## CIHM <br> Microfiche <br> Series <br> (Monographs)

## ICMH <br> Collection de microfiches (monographies)



## Technical and Bibliographic Notes / Notes tecinniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur


## Covers damaged /

Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée


Cover title missing / Le titre de couverture mancue
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches et/ou illustrations en ccl: $\because$.
Bound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponible
Tight binding may cause shadows or disturtion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire yui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.


## Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolbrées, tachetées ou piquées

## Pages detached / Pages détachées

Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc.. ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This ftem is filmed at the reduction ratio checked below / Ce cocument est filmé au taux de réduction indiqué ci-dessous.

| $10 x$ | $14 x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appaaring hare ere the bast quality possible considering the condition end legibility of the original copy and In keeping with the filming contract specificetions.

Original copies in printed papar covers ere fllmed beginning with the front cover end ending on the last page with a printed or illustrated impres. sion, or the beck cover when appropriete. All other original copies are filmed beginning on the first page with a printed or lliustreted impres. sion, and ending on the last page with e printed or illustrated impression.

The last recorded frame on each microfirite shall contain the symbol $\rightarrow$ Imeaning "CON. TINUED"), or the symbol $\nabla$ (mesning "END"). whichover applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entiraly included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit gráce à la générosité de:

Bibliothéque nationale du Canada

Les images suivantes ont déd reproduites avec le plus grand soin, compte tenu de la condition et da la netteté de l'exemplaire filmó, et en conformiś́s avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est impriméa sont filmés en commencant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires orlginaux sont filmós on commençant par la premidre pege qui comporte une empreinte d'impression ou dillustration et en terminant par la dernidre page qui comporie une telle empreinte.

Un des symboles suivants apparaitra sur la dernidre image de chaque microfiche. selon le cas: le symbole $\rightarrow$ signifie "A SUIVRE". le symbole $\nabla$ signifie "FIN".

Les cartes, planches, tableaux. etc., peuvent ètre filmés à des taux de réduction diffórents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supbrieur gauche. de gauche à droite. et de haut en bas. on prenant lo nombre d'images nécessaire. Les diagrammes suivants illustrent la móthode.


| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |

## LABORATORY

OF THE

# INLAND REVENUE DEPARTMENT OTTAWA, CANADA 

BULLETIN No. 228

A Study of Maple Syrup.

# INLAND REVENUE DEPARTMEN'T 

O'TTAWA, CANADA.

## BULLETIN No. 228

## A Study of Maple Syi'up.

W. J. Geralb, Esq.,

Deputy Minister of Inland Revenue.
Sm,-I have the honour to submit herewith a report upon 456 samples of maple syrup, and would preface the report as follows:-

Standurds for the judging of maple sugar and maple syrup were promulgated by crder in council under section 26 of the Adulteration Act, on March 22 of this year; becoming legally effective on April 25. The following is a synopsis of these standards as applied to maple syrup.
' Maplo syrup is syrup, made by evaporation of maple sap, or by the solution of maple concreto in water; and contains not more than thirty-five (35) per cent of water. The total ash, reckoned as a percentage on the dry matter of the syrup, shall not be less than 0.5 (five-tenths of one per cent). The malie acid, determined in prescribed manner, shall not be less than 0.4 (four-tenths of one per cent), reckoned as a percentage on the dry solids. The lead subacetate number, determined as preseribed, shall not be less than 2.2 (two and two-tenths).'

These limits were fixed as a result of large experience upon commercial samples of maple syrup. The data referred to will be found in Bulletins 45, 102, 120, 141, 155, 157 and 214 , issued from these laboratories, and cover more than one thousand sumples. Most of these are market syrup, obtained in the usual way by our inspectors; lut many of them carried trustworthy guarantees of genuineness, and a considerable number were made under the direet supervision of a member of our staff.

It was believed that the standard limits enaeted as deseribed were so written as to make it impossible that a sample of genuine maple syrup made entirely from maple sap, could be judged other than genuine. Samples more or less sophisticated might escape detection; but no danger of stamping a genuine maple syrup as adulterated, was thought to be possible.

Nevertheless disquieting rumours found currency, to the effect that maple syrup samples of undoubted genuineness were being called in question, under our standards; and the matter appeared to be sufficiently serious to justify investigation.

11916-1年

With this end in view, 1 eaused a large number of requests to be sent to makers of maplo syrup, asking them to furnish me with small samples of syrup, of their own manufacture, and accompanied by a declaration of genuineness, in the following forn:-

## DECLARATION.

I have lenrned that one of the greatest diffieulties found in the legal protection of the genuine maple syrup and sugar industry 18 due to insufficient kr whede of the limita of variability which may be found in the genuine maple products themselves.

For the purpose of assisting in the aequisition of necessary data, I am sending thia samplo to the Department of Inland Revenue at Ottawa, and I hereby certify that this maphe syrnp hus been made ly my-alf mind is 'snown to me to be genume, and is entirely the prentuet of the mand mer.

Signed<br>Post Othee Address.

As a result of this appeal, I received the samples now reported; and I desire here to express my gratitude to the senders, and my appreciation of their willingness to supply full information as to the modes of working and kindred matters.

Sinee the object of this investigation is the aseertuining of fullest knowledge regarding the character of maple syrup, I have felt it desirable to avail nyself of every source of authentic information on the subject; and I have espeeially to aeknowledge the valuable data prescuted in Bulietin No. 134 of the Bureau of (hemistry, Wishington, I.C.

A detniled stady of the rosults of analysis is subjoined; and I may merely add here that the contention regarting present standards for maple producte, that they exaet a higher tead acetate momber than is afforded by some geanine maple syrmps, is substmatiated. Of fati samples examined by the authorized method, 31 sumples, mont if not all, of matomhted genuincuess, fail to reach the legnl requirements. When these samples are worked fur lead momber lye the Winton method, 15 samples are still found befow legal regurements, the equivaletat standard by the Winton methed being consideret.

Tuder these combitiont it is apmarent that our standards must be rewritten, since it goes without saying that there mast be no possibility of penalizing a genuine article.

I wonld therefore resper fully recommend that the maple product standards of Murch 2, he revised, as foltows:-; and may add that in this recommendation, I ant supported by Wr. W. II. Eillis and Dr. J. T. Donald, the other members of your advisory buard.

## PROPOSED sTANDARDS FOR MAPLE PRODUCTS.

MAPLE SLGAR.
Maple Sugar is the solid product resulting from the ev epration of maple sap, or of maphe syrup, mind contains not more than ten (10) per cent of water. It yield not less than six-tenthe ( $0 \cdot 6$ ) of one per cent of ash, reckoned on the dry matter of the sugar, when ineinerated in such a way as to assure the earths being present as sults. and not us oxides; and not less than twelve one-humiredths ( 0.12 ) of one per cent of ash iasoluble in water, emplowed as described below. It yieds not less than theetenth, $(0 \cdot 3)$ per cent of mulic acid, reckoned on the dry matter, when worked as described below. It yields a lead number not less than one and seven-tenths ( $1 \cdot 7$ ), shen worked by the Canudian methot, nor less than one and ino-tenths ( $1 \cdot \mathrm{z}$ ). when worked by the Winton method, as described below.

