## IMAGE EVALUATION TEST TARGET (MT-3)



## CIHM <br> Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques


The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée'

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

$\square$
Cover title missing/
Le titre de couverture manquè

Coloured maps/
Cartes gfographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou.illustrations en couleur"

Bound with othef material/
Relié avec d'autres documents

Tight binding may caúse shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge interieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte,

1 mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui ą été possible de se procurer. Les détrails de cet exemplaire qui sont peut-etre uniques du point de vue* bibliographique, qui peuvent modifier uńe imagè reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

$\square$
Coloured pages/
Pages de couleur


Pages damaged/
Pages endommagéesPages restored and/or lifminated/
Pages restauréeṣ et/ou pelliculcés


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

## $\square \square$ Pages detached/ <br> Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression


Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from: /
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

$\square$
Additional comments:/
Commentaires supplémentaires:

- This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.


The copy filmed here has been reproduced thanks to the génerosity of:

National Library, of Canada

7
The images appeering here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed peper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The lest recorded frame on each microfiche shall contain the symbol $\rightarrow$ (meaning "CONTINUED"), or the symbol $\nabla$ (meaning "END"), whichever epplies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too lerge to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, es many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:
$\therefore$ Bibliothèque netionale du Canada.

Les images suivantes ont été reproduites avec le plus ǵrand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du conṭrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat at en terminant soit par la derniére page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires origináux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en teriminant par la derniare page qui comporte úne telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le ces: le symbole $\rightarrow$ signifie "A SUIVRE";le symbole $\nabla$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsq́que le document est trop grend pour âtre reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

ES

$$
0
$$

## SOME NOTES

Consolidation of Tiro Systems
of Electric Supple

A. A. DION, M.A.I.E.E.,

Ottalli, Ont.

HD96.3 $=$
$<32$,

$$
1900
$$

THE march of electrical progress has been so rapid within the last few years, such marked advances have been made in the methods of supply and distribution of electrical energy for light and power, that central stations, which six or seven years ago were looked upon as the embndiment of the best and latest practice, are already handicapped in the race for wealth, in view of the many improvements which have been made since that time.
2. The constant and rapid increase in the use of electricty in cities has correspondingly increased the difficulties of distribution at constant potential, and new systems have had to be devised to meet the new conditions. Electric supply companies, whose stations were equipped when distribution at one thousand
volts seensed like tempting units were the rule rempting providence, and small generator sible to adopt more econ than the exception, now find it imposundue sacrifice of apparamical systems of distribution without wards the improvement of their services to changes efforts tolimits of existing pressures. 3. The amalgamation of
infrequent in these times, rival electrical interests, which is not problem, that of consolidatings up another and more difficult elements to form a single and various and oftentymes conflicting out throwing any apparatus out of servistem. To do this withwriter was lately called upon to undertake was the task that the 4. He does not claim upon to undertake. plan adopted, but simply states how for any of the features of the case, believing that in furnishing each was done, in a particular ing work done in our respective fields of action information regardthe objects of this Association, and he trusts that some of the members may be benefitted by the discussion which this paper may bring out, if not by the paper itself.
5. The amalgamation above referred to comprised three electic light companies, namely, "The Ottawa Electric Light Company," "The Chaudiere Electric Light and Power Company," and "The Standard Electric Company of Ottawa."
the ottawa electric light company.
6. This was the oldest company, it having commenced business in 188 , and its operations were confined to are lighting. It owned a substantial stone power house. The motive power was water, and was transmitted through four vertical turbines operating under a head of sixteen feet. The electrical equipment consisted of eighteen T. H. ten Ampere generators manufactured by the Royal Co. of Montreal, supplying 325 lights for lighting the streets of the city and 95 lights for private lighting. This company also owned a small workshop for armature and

