whole body blackish brown, excepting the hemelytra. Antennæ rather stouter than in the precoding species and as dark as the body. Head unitorm, smooth. Thorax very finely, fahtly, and distantly punctate; the
scutellum more coarsely. Hemelytra reaching just about the tip of the abdomen, the corium not beyond its middle, testaceons, rather finely and very distantly and evenly punctate, the puncte showing no disposition to longitudinal arrangement; membrane faintly infumated. Sides of abdomen as dark as the disk.

Length of body, not including the terminal extension of the abdomen, 4.65^{mm}; antennæ, 1.65^{mm}; breadth of bêty, 1.25^{mm}; abdomen, 1.75^{mm}.

Dedicated to Mr. Frank H. Bradley, geologist of the Hayden Survey.
Florissant. One specimen, No. 14236.

4. PHRUDOPAMERA gen. nov. ($\varphi \rho o v ̃ \delta o s$, Pamera, nom. gen.).

Head rounded, of about equal length and breadth, rather broader than the apex of the thorax, more or less produced in frent of the antenne; eyes. situated at the outermost limits of the head; a little in advance of the base, of moderate size, subglobular; antennæ as long as the head, thorax, and scutellum together, the basal joint barely or not surpassing the front of the head, the three succeeding joints subequal, the last incrassated so as to be half as broad again as the middle of the second joint. Thorax scarcely longer than the head, half as broad again as long, tapering forward from the posterior limit of the anterior lobe, the sides ampliated; posterior margin truncate or slightly convex, the anterior margin similarly concave. Legs moderately stout, the middle femora not more than two-thirds the width of the body at their insertion. Abdomen moderately full, well rounded.

Two species occur in the shales of Florissant.
Table of the species of Phrudopamera.
Front of head distinctly angulate. \qquad 1. 1'. wilsoni. Front of head broadly rounded or subtruncate. . P. chittenderi.

1. Phrudopamera wilsoni.

$$
\text { Pl. 27, Figs. } 9,16 .
$$

Head smooth, the front rectangulate in advanice of the antennæ; autennæ of uniform color. Thorax finely and evenly granulate; hemelytra rather heavily punctured in definite longitudinal lines following the course of the veins; these infuscated but the rest of the hemelytra scarcely infuscated; membrane clear. Aldomen oval, somewhat elongated.

Length of body, 5.45^{mm}; antennæ, 2.5^{mm}; breadth of thorax, 1.45^{mm}; abdomen, 2^{mm}.

This species is named for Mr. A. D. Wilson, the accomplished topographer of the Hayden Survey.

Florissant. Two specimens, Nos. 6931, 13315.

2. Phrudopamera chittendeni.

Pl. 26, Figs. 7, 9.

Head smooth or very finely and transversely corrugate, the front projecting forward between the antennæ, but subtruncate or broadly rounded; antenr with the basal and apical joints darker than the rest. Thorax rather faintly aud somewhat distinctly punctate, as well as transversely corrugated, especially in the middle. Hemelytra rather coarsely punctate in longitudinal lines, following the course of the veins, more or less infuscated; the membrane slightly infumated. Abdomen broad and very well rounded.

Length of body, 5.25^{mm}; antennæ, 2.5^{mm}; breadth of thorax, 1.65^{mm}; abdomen, 2.25^{mm}.

The name is given in honor of Mr. G. B. Chittenden, topographer of the Hayden Survey, engaged during its exploration of Colorado.

Florissant. Three specimens, Nos. 7037, 11229, 11232.

5. CHOLULA Distant.

A single species, represented by a single, inperfect, headless specimen from Green River, Wyoming, is referred here from its near resemblance to one of the species described by Distant. It differs, however, in several points: the basal margin of the thorax is hardly concave at the base of the scutellum, but straight, while elsewhere it is convex; there is tat the faintest sign of any carination of the scutellum, and I can not see that either corium or clavus is punctured.

Cholula triguttata.

Pl. 7, Fig. 21.

Body slender with parallel sides, fully three times longer than broad. [Head wanting] Thorax rounded subquadrate, broader than long, the anterior a little shorter than the posterior lobe, and distinctly separated from it
by a transverse constriction, noticeable particularly by the deep lateral notch; anterior lobe rapidly narrowing with strongly oblique convex sides, two and a half times broader than long, the surface apparently smooth, light colored, with broad, marginal, dark bands, a faint dusky median stripe fading posteriorly, and three dark round spots, one in the middle of each lateral half posteriorly and ons in the middle of the posterior margin, overlapping the posterior lobe; this last is broader than the anterior, with strongly convex sides, and is three times as broad as long, its posterior lateral angles not rounded; the posterior margin is transverse outwardly and next the base of the scutellum, a little oblique between; the surface is dark posteriorly, lighter anteriorly, the whole rather coarsely and faintly punctate. Corium of hemelytra clear and smooth, with distinct and straight subcostal vein and fuliginous outer angle (tlie other dark spots on the surfice of the corium in the plate loelong to the middle and hind femora); membrane clear.

Length (without head), 4.5^{mm}; probable complete length, 5^{mm}; breadth of thorax, 1.7^{mm}.

Green River, Wyoming. One specimen, No. 113 (Dr. A. S. Packard).

6. LI'THOCORIS gen. nov. ($\lambda i \not i \theta o s, \mu^{\prime} \rho 15$).

Head large, subrotund, slightly broader than long, with moderately large eyes, which are situated just behind the middle of the head, at its greatest lateral expansion as broad as the middle of the thorax; front rounded, angnlate in advance of the base of the antennæ; antenne more than half as long as the body, the basal joint pretty stout, surpassing a little the front of the head, the remaining joints subequal, the second the shortest, all very slender, but the last slightly incrassated to about the width of the basal joint. Thorax slightly longer than broad, divided into anterior and posterior lobes of equal length, both tapering from base to apex, the anterior more rapidly than the posterior and with perfectly straight oblique sides; the base fully twice as broad as the apex. Legs moderately slender, the middle femora fully three-fourths the width of the body at their iusertion. Corium of hemelytia reaching the middle of the apical half of the abdomen, which is full, laterally ampliated, half as broad again as the base of the thorax.

A single species is known.

Lithocoris evelsus.

The single specimen known is rather faintly preserved upon the stone, but otherwise is in excellent condition. The head and thorax are dusky, the abdomen paler; the antennac and lege are also pale obscure. Head rather densely and not very fincly punctate. Thorax more coarsely and more distantly punctate, as is also the scutellum. Hemelytra with similar coarse punctæ arranged al ig the veins; niembrane cloudy.

Length of body, 6.5^{mm}; antemnæ, 4^{mm}; hind femora, 2.2^{mm}; tibix, 3.2^{mm}; tarsi, 1.5^{mm}; breadth of thorax, 2.2^{mmm}; abdomen, $2 . i^{\mathrm{nmm}}$.

Florissant. One specimen, No. 4890.

7. COI'HOCORIS gen. nov. ($\kappa \omega \varphi d 5$, кó $\rho \imath \varsigma$).

Head rounded, a little broader than long, a little broader than the apex of the thorax but not nearly so broad as its middle; front roundly produced, almost angulato; antennæ only half as long as the body, the basal joints just surpassing the front of the head, the remaining joints slender, subequal, the last faintly incrassated. Thorax at least one-fourth bronder than long, divided into anterior and posterior lobes of equal length, the posterior lobe with straight and nearly parallel sides, the anterior tapering forward, the sides oblique and straight. Legs apparently much as in the preceding genus, but perhaps slightly shorter. Abdomen well rounded, hardly ampliated laterally.

A single species occurs at Florissant.

Cophocoris tenebricosus.

Whole body almost uniformly dark, the abdomen, antennæ, and legs much lighter. Head minutely punctate. Thorax distantly and rather coarsely punctate; scutellum the same. Corium of hemelytra reaching a little beyond the middle of the abdomen, infuscated, the veins finely punctate; membrane clear.

Length of body, 5^{mm}; antennæ, 2.4^{mm}; breadth of thorax, 1.6^{mm}; abdomen, 2^{mm}.

Florissant. One specimen, No. 9742.

8. EUCORI'TES gen. nov. ($\varepsilon \dot{v}, \boldsymbol{x} \dot{\rho} \rho 15$).

Head well rounded, with a slightly triangular form, the apex forward, of about equal length and breadth, slightly broader than the apex of the thorax; the front gently and roundly produced in front of the antennar ; eyes situated in advance of the middle, transverse, reniform ; antema slightly longer than the head and thorax together, the basal joint moderately stout, just surpassing the front of the head, the remaining joints sultequal, the second slightly longer than the others, slender and equal, the third slightly shorter than the terminal, searcely and gently enlarging in the apical half, the fourth incrassated so as to be almost throughout half as broad again as the middle of the second joint. Anterior lobe of the thorax trapezoidal, more than twice as broad as long, tapering regularly from base to apex, with oblique sides, both base and apex truncate; posterior lobe of unusual form, being twice as broad in the middle as at the sides, the posterior margin being strongly, broadly angulate, with rounded apex, simulating a broad and short sentellum. Middle femora much shorter than the breadth of the body at their insertion. Corium of hemelytra reaching the middle of the apieal half of the abdomen. Abdomen moderately long ovite.

One species only is known.

Eucorites serescens.

Whole body black, the antenne with the basal joint black, the apical joint and apical third of the penultimate joint blackish fuscous, the remainder testaceous. Head and thorax uniformly, coarsely, and rather distantly punctate. Corium of hemelytra coarsely punctate, mostly in longitudinal lines following the course of the veins, the punctre infuscated and the whole corium more or less infuscated, but generally of a light color ; membrane faintly infumated, reaching just to the tip of the abdomen.

Length of body, $5^{\text {nm }}$; antenne, 2. $6^{\text {num }}$; breadth of thorax at the base, 2.25^{mm}; abdomen, 2.5^{mm}.

Florissant. One specimen, No. 860.
9. PROCORIS gen. nov. ($\pi \rho c^{\prime}, x(\rho 25)$.

Head rounded, slightly longer than broad, with the eyes a little but distincily broader than the apex of the thoras, the front rom
in advance of the sutemax ; eyes noderately large, situated just in advance of the base; antemme as long as the head and thorax together, the basal joint clearly surpassing the front, the subserguent joints subequml, the seeond not longer than the others, slender, the fourth inerassate throughout, but largest in the middle, where it is twice as broad to the middle of the second joint. Thorax longer than brond, the posterior about twothirds as long as the anterior lobe, of equal length throughout, with straight and purallel sides, the anterior lobe tapering from base to npex with oblique straight sides; posterior margin of the thorax truncate, anterior scarcely emarginate. Legs moderately stont, middle femora not more than twothirds as long as the breadth of the body at their insertion. Corium of hemelytra reaching nearly or quite to the middle of the apical half of the abdomen. Abdomen broal ovate.
'Two species are known, both of which occur oniy at Florissant.

> Table of the species of I'rocoris.

Third joint of antenne of nearly equal width thronghont ; femora relatively slender.

1. P. sanetajohannis. Third joint of antanne considerabiy enlarged apically; femora relatively stont2. I. bechleri.

1. Procoris sanctejohannis.

Whole borly uniform black or blackish fuseous; anteunae of the same color as the head or perhaps not so dark, but in any case much infuscated, the third joint of nearly equal width throughout, searcely enlarged at the apex. Head smooth or perhaps faintly and very finely punctate. Thorax and sentellum coarsely and rather distantly punctate, the punctar on the hemelytra arranged linearly along the course of the veins. Femora only moderately stout, fully three times as long as broad. Abdomen rather full, with amplinted sides.

Length, 6.1^{mm}; antennæ, 2.25^{mm}; breadth of thorax, 1.85^{mm}; abdomen, 2.5^{mm}.

The nane of the species is given in honor of Mr. Orestes St. John, geologist of the Hayden Survey, a pioneer of mueh work in the West.

Florissant. Four specimens, Nos. 355f, 4808, 7688, 10560.

2. Procoris bechleri.
 Pl. 27 , Fig. 4.

Head faintly and rather coarsely punctate, and, like the whole body, black or blackish brown, the antenne a little lighter colored, the third joint
enlarging regularly from base to npex, where it is nenrly twice as harge as at the buse. Thomx very comsely and not very distuntly punctate, as is also the scutellum. Hemelytur fusco-fuliginous, coarsely punctate in serial rows nlong the course of the veins. The femorn rather stout, the middle pair being but little more than twice as long as broad. Abdomen with the sides scarcely amplinted, und a premargimal pallid line.

Length, 6.15^{mma}; antenne, 2.25^{mm}; breadth of thorax, 1.85^{mm}; middle of abdomen, 2.15 mm .

Named for Mr. G. R. Bechler, topogrupher of the Hayden Survey during its work in Colorndo and elsewhere.

Florissant. One specimen, No. 13564.

10. C'I'EREACORIS gen. nov. ($\% \tau \varepsilon \varepsilon \varepsilon \alpha, \kappa^{\prime} \rho \iota s$).

Head broader than long, rounded sutrimgnalar, with the moderately large eyes broader than the apex of the prothorax ; the front prominent and rounded: antenne considembly shorter than the head and thorax together, the hasal joint stout, surpassing the front of the head, the secend and third joints about equal in length, slender, less than helf tho width of the basal joint, the apical joint slightly the lougest, incrassate to the stoutness of the hasal joint. Thomx more than twice as broad as the head, the postorior decidedly shorter than the anterior lobe, with straight and parallel sides and truncate anterior and posterior margins; the anterior lobe tapering rapidly with straight oblique sides, the anterior margin gently emarginate, the whole nearly three times as broad as long. Middle femora very much shorter than the breadth of the body at their insertion. Corium of hemelytra larely stupassing the middle of the abdomen. Abdomen broad and rour.

- single species is known.

Ctereacoris primigenus.

Head, thorax, scutelhm, and corium of hemelytra black, antenne blackish fuscous, abdomen dark fusco-fuliginous. Head smooth, the antenne, especially the apical joint, a little roughened. Thorax and scutellum coarsely punctate. Corium of hemelytra the same, the puncta following mostly the course of the veins; membrane clear. Abdomen obscurely nd coarsely pmetate.

Length, 5^{mm}; nutenme, 1.75^{mmn}; bromitl: of hend, $.95^{\mathrm{mmn}}$; base of thorax, 2.15^{mmu}; nbdomen, 2.75^{mm}.

Florismint. One specimen, No. 2022.

11. TRAPEZONO'TUS Fieber.

'This genus, abumlantly represented in Europe, rather feelly in America, where it is found in the United States, and at high elevations in Central Americn, seems to huve lived nt Florissant, a couple of species, one of them tolerably common being foumd there; yet they certainly differ from modern types in the brevity of the mutemme mad blantness of the head, and are considerably slenderer than any American species known to me. They may be placed here at least provisionally.

Table of the apecies of' Trapezonotur.
Smalier speciss, hardly exceoding three millimetors in length; thorax with no median sulcation; costal margin of corinm dark ... T. exterminatua. Larger apocies, considerably oxoeeding lour millimoters in length; therax with median sulcation; custal margin of corinu light. 2. T. Atyginlin,

1. 'Traphzonotus exterminatus.

I'I. 22, Fig. 9 ; I'I. 23, Figs. II, 22, 25.
Head triangular, rounded, slightly broader than long, the angulate front rounded; antenne slender, subequal, a little longer than liead and thorax together, the first joint barely surpassing the front of the head, the second joint longest, the succeeding joints successively shorter. Thorix with convex sides, the anterior about three-fourths the length of the posterior border, the former slightly concave, the Iatter as slightly convex, the surface faintly punctate, thongh this does not appear on all individuals Hemelytra with the corium reaching the middle of the abdomen, strongly infuscated with pallid markings, consisting of a broad, pale subcostal stripe which does not reach the membranal suture, and a median triangular pateh seated on the same suture, besides which a pale, slender stripe follows the suturi clavi. Ibbdomen full and rounded.

Length of body, 3.1^{mm}; breadth, 1.2^{mmm}; length of antenna, 1.4^{mm}.
Florissant. Eight spacimens, Nos. 5801, 6366, 6550, 7609, 9674, 11757, $12060,12459$.

2. Trapezonotus stygialis.

$$
\text { II. 27, Sig. } 11 .
$$

Head roundly triangular, its sides contiming the course of the oblique sides of tho thorax, a littlo broader than long, the front well rounded; antenme slender and equal, hardly so long as the hoad and thorax together, the first joint not surpissing the head. Thorax transverse, moro than half as broad again as long, broadest in the middle of the posterior half, the sides strongly rounded, tupering forward so that the anterior margin is only two-thirds as long as the whole width of the thorax, the front margin slightly and roundly emarginate, the hind border gently convex. Hemelytra just reaching the end of the abdomen, the corimm extending hardly past the midelle of the same, this latter nather pale testaceous, with the whole costal region pallid, besidos lomgitudinal pallid streaks toward the sutmar clavi; membrame clea: Abdomen full and rounded.

Length of hooly, 4.3^{mma}; breadth, 1.8^{mmm}; length of antennee, 1.5^{mmm}.
Florissant. Ono specimen, No. 9302.

12. LINNAA gen. nov. (Limé).

A gemas of Rimparochromaria closely allied to Gonatas Distant, but from which it is readily distinguishod by the smaller hoad and shorter antemae, the first joint of which barely surpasses the head. 'ihe head is not more, often less, than half as broad as the thorax, nearly as long as broad, and scarcely angulated in front; the anteme are only as long as the head and thorax together, the second joint the longest, sarcely increasing in size apically, tho third and fourth successively thongh but slighty shorter, the third shaped like the secomd, the fourth not inerasated, all smooth. 'lhorax very broad, broadost posteriorly, the sides fill. Hemelytra just surparsing tho abdomen, the corium oceapying about throe-fifths of the whole. Legs, and especially the fore femesa, stont.

Drobably the use of Linnea in botany has prevented its use in zoilogy, but the time is long past whon sueh restrictions have any value. There is no conceivable way in which the use of the same term for a living - Ipino flower and a Tertiary bug cain canso confusion or be inconvenient.

Soveral species occar in the North American 'lertiarios, but only nt Florissant: whila but for their much longer antemme and slighter fore
femorin I shonld be inclined to place here two of the fossil sprecies found it Six in Provence (Oligorene) and heretofors referred to Paehymerns, vi\%, I'. fasciatus Heer and P. pulchellus Heer, which much resemble our first two shecies.

Thabe of the apecirs of Linu m.
Membrano of tho henelytra disinotly marked with bromi, aremute, lengituelinal atripes.
Thumax very rapidly marrowing tin the antelior fourth
I. holmesii.

Thorax narrowing ouly a litele in the anterior fonrth. 2. L. putnami. Mombrane of the hemelytra cloar.

Corinm mortly olsenre.
Anterior outer angles of the thorax so romided that the corve of the anterior half of the thoms If aimost uniforn
3. L. abolita.
 Corhun mestly clenr.

Costal margin diatinotly thongh rather narrowiy tentaceotis; re I of eorimu clear...5. I. croluta.
In addition to the thiokening of tho costal margin, teataceons ، 'otei is fringe the membranal suture and mark the onter tip of the corlum. (6. L. gravida.

1. Linnaa nolmesio.

P1. 23, IMg. 10.
Head slightly broader than long, well romedel, tha front entirely without angulation. Thom: half as broad again as long, the sides strongly memate, the anterion margin only abont half as long us the posterior (in which point it is wrongly represented on the phate), which is slightly emarginate at the hase of the sentellum, the surfice smooth. Hemolytm with the corium very dark testaceons, do epening apically, with n pallid sutmm elavi, atid n subcostal streak, besides a small tringgular spot on the membramal suture just without the sutura chavi membrane with four pale testuceous, equidistant, slightly arcuate, longitudinal streaks, the outer occupying, respectively, the costal and inuer margins, origimating at a little spuce beyond the membranal suture and roming to the outer margin, the interspaces perfectly cloar.

Named for Mr. W. IL. Holmes, geologist, areheologist, and artist of the Hayden Survey.

Florissant. One specimen, No. 2320.

2. Linnata iuthami.

Pl. 23, Fig. 4.
This specios closely resembles the precering in general appenrance, but differs from it in important details in those parts which em be com-
pared. Unfortumately the head is not well preserved and the thorax is defective, but the latter. can be seen to be nearly as broad in front as behind, with decided shough rounded angles in front and with a faistly punctate surface. It is of a very dark color ; the corium, which is scarcely less dark than the body, slows only a slender pallid line at the sutura clavi and along the principal vein, which passes down the middle and forks in the middle of the outer half of the corium, much fainter after forking. The membrane is marked as in L. holmesii, but the stripe on the inner margin is very faint.

Length of body, 3.35^{mm}; breadth, 1.25^{mm}.
Named for my fellow student in science, Prof. F. W. Putnam, of Cambridge.

Florissant. One specimen, No. 5873.

3. Linnea abolitia.

Head exceptionally small and rounded, not more than a third as broad as the thorax, the front in no way angulate. Thorax with the posterior lobe distinctly separated from the anterior and rather less than half as long as it; anterior lobe very rapidly narrowing with oblique but slightly arcuate sides, so that the front margin is scarcely more than a thitd as wide as the thorax, and the front half of the thorax has one nearly uniform curve; the posterior lobe again narrows or is slightly constricted; surfuce smooth Hemelytra with the corium uniformly dark fuliginous. membrane clear. Abdomen very full and rounded.

Length, 3.75^{mm}; breadth, 1.4^{mm}.
Florissant. One specimen, No. 1918.

4. Linnta carcerata.

Pl. 23, Fig. 2.
Head small, less than half as broad as the thorax, almost as long as broarl, the front well rounded; antemme shorter than the head and thornx. Thorax very broad, twice as broad as long, the sides very strongly romided and full, the anterior hardly shorter than the posterior margin, with no distinct separation into anterior and posterior lobes, the surface smooth, with a slight median sulcation. Hemelytra pale testaceons, with large and irregular pallid blotches coveriug noarly half tho corinn but not invading the
apex; membrane clear. Abdomen narrower than the thorax, with parallel sides and broadly rounded apex, and half as long again as broad.

Length of body, $3.5 \mathbf{j}^{\mathrm{mm}}$; breadth of thorax, 1.35^{mm}.
Florissant. Four specimens, Nos. 5793, 9692, 12096, 12464.

5. Linnea evoluta.

Pl. 23, Fig. 21.
Head much broader than long, the front broadly angled; basal joint of anten.æ not surpassing the head, the last joint two-thirds the length of the second ; rostrum reaching the pusterior extremity of the fore coxe. Thorax tran\&versely striate, the posterior half with parallel sides, continuous with the equally broad abdomen, the anterior half rapidly narrowing with oblique arcuate sides, so that the anterior border is about two-thirds as long as the posterior and as long as the length of the thorax. Hemelytra with the corium clear, except for a faint cloudiness which is a little intensified in a costal margin, the veins marked with serial punctures; membrane clear. Abdomen parallel sided, broadly rounded apically, about half as long again as broad.

Length, 3.6^{mman}; breadth, $1.4^{\text {min. }}$.
Florissant. Two 3pecimens, Nos. 5840, 7233.

6. Linnea gravida.
 Pl. 23, Fig. 19.

Head small, apparently rather less than half as broad as the thorax, shorter than broad, the front broadly angled; antennæ with the basal joint $j u s t a t t a i n i n g ~ t h e ~ f r o n t ~ o f ~ t h e ~ h e a d, ~ t h e ~ w h o l e ~ s c a r c e l y ~ l o n g e r ~ t h a n ~ h e a d ~$ and thorax. The latter smooth or scarcely punctate, half as broad again as long, the sides well rounded, tapering forward a little, the outer anterior angles well rounded off, the anterior margin about two-thirds the length of the posterior. Hemelytra with a pale testaceous costal stripe on the corium with the membranal edge marked irregularly with the same, as well as with a stripe following the outer side of the sutura clavi and another down the middle of the corium; nembrane clear. Abdomen full, about half as long again as broad. This species is slightiy larger than any of the others.

Length, 4.5^{mm}; breadth, 1.755^{mm}.
Florissant. Four specimens, Nos. 2966, 4994, 10410, 10882.

13. RHYPAROCHROMUS Curtis.

A single fossil was formerly referred to this genus by me, which seens rather to belong to the Acanthiide. But another from Florissant may more rightly claim a place here, and is the only fossil species known. The genus is now feebly represented in North Aınerica, a single species occurring in the United States and another in Gnatemala, while a mmber are recorded from Europe.

Rhyparochromus verrillif.

Pl. 23, Figs. 15, 30.
Head arrower than the thorax, barely broader than long, rounded subtriangular; antennee just abont as long as head and thorax together. Thorax subquadrate, narrowing gently, the trimeate anterior margin fivesixths the length $\mathrm{c}_{\text {: }}$ the posterior, the whole as long as its anterior breadth, the anterior lobe three times as long as the posterior; the sides full and rounded, very feebly separated from the posterior iobe, the surface faintly punctate. Hemelytra with the corium reaching the middle of the hinder half of the abdomen, heavily infuscated, but the sutura clavi always marked by a pallid line, and sometimes the corium marked with pallid after the style of Trapezonotus exterminatns of the same beds.

Length, 3.5^{mml}; breadth, 1.25^{mm}.
Named for the distinguished Yale zoologist, Prof. A. E. Verrill.
Florissant. Seven specimens, Nos. 1511, 2027, 2050, 3160, 5270, 9884, 11210.

14. PACHYMERUS St. Fargeau and Serville.

This group, as restricted by Stål, is composed wholly of Oid World forms, and is closely related to Rhyparochromns. To it have been referred a considerable number of fossil Heteroptera, fifteen species in all, ${ }^{1}$ but onlytwo or three of them at the most can by any possibility be regarded as belonging to the genns in its now restricted form; these would be, besides the one given helow, a single species each at Aix and Oeningen and in amber.

[^41]
Pachymerus petrensis.

$$
\text { Pı. } 5, \text { Figs. 70, } 71 .
$$

Pachymerus petrensis Scudd., Bull. U. S. Geol. Gengr. Surv. Terr., III, 761 (1877).
A single specime. , of which most of the right half is destroyed, represents this species, which is placed here provisionally, principally because it appears to be closely related to fossil species put in this group by Heer. It seems to be a larva, and to belong to the Myodochina in the vicinity of Eremocoris. The outline of the head is vague and broken, but the front is apparently bent at a right angle. The antennæ are about half as long as the body, four-jcintu. basal joint only about half as long again as broad, the others subequal, very slightly smaller at the base than at tha apex, buit otherwise equal, the second a very little the longest, the last pointed at the tip. Thorax and abdomen of about equal length, the former equally broad throughout (or nearly so); the fore and middle femora short and stout, about as long as their separation from each other. Abdomen expanding suddenly at the base, so that the second segment is broadest and apparently half as broad again as the thorax, beyond tapering rather rapid!y to a rounded tip.

Length of body, 3^{mm}; antennæ, 1.5^{mm}; fore femora, 0.35^{mm}.
Fossil Cañon, White River, Utah. One specinen (W. Denton).

15. TIROMERUS gen. nov. ($\tau \varepsilon i \rho \omega, \mu \eta \rho o ́ s)$.

Head broadly triangular, as broad as front of thorax, the front angularly rounded, the eyes basal; antennæ much more than half as long as the body, the first joint distinctly surpassing the head, the second very slender and almost as long as the third and fourth together, these subequal, the last slightly incrassatei. Thorax transverse, trapezoidal, tapering gently, the sides more or less but not much ampliated, with no distinct division into anterior and posterior lobes. Hemelytra with the corium barely reaching the middle of the abdomen.

The genus appears to be allied to Rhyparochromus, but the relative length of the second joint of the antennæ separates it from any existing genus with which it appears comparable. Two species are found at Florissant, which may perhaps be generically distinct, in which case T. torpefactus should be regarded as typical.

> Table of the species of Tiromerus.

[^42]
1. Tiromerus torpefacius.

Sides of body nearly straight and enlarging slightly from the head to the middle of the abdomen Head about twice as broad as long, thie front roundly produced in front of the eyes. Antennæ very slender, extending, if stretched along the body, beyond the commissura. Rostrum extending to the middle coxie. Thorax flat, gently tapering, with hardly any fullness, the length about two-thirds the breadth, its breadth at apex five-sixths that at base, the angles scarcely ronnded, the front margin roundly, regularly, and slightly emarginate, the surface faintly wrinkled transversely. Hemelytia with the corium reaching the middle of the abdomen, apparently almost clear, but for a costal thickening of a testaceous colo.

Length, 3^{mm}; breadth of base of thorax, 1.3^{mm}; length of antennæ, 2^{mm}.
Florissant. One specimen, No. 1214.

2. Tiromerus tabifluus.

Whole body of a very regular oval shape, the largest end posterior. Head about half as broad again as long, the fiont angularly produced but with the extreme frout woll rounded; rostrum reaching at least the fore coxse, and apparently the middle pair; only the basal part of the antemae preserved. Thorax almost flat, distinctly and considerably tapering, but short, with full sides, a little more than twice ats broad as long, the apex about three-fourths the width of the base, the front margin roundly, regularly, and not slightly emarginate, the surface faintly and finely punctate Hemely ara with the corium not extending beyond the middle of the abdomen or hardly reaching it, the membraual suture transversely oblique, the corium apparently clear.

Length, 3.25^{mm}; breadth in middle of body, 1.5^{mm}.
Florissant. One specimen, No. 2475.

16. LITHOCHROMUS gen. nov. ($\lambda t \theta o s, \chi \rho \omega \mu \alpha)$.

Head moderate, rounded sabtriangular, of about equa' length and breadth, the front distinctly angulate, the eyes small and globular, situated in the middle, away from the base; antenne nearly or quite half as long as the body, the last joint scarcely or not incrassated; the first joint just or barely surpasses the front, the second is long and slender, and with the first
equal or almost equal to the last two together, these subequal. Thorax transverse, usually only half as broad again as long, broadest at the base or slightly before the base, narrowing in front so that the head is never more than half as broad as the thorax, often with a slight triangular depression at apex, with no distinct posterior lobe. Legs, especially the femora, moderately stout. Hemelytra with the corium raaching beyond the middle of the abdomen, but not far.

Four species have been distinguished in the Florissant shales.
Table of the species of Lithoohromus.
Thorax broadest at base ; first two joints of antenus together as long as the last two.
Tharax linpunctate or soarcely punctate, langer than the width of the head; corlum of hemelytra pbsenre.. 1. L. gardneri.
Thorax punctate, only as long as the width of the head, corinu of bemslytra clear.
Thorax more than one-half as long again as the head
.2. L. obstrictus.
Thorax less than one-half as long again as the head
3. L. mortuarius.

Thorax broadest before the base ; first two joints of antenam together alightly shorter than the last
\qquad

1. Lithochromus gardneri.

Pl. 24, Fig. 10; Pl. 27, Fig. 8.
Antennæ as long as the head, thorax, and half of the scutellum. Thorax trapezoidal, longer than the width of the head, less than half as broad again as long, the sides scarcely convex, the apex nearly five-sixths the length of the base, the outer anterior angles a little rounded; the front transverse or slightly emarginate; a slight triangular depression broader than long occupies the whole front margin; surface impunctate or scarcely punctate, as is also the scutellum. Corium of the hemelytra obscure dark fuscous, with pallid longitudinal strigæ which scarcely affect the outer apex; membrane showing faint, longitudinal, pale testaceous strigæ.

Length, 5^{mm}; breadth, 2^{mm}.
Named for Mr. James T. Gardner, geographer of the Hayden Survey.
Florissant. Seven specimens, Nos. 1092, 2577, 3947, 4717, 9837, 10076, 14204.

2. Lithochromus obstrictus.

Thorax nearly twice as broad as long, only as long as the width of the head, more than half as long again as the head; the sides pretty strongly oblique and slightly convex; the apex about three-quarters the length of the base; front margin regularly, broadly, and considerably
emarginate; a slight median sulcation, but scareely any sign of r, depression at the apex. Surface nearly smooth, but coarsely, distantly, and faintly punctate. Corium of hemelytra clear.

Length, 525^{mm}; breadth, 2.1^{mm}.
Florissani. One speeimen, No. 6390.

3. Lithochromus mortuarius.

Pl. 26, Fig. 2.

Antennæ slightly longer than head and thorax together. Thorax subquadrangular, less than half as broad again as long, less than half as long again as the head, and only as long as the width of the head, broadest before the base, with rather strongly convex sides, tapering only in the apical half, but rapidly; the apex three-fourths the length of the base; a distinet posterior lobe not one-fourth the length of the anterior; the front margin transverse or very slightly emarginate, witl: a distinct triangular anterior depression, twice as broad as long, the apex broadly rounded; surface indistinetly punetate. Corium of hemelytra blaekish fuscous; membrane with slight marks of longitudinal infuseation.

Length, 4.6^{mm}; breadth of base of thorax, 1.85^{mm}; abdomen, 2.25^{mm}.
Florissant. Two specimens, Nos. 4644, 11220.

4. Lithochromus eatraneus.

Pl. 26, Fig. 6.

The single specimen is preserved only upon a side view, and is on that aceount difficult to compare with the others absolutely. The head appears to be of unusual length, being apparently about five-sixths the length of the thorax, and is smooth; the antenne are exceptionally stout and are somewhat longer than the head and thorax together; the first two joints together slightly shorter than the last two ; the first and second joints inerease very slightly in size next the apex, and are truncate at tip; the last joint seareely enlarges toward the tip, which is rounded. Thorax apparently tapering from a little before the base, somewhat tumid, and punctate; corium of hemelytra clear, or very slightly obscured, punetate throughout, but more densely along the prineipal veins; membrane clear.

Length, 5.5^{mm}; of corium of hemelytra, 2.75^{mm}.
Florissant. One specimen, No. 13660.

17. COPTOCHROMUS gen. nov. ($\kappa о \pi \tau \subset \varsigma, \chi \rho \omega \overline{\mu \alpha})$.

Head rounded triangular, fully as long as broad, as broad as the npex of the thorax; the eyes small, globular, medim, the front between them advanced considerably, and roundly angulated; antenne sloorter than in the preceding genus, longer than in the succeeding genera, being longer than head and thorax together, but considerably less than half the length of the body; first joint distinctly, though not considerably, surpassing the front, the first and second together shorter than tise remainder of the antennæ, the third and fourth subequal and not at all incrassated. Thorax transverse, considerably less than twice as broud as long, decidedly longer than the head, broadest at the base, the anterior lateral nargins strongly rounded, the apex about three-fourths the width of the base; no noticeable posterior lobe. Leigs and hemelytra as in the preceding genus.

A single species occurs at Florissant.

Coptochromus manium.

Antennæ of nearly uniform diameter throughout. Thorax trapezoidal with the outer anterior angles strongly rounded; the thorax tapering rapidly only at the extreme apex; front margin gently emarginate, a very broad, rounded, subtriangular, anterior depression three or four times as broad as long occupying the whole apex; a distinct median carina; surface smooth. Corium of hemelytra varying from pale testaceous to fuscous, more heavily marked along the costal margin; the whole surface faintly and uniformly punctate ; membrane clear.

Length, 4.6^{mm}; breadth, 2^{mm}.
Florissant. Four specimens, Nos. 5248, 6270, 6449, 9046.

18. PROLYGEUS gen. nov. ($\pi \rho 0$ ó, Lygæus, nom. gen.)

Body of a very regularly ova' form less than twice as long as broad. Head rather small, with the eyes rather narrower than the reduced front of the thorax, as long as broad, the eyes situated in the middle of the head, and the front produced in advance of them as a broad quadrate mass; antennæ as long as the head and thorax, the first joint not surpassing, probably just reaching, the front, the last two longer than the first two joints, subequal and slightly incrassated. Thorax very transverse, nearly three
times as broad as long, the posterior lobe more than one-third of the whole, tapering pretty regularly and very considerably from base to apex, which is not more than two-thirds as long as the base. Femora stout and large. Hemelytra with the corium extending a little beyond the middle of the abdomen.

A single species is found at Florissant.
Prolygels inundatus.
Pl. 27, Fig. 13.
Head very faintly and finely punctate, oblique sides of the thorax gently convex, front margin of thorax marginate and broadly and slightly emarginate; surface distinctly, rather distantly and uniformly punctate. Corium of hemelytra rather heavil; punctate in series which are more or less longitudinal.

Length, 5.5^{mm}; breadth of thorax, 1.85^{mm}; abdomen, 2.6^{mm}.
Florissant. One speeimen, No. 6299.

19. NECROCHROMUS gen. nov. ($\nu \varepsilon \varkappa \rho o ́ s, ~ \chi \rho a j \mu \alpha) . ~$

Body very regularly oval, the broader end posterior, the abdomen being very full, laterally expanded beyond the costal margins of the closed hemelytra, the whole body less than twice as long as broad. Head with the moderately large eyes just as broa! as the apex of the thorax, almost as long as broad, being strorgly and angularly produced in front of the eyes, which are situated at or close to the base. Ocelli small, situated close to the eyes on a line with their posterior margin; antennæ as long as head, thorax, and scutellum, the first joint not or but slightly surpassing the front, the other joints slijequal, the fourth slightly the longest, the third shortest, the last two gently incrassated. Tuorax transverse, broadest at base, tapering rather or very rapidly, scarcely longer than the head, the sides convex, the obscure posterior lobe rather less thpי one-fourth of the whole. Legs, or at least the femora, pretty stont. Hemelytra with the corium surpassing the middle of the abdonien to a greater or less degree.

Three species are known, all from Florissant.

> Table of the species of Neoroohromus.

Thorax abont twice as broad as long.
Apex of thorax more thall three-fourths as long as base; corinm of bemelytra short.I. N. cockerell.
Apex of rhorax hardly more than half as long as bayo; oorium of hemelytra long....2. N. labatue. Thorax abont half ay broad again ay long .. N. saxificue.

1. Necrochromus cockerelli.

$$
\text { I'l. 27, Fig. } 10 .
$$

Head smooth. Thorax fully twice as broad as long, the apex more than three-quarters the length of the base, gently tapering with arcuate sides, the front margin genily and broadly emarginate with somewhint rounded lateral angles; sides marginate and on either side near the murgin a gently arcuate sulciss subparallel to the margin ; the posterior lobe separated only by a slight carination; whole surface uniformly aud distinctly punctate. Corium of hemelytra relatively short, hardly surpassing the middle of the abdomen, clear, excepting a broad, fusco-finliginous band along the membranal suture and the fuscons punctate veins; the whole of the corium is also distantly punctate ; membrane clear, abdomen fusco-fuliginous with a broad, submarginal, distinctly bordered, clear band not clearly observable in all specimens.

Length, 6.15^{mm}; breadth of thorax, 2.15^{mm}; abdomen, $2.8 \mathrm{~J}^{\mathrm{zum}}$.
Named for Mr. T. D. A. Cockerell, the industrious entomologist of Coloradn.

Florissant. Five specimens, Nos. 2229, 8139 and 8234 , 9086. 10135, 11231.

2. Necrochromus labatus.

PI. 27, Fig. 14.

Thorax nearly two and a half times as broad as long, only a little longer than the head; spex only three-fifths the breadth of the base, transverse, the sides oblique, gently arcuate, the outer anterior angles scarcely rounded; the surface uniform, heavily punctate. Corium of hemelytra relatively long, reaching the middle of the outer lalf of the abdomen. pale testaceons excepting rather large fuscous spots along the inner half of the membranal suture ; the whole surface punctate ; the veins infuscated; abdomen as in last species.

Length, $5^{\text {mim }}$; breadth of thorax, $215^{\text {mm }}$; abdomen, 2.8^{mm}.
Florissant. One specimen, No. 2871.

3. Necrochromus saxificus.

Antennæ as long as head, thorax, and scutellum, all but the apical joint dark; the latter clear except for some slight blotehes. Thorax trapezoidal, hardly half as broad again as long, tapering gently and regularly except
for the slight arcuation of the sides from the extreme base; the apox fully thrue-fourths ns long as buse, the front margin gently emurginate, the outer augles hardly rounded; surface punctate. Corium of hemelytra reaching almost to the middle of the apical half of the abdomen, move or less obscure and punctate; abdomen uniformly dark fuscous, differing from the other species in its relative marrowness, so that it is apparently not expanded laterally beyond the margin of the hemelytra.

Length, 6^{mm}; breadth of thorax, 1.8^{mm}; abdomen, 2.5^{mm}.
Florissant. One specimen, No. 8927.

The body is long oval, more than twice as long as broad. Head a little broader than long, as broad as the abruptly narrowed apex of the thorax, but hardly half so broad as the base of the thorax; eyes rather small, sitianted in the middle of the head, the front between them strongly and roundly produced, with no angulation; antenne as long as head and thorax together, the first joint barely surpassing the front, the last a little incrassated and apparently the longest. 'Thorax trapezoidal, narrowing rapidly from base forward, abruptly at the very apex, not much more than half as broad again as long, the sides a little convex. Fen.rra stout. Corium of hemelytra extending beyond the middle of the abdomen, which, though full, perhaps does not expand laterally beyond the closed hemelytra.

A single species is known.

Exitelus exsanguis.

PI. 27, Fig. 2.
Head and thorax fusco-fuliginous, the latter with a median sulcation, both smooth, though the scutellum is faintly pu ictate; front margin of the thorax slightijy emarginate. Corium of hemelytra reaching the middle of the apical half of the abdomen, fuliginous with a central faint pallid spot, faintly punctate; abdomen fusco-fuliginous with a premarginal, broad, clearly defined, pale belt which traverses the abdomen in equal breadth just beyond the scutellum.

Length, 4.85^{mm}; breadth of thorax, 1.9^{mm}; abdomen, 2^{mm}.
Florissant. One specimen, No. 66:5.

21. CRYPTOUHROMUS gen. nov. (x $\rho \boldsymbol{\tau} \tau \dot{\partial}$, $\chi \rho \omega j \mu \alpha$).

Body of an oval shape, a very little more than twice as long as broad. Head large, distinctly broader than the apex of the chorax, fully half as broad agair، as long, the front but slightly advanced before the eyes, very broadly angulate. Eyes very large, half as long as the thorax, hemispherical, occupying the entire narrowed side of the hend. Antenne as long as head and thorax, the first joint scarcely surpassing the head, the other joints subequal in length, the second very slender, the fourth distinctly incrassate. Thorax trapezoidal, a little more than twice as broad as long, flattened, brondest at base, narrowing gently in advance, the sides gently arcuate, the apex two-thirds as broad as the base. Corium of hemelytra reaching beyond the iniddle of the apical half of the abdomen.

One species only is known, from Florissant.

Cryptochromus letatus.

Head, thorax, scutellum, and hemelytra, the latter perhaps to a less extent than the other parts, blackish fuscous, finely and uniformly punctate. Thorax about two and a quarter times as broad as long, the front margin roundly emarginate, the hind margin transverse, the posterior considerably longer than the anterior lobe; a slight median sulcation. Corium of hemelytra strongly infuscated, very long, reaching to the last abdominal joint, the membranal suture very oblique ; abdomen fusco-fuliginous.

Length, 4.15^{mm}; breadth of thorax, 2^{mm}; abdomen, 2.15^{mm}.
Florissant. One specimen, Nos. 4487 and 11655.

Subfamily PYRRHOCORINA Stâl.

This peculiar group, by many regarded as deserving family rank, has never before been found fossii. The Florissant beds, however, yield two spenies, which I have referred to Dysdercus.

DYSDERCUS Amyot and Serville.

To this genus, found all over the world, but not so rich in species with us as in the Old World, an inhabitant mostly of warm climates, and represented in the United States only in the southern portion, a couple of Florissant forms appear to belong. It hes not before been recognized in a fossil
state, but it is quite possible that some of the undescribed species in the European Tertiaries referred to Lygeus may be found on exnmination to belong here or to other Pyrrhocorina, since the two species found at Florissant closely resamble the species of Lygreus fron the same beds, and until their want of ocelli was noted were placed next to them.

Table of the species of Dystercuo.
Middie of body belted with a 1 ght band 1 , D, cinctus.
\qquad

1. Dysdercus cinctus.

$$
\text { Pl. 24, Figs. 11, 13, } 14 .
$$

Head roundel, subtriangular, the front broadly rounded vith a slight angulation (Fig. 13 is inaccurate, laving been drawn before the stone was broken away from the head). Suiface transversely and finely corrugated, otherwise smooth. Thorax coarsely, obscurely, and distantly punctate, as are also the femora. The scutellum appears to be nearly smooth. Hemelytra finely punctate along impressed lines foll.owing the course of the principal veins. Whole body dark, but transversely banded with lighter color in a rather broad belt, which crosses the posterior half of the thorax and more distinctly traverses the body and closed hemelytra at the tip of the scutellum.

Length of body, 8.65^{mm}; antennæ, 3.75^{mm}; breadth of body, 3.5^{mm}.
Florissant. Nine specimens, Nos. $1426,1745,3199,4248,5865,7161$, $9890,10303,13561$. Ono of the specimens figured, No. 5865, was .islaid at the time of description of the species, but undoubtedly belongs here.

2. Dysiercus unicolor.

Body uniformly dark fuscous throughout, with no indication of any transverse lighter-colored bands. Head smooth, antenne concolorous. Thorax and scutellum very coarsely and distantly punctnte. The abdomen similarly bat more obscurely and still more distantly punctate, the closed hemelytra slightly surpassing its extremity.

Length, including the closed hemelytra, 8.5^{mm}; antenne, 3.5^{mma}; breadth, $3.5{ }^{\mathrm{mm}}$.

Florissant. Two specimens, Nos. 3230, 10340.

Family COREIDA Stephens.

The members of this large family do not uppear to have been recovered from the rocks in any great variety of forms, und from unber but a single species is known. The Coreina and Alydime appear to have been far the most abundant anong the subfamilies, the former prevailing in Europe, the latter in America; in America much the greater number of all the species, and genera ns well, helong to the Alydina, a somewhit 1 emarkable fact in view of the relatively slight importance of this group to-day. The Corizidn were next in importance, a few species being found both in Europe and America. The othor subfinmilies represented are the Psendophloeina, which occurs only in Anserica and in a single genus, which nppears, however, to have been very common; and the Berytina, found only in Europe, and the ouly subfamily represented in amber. Exeepting one Corizias, all the American species that have been found have occurred only at Florissant.

Subfamily COREINA Stirl.

This subfanily is better represented in the European Tertiacies than in our own. where it has so far been detected only at Florissant. In Europe we find a dozen'species of half as many genera, of which one, Palæocoris Heer, with a singlo species from Radoboj, is regarded as extinct, and another, Coreites, with three species from Oeningen and Radoboj, is used only as a magazine for imperfectly l nown iorms. The other genern are Syromastes, with four species from Oeningen, Spartocera, with two from Radoboj, and single species of Hypselonotus at Oeningen, and Leptoscelis nt Sieblos. Besides Serres states that two small species of Coreus (used in a general sense) occur at Aix.

None of these at all resemble in eny particular manner the forms we find at Florissant, where all the species but one have to be referred to extinet gencra, and the one exception may require a similar reference when better known. There aiv, however, but four genera with nins species. In two of them, one containing four species, it is difficult to determine in what relation they stand in existing types on account of the peculiarities of tie neuration of the hemelytra. A third, Piezocoris, with three species, is remamkable for its large head, but otherwise does not greatly differ from

Anasa, to which the remaining species is referred. In all the antennæ are brief and have the joints beyond the basal of more than usual equality.

[^43]
1. ANASA Amyot and Serville.

This American genus, rich in species in tropical and subtrepical regions and with at least twenty species in North America having a great variety of form and general appearance, is best known to the public by our common odoriferous "squash-bur." The genus has never before been found fossil, but occurs in a single instance at Florissant, the species being somewhat peculiar in the form of the anterior half of the thorax.

Anasa PRISCOPUTIDA.

PI. 24, Fig. 4.

Head rounded triangular, together with the eye: rather more than half the width of the front lobe of the thorax, of about equal length and breadth, the front strongly protruded in advance of the eyes. Antenne somewhat more than half as long as the body, the first joint but little stouter than the others, cylindrical, scarcely shorter than the head, the second and fourth subequal, the third smaller. Thorax fully double the length of the head, the anterior and posterior lobes very distinct in their form and structure, the josterior occupying two-thirds of the length with rounded alations, which increase its breadth nearly one-third; surface distantly and rather finely granulate, except along its anterior edge, where the granulations are larger and more crowded; except for the alations the sides are straight; anterior lobe very rapidly tapering in front, the sides strongly oblique and well rounded; the front margin gently and broadly emarginate; the surface smooth like the head, except for a few granulations along the anterior margin and lateral edges. Scutellum large, triangular, granulate like the posterior lobe of the therax. Corium and clavus of the heme'ytra distantly
punctate in linear rows. Legs slender, the anterior femora longer than the breadth of the body. Abdomen long and rather narrow with straight sides tapering apically.

Length of body, 7^{mm}; breadth of posterior lobe of thorax, 2.8^{mu}; abdomen, 2.25^{nm}; length of antennæ, 4^{mm}.

Florissant. One specimen, No. 13314.

This genus and the following are remarkable for the neuration of the corium of the hemelytra, where an oblique vein runs from the upper apez of the central cell to the costa, in addition to the two other veins running from the extremity of the cell to the membrane, and so inclosing between itself and the upper of these two usual veins a large rhomboidal cell at the apex of the corium. In the present genus the thorax is exceptionally short, being no longer than, if as long as, the small head. The head is subquadrate, slightly longer than broad, less than half as wide as the base of the thorax, not much produced in front of the antennæ. Antennæ not preserved in any of the specimens. Eyes large and rather prominent, ocelli minute, circular, more than twice as near the eyes as each other, opposite the middle of the posterior half of the eyes. Thorax with truncate base, the sides tapering rapidly to the narrow apex, the apical margin gently, regularly, and roundly emarginate, the whole more than twice as long as broad. Scutellun very large, triangular, broader than long. Corium of heinelytra large, reaching nearly to the tip of the abdomen, which the membrane appears to surpass slightly. Membranal margin straight, very oblique. Abdomen large and rather full, half as long again as broad.

A single species is known.

Achrestocoris cinerarius.

Pl. 22, Fig. 1.

Body robust, but little more than twice as long as broad. Head very fisiely granulate, intraocular space about half as wide as the length of the head; the color black. Thorax blackish fuscous with coarse and faint puncte, not very close together; sides with very slight ampliations; rest of the body black or blackish fuscous. Hemelytra fusco-fuliginous with dusky
veins; a broad band crossing the base of the abdomen and including the hemelytra of a reddish fuscous color.

Length of body, 8.5^{mm}; breadth of thorax, 3^{mm}; breadth of middle of abdomen, 3.6^{mm}.

Florissant. Four specimens, Nos. 4480, 11223, 11234, 12085.

3. PHTHINOCORIS gen. nov. ($\varphi 9{ }^{\prime} v \omega$, $\kappa(\rho 25$).

This genus agrees clusely with the last except that the thorax is much longer, the head being distinctly shorter than it. It is of a similar robust form. The head is similarly sliaped and well rounded; the eyes are large, the ocelli small and circular, as near together as to the eyes and opposite the middle of the same. The antennæ are scarcely half as long as the body, the basal joint moderately stont but short, not half so lorg as the head, the other joints subequal, but the fourth the smallest and scarcely incrassated. Thorax fully twice as broad as the head, tapering forward with rounded ampliated sides, more or less distinctly separated into an anterior and posterior lobe (the anterior very short) by a transverse slight sulcation, sometimes marked by a series of granules. Hemelytra with the same structure as to the venation as in Achrestocoris, the central cell remarkably short, its apex being scarcely beyond the center of the corium; membrane slightly exceeding the abdomen; this latter shaped as in Achrestocoris.

Four species are known.

Tablo of the species of Phthinocoris.

Head much shorter than thorax; species of medium sizo.
Thorax almost twice as broad at base as long .. P. P. colligatus.
Thorax much less than twice as hroad at base as long2. P. lethargicus. Head and thorax of subegnal length.

Species of emall size (measuring about 6.5^{mm} in length); head not broader than long, delioately granulate...3. P. languidus.
Specles of large size (measuring about 9.5^{mm} in length); head broader that long, ooaresiy add obscurely granulate ..4. P. petraus.

1. Phthinocoris colligatus.

Pl. 22, Fig. 3.
Head imperfectly preserved but plainly triangular, the surface nearly smooth, but beset with a fine granulation. Thorax nearly twice as long as the head, not quite twice as broad as long, the sides nearly straight and
regularly tapering; the surface black or blackish fuscous and finely granulate, a row of granules marking the limitations of the two lobes. Scutellum finely granulate, black. Hemelytra fusco-fuliginous, the membrane fainter; the corium long, reaching almost to the extrenity of the abdomen; the sutura clavi marked by a pallid line; the surface of the whole more or less finely punctate.

Length of body, 8^{mm}; breadth of thorax, 3^{mm}.
Florissant. One specimen, No. 6371.

2. Phthinocoris letharaicus.

$$
\text { Pl. 26, Fig. 17; Pl. 27, Fig. } 17 .
$$

Head blackish fuscous, nearly smooth, but with fine transverse corrugations; the antennæ of the same color. Thorax reddish fuscous except along the posterior margin, which with the whole scutellum and the base of the hemelytra beside it is blackish, forming a broad, transverse belt across the body; the sides of the thorax full, ampliated, the thorax tapering much more rapidly in the anterior than in the posterioc half, the separation of the anterior and posterior lobes marked by a fine row of granules; the surface otherwise nearly smonth but faintly and coarsely granulose. Scutellum finely corrugat3. Hemely tra pale fusco-fuliginous, the membrane nearly pallid, the veins all marked with fuscous in series of punctures upon either side; corium rather shorter than in the preceding species.

Length of body, 8.65^{mma}; breadth of thorax, 2.5^{mm}; abdomen, 3.5^{mm}; length of antennæ, 3.5^{mm}.

Florissant. Three specimens, Nos. 6370, 8740, 9532.

3. Phthinocoris languidus.

Pl. 27, Fig. 6.
The smallest of the species. Herd rounded, of about equal length and breadth, the eyes only moderately large, globular, the surface of the head fiuely granulate. Antennæ slender but short, not half the length of the body, black like the head; indeed the whole body is black. Thorax just about as long as the head, more coarsely granulate than it, more than twice as broad as long, the sides tapering but regularly rounded. Corium of
hemelytra rather heavily but not very deeply punctate, the punctæ distributed only in part in longitudinal series and not confined to the veins; the corium about as long as in the preceding species, or rather shorter; not so short as represented in the figure, but extending as far as the membrane is there represented. Legs short but slender.

Length of body, 6.65^{mm}; of antennæ, 2.25^{mm}; breadth of thorax, 225^{mm}
Florissant. Three specimens, Nos. 9451 and 10961, 10613, 12256.

4. Phthinocoris petraus.

This species is represented by specimens less well preserved than the others, but differs from them ali in its much larger size and in the structure of the thorax. The head is distinctly broader than long, more than half as broad as the thorax, distantly and very finely granulate; the basal joint of the antennæ is pretty stout, but very short and but little surpasses the front of the head. The thorax is twice as broad as long, the sides tapering rapidly but full, the surface coarsely and very distantly granulate; the wholo body is black or blackish fuscous with faint signs, in some instances at least, of a broad belt of lighter color across the body including in its anterior half the scutellum. Corium of hemelytra marked by coarse distant granulations following the veins; it extends to no great distance before the tip of the abdomen.

Lenyth of body, 9.5^{mm}; breadth of thorax, $3 . .^{\mathrm{mm}}$.
Fle issant. Four specimens, Nos. 7769, 9999, 10366, 11766.
4. PIEZOCORIS, gen. nov. ($\pi \tau \hat{\xi} \zeta \omega$, rópis).

A genus of Coreina peculiar for the large size of the head; this is fully one-half, sometimes two-thirds, the width of the chorax, subtriangular in form and well rounded, rather broader than long, the front rectangular, produced in front of the eyes; the latter are rounded, prominent, the intraocular space being as broad as half the length of the head. Antennæ much as in Phthingcoris, the basal joint moderately stout, cylindrical, less than one-half as long as the head, the remaining joints subequal, the second and third slender, about half as broad as the basal, the last incrassated, subfusiform, nearly as stout as the basal. Thorax fully as long as the head, tapering, the apical margin more than half as long as the basal. The hemelytra of the
ordinary structure. The legs rather short, slender, the hind femora scarcely so long as the width of the abdomen.

Three species are known.
Table of the opecies of Piezocorio.
No distinct dark spot near apex of oorium; eyes large.
Apionl nargin of thorax more than half as long as tho basal.................................. . P. peritus. Apical margin of thorax lose than half as long ss the basal. 2. P. compactilis. A distinet clark spot near the apex of oorium; eyes small. ..3. P. pereniptus.

1. Piezocoris peritus.

Pl. 25, Fig. 15.
The whole body fusco-fuliginous, tinged more or less with blackish fuscous. Head faintly granulate, excepting next the base, where it is more distinct. Thorax very coarsely and very distantly granulate, the sides ner iy straight, the apical margin faintly and roundly emarginate and nearly two-thirds as long as the basal; scutellum like the thorax. Corium of hemelytra very coarsely punctate, especially next the base, reaching very near the extremity of the abdomen, which the membrane considerably surpasses. Legs short, the femora subequal, faintly punctato.

Length of body, 7.5^{mm}; breadth of thorax, 2.8^{mm}; length of antennæ, 4^{mm}. Florissant. One specimen, No. 10956.

2. Piezocoris compactilis.

Whole body black. Head apparently smooth. First joint of antennæ surpassing a little the front of the projecting suout; second and third joints of the antenne a little pallid. Thorax cearsely but not prominently and rather distantly granulate, the apical margin broadly and roundly emarginate, a little more than half as long as the basal, the sides rapidly tapering with slight fullness. Abdomen rather slender aud long.

Length of body, 7.5^{mm}; breadth of tiorax, 2.75^{mm}; length of antennæ, 4^{mm}.
Florissant. One specimen, No. 5731.

3. Piezocoris 8 peremptus.

Pl. 26, Fig. 14.

Body blackish fuscous: mottled with pallid, especially upon the abdomen. Head smooth excepting on its posterior border, where it is coarsely
vol xII- 27
granulate; eyes very small, globular. Thorax very coarsely and distantly granulate, perhaps a little longer than the head and certainly broader than long. Hemelytra scarcely showing any veins in the corium, which is pale fuliginous, edged with dark fuscous, and with a large round fuscous spot just before the middle of the membranal margin ; the membranal margin itself infuscated at its two extremities; membrane more deeply fuscons, especially toward the base and on either side, with numerous veins arising from a transverse vein following the membranal margin; the extremity of the corium is far before that of the abdomen, which is barely covered by the membrane.

Length of body, 9.65^{mm}; breadth, at least 3^{mm}.
This species, being proserved only upon a side view, can not be definitoiy referred to this genus; but as it agrees better with it than witı any of the others and does not furnish characters sufficient for clear generic separation I have preferred to leave it in this place.

Florissant. One specimen, No. 5633.

Subfamily ALYDINE Distant.

Although when compared to the other Coreide, this subfamily is to-day but poorly represented in America, whether in temperate or tropical regions, this was not the case in Tertiary times, for it was fairly well furnished with genera and species, and as for numbers in individuals no group of Heteroptern could compare with it. Most of the eight genera are extinct types and belong to the division of Micrelytraria in the immediate vicinity of Protenor and Darmistus, with slender and unarmed hind femora, but also, as a general rule, with distinctly thongh delicately and profusely spined hind tibix. One genus, Rhepocoris, contains the bulk of all, and of the four or five species belonging to it nearly all the specimens obtained belong to two closely allied forms, possibly to be regarded as only one. In Europe but three fossil Alydine have been recognized, and theso have all been referred to the division Alydaria. One from the brown coal of the Rhine is irrecognizable at present, but was referred by Germar to Alydus; a second from Oeningen is a true Alydus; and a third, also from Oeningen but undescribed, was compared by Heer to Alydus lateralis, now placed in the neighboring genus Camptopus.

Table of the genera of fosell Alydina.

Posterior lateral angies of thorax not produced.
Thorax soareely narrower at apex thau at base
3. Parodarmietus. Thorax distinctly tapering from base to apex.

First joint of antenna no longer than the head.
Heard diatinetly longer than the thorax; first joint of antennw (at least in Protenor) as long as the head.
Body slonder; thorax tapering gently, of about oqual length and breadth.
Body robust; thorax tapering rapldy, twina an iroad as longs. Tenor.
Head and thorax subequal iu length; first juint of antennas shortor than the head.
Sceond joint of antennem mnch longer than either of the others.......6. Etiroooris.
Second, third, and fonrth joints of antennee snbeqnal.........7. Rhepocoris.
First joint of antenna mueh longer than the head Orthriocorisa.

1. CACALYDUS gen. nov. (какós, Alydus, nom. gen.).

Nearly allied to Alydus but differing from it in the structure of the antennæ, which are distinctly shorter than the body; the first joint about as long as the head, the other three subequal, the terminal joint incrassated gently, but no longer or scarcely longer than the second and third. The head is more thar half as broad as the thorax, subquadrate or subrotund, of about equal length and breadth; the eyes not very strongly prominent. The body is elongate, suluequal, the thorax tapering forward to a greater or less degree. The legs moderately stout, the hind femora strongly incrassated, and on the outer half of their inferior surface armed more or less distinctly with spines. These, unfortunately, are not shown in the drawings of either of the species.

Table of the opecies of Cacalydus.

Species of large aize (more than eleven millimeters long); head acarcely constricted behind the eyes.

1. C. lарви.

Species of moderate size (less than nine millimeters long); head strongly constricted behind the eyes. 2. C. exstirpatue.

1. Cacalydus lapsus.

Pl. 25, Fig. 12.
A large species, of which unfortunately but a single specimen is at hand. Intraocular space of the head scarcely equaling one-half the width of the head, the surface rather coarsely, faintly, and transversely corrugate, not constricted in the least behind the eyes, so that there is no neck at the junction of tho head and thorax. Thorax subquadrate, a little broader than long, tapering but gently, the surface nearly smooth. Fore
femora with a modian longitudinal carina, not very prominont, middle and liud femorn much eularged, the hind pair with delicate spinos on only the apical half of the iuferior surfaco.

Length, 12.4^{mm}; breadth of thorax, 2.3^{mmm}.
Florissant. One specimen, No. 1.508 of the Princeton Collection.

2. Cacalydus exstirpatus.

$$
\text { Pl. 25, Fig. } 3 .
$$

Head subrotund, of about equal longth and breadth, distinctly constricted behind the eyes so as to form with the rapidly tapering thorax a distinct neek; intraocular part of the head three-fourths the width of the whole; the surface coarsely granulate. Thorax trapezoidal, fully one-third as broad again at base as at apex, not very coarsely granulose. Legs rather slender, the middle femora agreeing better with the fore femora than with the hind; the hind femora much swollen, armed on the inferior surface at and a little beyoud the middle with six or seven large, coarse, irregular, flattened, spinous denticulations; the basal third of the same femora lighter colored than the rest of the femur.

Length of body, $7.25{ }^{\mathrm{mm}}$; breadth of thorax, 2^{mm}.
Florissant. Four specimens, Nos. 6628, 10709, 12102, 13311.

2. CYDAMUS Stål.

This genus comprises, as far as known, only four or five tropical and subtropical American species. The one which we here add from Florissant can be placed here only provisionally, as it does not agree in many striking features with the modern forms. In particular the body is more robust, not slender and elongate, as in the modern types. With this exception, it has never been recognized in a fossil state.

Cydamus robustus.

$$
\text { Pl. 26, Fig. } 3 .
$$

Head and thorax similarly, delicately, and equably granulate, unless the granulations are coarser next the base of the thorax. Thorax a little shorter than broad, tapering rither rapidly to the apex, which is not so broad as the head, the eyes included, but broader than the intraocular part of the head; outer posterior angles produced to a long, tapering spine
directed equally backward and outward, not properly represented on the plate; the hinder margin slopes buckward to aid in forming tie spine, imnedintely the limits of the scutellum aro past. On the scutillum the granulations become more or less transverse corrugations, especinlly toward the apex, but I can detect no scutellar spine. Hemelytra extending a little beyond the abdomen, with the corium and clavus durk brownish fuliginous, rather distantly punctate with white in linear rows; membrune very pale fuliginous, pallid next the apex of the corium.

Length of body, not including the hemelytra, 5.75^{mm}; hemelytra, 4.5^{mm}; breadth of thorax, 2.5^{mm}.

Florissant. One specimen, No. 7856.

3. PARODARMISTUS gen. nov. ($\pi \dot{\alpha} \rho o s$, Darmistus, nom. gen.).

Reinted to Darmistus Stril, but differing from it in the length of the last antennal joint, which is no longer than either of the two preceding; the antennæ are scarcely more than half as long as the body; the basal joint is moderately stout, short, projecting but little beyond the front of the head, the remaining joints subequal, the last very gently and slightly incrassated, but not longer than the second, rarely longer than the third and then but slightly. Head and thorax of subequal length, the head rounded or subquadrate, of about equal length and breadth; the thorax subquadrate, scarcely narrower at apex than at base, yet never longer than broad. Hemelytra just reaching the end of the abdomen, the two principal veins of the membrane forming a median loop, its apex just before the center of the membrane, and from which rodiate at tolerably regular distances six or seven equal or subequal for'ss. Hind femora slender and smooth, hind tibix delicately spinous.

Six species occur in the Tertiary shales of America, all from Florissant.

Table of the species of Parodarmistus.

Thorax about equally grauulate throughout.
Hind femora twice as long as the width of the thorax P. abscissus.
Hind femnra less than half as long again as the width of the thorax................... P. cadueus,
Thorax with the posterior lobe very distinetly more eoarsely granuiate than the anterior.
Thorax scarcely broader than long... P. collisus.
Thorax considerably broader than long:
Thorax abont half as broad again as long.
Eyes of moderate size, not prominent; head and thorax snboqual in length ..4. P. defectus.
Eyee very large and prominent; head considerably longer than the thorax.
Thorax twice as broad again as long .. P. P. inhibitus.

1. Parodarmistus abscibsus.

Body much elongated and slender. Head slightly longer than broad, broadest at the posterior margin of the eyes, behind which tho head is somewhat strongly contracted; eyes pretty large, not very prominent. Autenme a little more than half as long as the body, very slender; surfice of head not very coarsely but very considerably granulate, with a tendency toward a transverse disposition of the granules. Thorax : ' zuadrate, scarcely narrower apically than basally, at the npex as broad as the head, including the eyes; the lateral angles of the front somewhat rounded; surface like that of the head granulate, equally fine throughout, with no distinction between the anterior and posterior portions. Hind femora very long, gradually enlarging from base to apex, but scarcely stouter at the broadest than the middle femora, almost as long as the antennæ. Head and thorax piceous, legs dusky fuliginous.