## Maple syaup.

Maple syrup in myrup made ly the evaporation of maple sap, or hy the solution of maple conicrete in water; and contains not more than 36 per cent of water. The dry sulstance of magle syrup shall meet all the above as 'adards for maplo sugar.

## METHODS OF WORKING.

Hisler, Ho maple sugar, whill le determined by heating to $100^{\circ} \mathrm{C} .5$ grammen of the tindy powderet wigar, sprend nion a watch glass, to constant weight. The lues of weight slul! be reckunced us water.

Huter in maple syrup shall be determined by drying 5 grammes of the syrup, on asbertum fibre or in admixture with sand, to constant weight, at a temperature not excereling $100^{\circ}$ (. The loss of weight shail be reckoned as water.

Total axh, in twoth maple sugar and maple syrup, shall be dutermir d by gentle ignition of : grammes in platinum, to the point of incipient charrine, after which irnition to constant weight shall he completed in a mutfle, at as low a temperature as puxibl. The resultant ash is then treated with ammonium carlonate in solution, drial and gently ignited, when the weight should remain unehange $\dot{A}$.

Insuluhle ast is determined ly treating the total asll with 40 cc . of lot water, and gelully heiling for two minutes. The content of the dish are then thrown upon a small ashless filter. and wasked with hot water till the total filtrate amounts to 100 cc .

Malir acid.-Six and scren-tenths $(6 \cdot 7)$ granmes of the dry sugar, or its equivulent amount in syrup, is weighed into a 200 ce. beaker and water added to mako ? vilume of 20 cc . Tho solution is made slightly alkulino with ammonia, 1 cc . of a ten per cent solution of eulcium chloride is added; then 60 ec. of 95 per cent alcohol. Thoineaker is covered with a watelı glasy and lieated for onc-halt hour on a water bath, "hen the tlame is turned off and the leaker left to stand over night. The maturial in tho beaker is then filtered through n good quality filter paper, the precipitate washed with hot 75 per cent alcoohol to freelom soluble ealcium salt, dried and ignited. From 15 to 20 ce. of tenth normal hydrochloric neid is added to the ignited residuc, the lime thoroughly dissolved by careful boiling, and the excess of acid titrated with normal sodium hydroxidc. using nethyl orange as an indicator. One-tenth of the number of cubic centimeters of acid neutralized express the result, which for the preeent will be called 'Malie Acid Valuc.'

> Lead Num'ar. C'anndins Melhrul.

Five grammes of the dry sugat or its equ valent it fur is dissolvec in water, to a volume of 20 ce. Twu (2) or - of a eulut an of the solutions thoroughly mixed. After standing fir tis filteriol off, using a Gooch erucille or a sugar tuhe four or five times with hot water, using the surtion $p$, wight of the dry precipitute in grammes is multiplied tate if lead is added, and 2) hours, the precipitate is with ash atos, and washed trim wriyhed. The *ulincelate mumber.

Mode of preparation of solution of subacetate of 1 Thir prodnet is the lead

Boil for half nn hour 430 gramues of normal of litharge with 1,000 se. Water. Cool the mixture, s supernatent liqui! to $1: 2 f$ speeifie gravity.

## Winton method.

Twenty-five grammes (25) of dry sugar, or its equivalent : a 100 cc . flask with water. Add 25 cc . of the standard lead ace fill to the mark, ehakc and allow to stand at least three hours the rlear filtrate, pipette off 10 cc . to a 250 cc . beaker, add 40 er courentrated sulphuric acid; shake and add 100 ce of 95 per cent wer night, filter on a tared Gooch crueible, wash with 95 per ce water oven, and ignite over a Bunsen burner, applying the hen
rup 1 transferred to nlutic. ind aheles; filear... F From and 1 ce . of and 1 er. of
Let stand

Oool and weigh. Subtract the increase in woight of lead sulphate from the woight of the blank. Multiply the difference ly the faetor 27.325 . The deternination of the biank is mado as follown:-

Tranafor 25 cc . of the standard leall uretate aolution to a 100 cc . flask, add a fen drope of acetic acid, and mako up the whole to the "zark with water. Shake, and use 10 ee. for the determination of lead, as difected in tive preceding section.

Note.-If the maple syrup samples havo undergone fermentation in any degree, the carbonie acid must be boiled off, before adding tho lead acetate solution. This with cither of the above methorls.
2. If crgotallization of sugar has taken place in maple syrup samplea, this must be redissolved, by gently warming the sample, before proceeding with the analysis.

There standards for maple syrup are based essantially upon work reported, in Bulletin 229; and represent minimum values for critieal data found in genuine sample. of maple syrup. Commereial samples failing to reach tho requirementa named will be held to be illegally adulterated. But it does not oflow that samples meeting these standards are neeessarily genuine Certain values possessed liy the data named, in relation to each other, may bo shown to be as essential to genuineness as the data themselves considerel singly.

From tho elementary composition of the ash, and other results of analysis, it may be possible to prove adulteration, even in samples whiel give le it end malic acid mumbers, meeting the requirements of tho standards above defined.

In submitting these revised standards for maple prolucts. I am eonscious that the lowering of the lead number and the malie acid nmmber, rendered necessary by considerations which have been plaeed beforo you in detail, makes it quite possible for franl to be perpetrated it: the maple sugar and maple syrup industry with inereasin.g difficulty of detection. This industry is a very important ont, partieularly in some sections of Canada; and it affords a source of profitable employment to the farmer at a period of the year when farm work is not otherwiso pressing. For this reason, it is very desirable that the small manufacturer should be protected frone the unfair competition of mixtures of cane and maple sugars, whieh although wholesone and desirable fool substances, are not legal maple sugar or syrup.

Kecoguizing the difficulty of affording as perfect protection as could be wished, by inspection under tho Adulteration Aet, I would respectfully suggest the offe; of a reward to any persor able to prove tho manufacture and sale of maple products which are adulterated. If a substantial penalty for adulteration of maple goorls were specifivally named, one moiety of it to go to the informer, in case of his making good his charges, this would, I venture to think, prove a powerful deterrent to fraudulent praetices which now prevail.

I beg to recommend the publication of this report as Bulletin 129.

> I have tho honour to be, sir,
> Your obedient servant,

A. McGILL,<br>Chief Analyst.

MAPLE SYRUP.
Syrups are fundanentally solutions of one or moro sugars in water. Since sugar is the enstly eomponent, it is reasonable to require that a commerieal syrup should contain a speeified amonnt of sugar. Hence the necessity for fixing a legal minimum percentage of sugar, or a maximum percentage nf water, or a minimum density for the syrup, or a minimum weight per gallon.