THE CHAUHERE ELACTRIC LH:HT AND POWER COMPINY. 7. This company was the next in point of age, it having commenced business in 1887 . Its business was confined to incandescent lighting and supplying power for motors. Its first plant was a multiple series system, using the well known U.S. double magnet genelators of 25 amperes and 550 volts. The lighting was limited to stores and other public places ; five lights were run in series. Each light pendent consisted of two lamps, one above the other. The lower lamp alone normahly burned. When, however, it burned out, an electro-magnetic device, contained in the socket, instantly brought the upper lamp in circuit, thereby preserving the continuity thereof.
8. These machines were replaced in 188o by the Alternating Current Converter system, but were used later for other purposes. The first installation of the latter system consisted of two Westinghouse smooth coze alternators of 750 lights capacity each, that were separately excited by small mathines of the U.S. type. At the time of amalgamation this company had installed 27,000 incandescent lights and 42-500 volt motors rangint from one and one-half to 20 h . p. and aggregating 320 h . p.
9. This company occupied three power houses, which, for the purpose of this paper we will designate as "a," "b" and "c."
10. "a" was the original power house, and was operated hy water. It contained eight 750 light Westinghouse alternators separately excited. From this station eleven pairs of lighting feeders ran to various parts of the city. The switchboard was equipped with indicating instruments of the Westinghouse pendulum type,-one ampere meter for each pair of feeders and one volimeter for each alternator-Westinghouse compensators, Wirtz non-arcing lightning arresters and a large number, of double-throw switches by means of which the feeders and generators were made interchangeable. Some of the langer circuits were supplied with regulators or "boosters."
11. " $b$ "was the next power house to be occupied. It was also a water power station and was built when the daily loads outgrew the capacity of "a." The electrical equipinent of " $b$ " consisted of ast 1,500 light Westinghouse alternator with smooth core armature and a 120 K . W . alternator with toothed core armature, both separately excited, and a 75 K . WV. 500 volt U.S. direct current generator of the upright type. The alternators were separately connected by wires to the switchboard in station "a," some four hundred feet away, and the D. C. generator supplied the motor circuits, two in number, which ran from this. station.
12. "c" was a stean power station which had been built in 1893 as an auxiliary, made necessary, on account of periodical diminution of the water power through anchor ice and other causes. No place could be found for the steam plant on the premises of the other stations, therefore it had to be erected some distance away on a water course where an abundant supply of water was available for condensing purposes. Additional electrical equipment had therefore to be provided for this station.

The building was a one story brick structure with stone foundation 85 ft . by 130 ft . It contained six return tube bollers 14 ft . by 60 inches and a pair of tandem compound condensing Wheelock engines, rated at six hundred horse power each. These engines were belted through clutch pulleys to a six inch' shaft running through the building. Two Westinghouse alternators of 240 K. W. capacity each with toothed armatuges were belted to the shaft also through clutch pulleys. They were separately connected by wires to the switchboard in station "a," some two thousand feet distant. In this case pressure wires were run back from the switchboard to the voltmeter in the steam station. Flogr and slaft space and stone piers were provided for additional generators.
13. The alternators of this company were run at about 1,100 volts, except those in the steâm station, which, owing to their distance from the switchboard, etc., were run at nearly 1,200 volts, when fully loaded, that being their rated capacity. The frequency in every, case was about 133 cycles per second. Westinghouse converters-r,000 $\frac{10}{0}$ volt-were used, mostly small ones, 1,000 to 2,000 watts and a few of 4,000 watts and 5,000 watts. Over three-quarters of the current output was supplied through meters, the Schallenberger being used exclusively. This company also had a small workșiop for re-winding arm:tures :nnd field coils.

THE STANDARD ELECTRIC COMIPANY OF OTTAWA.
14. Th:s was the junior company, it havine commenced business in 1891 . It could thus profit by the experience of others, and it had made provision for considerable extensions of the original plant. It occupied a substantial two storey building with a hydraulic plant consisting of four 66 inch turbines operating under a head of twenty-two fee' with shafting, clutch pulleys, etc., whick made each turbine capable of running the whole station or any part of it. This station contained six separately excited alternators of The Royal Company's manufacture, i. e., one of 5,000 lights capacity, one of 2,000 lights capacity, and four of 1,500 lights each, and four sixty horsepower direct current compound wound generators, also manufactureas by The Royal Company. The direct current machings were whed for the supply of power for motors; two of them were run in series operating a one hundred horsepower 500 volt motor running an entire flour mill day and night. Another was used to supply 33 250 volt motors ranging from $1 / 4$ h. p. 1020 h. p., and agsregating $105 \mathrm{~h} . \mathrm{p}$. The other was held in reserve.
14. The alternators were run at a frequency of about 133 cycles per second. The lighting switchboard was equipped with T. H. measuring instruments and plug panels which made the ten lighting cincuits and the six alternators interchanseable. The voltmerers, were connected with the centres of distribution' by pressure wires, the distribution being made through T. H. and "Royal" transformers.- 1040 ; 3 volts-- 52 volt lamps and T. H. wattmeters were used throughout the system.

[^0]
## CONGOLIOATION.