Length of body, 7.25^{mm}; hind femora, 3.25^{mm}; breadth of thorax, 1.5^{max}; abdomen, 2.2^{mm}.

Florissani. One specimen, No. 12100.

2. Parodarmistus caducus.

Body slender but not greatly elongated; head of about equal length and breadth; the front well rounded between the antenne, constricted behind the eyes, which are moderately large, not very prominent. Antenne about half as long as the body, or a little more than that, moderately slende:, the second and third joints a little larger apically than at the base, the last joint gently incrassated and fusiform. Thorax subquadrate, a little brouder than long, like the head granulate equally throughout, with no distinction between the anterior and posterior portions. All the femora subequal, the lind femora very much shorter than the antennæ. Head and thorax piceous, legs fusco-fuliginous.

Length of body, 6^{mm}; breadth of thorax, 1.6^{mm}; abdomen, 1.75^{mm}; length of lind femora, 2.5^{mm}.

Florissant. Two specimens, Nos. 1432, 3358.

3. Parodarmititus collisus.

PI. 25, Fig. 13.
Head quadrate, the front transverse, scarcely advanced between the antennæ; of nearly equal breadth throughout, not constricted behind the
eyes, which are moderately large and very prominent; surface delicately granulate. Thorax scarcely broader than long, subquadrate, at the apex of the same width as the head, the lateral angles rectungular, the posterior lobe coarsely, the anterior lobe scarcely, granulate. Hemelytra reaching the extremity of the nblomen; corium and clavus blackish fuliginous, with the sutura clavi marked by a broad pallid stripe which brondens at the costul margin to a large triangular spot; membrane pale fuliginous, the veins infuscated, a moderntely large, trapezoidal, pallid spot next the apox of the corium. Legs dark fuliginous, uniform.

Length of body, 7.5^{mm}; breadth of thorax, 1.8^{mm}; abdomen, 2.7^{mm}.
Florissani. One specimen, No. 12778.

4. Parodarmistus defectus.

Head subquadrangular, slightly longer than broad, about as long as the thorax, the sides straight, the front broadly angulate, surface delicately granulate, eyes rather small, not very prominent. Antennæ rather more than half as long as the body, slender, the last joint delicately incrassated and fusiform. Thorax trapezoidal, tapering slig'.tly from base to apex, the apex being about two-thirds as long as the base, tho whole about half as broad again as long, the apex about as broad as the intraccular part of the head, the apical margin slightly and gently emarginate; the surface of the anterior lobe nearly smooth, of the posterior coarsely granulate like the scutellum ; veins of the corium of the hemelytra coarsely granulate. Head and thorax blackish fuscous, the anterior lobe of the thorax a little lighter; the legs fusco-fuliginous.

Length of body, 7.5^{mm}; breadth of thorax, 2^{mm}.
Florissant. Three specimens, Nos. 5121, 9428, 9941.

5. Parodarmistus exanimatus.

Head rounded, except for the eyes broadest at the posterior edge of the eyes, behind which it is somewhat constricted, rather longer than broad, longer than the thorax, considerably and roundly produced in front of the eyes; eyes large and prominent; surface granulate; antennæ considerably more than half as long as the body. Thorax about half as broad again as long, shorter than the head, coarsely granulate posteriorly, delicately granulate anteriorly, the sides somewhat full; scutellum coarsely granulate.

Corium of hemelytra distantly and coarsoly punctate along the veins. Head and thoiax blackish fuseous; the legs very dark testaceous.

Length of body, 5.7^{mm} : breadil of thorax, 1.3^{mm}.
Florissant. Four specimens, Nos. 772, 4639, 5114, and perhaps 7926.

6. Parodarmistus inimbitus.

Head very large, transverse, roumdly angulate in front, but nevertheless distinctly longer than broad, not contracted behind the eyes, which are very large but not very prominent; surface granulate thronghout; the anteme considerably more than half as long as the body. Thorax quadrangular, transverse, about twice as long as broad, scarcely tapering anteriorly, both base and apex truncate, the whole surface granulate, but much more coarsely belind than in front. Hoad, t!orax, and seutellum black; abdomen blackish fuscous, together with most of the corium of the hemelytra; the membrane fuliginous with a pallid area at the apox of the corium. the veins marked in fuscons; legs blackish fuscous.

Length of body, 6.3^{mm}; breadth of thorax, 1.8^{mm}.
Florissant. Two specimens, Nos. 5329, 8356.

4. PROTENOR Stal.

This genus, of which only two species are known one from the central Western States, the other from Central America, is represented at Florissant by a singlo species, which seems to agree tolerably well generically with these. It is to be noticed, however, that, as frequentiy seems to be the case with fossil forms, the antemme are distinctly shorter than in the existing types, and that the fossil species agrees better in the structure of the head and in general size with the Central American than with the Illinois species; it is much smaller and stouter than the Illinois species.

Protenor imbecillis.

Pl. 26, Fig. 8.

The head of the single specimen known is somewhat obscure, but is half as long again as broad, with straight and parallel sides and rather bluntly angulate front, the portion in front of the antennæ being equiangular; the whole considerably longer than the thorax, and not constrieted
posteriorly, being as broad at the jase as the apex of the thorax; antenne distinctly shorter thain the body, the first joint nearly as long as the head, and scarcely, if at all, shorter than the second or third joint, the fourt:1 joint gentiy incrassated, but scarcely broader than the others and slightly the longest. Thorax trapezoidal, scarcely longer than broad, gently narrowing from base to apex, the apex being five-sixths the length of the base; surface coarsely granulate, especially posteriorly. Hemelytra faintly punctate in linear series. Legs long and very slender.

Length, 8.25^{mm}; breadth of base of thorax, 1.5^{mm}; length of hind femora, 35^{mm}.

Florissent. One specimen, No. 10391.

5. TENOR gen. nov. (τ をiva).

Body robust ; head subrotund, of about equal length and breadth, the eyes centrally situated, small, globular, the front between them broadly rounded but much advanced, behind the eyes constricted. Thorax severai times broader than long, not more than half as long as the head, strongly tapering, the apex as broad as the intraocular part of the head. Abdomen tolerably full. Hind fomora remarkably slender, scarcely longer than the width of the body.

A single species is known.

Tenor apelunce.

Head uniform and coarsely punctate. Thorax similar but even more coarse, uniform throughout; behind the prothorax the body is nearly twice as broad as the head: whole body blackish fuscous; the legs testaceous. Unfortunately the antenne are not present, and the hemelytra are too obscure to say more than that the corium and clavus are rather finely punctate linearly.

Length of body, 7^{mm}; breadth of head, 1.5^{mm}; base of thorax, 2.6^{mm}; abdomen, 2.8^{mm}.

Florissant. One specimen, No. 10227.

6. ETIROCORIS gen. nov. (reí ω, nó $\rho t 5$).

Head narrow, long, and slender, the front between the antenuæ greatly prolonged, so as to reach beyond the apex of the first antennal joint; the antenne form the most remarkable feature; the first joint is moderately
stout, and does not attain the extremity of the head, but this is only on account of the great prolongation of the same; the second joint is of extraordiraiy length, being about two and a half times longer than the basal joint, half as long again as the elongated head, and slightly longer than the remaining joints together; these are subequal, and all the joints are moderately slender, the last slightly incrassated if at all, and bluntly rounded at the apex. Thorax shorter than the head and rapidly tapering, so that the apex is only half as long as the base. Abdomen rather stout with parallel sides. Legs unknown.

A single species is known.
Etirocoris infernalis.
Pl. 26, Fig. 16.
The whole body blackish fuscous, including the antennæ; .surface of the head punctate, like the thorax ; these two parts about equal in length. Veins n^{\wedge} the corium punctate.

Length of body, 7.25^{mm}; breadth of thorax, 3.1^{mm}; length of antennæ, 6.3^{mm}.

Florissant. One specimen, No. 9253.

7. RHEPOCORIS gen. nov. ($\dot{\rho} \neq \boldsymbol{\pi} \omega, \boldsymbol{n} \delta \rho \tau \varsigma)$.

This is the commonest form of the Alydinæ in Florissant, and is a genus of the Micrelytraria, with unarmed thorax and scutellum and tapering thorax, but is remarkable for its spinous hind tibiæ, as well as for the characteristics of the antenne, by which it is clearly separated from any modern types. The head is well rounded, of about equal length and breadth as viewed from above. The antennæ have a stout basal joint not lalf so long as the head, the three succeeding joints subequal, slender, the last gently incrassated and fusiform, corresponding in this respect with the bulk of fossil Alydinæ. The thorax is trapezoidal, perhaps a little longer than broad, and tapers with straight sides, not in the least full, to the head, forming a slight collar. The legs are moderately stout, the hind femora considerably longer than the others and scarcely stouter, the hind tibiæ delicately but profusely spined throughout.

Five species occur at Florissant.

Table of the speoies of Rhepocoris.

Head longer than broad; hind legs long and slender.
Larger and etouter epeoiee, more than $\mathrm{Smm}^{\mathrm{mm}}$ long; thorax ehurter than the head1. R. proteotue. Smalier and slenderer species, less than g^{mm} long; thorax as long as the head....2. R. maerescens. Hearl broader than long; hind legs less long.

Largeet epecles, ngually abont $8^{m m}$ long.. R. pravalens.
Medinm eized өpecies, nsually about $6^{\text {mm }}$ long.. 4. R. propinquane.
Smallest apecies, neually about $4 . \varepsilon^{m m}$ long..5. R. minima.

1. Rhepocoris pretectus.

Head one-fourth longer than broad, hardly constricted behind the eyes; surface rather coarsely granulate with a tendency to a transverse arrangement. The thorax considerably shorter than the head and broader than long, the apical margin more than three-fourths as long as the basal margin; the surface coarsely granulate. Hind legs exceptionally long, the femora being nearly half as long as the body.

Length of body, 6.6^{mm}; breadth of therax, 1.4^{mm}; length of hind femora, 3.2^{mm}.

Florissant. Two specimens, Nos. 9756, 10645.

2. Rhepocoris macrescens.

Head subpentagonal, broadest in advance of the middle except for the eyes, from thispoint tapering gently backward; the front triangular, rounded; surface rather finely granulate, the antennæ scarcely more than half as long as the body. Thorax as long as the head and slightly broader than long, tapering regularly from base to apex, the apical margin being about twothirds as long as the be sal margin; the surface finely granulate in front, coarsely behind. Whole body blackish, hemelytra blackish fuscous, the membrane infuniated with a large triangular pallid patch at the apex of the corium. Legs blackish fuliginous. The hind femora less than half as long as the body.

Length of body, 8.5^{mm}; breadth of thorax, 2.5^{mm}; length of hind femora, 3.4^{mm}.

Florissant. One specimen, No. 2158.

3. Rhepocoris prefvalens.

Pl. 25, Figs. 4, 6, 7, 0, 10, 11, 14, 16; Pl. 26, Fig. 11.
Head rounded, scarcely longer than broad, uniformly and rather finely granulate, the granulations on the under surface of the head showing a tend-
ency to a tranu-grse arrangement into corrugations. Antemme more than half as long a : we hody, slenter, and pale, the whole body being black or blackish fuscous. Thorax trapozoidal, bronder than long, as long as the head, taporing rogularly and considorubly in front, the npienl margin being about three-fouriss the length of the base ; surface coarsely gramuate. Hemelytra with the corium und clavus blackish fuliginous, the former just before the middle with a large triangular pullid spot on the costal margin sending from its apex a curved pallid shoot to the membranal margin; membrane pale fuliginous with a harge trapezoidal pallid spot next the apex of the corimu on the eostal margin; cins marked in fuscons. Legs dark fuliginous, the lind pair very slender, the hind femora nearly as long as the abdomen, the hind tibie delicately and profusely spinons.

Leugth, $6.5-8.5^{\mathrm{nm}}$; average about 8^{m} :
This is the commonest of the heceropterous insects of Florissant.
Florissant. About one hundrod and fifty specimens, of which some of the best are Nos. 2431, 3257, 5669, 7102, 8374, 9045, 9170, 11211, 11217, 12081, 12087, and of the Princeton collection, 1335 and 1.712.

4. Rhepocoris propinquans.

Pi. 25, Fig. 1; Pl. 26, Fig. 13.
In studying the species of Rhepocoris I discovered that they were naturally subdivided into three groups according to their size, and that it was not often that there was any doubt into which of the three groups any given indisidual would fall. I have accordingly separated tho present species from those on either side of it, though I can give no chameters at all except those of size. In a few instances there may be doubt into which of the two species, this and the preceding, any given individual may fall, inasmuch as the range of form comes close together, and it may be that these two should be considered as one and the same species. But I have thought it best under the circumstances, and in the hope of being able iny more careful study to separate the forms on other characteristics than that of mere size, to keep the two apart, at least provisionally. In each of these two forms the individuals may be separated as slenderer and stouter, which I regard as probably the two sexes, as they seem to differ in no other constant charaeter that can be seen in their state of preservation.

In the present species the length varies from 5.5 to 6.5^{mm}, the average being about 6^{mm}.

Florissant. About eighty specimens, of which some of the best preserved are Nos. 5002, 6652, 6980, 8467, 9276, 9585, 10033, 10263, 11015, 11212, 13307.

5. Riepocoris minima.

See the preceeding species for some remarks on this. This small species appears to be ulso relatively rather stouter than the others, but otherwise it can hardly be said to differ in muy characters which may be seized upon. It does not appear, however, that the hemelytra are so distinctly marked as appears to be ordinarily the case in the others, and this, when better specimens are found, may serve more readily to distinguish it from them.

Length, $4.5-5.5^{\mathrm{mma}}$; the breadth can not be readily given as all the specimens are preserved upon their side.

Florissant. Four specimens, Nos. 3854, 6029, 1175.5, 11763.
8. ORTHRIOCORISA gen. nov. (ö $\rho \theta \rho 2 o s$, nópis).

An elegant genus of Micrelytraria, not far removed from Darmistus Stål and apparently near Acesira Dall, from which it differs totally in the form of the front of the head. It is long and slender in form. Head well rounded, a little elongate, the front scarcely produced in advance of the antenne, rounded, or perhaps a little angulate; eyes moderately small, seated in the middle of the sides of the head; antenne very long and slender, the first much longer than the head, nearly or quite as long us the thorax, slender on the basal half, gently incrassate and subfusiform on the apical half; the second and third joints a, oexceedingly slender, the third as long as the first and slightly enlarged at the extreme truncate tip, the second a little shorter; unfortunately the fourth joint is not preserved; if as long as the third joint the whole would be still considerably shorter than the body and a little shorter than the hind femora and tibie together. Thorax considerably longer than the head, tapering toward the apex with no lateral spines. Legs long and very slender, the hind femora scareely incrassated and both they and the tibie totally unarmed, the femora longer than the tibix, the latter about as long as head and thorax together; the length of the first tarsal joint about equals that of the other two together.

A single species is known.

Orthriocorisa longipes.

Pl. 26, Fig. 1.

A single remarkably well preserved specimen lies upon its side on a very fragile sheet of shale. The general color is a dark, sometimes, and especially on the less solid parts, a light, testaceons. The head seems to be smooth except for liere and there a small granule ; the rostrum shows only the central black needle which reaches the mesostethium. The thorax is rather heavily and pretty closely punctate, and the corium of the hemelytra similarly punctate in serial rows along the course of the veins. The state of preservation is poorer posteriorly, so that the length of the abdomen can not be accurately told, but it appears to extend beyond the reach of the hind femora.

Length of body (partly estimated), 11^{mm}; basal joint of antennæ, 2^{mm}; hind femora, 4.75^{mm}.

Florissant. One specimen, No. 8604.

Subfamily PSEUDOPHLGEINA Stål.

This rather limited subfamily is much better developed in the Old than the New World. In the United States but a couple of genera occur, each with a single species, and, in the Biologia Centrali Americana, Distant records but three genera, each with a single species. Yet, although never detected in the European rocks, Florissant-yields an extinct genus allied to one found in Central America, and it is well represented there, as will be seen immediately below.

HEERIA gen. nov.

Allied to Arenocoris but with second and third antennal joints subequal. Of our native forms it approaches nearest to Scolopocerus Uhl., if the Mexican species described by Distant be included therein, but the structure of the antennæ again is different. The body is of a more or less oval shape, the broader end posterior. Head moderately small, rounded, of about equal length and breadth, the front between the antenne never greatly, sometimes scarcely, advanced; antennæ not more than half as long as the body, the basal joint stout, cylindrical, about as long as the head, the second and third joints subequal, long, slender, and sometimes,
especially the third, enlarging apically where truncate; last joint long oval, scarcely move than one-third as long as the third, nearly or quite as stout as the basal. Thorax trapezoidal, the apical margin of the breadth of the head, the basal fully half as broad again, the sides more or less rounded. Hemelytra large, covering the abdomen, except possibly the sides in the broadest species, the corium reaching the middle of the apical half of the abdomen. All the species have heavily granulate thorax, the last joint of the antennæ more or less granulate, and the corium of hemelytra coarsely punctate.

The genus is named in memory of Oswald Heer, of Switzerland, the principal student of fossil insects in the last generation.

Three species are known, all from Florissant.

Table of the species of Heeria.

Head broadly rounded between the antenum.
Body ample, much less than twioe as long as broad...1. H. gulosa.
Body less ample, twioe as long as broad. 1. H. gulosa.

Head angularly produced between the antenno H. lapidosa.
.. B. H. jada.

1. Heeria gulosa.

$$
\text { Pl. 27, Figs. 5, 12, } 18 \text {; Pl. 28, Fig. } 17 .
$$

Whole body tolerably uniform blackish fuscous, the lateral incisures of the abdomen paler. Head, whole of first, apical extremity of second and third, and basal two-thirds of fourth joint of antennæ finely granulate, these parts in the antenna blackish, the other parts of the middle joints of the antennæ pale testaceous and faintly granulate, the apical third of the fourth joint smooth and blackish fuliginous; front of head between the antenno broadly rounded, scarcely aüvanced, not at all angulate. Thorax heavily granulate, almost twice as broad on the basal as on the apical margin, and fully twice as broad as long. Hemelytra with the corium heavily and irregularly punctate. Abdomen broad and full, about half as broad again as the base of the thorax.

Length of body, 9.15^{mm}; antennæ, 4.8^{mm}; breadth of base of thorax, 3.35^{mm}; middle of abdomen, 5^{mm}.

Florissant. Seven specimens, Nos. 789, 1977, 4269, 6151, 11773, and of the Princeton Collection, 1.560 and $1.802,1.831$.

2. Heeria lapidosa.

Pl. 27, Figs. 3, 19.
In color this species entirely resembles the preceding both as to body and antenne. Tho head and first joint of antenne are here as coarsely gramulate as the thorax, while the other joints of the antenne resemble those of the last species; the front of the head is as there. The thorax is perhaps a triffe longer than in H. gulosa and has straighter sides, but otherwise does not differ. The hemelytra are similarly punctate. The main difference is to be found in the abdomen, which, though full, is not nearly so full as in the preceding species, the breadth being scarcely half the length of the boily.

Length of body, 8.5^{mm}; antennæ, 4.5^{mm}; breadth at base of thorax, 3.25^{mum}; at middle of abdomen, 4^{mm}.

Florissant. Eleven specimens, Nos. 1648, 1884, 3767, 4617, 5703, 5965, 8949, 12241, 14179 and 14197, and of the Princeton Collection, 1.804, 1.817.

3. Heeria feda.

In color like the other species. Head scarcely granulate, the front between the antenne advanced angularly by half the length of the first antennal joint to less than a right angle, the angle rounded. Antennæ throughout slenderer than in the other species, and shorter, scarcely in the least granulate anywhere. Thorax coarsely granulate, the base a third longer than the apex, less than twice as broad as long. Hemelytra rather distantly punctate. Abdomen much as in H . lapidosa.

Length of body, 8^{mm}; antennæ, 3.25^{mm}; breadth at base of thorax, 2.7^{nm}; at middle of abdomen, 4^{mm}.

Florissant. Three specimens, Nos. 3097, 7874, 7874.

Subfamily CORIZIDA Mayr.

Λ few fossil forms have been referred to this group, not very abundant in species at the present day. The most prolific genus in either Old or New World is Corizus, to which all the four species from the American Tertiaries described below are referred. The only described European form is one from Oeningen referred by Heer to an extinct genus, Harmostites; Corizus, however, is said to occur at Aix, but, as I shall point out below, its reference here is doubtful.

CORIZUS Fallén.

Two fossil species have already been referred to this genus, both from Aix. One, however, as shown by Heer, belongs rather with Pachymerus, and the other is merely indicated as being half the size of Theraphn hyoscyami of Europe. In Anerica the genus is best developed within the tropics, but has abundant representatives in the United States. Three of the Florissant Heteroptera appear to fall within its limits, and a Green River species, which I formerly took for a Reduvius, appears also to belong here.

Table of the species of Corizus.
Without an interrupted series of lateral spots.
Sinaller forms, not exceeding five millimeters in length.
Larger forms, excceding six millimeters in length.
Body relatively stout, about three times as long as broad.
Borly relatively siender, nearly fon times as long as broail

1. C. celatus. 2. C. abditivus.

Au interrnpted series of lateral spots
3. C. вотиитиня.

1. Corizus celatus.

Pl. 27, Fig. 15.
Head a little broader than long, with the eyes a little broader than the apex of the thorax, subtriangular, the front angularly produced between the antenne, the basal joint of which seems barely to surpass the apex of the front ; the remaining joints slender. Thorax half as broad again as long, tapering forward with slightly ampliated sides, the front margin gently and broadly emarginate, scarcely more than half as long as the base, the surface densely and sharply punctate, and a faint sign of a median sulcation. Corium of hemelytra reaching a little beyond the middle of the abdomen, clear excepting along the finely punctate principal veins and near the outer apex, which is wholly clouded. Abdomen dark, with broad premarginal pale lateral bands.

Length, 5^{mm}; breadth of thorax, 1.9^{mm}.
Florissant. Three specimens, Nos. 1952, 6369, 14205.

2. Corizus abditivus.

Pl. 25, Fig. 5; Pl. 26, Fig. 4.
Body relatively stout, about tliree times as long as broad, the head rounded, hardly subtriangular, considerably broader than the apex of the thorax, the front roundly produced between the antennæ, the basal joint of

$$
\text { VOL XIII- } 28
$$

which considerably surpasses the apex of the front ; the second and third joints of antenne of equal dinmeter and very slender, the last joint in little incrassated; surface of head densely and finely punctate. Thorax trinuezoidal, narrowing rapidly, punctate like the lead. Hemelytra more coarsely punctate nlong the veins of the corium, which reaches barely beyond the middle of the abdomen and is infuscated, while the membrane is nearly clear. Abdomen ovil, the sides slightly ampliated. The figure on Plate 26 poorly represents the species.

Length, $7.3^{\text {mim }}$; antennx, 4.1^{mm}; breadth of thorax, 2^{mm}; abdomen, 2.65^{mm}.

Florissant. Four specimens, Nos. 3247, 5715, 8544, 14207.

3. Corizus somnurnus.

Body very slender, being nearly four times as long a: broad, the sides parallel. Head rounded, subtriangular, scarcely broader than the apex of the thorax, fully as long as broad, the surface punctate. The antennes very long and slender, the first joint clearly surpassing the apex of the front. Thorax nearly twice as broad as long, tapering gently, with scarcely ampliated sides, the front margin broadly, roundly, and deeply emarginate, the apex fully two-thirds as long as the base; surface punctate. Hemelytra as in the preceding species, but the membrane distinctly infumated. Legs long and slender, the hind femora with a very slight pesterior fringe of minute short denticulations, on which account one would be inclined to place it in Harmostes, but the denticulations do not take on the form of spines, hut are more like serrations.

Length, including the closed hemelytra, 5.5^{mm}; antennæ, 4^{mm}; hind femera, 2.4^{mm}; breadth of body, 1.8^{mm}.

Florissant. One specimen, No. 14193.

4. Corizus guttatus.

$$
\text { Pl. 7, Fig. } 11 .
$$

Reduvius? guttatus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 771 (1878).
Two specimens of this species have been found, one with reverse, by Mr. Richardson, the other by myself. Mr. Richardson's specimen is very obscure and distorted, and without the aid of the other could not have been determined. The insect probably belongs to Corizus, or at all events falls in its inımediate vicinity. All parts are rather obscure, but the head evi-
dently tapers and is roundly pointed in front, the thorax narrows gently from behind forward, and is nearly as long as broad; the scutellum is rather small, triangular, the apex bent at a right augle and rounded. The abdomen is ovate, twice as long as broad. The species is marked with round, dark spots, about 0.2^{mm} in diameter, on either side, one at the outer edge of the front of each abdominnl segment, and one in the middle of either transverse half of the thorax, a little removed from the outer border; the anterior ones half-way between the border and the middle line. The whole surface appears to be very minutely granulated. 'The tegmina can not be seen.

Length of body, 5.5^{mm}; breadth of thorax, 1.4^{mm}; of abdomen, 1.65^{mm}.
From its form I formerly referred the insect doubtfully to Reduvius, but its size alone would preelude such a reference.

Green River, Wyoming. Two specimens, Nos. 9^{a} and 96^{b} (F. C. A. Richardson), 4070 (S. H. Scudder).

Family PENTATOMIDA Stephens.

This family has always held the first place among Heteroptera in Tertiary deposits, but with the publication of this volume its place is disputed by the Lygaide. This is due not only, though principally, to the exceptional abundance of the Lygæidx at Florissant, but also to the rather meager proportion of the Pentatomida, as will appeur below. In European deposits only a single species is known from amber, while fifty have been exhumed from the rock deposits. They represent only four of the nine subfamilies, and the great majority belong to the two subfanilies Cyduida and Pentatomida, the former with sixteen species referred to four genera, the latter with twenty-five species referred to six genera The other subfamilies represented are the Scutellerina with five species of two genera, Pachycoris and Tetyra, both at Oeningen, and the Acanthosomina with four species of two genera, Acanthosoma and Phæoocoris, both at Radoboj. Besides these a Pentatoma is reporte' from Greenland and a Cydnus from Now South Wales. The American forms here brought to notice represent only the subfamilies Cydnida and Pentatomida, but in reverse proportion to what appears in Europe, the Cydnida being very well representel by twenty-four species of six genera, nearly all of them by a number of individuals, and one by a great many, the Pentatomida on the contrary by only thirteen species of
ten genera, and of each of these species more than a single exmulle has rarely been found. While therefore the prevalent subfamilies are the same on the two continents, one lus scurcely half as many representatives in America as in Europe, while the other has half as many more.

A very striking peculintity is found in the American P'entatomide as a whole, whether Cydnida or Pentatomida. In living forms the vist majority have a long scutellum reaching beyond the middle of the abdomen, and have the tip produced, forming a parallel-sided upicul lobe. In the Americun Tertiary forms, so far as yet known, with only a single exception, no such apical lobe exists, but the scutellun ends with an augular apex, sometimes ia little rounded, but the sides perfectly straight and confluent at least in the apical half; besides which, or perhups partly as a consequence, the scutellum does not reach firther thm, sometimes does not attain, the middle of the abdomen. It las seemed necessary therefore to establish a considerable number of new generie groups to embraco those remarkable forms. To judge from the illustrations given by Heer the same thing would seem to be true of at least a few of the European Tertiary Pentatomidn, especially of those from Radoboj, and it would be very desirable to institute direct comparisons between specimens from the two continents.

In our general remarks in the introduction to the Heteroptera we ealled attention to the close relation which existed between the proportional abundance (in the umber of spocific forms) of the frur principal families of IIeteroptera in Tertiary times, and the same in the existing fauna of the self-same region. A further illustration, hut even more exnggerated, appears by using the same $\varepsilon_{\text {-udes }}$ in comparing the relative numbers of the Cydnida and Pentatomida, the only two subfamilies of Pentatomide known to exist in our Tertiary deposits and so capable of compurison. In Distant's work the Cydnida number about one-sixth of the total number of Cydnida and Pentatomida; in Uhler's geueral list, one-seventh ; in his western list, onefourth; the increasing number thus shown in the region where the fossils occur is vastly exaggerated in their relative representation in the rocks, this being two-thirds the whole.

Subfamily CYDNIDA Stâl.

This subfamily is well represented in the European Tertiaries, and is indicated as occurving also in the Australian Tertiaries. All of the European species are from the rocks (none from amber), and.most have been
referred to two distinet genera, Cydnopsis 'with eleven species from Oeningen, Radoboj, and Aix, mid Neurocoris with two from Radoboj. Cydnus is represented by a species at Oeningen and another at Aix, and Brachypelth one at Krottensee. Neither of these extinct generic types occurs in our 'Tertiaries, where this subfamily is fur more prolific than in Europe and far surpasses the Pentatomida. With the exception of a couple of forms, represented each by a single specimen, mud which are referred to modern types, Cyrtomenus and Discostoma, all the others are remarkable for differing apparently from nearly all living types and also from the known fossilo in the short and nceurntely triangular scutellam, agreeing in this respect with the Florissant Pentatomida, and, as there, necessitating the establishment of several new generic groups. These, however, are more prolific in species, and the species in individuals, thm is the case with the Pentatomida.

Table of the genera of Cydnida.

```
Body lese than }10\mathrm{ millmetora long.
    Scutellam triangular, not produced at the apex, as broal as lon;
        Hoad deeply sunk in the thornx, the ilopth of the emargiuatlon of the thorax embracing It being
                    nearly or quite balf itm widlh.
            Body umere than twice ar long as broad
            Body less thar twice an long as broad
\(\qquad\)
        Ilead sunk but little in tho thorax, almost wliolly free.
            Auterior lateral angles of the thorax rounded, so that the head projocts but little beyond
                the general curve of the body .............................................Neorocyinus.
            Anterior lateral nuglea of the thorax promineut, tho head ent of ilrect relation to the eurve
                of tho body
                            Thlibomenus.
    Scutellam probaced Into a lobe at apex, distiuctly louger thau broad.................. Cyrtomenns,
```

\qquad

1. STENOPELTA gen. nov. ($\sigma \tau \varepsilon v \mathcal{C}^{\prime} s, \pi \varepsilon^{\prime} \lambda \tau \eta$).

Body more than twice as long as broad, the sides nearly parallel, with broadly rounded ends, the anterior curve broken by the head, one-half of which is advanced beyond its outline, the other half sunken in the thorax, which is deeply omarginate to receive it; the eyes, which are moderately large, globular, and central, are thus brought to the edge of the thorax; in front of the eyes the head is rounded with a slight angulation, the whole nearly circular; the ocelli are large and sitnated behind and within the eyes. Thorax subquadrangular, about twice as broad as long, the anterior lateral angles prominent but rounded, the basal margin truncate. Scutellum moderate, triangular, with perfectly straight sides, nearly half as broad again as long, reaching less than a third way to the tip of the abdomen.

A single species is known, from Green River, fornerly referred to Ethus.

Steropelta punctulata.

Pl. 7, Figs. 12, 13.
Ethus punctulatus Scuid., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 769-770 (1878).
I rejeat here the original description, although it contains many generic details:

Body of nearly equal brealth tirroughont, the sides of the nbdomen a little filler. Head rounded, small, the part behind the eyes rounded, as deep as the portion in front of them; front as seen from above, well rounded, well advanced, subangulate; oyes moderately large ; ocelli large, situated close to, a little behind, and within the eyes, and about one-third their diamoier; surfase of head minutely and obscurely gramulate. Thorax nearly equal, slighltly broadening posteriorly, the anterior angles well rounded, the front border very deeply and ronadly excised, the hind border nearly straight: the whole fully twice as broad as the head and twice as broad as long. Scutellum obseure, but apparently of about equal longth and breadth, and regularly triangular. Abdomen well rounded, half as long again as broad. Tegmina obscure or lost in all the specimens seen. Thorax and scutellim minutely gramulate, like the head. Posterior half, at least; of the abdomen profusely covered with slallow pmetures.

Length of body, 3.75^{mmm}; of head, 0.6^{mm}; of middle of thorax, 0.75^{mm}; breadth of head, 0.8^{mm}; of thorax, 1.7^{mm}; of nbdomen, 1.85^{mmm}.

Green River: Wyoming. Five specimens, Nos. 194, 67 ${ }^{\circ}$ 74, 172 (F. C. A. Richardsonj, 4193 (S. H. Scudder).
2. PROCYDNUS gen. nov. ($\pi \rho \sigma$, Cydıus, nom. gen.).

Body less than twice as long as broad, ovate, with extremities more or less tapering, especially in frent, by the more rapid uarrowing of the thorax, the head sometimes completely sumken in the thorax, at other times hulf projecting beyond the anteriot curve of the body; it is always broader than long, though somotimes nearly circular; the oyes are moderately large, not very prominent, subcentral, the ocelli largo and situated well behind the prodiced anterior curve of the thorax in the deep, emargination for the reciption of the head. Thorax subtrapezoidal, more than twice, sometimes ilurice, its middle length, truncate at hase, the sides more or less
oblique, and arcuate, the front lateral angles always rounded, sometimes so much as to disappear. Scutellum usually small, never large, triangular, with straight sides, of varying proportions but never longer than broad, reaching from less than a third to one-half way to the tip of the abdomen.

A large number of species oecur in our Western Tertiaries, all found at Florissant and one also at Greon River.

> Table of the species of Irocydnus.

Anterior half of thorax uniformly itepressed.
Head so anoken in thes prothorux that its front margin forms a rogular enrve with that of the thorax
Head sensibly projecting beyond front line of bolly.
Head only a fourth tho width of tho thorax ... 2. r'. devictus.
Head nuch loss than half the wictin of the abdomen, at least a third the width of the thorax. Thornx scaroely more than twice aa broail as ita midde length.

Larger species; omargivation of aploal margin of thorax relatively shaliow.
3. P. divexun.

Smatler species; omargination of apical margin of thorax relutively deep and abrupt. 4. P. quishus.

Thorax neariy or quile three times as broal ue its middele length.
Larger speciee; hend more than oue-third as wide as the body
5. 'P. reliquıs.

Smalier apoeies; head less than one third as wide as the body 6. P :

Head half the width of the abdomen... .7. ${ }^{1}$. eatoni. Autarior helf of thorax with latural bosees 8. P. mamillanus.

1. Procydnus pronus.

Pl. 28, Fig. 5.

Head rounded, broader than long, deeply sunken in the thorax, its broad anterior curve almost continuous with the rounded sloping lateral angles of the thorax, the oyes small and in advance of the middle. Thorax shuped mueh as in P. devictus, but with a broad and especially deep, rounded, almost angular emargination to receive the head, about a third the width of the thorax ; its basal margin is not indieated on the plate, but should unite the extreme bases of the hemelytra in a straight line; the surface shows excessively shallow erowded punctuation. Seutellum very large, triangular, reaching half-way to the tip of the abdomen, broader than long. Hemelytra with the corium occupying the basal three-jifths, uniformly coriaceons, with punetuation like the thorax, and an excessively delicate impressed subnurginal line. Hind tibis densely spined. Abdomen very broad and full, searcely longer than broad. Whole body black, the corium of the hemelytrin hardly less dark.

Length of body, 5^{mm}; breadth, 3.1^{mm}.
Florissant. One specimen, No. 14426.

2. Procydnus devictus.

$$
\text { Pl. 28, Fig. } 4 .
$$

Head minute, subcircular, hardly a fourth as wide as the thorax, its posterior third sunken in the thorax, which is here narrowly but rather deeply emarginate to receive it. Thorax scarcely twice as broad as long, tapering from the base and with the sides strongly arcuate, so that the whole is nearly semicircular but for the narrow rounded emargination (not shown on the plate) for the head; basal margin truncate or scarcely convex; surface perfectly smooth and regular, with an anterior, transverse, arcuate, impressed line opening forward, half as broad as and one third the depth of the thorax. Scutellum large, triangular, smooth, the base fully three-fourths the width of the thorax, nearly three-fourths as long as broad, and reaching half-way to the tip of the abdomen. Hemelytra with the corium reaching leslf-way to the tip, uniformly coriaceous, testaceous, with faint sud shallow equidistant and rather distant punctre. Hind tibix densely spiny. Ahdomen very broad and full, of nearly equal length and breadth.

Length of body, 5^{mm}; breadth, 3.1^{mm}.
Florissant. One specimen, No. 11225.

3. Procydnus divexus.

Head imperfectly preserved in both the specimens at hanc. 'I'horax shaped much as in the species which have preceded this, twice as long as its middle length, with a very deep rounded emargination in front, less than a third the width of the thorax and three times as broad as deep, the lobes beside it well advanced, the surface finely and closely but not very deeply punctate. Scutellum with similar sculpture, the apex scarcely less than rectangular, the base about two-thirds as wide as the thorax. Hemelytra laving the similarly punctate corium occupying fully the basal three-fifths, the full and well rounded abdomen of equal length and breadth and punctate. Hind tibix very slender and rather feebly spined. Whole body uniformly blackish brown.

Length, 4.7^{mm}; breadth, 3^{mm}.
Florissant. 'Two specimens, Nos. 2132, 13154.

4. Procydnus quietus.

Head nearly one-half as broad as the thorax, well rounded, half as broad again as long. Thorax subtrapezoidal, tapering from the base at first slightly, afterwards a little more rapidly, so that the sides are a little arcuate, and the rounded anterior lateral lobes rather prominent from the deep almost angular emargination of the front, which is hardly more than a third the width of thorax, and only a little more than twice as broad as deep; surface apparently smooth, punctate along the lateral margin. Scutellum nearly two-thirds as broad as the thorax, reaching less than half-way to the tip of the abdomen, the apex nearly rectangular, the surface punctate, somewhat shorter than broad. Hemelytra with the coriaceous corium hardly occupying more than half the wing, serially punctate, of a testaceous color, the membrane faintly infumated. Tibix densely spiny. Abdomen full, broadly rounded, a little longer than broad.

Lergth, 4.1-4.5 ${ }^{\mathrm{mm}}$; breadth, 2.4-2.6 ${ }^{\mathrm{mm}}$.
Florissant. Eight specimens, Nos. 2060, 6812, 7652, 10092, 10174, 10531, 12771, 14186.

5. Procydnus reliquus.

Head rounded, broader than long, nearly half as broad as the thorax. Thorax nearly three times as broad as its middle 1 agth, tapering from the base, the sides considerably arcuate, with scarcely any sign of an anterior lateral shoulder, the emargination of the anterior border half as broad as the base of the thorax, shallow and uniform, followed by a median arcuate sulcation half as broad as the emargination and equally deep; the surface is apparently quite smooth, but there are sigus of punctuation at the extreme lateral margins. Form of the scutellum not evident, but apparently exactly as in the last species. Corium of hemelytra reaching considerably beyond the middle. Abdomen full wut considerably longer than broad. Whole body uniformly dark, the corium of hemelytra dark testaceous.

Length, 5.5^{mm}; breadth, 3^{mm}.
Florissant. One specimen, No. 434.

6. Procydnus vesperus.

Pl. 28, Fig. 15.

Head tolerably large, rounded, broader than long, together with the projecting eyes more than a third the width of the thorax. Thorax almost or quite three times as broad as the middle length, the shape very much as in the preceding species, with an equally broad but much deeper emargination of the front, the surface very finely, faintly, and densely punctate. Scutellum less than two-thirds as broad as the thorax, considerably broader than long, the pointed angulate apex extending less than half-way to the tip of the abdomen. Hemelytra with a rather short punctate corium. Tibiæ heavily spined. Abdomen full and broadly rounded, scarcely longer than broad. Color of body blackish brown, the hemelytra with the corium blackish fuliginous, the membrane faintly infumated.

Length, 4.5^{mm}; breadth, $265 .{ }^{\mathrm{mm}}$.
Florissant. Four specimens, Nos. 70, 145, 2464, 5612.

7. Procydnus eatoni.

A poorly preserved specimen represents this species, remarkable for its very large and nearly circular head, which is half as wide as the abdomen and scarcely broader than long, and is deeply embedded in the thorax. The latter is shaped much as in the last two or three species, nearly two and a half times as broad as its median length, the front deeply and broadly emarginate to receive the head, the emargination very regular, considerably more than half as broad as the thorax, and a third as deep as broad. Scntellum broad and short, the angulate apex not at all less than a right angle, reaching much less than half-way to the tip of the abdomen. The only signs of punctuation, fine and dense, are on the broadly rounded abdomen, which is considerably longer than broad. Other parts not clear. The whole blackish brown.

Length, 6.75^{mm}; breadth, 3.6^{mm}.
Named for one of the pioncers in American geology, Amos Eaton.
Florissant. One specimen, No. 3153.

8. Procydnus mamillanus

Pl. 7, Fig. 19.

Cydnusf mamillanus Seudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 770 (1878).
The body is broad and convex in front, with a rapidly tapering abdomen, scarcely at all rounded, even at the tip. The head, as seen from above, is nearly circular, shaped much as in Stenopelta punctulata from the same beds, but more broadly and regularly rounded in front, with the central lobe broad, and defined by rather strongly impressed furrows; the ocelli are large, situated just behind the anterior extension of the thoracic lobes; the surface of the head is rugulose. Thorax more than twice as broad as the head, and more than half as long again; the sides rounded, being broadest at the posterior border, narrowing in front and roundly excised at the anterior angles; front border very deeply hollowed behind the head, leaving prominent front lobes on either side, nearly as large as the head and strongly mamillate; hind border nearly straight. The surface is minutely granulate, besides which there is a transverse belt of rather large and distant punctures midway between the mamillations and the hind border. The scutellum is very large, rounded-triangular, broader than long, and granulate like the thorax. Corium of tegmina, which occupies their greater portion, obscurely and distantly punctulate; abdomen triangular, the apex bluntly pointed.

Length of body, 4^{mm}; of head, 0.8^{mm}; of either lateral half of thorax, $1.35{ }^{\mathrm{mm}}$; breadth of head, 1^{mm}; of thorax, 2.4^{mm}.

Green River, Wyoming. One specimen, No. 39 (F. C. A. Richardson). Florissant, Colorado. Two specimens, Nos. 1925, 11760.

3. NECROCYDNUS gen. nov. (vexpos, Cydnus, nom. gen.).

The species of this have the same oval form as those of the preceding genus, and differ from them in little but the relation between the head and thorax, the latter very broadly and shallowly emarginate in front, and the former consequently embraced by the thorax to a much smaller degree. The head is rounded, always broader, generally much broader, than long, the eyes and ocelli as in Procydnus; it is, however, sunken to some extent in the therax, and its curves and those of the sides of the thorax are such as hardly to destroy the effect of in single parabolic curve to the front end of
the body. The thorax is generally only twice as broad as the median length, but sometimes cousiderably more than that, tapering in a very varixble degree, sometimes rapidly and regularly, but always with a rounded curve, sometimes so slowly as to leave the lateral angles of the front very prominent, and making the thorax here twice as wide as the head; the basal margin is truncate. Scutellum rather large and especially broad, triangular, with struight sides, always shorter than broad, and yet generally reaching nearly half-way to the tip of the abdomen.

A large number of species are known, as many as in the preceding genus, all but one, which comes from Green River only, being found at ${ }^{\text {. }}$ Florissant, one of them very abundantly.

Table of the species of Necrocydnus.

Body more than half as long again as broad.
Thorax considerably more than twite as brond as the median length
Body relatively slender; thorax tapering eonsiderably, the brealth at the botton of the apieal emargination abont three-fonthe that of tho basal margin I. N. tulcanius,
Boly relatively stont; thorax t. foring but little, the breadth, as above, ubont weven-eights that of the basel margin
Thorax only twice as broad as the median length.
Thorax tajering considerably, the lateral angles of front not prominent.
Head broad, nearly or quite a third as broal as base of thocax.
Smaller species; emargination oâ apical border of thorax deep, balf as long as greatest breadth of thorax
Larger spe than half as long as greatest breadth of thorax4. N. stygius. Heal relatively narrow, hardly more than a fourth tho breadth of the base of the thoras.

Thorax tapering but little, the laterul angles of front prominent.
Smaller species, bardly execeding fonr willimeters in length, less than two-thiris as long again as broad; abdomen full and ronnded
Larger species, more than five millimeters long, and about threefourtis as iong again as broad; abdomen tapering ... 7. N. solidatus,
Body less than balf as long again as broad.
8. N. revectus.

1. Necrocydnus villanius.

Head rounded triangular, broader than long, with the large eyes nearly half as broad as the base of the thorax. Thorax considerably more than twice as broad as the mediun length, subtrapezoidal, the sides tapering so that the breadth near the front (at the bottom of the apical enargination) is about three-fourths that of the basal margin, the lateral angles rounded somewhat, the apical emargination balf as broad as the thorax, and a third as deep as broad, very regular, the surface uneven from the elevation of the sides in front to irregular bosses, and rather coarsely, faintly, and sparsely punctate. Scutellum small, not more than half as long as broad, regularly
triangular, with straight sides, the apex scarcely reaching more than quarter way to the tip of the abdomen. Hemelytra with the corium reaching to the middle of the apical half of the abdomen, only the costal edge, but that broadly, coriaceous, the remainder semidiaphanous and faintly infumate like the nembrane.

Length, 4.5^{mm}; breadth, 2.25^{mm}.
Florissant. One specimen, No. 7399.

2. Necrocydnus gosiutensts.

Pl. 7, Fig. 22.

Head broad, rounded, nearly twice as broad as long and with the rather large and prominenteyes fully half as broad as the thorax. Thorax more than three times as broad as the median length, subquadrangular, the sides tapering only a little, the anterior lateral angles well rounded, the breadth near the front (next the bottom of the apical emargination) seven-eighths that of the basal margin, the apical emargination broad and shallow, rather more than half as broad as the base of the thorax, and hardly a tenth as deep as broad, very regular; surface even, but for a rapid slope close to the sides, and apparently smooth. Scutellum very large from its breadth, much shorter than broad, reaching nearly half-way to the tip of the abdomen. Corium of hemelytra reaching the last abdominal segment, rather coarsely and very sparsely granulate.

Length, 4.65^{mm}; breadth, 2.5^{mm}.
Green River, Wyoming. One specinen, No. 13, Leslie A. Lee.
This is the only species of Necrocydnus yet found within the limits of the ancient Gosiute Lake.

3. Necrocydnus torpens.

Head large, well rounded, nearly twice as broad as long, and nearly two-fifths as broad as base of thorax; the antenne about as long as the thorax. Thorax only twice as broad as the median length, tapering considerably, the lateral angles of the front not promineut, the emargination of the apical border half as long as the basal border, regular, and moderately deep; surface very finely punctate, even. Scutellum large, broader than long, the apex not extending half-way to the tip of the abdomen. Hemelytra with the corium serially punctate, reaching the penultimate abdominal
segment. Tibie heavily spined. Whole body brownish fuscons, the corium of hemelytra fusco-castancous, the membrane scarcely infumated.

Length, 5.1^{mm}; breadth, 3^{mm}.
Florissant. Two specimens, Nos. 441, 12998.

4. Necrocydnus stygius.

Head twice as broad as long, well rounded, two-fifths as broad as the base of the thorax, the eyes large. Thorax only twice as broad as its median length, tapering considerably, the sides very regularly arcuate, the lateral angles of front not prominent, the emargination of the apical border somewhat less than half the length of the basal border, regular, and very shallow ; surface even, a little roughened. Scutellum scarcely more than half as wide as the thorax, almost equiangular, the sides perfectly straight, reaching less than half-way to the apex of the abdomen, the surface apparently punctate, but obscure. Corium of hemelytra reaching the middle of the antepenultimate abdominal segment, punctate, the puncte serial only near the sutura clavi. Tibie heavily spined. Abdonen a little produced, so that the posterior curve of the body is scarcely so broad as the n nterior:

Length, 6^{mm}; breadth, 3.5^{mm}.
Florissant. Two specimens, Nos. 6654, 9947.

5. Necrocydnus amyzonus.

PI. 28, Fig. 16.

Head rather small, rounded subtriangular, nearly or quite twice as broad as long, hardly more than a fourth as broad as the thorax. Thorax twice as broad as the median length, tapering considerably, with rather strongly arcuate oblique sides, the lateral angles of the front not prominent, the apical emargination regular. considerable, rather deep, and very broad, the surface of the thorax even and very finely and closely punctate. Scutellum nearly as long as broad, fully two-thirds as broad as the thorax, the apex reaching about half-way to the tip of the abdonen, the surface like the thorax. Hemelytra with the corium reaching the penultimate abdominal segment, feebly punctate. Legs densely spined. Abdomen broidly rounded. Whole body uniformly blackish fuscous, the corium of hemelytra dark castaneous, the membrane clear.

This is the commonest fossil cydnid known in the " Amyzon slaales." Length, 4.25-5.1 ${ }^{\mathrm{mm}}$; breadth, $2.2-3.1^{\mathrm{mm}}$.
Florissant. Twenty-nine specimens, of which some of the best are Nos. 1919, 2100, 4565. 4663. 4851, 7543, 9583, 11226, 12068, 12987, 14221, 14224.

6. Necrocydnus senior.

Head well rounded, transversely ovate, nearly a third as broad as the thorax, half as broad again as long. Thorax only twice as broad as the median lengtl, tapering but little, the lateral angles of the front prominent, the apical emargination considerably and tolerably deep, the surface apparently finely punctate, with two posteriorly converging shallow and faint sulcations crossing the disk longitudinally from the outer edges of the eyes backward. Scutellum moderate, more than half as broad as the thorax, broader than long, reaching less than half-way to the tip of the abdomen. Hemelytra with the corium punctate in serial rows, reaching the middle of the antepenultimate segment of the abdomen. 'Tibix heavily spined. Abdomen full and rounded, hardly so long as broad. Color blackish brown, the hemelytra with the corium dark testaceous, the membrane clear.

Length, 4^{mm}; breadth, 2.5^{mm}.
Florissant. Four speciniens, Nos. 2732, 11566, 11793, 13155.

7. Necrocydnus solidatus.

PI. 28, Fig. 13.

A stout species, fuller in front than behind. Head transversely ovate, about twice as broad as long and about one-third as broad as the thorax. Thorax hardly twice as broad as the median length, tapering but very little, the lateral angles of front very prominent, the apical emargination very broad and only moderately deep; surface even and distantly punctate. Scutellum similarly punctate, about two-thirds as broad as the thorax, broader than long, the angular apex not reaching half-way to the tip of the abdomen. Hemelytra with the corium apparently reaching the penultimate abdominal segment. Tibiee very heavily and coarsely spined. Abdomen subconical, pointed.

Length, 5.6^{mm}; breadth, 3^{mm}.
Florissant. 'Two specimens, Nos. 6967, 8840.

8. Necrocydnus revectus.

A very broad, stout, and rounded species. Head rather small, well rounded, at least half as broad again as long and scarcely a fourth us wide us the thorax; the antenne ubout us long as the thorax. Thorax about twice as broad as tho median length, with strongly ureuate, somewhint oblique sides, which curve rapidly on the anterior half to the ends of the apical emargination, which is hardly one-third as long as the basal margin, moderately shallow and very regular; surface even, finely, uniformly, and densely punctate, as is every coriaceous part of the body. Scutellum nearly half as broad as the thorax, considerably broader than long, the scarcely less than rectangular apex not extending lalf-way to the apex of the abdomen. Hemelytra reaching as far as the tip of the ubdomen, the membrane small. Abdomen very broadly rounded posteriorly, somewhat shorter than broad.

Length, 4.5^{mm}; breadth, 3.2^{mm}.
Florissant. 'Two specimens, Nos. 1581, 10844.

4. THLIBOMENUS gen. nov. ($\theta \lambda_{\imath} \beta \dot{\rho} \mu \varepsilon v o s$).

This genus is even more closely allied to Necrocydnus than the latter to Procydnus, and differs from it principally in the still greater prominence of the head, which is out of direct relation to the general anterior curve of the body, the anterior emargination of the thorax being slight or even absent. The head is nearly circnlar, generally a little, but only a little, broader than long, the eyes central, moderate in size and prominence, glob ular, the ocelli well behind them, pretty large, and as near each other as the neighboring eye. Thorax about twice as broad as long, subquadrate the sides very variable, but the tapering usually confined to the anterior half, or very much stronger here than posteriorly, the front margin but slightly emarginate, usually also very broadly rounded or subtruncate, with a strongly arcuato anterior sulcation terminating next the sides of the head; the basal margin truncate. Scutellum precisely as in Necrocydnus.

The species are pretty numerous, but are known only by one or two examples each. They are mostly of the smallest size, and all come from Florissant.

Table of the species of Thlibomenus.
Outer auterior angles of the thorax prominent, the leugth of the apical margin of the thorax not greatly less than that of the hasal.
Thorax fully twice as broall as loug. ... T. petreus.
Thorax scarcoly twice as broad as long.. T. parvия.

Outer anterior anglen of the thorax well ronudet, the aiden conaiderahly oblique, so that the apioal in muel shorter than the baal margin of the thorax.
Head broader than long.
Thorax lean than twice as broad as long T. perennatha.
Thorax more than twloe as broad as long ... 4. T. Iimosи.
Head lunger than broad . T, macer.

1. 'Thlibomenue petreus.

Hend moderately large, about a third us broad us the thorax. Thorax rather more than twice as broad as long, the length of the apical not greatly less than the basal margin, since the sides do not greatly taper aud the outer anterior angles are prominent; apical margin with a very gentle and very broad einargination; the surface even and very finely punctate. Scutellum moderate, sharply and regularly triangular, about two-thirds as broad as the thorax, broader than long, extending much less than half-way to the tip of the nbdomen. Hemelytra with the corium hardly reuching the middle of the apical lalf of the abdomen, heavily punctate in serial rows. Tibie strongly but not very densely spined. Λ bdomen very full and rounded, fully as broad as long. Color black, the corium of hemelytra very dark castaneous, the membrane infumated.

Length, 4^{mm}; breadth, 2.25^{mm}.
Florissant. Two specimens, Nos. 5557, 6613.

2. Thlibomenus parvus.

Pl. 19, Fig. ${ }^{2}$.
Head small, hardly more than a fourth as wide as the large thorax. The latter scarcely twice as broad as long, with nearly straight, scarcely oblique sides and prominent outer anterior angles, so that the thorax tapers but little, the length of the apical being but little less than that of the basal margin. There is a slight and short rounded emargination on the anterior border, and the surface is even and very shallowly punctate. Scutellum similarly punctate, very short, not nearly reaching half-way to the tip of the abdomen, and hardly more than three-fifths as broad as the thorax. Hemelytra, with the corium. easily reaching the penultimate abdominal segment, more coarsely punctate. Abdomen very broad and rounded, not nearly so long as broal. Of a muiform, griseons color: The parts in front vol xill- 39
of the head and following the corium of the hemelytra on the plate are foreign to the specimen, which is not well represented there.

Length, 325^{mm}; breadth, 2.25^{mm}.
Florissant. One specimen, No. 4552.

3. Thlibomenus perennatus.

Head very regularly rounded, considerubly broader than long, about a third the width of the thorax. The latter is a little less than twiee as brond as long, with tapering arcuate sides, the outer anterior angles well rounded but tolerably prominont, the apical border gently emarginate for a distance nbout equal to a third oif tho base of the thorax. Scutellum ruther small, hardly more than half as brom: as the thorax, and shorter than broad, extending not nearly half-way to the tip, of the abdomen, the surface and that of the thorax even, with the faintest and shallowest possible punctuation. Corium of the hemelytra hardly reaching the middle of the apical lalf of the abdomen, very sparsely and rather faintly punctate. Abdomen broadly semiovate, of equal length and breadth. Color a uniform testaceous where the pigment is not removed.

Length, 4^{mm}; breadth, 2.25^{mmm}.
Florissant. One specimen, No. 7841.

4. Thlibomenus limosus.

$$
\text { Pl. 28, Fig. } 12 .
$$

Head precisely as in the last species. Thorax trapezoidal, a attle more than twice as broad as long, with rather rapidly tapering sides, the apical about three-fourths the length of the basal margin, the former almost truncate, with the faintest possible arcuation throughout, the surface of the thorax even, faintly and finely rugulose. Scutellum obscuro in the only specimens seen, but apparently large and triangular, and extending halfway to the tip of the abdomen. Corium occupying about three-fiftlus the hemelytra, serially and distinctly punctate. Abdomen well rounded, but distinctly longer than broad. Color blackish fuscous, the corium of hemelytra fusco-testaceous.

Length, 4.5^{mm}; breadth, 2.6^{mm}.
Florissant. Two specimens, Nos. 5723, 13583.

b. Thlibomenus macer.

Head scarcely longer than broad, small, not a quarter the width of the thorax. Thorax several times broader than long, the sides very oblique, so that it tupers rapilly forward and has the front broadly rounded, with scarcely any sign of emargination opposite the head, the surface even and npparently very coarsoly gramular. Scutellum similar, triangular, more than two-thirds as broad as the thorax, and shorter than broad, but reaching about half-way to the tip of the abdomen. Homelytra with the corium rather short, conrsely and obscurely punctate. Abdonen well rounded, scarcely longer than broad. Color of the body black, the corium fuscous, membrane infumated.

Length, 4^{mm}; breadth, 2.5^{mm}.
Florissant. One specimen, No. 2455.

5. CYRTOMENUS Amyot and Serville.

This tropical American type, with four or five species, one of them found in our Southern States, occurs also so far as the imperfect remains can determine in the Tertiary beds at Green River, where one species is found, remarkable for the great width of the head. It is the only fossil known.

Cyrtomenus conoinnus.

Pl. 7, Fig. 14.

Cyrtomente conoinnue Seudd., Bull, U. S. (teol. (feogr. Surv. Terr., IV, 769 (1878).
This species is represe ited by a single specimen, a little smaller than C. mirabilis (Perty), but closely resembling it in general form. It is broadly ovate; the head large, prominent, well rounded, nearly half the eyes protruding beyond the margin, the ocelli nearly one-fourth the diameter of the eyes, and situated next the hind border, very nearly half-way between the inner margin of the eyes and the middle line of the head. Thorax twice as broad as the head exclusive of the projecting part of the eye, more than twice as broad as long, the front nargin rather deeply and regularly concave, the sides considerably convex, especially on the front half, the hind margin very broadly convex. Scutellum longer than the thorax, scarcely less tapering on the apical than on the basal half, the apex rounded, half as broad as the base, the whole about as long as the breadth at base. Teg-
mina very faint, but the corium apparently terminating just before the tip of the scutellum. Extremity of the abdomen very broadly rounded. The whole surface of the head, thorax, seutellum, and probably of the corimm uniformly, very profusely, and minutely punctulate, otherwise smooth, excepting that there are also faint traces of a slight, transverse, median depression, and a similar longitudinal median depression on the thorax.

Length of body, 5.25^{mm}; of head, 1.2^{mm}; of thorax, 1.3^{mm}; of scutellum, 1.65^{mu}; breadth of head, $2^{\text {mum }}$; of thorax, 3.5^{mm}; diameter of eye, 0.25^{mm}.

Green River, Wyoming. One specimen, No. 4190.

6. DISCOSTOMA nom. nov. ($\delta i \sigma \pi o s, \sigma \tau \dot{\sigma} \mu$).

This name is proposed for Lobostoma A.m.-Serv., preoccupied in mammals. The genus is coarposed of only two or three species found in Central America and Guiama. It has never been recognized in a fossil state, and the specimen from Florissant is referred to it only tentatively until better material is at hand.

> Discostoma? sp.
> Pl. 22, Fig. 6.

The ventral surface of ex exceptionally large cydnid, showing the abdomen and a part of the legs and little more, is all that remains of the single specimen referred here. From its size one would naturally refer it to this genus or its neighbors, which contain the largest species of the group; and hesides, the hind tibie are furnished exteriorly, as in existing species of Discostoma, with a single line of fine spinules, the only characteristic available; whether the tibia are cylindrical or fiattened can not be iold. The abdomen is dark griseous, with a pale rounded semicircular spot seated on the outer margins of each segment, separated from its neighbors by the darker incisures, besides which the apical margin of the first segment shows a narrow, blackish fuscous belt. Legs pale, the spines blackish; only the basal part of the hind tibise seen.

Probable length of body, 18^{mmm}; breadth of abdomen, 8^{mm}; length of hind femora, 5^{mm}.

Flerissant. One specimen, No. 234.

Subfamily PENTATOMIDA StâI.

This group is one of the most prevalent of the subfamilies of Heteroptera in the Enropean Tertiaries, twenty-six species being found there, which have been referred to six genera: Alia, one species, Eurydema, our, Eusarcoris two, and Halys two, all from Oeningen, besides Pentatoma, which has been accredited to Radoboj, Aix, Salzhansen, and amber, but especially to Oeningen, where nine species have been recorded. Besides these a species of Pentatomia has been described from Greenland.

In our Wester Tertiaries remarkably few examples of this group have been recovered, considering its abundance in the Old World, but nearly every specimen is generically distinct from every other, for we have but thirteen species, and in only two instances have these more than a single specimen each, yet so different are they that they must be separated into ten genera; only one of these, imperfectly known by a very remarkable head, can be referred to an existing genus, for in all the scutellum is remarkably triangular ant equiangular and destitute of the apical extension common to living types. In this, as already stated, some of the European species appear th agree with them; it should, however, be noted that this agreement appears fiur more marked in Heer's direct illustrations of the fossils than in his resto:ations of the same species. Our species all come from Florissant, with a single xception.

Table of the genera of Pentatomida.

[^44]
1. TELEOSCHISTUS gen. nov. ($\tau \dot{\varepsilon} \lambda \varepsilon o s, \sigma \chi 1 \sigma \tau \sigma 5)$.

Head of moterate size, nearly half as broad as the thorax, and distinctly broader than long, scarcely longer than the intraocular width, the portion in front of the eyes subquadrate, with broadly rounded front, rounded angles, the tylum and juga of equal length. Rostrum reaching, as seen through the specimen, opposite a point a little heyond the base of the scutellum. The thorax is pentagonal, the baso at least half as long again as the straight, oblique, posterior lateral margins, the nearly straight but slightly convex anterior lateral margins at right angles to the posterior and a little longer than they, the apical border emarginato for its whole length for the reception of the head, and less than half as long as the breadth of the widest part of the thorax and scarcely shorter than the middle length of the thorax. Scutellum triangular, vaulted, of nearly equal length and breadth, the tip angulate and not proluced, reaching less than half-way to the tip of the abdomen. Mesosternum much longer than the metasternum, the coxal cavities of the two hinder pairs of legs con'tiguous, separated only by a common paries.

Three species are known, one of them from British Columbia, the others from Florissant.

Table of the species of Telcoschiat:18.

1. Teleoschistus antiquus.

PI. 2, Figs. 17-19.
Euschistits antiquus Scudd., Rep. Progr. Geol, Surv. Can.. 1076-1877, 459-461 (1978).
The principal specimen is unusually perfect, and appears to be a male. The head is slightly longer than broad, equal beyond the expanding base, iroadly rounded and somewhat flattened in front; the slight carine marking the borders of the middle lobe are parallel throughout and extend to the front \& the head. The thorax is so imperfectly preserved as to throw doubt upon Fr: generic affinities of the inseet, but it appears to have been more than iwice as broad as long, with a median furrow, and its front margin very slightly concave behind the head; probably, also, it was considerably pro-
duced at the hinder lateral angles, and had its lateral margin slightly denticulate anteriorly. The scutellum is large, a little narrower than the breadth of the base of the abdomen, of nearly equal length and breadth, pretty regularly triangular, but with a slight emargination of the sides on their basal half; the tip bluntly pointed and rounded off, extending a little way upon the middle of the strongly advanced fourth abdominal segment. The surface of the head, prothorax, and scutellum is covered pretty uniformly and abundantly with distinct round punctures, which are, however, deepest, most sharply defined, and so abundant as nearly to occupy the entire surface, on the front half of the head and next the margins of the prothorax. The corium of the tegmina includes more than half the wing, and is covered with punctures, deeply impressed, and much minuter and more frequent than on the scutellum; there is also a distinct vein passing down the middle, a little to one side, and another separating the clavus from the corium, bu: distinct on the specimen only apically, where it is continuous with the iuner margin of the membrane. The mewbrane is well rounded, but slightly produced at the outer angle, and the space is occupied by niue nearly longitudinal veins, distributed in three sets of three each : the first set is composed of three obscure veins, pretty close together next the inner edge, originating from the same point, equidistant from one another, the innermost lagging the inner margin; from apparently the same point originates the next cluster, starting in a single vein, which almost immediately forks, and sends its innermost branch parallel to those mentioned; the other branch diverges strongly from it and again forks, the two branches rumning parallel to the first; while from opposite the point of origin of the last fork the third cluster 'akes its rise, starting as a slouldered vein, which forks at its shoulder into two slightly divergent veins which run subparallel to the previons veirs; but the innermost of these again forks beyond its middle, crowding the veins together at this point. There is also a short, tenth, indeperident vein close to the onter extremity of the produced coriaceous field. The outer margin of the wing is delicately wrinkled with a simulation of veinlets. The abdomen is ovate, somewhat regularly tapering at its outer half; the apex obscure but apparently regularly rounded; the pleuræ are punctured like the scutellum, while the dorsal surface is minutely and profusely but obscurely punctulate. Such portions of the chitine as remain are of an intense black. The specimen is apparently a male, but whether two small triangular pieces,
nearly equiangular, following the posterior edge of the sixth abdominal segment laterally, are to be considered the anal cerci is doubtful.

Directly beside this specimen, and, in fact, partly underlying it, are the abdomen and part of the sternum of another insect, which, although much smaller, should doubtless be regarded as the female of the same species. This abdomen represents an under surface; it is very rounded and ovate, the extrenity well rounded, the sixth segment represented by a circular fissured plate. The sides of the abdomen are punctulate, as in the other specimen, but the punctulation dies out before reaching the middle of the abdomen. Little can be said of the other parts of the body, excepting that the rostrum appears to terminate at the front limit of the middle coxæ, and the sternal paris of the thorax are coarsely punctate as above and more particularly at the margins of the separate pieces.

Length of the malf. $15^{\text {mim }}$; of head, 2.9^{mm}; breadth of same beyond the base, 2.4^{mm}; length of thorax, 3.25^{mm}; of tegmina, 11^{mm}; breadth of same near tip, 4.35^{mm}; length of scutellum, 4.2^{mm}; breadth of same, 4.5^{mm}; greatest breadth of abdomen, 8^{mm}; breadth of its dorsal face at tip of scutellum, 6^{mm}. Length of abdomen of female, measured beneath, 4^{mm}; breadth of same, 5^{mm}; width of fissured plate, 1.22^{mm}.