The syrup of the British Pharmacopria mas be takeu as typical; and it is legal syrup by virtue of its being defined by the pharmacopueia. It is made by dissolving 5 lbs, of refined sugar in distilled water, the finished product to weigh $7 \frac{1}{} \mathrm{lbs}$. The epecific gravity is 1.830 . This syrup contains 86.7 per cent by weight of sugar; and, of course, $33 \cdot 3$ per cent of water.

In the $\mathbf{4 0 6}$ samples of syrup herein reparted, the water content rangen from 86 to on per cent of the weight of the syrup, and is distributed as follows. The water percentare being stated to the nearest incegral number:-

| Promentery of Total. |
| :---: |
| 0.28) |
| $0 \cdot 82$ |
| 0.86 |
| 0.44 |
| 10.3) |
| 21.27 18.c. |
| $23 \cdot 25$ |
| 1401 |
| 9.00 |
| 7.90) |
| $3 \cdot 15$ |
| $4 \cdot 60$ |
| 110 |
| 1.30 |
| $0 \cdot 14$ |
| 0. 22 |
| $0 \cdot 68$ |

More than 88 per cent of these samples fall within a 35 per cent limit for water; while moro than 96 per cent of them fall within a 37 per cent limit. A thirty-five per cent limit for water correaponds to a weight of 13 lbs 2 oz per imperial gallon; a specific gravity of 1.320 at the ordinary temperature or to $35.6^{\circ}$ Baumb. I have designated samples containing more than 35 per cent of water, as having water in excess, for the reason that 35 per cent of water is sufficient to keep the sugar in permanent aolution, and a higher amount of water than this is inconsistent with the definicion of a syrup as furnished by the British pharmacopreia, and moreover conducen to ready fermentation, unless kept sterilized. Of 395 samples of maple syrup reported, in Bulletin 134 of the Bureau of Chemistry, Washington, 1010, none contaiving as much as 35 per cent water showed crystallization of the sugar; and our experience in the 456 samples of Canadian syrup now reported, is to the same effect.

Such a syrup as is defined by the pharmacopeia, has the characteristic sweetners of sugar and is nearly colourless. As might be expected from its node of preparaticn, it has no special flavour, and for the purpose intended by the pharmacoperid, this is an advantage. It is easily intelligible that instead of adding the refined sugar to distilled water, a syrup of proper density may be produced by concentrating a dilute solution of sugar in water. The dilute solution in question may be a natural one, as the juice of the sugar cane or the sap of the maple tree. Inspissation may be effected by evaporation of the water; or by freezing and separating the floating ice. A ayrup produced in this way will differ from B. P. syrup chiefly in the fact that any substances other than sugar naturally present in the sap, will remaiu in the syrup, except an far as processes of manufacture have removed them. When the sap has been boiled, any components volatile at the boiling temperature will be lost. Substane a rendered insoluble by concentration, may be removed by filtration or sedimentat 1 ; or, if sufficiently light to float on the gyrup, they may be skimmed off. Such non-sugar components as are not removed from the syrup, by one or ott: method indicated, will remain in solution, and may give medicinal or aromatic or other properties to nuch syrups.

When the sap of the maple tree (hard or soft maple) is the material employed, and the method is one of evaporation by heat, the resultant product is maple syrup. This article has a higher market value than the simple syrup of the pharmacopeia; and so far as I can discover, this increased value is due to its special and agreeable flavour. Maple syrup may also be made by dissolving maple sugar in water to a proper consistency.

Like any other manufactured product, maple syrup may be injured in process of manufacture. The sap may be carelessly collected, and many impurities introduced; or the syrup may be burned during the evaporation, producing earamelization, and a burnt taste. Failure to separate floating impurities may leave it turbid and unatteactive. In all such cases we have spoiled maple syrup; but maple syrup nevertheless. I wish to insist upon this point; because maple syrup is made by thousands of persons who have had no technical training, who use very crude appliances, and to whom the making of maple syrup is mercly an ineident in the year's work. But they arc, nevertheless, honest in their intention to produce a bona fide maple syrup; and it would be palpably wrong to legalize any definition of the article which could stigmatize their output as adulterated. This output may be of low grade, but it is maple syrup.

There is another class of makers of maple syrup who are punctilious in regard to collection and sulsequent treatment of the sap. They prevent the introduction of foreign matter: into it. avoid caramelization of the sugar, and are careful to separate matters thrown out of solution on coneentrating. The final product has very inttle onlour, and the agrecable flavour of the maple is not hidden or disguised by caranel. This product is surfly maple syrup; and it would be unwarrantable to legalize any definition of the article which wonld fail to reeognize it as sueh. The following cruelusions appear to be justified by the abore considerations:-

1. Colour is not an essential charaeter of maple syrup.
2. Clearness is unt an essential charanter of maple syrup.
3. A pure maple flarour is not an essential of maple syrup.

Colour, clearness and flavour are undoubtedly of importance in determining the commereial vallo. of maple syrup; but they are not eseential to its specific identityAnd further. the we of actual maple sap, and of nothing else, as a raw material in the manufacture of maple syrup, is essemtial. No operation ostensilly having for its object the amelioration of the produet, but which introduces into this product anytbing that did not already exist in the maple sap. is permissille, where the product is sold simply as maple syrup.

The sugar which is prescmt in maple sap is sucrose, and is chemically and pbysically identical with the surrose of sugar cane and beet root. In the natural juices of sugar caur and bere rout, the sureroce is associated with other substances in solution, as is the caw with sucrow in the sap of the maple tree. The difference is that these other sulstames, if allowed to remain in the juice while th.s is concentrated by evaporation to the consi-teley of syrup, cause the product to have a disagreeable flavour, in the cases of cane and bects, while in the case of maple sap, the characteristic flavour is pleasimt, aul the remitant syrup is in demand on this account. For this reason, more or less complex promeses are resorted to, in the manufacture of cane and beet juices with the object of freeing the sugar from all other matters, and the sugar so ohtained is usually fomul on the market in a highly refined state, and is indeed one of tho purest frod sulstanefs known, being often above 99 per cent sucrose. As such it is identical with the sucrose of maple sap; and, so far as healthfulness goes, a solution of this sugar, haring proper consistency, may be added to maple syrup, with the produetion of a desirable table syrup. But such a mixture is not maple syrup; and it should not be sold as such. It is conceirable that, where a specially high-flavoured maple syrup is used, the mixture may possess a suffieiently distinct maplo flavour to be :adistinguishable by the palate, from actual maple syrup.

If imperfectly refined cane or heet sugar is enployed, the characteristic impurifors of raim or hert juise, will nppar in the mixture and will, naturally. interfere mere or less. with the true maple flayour. Since, however, as has been stated above, much maple syrup is carelessly or crudely made, a mixture of the kind indicated may find salc and, indeed, we know that such mixtures do find sale, at times.