16. The plans adopted for consolidating these several systems have not all been carried out at this time. The work is being done in a gradual mamner in order to cause no commotion among subscribers, but for the purpose of this paper we will assume that this work has been completed and speak of things as they will be. As a first step towards carrying out the proposed changes, he small work shops ahove mentioned were merged into a single one in lirger and more commodious premises knowins the old arc light station, owned by the company and unoccupied at that time. Some addtional tools were provided and a foreman competent to superintend any electrical and mechanical work that might be reguired, was put in charge.
17. For several reasons it was deemed advisable to maintain the arc light service as a department entirely separate from the other branches of the business; for instance, the hours of lighting are linited, and the men connected with this service in most cases have no connection with the other departments. No changes were made in this-station beyond the addition of a 60 light Westinghouse arc light machine, in order to increase the reserve and decrease the liability of impaired service from burnouts, etc.
18. Each circuit is usually run independently from two generators, of a capacity of thirty-five and twenty-five lights respectively, in series.
19. Three patrolmen drive through the streets of the city during lighting hours starting up lamps that have gone out and reporting every morning all lamps out, or requiring the attention of the repairer, as well as cases of improper carboning, etc.
20. These patrolmen also answer all fire alarms, during lighting hours, and remain on hand at fires in order to cut wires, if necessary, and perform any other duties which may suggest themselves in the interests of the company. The daily reports of these patroimen are posted in a book kept for that purpose in which the history of any particular lamp in the service can be read at a glance.
21. In the attermpt to consolidate the two systems of incandescent lighting it soon became evident that all the feeders must be concentrated at one power house, in order that one station only need be kept running during daylight, and water power being cheaper than coal, that station which had the largest water wheel equipment was the most suitable for a central station. The Standard Electric Company's large and commodious power house best answered the requirements and was selected as the central or distributing ptation and the alternators in the other stations were connected, each b pair of wires, to a central
switchboard in this station.
22. In the steam station a 500 volt, direct current, compound wound generator of 250 h . p. was installed as a pairt of the power system, to take the place of the 500 volt U.S. machine above referred to.
23. The stations $a, b$ and $c$, of the Chaudiere Company,
having become sub-stations, a switchboard panel for each generator was provided in escry station. This panel is made of marble set into an iron frame. Each panel contains a T. H. voltmeter cennected by pressure wires with the switchboard in the central station, a T. 11. ampere meter, alternator field rehostat, main combined switch and cutout, and exciter combined switch and cutout. As these cutouts or fuse blocks, that serve at the same time the puposes of a switch, are also nsed in the central switchboard, they may be described here.?
24. They consist of a block of li, mum-vitae hollowed in the centre so as to form a chamber, air tight but for a small aperture in one side. This chamber contains a fuse of aluminum alloy. When a fuse blows outside this chammer and fully protected. the chamber causes a sudden expansion of the aill contained in effectually breaking the arc. . The terminals extend outward in the form of metallic plugs, which may be inserted in or with-m drawn from sprin $t_{t}$ receptacles set in the switchboard. There are no metal purts exposed on the face of these panels from which there is dinger of recelying a shock or getting burned. 25. Each generator in the stean station is excited by a separate machine, but each of the exciters is of sufficient
capacity to excite any capacity to excite any swo of the generators.
sufficiently senstive or rapid in water wheel goveruors are not, stant wheel speed under large or sur action to maintain conthe speed of water wheels on power service changes of load and able extent. To prevent wheels rer service varies to a consideropened, hand levers were arranged to throw the poverncuit is faster gear with the gate, so as to close it in a few seconds. While this was an exceflent feature as a preventive of seconds. a remedy for the more or less continuous variations of voltage, in the circuits had to be found, and for this purpose a separate turbine was set up to run dynamos capable of excoting the field of not only all the direct current generators, but also those of the alternators in this station. The fields will now remann constant, no matter how the speed may vary and the fluctuations of E. M. F. will be materially reduced.
25. The machines used às exciter, one of the 250 volt D. C. generators (run at 125 volts) fot the alternatods, and two of the 550 volt U. S. machines before referred to (runt on a thee wire system), for the 250 and 500 volt generators.
26. These exciters are also used to directly supply the motor circuits on Sundays when the load is very light, and the motor wheel which has run day and night during the week is shut own.
27. Each I). C. generator is supplied with a double-throw switch by means of which its, fields may be connected either with the separate exeiter or with its own irmature. Alternators may also be excited by the common exciter or independently, the change being made through the switchboard.
28. Each of the three companies had pole lines in the same

$$
\begin{aligned}
& \text {. . a . . . } 1 \\
& \text { 蹋 } \\
& \text { * } \\
& \text { * }
\end{aligned}
$$

districts; in midowases both sides of a street were occupied by then. The number of poles to be maintained was redhced' by placing all the wires unnning on a street on the best pole line and discarding the other. The lighting districts that, were occupied by two different systems were divided in two, so that, while the number of feeders was actaally reduced by three pairs the number of dist dibution centres was doubled and the line loss between them ind the converters was correspondindy decreased.