Quesnel, British Columbia. One spccimen, No. 38, Dr. G. M. Dawson.

2. Teleoschistus migoratus.

Pl. 28, Fig. 14.

Head punctate, the puncta moderately deep and rather sparse, absent from the extreme back of the head. Thorax irregularly punctate, at the sides very deep and sharp, on the disk shallow and half obscured, everywhere irregularly distributed and rather distant, showing, however, a tendeney to run in lines in various directions but never crossing one another and generally transverse ; a straight, transverse, slightly impressed, broad sulcation free of punctuation a little in advance of the middle of the apical half of the thorax. Scutellum much more coarsely and more bluntly punctare, reaching barely two-finths way to the tip of the abdemen. Hemelytra with the corium punctate like the thorax, but distinct and sharp throughout, the puncta along the costal inargin clustered next the edge, leaving an open, narow, submaginal space free of punctuation. Whole body uniform griseous.

Length, 15.75^{mm}; breadth pross base of closed hemelytra, 7.5^{mm}.
Florissant. 'Two specimens, Nos. 8666, 12072.

3. 'Teleoschintus placatis.

Pl. 28, Fig. 3.

Head not preserved on the single specimen known. Thorax bluntly punctate throughout, mostly rather coarsely, hesides which the surface is more or less roughened except just in advance of the scutellum, where it is smooth, and the puncte rather fine and a little sharper. Scutellum reaching barely two-fifths way to the tip of the abdomen, uniformly punctate throughout like the greater part of the thorax. Corium of hemelytra rather sharply, deeply, very uniformly and not very sparsely punctate, the punctæ with a tendency to a longitudinal arrangement. Body griseous, corium of hemelytra griseo-castaneous, the clavus and costal field of corium darker, a pallid line foliowing the sutura clavi, and, less distinctly, the lower edge of the principal costal vein and the outer margin of the broadly sinuous marginal suture; membrane slightly infumated with a small but distinct dark triangular coriaceous spot at extreme inner base.

Length (without head), 12.75^{mm}; breadth at base of hemelytre, 6.75^{mm}.
Florissant. One specimen, No. 5460.

2. THNETOSCHISTUS gen. nov. ($\theta \nu \eta \tau \grave{\prime}, ~ \sigma \chi \imath \sigma r o ́ s)$.

Body moderately slender with nearly parallel sides. Head with prom: inent moderately large eyes, scarcely broader than long, less than half the width of the thorax, scarcely shorter than it, the portion in front of the eyes as long as the part behind them, tapering, stbtriangular, bluntly pointed, the tylum distinctly surpassing the juga; autenne with the basal joint not attaining the front of the head, the second apparently just longer than the thorax. Thorax two and a half times brosider than long, apparently with a slight angulate prominence at the base of the sides, in front of which the sides taper very rapidly, forming one curve with the broadly rounded front, which has no emargination for the reception of the head. Scutellum triangular with straight sides and bluntly angulato, not produced apex, considerably longer than the thorax, but not reaching half-way to the apex of the rather elongated produced abdomen.

A single species is known.

Theetoschistins revulsus.

Pl. 28, Fig. 6.
Whole body griseous, the juga apparently lighter than the tylum, the membrane faintly infumated. Head faintly, shallowly, and coarsely punctate; thorax distinctly, rather sparsely, and coarsely punctate; scutellum still more coarsely punctate, but oth rwise similar ; corium of hemelytra punciate like the thorax, but less coarsely and less sparsely.

Length, 14.5^{mm} : breadth of hase of thorax, 6.5^{mm}.
Florissant. One specimen, No. 1.837, collected by the Princeton Expedition.

3. POTESCHISTUS gen, nov. ($\pi \sigma$ ór $\varepsilon, \sigma \chi \iota \sigma \tau \delta \varsigma$).

Remarkable for the regularly ovate form of the hody. [Head unfortunately wanting.] Thorax more or less broken and crushed, so as to render its precise form indeterminable, but apparently it was uniformly vaulted, nearly twice as broad as long, tapering from the very base with no lateral projections, the sides awcuate and tapering pretty regularly, the outer anterior angles well rounded, the apical margin less than half the width of the base, gently and regularly emarginate for the reception of the head. Scurellom triangular, as long as brad by reason of the arcuation at the luse of the otherwise staightsides, the tip angulate, un in the least rounded or produced, reaching liarrelar half-vay to the tip of the somewhat conical abdomen, which the humelyam sumass a little.

A single species is: known.

Poteschistus obnubilus.

Pl. 28, Fig. 18.
The tinnax is smonth except for an exceedingly sparse, low, and inconspicuon manalation. Scutellum, on the contrary, very coarsely granulate inleeel and Jesw spansely; the hemelytra midway between the two and tulerably deawe:; membranal suture with a barely perceptible areuation opening ontward, and the otherwise clear but faintly veined membrane corimeenus at its extreme inner base, between the membranal suture and the end of the claval suture. Whole body brownish griseour: the scutellum lighter.

Length, excluding head, $13.7 \mathrm{~g}^{\mathrm{mm}}$; breadth, 7.5^{nmm}.
Florissant. One specimen, No. 1472.

4. CACOSCHISTUS gen. nov. (какos, $\sigma \chi 2 \sigma \tau \delta 5$).

Closely related to Mateoschistus, from which it differs mainly in the structure of the head, which is broader, with a less prominent front; it is more than half as broad as the thorax, the oyes very large, the portion in front of them scarcely tapering, not so long as the eyos, broadly rounded apically, the tylum and juga of equal length, the whole head but little longer than the intraocular space. Thorax in the middle considerably longer than the head, two and a half times as broad as its middle length, tapering from the very base, at first slightly, afterwards rapidly, with the outer anterior angles well rounded by the arcuation of the sides and not at all prominent, and posteriorly witl no lateral projection whatever, the apical border rather deeply emarginate for the reception of the head, the middle half of the emargination hardly arcuate. Scutellum triangular, with straight sides and an angulate, in no way produced apex, which barely reaches halfway to the tip of the abdomen, which the hemelytra surpass. Body rather slender (for this group) with parallel sides.

A single species is known.

Cacoschistus maceriatus.

Pl. 28, Fig. 2.
The head appears to he smooth; the thorax rather coarsely, very sparsely, and irregularly granulate; the sentellum and corinm of hemelytra similarly but more closely and less irregularly granulate ; corium of hemelytra long, the membrane hardly occupying more than the apical fourth. Whole hindy blackish griseous.

Length, including hemelytra, 14.75^{mm}; breadth, 6^{mmw}.
Florissant. One specimen, Nos. 13318 and 13319.

5. MATAOSCHISTUS ge= nov. ($\mu \alpha \dot{\tau}$ arns, $\sigma \chi$ дбтós).

Of the general form of Eitschistus but far more elongate, with parallel sides, probably not far removed from Mecocephala. Head broad at base, the eyes being large; beyond tapering and prolonged, almost exactly as in the typical Mecocephala, the tip being, however, more broadly rounded, the whole head twice as long as its intraocular breadth; tylum apparently a little longer than tho juga; first joint of nutenne not nearly attaining the
front of the head, the second slightly longer than the head. Thorax in middle a little shorter than the head, about two and a half times as broad as the middle length, the posterior half of equal width, in front tapering rapidly by the oblique straight sides, the apical nearly half as broad as the basal margin and roundly emarginate to receive the head. Scutellum trinngular, with straight sides and angulated apex in no way produced, reaching halfway to the tip of the abdomen. Hemelytra considerably surpassing the abdomen.

A single species is known.

Mateoschistus hmigenus.

The whole body with the antenne and legs blackish or blackish griseous; the outer margins and sides of the head appear to be darker than the central portions, the corium of the hemelytra evidently testaceous and the membrane clear. The head appears to be smooth; the thorax is coarsely, and the seutellum very coarsely, granulate, and the corimm of the hemelytra faintly granulate on the basal portions like the thorax.

Length, 14.55^{mm}; hreadth of thorax, 6^{mm},
Flonissamt. One specimen, No. 1.1095, obtained by the Princeton College Expelition.

6. POLIOSCHISTUS gen. nov. (π ohıòs, $\sigma \chi^{2} \sigma \tau \sigma 5$).

Body with the general form of Euschistus. Head of moderate size, the part in front of the eyes subquadrate, a trifle broader than the intraceular space, the tylum and juga of equal length, the outer augles of the latter a little rounded. Thorax very short, nearly or quite four times as broad as the median length, the posterior part of the sides laterally produced to a blunt, stout knoh, inereasing the width of the thorax but little, the sides in front rapidly tapering with a concave curve. Scutellum large, broad, triangular, with an angukite and in no way produced apex, reaching halfway or a little more than half-way to the tip of the abdomen.

Two species are known, both from Florissant.

Punctuatiou of corium relatively delicate, the panctie usually separated by melh more than their own diameter; hemelytra less than half as long as scutellum1. P. ligatus. Punctuation of corinm relatively coaree, the panctee nsually separated by only so much as or very little more than their own diameter : hemelytra move than twice ns Iong as sentellum..2. P. lapidarius.

1. Polioncmistus ligatus.

Pl. 28, Fig. 7.

Head distinctly, rather densely, and not very coarsely punctate. Thorax much more coarsely granulate. Scutellum faintly and rather coarsely punctate. Hemelytra less than twice as long as the seutellum, the punctuation of the corium rather delicute, the puncte being usually soparated by much more than their own diameter. Whole body uniformly blackish griseous, the membrane of hemelytra infumated.

Length of body, 11^{mm}; hemelytra, 7.5^{mm}; scutellum, 4^{mm}; breadth of thorax at base, 5.25^{mm}; at prominences, 6.75^{mm}.

Florissant. One specimen, No. 2856.

2. Polioschistus lapidarius.

Pl. 28, Fig. 10.
Of this species, evidently nearly related to the last, only the seutellum and one of the hemelytra are preserved. The scutellum is heavily and coarsely punctate, scarcely shorter than broad, apically angulate, with straight sides. The hemelytra are more than twice as long as the scutellum, the punctuation of the coilum much less coarse but distinct and deep, the puncte separated usually by only so much as or very little more than their own diameter. The scutellum is blackish griseous, the corium dark testaceous, the membrane distinetly infumated. It is a larger species than the last.

Length of hemelytra, 10^{mm}; scutellum, 4.6^{mmn}.
Florissant. One specimen, No. 1112.

7. PENTATOMITES gen. nov. (Pentatoma nom. gen.).

'This name is proposed for an obscure form of Pentatomidx, which can not be placed with any of the others, and which is too incomplete to characterize accurately. The head is nearly half as broad as the base of the thorax, with prominent eyes, but the front too broken to determine anything about it. Thorax slightly more than half as long as the basal margin, the sides produced into broad rounded lobes, which increase the width of the thorax by fully one-half; in front of the widest expansion the sides aro
ureuate, convex, merging into the broadly rounded apical margin, which is narrowly and slightly emarginate for the reception of the head. Scutellum equiangular, with straight (and not, as given on the plate, convex) sides, longer than the thorax, the apex blmatly angular and in no way produced, reaching less than half-way to the tip of the abdomen.

A single species is known.

Pentatomites foliarum.

ll. 28, Fig. 1.

A single specimen with partly spread hemelytrn, both extremities broken, is the only representative at hand of this species, which differs considernbly from all others. The head is rather finely and very sparsely punctate. The thorax and scutellum, and expecially the latter, are much more coarsely but quite as sparsely punctate, while the punctuation of the corium of the hemelytra is between the two but rather less sparse; the membranal suture of the hemelytra is rigidly straight and markod by a dark line. The body is blackish griseous, much more conspicuous on the scntellum and disk of thorax than elsewhere, the corinm of hemelytra merely infuscated, the membrane fuintly infumate.

Length of fragment, 15^{mm}; probably length of body, 16.5^{mm}; breadth of thorax, 9^{mm}; abdomen, 6.5^{mmm}.

Florissant. One specimen, No. 7929

8. TIROSCHISTUS gen. nov. ($\tau \varepsilon i \rho \omega, \sigma \chi \imath \sigma \tau \sigma 5$).

Head rounded, broader than long, with remarkably little projection in advance of the eyes; antenna about twice as long as the head and thorax together, the first joint short, barely surpassing,' if surpassing, the head, the second longest and about as long as the width of the head, the third and fourth equal and each about threo-fourths the length of the second, all slender beyond the basal joint, the fifth unknown. Thorax transverse and semilnuar, ouly slightly broader in advance of, than at, the base at the lateral angulation, which is not at all prominent. Scutellum large, triangular, simple, slightly longer than broad, about as long as head and thorax together, but reaching only half-way to the tip of the abdomen.

A single species is known.

Tiroschistus induresoens.

Pl. 22, Fig. 4.

Head finely and lensely granulate; antenme very minutely punctulate, with an exceedingly fine median carina on the upper surface. Thorax and sentellum more coarsely, less distinctly, and more sparsely granulate, the corium of the hemelytra still more obscurely, so ns not to be noticeable. Head, thorax, and sentellum blackish or black. Corium and clavus of hemolytra very light colored, almost colorless, with the base largely blackish fuscous and the apex occupied next the costal margin with a very large roundish fusco-castaneous spot, the suturn clavi infuseated and punctate, the membrane pallid at base but the whole apical two-fifths or more occupied by a fusco-castaneous cloud, densest basally, fading toward the edge.

Length, 10.75^{mm}; breadth of base of thorax, 4^{mm}.
Florissant. One specimen, No. 11784.

9. THLIMROSCHISTUS gen. nov. ($\theta \lambda i \beta \omega, \sigma \chi 2 \sigma \tau 65$).

Head moderately large, rounded, half as broad as the thorax, almost equally long and broad, the front romuded and not produced beyond the rounded curve of the whole head; antenne with the basal joint distinctly surpassing the front, the remaining joints very slender, the secoud longest, the others subequal and each about two-thirds as long as the second, all together half as long as the body. Thorax fully three times as broad as the median length, yet tapering from the base with no lateral prominences, the sides very oblique and straight, the apical margin deeply emarginate to receive the head. Scutellum large (not shown on plate, being very obscure), reaching fully two-thirds way to the tip of the short abdomen, but triangular with straight sides and an angulate and in no way produced apex. Abdomen very broad and short, the extremity very broadly rounded, the whole body being less than half as long again as the width of the abdomen.

A single species is known.
Thlimmoschistus gravidatus.
Pl. 28, Figs. 11, 19.
Whole body uniformly rather obscurely and sparsely and not prominently granulate and blackish. Hemelytra the same but only pale aud

more or less infumated, the costal margin of the corium infuscated, and at the apex of the same a large, round, blackish, cloudy spot; membrane infumated to the same degree as the corium, but the apiral two-fifths overlain by a similar black clond, which fades a little next the margins of the wing.

Length, $9^{\text {man }} ;$ breadth of thorax, $5.5^{\mathrm{mm}} ;$ abdomen, 6.25^{mm}.
Florissant. Two specimens, Nos. 8471, 10405.

10. MECOCEPHALA Dallas.

To this genus belongs a single living insect from Uruguay. It is the only gerus that seenss to have been published in which the head is prolonged to an equal degree, which tapers throughout, and in which the niddle lobe is not surpassed by the lateral lobes. Quite similar in this respect is a fragment from Florissant, which unfortunately consists of the head only.

Mecocephala sp.
Pl. 28, Fig. 8.
The base of the head, including the large eyes but not the parts behind, is a little more than twice as broad as long, but in front the head is prolonged, so that the postocular part is as long as the entire breadth of the head. This portion tapers, at first rapidly until it has reached the intraocular width, then gradually to the apex, which is scarcely more than a third the intraocular width; the tip is roundly truncate. At first appearance, and as given in the plate, the whole seems to be made up of the lateral lobes, the middle lone being in fact very slender but enlarging a little at the apex. The whole is blackish fuscous and the surface of the base coarsely, of the frontal projection finely, and in both shallowly and obscurely, punctate.

Length of head, 5^{mm}; breadth, including eyes, 3.5^{mm}; tip of prolongation, 0.65^{mm}.

Florissant. One specinen, No. 3007.

COLEOPTERA Linné.

In working out these fossil Coleoptera I have been greatly indebted to my friends, Dr. George II. Horn, the late Dr. John L. LeConte, and especially Mr. Samuel Henshaw, and have had free access to the collections of Mr. Henshaw, as well as to those of Mr. E. P. Austin while in Mr. Henshaw's keeping, and of the late Mr. George D. Smith, for all of which I wish to express my grateful thanks.

For the cemainder of this volume no general comparisons are presented und r the different groups, as, with rare exceptions, none of the Florissant species are described, and until they are, the American fauna can not be fairly discussed.

Family ANTHRIBIDÆ Waterhouse.
 CHORAGUS Kirby.

Chorages fictilis.

Pl. 8, Fig. 9.
A single specimen, not very distinctly preserved, represents this species. It shows a partially dorsal and partially lateral aspect. The head is well rounded, the mouth parts triangularly produced, to a greater extent and more pointed than shown in the plaie. The antennæ are apparently inseried upon the upper surface of the beak, and are more or less clubbed, which circumstances have made it seem probable that the insect belonged here. The antenne, however, appear to become thickened into a club throughout all the distal half, and are thus different fro ${ }^{n}$ Choragus; they can be seen to be jointed, but with such indistinctness that the number of joints involved in the club is uncertain. The thorax is quadrate and appareniiy half as long as broad, while the exceedingly obscure elytra are seen to be feebly striate ; the VOL, XLII- 30
body is unfortunately broken across the elytra, which has given the drawing an anomalous appearance.

Length of body, 2.4^{mm}; of antennæ, 0.5^{mm}; breadth of body, 0.70^{mmu}. Green River, Wyoming. One sperimen, No. 106 (Prof. L. A. Lee).

BRACHYTARSUS Schönherr.

Brachytarsus pristinus.

Pl. 7, Fig. 26.

Brachytarsus pristinus Bcudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 87 (1876).
The single specimen obtained is very poorly preserved and fragmentary. The head is roundish, with sinall circular eyes 0.08^{mm} in diameter. The prothorax is subquadrate, considerably larger than the head and nearly as broad as the body at the base of the elytra; the latter are broken.

Length of fragment, 2.1^{mm}; breadth oif same, 0.84^{mm}; length of head, 0.39^{mml}; breadth of same, 0.4^{mm}; of thorax, 064^{mm}.

Green River, Wyoming. One specimen, No. 15216 (F. C. A. Richardson).

CRATOPARIS Schönherr.

Cratoparis repertus.

Pl. 8, Fig. 4.

Cratoparis repertus Soudd., Bull. U. B. Geol. Geogr. Surv. Terr., IV, 768 (1878).
A single specimen shows the fragment of an elytron, which is referred to this genus from the character of the punctuation and the arrangement of the striæ. It closely resembles C. lunatus Falr. in these points, but must have belonged to a slenderer insect, about as large as C. lugubris Fahr. There are eleven striæ or rows of pretty large, subconfluent, short, longitudinal dashes or oval puactures, deeply impressed, the outer of which follows the extreme margin, excepting apically; the inner stria also runs very near the border; the interspaces between the first and second and between the second and third striæ are equal and a little broader than the interspaces between the other striæ; the inner margin is delicately grooved next the base, as in C. confusus.

Length of fragment, 4.3^{mm}; width of elytra, 1.6^{mm}; width of interspace between second and third strix, 0.21^{mm}; between third and fourth striæ, 0.13^{mm}.

Green River, Wyoming. One specimen, No. 4035.

Cratoparis ? eḷusus.

Pl. 8, Fig. 40.
Cratoparis ? elusuฯ Scudd., Bull. U. S. Geol. Geogr. Surv. Tear., IV, 768-769 (1878).
To this I refer doubtfully two specimens, neither of them very perfect, which appear to belong together, and to represent an insect allied at least to Cratoparis and of about the size of C. lunatus Fahr. It appears to have a short rostrum, a moderately smal, but rather tumid head with circular eyes; thorax not greatly attenuated anteriorly, but profusely punctate, with moderately large and rather shallow punctures; elytra arched, nearly three times longer than the thorax when measured over the curved back, furnished with slight and faintly impunctured strix; the surface botween the strix also punctured, but very faintly.

Length of body, 7.5^{mm}; of thorax, 2.2.5mm of elytra, 5.5^{mm}.
Green River, Wyoming. 'Two specimens, Nos. 4012, 4060.
HORMISCUS Waterhouse.

Hormiscus partitus.

$$
\text { Pl. 8, Fig. } 17 .
$$

A single specimen showing the upper su: Cace of a minute beetle seems to fall in this immediate vicinity. Only a little of the head is shown, protruding as a rounded mass in front of the minutely punctate thorax, which is sutquadrate with gently rounded sides, scarcely tapering anteriorly. The elytra at their base, as throughout their basal two-thirds, are together half as broad again as the thorax, and are marked by straight longitudinal rows, of which eight are visible on each elytron, of large round punctures, about as distant in each row as the rows are from one another.

Length, 2.75^{mm}; of elytra, 1.8^{mm}; breadth of thorax, 0.9^{mm}; of tegmina, 1.4^{mm}.

Green River, Wyoming. One specimen (Dr. A. S. Packard)

Family SCOLYTIDAE Kirby.
HYLASTES Erichson.
Hylastes ? squalidens.
Pl. 1, Figs. 23-20.
Seol, J tida sp. Scudd., Can. Ent., XVII!, 194-196 (1986).
Prof. G. J. Hinde sent me a branch of a conifer obtained by him from the inter glacial clays near Toronto on account of its being scored with insect tracks. From an examination of the cell structure Dr. G. L. Goodale has determined it to be the branch of Juninerus communis. It is about 12.55^{em} in length and 13 by $18{ }^{\text {mm }}$ in thickness; the broader surface is shown of the natural size in Pl. 1, Fig. 23, and the scorings, which cover a considerahle part of the surface, are made by several distinct tracks of a scolytid larva, which appears to be referable to Hylastes, Phloosinus, or some near ally. There are parts of at least six different sets of tracks on this small fragment, portions of all of which may be seen in the figure, anci are marked by the different letters at the sides. The whole of that seen at d is enlarged in Fig. 24, which shows a little more than can be seen in Fig. 23d.

The mating chamber is more or less triangular, resembling often a slark's tooth in form (whence the name) generally equiangular or tridentate, the apex upward (see especially c, d). Two of these chambers from which no main galleries take their rise occur on the stick; they may, however, have some other explanation, since they are much narrower and much more deeply excavated than the cther mating chambers. Possibly they were unsatisfactory to the constructor and left unfinished.

From the mating chambers, which are not deep and are about $3^{m m}$ in diameter, pass the main galleries; these generally run obliquely, but more nearly transverse than longitudinal (as in Fig. 24), are subequal, and take their rise one on either side of the mating chamber at the lateral angles and run in exactly or almost exactly opposite directions. In one case, however (d), there is but one main gallery, and in another: (f) they are at right angles to each other, one being longitudinal ; but in this latter case the mating chamber is in the reverse of the usual position, the apex being downward. These main galleries vary from 1.5 to 8^{mm} in length, and are slightly more than a millimeter wide, with dentate edges, marking probably the sinuses where the cggs ure laid by the parent,

At least this is the custom with the mining beetles; but here, us in some other rare cases, the young larve do not begin to mine at right angles to the main gallery, but all start from one spot, either the summit of the mating chamber or the extremity of one of the main galleries, and thence burrow in irregular and somewhat interlacing mines in a longitudinal direction (seo Fig. 24), but nearly all apparently either upward or elso downward, not, as usually, in the two directions almost equally. Apparently they may often turn upon their course again and again, or they may mine in an alnost perfectly straight line or in a tortuous line for as much as 5^{cmu}, in the whole of which distance the mine will scarcely have doubled in width; indeed, in many cases it is difficult to tell in which direction the larva has moved. The greatest width of these mines is scurcely more than half a millimeter and they vary greatily in depth. The depth of those at a may be seen in the enlarged drawing of this portion in Fig. 25.

The connection between the main gallery and the mines is often obscure, owing doubtless to the younger larve burrowing more in the bark than in the wood (the bark being here ontirely lost). In one case (c) there is a mating shamber and a pair of short galleries, but nothing more; hero apparently the mother fell a prey to some enemy before oviposition.

This mode of origin of the larval mines soems to be different from anything hitherto described, and it is therefore difficult to decide to what minor group of insects the creature constructing the mines belonged. In the Museum of Comparative Zoology at Cambridge is a mine of Scolytus rugulosus on cherry, which shows a sonewhat similar distribution of the larval mines, emerging and diverging from one point of the mating chamber; but the main galleries are reduced to almost nothing, and the figures of the mines of this species given by Ratzeburg are altogether different

This specimen is one of those branches " of some coniferous tree," which Mr. Hinde in his article on the glacial and interglacial strata of Scarboro Heights, ${ }^{1}$ states to occur in the layers between the beds of clay and sand found between his "till No. 1 " and "till No. 2," and which are described as "flattened by pressure, their edges . . . worn is if they had been long macerated in water." This is exactly true of the present fragment.

[^45]
DRYOCATES Eichhorn.

Dryocetes impressus.

Pl. 8, Fig. 28.

Trypodendron impreasus Scudl., Bull. U. S. Gool. Geogr. Surv. Terr, Ii, 8:1 (1876).

This species has the prothorax punctured as distinctly as the elytra, and the punctures on the elytra slow but a slight tendency to a longitudinal arrangement. The punctures of the prothorax are longitudinally obovate, a very little more frequent than on the elytra, equally distributed throughout; on the elyora they are also equally distributed, but circular, about 0.04^{mm} in dianieter, and average 0.1^{mm} in distance apart; they have but an obscure longitudinal arrangement into nineteen or twenty rows, and the successive punctures of each row are at about the same average distance apart as those of two contiguous rows. The species is of about the size of D. septentrionalis (Mann.), but has more of the markings of D. affaber (Mann.), although the punctuation of the elytra is not so distinctly separable into longitudinal series.

Length of prothorax, 1.28^{mm}; height of same, 1.44^{mm}; length of elytra, 2.8^{mm}; breadth of same, 1.24^{mm}.

Green River, Wyoming. Four specimens, Nos. 15218 (F. C. A. Richardson), 4009, 4048, 4091 (Bowditch and Scudder).

Dryocetes carbonarius.

PI. 8, Fig. 6.

Dryoectes carbonarius Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 768 (1878).
Another species, not very closely allied to the last, is represented by a single, rather mutilated specimen, which is pitchy-black, and consists of part of the head, thorax, and elytra. The head is rather long, faintly and not very closely punctured, the eye moderately large and circular. The thorax is proportionally :onger than in the preceding species; the front margin recedes a little on the sides, and the surface is subrugose by subconfluent punctures, the walls of which form wavy ridges having a longitudinal direction. The elytra are broken at the tip; their outer anterior angle is obliquely excised, and the onter margin behind it straight, not sinuate, as in the preceding species; the surface is rather coarsely, but very
faintly granulate, more distinetly next the brase, but even here very vaguely; and there are faint indications of three or four distant, simple, longitudinal strix.

Length of the fragment as cu:ved, 4^{mm}; of head, 1.1^{mmq}; of thorax, 1.3^{mm}; probable length of elytra, 3.15^{mm}; width of sume, 1.5^{mm}; diameter of eye, 0.35^{mm}.

Green River, Wyoning. One specimen, No. 3999.

Family CURCULIONIDE Leach. CRYPTORHYNCHUS Illiger.

Cryptorhynchus annosub

Pl. 8, Fig. 3.

Cryptorhynohus annosus Seudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 86-87 (1876).
The fragmentary specimen is exposed on a side view, with head, front of prothorax, and all the legs gone, and the elytra a little broken. The prothorax is profusely and uniformly pitted with moderately shallow pits, averaging $.06^{\mathrm{mm}}$ in diameter; the elytra are traversed by longitudinal coste, five of which are much more prominent than the others, with sharp, unbroken edges and equidistant from one another, the outer ones in close proxinity to the sutural and outer edges; the other coste are obscure, slightly elevated, rounded, broken to a greater or less extent into raised points ; midway between the first and second prominent costre (counting from the outer margin) there is an exactly similar prominent costa on the basal third of the elytron; the prominent coste are 0.2^{mm} apart.

Length of tine prothorax, 0.88^{man}; height of same, 1.04^{mm}; length of elytron, 1.96^{mm}; breadth of same, 1.08^{mm}.

Green River, Wyoming. One specimen, No. 15223 (F. C. A. Richardson).

GYMNETRON Sehönherr.

Gymnetron lecontei.

Pl. 8. Fig. 26.

Gymnetron lecontei Scudd., Bull. U. S. Geol. Geogr. Burv. Terr., IV, 767 (1878),
A single well preserved specimen, with its reverse, lies in such a position as to show a partly lateral and partly dorsal view ; the legs are also pre-
served, so that it is one of the most perfect of the Green River Colcoptern. The small head, long and slender, straight, and drooping siont, the tupering thorax, broad and short striate elytra, thickened femora, and long and slender tibiæ leave little donbt that it sliould be referred to Gymmetron or to its immediate vicinity. It is very nearly as large as G. teter Schänh., with which it closely agrees in flmosi every part. The third tarsal joint is similarly expanded. The real length of the rostrum can not be determined from the position of the insect, but it is apparently as long as the head and thorax together, is very nearly straight, slender, scarcely enlarged, and obliquely docked at the tip; only a portion of the antennal scrobes can be seen; this is in the middle of the beak, where the groove is narrow, deep, sharply defined, and inclined slightly downward toward the base of the beak. The thorax is subrugulose, and the surface of the elytra smooth, with distinct, but not deeply inpressed, very faintly punctured strix. The whole specimen is piceous.

Length of body, 3.15^{mm}; of snout, 1^{mm} (?); of head and thorax, 0.9^{mma}; of thorax, 0.75^{mm}; of elytra, 2.25^{nmm}; of hind tibies, 1.5^{mm}; distance apart of elytral strix 0.1^{mm}.

Green River, Wyoming. One specimen, Nos. 4030 and 4047.

ANTHONOMUS Germar.

Anthonomus soporus.

Pl. 8, Fig. 16.

A single elytron is preserved, in excellent condition. It is, however, completely flattened, bringing the apex, which is scarcely angulate, in the middle. There are nine equidistant, rather coarse, not greatly elevated (perhaps partly flattened by pressure), coarsely beaded ridges (representing, by reversal, strix) besides the sutural ridge, the third and fourth from the sutural being a little shorter than the others, which increase regularly in length from within outward. The smooth, flat interspaces are fully twice as broad as the strix.

Length of elytron, 2^{nm}; breadth, 0.9^{mm}.
The elytron differs from that of A. defossus previously described from the Florissant Tertiaries in its greater size and apparently greater slender-
ness. The specimens of Λ. defossus examined give, however, a lateral view and render comparison somewhat difficult.

Green River, Wyoming. One specimen, No. 48 (Prof. L. A. Lee).

HYLOBIUS Germar.

Hyloulus provectus.

Pl. 8, Figs. 37, 41.

Hylobius prrrectus Scudd, Bull. U. S. Geol. Geogr. Surv. Terr., II, 88 (1873); IV, 787 (8778).
The single specimen first found is very poorly preserved, being not only fragmentary but faintly impressed; the rostrum is broken, so that its length can not be determined, but the general facies of the insect resembles that of H. picivorus Germ. so closely that it nust be referred to the same genus. The rostrum is rather stout; the antennal scrobes are slender, and commence not far beyond the eyes; the eyes are very large, transverse obovate, with an interior clear space, as described in Epicerus saxatilis Scudd., with very small facets, scarcely 0.02^{mm} in diameter. The thorax is rather small, but apparently partially concealed by the way the specimen is crushed, not very tumid, and entirely smooth. The elytra are of much the same form as those of the species of Epicerrus just mentioned, provided with slender, shallow, impressed lines, about 0.22^{mm} apart; the latter are rather dalicately punctured, the punctures a little less distant from one another than are the rows; the number of rows can not be determined from this specimen.

Length, exclusive of rostrum, $5{ }^{\mathrm{mm}}$; length of broken rostrum, 0.45^{mm}; of eyes, 0.9^{mm}; breadth of same, 0.44^{mm}; length of elytra, 4^{mm}.

Another specimen, taken by Mr. Bowditch at the same locality as the other, shows the character of the rostrum. The specimen is strangely preserved, as there appears to be a second rostrim, a perfect counterpart of the first, attached to it at the tip; perhaps this belongs to another individual, of which the rostrum only is preserved. The rostrum is about as long as the thorax, searcely tapering as viewed laterally, gently curved, with a median, lateral, longitudinal groove, directed toward the middle of the eye, just as in H . confusus Kirb., besides the antennal scrobes, which are directed obliquely toward its base.

Green River, Wyoming. Two spocimens, Nos. 4051 (F. C. Bowditch), 15215 (F. C. A. Richurdson).

LISTRONOTUS Jekel.

Listronotus muratus.

PI. 8, Fig. 23.
A small species, represented by a single specimen showing a lateral view. The beak is a little longer than the thorax, tolerably stout (not tapering, as the figure would seem to represent it), the anternal groove reaching nearly to the tip, the eye moderately large, round. The whole body is rather slender, the thorax tapering slightly forward from just beyond its base, faintly and sparsely punctulate; the fore femora increase pretty uniformly in size from the base to near the tip, where they are twice as broad as near the bnse. Elytra with distant thin strize.

Length of body, not including rostrum, 4.75^{mm}; of head and rostrum combined, 1.75^{mm}; of pronotum, 1.2^{mm}; of elytra, 3.25^{mm}.

Green River, Wvoming. One specimen, No. 90 (Dr. A. S. Packard).

ENTIMUS Germar.

TIMUS PRIMORDIALIS

> Pl. 5, Figs. 109, 109a.

Entimur primordialis Sculd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 8t (I876); In Zittel, Handb. I. Palæont., I, ii. 789, Fig. 1011 (1885).
Besides a crushed elytron there are only some indeterminate fragments of the neighboring parts of the body. The form and sculpturing of the elytron resemble those of the Brazilian diamond-beetle so closely that I place the species provisionally in the same genus, or until further remains arc obtained. The insect must have been rather small for an Entimus, is of about the usual size of the species of Otiorhynchus, and it is not at all $\mathrm{im}_{1^{\prime \prime}}$ obable that it should be referred to the latter genus, some species of which have elytra with similar sculpturing and approximately the same form. The elytron is traversed by ten similar, stout and coarse, longitudinal costæ, most of which are broken up by transverse depressions into bead-like hemispherical prominences; at the tip of the elytron, however, and on the apical half of the inner two coste this irregularity is nearly or
quite lost sight of ; the odges of the elytron for about the width of one of the coster is also smooth and depressoll; the front border is sinuous, and the sutural margin appears the same on the stone, from the compression the elytron has undergone, which was sufficient to split it down the middle through half its length.

Length of fragment, 8^{mm}; grentest breadth of unsplit portion, 4^{mm}.
Chagrin Valley, White River, Colorado. One specimen (W. Denton).

Family OTIORHYNCHIDAE Shuckard.

EUDIAGOGUS Schönberr.

Eudiagogus teriosus.

Pl. 8, Fig. 29.
Eudiagogue terrosus Soudd., Bull. U. S. Geol. Gengr. Surv. Terr., IV, 766-767 (1878).
This species, which seems more properly referable to Eudiagogus than the others formerly so named by me, is represented by a sinㅇ․ lo specimen and its roverse, preserved on a side view. The snout is short, as long as the eyes, scarcely so long as the head, and stout; the eyes transverse, rather large, subreniform. The thorax appears to be smooth, like the head, deep and short, its front border extending forward on the sides toward the lower part of the eye. The elytra, the lower surface of which does not appear to be in view, are broad and long, rectangular at tip, furnished with more than eight rows of frequent, rounded, moderately large and shallow punctures, and between each pair of rows a similar row with smaller punctures.

Length of body, 6^{mm}; of elytra, 4.55^{mm}; of eyes, 0.5^{mm}.
Green River; Wyoming. One specimen, Nos. 4024 and 4078.

TANYMECUS Germar.

Tanymecus seculorum.

Pl. 8, Fig. 22.

A single specimen preserved on a side view shows all the parts of tho body tolerably well, but only a confused mass of appendages. Unfortunately the plate was engraved before the whole of the head, and especially the rostrum, was uncovered, and the eye-like spot there shown is wholly
accidental, no such protuberance existing. The general appearance is very similar to that of our common species of Tanymecus. The head and beak combined are a little shorter than the thorax, and the eye is circular, removel by less than half its diameter irom the middle of the front border of the prothorax and but little narrower than the tip of the rostrum. The head and rostrum appear to be nearly smooth, the prothorax to be coarsely and somewhat transverseiy rugulcse, and the strix of the elytra to be coarse, with large and deep punctures, which grow smaller and shallower in the apical half. All this is shown only in reverse, the single specimen being a revase.

- Lengtli, 6.5^{mm}; of head, including rostrum, 1.5^{mm}; of pronotum, 1.6^{mm}; of elytra, 4^{mm}; breadth of thorax, 2^{ma}.

Green River, Wẏoming. One specimen, No. 91 (Dr. A. S. Packard).

OTIORHYNCHUS Germar.

Otiorhynchus perditus.

PI. 8, Fig. 25..

Otiorhynchus perditus \&cudd., Bull. U. S. Geol. (toogr. Surv. 'Terr., II, 84 (1876); IV, 766 (1878).
A single specimen, showing a side aspect, differs from the living species of Otiorhynchus, with which I have compared it, in not having the prothorax conspicuously smaller than the body behind it. The head is withdrawn into the prothorax, almost to the hinder edge of the eyes; the snout is short, stout, slightly curved, bluntly rounded, and rather tapering thau enlarged. at the tip, not quite so iong (measuring from the front edge of the eyes) as the length of the pronotu:n ; the eyes are rounded, subtriangular, with ia diameter equal to half the width of the snout, the central facets with a diameter of 0027^{mm}; the anteln ni.. serobes are twice as iong as broad, commencing at the middle of the snout and extending two-thirds the distance thence to its tip. The prothoras is equal, nearly as long as high, not tumid, rugulose. The elytra, which are not elevated at base above the prothorax, are simple, not very tumid, provided with about eight longitudinal slender rows, 0.3^{mm} apart, of low, raised, rounded points, nearly as distant from one another as those of contiguous rows; midway between each of these rows is a very inconspicuors dull ridge. Fragments of the legs remain, which agree as far as they can be made out with the same narts in Otiorhynchus.

In the general sculpturing of the elytra this insect is not very unlike 0 . sulcutus (Fabr.).

Length, 8^{mm}; of snout beyond front of eyes, 1.23^{man}; vidth of sane, 0.75^{mmq}; length of antennal scrobes, 0.32^{mm}; diameter of eyes, 0.46^{mmn}; length of pronotum, 1.8^{mm}; height of same, 2.28^{mm}; length of elytra, 5.2^{mm}; width of same, 2.05^{mm}; length of fore femora, $i .8^{\mathrm{mm}}$.

Green River: Wyoming. Two specimens, Nos. 4021 (Scudder), $15 \approx 13$ (Richardson).

Otiorhynchus tumbe.

$$
\text { Pl. 8, Fig. } 13 .
$$

Gtiorhynol us dubius Scudd., Buh. U. S. Geol. Geogr. Surv. Ferr., IV, 76f (1878).
A cast of an elytron resembles so closely the elytron of O. perditus, excepting in size, that it is referred to tire same genus. Only nine strie can bo counted, but all of those at the outer side may not he seen; the inner stria is very close to tho margin, and indeed is lost in it both above and below, but this may be due simply to the preservation. The stone in which they are pressrved is coarser: than usual, coming from beds about thirty meters directly below the shales which lave furnished the other insect remains, and has a greater admixture of sand; consequently the character of the surface of the elytra can not be determined, but the strixe are sharp and narrow, and filled with longitudinal punctures, which do not show in the engraving. With the exception of a couple of poor specimens of Epicurrus effossus Scudd., this was the only recognizable insect found at this locality.

Length of elytron, 4^{mm}; breadtlı of same, 1.5^{mm}.
Dr. E. Bergroth having called my attention to the fact that there is a recent European species of Otiorhynchus bearing the specific name dubius, I have renamed the fossil as above.

Green River, Wyoming. One specimen, Nu. 4204.

OPHRYASTES Schönherr.

Ophiryastes compactus.

$$
\text { Pl. 8, Fig. } 39 .
$$

Ophryastes compaotus Scuild., Bull. U. S. Gecl. Geogr. Surv. Terr., IV, 765-766 (1878).
A single specimen, preserved so as to show a lateral view of the insect, appears to indicate an Otiorlynchid allied to Ophryastes, The :rim of the
elytra, indeed, does not well correspond, since, in place of their abrupt posterior descent, as seen in O. cinereus Schönh. from Mexico, with which it agrees best in general features as also in size, they slope very gradually, and appear to be tumid next the base. But the structure of the stout snout, enlarged apically, with very oblique descending antennal scrobes, the superior transverse furrow at its base giving an increased convexity to the vertex of the head, ally it closely to Ophryastes. The ovate eye is longitudinal, the front border of the pronotum nearly straight, with no advance of the sides, the prothorax itself faintly rugulose, the elytra coarsely striate, the striæ with feeble, rather distant punctures (the reverse is shown on the stone); the tips of the elytra are right-angled or slightly produced at the extremity, as in recent species.

Length of body, measured from base of rostrum, 7.5^{mm}; height of same, 3.5^{mm}; length of elytra, 5.5^{mm}; of rostrum beyond front of eyes, 1.2^{mm}; breadth of rostrum at base, 0.9^{mm}; where largest, 1.05^{mm}; length of eye, 0.5^{mm}; breadth of same, 0.3^{mm}; distance apart of the elytral striæ, 0.35^{mm}.

Green River, Wyoming. One specimen, No. 4210.
EPICAERUS Schönherr.

Epichrus saxatilis.

Pl. 8, Figs. 33, 34, 36.
Eudiagogus saxatilis Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, S4-85 (1876). Epicerns axatilis Sendd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 765 (1878).
Twenty-seven specimens of this species have been found by Mr. Richardson, Mr. Bowditch, and myseif. This and the two following species can not, as at first supposed, be referred to Eudiagogus on account of the length of the snout. Although very small for Epicæri (especially the present species), they agree so well with Epicærus griseus Schönh. from Mexicoone of the smallest of the group-that they would best be referred here, although they differ from this genus in the brevity and stontness of the femora, all of which are swollen apically. It is possible that all three of the forms mentioned here should be referred to a single pecies, as there is certainly very little difference between them excepting in size; this is particulauly the case with this and the next species. Together over one hundred
specimens of these species have been examined by me; they are therefore the most abundant fossils of the insect beds of the Green River shales.

In the present species the snout is shaped much as in Otiorhynchus perditus Scudd., being short, stout, and, especially anteriorly, arched, the front border being faintly angulate about the middle; the antennal scrobes can not be certainly defined; the eyes are pretty large, transversely ovate, and ir most of the specimens are indicated on the stone by ar annulus of dark color, sontaining an interior narrow ovate pale spot 0.22^{mm} long by 0.12^{mm} wide, while the eye itself is 0.4^{mm} in its longer, and 0.3^{mm} in its shorter, diameter ; the facets of the interior portion are very minute, being scarcely $.01^{\mathrm{mm}}$ in diameter. The prothorax is somewhat tumid, rather ligher than long, very profusely and delicately punctulate, the anterior and posterior walls between the pittings often less elevated than the lateral walls, so that the punctures often form broken longitudinal furrows; the punctures are nearly uniform in size over the whole prothorax and average about 0.04^{mm} in diameter. The elytra are simple, not tumid, sloping off gradually toward the tip, not elevated at base above the thorax, and provided with six equidistant, very slender and siight, raised ridges, faintly broken into dashes by a series of minute, moderately distant punctures along the inner border of each; these punctures are of the same size as those on the prothorax; the ridges are about 0.16^{mm} apart. The posterior coxæ have an incrassate posterior margin.

Length of body, 4^{mm}; of rostrum beyend the eye, 0.68^{mm}; width of same, 0.46^{nim}; length of prothorax, 1.2^{mm}; height of same, 1.3^{mm}; length of tegmina, 2.8^{mm}; width of same, 0.9^{mm}.

Green River, Wyoming. Numerous specimens.

Epicherus exanimis.

Pl. 7, Fig. 31; Pl. 8, Figs. 30, 31, 38, 42.
Eudiagogus exanimis Sradd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 55 (1876). Epicarus exanimis Scudd., Bull. U. S. Geol. Geogr. Surv., '¿'err. IV, 765 (1878).

Thirty-one specimens of this species lave been examined since the first. All those first obtained (by Mr. Richardson) were fragmentary, and most of them rather obscure; they consist mostly of side aspects of the creature, but several are single elytra. Still the characters drawn from them appear to be all that can be found in the more perfect examples since found. The
head is rather large at base, tapering with a short, broad snout, not so deep as broad, equal and at the tip broadly rounded, directed downward and forward, slightly bent along the front margin; the antennal serobes extend from the front edge of the eye nearly to the end of the rostrum, and are broadest next the eye, where they are half as broad as the eye itself, tapering regularly throughout and shallow; the eyes are moderately large, broadly oval, transverse or a little oblique, the upper extremity thrown backward and the lower forward. The prothorax is short, only abont half as long as deep, not tumid, rather cylindrical, its surface smootll. The elytra are not broader nor ligher at their base than the surface of the pronotum, and they are simple and furnished with seven equidistant, equally and not deeply impressed, longitudinal strix, $0.16^{\text {mim }}$ apart from one another, and the outer ones an equal distance from the adjacent border; these striæ are provided with slightly longitudinal punctures at regular intervals of about 0.1^{mm}, by which the strix are carried to abont donble their usual depth Some of the specimens lave lost the elytra, and on these the posterior edge of the hind coxe have been impressed through the abdomen, giving the insects the appearance of being furnished with elytra which cover but half of the abdomen. The same thing may be noticed in other species.

Length of body exclusive of rostrum, 5.755^{mm}; of rostrum beyond the eye, 0.62^{mm}; breadth of same, 0.5^{mm}; depth of same, 0.44^{mm}; length of eye, 036^{mm}; width of same, 0.24^{mm}; length of prothorax, 0.72^{mm}; height of same, 1.3^{mm}; length of elytra, 3.05^{mm}; width of same, 1.2^{mm}; length of fore femora, 0.72^{mm}; width of same, 0.32^{mm}; length of middle femora, 0.8^{mm}; width of same, 0.32^{mm}; length of hind femora, 1.1^{mm}; width of same, 0.34^{mm}.

Green River, Wyoming. Numerous specimens.

Epicarus erfossus.

$$
\text { Pl. 8, Figs. 7, } 35 .
$$

Eudiagogus effossus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, $85-86$ (1876). Epicarus effossus Scndd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 765 (1878).
Nearly fifty specimens of this species are at hand, all found in Richardson's shales by Mr. Richardson, Mr. Bowditch, and myself, besides two I found in beds at the same spot, but about thirty meters lower; these were the only Coleoptera found at the latter spot, excepting a single specimen of Otiorhynchus tumber Scudd, belonging to the same family. Most of the
specimens are composed of fragments of elytra, and the only specimens which are preserved entire are such as give a dorsal or ventral aspect. These, however, are enough to show that they belong to a species closely allied to but distinct from the preceding, differing principally in its smaller size, its slender and more tapering rostrum, the smaller circular eyes, and in the slightly more distant and rather more deeply impressed strix of the elytra. The following measurements will give a better understanding of the degree of difference between them in certain points :

Length of body exclusive of rostrum, 5^{mm}; breadth of same, 2.1^{mm}; width of rostrum at base, $0: 48^{\mathrm{mm}}$; diameter of eyes, 0.28^{mm}; distance apart of the elytral strix, $0.18-0.20^{\mathrm{mm}}$; distance apart of punctures in the strix. 0.11^{mm}.

Green River, Wyoming. Numerous specimens.

Family RHYNCHITID \AA LeConte.

- EUGNAMPTLS Schönherr.

Elgnamptus grandevus.

Pl. 8, Fig. 20.
Sitones grandervus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 83-84 (1876).
A single specimen, very poorly preserved, was found by Mr. Richardson on Green River, at the crossing of the Union Pacific Railroad, and at the first description of the species this was all that was at hand. Little could be seen in it except a vague outline of the form of the body, with a broken rostrum ; the eye was large, obovate, longitudinally disposed, 0.42^{mm} long and 0.25^{mm} broad; the olytra were furnished with a number of slight, slender, raised ridges, $0.3 \mathrm{t}^{\mathrm{mm}}$ apart, probably the reverses of striæ.

Two more specinens obtained at the same spot by Profs. Packard and Lee, and in better condition, slow that it probably belongs to Eugnamptis, though it differs from that genus in the extreme feebleness of the elytral striation which is barely perceptible; no punctures are discernible, but instead the elytra are sparsely clothed with exceedingly delicate short hairs. The beak is slender and from in front of the eye about as long as the thorax; it, as well as the rest of the head, faintly subscabrous, while the thorax is very delicately and shallowly punctulate, so as to appear almost smooth, with a short delicate hair from each depression.

VoL XIII- 31

The measurements of the best specimen are: Length of head and rostrum, 1.35^{mm}; of thorax, 0.9^{mm}; of elytra, 2.6^{mm}; breadth of thorax, 1^{mm}.

Green River, Wyoming. Three specimens, Nos. 15234 (F. C. A. Richardson), 101 (Prof. L. A. Lee), 76 (Dr. A. S. Packard).

Eugnamptus decemsatus.

$$
\text { PI. 8, Fig. } 12 .
$$

Eugnamptus decemsatus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 764-765 (1878).
A single elytron with a broken base is all that remains of this species. But this is peculiar on account of the supplementary humeral stria, which seems to be common in the Rhynchitidæ, and at least very rare in the allogastral Rhyncophora, to which one would at first glance refer this fragment. So far as the material at hand permits determination it appears to agree best with the genus to which it is referred, on account of the disposition of the punctuation and the form of the tip of the elytron. It represents, however, a very large species, and one whose punctuation is very delicate. The elytron is long and rather narrow, indicating an elongated form for the body, as in this genus, with parallel sides and a bluntly rounded tip. There are ten complete equidistant rows of delicate, lightly impressed punctures, those of the same row less distant than the width of the interspaces; the outer row lies close to the onter border and is seated in an impressed stria, as also is the apical half of the inner row; but the other rows show no such connections betwee:! the punctures which compose them; at the base the rows curve very slightly outward to make place for a very short humeral row of punctures, parallel to the inner complete row, and composed of only three or four punctures on the part preserved; the interspaces are smooth.

Length of fragment, 4.5^{mm}; width of elytron, 1.5^{mm}.
Green River, Wyoming. Ona specimen, No. 4046.

Family RHIPIPHORIDÆ Gerstæcker.

RHIPIPHORUS Fabricius.

Rhiptphorus geikiet.

$$
\text { Pl. 27, Fig. } 1 .
$$

A single specimen preserved upon a side view seems clearly referable to Rhipiphorus except for the well rounded tip of the elytra. The three lines
radiating from the head in the plate do not belong to the specimen but lie at a slightly higher level, excent the proximal half of the one lying next the body, which is the basal joint of the antenne, and which before careful study was taken for a beak, and the insect therefore phaced among the Hemiptera. The head and thorax have the form and attitude of the Rhipiphoridæ; the eye is oval, twice $\cdot \boldsymbol{r}$ long as broad; the basal joint of the antennæ enlarges slightly from base to apex and is nearly as long as the hoad; an ineffectual attempt was made to uncover the parts beyond and reveal the structure of the remaining joints. The head and thorax are delicately scabrous rather than punctate, or punctate with the punctures run together transversely in an irregular manner. The elytra are almost as long as the body, three and a half times as long as their basal breadth, the sutural margin perfectly straight until the rounding f the extreme apex begins, the outer margin broadly sinuous, the elytra shortly beyond the base diminishing rather rapidly in width as far ats the middle, then subequal to just before the tip, which is half as broad as the base, strongly rounded, almost equally on each side; the tip has been uncovered since the plate was made, and is in no sense pointed, but the inner side is subrectangular though rounded; the surface is punctured, not deeply, the punctures separated by considerably more than their own diameter ; the outer border is finely marginate, at least in the basal half. The wings are ample, exceeding when closed the length of the abdomen, and when expanded surpassing by one-fifth the elytra; they show at least four principal veins radiating from the base, some of them distinctly forked, and none showing marks of a transverse fold.

Length of body, 9.75^{mm}; elytra, 6^{mm}.
Named for Dr. Archibald Geikie, Director of the Geological Survey of Great Britain.

Florissant. One specimen, No. 367.

Family TENEBRIONIDÆ Leach. TENEBRIO Linné.

Tenebrio primigenius.

$$
\text { Pl. 2, Fig. } 32 .
$$

Tenebrio primigeniue Scudd., Rep. Progr. Geol. Surv. Can., 1877-1878, 183B, (1879).
A singie, complete, and well-preserved elytron represents a species of Tenebrionidæ, a little larger than, and somewhat resembling, Tenebrio
molitor (Linn.), the beetle of the common meal-worm. It has been flattened by pressure, so as to show but little sign of having been arched, while at the same time the shape is fairly preserved. Wherever it differs in color from the stone it is piceous. The margins are very nearly parallel, approaching each other rather gradually and very regularly toward the tip; there are eight equidistant, pretty strongly impressed, rather coarse, longitudinal strix, besides ochers next the outer margin, whose number can not be determined, and a short scutellar stria, about as long as in T. molitor, but quite us distinct as the others; the surface between the striæ appears to be very minutely subrugulose, and shows in favorable light a faint transverse corrugation.

Length of elytron, 11^{mm}; breadth, 4.4^{mm}.
Nine-mile Creek, British Columbia. One specimen, No. 63 (Dr. G. M. Dawson).

Family BRUCHIDAE Leach.
 BRUCḢUS Geoffroy.

Bruchus anilis.
Pl. 5, Fig. 125.
Bruchus anilis Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 82 (1876).
The single specimen consists of two elytra, in natural juxtaposition seen from above. They have a brown color, which is wanting in certain places, but in so irregular a manner that it is doubtless fortuitous; they are furnished with strix, but these, as well as all color, are entirely obliterated in the middle of the wing; this again is doubtless a defect of preservation, since the sutural edges of the elytra are similarly affected; the striæ are deep, sharply cut, straight, subequidistant, eight in number, fading out at the apex of the elytra, the space between them smooth and arched.

Length of one elytron, 5^{mm}; breadth of same, 1.9^{mm}; distance of striæ apart, 0.45^{mm}.

Chagrin Valley, White River, Colorado. One specimerı (W. Denton).

Family CHRYSOMELIDAE Leach.

GALERUCELLA Crotch.

Galerucella picea.

$$
\text { Pl. } 2, \text { Fig. } 31 .
$$

Gallerucolla picea Scudd., Rap. Progr. Geol. Surv. Can., 1877-1878, 182-183B (1879).
A pair of rather poorly preserved elytra, parted at the tip, and showing between and through them the outlines of the abciominal segments represents a species of Chrysomelide, which appears to be most nearly allied to the genus in which I have placed it and to be about the form of, and a little smaller than, G.inaritima LeC. The elytra are uniformly piceous throughout, showing no inarks of lighter-colored borders; there are faint indications of one or two marginal impressed lines in their outer half, and the whole surface seems to have been very minutely punctate, more faintly and finely than in the existing species mentioned. The abdomen is very broadly and very regularly rounded, subovate, and at least five segments of similar length can be determined.

Breadth of the pair of elytra at base, 3.75^{mm}; length of elytra, 5.5^{mm}; breadth of abdomen, 3.25^{mm}; length of penultimate segment, 0.4^{mm}.

Nine-mile Creek, British Columbia. One specimen, No. 62 (Dr. G. M. Dawson).

CRYPTOCEPHALUS Geoffroy.

Cryptocephalus vetustus.
Pl. 7, Figs. 29, 37.
Cryptocephalue vetustue Sondd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 764 (187s).
This species is fairly represented by a pair of specimens with their reverses. One pair exhibits the front, and by the drooping of the abdomen the under surface of the insect with expanded elytra (one of them curiously foreshortened), the other the under surface only. The insect is broadly oval, and, except in being much stouter, closely resembles C. venustus Fabr., with which it agrees in size. The thorax, as seen on a front view, is arched, and the proportion of the head to the thorax is as in the recent species mentioned. The elytra, which are the parts best preserved,
are rounded at the extremity, and are furnished with ten slightly arcuate rows of gentle punctures, arranged inconspicuously in puirs, besides a sutural, slightly oblique row on the basal third of the elytra, terminating in the margin. This disposition of the punctures and the character of the head, sunken; as it were, into the thoracic mass, lenve little doubt that the insect should be referred to Cryptocephalus. The elytra are of a uniform light horn color, but the body is darker. The body is more oval than in the parallel-sided C. venustus.

Length of body, $4-4.5^{\mathrm{mm}}$; breadth of same, $2.6-3.2^{\mathrm{mm}}$; length of elytra, 4^{mm}; breadth of one of them, 1.8^{mm}.

Green River, Wyoming. Two specimens, Nos. 4003 and 4004, 4039. nud 4044.

DONACIA Fabricius.

- Donacia stimia.

PI. 1, Fig. 28.
This is represented by the mere fragment of an elytron, but with a distinct kind of sculpturing. It seems to come as near D. porosicollis Lac as any of our modern species I have seen. The tip is the part preserved; it is of a deep blue-black color, with an excessively finc, microscopic, transverse rugulation, delicately impressed narrow strix, the strix minutely punctulate, the first and last strie moderately distant from the margins, deeply impressed, and less distinctly punctate. It is apparently a rather small species.

Length of fragment, 3.2^{mm}; breadth of same, 1.4^{mm}.
Interglacial clays of the neighborhood of Scarboro, Ontario. One specimen, No. 14558 (G. J. Hinde).

Dovacia pompatica.
Pl. 1, Figs. 33, 34.
This species, of which there are several examples at hand, is most nearly allied to our living D. pubicollis Suffr., but is much smaller or about the size of D. emarginata Kirb. As to the sculpture of the surface of the elytra (the only part preserved in any specinen), it would be dificult to say in what respect it differed from the former species except in the obliteration of the
murkings at the tip of the elytra, which seems to be characteristic of the fossil. In color it varies extremely ; in one (No. 14582) it is bluish purple: in another (No. 14566) it is deep brilliant violet; still another (No. 14577) lus it dark metallic green. In all, the eolors are as fresh as if living. 'The puncured striee are rather deep and the whole surface of the elytri transversely wrinkled at the punctures.

Length of elytron, 5^{mm}; brendth, 1.45^{mm}.
Interglacial clays of Scarboro, Ontario. Five specimens, Nos. 14566, 14573, 14577, 14581, 14582 (G. J. Hinde).

Family SCARABAEDI A Leach.
TROX Fabricius.
Trox oustaleti.
Pl. 2, Flg. 22.
Trox oustaleti Sould., Rep. Progr. Geol. Surv. Can., 1877-187s, 179-180B (1879).
A single elytron, weil preserved, appears to represent a species of Trox of abort the siza of T. terrestris Say, but with rather slender elytra. The elytron is subequal, narrowing rapidly and regularly at the tip, well arehed, and was apparently still more arched originally, the middle portion having a flattened appearance, as if from pressure, with a narrow flattened outer margin; the surface is completely and uniformly covered with thirteen or fourteen equal equidistant rows of frequent dull tubercles, as distant from one another in the rows as each row from its neighbor, and obsolescent toward the apex and the base, especially towards the former. In certain places there is a very slight appearance of greater prominence to every fourth row, which would hardly be noticed if its resemblance to modern species of Trox did not lead one to look for it; the extreme tip is broken. The color is dark-brown, approaching black, but the whole central portion of a faded brown, nearly resembling the natural color of the stone in which it is preserved.

Length of elytron, 4.25^{mm}; breadth, 1.85^{mm}.
Named after M. Emile Oustalet, of the Jardin des Plantes, whose researches on the Tertiary insects of Auvergne and Aix are well known.

Nine-Mile Creek, British Columbia. One specimen, No. 61 (Dr. G. M Dawson).

APHODIUS Illiger.

Aphodius precursor.

Il. 1, Fig. 11

Aphodius precursor Horn, Trans. Amer. Ent. Soc., V, 245 (I876).
" Elytru smooth, shining, feebly striate, strise shallow but rather wide; punctures distant, round near the apex, becoming transverse near the base, intervals flat, smooth.
" A species is indieated of the size and nearly of the sculpture of ruricola. The scutellum is short. Length of elytra, .10 inch.; 2.5^{mm}." Horn, loc. cit.

Of this species three elytra lie side by side in the same mass; the middle one shows only the impression of the strix, being the reverse of the left elytron, which has been removed from its original position; this and the right elytron are black, the strix distinct and moderately deep, with pu, "tures as described by Dr. Horn. The strixe are ten in number, and in the middle of the elytra are 017^{mm} apart. The left elytron shows the upper, the others the under, surface. 'There must be some mistako in Dr. Iorn's measurements ; the best preserved elytron, the contours of which are perfectly preserved, is 3.5^{mm} long and 1.65^{mm} broad and the others agree perfectly with it in size.

Upon the same stone occur the remains of a pair of elytra (Pl. 1, Figs. 16,17) not noticed by Dr. Horn in his paper, but considered by him as belonging to the same species. This view is tenable only on the supposition that the right elytron (in which the chitine is preserved and which shows the upper surface) is imperfect, for there are but eight strix. When first examined by mo ooth margins appeared perfect; but as they lave since been damaged I refrain from further remark beyond the description of the fragments and the expressionon y belief that they can not be referred to Aphodius. The elytra, which ares si:ning black, appear to be considerably flattened, are consequently nearly as broad at base as in the middle, and have the apical half rounded rather rapidly and the apex nearly square; they possess eight distinct striæ, made more conspicuous by bearing frequent, moderately distinct, small, round, occasionally elongate punctures ; the interspaces between the strix are 0.15^{mm} wide, flat and smooth; the eighth stria is confluent anteriorly, and perhaps posteriorly, with the margin; and the margin itself is not only slightly reflexed but forms by the reflection
a groove very similar to the strie and bearing similar punctures; there is also a short and exceedingly slight and faint scutellar stria crowded against the scutellum.

Langth of elytron, 3^{mm}; breadth, 1.3^{mm}.
Not improbably these should be looked upon as belonging to Carabids Bone caves of Port Kennedy, Ponnsylvania.

EGIALIA Latreille.

> Faialia rupta.

$$
\text { Pl. 8, Fig. } 10 .
$$

A single specimen and its reverse are preserved with partially expanded strongly arched elytra. Body elongated obovate, two and a half times longer than broud. Head small, broadly rounded in front, the eyes (not shown in the plate) moderntely large, oval, less than half as large as one of the pair of oval distinct marks in the middle of the head posteriorly, which are either some parts beneath showing through, or ridges or the bases of horns on the upper surface. Prothorax about twice as broad as long, tapering anteriorly from the posterior edge and with rounded sides, the whole front border broadly emarginate, the hind margin scarcely convex, the surface indistinctly granulate. Elytra rather heavily striate, the strix rather distantly punctate.

Length of body, 3.4^{mm}; of middle of prothorax, 0.5^{mm}; of elytra, 2^{mm}; breadth of prothorax in front, 0.7^{mm}; the same behind, 1.1^{mm}; of middle of body, 1.35^{mm}.

Green River, Wyoning. One specimen, Nos. 80 and 81 (Dr. A. S. Paekard).

PHANEUS MacLeay.

Phaneus antiquus.
Pl. 1, Figs. 12-14.
Phanceus antiquus Horn, Trans. Asner. Ens: Soc., V, 245 (1876).
"Elytra with feeble striæ, intervals moderately convex, surface slightly rugulose. Abdomen smooth. Length, . 40 inch; $10{ }^{\mathrm{mm}}$.
"A species is indicated somewhat larger than carnifex; the elytral sculpture is, however, more nearly that of pluto, inasmuch as the intervals
are regularly convex, and the strix not suddenly inpressed at base. The remains consist cf an impression with a small portion of the substance of both elytra in position, slightly separated at base by pressure so that a deceptive appearance of an elongate scutellum is presented; also the impression of the abdominal segments with a small purtion of chitinons substance.
"There is also the substance remaining of the greater portion of an e_{i}, tron which probably belongs to the same species, in which the intervals are moderately convex and with traces of a few punctures, the strixe being moderately im"ressed and not punctured." Horn, loc. cit.

The elytr. ${ }^{3}$ seven feeble and dull strix; the surface of the single elytron, which agrees altogether in size with the pair, is black and smooth, but faintly wrinkled transversely. Four segments of the abdomen are shown

Length of one of the pair of elytra, 11^{mm}; breadth of same, 5^{mm}.
Bone caves of Port Kennedy, Pennsylvania.

CHERIDIUM Lepelletier-Serville.

Cheridium 9 ebeninum.

Pl. 1, Figs. 18-22.

Charidium f ebeninum Horn, Trars. Amer. Ent. Soc., V, 244-245 (1876).
"The remains for which the above name is suggested, consist of the greater portion of the thorax, the two elytra in a fair state of preservation and a portion of the abdominal segments. These may be described as follows:
"Thorax nearly twice as wide as long, sides feebly arcuate, gradually converging anteriorly, surface sparsely and firely punctate, pleure longitudinally finely strigose. Eiytra 1 ather wider, conjointly, than long, sides moderately arcuate and gradually narrowed to apex, disk with seven moderately impressed strix, the outer rather distant from the margin; striae entire and nearly parallel and equidistant. Intervals coarsely but sparsely punctured. Fpipleure sparsely punctate. Abdomen with coarse punctures at the sides, smoother at middle.
"Length of thorax, .07 inch ; 1.75^{mm}.
"Length of elytra, .14 inch; $3.5{ }^{\mathrm{mm}}$.
"I have been really at a loss to know to what genus to refer these remains. They were at one time considered to be Saprinus, but the number of the striæ and their character forbid such a reference. The species seems to lave been rather smaller than our Choridium histeroides, but undoubtedly resembled it in form. I wnald have referred the remains to Canthon near perplexus, but the thorax is by no means that of the genus." Horn, loc cit.

The thorax of the specimen appears to have been broken off before reaching me, as the description given by Dr. Horn is inapplicable to any of the fragments before me.

The pleure are not only "longitudinally finely strigose," but also delicately striate in the same direction. Aside from the punctuation the upper surface of the thorax is smocth.