From what has been said, the necessity of having some standard for maple syrup, independent of its sugar, its flavour, its colour or its clearness, will be apparent. Even if wo knew to what the flavour of maple syrup is due, and could quantitatively determine this constituent, the great variation in the intensity of flavour recognized in genuine samples would compel us to accept a minimum amount of the flavour-giving constituent as exempting the sample from condemnation as adulterated. Such minimum could only be defined by an exhaustive analysis of so large a number of samples of real maple syrup, as should include with certainty all possible varieties of the article. As a matter of fact, the flavour-giving substances in maple syrup are not exactly known. It is probable that certain csters of malic and other acids, have most to do with maple syrup flavour. The acids in question yield calcium salts that are comparatively insoluble in dilute alcohol. Hence these acids can be determined with considerable exactitude.

The so-called malic acid value has been determined upan a large number of samples of preaumably genuine maple syrup. Bulletin No. 134 of the Bureau of Chemistry, Washington, contains a report of work done upon 86 samples of Canadian maple syrup, ohtained in Quebec, in 1909, and believed to be genuine.

The following are the results obtained:-


The same publication reports 'ins determination upon a total of 480 samples obtained in the eastern United States and Cenada, and believed to be genuine.

The pereentage results are as follows:-


The tahles aceompanying this report give the malic neid values of 452 somples of maple syrup. each sample supplied by the maker, and accompanied by a declaration of its having been made entirely from maple sap. For purpose of comparison with the alove. I submit the following synopsis of results, and may add that these have heen chitaned byethorls of analysis, identical with those employed at Washington.


11916-2
i malie acid value of between 0.50 and 1.00 is found for 88 prr cent of Comadian amples, analyzed at Washington, for il per cent of samples obtained throughout Ganada and the castern United States: and for 94 per cent of Canadian samples herein reported, and furmished with a deelaration of genuineness. It is safe to infer that amples giving less than 0.5 or more than 1.0 as malie acid valucs, are exceptional. But it must be borne in mind that individual samples, buaranteed geruine, give as If:w a malie acid number as 0.30 : white 2 per cent of the present collection gave malir acid values below 0.4.

While the data arailabe do not enable me to assert the fact positi-ely, 1 am -onvinced that the sap from the soft maple produces a syrup yiclding a lower malic eid mminer than that from the hard maple (roek maple). In many cases the sugar rehards contain both hard and soft mank trees; and 1 think it generally triee that the :ard maple predominates in the provine of Quetere: and the soft maple in Ontario. articularly in western Ontario.

When the hasic aretate of lead is adhey) in exeses to a solution of maple syrup (or -ugar) mulate of lead is thrown out of solution, together with nther organio matters i raried character. If a lead solntion of definite strength is emplosed, and the nopraion carried wit under strictly defined eomditions, this preepitate is fomed to be fairlv enstant in mument. 'Two reengnized methond of making the test are widely uert, ind are a= follows:-

Canadian methorl.-Fixe grammes (5) of sugar (or its equivalent in syrup) is iissolved in water. to at whme of 20 ce. Two (2) ee's of a solution of subaretate of ead is alded, and the shlutions thoroughly mixet. Aft.s standing for two (2) hours. the preeipitate is filtered off, using a Gooch crucible or a sugar tube packed with abstos, and wathed 'onr or five times with hot water, using the suction pump, driend and weighted. The weight of the dried preeipitate in grammes in multiplied hye 22.22 .1 Fhe product is the lead subacelate mun er.

Mode of preparation of solution of -ularetate of learl, as follows:-
Boil for half an hour $4: 30$ grammes of normal lead aeetate and 1:0 grammes of itharge with 1,000 ce. water. Cool the misture, allow to settle, and dilute the super:.atent liquid to $1 \cdot 2$ d .perifie gravity.

Winton melhod.-Weigh 25 grammes of the samble nul tramsfer to a 100 w. Hark vith water. ${ }^{2}$ hidd $2^{5}$ ece of the stamlard lead aretate solution and shake; nll to the ark, shake, and allow to stand at lenst three hours before filtering. From the elear Itrate, pipette off 1 ece. 10 a 250 ce. leaker, add 40 re. of water and 1 ef . of concenirated sulphurie acill: slake and add 100 or of :5 per cent alcohol. Let stand over
 well, and ighite owe a Bunsen moner, applying the heat gradually at first. ('ool and ireigh. Subtract the increase weight of lead sulphate from the weight of the blank
 w-:-
 Tops of acetio acid, and make up the whole to the mark with water. Shake, and nse I) "e. for the determination of leand. a- direment in the preecring eretion. and multiply liy the factor 27.32 s .

3

While the lear mombers fomm liy the two metherle are not identical they are enmarable, and wheh pra-tically the suhe inturmation reqaruing the sample, as will in "en in the semel. The Canadian method hav the advantage of requiring less time

## ${ }^{2} \mathrm{O}$ n the assumpion that maple anzar con faill 10 per cent water.

${ }^{2}$ With either of thememethods, if fermentation has taken place, the carbmic acid must "10 lwiled off li.forer adding the lead colution.
"Ther resmlant is weight of metallic lead correspoming to 10 grammen of the ample. The propeand Canadian Standard is lased on the dry solids of the sample.
and labour, and is therefore better suited to police work, At best both methods must le regarded as empirical, and exaet duplication of results is not to be expected with cither.

With every empirical method two sourees of error must be recognized and allowed for. viz.: That due to our ignorance of the inore or less variable substances estimated, and that due to the personality of the operator. In any attempt to interpret into irtual operation a written description of sueh a method as is in question, it will be found that no two operators will secure absolutely coneordant results. In order to nsecrtain the limits of unavoidable difference in result, the following amples were worked in duplicate, by different persons, the samples being so designated that the imalyst could not know what actual sample he had in hand. The columns headed 1 and 2 give check results in the hands of the same analyst; columns headed 3 and 4 Hive the mean results as found by different analysts, working upon the same sample, "ithout knowledge of the faet. The differences following each pair of eolumns headed 1 and 2 give the ruagnitude of the first sort of error above referred to; while the rliference of means, gives the magnitude of the scennd souree of error. The mork was $\therefore$ we with every possible care, hy skilled analysts.

## I.ead Number (Canarian Method).

Study of Errors involved.


Nows.-The above results are stated on the weight of the syrup; not, as usual, on the wisht of dry sugar contained therein.

From this study it is apparent that the results of work must not be interpreted clocer than 0.20 . That is to say, if we require a legal minimum lead precipitate number of 2.00, then this requirement must be held to be fulfilled ii analysis gives 1.80: since an crror amounting to the difference between the number found and that reguired inheres in the method of working.

When the Winton method of determini..g the basie lead number is employed, the results for duplicate estimations are decidedly eloser. The following table gives duplicalc results hy hoth methods, -nd illustretes at once the amount of error inherent in each method, and the relatien , the indieations obtained by each.