3i. The mains unning through contiguous districts are made to overlap, so that aff public buitlings such as churches, theatres, halls'and hotels have their lights divided obetween at least two separate circuits and converters. This makes it almost inpossible, in case of acculent, for all the lights to be out at one time.
32. The size of feeder units had been kepts down within the, capacity of the smallest generator, but it was found advisable to increase the units for the present to 1,000 and 1,500 lights, which seemed to best fit our generator units.
33. Eight circuit feeders were calculated for an ultimate load of 1,500 lights, and ten for 2,000 lights; this left some margin for extensions. .
34. This change made it necessary to run the 750 light machines in pairs as a 1,500 light unit.
35. ${ }^{\circ}$ First parwllel running was tried but it was found that the idle currents were considerable at times and this method of running was abandoned. Two of the generators were then mounted on iron girders set very accurately so as to approximate a solid iron base, and flanged pulleys were put on the shafts and bolted together. These generators could thus be driven as a single machine. The armatures were connected in multiple. If this arrangement proves satisfactory, from a mechanical point of view, the other generators in this station will be similarly coupled.
36. It is necessary to the proper working of a lighting and power service, that the losses in the different parts of each circuit should'be predetermıned and unchangeable. In order to better obtain this result a series of official wiring tables were issued by the company, covering interior wiring services, mains, feeders, etc., together with such printed directions as would secure uniformty in the manner of using the tables, a thing much to be desired but not always obtained. The losses to be $10 \%$ in feeders, $2 \%$ in mains, $1 \%$ in services, and $2 \%$ inside buildings calculated.
37. It was also necessary for the convenient working of the lighting system that a upiform voltage should be maintained on all mains, and io 40 volts was decided upon; it was also decided, however, that 50 volt lamps would be used, experience having taught us that lamps of medium efficiency when run by water
4. power gave the best results for customers and company, when burned somewhat above their normal voltage.
38. The public has come to expect a great deal of light from a 16 candle power lamp. If the lamp is good ana the efficiency $31 / 2$

polished brass frame. Each of these tables contain ten regulators or "boosters" with a range of $20 \%$ up or down. Each circuit can thus be regulated independently.
49. The attendant at this switchboard controls the whole system. He is also in communication with the attendants at sub-stations and the station superintendent's residence by a private telephone line.
50. For economy in line construction it was decided not to extend the 250 volt motor system except for units of one h. p. or less, and to merge it and the 500 wolt service into one single three wire distribution. The $100 \mathrm{~h} . \mathrm{p}$. motor in the flour mill is, however, on a separate circuit and may, if desired, be run indenendently of the others. The three wire system is supplied by two of the 250 volt 60 h . p. generators in series, and the 500 volt 250 h . p. generator connected to the + and - wires. The brushes of the 250 volt machines on the + side and the + brush of the 500 volt machine, may bé connected together for equalizing purposes. All the D. C. generators are interchangeable through the switchboard.
51. It was found necessary to almost completely reconstruct the motor circuits. Four pairs of No. 0000 feeders were strung up. As the joints in wire of that size are extremely unsightly a portable welder was constructed for welding the lengths of wire together. A large regulator core was fitted with a primary coil of 388 turns and a secondary coil of a single turn made up of 12 No. 0000 wires upon the ends of which massive metal jaws were shrunk. These jaws normally stand about four inches apart, but may be piessed closer together by an insulating clainp and screw, the elasticity of the secondary coil causing the jaws to resume their normal position when released. The current is regulated by a T. H. reactive coll. This apparatus may be attached to any converter on the line as required.
52. Several of the U. S. dynamos in use for lighting up to 1889 have beep put in service as motors, two of them running elevators very successfuilly.
53. The company has lately made what is believed to be an innovation in providing in its office, which is open day and night, a locker with a glass front in which are displayed rubber coats, gloves and shoos. This in addition to the rubber gloves regularly supplied to the linemen. The key of this locker hangs within a little box behind a glass which is to be broken, in case of accident, by anyone requiring the clothing.


6

$$
6
$$

- 


[^0]:    15. There were 18,000 incandescent lights installed,