The onter discal stria of the elytra is very widely separated at base from the submarginal stria which runs closely parallel to the outer border.

Length of elytron, 3.6^{nm}; breadth of same, 2^{mm}.
Bone caves of Port Kennedy, Pennsylvania.

Family PTINIDÆ Leach.

ANOBIUM Fabricius.

Anobium? ovale.

Pl. 8, Fig. 1.

Anobium \boldsymbol{f} orale Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 762-763 (1878).
The insect evidently appertains to a distinct genus of Ptinidæ, in which the sides of the body are not parallel, but the body tapers posteriorly much, though not to the same extent, as anteriorly. It is, however, most nearly allied to Arc bium, in which it is provisionally placed. It is about as large as Endecatomus rugosus LeC. The prothorax, viewed from above, is bluntly conical, tapering rapidly. The body is broadest just behind the base of the elytra, and tapers slightly at first, more rapidly afterward, and is rounded posteriorly; thus the whole body has an ovate outline. The pronotum is minutely and very profusely punctulate in black, the punctures being slightly elongated longitudinally, and appeus to have been covered profusely with slight asperities or a coarse pila (much perhaps as in Endecatomus rugosus). The elytra, which are nearly three times as long as
broad and taper regularly from near the base to near the tip, show no mark of such asperities, but are profusely punctate in black, made up of scattered puncte, about 0.03^{mm} in diameter, not altogether irregularly disposed, although at first sight having that appearance, but showing in many places, not uniformly, signs of a longitudinal' distribution into from fourteen to sixteen rows. The elytra, indeed, resemble those of Bostrychus capucinus (Linn.), but I am not aware that similar markings ocear on smaller Ptinidx.

Length of body, 4.3^{mm}; breadth of same, 2^{mm}; length of elytra, 3.15^{mm}.
Green River, Wyoming. Two specimens, Nos. 97 (Dr. A. S. Packard) and 4038 (S. H. Scudder).

Anobium ${ }^{\text {deceptum. }}$

$$
\text { Pl. 8, Fig. } 18 .
$$

Anobium deceptum Scndd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 763 (1878).
Another specimen, representing an elytron only, evidently belongs to the same genus as the last, and at first sight appeared to be of the same species, as it belongs to an insect of the same size, and the punctures on the elytra are similarly disposed ; they are, however, if anything, more thickly crowded, so as to form about eighteen rows in the rather broader eilytron; and not only is the elytron broader and shorter than in the preceding species, being less than two and a half times longer than broad, but it scarcely tapers at all in the basal three-fifths, and beyond that more rapidly than in the species last described.

Length of elytron, 3^{mm}; breadth of same, 1.25^{mm}.
Green River, Wyoming. One specimen, No. 4086.

Anobium lignitum.

Pl. 8, Fig. 24.
Anobium lignitum Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 763 (1878).
A third species of this family, with irregularly punctate elytra, is represented by a single specimen, giving a dorsal view of pronotum and elytra. It differs generically from the two preceding species, and agrees better with Anobium proper in having a more gibbous and less conical prothorax, and in. having the sides of the elytra parallel through most of their extent. It is considerably smaller than either of the preceding species. The prothorax
is one-third the length of the body, minutely punctate and scabrous, tapering only a little in its basal and considerably in its anterior half, the front well rounded. The elytra are about two and a half times longer than broad, equal on the basal two-thirds, and then rounding rapidly inward, so that the posterior outline of the body is more broadly rounded than the anterio: outline; the elytra are profusely punctate with little pits, averaging scarcely more than 0.02^{mm} in diameter, distributed at pretty regular intervals, but not forming anything like longitudinal series, and so near together as to be equivalent to about fourteen rows. The whole body is uniformly black.

Length of body, 3.75^{mm}; of elytra, 2.5^{mm}; width of body, 1.9^{mm}.
Green River, Wyoming. One specimen, No. 4082.
SITODREPA Thomson.

Sitodrepa defuncta.

Sitodrepa defuncta Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 82 (1876).
A single elytron, with its reverse, is very poorly preserved, more than twice and a half as long as broad, equal until near the tip, which is rounded off; it is traversed by eight or nine very slightly impressed and delicate punctate striæ 0.1^{mm} apart.

Length, 2.75^{mm}; breadth, 1.06^{mm}.
Green River, Wyoming. One specimen, Nos. 191 and 15206 (F. C. A. Richardson).

Family BUPRESTIDAE Stephens.

BUPRESTIS Linné.

Buprestis tertiaria.

Pl. 2, Fig. 23.
Buprestis tertiaria Scudd., Rep. Progr. Geol. Surv. Can., 1877-1878, 180-181B (1879).
Three specimens were obtained of this species, all of them elytra. One shows the two elytra crossed at the base, and a reverse of this shows the cast of the upper surface; the other two are single and perfect elytra, both exhibiting the upper surface, one in relief, the other as a cast, but they are not reverses. This and the two following species classed under

Buprestis agree closely together, but do not seem to be plainly referable to any recent American genus, although approaching nearest Buprestis or Ancylocheira. They seem to be nearly related also to the Tertiary species from Sieblos, described by Heyden under the name of B. senecta. For the present I place them in Buprestis.

The elytra are very long and slender, nearly four times as long as broad, equal throughout the basal two-thirds, then gradually and very regularly tapering by the sloping of the outer edge, the tip a little produced and roundec, and about one-fourth as broad as the middle of the elytron. The surface is ornamented by ten rows of very distinct strixe with rather deeply impressed punctre; these strix are a little sinnous near the base, and there is also a scutellar stria extending down nearly one-third of the elytron; the outer stria unites with the margin in the middle of the outer: half of the elytron; the three inner and two other outer strix extend to the apex, while the four interior stria terminate: the inner pair a little beyond the termination of the outer stria, the outer pair still a iittle farther toward the apex, thus allowing for the narrowing of the elytra; the surface between the strix is much broken by slight transverse corrugations, giving, with the punctate strix, a rough appearance to the elytra. This species differs from the two following by the great slenderness of the elytra and the more delicate tapering of its tip.

Length of elytron, 6.5^{mm}; breadth, 1.7^{mm}.
Nicola River, below main coal seam, British Columbia. Three specimens, Nos. 48, 51 and 52, 54 (Dr. G. M. Dawson).

Q Buprestis saxigena.
Pl. 2, Figs. 24, 25.
Buprestis saxigena Scudd., Rep. Progr. Geol. Surv. Can., 1877-1878, 181B (1879).
This species is represented by severai elytra or fragments of elytra, sometimes preserved by pairs in natural connection. It is very closely allied to the last, but differs from it in having the elytra less slender, the breadth being contained about three and a half times in the length, and in the rather greater coarseness of we punctuation and transverse corrugation. The strix are the same in nur- ber, but are, perhaps, a little more sinuors, and the scutellar stria is shorter, hardly extending so much as a quarter-way down the inner margin; the other strixe terminate in much the same way as
in B. tertiaria, but the seventh stria (from the suture) frequently runs to, or very nearly to, the tip; the extreme tip is formed precisely as in B. tertiaria, but the sides of the elytra, rumuing parallel throughout three-quarters of their length, taper thward the apex more abruptly than in the preceding species, though with the same regularity. This species stands midway between the other two here described in the form of the apical third of the elytra.

Length, 6.2^{mm}; breadth, 1.7^{mm}.
Nicola River, below main coal seam, British Columbia. Five specimens, Nos. 47 and 54, 49, 50, 55, 56 (Dr. (f. M. Dawson).

Buprestis sepulta.

Pl. 2, Fig. 26.

Buprestis sepulta Scudd., Rep. Progr. Geol. Surv. Can., 1877-1878, 181 B (1879).
A single specimen, showing the greater part of both elytra in natural conjunction. must be separated from the two preceding by its still broader elytra with more rapidly tapering apex. The elytra are slightly less than three and a half times longer than broad, with sides parallel throughout three quarters of their length, then suddenly tapering, the extreme tip shaped as in the other species, only more produced, so as to form more distinctly a kind of lobe, the outer margin being very slightly and roundly excised just before the produced tip. The surface is perhaps evan rougher thar in the other species, but the strix appear to be less sinuous; the scutellar stria is destroyed in both elytra of the single specimen before me; the outer stria terminates as in B. tertiaria, but the inner pair of the middle serier of strize is here the longer, extending barely to the tip of the outer stria, while the outer pair is a little shorter; the produced tip of the elytria is a little shorter than in the preceding species, but similarly rounded apically.

Length of elytron, 6.7^{mm}; breadth, 2^{mm}.
Nicola River, below main coal seam, Britiṣh Columbia. One specimen, No. 53 (Dr. G. M. Dawson).

Family ELATERID® Leach.

OXYGONUS LeConte.

Oxygonus mortuus.

$$
\text { Pl. 5, Figs. 110, } 111 .
$$

Orygonus mortuиs Scui.t., Bull. U. S. Geol. Geogr. Surv. Tcrr., II, 81 (1876).
The single elytron and its reverse obtained is slender, the humeral angle well rounded, the outer edge apparently a little marginate; it is almost equal until near the tip, when it tapers to a point. This. peculiarity leads me to refer it to Oxygonus, although the apex is not produced so much as in recent species of that group. It is furnished with eight equidistant, rather strongly impressed, but delicate strix, that uearest the suture almost incroaching upon the margin ; these strix are equidistant anteriorly and in the middle, but posteriorly they converge toward each other.

Length of elytron, 4.55^{mm}; breadth, 1.72^{mm}; distance of striæ apart, 0.2^{mm}.
. Fossil Cañon, White River, Utah. One specimen (W. Denton).

CORYMBITES Lateille.

Corymbites velatus.

Corymbitea velatus Scudl., Bull. U. S. Geol. Geogr. Surv. Terr., II, 81 (1876).
A single specimen, with its reverse, found. The head and prothorax are gone, but both upper and under surface of the rest of the body, including the elytra, may be seen in each impression with nearly equal distinctness. The insect appears to have been about the size of C. medianus (Germ.), but more closely allied in form to C. splendens (Ziegl.). The legs have been destroyed, bat the middle and hind coxal cavities may be seen. The elytra are of the length of the abdomen, acutely angled, almost pointed at the tip, and furnished near the outer edge with a broad and shallow furrow, whose outer limit is abrupt and thus well marked. Besides this the elytra are faintly and distantly striate, with five or six rows of strix, and the mesosternum and metasternum are very delicately granulate.

Length of fragment, 6^{mm}; breadth, $3^{\text {min }}$; distance between anterior edges, of middle and hind coxæ, 1.75^{mm}.

Green River: Wyoming. One specimen, Nos. 137 and 15249 (F. C. A. Richardson).

CRYPTOIIYPNUS Fschscholtz. \oint Cryptohypnus ${ }^{\circ}$ terrestris.

Pl. 2, Fig. 30. 6
Cryptohypnus \dagger terresiris Scudd., Rep. Progr. Geol. Sarv. Can., 1877-1878, 181-182B (1879).
A single, very nearly perfect, elytron, broken slightly at the base, which belongs, with littlo doubt, to the Elateride, is provisionally referred to this genus. The form of the elytron is as in C. planatus LeC., which is slightly larger than the fossil species. The surface is very minutely punc-tato-rugose, and the strix are sharp and clearly defined. In nearly all Elateridæ the fourth stria from the suture unites with the third rather than with the fifth, although it often runs independently to the tip. In Cryptohypuus there appears to be more latitude, nearly any of the striae uniting with either of their neighbors; and in this species the fourth unites with the fifth some distance before the tip, while the first three run to the extremity of the elytron, and the sixth, seventh, and eighth, following the curve of the outer margin, terminate near the tip of the third stria.

Length of elytron, 5.5^{mm}; breadth, 1.75^{mm}.
Nicola River, below main coal seam, British Columbia. One specimen, No. 59 (Dr. G. M. Dawson).

From the same locality were brought the remains of another insect, consisting of the metasternal .plates, one side complete, the other broken, and plainly belonging to the Elaterida. The perfect side agrees so well with the same part in Cryptohypnus planatus LeC. that I refer it to the fossil species above described, which its size renders entirely admissible. It is, however, relatively longer than in C. planatus, the perfect half being about a third longer than broad, not including, of course, the side pieces, which are not preserved. The surface is densely and rather heavily punctate, more densely and perhaps less deeply next the coxal cavities; the median line (separating the two lateral halves of the whole metasternum) is very deeply impressed, but the furrow dies out anteriorly in the projection between the coxæ.

Langth of metasternum, 2.1^{mm}.
vol xill-32

EPIPHANIS Eschscholtz.

Epipilanis deletus.

Pl. $\mathbf{5}$, Figs. 113, 114.
Epiphanis deletus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, $80-81$ (1876).
On account of the structure of the antennx and general resemblance of this insect to Epiphanis cornutus Eschsch, I have placed it in the same genus; but the rorm of the prothorax differs somewhat in the two species. The head is moderately large, subquadrate, the antenuæ moniliform, conposed of twelve (preserved) equal joints. The thorax is nearly quadrate with straight sides, the front lateral angles reetangular, the front border straight or scarcely concave, the hind border slightly angulate ; the elytra are slender and taper from the midide backward; they are too poorly preserved to show the markings.

Length, 5^{mm}; breadth, 1.52^{mm}; length of head, 0.94^{mm}; breadth of same, 0.96^{mm}; length of prothorax, 1.12^{mm}; breadth of same, 1.24^{mm}; length of elytra, 2.85^{mm}; breadth of same, 0.76^{mm}; length of antennæ, 1.6^{mm}; of sixth joint of same, 0.13^{mm}.

Fossil Cañon, White River, Utah. One specimen (W. Denton).
Elateride 9 sp.
Pl. 2, Fig. 28.
Elateridet ${ }^{\text {sp. Scudd., Rep. Progr. Geol. Surv. Can., 1877-1878, 182B (1879). }}$
In the Collection of the Geological Survey of Canada there is an elytron with the base nearly destroyed which resembles in striation the Hydrophilidx, but is far too elongated to belong to that family, resembling rather the Elateridx. It is so imperfectly preserved that, perhaps, a nearer determination is impossible at present. There are eight rather faintly impressed but distinct strix, the outermost a little more distinct, especially toward the tip.

Width of elytron, 1.25^{mm}; its apparent length, 4.5^{mm}.
Nicola River, below main coal seam, British Columbia. One specimen, No. 60 (Dr. G. M. Dawson).

Family BYRRHIDAE Leach.

NOSODENDRON Latreille.

Nosodendron tritavum.

Pl. 7, Fig. 36.

A single specimen is preserved, a little larger and a little stouter than our N. unicolor, and which shows the under surface of the body with the head bent under and with the elytral markings showing through to a certain extent. The head appears to be smooth; four segments are slown behind the hind coxx, occupying about one-third of the abdomen, and, excepting for the slightly longer posterior segment, of equal length and all uniformly, profusely, and minutely punctate. The elytra show here and there signs of faintly impressed distant strix, which do not appear on the plate.

Length of body, 5^{mm}; breadth, $3 . \hat{v}^{\mathrm{mm}}$; distance apart of elytral striæ, 0.2^{mm}.

Green River, Wyoming. One specimen, No. 86 (Dr. A. S. Packard).

Family NITIDULIDA Leach.

PHENOLIA Erichson.

Phenolia incapax.

PI. 7, Fig. 23.

Phenolia incapax Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 80 (1876).
Represented only by a single specimen and its reverse, showing the under surface of the body, from which the appendages have been torn. It closely resembles in size, form, and the relation of the parts P. grossa (Fabr.), but differs from it in the character of the under surface of the body, which in the fossil species is very minutely and very faintly punctulate, and the posterior edges of the segments are not raised.

Length of fragment, 5.5^{mm}; of abdomen, 2.3^{mm}; breadth of same, 3^{mm}.
Grreen River, Wyoming. One specimen, Nos. 133 and 15201 (F. C. A. Richardson).

PROMETOPIA Erichson.

Prometopia depilis.

11. 2, Fig. 29.

Prometopia depilis Scudll., Rep. Progr. Geol. Surv. Can., 1875-1876, 278-279 (French ed., 108-309) (1877).
This beetle appears to belong to the Nitidulide, but where it should be generically located is a matter of some doubt. It respmbles most among our American forms the gemus in which I have provisionally placed it, but so few really genoric features remain that one can judge by little other than accessory characters. 'Ihe head is wanting and the thorax is broken, and though exhibiting the under surface, the markings of the elytra can be readily seen, as is frequently the case in fossil bectles. The form of the elytra and scutelhm is precisely that of Pronetobia sexmaculata, excepting that the base ofthe elytra is more distinetly angulate ; beneath, the elytra are expanded just as there, and punctured in much the same irregular and minute manner, but equally so at the extreme border beneath, instead of being furnished at this point with transvorse rugre; the punctures are 0.028^{mm} in diameter, and do not give origin to hairs; the elytra are dark eastaneous, and have a dull ridge along the sutural margin. The thorax is black and proportionally shorter than in Prometopia, but otherwise it appears to have the same form, although the characteristic lateral projections of the front border are broken off, only the slightest indication of that on the left side appearing' in a portion of the curve of the front border. The thorax is more minutely punctate than the elytra, and the punctee are connected by the slightest possible impressed lines, giving it somewhat of a corrugated appearance; a few of the abdominal segments may be seen, the pygiuinm extending just beyond the elytra; all these joints are black, smooth, and shining, widiout trace of hairs or punctures.

Length of fragment, 5.5^{mm}; length of middle of thorax, 1.25^{mm}; breadth of same, 3.2^{mm}; length of elytra, 3.75^{mm}; br . .dth of united elytra, 3.35^{mm}.

Quesnel, British Columbia. One specimen, No. 24 (Dr. G. M. Dawson).

Family CRYPTOPHAGID \neq Kirby.

ANTHEROPHAGUS Latreille.

Antilerophagus priscus.
Pl. 7, Figs. 24, 35.
Antherophagus priscua Sendd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 79-80 (1870); in Zittel, Handb. d. Paheont., I, ii, 795, Fig. 1051 (1485).

Several specimens, representing either the upper or the under surface of the body, have been obtained. They resemble A. ochraceus Melsh. in general appearance. The head is nearly as broad as the thorax and woll rounded; the cyes are about circular, 0.11^{mm} in diameter; the mandibles äre stont, about twice as long as their breadth at base, tapering but slightly; the labium is narrow. The prothorax is about twice as broad as long, smooth, the front border slightly concave above, rather strongly concave below, the sides gently and regularly convex, the anterior angles rectangular, the posterior less prominent, the hind border broadly convex. The prosternum and the other sternal portions of the thorax seem to be delicately granulose ; the middle coxae are abont equidistant from the others, or perhaps slightly closer to the hind pair, and the fore coxa are more closely approximated to each other than the others, being separated by less than their own width. The scutellum is small, scarcely longer than broad. The elytra are smooth, equal, tap rring only near the tip, the extremity of each independently and roundly pointed.

Length, 3.2^{mm}; broadth, 1.65^{mm}; breadth of head, 1.05^{mm}; of prothorax, 1.53^{mm}; length of same, 0.75^{mm}; of elytra, 2.1^{mm}; breadth of same, 0.9^{mm}.

Green River, Wyoming. Four specimens, Nos. 4191, 15152 and 15143, 15202, 15252 (Richardson, Bowditch, Scudder).

Family CUCUJID \neq Stephens.

Paranidrita LeConte.

Parandrita vestita.

$$
\text { Pl. 7, Fig. } 41 .
$$

Body stout. Head quadrate, twice as broad as long, the posterior and lateral margins straight, the front margin between the bases of the antennæ
made of three nearly equil emarginations, one at the base of each mandible, and one, alightly broader, the emargination of the labrum. These searcely show on the plate, where the anterior edge wrongly appears, especially on the left side, to be somowhat in advance of the front margin of the eyes. Mandibles large, stout, nearly as long as the head. Eyes sma!!, circular, situated with the antenne at the anterior angles of the head, as distant as possible from the prothorax. Prothorax slightly broader than the head und of the same shape, excepting that the posterior angles are broadly rounded and so not closely connected with the elytra, the humeral angles of which are also rounded. These are slightly broader than the prothorax, somowhat longer than the rest of the looly, entire, with parallel sides They are weakly and distantly striate, the strim markod by sparsely arranged erect sete about as long as tho interspaces. Similur sete are seatered sparsely over the head and prothorax and even the base of the mandibles.

Length of body, $\mathbf{7}^{\mathrm{mm}}$; of head and mandibles, $1.7 \mathrm{~F}^{\mathrm{mm}}$; of prothorax, 1.2^{mm}; of elytra, 4^{mm}; ireadth of head, 2^{mm}; of prothorax, 2.35^{mm}; of elytra, 2.65^{mm}.

This species differs so much in its general aspect, and especially in its comparative breadth, the great breadth of the head, and the squaroness of the prothorax, from P. cephalotes LeC., with which I have especially compared it, that I have hesitated somewhat to place it in the same genus. Casoy doos not recognize the generic distinction of Parandrita from Ľmophlæus, but if this fossil be considered a member of the group there can be little doubt of its valuo.

Green Rive., Wyoming. Four specimens, Nos. 87 (Dr. A. S. Packarl); 83, 85, 95 (Prof. L. A. Lee).

Family EROTYLIDAE. Leach.

MYCOTRETUS Chevrolat.
mycotretus binotatus.

$$
\text { Pl. 7, Fig. } 30 .
$$

Mycotretus binotata Soudd., Ball. U, S. Gool. Geogr. Surv. Torr., IV, 763-764 (1878); in Zittel, Hendb. d. Palwont., I, 11, 800, Fig. 1053 (1885).
A single specimen with its reverse represent the dorsal aspect of this species, which closely resembles M. sanguinipennis Lac. in shape. It is,
however, a little smaller, the thorax tapers less rapidly, and the elytra are not striate. The head is badly presorved, being crowded under the thorax ; it appears, however, to be very small, about half as broad as the thorax, with a brondly rounded front, large eyes, mid a dark color. The thorax is about two and a half times broader than long, with slightly convex sides, regularly tapering toward the apox, but not so rapudly as would seem to be required for so proportionally narrow a head; the front border broadly concave, the hind border very obtusely angulate, scarcely produced as a broait triangle in the middle ; the surface is of a light color, very minutely and profusely punctulate, the hind borders faintly marginate, the margin black and punctate. The elytra are more elongato than, and do not taper so rapidly as, in M. sanguinipennis; they are of the color of the thorax, oven more delicately punctulate than it, with two small, short, black, longitudinal, impressed dashes just otitside the middle, and just before the ond of the basal third; the basal edge of tho elytra is marked in black, much as the posterior border of the pronotum; and the scutellum is small, owing to the encroachment of the median prolongation of the prothorax.
'Total length, 3.5^{mm}; length of thorax, 0.6^{mm}; of elytra, 2.5^{mm}; breadth of head, 0.75^{mm}; of thorax in front, 1.2^{mm}; behind, 1.45^{mm}; of elytra at the spots, 2.1^{mm}.

Green River, Wyoming. One specimen, Nos. 3990 and 4015.
Family STAPHYLINIDAE Leach.
OXYTELUS Gravenhorst.
Oxytelus pristinus.

> Pl. 5, Figs. 118-120.

Oxytelus pristinus Scadd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 79 (1876).
A single fairly preserved specimen, but of which none of the appendages excepting the elytra are visible. Apart from the labral prolongation, which is as in other species of Oxytelus, the head is subquadrate, slightly broader than long, the eyes occupying the whole lateral outline and but little convex; the sutural divisions of the under surface show through upon the upper surface (which is exposed to view), obscuring somewhat the parts above. The prothorax is somewhat injured, but was evidently subquadrate, a little broader than the head, nearly a third broader than long, the front
border slighly concave, the outer margin a little convex, the posterior angles and posterior border exactly as in Oxytelus rugosus (Grav.); the surface is delicately punctulate as in the species naned, and there is a very slight, shallow, and broad median longitudinal sulcation, whose walls, however, are not elevated into ridges, as usual in the species of Oxytelus. The right elytron is expanded, and is therefore in the most favorable position for examination; it is more than half as long again as broad, the humeral anglo wo l rounded off, the outer margin very gently convex, the apex squarely truncate but slightly convex; the surface is covered rather profusely and uniformly with shallow circular punctures resembling those of the prothorax, and averaging about 0.04^{mm} in cliameter. The abdomen is much as usual in Oxytelus, the sides slightly convex, and the tip of the abdomen bluntly and rather regularly rounded; it was evidently furnished rather abundantly with very fine, slort hairs.

Length of body, 4.2^{mm}; of head, 0.78^{mm}; breadth of same, 8^{mm}; length of eyes, $0.54^{\text {min }}$; breadth of same, 0.18^{mm}; length oî prothorax, 0.72^{mm}; breadth of same, 0.9^{mm}; length of elytra, 1.22^{mm}; breadth of same, 0.75^{mm}; breadth of aldomon, 1.16^{mm}.

Chagrin Valley, White River, Colorado. W. Denton.

BLEDIUS Leach.

Beedius adamus.

$$
\text { Pl. 8, Fig. } 10 .
$$

Bledius ademus Sculd., Bull. U. S. Geol. Geogr. Surv. 'Terr., IV, 762 (1878),
A rather poorly preserved specimen shirws the dorsal view of the body without the legs or intemne. It is of about the size of B . annularis LeC ., and resembles it in general appearance, but seems to have shorter tegmina, although these are obscure; it is also a rather slenderer species. The head is large, as broad as the thorax, with rather large syes. The thorax is quadrate, and the elytra together quadrate, and of the same size as the thoras. The abdomen beyond the elytra is as long as the rest of the body; apically it expands somewhat, and the exiremity is shaped as in the species mentioned.

Lenreth of body, 4.4^{mm}; breadth of thorax, 0.75^{mm}.
Ga cen River, Wyoming. One specini־ŋ, No. 4081.

Bledius aliciatus.

PJ. 1, Fig. 35.
Allied to B. brevidene LeC. A singl3 elytron, about twice as long as broad, the sides almost parallel and straight, slightly broader than elsewhere just before the tip, the apical margin straight, not inclined, the outer posterior angle gently rounded, the onter border slightly, the inner scarcely, margined, the deflexed portion of the outer margin narrow, equal, terminating at the middle of the outer balf. Texture delicate, the surace slightly, irregularly, and not very closely punctate. A very small and rather broad scutellum is indicated by the shape of the inner basal angle, which is not quite accurately given on the plate.

Length of elytron, 1.9^{mm}; breadth, 1.1^{mm}.
Interglacial clays of the neighborhood of Scarboro, Ontario. One specimen, No. 14540 (G. J. Hinde.)

OXYPORUS Fabricius.

Oxyporus stiriacus.

$$
\text { Pl. 1, Fig. } 36 .
$$

A single elytron, less tian twice as long as broad, somewhat broken at the base, with very straight and almost parallel sides, enlarging to the least possible degree apically. It is a rather small species, of delicate texture, with smooth, unsculptured surface, except for the slightly impressed lines which follow the sutural and outer margins, giving a thickened appearance to either edge. The outer margin is gently and regularly convex, the outer posterior angle geitly rounded, and the deflexed portion or the outer margin very narrow, equal, and reaching as far as the rounded apical part.

Length of elytron, 1.8^{mm}; breadth, 1.12^{mm}.
Interglacial clays of Scarboro, Ontario. One specimen, No. 14552 (G. J. ITinde.)

LATHROBIUM Gravenhorst.

Lathrobium abscessum.

$$
\text { Pl. 8, Figs. i5, } 21 .
$$

Lathrobium abocessum Scudd., Bull. U. S. Geol. Gcogr. Surv. Terr., II, 791 (1876).
Two fragmentary specimens were taken by Mr. Richardson near Green River Crossing, Wyoming. The head is smooth, subquadrate, broader
than long, with slightly convex sides and hind border, the eyes of medium size, obovate, a little in advance of the middle of the head. The prothorax is smooth, as broad as the head, shaped quite as in L. elongatum (Linn.), the sides straight, the anterior angles rounded off, the whole posterior border well rounded. The abdomen is also as in the species mentioned, with rounded, tapering tip, but the elytra are shorter, being barely as long as the prothorax, with rounded apices.

Lengtl of loody, 6.25^{mm}; of head, 0.96^{mm}; of eyes, 0.25^{mm}; breadth of head, 1.02^{mm}; length of prothorax, 1.16^{mm}; of elytra, 1.05^{mm}; breadth of abdomen, 1.2^{mm}.

The above is the original description of the species. Since then other specimens have been found by Dr. Packard and myself, some of which are better preserved. These show that the head is of about equal length and breadth, well rounded, and with the surface slightly granular; as is also the prothorax; the last is of a very short oval shape, with regularly rounded sides, scarcely more prominent anteriorly than posteriorly.

Green Piver, Wyoming. Seven specimens, Nos. 5, 155 (F. U. A. Richardson); 84, 94 (Dr. A. S. Packard); 3987, 4049, 4088 (S. H. Scudder).

Latifrobium interglaciale.

$$
\text { Pl. 1, Fig. } 38 .
$$

A single elytron indicates a species nearly as large as L. grande inC., but with coarser sculpturing than is common in this genus and more as in Cryptobium; but in the latter genus the posterior margin is outwardly produced. The inner basal angle indicates a pretty large scutellum. The elytron is of nearly uniform width, with a nearly straight outer margin but gently rounded, the greatest width close to the tip; the posterior outer angle is rounded off and the posterior margin straight. The deflexed portion of the outer margin is narrow, subequal, rapidly tapering just before its termination, extending just beyond the middle of the apical half of the elytron; inner margin simple. T'exture dense, the surface of elytron coarsely, rather shallowly, and not very closely, irregularly punctate, and marked besides by four or five short, shallow, irregular, longitudinal grooves just within and lefore the middle.

Length of elytron, 2.5^{mm}; width of upper surface, 1.25^{mm}.
Interglacial clays near Scarboro, Ontario. One specimen, No. 14555 (G. J. Hinde).

LEISTOTROPHUS Perty.

Leistotrophus patriarchicus.
Pl. 5, Fig. 112.
Leistotrophus patriarchicus Scudd., Bull. U. S. Geol. Geögr. Surv. Terr., II, 78-79 (1876).
A single greatly crushed and ill defined specimen. Above, the head is broader than long, the front very broadly and regularly rounded, the jaws projecting triangular r beyond it; the eyes are large, nearly as long as the head and just as long as the width of the space between them; the whole head is minutely and uniformly granulate. The collar, which is not granulate, is of the same width as the part of the head between the eyes, and about half as long as the head; on one side of and in direct connection with this are some crushed fragments, apparently of one of the fore coxe and femora, which distort its appearance. The prothorax is of about the size of the haad, quadrate, with rounded corners and a slight elevated rim, without punctures or granulations. The elytra are very short, broader than long, quadrate, squarely truncate at the tip, leaving no signs of an exposed scutellum, faintly and distantly punctulate. The outline of the middle coxæ is impressed through the remains of the insect, showing them to be shaped as in Creophilus and Leistotrophus. The abdomen is as broad as the thorax, not much longer than broud, broadly rounded apically, furnished with hairs on the upper surface and apical tufts as in Creophilus villosus (Grav.); there are, however, no signs of punctulation.

Length of fragment, 12^{mm}; of head, 2.5^{mm}; breadth of seme, 3.75^{mm}; length of eyes, 2^{mm}; breadth of same (as seen from above), 0.88^{mm}; length of tegmina, 1.75^{mm}; breadth of same, 2^{mm}; breadth of abdomen, 3.8^{mm}; length of middle femora, 2.3^{mm}; breadth of same, 0.65^{mm}; length of middle coxæ, 2.5^{mm}; breadth of same, 1.1^{mm}; length of hind femora, z^{mm}; of hind tibix, 2.5^{mm}.

White River, near the Colorado-Utah boundary. One specimen (W. Denton).

QUEDIUS Stephens.

The two species described here from Florissant differ considerably from each other in general appearance, but appear to be structurally similar. They differ, one more markedly than the other, from modern species
of the genus in the great brevity of the antennæ and of their separate joints, as well as, so far as can be seen, in the shortness and stoutness of the legs.

Quedius chamberlini.

- PI. 16, Fig. 8.

Head moderately large, $c: a t e$, with a slightly constricted neck. Antenna considerably longer than the head, reaching about to the middle of the thorax, the third joint a little longer than the second, seareely increasing in breadth apically, the last joint no broader than the penultimate and scarcely, if at all, longer than broad. Prothorax fully as long as the head and narrower than long, subequal, smooth, and black. Legs shorter and stouter than in oar smaller species of Quedius, but otherwise similar. Elytra longer than the prothorax, of the same color and densely, finely, and briefly pilose. Abdomen black, narrowing posteriorly, the part beyond the eiytra longer than the rest of the body.

Although longer than in the other species of Quedius here described, the antenne are still markedly shorter than in our living forms.

Length, 7.25^{mm}; breadth, 1.5^{mm}.
The species was described from other specimens than the one figured. It is named for the distinguished geologist, President Chamberlin, of the University of Wisconsin.

Florissant. Four specimens, Nos. 1478, 6615 and 7083, 10627, 12057 and 12483.

Quedius brewerr.
PI. 16, Fig. 4.
Head large, ovate, apparently smooth, with distant punctures, the neck slightly constricted; mandibles stout and not very long; antenuæ but little longer than the head, increasing very slightly in size apically, the third joint a little shorter than the second, the last subpyriform, a little longer than broad, while the penultimate is broader than long. Prothorax sinooth like the head, not at all explamate, apparently of about equal length and breadth, narrowing a little anteriorly, furnished with a few distant, scattered, erect bristles. Legs apparently much as in Q. molochinus (Grav.), to which it appears to be most nearly allied, though a slenderer insect. Elytra rather shorter and scarcely broader than the prothorax,
thinly clad with rather long hairs, which are darker than the alzo sparse hairs of the abdomen; abdomen with parallel sides and rounded tip.

The species is remarkable for its slenderness, the brevity of the antennæ, and the stoutness of the mandibles.

Length, 8.5^{mm}; breadth, 1.5^{mm}.
The species was described from other specimens than the one figured. It is named after the Western explorer and botanist, Prof. W. H. Brewer, of Yale College.

Florissant. Five specimens, Nos. 3863, 5800, 8259, 13635 and 14161, besides 1.381 from the Princeton Collection.

GYROPHANA Mannerheim.
Gyrophena saxicola.
Pl. 5, Figs. 123, 124.
Gyrophena saxicola Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 78 (1876).
A single specimen of a species alliod to G. vinula Er, has the head well rounded, with large round eyes and a rounded labrum. The prothorax is but vaguely defined on the stone, and is apparently of about equal breadth with the head, and shorter than broad. The elytra are of equal length and breadth, each with a pair of longitudinal, straight, delicate, raised lines. There is no sculpturing of the surface; no wings can be seen, nor legs, and the indistinctly preserved abdonaen is shaped as in G. vinula.

Length of body, 1.84^{mm}.
Chagrin Valley, White River, Colorado. One specimen (W. Denton).
HOMALOTA Mannerheim.

Homalota recisa.

PI. 8, Fig. 14.

The head is tolerably large, produced and tapering anteriorly but well rounded at tip; eyes globular, moderately large. Thorax a littlo broador than the head, subquadrate, broader than long (but this feature exaggerated in thr figure), with gently rounded sides and profusely and rather delicately punctate surface. Elytra together considerably broader than the thorax, riout as long as their united breadth, with scattered short hairs apparently
arising from shallow punctæ. Abdomen beyond the elytra of the width of the thorax, and retaining that width for four segments; the four segneuts beyond that, and especially the longer penultimate and antepenultimate segments, tapering considerably, the last segment bluntly pointed, triangular. From indications in the clearer parts the abdomen would appear to have been faintly and railer distantly punctate.

Lengtl of body, 4.5^{mm}; width at elytra, 1.1^{mm}.
Green River, Wyoming. Two specimens, No. 78 (Dr. A. S. Packard), No. 3996 (S. H. Scudder).

STAPIIYLINITES gen. nov. (Staphylinus, nom. gen.).

Staphylinites obsoletum.

Pl. 8, Fig. 32.
Staphylinites obsoletum Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 78 (1876).
The single specimen obtained is too poorly preserved to determine until further material is obtained to what genus of Staphylinidæ it should be referred. Following, therefore, the lead of Prof. Oswald Heer in similar cases, it is referred to a provisional genus Staphylinites. The head, thorax, and abdomen are of equal breadth; the eyes are round and rather large; the posteriur border of the pronotum is well rounded; the elytra are simple, about twice as long as broad, truncate, and very broadly rounded, with a large, roundish, very dark spot occupying the whole of the tip.

Length of fragment, 3.25^{mm}; breadth of same, 1.25^{mm}; diameter of eyes, 0.45^{mm}; length of elytra, 1.25^{mm}.

Green River, Wyoming. One specimen, No. 15200 (Mr. F. C. A. Richardson).

Family HYDROPHILIDAE Leach.
CERCYON Leach.

Cercyon ${ }^{\text {P terrigena. }}$

Pl. 2, Fig. 21.
Cercyon I terrigena Scudd., Rep. Progr. Geol. Surv. Can, 1877-1878, 1791 (1879).
A single elytron with the base broken off appears to represent a species of Hydrophilidæ, and perhaps is most nearly related to Cercyon, but of this
there is much doubt. The elytron is pretty well arched, equal nearly to the tip, then rapidly rcunded off, indicating an ovate beetle with the shape of a Hydrobius or a shorter insect, and of about the size of Helophorus lineatus Say. Eight faintly impressed unimpunctured striæ are visible, the outer one, and to some extent the one next it, deeper; these two unite close to the tip, curving strongly apically; the next two curve slightly near their extremity, but are much shorter, not reaching the fourth stria from the suture, which, like the remaining three, pursues a struight course to the seventh stria. The surface between the strixe is nearly smooth, piceous.

Length of fragment, 2.4^{mm}; breadth of elytron, 1.35^{mm}; distan capart of the strix, 0.15^{mm}.

Nicola River, below main coai soam, British Columbia. One specimen, No. 57 (Dr. G. M. Dawson).

HYDROBIUS Leach.

Hydrobius decineratus.

Pl. 8, Fig. 27.

Hydrobiue decineratus Scadd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 761 (1878).
A single specimen exhibits tha dorsal surface, but with part of the thorax gone. It represents a species a very little larger than H. fuscipe: Curt. of California, and is apparently allied to it , though slenderer; the head and eyes are as in that species; the thorax shorter and the elytra longer and more tapering at the tips, the extremities of which, however, are not preserved; they are furnished with eight delicate strix, in which the punctures are scarcely perceptible even when magnified; the surface otherwise appears to be smooth, but is not well preserved. The scutellum is as in the recent species mentioned.

Length of body, 7.5^{mm}; of elytra, $4.7 \mathrm{~m}^{\mathrm{mm}}$; breadth of body, 3.6^{mm}.
Green River, Wyoming. One specimen, No. 4007.

Hydrobius confisus.

PI. 7, Fig. 25.
A singie elytron has been found, perfectly flat, with nearly parallel sides and a bluntly pointed apex. It shows place for a minute scutellum, the surface is smooth, but marked by nine parallel, equidistant, slightly
incised strix, which are apparently accompanied (not shown in the plate) by vory faint and rather infrequent punctures; all the striæ can be traced almost to the very tip of the elytron, some of them uniting, or almost uniting, as shown in the plato. The outer edge is not very well preserved, and doulttless a tenth stria is concealed there.

Length, 4^{mm}; breadth, 1.7^{mm}.
Greon River, Wyoming. One specimen, No. 79 (Dr. A. S. Packard).

PHILHYDRUS Solier.

Pillhydrus primavus.

Pl. 8, Fig. 5.

Phithydrua primavus Scuid., Bull. U. S. Ceol. Ceogr. Surv. Terr., II, 78 (1876).
A single specimen, wanting head, thorax, and logs, but exhibiting at once the upper and under surace of the body (like specimens mountod after a potash bath), roprosonts this specios, which is poorly drawn on the plate, the strize being too far apart and only a portion of them shown. The elytra taper on tho apical third, following the narrowing form of the abdomen, and are delicately pointed; they are furnished each with six straight, equidistunt rows of distinct, longitudinal, punctate strix, 0.19^{mm} distant from one another.

Length of elytra, 3.8^{mm}; breadth of same, 1.35^{mm}.
Green River, Wyoming. One specimen, No 15199 (F. C. A. Richardson).

Philhydrus spp.

Two specimens (Nos. 4033, 4042) of species of Phillıydrus were found by Mr. F. C. Bowditch and myself at tho same Green River locality, but neither of them is very perfect, representing little else than elytra, and these rather obscurely preserved. The larger species has smooth elytra; the elytra of the other have eight delicate strix, which apparently are not punctured. Possibly one or both should be referred to Hydrobius.

Length of elytra of larger species (No. 4033), 4^{mm}; breadth of body, 3.2^{mmm}.

Length of elytra of smaller species (No. 4042), 3.75^{mm}; breadth of body, $3^{\text {man }}$.

Mention of these was made by me in the Bull. U. S. Geol. Geogr. Surv. Terr., IV, 761 (1878).

LACCOBIUS Erichson.

Laccobius elongatus.
Pl. 7, Figs. 27, 28.
Lacoobius rlongatus Sondd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 761 (1878),
A single specimen and its reverse exhibit the elytron of a slender species of Laccobius. It is more than two and a half times longer than broad, and is furnished with thirteen equidistant, delicately punctursi, faintly impressed strix, the punctures of which are inore apparent on the basnl than on the apical half; the inner stria is as distant from the sutural border as from the neighboring stria, while the outer is scarcely separate from the outer margin. The species is very large, and also very slender, for a Laccobius, in which genus, however, I am inclined to place it, from the large number of punctured strix. The elytron has much the general appearance of that of a Lebia, but the number of strix, of course, forbids such a reference.

Length of elytron, 2.9^{mm}; breadth, 1.1^{mm}.
Green River, Wyọming. One specimen, No. 81^{\wedge} and 136° (Mr. F. C. A. Richardson).

BEROSUS Leach.

Berosus sexstriatus.

$$
\text { Pl. 7, Fig. } 40 .
$$

Berosus sexstriatus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, $760-761$ (1878).
A single well preserved elytron represents a species scarcely smaller than B. punctipennis Chevr. (undescr. ${ }^{1}$) from Mexico, with the elytra of which it also agrees in the character of the tip and in the shape of the whole, unless in the fossil it tapers nore toward the base; the latter is also remarkable for the absence of the two lateral strix, the others retaining their normal position ; and for the delicacy of the strix themselves, which are even more faintly impressed than in B. cuspidatus Chevr., and, unlike all Berosi I have seen, are nearly devoid of any sign of punctuation; faint traces only can be seen when magnified twerity-five diameters. As not unfrequently happens in Hydrophilidæ, although I have not noticed it in Berosus, a

[^46]VUL. XIII-- 33
short supplementary strin originates near the base of the second stria, pushing it a little to one side, and runs into the first stria a short distunce from the base of the elytra. Length of elytron, 4.5^{mm}; breadth, 1.4^{mm}.

Green River, Wyoming. One specimen, No. 4079.
Berosus tenuls.
Pl. 8, Fig. 8.
Berosus tenuis Scudd., Dull. U. S. Geol, Geogr, Surv. Terr., IV, 760 (1878),
The single specimen representing this species is preserved on a dorsal view, and is unusally slender for a Berosus, hat seems to fall here rather than in any other of the hydrophilid genera. It is of about the size of 13 . cuspidatus Chevr. from Mexico, and agrees generally in appearance with it, but is slenderer, and the tip of the elytra is simple; the punctured strize are exactly as in that species, as far as they can be made ouc. The head is large and well rounded, with large round eyes. 'The pronotum, the posterior edge of which is partly concealed by the overlapping base of the elytra, pushed a little out of place, is shorter than in B. cuspidatus, with rounded sides, broadly and shallowly concave front, and apparently smooth surface. The elytra are long and slender, with entire, bluntly pointed tips, and very delicate, finely impunctured strix. The whole body is regularly obovate, broadest in the middle.

Length of body, 5.65^{mm}; of elytra, 4.15^{mm}; hreadth of body, 2.75^{mm}. Green River, Wyoming. One specimen, No. 4002.

T'ROPISTERNUS Solier.

Tropisternus sculptilis.

Tropisternus sculptilis Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 760 (1878).
In a specimen and its reverse, of which only the abdomen and elytra are preserved, we have a well marked species of Tropisternus of about the size and shape of T. mexicanus Castln., but with rather frequt..c strix, more distinct than in that species, and composed, not, as there, of rows of impressed points, but of continuous, faintly impressed lines; the lines are apparently eight in number and uniform in delicacy and distance apart; the base of the elytra, however, is poorly preserved; the elytra are rather slenderer than in the recent species mentioned, and the extreme tip is
rounded and not acutely pointed. Distinct striation of the elytra is rare in Tropisternus, but it scarcely seems possible to refer this species elsewhere. Length of elytru, 6.5^{mm}; breadth of combined elytra, 5^{mm}.
Green River, Wyuming. One specimen, Nos. 3989 and 4084.

Tropisternus saxialis.

Pl. 8, Fig. 2.

Tropisternus surialie Scuid., Bull. U. S. Geol. Geogr. Burv. Terr., IV, 759-760 (1878),
One specimen and its reverse, found by me in the Green River sliales, represents a species of Tropisternus nearly as large as 'T. binotatus Walk. from Mexico. The large size of the head and the shortnesis of the prothorax are doubtless due to the mode of preservation, the whole of the head, deflected in life, being shown, while the thorax is in some way foreshortened. In all other respects it agrees with the Hydrophilida, and especially with Tropisternus, having the form of the species mentioned. The head is broad and well rounded, with small, lateral, posterior eyes. The thorax is much broader and much more than twice as broad as long, with rounded sides, tapering anteriorly, the front margin broadly and rather deeply concave, the hind border gently convex; the scutellum is large, triangular, a little longer than broad. The surface of the thorax and elytra is apparently smouth; at least no markings aro discoverable, excepting the line of the inner edge of the inferior margination of the sides of the elytra, which appears through the latter, as do also the abdominal incisures and the hind femora and tibiæ. These legs are longer and slenderer than in T. binotatus, the femora extending beyond the sides of the abdomen, and the tibire are armed beneath at tip with a pair of slender spines, which together with the tibie are about as long as the femora.

Length of body, 6.65^{mm}; of elytra, 4.45^{mm}; breadth of middle of body, 3.25^{mm}; length of hind femora, 2^{mm}; of hind tibix, 1.25^{mm}.

Green River, Wyoming. One specimen, Nos. 1023 and $4 C 27$.

HYDROCHUS Germar.

Hydrochus amictus.

Pl. 1, Fig. 47.
A single fragmentary elytron indicates a species of about the size of H. subcupreus Rand., and in general resembling it. The figure does not
properly represent the prominent rounded humeral angle. It differs from the modern speeies mentioned in wanting the special prominence of the third and fifth interspaces over the intermediate ones, though the seventh and eighth are elevated; the punctures are also a little less pronounced, and so the interspaees wider; whence doubtless it happens that the minute lairs which are confined to in single pretty regular row in the interspaces of the living species are sentered, irregular, and more numerons in the fossil.

Length of fragment, 2.6^{mm}; probable length of elytron, 2.8^{mm}; its breadth, $1^{\text {mm. }}$.

Intergheial elay beds of Searboro, Ontario. One specimen, No. 14504 (G. J. Hinde).

Hydrochus relictus.

PI. 8, Fig. 11.

Head rather large, rounded, subtriangular, broader than long but prominent; eyes moderately large, globular, somewhat projecting. 'Thorax cylindrical, broader than long, a little broader than the head, brondest in the middle and narrowing a little both in front and behind, the sides slightly and rather regularly rounded, fre it and hind border nearly straight, the surface apparently a little roughened and with very short, moderately stout, seatered hairs, or perhaps only the latter. Elytra together much broader than the thorax, with well rounded !ameral angles and with ten longitudinal punctate strix (the innermost and outermost not shown in the plate) marked by slort, moderately stout, scattered hairs, about half as long as the width of the interspaces.

Length of body, $3^{\text {min }}$; of thorax, $0.6^{\text {nim }}$; of elytra, 2^{mm}; breadth of thorax, 0.9^{mm}; of elytra, 1.3^{mm}. The specimen is seen from above but with a partially lateral view; if it were wholly dorsal the width of the elytra would probably be 1.7^{mm}.

Green River beds, Wyoming. One specimen, No. 88 (Dr. A. S. Packard).

HELOPHORUS Illiger.

Helophorus rigescens.

Pl. 1, Fig. 53.

A single elytron with a broken tip represents this species, whicin does not seem to agree closely with any modern form, having less heavily punctate
strix and flatter interspaces than any known to me. In general, in color and in texture, excepting in the very intorruptedly elevated and gibbous interspaces, which are the chief charncteristic of the elytra of H. tuberculatus Gyll., it might be conpared to that species, but it agrees better in size with H. scaber LeC. 'The prominent humeral angle is not properly shown in the plate, ind the breadth is made to uppor too great from the spreading of the declivous margin

Length of fragment, 2.1^{mm}; probablo length of elytron, 2.25^{mm}; breadth in natural position, 0.7^{mm}.

Interglacial clays of Scarboro, Ontario. One specimen, No. 14505 (G. J. Hinde).

Family DYTISCIDE MacLeay.

LACCOPIIILUS Leach.

Laccofhilus sp.

Pl. 5, Figs. 116, 117.
Lacoophilue sp. Soudd., Bull. U. S. Geol. Geogr. Surv. Terr., II, 78 (1876), III, 759 (1877).
A fragment of a leg found by Mr. Denton in Fossil Canon, White River, Utah, must be referred to this genus. It represents the hind femmr ard tibia of a species allied to L. maculosus Germ, but is so uncharacteristic u fragment that it is not worthy of further mention.

Family CARABIDAE Leach.

CHLANIUS Bonelli.
Chlenius punctulatus.

Pl. 1, Fig. 7.

Chlanius punctulatus Horn, Traus. Amer. Ent. Soc., V, 244 (1876).
"One elytron of the size and very similar to that of C. laticollis, from which it differs in having the striæ more fingly impressed and the punctures rather closer, while those of the intervals are coarser and less numerous. Length, 40 inch; $10^{\text {mm }}$.
"There can be no doubt that the generic detcruination is correct in this instance." Horn, loc. cit.

Besides a short humeral stria there are nine others, finely but sharply impressed, with frequent punctures at irregular distances as if they were only a part of these which cover profisely the whole sarface. The interspaces are 0.375^{mm} broad in the middle of the slytra, nearly flat, and besides the abundant punctuation are very delicately and sharply rugulose, much as in Cymindis auroia from the same beds.

Bone caves of Port Kennedy, Pennsylvariia.

CYMINDIS Latreille.

Cymindis aurora.

PI: 1, Fig. 6.
Cy.aindis aurora Horn, Trans. Amer. Ent. Sou., V, 243 (1876).
"Elytra Strix modorately deep, indistinetly punctured, intex vals irregularly, b:seriately punctulate, and very finely alutaceous. Length, .30 inch; 7.5^{mm}.
"The greater portion of both elytra remain, somewhat distorted by preser and retaining wuch of the chitinous substance. A species is indicate asmly related to C americana, but somewhat larger. The punctuation of the intervals and the arrangement of the strix nedr the tip, resemble so closely those of Cymindis, thea I place the species in that gemus." Horn, loc. cit.

The strix, although very distinct, are really shallow, and are very indistinctly and somewhat irrogularly punctured; the interspaces are 0.25^{mm} broad in the middle of the elytra, and the surface is very regularly and most delicately and sharply rugulose and furnished abundantly with irregularly scattered, somewhat faint, circular punctures, which can scarcely be said to be arranged biseriately, althongh they are more frequent along lines which are slightly nearer the strix than the middle of the interspaces, and also to a less extent along the middle line of the interspaces. The length of the chitinous portion of the fraginent is 6.5^{mp}. The breadth of the elytron and the number of strix can not be determined.

Bone caves of Port Kennedy, Pennsylvania.

PLATYNUS Bonelli.

The several species of Platynus here described from the interglacial clay beds belong to one type, somewhat distintly represented to-day by
P. cronistriatus LeC. and P. rubripes Zimm., in which the striæ are coarse and punctured, the sutural stria insignificant or obsolescent, and the surface texture a vory delicate transverse ribbing nowhere broken up into a reticulation.

Platynus senex.

Pl. 7, Fig. 38.

Platynus senex Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 759, (1878.)
This species is represented by a single specimen and its reverse. The upper surface is shown with none of the slenderer appendages. The true form of the head can not be determined, as the edges are not preserved. The prothorax is unusually square for a carabid, resembling only certain forms of Bembidium and Platynus, and especially P. variolatus LeC. It is, however, still more quadrate than in that species, and differs from it in shape, being a little broader than long, broadest just behind the middle, tapering but little anteriorly, and scarcely more rapidly at the extreme apex; the elytra are together only about half as broad again at base as the thorax, and are furnished with eight very faint and feeble strix, apparently unpunctured, the one next the margin interrupted by four or five foves on the posterior half of the elytra; the humeral region is too poorly preserved to determine the strix at that point; the form of the elytra is as in \mathbf{P}. variolatus.

Length of body, 6.1^{mm}; breadth of thorax, 1.5^{mm}; of base of elytra together, 2.3^{mm}; length of elytra, 4.1^{mm}.

Groen River, Wyoming. One specimen, Nos. 3998 and 3992.

Platynus casus.

$$
\text { PI. 1, Fig. } 42 .
$$

A single elytron is preserved in the beds which have yielded so many Platyni, which seems to be better comparable with P. rubripes Zima. than with any other living form, but better still with the fossil forms from the same beds, with which it agrees also better in size, though it is a triffe broader, with a considerably more rounded lumeral angle, a more rounded outer margin, and the first stria closely approximated to the suture. Except in these particulars it agrees best with P. halli; but, somewhat as in P. rubripes though with less regularity in size and distribution, the interspaces
are filled with irregular shallow punctures, which run more or less together so as to form interrupted, longitudinal, adventitious series between the striæ. The intimate texture of ine surface is much as in P. halli, the fifth and sixth striæ meet at a distance from the tip and the sutural stria is obsolescent and brief.

Length, 4.7^{mm}; breadth, 1.6^{mm}.
Interglacial clay beds, Scarboro, Ontario. One specimen, No. 14523, (G. J. Hinde).

Platynus hindei.

Pl. 1, Fig. 54.

A number of fragments occur of a species which seems to be allied to P. rubripes Zimm., but is much smaller than it and differs from it considerably. The shape of the elytron is much the same as there, but the humeral angle is more pronounced, the striæ are rather coarser and perhaps a little nore heavily punctate, while the interspaces, instead of being faintly and shallowly pun cate, are not only very faintly and irregularly transversely corrugate, but the fine sharp reticulation of the living species seen under strong magnifying power is entirely absent from the piceous surface of the fossil, being replaced by a scarcely perceptible dull transverse ribbing. The fifth and sixth strix are also united only a little beyond the middle of the outer half of the elytron, and the sutural stria is very short indeed and generally inconspicuous.

Length, 4.65^{mm}; breadth, 1.5^{mm}.
Clay beds of interglacial deposits, Scarboro, Ontario. Nine specimens, Nos. 14512, 14514, 14518, '14528, 14533, 14544, 14546, 14554, 14562 (G. J. Hinde).

I take pleasure in dedicating this species to Dr. G. J. Hinde, to whose industry and zeal we are indebted for the interesting series of interglacial Coleoptera shown on Plate 1.

Platynus hall.

$$
\text { Pl. 1, Fig. } 41 .
$$

Another species of Phatynus, allied to P. crenistriatus LeC., is still more nearly related to P. hindei just described, and is of the same size, and therefore considerably smaller than the living species, to which it bears the
nearest resemblance. Its relations to P. hindei are very much the same as those of P . rubripes to P . crenistriatus, the strize being deeper and coarser than in P. hindei and the punctures larger and heavier. Though the humeral angle is scarcely so prominent as in P. hindei, the texture of the surface is scarcely different, unless in being slightly more marked, while in P. crenistriatus there is no reticulation or cross ribbing whatever. The early union of the fifth and sixth strix again marks its affinity with P. hindei, and the sutural stria is of much the same character, though slightly variable.

Length, 4.65^{mm}; breadth, 1.5^{mm}.
Clay beds of interglacial age, Scarboro, Ontario. Three specimens, Nos. 14520, 14524, 14525 (G. J. Hinde).

Named in honor of the veteran New York paleontologist, Prof. James Hall.

Platynus dissipatus.

Pl. 1, Fig. 37.

This species, which is of the same size as P. halli and agrees with it in its general features and in the minute texture of the surface, is separated fiom it solely on account of the grosser sculpture of the elytra, siace the strix, which are equally broad, are much shallowei-a characteristic which appliss as well to the punctures-and are less distinct on the sides than on the interior half. Neither of the fragments is perfect, though one has all but a little of the tip and permits us to see that the fift, and sixth strixe would unite early, as in those species, did they not fade out altogether before uniting. There is at least one puncture in the third interspace as far frol. the base as the width of the elytron.

Breadth of elytron, 1.5^{mm}.
Interglacial clay beds of Scarboro, Ontario. Two specimens, Nos. 14515, 14563 (G. J. Hinde).

Platynus desuetús.

$$
\text { Pl. 1, Figs. 43, 51, } 58 .
$$

This, the largest of the species from the clay beds of the Canadian border, is more nearly allied to P . crenistriatus LeC. than to any other liv-
ing species, agreeing with it also in size, which none of the other fossils do; but in other particulars, including +1 - intimate texture of the surface, it agrees better with its contemporarie It is nearest perhaps' to P. halli, but the striæ and punctures are a little less pronounced, the insect is much larger, and the fifth and sixth striæ meet at no great distance from the tip of the elytron, as in the modern species mentioned. There appear to be three punctures in the third interspace.

Length of elytron, 5^{mm}; breadth, 2^{mm}.
Clay beds of interglacial times, Scarboro, Ontario. Six specimens, Nos. 14477, 14478, 14486, 14516, 14526, 14538 (G. J. Hinde).

Platynus harttil.

$$
\text { PI. 1, Fig. } 31 .
$$

This species, represented by a couple of specimens only, is the smallest, of those found in the interglacial deposits, and in its peculiarities, especially in the distant union of the fifth and sixth strix, is most nearly allied to the largest. Its outer margin is well rounded, scarcely marginate, the humeral angle tolerably prominent but well rounded; the striæ are coarse and deep, with rather heavy but not very distinct punctures, scarcely broadening the strix, while the piceous surface is delicately and rather faintly cross-ribbed. The marginal stria is obsolescent. There are apparently two or three interspacial punctures. It is very small for a Platynus.

Length of elytron, 3.6^{mm}; width of one, 1.35^{mm}.
Interglacial clays of Scarboro, Ontario. Two specimens, Nos. 14475, 14480 (G. J. Hinde).

Named in memory of my fellow-student, Prof. C. F. Hartt, formerly director of the Geological Survey of Brazil.

Platynus cesus.

PI. 7, Fig. 34.
This species is represented by a couple of specimens, one showing the closed elytra, the other the whole body proper and the fragment of a leg. It appears to be a true Platynus. The head is obscure, but apparently longer than broad, with medium-sized circular eyes. The pronotum is broad sublyriform, the front margin scarcely concave, the anterior angles a
little more than rectangular and well defined, the sides convex, the posterior angles very much rounded off, the hind margin otherwise gently convex; it is broadest slightly behind the middle, strongly margined at the sides, followed by a distinct neek, which is lalf the width of the pronotum. The elytra are oval, strongly margined, the humeral angles almost as strongly rounded as the hinder margin, the strix coarse, with no indication of punctures.

Length of body, 6^{mm}; of pronotum, 1.4^{mm}; of elytra, 3.25^{mm}; second specimen, 3.5^{mm}; width of pronotum, 1.75^{mm}; of elytra, $2.2(2.25)^{\mathrm{mm}}$.

Green River, Wyoming. Two specimens, Nos. 83, 85 (Dr. A. S. Packard).

DIPLOCHILA Brullé.

In this genus I place provisionally a fine but headless specimen from Florissant, rather imperfectly preserved as regards the elytra, and which was accidentally placed with the Heteroptera from appearing to lave a large scutellum, due to the impress of underlying parts. There seems to be nothing nearer among our native Coleoptera. No fossil form has previously been recognized in this genus, which is a widely distributed one in various parts of the globe.

Diplochila? henshawi.

Pl. 28, Fig. 9.

A species is indicated of the size and general appearance of D. major, but it differs so much that it is very doubtful if it belongs to the gemus. The finding of fresh material will probably determine this. The head is acking. The form of the thorax is somewhat similar so far as can be told; much has been worked out from the stone since the drawing was made, but the front part is imperfect by the removal of an angular fragment following an angulate sulcation not uncommon in Carabidæ, but here excessively deep; the thorax narrows more rapidly and considerably than in D. major, with: angulate rather than sinuate sides, so that the thorax is one-half wider at base and two-thirds wider at the widest than at apex. The ovate form of the abdomen with the closed elytra is rather more like that of Carabus than of Diplochila, the elytra apparently furnished with distant slightly impunctate strix. The legs are constructed ou the carabid type; the middle and hind
femora are of equal size, the hind tibia considerably longer than the femora, furnished with a superior shaup carination; they expand slightly at the tip, and are armed with a pair of long, unequal spurs; hind tarsi a little longer than the tibie, the first two joints are subequal, very long, each almost as long as the third to the fifth together; these subequal, the last apically subbullate and armed with a pair of rather short claws. Apparently the whole body was uniformly black.

Length of fragment, 14^{mmn}; breadth aeross middle of thorax, 6.5^{mm}; across closed elytra, 9.2^{mm}; length of hind tibia, 6.4^{mm}; tarsus, 7.1^{mm}; first tarsal joint, 2.75^{mm}.

Named for my excellent friend, the well known American entomologist, Mr. Samuel Henshaw, of Cambridge.

Florissant. One specimen, No. 8201.

DICALUS Bonelli.

Dicelus alutaceus.

> Pl. 1, Figs. 8-10.

Dicalus alutaceus Horn, Trans. Amer. Eut. Soc., V, 244 (1876).
"Two elytra mueh flattened, retaining their proper position in relation to each other, remain, with but little of their actual substance enough however to indicate the surface seulpture.
"A species is indicated bearing a elose relationship to dilatatus, but with the intervals somewhat more convex and the surface more distinctly alutaceons. The humeral carina appears to have been extremely fine and rather less elevated than in dilatatus.
"Elytra.-Length, 70 inch, 17.5^{mm}. Width, .40 inch, $10{ }^{\mathrm{mm}}$.
"The measurement includes also the portion of the elytra covered by the base of the thorax. With proper allowance being made for flattening a speeies is indicated of as large size as our largest purpuratus but relatively narrower." Horn, loc. cit.

The striæ are seven in number, besides the humeral stria, and are 0.65^{mm} apart in the middle of the elytra. The length of the largest fragment is 17^{mm}; the breadth of one elytron, 4.9^{mm}.

Bone caves of Port Kennedy, Pemusylvania.

Dicelus sp.

Pl. 1, Fig. 15.

Dicalue sp. Horn, Trans. Ampr. Ent. Soc., V, 244 (1876).
"Another species of much smaller size than the preceding [D. alutaceus Horn] is indicated by an impression of the greater part of both elytra and a very small fragment of one elytron, resembling D. elongatus. The carina appears to be of similar length and the intervals moderately convex, equal and smooth.
"No measurements can be given as I have not sufficient material on which to base them and I must also leave the species nameless." Horn, loc. cit.

I have seen only the specimen figured. The surface sculpturing is the same as in D. alutaceus, but the species being smaller the strix are of course closer; but in addition to this there are more of them, as there are nine in all; their average distance apart in the middle of the olytron is 0.4^{mm}. The width of the two elytra together is 7^{mm}.

The fragment is too imperfect to require a name at present.
Bone caves of Port Kennedy, Pennsylvania.

PTEROSTICHUS Bonelli.

Pterostichus abrogatus.

Pl. 1, Fig. 30.

A fraginent of an elytron indicates a species closely allied to F. herculaneus Mann. in elytral structure and of probably about the same size. The sutural stria is similar; there are the same broad and deep, simple strix, only they are, if anything, broader and deeper in the fossil. The interspaces are, however, flatter than in the recent species, and the intimate texture of the surface, instead of showing a very distinct reticulation of minute imbricated cells with sharply defined walls, is almost entirely smooth, the faintest sign only of such tracery being visible with strong magnification. The first stria is also at an unusual distance from the margin. The color is piceous.

Length of fragment, 5^{mm}; width of same, 2^{mm}; presumed length of elytron, 7.5^{mm}.

Interglacial clays of Scarboro, Ontario. One specimen, No. 14560, (G. J. Hinde).

Pterostichus dormitans.

$$
\text { Pl. 1, Figs. 40, } 55 .
$$

This species, represented by two opposite ends of elytra, is very close indeed in size and general character to P. laetulus LeC. It may be slightly smaller, but not enough to be worth specifying. The color is different, being testaceous instead of a dull metallic green. There are the same delicately traced, indistinctly, distantly, and delicately punctate strix ; a sutural stria of the same character, and similarly flatened interspaces. The intimate surface structure of the interspaces is similar, but the cells of the present species are a little smaller than in P . laetulus, with coarser and less prominent walls, and therefore giving a much less delicate reticulation. The third interspace is not well onough preserved to tell anything about the punctures.

Length of largest fragment, 4.5^{mm}; breadth of elytron, 2^{mm}.
Interglacial clays of Scarbore, Ontario. Two specimens, Nos. 14503, 14508 (G. J. Hinde). Ylear bitumen, ofice,

Pterostichus destitutus.

Pl. 1, Fig. 44.

This species is represented by a single elytron of a mahogany color, which seems to be uearly related to P. sayi Brulle and of the same shape, though a considerably smaller species. The character of the strix in depth and punctuation is quite as in P. sayi, but the interspaces are flatter, and the delicate transverse reticulate striation, finely traced in P. sayi, is here inconspicuo: ${ }^{-}$..d dull and more irregular. The present species has a similar sutural stria, but apparently no puncta in the third or any other interspace, though it is possible that one exists in the place occupied by the posterior one in P. sayi. One peculiarity of the present species is the early union of the fiftl and sixth strix, well in advance of the interruption of the marginal curve.

Length of elytron, $6^{\mathrm{mm}} ;$ breadth, 2.5^{mm}.
Interglacial clay beds of Scarboro, Ontario. One specimen, No. 14522, (G. J. Hinde).