Basic Lead Numbers.
Comparison of Canadian and Winton Methods.

|  |  | Canadian. |  |  | Wintun. |  |  | Differmen oI Мепим. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | $\because$ | Mean. | 1 | $\geq$ | Mean. |  |
|  |  | 36 | $3 \cdot 50$ | $3{ }^{3}$ | 23 | 2.42 | 238 | $1 \cdot 14$ |
| 2 |  | $2 \cdot 89$ | 3.08 | 299 | 234 | $2 \cdot 29$ | $2 \cdot 31$ | $0 \cdot 68$ |
| . 3 |  | 3.11 | 3.41 | $3 \cdot 41$ | $2 \cdot 29$ | $\stackrel{2}{34}$ | ${ }^{2} \cdot 31$ | $1 \cdot 10$ |
|  |  | $3 \cdot 85$ | $3 \cdot 67$ | 3.51 | 2.36 | 2.36 | 236 | $1 \cdot 15$ |
| 5 |  | $3 \cdot 2$ | 3.02 | $3 \cdot 16$ | $2 \cdot 29$ । | $2 \cdot 29$ | -2.29 | ${ }^{1} 88$ |
| 6 |  | 2. 45 | 3.33 <br> 3.23 | 3.14 3.06 | 2.23 1.69 | $2 \cdot 33$ 1.48 | 1.08 | 1.86 |
| 8 |  | $\stackrel{2}{2.06}$ | $3 \cdot 23$ $3 \cdot 13$ | 3.00 3.09 |  | 204 | ${ }_{3} \cdot 04$ | $1 \cdot 6$ |
| 3 |  | $2 \cdot 6$ | $2 \cdot 5$ | $2 \cdot 60$ | $2 \cdot 31$ | 231 | $2 \cdot 31$ | $0 \cdot 20$ |
| 10 |  | $2 \cdot 8$ | 3.01 | $2 \cdot 95$ | $2 \cdot 29$ | 224 | 226 | $0 \cdot 69$ |
| 11 |  | $2 \cdot 17$ | $2 \cdot 25$ | $2 \cdot 21$ | $2 \cdot 13$ | $2 \cdot 23$ | $\bigcirc \cdot 18$ | 0.03 |
| 12 |  | $2 \cdot 70$ ! | $2 \cdot 79$ | 274 | 236 | $2 \cdot 25$ | 231 | 043 |
| 13 |  | $3 \cdot 5$ | $3 \cdot 1$ | $3 \cdot 63$ | $2 \cdot 10$ | $2 \cdot 10$ | $\cdots$ | $0 \cdot 53$ |
| 14 |  | $3 \cdot 1$ | 3.24 | $3 \cdot 22$ | 2. 17 | $8 \cdot 25$ | $2 \cdot 21$ | 1.01 |
| 15 |  | $3 \cdot 15$ | $3 \cdot 0{ }^{0}$ | 3.10 | $2 \cdot 14$ | $2 \cdot 19$ | $2 \cdot 16$ |  |
| 36 |  | 3.11 | 3.14 | 3.12 | ${ }_{2}{ }^{3} 17$ | $\stackrel{3}{2} \cdot 18$ | $\bigcirc$ | 0.85 |
| 18 |  | - 45 3.89 | 2.79 3.69 | - 3 | 217 2.08 | ${ }_{2}^{2 \cdot 18}$ | $2 \cdot 17$ 2.08 | - 1.36 |
| 19 |  | $3 \cdot 17$ | $3 \cdot 40$ | $3 \cdot 2$ | $2 \cdot 32$ | 236 | $2 \cdot 3$ | $0 \cdot 9$ |
| 20 |  | $3 \cdot 19$ | $3 \cdot 06$ | $3 \cdot 12$ | $2 \cdot 31$ | $2 \cdot 36$ | $2 \cdot 33$ | $0 \cdot 7$ |
| 21 |  | ${ }^{3} 19$ | 3.01 | 3.10 3 | $2 \cdot 25$ | 2.27 | $2 \cdot 25$ |  |
| 22 |  | $3 \cdot 0 \cdot 1$ | 3.00 | 3.06 | ${ }_{9} 92$ | $2 \cdot 26$ | $2 \cdot 24$ |  |
| 23 |  | $3 \cdot 67$ 3.46 | 3.73 3.74 | 3.70 3.62 | 2.25 2.15 | $\xrightarrow{2} 25$ | 2.15 2 | 14 |
|  |  |  |  | $3 \cdot 11$ |  |  | $2 \cdot 23$ |  |

Mean difference is 0 lij betwren duplicatew. Mean difference is wot betwern duplicates. Monn difference hetwet $n$ readings is 0.88 .

It thus appears that the mean error for the Canadian method is 0.16 , while for the Winton method it is only 0.04 . Against this must be set the fact that the average lcad number for the latter method is only 2.23 , as against 3.11 ; in other words, if the number 2.00 be taken as minimum lead number by the Canadian method, 1.43 would have to be taken as the equivalent minimum by the Winton method; and a recognized probable error of 0.04 affects the first decimal figure of such a standard. The fact is that while both methods possess value as serving to point out real differences in character between samples of maple syrup, neither method is sufficiently exact or is based upon sufficiently definite chemical reactions, to permit of safe interpretation arithin about one-tenth of the indication actually found.

Bulletin No. 134 of the Bureau of Chemistry, Washington, gives ( $p$ p. 75 and 76) the lead numbers for 86 samples of Cunadian maple syrup (Quebec), as deteminel by the Winton method.

$$
\begin{aligned}
& \text { Maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . } \\
& \text { Minimum . . . } 92 \\
& \text { Average. . . . . . . . . . .. . . . . . . .. . . . . . . .. .. . . . . . . . . . . . . . } \\
& 1.85 \\
& \mathbf{2 . 5 . 5}
\end{aligned}
$$

For 481 samples of syrup, representing the maple belt of the United Sintes an:d - Canada, the rumbers are as follows:-
Miximum ..... $4 \cdot 11$
Minimum. ..... 1.66
Av rage. ..... $2.7)$

Forty-seven (47) samplee of the present collection have been worked by the Winton nethod, with the following results:-

$$
\begin{aligned}
& \text { Maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. } \\
& \text { Minimum.. .. .. . . .. .. . . . . . . . . . . . . . . . . . . } \\
& \text { Average. . . . . . . . . . . . . .. .. .. .. . . . .. .. .. } \\
& 1.75
\end{aligned}
$$

It will be noted that these numbers are decidedly lower than the numbers found at Washington for the season 1009. While the data at my disposal are not suffieiently full to enable me to speak decisively, I am inclined to believe that the rapidly extending use of inaproved apparatus in evaporating the sap, increased eare in eollecting, storing and handing it, with the introduetion of filtera, clarifiers, \&c., in processing l.ave much to do with the reduction of the lead number. Through improvements in manufacture, purities which give dark colour and turbidity to the product, are removed; and : is fully ascertained that a large number of the 456 samples herein reported have been made by pioducers equipped with modern evaporators and other appliances. The lead numbers given may be regarded as characteristic for maple sy'up of a sy nigh grade, from the noint of view of cleanliness. Whether or not nodern retmements in manuiacture tend to reduce the flavour believed to be characteristic of maple syrup, is a matter upon which I cannot express an cpinion.