Pterostichus fractus.

$$
\text { Pl. 1, Figs. 20, } 30 .
$$

Closely allied to P. destitutus, with the same early union of the fifth and sixth strix, not shown in the figure, but still smaller and with less distinct strinl punctuation, this being indeed very inconspicuons. A single elytron is preserved, with the extreme apex broken. There is a distinct punctum in the third interspace opposite the union of the fifth and sixth strix, which is just before the break. The interspaces are flatened, as in P. destitutus, and the intimate structure of their surface is exactly as there, except in showing scarcely any sign of reticulation.

Length of fragment, 4.5^{mm}; breadth, 2^{mm}.
Interglacial clays of Scarboro, Ontario. One specimen, No. 14532 (G. J. Hinde).

Pterostichus destructus.

Pl. 1, Fig. 46.

A couple of elytra, from each of which the entire apex is broken, closely resemble P. patruelis Dej in shape and sculpture, but represent a species n little larger than it. The sutural stria is exactly as in that species, and the strixe are finely impressed and without punctures; the interspaces would appear to be flatter than in P. patruelis, and the third interspace does not appear to have the three punctures found in that species, but only the central one. The color is blackish castaneous.

Length of one fragment, 3.5^{mm}; probable length of elytron, 4.75^{mm}; widath of same, 1.5^{mm}. Length of another fragment, 3.8^{mm}; width, 1.45^{mm}.

Interglacial clays of Scarboro, Ontario. Two specimens, Nos. 14519, 14549 (G. J. Hinde).

Pterostichus gelidus.

PI. 1, Figs. 52, 50-61.
Loxandrus gelidus Scndd., Bul' U. S. Geol. Geogr. Surv. Terr., III, 763-764 (1877).
The following fragmerts of this species have been examined: A very nearly perfect elytron, but badly cracked and pressed apart; the greater part of another ; parts of three united segments of the abdomen ; the prothorax slightly cracked; and a portion of one of the mandibles. A species
is indicated of about the same size as P. hudsonicus LeC. and closely resembling it. The elytra are piceous, with a metallic-blue reflection; there are nine distinctly and rather deeply and equally impressed strix, rather faintly and not very profusely punctate; the interspaces appear as if minutely cracked, and with a simulation of excessively faint and small fovere timoughout, while the third has a more distiact, though still rather shallow and rather large foven considerably behind the middie of the apical half of the elytra; a second fovea appears in the third interspace, as far from the apical fovea as that is from the apex, but it is situated laterally, encroaching on the stria next its imer side. It is perhaps due only to an excess of the simulating fovere that there is apparently a row of approximated punctures, quite like those of the neighboring strix, for a very short distance between the base of the sixth and seventh strie. The first stria turns outward next the base, to make room for a seutellar stria. The obliquely eut marginal fover agree with those of P. hudsonicus. The prothorax is quadrate, the front margin very slightly angled, the sides broadly rounded, fullest anteriorly, with an exceedingly slight median sulens (indicated by a slender crack), and more distinct posterior sublateral sulei (indicated by wider cracks), and between which the hind border is scarcely convex. The surface of the prothorax is smooth ; the abdomen is also smooth. The part of the mandible remaining is only the basal "molar" portion, armed with six or seven mammilate conical teeth, or rather transverse ridges.
 breadth, 3.5^{mm}; breadth of abdomen, 2.25^{mm}.

The species differs from P. hudsonicns in the shape of the prothorax (if that belongs here), broader strix, and less convex elytra.

Interglacial clays of Scarboro Heights, near Toronto, Canada. Several specimens, among others Nos. 14521, 16418 (G. J. Hinde).

Pterostichus levigatus.

Pl. 1, Figs. 3, 4.

Pteroatichus larigatus Horn, ined.
I'teroxtichus sp. IIorn, Trans. Amer. Ent. Soc., V, 241 (1876).
"Fragments of two elytra. Elytra striate, strix impunctured, intervals moderately convex, smooth.
"A species apparently of the size of coracinus or stygicus is indicated,
but without more material it seems unnecessary to name it, or guess as to its affinities." Horn, loc. cit.

Besides the two elytra referred to above Dr. Horn has sent mo attached to the same card another elytron, better preserved, but with the apex lacking; the chitmons portions of the other fragments perfectly resemble this, and thete can seareely be any doubt that they helong together. This new fragment is of a piceous color. There are nine strine, counting the one next the onter edge; the interspaces are 0.5^{mm} broad, moderately convex, smouth, but with transverse impressed lines at very irregular and rather infrequent intervals, which can hardly be due altogether to preservation, as they seldom or nover cross continuously two contignous interspaces; the strix ure deep, faintly margined at the bottom, but in none of them, nor in any of those in the specimens described by Dr. Horn, can I discover the slightest sign of punctures.

Length of this elytron (fragmentary), $6.5^{\text {min }}$; breadth of same (complete), 2.5^{mm}; width of the two contiguous elytra, 5.5^{mm}.

With this additional knowledge it seems worth while to restore the name Dr. Horn once thought of employing.

Bone caves of Port Kennedy, Pennsylvania.

> Pterosticitus? sp.
> Pl. 1, Fig. 5.
> Pteroslichus : sp. Horn, Trans. Amer. Ent. Soc., v, 243 (1876).
"The greater portion of two elytra with the basal and apical ends wanting, indicate a form of larger size than any of our eastern species of Pterostichus. The elytral substance is in extremely bad state, being wrinkled and cracked in such a manner as to render a description of its sur-- face impossible. It may be a Lophoglossus." Horn, loc. cit.

There are eight strix besides that at the outer edge; the interspaces are 0.42^{mm} in width, more flattened than in P. lavigatus, broken into innumerable fragnu, nts, like sun-dried mud, resulting in a dead-black color, but with no indica ions that the surface was otherwise than quite smooth. The length of one of the elytra (the base broken) is 10^{mm}; its width (comple:s) 3.25^{mm}.

Bone caves of Port Kennedy, Pennsylvania.
vol. xill-34

PATROBUS Megerle.

Patrobus gelatus.

Pi. 1, Fig. 48 ,

Of this species the only remains are a single prothoracic shield perfectly preserved. It is piceous, posteriorly truncate, its angles rectangular and as broad as the length; in advance of the linder fourth expanding to nearly one-fourth greater width in the middle of the anterior half, and then again narrowing to the declivons front augles; the disk convex with a miformly and rather deeply incised median line, ench lateral half thus divided marked posteriorly by an abrupt flat and puuctate depression, with well marked rounded outline, distinctly separated from the median incision on one side or the very narrow, marginate, lateral border on the other, and separated from the latter also by a longitudinal furrow not figured in the plate; otherwise the surface is smooth. It is undoubtedly related very closely to P. septentrionis Dej., differing principally in the sharp and sudden depression of the fosse in the lind angles and their separation from the lateral border by a distinct incised longitudinal furrow.

Length of prothorax, $2.1^{1 \mathrm{~mm}}$; greatest breadth, 2.75^{mm}.
Interglacial clays of Searboro, Ontario. One specimen, No. 14586 (G. J. Hinde).

BEMBIDIUM Latreille.

Bembinium exoletum.

Pl. 5, Figs. 121, 12え.
Rembidium exoletum Scudd., Bull. U. S. Geol. Geogr. Surv. 'Terr., II, 77-78 (1876).
A single, rather well preserved specimen, exhibiting the upper surface and impressions of parts of the legs. It is of about the size of B. inæquale (Say). The head is too poorly preserved to present any characters; the pronotum is of equal width anteriorly and posteriorly, its sides regularly and considerably convex, the posterior angles well defined, the hind margin slightly convex; its surface appears to be very faintly punctulate, at least posteriorly, and there is a slightly impressed median line. The elytra are shaped as $\mathbf{i n} B$. inæquale, and are provided with seven or eight very delicately inpressed longitudinal strix, made up apparently of a series of ad-
juc.ent punctures; the sutural edge is delicutely marginate. The frugments of legs show simply that they are of the form usual in Bembidium.

Length of insect, 4.755^{nm}; of pronotım, 0.88^{mm} : width of same in the middle, 1.2^{mm}; of sar.e at the posterior horder, $1^{\text {m"m }}$; of the body at the humeral portion of the elytra, 1.6^{mm}; of same at the middle of the elytra, 2.106^{mm}; length of the elytri, 2.8^{nmm}; ef fore femorn, 0.96^{mm}; lreadth of same, 0.24^{mun}; length of hind femora (?) 0.92^{mm}; breadth of same, 0.36^{mm}; distance apart of the elytral strix, 0.11^{mm}.

White River, near the Colorado-Utah boundary: One specimen, No. 34 (W. Denton).

Bembidijm olaciatim.

Pl. 1, Fig. 40.

A couple of elytra represent this species, which seems to be nearly allied to the scarcely smaller B. longulum LeC. The humeral angle is not quite so prominent, and the strixe and punctures are more heavily marked. The strize are indeed rather deeply impressed and equally so over the whole width of the elytron, but all become less pronounced and oven obsolescent apically; the same is true of the punctures which on the basal half of the elytru are very heavy, making transverse creases in the neighboring interspaces, so that they are rather transverse than longitudinal or even circular. The sutural stria is as in B. longulum, and the texture of the surface of the interspaces, instead of being as in the modern species almost structureless, is marked with a fine but decided cross-ribbing, verging upon reticulation. The color is a rich carbonaceous with a purplish tinge.

Length of elytron, 3.2^{mm}; width, 1.35^{mm}.
Interglacial clays of Scarboro, Onturio. 'Two specimens, Nos. 14536, 14541 (G. J. Hinde).

Bembidium fragmentum.

PI. 1, Fig. 45.

Another species of Bembidium from the glacial clays is represented by a single elytron with the tip broken off, differing from the preceding by its much less heavy markings and agreeing better among modern types with B. constrictum Say, which is of about the same size. The elytron is black, with a remarkably little developed humeral angle (though this is exagger-
ated in the plate by a.s unfortunate twist in the specimen) and with strix almost wholly made up of tolerably heavy circular punctures, which fade out en the apical half of the elytron and are obsolescent on the sides. It is about as heavily marked as is constrictum.

Length of fragment, 3.6^{mm}; probable 〕engtb of elytron, 4^{mm}; its breadth, 1.45^{mm}.

Interglacial clays of Scarboro, Ontario. Sne specimen, No. 14509 (G. J. Hinde).

NEBRIA Latreilio.

Nebrta paleomelas.

PI. 2, Fig. 20.
Nebria paleomelas S. add., Rep. Progr. Geol. Surv. Can., 1877-1878, 179B (1879).
A nearly perfect elytron with tinc humeral angle broken off represents a carabid, probably related to Nebria. A species is indicated which is of about the size of N. sahlbergi Fisch. The elytron is about two and a half times longer than broad; the surface is nearly smooth, piceous, with nine strie, which are rather deeply inpressed, and a scutellar stria, which unites with the first longitudinal stria at about one-sixth the distance from the base, in such a way as to make it appear equally forked in passing toward the base, its outer fork striking close to the base of the second longiturinal stria; the fifth and sixth strite aro united to each other and to the united third and fourth stria, near the apex, by a wavy continuation of the sixth, after it has bent toward the fiftli in running parallel to the seventh, as it curves covard and rums to the tip of the elytron; the ninth stria, which forms the adge of the elytron as it is preserved, shows no appearance whatever of ocellate panctures, although under the microscope some of the central strie show slight signs of faintly indicated punctures near the middle of the elytron.

Length of elytron, 5.2^{mm}; breadth, 1.8^{mm}.
Nicola River, below main coal seam, British Columbia. One specimen, No. 58 (Dr. G. M. Dawson, Canadian Geological Survey).

LORICERA Latreille.

Loricera glacialis.

$$
\text { Pl. 1, Figs. 50, } 57 .
$$

Loricera glacialis Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 763 (1877).
Of this species a pair of elytra are preserved nearly complete, but cracked and flattened somewhat ont of shape. It is ullied to L. cærulescens L., but differs from it and from all other American species of Luricera in the much greater depth of the strix and in the presence of distinct submarginal fovere. The elytra are of a glistening, somewhat blue-black color. The strix are strongly impressed, faintly though rather coarsely and profusely punctulate, the third interspace with three small, distinctly but not deeply impressed fover, arranged as in L. cerulescens, two near each other just above the middle of the elytra, and one behind the middle of the apical half; fifth interspace sometimes furnished with a pair of very faint fover near the middle of the elytra, much as in I. decempunctata Esch, aborit as far from each other as from the sutural border; and finally the ninth interspace, different from all the species of Loricera I have been able to examine, has eight or more small but distinct and deep fover, mostly situated in the apical half of the elytra, sometimes connected by oblique ridges with the next stria within. The interspaces are crossed by very fine wrinkles, scarcely visible with a simple lens. Seen on the under surface each of the punctures of the strix are surrounded by a circle reaching to the circles around the adjoining punctures, reminding one somewhat of the upper surface of Elaphrus. The elytra are shaped as in L. decempunctata, particularly at the apex.

Length of elytron, 4.4^{mm}; breadth, 1.6^{mm}.
Interglacial clays, Scarboro Heights, near Toronto, Canada. Two specimens, Nos. 16416, 16417 (G. J. Hinde).

Loricera? lutosa.

$$
\text { Pl. 1, Fig. } 32 .
$$

A single elytron in a perfect state of preservation. It is almost two and a lalf times longer than broad, scarcely broader in the middle than at the base, the humeral angle roundly angulated. There are ten series of very coarsely punctured strix, the four inner rumning almost to the apical
margin, the others, however, curving inward to abut against them, the outernost meeting the imuermost at the apex; the elevated narrow interspaces smooth and slining; the whole piceous.

This can hardly be referred to Loricera, hat I can find no other genus with which it better agrees. I an inclined to the helief that it will be found to belong to an extinct type of Loricerini. There seems to be, as there, a faint internal plica, but the specimen is broken only at just this point.

Length of elytron, 3.3^{mmn}; breadth, 1.4^{mm}.
Clay beds of Scarboro, Ontario, Canada. One specimen, No. 14559 (G. J. Hinde.)

ELAPHRUS Fabricins.

Elapitrus 1rregularis.

$$
\text { Pl. 1, Fig. } 5 \text { fi. }
$$

An elytron only is preserved, which by its surface sculpture appears to resemble E. vixidis, of California (which I have not seen), more than any other, though in size it agrees better with E. riparius and E. ruscarius, the nearest allied of the species I have examined. The elytron is distinctly slenderer than in these latter species, with the middle scarcely, if at all, wider than the base, but with entirely similar apex. Surface uniformly punctured, the punctures coarser than in E. riparius, with ill-defined obscure fover, the basal one of the second series from the suture being the only one as distinct as in E. riparius; spaces between the fovere remarkably elevated, forming longitudinal, more or less tortuous ridges which are lighest (and rarely polished) in longitudinal dashes as long as the diameter of the fover and in the same lines with them, i. e., between fover of the same longitudinal series and not in the interspaces between the series. It is in these elevated spaces that its relationship to E. viridis especially appears, and their irregularity, through their more or less tortuous connecting, less elevated ridges, which has suggested the name. Color dull piceons, with faint dark metallic green reflection, which is quite distinct on the inflected margin.

Length of elytron, $4.5^{\mathrm{mm}} ;$ breadth, 1.5^{mm}.
Clay beds of Scarboro, Ontario. One specimen, No. 14527 (G. J. Hinde).

NEOTHANES gen. nov. (ν éos, $\theta \nu \eta \dot{\eta} \pi \omega$).

Allied to Carabus, and belonging to the same tribe, Carabini. It differs from it in some marked features of the head, but agrees better with it than with the Cychrini, in which it was formerly placed. The head is unusually broad and short, the width between the base of the not very prominent round eyes being nearly twice as great as the length from the center of the eyes to the margin of the labrum, while the burial of the head in the prothorax up to the base of the eyes renders the brevity more apparent; the labrum is entire, its base just in front of the insertion of the antennx ; mandibles shorter and stouter than in Carabus and Calosoma, arcuate, untoothed; tip of maxille just as stout as (though probably thinner than) the apex of the mandibles. The head does not appear to be constricted behind the eyes, though but little of that portion can be seen in the single specimen which preserves this part. Prothorax and elytra as in Carabiss, excepting that the latter have no foveæ whatever, and the very numerous strix are straight and the interspaces smooth and unbroken.

Neothanes testeus.

Pl. 7, Figs. 32, 39.

Cyohrus testeus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 758-759 (18;8).

This species was first deseribed from the less perfect and more obscure specimen of the two now before me. The better preservation of the secord, with its thorax and other parts, shows that the species should be placea in the Carabini rather than in the Cychrini. The stout and untoothed mandibles leave no doubt on this point.

The pronotum is broadest somewhat in advance of the middle and tapers with about equal r pidity toward the front and toward the base, so that the base is somewhat narrower than the front, the external angles well rounded; the front margin is nearly, the hind margin quite, straight, the former scarcely angulate in the middle, the lateral angles slightly produced anteriorly; there is a faint median carina, more pronounced in the middle, but otherwise the thorax appears to be tolerably smooth, though laterally the head is longitudinally subrugulose. The elytra have the humeral angle well rounded off and the tip angulate; the strix are close and crowded to the number of about twenty-five on each elytron, sharp and clean, but
rather shallow, and with scarcely the slightest sign of any uncertainty of direction or waviness of course such as is common in the Carabini; nor do they combine and divide, bat are equidistant and parallel throughout, the interspaces smooth and not imbricated.

Length of body to tip of mandibles, 11^{mm}; length of head from posterior edge of eyes to front of clypens, 1.25^{mm}; of prothorax, 2.15^{mm}; of elytra, 7^{mm}; width of head between the eyes, 1.7^{mm}; of prothorax in front, 2.75^{mm}; at widest, 3.5^{mm}; at base, 2.5^{mm}; of elytra, 4.8^{mm}.

Green River, Wyoming. Two specimens, Nos. 24 (L. A. Lee), 4059 and 4100 (S. H. Scudder).

CYCHRUS Fabricius.
Cyghrus wheatleyi.
Pl. 1, Fig. 1.
Cychrus wheatleyi Horn, 'Prans. Amer. Ent. Soc., V, 242 (1876).
"Of this species I have before me a flattened thorax, all the actual substance of the upper surface being present in moderately good preservation, and the large portion of a left elytron of which but a small portion of the substance remains.
"The thorax although flattened bears evidence of having the disk moderately convex, the median line distinct, the transverse basal impression rather deep and the lateral margins broad, wider at base and reflexed. The kind angles are obtuse and not prolonged, the base being moderately emarginate. The sides are moderately arcuate and gradually narowed toward the base, the widest portion of the thorax being slightly in front of the middle. A species is thus indicated resembling viduus but snaller, not exceeding in size the average specimens of andrewsii.
"The elytra are finely striate, the intervals moderately convex and apparently smooth, the strix with moderate punctures not as closely placed as in any species on this side of the continent. The strix are as numerous as in viduus or andrewsii.
"Thorax-Width, .24 inch, $.6{ }^{\mathrm{mm}}$; length, .16 inch ; 4^{mm}.
"Elytra (restored).—Width, .48 inch; $12{ }^{\mathrm{mm}}$. Length, .66 inch; 16.5^{mm}.
Bone caves of Port Kennedy, Pennsylvania.
"I think there is very little doubt of the distinctness of this species
from any at present existing, but it may be inferred that it is the species to which our viduus must look for its ancestry.
"I have named the siecies in honor of Mr. Charles M. Wheatley, of Phomixville, to whem we are indebted for the exploration of the locality in which the fossil insects were discovered." Horn, loc. cit.

Including the striae next the margins of the elytra there appear to be fourteen in all; the two outer ones are ohscure and those upon the disk are at an average distance apart of 0.375^{mm}; the strie appear to he faintly punctured and the pmetures as distant as the strix; the intervals between the strie are broken by irregular impressed lines producing a taberculate appearance but otherwise smooth. The disk of the prothorax is considerably more quadrate and proportionally broader than in the species of Cychrus with which Dr. Horn compares it. Indeed, I was at first inclined to believe that the lateral lamellate rim was narrow and equal throughout, and therefore to place the insect in Calosoma (in the neighborhood of the species sometimes referred to Callisthenes); but a renewed study in company with Dr. Horn shows that this is a mistake, and that the rim broadens greatly behind, leaving a somewhat shield-shaped disk as in Cychrus viduus.

Length of thorax, $3.6^{\text {nim }}$; breadth of same, 6^{mm}; breadth of elytron, 6^{mm}; length of fragment preserved, 12.75^{mm}.

Bone caves of Port Kennedy; Pennsylvania.

Cychrus minor.

Pl. 1, Fig. 2.

Cychrus (ninor) Horn, Trans. Amer. Ent. Soc., V, 243 (1876).
"Two fragmentary elytra of smaller size than the preceding [C wheatleyi] afford the only groundwork for the name above suggested. The strie are fine and with fine punctures, the intervals feebly convex, evidently slightly rugulose, and probably, also sparsely punctulate. An impression of the scutellum remains which is broadly triangular, and not different in form from that of andrewsii.
"Elytra (restored). Length, .54 inch; 13.5 mm. Width (actual), 15 inch; 3.75^{mm}.
"The form is therefore almost exactly that of andrewsii." Hern, loc. cit.

There is a slight bluish cast to the black chitinous parts of the elytra

I have examined; the punctures of the strixe are about as far apart as twothirds the width of the interspaces; the latter are 0.25^{mm} wide and are barely convex, slightly rugulose, and so far as I can determine not at all punctulate; the length of the fragment of one elytron is 10.5 mm , the width of the same elytron, 4.25^{mm}.

Bone caves of Port Kennedy, Pennsylvania.

DIPTERA Linné.

Baron R. von Osten Sacken and Mr. Edward Burgess have given me much assistance in perplexing points while studying the Diptera here recorded.

DIPTERA CYCLORHAPHA Brauer.

 Family LONCH AIDA Loew.LONCHEA Fallén.
Lonchata senescens.
Pl. 3, Fig. 18.
Lonchaa senescens Scudd., Rep. Progr. Geol. Surv. Can., 1875-1876, 277-278 (1877).
A portion of the body (excluding the head) too fragmentary to bo of any value and a pair of expanded wings faintly impressed on the stone compose the remains of the single individual of this species. The wings are rather slender, obovate and well rounded, with the neuration of Lonchæa vaginalis Fall., as given by Westwood in Walker's "Diptera Britannica," excepting that the basal cells do not appear to be quite so large in the fossil species, and the fourth longitudinal vein is slightly more arched beyond the larger transverse vein; the costal vein is bristly; the wing appears to be hyaline, but there is an indication of a slight infumation along the larger transverse vein ; it is covered with excessively fine microscopic hairs, which also cover all the veins with a delicate pubescence; with this exception the first longitudinal vein is bare ; the larger transverse vein is slightly oblique, and but little larger than the portion of the third longitudinal vein lying between the two transverse veins.

Length of wing, 4.6^{mm}; breadth of same, 1.8^{mm}.
Quesnel, British Columbia. One specimen, No. 17, Dr. G. M. Dawson, Geological Survey of Canada.

PALLOPTERA Fallén.

Palloptera morticina.

Pl. 3, Fig. 15.

Palloptera mortioina Scudd., Rep. Progr. Gool. Surv. Can., 1875-1876, 278 (1877).
An indistinguishable crushed mass of chitine and the basal half or more of a single wing are all that remain of this creature. The wing is small and probably was not over three millimeters long; hyaline, with a slight infumated spot of considerable size in the middle of the wing between the two transverse veins ; the basal cells are small; the anxiliary vein is very slight, and throughout very closely approximated to the first longitudinal vein ; the latter appears to be short and nearly straight, bare of bristles, but pubescent like the rest of the wing ; the costal vein is bristly, but like all the others is pale testaceous; the small transverse vein lies within the tip of the first longitudinal vein ; the large transverse vein is straight and perpendicular to the costa, remcoved from the small transverse vein by double its own length.

Length of fragment of wing, 2.15^{mm}.
Quesnel, British Columbia. One specimen, No. 20 (Dr. G. M. Dawson, Geological Survey of Canada).

Family ORTALIDA Fallén.

LITHORTALIS Scudder.

Lithortalis Scudd., Rep. Progr. Geol. Surv. Can., 1875-1876, 276-277 (1877).
This ortalid can certainly not be referred to any of the American genera mentioned by Loew. It is most closely allied to Ceroxys, but besides a different distribution of the spots the neuration of the wing varies so much from that of Ceroxys as to render it certain that it should be separated from -it. The shape of the wing is much as in Ceroxys, especially as in C. canus Loew, to which it is also most nearly allied in markings; the first longitudinal vein has bristles upon its end only, and even here they are few and small ; the fourth longitudinal vein is curved backward a little, and the posterior angle of the third basal cell is not at all produced; the third and fourth longitudinal veins diverge at their tips, while the second and third converge. In Ceroxys the auxiliary rums beside the first longitudinal vein
for some distance and then suldenly curves, almost bends upward. In Lithortalis the separation is gradual and not abrupt. In Ceroxys the small transverse vein lies below or outside the tip of the first longitudinal vein; in Lithortalis it lies within it. In the pattern of the markings also it differs from Ceroxys in that there are no spots whatever before the larger transverse vein, excepting that the stigma, or the space lying between the auxiliary and first longitudinal veins, is testaceous.

Lithortalin picta.

$$
\text { Pl. 3, Figs. 10, } 16 .
$$

Lithortalis picta Sendd., Rep. Progr. Geol. Surv. Can., 1875-1876, 277 (1877).
The thorax, part of the abdomen, and both wings of thesingle specimen preserved show the upper surface of the body with expanded wings. The abdomen is without markings. The wings are very well preserved, the apex slightly angulated between the third and fourth longitudinal veins; the costa nearly straight on its basal half, strongly convex beyond; the stigma occupies the entire space between the auxiliary and first longitudinal veins and is dark castaneous, deepening toward the costa to blackish fusscous; the costal vein is blackish fuscous; the other veins are luteo-testaceous, deepening to blackish fuliginous next or in the spots; the other spots are dark fuliginous, deepening toward the veins or the margin, and consist of a narrow belt following the larger transverse vein and of conflnent spots at the tips of the second, third, and fourth longitudinal veins, forming at narrow marginal belt from just below the tip of the fourth longitudinal vein to half-way between the tips of the first and third longitudinal veins, broadening slightly at the extremities of the veins in rapidly narrowing shoots, which follow the veins a short distance.

Length of thorax and fragment of abdomen, $3^{\text {mum }}$; breadth of thorax, 1.25^{mm}; breadth of abdomen, 1.5^{mm}; length of wing, 5^{mm}; breadth of same, 1.75^{mux}.

Quesnel, British Columbia. One specimen, No. 5 (Dr. G. M. Dawson, Geological Survey of Canada).

Family SCIOMYZIDAE Fallén.

SCIOMYZA Fallén.

Sciomyza revelata.

Pl. 3, Figs. 3-6.

 459 (1878).

Three specimens are to be referred to this species. Although each of them is rather imperfect, the collocation of the fragments enables ns to reconstruct all parts of the wing. 'The head was about one-fifth the size of the thorax; the thorax broadly vaulted, abruptly arehed in front, somowhat depressed above; the wings were a little more than twice as long as broad with the costal border gently arched, the apex slightly angulated and the lower margin pretty regularly convex, bent but rounded at the axillary angle; the membrane and the castaneons veins as well are covered not very profusely with delicate microscopic hairs, distributed with great regularity and about 0.02^{mm} apart; the costal vein is setose throughout the upper margin, and extends to the fourth longitudinal vein, although it is but faint at the extreme tip or on the lower third of the space between the third and fourth longitudinal veins; the auxiliary vein is weak, but distinctly separated from the first longitudinal vein from its very base, terminating at the middle of the basal half of the costa; the transverse shoulder vein is exactly transverse, very faint, and lies a little beyond the base of the basal cells; the first longitudinal vein is bare save the pubescence, and apparently terminates just within the small transverse vein; the latter lies as fur before as the large transverse vein lies beyond the middle of the wing and is midway between the basal cells and the large transverse vein; the second and third longitudinal veins are nearly straight, slightly sinuous and subparallel throughout, but at their tips diverge from each other; the third longitudinal vein is regularly though but slightly arched beyond the small transverse vein, and strikes the very apex of the wing; the fourth longitudinal vein is made up of three perfectly straight subequal parts, slightly bent at the transverse veins; the larger transverse vein is straight, nearly perpendicular to the costa; it is about half the length of the middle portion of the fourth longitudinal vein, and its lower extremity is nearer the margin of the wing (following the course of the fifth longitudinal vein) than its own
length; the fifth lougitudinal vein is lost just hefore reaching the margin and the sixth runs half-wny to it; the second and third longitudinal veins separate just over the extremities of the simall basul cells, and originate from a transverse vein which unites the first and fourth longitudinal veins before the middle of the basal cells.

Length of the wing, 4.5^{mm}; breadth, 2^{mm}.
Quesnel, British Columbia. Three specimens, Nos. 2, 42, 43 (Dr. G. M. Dawson, Geological Survey of Cunadu).

Schomyza? manca.

II. 4, Fig. 9; Pl. 9. Figs. 1-6, 15, 16, 18, 20, 23, 24, 28, 29.

Selomyza? manca Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 750-758 (1878).
This fly, extremely abuntant in the Green River shales-in fact outnumbering all the other Diptera together-is temporarily placed in this genms, because its characters seem to agree better with those of the fimily Scionyzide than of any other; yet it can not properly be placed in any of the genera known to me. I should be inelined to place it near Blepharoptera in the Helomyzidæ, but all the tibie are bristled throughout. Its general appearance is that of the Ephydrinide, but the bristly surface of the middle tibie would allow us to place it only in the Notiphilina, from which it is excluded by the want of pectinations on the upper side of the antennal bristle. The want of complete neuration prevents me from designating it at present by a new generic name, which it can hardly fail to require as soon as that is known; only two or three of the three-score specimens before me have any important part of the wings, and this constant fragmentary condition of the fossils has suggested the specific name. The genus in which it would fall may be partially characterized as follows: Body compact, stout; the head comparatively small, perhaps one-third the bulk of the thorax, about threo-fourths its width, with large, naked eyes, the front between them nearly equal and pretty broad, obliquely sloped, and slightly tumid on a side view, so as to project considerably below ; a few curved bristles project from its summit. Antenne with the Hagellum subglobose, scarcely longer than broad, much larger than the joints of the seape, and above bearing at its tip a curved, rather short, naked, tapering style, scarcely longer than the flagellum proper and bluntly pointed: in several specimens in whieh this part is pretty well preserved this is inva-
riably its eharacter, and no termimal thead em be seen in any of them, nor any indication of joints in the style; this brevity of the style seems to bo peculiar. As fur as the neuration of the wing can be made out (there must remain somo doubt upon this point until better examples are discovered) the course of the anxiliny vein can not be determined; the first longitudinal vein nppears to end before the middle of the costal border : the second originates abruptly from the middle of the first longitudinal vein, and terminates (certainly) only a little way before the tip of the wing; the third rums very nearly purallel to the secomel longitudinal vein, termimates at the tip of the wing, and is perhaps comected by a cross-vein with the fourth longitudinal vein seureely within the extremity of the first longitudinal vein; the fourth longitudinal vein originates from the fifth or sixth a little before the origin of the second longitudinai \because ain, diverges rapidly from the third beyond this comnection, and is arcuate, eu: :ing upward again before reaching the posterior border and ruming outward io the onter border; the fifth longitudinal vein curves still more strongly from the fourth, until it reaches the middle of the posterior border, to which it suddenly drops, and scarcely above which it is united with the fourth longitudinal vein by a long, oblique cross-vein. The femora are stout, the front pair largest at the base and tapering, the other pairs subernal throughout, all armed externally above and below with a row of very delieate, nearly straight spines, the upper row perhaps wating on the middlo femora, and the lower row developing into longer and stiffer bristles on the apical half of the fore femora. The tibise are equal, a little longer than the femora, considerably slenderer but still rather stout, furmished alike with several straight, longitudinal rows of minute spines, and on the outer side with three or four distant, moderately stout, longer spines (less prominent on the fore tibiae than on the other legs), and at the tip with a eluster or several similar spines or spurs. The tarsi are very much slenderer than the tiliac, longer than they, the other joints slemderer than the metatarsus, all profusely armed with exceedingly delicate spines or spinous hairs, arranged regularly in longitudinal rows; at tip is a pair of very slender, pretty long, strongly curved claws, and apparently a pretty large pulvillus.

The brevity of the antennal style, the length of the first longitudinal vein of the wing, the approximation of the middle transverse vein to the base, the strong arcuation of the fourth longitudinal vain, the obliquity of
the posterior, large, transverse vein, and its approach to the posterior margin, the bristly nature of the legs, and the length and comparative slenderness of the tarsi-all, excepting parts of the nemration, chnracters open to little question-render this fly peculiar and its exact location somewhat dubions. When, however, the nouration of the wing is sufficiently well known to emble us to maderstand more definitely the character of the basul eells and other parts of the base of the wing, the relation of the auxiliary to the first lougitudinal vein, and to mip unquestionably the whole course of the fourth longitudimal vein, we shall probably be nble to arrive at very preciso conclusions.

In addition to the fentures above mentioneed, it may be mulded that the thorax is subquadrate, scarcely longer than hroad, furnished with distunt, long, eurving bristles disposed in rows, but in no individual well enough preserved to give further details of distribution. The abdomen is composed of five visible, subequal joints; its mass compact, scarcely constricted it the base, regularly and pretty strongly arched on a side view, tapering rapidly on the upieal half to a bluatly rounded apex, the surface abunduntly elothed with vather delicate spinons hairs, those at the posterior edge of the segments longer, and forming in regular transverse row. The metatarsus of the middle log is proportionally longer than in the others, where it is about half as long as the other joints combined

Measurement of average individuals: Lengtl of body as curved, 4.25^{mm}; of head, 0.65^{mm}; of thorix, 1.7^{mm}; of abdomen, 2.2^{mm}; breadth of hoad, 0.85^{mm}; of thorax, 1.25^{mm}; of abdomen, 1.4^{mm}; length of flagellum of antennæ, $0.16^{\mathrm{mm} \mathrm{\prime} \mathrm{\prime}}$; of style, $0.1 \mathrm{y}^{\mathrm{mm}}$; of wing, 3.4^{mm} ? ; breadth of same, 1.2^{mm}; length of femora, 0.75^{mm}; of tibix, 0.95^{nmm}; of fore tarsi, 0.85^{mm}; of middle tarsi, 1.5^{mm}; of lind tarsi, 1.6^{mm}; of fore metatarsi, 0.4^{mm}; of middle metatarsi, 0.64^{mm}; of hind metatarsi, 0.48^{mm}; breadth of femora, 0.28^{mm}; of tibie, 0.12^{mm}; of metatarsus, 0.08^{mm}; of tip of tarsi, 0.05^{mm}; length of claws, 0.09 mma .

Green River, W yoming. Numerous specimens, collected by Mr. F. C. A. Richardson, Dr. A. S. Packard, Prof. L. A. Lee, Messrs. F. C. Bowditeh, and S. H. Sendder: Station 16 on the White River in western Colorado (Dr. C. A. White).
voL XIII— 35

Sclomyza? Disjecta.

$$
\text { Pl. 9, Figs. } 7,22,25,30,32,33
$$

A second species, apparently of the same genus as the last mentioned, but smaller, is found in considerable numbers in the same Green River berls. althought in far less abondance than the last. The wings appear to be propertionally shorter than in the last species, witla a rather broader space between the veins in the upper half of the wing, indicating perhaps a broader wing. The legs are slenderer, the disparity in the stoutness of the tibia and trisi is not so great, and the tarsi are proportionally shorter; the legs are also as densely, though less coarsely, spined, and a similar delicacy is observable in the bairiness of the body. All the specimens are preserved on a side view, and like the last snecies are in a fragmentary condition.

Length of body of an average individual 3.2^{mm}; of head, 0.55^{mm}; of thorax, 1.2^{mm}; of abdomen, 1.8^{mm}; of wing, 2.4^{mm} ? of hind femora, 1.2^{mm}; of hind tibie, 1.4^{nm}; of middle and hind tarsi, 1^{mm}.

Green River, Wyoming. Numerous specimens by the same as the last species.

Sciomyza? sp.

$$
\text { PI. 10, Fig. } 5 .
$$

Another species of Sciomyza, or perhaps of the same genus as the lastmentioned species (for several of its features are certainly repeated here), seems to be represented by the insect figrred in Pl. 10, Fig. 5, which is of about the size of S. manea, but is more delicate. It is however so imperfect is far as the head and wings are concerneci that one can not characterize it satisfactorily without better material.

Green River, Wyoming. One specimen, No. 18 (Dr. A. S. Packard).

Family HELOMYZIDÆ Westwood.
HETEROMYZA Fallén.

Heteromyza senilis.

Pl. 3, Figs. 1, 2.
Heteromyza senilis Scudd., Mep. Progr. Geol. Surv. Can., 1875-1876, 275, (1877).
In this case we have but a fragment of one wing, but one which exhibits most of the peculiarities of neuration, and, so far as it goes, very well pruserved. The wing is slightly discolored, but was apparently hyaline in life, covered rather profusely with exceedingly delicate microscopic hairs which cover veins as well as membrane; the veins, excepting the costal, are testaceous; the costal vein is blackish fuscous, covered with short bristles, and extends beyond the third longitudinal vein, where the wing is broken; the auxiliary vein strikes the costa at about the end of the first quarter, and the nearly straight first longitndinal vein before the middle of the wing; this latter vein is bare or only feebly pubescent; the slightly sinuous, toward the extremity slightly upturned, second longitndinal vein divides about equally the space between the costa and the third longitudinal vein; the latier is almost straight, scarcely bending to receive the small tramserse vein at about the end of its basal third, and terminates at the broadiy rounded tip, of the wing ; the small transverse vein lies just before the tip of the first longitudinal vein; the fourth longitudinal vein is nearly straight, only bent next the transverse veins; before the small transverse vein it is parallel and rather closely approximated to the third longitudinal vein; beyond, it diverges slightly and regularly from it, and beyond the large transverse vein again becomes parallel to it; only the basal portions of the fifth and sixth longitudinal veins are present, and the extreme base of the wing is lost; but the basal cells are evidently small, and their extremities lie just beneath the union of the second and third longitudinal veins; the wing is broad, ovate, and well rounded; the costa pretty strongly arched.

Lengih of fragment, 4^{mm}; probable length of wing, 4.5^{mm}; probable breadth of same, 2^{mm}.

Quesnel, British Columbia. One specimen, No. 1 (I)r. G. M. Dawson, Geological Survey of Canada).

Heteromyza betecta.

Pl. 5, Fig. 76.

A. .eromyza detecta Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, \%i8-709 (1877).

A single specimen and a very poor reverse of it occur on the sarie stone with Spiladomyia simplex. Both wings and the thorax are preserved, with short fragments of moderately stont hairy legs. The venation is obserre, and the species referred provisionally to Heteromyza matil better specimens decide more certainly to which of the groups of Muscide it belongs. So far as it can be determined the venation is very similar to that of the preceding species, but the wing is much smaller, and there is a peeuliarity about it which is not quite clear: at the bend of the costa, indicating the tarmination of the auxiliary vein, there is a short, distinct, oblique cross-vein nearly in continuation of the base of the costa, but bent slightly downward, which reaches the first longitudinal vein; the latter runs close to the costa and strikes it about midway between the tip of the auxiliary vein and the tip of the wing; the costa apparently rums exactly to the tip of the second longitudinal vein; the third and fourth longitudinal veins run parallel to each other to a very little way beyond the extremity of the anxiliary vein, where they are united by a short cross-vein, beyond which they both diverge from each other in opposing curves, equally turned aside from their former course; the third longitudinal vein runs to the tip of the wing; the fourth is united half-way to the border of the wing by a long oblique cross-vein, running at right angles to the fifth longitndinal vein. The extremity of the basal cells apparently lies about half-way from the base of the wing to the tip of the anxiliary vein, but this point is very obscure.

Length of wing, 1.65^{mm}; breadth of same, 0.95^{mm}; lengtl of thorax, 0.75^{mm}; breadtlo of same, $0.55^{2 \mathrm{~mm}}$.

Charrin Valley, White River, Colorado. One specimen (W. Denton),

Family ANTHOMYIDE Robineau-Desvoidy.

ANTHOMYIA Meigen.

(1) Anthomyia inanimata.

Pl. 3, Fig. 19.
Authomyia inani" .th ...n'd., Rep. Progr. Geol. Surv. Can., 1875-1876, 273-274 (1877).
This species is mary well represented by a single individual and its reverse, showing thererior view of the insect with the wings (excepting
the extreme base), most of the abdomen, and parts of the head, thorax, and legs. The wings are rather narrow and regularly rounded; the bristly costal vein extends to the tip of the fourth longitudinal vein; the first lougitudinal vein terminates before the middle of the costal border, just above the small transverse vein; the auxiliary vein is distinct throughout and remains in close contiguity with the first longitudinal vein, eurving first downward and then upward, and diverging from it only near the tip, and then but little, being separated from it at its tip by searcely more than the thickness of the costal vein ; the transverse shoulder vein is slightly oblique; the third longitudinal vein strikes the tip of the wing, and the second divides we space between this and the costa, rumning for the greater part of its length parallel to the latter, turuing slightly upward at the tip; the third and fourth longitudinal veins are pretty elosely approximated, and parallel as far as the transverse vein in the middle of the wing; from this to the large transverse vein they diverge gently, and are again parallel beyond; the small transverse vein is placed a very little before th middle of the wing; the large transverse vein is straight, nearly perpendicular to the costa, its lower extremity distant from the margin by about half its own length, its upper extremity dividing, just before the middle, the part of the fourt!। longitudinal vein lying beyond the transverse vein; the fifth longitudinal vein vanishes just before reaching the border; the two small basai cells are nearly equal in size, in length about midway between the lengths of the two transverse veins. The wing is covered pretty abundautly, veins and memhrane, with delicate mieroseopic hairs, and appears to be uniformly hyaline, though a little fuscous on the stone. The specimen appears to be a male, and the tegula are distinctly marked, leaving no doubt that it bolongs to this group of Muscide.

Probable length of body, 6^{mm}; length of wing, 6.2^{mm}; breadth of same, 2.25^{mm}; length of hind tibia, 1.45^{nm}.

Quesnel, British Columbia. One specimen, Nos. 30 and 32 (Dr. G. M. Dawson, Geological Survey of Canada).

Anthomyia burgessi.

$$
\text { Pl. 3, Fig. } 34 .
$$

Anthomyia burgessi Scudd., Rep. Progr. Geol. Surv. Can., 1875-1876, 274-275 (1877).
The single specimen of this species shows an upper view of the whole body in a somewhat fragmentary condition. The broad and rounded
abdomen indicatess that it is a female. The wings are uniformly faint fuliginous, but probahly hyaline in life, covered with microscopic hairs over both membrane and veins; they are short and hroad and well rounded; the veins in the upper half of the wing are rather darker than those in the lower; the costal vein is bristly and extends to the tip of the fourth longitudinal vein; the stout first longitudinal vein strikes the costal at the middle of the front margin; the anxiliary vein appears to be confluent with the first longitudinal vein lalf-way from the base of the wing to the tip of the former ; then, rapidly curving forward, diverges from it, and at its tip is as distant from the first lugitudinal vein as the second longitudinal is from the third above the short transverse vein; the transverse shoulder vein is slightly curved and a little oblique and lies directly above the base of the small basal cells; the direction and relation of the longitudinal veins is the same as in A. inanimata, but the small transverse vein lies slightly beyond the middle of the wing, so that the divergence or parallelism of the veins is more marked than there; the large transverse vein is bent slighty inward in the middle, and its general direction is about midway between perpendicular to the costa and parallel to the neighboring border; its lower extremity is but half as far from the margin of the wing as its own length; its upper divides, a little before the middle, the portion of the fourth longitudinal vein which lies beyond the small transverse vein, but iustead of being only half as long as the portion of the fourth longitudinal vein lying between the two transverse veins, as in A. inanimata, it is very nearly as long; the fifth longitudinal vein just fails of reaching the border, while the sixtli only runs about two-thirds the distance to the border; the basal cells are moderately large, much as in the preceding species. On one side there are apparently remains of tegulse, showing that the insect should be referred to this group of Muscide. The apical third of the hind tibia is furnished abmdantly with not very long hairs, while the remainder of the tibia is bare.

Length of body, 4.75^{mm}; length of wing, 4.75^{mm}; breadth of same, $2^{\text {min }}$; leagtl of hind tilix, $1.15^{\text {man }}$; lengtlı of hind tarsi, 1.25^{mm}.

Named for my friend Mr. Edward Burgers, whose critical knowledge of Diptera, before he turned his attention exslusively to naval architecture; was of the greatest service to me.

Quesnel, British Columbia. One specimen, No. 29 (Dr. G. M. Dawson, Geological Survey of Canada).

Family MUSCIDÆ Leach.
 MUSCA Linné.

Under this head I have temporarily placed five species of dipterous larve which appear to belong to this family.

Nearly all of them, however, and especially Musea ascarides, so elosely resemble the larve of bot-flies that : could scarcely persuade myself that they did not belong to the Estridx. The appendages of the skin, however, are much more delicate than is usual in (Estridx, and are unifonmly distributed over the surface or are altogether absent. The empty skins, too, have every appearance of belonging to the sane insects as the complete bodies, and, although these are not cast skins (in which ease they wouid be proved natural inhabitants of the water), for they still contain the harder parts of the internal organs in many cases, but rather remains of partially decomposed larva, it would seem improbable that so large a number of ostrid larve could be found, when the only way in which they conld have reached their present condition would be through the droppings of animals affected by the bots standing in the water. Of course the reference I have given them is only provisional.

Musca ascarides.
Pl. 5, Figs. 74, 75, 79, 82-87, 08, 101.
Musca ascarides Scudd., Bull. U. S. Geol. Gengr. Surv. Terr., III, 756-757 (1877).
First there is a species to which a cousiderable number of specimens belong, which may take the name here given. Some of the specimens are complete; others consist of enptied skins only. When contracted the body is thick, especially on the anterior half, and about twice as long as broad, closely resembling the larva of a bot-fly. Both extremities are rounded, the anterior very broadly, while the posterior half tapers very regularly. In one specimen, which is not so much shrunken, the body is fusitorm, and about three and a half times longer than broat, the head and hinder extremity tapering in a nearly equal degree. In the emptied skins, as in the others, it may be seen that the normal form is a blunt, squarely rounded head, behind whieh the body is noarly equal, and then tapers toward the tail. At the anterior extremity may be nearly always seen a portion of the mandibles, consisting of a pair of very slender rods or
blades convergitg anteriorly and terminating in two attingent rounded lobes attached to the inner edge of the blades The anterior spiracles are seen in a single specimen as a simple, rounded, dark spot just outside the, middle of either lateral half; the two lateral tracheal vessels may be seen in rearly all the specimens, and especially at the linder extremity, and fragments of them are frequently scattered about on the stones; they are very large. 'The integment is generally rather dark' and more or less blotched, and covered profusely and almost uniformly with backwarddirected hairs; these are short, tapering, and moderately stont, though minute.

Length of contracted bodies, $11.5^{\mathrm{mm} \mathrm{\prime}}$; breadth of same, 6.25^{mm}; length of bodies not contracted, 17.5^{mm}; breadth of same, 5.755^{mm}; length of skins, 25^{mm}; breadth of same, 7.25^{mm}; length of blades of mandibles, 3.25^{mm}; diameter of tracheac, 0.6^{mm}; of anterior spiracles, 0.4^{mm}; distance of latter apart, $2.75^{\text {mun }}$.

Chagrin Valley, White River, Colorado. Several specimens (W. Denton).

Musea bibosa.

$$
\text { P1. 5, Fig. } 73 .
$$

Another s_{p} nerio.s is represemed by a singie body and one skin and its reverse, which seem to belong to the same. It isvelosels allied to M. ascorides, but differs from it in some essential futures. When contracted the body does not taper regulaly from the midille of the from half to the tail, but the whole hinder half is much slenderer-than the from amd toward the tip has nealigy parallel sides, that the body is flask-shaped and abont twice as lony as hroad. A simūz though not so abmapt, change of contour is seen in thethin. The memenme of the mandibles and of the trachere may be seen to bethe same as in the preceding species, but the integument is zaked, heingontirely destitume of any of the hairs Which roughen the skin - ${ }^{2}$ M. ascartikes.

Length of contracted loody, $14^{\text {nm }}$; breadth of same in front, 7.5^{mm}; behind, $3.75^{\text {eng }}$; ength of skin (a small one), $16^{\text {mm" }}$; greatest breatth of same, 5.25^{mm}; length of mandible blate, 2.75^{mm}; dimmeter of trachote, 0.75^{mmu}.

Chagrin Valler, White River, Colorado. Thospecimens(W. Denton).

Musca sp.

Musca sp. Scudd., Bull. U. S. Geel. Geogr. Surv. Terr., III, 757 (1877).
A third species is represented by three or four contracted skins, which are too uncharacteristic to name, though it may be seen that they are listinct from the others. As preserved they are almost black; the skin is much wrinkled and smootli; the body pretty regularly and bluntly obovate, nearly twice as long as broad; at the end of one, two colorless oval patches lie united, side by side, pressed against the extremity, and doubtless represent the head, and prove it to be different from the other species; it is, however, impossible to say what its affinities may be

Length of body, 8.5^{mm}; breadth, 4^{mm}.
Chagrin Valley, White River, Colorado. (W. Denton).

Musca hydropica.

11. $\bar{\delta}$, Figs. 72, 92, 93, 107.

Musoa hydropica Seudd., Bull. U. S. Geol, Geugr. Surv. Terr., III, 757-758 (1877).
A fourth species is represented by two bodies and a skin, which present an entirely different appearance from the preceding three species, but which may temporarily be given the same broad generic name. In this species the form, even when contracted, is far more clongated than in the others; the body is nearly five times as long as broad, is broadest just behind the roundly pointed head, tapers rapidly toward it, but gently posteriorly to the middle, behind which it is equal. In the skin the part of the body preserved is equal and very broad, excepting toward the head, where it rapidly narrows, the head being well rounded or slightly prodiced; the mouth parts, instead of being withdrawn a little firom the front extremity of the borly, as in the species already described, lie at its very houndary, and the blades are parallel instead of posteriorly divergent. The integument is covered rather profusely with very short, conical, tapering hairs, searcely mere than twice as long as their breadtl at buse. 'The larva is very diatinctly banded with darker and lighter colors, as the empty win shows, the posterior third of each segment being oceupied by a very dark band, darkent on the dorsal surface, while a faint pale transverse line breaks the anterior portion into two equal halves of the same width as the blackish band.

Lengrth of body, 23^{mm}; greatest breadth of same, 5^{mm}; breadth posteriorly, 3^{mm}; breadth of skin, 9.5^{mm}; length of segments on same, 4^{mm}; length of mandible blades, $3.5^{\text {man }}$.

Chagrin Valley, White River, Colondo. Three specimens (W. Denton).

Musca vinculata.
 Pl. 5, Fig. 77.

Musca vinculata Sculd., Ball. U. S. Geol. Geogr. Surv. Terr., III, 758 (1877),
There is still another species allied to the last mentioned which may bear the name here proposed. It is represented only by parts of emptied skins, all lying on the same stone, and which differ from the preceding species in being absolntely devoid of any hairs and in having different and mueh fainter markings. 'The general color of the best preserved specimen is a pale brown, and the markings are scarcely darker transverse bands, narrowing on the sides, but ocenpying nearly the entire length of a segment dorsally, and broken into equal parts by two transverse rows of very faint mind minute pate dots. No specimen is sufficiently perfect to show the shapo or the length, but the shape appears to be similar to that of M. hydropica, and the insect mitch smaller than it, for the breadth is 4.5^{mm}, and the length of one segment, $2^{\text {mmm. }}$

Chagrin Valley, White River, Colorado. Several snecimens (W. Denton).

Musea spp.

$$
\text { Pl. } 5, \text { Figs. } 80,81,99,100 .
$$

A wholly different form of larva is represented in Pl. 5, Figs. 80, 81, and on one of the stones are found the month parts of another, Pl. 5, Figs. $9!$, 100, which are quite different from those of Musca ascarides.

Chagrin Valley, White River, Colorado (W. Denton).

Family TACHINID\& Loew.

TACHINA Meigen.

Tachina sp.

Tachina sp. Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 756 (1878).
To this genns is referred provisionally a small but stont and densely hairy fly, with thick, slightly tapering abdomen, broadly rounded at the tip,
long wings with heavily ciliated costal margin, the nuxiliary voin terminating just before the middle, and the first longitudinal vein not very far before the tip; the other veins of the wing can not be determined. 'The legs are pretty stout and densely haired. About the fly are seattered many arcuate, tapering, spinous hairs $0.7^{\mathrm{mm}} \mathrm{long}$, evidently the clothing of the thorax.

Length of body, 4^{mm}; breadth of thorax, 1.25^{mm}; length of wings, $4^{\mathrm{mm}(?) ; ~}$ of hind femora, 0.6^{mm}; hind tibire, 1.25^{mm}; hind tarsi, 1.255^{mm} ($)$):

Green River, Wyoming. One specimen, No. $48^{\text {b }}$ (F. C. A. Richardson).
Family PLATYPEZIDÆ Loew.
CALLOMYIA Meigen.
Callomyia torporata.

PI. 9, Fig. 11.

A single specimen is preserved showing a dorsal view of the body but with no distinct appendages excepting one wing which is imperfectly figured on the phate. The thorax is broad oval, and the abdomen oval, as long as the head and thorax together, narrower than the thorax, tapering from in front of the middle backward, and rounded at the tip. The wing is as long as the thorax and abdomen together. The third longitudinal vein terminates at the tip of the wing, the first in the widdle of the outer half of the wing, and the second midway between them; the basal cells are about one-third the length of the wing (indicated in the plate by the angle in the fifth longitudinal vein), and the oblique posterior transverse vein is situated at its upper extremity, about midway between the middle basal cell and the apex of the wing. The exact length of the lower basal cell can not be determined.

Length of bodyr, 3^{mm}; of wing, 2.7 7^{mm}; breadth of same, 1.1^{mm}.
Green River, Wyoming. One speeimen, No. 71 (Prof. Leslie A. Lee).
Family CONOPIDAE Leach.

POLIOMYIA Scudder (π oגzis, $\mu v i \alpha)$.

This genns of Conopide, most nearly allied to Myopa, appears in the neuration of the wings to resemble closely some genera of Syrphida, especially Xylota and Milesia, but it altogether lacks the spurious longitudinal
vein, and the thirl, fourth, mul fifth longitudinal veins are not united at their extremities by marginal veins; indeed, they rom without swerving and subparallel to one mother to the margin. In this respect the genns differs also from other Comopida, as it does also in the extreme length of the third basal cell, which is as long as in Syphide. In these points of nemration it would seem to agree hetter with the Pipmandide, which family, howover, is entirely eomposed of very small flies, sh that it seems hetter with our imperfect knowledge of the fossil to refor it to the Conopidae. The body resembles that of Syrphins in general form. The wings are as long as the body and slender, with very straight veins; the nuxiliary and first to fourth longitudinal veins are almost perfectly struight, the third originating from the second longitudinal vein at some distance before the midille of the wing; the auxiliary vein terminates beyond the middle of the costal margin; directly beneath its extremity is the small transverse vein, and abont midway between the latter and the margin the large trmasverse vein uniting the fourth and fifth veins; the extremity of the second basal cell is farther from the base than the origin of the third longitudinal vein, and the third basal cell reaches very acutely uhost to the margin of the wing.

Poliomyia recta.

Pl. 9. Nigs. 19, 21.

Polinmyia recta Sculd., BuIl. U. S. Geol, Geogr. Surv. 'Terr., IV, 755 (1878); in Zlitel, Handb. d. Palicont., I, ii, 807, Fig. 1072 (1885).
The single specimen referable to this species was obtained at the "Petrified Fish Cut," and represents a dorsal view of the insect with the wings partly overlapping on the back. It is the smaller fly referred to in Dr: Hayden's Sun Pictures of Rocky Mountain Scenery, page 98. 'The head is broken; the thorax is stout, rounded ovate, and blackish; the scutellum large, semi-hnar, and nearly twice as broad as long, with long black bristles along either lateral edge and along the sides of the thorax posteriorly. The wings are long and narrow; the auxiliary vein runs into the margin just beyoud the middle of the wing; the first longitudinal vein runs into the margin at about two-thirds the distance from the tip of the auxiliary vein to that of the second longitudinal vein, and scarcely turns upward even at the tip; the straight second and third longitudinal veins diverge from each other at the oxtreme tip after running almost parallel
throughout the length of the latter, which originates from the seeond some distunce before the middle of the wing; the small transverse vein between the third and fourth longitadinal veins lies just beyond the middle of the wing ind perpendicular to the costal border, while the large transverse vein between the fourth and fifth longitudinul veins is perpendicular to the latter and renders the discal and second posterior cells of about equal length. The nbdomen is apparently lighter colored than the thorax, regularly obovate, as broad as the thorax, and longer than it, its terminal (fifth) segment small, the others large and subequal.

Length of thorax and scutellum, 4^{mm}; breadth of sime, 2.755^{mm}; length of nbdomen, 4.5^{mm}; breadth of same, 2.755^{mm}; length of wing, 6.55^{mmm}; breadth of same, 2.255^{mm}.

I am indebted to Mr. Edward Burgess for some critical remarks upon the affinities of this fly, and for a careful skotch of the nouration, which is very difficult to trace in certain places.

Green River, Wyoming. One specimen, No. 14696 (Dr. F. V. Hayden).

Family SYRPHIDE Leach.

MILESIA Latreillo.

Milesia quadrata.

$$
\text { Pl. 9, Fig. } 13 .
$$

Milesia quatrata Sould., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 752-7in3 (1878); Willist., Syn. N. A. Syrph, 281, 283 (1886).
A specimen in a fine state of preservation, although not perfect, and with most of the neuration of the wing concealed under hard flakes of stone which can not bu wholly removed, was found by Dr. Hayden at the "Petrified Fish Cut," Green River. It is the larger Hy alluded to in Dr. Hayden's Sun Pictures of Rocky Mountain Scenery, page 98. The head and thorax are black, the head large, nearly as broad as the thorax, the eyes large, globose, as broad as the summit of the head between them, the front very large, prominent, half as broad as the head, and half as long as broad. Thorax globose, a little longer than broid, largest in the middle. Wings surpassing slightly the abdomen; the third longitudinal vein originates from the second in the middle of the wing, is very gently arcuate (the convexity backward) in its outer half, and appears to terminate just above

IMAGE EVALUATION TEST TARGET (MT-3)

the tip of the wing; the fourth longitudinal vein is united by an oblique cross-vein to the third very near the origin of the latter, and the spurious longitudinal vein can not be made out, from poor preservation; the marginal vein between these two appears to be very simple, the fourth longitudinal vein bending downward at its tip to meet it. The abdomen is as broad as the thorax, fully as long as the rest of the body, broad ovate, tapering slightly at the base and rapidly beyond the middle, broadest at the second segment; the first segment is longest and half as long as broad, the second and third slightly shorter, the fourth still shorter, and the fifth minnte; the abdomen is light-colored, probably yellow in life, and the first three segments are rather narrow!y margined posteriorly with black; the first segment is also similarly margined in front, and besides has a median biack stripe of similar width, which divides the segments into equal lateral quadrate halves, whence the specific name; the whole abdomen is rather profusely covered witiı very brief, black, microscopic hairs, which are thickest in the black bands bordering the segments, and next the hind edge of the fourth and fifth segments, producing a dusky posterior margin, similar to but narrower than the dark belts of the preceding segments, and of course very inconspicuous.

Length of body, 18^{mmm}; of head, 2.85^{mm}; of thorax, 5.65^{mm}; of abdomen, 9.5^{mm}; breadth of front, 2.4^{mm}; of head, 4.5^{mm}; of thorax, 6^{mm}; of abdonen, 6^{mm}; probable length of wing, 145^{nmm}; length of hairs on abdomen, 0.04^{mm}; width of dark abrlominal bands, 0.5^{mm}.

Dr. Williston thinks it can not be a Milesia, but that its affinities are rather with Syrphus.

Green River, Wyommg. One specimen, No. 14691 (Di. F. V. Hayden).
ERISTALIS Latreille.

Eristalis lapideus.

$$
\text { Pl. 5, Figs. 48, } 40 .
$$

Eristalis lapideus Sculd., Buil. I'. S. Geoi. Geogr. Surv. Terr., III, 756 (1387); Willist., Syn. N. A. Syrph., 281, 2:3 (1886).

A poorly preserved specimen, showing little that is characteristic, but which belongs near Eristalis or Helophilus. The body is preserved on a dorsal aspect, with wings partially expanded; the head is nearly wanting, the thorax without markings. The wings are distinct only on the hasal

SYRPHUS Fabricius.

Syrphus sp.

Syrphus sp. Soudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 755 (1878).
A species of this family, and in size second only to the Milesia from the same beds, is represented by reverse and obverse of a single specimen, which is too imperfect for description, only the body being preserved; the form and size of this agree best with the genus Syrphus.

The length of the body is $10^{\mathrm{m.}}$.
Green River, Wyoming. Onf specimen, Nos. 4110 and 4132 (S. H. Scudder).

CHILOSIA Meigen.

Chlosia ampla.

$$
\text { Pl. 9, Figs. 14, } 27 .
$$

Cheilosia ampia Soudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 753-754 (1878).
This species is primarily founded on a single specimen which Mr. Bowditch and I found in the shales at Green River, and which preserves nearly all parts of the insect. There is also a specimen with its reverse which we obtained at the same place, and another which Mr. Richardson sent me from these beds, agreemg with the first-mentioned specimen, but a little larger. As oniy the bodies are preserved, they are temporarily placed
in this connection until other material is at hand, while the species is deseribed wholly from the more perfect individual. This has a body more nearly of the slape of an Orthoneura, the abdomen being broader and stouter than is usual in Chilosia, but the wings are much longer than in the splecies of Orthoneural I have seen, and both the shape of the wing and its nemration agree well with Chilosia. The head is round and moderately large, the thorax stout and rounded ovate, the scutellum large, semi-lunar, twice as broad as long; all these parts are dark brown. The wings are very loug and narrow, extending much beyond the tip of the abdonen, the costal edge very straight until shortly lefore the tip, where it curves rapidly; all the veins are very straight, especially those of the upper half of the wing; the auxiliary vein terminates in the middle of the costal border, the first longitudinal at the extremity of the straight part of the costa, beyond the middle of the outer half of the wing, the third at the tip of the wing, and the second midway between the first and third; the third is united to the fourth by a straight cross-vein in the middle of the wing, directly beneath the tip of the auxiliary vein, and about its own length beyond the extremity of the long second basal cell; the extremity of the third basal celi is very oblique and reaches the tip of the lower branch of rhe fifth longitudinal vein; the marginal vein, uniting the third and fourth veins, strikes the former just before the tip, while that uniting the fourth and fifth, toward which the fourth bends to receive it, is removed farther from the margin by about half the width of the first posterior cell. The legs are slender, scantily elothed with short, fine hairs. •The abdomen is broad, oblong ovate, fully as broad as the thorax, broadly rounded at the apex, no longer than the rest of the hody, of a light color, with darker incisures, and seantily covered with delieate hairs: it is composed of five segments, of which the second, third, and fourth are of equal length, the first shorter and suddenly contracted, the apical minute.

Length of body, 7^{mm}; diameter of head, $1.3 \mathrm{~s}^{\mathrm{mm}}$; length of thorax, 2.5^{mm}; breadth of same, 2^{mm}; length of abdomen, 3.5^{mm}; breadth of same, 22^{mm}; length of wing, 6.4^{mm}; breadth of same, $1 . \mathrm{m}^{\mathrm{mm}}$; length of !ind femora, 1.25^{mm}; of hind tibix, 1.25^{mm}; of hind tarsi, 1.25^{mm}.

Green River, Wyoming. Three specimens, Nos. 4112, 4135 and 4141 (F. C. Bowliteh and S. H. Scudder), 40 (F. C. A. Richardson).

Cillosia! sp.

$$
\text { PI. 9, Fig. } 26 .
$$

Another species resembling the last, but too large to be referred to it and too imperfect to be sufficient for characterization, occurs in the same beds. It is pretty plainly one of the Syrphidæ from its general appearance and from such remains of the neuration as are preserved. The abdomen is almost round, considerably surpassed by the wings, and consists of four visible segments, of which the second is conspicuous for its ornamentation, the margins being dark and joined by a blackish mesial longitudinal stripe, next which, on either side, the surface is much paler than elsewhere.

The length of the body is 7.1^{mm}; the apparent length of the wings, 6.75^{mm}; the breadth of the abdomen, 3^{mm}.

Green River, Wyoming. One specimen, No. 17 (Dr. A. S. Packard).
Chilusia sp.
Pl. 9, Fig. 8.
Cheilusia sp. Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 754 (1878).
Two specimens of a smaller species of Syrphidæ, preserving the bodies, agree so completely with C. ampla, excepting in their much smaller size, that they are referred to the same genus; but as the wings are almost entirely lost the reference is made only to indicate the approximate place of the species, which need not be described until better material is at hand.

The length of the body is 4.25^{mm}.
Green River, Wyowing. Two specinens, Nos. 4113, 4150 (S. H. Scudder).

PSILOTA Meigen.

Pallota tabidosa.
Pl. 9, Fig. 9.
A headless body of a testaceous color with a nearly complete wing reprosents this species. Unfortunately it is not accurately drawn on the plate, the nearly invisible veins connecting the third and fourth longitudinal veins at their tips and closing the discal cell being omitted and the cross-vein being placed much too near the bise. In reality it should lie scarcely within the middle of the discal cell, and the fourth longitudinal

VOL XIII- 36
vein should surve, brace-like \sim to meet it, while the third longitudiual vein, from which the cross-vein parts at a right angle, runs in a straight course, as represented. The iraco-like direction of the fourth longitudinal vein causes the discal cell to be of equal breadth in the distal half and about twice as broad as the proximal half, the whole cell being unusually long and narrow or fully five times as long as its greatest breadth. The first longitudinal vein reaches the margin nearer the tip of the second longitudinal than the auxiliary vein.

Length of headless body, 5^{mm}; of wing, 4^{mm}.
Green River, Wyoming. One specimen, No. 59 (Prof. Leslie A. Lee). Syrphides sp.
Pl. 10, I'ig. 9.
Another species of Syrphide appears to be represented in Pl. 10, Fig. 9, 3ut it is too obscure for deternination and is incompletely drawn on the plate. It is in any case a very small species. The basal cells appear to be long, extending nearly to tie midule of the wing; the third lougitudinal vein is cortainly simple, and there aro no intercalaries.

Green River, Wyoming. One specimen, No. 98 (Prof. L. A. Lee).

DIPTERA ORTHORHAPHA Braver. BRACHYCERA Zetterstedt. Family DOLICHOPODIDA Loew. DOLICHOPUS Latreille.

Dolichopus sp.
Doliohopus sp. Scudd., Bull. U. S. Gool. Geogr. Surv. Terr., IV, 756 (1878).
A specimen and its reverse aro to be referred to this family by the structure of the abdomen and by the general aspect. The wings and head, however, are lacking. The thorax is globose, well arched, and, like the abdomen, of a : ght brown color, and ormamented with seattered, bristly, black hairs. The tip of the abdomen is recurved beneath.

The length of the fragment is 3.65^{mm}.
Green River, Wyoming. One specimen; Nos. 4124 and 4148 (S. H. Scudder).

Family CYRTIDAE Loew.

ACROCERA Meigen.

Acrocera hirsuta.

Pl. 5, Fig. 5.

Acrocera hirsuta Scudd., Bull. U. S. Geel, Geogr. Surv. Terr., 111, 755 (1877).
A single very fragmentary specimen appears to belong in the neighborhood of Acrocera, but is too imperfect to mention with any certainty. The size of the insect, the small head, robust and coarsely haired thoma, stout and abbreviated abdomon, indicate a form resembling that of Acrocera, and the tibie appear to bo destitute of spurs; but the legs are not very slender and the neuration of the fragment of the wing does not agree well with Westwood's figure of A. gloīulus Panz. in Walker's Diptera Britannica. There are, however, only a fow longitudinal veins next the bise, disconnected and faint, so that they afford very slight indication of the real character of the wings, and the transverse veins being obliterated nothing can be said of the basal cells. Thorax and abdomen of about equal size.

Length of body, 4.5^{mm}; head, 0.6^{mm}; height of same, 1.3^{mm}.
Fossil Cañon, White River, Utah. One specimen (W. Denton).

Family ASILIDE Leach.

STENOCINCLIS Scudder ($\sigma \tau \varepsilon v \grave{\rho}$, $\boldsymbol{\mu} \gamma \boldsymbol{\mu} \lambda i s$).
Stenocinclis Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 751 (1878).
This genus of Asilidæ is founded wholly upon characters drawn from the neuration of the wing, the only portion of the insect preserved. It falls into the group of Dasypogonina, in which the second longitudinal vein terninates on the margin apart from the first longitudinal vein, instead of uniting with it just before the margin. It is not very far removed from Dioctria, but differs from it and from all Λ silide I have examined in that the third longitudinal vein arises from the first before the middle of the wing, instead of from the second longitudinal vein after its emission from the first; the first longitudinal vein has therefore two inferior shoots, giving the wing a very peculiar aspect, and causing it to differ radically from all other Asilidæ ; indeed, it would be hard to know where to look for a similar feature among allied Diptera, unless it be in the anomalous group of

Cyrtida. The wing is very slender and all the cells unusually elongated, which ulso gives it a unique appearance.

Stenocinclis anomala.

Pl. 9, Fig. 10.
Stenoeinelis anomala Sendd., Bull. U. S. Geol, Geogr. Surv. Terr., IV, 751-752 (1878).
This species is represented by a single fragment of a wi. r, which I found in the Green River shales. Nearly all the neuration is preserved; but the posterior margin is absent and the length of the cells which border upon it can not be accurately determined. The insect was evidently small, with a long and slender wing. The auxiliary vein terminates slightly beyond tho middle of the costal margin ; the first longitudinal vein runs up towarl the margin where the auxiliary vein terminates, and follows along next the edge far toward the tip, as usual in this group; the second longitudimal vein originates from the first a little way before the middle of the wing, and with an exceedingly gentle sinuous curve, turning upward apically, terminates a little way beyond the first longitudinal vein; the third longitudinal vein originates from the first as far before the origin of the second longitudinal vein as the distance apart of the tips of the first and second longitudinal veins, and, running at first parallel and almost as close to it as the first longitudinal vein to the apical half of the costal margin, but distinctly separate throughe at, it diverges slightly from it in the middle of the wing and terminates at the lower part of the apex of the wing, curving downward more strongly toward the margin ; at the middle of the divergent part of its course, which is very regular, it emits abruptly a superior branch, which afterward curves outward and runs in a very slightly sinuous courso to the margin, curving upward as it approaches it. The fourth longitudinal vein is seen to start from the root of the wing, and runs in a straight course until it reaches a point just below the origin of the second longitudinal vein, where it is connected with the vein below by the anterior basal transverse vein, and then bends a little downward, running nearly parallel to the third longitudinal vein, but continuing in a straighter course terminates on the margin at nearly the same point; these two veins are connected by the small transverse vein midway between the ant ior basal transverse vein and the forking of the third longitudinal vein; the fourth longitudinal vein is connected by the posierior transverse vein
(which is scarcely as long as the small transverse vein) with the upper apical branch of the fifth longitudinal vein just beyond its forking, or opposite the forking of the third longitudinal vein; the fifth longitudinal vein forks previously to this, emitting a branch barely before the point where the anterior basal transverse vein strikes it, so that the branch almost appears to be a continuation of the transverse vein; and previous to this it has a distinct angle, where another vein is thrown off at right angles, directly opposite the upper extremity of the anterior basal transverso vein, and beyond the origin of the third longitudinal vein ; the basal half only of the sixth longitudinal vein can be seen, but its direction shows that it unites with the lowest branch of the fifth at its apex, as in Dasypogon. All the cells throughout the wing are exceedingly narrow.

Length of wing, 6.75^{mm}; probable breadth, 1.6^{mm}.
Green River, Wyoming. One specimen, No. 4143 (S. H. Scudder).

Stenocinclis sp.

Pl. 10, Fig. 15.
Certainly to this family, not improbably to this genus, and perhaps to the single species described above, belongs the body of a fly figured on Pl. 10, Fig. 15. It is a male. The thorax is very stout, naked, and dovoid of bristles. The femora stout, inflated, naked, and spineless; the tibix not one-third so stout, cylindrical, hairy, and apparently spincus, not so long as the femora; the tarsi densely hairy and spinous, the claws stout, strongly curved. The thorax and abdomen, the former more distinctly, show a microscopic longitudinal wavy carding of the integument, which is also faintly seen on the naked femora.

Length of body, 9.5^{mm}; of femnra, 2^{mm}; breadth of latter, 0.7^{mm}.
Green River, Wyoming. One specimen, No. 45 (Prof. L. A. Lee).
Asilides sp.
A fly, apparently of this family, but in too imperfect a state for any reasonable identification at present, was found by Dr. G. M. Dawson three miles up the North Fork of the Similkameen River, British Columbia, and numbered by him 67 and 68 .

Family STRATIOMYIDAE Leach.

LI'THOPHYSA gen. nov. ($\lambda \nmid \theta o s, q u ̈ \sigma \alpha$).

This genus, of the section Beridina, is peculiar for the plump, ovate abdomen, somewhat as in Diphysa, for having no lower intercalary vein, for the distance at which the lower branch of the fourth longitudinal vein arises from the apex of the discoidal cell and for the presence of six spines on the metanotum.

The head is large and nearly as broad us the stout oval thorax, the eyes occupying above all but a narrow mesial belt about a fiftli the width of the head; the antenne apparently as in Xenomorpha, short and tapering regularly apically. 'The metanotum has six coarse, equidistant, and not very long spines, the middle pair a little stonter than the lateral. The auxiliary vein terminates a little beyond the middle of the wing, and a little beyond, like the first and second longitudinal, it curves upward rather strongly at the extremity. The third longitudinal vein is forked. The basal cells are of equal length and half as long as the wing ; the discoidal cell about twice as long as broad, two branches issuing from the two outer angles and the third branch from the lower border close to the second basal cell. Abdomen regularly ovate, broader than the thorax, composed of six visible segments, besides, probably, a basal segment, which the preservation of the fossil does not permit to be seen.

Litiopitya tumulta.

PI. 9, Fig. 31.

This species is represented by a single specimen which is tolerably well preserved. The thorax is darker than the head and abdomen, and the obscurity of the base of the latter leads to the presumption that it was pale in life; the hinder edges of the abdominal segments are a little darker than the rest of tho abdomen. The wings are clear excepting the fuliginous stigma which embraces the interspaces on either side of the second longitudinal vein from where it parts from the third vein to its tip. The discoidal cell is almost regularly pentagenal, and would be quite so were the lower branch of the fourth longitudinal vein to arise a short distance farther toward the base; the base is outward, and the outer, upper, and lower sides are longer than the inner; it is situated about midway botween the costal and
lower margins of the wing, and the auxiliary and first longitudinal veins, though closoly approximate, are pretty distant from and parullel to the margin through most of their course.

Length of body, 5^{mm}; of wing, 4.5^{mm}; breadth of thorax, 1.5^{mm}; of abdomen, 1.9^{mm}; of wing, $1.75{ }^{\mathrm{mm}}$.

Green Rivor, Wyoming. One specimen, No. 4 (Dr. A. S. Packard).
ASARCOMYIA gen. nov. ($\left.\alpha-, \sigma \alpha^{\prime}, \xi \xi, \mu v i \alpha\right)$.
This genus, also bolonging to the section Beridina, is distantly rolatod to Chiromyza Wied. Hoad slightly narrower than the globular thorax. Abdomen long, composed of seven joints, with nearly parallel sides, broader than the thorax. Antennee with short basal, long and equal second, joint. Legs long and very slender, the tibiee with a short row of spines near the tip, the apical ones no longer than the others. Wings with the third longitudinal vein simple, tho first longer than the socond basal cell, the discoidal coll emitting three long and nearly straight veins to the border, all arising apically, Ω fourth vein arising from the second basal cell; fifth and sixth longitudinal veins uniting close to the margin.

The simple third longitudinal vein, the unequally long basal cells, and the fourth branch of the fourth longitudinal vein with its origin from the second hasal cell apart from the others, are charactoristics which do not seem to be combined in any other genus. The discoidal cell is small, longitudinal, arched, situated a littlo above the middle of the wing.

Asarcomyia cadaver.

Pl. 9, Fig. 17.
Whole body and wings of a noarly uniform testaceous color, the thorax, legs, and principal veins of the wings a little darker. Metanotum with two large approximated basal bristles. The wings are tolerably broad, the costal margin nearly straight most of the way to the tip, the auxiliary vein -eaching to a littlo beyond the middle of the wing, the second longitudinal arising from the third a little sooner, or at about the middle, and ending after a gently sinuous courso considerably less than midway from the tip of the auxiliary to the tip of tho arcuate third longitudinal vein. First basal cell closed searcely beyond the tip of the auxiliary, at the middle of the discoidal cell. (In the figuro the cross-vein before this is an accidental mark
on the stone.) Diseoidal cell about three times as long as broad; second basal cell about lualf ns long as tho wing. Legs very slender, the tursi longer than the tibie, and the hind tibie at least with an outer row of short spines on the upical third; all the legs sparsely covered with not very long huirs. Aldomen very thinly clothed with distant, moderately long, slender huirs.

Length of body, 4.5^{mm}; of wing, 3.5^{mm}; of hind leg, 4.2^{mm}; of hind tibie, 1.3^{mmm}; of hind tarsi, 1.6^{mmo}.

Green River, Wyoming. One specimen, No. 12 (Dr. A. S. Packard).

NEMATOCERA Latreille.

Family TIPULIDÆ Leach.
 DICRANOMYIA Stephens.

Dicranomyia stiomosa.

Pl. 5 , Figs. 16, 17, 250-27, 42, 43, 68, 69.
Dicranomyia stigmosa Scudd., Bull. U. S. Oeol, Geogr. Surv. Terr., III, 746-748 (1877).
The neuration and the presence of a stigma in a fine, nearly perfect specimen of this specios indicate a form closely allied to D. pubipennis O. S., but the absence of any pubescence at the tip of the wing at once distinguishes it from the recent species. At first I supposed that it differed from other species of Dicranomyia in the absence of the auxiliary vein; but after careful study a faint trace of its apical portion was found in the same position relative to the origin of the second longitudinal vein as in D. pubipennis; as there also, the first longitudinal vein curves downward to, and terminates on, the second longitudinal vein, directly opposite the cross-vein uniting the discal cell with the third longitudinal vein, instead of on the costa; the subcostal cross-vein arises before the deflection of the first longitudinal, runs parallel with it until it curves, when it turns in the opposite direction to the costa. The discal cell is closed, but the cross-vein separating it from the second posterior cell is very faint, in which respect it agrees better with other Dicranomyie than with D. pubipennis. The stigma is confined to that part of the space between the first and second longitudinal veins which lies beyond the origin of the third longitudinal vein, but it also extends upward to the costa; it is nearly circular and faintly fuliginous.

An oblique supernumerary vein runs to the center of the stigma from a point in the first longitudinal vein directly above the origin of the third; thet is, from the inner edge of the stigma. The outer and posterior margins of the wing are profusely fringed with very delicate hairs, longer than the thickness of the stout costal vein. The antenme are fourteenjointed, about twice as long as the head, the basal joints of tine flagellum sulglobular, the others obovate, the apical one more than twice as long as broad; they are delicately vertieillate, the hairs being but half as long as the width of the joints. The male anal lobes are broally obovate, deeply and abruptly excised externally at the base, so as to leave a slurp, right angle outwardly and a narrow peduncle on the inner side. Together the lobes are broader than the tip of the abdomen, and each is abont half as long again as broad.

Length of body, including the lobes, 6.5^{mm}; antenne, 1.2^{mm}; wings, 7.5^{mm}; anal lobes of male, 0.55^{mm}.

Fossil Cuñon, White River, Utah (W. Denton.)
A second specimen of what is apparently the same species, judging from the anal lobes, is somewhat stouter, but is destitute of all other appendages, excepting indeterminate fragments of the rostrum, so that no further knowledge of the species can be gained from it. The rostrum, however, would seem to be scarcely longer than the head.

Chagrin Valley, White River, Colorado (W. Denton)
In another specimen, also a male, the body, one of the wings, and part of the legs of one side are preserved; the whole is much fainter than in the other specimens, but the auxiliary vein can be traced midway between the costal and first longitudinal veins throughout nearly its whole length. What is apparently the rostrum is a very little longer than the basal joint of the antenne and a very little shorter than the head. The character of the male appendages adds to the proof that this belongs to the same species as those previously mentioned, but the stigma of the wing is lost by the incompleteness of the preservation. The legs are very slender and delicately hairy tluroughout, with no sign of spurs, although it should be remarked that the extremities of the tibia are not well preserved.

Length of middle femora, 5.22^{mm}; middle tibix, 4.5^{mm}; hind femora, 5.75^{mm}; hind tibix, 5.5^{mm}.

Chagrin Valley, White River, Colorado (W. Denton.)

Another specimen is a female, wish remnants of wings, having most of the veins searcoly traceable; enough of the right wing remains to be sure that it is this species, with which tho size agrees.

Fossil Cañon, White River, Utalı (W. Denton.)
Still another is similarly presorved; but on account of tho partial folding of the wing no stigma can be seen, and tho first longitudina! vein scems to unite, or almost unite, with tho second so far from the branching of the latter that I was at first inclined to separate it; but the difference proves to be very slight. The antenme of this specimen aro pretty well preserved, but so bent as not te allow of direct measurement; the size agrees well with other specimens, althongh it is slightly smaller than the second specimen mentioned, which, howover, is rather larger than the average. The specimen is a female.

Fossil Cañon, White River, Utalh (W. Denton).
A hearl preserved on the same stone as the last specimen probably also belougs to this species.

In the last specimen to be mentioned we have the upper surface of an abdomer of a male Dicranomyia, apparently of this species, twisted so as to mresent a lateral view of the tip, showing the structure of the under suraface of the appendages. The under imer edge is evidently thickened, and a slight hook projects a little beyoud the broad lobe; as the lobe itself is preserved in a different view from what holds is the other specimens, and therefore has a slighty different contour, the specimen is judged to belong to this species naly from the size of the abdomen and of its anal lobes.

Chagrin Valley, Whito River, Colorado (W. I)enton).

Dicranomyia primitiva.

Pl. 5, Figs. 20, 21, 65-67.
Dicianomyia primitiva Scudd., Ball. U. S. Gen!. (eeogr. Surv. Terr., 1L1, 748 (1877),
Two specimens, a little smaller than D. stigmosa, but still more closely resembling D. pubipemis, together with a third, which is simply a body, to which is attached the costal outline of a wing, and near which lies a \log, represent the femalo of this species. The two first mentioned are rather faintly preserved, but permit the venation to be traced with certainty, though with difficulty, and with one of them a portion of a detachod (middle or hind) leg may be seen. The neuration of the wing differs from that
of D. stigmosa in the shape of the discal cell, the inner border of which is straight, and strikes the incomplete fifth longitudinal vein exactly where the lower cross-vein strikes it, so that the two are continuous and produce no break of direction in the fifth longitudinal vein. The auxiliary vein is not preserved, and there is no adventitious vein in the stigma, which otherwise is as in that species. The wing is not so slender as in D. stigmosa.

Longth of body, 5.5^{mm}; wing, $5.5-6^{\mathrm{mm} \mathrm{\prime}}$; femmr, 5^{nmm}; tibia, 5.75^{mmm}; first two joints of tarsi, 3.5^{mm}. The measurements of the \log are doulttful.

Fossil Cañon, White River, Utah. (W. Denton.)
Another poorly proserved specimen which by the structure of the male forceps is plainly to be referred to this genus is judged meroly from its size to belong to this species, none of the characteristic parts of the neuration being prosorved. The body is a very little smaller than in tho females of this species, and the huale forceps are ovate and rather large.

Length of body wihout forceps, 4.5^{mm}; forceps, 0.35^{mm}; breadth of one of them, 0.2^{mm}.

On the same stone with this is a \log which probably helonged to it, though some distance from it ; the length of the femur is $5^{\text {n.a }}$; tibia, 4.5^{mm}; the tarsi are broken.

Same locality.
A single wingloss male, taken by Mr. Richarison at Green River, Wyoming, can be referred doubtfully to this species.

About fifteen other specimens of Tipulida wero collected by Mr. Richardson, Mr. Bowditch, and myself at Greeli River; but anfortunntely not one of them prosents the vestige of a wing and seldom anything more than the bodj. Probably some of tl:3m also belong to this species; others may with more doubt be reforred to D. stigmosa but all are valueless for any precise determination, and, indoed, may not belong to Dicranomyia at all.

Dicianomyia restrata.

$$
\text { Pl. } 5, \text { Figs. } 40,41,63,64 .
$$

Dieranomyia rostrata Sendd., Bull. U. S. Gool. Googr. Surv. Terr., 11t, 7.19 (1877).
A single specimen larger than the other species of Dieranonyia and about the size of Tipula decrepita Sendd. is provisionally referred to this genus. The head is very small, the thorax rather iobust and very strongly
arched, and the abdomen slows it to be a female. The antennal joints are fifteen in namber, the basal one stout, the apical slender obovite, the others globular ; the palpi are four-jointed, the las; three joints equal, and together as long as the first, the whole rather longer than the head, and therefore r. ther long for a Dieranomyia. The legs are lacking, the single wing detached, broken at the base, and longitudinally folded. Such of the neuration as can be disentangled agrees wholly with the peculiarities of this genus.

Leugth of fragment of body withont head, 6^{mm}; breadth of head, 0.5^{mm}; length of antemas, $2^{\text {mum }} ;$ palpi, 0.9^{mm}.

Fossil Cañon, Wh. ¿e River, Utal. (W. Denton.)
A second specimen is referred to this species, but with some doubt, as it consists of only a trunkwith no appendages excepting the male forceps. The specimen is slightity smaller than the female, at, we should expect, and the plates at the extremity of the body differ from those of the other fossil species described in being of a regular, short, obovate form.

Length of body without forceps, 6.25^{mm}; of forceps, 0.6^{mm}; width of same, 0.28^{mm}.

Same locality.

Sillladomyia Scudder ($\sigma \pi \imath \lambda \alpha \varsigma, \mu v i \alpha)$.

Spiladomyia Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 749 (1877),
This genus is founded upon a peculiar form of fly allied to Dicranomyia. The palpi are no longer than the head; the thorax is comparatively slender, the legs very long and slender, and the wings shaped much as in Dicranonyia, with a peculiar neuration. The auxiliary vein terminates some way beyond the middle of the costal border; the first longitudinal vein terminates in the second, close to the tip of the wing; the second originates from the first beyond the middle of the wing, but some distance before the tip of the auxiliary vein; the third longitudinal vein originates from the second, near the middle of its course, beyond the tip of the auxiliary vein; a little distance beyond its origin, but much nearer the tip of the wing than usual, it is connected by a cross-vein with the fourth longitudinal vein; the first and second posterior cells are therefore very short; there is, then, but a single sulmarginal cell, three, or, if a very slight fork at the apex on the posterior branch of the fourth longitudinal vein be counted, forr posterior cells, and no discal cell.

Spiladomyia simplex.

Pi. 5, Fig. 37, 33.
Spiladomyia aimplex Scudd., Bull. U. S. Geol. Geogr. Surr. Terr., III, 750 (1877).
A single specimen and its reverse show nearly all the parts of the body, but all aro faintly preserved, so as to be very difficult of study. The specimen is a female; nearly all the legs are preserved, and all but the base of the wings; the latter, however, trail along the abdomen, so that parts are obscured and the neuration is exceedingly faint. The head is small, the eyes almost exactly circular, the palpi a dittle shorter than the head, the antenne composed of cylindrical joints, a little longer than broad, the legs slender, with femora, tibiox, and tarsi of nearly equal length, and the wings es long as the body. The anterior branch of the fourth longitudinal vein is abruptly bent at its base, so as nearly to connect with the cross-vein uniting it with the third longitudinal vein, and the first and second posterior cells are scarcely more than three times as long as broad. The third posterior cell is but very insignificant, as the posterior branch of the fourth longitudinal vein forks but slighily and near its tip. The neuration of the lower part of the wing is uncertain.

Length of body, 7.5^{mm}; palpi, 0.35^{nm}; fore femora, 4.5^{mm}; middle femora, 4.5^{mm}; hind femora, 4.5^{mm}; fore tibix, 4.65^{mm}; middle tibix, 4.5^{mm}; hind tibix, 4.5^{mm}; fore tarsi, 4^{mm}; middle (or hind) tarsi, 4.5^{mm}. Measurements of tarsi uncertain.

Chagrin Valley, White River, Colorado. (W. Denton.)
PRONOPHLEBIA Scudder ($\pi \rho \omega \dot{\nu}, ~ \varphi \lambda \bar{\varepsilon} \beta_{\imath} o v$).
Ironophlebia Sculd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 750 (187\%).
This genus differs from all Tipulide known to me in the early origin of the third longitudinal vein, which springs from the second almost immediately after its own sepacation from thie first lonsitudinal vein and some way before the tip of the auxiliary vein; the second longitudinal vein arises near the middle of the wing and branches, the inner branch apparently forking near its tip. These characteristics readily serve to distinguish it from other Tipulidæ. The head is small, the antennæ long, very slender, and more than thirteen-jointed. They are too imperfect in the specimen studied to allow of any further statement. The palpi are not preserved, but
the thorax is strongly arched and the neuration indicates that the genus belongs to the Tipulida brevipalpi, and with other signs that it is probably one of the Limnophilina, although the auxiliary cross-vein appears to be exactly opposite the origin of the second longitudinal vein. It is perhaps most nearly allied to Trichocera.

Pronopiliebia rediviva.

$$
\text { Pl. 5, Fig. } 39 .
$$

Pronophlebia rediviva Scudd., Bull. U. S. Gool. Geogr. Surv. Terr., III, 750-751 (1877).
The single specimen of this species is spread at full length, but the stone containing it is broken. The specimen is a male. The antenne are considerably longer than the head and thorax together, and the joints are shaped and ornamented as shown in tho figure of Dolichopeza in Walker's Diptera Britamica. The head is small and the eyes so well preserved that they can be seen as in a living creature. The wings are very long and slender; the auxiliary vein terminates some distance beyond the middle of the wing; the first longitudinal vein about midway between that and the tip; the second longitudinal vein arises just within the middle of the wing, and the third longitudinal vein less than lalf the distance from that to the tip of the auxiliary vein; the second longitudinal vein forks just beneath the tip of the auxiliary vein, its upper branch bends just beneath the tip of the first longitudinal, and its lower branch appears to fork just boyond the middle of its course. Cross-veins appear to divide the interspace between the second and third longitudinal veins (the second submarginal cell) into three equal parts, aud there is certainly a cross-vein in the interspace between the fourth and fifth longitudinal veins (the second basal cell) directly opposite the origin of the third longitudinal vein.

Length of body, 9.25^{mm}; antenne, 2.6^{mm}; wings, 9.25^{mm}.
White River, near the Colorado-Utah boundary (W. Denton).

CYTTAROMYIA Scudder (थv́zrapos, $\mu v i ̄ \alpha$).

Cyttaromyia Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 751 (1877).
This gemus of Tipulide differs somewhat :emarkably from any known to me. It appears to belong anong the Tipulide brevipalpi, the first longitudinal vein terminating in the second much in the manner of Dicranomyia, with which, however, this genus seems to have little else in common.

Although the first longitudinal vein terminates in this way, no trapezoidal cell is formed near its extremity after the manner of the Tipulide longipalpi, but this portion is quite as in Dicranomyia. The position of the auxiliary vein is indeterminabls from the fragmont I have seen; but the "posterior intercalary vein" of Loow issues from the lower outer angle of tho discal cell at a long distance from the great cross-vein, and in direct continuation of the fourth longitudinal vein. All theso characteristies place it with the Tipulidæ brevipalpi; but the points wherein it differs frem then, as indeed from all other Tipulida, are not a little extraordinary. Apparei:tly it has certain relations with the Amalopina, and has somo rosemblanco to Symplecta, but it may be questioned whether it should not form a section by itself in the neighborhood of the Ptyehopterina.

The first longitudinal vein terminates in the upper branch of the second at no great distance from the tip of the wing; at the same point it is connected with the costa by an oblique cross-vein running in continuity with its terminal portion. There are three submarginal cells and a secondary discal cell. The large number of submarginal cells is due to the forking of the posterior branch of the second longitudinal vein, just as two submarginal cells are formed in Anisomera by the forking of the anterior branch of the same vein. Tho secondary diseal cell is formed by the division of the third submarginal cell by a cross-vein, which unites with the olbow of the basal portion of the lower bramellet of the fork of the second submarginal vein, and leaves two cells boyond the supplementary diseal cell, just as there are two cells (the first and second posterior) beyond the true discal cell; the latter lies directly below the secondary diseal cell, but is twice as large as it. This is an anomaly quite unique, so far as I am aware, among the Tipulidx.

Cyttaromila fenestrata.

Pl. 5, Fig. 78.
Cyitaromyia fenestrata Scudd., Bull, U. S. Geol. Geogr. Surv. Torr., III, 751-752 (1877).
This specios is ropresentod by the portion of a wing and its reverse, containing a littlo more than the distal portion with nearly all tho important part of the neuration. The striking peculiarities of this have been pointed out in the description of the genus; but a few minor points, probably of specific value, may be added. The second longitudinal vein originates far
back toward (perhaps before) the middle of the wing, and half-way to the tip forks abruptly, the anterior branch immediately arching over and running to a point just above the extreme tip of the wing; the space between this portion of its course and the first vein is infuscated, forming a stigma; the posterior branch forks half-way toward the tip, the upper branchlet being in almost direct continuity with the main branch, while the lower diverges suddenly from it and unites with the cross-vein from the third longitudinal vein, after which it runs parallel to the other branchlet; the third longitudinal vein springs from the posterior branch of the second directly after its origin. The first and second posterior cells are of the same length as the lower two submarginal cells, and the discal cell is of a similar length. The lower part of the wing is confused from folding, but there is a cross-vein uniting the fourth and fifth longitudinal veins next the inner extremity of the discal cell; the discal cell extends farther by its own width toward the base of the wing than the secondary discal coll, and there is a slight appearance on the stone, as if the middle of the cross-vein forming the inner limit of the discal cell were united by a cross-vein to the second longitudinal vein shortly before it branches, thus forming a prediscal cell of irregular shape and about as long as broad.

Length of fragment, 5.5^{mm}; width of middle of wing, 2^{mm}.
Fossil Cañon, White River, Utah. (W. Denton.)
TIPULA Linné.
Tipula decrepita.

$$
\text { Pl. 5, Figs. 56, } 57 .
$$

Tipula decrepita Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 752 (1877).
A single specimen, poorly preserved, is to be referred to the genus Tipula (s. str.). The head is small, the antemnal joints very slender, obovate, between two and three times as long as broad, the thorax well arched, and the abdomen indicating a female; the legs are lacking; both the wings are present, but poorly preserved, and one of them imperfect; even the perfect one is badly folded longitudinally, but the costal border is nearly uninjured, and indicates the generic affinities, from the peculiar nature of the venation toward the apex; instead of forming toward the termination of the first longitudinal vein a large stigma-like cell, the second longitudinal vein appears to form, with a slight vein springing from below, a long and
exceedingly slender cell, above and outside of which the wing is slightly clouded.

Length of body without head, 6^{mm}; diameter of head, 0.6^{mm}; length of wings, 8.5^{mm}.

White River. (W. Denton.)

Tipula tecta.

Pl. 5, Figs. 46, 47.
Tipula teeta Seudi., Bull. U. S. Geol. Geogr. Surv. Terr., III, 759-753 (1877).
A single specimen preserved on a dorsal aspect is of a larger size than the other Tipulide from this locality; its precise relationship can not be determined until other specimens are discovered, as it has no head nor legs, except a very slender fragment of a tibia; and the wings, being longitudinally folded and partially concoaled by the body, along which they lie, show only that the neuration is not discordant with that of the craneflies, with which its other features agree. The specimen is a female, with a slight, not greatly arched, thorax, and full and plump, though still slender, abdomen nearly as broad in the middle as the thorax.

Length of thorax, 1.4^{mm}; breadth of same, 1.25^{mm}; length of abdomen, 4.75^{mm}; breadth of same, 1.15^{mm}; length of wings, 7^{mm}

Fossil Cañon, White River, Utah (W. Denton).
Tipula spoliata.
Pl. 10, Fig. 4.
Fragments of wings only are preserved in two of the specimens referred here; but a third, in which the wings uniform in tint with dusky veins are thrown up parallel to each other in front of the head, shows also the body and part of the antenne, which are equal and sparsely covered with very short hairs. There is no trace of a stigma on any of the wings, and the cell at the place of the stigma is subfusiform iar shape and nearly six times as long as broad, the third longitudinal vein arising only a little before the end of the great cross-vein. The discal cell is rather less than half as long again as broad, its lower inner angle is scarcely more than a right angle, and the fifth longitudinal vein is bent at a considerable angle at the
voL xill- 37
great cross-vein, so that its apical portion and the sixth longitudinal vein converge rapidly. The tip of the wing is decidedly below the middle.

Length of body, 12.75^{mm}; of wing, 14.5^{mm}; breadth of same, 3.5^{mm}.
Green River, Wyoming, Three specinens, Nos. 15 and 74, 42, 43 and 44 (Dr. A. S. Packard).

Thipla sepulchri.
Pl. 10, Fig. 1.
A single specimen is preserved, showing a nearly complete wing (imperfect at the base), parts of the body, with the head and palpi and parts of the antenne. The antenne are similar to those of T. spoliata, and the palpi of similar form and clothing but slenderer. The wing is slightly larger than in T. spolista, with a distinet subtriangular stigma, but with no other marking about the dusky veins. The stigmatal cell has its lower bordering vein bent sones way beyond the middle, and the cell is long and slender, fully eight tinnes longer than broad, the third longitudinal vein arising from the second much earlier than in T. spoliata, considerably before the lower end of the great cross-vein. The discal cell is about half as long again as broad, its lower inner angle much more than a right angle; the fifth longitudinal vein is scarcely bent where it strikes the great crossvein, and its apical portion therefore scarcely converges with the sixth longitudinal vein. The tip of the wing is only a little below the middle of the wing.

Length of wing, 15^{mm}; breadth, 3.75^{mm}.
Green River, Wyoming. One specimen, No. 9 (Dr. A. S. Packard).
Family CHIRONOMID $\underset{E}{ }$ Westwood. CHIRONOMUS Meigen.

Chironomus septus. PI. 10, Fig. 8.
A single specimen in which the wings are imperfectly preserved, being obscured by the abdomen, over which they are folded The antennæ are hidden. The body is preserved on a partially lateral view and has an S-shaped form, the head being closely appressed to the lower front of the thorax, which is elevated behind the middle, and the abdomen curved
upward, its tip rather indicating the specimon to be a malo. The logs are woll proserved, and the wings so far as their venation can be made out indicato a Chironomus. One antenua is preserved and is very slender indoed, about a third or a quarter tho width of the front tibia and about as long ns the eye; it is not shown on the plate and is obscure from its crossing tho front tibia; its loasal joint is rounded ovato, twico as stout as the stem, which is equal, with a blunt tip; no hairs can bo detected except some exeessively dolicate zes close to the base, the only portion excepting the tip which is not obscured by the tibia; all the joints of the stem appear to be cylindrical and in no way moniliform. The legs are of noarly equal length. The tibie are slightly longor than the femora and of the length of the thorax; the first joint of the tarsi is less than half as long as the tibia, and the remainder of the tarsus a little more than half as long again as the first joint. The femora and tibix are sparsoly clothed with very short dolicato hairs, and the tibie and tarsi, and especially the latter, have in addition a fow inferior rows of distant short delicate spines, a pair of which, as short as the others, are apical in the tibie, and porhaps also in the tarsal joints. The whole body is uniformly testaceous, slightly infuscated by tho sparse clothing of short fine hairs.

Length of body, 3^{mm}; of thorax, 1.2^{mm}; of legs, about 3.5^{mm}.
Green River, Wyoming One specimen, No. 10 (Dr. A. S. Packard).
Chironomus depietus.
PI. 5, Fig. 62.
Chironomus depletus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 744 (1877).
A single mutilated specimen of this insect remains, and is doubtfully referred to Chironomus. The thorax is moderately robust and the abdomen rather plump for a Chironomus. The antenne are broken, and only the costal border of one of the fore wings can be seen; this shows that the second longitudinal vein terminates in the middle of the apical, and the first longitudinal apparently in the middle of the basal, half of the wing. The legs are moderately long, slender, the tibix finely spined, the spines arranged on the middle legs in a somewhat verticillate manner, and terminating with two or three long spurs; the femora are rather short, the tibie considerably longer, but not so long as the tarsi.

Length of body, 3^{mm}; of wing, $2.3^{\mathrm{mm} \mathrm{\prime}}$; of fore femora, 0.68^{mm}; of fore tibix, 0.6^{man}; of fore tarsi, 1^{mm}; of middle tibie, 1^{mm}; of middle tarsi, 1.25^{mm}.

Chagrin Valley, White River, Colorado. One specimen (W. Denton).

Chironomus patens.

Pl. Г, Figs. 18, 19, 28.

Chironomus patens Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 744-745 (I877).
A single specimen, very well preserved, represents a species which is provisionally referred to Chironomus. Nearly all the parts are present, and the neuration of one of the wings is nearly perfect, showing the structure of Chironomids, but differing apparently from any genus yet characterized. The antenne are parted and bent, but apparently perfeet; thoy seem to be fifteen-jointerl, the joints square, the apical no larger than the others, and all apparently furnished (as indicated at one point only) with a fringe of profuse, exceedingly delicate hairs, as long as the joints. The body is slender and the wings three times as long as broad; the costal vein runs only to the tip of the wing, and the margin beyond it is very faint ; the first longitudinal vein runs uninterruptedly to the middle of the apical fourth of the wing; the second longitudinal nearly to the tip; the third longitudinal vein takes its rise from the second in the middle of the basal half of the wing, and parts widely from the second, leaving an unusual space devoid of neuration next the apex of the wing; the fourth arises from the third rather abruptly a little beyond its base, and has close beneath it the remnant of a vein or a fold in the wing; the next vein forks just beneath the origin of the fourth longitudinal vein, and leaves beneath it, next the posterior margin, a broad space without veins; the two basal cells are very short, and there appear to be no other transverse veins in the whole wing; all the veins are hirsute. The legs are long and slender, and covered with spinous hairs arranged in exact longitudinal rows, giving the legs a striped appearance under the mieroseope; the femora are rather short, and the tibiæ and tarsi of very unequal length excepting on the hind legs; the tibiæ and all the joints of the tarsi are furnished apieally with small spurs.

Length of body, 3^{mm}; antennæ, 1^{mm}; wings, 2.1^{mm}; fore femora, $0.5(\%)^{\mathrm{mm}}$; middle femora, 0.6^{mm}; hind femora, 0.8^{mm}; fore tibiæ, 0.8^{mm};
middle tibix, 0.9^{mm}; hind tibiæ, 1.4^{mm}; fore tarsi, 1.8^{mm}; middle tarsi, 2.3^{mm}; hind tursi, 2.1^{mm}.

Chagrin Villey, White River, Colorado. One specimen (W. Denton). Cuironomus sp.
Chironomus sp. Scudd., Bull. U. 8. Geol. Geogr. Surv. Terr., IV, 749 (1878).
A minute specimen apparently of this famiiy. Unfortunately it has no wings, and little can be said of it more than to record its occurrence; it is 3^{mm} long, has large eyes, a stout therax, and altogether resembles a Chironomus; it is however distinct from any found in the White River shales.

Green River, Wyoming. One specimen, No. 141 (F. C. A Richardson).

Chironomide sp.

$$
\text { Pl. } \mathbf{5 ,} \text { Figs. 32, } 33 .
$$

An indeterminate species of this family, whose generic affinities can not be discovered from the entire absence of neuration in the wings and the loss of every other characteristic feature, presents a side view of the body with fragments of legs. The insect is minute, measuring but 2.75^{mm} long. It may possibly belong to the Cecidomyidæ.

Chagrin Valley, White River, Colorado (W. Denton).,

Chironomides sp.

Pl. 5, Fig. 24.

Another similar specimen, but distinct from the above, exhibits a dorsal aspect, and little besides the trunk is left. The thorax is comparatively stont, the head nearly as broad as the thorax, and the abdomen very slender and equal. The body is 3.25^{mm} long.

Chagrin Valley, White River, Colorado (W. Denton).

Chironomide sp.

A third indeterminate species probably belongs to this group, but the specimen is too indistinct to be of much value. It is a female. The antennæ are a little longer than the head, the head a little narrower than the abdomen, the latter tapering to a point. The costa of one wing is present and the rather short and moderately steut legs of the opposite side.

Length of body, 1.8^{mm}; of middle femur 0.8^{mm}; of same tibix, 0.5^{mm}.
Fossil Cañon, White River, Utah (W. Denton).

Family CULICIDAE Stephens.

CULEX Linné.

Culex damnatorum.
 Pi. 10, Fig. 14 \&.

None of the specimens reforred here show much of the neuration of the wings excepting parts of longitudinal veins, but the other eharactoristics are unmistakable. The eyes are surrounded by a fringe of curved lashes as long as the width of the oyo. The antennæ (all the specinens are females) are filly as long as the thorax, slender, tapering, the joints almost three times as long as broad, cylindrical, clothed sparsely with excessively short lairs, and showing signs here and there of a thin whorl of fine hairs at the base of the joints a little longer than the joints themselves. Palpi about as long as the heal, mor than twice as stout us the basal portion of the untemna, the last juint uimost obpyriforn, bluntly terminated, abont three times as long as broad, and briefly hairy. Proboscis as stout as the palpi, stouter than the fore tibix, nearly or quite as long as the thorax. Legs long and slender, elothed sparsely with fine short spinous lairs, and the tibie with inferior rows of more listant, longer, but still brief spines, and the first joint of the tarsi with inferior rows of short, elose set spines. Hind tarsi nearly as long as the abdomen.

Length of body, 6^{mma}; of thorax, 1.8^{mm}; of antennæ, 2^{mm}; of proboscis, 1.9^{mm}; of fore legs beyond coxæ, 5.6^{mm}; of fore femora, 1.6^{mm}; fore tibix, 1.8^{mm}; fore tarsi, 2.2^{mm}; hind femora, 2.5^{mm}; hind tibix, 2^{mm}; hind tarsi (broken just short of extremity), 3^{mm}. Measurements from specimen figured.

Green River, Wyoming. Three specimens, Nos. 16, 38, 39 (Dr. A. S. Packard).

Culex proatitus.

Pl. 5, Figs. 8, 9.

Culex proavitus Scndd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 744 (1877).
A poorly preserved specimen in which only fragments of the legs can be seen, and the wings are so crumpled and folded as to prevent tracing the neuration. What can be seen resembles the neuration of the Culicida, and the veins and borders are heavily fringed with long hairs. The body is
slender and the insect minute; the proboscis is about as long as the head und thorax combined, and the last joint of the equally long palpi is cuneate, the base rounded.

Length of body, 2.2^{mm}; of proboscis, 0.9^{mm}.
Fossil Canon, Whito River, Utah (W. Denton).

CORETHRA Meigen.

Corethra exita.
Pl. 5, Figs. 22, 23.
Corethra exita Soudd., Bull. U. S. Geol. Geogr. Surv. Torr., III, 744 (1877).
A specimen, viewed from above, with expanded wings, and destitute of legs, palpi, and all but the basal joints of the antennæ. The broad head, stout basal joint of antennæ, genoral form and size, with such of the neuration of one wing as can be determined, indicate the genus; seven of the abdominal segments are very clearly marked, and the specimen appears to be a male. The body is slender; the head, thorax, and abdomen of equal width; the wings slender and of about equal length with the body. The fourth longitudinal vein runs in a nearly straight line over tha basal half of its course, but is gently arched beyond; the fifth originates from the fourth in the middle of its straight portion, runs nearly parallel with it so long as it continues straight, and afterward diverges considerably; the first longitudinal vein appears to run to the tip of the wing.

Length of body, 4.25^{mm}; of wing, 4.25^{Lm}; breadth of latter, 0.8^{mm}.
Chagrin Valley, White River, Colorado. One specimen (W. Denton).

Family BIBIONIDFE Westwood.

PLECIA Wiedemann.

Plecia similkameena.
Pl. 3, Figs. 20-22.
Penthetria eimilkameona Soudd., Rep. Progr. Geol. Surv. Can., 1877-1878, 177-179B (1879). Plecia similkameena Soudd., Zittel, Handb. d. Palæont., I, il, 811, Fig. 1086 (1885).
Fiva specimens, three of them with their reverses, represent very fairly a species of Plecia, one of them certainly a male, and remarkably perfect. The body of this male is of nearly equal size throughout, scarcely thickened
at the thorax. The male antenne consist of ten joints, and they are moniliform, very gently and slightly decreasing in size to the tip, the apical joint smallest, all together a little longer than the height of the head. Legs of the male long and slender, all the femora of equal length (the middle pair perhaps a little shorter than the others), slightly thickened, especially on the apical half. All the tibie are very long, slender, equal, covered below with a dense clothing of very delicate and short hairs, and furnished above with a row (i) of very short, delicate, minute, recumbent spines, the apex devoid of spurs; the first pair is about as long as the fore femora; the second is considerably shorter than the middle femora, while the third pair is longer than the hind femora. The tarsi are scarcely shorter than their respective tibiæ; the first joint is nearly as long as the sest of the tarsus, excepting on the middle legs, where it only equals the two succeeding joints taken together; the remaining joints are subequai in length (on the middle legs the second and third joints are longer than the fourth and fifth), and the last is armed with a delieate pair of divergent claws. The whole body and the appendages are blaek. The wings are fuliginous, deepening in tone toward the front margin; they are nearly as long as the body and about three.times as long is broad. The first and second longitudinal veins are straight and approximate to the front margin, the latter striking it searcely boyond the middle of the apical half of the wing, the former at about the middle of the third quarter; the third longitudinal vein diverges from the second at some distance before the middle of the wing, is comnected by the middle transverse vein a little beyond the middle of the wing to the fourth longitudinal vein, and forks either at a little more (δ) or at at little less ((f) than one-third the distance from the cross-vein to the apex of the wing, the lower branch striking the tip, while the other, strongly curved, strikes the margin at about one-third (δ), or a iittle more than one-third ((f), the distance from the apex of the second to that of the lower branch of the third longitudinal vein; tief fourth longitndinal vein is very nearly straight until it forks, considerably (δ) or a little ($\%$) nearer tha widdle transverse vein than the origin of the fork of the vein above; the branches part widely at base, the upper more areuate than the lower; the fifth longitudinal vein forks as far from the base of the wing as the divergence of the second and third longitudinal

[^47]veins, the upper branch being connected just beyond its origin with the fourth longitudinal vein, which is of the same length as the middle transverse vein, and lies as far within as tiat without the middle of the wing. In none of the specimens (owing to imperfect preservation) can the sixth longitudinal vein be traced beyond the basal transverse vein.

Length of body, 11^{mm}; breadth of thorax, 1.75^{mm}; of abdomen, 1.2^{mm}; length of femora: fore 3.5^{mm}, middle $3.5(\%)^{\mathrm{mm}}$, hind 3.5^{mm}. of tibiæ: fore 3.65^{mm}, middle 3.25^{mm}, hind 4^{mm}; of tarsi: fore 3^{mm}, middle 2.75^{mm}, hind 3.5^{mm}; of first joint of tarsi: fore 1.4^{mm}, middle 1^{mm}, hind 1.5^{mm}; length of wing, 10^{min}; breadth of same, 3.5^{mm}. All the measurements are taken from the male.

Similkanieen River, British Columbia. Tive specimens, Nos. 76, 7983 (Dr. G. M. Dawson, Geological Survey of Cara la).

Plecia pealei.

$$
\text { Pl. 4, Figs. 2, 3, 10, 11, } 12 .
$$

This species differs from P. similkameena mainly in a single point, the earlier forking of the fourth longitudinal vein, the stalk of which is as short as or shorter than the middle transverse vein, while in the British Columbia specins it is about twice as long. The superior fork of the third longitudinal vein is also a trifle shorter, although it does not appear to arise any earlier. The cross-vein uniting the fourth longitudinal vein with the branch of the fifth (next its base) is not shown in the figures, and the neuration is imperfect in Figs. 2 and 3 at several points. The species is of the same size as P. similkaneena, but a couple of specimens, thought at first to be distinct from apparent differences in their obscure nearation, but which turned out to be identical on closer inspection, are somewhat smaller than the average. The species must have been exceedingly common in the beds at Twin Creek, Wyoming, for out of more than fifty specimens of fossil insects obtained for me by the brothers Bell at their coal bed all but one or two belong to this species. They are preserved in a whitish fetid shale. They are mostly in a very poor state of preservation, the best of them being shown in Figs. 2, 3, and 11, the last showing the average size. Much better specimens, however, were obtained by Dr. A. C. Peale in October, 1877, in beds on the same creek, about thirty-five to forty miles northeast, of Randolph, on a darker shale, where the specimens were equally abundant
and excellently preserved, as see Figs. 10 and 12. Dr. Peale brougit home nine slabs, numbered 1 to 6 , containing ten specimens, with reverses of four of them. Three or four good specimens woie also sent me from Twin Creek by Prof. J. S. Newberry, and were then taken for the preceding species.

Named for the geologist Dr. A. C. Peale, who has been quick in the discovery of insect-bearing shales in the West.

Plecia dejecta.
Pl. 10, Fig. 17.
This species is in most respects nearer P. similkameena than P. peaiei from the neighboring region to the north, but it is considerably smaller than the former and than most specimens of the latter; a single well preserved and nearly perfect specimen has been found, in marked contrast to the abundance of P. pealei to the north. As in P. pealei the superior branch of the third superior vein is no longer, or scarcely longer, than the distance from the median transverse vein to the origin of the branch, while, on the other hand, it resembles P. similkameena in that the length of the median transverse vein is double that of the distance from it to the fork of the fourth longitudinal voin, represented a trifle too short on the plate. The legs are as in the other species as far as noted.

Length of wing, 7.5^{mm}; breadth of same, 3^{mm}.
Green River, Wyoming One specimen, No 8 (Dr. A. S. Pac'ard).

Family MYCETOPHILIDA Westwood. SCIARA Meigen.

Sciara deperdita.

$$
\text { Pl. 3, Fig. } 17 .
$$

Sciara deperdita Scadd., Rep. Progr. Geol. Surv. Can., 1876-1877, 457-458 (1878).
The remains of this species consist of a single perfect wing and the fragments of an eye whose facets are 0.0165^{mm} in diameter. The wing is oval and regularly rounded, with a somewhat abrupt inner angle, the surface covered with microscopic hairs. Judging from Winnertz's descriptions this insect must be more nearly allied to S. ungulata Winn. than to any
other of the numerous species mentioned iz his monograph of the group. The costal and first and second longitudinal veins, together with the crossveins uniting the two latter, are much heavier and darker than the other veins of the wing; the veins near the center of the wing and from there toward the base are mus delicate and fainter than elsewhere; but this perhaps is due to their indifferent preservation; the costal vein, which scarcely fails of reaching the tip of the wing, is covered with fine and short spinous hairs. The first longitudinal vein strikes the middle of the costal margin, and the cross-vein below unites it at the middle with the second longitudinal vein; tho auxiliary vein is very obscure though broad and scarcely extends more than half-way to the cross-vein, in close juxtaposition to the first longitudinal vein; the transverse shoulder vein is equally faint, oblique, uniting the middle of the auxiliary vein with the costal margin. The second longitudinal vein is strongly bowed and extends nearly to the tip of the costal vein. The basal undivided part of the third longitudinal vein is straight, originates from the second barely beyond the tip of the auxiliary vein, and forks somewhat abruptly at the middle of its course and just beyond the extremity of the first longitudinal vein; shortly beyond their origin the forks are very nearly straight and quite parallel to the tip, the upper fork striking exactly the tip of the wing; the tips of the two forks and of the second longitudinal vein are equidistant, and the costal vein terminates midway between the extremity of the second and of the upper fork of the third longitudinal veia; the tip of the fourth is slightly fartler from that of the lower fork of the third longitudinal vein than the separation of the two forks. The fourth and fifth longitudinal veins are straight and subparallel at base, beginning to diverge where they bend downward, just beyona the middle, the tip of the fourth lying about midway between that of the fifth and the lower forl of the third longitudinal vein. The sixth longitudiual vein is rudimentary and very indistinct, extending less than a quarter-way toward the margin.

Length of wing, 2.75^{mm}; breadth, 1.25^{mm}.
Quesnel, British Columbia. One specimen, No. 44 (Dr. G. M. Dawson, Geological Survey of Canada).

Sciara scopull.

Pl. 10, Fig. 16.

A little slab brought home by Dr. Packard has two flies upon it in close proximity, one preserved on a dorsal, the other on a lateral aspect. The venation in both is obscure, but they apparently belong to the Sciarina at least. The head is rather small, the antenne are rather coarse, cylindrical, equal, shorter than the thorax. Legs very long, exceedingly slender, the tibix without apical thorns, or rather without conspicuous thorns, all the legs covered with excessively delicate aculiform hairs. Wings with only two distinct veins, which run nearly parallel, not far from the front border, and the second of which terminates a little above the middle of the tip, and below it a deeply forked vein, apparently much as in Sciara proper.

Length of body, 3.25^{mm}; of antennæ, 1^{mm}; of legs, 4.25^{mm}; of wings, 3^{mm}.

Green River, Wyoming. One specimen, No. 2. (Dr. A. S. Packard)

MYCETOPHILA Meigen.

Mycetophila occultata.

Pl. 5, Figs. 44, 45, 54, 55.

Mycetophila oconltata Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 753 (1877).
A single poorly preserved specimen and its reverse present an upper view of the insect, with the wings folded over the back, the legs crowded together, and the antennæ lying beside the body. The antenne are about as long as the head and thorax, the joints scarcely longer than broad, nearly cylindrical, scarcely at all moniliform. The legs are comparatively slender, hairy, and unarmed, not very long. The character of the venation shows the insect to belong to the Mycetophilide, but what genus is represented is somewhat obscure through doubt of the exact location of some of the veins; neither the auxiliary vein nor any of the basal veins above it can be seen, nor can the axillary be traced; judging from the other veins, it is probably allied to Mycetophila, although, in the possible presence of a second cross-vein uniting the cubital vein with the extremity of the radial, it shuuld be referred to a distinct genus, probably allied to Empheria and

Tetragoneura. The presence of a such a vein being doubtful, we have preferred to point out its affinity to Mycetophila. The radial vein ends in the middle of the outer two thirds of the costa, and at its tip a distinct stigma, nearly three times as long as broad, occupies the space between the radial and costal veins. The tip of the wing is broken on one specimen and obscured on the otiner, so that the length of the costal vein can not be determined, although it appears to extend slightly beyond the tip of the cubital vein; the cubital is connected by the cross-vein to the radial but a short distance from its origin, and bends but little upward fiom the median vein to reach it; the middle discal vein, on the contrary, bends downward considerably: an ${ }^{?}$ ' 's at a distance from the base, less than half-way from the median cross-vein to the tip of the radial vein, and an unusually broad space is left between its upper branch and the cubital vein, while .he fork of the hind vein is nearer the base than the separation of the cubital from the median vein.

Length of body, 3.5^{mm}; antennæ, 1.1^{mm}; wings, 3.5^{nmm}; tibie (of fore legs ?), 0.75^{mm}; tarsi (of same legs), 0.4^{mm}.

Chagrin Valley, White River, Colorado. One specimen. (W. Denton.)

ANATELLA Winnertz.

Anatella tacita.

Pl. 10, Fig. 13.

A single specimen with damaged wings is referred here. The antennæ are as long as the thorax, slender, equal, covered with fine short hairs The legs are long and slender, the tarsi apparently longer than the tibio, the latter armed apically with a pair of exceedingly long unc-qua' spines, and all the legs thickly clothed with rather coarse spinous hairs. Wings dusky, the venation obscure, but apparently as in Anatella, there being no sign of any auxiliary vein beyond the base, the stalk of the upper discoidal vein apparently short and the fork of the lower a little further out than that of the upper discoidal vein.

Length of body, 4^{mm}; of antennæ, 1.5^{mm}; of tarsi, 1.75^{mm}; of wing (estimated), 3.2^{nm}.

Green River, Wyoming. One specimen, No. 14. (Dr. A. S. Packard.)

TRICHONTA Winnertz.

Trichonta dawsoni.
Pl. 3, Figs. 12, 13.
Trichonta dawsoni Scudd., Rep. Progr. Gool. Surv. Can., 1875-1876, 272 (1877).
A very woll proserved though fragmentary specimen must unquestion ably be referred to this genus, and is named for its discoverer. The greater part of one wing, the basal half of the other, including between them all the characteristic parts of the neuration, with c.ushed fragments of the thorax and abdomen, make up the remains of the creature. The veins of the wing are black, especially the upper ones, whick are heavily marked; the wing is covered with microscopic hairs, and slightly infuscated throughout, but on the apical quarter becomes dark fuliginous. The neuration agrees in every particular, to the minutest degree, with the figure of Trichonta given by Winnertz, excepting that the fifth longitudinal vein forks considerably nearcr the base, and the sixth longitudinal vein extends farther into the middle of the wing.

Estimated length of wing, 4.75^{mm}; breadth of same, 1.85^{mm}.
Quesnel, British Columbia. Gne specimen, No. 6 (Dr. G. M. Dawson, Geological Survey of Canada).

RYMOSIA Winnertz.

Rymosia strangulata.

Pl. 10, Fig. 2.
A single specimen in which most of the legs and one wing, of which the apex is lost, is all that remains of this species. Unfortunately the drawing is incorrect in two particulars: the transverse median vein which is at about the middle of the fragment, and is very obscurely preserved, is not given; and the stalk of the upper discoidal vein is scarcely half so long as represented, although the fork of the lower discoidal vein is still nearer the base. The cubital vein, which must terminate rather far above the apex of the wing, is not in the least bent at the transverse median vein. The legs are hairy and tolerably well though delicately spined.

Probable length of wing, 3^{mm}.
Green River, Wyoming. One specimen, No. 11 (Dr. A. S. Packard).

BRACHYPEZA Winnertz.

0) Brachypeza abita.

Pl. 3, Figs. 7, 8.
Braohypeza abila Scudd., Rep. Progr. Geol. Surv, Can., 1875-1876, 271-272 (1877).
This species is represented by a single specimen and its reverse in which the wings and an obscure and detached fragment of the abdomen are present. The wing appears to be devoid of markings. The auxilizry vein does not fairly impinge upon the first longitudinal vein, but bends toward it and then vanishes; in other respects the neuration of the base of the wing is precisely as figured by Winnertz for Brachypeza; so, too, are the origin, course, and position of all the principal veins and the cross-vein, but the branches of the fiftlı longitudinal vein unite perhaps a little farther f. \boldsymbol{m} the base, viz: scarcely nearer the base than the point of separation of the united third and fourth longitudinal veins from the second; the sixth longitudinal vein is perfectly straight, and terminates quite as far from the base of the wing as the small transverse vein; the anal vein is regularly curved, about as long as the sixth longitudinal vein, runs parallel to the border beside it, and terminates on the lowe: margin.

Length of wing, 4^{mm}; breadth of same, 1.35^{mm}.
Quesnel, British Columbia. One specimen, Nos. 3 and 16 (Dr. G. M. Dawson, Geological Survey of Canada).

Brachypeza procera.

$$
\text { Pl. 3, Fig. } 14 .
$$

Braohypeza precera Sondd., Rep. Progr. Geol, Surv. Can., 1875-1876, 272 (1877).
The single specimen of this species is in a very fair state of preservation, almost the entire neuration of the wings being preserved, as well as fragments of the body and other appendages. The wings are fuliginous, more deeply next the costal border. The neuration of the extreme base is lost, and the remainder differs from that of B. abita only in the lower half of the wing; the branches of the fifth longitudinal vein unite nearer the base than in that species, resembling, in this respect, the illustration of Brachypeza give' by Winnertz; the lower branch curves strongly toward the tip, diverging unusually from the upper branch; the sixth longitudinal vein is straight,
and runs far past the forking of the fifth vein, fully two-thirds the way to the margin of the wing; the anal vein curves but gently, and appears to vanish before reaching the margin of the wing.

Length of wing, 3.5^{mm}; breadth of same, 1.5^{mm}.
Quesnel, British Columbia. One specimen, No. 4 (Dr. G. M. Dawson, Geological Survey of Canada).

GNORISTE Meigen.

Gnoriste dentoni.

$$
\text { Pl. 5, Figs. 6, } 7 .
$$

Gnoriste dentoni Sondd., Bull. U. S. Geol. Geogr. Surv. Turr., III, 755 (1877).
A singlu specimen, a little broken, but otherwise in good preservation. The head and thorax are nearly black, the abdomen dark fusco-castaneous. Legs and base of antemne fuscous. Wings rather narrower at tip than in the Europem G. apicalis Hoffim., hyaline, covered with microscopic hairs, with a very slight and increasing infuscation toward the apex, the veins testaceous, the costal and second and third longitudinal veins much heavier than the others, and the fifth longitudinal vein with its lower fork scarcely heavier than the veins about it. The extreme tip of both wings is broken, so that the extent of the costal vein can not be seen; but, in the approach of the proximal end of the fork of the fifth longitudinal vein to the root of the wing, the species agrees with the American G. megarhina O. S. more than with the European species mentioned, for it lies scarcely farther from the base than the transverse vein connecting the first and second longitudinal veins, and slightly nearer than the separation of the third and fourth longitudinal veins. Only the basal four joints of the antennæ are preserved; the basal joint is obconic, broadly rounded at the apex, nearly twice as long as broad, the other three cylindrical, the second nearly half as long again as broad, the third and fourth less than a third longer than broad. The legs are profusely covered with hairs, but the hinder pair appear to be spineless, except at the apex of the tibia and of each tarsal joint, where there are three or four slender and rather short spines; the claws are very small and delicate, strongly curved and delicately pointed; the short tibiæ of the front legs, however, have at least a single row of fine, distant spines on the upper (\%) edge.

Length of body, 4.4^{mm}; first joint of antennæ, 0.2^{mm}; second joint, 0.125^{mm}; third and fourth joints ench, 0.11^{mm}; wings, 4.5^{mm}; middle (9) tarsi, 2.2^{mm}; first joint of same, 1.1^{mm}; second, 0.45^{mm}; third, 0.22^{mmm}; fourth, 0.2^{mm}; fifth, 0.17^{mm}; claws, 0.038^{mm}.

Fossil Cañon, White River, Utah. One specimen (W. Denton).

BOLETINA Stäger.

- Boletina sepulta.

Pl. 3, Fig. 9.
Boletina sepulta Sendd., Rep. Progr. Geol. Surv. Can., 1875-1876, 271 (1877).
A fragment of a single wing and a portion of the abdomen represent this species. It is accompanied by Pimpla decessi. The wing is moderately broad, and faintly fuliginous; the costal, auxiliary, and first and second longituainal veins are heavily impressed, broad, black, and devoid of the microscopic hairs which uniformly cover the membrane of the wing and the other veins ; these latter are faintly impressed, slender, and testaceous. The costal vein is bristly; the base of the wing is broken, so that only the tip of the auxiliary vein can be seen, which terminates on the costal margin scarcely before the small transverse vein; the latter is conspicuonsly oblique, directed from above, downward and outward; the first and second longitudinal veins are pretty strongly curved downward at tip; the veins below these fork a little farther out than in the scheme of Boletina, as figured by Winnertz, and the sixth longitudinal vein terminates just beyond the junction of the fourth and fifth longitudinal veins.

Length of fragment, 3.75^{mm}; estimated length of wing, 6^{mm}; breadth of wing, 2.15^{mm}.

Quesnel, British Columbia. One specimen, No. $9^{\text {b }}$ (Dr. G. M. Dawson, Geological Survey of Canada).

Boletina umbratica.
Pl. 10, Fig. 3.
From the size of the abdomen, the single specimen known seems to be a female. A fragment of one antenna is preserved together with parts of the legs, especially of the tibix, which are very delicately spined, though no apical spurs are seen. The hind tarsi of one side are also preserved vol xill-38
and me equal in length to the tursi. The wings show most of the neurntion. The nuxilingy vein terminates on the costn before the middle of the wing opposite the transverse median vein. The rudius terminates some distance and the cubitus slightly before the tip of the wing. The upper discoidnl vein forks about one-quarter way to the murgin, and the lower discoidal before the origin of the upper discoidal vein.

Length of body, 3.5^{mm}; of wings, 2.5^{mm}; brendth of same, 1.1^{mm}; length of hind tibise, 1.5^{mm}.

Green River, Wyoming. One specimen, No. 37 (Prof. L. A. Lee).

Boletina paludivaga.

Pl. 10, Fig. 7.

The venation is not correctly drawn, the muxiliary vein which reaches nearly to the middle of the wing not being shown; the radius should curve upward nt the middle of the wing and be connected with the cubital just previous to this curve; the stalk of the upper discoidul vein is short. The legs ure moderately stout but long, densely clothed with delicate hairs, the tibia with long apical thorns.

Length of body, 2.5^{mm}; of wings, $2.2 .^{\mathrm{mm}}$; of tarsi, 1.35^{mm}.
Green River, Wyoming. Two specimens, Nos. 5, 40 (Dr. A. S. Packard).

SACKENIA Scudder.

Sackenia Seuidd, Bnil, U, 8, Geol. Geogr. Surv. Terr., 1t1, 753-754 (1877).
Body shaped much as in Boletina. Antemat longer than the thorax, one-fourth slenderer at the apex than near the base, gently curved, $2+14$ jointed. Legs ery long and slender; femors and tibise of about equal length; tarsi o inttle longer than the tibia; the hind tibia and tarsi together a little longer than the abdomen; the tibix with one or two apical spurs leneath and spiner' throughout. Wings rather broad ovate; the smaller veins at the extreme base obliterated in the specimen examined; auxiliary vein terminating on the costa beyond the end of the basal third, the first longitudinal vein in the middle of the outer half; the second longitudinal vein is unusually curved downward at the tip, so as almost to reach the apex of the wing; the united third and fourth longitudinal veins part from the second very near the base of the wing or within the small transverse vein;
they divide near the center of the wing, and the fifth and sixth longitudinal as near the lonse as the third and fourth; the sixth longitudinul vein is straight, and appears to reach the margin of the wing.

The genus resembles Boletima more than any of the genera figured by Winuertz, but differs strikingly from it in the approximation to the base of the forking of the third and fourth, and of the fifth and sixth longitudinal veins. In this particular it closely resembles the Sciarim, but on the other hand differs from them to a greater degree in the length of the muxiliary and first longitudinal veins, and in that the former reaches the costa. The costal vein does not appenr to pass beyond the tip of the second longitudinal vein, but this peint is obseuro.

I have dedicated this genns to the distinguished dipterologist, Baron Osten Sacken, to whom I am indebted for many suggestions in the determination of these fossils.

Sackenia arcuata.
Pl. 5, Figs. 3, 4, 13, 13.
Sackenia arcuata Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., 1It, 754-755 (1877); in Zittel, Haudb. d. Palieont., I, il, 811, Fig. 1088 (IEN5).

This species is represented in part by a female specimen, more than usually well preserved. The body is pale testaceous; the wings wholly hyaline, but the veins faint testaceous; the antenme are a little longer than the head and thorax together, very slender, of the color of the thorax; the basal joints are subglobular, slightly broader than long, the remainder twice as long as broad, and beyond the middle of the antenne slightly moniliform. In the wings, the base of the hinder cell, using Winnertz's terminology, lies within the base of the upper discal cell, both being nearer the base of the wing than the middle transverse vein, while the base of the middle discal cell is far outside of either of these, near the center of the wing. The costal vein appears to terminate where the cubital reaches the margin, and the axillary vein nearly or quite reaehes the border. The legs are partly detached, and the basal portion of the front pair obscure, but it looks as though the front tarsi were about three times as long as the front tibia, which is hardly probable.

Length of body, 5.45^{ma}; antennæ, 2^{mm}; wings, 4.25^{mm}; hind femora, 3^{mm}; hind tiliox, 2^{mm}; hund tarsi, 2.4^{mm}; fore tarsi, 2^{mm}.