The lead number has been determi...d by the Canadian methods' of workiag upon 456 samples of maple syrup, obtained directly from the makers, under declaration of genuincness. The folloring is a synopsis of results:-

Lead Numbers, Canadian Method.


Our standards fi ile syrup, legalizod under section 26 of the Adulteration Act, and in fnree sine ril, 1911, require a iead number of not less than 2.2 , determined by this method of working. It has already been shown that a possible error of 0.2 inheres in the method, so that samples giving 2.0 must be held to fulfil the requirements of the standard. It will he seen that 31 samples, or 7 per cent of the entire collection, fall lelow the required number. Since these samples are furnished with a declaration of having been made entirely from maple sap. it is of importance to oncertain whether there is any danger of judging them to be adulterated under exist ing standards, when the whole results of analysis atio taken into account.

In order to determine this, the following synorsis of results is given:-

|  |  | Lead Numbw: |  | $\begin{aligned} & \text { bry } \\ & \text { soblids. } \end{aligned}$ | Malic Acid. | Ish. |  | Remarkn. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (ana. dian. | Winton. |  |  | Total. | ln. |  |
| 8 |  | $1 \cdot 66$ | $1 \cdot 16$ | $67 \cdot 48$ | $0 \cdot 47$ |  |  | 11 lcgal . |
| 11. |  | $1 \cdot 1$ | 108 | 65.06 | 036 | 071 | 019 |  |
| 20 |  | 1.61 |  | 61968 | $0 \cdot 5$ |  |  | Doubtful. |
| 33. |  | 178 | 1 188 | 65.74 | 0.64 | 0.72 | $0 \cdot 31$ | 1 llegai. |
| 78 108. |  | 177 | $1 \cdot 27$ | 6978 | $0 \cdot 63$ | $0 \cdot 85$ | $0 \cdot 19$ |  |
| 154. |  | 1.83 1.94 | 1.26 | 6is 67 | 0.88 | 0 0 0 | $0 \cdot 0$ | Doubtful. |
| 169. |  | 177 | 12 | 70.02 | $0 \cdot 80$ | ${ }_{0} 0.78$ | ${ }_{0} 0.23$ | P'ams. |
| 176. |  | 1.47 | 1.05 | 的. 88 | $0 \cdot 57$ | 0.78 | 101 | 17ega. |
| 179. |  | 1.98 | $1 \cdot 4$ | (i) 7.7 | 0.78 |  |  | Pass. |
| 29 |  | 157 | $1 \cdot 12$ | $6: 34$ | $0 \cdot 74$ | 0.85 | $0 \cdot 25$ | llegal. |
| 228. |  | $1 \cdot 3$ | $1{ }^{15}$ | \%047 | $0 \cdot 4!$ | $0 \cdot 4$ | $0 \cdot 28$ | Pasm. |
| 237. |  | 1.82 | 1.24 1.31 | 8it 80 | 11.60 | $0 \cdot 4$ | 0.24 | Illegal. |
| 24 i |  | $1 \cdot 63$ | $1 \cdot 17$ | 64.79 | 0 0\% | 0.75 | 0.12 | ". |
| 24. |  | $1 \cdot 37$ | $1 \cdot 09$ | tifis ${ }^{\text {d }}$ |  | 0 - 9 | $0 \cdot 60$ |  |
| 23 |  | $1 \cdot(1)$ |  | 6s 4 | $0 \cdot 51$ | 074 | $0 \cdot 22$ | Doubtful. |
| 268 |  | $1 \cdot 93$ | $1 \%$ | (is | 0.66 | 1169 | $0 \cdot 20$ | Pase. |
| 278 281. |  | 1.88 1.648 |  | 68.41 68.48 | 0.71 |  | 0 0. | 1)oultful. |
| 281. |  | $1 \cdot 646$ $1 \cdot 94$ |  | $68 \cdot 42$ $69 \cdot 10$ | $0 \cdot 54$ | 0\%! | $0 \cdot 9$ |  |
| 299. |  | $1 \cdot 94$ 1.88 |  | $\begin{array}{r}69 \\ 69 \\ \hline 10\end{array}$ | 11.68 1084 | 0.76 1.71 | () 2.28 | Pass. |
| 330. |  | $1 \cdot 98$ |  | 碞 '8, | $0 \cdot 71$ | 1175 | 11.24 |  |
| 33.8 |  | $1 \cdot 0$ | 132 | (69) 10 | 0.76 | 075 | $0 \cdot 27$ | loubtul. |
| 343 |  | 1.85 |  | 1is 71 | $0 \cdot 72$ | 1.83 | 1) 25 | , |
| 383. |  | 1.88 | $1 \cdot$ | 70.46 | 0.61 |  | 024 | , |
| 305 |  | $1 \cdot 54$ | $1 \cdot 5$ | 0.910 48.88 | 072 | 081 | 0.24 | 11!egal. |
| 392 |  | 1 | 1.07 | $68 \cdot 88$ 64.93 | 068 1185 | 0.70 0 0 | 0.23 0.30 | $\stackrel{ }{\prime \prime}$ |
| 395 |  | $1 \cdot 80$ | 1.55 | (6i-3* | $0 \cdot 8$ | 1175 | 0.30 0.33 | 1’"ss. |
| 424 |  | 183 | $1 \cdot 25$ | $67 \cdot 51$ | 0.72 | 1) 70 | $0 \cdot 25$ | 11 legal . |

If juigment were lased upon the had number as oltainel by the Canadian method of working, and by this datum onls, the whole of the above 31 samples would hav: to le twelared illegal. Such a mode of judging woald cvitently le unfair, ns all thee evid•nce must he taken into accomut.

Hinton lead number.-This has heen Hown to bear a rat') of $23_{1}^{2}=0.71$ to the Canadia. lead mumber; and, if we allow one-lenth for experimental error, the limit Wint in number is 1.41 .

Dry solids must reach fis per cent.
Mrolie acid, her reference to the lequal definition for maple surar, must rearh 0.4 per cent.

Tutal ash must be 0.5 per cent.
Insoluble ash, although not legally recomizeel as a datum, has been shown to reach 0.2 per cent in normal samples of maple syrup.

When every allowance is made for imprefection in data available, it is found that 15 samples inust be declared illegal, under our present standards. It is, nevertheless, impossithe for me to belicve that the samples are actually adulterated. I have lad correspondence with most of the maliers of these samples, and am perfectly convinced of their integrity, and indeed of their carnest wish to assist the department in protecting the maple industry. One of them has reently sent me four samples of syrup (tabulated as A, B, C, D), from Wisbench, Lambton Co., and three of these give results
f．，r＇leal mminer＇whieh tomlil classify them as illegal under present stmmdards， Fret these samplis wre fully volled for as genuine maple producta，and from the sal if the hurd maple omly．They have evidently been made with great care，mul it is frobable that it is the care taken in their manfacture that the exeptionally lon in in numbere are to lie ascribed．

It semms，therefore，to lie quite well established that while the reat mujority of maple syrups yield lead mumbres much exceeding 2．2，maple syrup of genuinc character nay ocrme vielding leul numbers，which for the Candinn method of working do not expeed 1.50 ，and for the Winton method， 1.10 ．

Perhane the mont satisfitery determinations which the analyst can make upon raple syrnp，have regarl to the mineral constituents．When the syrup is evaporated to dryness anil lmrned，these remain as the ash，and are found to be chiefly anrbonates of lime and pota－h，with varsing amomits of phosphates，sulphates，siliea，dic：

The delemination of total asti nust the made apon the clear syrup，after suffi－ cicntly prolongeal standing to ensinre the settling out of all suspended matters．If thi－ condition $\mathrm{l}_{\mathrm{o}}$ finltillal，and enre be taken to prevent reduction of the carbonate of lime （1）oxide，wi romimert to carlmate before wrighing，very satiofnetory duplicate か－amationt coll lie obtamed．

The ashing of maple sornp，or indeed of any sulstance containing large amounts of earlmainomit matter．minst be performed with great care，or serinis loss will result． The dricel materinl is alowly eharred，over a small dame，and the $c$ ．ustion empleted in a muthe．amd at as low tempernture as posable．
liulletin No．1：3 of the liureau of Chemistry，Washington，gives the total ash determinations（1p．$\therefore . \operatorname{sind} 76$ ）of 86 samples of Cunadian maple syrup．obtained in the provinere of Quller．and under conditions which make it prolable that they must be regmrled as grmume，in the sense of their heing entirely the product of maple sap．


$$
\begin{aligned}
& \text { Mavimmon total ash prer cent . . . . . . . . . . . . . . . . . . . . . } 1.35 \\
& \text { Minimam fotal } a=1 \text { ner cent. }
\end{aligned}
$$

The figures for total ashobtained from thi samples of maple syrup，representing all tho maphoproburing states of the Vion，as well as Canala，are as follows：－

$$
\begin{aligned}
& \text { Maximum tいtal ash per reut. . . . . . . . . . . . . . . . . . . . . } 1.68 \\
& \text { IIninmu total ash per cent. . . . . . . . . . . . . . . . . . . . . . } 0.68 \\
& \text { Araragn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1.02
\end{aligned}
$$

The 小？has leen determinel mon 115 samples of the 4.6 ronstituting this report． with the following resulta：－

$$
\begin{aligned}
& \text { Havinum total :ah pur cent. . . . . . . . . . . . . . . . . . . . . . } 1.38 \\
& \text { Mini,mmen total ash per cent } \\
& 0.69 \\
& \text { Average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 0.89
\end{aligned}
$$

Not misch importance can be attached to the maxima，nor even to the averages gunted ahowe．The really importunt question for ms is：What is the lowest percent－
uge of ash that a genuine maple syrup can yield l So far as this work goes, and on the assumption that all the samples examined are genuine, we must expect as low as 0.69 per cent of ash (reckoned on the dry basis), in occasional samples of genuine maple syrup. That so low an ash percentage as this is quite exceptional appears from the following. Of 115 samples the-

| Total ash per cent is below. . . . . . . . . . . . | 0.70 | in | 1 | sample. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $"$ | " | $\ldots$ | . | . | . | . | . | . | 0.72 | " 8 samples.

Insoluble ash.-This is essentially car', natc of lime, with traces of magnesia, iron, rhosphates and silica. It has been generally regarded as an important datum in judging the genuineness of maple syrup. Work done in Washington (Bulletin 134, Bureau of (Chcmistry) gives, fur 481 samples, as follows:-

$$
\begin{aligned}
& \text { Maximum insoluble ash per cent. . . . . . . . . . . . .. .. . . .. } \\
& \text { Minimum insoluble ash per cent. . .. . . . . . . . . . . . . . } \\
& \text { 0.23 } \\
& \text { Average. . . . . . . . . . . . . . . . . . . . . . .. .. } \\
& 0.37
\end{aligned}
$$

Of the 115 guaranted samples now reported, the figures for insoluble ash are as fcllows:-

$$
\begin{aligned}
& \text { Maximum insoluble ash per cent. . . . . . . . . . . . . . . . . . . . } \\
& \text { Minimum insoluble as per cent. . . . . . . . . . . . . . . . . } \\
& \text { o. } 12 \\
& \text { Arerage . . . . . . . . . . . . . . . .. . . . . . . . . . . . } \\
& 0.33
\end{aligned}
$$

In this case, as with total ash, importance attaches nainly to the minimum uumber. That 0.12 per cent of insoluble ash is exceptionally low, appears from the followung considerations.

Of 115 samples, very earefully ashed, we find:-

| 0.12 per cent insoluble ash in . . . . . . . . . . . . . . . . 1 sample. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.14 | " | " |  | 1 | " |
|  | 0.19 | " | " |  | 3 | samples. |
|  | 0.20 | $\because$ | * |  | 2 | " |
|  | 0.21 | " | " |  | 4 | " |
|  | 0.22 | " | " |  | 2 | " |
| Below | 0.23 | " | * | we tid | 13 | " |
| " | 0.20 | " | " | " | 5 | " |
| " | 0.19 | " | " | " | 2 | " |

or 1.7 per cent of the number examined.
It would appear that in this datum, as in the case of basie lead numbers and zalic acid numbers, improved modern methods of manufacture tend to reduce the number in question. It is further probable that the 0.20 represents the minimum insoluble ash of carefully made syrups, from normal sap. The case in which a lower number than 0.20 is found must be regarded as exceptional, although not necessarily untrue to name.

In determinations of ash it is important that any sugar crystallized out be redissolved befors sampling; as it is found that mineral matters, and particularly lime and magnesia salts are carried down with the sugar crystala.
BULLETIN No. 228-EXAMINATION OF MAPLE SYRUP, SAMPLES SLPPLIED BY MAKERS UNDER



hitacita of


 Clarifiel with cream and shimulter. andaris. Malic :cid low.

 Fxee water


 $\qquad$
 $\stackrel{2}{-}$ $\therefore$ 픈
$=$
$=$


芥
$\vdots$
$\vdots$
$\vdots$
$\vdots$ xill 14 $\square$
3
$\vdots$
$\vdots$ 7
9
9
$\vdots$
$\vdots$

 $\square$
0
0
0




BULLETIN No. פ28-EXAMINATION OF MAPLE SYRUP, SAMPLES SUPPLIED BY MAKERS UNDER DECLARATION OF (iENUINENESS, SEASON 1911.

BULLETIN No -2X-ELAMHNATION OF MAPLF SYIRUP, SAMPLES SUPPLIED BY MAKERS UNDER DECLARATHON OF GENUINENESS, SEASON 1911.



BULLETIN No. 228-EXAMINATIUN OF MAPLE SYRUP, SAMPLES SUPPLIED BY MAKERS UNDER





BULLETIN No. 22B-ENAMINATION OF MAPLEF SYRUP, SAMPLES SUPPLIED BY MAKERS UNDER


 8
8
8
6
6
$=$

 $\stackrel{\rightharpoonup}{6} \stackrel{B}{=}$
$\stackrel{8}{-8} \stackrel{\text { • }}{-}$ $\qquad$
$\qquad$

$\stackrel{?}{\because}$

気

| 17.9 | R. Wibsm, Franklin C | $31 \cdot 36$ | 68.64 |
| :---: | :---: | :---: | :---: |
| 176 | I. Y. Williams, Wistreach, Ont. | $31 \cdot 12$ | 68.83 |
| 177 | Alex. Lelllane, Katevale, P.Q. | $32 \cdot 72$ | 67 -28 |
| 178 | F.W. Iuston, Ayera Cliff, 1'.O. | 3) 43 | 64 5 |
| 179 | A. Bryan, Ilatley | 3220 | (in \% $^{5}$ |
| 180 | Ilerikert Fletcher, Nassagaweya, Ont. | 35.89 | $6{ }^{6} \cdot 11$ |
| 181 | Julie'n Tremblay, Fianklin Centre. | 29.54 | 70.46 |
| 182 | Laurent I'revost, Batram. | $31 \cdot 13$ | 68.87 |
| 183 | Robt. Incas, Ormatown | $28 \cdot 17$ | 7183 |
| 18 | Fred. Cadman, Arkona, Ont | 30 :m | f9-10 |
| 18.5 | Floyd Smith, Arkona, | 3 | (69.1 |
| 186 | Sd. R. Lowder, Geraldine, P. Q $^{\text {, }}$ | $31 \cdot 12$ | 68.88 |
| 187 | I'. B. Vallancourt, Franklin Centre. | 32.25 | 473.75 |
| 188 | G. Kingsbury, Nas*agaweya, | 29.98 | 70.02 |
| 189 | Thow. Richardson, Nassaga weya, Ont. | 38-5! | 61 |
| 1 | John Lacker, Knatchbull, Ont | 32-48 | 67 |
| 191 | C. A. Darby, Knatchluall, Ont | 3181 | 58 |
| 192 | Will. J McKenzie, Arkma. Ont. | $31 \cdot 55$ |  |
| 193 | W. J. Pym, Andersin, Ont. | 29. 93 | 710 |
| 194 | J. T. Muxlow, Arkuna, Ont. | $30 \cdot 6$ | 69.10 |
| 195 | Carl Smith, Arkona, | $31 \cdot 21$ | 6970 |
| 196 | G. 11. Snyder, St. Ann's, Ont. | 32.25 | 67 |
| 197 | Alfred Taylor, St. Ann's, Ont. | $30 \cdot 32$ | $69 \% 8$ |
|  | F. İangan, Arkona, Ont |  |  |
|  | Smith, Arkona, | 29.48 | 70.02 |


 DECLARATION OF GENUINENESS, SEASON 1911.


BULLETIN NO. 2UK-EXAMINATION OF MAPLE SYIUP, SAMPIES SUPPIIEI GY MAKERS UNDER DECLARATION OF (AENUINENESS, SEASON 1911.





| 253 | Francis Anderson, Kirkton, Ont. | $30 \cdot 90$ | 10 |
| :---: | :---: | :---: | :---: |
|  | Isiah Proth, Foster. P. | $33 \cdot 17$ | 66.83 |
| 20 | Ernest | $32 \cdot 03$ |  |




263 Henry l'ase. Warlen, Ont. 3152 (is It 2fit lime buyer..





 2il L. J. Marnh, Sweetwhurg, 12.18. $30 \cdot 6 \pi, 69 \cdot 33$


 274 W. H. Knowlton, South Stuk- $33.62 \cdot 66 \cdot 38^{\prime}$ | 25 | C. B. Benham, Sweetsburg, | $32 \cdot 48$ | $67 \cdot 52$ |
| ---: | :--- | :--- | :--- | :--- | 206 F. .i. Johnston, West Bolton, 31.59 68.41.



 $\frac{\text { RESS, SEASON } 1911 .}{\text { Rexilety or Analimis. }}$



$$
\begin{gathered}
\frac{4}{3} \\
3 \\
3 \\
3
\end{gathered}
$$



1)


$$
\begin{aligned}
& \text { sUPIII } \\
& \text { N 1911. }
\end{aligned}
$$$\vec{x}+\begin{aligned} & x \\ & = \\ & =\end{aligned}$



를
플
HULETIN Na IECLAII.ITON OF GENUINENESS, SEASON 1911.
K-uarks and Opunion
of the
thiff Analyot.



E U

BULLETIN No. 228-EXAMINATION OF MAPLE SYRUP, SAMPLES SUPPLIED BY MAKERS UNDERS


BULLETIN No. 228-EXAMINATION OF MAPLE SYRUP, SAMPLES SUPPLIED BY MAKERS UNDER



xis. [W. Potter, Heachville Koad, 34 64 (is) 36 xv. Edwin Wand, New Durham, $32 \cdot 8667 \cdot 14$ J. E. Rice, New Durham, Ont., $35 \cdot$ :22 $64 \cdot 78$ \begin{tabular}{lll|l|l|}
\hline J. Karn, Woodstock, Ont.... \& $34 \cdot 26$ \& $65 \cdot 74$ <br>
E. T. Chambery, Oxford \& $28 \cdot 14$ \& $\mathbf{1 1} \cdot 82$

 Fred. Hewitt, Zonda, Ont .... 35 $68,62 \cdot 32$ 

R. Denver, Zenda, Ont. ...... \& $37 \cdot 44$ \& $62 \cdot 56$ <br>
W. Sager, Vandirar, Ont. .... \& $33 \cdot 62$ \& $66 \cdot 38$

 

\& $x$ \& ii. \& Ed. Reidhead, Eastwocd, Ont. \& $37 \cdot 44$ <br>
$62 \cdot 56$
\end{tabular} xxiii. Luke Gilholm. Bright, Ont... $35 \cdot 74$ 64•28 xxiv. W. Derkyshire, Norwich, Ont. $31 \cdot 76$ 68.24


:

$$
\text { D. } \quad . \quad n \quad n \quad . .33 .62|66 \cdot 38| \ldots
$$