A second specimen of the same specins is similarly preserved, but lacks the wings. The legs, however, are better preserved, and show a puir of apical spurs to the tibise. The antenne ure imperfect, but the proboscis is seen. The length of the curved body is a little more than 5.5^{mm}. The legs are detached and confused, so that it is impossible to separate the middlo and hind legs; one leg. (a front leg, to judge from its length) has the following measurements: femur 1.2^{mm}, tibia, 1.4^{mm}, tursi 1.7^{mm}; another (probably a hind leg): femur 2.1 (? $)^{\mathrm{mm}}$, tibia 2.25^{mm}, tarsi 1.755^{mm}; unother (probably the opposite of the same): tibia 2.25^{mm}, tursi 1.75^{mmm}. Apparently, all the tursi are broken. The tibial spines, both in this and the firitmentioned specimen are delicate, and a little more than half as long as the thickness of the tibia.

Chagrin Valley, White River, Colorndo. T'wo specimens. (W. Denton.)

Sackenia? sp.

Pl. 5. Fig. $\mathbf{6 0}$.

Another and far smaller species of Sackenia seems to be indicated by the imperfect fragment of a wing and an obscure body. The third longitudinal vein is wrongly drawn as if united to the second instead of to the fourth. The common stem of the latter is joined to the seenud very shortly before their union, this being effected nearer the base of the wing than in S. arcuita.

Length of body, $2^{\text {mum }}$; probable length of wing, $1.6^{\text {mm }}$.
Fossil Cañon, White River, Utalı. One specimen, No. 33° (W. Denton).

Sackenik s.

Saekenia sp. Scadd., Bull, U. S. Ceol. Geogr. Surv. Terr., IV, 750 (1878).
A specimen of Mr. Richarde on's collection represents a species of Mycetophilide apparently belonging to this genus, so far as can be determined. It closely resembles Sackenia arcuata from the White River shales, but differs from it in its smaller size and in possessing a proportionally larger and more arched thorax; the legs also appear to be shorter. Besides the body and (indistinetly) the antemuæ and legs, only the upper portions of the wings remain, eonsisting of the costal margin and first and second longi-
tudinal veins, with the cross-vein uniting them; these wholly agree with the same features in S . arcuata, excepting that the second longitudinal vein terminates a little higher up.

Length of body, $3.7 \mathrm{~F}^{\mathrm{mm}}$; of wings, 2.9^{mm}
Green River, Wyoming. One specimen, No. 7 (F. C. A. Richardson).

anaclinia Winnertz.

Anaclinia ? sp.

$$
\text { Pl. 9, Fig. } 12 .
$$

Another specimen undonbtedly to be referred to the Mycetophilide is figured in Pl. 9, Fig. 12; but the fragment of the wing preserved is so obscured by the overlying legs that a nearer determination is impossible. It seems, however, to fall in the neighborhood of Amaclinin or Gnoriste, but the weaker parts of the neuration and the origin of the veins are so obscure that no closer determiuation can be made. The first longitudinal vein is longer than usual, reaching to beyond the tip of the wing, and the termination of the second is about midway between that of the first and that of the third. The antenne are moderately slender, about as long as the thorax with cylindrical joints about twice as long as broad.

Length of body, 2.6^{mm}; wing, 2.1^{mm}.
Green River, Wyoming. One specimen, No. 66 (Prof. Leslie A. Lee).

SCIOPHILA Meigen.

Sciophila hyattil.

Pl. 10, Fig. 6.

Some fragments of legs and one wing are all that remain of the single specimen of this species. Most of the neuration of the wing, and especially of the more important portions, can be made out, but an error occurs in the drawing, in the omission of the brachial vein, characteristic of this group of Mycetophilidæ. The species is peculiar in that the auxiliary vein bends downward and terminates on the radius above the middle cell, showing no branch to the costa. The radius terminates far out toward the tip of the wing. The middle cell is more than twice as long as broad. The cubitus terminates at the extreme wing-tip; the stalk of the upper discoidal vein is
short, not more than half as long as the middle cell (here again the phare is inaccurate), and the lower discoidal vein forks, apparently, before the base of the upper discoidal stalk, but this point is obscure; the brevity of the latter is remarkable for a Sciophila.

Length of wing (estimated), $5.5^{\mathrm{mm}} ;$ breadth, 2^{mm}.
Named for my learned friend and comrade, Prof. Alphens Hyatt, of Cambridge.

Green River, Wyoming. One specimen, No. 99 (Prof. L. A. Lee).

DIADOCIDIA Ruthé.

Diadocidia? terricola.
Pl. 10, Figs. 10, 11.
Diudocidia ${ }^{\text {P }}$ terricola Sendd., Bull. U. S. Geol. Gdogr. Surv. Terr. IV, 750 (1878),
This species is founded upon a single wing found by Mr. Richardson, differing to such a degree from Diadocidia that I place it here only because the only other reasomable course would be to refer it to a new genus, which would necessarily be conjectural, from the imperfection of the fragment. If a transverse vein exists in the middle of the wing, it mast unite the fourth longitudinal vein with the second, and not, as in Diadocidia, with the third. The wing itself is slaped muel as in Diadocidia, and, at least near its costal border, is covered with fine hairs arranged in rows parallel to the course of the neighboring veins; one of these rows in the costal cell is so distinct as to appear like a vein parallel to and lying within the auxiliary vein. The auxiliary vein terminates in the costal margin far beyond the middle of the wing, a feature apparently unknown in Mycetophilide; the first longitudinal vein terminates only a little farther beyond, and as in Diadocidia there is no transverse vein connecting them; the second lengitudinal vein terminates a little above the apex of the wing, curving downward at its extremity and apparently surpassed a little by the marginal vein ; the third longitudinal vein originates from the second at only a short distance before the middle of the wing, and soon forks, or at about the middle of the wing; the fourth longitudinal vein is perhaps connected with the second at the point where it parts with the first by a cross-vein perpendicular to the cosial margin; at least, it is elbowed at this point, its basal portion running parallel to the costal margin to the fifth longitudinal vein,
which, beyond this point, has a gentle sinuous course, and diverges rather strongly from the fourth; the sixth vein can not be traced, although the axillary field is broad, very much as in Diadocidia, and the inner margin distinct.

Probable length of wing, 3.6^{mm}; its breadth, 1.45^{mm}.
Gree.. River, Wyoming. One specimen, No. 125 (F. C. A. Richardson).

Mycetophilides spp.

$$
\text { Pl. 10, Fig. } 12 .
$$

Scudd., Bull, U. S. Geol, Gengr. Surv. Terr., IV, 750-751 (1878).
Three other species of Myceiophilidæ occur among the specimens collected by Mr. Bowditch and myself at Green River, Wyoming, but they are indeterminable from their fragmentary condition. One of them, No. 4134 (Pl. 10, Fig. 12), has indeed the remnant of a wing, but the portion of the venation preserved is only stfficiently characteristic to enable us to judge that it belongs in this family The thorax is strongly arched, and the full and tapering abdomen indicates a female. The head is gone.

The thorax and abdomen are 3.5^{mm} long, and the wing probably 3^{man} long.

Another of them, from the same place, No. 4114, has a portion of the base of a wing in which the forking of the fifth and sixth longitudinal veins is very close to the base, as in Sackenia, but nothing more can be said concerning it; the thorax is very giobular and the abdomen short.

Length of thorax and nbdomen, 3.65^{ram}.
The third species is represented by two specimens on one stone (No. 4205) which came from the high buttes opposite Green River: Station, and is the only fly which had the slightest value found in four days' search at that spot. One of the specimens is a pupa and the other an imago, apparently of the same species and distinct from either of the preceding, with a longar thorax and slenderer abdomen, provided with large ovate anal lobes.

Length of thorax and abdomen, 5^{mm}.

Family CECIDOMYIDÆ Westwood.

LASIOPTERA Meigen.

Lasioptera recessa.
Pl. 5, Figs. 29-31.
Lanioptera recessa Sendd., Bull. U. S. Geoi. Geogr. Surv. Terr., III, 745-746 (1877).
A single specimen of a minute fly, with the antennæ perfect, the body preserved on a side view, with parts of the legs and the wings folded together over the back, raised from the body. The head is moderately large and appears to be a little narrower than the thorax. The antenno show fourteen joints, without counting the basal joint, and perhaps one or two more next the base, where the antennæ are parted; the joints are submoniliform, slightly broader than long, subequal; the last joint subconical, twice as long as broad. The wings show a priucipal vein, which strikes the costa about the middle, and apparently another, striking the costa halfway between this and the tip, a feature which does not accord with the structure of the Cecidomyide generally; but the wing at this point is very obscure, so that the appearance may be accidental. The legs are apparently about as long as the body and rather slender.

Length of body, 1.4^{mm}; of antennæ, $0 . .^{\mathrm{mm}}$; wings, 1^{mm}.
White River, near the Colorado-Utah boundary. One specimen. (W. Denton.)

LITHOMYZA Scudder ($\lambda i \theta o s, \mu \dot{\nu} \zeta \omega)$.

Lithomyza Scudd., Bull. U. S. Geol. Geogr Snrv. Terr., III, 746 (1877).
Ocelli present. Antenne nine-jointed, scarcely longer than the tnorax, the first joint cylindrical, the remainder submoniliform, ovate, about twice as long as broad, miuutely and sparsoly pubescent. Wings resembling those of Anarete in neuration, but differing considerably in shape, being broadest beyond the middle and tapering toward the base. The first longitudinal vein extends beyond the middle of the wing ; the auxiliary vein runs close beside the first longitudinal vein, but only half as far, terminating independently; the second longitudinal vein extends to the tip of the wing, curving downward in the distal part of its course ; the third longitudinal vein forks as in Anarete, but the independent or for arth longitudinal vein
beneath it in Anarete is absent from Lithomyza. The tibix are destitute of spurs, but funished with a posterior row of slight, recumbent spines.

Lithomyza condita.
PI. 5, Figs. 3-36.
Lithomyza condita Sondd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 746 (1877); in Zittel, Handb. d. Palæont. I, 1i, 812, Fig. 1089 (18\%5).
Represented by a single specimen in an unusually perfect condition, although somewhat indistinct. The joints of the antennæ are difficult to determine, but with little doubt are nine in number; although short, they are not so abbreviated as in Anarete, the joints being twice as long as broad; toward the tip, they grow smaller. The legs are long and bristly. The fork of the third longitudinal vein is at the center of the wing, and nearer the base than the extremity of the first longitudinal vein. There is a faint indication of a transvesse vein between the first and second longitudinal veins, about midway between the fork of the third longitudinal vein and its separation from the second. There is also a faint and very doubttul indication of an oblique cross-vein just beyond the.transverse vein mentioned, running from the first longitudinal vein to the costa.

Length of body, 2.7^{mmm}; of antennæ, 0.75^{mm}; of wings, 2^{mm}; fore legs, 0.7()$^{\mathrm{mm}}$; middle legs, 2^{mm}; hind legs, 2.4^{mm}; hind tibio, 0.56^{mm}; hind tarsi, 1.28^{mm}.

Chagrin Valley, White River, Colorado. One specimen. (W. Denton.)

LEPIDOPTERA Linné.

No Lepidoptera have as yet been found in the American Tertiaries, excepting at Florissant. The butterflies have been described in the Eighth Anmual Report of the U. S. Geological Survey and the heterocerous members will be discussed at another time. Here there is place only for the single species accidentally figured with the Trichoptera.

Family TINEIDÆ Leach.

Tineidæ are not rare in amber, Menge having in his collection sixtynine specimens, of which one was a caterpillar and two were pupa, but they have not been studied. Gravenhorst also mentions a Tinea in amber, and Presl describes one species. Germar long ago figured a large Ypsolophus from the Rheaish brown coai, and Heyden from the same beds figures the larval mine of a Nepticula. Finally, Kawall described a Tineites from "Bergkrystall" at Ufalei in Siberia. The single species here found may be referred, at least provisionally, to Psecadia, and though smaller than Germar's Ypsolophus, is a large insect (for this family), resembles it not a little, belongs to the same group, and is remarkably preserved.

PSECADIA Hübner.

To this group I temporarily refer a remarkably well preserved moth, which may very properly be better relegated to a distinct genus, on account, in part, of the brevity of the first antennal joint. Its close relationship to Psecadia and Depressaria car hardly be contested, though the neuration can not be traced. It is a large tineid, like those of these two groups, and it is tolerably plain that Germar's Ypsolophus insignis is nearly related; an interesting fact, since the single fossil species of Tineidæ fairly known in Europe is thus found to be closely related to the single species known in America.

Psecadia mortuella.

PI. 15, Figs. 12, 17.

A single specimen has been found with its reverse. The insect is preserved lying upon its side, and thongh the neuration can not be seen from the wing laving been heavily scaled, the whole of the antennæ and most of the palpi, tongue, and legs are well preserved. The palpi are closely recurved over the head, the middle joint apparently of about the zame length as the apical joint, compact but heavily clothed, appressed to the front, reaching the sumnit of the eye, the apical joint very slender and pointed, directed at last backward, reaching the back of the head. Antennæ fully two-thirds as long as the wings, slender, naked, gently tapering, the basal joint stout, rounded apically, not over twice as long as broad, the succeeding joints uniformly cylindrical, about twice as long as broad, transversely sulcate in the middle, as if made of two subjoints, relatively a little longer near the middle of the antemm than at the two extremities, the second joint three-fourths the dianeter of the first and only as long as broad. Tongue at least as long as the middle femora, with no sign of squamation at the base anteriorly. Wings fully three times as long as broad, the apex roundly but acutely angulate, all heavily squamate. It is difficult to make out what the markings may have been, but it would appear that the wings were grizzly with an interrupted series of small darker spots along the proximal half of the costa, and another series down the middle of the wing on its distal half. The legs are not very long, the fore legs somewhat shorter than the middle pair nnd much slenderer, the tarsi considerably shorter than the femora, and fully as much longer than the short tibia. The niddle legs are very much shorter than the hind pair, the tibia and tarsi of equal length and each about three-fourths as long as the broad femur; the tibia armed apically with a pair of excessively long spurs. The hind legs can not be fully determined, but the tarsi are about twice as long as the middle tarsi, and the dorime series of tibial spurs as long as those of the intermediate tibix.

Length of body, 12.5^{mm}; wings, 10.2^{mm}; probable spread of wings, 25^{nm}; length of antennæ, 8^{mm}; fore femora, $2^{\mathrm{mm}} ;$ tibiæ, 1.3^{mm}; tarsi, 1.7^{mm}; middle femora, 2.3^{mm}; tibiæ, $\mathbf{1 . 7 5}{ }^{\mathrm{mm}}$; tarsi, 1.75^{mm}; hind tarsi, 3.5^{mm}.

Florissant. One specimen, Nos. 8460 and 9630.

HYMENOPTERA Linne.

Tribe TEREBRANTLA Latreille.
Family TENTHREDINIDAE Leach.
TAXONUS Dahlbom.
χ Taxonus nortoni.
PI. 10, Figs. 26, 27.
A fairly preserved specimen and its reverse, showing a dorsal view with most of a front wing, but neither legs nor antennæ. The head and thorax are dark, unusually dark for specimens on this stone, but the abdomen is much lighter, almost uniformly so, but showing the sides a little duskier. The veins of the wings and the stigma are uniformly dusky. The first discoidal cell is almost uniformly rhombic, the cross-vein separating it from the second discoidal cell being unusually long. The first inner apical nervure falls exactly below the middle of the first discoidal cell and the lanceolate cell has a strongly oblique cross nervure terminating opposite the inner end of the same discoidal cell.

Length of body, 7.5^{mmu}; breadth of thorax, 2.5^{mm}; length of wing, $7^{\mathrm{mm} .}$.
Green River, Wyoming. One specimen, Nos. 22 and 140 (Prof. L. A. Lee).

Family CHALCIDIDÆ Walker.
DECATOMA Spinola.
\times Decatoma antiqua.
Pl. 10, Figs. 20 ? 31.
Decatoma antiqua Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 749 (1878).
On the same stone as Lystra richardsoni, but at a slightly higher level, is a minute chalcid fly. The wings are lacking, but the whole of the body is preserved, together with the antonnæ. The head is large, arched, and
otherwise well rounded, the face tapering below, the eyes large, deep, with their inner borders nearly parallel, leaving an equal front; the base of the antennæ can not be made ont, but beyond the long basal joint are six nearly equal quadrate joints, increasing very slightly indeed in size away from the head, scarcely so long as broad, the spiral joint subconical, scarcely longer than the peunltimate. Thorux compact, globose, minutely granulated like the head; the abdomen also compact, arched, the tip rounded; beyond it the ovipositor extends very slightly, apparently by pressure.

On another stone, collected by M^{*}. Richardson, is pretty certainly another specimen of this species, in which the abdomen is distorted by pressure; the abdomen shows this by the rupture of the integument, and the result is an apparently slenderer abdomen; it is also a female, with exactly the same parts preserved, with the addition of the other antenna; bat both antennæ are more obscure than in the other specimen, especially ut the apex ; they appear, however, to enlarge more rapidly and may be clavate at the tip, in which case the insect can not be the same.

Length of body, (of No. 4076), 1.85^{mm}; of abdomen, 0.95^{mm}; of antennæ beyond basal joint, 0.4^{mm}; width of penultimate antennal joint, 0.045^{mm}.

Green River, W yoming. 'Two spec mens, Nos. 4076 (S. H. Scudder'), 86 (F. C. A. Richardson).

Family BRACONIDAE Haliday.

CALYPTITES Scudder.

Calyptites Scudd., Rep. Progr. Geol. Surv. Can., 1876-18ı7, 270 (1878).
This name is proposed for a genus of fossil Braconidæ, which seems to be distinct from any described living forms. It is related to Calyptus, but differs from it in the neuration of the front wings, mainly in the shortness of the first subinedian cell, the division between which and the second submedian cell lies much before the lower extremity of the first median cell; and still more in the shape and position of the first subcostal and second median cells; the vein which separates them is in straight continuity with that separating the ser and subcostal and third median cells, so that the subcostal cells and the median cells lie in parallel lines along the longer diam-
eter of the wing; the second medim cell is scarcely more than half as large as the first subcostal cell, subquadrate, broadest below; the first subcostal cell is angulate, but broadly oval, its larger diameter along the wing almost twice as long as broad.

\times Calyptites antediluvianum.

Pl. 3, Fig. 32.
 IIandl. d. Paleont, I, II, 816, Fig. 1100 (1885).

Represented by a single fore-wing in perfect preservation. It is uniformly and scarcely infumated, the amal cell decidedly fuliginous, the stigma also fuliginous and centrally infuscated; as preserved on the stone the veins are pale and delicately edged with black and accompunied by a very narrow and delicate infumated margin, especially in the basal and lower halves of the wing; the median vein does not reach the margin of the wing next the anal excision, but bends and runs in a straight course to the outer border; the second median cell has numerous brief shoots from the nervures along its lower and outer margins, and one is found at the middle of the upper margin of the second subcostal cell, and another below the middle of the vein separating the first and second subcostal cells.

Length of wing, 6^{mm}; breadth of the same beyond the costa, 2.1^{mm}.
Quesnel, British Columbia. One siecimen, No. 7 (Dr. G. M. Dawson, Geological Survey of Camada).

BRACON Fabricius.

\times Bracon laminarum.

$$
\text { Pl. 10, Fig. } 29 .
$$

Bracon laminarum Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 748 (1878).
A single specimen and its reverse show a body without wings or other appendages. The head is quadrate, broader than long, and nearly as broad as the thorax. 'The thorax is subquadrate, either extremity rounded, about half as long again as broad, the sides nearly parallel, and the surface, like that of the head, minutely gramulated; abdomen fusiform, very regular, in the middle as broad as the thorax, as long as the head and thorax together, tapering apically to a point, and composed apparently of six segments.

Length of body, 2.9^{mm}; of liead, 0.6^{mm}; of thorax, 0.85^{mm}; of abdomen, 1.35^{mm}; breadth of head, 1.1^{mm}; of thorax, 1.2^{mmm}.

Green River, Wyoming. One specimen, Nos. 4196 and 4197 (S. H. Scudder).

Bracon sp.

$$
\text { Pl. 3, Fig. } 33 .
$$

Bracon si!, Sondd., Rep. Progr. Geol. Eu: ': L'an., 1877-1876, 177B (1879).
An insect apparently belonging to Bracon or a closely allied genus is so imperfectly preserved as not to allow of description; both the front wings are very imperfect; the whole of the body and fragments of the legs are preserved.

The insect was 4^{mm} long, and the length of the front wing about 2.85^{mm}.
Similkameen River, British Columbia. One specimen, Nos. 69 and 78 (Dr. G. M. Dawson, Geological Survey of Canada).

Braconide sp.

$$
\text { Pl. 10, Fig. } 18 .
$$

Probably belonging to this family is the insect figured on Pl. 10, Fig. 18, which represents a minute species preserved on a partially lateral, partially dorsal view. Unfortunately the wings are nearly obliterated, and though the general appearance of the insect is gained, it is impossible to determine its place. Its size and general appearance would seem to indi cate that it belongs here rather than in the Ichneumonidæ, and it perhaps falls in the vicinity of Laccophrys Först. and of Macrocentrus Cress.

Length of body, 3^{mm}; of antennæ as far as preserved, $2^{\text {wim }}$; of oviposi tor, 1.5^{mm}.

Green River, Wyoming. Ono specimen, No. 130 (Dr. A. S. Packard)

> Braconide sp.

PI. 10, Fig. 98.
Tio this family rather than to the Ichneumonidx also probably belongs the specimen figured in Pl. 10, Fig. 28, but of which, the antenne and ovipositor being the only well preserved parcs, not enough remains to indicate any affinities with certainty. Perhaps it may fall near Meteorus.

Length of body, 4.5^{nmm}; of (broken) antennæ, 3^{mm}; of ovipositor (base wanting), 25^{mm}.

Green River, Wyoming. One specimen, No. 133 (Dr. A. S. Packard).

Family ICHNEUMONID \notin Leach.

ICHNEUMON Linné.

χ Ichneumon petrinits.

Pl. 5, Figs. 14, 15.

Ichnewmon petriuny Sculd., Bull. U. \&. Geol. Geogr. Surv. Terr., III, 743 (187\%).
A fragmentary specimen, preserved on a dorsal aspec ${ }^{\wedge}$ parts of the front wings, the thorax, and hasal half of the abdomen are preserved. The body is blackish and the wing-veins testaceous; the wing, excepting the fusco-testacoons stigma, is hyaline, covered sparsely with very delicate and moderately long hairs; the stigma is long and slender, the lieaver main portion about two and a hulf times longer than broad, the slender basal extension us long again. Unfortunately, the wing is preserved only as fur as, but not including, the areola, so that many characteristic parts are lacking; the second median and first subcostal cells are united, the vein separating them being present only below, where it is directed parallel to the principal longitndinal veins; the vein from which it springs is bent at an angle of about 70°, so that the part representing the first subcostal cell tapers rather rapidly in its apical half, while its basal half (if the cross-vein were continued) would be of the same size and shape as the second median cell, or a parallelogram nearly twice as long as broad; the vein separating the first and second median cells is continued in a nearly direct line below; the third mediąn cell is long and rather slender, with somewhat produced angles basally. The first segment of the depressed abdomen is fully half as long agrain as broad, increases a little and regularly in size toward the extremity, at its base is about half r broad as the extremity of the thorax, and at its tip less than half as broad as the broadest part of the thorax; the second segment is considerably larger, and also enlarges apically, but its length is indeterminate.

Length of thorax, 2.6^{mm}; breadth of same, 1.5^{mm}; length of wing to tip of stigma, 4.25^{mm}; breadth of base of abdomen, 05^{mmm}.

Chagrin Valley, White River, Colorado. One specimen (W. Denton).

LI'THO'TORUS gen. nov. (A/Ous, topos).

This genus of Ichnemmonide is undoubtedly allied to Exyston, but differs from it, as it does from all members of the family known to me, by the separation of the first from the second cuhital cell by a weak nervure, not shown in the plate, which extends entirely across the spice usunlly left open in this family, though almost always closed in the Briconide. It is also remarkable for the flaring of the apical cubital cell. The antenme are shorter than the body and the abdomen has the basal joint comparatively stout, considerably enlargine, and the subapical joints more than twice as broad as loug.

Lithotorits creshoni.

> I'l. 10, fiig. el
'The single specimen is proserved on a side viow in which all the parts but the legs are preserved, but the wings are somewhat obscured by overlapping. Apparently, the areola is not closed externally, and the outer cubital cell is opened unusually wide, while the radial cell is exceptionally deep for its length; the parts below the areola are obscure. The antenne are moderately stout, reaching to the middle of the aldomen, the joints scarcely moniliform, twice as long as broad. The thorax is compnct oval. The abdomen beyoud the basal joint is as long as the head and thorax together; the basal joint is more than twice as broad apically as at the base and less than twice its greatest breadth. The whole body, but especially the thorax, is dark colored.

Length of body, 4^{mm}; of antennax, 3^{mmm}; of wing, 3^{mm}.
Green River, Wyoming. One specimen, No. 131 (I)r. A. S. Packard).
RHYSSA Giravenliorst.
${ }_{4}$ Rhyssa juvenis:
Pl. 10, Fig. 19.
Although smaller than any species I have noted, and much smaller than most known to me, I can find no characters in this single specimen which do not ocenr in Rhyssa, except in the relative proportions of the tionrax and abdomen. The spepimen is preseived on a side view and in a gen-

[^48]eral way shows everything except the legs; but thi basal parts of the wings are obscured on account of their overlying the looly, und give the remainder n foreshortened look. The nutemmare tolerally stout, a portion longer than the large thornx being preserved, with joints a little more than twice as long again as brond. The thorux is lurge, massive, urched, twice as high as the head, regularly ovete, and half as long nguin as high. 'The wings are tolerably brond, and the neuration is obseured by the overlying of the wings and the erumpling of some of them; it shows, however, a le \quad on first cubital cell sepmated from the secomd ly a minute triangular areola attached by its upex directly to the radius, with no intervening pedicel, and containing a brief, outwirl directed, recurrent nervule emitted from the cubital vein slightly nearer the areola than the outer discoidul cell. The abdomen is very obscure, but is certainly very short-no longer than head and abdomen together-and appears not to be broadest apically, but only a little beyond the middle; but this can not be stated positively. The ovipositor is considerably longer than the body, stout and straight; it is densely clothed with fine, sliort, reeumbent hairs to its very tip.

Length of body, 8^{mm}; of thorax, 3.3^{mm}; of nhdomen, 4^{mmm}; height of thorax, $5_{5}^{5.1 \mathrm{~mm}}$; length of wing, 6.25^{mm}; 3readth of same, 2.25^{mm}; length of ovipositur, 9^{mm}; breadth of same, 0.25^{mm}.

Green River, Wyoming. One specimen, No. 129 (Dr. A. S. Packard).
PIMPLA Fabricius.
χ^{2} Pimpla saxea.
Pl. 3, Fig. 23.
Pimpla saxea Scudd., Rep. Progr. Geol. Surv, Can., 1875-1876, 268 (1877).
This species is represented by a single specimen presenting a shattered thorax, the first four abdominal segments viewed from above, and the front wing. These abdominal segments are pretty uniform and regulay, rather strongly convex, pale testaceous, with a broad, blackish fuseous, basal, transverse band, occupying fully one-third of each segnient; the segments are quadrate, broader than long, and smooth. 'The metathorax is pale testaceous, and very delicately scabrous. The wing is uniformly hyaline, or shows the slightest trace of infinmation, especially at the extreme tip, and is uniformly and rather sparsely covered with mieroscopic hairs, averaging
0.04^{mm} in length in the third median cell, seated upon little chitinous annuli 0.008^{mm} in diameter ; the veins are black, and the basal part of the stigma hlack, but beyond it is dark fusco-castaneous; the castaneous portion (lying beyond the tip of the first median cell) is three times as long as broad, extending half-way down the upper border of the first subcostal cell; the third costal ce!l is comparatively narrow at tip, and the tip of the wing is somewhat pointed; the vein separating the arcoln or second subcostal cell from the third costal cell is partially obliterated, and the areolu is rather small, sulbquadrate, broadest at the open side; there is the slightest possible trace of the lower extremity of the vein separating the united first subcostal and second median cells, but the vein bordering the upper side of the third median cell is perfect throughout; the vein sepurating the third and fourth median cells is gently curved, subsinuate and purtinlly obliterated in the midde.

Length of fragment of body, 5.5^{mm}; length of wing, 8.75^{mm}; breadth of wing beyond stigma, 2.9^{mm}; greatest width of third costal cell, 0.35^{mm}.

Quesnel, British Columbia. One specimen, No. 31 (Dr. G. M. Dawson, Geological Survey of Canada).

- χ Pimpla senecta.

> Pl. 3, Figs. 29-31.

Pimpla seneota Scudd., Rep. Progr. Geol. Surv. Can., 1875-1876, 263-269 (1877).
A single specimen and its reverse show little besides the greater part of the front wing and the tip of the lind wing; crushed chitinous masses represent parts of the abdomen, and perhaps of the thorax ; the wing is uniformly hyaline, with the slightest possible trace of infumation next the base, and is profusely covered with tapering microscopic hairs, averaging 0.065^{mm} in length in the third median cell, seated upon minute chitinous annuli 0.01^{mm} in diameter; the veins are black, or toward the tip and on the hind wing castaneous, and the stigma is dark testaceous; most of the stigma is broken, bit enough remains to show that it is apparently not so broad as in the other species liere described, and it extends less than half-way down the upper border of the first subcostal cell; apically the third costal cell is comparatively broad, and the tip well rounded; the vein separating the areola from the third costal cell is nearly obliterated, and the areola is rather small, and shaped as in P. saxea; there is no trace whatever of the vein separating the united
first subcostal and seeond medinn cells, althongh the vein above the third mediun cell is bent where it shonld join it, as in the preceding species; the same vein is purtially obliterated in the middle of the portion below the first subcostal cell; the vein separating the third and fourth median cells is strongly curved, subsinuate and distinct throughont.

Length of wing, $8.4^{\text {mm }}$: breadth beyond the stigma, 2.4^{mmm}; greatest width of the third costal cell, 0.4^{mm}. Formica arcana hes on the same stone.

Cuesurl, British Columbia. One specimen, Nos. 10^{10} and 12 (Dr. G. M. Dawson, Geological Survey of Canada).
$\chi_{\text {pimpla }}$ becessa.
II. 3, Fig. 27.

Pimpla decessa Seudd., Rep. Pıngr. Geol. Surv. Cau., 1875-1876, 269 (1877).
The remains of this insect consist of crushed thorax and abdomen, and the two wings of one side of the body, superimposed; upon the same stone, at a slightly higher level, is the specimen of Boletina sepulta. The thorax and abdomen are entirely crushed and black, but the last segment of the latter bears the closest possible resemblance to the abdomen of the male of Pimpla instigator Fubr. The wing is uniformly infumatud, and the margins of the anal excision infuscated; it is covered very profusely with short microscopic tapering hairs, more irregularly distributed than in the other two species described, averaging in the third median cell 0.03^{mm} in length, and seated on chitinous amnuli varying in size, some being but half as large as others, the larger ones measuring about 0.007^{mm} in diameter; the veins are black and the large triangular stigma alnost as dark, a little paler toward either extremity ; the stigma is about twice as long as broad, and extends more than half-way down the upper border of the first subcestal cell, the vein being partially obliterated beyond it; the third costal cell is rather narrow apically, although the tip of the wing is pretty well romnded. The species may readily lea distinguished from those deseribed above by the shape of the areola, which is pretty regularly quadrate, twice as long as broad, and has the vein next the thirl costal cell obliterated only nt the ends; there is no trace of the vein separating the united firsi subcostal and second median cells, and the vein scparating these cells from the third median cell is bent in the middle, and nomby ohliterated in the middle lalf;
the vein separating the third and fourth median cells is strongly curved, not at all sinuate, and slightly indistinct at its upper extremity.

Length of fragment of body, 8.5^{mmw}; length of wing, $7 . .^{\mathrm{mm}}$; breadth of same beyond the stigma, 2.6^{mm}; greatest width of third costal cell, 0.27^{mm}.

Quesnel, British Columbia. One specimen, No. 9n (Dr. G. M. Dawson, Geological Survey of Canada).

GLYPTA Gravenhorst.

χ^{\prime} Glippta transversabis.

Pl. 10, Fig. 25.

The single specimen is preserved on a dorsal view, with the upper right wing turned forward and reversed. The flaking of the stone in front has destroyed the antenne, no legs are preserved, and the apical portion of the abdomen is altogether obscure ; no ovipositor can be seen. The general disposition of the neuration is altogether as in all the figures of Glypta I have seen, but there are several points in it wherein it differs from all of them. The basal cubital cell is much. less elongated than usual by the comparatively slight extension of the apical portion of the cell beneath the stigma, consequent upon the brevity of the basal portion of the radius; the basal discoidal cell is also unusually shcici and the cross-vein separating the middle and apical discoidal cells straight and not zigzag. The eyes are large and promisent, and by the preservation of the specimen it is evident that they shared in the considerable variegation of the body by being of a light color with a basal dark annulus, next which the head was again light, with a dark central portion relieved by a posterior transverse light belt. The thorax was similarly ornamented, the mesothiorax having dark sides and a broad mesial light band enlarging posteriorly and anteriorly, but divided by a middle dark line which expands in front and behind to a stripe. The metathorax is mostly light with a mesial dark stripe. The abdomen is light, but with the lateral prominences at the base of the earlier joints peculiar to Glypta (here transverse instead of obliquely longitudiual) of a dark color; these prominences are largest on the first nnd second segments, where they nearly touch in the middle, and especially on the second segment, where they are twice as broad as on the others, slightly oblique, but directed
inward and backward (not forwarl) and reticulated as if more or less punctate in life. The head, thorax, and abdomen are of about equal width.

Length of wing, 4.5^{mm}.
Green River, Wyoming. One specimen, No. 76 (Prof. L. A. Lee).

ECLYTUS Holmgren.

\searrow Eiclytus lutatus.
I'I. 10, Fig. 24.
The single specinen is preserved on a side view, with one wing drooping. A portion of the moderately stont antenne is preserved, showing them to be at least nearly as long as the body, and the middle joints to be rather more than twice as long as broad. The neuration of the wing is obscure about and below the region of the areola, which appears to be lacking, the direction of the cubital vein from its extremity backward being toward the a.gle of the radius beyond the stigma; bofore this junction the cubitus is more curved than represenced on the plate; the obscurity prevailing in that region does not permit one to see the cross-vein below the position of the areola with clearness, but there is a faint indication of a straight vein depending from that point; the separation of the second discoidal and humeral cells is by a straight, scarcely oblique cross-vein in direct continuation of the vein above and not shown on the plate. The neuration of the hind wing is exactly as in all species of Eclytus. The abdomen is evidently compressed laterally, pediceled by the apically enlarging long first segment, the remainder oblong ovate on a side view, most expanded beyond the middle, a little more than twice as long as ligh; ovipositor scarcely so long as the extreme height of the abdomen.

Length of body, 3.5^{mm}; of wing, 2.65^{mm}; cf ovipositor, 0.65^{mm}.
'The species apparently differs from those figured by Snellen van Vollenhoven in his Pinacographia in that the cubital vein meets the radius by a union of similar but reversed angles.

Green River, Wyoming. One specimen, No. 36 (Prof. L. A. Lee).

Tribe AOULEATA Latreille.
 Family MYRMICIDÆ Lepelletier.

APH A NOGASTER Mayr.
$\chi_{\text {Aphenogaster longava. }}$

$$
\text { Pl. 3, Fig. } 23 .
$$

Aphenogaster longera Scudd., Rep. Progr. Geol. Geogr. Surv. Can., 1875-1876, 267 (1877).
A single very obscure and fragmentary specimen, and its still more obscure reverse, are the sole representatives of this species; they exhibit a crushed and confused mass of head, thorax, legs, and antennæ, and the larger part of a single front wing, apparently of a male. The wing isfaintly infumated, especially beyond the stigma, and the stigma itself is only a little deeper in tint; the wing is also covered very sparsely with excessively delicate and very short nicroscopic hairs. The cubital vein forks beyond the discoidal cell by only one-third the width of the latter, and both the veins rur to the tip of the wing, although very faintly. This cell is shaped exactly as in A. berendti Mayr, found in amber, and is distant from the scapular vein by only half its width; the costal margin of the wing is more convex beyond the stigma than in the amber species mentioned.

The base of the wing is lost, but its probable length is 7^{mm}, and its greatest breadth is $2.3^{2^{m}}$; length of stigma, 0.8^{mm}.

Quesnel, British Columbia. One specimen, No. 33 (Dr. G. M. Dawson, Geological Snrvey of Canada).

MYRMICA Latreille.

Myrmica sp.

Pl. 10, Fig. 22.

Myrmica sp. Scudd., Bull. U. S. Geol. Geugr. Surv. Terr., IV, 748 (1878).
A species of this family was found at Green River, but a specific name is withheld in the hope of finding better material on which to base it. The head is rather small, circular ; the thorax very regularly ovate and nearly twice as long as broad ; the peduncle small and composed of two adjoining
circular masses, the linder slightly the larger; the abdomen is much broker, is it evidently larger than the thorax and pretty plump; no appendages inv preserved.

Length of body, 3.3^{mm}; diameter of head, 0.4^{mm}; length of thorax, 1.2^{mm} : width of same, 0.75^{mm}; length of peduncle, 0.25^{mm}; diameter of anterior joint of same, 0.1^{mm}; width of abdomen, 0.85^{mm}; its probable length, 1.8^{mm}.

Green River, Wyoming. One specimen, No. 53 (F. C. A. Richardson).

Family FORMICID $£$ Stephens.

HYPOCLINEA Mayr.

Whypoclinea obliterata.

$$
\text { P'I. 3, Figs. 25, } 26 .
$$

Hypoclinea obliterata Scudd., Rep. Progr. Geol. Ceogr. Surv. Can., 1875-1876, 267 (1877).
There are two specimiens to be referred to Hypoclinia, and both are very fragmentary. One (No. 8) consists of the partial remains of the wings of one side overlapping; the other (No.14) of similar remains, hut so faintly impressed on the stone that some of the veins can not be traced at all, and since in all essential features it agrees with the more distinct fragments, I have considered it as belonging to the same species, although it is of slightly greater size.

The essential portions of the fore wing remain, showing the nemration to be that of Hypoclinia; the second cubital cell is triangular, and the vein which marks its outer limit arises from the upper branch of the cubital vein a little beyond the cross-vein depending from the stigma; the discoidal cell is of abont the same size as the second cubital cell, and is subquadrate, the vein marking its outer margin a little curved, and the apex of the cell itself separated by but a short space from the base of the second cubital cell. The scapular vein is more darkly colored than the others, and a faint fuliginous cloud appears to surround the rather dark stigma.

Length of fragment of wing, 5^{mm}; distance from base of wing to tip of stigma, 4^{mm}.

Quesnel, British Colımbia. 'Two specimens, Nos. 8, 14 (Dr. G. M. Dawson, Geological Survey of Canada).

LIOMETOLUM Mayr.

x Liometopum pingue.

Pl. 5, Fig. 10.
Liometopum pingue Scudc., Bull. U. S. Geol. Gengr. Surv. Terr., III, 742-74:1 (1877).
The single specimen representing this species is a male, as the number of abdominal segments show ; but the wings are lacking. The insect is viewed from above. The head and thorax are slightly darker than the abdomen, but otherwise the whole body is uaiformly fuscous, somewhat darker than the stone. The head is very small, subquadrate, slightly broader behind, and the posterior angles nearly rectangular; the anterior margin of the head is broadly and pretty regularly rounded, and the whole head is of about equal length and breadth. The thorax is very regularly ovate, broadest next the insertion of the front wings (traces of the origin of which can be seen), nearly twice as long as broad, rapidly tapering on the metathorax. The peduncle, as seen from above, is square, half as broad as the head, the hinder edge slowing by its thickening that it was probably elevated at this point. The abdomen is plump, rounded ovate, scarcely less rounded posteriorly than in front, only one quarter longer than broad, broader than the thorax, composed of six segments, of which the first, third, and fourth are about equal in length, and the second half as long again.

Length of whole body, 7.5^{mm}; of thorax, 3^{mmw}; breadtl of same, 1.8^{mm}; of peduncle, 0.9^{mm}; of aldomen, 2.3^{mm}; length of hind femora, 4.3^{mm}; breadth of same, 0.36^{mm}.

On account of the smallnass of the head, I venture to place this insect in the genus Liometopum. It has the aspeet of a Hypocinea, but the head is only half as broad as the thorax.

Fossil Cañon, White River, Utah. One specimen. (W. Denton.)
A specimen from Green River, of precisely the same size and general appearance and pretty certainly belonging to the same species, is also wingless and has no legs preserved, but the thorax is rather profusely clothed with exceedingly delicate very short hairs.

Green River, Wyoming. One specimen, No. 262 (Dr. A. S. Packard).

FORMICA Linné.

Q Formica arcana.
Pl. 3, Fig. 24.
Fornica arcana Soudd., Rep. Progr. Geol. Surv. Can., 1875-1876, 266-267 (1877).
A single fragment of a wing, exhibiting, however, all the important parts of the neuration, is to be referred to the genus Formica (s. str.) Pimpla senecta lies on the same stone. The discoidal cell is of medium size, subquadrate, a little broader below than above; the single closed cubital cell is about three times as long as the discoidal cell, being a little produced (to considerably less than a right angle) at the tip, where the transverse vein, coming obliquely from the stigma, strikes the cubital vein exactly where it branches, forming a minute stigma, from which four veins radiate almost symmetrically; the wing is of a uniform, faint fuliginous color, the stigma of medium size, darkest along its lowest border, and all the veins dark, the scapular vein even black, and margined on its apical half with testaceous.

The wing is 3^{mm} in width, from the anal emargination to the base of the stigma, and the tip of the basal internomedian cell is 4.25^{mm} distant from the apex of the closed cubital cell, making it probable that the entire length of the wing was nearly 12^{mm}.

Quesnel, British Columbia. One specimen, No. $10^{\text {a }}$ (Dr. G. M. Dawson, Geological Survey of Canada).

LASIUS Fabricius.

Lasius terreus.

$$
\text { Pl. 10, Fig. } 23 .
$$

Lasins terveus Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., IV, 747-74S (1878).
A single specimen obtained by Dr. Hayden at the "Petrified Fish Cut," Green River (alluded to in his Sun Pictures of Rocky Mountain Scenery, page 98), is probably to be referred to this genus, but is in rather a poor state of preservation. The head is small and rounded, with antennæ shaped as in Lasius, but of which the number and relative length of the joints can not be determined from their obscurity ; the long basal joint, however, appears to be comparatively short and uniform in size, being not quite so long as the width of the head, while the rest of the antenne is more than half as
long as the basal joint, and thickens very slightly toward the apex. The thorax, preserved so as to show more of a dorsal than a lateral view, is compact, oval, less than twice as long as broad, with no deep separation visible between the meso- and metathorax, tapering a little posteriorly. The peduncle, as preserved, is a minute circular joint, but from its discoloration appears to have had a regular, rounded, posterior eminence. The abdomen consists of five joints, is very short oval, very compact and regular, and of about the size of the thorax, although rounder. The legs are long and slender, the femora of equal size throughont, and athe pairs similar. There is no sign of wings, and the specimen is probably a neuter.

Length of body, 7.5^{mm}; of head, 1.4^{mm}; of thorax, 3.2^{mm}; of abdomen, 2.9^{mm}; breadth of head, 1.1^{mm}; of thorax, 1.9^{mm}; of abdomen, 2.2^{mm}; diameter of peduncle, 0.55^{mm}; length of first joint of antennæ, 1^{mm}; of rest of antennæ, 1.65^{mm} ?.

Green River, Wyoming. One specimen, No. 14692 (Dr. F. V. Hayden).

CAMPONOTUS Mayr.

χ Camponotus vetus.

Pl. 5, Figs. 1, 2.

Camponotue retue Scudd., Bull. U. S. Geol. Geogr. Surv. Terr., III, 742 (1877).
A single specinen, very fairly preserved, lying upon the side; a remnant of one wing is left, and a faint indication of the antenne, but the legs are wanting. The head has a flat summit, the upper half of the sides roundly protuberant, the lower half rather broad, and tapering but little; the thorax is long and moderately slender, compacted into a single mass, with a low arch, more than twice as long as high. The first segment of the abdomen increases rapidly in size pusteriorly, and has a rounded knob above at its hinder end; the abdomen is long and slender, composed of five joints, the second the largest, gradually tapering to the pointed tip. It seems to agree better with Camponotus than with any other genus, but has a differently shaped head and first abdominal joint, and is smaller than the species of that genus, so that it is only placed here provisionally until other and better specimens are obtained.

Length of body, 3.75^{mm}; of thorax, 1.15^{mm}; of abdomen, 2^{mm}.
White River, near the Colorado-Utah boundary. One specimen (W. Denton).

Family SPHEGIDAE Westwood.

DIDINEIS Wesmael.

Didineis solidescens.
PI. 10, Fig. 30.
The body of the single specimen known is preserved on a side view but partially dorsal, and though the antenna and legs are destroyed, the wings are tolerably well preserved. There is, however, no sign of any spine on the sides of the metanotum, the thorax here appearing to be well rounded; nor would the abdomen appear to be so closely narrowed at the base as in Didineis. The neuration of the wings agrees very closely with that of Didineis lunicornis Fubr: sp., except in the very much larger size and subtriangular shape of the marginal cell, the width of which is nearly one-third that of the wing. The middle discoidal cell also is remarkable for its extreme length, being at least three times as long as its basal breadth. The body is not very darkly colored on the stone, being of a rather pale testaceous tint, but the apical half or less of the abdominal segments are paler than the rest.

Length of body, 7^{mm}; of wing, 5.25^{mm}.
Green River, Wyoming. One specimen, Nos. 132 and 263 (Dr. A. S. Packard).

LIST OF SPECIES.
synteyatic List of thr Spleles Drsomibed in the Prebent Work, with Reference to the Places whehe Tury are Deschined and Figured and the Localitirs and Horizons at when They ahe Found.
 kancen River; M. = Nine-Mile Creek; N. $=$ Nicola ; C. C. $=$ Crow Creek, Colo. ; H. C. $=$ Horse Creek, Wyo.; T.C. =Twin Creek, Wyo.; S. O. = Scarhore, Ontario; P. K. = Port Kennedy, Pa.

Diatriagtion of the Specile witi which Tiey alif (Gompahrin.
In the colamna giving Degree of Relatlonahip the folluwing warks are nsen : !!= vory ulose; 1 = eloge; $=$ general ; $t=$ listant $; i=$ possible.

Diatribution of the Srkcies witil wifict They abr Comparki-Continued.

Systhmatic List of tife Speciks Deschibeip in the Peesent Wonk, etc.-Continncil.

Distribution of the Species witil which They are Compared -Contineed.

Systematic Libt of the Sprcieg Deschined in the Plessent Wonk, mtc.-Continned.

TABLES-ORTHOPTERA.
Dibthibution of the Speciks witil wifich They ark Compared-Continued.

Systematic List of the Splecies Descmined in the Present Work, etc.-Contiaued.

Digtribution of the Species witil whicif They ahk Comparrd--Continued

Systematic List of the Species Deschibed in the Prebent Work, etc.-Continued.

Digthibution of the Speciks with whici 'Tuey ari Compared-Continued.

Systematic List of tif Spkciks Described in the Present Work, htc.-Continued.

Disthibution of the spreike witil wilich They ahk Comparkd-Continned.

Syathmatic List of tig siphena Descharo in the Phearnt Work, wtc.-Continued.

Disthation of the Spmeiga witil which They arm Compafind-Continned.

Sybtematic Liet of the Splecire Debcribid in the l'rgeent Work, ktc.-Continned.

Diathinution of tite Spacige with wificit Thay ang Compafikn-Continued.

Syetematic Liet of tife Se tcies Describid in the Present Work, etc.-Continued.

Systematic list of spucier				Loeslities where fonnal.					Geological horizon.
	Groupe, genera, and speciee.	Pago.	Plate and figure.		$\left\lvert\, \begin{aligned} & 4 \\ & \text { 荡 } \\ & \text { 20 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$				
	Capside--Continued.								
1	Capars lacus	369	22: 2	\times					Oligoceno ...
2	Aporema prestrictum	370	20: 4	\times					do
3	Hedronema cinerescens. Puybapodes.	370	24: 12	\times					..do
4	Melanothrips extiucts	371	$5: 90,91$			\times			Oligocene P ..
5	Lithalothripe vetoats	372	B: 80, 89, 102, 103			\times			Oligocene 1..
6	Palmothrips forsilis. \qquad Lygeide. Lygaina.	373	s: 106, 105, 113			\times			Oligocene f ..
7	Lygras stabilitus	376	22: 10;24:16	x					Oligocene ...
8	Lygrene oheolescens...................	377	24:15	\times					. do
9	Lygrens faeculentus	377		x					. .do
10	Nysius viactus	378		\times				do
11	Nysiun vecula	378	22: 7	\times					..do
12	Nysius tritus	379	23: 20	\times					. 10
13	Nyains terrm	379	23: -31	\times					. 13
14	Nysins strstus	380	23: 14, 27; 25:5, 8	\times					...do
	Grocorina.								
15	Geocoris infernorum \qquad Oxycarenina.	381	23: 17,26	\times					Oligocene ...
16	Procronhius commmuis..............	382		\times					Oligoceue ...
17	Proerophius costalis	382	23 : 8	\times					..do
18	Procrophine langnens \qquad Myodochina.	333	23: 23	\times			do
19	Ligyrucoris exsuctus.................	385	24 : 5	\times					Oligocene ...
20	Stenopamera tenebros،..............	386	23: 16,24	\times					.. 10
21	Steuopamera subterr'sa	386	23: 7	x				do
22	Catopamera augheyi.................	387	27: 7	\times					...ilo
23	Catopsmera' brsdleyi	367	26:12	\times					...do
24	Plırudopanera wileoni..............	388	27: 9,16	\times					...do
25	Phrudopaniera chittendeni...........	389	26:7,9	\times				do
26	Cholula triguttata...................	389	7: 21	...	\times			do
27	Lithocoris evulsus...................	391		\timesdo
28	Cophocoris tenebricostı.	301		\timesdo
$\mathfrak{2 9}$	Encorites estescens.	392		\times					. . . do
30	Procoris sanetmjohanuis	393		\times	\ldots			do
31	Procorls bechleri	393	27 : 4	\times	d'
32	Cteressoris primigenis	394		\times				do
33	Trapezonotur exterminatus	395	201118	\times				do

Distribution of the Sifecies with winch They are Compahed-Continued.

Systematie hast df the Speches Deschuen in the Pusent Wohk, etc.-Continued.

TABLES-II EMIPTERA.
Distrinetion of the Species with winch They abe Compamd-Coutinud.

Sysmanatic List of the Species Deschines in the Paesent Work, etc--Continued.

TABLES-HEMIPTERA.
Distriaution of the species with wifch Thei are Comparmd-Continued.

Sybirmatic Last of the Species Debchibed in the Phreent Work, etc.-Continhed.

Systematio list of species.				Localitles where fomd.				Geological horizon.
	Gronps, genera, and spocies.	Pruge.	Plate and figure.					
	Cydnida-Cont'd.							
1	Necrocydnus ntygits..................	446		\times				Oligacene....
2	Necrocyduns amyzonus	446	28: 10	\times				..do
3	Necrocyduns senior	447		\times				. . ds
4	Necrocydnus solidatus	447	28: 13	\times				...do
5	Necrocydans revectus.	448		\times			 do
6	Thllbomenus petreus.	449	-.......	x				...do
7	Thlibomenus parvus...	449	19:23	\times				. 4
8	Thitomenas peremmatus.	450		\times			do
9	Thlibomenus limusus.	450	28: 12	\times			do
10	Thlibomenus macer.	451		\times			do .
11	Cyrtomenus couciunus.	451	7:14	\times			do .
12	Diseostoma sp..	452	92: 6	\times			de .
	Pentatomida.							
13	Teleoschistns nutagnus....	454	2: 17-19			Q.		
	Teleoschistus rigorntus.	456	28: 14	x				Oligocene....
15	Telooschistus plauatns.	457	28:3	\times				do
16	Thuetoschistus revulsus	458	28: 6	\times				to
17	Poteschistus obnubilus	458	28: 1s	\times				.do
1.	(Caeosehistus maemriatus	459	\% = 2	\times				. .do
19	Matuoschistue limigenum.	46		K				. .de
20	Polioschistns liyraus.	*il	28: 7	\times				. do
21	Poliøechistus laquiarios.	*61	28: 10	\times				.. do .
22	Pematomites fulinrum	462	28: 1	\times				.do
23	Turverhistus imhurescens	463	边: 4	\times				. ${ }^{\text {do }}$
24	Thaimmesehistas gravidatus	463	28: 11,19	\times				. 10
25	Theweephala ${ }^{\text {cop }}$ COL....	464	28:8	\times				...do........
	Anthmbibe.							
	Climugu fictliz...	465	8:9	\times				Oligocene....
	Lirueightarsus pristinus.	$1 \mathrm{H}_{6}$	7: 26	\times				. 60
	Crateparis repertus.	466	8: 4	\times				. ${ }^{\text {do }}$
\%	Cratoparis chisus.	46%	8: 40	\times				. (io
30	Hormiscus partitus	467	8: 17	\times				. .do........
	Scolytid.e.							
31	Hylastes squalitens	468	1: 2:3-45		:.	:.	4. 11.	Pleistuceno..
32	Drywortes impressus	470	8:28	\times				Oligecene .
33	Dryocates carbonarins.	470	8: 6	\times			do ..

Digtrinution of the Species with which Tuey are Compared-Continned.

Disthation of the Species witil which Thes ahe Compahed-Continned.

Fosail species.				Existing ypeeies.			
	Name of species.	Where foumb	Horizom.		Name of species.	Where liviug.	
\cdots			1	4, teter Schönh ...	Atlantic states	2
				-	11. picivorus Gern.	Eustern U. S	
							5
						(
\cdots		7
				-	O.silcatus (Fulir.)		
....				-	O. citureus Schönh.	Mexico.............	11
				-	E. grisens Schänlıdo	12
					\cdots	$1: 1$
				-	14
.						15
							16
..							17
					T. molitor (Limu.)..	Europe, N. Amer. ..	13
					G. matima LeC...	Allantic states..	20
					C. , wmustus Fabr...	Eastern U. S	21
					1. peresicollis Lac..	Lake Sup., N. E.ngl.	22
				!	D. pubicollis Sultr..	Illinois	23
							24
				-	A. ruricola Melsh...	Anticosti to La....	25
....				-	P. phato Harold	Arizona, Mexico .	26 27
						А'zona, Mexico .	

Aystematic Libt of the Specien Deschined in the Paesent Work, etc.-Contimed.

Systematie list of specier.				Lucalitien where fond.					Geological horizoll.
	Groups, genera, mind npeciess	Page.	Plates and tignre.				鱼		
1	SERIRICORNIA. PTinidse.								
	Anobinm ovale	491	8: 1		\times	\ldots			Oligocene....
	Anobium deceptum.	492	8: 18	\ldots	\times			do
	Anobinm lignitma...................	492	8: 24		\times			do
	Sitedrepa defuneta \qquad Buphestid.e.	493		...	\timesdo
5	Buprestis tertiarin.	493	2: 23			N.		
6	Buprentls saxigem	$49 \cdot 1$	2: 24, ${ }^{\text {5 }}$			N.		
7	Buprestia nepulta \qquad Elatrimes.	495	2: 26	\ldots			N.		
8	Oxygonns mortuns..	496	5: 110,111		\times			Oligocene $1 .$.
9	Corymbites velutus.	496			\times				Oligoeene ...
10	Cryptohypans terrestria	497	2: 30				N.		
11	Epiphnnis deletus	498	5: 113,114		..	\times		Ollgneene ${ }^{\text {f }}$.
12	Elaterides sp \qquad CLAVICORNIA. 	498	2: 28			N.		
13	Nosodendron tritavam................ Nitidelio.e.	499	7:36	x			-....	Oligucene ...
14	Phenelin inenpas	499	7: 23	\times				Oligocene ...
15	Prometopia depllis \qquad Cuyprophagines.	500	2: 29				Q.	do
16	Antherophagne prisens. Cucundes.	501	7: 24,35	-	\times				Oligocene ...
17	Puranirita vestita..................	501	7: 41	\ldots	\times				Oligocene ...
	Enotylides. Mycotretus binotatus	502	7: 30						
18	Staphylinide. Oxytelini.		7: 30		x				Oligocene ..
19	Oxytelus pristinns...................	503	5: 118-120			\times			Oligocenef...
20	Bledius adamus	504	8:10		\times	-			Oligocene ...
21	Bledina glaciatua.	505	1:35					s. 0.	Pleistocone .
22	Oxyporus stiriacus	505	1:36				s. 0.	. .do
	I'tedrvini.								
23	Lathrobinm abscessum.	505	8: 15, 21		x	...			Oligocene ...
24	Lathrobinm interglaciale	506	1:38					S. 0.	Pleistocene..
	Staphylinimi.								
25	Leistotrophns patriarchicus.........	507	5: 112		\times			Oligocenel ..
26	Quedius chamberliui.................	508	16:8	\times					Oligocene ...

Dimtrhetion of the species with when They ahe Compambib-Comothued.

Systfmatic List of the Species Descriaed in the Prebent Work, etc.-Continued.

Distmbution of the Sfecies witil which They are Compared-Contilied.

Sisitmatig List op the Species' Deschabi in the Present Wohk, etc.-Contimed.

Systematic list oíspecies.				Localitles where fonnd.				Gcological horizon.
	Groups, genera, and species.	Page.	Plate aul tigure.					
	Livinimi.							
1	Diplochilu henshawi.	523	28: 9	\times				Oligoceno....
2	Dicelns nindaceus	524	1: 8-10			P.K.	Ploistocene..
3	Dicelus sply \qquad \qquad P'terostichin.	525	1: 15	...			P.K.du
4	Pterontichus abrogatus....	525	1:39				S. 0.	Pleistocone..
5	Ptero-tichus dormitans	526	1: 49,55	\ldots			s. 0.	...fo
6	l'terostlchus destitutus	526	1: 4.4		..		s. 0.	...do
7	Pterostichns fractur	527	1: 29,30		.		S. 0.do
8	Pterostichus destructus.............	527	$1: 46$				s. 0. 10
9	Pterostichas gelidus	527	1-52, 59-61		. \cdot		S.O. ${ }^{\text {do }}$
10	Pterosticluns lievigatus	528	1: 3,4				P.K.do
11	1'terostichus sp . .	529	1: 5				P.K.ro
	I'ogouini.							
12	Patroboss gelatus Rembidiini.	530	1: 43	S. 0.	Pleistoceno ..
	Bembilium exolatum	530	5: 121,142		\times		Oligocene $7 .$.
13	Bembillum glacintum	531	$1: 40$			S. 0.	Pleistocene .-
	Bembilinm frr. rumutum............. Nebrian.	531	1:45		S. 0.do.........
10	Nobria paibomelas	532	2: 20		.	N.		
	Loricerini.							
17	Loricera glacialis..	533	1: 0.50 .5 z			s. 0 .	l'leistuceve ..
18	Loricere lintosa.	533	1:32				s. 0do
	Elaphrini.							
19	Elaphrus irregulnris...............	534	1: 56			s. 0.	Pleistoceno..
	Carabini.							
20	Neothanes texteus \qquad Cychrini.	535	7: 32, 39	\times		.		Oligocune....
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	Cychrns wheatleyl	5:16	1:1				P. K.	1 1eistocene .
	Cycarus minor	537	1:2				i. K.	...do
	DIPTERA. CYCLORILAPHA. i oxclisins.							
23	Louchea senescens.	539	3: 18			Q.		
24	Palloptera morticina	540	3: 15			Q.		
	Otralide.e.							
25	Lithortalis picta.	541	3: 10, 16			Q.		

Distmbuthen of tim speches with when They abs compamer-Continued.

systematic list of the spectes Deschimed in the Present Wonk, etc.-Continned.

Distrirution of the specirs with winch They are Compared-Continnol.

Systematic Lisj of the Specieg Debchined in the Phesent Work, etc.-Continued.

Systematie liat of species.				Localities where found.					Geological horizon.
Groups, genera, and species.		Page.	Plate anil figure.		$\begin{array}{\|l\|l} 4.0 \\ 0 \end{array}$				
	Asilide- Continued.	$\begin{aligned} & 565 \\ & 565 \end{aligned}$	10: 15						
1	Stenocinclis ep				\times				do
2	Asilidas sp............						S.		
	Sthatiomyide.								
	Lithophysa tuninltu.	566	9: 31	...	x				Oligocene
4	Asurcomyia caciaver \qquad Tipulide.	567	9: 17	\ldots	\times			do
5	Dicranotoyia etigmoba	568				x			Oligocene \uparrow..
6	Dicranemyia primitiva	520	$\begin{array}{r} 42,43,68,69\} \\ 5: 20,81,65-67 \end{array}$		x	\times			Oligecene....
7	Dicranemyla rostrata.	571	S: 40 11, 83, 3			\times			Ollyoce
8	Spriadomyia simplex:	573	5. 37, :\%			\times			Oligec
9	Pronephlebia rediviva	574	5: 39			\times			Oligor
10	Cytaromyia ferrestrata	575	5: 78			x			Oligoce
11	Tipula decrepita.	576	5: 56,57			\times			Oligocen
12	Tipula tecta.	577	5: 4ti, 47			\times			Oligoce
13	Tipula spoliata.	577	10: 4		\times				Oligo
14	Tipuls sepulchri \qquad Chinonomide.	578	10: 1		\times			de
1.5	Chirononus septus	578	10: 8		\times				Oligocene...
$1{ }^{1}$	Clirivomus depletus	579	5: 62			\times			Oligocene 1
17	Chironomus pateos	580	5: 18, 19, 2 ¢			\times			Oligocene 1
18	Clironomus sp	581).				Oligecene.
19	Chireneruide ep	581	5: 32, 33			\times			Oligocene ?
20	Chironotnide sp	581	5: 24			\times			Oligecene ?
21	Chirenomidat ap..	581				\times			Oligocene 9 ..
	Culicide.								
22	Culex damuatorum	582	10: 14		\times				Oligecene.
23	Culex preavitus	582	5: 3,9			\times			Oligocene 1
24	Corethra exita.	583	5: 22,23		...	\times			Oligocene 9 ..
	Bibionide.								
25	Plecia similkameet	583	3: 20-22				S.		
26	Plecia pealei	585	4, 2, 3, 10-12					T.	
27	Plecia dejecta	586	10: 17		\times				Oli
	Mycetupinhde.								
28	Sciara deperdita.	586	3: 17				Q.		
	Sciara scopuli	588	10: 11;		\times				Oligecone.
	Mycetopa'la occultata	588				\times			Oligocene ?
	Amatella tacita	589	10:13		\times				Oligecene.:
	Trichonta dawseni	590	3: 12, 13				Q.		
	Rymosia stravgulata	590	10:2		\times				do

Disthbuthon of the speches with when They alle Compaher-Continued.

Syithmatic Lant of the Sprcies Descrited in tifr Present Work, erc.-Continhed.

Disthibution of the Sbecies witil wileh They afk Compangd-Continued.

Forsil species.				Existing aprecies.		
$\begin{aligned} & 5 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 20 \\ & 20 \end{aligned}$	Namb of specien.	Where fomus.	Horizon.		Name of spectes.	Where living.

....				
					
. \times
....	\qquad			
\ldots				
...			
					.	..:.............
....						
						...
					
	-				\cdots	.
\cdots		
....				
\ldots					\cdots	
-						
....						
....						
....
....					
....					P. Instigator Yabr	Germany
.						

PLATES.

PLATE I.

Fig．1．（i）Cychrus wheatleyi Horn．
2．（f）Cychrus minor Itoria．
3．（f）Pterostichus hevigatus Morn．
4．（f）Pterostichus lievigatus Horn．
5．（f）Pterostichus f sp．
6．（i）Cymindis aurora Horn．

8．（？）Dicalus alutacens IIorn．
9．（\％）Dicielas whatacens Horm．
10．（年）Dicielus alutacens Horn．
11．（i）Aphodins precursor Horn；a，upper surface；b ，cast of $a ; c$ ，nuder surfice．
12．（牛）Phateus autigums ILorn．
13．（f）Phamens antiquus Horn．
14．（f）Phanenes antiquie Horu．
15．（f）Dicelns sp．
16．（i）With Aphodins precirsor Lorm． See muter that species，p． 488.
17．（1ii）With Aphodins precursor Horn． See under that species，p． 488.
18．（\％）Choridinu eleninum Horn． 19．（今）Chueridiuu ebeninum Itorn． 20．（i）Cheridinu ebeninum Horn． 21．（i）Chteridium ebeninum Horn． 222．（4）Chueridium ebeninum IIorn．
23．（ \dagger ）Hylastes f squalidens．The lotters represent the work of distinct indi． viduals．
24．（ \ddagger ）$=23 \mathrm{~d}$ ．Hylastes ？squalidens． 25．$(f)=2: 3$ a．Hylustcs ？squalidens． 26．（14535）（12 ${ }^{2}$ A fragment of vegetable tissue，put on the plate by mistake．
27．（14535）（f）A fragmenc of vegetable tissue，put on the plate by mistake． 668

Fig．2\％．（ 14558 ）$\left(\frac{10}{1}\right)$ Donacla stiria． －29．（14532）（i）Pterostichus fractus． －30．（ $14 \overline{5} 32$ ）（ 7 ）Pterostichus fractus．
－31．（14175）（i）Platynus harttii．
－32．（14559）（ ${ }^{19}$ ）Loricera 9 lutesa．
33．（14566）（ $\left.\begin{array}{c}n \\ 1\end{array}\right)$ Donucia pompatlea．
34．（1458：）（f）Donavia pompatica．
35．（11540）（ $\left.{ }^{1} 9\right)$ Bledints glaciatus．
－36．（14：5\％）（ ${ }^{12}$ ）Oxyporus stiriaens．
－37．（14563）（8）Platyous ilissi patus． 38．（ 14555 ）（190）Lathrobinta interglacialo．
－39．（ 14560 ）（i）P＇terostichus abrogar ins．
－40．（14536）（1，0）Benbidinm glachatum．
41．（14525）（ ${ }^{\text { }}$ ）Platynus halli．
－42．（ 1 Lixis）（ ${ }^{8}$ ）Platyuus casins．
－43．（14486）（i）Platy nus desnetnes．
－44．（14522）（9）Ptorostichus destitutus．
15．（14500）（8）Bumbidium fragmentum． 46．（14E49）（8）Pterostichus destructus． 47．（14504）（1，0）Hydrochus anaictus． 48．（14586）（ $\left.\begin{array}{c}n \\ i\end{array}\right)$ Patrobus gelatus． 49．（14508）（19）Prorostichas Iormitans． －i0．（ 1^{9} ）Loricera glachulis．． 51．（14478）（\％）Platyuus desuetus． 52．（i）Pterostichus gelidus． 53．（14505）（ $\left.{ }^{1,}{ }^{2}\right)$ Itelophorus rigescens． －54．（14533）（i）Plalyuns hindel． 5i．（14503）（ 1_{1}^{0} ）Pterostichns dormitaus． 56．（14527）（10）Elaphras irrogularis． 57．（16416）（ ${ }^{1,0}$ ）Luricera glacialis． 58．（14177）（९）Platynus ilesuetus． 59．（i）Pterostiehus gelidus． 60．（16418）（f）Pterostlehus gelidns． 61．（14）Pterostichus gelidus．

Quarternary Bone Cavfs and Clay Beds.

PLATE II.
J. Henry Blake, exeepting Fig. 5, which is by 8. II. Bcudder.
. (40 a D) (f) Aranea columbis.
2. (40aD) (β) Aranea columblue.
3. (23D) (7) Itrill of a libelluline odouate.
4. (34aD) (i) Sbenuphin quesnell.
6. (34aD) (f) Sbenaphls quesnell. Part of the neuratlon, the velus of the two overlappliog wings distinguished by be'ing drawn, one with solid, the other with
broken liues.
6. (19D) (4) Gerancon petrorum.
7. (14668) (P) Bothromicromus lachlani.
8. (36D) (?) Bothromieromus lachlaui.
9. (36D) (${ }^{0}$) Bothromicromas Iachlani. Eyo and head appeadages.
10. (36D) (${ }^{30}$) Bothromicromus lachlani. Maxillury palpus.
11. (15066) (f) Telmatrechus stali
12. (73D) (३) Telmatrechus ståll.
13. (75D) (7) Ccelillia columblana.

Fig. 14. (6īD) (7) Cercopis velwyui,
15. (15072) (i) Cercopls selwyni.
16. (77D) (\%) Planophlebia gigantea.
17. (14668) (19) Teleosebletus autlquus.
16. (14669) (f) Teleoschistus antiquns. $\$$ 19. (38D) (f) Teleoreblstins antliquns.
20. (5ND) (q) Nebria paleumelas.
21. (57D) (18) Ceroyon 9 terrigena. 92. (61D) (f) Trox onstaleti. 23. (51D) (f) Buprestis tertiaria. 24. (49D) (f) Buprestis saxigena. 25. (15073) (9) Buprestis saxIgena. 26. (53D) (f) Buprestis eepulta.
27. (59ע) (f) Cryptohypnus i terrestris.
28. (60D) (i) Elaterilay isp. See p. 498.
29. (24D) (3) Pronetopla depilis,
30. (15075) (1_{1}^{2}) Cryptohypuus i terrestris.
31. (02 D) (9) Galerueella plcea.
32. (t 3 D) (f) Tenebrio primigenius

U S GEOLOGICAL SURVEY OF THE TERRITORIES.

Tertiary Insectis of North America.

Tertilaries of Quesnel, Nicola and Similikameen Hembpriba, Colmorprita, ete

PLATE III.

GXPLANATION OF I'LATE III.

All the drawlign were made by J. Heury Blake, excepting Fig. 6, which is bs 8. H. Bendder.

Fig. 1. (ID) (4^{0}) Hetoromyza senlle
2. (ID) (f) lleteromyza нeullis.
3. (42D) (1,a) Selomy za revelata.
4. (14671) ($\left.{ }^{(}\right)$Selomyan revolata
5. (2D) (4) Solomyza rovolata.
6. (9) Sclomyza revelata. Reatored
7. (3D) (1) Brachypeza ablia.
8. (14(55i) (9) Brachypoza abita.
9. (9D) (३) Boletion sepulta.
10. (5D) (f) Elthortalla picta.
11. (14651) (4) Dollohopus sp.
12. (6D) (1) Trichonta dawsoni.
13. (1.4649) (f) Triehonta dawsoni.
4. (4D) (4) Braohypezu procera; a, (1, 2) hind tibla.
15. (20D) (3) Palloptern morticina
16. (5D) (${ }^{2 a}$) Lithortalis picta.
17. (41D) (42) Sulara deparditia.
18. (17D) (9) Lonchion senescens.
19. (32D) (1^{a}) Anthomyla Inanimata.

Fig. 20. (15069) (if) Pleela simillkameena
21. (1500-9) (7) Plecia aimilkameena.
24. (82D) (i) Plecla almilkameena. (Copleri by Zittel, IIanilb. II palacont., Fig. 10*6.) $a, 1^{10}$) antenne; $b,\left(1^{6}\right)$ thia and tarel of hind leg.
43. (al1b) (i) Plmpla saxea.
24. (1 IV) (-) Formien arcana.
25. (SD) (\%) Hypoclinia obliterata.
26. (1405i:) (7) Hypooliola obliterata
27. (9D) (i) Pimpla decesви.
23. (33D) (7) Aphienogaster longio va.
29. (10bD) (${ }^{3 Q}$) Pimpla selteetn
30. (14650) (7) Piupla ndneota.
31. (10D) (f) Plupla senecta.
32. (7D) (f) Calyptites aniedllavianum
(Copled by Zittel, I. c., Fig. I100.)
3i. (78D) (\ddagger) Bracon ap.
34. (2401) (1^{0}) Anthonyla burgessl.

U S. GEOLOGICAI, SURVEY OF THE TFRRITORIFIS
Tertiary Inseejts of North America
PL 3

TERTIARIES OF QuESNEL, NICOLA AND SIMILKAMEEN.
1)IDTHHA, HVMLENGIPTHEA

PLATE IV.

GXPLANATION CE PLATE Tr.

All the drawings were made by J. Henry Blake.

Fig. 1. (14601) ($\}$) Telmatrechus parallelus. 2. (14600) (${ }^{(1)}$) Plecia pealei.
3. (14594) (i) Plecia poalej.
4. (t) Indnsia calenloen. (Copied by Zittel, Handl. d. palmout., Fig. 985.)
5. (93) Corydalites fecundum. Summit of egg from above.
6. (${ }^{38}$) Corydalites feemudnm. Sumimit of ogg from side.
7. (3²) Corydatites fecundum. Base of egg ioclosed in its cell.
8. (6b) (\wp) Colidia wyomingoosis.
9. (St. 16) (40) Sclomyza manca ?
10. (14613) (7) Plecia pealel.
11. (14596) (3) Plecia pealei.
12. (4a) (\mathfrak{q}) Plecia pealei.
13. (7) Corydalites fecundum. The right hand portion of Fig. 14 enlarged.
14. (\dagger) Corydalitos fecnndum. Side view of one-half of egg-mass, broken longitnilinally ln the middle. 674

Fig. 15. Corydalites fecundum. Schematic figore, oross-section.
16. (t) Corydalites fecundum. Side view of egg-mass. (Copied by Zittel, 1. c., Fig. و81a.
17. (12) Corydalis cornatns (recent). Side view of cgg.
18. (193) Corydalites fuenndum. Grateriform micropylic prominence of nummit of egg.
19. (\dagger) Corydalitos feonudum. Sawn crosssection of egg-mnss.
20. (\dagger) Corydalites fecindnom. Rock frngment, showing two egg masses embelded in it, wlth fresh-water gastropods heside them.
21. (1^{2}) Corydalites fecundum. Side view of egg. (Copied by Zittel, I. e., Fig. 981b.)
22. (39) Corydalus corontue (rocent). Sile view of summit of egg.
23. (t) Corydalites feonndum. Broken ciosssection of egg-mass.
U. S. CEOLOGICAL SURVEY OF THE TERRITORIES.
'Tertiary Insegís of North America.

Thinclav \pm Son. Lath Phila
Miscelleaneous.

PLATE V.

CXPLANATION OF PLATE

Figs. 1, $2,5,10,11,11,1.7,25-27,29-31, ~ 17-314,42-51,54,55,58-(11,66-72,74-76,79-87,90-92,95,98-105$,
 $54,89,9(6,177,104), 109$ h hy A. Axsmanm; Fign. 20, 21, 73, 77, 106-108, 125 by J. 11. Vmerton; Figg.
 ings of F'igs, 6, 13, 23, 57,64 wero also altered by S. H. Scudder, and Figs. 104 und 115 were after his canera luchatasketches.

673

Fig.

U S GEOLOGICAL SURVEY OF THE TFFRRITORIES Tertiary Insectis of Nowith America

White River Beds, Wheteren Colorado

PLATE VI.

explanation of plate vi

All the drawings were made by J. Itenry Blake.

Fig. 1. (147P) (f) Dysagrion puckardii; body only.
2. (4183) (q) Dysagrion fretericii; head and base of wing
3. (146P)(1) Dysagrion packardii; fore wing. (Copled ly Zittel, Inndi. d. palimont.' Fig. 979.)
4. (4175) (7) Libellula sju.; revorse of Fig. 16; pert of abdomen.
5. (4178) (i) Dysngrion frederic' ; purt ot abdomon.
6. (4170) (3) Dysagrion frelerici; terminal joints of aldomen
7. (4169) (4) Podageion abortivim; tip of fore wing next pterostigma.
8. (4169) (f) Podagrion alortivinu; fore wing.
9. (4167-4168) (f) Dysagrion frederichi ; foro wing.
10. (4179) ($\left.{ }^{(}\right)$Dysugrion fredericil; head
11. (147P) (f) Dysagrion packardii; abdominal appendages.
12. (258P) (i) Ixodes tertiarine.
13. (4188) (1) Pronomobins ter iarins; fore
wing.
14. (4165-4166) (i) Dysagrion frederieii f; fore wing.
15. (154R) (f) Iulus telluster.

Fig. 16. (4176) (9) Lihelinha sp.; reverse of Fig 4; part of abidomen.
17. (4173) (?) Dysagrion fredericii ; abdomen; acoidentaily piaced on the plate upside down.
18. (112P) (9) Pronemobius induratus; part of whig.
19. (BAR) (Y) Cixins hesperidum.
20. (144L) (f) Ficarasites atigmatioum.
21. (1) P'ronemohins tertiarius.
22. (f) Pronemobins smithii.
23. (18R) (i) Pronomolinstortiarius; hind leg. 24. (4076) (f) Lystra richardsoni.
25. (1:371) ((*) Paralathudia naussurei.
26. (11.11') (${ }^{\prime \prime}$) Cicadulı нахова.
27. (175R) (f) Aphann rotundipennis.
28. (90L) (Y) Lithopsis elongata ; fore wing
29. (100R) (i) Acocophalus ado.
30. (4217) (3) Lystra richardsoni.
31. (4207-4208) (?) Lystra richardsoni
32. (115P) (${ }^{8}$) Cercopitos calliscens.

3:1. (1161') (1) Tiamnotettix gannetti.
34. (117P) (i) Hammapteryx reticnlatn ; parts of two fore wing.
35. (49R) (3) F'ulgora granulosa.
36. (118P) (i) Lithopsis fimbriata; fore wiug
37. (4185) (1) Lithopsis finbriata. (Copied by Zittel, l. c., Fig. 909.)
U. S GEOLOGICAL SURVEY OF THE TERRITORIES

Tertiary Insectis of Nofth America

Green River Beds, Wyoming Terr

PLATE VII.

EXPLANATION OF PLATE VII．
All the drawings were made by J．Henry Blake，except Fig．24，which is by Paul Roetter．
Fig 1．（119R）（隹）Lestra vichardsoni．
2．（119P）（i）L．stra leei．
3．（4212）（ $\mathrm{\beta}$ ）Lystra richardsooi．
4．（34L）（f）Tettigonia priscomsrginata．
5．（120P）（i）Thamnotettix gannetti．
6．（73L）（î）Thamnotottix mntilata．
7．（IL）（i）Palecphera patefacta．
8．（107P）（f）Necygouus rotundatus．
9．（108P）（i）Cercopites unbratilis．
10．（109P）（？）A pair of overlapping wiogs， apparently tho tegmina of somo homop－ terons insect，bit which I am as yet nn－ able to place more oxactly；its resem－ blance to Oliarus lutensis，Fig．18，is inanifest．
11．（4070）－${ }^{\frac{8}{7} \text { ）Corizas guttatus．}}$
12．（15248）（ $\stackrel{1}{0}^{\circ}$ ）Steuopelta pumetulata，and a portion more bighly magnified．
13．（172R）（ 1^{0} ）Steuopelta punctidata．
14．（4190）（f）Cyrtomeuas concinnus．
15．（110P）（i）Cercopis astricta．
16．（111P）（if）Fulgora populata．
17．（31dR）（ ${ }_{i}^{*}$ ）Oliarites terrontala．
18．（112P）（i）Oliarns ？lutensis．
19．（39R）（ 1_{8}^{0} ）Procydaus mamillauns．
20．（4192）（i）Lyctocoris terreus．
21．（113P）（ β ）Cholula triguttata． 680

Fig．22．（13L）（⿳一巛工
23．（132R）（i）Phenolia Incapax．
24．（153aR）（ $\{$ ）Antherophagus prisens． （Copied by Zittel，Handl．d．palaont．， Fig．1051．）
25．（79P）（\％）Mydrobius confixus．
26．（23R）（ ${ }^{16}$ ）Brachytarsus pristinus．
27．（（IaR）（i）Laccobins elongatus；reverse of noxt．
28．（ 136 gh ）（ $\frac{8}{\mathrm{~T}}$ ）Laccobius elongstus．
29．（4003－4004）（í）Cryptocephalus vetustus．
30．（4015，3990）（i）Mycotretus binotatus．
31．（12R）（i）Epicierus exanimis．
32．（24L）（ ${ }^{5}$ ）Neothanes testens．
33．（4084）（f）Tropistornus scitptilis．
34．（83P）（ ${ }^{8}$ ）Plsiynus cersus．
35．（4191）（ ${ }^{1,2}$ ）Antherophagns prisons．
36．（86P）（ 1 ）Nosodendron tritavum．
37．（4039）（i）Crsptocephalns vetustns．
38．（3998）（i）Plstynus senex．
39．（4059）（f）Neothanes testens．
40．（4079）（1，${ }^{2}$ ）Berosus sexstristus．
41．（87P）（f）Parandrita vestita．
42．（3989）（ ${ }^{1,8}$ ）This is a mistake and should not have been engraved．It is made up of parts of two insects at different levels on the slab．

U S. GEOLOGICAL, SURVEY OF THE TEF.NITORIES 'Tertiary Insects of Norim America

Creen River Beds, Wyoming Terr.
HEMIPTELAS. ('OLHOOIVEItA

All the drawings were made by J. Henry Blake, excepting Figs. 5, 30, 31, 33, 34, which are by P.

Fig. 1. (4038) (3^{n}) Anobium ovale.
2. (4023, 4027) (') Tropisternus saxialis.
3. (15223) (12 ${ }^{2}$) Cryptorhyuohus anuosue.
4. (4035) (${ }^{(1)}$) Cratoparis repertus.
5. (15199) (是) Philhydrus primavus.
6. (3999) (10) Dryocestes carbonarius.
7. (4104) (i) Epicmerus effossus.
8. (4002) (f) Berosng tenuis.
9. $(106 \mathrm{~L})\left(1^{2}\right)$ Choragus fictilis.
10. (408t) (${ }^{\beta}$) Bledius adamus.
11. (14) Hydroohus relictus.
12. (4046) ($\left.{ }^{(}\right)$Eugoamptus decemesatus.
13. (4204) (${ }^{\beta}$) Otiorhynchus tumbe.
14. (३) Homalota recisa.
15. (15204) (f) Latbrobium abscessum.
16. (48L) (9 ${ }^{\circ}$) Anthouomus soporus.
17. (42) Hormisous partitus.

18 (4036) (${ }^{10} 1^{0}$) Anobinm deceptum.
19. (1,) Egialia rupta.
20. (15234) (8) Lugnamptus grendievis.
21. (84P) (f) Lathrobinu abscessum.
22. (f) Taoymecus seculorum. The rostrum is lacking, not having been exposed when the plate was made.

Fig. 23. (${ }^{8}$) Listronotus anuratus. 24. (4082) (${ }^{1}$) - nobium ligoitum. 25. (15213) (i) Otiorbynchus perditus. 26. (4047) (1^{2}) Gymnetron lecontei. 27. (4007) (\%) Hydrohins decineratus. 28. (15218) (1^{0}) Dryocetes Impressus 29. (4078) (i) Endiagog:s terrosus. 30. (15239) (\dagger) Epicarns exsaimis. 31. (15239) (t) Epinar rus exaniuis. 32. (15200) (f) Staj, 1, pinites obsoletum 33. (15207) (t) Epicin cus saxatilis. 34. (15207) (f) Epicicrus saxatilis. 35. (i) Epicierns effosbus.
36. (15208) (${ }^{\beta}$) Epicarus sexatilis. 37. (4051) (${ }^{\beta}$) Hylobins provectus. 38. (4014) (${ }^{\frac{1}{1}}$) Epicerus exsnimis. 39. (4210) (f) Ophryastes compactus. 40. (4012) (f) Cratoparis \uparrow elusas. 41. (15215) (${ }^{\beta}$) Hylohius provectus. 42. (3991) ($\left.{ }^{(}\right)$Epicterus exanimis.

U. S. GEOLOGICAL SURVEY OF' I'HE 'IERRITORIES

Tertiary Insfecyr: of Nofith Amprica
Pı 8.

Green River Beds. Wyoming Terr.

PLATE IX.

EXPLANATION OF PLATE IX．
All the drawioge were made by J．Henry Blake，excepting Fig．21，which is by Edward Bnrgese．

Fig．1．（15192）（i）Soiomyza manoa．
2．（15186）（ ${ }^{\text {h }}$ ）Solomyza manoa．
3．（15187）（ 1^{2} ）Solomyza manca．
4．（4125）（8）Solomyza manca．
5．（15193）（筫）Sclomyza manca
6．（15186）（古）Sciomyza manaa．
7．（1，$\left.{ }^{2}\right)$ Sclouyza diajecta．
8．（4113）（f）Chllosia sp．
9．（59L）（ 1 ）Psilota tabidosa．
10．（4143）（f）Stenocinolis snomala．
11．（71L）（ 1^{0} ）Callomyia torporata．
12．（ 66 L ）（ ${ }^{2}$ ）Anaclinia 9 ap．
13．（14691）（q）Milesia quadrata．
14．（15184）（4）Chllogia ampla（ \uparrow ）．
15．（15191）（f）Sciomyza manoa．
16．（15196）（ β ）Solomyza manoa．
17．（ y° ）Aaaroomyia cadaver．

Fig．18．（15188）（尔）Scionyza manca． 19．（14696）（7）Poliomyla recta． 20．（4121）（娄）Sciomyza manca．
21．（14696）（ $\left.{ }^{(}\right)$Poliomyia recta． 22．（2L）（i）Sciomyza disjecta． 23．（15195）（í）Sciomyza manca． 24．（15189）（i）Sciomyza manca． 25．（4149）（12 ）Sciomyza dlyjeata． 26．（f）Chilosia 1 sp．
27．（4112）（4）Chilosia aupla． 28．（15194）（f）Sciomyza manca． 29．（位）Sciomyza maoca． 30．（15237）（ ${ }^{10}$ ）Sciomyza disjecta． 31．（早）Lithophysa tumnita．
32 （197）（f）Sciomyza disjeota． 3．．（4131）（ ${ }^{1,2}$ ）Sciomyza diajecta．

U S. GFOLOCICAL SURVFY OF 'IHE 'IERRITORIES
Tertiary Insecets of North America.

F: Binclatr \& Son Lith Ehat
Green River Beds, Wyoming Terr.

PLATE X.

GXPIANATION GF HIGATE X

All the drawhugn waro mado hy J. Henry Blake.
 2. (11P) () Rymosin atrangulata. 3. (37L) (${ }^{\beta}$) Boletina umbratica.
4. (i) Tipula spollata.
5. (18P, reversell) (i) Selomyza i sp. 6. (90L) (9) Sciophila hyattil.
7. ($1 P$) Moletlua puludivagu.

9. (98 L) (() Syrphiliay P np.
10. (15182) (4) Diadocldia terricols
11. (15182) (${ }^{(4)}$ Diadoclilla terricola.
12. (4134) (12) Mycetophallidie sp.
13. (14P) $\left(1^{10}\right)$ Anatolla tacita
14. (10) (dex damnatornm.
15. (5L) ($\hat{\rho}$) Stenocinclis $\mathrm{P} \mathrm{m}_{\mathrm{j}}$.
16. (21) ('') Sciara scopuli. 680

Fig. 17. (81') (\uparrow) Plecla dejeota.
18. (130P) (9) Mraconldus op.
19. (129P) (f) Rhysan juvenis. 20. (15178) (9_{9}^{9}) Decatoma antlqua 9 21. (131P) (1^{0}) Lithotorns cressonl. 22. (15177) (19) Myrmica sp. 23. (14692) (1) Lasiun torreun. 21. (33L) (i) Eelytus lutatus. 2.). (76L) ($\%$) Glypta transversalis. 26. (22L) (i) Taxonus nortoni. 27. ((22L) (f) Taxonits nortonl. 28. (133P) (f) Braconlides sp. 23. (4196) (199) Bracon lamiluarum. 30. (1:32P) (9) Didinels solilescens. 31. (4076) (i) Deratoma antiqua.

U G CFOLOOGICAL, SUIRVEY OF THE TERRITORIES

F1. 10.

Green River Beds, Wyomino Terr.
Dinगwita, Hymenorprovita

PLATEXI.

Fig. 1. (9285) (生) Epeira sp.
2. (3204) (\ddagger) Epeira nicekil?
3. (13521) (尔) Theridinm opertaneun: q.
4. (2831) (\ddagger) Clubioun arcana ${ }^{\text {o }}$.
5. (8269) (7) Anypluana interitus.
6. (13523) (१) Epeira delita (of $^{\prime}$).
7. (7583) (1) Epeira abscondita đo.
8. (8265) (f) Tethneus gnyoti ${ }^{\text {d. }}$
9. (9677) (1) Thomisus disjunctus.
10. (320) (i) Tethueus guyoti $\overline{\text { \% }}$
11. (5000) (f) Tetragaatha tertiariad
12. (11651) (${ }^{2}$) Neph la penuatipes o.
13. (5502) (1) Thomisus resutus. The tibiat should be slenderer at the liase.
14. (8689) (?) Tethneus hentzii § $^{(8)}$
15. (8777) (1) Epeira emertoni δ.
16. (8576) (1) Epeira cinufacta ${ }^{\circ}$.
17. (9211) (f) Epeira ueekiid 688

19. (5117) (1) Epeira emertcni 9 .
20. (9026) (${ }^{2}$) Theridium seclusum δ.
21. (13522) (() Tethneus provectus q .
22. (5944) (i) Clabiona eversa ${ }^{\prime}$.
23. (4742) (i) Thomisus ilefosens d.
24. (199) (1) Clubiona ostentata δ.
25. (14032) (i) Linyphia reteusad (Revrise of Fig. 27, lower part.
26. ($845^{\circ} 9$) (${ }^{(}$) Parattus resurrectus (9) .
27. (1 $12 j 66$) ($\}$) Linyphia retensa d. (Seo Fig. 25.)
28. (205) (9) Segestria secessa 9.
29. (13520) (7) Titanceca ingenua 9.
30. (4921) (7) Aa ant, iutroduced by acoident.
31. (7177) (() Tethuens obduratns 9 .
32. (11203) (1) Titanoca ingeaua?.

US GEOLOGICAL SURVEY OF THF TERRITORIES
Tertiafy Insecets of Nohth Amprica

The Florissant Basin.

PLATE XII.

EXPLLANATION OF PLATE XII.

All the drawinge were made by J. Henry Blake.

Fig. 1. (399) (i) Cone of Seqnoia, seen in crossseotion; sapposed whell the plate was ongraved to be a coiled myriapoi.
2. (8616) (f) Parotermee hagenii.
3. (1247) (f) Parotermes fodinm.
4. (13526) (\dagger) Ephemers macilenta, larva.
5. (8824) (q) Ephemera imnobilis, larva.
6. (6010) (f) Hodotermes 9 coluradensis.
7. (10660) (7) Ephemera pamicoea, pups.
8. (4643) (q) Taphacris rellquata.
9. (5587) (f) Ephemera exsuccu.
10. (135526) (4) Ephemera macilenta, larva.
11. (349) (4 4^{2}) Necropaylia rigida.

Fig. 12. (19M) (${ }^{(3)}$ Entermes meadii. 13. (9041) ($\mathfrak{7}$) Parotermes insignis. 14. (400) (7) Parotermes insignis. 15. (1516) (?) Ephemera punicona, larve. 16. (233) (t) Ephemera pamicosa, larva. 17. (31) (7) Entermes meadii. 18. (1693) (${ }^{\circ}$) Leplisma platymurrit. Some of
the abdominai jolnts arv uct.indicated. 19. (4643) (t) Taphaorie reliqnata. 20. (6049) (f) Eutermes fossarum. 21. (310) (19) Necropsylla rigida. 22. (11190) (4) Parotermes forliut.
U. S. CEOLOCICAL SURVEY OF THE TERRITORIES

Tertiary Insectis or North America
PL 12

The Florissant Basin
Mrimarobd. Netmonpobia

PLATE XIII.

EXPLANATION OF PLATE XIIT.

All the drawinge were made by J. Heury Blako.

Fig. 1. (8347) ($\left.{ }^{(}\right)$Ssehna (Nechna) solida. 2. (8995) (4) Limnopuyohe dispersa.
3. (7728) ($\left.{ }^{(}\right)$) Neuronia evanescens.
4. (8619) (${ }^{\text {8 }}$) Lithagrion byalimum.
5. (407) (?) Phrygadea labefacta.
6. (8046) (P) Agrion exenlaris.
7. (12239) (\dagger) Polycentropas 9 eviratus.
8. (6824) (i) Agrion inaecescens.

Fig. 9. (6824) (f) Agrion mascescens. 10. (13525) (\dagger; Agrion tellaris. 11. (1816) (\dagger) Eashna larvata. 12. (6927) (q) Lithagrion umbratum.
13. (2514) (f) Derobroohne craterm.
14. (8163) () Lithagrion umbratinm.
15. (11693) (f) Eschna (Basiæechna) separats.

U S GEOLGGICAL SURVEY OF THE TERKITORIES.

TSinclan A Son. Lath Ptals
The Flofissant Basin.
Nevhoptena.
Y

PLATE XIV.

EXPLANATION OF PLATE XIV.

All the drawings were made by J. Heury Blake, excepting Fige. 1:3 nud 14, which were traced by S. H. Scudder from a microphotograph, taken by Sumuel Wells, Eiqq.

Fig. 1. (1., 8^{5}.) (fo) Inocellin veterann. The vein repersenting il bent costal vein of the right wing does not exist.
2. (438:1) (f) Rhaphidia 9 tranquilla ${ }^{\text {d }}$.
3. (13533) (${ }^{\text {I }}$) Ommylus requietus.
4. (6:3) ($\left.{ }^{(}\right)$Holcorpa macnloна.
E. (6:1) (t) Holcorpa maculoca.
6. (670) ($\left.{ }^{(}\right)$Tribochrysa firmata.
7. (8792) (该 Tribcchrysa firmnta.
8. (14168) (7) Osmylna rimpletus.
9. (11:204) (f) Triboohrysa vetuнсиla.
10. (8:92) (f) Trihochrysa firmata; hind wing. 694

Ig. 11. (8792) (f) Tribochrysa firmata; fore wing. 12. (937:) (i) Juocellia somnoleutap.
13. (7340) (4) Palieochrysa stricta; front wing; the hasal half of the upper cubital vein shonld not be at raight but zigzag like the apical half; the basal portion of the intercubitul area is also wrongly given.
14. (7340) (9) Paluochrysa stricta; hind wing; the cross veins of the costal area are not shown.
15. (956) (f) Inocellia tumulata d ${ }^{\circ}$.

U S GEOLOCICAL SURVEY OF' THE TERRITURIES
Tertiary Inserjt's of Nortil America

Tite Fluoriseant Basin
Nentornmas (blansibennta.)

PLATE XV.

EXPLANATION OF PLATE XV.

All the drawings were made by J. Henry Blake.

Fig. 1. (8065) (\ddagger) Leptobrochns lutens
2. (9416) (击) Derobrochus marcidus.
3. (8857) (1) Leptobrochus luteus.
4. (1.947) (f) Derobrochns cratere
5. (1441) (4) Limuophilus soproratus.
6. (5433) (f) Derobrochus frigesceus.
7. (11205) (ұ) Hydropsycho marceus.
8. (319) (10) Diaplegma abiluctnu.
9. (13137) (f) Tinodes palndigena.
10. (14210) (f) Litobrochus externatus. 696

Fig. 11. ($\mathbf{i} 864$) (f) Mesobrochus lethens
12. (9630) (4) Precadia mortnella. Revers of Flg. 17.
13. (4423) (f) Mesolrochus imbecillus.
14. (8422) ($\left.{ }^{(}\right)$Paladicella eruptiouis.
15. (11754) (f) Setodes portionalis.
16. (2677) (f) Derobrochns frigencens.
17. (8460) ($\left.{ }^{(}\right)$Precadia mortuella. Reverse of Fig. 12.

U S. GEOLOGICAL SURVEY OF 'IHE TERRITORIES 'Iertitary Inslects of Nohth America

The Fiomisisant Basin

PLATE XVI.

EXPLANATION OF PLATE XVI

All the drawinga were mude ly J. Henry Biake, excepting Fig. 18, whioh is by S. H. Scadder.

Fig. 1. (1.603) (?) Lubiduromma bormausid . 2. (395) (f) Labidıromma mortato of
3. (3832) (f) Labiduromma avia of.
4. (1.381) (f) Quedins breweri.
5. (13544) (f) Labiduromma avia d .
6. (3705) (i) Labiduromma mortaie d .
7. (2604) (7) Labiduromema infernum δ
8. (10627) (4) Quedins chamberini.
9. (5004) (${ }^{\text {P }}$) Labiduromma labeus (young)
10. (11208) (f) Lablduromina commixtum \ddagger.
11. (11209) (f) Labiduromma aviap.
12. (13546) (\ddagger) Labiduromma exauiatum $\%$.
(Copied by Zittel, Handb. d. palzont., Fig. 959.)

Fig. 13. (14471) (f) Labiduromma labent ${ }^{\prime}$
14. (4736) (?) Lahiduromma giliberti ${ }^{\text {d }}$.
15. (8334) (${ }^{\circ}$) Labiduronma tertiarinmo 9 . 16. (7118) (${ }^{3}$) Labiduromma inbons d .
17. (1832) (f) Labiduromma comnixtnm?
18. (14688) (t) Labiduromma tertiarium 8 .
10. (316) (f) Labiduromma lithophilum o.
20. (i3001) ($\}$) Labiduromma mortale of.
21. (4925) ($\}$) Labiduromma tertiarinm δ. 22. (11740) (\ddagger) Labiduromme avia δ. 23. (8022) (f) Laliduromma aviap. 24. (5278) (\ddagger) Labidur \AA uma ap.

TSincian \& Son. Lath Philad
The Fiorigsant Basin.
OHTHOP'THILA. (FOHFIOULARRAE.)

PLATE XVII.

explanation of plate xvil.

All the drawidge were mane by J. Heary Blako, exceptling Fig. 8, whioh is by B. H. Scudder.

Fig. 1. (39) Tyrbula rnseilit. Oun af the joints of the antennal olub.
2. (f) Tyrbula russelli. Antennte.
3. (7) Tyrbula russelli. (Copled by Zittol, Handb. d. paleont., Fig. 965.)
4. (f) Tyrbula rueselli. Tibial sivinee.
6. (7389) (4) Edipoda prefocata.
6. (635) (7) Gomphocerus abutrusus.
7. (1724) (7) Cymatomera maculata.
8. (8M) (\ddagger) Homorogamia ventriona.
9. (7544) (4) Locnsta uilens. A portion of the leg, showing epines.
10. (7544) (\ddagger) Loonsta allens.

Fig. 11. (5817) (f) Agathemera reclusa.
12. (5122) (1) Zotolora brunnerl.
13. (14720) ($\left.{ }^{(}\right)$Tyrbula multispinosa.
14. (11557) (\ddagger) Lithymneter gnttatus \circ.
(Copled ly Zittel, I. o., FIg. 969.)
15. (11557) (i) Lithymnetes guttatus of. Showing tho oellular apotting.
16. (1330) (t) Orohellaum placidam o.
15. (4642) (f) Gryllaoris oineris.
18. (13551) (\ddagger) Orohelimum placidum δ. Fore leg.
19. (13551) (\ddagger) Orohelimum plaaldum δ.

U S CFOLOGICAI, SURVEY OF THE TFRRITORIES

The Florissant Basin

PLATE XVIII.

EXPLANATION OF PLATM XVIII.

All the drawings aro ly J. lienry Blake.

Fig. 1. (92221) (i) Archilachnos ponuatns. (Coplod ly Buokton, Monogr. Brit. Aphides, Pl. 133, Fig. 3.
2. (315) (12 2) Schizoneuroides sendideri. (Copied by Bucktou, I. o., Pl. 133, Fig. 5. Copied ly Zittel, Handb. I. paimont., Fig. 988.)
3. (10205) (i) Siphonophoroides as tiqua.
4. (670)(10) Tephraphis simplex. (Copied by Buokton, 1. c., Pl. 133, Fig. 2.)
5. ($144: 50$) (if) Siphonophoroides antiqua.
6. (314) (${ }^{1 / \beta}$) Sychnobrochas reviviscuns.
7. (13562) (\%) Siphouophoroides antiqua.
8. (5380) (f) Aphidopsls margarum.

Fig. 9. (4827) (i) Ancouktus dorsuosus. (Copied by Buckton, 1. c., Pl. 133, Fig. 4.)
10. (8889) (f) Sijhonophoroldes sntiqua.
(Copiod by Buckton, 1. C., Pl. 133. Fig. 1.)
11. (1044) (${ }^{(1)} \mathrm{A}_{\mathrm{i}}$ hidopsis sp. (immature).
12. (3577) (${ }^{(8)}$) Sbenaphis quesueli.
13. (340) (i) Aminancou Jutosus.
14. (4475) (i) Oryctaphis recondita.
15. (6993) (年) Archilachnus pennatus.
16. (4615) (i) Archilachuus pennatus.
17. (177) (1°) Archilachuns pennatue.
18. (8055) (f) Pterostigmarennrvum. (Copied by Brekton, 1. c., PI. 133, Fig. 6.)
19. (8085) (\ddagger) Tephraphis walahli.

U S GFOLOGICAL SURVEY OF THE TERRITORIES
'Iertiary Insects of North Amprica

The Florissant Basin

PLATE XIX.

explanation of plate xix．

All the drawinge were made by J．Henry Blake．

Fig．1．（12069）（48）Fulgora nuticesceus．
2．（262）（10）Cercopis suflocata．A portion showing the surface strncture．
3．（262）（f）Cercopis suffocata．
4．（14229）（ l ）Gypoma cinercia．
5．（2658）（i）Agallia abstructa．
6．（10479）（1）Doeimus pwylloites．
7．（307）（（ ）Agallia lewisii．
8．（12088）（ 3 ）Nsctophylax vapil．
9．（7628）（ f ）Tettigonin priseatineta．
10．（4379）（7）Aphropihora np．
11．（11771）（i）Nyctophylax whieri．
12．（1．789）（（ ）Florissantia elegans．
13．（ 22785 ）（ ${ }^{28}$ ）Elidiptera regularia．
14．（1：705）（
704

Fig．15．（11307）（董）Acocephalus callosus．
16．（5188）（12）Jassopaia eviciens．
17．（9299）（i）Docinuve psyitoides．
18．（1015s）（ 9 ）Agallia flaecida．
19．（10672）（荀）This specimen wan accild ntuily overlooked in working np the finma．It is ovidently the anterior lialf of one of the Cercopida and appurently a species of Locrites，but does not agree with the other sprcies known．
20．（3412）（1，${ }_{1}$ ）Thamnotettix fundi
21．（1．ヶ05）（i）Agallia lewisii．

25．（4552）$\left(2^{2}\right)$ Thlibomenus parvus．
U. S. GEOLOGICAL, SURVEY OF THE TERRITORIES
'Tertiary insecits of Nort'h Mmerica
Pı 19

The Florissant Basin
HF:MHPTHA, (HONOIMERA)

PLATE XX.
voL xill-45

KXIPIANATION OF HDATE NX

All the itrawings were male by J. Henry Blake.

Fig. 1. (ti050) (t) Palecphorn pravalens. 2. (505s) (1) Palaph rodes Irregularin. 3. ($\mathbf{3} 584$) (1) Palecphora coummis.
4. (9900) (i) Aporema prostrictum.
5. (ii2) (\dagger) Perrolystra gigantea ?
6. (411) (\dagger) Petrolystra giganten. (Copled by Zittel, IInalb. d. palumont., Fig. 982.) 7. (4i:2) (1) Petrolyntra gigantea
8. (11829) (t) Petrolystra heros.
9. (118.37) (1) A small fly, fonnl on the amme atene with the noxt, perhups belonging to the Taehydromida, but whose preeino affinities it is prerhaps impossible te trace.

Flg. 10. (11237) (\ddagger) Palecphort maculata 11. ($\mathbf{6 4 8 4) \text {) (f) Palecplıra marvinei. }}$ 12. (6484) (1) Palecphora marvinel. 13. (64eri4) (${ }^{\text {() Palecphora marvinei. }}$ 54. (11;7.6) (y) Prine phora balteata. 15. (609) (ψ) Pil locphora Inornata. 16. (582) (f) Pulaplirodes cincta.
 18. (43) (4) Palaphrodes irregularis. 19. (6i639) (12) Jassins 1 latebrie. 20. (13570) (\uparrow) Palecphora communis. 21. (159) (\uparrow) Paleephora cemmunis. 22. (1.121) (\uparrow) Litheephora setigera.

U S (BEOLOGICAL, SURVEY OF' IHE TERRITORIES
Terptimy ibspocis of Nokin Ambrica

The Florissant Basin
Htimitraha. (Homopterra).

PLATE XXI.

EXPLANATION OF PLATE XXI.
All the drawings wero made by J. Henry Blake.

Fig. 1. (78) (f) Agalla instabilis. 2. (8081) (1) Palecphora prevalens. 3. (12776) (fi) Lithecphora murata.
4. (12447) (i) Lithecphora nuicolor.
5. (13337) (午) Lithecphora nuicolor. 6. (3864) (t) Palaphroles Irregularis. 7. (8536) (4) Palaphirodes irregularis.
8. (912) (f) Lithecphora murata.
9. (38 n 1) (${ }^{(1) \text { Palecphora marvinei. }}$
10. (8887) (4) Palaphrodes obllqua.

Flg. 11. (14178) (β) Lithecphcra micoler 12. (9158) (\ddagger) Paleophora marvinei. 13. (30) (\ddagger) Lithecphora diaphana.
14. (11103) (y) Lithecphora unicelor.
15. (208) (\ddagger) Pi.laphrodes cinctu.
16. (126) (i) Dictyophara bonvei.
17. (8313) (f) Locrites whitsi.
18. (4287) (\ddagger) Palaphrodes obscura. 19. (9374) (\ddagger) Locrites copei.

U S CFOLOGICAI」 SURVE' IF 'HE TERRIPORIFS

'he Florissant Basin
Hf:smorita (fonaormers.

PLATE XXII.

Explanation of plate Nxif．

All the drawings were made by J．Heary Blake．

Fig．1．（4480）（f）Achreatecoris cincrarius． 2．（128）（倍）Сарини lacus．
3．（6371）（f）Plthinocoris colligatus，
4．（12784）（i）Tiroschistus indurescens．
5．（4563）（ ${ }^{(1)}$ ）Fuөcus fecalus．
6．（234）（ \uparrow ）Discostoma 9 ep．
7．（1．828）（f）Nysins vecuia．
8．（14981）（無）Stenovelia nigra．
9．（7609）（1）Trapezonotus exterminatus． 710

Fig．10．（1．821）（i）Lygaus stabilitus．
11．（ 10 t 20 ）（i）Notonecta emersoni
12．（1097）（f）Prosigara flabellum．
13．（13325）（ ${ }^{(1)}$ Painovelias spinosa．
14．（3268）（ץ）Stenovella nigra．
15．（12782）（f）Metrobates wternalis．The lig－ ure is upside down．
16．（22238）（倦）Corixa immersa．
17．（7269）（f）Corixa vanduzeej

U S GEOLOGICAL SURVEY OF THE TERRITORIES.
Tertiary Insects of Nohth America.
PL. 22.

Ono. 9 1lartio \& Sona Lith Ptula.
The Florissant Babin.
femipregita (Heterioptera-Heisuviidae, Lytiagidabs.)

PLATE XXIII.

EXPLANATION OF PLATE XXIII.

All the drawings were made by d. Henry Blake

Fig. 1. (5596) (f) Eotingis anteumata.
2. (t2094) (β) Linnan carceratn.
3. (tiles) (i) Eotingis untennatn.
4. (5H73) (i) Linnere puthumi.
5. (96i2) (i) Monanthia veterna.
6. (7617) (i) P'iesma 9 rotında.
7. (7473) (i) Stenopamera suliterrea
8. (09337) (i) Procrophilus costalis.
9. (2:44) (i) Monanthia veterna
10. (232)) (i) Linnuea holnesil.
11. (9674) (i) Trapezonotus exterminatus.
12. (1662) (1) Brocrophins eommanis.
13. (4500) (i) Capsus olsole fuctus.
14. (6365) (f) Nysius stratus.
15. (9884) (1) Rhyparochromins verrillii,
16. (5736) (i) Stenopamera tenebrosn. 712

Fig. 17. (ieffi) (i) Geocoris iufernornan 18. (11181) (i) t'rocrophios commanis. 19. (4096) (${ }^{(3)}$ Linnasa gravida. 20. (12465) (i) Nyains tritas. 2t. (7233) (i) Linnwa evointa. 42. (11757) (Y) Trapezonotus exterminatus 2:I. (6i:15) (i) Procrophins languens. 24. (11301) (i) Stenophumera tenohrosa.
 26. (6483) (1) Geocoris infernorum. 27. (1164) (i) Nysius stratus.
28. (11:222) (y) Procrophins communis. 29. (1209) ($\left.{ }^{(}\right)$) Proc: ophius communis. 30. (11210) (${ }^{\beta}$) Rhyparoohromus verriliii.

The Florissant Basin.

PLATE XXIV.

explanation of plate xxiv.

All the drawings were made by J. Henry Blake.

Fig. 1. (193) (185) Procrophins communis. 2. (13560) , i) Pecilocapsus ostentus. 3. (13554) (i) Pacilocapsus fremoati.
4. (13314) (f) Anasa priscopatida.
5. (12925) (p) Ligyrocorls exsuctus.
6. (13558) (f) Carmelus sepositus.
7. (4369) (f) Closterocoris elegaus.
8. (6968) (f) Pæcilocapsus tabidus.

Fig. !. (12076) (f) Pecilocapsus veterandns. 10. (12457) (f) Carmelus gravatus. 11. (5865) (f) Dysdercus cinctus. 12. (13559) (${ }^{\beta}$) Hadronema cinerescens.
13. (1426) (f) Dysdercus cinctus. 14. (13561) (\mathcal{F}) Dysderens cinctus. 15. (11218) (f) Lygreus obsolesceus. 16. (11219) (f) Lygæus stabilitus.
U. S. GEOLCGICAL SURVEY OF THE TERRITORIES

Tertiary Insects of North America
PL.. 24

The Florissant Basin.
Heamiotera, Hemighoiptikha-linuakidsaf.

PLATE XXV.
explanation of plate xxv.
All the drawinge wore made by J. Henry Blake.

Fig. 1. (318b) (\uparrow) Rhepocoris propinquans. \&. (10381) (f) Nysinas stratus.
3. (12102) (f) Cacalydos exstirpatus.
4. (12081) (f) Rhepocoris prevalens. 5. (3247) (f) Corizus abditivas.
6. (318a) (f) Rhepocoris prevvalens.
7. (1761) (f) Rhepocoris prevaleus.
8. (11140) (f) Nysius stratus. 716

Fig. 9. (5669) (9) Rhepocoris preavalens.
10. (12087) ((f) Rhepocoris prevalens.
11. (9128) (\mathcal{P}) Rhepocoris prievalens.
12. (1.508) (f) Cacalydus lapsus.
13. (12778) (f) Parodarmistus coilisus.
14. (1.803) (f) Rhepocorls prevalens.
15. (10956) (\ddagger) Piezocoris peritus.
16. (9) (f) Rhepocoris prevalens.

U S. GEOLOGICAL SURVEY OF THE TERRITORIES

T Sunclar \& Son, Lith Philada
The FLorissant Basin.
Hpimipteita. (Hetemoptera - Coreidae)

PLate XXVI.

EXPLANATION OF PIATAE XXVI.

All the drawings wore made by J. Henry Blake.

Fig. 1. (8604) (f) Orthriocorisa longipos. 2. (4644) (䡒) Lithochrouns inortuarins.
3. (7856) (${ }^{\text {P }}$) Cydaurus robostus.
4. (14207) (1) Corizns abilitivus.
5. (12469) (f) Eothos elogans.
6. (13660) (f) Lithochrouns extraneus.
7. (7037) (q) Phrulc pamera ohittendeni.
8. (10391) (\uparrow) Protenor inbecillis.
9. (11232) (f) Fhrudopamera chittendeni.

Fig. 10. (9837) (f) Lithochromus gardneri 11. (2431)(f) Rhepocoris prievalens. 12. (14236) ($\left.{ }^{(}\right)$Catopamera bradleyi. 13. (8467) (f) Rhepocoris propinqasns. 14. (5633) (f) Piezocoris i peremptus. 15. (2696) (f) Tagalodes Inermis. 16. (9253) (f) Etirocoria infernalis. 17. (6:770) (f) Phthinocoris lethargious.

U S GEOLOGICAL SURVEY OF THE TERRITORIES
Tertiary Insects of Nokth America
Pı 26

Smoluri A Scm Luth Painada
The Florisgant Bagin.
Hemipteha. (Heqehorimira - Coreidae)

PLATE XXVII.

EXPLANATION OF 1 LATE XXVII.
All the drawiugn ware made by J. Henry Blake.
Fig. 1. (367) ($\{$) Rhipiphorus geiklel.
2. (6650) (f) Vxite'ne exsanguis.
3. (5703) (\ddagger) Heeria lipilloas.
4. (13564) (狺, Procoria bechleri.
5. (1.831) (f) Heoria gulosa.
6. (10256) (β) Phth!nocoris languidus.
7. (9590) (f) Catopamera augheyi.
8. (2475) (f) Lithooliromus garineri.
9. (69:11) (\uparrow) Phruinpamera wilsoni.
10. (9086) (f) Necruchromus cockerelll. 720

Fig. 11. (9302) (f) Trapesonotus stygialis. 12. (11773) (f) Heoria gulowa.
13. (6299) (f) Prolygaus inuniatus.
14. (2N71) (f) Neoroohromus labatus.
15. (6369) (f) Corizus celatus.
16. (13315) (${ }^{(1)}$) Phrudopanera wilsoui.
17. (8780) (9) Phthinocoris letk:3rgious.
18. (4269) (f) Heoria gulosa.
19. (14197) (f) Heeria Iapidosa.
us eeological, survey of the 'territories

The Flofissant 13ABin

PLATE XXVIII.

VOL XIII- 46

EXPLANATION OF PLATE NXVIII

All the drawings were made by J. Henry Blake.

Fig. 1. (7929) (1) Pentatomites foliarum 2. (13318) (f) Cacowehistus maceriatus 3. (5•20) (4) Teleoschistus maceriatus.
4. (11225) (i̊) Procyduns devictus.
5. (14426) (i) Procyduas promis.

7. (2656) (f) Polioschistus ligatus.
8. (3007) (f) Mecocephala sp.
9. (8201) (7) Diplochila ? henshawi.
10. (1112) (f) Polioschistus lapidarius.

Fig. 11. (8471) (1) Thilmmosehistus gravidatus. 12. (13583) (f) Thlibomenus limosus. 13. (88,0) (\ddagger) Necrocydons nollilatus. 14. (8666) (f) Teleoschistus rigoratus.
15. (2464) (i) Procyduus vesperns.
16. (4851) (f) Necrocyduns amyzonus.
17. (1977) (f) Heeria gulosa.
18. (1472) (f) Poteschistus otnubilus. 19. (10405) (f) Thlimmoschistus gravidalus.

U S. GEDLOGICAL SURVEY OF THE TERRITORIES
Tertiary insects of North America

The Flifissant Basin.
Hemipteila-(Hetenopteila-Pentatomidae Corinalafenidak)

INDEX.

62.
10.

	Page.
abbreviata (Setodes)............	192
cbditivne (Corians)	433
ahdactnm (Dlaplegma)	290
- bita (Braohypeza)	591
sbolita (Llnnear)................	398
aborcivum (Podagrion)	134
abrogatue (Pterosilehaa)	625
sbaceraum (Lathrobium)	505
abecingne (Parodarmietun).....	422
abscondita (Epeira)............	84
abseus (Cataneura).	245
abutractine (Derobrochus)	183
aluatructs (Agallia)	307
abstruane (Gomphocerus).	223
Acanthaspidina.	354, 355
Acanthiddm.......	360
Acantbosoma	435
Acanthasomina.	435
Acarlma.	45, 46
Acarus .	47
Aceetra.........................	429
Achilida.	297
Achrealocoris	112,413
clnerarina	413
Acocophalus.	311
adm.......	311
callosus.	311
Aormphie.:	281
Acridil ...	220
Acridlum barthelemyi.	2.0
Acrenera	503
globulus	563
birbula	683
Aouleata....	815
adsa (Acocephalus)	811
adamna (Bledlus).	504
Adicella	189
Exgialia..	480
rupts.	489
EHila ...	453
为olothripe	372, 873
Eechne 125, 120, 141,	142, 143
oonstricta	142, 143
janata.	145
larvata.	145
marehali	143
reotia	148
mixta	148
polydore	142
separata	14
eallda.	143
tyche	142
Finchuidm.	92, 125
Sechnina.................92, 124,	125, 141
atirnalis (Metrobates)	353

INDEX.

INIDEX.

	Paize.
Iteterogamia.	217
Ifuterogantrias	374
Ilateromma	63
Ileteronysa	647
detecta	648
aenilla	647
IInterophlehla	125
Heteroptera	938
hudel (Platynua)	620
Iİppiecua melanout	224
Hirmonenrlde.	20
hirauta (Acroceral	563
Itaterilue.	28
Ilistopona	68
Hoxloteriuen.................. 10. 106, 105, 113	
halelingeri	103
proceria.	105
Molchorpa	173
Hotcerpa.	147, 173
mamentona	174
holmeall (Linnava)	397
Homalota	509
redina	809
Hotaodomus	362
Llomoogamia	217
ventrlona	218
Iloinoptera	299
Itıplomaclina.	362
Hormineus	487
partitua	487
byallnum (Lthugr	13.3
hyattll tsclophlla)	697
Mydrnbatida.	350
Hydrobina.	511
confixin	611
devinaralus	511
funolpra.	611
IIydrochua	515
amictue	515
relletus	816
subeupren	815
Ityirometra	351
Itydrophilide.	27, 510
Hydrophllus.	27
ligdropica (Manca).	653
Ilydropayohe	178
marcena	189
operta	180
Hydropayehdda...... 82, 177, 170	
Ilydroptildie	92,177
Hygrotrechua	351
renigla	352
stâli ..	351
Hylastes	468
nqualdens	408
Hyloblas.	473
confneys	473
plelvoras	473
provectua.	473
IIymenoptera.	39,004
Hypochrysa	168
Hypoctinea....	18, 617
mbllterata	618
Hypselondtue..	411
Ichneumen	608
petrinua	608
lehoenmouldie.	30,808
lellnum	125
14modia	82

INDEX.

INDEX.
731

734

IÑDEX.

umbratum (Lithagrion)......... unlealer (Dyndarous) \qquad (Litliecphora). \qquad	Page
Urocaridie	
Urectecidas	
vanduseel (Corixa)	
Vanewaldl.	
vecula (Nysilus)	37
velatus (Cerymbltea)	49
Velia.	348
curren	
Velildm	34
venerablle (Diaplegm	
ventriosa (Hemuragamia)	218
verrillil (Rhyparochrom	100
veaperus (Procydous),	42
Vesphlu	30
vestita (Paraudrita)	501
vetoraud (Iuncerlia)	156
voterandus (Pæcilocapsus)	368
veteranceur (Displegma)	90
vetrrna \Manasthia).	59
veterueaua (Peociloszpara	387
vetus (Camponetus)	018
veturculs (Tribochryma)	170
vatuata (LSthadetirijpa)	372
vetustus (Cryptocephaln	48
vigil (Nyctophylax).	280
visetus (Nyaiue).	378
vinculata (Musca)	654
Velucella	550
vulcaualis (Epeira).	88
vulcanius (Necruey daus)	44
walshil (Tephraplis)	2 ¢0
wheatleyl (Cychrns).	538
whitel (Locrites)	324
wilsoni (Phmidupamera)	388
wyomingenaia (Collilia)	313
Xenomerpha	
Xiphidiom	3 t
Xfa	234
Xyleta	555
Xystious	56,57
Ypsolophus	02
insigols	602
Zelobora	
	217
meustio	217

ge. 136
410 831 81 52 344 29 378 490 348 348 291
218 218 400$+30$501156
368290359
36797
vetus (Campnnetus) .170372280
37859260
(Cychrne)
whomingentapan 313
Xiuhtiom 566
$23 t$55602
meusstloa $\quad 217$

[^0]: ${ }^{4}$ E. Quinet: La Cr6ation, vol. 1, p. 197.

[^1]: 'This account of Florissant is taken almost boilily from a paper by Prof. Arthur Lakes and myself (Rall. U. S. Geol. Surv. 'Terr., vol, 6, l\& i, pp. 279, seq.).

[^2]: ${ }^{1}$ The shallowness of the lake is indicated ly the characler of the fish, the sun cracking of sonse of the shalcs. and the erect sequoia stumps.

[^3]: 'Their rude fortifications still crown the summit.

[^4]: ${ }^{1}$ Arch. f. mikr. Anat., vol. 28, pp. 46-47, 186.

[^5]: ${ }^{1}$ In the text of his last reprort Lesquereux refers this to Alkall, Wgouing, but in his tabio to Florirsaut.

[^6]: ${ }^{1}$ Amer. Jour, Sci., ser, 3, vol. 17, 1879, 1. 279.

[^7]: ${ }^{1}$ Canalian Jonr. Sci., new series, vel. 1t, 1887, pp. 388-413.

[^8]: 'A good critleal review of the described fossil species of Araneides will le fouod in Thoreli's European Spidery, pp. 223-233.

[^9]: Cephatothorax small and oval, about half as long as the abdomen 1. T. ingenua.

 Cephalothorax large aud elongate, nbeut three-fourths the length of the abdonen. 2. T. hesterna.

[^10]: 'Anandras is credited with one species, but it is not described (Menge, Lelisuszelchen, etc., p. 7).

[^11]: 'The terminal part of the right tarsi as given in Fig. 27 docs not belong to the tarsi.

[^12]: 'Since this was written Brongniart bas desuribed a species from the Carboniferons deposits of 'ommentry, France.

[^13]: vol xill- 7

[^14]: ${ }^{1}$ Accordiug to Hagen (Limn. Ent., vol. 12, p. 24.) no lacallty in the world has yielded more than nine spectes of living types; they so rarely number more than four, that he had formerly indiosted thie as the limit, so fur as known.

[^15]: 1 What I here call the submarginal vein is the short simple vein, sometimes present in, at other times abeent from, Termitina, which preeedes the mediastinal vein. Hagen calls it the first branch of his subcostr.

[^16]: Head broader behind than in front, searcely half an long nguin as broad; pronotnm sembircular, tho posterior eurve uniform ... E. fonsarum. Head not broader hehind than in front, filly halr as long again in l'roud; pronotum very short, the
 hind murgin more or lens traneate
 ..2. E. meadil.

[^17]: 'Hagen considered these as most nearly allied to tho species for which Selys has ainco estashlished the geuus Chlorolestes in the legion Podagrion, but to judge from the origin of the median und subnodal sectors they certanly belong in Lestes.

[^18]: Subuodal sector forkel, its upper fork separated from the notel bs a single row of cells; pterostigma hardly more than three times as long as broad and only one-fonrth as long as the space between It and the nedus.

 1. Nischna s. s.

 Subucial sector simple, separatod from the nodal by three rows of celle; pterostigma four or five times as long as broad, more than one-third as long as the space between it and the nodus.

[^19]: ' Vide supra.

[^20]: 'It has been saggested that these may belong rather to Chauliodes, a closely aliled genus of Neuroptera; but Mr. Riley deciares that they are identical with those fonnd in the body of Corydalus.

[^21]: ${ }^{1}$ Proo. Am, Assoo. Ad. Sci., vol. 25, pp. 277-278.
 9There specimens are some from which weathering has removed their outer albumions coating; perhaps, if thie had remained, the furrow would have been conoealed by the complete union of the attingent aibuminous walis.

[^22]: The deposit in which they oceur is a frosh-water one; but Mr. Lesquerenx informs me that brackiehwater forms are fonnd both above and below them. For detsils concerving the age of the deposit and the fossils aseociated with Corydalites, see the artioie by Dr. C. A. White, quoted above.

[^23]: It was loy error that I alluded to these gonera as indicative of a warmer olimate for ancient Elorissant in the Annual Report of the U. S. Geologieal and Geographical Survey for 1878, p. 292.

[^24]: Tho name I have given should perhaps be written Iloletorpa; but l have disregarded the aspirale, as Linad did in conslructing Panorpa.

[^25]: ${ }^{1}$ Fons. Ins. Ster. Fowks Engl., pl. 5, tig. 15.

[^26]: ${ }^{1}$ Trichoptera Europ. fauna, 398.

[^27]: ' Bill. Ecole Haut. Etudes; Sci, Nat., vol. 4, pp. 101-102.

[^28]: 'Sce outhis notht MoLachinh, Pruc. Eat. Soc. Lond., 1882, 18-19.
 2.Jahresb, Pullehia, vol. 2, pp. 19-2:1.
 ${ }^{3}$ Berendt, Hernst. hefinill, organ. Reale Vorw., vol, 2, pt. 1, p. 121.
 -Arehiv, maturw. Lamlewdurehf. Höhm., vol 1, p. 66; Vesmifr, vol. 13, p. 205,
 ${ }^{6}$ Sapmirta, Organ. prohl. nuc. mers, 24-20, PL. 3, Fig. 2.

[^29]: ${ }^{1}$ Heer, Urwelt der Schweiz, 2d edition, p. 392, figs. 267, 268.
 ${ }^{2}$ Serres, Géognosie des terrains tertiaires, 225,

[^30]: ${ }^{1}$ Naturg. Erikörp., vol. 2, p. 331.
 ${ }^{2}$ Berendt, Bernst. befindl. organ. Reste Vorw., vol. 2, pt. 1, p. 33.
 ${ }^{3}$ Uebers. sohles. Geseilseh. vaterl. Cult., 1834, 93.
 ${ }^{4}$ Massalongo, Stud. pal., 15-16, pl. 1, figs. 5-7.
 ${ }^{5}$ Heer, Urwelt der Sohweiz, 2l edition, p. 94, pl. 7, fig. 5.
 ${ }^{6}$ Aroh. Mus. Teyl., vol. 2, p. 274.

[^31]: VOL XIII- 14

[^32]: ${ }^{1}$ There is some doubt abont thene measnrements, the basal portions being oloscure.

[^33]: 'The hind tibis must certainly be represented as aborter than they should be, as in other respects the representation appears to be that of a Cyrtoxiphas, in which (as in ali Trigonidi) the hind tibim are very nearly as long as or longer than the hind femora.

[^34]: Cubital vein twice forked.............half the d
 Cuhital vein arising at les than half the distance from the first obliqne to the stignstio ven.
 Stigmatio vein arising midway between the first and second forks of the cubital vein or dis-
 tinctly nearer the second fork.
 Origin of the stiguatio vein midway between the first and second forks of the oubital vein.
 Ajex of cell nbout thres times as broad ns its base Cataneura.
 Apex of cell about aix times as broad as its base2. Archilachnus,
 Origin of the stigmatio vein scarcely or not before that of the second fork of the cubitsi
 velin.
 Base of second oblique vein several times nearer the first oblique than the oulital
 vein ..3. Geranchum
 Base of the eecond oblique vein midway between the first oblique and the cubital
 veil S. Sbenaphio.
 The stigmatio vein arising opposite the first fork of the cubital vein or distinotly nearer it
 than the second.
 First enbitsl branch nesrly or quite four times as long as the bassl stem of the cubital
 vein...c.. . . Aphantaphis.
 First cnbital branch at most three times as long as the bssal atem of the cubital vein.
 Flrst ohlique vein parting from the main vein at an angle of less than $\mathbf{5} 5^{\circ}$.
 6. Siphonophoraides.
 First oblique vein parting from the main veln at an angle of more than 70°.
 7. Lithaphie.
 Cubitsl vein arising at half or more than half the distance from the first obliqne vein to the stig.
 matio vein.
 Main veins nrising nt nearly equal distances apart .. . Tephraphis.
 Msin veins arising at distinctly nuequal distances apart.
 Second oblique vein at base rarely so much as twice as near the first oblique as the onbitnl
 vein 9. Aphidopsis.
 Second oblique vein at base four times as noar the first oblique as the cubitai veln.
 The first obliquo vein straight, not two-thirds ns long as the second oblique veln, and
 considerably divergent from it Oryotaphis.
 First oblique vein curvod ontward, nearly as long as the eecond oblique vein, and
 hardiy divergent from it Sy. Sychnobrochus.
 Cubital vein onco forked. .. Schizoneuringe.
 Cubital vein arising at more than half the distance from the first oblique vein to the atigmatic
 vein 12. Schizoneuroldee.
 Cubital vein arising at less than half tho distance from the first oblique vein to the stignatio vein
 Cubital vein lorking beyond the base of tho stigmatic vein
 13. Amalanchum.
 Cubital vein forking before the base of the stigmatio vein.
 Base of second discoidal celi legs than three times the width of that of the firat.
 14. Anconotus.
 Base of secoud discoidal cell more than five tines the width of that of the first.

[^35]: ${ }^{1}$ There is a mistake in Heer's work on Oeningen luseats in the references to the apecies of Cereopis on PI. 11. The plate is oprreetly markell, but the separate explanation of the plate anil the references In the text glve a fignre to C. ungeri whioh dons not exist, and muke eleven flgurea to the plate when there are only ten. The references to C. pallina, oeningensis, fasciata, aud reotelinea, whloh are reepectively $8,9,10$, and 11 , should be $7,9,9$, and 10 .

[^36]: Tegmina nuicolorons.
 Table of the ap, cies of Cercopis.
 Larger species; the tegmina measuring fifteen miliimetors in length; radial voir before forking widoly distant from margin. ... C. welryni.
 Smaller specios; tito tegminn measuring ies than ten milimeters in lougth; radial vein belors
 Tegmina transversely banded.

[^37]: ${ }^{1}$ In the enumeration of the European species a considerable number ef undescribed species are introdnced whose presence has been merely indicated by statements of different naturalists.

[^38]: ${ }^{1}$ Unless the poorly preserved insect from the white Jura of Bavaria, whieh Oppenheim has recently referred doultfully to Corixa, is to be regarded as belonging here.

[^39]: ${ }^{1}$ The name is given in allusion to the confined surroundings of thie genus of Velides, not to any sleoderness of form.

[^40]: Table of the species of Carmelus.

[^41]: ${ }^{1}$ In my Systematic review of fossil inseets (hall. U. S. Geol. Surv., No. 31, p. 63), 1 have anid seventen, having wrougly given credit to Radoboj and amber for one more speeies each than they have,

[^42]: Thorax mnoh less thau twloe as broad as long.

 1. T. torpefactus.

 Thorax fully twlee as broad as long
 2. T. tabiftuus. VOL XIII- 26

[^43]: Table of the genera of Coreina.
 Head not more than half as long as the thorax. 1. Anasa. Head more than half as long as the thorax.

 An oblique vein running from the upper apex of the central celi of the coriom to the custa, incloging a large rbonboida! cell at the apex of the corium.
 Head and thorax of subequal length
 2. Achrestocoris.

 Head and thorax of subequal length
 Head nuch shorter thau the thorax
 3. Phthinocoris.

 No obllque vein nor rhomboidal cell at apex of corium ...

[^44]: futroocular part of bead less than two mad a half times as long as lroad
 Apex of scutellum reaching distinctly less than half-way to the tip of the abdomen. Head in frout of eyen guadrate, the tylum and jagn of similar lengh 1. Trleoschistus. Head in front of eyes thpering, the tyhm smprassing the jugg2. Thneturchistus.
 Apex of sentellam reaching half-way to the tip of the athdomen. Thorax less thau three times as broal us long.
 llody regnharly ovate throughout .. 3. Poteschishus.
 Budy with parallel or nemrly parallel sides.
 Headshorter than uidelle ol' the therax and more than balf its width..4. Cacoschistus. llead loger that the uiddle of the thorax and elightly less than half as wide as the therax 5. Mataoschistue.

 Thorax three or more than three times as broad us loug.
 Body at loast half as long agaln as the width of the abdomen. Postertor latoral angled of thorax prominent.

 Sldes of thorax in froot of lateral prominences concave6. Polionchistus.
 Sldes of thoras in front al lateral prominences couvex7. Pentutomitrs.
 Postorior lateral augles of thorax not promment.......................... . . Tirusohistus.
 Body Iess than bulf as fong agalo as the widt of the abdomen9. Thlimmochistur.
 Intraonlar part of hend two and a alif chmes as long as broad.
 .10. Mecocephala.

[^45]: ${ }^{1}$ Can. Jour. Sc. Lit. Hist., XV, 386-413, plale, 1877.

[^46]: ${ }^{1}$ Seen in the collection of the late Mr. George D. Smith.

[^47]: The sexes in thls genua differ in neuration, and, as the wing attached to the body of the male differs from the other wings in the particular above mentiened, I look upon the others as belonging to femmles of the same speeies, and deseribe them aecerdingly.

[^48]: vor, xil-3:

