The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/ Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le citre de ccuverture manque

Coloured maps/
Cartes géographiques en coulcur

\square
Coloured ink (i.e. other than blue or hlack)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couieur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pagas détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continue

Includes index(es)/f
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN NATURALIST

SECOND SERIES.

ON THE LAURTNNTIAN ROCKS OF BAVARIA.

By Dr. Gumbel, Director of the Geological Survey of Bavaria; with a plate containing figures of two species of Eozoon.

Translated from the Proceedings of the Royal Bavarian Academy for 1866, by Profcssor Markgraf.*

The discovery of organic remains in the crystalline limestones of the ancient gueiss of Camada, for which we are indebted to the researches of Sir William Logan and his collcagues, and to the careful microscopic investigations of Drs. Dawson and Carpenter, must be regarded as opening a new era in geological science.

This discovery overturns at once the notions litherto commonly entertained with regard to the origin of the stratified primary limestones, and their accompanying gencissic and quartzose strata, included under the general name of primitive crystalline schists. It shows us that these crystalline stratified rocks, of the so-called primary system, are only a backward prolongation of the chain of fossiliferous stratil; the elements of which were deposited as oceanic sediment, like the clay-slates, limestones and sandstones of the paleozoic formations, and under similar conditions, though at a time far more remote, and more favorable to the generation of crystalline mineral compounds.

In this discovery of organic remains in the primary rocks, we hail with joy the dawn of a new epoch in the critical history of these earrier formations. Already, in its light, the primeval geologic time is seen to be everywhere animated, and peopled with new animal forms, of whose very existence we had previously no suspicion. Life, which had hitherto been supposed to have first

[^0]appeared in the primordial division of the Silurian period, is now seen to be immeasurably lengthened beyond its former limit, and to embrace in its domain the most ancient known portions of the earth's crust. It would almost seem as if organic life had been awakened simultancously with the solidification of the earth's crust.

The great importance of this discovery cannot be clearly understood, unless we first consider the various and conflicting opinions and theories which had hitherto been maintained concerning the origin of these primary rocks. Thus some, who consider them as the first-formed crust of a previously molten globe, regard their apparent stratification as a kind of concentric parallel structure, developed in the progressive cooling of the mass from without. Others, while admitting a similar origin of these rocks, suppose their division into parallel layers to be due, like the lamination of clay-slates, to lateral pressurc. If we admit such views, the igneous origin of schistose rocks becomes conceivable, and is in fact maintained by many.

On the other hand, we have the school which, while recognizing the sedimentary origin of these crystalline schists, supposes them to have metamorphosed at a later period; either by the internal heat, acting in the decply buried strata; by the proximity of eruptive rocks; or finally, through the agency of permeating waters charged with certain mineral salts.

A few geologists only have hitherto inclined to the opinion that these crystalline schists, while possessing real stratification, and sedimentary in their origin, were formed at a period when the conditions were more favorable to the production of crystalline materials than at present. According to this view, the crystalline structure of these rocks is an original condition, and not one superinduced at a later period by metamorphosis. In order however to arrange and classify these ancient crystalline rocks, it becomes necessary to establish, by superposition or by other evidence, differences in age, such as are recognized in the more recent stratified deposits. The discovery of similar organic remains, occupying a determinate position in the stratification, in different and remote portions of these primitive rocks, furnishes a powerfui argument in favor of the latter view, as opposed to the notion which maintains the metamorphic origin of the various minerals and rocks of these ancient formations; so that we may regard the direct formation of these mineral clements, at least so
far as these fossiliferous primary limestones are concerned, as an established fact.

So early as 1853, after investigating the primitive rocks of eastern Bavaria, which are connected with those of the Bohemian forest, I expressed the opinion that, although eruptive masses of granite and similar rocks occur in that region, the gnciss was of sedimentary origin, and divisible into several formations. I at that time endeavored to separate these crystalline schists into three great divisions, the phyllades, the mica-schists, and the gneiss formation, of which the first was the youngest and the last the oldest; all these formations having essentially the same dip and strike.

These results, obtained from very detailed geological and topographical researches, were subsequently more fully set forth in the Survey of the Geology of Eastern Bavaria, (Book IV., p. 219 et seq.) ; where I endeavored to assign local names to the subdivisions of the prinitive rocks of that region. Beginning with the more recent, I distinguished the following formations:

1. Hercynian primitive clay-slate.
2. Hercynian mica-slate.
$\left.\begin{array}{l}\text { 3. Hercynian gneiss. } \\ \text { 4. Bojian gneiss. }\end{array}\right\}$ Primary gnciss system.
In some cases, within limited regions, I even succeeded in tracing out still smaller subdivisions. It was in this way established that definite and distinct kinds of rocks, as for example hornblendeslate and mica-slate, may replace each other and, as it were, pass into each other, in different parts of the same horizon.

After Sir Roderick Murchison had established the existence of the fundamental gnciss in Scotland, and recognized its identity with that of the Laurentian system of Canada, he turned his attention to the primitive rocks of Bavaria and Bohemia. My researches and my communications to him disclosed the important fact that these rocks belong to the same series as the oldest formations of Canada and of Scotland. On one point only was there an apparent difference of opinion between Sir Roderick and myself; which was that he was dispused to look upon the whole of the gneiss of the Hercynian mountains as constituting but a single formation, corresponding to the Laurentian gneiss of Canada and of Scotland; while I had endeavored to distinguish two divisions, the newer grey or Hercynian gneiss, and the older red
or variegated, which I called the Bojian gneiss. This difference of opinion is however at once removed by the remark that I did not intend to maintain in the older gneiss the existence of a formation more ancient than the fundamental gueiss of Scotland, nor yet to assimilate the newer or grey gneiss to the more recent or so-called netamorphic series, which, according to Sir Roderick, may be clearly distinguished in Scotland from the Laurentian gneiss.
[This newer gneissic formetion of the Highands is, according to Murchison, Ramsay and others, of 'Lower Silurian age. Our author simply claims to have established a division in the proper Laurentian rocks of Bavaria and Bohemia. It will be seen from the recently published maps of the Laurentian region of the Ottawa, that Sir William Logan there distinguishes three great limestone formations, by which the enormous mass of Laurentian gueiss is separated into four divisions. One or tro of the upper ones of these may be eventually found to correspond to the grey Hercynian gneiss of Bavaria, which is there accompanied by the Eozoon Canadense, a fossil so far as yct known characterizing the highest of the three Laurentian limestones. This grey gneiss of Bavaria appears to be lithologically distinct from the Labrador (or Upper Laurentian) series; nor do we find in the present memoir of Gumbel, any clear evidence of the occurrence either of this, or of the Huronian system, in Bararia.-T. S. H.

After citing in this connection Sir W. E. Logan's observations on these ancient formations, which are shown, by the results of the Canadian Survey, to represent three great systems of sedimentary rocks, furmed under conditions not unlike those of more modern formations, our author observes:-]

Accepting these views of the older Canadian rocks, it would naturally follow that organic life might be expected to reach back much farther than the so-called primordial fauna of Lower Silurian age, and to mark the period hitherto designated a, Azoic.

Guided by these ideas, the geologists of Canada zealously sought for traces of organic life in the primitive rocks of that country. Dr. Sterry Hunt had already concluded that it must have existed in the Laurentian period, from the presence of beds of iron ore, and of metallic sulphurets, which, not less than the occurrence of graphite, were to him chemical cridences of an already existing vegetation, when at length direct evidence of life was obtained by the discovery of apparently organic forms in the great beds of
crystalline limestone which occur in the Laurentian system. Such were collected in 1858, by Mr. J. McMullen from the Grand Calumet on the Ottawa River, and were observed by Sir Wm. Logan to resemble closely similar specimens obtained by Dr. James Wilson in Burgess, a few years previously. In 1859, Sir Wm. Logan first expressed his opinion that these masses, in which pyros:ene, serpentine, and an allied mineral, alternated in thin layers, with carbonate of lime or dolomite, were of organic origin; and in 1862 he reiterated this opinion in England, without however being able to convince the English geologists, Ramsay excepted, of the correctness of his views. Soon after this, however, the discovery of other and more perfect specimens, at Grenville, furnished decisive proofs of the organic nature of these singular fossils.

The careful and admirable investigations of $D_{\text {atwson }}$ and of Carpenter, to whom specimens of the rock were confided, have placed beyond doubt the organic structure of these remains, and confirmed the inportant fact that these ancient Laurentian limestones abound in a peculiar organic fossil, unknown in more recent formations, to which has been given the uame of Eozoon.*

* * * * * *

The researches of Sterry Hunt on the mineralogical relations of the Eozoon-bearing rocks, lead him to the important conclusion that certain silicates, namely serpentine, white pyrosene, and loganite, have filled up the vacant spaces left by the disappearance of the destructible animal matter of the sarcude, the calcareous skeleton remaining more or less unchanged. If, by the aid of acids, we remove from such specimens the carbonate of lime, (or, in certain cases, the dolomite which replaces it,) there remains a coherent skeleton, which is evidently a cast of the soft parts of the Eozoon. The process by which the silicates have been introduced into the empty spaces corresponds evidently to that of ordinary silicification through the action of water. It is to be noted that Hunt found serpentine and pyroxene, side by side, in adjacent chambers, and even sharing the same chamber between them; thus affording a beautiful proof of their origin through the

[^1]infiltration of aqueous solutions, while the Eozoon was yet growing, or shortly after its death. $\quad * \quad * \quad *$

IIunt, in a very ingenious manner, compares this formation and deposition of serpentine, pyroxene, and loganite, with that of glauconite, whose formation has gone on uninterruptedly from the Silurian to the Tertiary period, and is even now taking place in the depths of the sea; it being well known that Elhrenberg and others have already shown that many of the grains of glauconite are casts of the interior of foraminiferal shells. In the light of this comparison, the notion that the serpentine, and such like minerals of the primitive limestones have been formed in a similar manner, in the chambers of Eozoic foraminifera, loses any traces of improbability which it might at first seem to possess. * *

My discovery of similar organic remains in the serpentinelimestone from near Passau was made in 1865, when I had returned from my geological lahors of the summer, and received the recently published descriptions of Messrs. Logan, Dawson, etc. Small portions of this rock, gathered in the progress of the geological survey in 1854, and ever since preserved in my collection, having been submitted to microscopic examination, confirmed in the most brilliant manner the acute judgment of the Canadian geologists ; and furnished paleontological evidence that, notwithstanding the great distance which separates Canada from Bavaria, the equivalent primitive rocks of the two regions are characterized by similar organic remains; showing at the same time that the law governing the definite succession of organic life on the earth is maintained even in these most ancient formations. The fragments of serpentine-limestone or ophicalcite, in which I first detected the existence of Eozoon, were like those described in Canada in which the lamellar structure is wanting, and offer only what Dr. Carpenter has called an acervuline structure. For further confirmation of my observations, I deemed it advisable, through the kindness of Sir Charles Lyell, to submit specimens of the Bavarian rock to the examination of that eminent authority, Dr. Carpenter; who, without any hesitation, declared them to contain Eozoon.

This fact being established, I procured from the quarries near Passau as many specimens of the limestone as the advanced season of the year would permit; and, aided by my diligent and skilful assistants Messrs. Reber and Schwager, examined them by the methods indicated by Messis. Dawson and Carpenter. In this
way I soon convinced myself of the general similarity of our organic remains with those of Canada. Our examinations were made on polished sections and in portions etched with dilute nitric acid, or, better, with warm acetic acid. The most beautiful results were however obtained by etching moderately thin sections, so that the specimens may be examiued at will either by refleeted or by transmitted light.

The specimens in which I first detected Eozoon came from a quarry at Steiwhag, near Obernzell on the Danube, not far from Passau. The crystalline limestone here forms a mass from fifty to sevei.ty feet thick, divided into several beds, included in the gneiss, whose general strike in this revion is N.W., with a dip of $40^{\circ}-60^{\circ}$ N.E. The limestone stratia of Stcinhag have a dip of 45° N.E. The gneiss of this vicinity is chicfly grey, and very silicious, containing dichroite, and of the variety known as dichroite-gnciss; and I conceive it to belong, like the gneiss of Bodenmais and Arber, to that younger division of the primitive gueiss system which I have designated as the Hercynian gneiss formation; which both to the north, between Tischenreuth and Mabring; and to the south, on the south-west of the mountains of Ossa, is immediately overlaid by the mica-slate formation. Lithologically, this newer division of the gaeiss is characterized by the predominance of a grey variety, rich in quartz, with black magnesian-mica and orthoclase, besides which a small quantity of oligoclase is never wanting. A farther characteristic of this Hercynian gneiss is the frequent intercalation of beds of rocks rich in hornblende, such as hormblende-schist, amphibolite, diorite, syenite, and syenitic granite, and also of serpentine and granulite. Beds of granular limestone, or of calcareous schists are also never altogether wanting; while iron pyrites, and graphite, in lenticular masses, or in local beds conformable to the great mass of the gneiss strata, are very generally present.

The Hercynian gneiss strata on the shores of the Danube near Passau are separated from the typical Hercynian gnciss districts which occur to the north, on the borders of the Fichtelgebirge and near Bodenmais and Arber, by an extensive tract, partly occupied by intrusive granites, and partly by another variety of gneiss. These Danubian gneiss strata are not seen to come in contact with any newer crystalline formation, but towards the south are concealed by the tertiary strata of the Danubian plain; while towards the N.W. they are in part cut off by granite, and in part
replaced by those belts of gneiss which accompany the quartz ridge of the Pfalhl, and belong to the red variety or Bojian gneiss. The grey gnciss strata of the Danube might therefore be supposed to be older than this red gneiss, which from its relations in the district to the N.W., between Cham and Weiden, I had regarded as itself the more ancient formation. But the lithological characters of the grey Damubian guciss are opposed to this view, siuce this rock not only presents a general resemblance to the gneiss formation of Bodenmais, which without doubt is directly overlaid by the mica-schist of the mountains of Ossa, thus shewing it to be the rewer gneiss; but exhibits a repetition of the minor features which characterize the gneiss district of Bodenmais. We find in the Danubian gneiss that same abundant dissemination of dichroite, which gives rise to the typienl dichroite-gneiss of Bodenmais, with nearly the same mineral associations in both cases. On the Danube, also, interstratified beds of hornblenderock (at Hals near Passau), of serpentine (at Steinhag), and of pyrites (at Kelberg, and many points along the Danube), occur, as in the north. On the other hand, the graphite which abounds in the gueiss of Passau is not wanting at Bodenmais or Tischenreuth. T'he interstratified syenites and syenitic granites are, in lise manner, common to all these districts; those near Passau being, however, richer in easily decomposed minerals, such as poreclain-spar (scapolite) and calcspar, are more subject to lecomposition, and form the parent rock of the famous porcelain clays of the region.

These resemblances lead me to refer the Danubian gneiss, notwithstanding its apparent stratigraphical inferiority to the red gneiss, to the newer or Hercynian formation ; and to explain its apparently abnormal relations by assuming a fault running along the strike from N.W. to S.E., through which the older gneiss of the Pfhal is brought up, and seems to overlie the younger.

We shall then regard the whole of the gneissic strata characterized by dichroite, which extend on the Danube from Passau to Linz, as equivalent to the Hercynian gneiss of Bodenmais, and designate it as the Danubian gneiss. We may here call attention to the abundance of graphitic beds in it, as also to the occurrence of porcelain clay, and of beds of iron pyrites and magnetic pyrites. If it is true (as maintained by Dr. Sterry Hunt) that all graphite owes its origin to organic matters, we must suppose the existence of a primordial region peculiarly rich in organic life; since graphite occurs here in almost all the strata, and in some places in
such quantities that it is profitably extracted, and is largely used for the manufacture of the famous Passau crucibles. In all of the numerous graphite mines, the uniform interstratification of bands and lenticular masses rich in graphite with the gnciss is here distinctly marked. A similar arrangement is seen in the sulphurets of iron, which are more abundantly disseminated in the more hornblendic strata. The localities of porcelain-earth or kaolin are in like manner counined to the strike of the gneissic strata; and are generally contiguous to certain interstratified granitio and syenitic bands, rich in feldspar. Its frequent association with porcelain-spar, (probably nothing more than a chloriferous scapolite or anorthite,) indicates that this mineral has played an essential part in the production of the kaolin. The presence of chlorine in this mineral is highly significant, and suggests the ageney of sea-water in its production.

Of particular interest, from their mineral associations, are three or more parallel bands of crystalline linestone of no great thickness, which occur conformably interstratified with the gaciss of the hills near Passau. They begin near Hofkirchen, and extend north and south, from along the Damube as far as the frontier, near Jochenstein, where the Damube leaves Bavaria. These separate limestone bands, although exposed by numerous quarries, cannot be followed uninterruptedly, being sometimes concealed, and sometimes of insignificant thickness.

* * * * * *

The large quarry of Steinhag already described, from which I first obtained the Eozoon, is one. The enclosing rock is a grey hornblendic gaciss, which sometimes passes into a hornblendeslate. The limestone is in many places overlaid by a bed of hornblende-schist, sometimes five feet in thickness, which separates it from the normal gneiss. In many localities, a bed of serpentine, three or four feet thick, is interposed between the limestone and the hornblende-schist; and in some cases a zone, consisting chiefly of scapolite, crystalline and almost compact, with an admixture however of hornblende and chlorite. Below the serpentine band, the crystalline limestone appears divided into distinet beds, and encloses various accidental minerals, among which are reddishwhite mica, chlorite, hornblende, trenolite, chondrocite, rosellan, garnet, and scapolite arranged in bands. In'several places the lime is mingled with serpentine, grains or portions of which, often of the size of peas, are scattered through the limestone with
apparent irregularity, giving rise to a beautiful variety of ophicalcite or serpentine-marble. These portions, which are enclosed in the limestone destitute of serpentine, always present a rounded outline. Iu one instance there appears, in a high naked wall of limestone without serpentinc, the outline of a mass of ophicalcite, about sixtcen feet long and twenty-five feet high, which, rising from a broad base, ends in a point, and is separated from the enclosing limestone by an undulating but clearly defined margin, as already well described by Wineberger. This mass of ophicalcite recalls vividly a reef-like structure. Within this, and similar masses of ophicalcite in the crystalline limestone, there are, so far as my observations in 1854 extend, no continuous lines or concentric layers of serpentine to be observed, this mineral being always distributed in small grains and patches. The few appareutly regular layers which may be observed are soon interrupted, and the whole aggregation is irregular. [This is well shown in platesi II. and III. in the original memoir, which recall the acervuline portions, that make up a large part of the Canadian specimens of Eozoon.-EDs.]

The numerous specimens which were subsequeutly collected, at the commencement of the winter, show, throughout, this irregular structure, which seems to characterize the Bavarian specimens of Eozoon, as is in part the case in those from Canada. It is true that small lenticular masses or nodules, consisting chiefly of scapolite, measuring fifty by twenty millimeters, and even much more, are often met with, around which serpentine is arranged in a concentric manner; but even here the serpentine is in small cohering masses, and not in regular layers ; nor could I, after numerous examinations of fragments of such masses, satisfy myself whether I had to deal with the commencing growth of an Eozoon, or merely with a concretionary mass; since the granular structure of the scapolite centre could never be clearly made out. Moreover the occurrence of these nodules, arranged in a stratiform manner, is opposed to the notion that they are nuclei of Eozoon, although in the parts around these nodules I could sometimes distinctly observe tubuli, canals, and even indications of a shell-like structure.

The portions of serpentine in the ophicalcite occur of very various sizes, from that of a millet-sced to lumps whose sections measure fifteen by sir or eight millimeters. But I think I can detect within certain lines, (which are not, it is true, very well
defined,) chains of serpentine grains, of nearly equal size, connected with each other. When by means of acids the lime is removed from these aggregates, a perfectly coherent serpentine skeleton is in all cases obtained, which may be compared to a piece of wood perforated by ants. $* \quad * \quad * \quad * \quad *$
The surface of the serpentine grains is rounded, pitted, and irregular ; plane surfaces and straight lines are rarely to be seen. Even when dilute nitric or acetic acid has been used to remove the lime, a white down-like coating is frequently found on the serpeutine, which does not answer to the nummuline wall of the calcareous skeleton. In many cases, where the lime is very crystalline, and the more delicate organic structure obliterated, small tufts of radiated crystals, apparently hornblende or tremolite, are seen resting upon the serpeutine. These crystals, when seen in thin sections, by transmitted light, may casily give rise to errors; their formation seems to have been possible only where the calcareous skeleton had been destroyed, and crystalline carbonate of lime deposited in its stead; during which time free space was given for the formation of these crystalline groups. In very many cases there are seen, by a moderate magnifying power, (in the residue from acids) deposits of small detached cylindrical stems, with some larger ones, consisting of a white matter insoluble in acids. These appear to be the casts of the tubuli which penetrated the calcareous skeleton, and of the less frequent stolons, as will be described.

The serpentine in these sections never appears quite homogeneous, but exhibits, on the contrary, irregular groups of small dark-colored globules disseminated through the mass, without however any definite indications of organic form. Still more frequently, the serpentine is penetrated by irregularly reticulated dark colored veins, giving to the mass a cellular aspect.

In certain parts of the serpentine, however, parallel lines, groups of curved tube-like forms, and oval openings, clearly indicate an organic structure like that of the Canadian Eozoon. The finely tubulated nummuline wall of the chambers, which was discovered by Carpenter, and the casts of whose tubuli appear in the decalcified specimens from Canada as a soft white velvet-like covering, could only be found in a fesv isolated cases in the Bavarian specimens, but was clearly made out in a ferw fragments. (Pl. I., 4.) The somewhat oblique section shows the openings of the minute tubuli.

It should be remarked that the serpentine at Steinhag occurs, not only replacing the sarcode in the carbonate of lime of the Eozoon, but also forming layers over the limestone strata, and moreover filling up large and small crevices and fissures, which have nothing at all to do with the organic structure. Especially worthy of notice are the plates of fibrous serpentine, or chrysotile, often from five to ten millimeters in diameter, which are found estending in unbroken lines through the compact serpentine.

The color of the serpentine presents all possible shades, from blackish green, to the palest yellowish green tint. Where it has been exposed to the weather, the serpentine has become of a pale brownish green, and appears changed into gymnite. The different tints are arranged in zones, and seem to mark different periods of growth. The carbonate of lime which is interposed among the grains of serpentine in the specimens from Steinhag, is either distinctly crystalline, or apparently compact. In the first case, no organic structure can be perceived; thin sections of the crystalline portions show only intersecting parallel lines; and in etched or entirely decalcified specimens, no clear evidence of the fine canal-system of the skeleton can be observed. These crystalline portions often alternate with others which are compact and but feebly translucent. In thin sections of these compact parts, the rounded forms of the delicate tubuli are very clearly discerned, provided the section is at right angles to them. In etched specimens, viewed by reffected light, these tubuli are seen to branch out in the form of tufts, exactly as described and figured by Drs. Dawson and Carpenter.

These branching and ramified tubuli rest upon the serpentine granules, and seem by anastomosis to be connected mith adjacent groups. The diameter of these tubuli is from r_{0}^{2505} to r^{8000} millimeters. They are easily distinguishable from the delicate groups of erystals, which are also sometimes found implanted in the serpentine, by the nearly uniform thickness throughout their whole length; by their extremities, which are always somewhat crooked; and by their pipe-like form. The latter are never ramified; have a fibrous aspect; and are always straight, and têminate in a point. (Pl. I., figs. 1, 2, 3.)

Here and there are observed larger tubuli, which, so far as my observations extend, are always isolated, and nearly or quite parallel. (Pl. I., fig. 1.) Their diameter is about ī龴 millimeters,
and they not improbably represent those stolons or cornecting channels with which Carpenter has made us acquainted.

In the decalcified specimens, delicate very slender string-like leaflets were rery frequently observed, stretched between the serpentine granules; but they presented no discernible organic structure, and are perhaps only the casts of small crevices. More remarkable are the numerous canals filled with carbonate of lime, which traverse the serpentine granules, and at the surface of these are expanded into funnel shapes. They appear to represent cross connections between the calcareous skeleton.

As my object at present is merely to shew the presence, in the primitive limestones of Bavaria, of forms corresponding to the Canadian Eozoon, I will not dwell longer on these various appearances met-with in the microscopivial examinations, nor on the peculiar cellular structures observed in the carbonate of lime. I will, for the same reason, only mention a specimen which exhibits, by the side of a curved main tube, a number of secondirry tubuli, and farther on a parallel layer of fibres; and also another radiated form which resembles a section of a Bryozoon. It is sufficient to draw attention to the fact that, in addition to Eozoon, there are other organic remains in these crystalline limestoncs. There remains however to be noticed a pheuomenon of some importance.

When the lime is removed by nitric or acetic acid from the interstices of the serpentine granules, there may be observed, on gently moving the liquid, extremely delicate membranes, that separate themselves from the serpentine grains, (which they covered thickly, as with a fine white down,) and now remain swimming in the liquid, so that they can readily be separated, by decantation, from a multitude of heavier particles, which, having also detached themselves from the serpentine mass, accumulate at the bottom of the vessel. These consist in great part of indistinct mineral fragments, and of small crystalline needles, together with distinct cylindrical portions, which are the broken tubuli of the Eozoon. Besides these are, here and there, distinctly kuotted stems or tubules, (Pl. I., figs. 5 , a and b,) which I dare not suppose to belong to Eozoon. Various other fragments of tubuli are also associated with these.

The delicate flakes, which can be obtained by evaporating the liquid in which they are suspended, shew, under a magnifying power of 400 diameters, a membranous character, and peculiar structures, which seem to be undoubtedly of organic origin.

Their forms are best understood by the figures $6, a, b, c$ and d. The examination of the fine slimy residues from the solution of various primary crystalline limestones, in which, from the absence of well marked forcign mincrals, it may be difficult to prove the presence of distinct organic forms, will, I think, afford the quickest and readiest mode of establishing the existence of organisms.

The presence of the Eozoon in the primary limestone of Steinhag being thus established, I proceeded to examine such specimens as were at my disposal from other localities of similar limestones in the vicinity of Passau. I must here remark that these specimens, collected during my geolological examinations twelve years since, were chosen as containing intermixtures of serpentine and hormblende, and not with reference to the possibility of their holding organic remains. I succeeded however in detecting at least traces of Eozoon in specimens of the limestone from Untersalzbach, (fig. 2,) from Hausbach, Babing, (fig. 3,) and from Kadiug and Stetting. Moreover a specimen of ophicalcite from a duarry near Srin, in the region between Krumau and Goldenkron, among the primitive hills of Bohemia, afforded unequivocal evidences of Eozoon. Von Hochstetter moreover has received specimens of crystalline limestone from the same strata at Krumau, in which Dr. Carpenter has shown the presence of Eozoon. To the same formation belong the calcareous rocks near Schwarzbach, in the vicinity of which, as near Passau, great masses of grophite are intercalated in the gneiss hills. These limestones of Schwarzbach connect those of Krumau with the similar strata near Passau, from which they are only separated by the great granite mass of the Plockenstein hills. We thus obtain a still farther proof of the similarity of structure throughout the whole range of primitive rocks of Bavaria and Bohemia; and of the parallelism of their lowest portion with the Laurentian gneiss system of Canada. I think therefore that we niay, without hesitation, place the Herrynian gneiss formation of the mountains forming the Bavarian and Bohemian frontier, on the same geologiral horizon with the Laurentian system.

Farther northward, in similar gneiss hills, occupying a limited arca, a crystalline limestone occurs near Burggrub, not far from Frbeudorf, from which a few specimens were at hand. They were however a reddish, very ferruginous dolomite, penetrated by fibres of hornblende and cpidote, and gave me no trace of organic remains.

Besides these limestones of the Hercynian gneiss, there is found
in Bavaria another remarkable deposit of crystalline limestone, included in the Hercynian primitive clay-slate series on the south and south-east border of the Fichtelgebirge, in the vicinity of Wunscidel. This clay-slate formation, as we have already sherrn, overlies the Hercynian gneiss and mica-slate series, and is immediately beneath the primordial zone of the Lower Silurian stratia met with in the Fichtelgebirge. It would thus seem to correspond with the Cambrian rocks of Wales, and with the Huronian system of Canada, as Sir Roderick Murchison has alrcady suggested. This view is confirmed by Tritzsch's discovery of traces of annelids in the grauwacke of Przibram, and by the occurrence of crinoidal stems and foraminifcral forms, according to Reuss, in the limestone of the primitive clay-slates of Paukratz, near Reichenstein. Thus our Hercynian mica-slate, with certain hornblendic strata and chloritic schists belonging to the same horizon, would occupy a stratigraphical position similar to the Labrador series, or Upper Laurentian, of Canada.

The crystalline limestone of the Fichtelgebirge forms in the primitive clay-slate two nearly parallel bands, which I conceive to be the outcrops of one and the same stratum, on the opposite sides of a trough. It presents several parallel beds separated by intervening beds of the conformable clay-slate.

The limestone strata near Wunseidel dip from 50° to 75° S.E., and sometimes attain a thickness of 350 fect. They are in many places dolomitic. $* \quad * \quad * \quad * \quad$ Spathic iron, in nests and disseminated, characterizes this rock, and by its decomposition gives rise to the valuable deposits of brown hematite, which are worked along the outcrop of the limestone band. Among the other minerals may be mentioned graphite, in crystalline plates, and also in small round grains and rounded compact masses in the limestone; besides which it frequently enters into the composition of the adjacent clay-slate, giving rise to a plumbaginous slatc. Fluor-spar, chondrodite, tremolite, common hornblende, scrpentine, crloic and magnetic pyrites, are among the minerals of the limestone. Quartz secretions are also met with, but are evideatly of secondary origin. The hornblende forms rounded patches, remarkable twisted stripes, and banded parallel layers, often of considerable dimensions, as in the specimens from Wunseidel, which exhibit sheets of hornblende of from five to fifteen millimeters, separated by limestone layers of from fifteen to twenty millimeters in thickness. My examinations of the specimens
of this nature, in my collection, have not enabled me to connect these hornblende layers with organic structure, nor to discover any traces of Eozoon in the highly crystalline limestone.

The result of my examinations of specimens of the limestone containing serpentine from the quarries near Wunseidel, from Thiersheim, and from between Hohenberg and the Steinberg, were however more successful. Fragments of the rock from near Hohenberg show irregular greenish stripes, which are made up of parallel undulating laminx, or of elongated grains. This banded aggregate is a granular mixture of carbonate of lime, serpentine, and a white mineral, insoluble in acids, which appears to be a variety of hornblende. The grains of this aggregate have generally a diameter of $\frac{1}{10}$ millimeter.

When examined in thin scetions, the calcareous portions appear for the most part sparry, and traversed by straight intersecting lines, (Pl. 1, fig. 7 a,) or divided into cellular spaces by small irregular bauds, which, after the surface is etched, are seen in slight relief. The portions between these bands are granulated. (fig. 7 b.) More compact calcareous portions are however met with, and these are penctrated by delicate tufts of tubuli like those of Eozoon, (fig. 7 c ,) and are adherent to the serpentine portions, which have nearly the same form as in the Eozoon of Steinhag, but are far smaller. (fig. 7 d.) In decalcified specimens, they are found to possess the same arched walls as the Eozoon. Their breadth in the cross section is generally about one tenth, and the diameter of the casts of the tubuli only about one hundredth of a millimeter. These broader serpentine portions are generally conuected with an adjacent portion of lamelle, (also composed of serpentine, or of a whitish minerai,) which are not more than one-half their size, curiously curved, and presenting highly arched and deeply incurved outlines, as may be seen in decalcified specimens, (fig. 7 e.) The study of these structures leaves no doubt that they are due to an organism belonging to the same group as the Eozoon. In order however to distinguish this distinctly smaller form of the primitive clay-slate series, with its minute contorted chambers filled with serpentine, from the typical Eozoon Canadense of the more ancient Laurentian syst $\epsilon \mathrm{m}$, it may be designated as Eozoon Buraricum.

I have moreover subjected to microscopic examination a series of specimens from the same limestone horizon in the Fichtelgebirge, which, unlike those just described, showed no distinct foreign
minerals, although presenting certain dense portions which seemed to indicate the presence of some foreign matter. These portions however showed only a cellular structure, like that in the specimen from Hohenberg, without any tubuli; nor did etching succeed in developing any structure in these wholly calcareous specimens. When therefore carbonate of lime both constitutes the skeleton, and replaces the sarcode, there is evidently little hope of recoguizing these organic forms. If however the flaky pellicles which remain suspended in the acid after the solution of the lime, in these almost wholly calcareous specimens, are examined, they present a very great resemblance to the similar pellicles from the Eozoon limestone of Steinhag, already figured, which have such a striking resemblance to organic forms. The careful examination of the limestone from many other parts in the Fichtelgebirge, affords evidence of organic life similar to those of Hohenberg; thus tending more and more to fill up the interval between the Laurentian gneiss, and the primordial zone of the Lower Silurian fauna. We may therefore reasonably hope that in the study of these more ancient rock-systems, which geologists have only recently ventured to distinguish, paleontological evidence will be found no less available than in the more recent sedimentary formations. The inferences which we are permitted to draw from the discovery of organic remains in these ancient rocks, confirm the conclusion to which I had previously arrived from the study of the stratigraphical relations, and the general character of these ancient rock-systems; viz., that there exists, in these ancient crystalline stratified rocks, a regular order of progress determined by the same laws which have already been established for the formations hitherto known as fossiliferous.

I cannot conclude this notice of the preliminary results obtained in the investigation of the ancient Eozoon limestones of Bavaria, without adding a felv observations upon some foreign crystalline limestones. It is well known that the crystalline minerals, which in numerous localities are found in these limestones, often present rounded surfaces, as if they had at one time been in a liquid state. As examples of these, Naumann mentions apatite, chondrotite, hornblende, pyroxene, and garnet. The edges and angles of these are often rounded; the planes curved or peculiarly wrinkled, and only rarely presenting crystalline faces; having in short a half-fused aspect, and offering a condition of things hitherto unexplained. One of the best known instances of this is found in
the green hornblende (pargasite) from Pargas in Finland. This mineral there occurs in a crystalline limestone with fluor, apatite, chondrotite, pyrosenc, pyrallolite, mica and graphite; associations very similar to those of the serpentine of Steinhag. The grains of pargasite, although completely crystalline within, and having a perfect cleavage, are rounded on the exterior, curved inward and outward, and also approximatively cylindrical in form ; so that they may be best compared with certain vegetable tubercles. If the crystalline carbonate of lime which accompanies the pargasite is remored by an acid, there remains a mass of pargasite graius, generally cohering, and presenting a striking resemblance to the skeleton obtained by submitting the Jozoon serpentine-limestone to a similar treatment. The tubercles of pargasite are then seen to be joined together by short cylindrical projections, which are however readily broken by pressure, causing the mass to separate into detached grains. The highly crystalline and ferruginous carbonate of lime which is mingled with the pargasite, shews no organic structure either when etched or examiued in thiu sections; although the pargasite presents forms similar to those observed in the serpentine of Steinhag. The surfaces of the curved cylindrical and tuberculated grains of pargasite are in part naked, and in part protected by a thin white covering. In some parts fine cylindrical growths are observed, and in others cylindrical perforations passing through the grains of pargasite. By a careful microscopical cxamination of the surface of these grains ($\mathrm{Pl} . \mathrm{I}$., fig. 8), numerous small tubuli, sometimes two millimeters in length, are clearly seen, and by their exactly cylindrical form may be readily distinguished from other pulverulent, fibrous and acicular crystalline mineral matters. These cylinders consist of a white substance, which contrasts with the dark green pargasite, and have the
 A single large cylinder was also observed lying obliquely across between two of the pargasite tubercles. (Pl. I., fig. 8 a.) In the decalcified specimens, a white mineral, probably scapolite, was observed side by side with the green pargasite; sometimes forming groups of tubercles like the latter ; while in other cases a single tubercle was found to be made in part of the green and partly of the white mineral. From these observations there can scarcely remain a doubt that these curiously rounded grains of pargasite imbedded in the crystalline limestone of Pargas represent the casts of sarcode-chambers, as in the Eozoon; and that they
are consequeutly of organic origin. From the great similarity between the forms of the pargasite grains and the Eozoonserpentine, we may fairly be permitted to assume the presence of Eozoon in the crystalline limestones of Finland.*

Similar relations are doubtless to be met with throughout the crystalline limestones of Scandinavia, wherever such mineral species occur in rounded grains or in tuberculated forms. The notion that these forms are of organic origin, and have been moulded in the spaces left in a calcareous skeleton by the decay of animal matter, receives a strong support from the observations of Nordenskiold and Bischof. The former found in a tuberculated pyrallolite, 6.38 per cent. of bituminous matter, besides 3.58 per cent. of water ; while Bischof states that the same mineral becomes black when ignited, and when calcined in a glass tube, gives off a clear water with a very offensive empyreumatic odor.

There may also be mentioned in this connection a phenomenon which is probably related to those just described. Upon the pyritous layers which occur in the Fercynian gneiss near Boden, are found great quantitics of grains of quartz, almost transparent, and with a fatty lustre, which have in all cases rounded undulating forms, precisely resembling the pargasite tubercles from Finland. Dichroite also sometimes occurs in this region in similar shapes, although it also, in many cases, forms perfect crystals. The evidence of organic forms may perhaps be found in these masses of quartz and dichroite, though their treatment will necessarily present difficulties.

A specimen of crystalline limestone, with rounded pyroxene (coccolite) graius from New York, showed, after etching by means of acids, no traces of tubuli ; but the grains of coccolite, remaining after the entire removal of the carbonate of lime, were found to be connected with each other by numerous fine cylindrical tubuli and skin-like lamine. The surface of the rounded coccolite grains was much wrinkled, and studded with small cylindrical processes of a white mineral, sometimes ramifying, and apparently representing the remmants of a system of tubuli which had been destroyed by the crystallization of the carbonate of lime. The flaky residue from the solvent action of the acid exhibits, under the microscope, laminæ, needles, and strings of

[^2]globules similar to those described in the residue from the Bozoon ophicalcite of Steinhag, with which, and with the hornblendic limestone of Pargas, this coccolite-bearing limestone of New York seems to be closely related.

A fragment of ophicalcite from Tunaberg in Sweden bears a striking resemblance to the coarser marked varieties of this rock from near Passau. The carbonate of lime between the tubuli is very sparry ; and after its removal, a perfectly coherent serpentine skeleton is obtained, as in the Passau specimens. The surface of the serpentine tubercles is abundantly covered with acicular. crystalline needles of various lengths, whose inorganic nature is ummistakeable. The sediment from the acid solution also contains a prodigious quantity of these same small crystalline needles. On etching a specimen of this rock with dilute acid, the same needies were found in most places; but here and there, in isolated, less crystalline and more solid portions of the carbonate of lime, there were seen curved and ramified tubuli, undoubtedly corresponding with the tubuli of Eozoon, and having the same size and manner of grouping as in the Eozoon of Passau. The ophicalcite of Tunaberg is therefore to be classed with the Eozoon-bearing limestones.

A specimen of crystalline limestone from Boden in Saxony, holding rounded grains of chondrodite, hornblende and garnet, and furnished me by Prof. Sandberger, showed, after etching, tubuli of surprising beauty, both singly and in groups, but only in small isolated compact portions of the carbonate of lime. The sparry crystallization of this mineral seems to have frequently destroyed the cohesion of the very delicate tubuli, the fragments of. which may be observed in very large quantity in the flaky residue from the solution.

A blackish serpentinc limestone from Hodrisch in Hungary, showed by etching no traces of tubuli. The granular residue from its solution in acids showed under the microscope large quantities of cell-like granules, with a central nucleus, and generally joined in pairs, like the spores of certain lichens. More rarely however three or four of such grains were joined together. By far the greater part of them were of one and the same size, although occasionally others of double size were met with. Their regularity of form is much in favor of their origin from organic structure.

A fragment of ophicalcite from Reichenbach in Silesia, which Prof. Beyrich kindly furnished me, showed distinct parallel bands

finct delm.
Gümbel on Eozoön from the primitive rocks of Bavaria.
of serpentine with curved and undulating outlines, resembling the Eozoon ophicalcite of Canada. The etched portions show, in the carbonate of lime between the serpentine, or in the interspaces of' the serpentine, the same relations as the limestone of Hohenberg from the primitive elay-slate formation. The tubuli, which have a certain resemblance with those of Hohenberg, are stuck together, as if covered by an incrustation. Further examinations of this limestone are required to determine mure definitely the organie nature of its enclosures.

A fragment of similar limestone without serpentine, from Raspenau, shows not the remotest trace of any organic structure whatever. The same negative results were obtained with a specimen of granular limestone from T.: npobepa in Brazil; and with a very coarsely crystalline carbonate of lime. holdiug chondrodite, from Amity, New Jersey. These negative results show that organic remains are sometimes wanting in the primitive crystalline limestones, as well as in those of more recent formations. The occasional absence from the primary limestones of these regular structures is therefure an indirect argument for their organic origin.

Explanation of the Plate.

Figure 1. Section of Eozoon Cunclense, with its serpentine replacement, showing the fine tubuli and the canal-system, from the limestone of the Herernian gneiss formation at Steinhag; seen by reflected light, and magnified 25 diameters.
2. Section of Eozoon from the limesione of Crutersalabach; 25 diameters.
3. Scetion of joozon from the limestone of Babing.
4. Section of Eozoon from the limestone of Steinhar ; 120 diameters.
$5, a$ and b. Knotted tubuli from the iusoluble residue of the Steinhag limestone; 300 diameters.
$6, a, b, c$, and d. Floceuli from the same residue ; 400 diameters.
7. Section of Eozoon Bavaricum, with serpentine, from the crystalline limestone of the Hercynian primitice clay-state formation at Uohenberg; 25 diameters.
4. Sparry carbonate of lime.
b. Cellular carbonate of lime.
c. System of tubuli.
d. Serpeutine replacing the coarser ordinary variety.
e. Serpentiue, and hornblende, replacing the finer variety, in the very much contorted portions
8. Aggregated grains of pargasite, remaining after the solution of the carbonate of lime, from the granular limestone rock of Pargas.

on the canadian spectes of the genus picea.

Hy the Abdé O. Brunet, of Laval University
Botamists have always recognized the existence in North America of two trees which may be referred to the genus Picen, established by Link. They are the Abies alba of Michaux, and the Abies nigre of Poiret, (A. lenticulata, Michaux). 'These two species have been imperfectly described, and are almost always confoundel; some authors, moreover, have regarded them as nothing more than varietics of one and the same species. These considerations have led me to study these interesting trees in detail, and to complete, as far as possible, their history.

Genus PICEA, Link.

I-zares persistent, solitary, scattered, and surrounding the brionches, tetragonal, stiff, marked or both sides with white lines of numerous stomata; male flowers clustered towards the ends of the brauches; cones pendulous, persistent, terminal or axillary; seeds without resiniferous ducts, separating after a time from the base of the wing. Wood, almost white, with resiniferous ducts, having no distinction of alburnum or duramen; cells of the medullary rays without large pits; groups of cubic lignified cells in the older bark.

Pigea aliba.

The Picea alba is one of the most abundant trees in Canada, extending throughout the province. To the northward, following the line of the Saguenay, it is found, diminished in size, along the Mistassini, but disappears altogether about the cascades of that river (Nichaux MS.) to reappear in the Hudson Bay territory; where, according to Dr. Richardson, it grows to a large size, and is the most important forest tree of those northern regions.

The Picea alba in favourable situations generally attains a height of from seventy to eighty feet, with a diameter of ten feet at the base; in the Saguenay district however, trees of this species are said to have been found, from 130 to 140 feet in height. These large trunis taper gradually and regularly towards the top; they are very straight, and the branches extend horizontally, and are arranged so as to form a regular pyramid, the summit of which is long and slender, giving to the tree a very
characteristic aspect. In places exposed to the force of the tempests it becomes stunted in growth, creeping as it were, along the soil. This is well shown in Anticosti, where, on the cliffs and at the point of the island, these trees are seen extending from ten to twenty feet in length, though scarcely five feet in height, and forming a sort of hedge, which is almost insurmountable. In the interior of the island, however, the tree assumes its ordinary aspect.

Picea alba, Link.
A. Branch with eone, gathered in winter.
B. Transverse section of leaf; g. vascular bundles; h. resiniferous canals ; x. parts of leaf where the stomata occur; $\times \overline{\mathrm{j}} 0$ diameters.
C. Point of leaf, enlarged ten diameters.
D. Ripe seed with its wing.

IS. Scminal scale, dorsal vierr.
F. End of a branch with a male flower. (May 27, 1863.)
G. End of a branch with a female flower. (Ditto.)

The bark of this tree is whitish upon the branches, but on the old trunks it appears as a corky tissue, ferruginous-brown in color, with a scaly rhytidoma, cracked in all directions, and separating in whitish-gray plates. Some have supposed that both the specific and vulgar names of this tree are derived from the whitish color of its bark.

The leaves are from six to ten lines in length, and about three fourths of a line in breadth, ordinarily curved, presenting few stomata on buth surfaces, summit aceute, but much less so than is the leaf of Abies (Picea) Menziesii; section of the leaf quadrangulur, presenting two resiniferous ducts larger than those of P. nigra. The leaves of P. alba are much more robust than those of P. uigra, but their size varies rery much, even upon the same individual; the same is true of the form, which is also very variable.

The male catkins are ovate, not pedicellated, about six lines long; leugth of the anthers one line. Female flowers in cylindrical cathius, violet-red in color, and ten lines in length. Cones cylindrical, reddish-brown, from one to two and a half inches in length, numerously disseminated at the extremity of the branches, and in the axils of the leaves; scales thin, six lines long, rhomboidal, entire, slightly indented at the summit. Seeds small, brown, a line long, with an oval wing of a very pale yellow color, three times that length; embryo with from six to eight cotyledons.

This tree in the vicinity of Quebec blossoms about the end of May, and its fruit ripens in the autumn of the same year. The warmth of the following spring-time opens the scales of the cones, and liberates the seeds. These require for their germination about twenty days; twelve days later the young plant escapes from its envelopes, and appears with its numerous cotyledons, which resemble precisely the other leaves. The plumula of the young plant is not apparent before two or three months.

The wood of the white spruce is very white, compact, and harder than that of the white pine (Pinus strobus). The annual rings are sometimes three lines in breadth, and are for the most part strongly marked, the autummal wood being dark colored. The medullary rays are composed of a layer of uniform cells (figures A. and B, p. 109). The resiniferous canals (figure c.) which are distinguishable by the aid of a magnifyin gglass, furnish an excellent characteristic, and a ready means o distinguishing
the wood of the species of Picece from that of any other conifers.

This wood is more subject to crackin, than that of the white pine, and is liable to shrink when not perfectly dried. It is, however, much employed for flooring, on account of its greater hardness, and is largely exported from Quebec in the form of planks. It is also esteemed for its lightness and elasticity, for which quality it is employed for the ship-yards. All the houses which, in the country parts of Canada are made of hewn logs, and are known as \log-houses, are constructed of white spruce, which is also employed for the frame-work of steeples, of bridges, etc. The bark of the tree furnishes curved timbers, or knees, as they are called, which are used for ship-building, although inferior to those furnished by the tamarack (Larix Americuna). The aborigines make use of the tough rootlets, previonsly macerated in water, to sew the seams of their bark eanoes.

The pyramidal form of this tree, the regularity and number of its branches, and its abundant foliage, make the white spruce one of the best of ornamental evergreen trees. It moreover adapts itself to almost any soil, not too solid and compact, so that it is one of the Canadian trees best fitted for plantations. The readiness with which the white spruce throws out auxilliary buds renders it fit for pruning, and enables us to make of it excellent hedges, which may advantageously replace these of hawthorn.

This sketch of the white spruce would be incouplete if we did not mention a parasitic insect, which frequents it, and causes the small galls which are often seen upon this tree. They may be observed in the spring-time at the ends of the young branches, where they are dark red in color, and resemble in miniature the fruit cones. We met them for the first time at the end of May, 1863, on the island of Orleans, and again some time later near the Château Bigot, in the rear of Quebec. Baron Osten-Sacken, after having examined the specimens which we sent him, informs us that these galls are produced by a species of Aphis, hitherto unknown to science.

Picea nigra.

The Picea nigra is even more widely spread. in the north of America, than the preceding species, for it is found farther to the northward, and beyond the Saguenay, in elevated localities,
where, as already remarked, the P. alba disappears. Michaux the elder. in his manuscript journal, informs us that the black spruce is met with, in a stunted form, upon the hills bordering on Swan Lake, and that it is only ou the height of land, or water-shed between the St. Lawrence and IIudson Bay that it entirely disappears, giving place to the Pinus rupestris which reigns alone in those boreal regions.

The Picea nigra in certain localities may reach a height of seventy feet, and a diameter of from fifteen to eighteen inches, but is generally smaller, and seems to diminish in size as we go

Picea nigra, Iink.
II. Branch with a cone, gathered in January, 1865.
I. Transverse section of the leaf; g. vascular bundles; h. resiniferons cauals; x. parts of the leaf having stomata $; \times 50$ diameters.
K. Point of a leaf, enlarged ten diameters.
I. Ripe seed with its wing.
N. Serninal scale, dorsal tiers.
M. Fnd of a branch with a male flower. (June 5, 1865.)
70. End of a branch with a female flower. (Ditto.)
northward. In the vicinity of Quebec its height is not above seventy feet, and in the valley of the Saguenay, it does not exceed forty or fifty feet, with a diameter of eight or ten inches. It prefers a decp, black, and moist soil, thickly covered with moss, but in places which are constantly wet or covered with water, as in peat bogs, it grows but indifferently, and rises to no great height.

The bark of the P. nigret is yellowish on the young branches; the older trunks are covered with a reddish corky rhytidoma, the cracks in which are chiefly vertical, and which exfoliates at last in little plates, more or less rectangular in shape.

The leaves are from five to seven lines in length, and about three fourths of a line in breadth, fattened, and with the apex obtuse. They are of a sombre green color, and are supported on sterigmata twice as prominent as those of the preceding species. The leaves of the P^{\prime}.nigra are shorter, more closely appressed to the branches, and more flattencd than those of the P. albec. They also present more numerous rows of stomata, amounting sometimes to not less than five or six rows on cach side of the aedian vein, and the diameter of their resiniferous ducts is smaller.

The male catkins are ovoid, slightly pedunculate, and three or four lines in length. The female flowers are also in ovoid catkins, violet-red in color, six or cight lines in length, which are at first upright, but after impregnation are bent sharply downwards. The cones are ovoid, reddish-brown, from one inch to one and a half inches in length, slightly pedunculate ; scales thin, about six lines in length, with undulated and denticulated edges. The seeds are black, with an oval wing, smaller than that of P. alba. The embryo has ordiuarily four cotyledons, rarely more. This tree flowers in the month of June, about a week later than the preceding species, and ripens its seeds the same year. The seeds germinate in three or four weeks, and demand a great deal of moisture. After the fall of the perisperm, the young plant generally presents four seed-leaves, which have the form of the ordinary leaves, aud already present the sombre green color which characterizes the foliage of the P. nigra.

In the localities most favourable to the development of this species, and in places where the white pine has become rare, the black spruce is cut by the lumberers. It is manufactured into planks and boards, and the wood is employed for the same
uses as that of the white spruce. The woods of these two species of Picea offer no perceptible differences in structure, color, lightness, or other qualities. They are equal in value, and command the same price in the Quebee market.

Picee nigra, var. griseer; gray spruce.
This spruce does not appear to differ essentially from the black spruce in its organs of fructification. Its leaves are however of a more or less dingy and grayish green, and its bark has a lighter red color than the typical black spruce: The gray spruce is found principally in poor soils. This variety often attains a very large size. We measured one of these trees in the eastern section of Rimouski, and found it to be 160 feet high, with a diameter of four feet.

In certain parts of Camada an infusion of the leaves of the Picea nigra is used as a common drink. The Abbé Ferland in his Voyage au Labrador speaks of " the little black spruce which creeps over the rocks, and whose leaves infused in hot water furnish a beverage which by the peasants is preferred to tea." It is with this plant also that, is made the fermented liquor known as spruce beer. As it may not be without interest, we copy a description of the mode of preparing this beverage a century since, copied from Duhamel, (I'raité des arbres et arbustes, Paris, 1755.)
" The white spruce * (epinette blanche) which is a species of Epicea, having smaller leaves and cones than that cultivated in France, serves in Canada to make a wholesome beverage, which is not agrecable when tasted for the first time, but becomes so by use. As a similar drink might be made very cheaply from our own Epicia, I give the receipe.

[^3]"For a barriel, a boiler holding at least a quarter more is required. This being filled with water, and hoated, a bundle of spruce branches, broken small, and about twenty-one inches in girth, is added, and the water is kept boiling until the bark readily peels off from the whole length of the branches. Then a bushel of oats is ruasted by portions, in a great iron pan, about fiftecn sea-biscuit,

Figure A. Longitudinal tangential section of the mood of P. alba. c. ligneous cellules ; m. medullary rays; p. discs; (500 dimmeters.) Figure b. Longitudinal section, parallel to one of the medullary rays; v. medullary rays ; p. dłscs; (500 diameters.)

Figure c. Transverse section of the same mood ; a. fibres of the autumnal wood; b. fibres of the spring rood; c. resiniferous ducts; (300 diameters.)
These figures were dirawn by the author and engraved by Mr. G. J. Bowles.
or in place of them, twelve or fifteen pounds of bread, cut in slices, are also roasted, and with the oats, added to the boiling kettle, where they remain till the spruce branches are well cooked. These branches are now taken out, and the fire extinguished. The bread and oats then settle to the bottom, and the spruce leaves are removed by a skimmer; after which are added six quartio of molasses or syrup, or in place thereof twelve or fifteen pounds of coarse sugar. The liquid is then put at once into a fresh red-wine cask; and if it is wished to give more color to the liquor, the lees, and five or six quarts of the wine are left therein. When the liquid is only lukewarm, a pint of beer-yeast is added, the whole well stirred. to mix it, and the cask then filled to the bung-hole, which is left open. Fermentation soon begins, and much scum is thrown off; during this time the cask must be filled from time to time with a portion of the liquid which has been kept apart in some wooden vessel. If the cask is bunged at the end of twenty-four hours, the liquor is sharp and lively as cider, but if it is wished to have it milder, the cask should be filled twice a day, and not bunged till fermentation is over. This liquor is very refreshing and wholesome, and those accustomed to it drink it with pleasure, especially in summer."

ON THE OBJECTS AND METHOD OF MINERALOGY.

By Dr. 'r. Sterry Huxt, F.R.S. (Read bofore the American Academy of Sciences, Jan. 8, 1867.)

Mincralogy, as popularly understood, holds an anomalous position among the natural sciences, and is by many regarded as having no claims to be regarded as a distinct science, but as constituting a branch of chemistry. This secondary place is disputed by some mineralogists, who have endeavored to base a natural-history classification upon such characters as the crystalline form, hardness, and specific gravity of minerals. In systems of this kind, however, like those of Möhs and his followers, only such species as occur ready formed in nature, are comprehended, and the great number of artificial species, often closely related to native minerals, are excluded. It may moreover be said in objection to these naturalists, that, in its wider sense, the chemical history of bodies takes into consideration all those characters
upon which țhe so-called natural systems of classification are based. In order to understand clearly the question before us, we must first consider what are the real objects, and what the provinces, respectively, of mineralogy, and of chemistry.

Of the three great divisions, or kingdoms of nature, the classification of the vegetable gives rise to systematic botany, that of the animal to zoology, and that of the mineral to mineralogy, which has for its subject the natural history of all the forms of unorgamized matter. The relations of these to gravity, cohesion, light, electricity, and magnetism, belong to the domain of physics; while chemistry treats of their relations to each other, and of their transformations under the influences of heat, light, and electricity. Chemistry is thus to mineralogy what biology is to organography; and the abstract sciences, physics and chemistry, must precede, and form the basis of the concrete science, mineralogy. Many species are chiefly distinguished by their chemical activities, and hence chemical characters must be greatly depended upon in mineralogical classification.

Chemical change implies disorganization, and all so-called chemical species are inorganic, that is to say unorganized, and hence really belong to the mineral kiugdom. In this cxtended sense, mineralogy takes in not only the few metals, oxyds, sulphids, silicates, and other salts, which are found in nature, but also all those which are the products of the chemist's skill. It embraces not only the few native resins and hydrocarbons, but all the bodies of the carbon series made known by the rescarches of modern chemistry.

The primary object of a natural classification, it must be remembered, is not like that of an artificial system, to serve the purpose of determining species, or the convenience of the student, but so to arrange bodies in orders, genera, and species as to satisfy most thoroughly natural affinities. Such a° classification in mineralogy will be based upon a consideration of all the physical and chemical relations of bodies, and will enable us to see that the various properties of a species are not so many arbitrary sigus, but the necessary results of its constitution. It will give for the mineral kingdom what the labors of great naturalists have already nearly attained for the vegetable and animal kingdoms.

Oken saw the necessity of thus enlarging the bounds of mineralogy, and in his Physiophilosophy, attempted a mineralogical classification; but it is based on fanciful and false analogies, with
but little reference either to 'physical or chemical characters, and in the present state of our knowledge is valueless, except as an effort in the right direction, and an attempt to give to mineralogy a natural system. With similar views as to the scope of the science, and with far higher and juster conceptions of its method, Stallo, in his Philosophy of Nature, has touched the questions before us, and has attempted to show the significance of the relations of the metals to colesion, gravity, light, and electricity, but has gone no farther.

In approaching this great problem of classification, we have to examine-first, the physical condition and relations of each species, considered with relation to gravity, cohesion, light, electricity, and magnetism; scoondly, the chemical history of the species; in which are to be considered its nature, as elemental or compound, its chemical relations to other species, and these relations as modified by physical conditions and forces. The quantitative relation of one mineral (chemical) species to another, is its equivalent weight, and the chemical species, until it attains to individuality in the crystal, is essentially quantitative.

It is from all the above data, which would include the whole physical and chemical history of inorganic bodies, that a natural system of mineralogical classification is to be built up. Their application may be illustrated by a few points drawn from the history of certain natural families.

The variable relations to space of the empirical equivalents of non-gaseous species, or, in other words, the varying equivalent volume (obtained by dividing their empirical equivalent weights by the specific gravity), shows that there exist, in different species, very unlike degrees of condensation. At the same time, we are led to the conclusion that the molecular constitution of gems, spars and ores, is such that those bodies must be represented by formulas not less complex, and with equivalent weights far more elevated than those usually assigned to the polycyanids, the alkaloids, and the proximate principles of plants. To similar conclusions, conduce also the researches on the specific heat of compounds.

There probably exists between the true equivalent weights of non-gaseous species and their densities, a relation as simple as that between the equivalent weights of gaseous species and their specific gravities. The gas, or vapor of a volatile body, constitutes a species distinct from the same body in its liquid or solid
state, the chemioal formula of the latter being some multiple of the first, and the liquid and solid species themselves s.ten constituting two distinct species of different equivalent weights. In the case of analogous volatile compounds, as the hydrocarbons and their derivatives, the equivalent weights of the liquid or solid species approximate to a constant quantity, so that the densities of these species, in the case of homologous or related alcohols, acids, ethers and glycerids, are subject to no great variition. These non-gaseous species are generated by the chemical union, or identification, of a number of volumes or equivalents of the gaseous species, which varies inversely with the density of these species. It follows from this, that the equivalent weights of the liquid and solid alcohols and fats must be so high as to be a common measure of the vapor-equivalents of all the bodies belonging to these series. The empirical formula, $\mathrm{C}_{14} \mathrm{H}_{110} \mathrm{O}_{12}$, which is the lowest one representing the tristearic glycerid, ordinary stearine, is probably far from representing the true equivalent weight of this fat in the liquid or solid state; and if it should hereafter be found that its density corresponds to six times the above formula, it would follow that liquid acetic acid, whose density differs but slightly from that of fused stearine, must have a formula, and an equivalent weight about one hundred times that which we deduce from the density of acetic acid vapor, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$.

Starting from these high equivalent weights of liquid and solid hydrocarbonaceous species, and their correspondingly complex formulas, we become prepared to admit that other orders of mineral species, such as oxyds, silicates, carbonates, and sulphids, have formulas and equivalent weights corresponding to their still higher densities; and we proceed to apply to these bodies the laws of substitution, homology, and polymerism, which have so long been recognized in the chemical study of the members of the hydrocarbon series. The formulas thus deduced for the native silicates and carbon-spars, show that these polybasic salts may contain many atoms of different bases, and their frequently complex and varying constitution is thus rendered intelligible. In the application of the principle of chemical homology, we find ready and natural explanations of those variations, within certain limits, occasionally met with in the composition of certain crystalline silicates, sulphids, etc., from which some have conjectured the existence of a deviation from the law
of definito proportions, in what is only an expression of that law in a higher form.

The principle of polymerism is exemplified in related mineral species, such as meionite and zoisite, dipyre and jadeite, hornblende and pyroxene, calcite and aragonite, opal and quartz, in the zircons of different densities, and in the various forms of titamic acid and of carbon, whose relations become at once intelligible if we adopt for these species high equivalent weights and complex molecules. The harduess of these isomeric or allotronic species, and their indifference to chemical reagents, increases with their condensation, or, in other words, varies inversely as their empirical equivalent volumes; so that we here find a direct relation between chemical and physical properties.

It is in these high chemical equivalents of the species, and in certain ingenious, but arbitrary assumptions of numbers, that is to be found an explanation of the results obtained by Playfair and Joule in comparing the volumes of various solid species with that of ice ; whose constitution they assume to be represented by HO, instead of a high multiple of this formula. The recent ingenious but fallacious speculations of Dr. Macvicar, who has arbitrarily assumed comparatively high equivalent weights for mineral species, and has then endeavoured, by conjectures as to the architecture of crystalline molecules, to establish relations between his complex formulas and the regular solids of geometry, are curious but unsuccessful attempts to solve some of the problems whose significance I have endeavoured to set forth. I am convinced that no geometrical groupings of atoms, such as are imagined by Macvicar, and by Gaudin, can ever give us an insight into the way in which nature builds up her units, by interpenetration and identification, and not juxtaposition of the chemical elements.

None of the above points are presented as new, though they are all, I believe, original with mysclf, and have been, from time to time brought forward, and maintained, with numerous illustrations, chiefly in the American Journal of Science, since March, 1853, when my paper on the Theory of Chemical Changes and Equivalent Volumes, was there published. I have however thought it well to present these views in a connected form, as exemplifying my notion of some of the principles which must form the basis of a true mineralogical classification.

THE AMERICAN ASSOCIATION AT BUFFALO, AUGUST, 1856.

ON A NEW NOMENCLATURE.

BX PROF. S. D. TILLMAN OF NEW YORK.
The author, in this paper, gave a brief account of the amendments and alterations made in our present nomenclature, which originated with DeMorveau, Lavoisier, Bertholet and Fourcroy in France, in the year 1787. He showed furthermore, that it cannot be adapted to the new views of chemical combinations, according to the atomic system, without producing serious confusion, and rendering all our present works on chemistry comparatively worthless. He therefore proposed to let the old nomenclature remain as the exponent of the system of combining proportions, or so called "equivalents," and to give new names to atomic combinations, which would express both the views of Berzelius and Gerhardt. The method was devised by him many years ago, but until there was a general agreement among advanced chemists with regard to the numbers expressing atomic weights, it would have been useless. Under the lead of Gibbs, in this country, and Canizzaro in Europe, those of the unitary school who double the numbers represented by the symbols $0, C$, and S, now also double the numbers of at least fifty other symbols, and thus all objections have been removed in regard to using a system of names based upon atomic weights. The nomenclature now proposed is also adapted to the typical classification, ${ }^{〔}$ st proposed by a distinguished member of this Association, Dr. . Sterry Hunt, which, with a few modifications, has been very generally adopted by European chemists. Prof. Tillman's method of construction may be briefly explained in the following heads:

1. The system is based on abbreviations of the universally received names of the metals, and on the chemical symbols of the metalloids, or non-metallic elements, with such modifications as were imperatively required.
2. The name of each chemical element relates not to its mass, but only to a minimum combining proportion, termed an atom, or to some multiple of it. The atom is therefore the unit of measurement, and the starting point of the scale in each series of compounds.
3. The atomic name of each of the 50 metals now well-known, consists of two syllables, and ends with the consonant m.
4. The name of each of the 13 metalloids terminates with a different consonant; arsenic and tellurium, classed by some chemists among the metalloids, are by this arrangement included among the metals.
5. The number of atoms of any element is designated by the vowel immediately preceding the terminal consonant. The numerical power of the vowels advances with the order in which they are placed in the alphabet, thus $1,2,3,4$ and 5 are represented by a, e, i, o and u, each having a short or stopped sound, and the same vowels, each preceded by e, and having the long or full sound, represent $6,7, S, 9$ and 10 . Other letters represent higher numbers, so that any number to 1000 is readily denoted.
6. The following metalloids are represented by their symbolic letters: One atom of Fluorine is $a f$, one atom of Bromine $a b$, one of Nitrogen an, one of Carbon ac, one of Sulphur as, one of Phosphorus, ap. For reasons whichj need not here be stated, an atom of Hydrogen is $a l$, of Oxygen at, of Chlorine ad, of Iodine $a v$, etc.
7. The manner of uniting these syllables may be thus illustrated: The protoside of iron is Ferramat; the sesqui-oside of iron, Ferrenit; the black or magnetic oxide, Ferrimot; sulphate of protoxide of iron, Fermasot; sulphate of sesqui-oxide of iron, Ferremisoit.

The combinations containing carbon and hydrogen are so numerous that it was found essential to use another letter, r, to designate carbon-ar and aceach denote an atom of carbon. Two atoms of hydrogen are designated by h, thus ach is equal to $\mathrm{C}_{2} \mathrm{H}_{2}$ in the old notation. This is the important increment in several series of organic radicals. The first of the alcohol-forming radicals is achal, methyl; the second, cchal, ethyl; the third, ichal, propyl; the fourth, ochal, butyl; the fifth, uchal, amyl, etc. These radicals play the part of monatomic metals.

The author gave specimens of the new names for several thousand compounds; and showed their application in cases of isomerism, where, for iustance, ten bodies, having the same ultimate components, are distinguished by ten different names. The doctrine of substitutions was also very clearly set forth; and derivatives were so classified and simplified as to be readily comprehended.

The author then pr. seded to show the manner in which names were provided for salts containing water of crystallization,
and for solutions containing either an indefinite or definite quantity of mater.

In future chemical investigation, the speaker thought increasing significance must be given to the state of dilatation in which the body under consideration exists; he therefore proposed to designate every gas, and every volatile body after it is formed into vapor, by prefixing to the new name the letter g. For instance, carbonic oxide is gart, CO ; carbonic anhydride (commonly called carbonic acid gas), garet, CO_{2}; sulphuretted hydrogen, gclus; olefiant gas, gerlel ; carburetted hydrogen gas, garol; oxychloride of carbon gas, garted; etc. So of volatiles heated to the boiling point; for instance, bisulphide of carbon, ares, when heated to 49° Centigrade, is a vapor, denoted by gares; water, elat, heated to 100° Cent. or steam, is gelat.

In conclusion the speaker proposed that the new names, if approved, should be used at first side by side with the old names, and in lieu of the notation. Chemical writers, who study brevity of expression will fully appreciate the saving of pen and type work, as seen in the following statement of a recent discovery in the old and new manners. Lossen has succeeded in replacing an atom of hydrogen in ammonia by an atom of hydrogen and oxygen, or hydroxyl, thus forming hydrosalamine, which may be thus stated: 'Lossen has succeeded in replacing $a l$ in ilan by alt, thus forming altelan.'

The speaker thus, in one paper, attempted to present to his hearers the whole chemical field; yet, as he passed from oue division to another, he only cited such examples as seemed essential to prove the copiousness and capacity of the new nomenclature. A more complete elucidation and application of it was reserved for succeeding papers.

ON THE PRMEVAL ATMOSPHERE.
Dr. Hunt adverted, in commencing, to a theory first put forward by him to explain the chemical conditions of our globe. Starting from the notion of an igneous origin, he had contended that the mass probably commenced cooling at the centre, and thus gave rise to an anhydrous solid nucleus, having a crust of silicates, with an irregular surface, while the chlorine, carbon and sulphur, together with all the hydrogen, and an excess of oxygen, formed the atmosphere. As cooling from radiation went on; the first precipitate from this dense atmosphere must have been an intensely
acid liquid. which, attacking the crust of the silicates, separated vast amounts of silica, and becume saturated with earths and alkalies, forming the primeval sea. This condition of things, he clamed, was in strict accordance with the known chemical laws, and flowed logically from the hypothesis of the origin of our planet. The early ocean should thus have abounded in salts of lime and magnesia; and this is confirmed by the saline waters from the Palcozoic rocks, which represent fossil sca-water of that ancient period. Dr. Hunt here referred to his extended chemical and plysical investigations of the older rocks, and their mineral springs, in support of this view.

The stronger acids of chlorine and sulphur having been separated from the atmosphere, a decomposition of the silicates of the exposed portion of the earth's crust, under the influence of carbonic acid, moisture, and heat, went on, resulting like the modern process of kaolinization, in the production of a silicate of alumina or clay, and carbonates of the protoxyd bases. In this way great quantities of carbonate of \cdot soda were formed, which, decomposing the lime and magnesia salts of the sea, gave rise to the first limestones, and to chlorid of sodium. Hence the clays, the limestones, and the sea-salt were the joint results of a process which was slowly removing from the earth its carbonic acid, and fitting it for the support of higher forms of life. These riews of Dr. Funt, first put forward in 1858 and 1859, are gradually being received and appropriated by writers, who do not always acknowledge the source of them. They are here insisted upon as preliminary to some considerations on the atmosphere of early times, when it must have contained, in the form of carbonic acid, the whole, or the greater part of the carbon now present in the strata of the earth, and in bodies of fossil coal.

Simple calculations show that the carbonic acid contained in a layer of pure carbonate of lime extending over the earth, with a thickuess of 8.61 meters, would, if set free, double the weight of our atmosphere; and that from 13.65 meters, (about forty-four feet), would double its volume. It moreover appears that a similar layer of ordinary coal, one meter in thickness, would suffice to convert into carbonic acid the whole of the oxygen of the atmosphere: so that if, as is probable, the whole amount of coal and carbonaceous matters on the earth exceeds this quantity, there must have been an absorption of the oxygen, set free during the conversion of carbonic acid into coal, this oxygen being
probably retained by peroxyd of iron. Disvegarding this, however, and admitting that the carbonic acid, corresponding to a layer $8 \cdot 61$ meters of limestone [about twenty-eight fect] were present in our atmosphere, the effect would be most remarkable. The height of the barometric column would be doubled; the boiling point of water, raised to 121° Centigrade [250° Fahr.]; and, as the absorptive power of an atmosphere of carbonic acid is, according to Tyndal, ninety times that of dry air, the temperature of the lower regions of the atmosphere would be greatly elevated, and the whole climatic conditions of the carth modified. Yet, as the amount of carbonic acid required to produce these results is probably but a small proportion of that now fixed in the limestones of the earth's crust, we should find this condition of things at a period, geologically, not very remote, and in still carlier times the earth must have had a far denser and more highly carbonated atmosphere than that just supposed. The relations of such a condition of things to the animal and vegetable world furnish fruitful themes for conjecture and experiment; and its influence on chemical processes is not less worthy of consideration, as a single instance will show. Some years since, I pointed out that the explanation of the almost constant association of gypsum and magnesian limestone in nature, was to be found in the fact that solutions of bicarbonate of lime and sulphate of magnesia decompose each other, with production of solutions of sulphate of lime and bicarbonate of magnesia. By spontaneous evaporation, the former may be in part separated as gypsum; but as in this process the bicarbonate is changed into mono-carbonate of magnesia, this partially decomposes the gygsum, regeuerating carbonate of lime, and the results of the experiment in an ordinary atmosphere are imperfect. I find, however, that by infusing into the drying atmosphere a large proportion of carbonic acid, the separation by evaporation goes on regularly, and the gypsum is deposited in a pure state, enabling us thus to realize the conditions of earlier geologic periods, when vast beds of gypsum, with their accompanying magnesian limestone, were deposited in evaporating basins at the earth's surface, bencath an atmosphere charged with carbonic acid.

Ebelman has speculated on the probable existence of a much larger proportion of carbonic acid in the atmosphere of carlicr geologic times; and Dana, Tyndal, and anterior to them, the late Major E. B. Hunt, have considered its meteorological relations;
but the chemical history of this carbonic acid, considered with reference to its origin, its fixation in the form of limestones, and and its influence on chemical processes at the earth's surface, are points for the most part peculiar to the author, and, in part, now brought forward for the first time.

ON THE GEOLOGICAL STRUCTURE OF THE SOUTHERN PART OF minnesota.

BY PROF. JAMES HALL, OF ALBANY.

The object of this paper is mainly to show a clear and depicted geological structure of formations of different age, over a large part of Minnesota, heretofore regarded as deeply covered by drift deposits.

In going west from the Mississippi River at St. Paul, we pass over the older Silurian formations of Trenton limestone, Magnesian limestone, and Potsdam sandstone, which extend as far as the lower bend of the Minesota, at Mankato. Beyond this, in ascending the Minnesota River, for more than one hundred miles, no palæozoic formations are at present known. Approaching the Minnesota, at New Ulm, over the high prairie from the East, we find frequent exposures of a metamorphic rock, having on its weathered surface a syenitic aspect, which is in reality a quartzite, of gray, variegated or reddish color. On the Minnesota River, at Redstone ferry, these quartzites are found to have a decided dip to the eastward or south-eastward, and we have an exposure of one hundred and fifty or two hundred feet of thickness.

Triassic.-Abutting against the upturned edges of these quartzites of Huronian age, there is a series of horizontal strata, consisting of red marls, reddish and variegated, and red and gray limestones, which are referred to the Triassic system.

Cretaceous.-Lying upon the latter formation, and likewise horizontally stratified, is a series of marls, clays, sandstones, and beds of earthy coal, having altogether a thickness of perhaps two or three hundred feet. The sandstones contain fragments of plants or trees, and leares of the willow, poplar, liriodendron, and magnolia, all of which are referred to the age of the Greta. ceous formations.

Prairie Formation.-Covering all these, except in. the river banks, and at intervals in the prairie, is the deposit of drift and lighter soil, constituting the Prairie formation.

From the Minnesota at Redstone ferry west-ward, the Cretaceous formation extends for forty miles unbroken, when we come again to the red quartzites, which dip in the opposite direction, or to the westward; and continued for seventy miles, coming out again at the Pipestonc locality, on the Sioux valley. At some point higher up the Minnesota valley, the Cretaceous formation occupies large areas resting on Laurentian rocks.

The result of these investigations shows a portion of the outcrop of a synclinal axis on the east of the Minnesota, with a valley of forty miles in width, which has been eroded in the line of a great anticlinal axis; while beyond this is a synclinal axis $\{$ of quartziter, of similar character, which forms the foundation of the great Coteau-des-Prairies, which extends for more than four hundred miles to the northwest, rising seven or eight bundred feet above the lower prairie.

We have the evidence that the synclinal axis referred to is the highest portion of the country, while the anticlinal axis had been eroded prior to the age of the Triassic formation.

The chains of lakes of this part of the country, lie in the plateau of the synclinal axis, while the linc of the anticlinal is free from this feature; and the same conditions, essentially, prevail in a portion of a more eastern synclinal, which lies to the east of the Minnesota River.

ON PETROLEOM.

At the opening of the session, Dr. T. Sterry Hunt read an interesting paper on Petroleum, of. which the following is a brief synopsis.
He had shown in 1861, that the mineral oil of Western Canada was indigenous in the Corniferous limestone; wells sunk in the outcrop of which have yielded, and still yield, oil in that region, and also in Kentucky, according to Lesley. At that time (1861) he called attention to the existence of petroleum in the limestones of the Trenton group, and had, since then, in the Geology of Canada, in 1863, insisted upon these Lower Silurian oils as likely to prove, in some regions, of economic importance-a prediction verified by.the recent developments in the Lower Silurian strata of the Cumberland, in Kentucky, and the oil wells of the Manitoulin Islands, which latter are sunk through the Utica into the Trenton formation. Another important point, on which he had
been the first to insist, was that the accumulation giving rise to productive wells, occurs along the lines of anticlinal folds, where the oil would naturally accumulate in fissures, or in porous strata, in obedience to well-known hydrostatic laws. This view, first insisted upon in a lecture published in the Montreal Gazette for March, 1861, was further developed in a paper on Petroleum in the Comadien Nuturalist for July, 1861, and simultaneously by Professor F. B. Andrews in Silliman's Jowral. Since then, this view, though frequently opposed, is gaining ground; and, according to Prof. Andrews and Dr. Newberry, is sustained by all experience in the oil fields of the United States, as it also is in Camada. This remark applies to large accumulations, and to flowing wells, but oil may doubtless flow slowly from horizontal strata containing it.

As to the origin of the petroleum, Dr. Hunt supposes that it is indigenous in the two limestone formations already mentioned, and that it may have thence risen and accumulated in overlying pervious strata, or in fissures capped or sealed by impervious beds, such as the Pennsylvania sand-rock, or quarternary gravel beds.

He is inclined to think, however, that petroleum may also be indigenous in certain sandstones of Devonian or Carboniferous age, and referred to Lesley's observations to this effect, closely agreeing with those of Wall and Cruger in Trinidad, where fossil plants are sometimes found partly converted into petroleum, and partly into lignite.

Dr. Hunt regards the process by which animal and vegetable hydruenrbonaceous tissues have been converted into solid or liquid bitumen, as a decay or fermentation, under conditions in which atmospheric oxygenation is excluded, so that the maximum amount of hydrogen is retained by the carbon; and as representing one extreme of a process, the other of which is found in anthracite and mineral charenal, the two conditions being antagonistic, and excluding each other, and the production of petroleum implying, when complete, the disappearance of the organic tissue. Heuce pyroschists, the so-called bitummous shales, and coal, are not lound together with petroleum, but in separate formations, and it is to be borue in mind that the epithet bituminous applied to the former bodies is a mistaken one, since they seldom or never contain any bitumen, although, like all fixed organic bodies, they yield hydrocarbons by destructive distillation. The fallacy of the notion which ascribes petroleum to the action of subterranean heat on
strata holding coal and pyroschists was exposed; and it was remarked, among arguments founded upon the impermeability of many of the petroleum-bearing strata, that the oil of the Trenton limestone occurs below the horizon of any pyroschists, or other hydrocarboneous rocks.

A discussion on the subject of Petroleum followed, in which Dr. Andrews, Prof. Hall and Prof. Newberry took part.
on the laurentian liniestones and their mineralogy. by dr. T. sterry hont, f.r.s.
The author alluded to the existence in the Lower Laurentian system of three limestone bands or formations, of great but variable thickness, which might fairly be compared with the great limestone groups of the North American paleozoic system. In addition to these, there is probably a fourth and newer limestone formation belonging to the lower or true Laurentian, besides one or more in the unconformable overlying Labrador series or Upper Laurentian. The three limestone formations first named are separated by great masses of gneissic and quartzose strata, and are intimately associated with beds in which silicates of lime and magnesia prevail, together with graphite, and various metallic ores. The minerals associated with these limestones, and their accompanying strata, were next considered, and it was shown that they occur, both disseminated in the beds, and filling fissures or veins which traverse the strata. The importance in a-geological point of view of these veinstones, which from their mode of formation might be named endogenous rocks, was insisted upon. They may attain very great dimensions, and may include any or all of the mineral species belonging to the adjacent stratification, variously grouped, and sometimes having a banded arrangement parallel to the walls of the vein. Among the characteristic minerals of these veins are calcite, apatite, pyroxene, hornblende, serpentine, chondrodite, orthoclase, scapolite, phlogopite, quartz, garnet, idocrase, epidote, spinel, corundum, sphene, zircon, magnetite, and graphite. Some of these occasionally occur in a nearly pure state, filling the veins, as graphite, pyroxene and apatite. Veins of crystalline carbonate of lime, generally including some one or more of the preceding minerals, are often met with, and it is these which have given rise to the notion maintained in this country by Emmons, and in Europe by Leonhard and others, that
crystalline limestone is either partially or entirely of cruptive origin, these calcareous veinstones having been confounded with intrusive dykes. From such veinstones a transition may be traced to those in which orthoclase and quartz prevail, often to the exclusion of lime and magnesia compounds. We have then true granite veinstones, in which tourmaline, beryl, muscovite, cassiterite, and columbite are sometimes met with. These endogenous rocks, in which are often concentrated the rarer chemical elements of the rocks, are to be carefully distinguished from intrusive dykes which are exotic rocks. Such veins are not peculiar to the Laurentian system, but are found in crystalline strata at various ages. The crystalline limestones of Scandinavia, which offer so many remarkable resemblances to those of New York, New Jersey and Canada, are however of Laurentian age, and the nature of their veins has been well understood by Scheerer.

The rounded angles of crystals of certain minerals from the calcarcous veins of the Laurentian system, especially of the crystals of apatite and quartz, which Emmons had supposed to be due to a commencement of fusion, is to be regarded as the result of a partial resolution of the previously deposited crystals, and as marking a stage in the progressive filling of the veins. Crystals of orthoclase, pyroxene, sphene and zircon, though accompanying these rounded crystals, retain the sharpness of their angles, because of their permanence in the heated alkaline solutions which circulated through these yet partially filled veins. The various minerals of these veinstones have been deposited from aqueous and saline solutions, at elevated temperatures, and the experiments of Daubree and of De Senarmont, and the microscopic observations of Sorby, support this view. Plutonists begin to understand that water cannot be excluded from rocky strata, but is all-pervading, and that at greater depths, kept by pressure in a liquid state, at an elevated temperature, and having its solvent powers auginented by alkaline salts, it plays a most important part in metamorphosis, and in the formation of veinstones. The author supposed, with Mr. Hopkins, that in earlier geological periods the increase of temperature in buried strata was far more rapid than at present, so that great heats prevailed at comparatively small depths from the surface, and produced important chemical and molecular changes. The emperature at which the various silicated and other minerals, including graphite, were dissolved from the strata and crystallized in the veins, he supposed to have been, judging
from various analogies, between the melting point of tin and low redness.

The distinction between the apatite, graphite and magnetite disseminated in the beds, and the same minerals in the eiveins, was particularly insisted upon. As to the origin of the principal silicious minerals of the limestones, such as serpentine, chondrodite, pyroxene, rensellaerite and loganite, Dr. Hunt regards these as having been directly depos ted as chemical precipitates from the seas of the time; and cites the example of the Eozoon Cunadense, an abundant fossil of the age, found imbedded in these silicates, which enclose it, and fill the minute pores of its calcareous skeleton. To a similar chemical precipitation he attributes the serpentines, tales, chlorites and epidotes which occur in more recent rocks, and may be found in their incipient state before the metamorphosis of these rocks, which has for the most part only crystallized and re-arranged the already-formed amorphous silicates. The chemical agencies which gave rise to these silicates of lime, magnesia, iron and alumina were briefly discussed, and declared to be still active, although probably to a less degree than formerly.
(Corrected from the Newspaper Reports.)
\qquad

ADDRESS TO THE MEMBERS OF THE MONTREAL NATURAL HISTORY SOCIE'TY,

delivered may 18 th, 1866.
By Culrles Smallmood, M.D., LL.D., D.C.L., \&c., Presideut of the Society.

My Lord and Gentlemen,-The rolling wheels of time have again brought us to this our annual re-union. Thirty-nine years have passed away since this Society was founded; and it now devolves upon me, as your President, (a position which I owe to your individual kindness,) to resign into your hands the charge you have placed in my keeping. I felt at the outset my utter inability to fulfil those duties which my predecessors have so well and so efficiently discharged; but I relied upon your help and assistance, and was assured that what was wanting in my own personal exertions, would be supplied by your advice and help. In this, gentlemen, I have not been disappointed; and permit me now to tender to each of you individually my best and warmest
thanks for the forbearance and kindness you have at all times shewn to me in those shortcomings which have occurred during my tenure of office. And while it is with feelings of gratitude that I tender to you my resignation, they are mingled, nevertheless, with feelings of pride for the honor you have conferred upon me.

It is not, gentlemen, due to any personal exertions or encrgy on my own part that we have arrived at this, the termination of another year of great prosperity and increased usefulness; but, it is to those friends whose scientific efforts have been so well directed; and it is to you who have trodden so zealously the path of those few devoted men whom we may be prond to call our predecessors and the founders of this Institution. It is, I repeat, to your efforts that our increased prosperity must be attributed. It is a noble object that has invited us to these Halls of Science. We meet together to contemplate the teachings of God in Nature; and our mutual ain should be, and we hope has been, to decipher some new word in the pages of that great book, in order that we may the better learn the will and the workings of Him who ordereth all things well. We have sought to study the method of God's workings in nature; for in the vision of science there is nothing too minute for our notice, or unworthy of it. The means for the investigation of almost every branch of Natural Science are gradually extending; and the Montreal Natural History Society is not the least important of those institutions which are spreading over our country, and the world generally, scientific knowledge, for science is nothing more than knowledge reduced to order. But to say that science is worthy of your pursuit, is at best a waste of words. You know too well its importance; for by science we have converted the products of our forests and our fields into articles of commerce; we have by science abridged human labour to an immense extent; we have by science invented machines, some of immense power, all but surpassing human efforts at calculation, and others which almost rival the winds in swiftsess, propelled on road-ways that have compassed our globe by their iron bands; and science, again, has nearly achieved a victory over the velocity of thought, light and sound, in the invention and application of our electrical telegraph.

Where shall I specially turn to contemplate the wondrous works of God, or to follow up the yearly march of science? Shall I dip with a Logan, a Dawson, a Hunt, and a Billings, beneath the
rocky covering of our globe, for a subject of discourse? I dare not. Their mantle would not fall with graceful folds upon one so incompetent as myself. Our reports and journals bear ample evidence of their united labours and individual researches. Or shall I stroll through the deep forests or over the flowery sod, where once trod the footsteps of a Holmes or a Barnston, one of whom was removed from among us full of years and of honour; while the other had searcely entered upon the busy stage of science ere he was called away? But why should I hesitate to find a suitable theme in the vast domains of science? Why should I say more? Ascend with me above the dust, ascend with me far above those sure foundations that were laid in the ages of this our world, far, far gone by ; ascend with me above the clouds,-those cirrous clouds, where the heavens are never obscured, where the atmosphere is pure and free from mist,-in the balmy but intensely cold regions of space, where our earth, with its lofty mountains and fertile valleys, with its noble mansions and its lovely cottages, is ouly seen as a small planet; where our sun itself is dwindled to a twinkling star; where the starry host is nearly lost from vision,-merged, as it were, into a milky way ;-and where the great girdle of the heavens itself is but a faint nebulous mass. Yet deep even into this immensity of space science has cast its divining rod.

A Herschel discovered a world eighty times larger than our own, which revolves in its circuit in a long period of time, corresponding to more than 80 of our years, ere its curved course is run. Round this planet, thus removed some eighteen hundred millions of miles, six moons revolving like our own accompany it on its onward and extended course.

But from this distant world the shout of science was still Onward! A Le Verrier and an Adams, with a colossal stride, placed one foot, as it were, on our earth, and another on the surface of this distant globe, and pointed out the spot where Neptune was to be found, a planet still further removed from us, and whose period of revolution was more than double that of Uranus. But even that planet appears near us when we measure the nearest star that bedecks the vaulted canopy of heaven; for that is twenty billions of miles distant from our sun.

If geology marks the progressive development of the rocks on our globe, and counts its periods by millions of years, (for the rocks are but incidents in the earth's history,) surely the astronomer
may well be lost in admiration by the contemplation of these wondrous works that are manifest in

> "the wide expanse, Where stars, and suns, and systems shine."

The progress of astronomical science has shown us that our sun can no longer be regarded as the centre of our solar system, but that all the starry host is moving yearly in a grand procession towards another, a far distant central sun, the great centre of our universe; and we may well say, in the words of the poet,
> " He sets the bright procession`on its way, And marshals on the order of the year."

Scarce a year has passed without adding to our list of the Asteroids, until the number now reaches 85 ; while a very few years ago it was but four. Are these asteroids the particles of a larger plauet? or are they new worlds opened up to human vision, aided by science in the construction of the telescope? or have they been for ever wanderers in the pathless regions of space? Here science will one day, with a spectroscope, tell us if they are the remains of a larger body. A short time will no doubt set this question at rest, for if they are the particles of a larger planet, which from any cause has burst asunder, the spéctra will furnish the same results for them all.
Modern investigations have shown that our sun possesses an atmosphere, and that this atmosphere is disturbed by some action that renders visible certain spots at different times, spots which led Galileo to demonstrate the rotation of the sun upon its axis. It is the opinion of modern observers that the photosphere, (our sun's atmosphere) consists of solid or liquid bodies of a greater or less magnitude, either slowly sinking, or suspended in equilibrio in a gaseous medium; and that either the body of the sun itself is older than the surrounding medium, or else that some chemical or molecular changes have taken place where a spot is formed; or that it is produced by matter coming from a colder region; or, may be, by the solidification of its particles. But more recent investigation would tend to show that the body of the sun itself is hotter than the surrounding photosphere.

From the surface of the sun that imponderable fluid, light, is diffused, shedding on this earth all the brilliancy of colour, and tinting the landscape with an ever-varying degree of beauty. What a glorious expanse of view, and what a vast field of know-
ledge has been revealed within even the few past months, bearing on this subject of spectral analysis.

The immortal Newton, by means of the prism, resolved light into its ultimate rays in the solar spectrum, a fitting rival to the rainbow. Fraunhofer discovered that this spectrum was tritversed by numerous dark lines or bands which gave no light or colour, indicating that at the source from whence they emanated, the rays of light were absorbed in their passage from the sun to our carth, and probably some by the earth's atmosphere. More probably some are absorbed in the atmosphere of the sun itself, for the most recent investigations in this department of physical research have shown that a glowing and gascous atmosphere surrounds the solid nucleus of the sum, which, possessing a still higher temperature, approuching the intense heat of the brightest whitencss.

The polarized rays of this light exhibit spectra still more beautiful and intense than the solar spectrum itself. Forms of the most symmetrical order are constantly presented when a pularized ray of light is passed through various substances; and these appearances are constantly varied when we change, by means of pressure, the molecular arrangement of these bodies.

And are we not, by the photographic art, able to preserve, in unfading lines, the lineaments of those we love, of those that are great, and wise, and good; as well as to transfer to paper, by this process of sun-printing, those cherished spots on earth most dear to us, every modulation of the landscape, the familiar dell, and the rippling river by our homes of childhood?

But the progressive march of science has not stopped here. The investigations by means of the spectral analysis have penetrated into those regions of space to which I have already alluded, and the fixed stars have been the objects of intense interest. The astronomers had well said that they were distant suns, like our own, shining by their own light; and this opinion has been confirmed by the spectroscope. They are composed of the same matter as our sun; and in the spectra of these stars, the dark lines are wonderfully well brought out and defined.

Many of the stars of the first magnitude have been subjected to direct experiment; and it has been shown that they posjess in their atmospheres many of our terrestrial elements. Aldcbarann, a star of the first magnitude, possesses sodium, magnesium, hydrogen, calcium, iron, bismult, tellurium, antimony and mercury,
besides others which give negative evidence only. Alpha Oriomis has been carefully examined, and contains most of the above-named elements with the exception of hydrogen. The presence of hydrogen has been noticed in the sun, and in almost forty fixed stars, and is cminently characteristic, slowing that its presence belongs to the atmospheres of the luminous bodies themselves, and not merely to our own atmosphere.

These investigations have confirmed and demonstrated, beyond the shadow of a doubt, that all the planets shine by light reflected from the sum, and that any variety differing from the solar spectrum may be attributed to the peculiar properties of the atmospheres thatosurround the planets themselves.

One of the most important and interesting deductions to be drawn from these rescarches, is in connection with the origin of the colour of the stars. That a difference of colour in the stars does exist, is too well known to require any comment: for" "one star differeth from another star in glory." And it is now no longer a matter of conjecture that the brightest stars at least are, like our sun, giving energy and life to systems of worlds like our own, adapted for the abode of intelligent life. While yellow and red stars are the most frequent, in double stars the contrasted colours are green and blue. The source of the light of the stars must be a solid or liquid body in a state of incandesence, as only such bodies, when raised to a high temperature, give out a continuous spectrum. In the case of the fixed stars and the sun, this continuous spectrum becomes crossed by dark bands, which are produced by the absorbing power of the constituents, held in a vaporous form in the investing atmospheres. These atmospheres vary in chemical constitution, according to the elements composing the star; and the dark lines are produced by the absorptive power of the vapours forming the stellar atmospheres. They correspond to the bright lines they would form in an incandescent state, and would be the strongest and most numerous in the more refrangible portions of the spectrum, consequently a star would have a red or orange tint should that part of the spectrum suffer least absorption :- while, on the contrary, should the red and yellow portion have most lines, the blue and green rays would then predominate in the colour of the star.

In Sirius, the 'dog star,' which is of a brilliant white, there are no lines sufficiently intense, in any particular part of the spectrum, to interfere with our receiving the light in about the same
proportion as to the quantity of the different coloured rays, to that which starts from the incandescent light-giving surface. Sodium, magnesium, hydrogen, and probably iron, have been found in this star; and even a photograph on wet collodion has been obtained. In reference to double stars, observations on Bete Cygni and Alpha Hercules confirm these observations.

Various opinions have been ventured on the composition of the nebule. It has been affirmed that they are masses of minute stars, and only require higher optical powers to reduce them to distinct vision. The construction of Lord Rosse's telescope was looked forward to as tending to set the matter at rest; but, instead of this, it seemed to involve the question in still greater difficulty. Its solution was not lost sight of during the past year, and the spectrum observation has been shown to have an important bearing on the nebular hypothesis of the cosmical origin of the universe. It shows that the elementary substances must have existed in different proportions at different points of dhe nebulous mass; otherwise, by condensation, equal portions of the elements from the surrounding vapour would have been collected.

There is also an analogy to the manner in which the components of the earth's crust are distributed, for some of these elements are widely diffused through vegetable, animal, and mineral matter.

It has been further shown that it is only liquid and solid bodies that give out a continuous spectrum; while gases alone, when rendered luminous by heat, give out light which, after dispersion by the prism, is found to consist of certain degrees of refrangibility only, and which appear as bright lines on a dark ground, contrary to the solar spectrum, which shows dark lines on a bright ground. This fact has shown that, in the nebula, large masses of gas exist, and they possess no resemblance whatever to stars or clusters of stars. The nebule, therefore, are not masses of stars removed to such a distance as to render them irresolvable, but consist, for the most part, of luminous gases.

This presents to us, at once, another instance of unity in nature, by recognizing each of the simple bodies held in suspension in the flame, whose rays are decomposed by the prism. The dispersion of the sun's rays by the prism forms the standard of observation; any deviation will shew either bright lines in the place of dark ones, or dark lines in the place of bright ones. Nickel, chromium, magnesium, iron, potassium, sodium, barium, copper, cobalt and
zinc, are found always present in the sun's atmosphere in a state of vapour.

The possession of an atmosphere by the moon has been the subject of frecuent investigation and conjecture; but, by the spectrum analysis, it is now rendered certain that the moon has no atmosphere, at least on that side presented to our view. This has been lately further confirmed by observing the different spectra shown by the occultation of a star by the moon at the moment of contact, by obtaining the two separate spectra at once in the field of view.

It may be thought that the few remarks on the branches of science to which I have more immediately alluded, do not fairly come within the scope of the Natural History Society. But as, in looking over the ammal addresses for the past few years, I found no account of any of the progressive steps in the sciences generally, except in those of Geology and Botany, I deemed it not unworthy to allude to some of these more recent researches in other departments of physical science.

I ought not to close this short address without expressing my great regret that Montreal does not possess any adequate means, owing to the want of proper instruments, for prosecuting the science of Astronomy. A climate like that of Lower Canada, which furnishes, upon an arcrage, 120 nights in a year suitable for celestial observation, offers a vast field for astronomical labours, and also for the investigations now being carried on in celestial chemistry, and the spectum analysis. Since our last annual meeting, many original papers on subjects more intimately connected with Natural History have been read before the Society, or printed in the Canadian Naturalist, the perusal of which will shew that many new and curious facts have been observed and recorded, bearing upon the geology, zoology and botany of British North America. These papers will furnish evidence that the mombers of this Society have not been idle during the past session, and that some of them have devoted a considerable time to the study of those objects which come more directly withia its scope. Those who are more particularly engaged in the study of natural history in Canada, know further that investigations have been carried on during the past Summer, the results of which have not yet been recorded. Among the papers to which I may more particularly refer are: four on Geology and Palæontology, by Dawson, Billings, Packard and Whiteaves; four on Zoology, by

Stimpson, Parkes, Couper and Ritchic; two on Botany, one by Mr. Watt, and another from Dr. Gibb; and one on Geography, from Dr. Hunt. I would refer to the pages of the Canadian Naturalist for more ample information on these points.

The pursuit of science, in its legitimate sense, is to endeavour to advance man's happiness, and to elevate and refine every human sentiment. Associations of a like character to our own are intended to diffuse intelligence and the light of truth to man, to fit him for a higher state of existence.

The study of nature has formed the object of the most elevated and aspiring thoughts,-thoughts that have dwelt on the works and wonders of creation. What is more beautiful or more elevating than those aspirations that direct us to contemplate the wisdom and goodness of God? and what cam be more pleasing than that kindred minds should associate in mutual harmony, and contribute each his small portion (though small) to the grand treasury of knowledge and of truth? Nor is it possible to suppose that the onward progress of true science will ever operate to the disparagement of that devout homage we owe to Him in whose hands are held our daily wants and future destiny; but on the contrary science, if directed in the proper paths, will aid in fitting us, after a life devoted to its pleasures and its beauties, for the enjoyment of that intellectual intercourse which has ever been among the holiest and noblest aspirations of man.

I have not entered much (nor did I intend) into the business part of the Society's operations, properly so called, leaving it to your Council, Scientific Curator and Treasurer to present their reports, which, I have no doubt, will be very satisfactory. But I must not forget to mention the eminent and efficient services of Mr. Whiteaves. A look into our muscum will, I am sure, convince any one of the amount of labour he has bestowed; and I feel sure that your Council will render also a good account of his recent visit to England.

For my own part, I am sorry to say that a lack of time has prevented me from filling the office of President so well as I could have wished. In resigning the charge into your hands, I must be allowed to express a fervent wish that increasing prosperity may mark our way; and to say that we may congratulate ourselves on our increasing usefulness in spite of a Winter of more than ordinary excitement, owing to a most wicked and unheard-of threat of invasion of our country by strangers, many of our young
men having taken up arms in defence of our homes. But I trust that now peace is again restored to us, and hope that war, with all its appalling features, may merge into the calmer pursuits of science; and that the Montreal Natural History Society may long continue to diffuse and spread knowledge; for
" There's beauty all around our paths, if but our watchful eyes
Can trace it 'midst familiar things, and throngh their lowly guise."

ON THE VITAL STATISTIOS OF MONTREAL.

By Philip P. Carpenter, B.A., Pif. D., Hon. Sec. of the Montreal Sanitary Association.
In the Canadiun Nuturalist for 1859, pp. 173-186, was published the first attempt to eliminate and explain the sanitary statistics of Canada. The facts and figures thercin set forth were carefully scrutinized in this and other cities. As was to be expected, the conclusions arrived-at were frequently called in question; but the writer was charged with inaccuracies which beionged to the data, and not to the working-cut of the materials. The figures were not set forth as accurate ; but only as the nearest approach to aceuracy which was then attainable.

The census of 1861 has now furnished elements for comparison with similar results in the previous decade; and the yearly tabulation of burials and baptisms in the city of Montreal and in the adjacent counties has added to the cumulative evidence of the peculiar uuhealthiness of he city. It is proposed, in the present paper, to present the results of these two sources of information; and to compare them with a third source, viz. the weekly returns of interments at the city cemeteries, which were not accessible to the writer in 1859.
A. Census of 1861.

It must be premised that the deaths are twice tabulated in the census returns, viz. under ages, and under diseases. On analyzing these in order to ascertain the proportions of deaths from xymotic diseases, of deaths under 5 years, and of deaths above 70 years, to the total deaths, it was found that in Quebec City, then the capital of Canada, there was no less a discrepancy than 296, in the total number of deaths recorded, between these tro tabula-
tions. . Such a glaring inaccuracy in a work executed at considerable expense, and demanding the greatest care to make it of practical value, is not calculated to raise the character of the Canadian Executive ; and throws considerable doubt on the value of the returns in general. Evidence is given in the 'Second Report of the Financial and Departmental Commission,' Feb. 1864, pp. 32 et seq., that "the irregularities in the returns themselves resulted from the ignorance of many of the enumerators as to the object of the different columns; and carelessness in leaving some of them blank, or filling them in a manner that was manifestly absurd. Where the addition of several columns should have agreed with the total given in some other column, it often happened that irreconcilable differences occurred. . . . Some mode of bringing these totals into harmony was necessary; and an arbitrary system of what I must call cooking the figures was resorted to for the purpose."

The returns for Montreal City are said to have been made with the greatest attainable accuracy; yet the deaths for the year are only stated as 2,038 , while we know that 3,181 interments actually took place during the year at the two eemeteries, being a difference of 1,143 , or more than 50 per cent. If it be supposed that this marvelous discrepancy arose from a different division of the year, the fact remains that the interments for 1860 were 3,171 , and for 1862, 3,461 ; in neither case presenting a perceptibly lower rate.

If such be the manifest and gigantic untruth in the returns of the two largest cities of British America, it is hard to place any reliance on returns of places of less importance, least of all of country districts. Even if the figures had been accurately given, they would only have established facts for a single year, which might have exceptional: as it is, they must only be accepted for comparative, not for absolute results. Such as they are, they are prcsented in the following table, where the first two columns A and B give the actual population and mortality. Column \mathbf{C} presents the average deaths among each thousand of the population. Column D shews the number or deaths, out of every hundred from all causes, which were due to xymotic diseases. When this proportion is permanently high, it is a sure sign of bad air outside or within the dwelling, or of polluted water: wherc it is exceptionally high (as, apparently, in Ottawa, Laval, Vaudreuil, Soulanges and Laprairie) it betokens an epidemic, which is probably due to cumulative corruptions: where it is remarkably low, it may be
taken as a very favourable sign of the sanitary conditions. Column E gives the percentage of the total deaths which took place under five years of age. If accurate, unless there were some special infantile epidemic, the high or low percentage in this column ought to be a sure test of sanitary condition; but the high rate in healthy Upper Canada, never falling below 35 p. c., and in even the country districts of Lower Canada (with the exception of Soulanges), needs some explanation not yet given. Column F gives the number, out of every hundred deaths, which were of people above the allotted term of 70 years of age. Contrary to the previous columns, it ought to be highest in the most healthy districts; but the numbers are so low that they could only be trusted on an average of years, or for a large population. Thus the low rate for Three Rivers, and the very high rate for Soulanges (ncarly five times that of Montreal) are probably accidental. Column G exhibits the proportion between the births and deaths in the year; the figures representing the deaths in each district to every hundred births. If accurate, these ought to be lowest in the most healthy districts, as we ses in the case of Vercheres which presents only half the death-rate of Montreal.

The last column, H , representing the number of Catholies out of every hundred in the population, has been added to test the value of a suggestion made in certain quarters that the religious customs of the French Camadiams, who bring their infants to be baptized in the church, even in the coldest weather, was a main cause of the excessive infantile mortality of Montreal. It will be seen that the proportion of Catholics is less in Montreal than in any other quoted district of Lower Canada, except Sherbrooke.

The returns may be regarded (subject to exceptions) as sufficiently correct to show the compurative mortalities of cities and adjacent countics, and to compare these with the ratios worked-out from the preceding census. It is presumed that the causes of inaccuracy will affect the different returns in somewhat of the same ratio. They must also be taken (whether accurate or not) as our only data for the actual population; and, by comparison with the census of 1851 , for the yearly average rate of increase. There was no temptation to "cook the figures" in this, the easiest part of the work; least of all, to reduce the population below its actual extent.

In all the columns which include Qucbec city, two sets of figures are bracketed together for the reason stated above. Analogy proves
that the higher rate, assigning 1,111 deaths, is more likely to be correct.
I. Sanitary Statistics of the Census of 1861.

In the above schedule is first given the general average for the whole of Canada, from Gaspe to Essex, including the cities.

Next come the figures; 1. for the whole of Upper Canada; 2. for the same, excluding the five principal cities, but including all the others; and 3 . for the five cities, in the order of their population. As compared with England, one cannot but be struck with the extremely low rate of mortality throughout. English insurance companies doing business in the province according to their home tables, may expect to gain considerably on life policies.

The third group presents the principal statistics for Lower Canada; first for the whole province; next for the same, leaving out the two unhealthy cities, Montreal and Quebec; next for the province, leaving out also Three Rivers and Sherbrooke; (these however, although as unhealthy as I'loronto, do not affect the general average;) next for Montreal, and for Quebec with its double entry of "uncooked" figures; nest for the county of Quebec, leaving out the city; and lastly for the two smaller towns, which, though healthy in comparison with their populous neighbours, are much more unhealthy than the larger cities of Upper Canada.

The next group contains the figures for the eight counties round Montreal, which were included in the registration district, and whose returns are preserved at the Protonotary's Office. Some of these display a high rate both of xymotic and of infantile mortality ; yet when their total is added up, and the average taken and compared with that of the city repeated below, the excess of deaths amounts to one citizen takien yearly out of every hundred, who would have lived had he dwelt in the country, with the same climatal conditions, and a preponderating Catholic element.

The contrast is perhaps rendered more apparent by leaving out Vercheres from the above total, and thus bringing the country population to an almost exact equality with that of the city. Although the abstraction of this healthy district somewhat raises the death-rate for the rural population; we find that in that year 904 persons were liilled by city life; 12 per cent more of city than of rural deaths were of children under five years; less than half the number reached the age of 70 ; and there were 17 additional deaths to set against each hundred births. This was in spite of special epidemics which appear to have visited at least half of the rural districts, and which caused nenrly 4 out of every hundred deaths more than in the city.

The last group of figures shews the contrast between Montreal, the most unhealthy, and London, the most healthy of Camadian cities, which presents a death-rate below that of the rural districts of Lower Canada. It appears that the extra mortality of Montreal amounts to 137 in every 10,000 persons; that for every 10 persons who die in London, 25 dic in the older city; and that, out of every hundred deaths, more than 26 additional cases of children cut off under 5 years of age are found in Montreal.

The following is a comparison of the statistics of population and mortality between the census of 1851 and that of 1861. Some particulars from the report of the (English) Registrar General for 1857^{*} are added.

2. Comparative Sanitary Statistics of the Census of 1851

 and of 186 I .| ALL CANADA | Population. | | Tutal Deaths. | | $\begin{aligned} & \text { Deaths } \\ & \text { per roon } \\ & \text { living. } \end{aligned}$ | Excess of Deaths in 186x over rural districts of | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} 1851 \\ 1,842,265 \end{gathered}$ | $\begin{gathered} 1861 . \\ 2,507,657 \end{gathered}$ | $\begin{gathered} 1851 \\ 19,449 \end{gathered}$ | $\begin{gathered} 1861 . \\ 23,384 \end{gathered}$ | 1851
 1861
 10.51
 10.5 9.3
 | Upper Canada $6,269$ | Lower Camada |
| Upper Canada. | 952,004 | 1,396,091 | 7,775 | 10, 160 | 8.2 7.2 | $55 \$$ | |
| Do. less 5 cities | 880,737 | 1,292,207 | 6,754 | 8,813 | 7.50 .8 | | |
| 'Toronto. | 30,775 | 44,827 | 474 | | 15.4 1 $^{16.3}$ | 411 | 263 |
| Hamilton. | 14,112 | 19,096 | 172 | | 12.211 .3 | S6 | 19 |
| Ottawa . | 7,760 | 14,669 | 90 | 172 | 11.511.71 | 71 | |
| Kingston | II,585 | 13,743 | 185 | | | 35 | |
| London. | 7,035 | 11,555 | 100 | 102 | 14.28 .5 | 23 | |
| Lower Canada. | 890,261 | 1,111,566 | 11.674 | 13,224 | 13.1\|11.9 | 5,668 | 1778 |
| Do. less 2 cities. | 790,494 | 970, 134 | 8,632 | 10,075 | 10.910 .3 | 3,395 | |
| Montreal....... | 57,715 | 90,323 | x,978 | 2,038 | 34.4 22.5 | 1,417 | 1101 |
| Quebec...... .. | 42,052 | 51,109 | r,064 | 1,111 | $\|25.3\| 21.7 \mid$ | 761 | 582 |
| All England... | | | | | | | |
| London.......................... 2 25.0 | | | | | | | |
| Eastbourne, Sussex. 15.0 15.0 | | | | | | | |
| | | | | | | | |
| Average Deaths in ail England from xymotic diseases, out of every hundred deaths. | | | | | | | |
| | | | | | | | |

If these returns could be relied upon, they would present an extremely flattering picture of Canada in general, and even of the cities in particular, as compared with the rural districts and cities of England, and as compared with its own condition ten years previously; Toronto and Ottawa being the only cities in which

[^4]the mortality has increased. But as we know that the deaths for Montreal are glaringly understated, we are obliged to doubt the accuracy of the returus in other districts also. As the registers of interments at cemeteries and churchyards must be always accessible to the enumerators, it is hoped that the authorities will take the necessary steps to insure accuracy at the next decennial census.

The following table has been calculated in order to estimate the proportion borne between the interments at different ages, and the number living at the same age. 'lhe "total deaths" are probably much below the real numbers, but the ratio between the ages may be sufficiently near the truth.

3. Population and Deathe in Montreal at different ages: from the Census of 1861.

It appears, therefore, that for every hundred children who die under one year in Montreal, aly sixty die in Quebec, and thirty in the country districts. For every hundred who die under five years in Montreal, sixty die in Quebec, and only thirty-six in the country districts.

B. Protonotary's Returns.

It appears, by the rate of increase ascertained from the census of 1861, that the population of Montreal City must have been greater than that assumed in the table printed in the Canadian Naturalist, 1859, p. 176, so far as the later years are concerned. Subtracting that rate, viz., 3,260 annually, to find the population
before 1861, and adding it for the subsequent years,* we are able to present a table approxinately correct, as follows :
4. Montrial City: Returns of Baptisms and Funeral Services.

Year.	Supposed Population	Births.	Deaths.	Excess of Births over Deaths.		Deaths per 100 Births.
1859	$\mathrm{S}_{3}, 803$	4,238	2,581	+1,657	30.8	60
1860.	97,063	4,438	3,016	+1,422	34.7	68
1861.	90,323	4,579	3,005	+1,574	33.2	65
1862	93, $5^{8} 3$	$4, \mathrm{SII}$	3,222	+1,559	$34 \cdot 4$	67
1863.	96, ${ }^{4} 4$	5,388	3,510	+1,378	36.2	65
1864.	100,103	4,024	4,306	- 282	43.0	107
1865.	103,363	4,339	3,732	+607	36.1	86
Average of 7 years.	93,583	4,545	3,390	+1,155	36.2	74
Average of 6 years(-1864)...	92,406	4,632	3,177	+1,455	$34 \cdot 3$	68

The returns from which this table is constructed were the most accurate known at the time the former article was written. They are now known to be consideraby below the truth. They only profess to register religious services at birth and death; so that many children are born, and some corpses perhaps interred, without the names appearing in the clerical registers. The returns are not always sent in with becoming punctuality; and none are yet accessible for the year 1866. Their chief use is in furnishing data for the comparison of births and deaths; and of the city with the country districts. These last consisted, from 1859-1861, of the following counties, viz.: Hochelaga, Jacques Cartier, Laval, Vaudreuil, Soulanges, Laprairie, Chambly and Verchères. In 1862 Vaudreuil, and in 1863 Soulanges, were removed to another registration district; but their averages have been added in, to make the returns for the different years correspond. The population in 1861 is taken from the census; a comparison of this with the census of 1861 gives 3817 as the average yearly rate of increase. It is probable that these country retures are more accurate than those of the city; the population being less affected by immigration; and the proportion who are careless as to religious observances being much smaller. It will be specially noticed that there is no remarkable fluctuation in births in 1863-4, nor extra mortality in 1864.

[^5]5. Eight Adjacent Connties: Returns of Baptisms and Funcru'. Services.

Year.	Supposed Population	Births.	Deaths.	Excess of Births over Deaths.	$\begin{gathered} \text { Deaths } \\ \text { per } \\ \text { p,ooo } \\ \text { living. } \end{gathered}$	Deaths jer 100 Births.
1859.........................	98,160	4,093	1,881	+2,206	19.1	46
1860.	101.977	4,013	1,787	+2,226	17.5	44
1 SGI	105,794	3.935	1,799	$-^{2,136}$	17.0	45.
62	109,611	3,882	2,020	$f_{1,862}$	18.4	, 3^{2}
1863	113,428	3,895	1,323	-2,072	16.0	47
$1{ }^{1564}$	117,245	3,712	2,019	-1,693	17.1	54
1865.	121,062	3.943	2,045	+1,893	16.9	52
Average of 7 years	109,611	3.923	1,911	$+^{2,012}$	17.4	48
1)o. Montreal.	93,583	4.545	3,390	+1,155	36.2	74
Balance for the city, + and-	-16,028	± 622	+1,479	-8_{57}	+18.8	$+26$

It appears, therefore, that although the average population of Montreal is more than sixteen thousand less than that of the eight counties, (making a difference greater than the whole population of Vercheres,) it furnishes yearly 1479 more deaths, being at the rate of 188 additional yearly deaths among each myriad of the living population, which is more than double the country rate of dying.

It is found to be a stamdard fact in sanitary statistics, that, by a compensating power in nature, extra deaths are accompanied by extra births, so that if a city has above the normal number of lirtt s in proportion to the population, i^{+}, will be found to have also an abnormal number of deatlhs. We find therefore that, for the smaller population of Montreal, there is yet a yearly excess of 622 births; yet in spite of this, there is a yearly loss to the city, on comparing the balance of births and deaths with that of the country, amounting to 857 souls, or 26 extra deaths out of every hundred births. Such is the contrast presented, not by a single year, as in the census returns, but by the average of seven years, between the city and the country, both having the same climatal conditions, and the balance of comforts and the means of living being decidedly in favour of Montreal.

C. Interments at the Cemeteries.

We have been obliged to express doubts as to the accuracy of the previous returns: Those of the census, even if correct, apply to one year only. Those of the clergy apply only to religious services; and among them may be some which are not accurately registered. But of the graves dug, and the coffins
actually interred, there can be no mistake. That the name, age, and other circumstances attending the death of a citizen should be actually contered in the register, without that person actually having died, camot be believed. Citizens may have died, and been interred elsewhere ; they may have been interred at the cemeteries, and by bare possibility an entry not have been made; the returns may not therefore be complete, but they cannot be gainsaid so far as they go. That such and such numbers of persons were interred at Cote des Neiges and at Mount Royal Cemeteries on such and such dates, is recorded in black and white, and forms a record of human life prematurely cut off, truly fearful to contemplate.

It is no doubt true that several interments are made of country residents: but the suburban districts are not populous enough materially to affect the averages; and the number of countrymen buried from them is probably balanced by citizens who die or are interred elsewhere. The census returns of population may indeed be incorrect; and therefore the assumed yearly increase, and the actual rate of mortality per thousand. But there are three classes of facts which are not affected by these chances of error, and which are of the highest importance; viz.: 1. the comparative mortality from one year to another; 2. the comparative mortality at different seasons of the year ; and 3. the comparative mortality of children and adults.

In accordance with a Municipal Bye-Law, weekly returns are tabulated, at the office of the City Clerk, of all interments in the burial grounds of the City of Montreal. They are compiled from sheets sent from the "Catholic Cemetery;" and from the "Protestant Vaults or Burial-ground." The latter is said to include all interments made elsewhere than in the Cote des Neiges Cemotery. These sheets are ruled to contain the

No. \mid Name. \mid Date of Deccase. $|\mid$ Children. 1 Married Men. $|$ Widovers.
Bachelors. \mid | Children. I Murried Women. I Widows. 1 Unmarried Women.

The last two columns, in the Catholic sheet examined as a specimen, and even the previous ones of place of residence, are imperfectly filled up. With more care in the registration, and with accurate tabulation extending over a series of years, these sheets might afford materials for fixing the special localities of
extror mortality, which might produce most important results. Many of the streets being extremely long, and containing houses, even in the same ward, differing very greatly in sanitary condition, the member of the house ought in every case to be recorded. As in England, no interment ought to be allowed, without the production of a duly authorized medical certificate, assigning both the proximate and the remote cause of death, buth of which should be recorded.

The only items tabulated in the City Clerk's register are the numbers in the columns for males and females, and the totals for rach ueck. There are two columns for disease, simply divided between 'epidemic' and 'others;' but the epidemic of cholera, which caused this return to be instituted, (on July 16, 1854,) having terminated in November, no returns have been entered under the disease columns since that date. The columns for 'children' include all deaths under twelve years of age.

The returns for $185 \pm$ are of course incomplete. There is an entry of $27 \pm$ deaths from cholera, from June $2 S$ to July 11; and of the total deaths registered from cholera being 1067, principally in July. The greatest mortality was in the week ending July 23 rd , viz.: 281 ; the least, Nov. 25, viz.: 33. The totals are as follows:

6. Partial Returns of Deaths in Montreal, for the Cholera

 year, 1854.| 15 | Children. | Adults. | Total. | Weekly Average. |
| :---: | :---: | :---: | :---: | :---: |
| July, 3 weeks | 414 | 396 | Sto | 270.0 |
| Aug., 4 " | 2132 | 278 | 540 | 135.0 |
| Sept., 5 " | 211 | 93 | 304 | 60.8 |
| Oct., 4 " | 103 | 60 | 163 | 40.7 |
| Nov., 4 " | 99 | 74 | 173 | $43 \cdot 2$ |
| Total. | 1,0S9 | 90: | 1,900 | 99.5 |

The cemetery tables enable us to present the complete returns for twelve years, from Jan. 1, 1855, to Dec. 31, 1866, inclusive; and to divide them between 'children' and adults.

The population for cach year has been calculated, as exactly as possible, not by adding and subtracting a fixed quantity, as in tables 4 and 5 , but according to the average rate of increase, which is found to be very nearly $4 \cdot 7$ per cent.; (that of all England being somewhat under 2 p. c.) Of course a considerable part of this large increase is due to immigration, and is a fluctuating element. This
was probably greatest during the American war, and least in 1866, when the nominally high wages in the Cuited States tempted many to emigrate. Due allowance is made for the excess of deaths over births in 1854 and 186-4.

The following table presents the tutal population; the total deaths; the deaths of all above 12 yeurs of age, called cudults; and of those under 12, classed as children. Corresponding columms exhibit the proportion of each entry of death to 1000 living persons of all ages. A separate column exhibits the proportion between every 100 deaths of p_{c} somss of cll ages clbuee 12 , and the corresponding deaths in the same year below 1ㄹ. In every yerer axcrpt 1866, the latter are mare then doudle.- In order to render more conspicuous the high death-rate of the city, a tenth colum shews the average group of individuals among whom a single decth occurs, vis: : among every 30 in the healthier years, every 28 in the balance of years, every 22 in 1864, and every 17 in the cholera year. The eleventh column shews the actual mumber of deaths which occurred in the city above the rural average; that is, of lives which might have been saved, had the people been scattered over the neighbouring counties. The lant colum presents the same excess of city death, as compared with each 1000 living.

It will be obscrved that although so large a proportion of the moribund population were killed off in the cholera year, the succeeding year, 1855 , was still unhealthy. From $1856-1850$, the mortality, though frightfully great, was below the average. The six years from 1860-1865 march on with steady course, presenting a death-rate only equalled, in the worst English cities, during pariods of special pestilence. In 1866, there is a marvellous and sudden rebound to the death-rate of the least unhealthy year, 1858. During 186t, there was a terribly fatal epidemic of scarlatina, its virulence being no doubt caused by the accumulations of xymotic poison, which then attained their maximum. These fluctuations are brought out most strongly in the column for children's deaths: they are much slower in affecting adults. With them the rise does not begrin till 1863; it is even somewhat lower in 1S6t; and there is no change for the better in 1866.
Ratc of Mortality for the City of Montreal, 1855-1866: from the Comotery Returns.*
 *The table may be thus read :-"In $1 \$ 64$ the population of the city being 103,664, 470 corpses were interred; that is, 453 out of every myriad living (98 above the average), or one out of cevery 22 persons in the city. If the same people had lived in the country round, $2,92 \mathrm{n}$ need not have died, or 232 lives would have been saved in every myriad. but of the corpses interred, only 1165 were above twelve years old ; that is, 12 out of every myriad living, which is only seven above the average. An the other corpses were of chitdret utter tavelve, viz., 3.536 , or 341 out of every myriad people in the city, which is gr above the average. In that year, to every who died from tuelve years old upuards, there were no less than 305 infants and young chthdren under taveluc." In the same way, all the tables may be read without decimals, by quoting 1,000 for 100 , and 10,000 for 1,000 : or, for common purposes, the 1,000 may be retained, and the decimal figure omitted.

We are now in a position to judge of the statistics recorded under sections $A \& B$. The following table exhibits these in comparison with the totals from the cencteries. It appears that during the eleven years no fewer then 2,134 deuths have escerperl registration by the clergy; being never less than 76 in a year; on the average 19土; and, in the deadly year, actually 395. The average equals 6 per cent of the total deaths; or 22 unrecorded deaths to every 10,000 living.

In the case of the census returns, the defiviency is still more startling; no fower then 36 per cent of the totel deuths having escaped recording.
8. Comparison of 3 returns of Deaths in Montreal, 1855-I865.

Year.	Cemetery Returns.	Clergy Returns	Not entered in Clergy returns.	Census Return	Not entered in Census Return
1855	2,416	2,231	185		
1556	2,360	2,234	76		
1857.	2,490	2,367	123		
1550	2,510	2,2099	211		
1859	2,766	2,591	155		
1560 1561	3,171 3,151 3,161	3,016	155		
1861 1862	3,181 3,401	3,005	176 23	2,03S	1,143
${ }_{1} \mathrm{SO}_{3}$	3,606	3,510	96		
1564	4,701	4,306	345		
1565	4,025	3,732	29.3		
Total.	34,687	32,553	2,134		

These facts are surely sufficient to convince the most seeptical of the importance of a compulsory civil registration of births and deaths. In addition to the usual details, it is very necessary to provide that no death be registered without the production of a medical certificate, declaring the remote as well as the proximate cause of death. There should be heavy penalties for any interment without previous registration.

The next step in our aualysis leads to very important results: it is, to distribute the total deaths for cach year under the mouths in which they occur. This is done in table 9 for all ages; in table 10 , for children under 12 ; and in table 11 , for children above 12 and adults. The numbers which include five weeks instead of four are distinguished by large-faced figures. The totals for cach year are added at the bottom; for the same month in the treclue yecurs, in the last column.

9. Total Deatlis in Montreal, of all ages, for cach month

 from Fanuary, 1855, to December, 1866.
10. Deaths of Children under 12 in Montreal, for each month, from 1855-1866.

I I. Deaths of Adults and Children above 12 inn Montreal, for each month, from 1855-1866.

	1855.18	7.1	186			1863				
		[10	cc\|						5\%	¢860 940 90
Arril...	717	${ }^{7} 8$	\% 79	${ }_{6}^{68}$		9	136		510	1,928
jume.	72	${ }_{6}{ }^{3}$	${ }_{62}^{44} 7$	92		76 S6	-		103	${ }_{942}$
dusus	4_{5}^{4}	咢 59	${ }_{10}^{19} 9$	St	10	${ }^{6} 120$	${ }_{8}$	(1)	${ }^{3}{ }^{74}$	938
Sepente	5\%		${ }^{24}$			7	107		(12) 117	903
Noctobier				(\%0					(104	97
December.	${ }^{43} 15$	50	${ }^{69} 9$			778		17	130	1,004
ot	$\begin{array}{\|l\|l\|} \hline 721 & 743 \\ \hline \end{array}$	796771	$\begin{array}{\|l\|l\|} \hline 8+7 & 9=2 \\ \hline \end{array}$	945					,26	11,365

In order to bring out more vividly the startling differences exhibited by the foregoing tables, not in one year only, nor in many, but in cuch one of a long series, a fresh series of tables has been constructed, nos. 12-14, cxhibiting the average weekly mortality of each class during each month. This is done by dividing the previous items by 4 or by 5 ; fractions below one-tenth beingomitted. The averages for each year, and for the sum of years, are in each case constructed from the totels, and not by the mere addition of the previous items, which would involve error from the disregarded hundredths.

12. Average Wcekly Mortality, of all ages, for each month

 from Fanzary, 1855, to Deccmbcr, iS66.| Year. | | | $1 S_{57} 185$ | 859,1860 | 1861 | $1_{1} 862$ | 1863 | 1894 | ISO_{5} | | Average per wor h in coch momth. frymy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 345 | | 43.438 .8 | 41.25 | 53.7 | 65.5 | 57.4 | 2 | | | 52.7 |
| February | 50.7 | 37.5 | 46.047 .0 | 47.0,51.0 | 51.0 | 53.7 | 46.5 | 77.0 | 65.71 | 55.5 | 52.9 |
| March | 52.0 | $45 \cdot 4$ | 49.037 .0 | 45-5.52.6 | 4tit | 55.4 | 54.5 | g0.0 | 6.4 .71 | 59.4 | $54 \cdot 1$ |
| April | 55.7 | 44.0 | $45.246 \cdot 7$ | $4^{8.655 .7}$ | $45 \cdot 5$ | $49 \cdot 7$ | 57.7 | 10.2 | 76. 6 | 73.2 | 60.1 |
| May. | 46.5 | $43 \cdot 0$ | 50.0'43 | 4.4-2'59.7 | 53.0 | 67.2 | 58.8 | 92.5 | 75.7 | 64. 5 | 57.6 |
| June. | 50.4 | $45 \cdot 7$ | 47-7.45 | 59-5:79.S | 54.4 | 84.7 | 76.0 | 103.2 | SI. 5 | 56.8 | 65.0 |
| July... | 61.2 | 00.0 | 64.069 .8 | 90.295.7 | 101.7 | 114.2 | 115.5 | $127 \cdot 4$ | 111.2-1 | | 93.4 |
| August. | 67.7 | 69.6 | $62 \cdot 4^{\prime} 54 \cdot 2$ | 71-5!77-2 | 75.6 | 83.0 | 102. | 112.2 | 105.0 | $9^{62} .7$ | \$2.1 |
| September | 43.6 | $4{ }^{\text {S }} 5$ | 47.260 .7 | 47.060 .0 | 67.5 | 60.7 | 70.0 | 75.0 | \$5.2 | 78.8 | 62.4 |
| October.. | 33.7 | 3 3. 7 | $40 \cdot 4^{4}+45 \cdot 3$ | 43-4.52-5 | 64.0 | 54.0 | 54.6 | 63.4 | 66.5 ! | 66.2 | 51.7 |
| November.. | 22.7 | $34 \cdot 4$ | 39.041 .7 | $42.045 \cdot 2$ | 63.4 | 54.2 | 70.7 | 63.0 | 62.2 | 65.0 | 50.3 |
| December. | 36.4 | | $36.0045 \cdot 2$ | 44-4!50.2 | 5 Sc 7 | $51 \cdot 5$ | 71.0 | $73 \cdot 4$ | 53.5 | 59 | 52 |
| $\left.\begin{array}{r} \text { Average } \\ \text { week for } \\ x \geq \text { months. } \end{array}\right\}$ | | | 47-9, $4^{48.2}$ | $52.2 \mid 60.9$ | 61.1 | 66.5 | 69.3 | SS. 7 | $77 \cdot 4$ | 69.4 | 61.2 |

13. Average Weekly Mortality of Childrcn under 12, for each month, from Fan. IS55, to Dcc. 1866.

Year.				1858 ${ }_{1}^{1} 859$	${ }_{1860}$	$\|1861\|$	1862		IS64	IS65	1866	Average per week in each month, for 12 years.
January.	29.7	21	8	26.826 .6							37-5	35.8
February	29.2	$=1.7$	33.2	31.731 .5	33.7\|3	32.0	3 S. 5	27.0	55.7	46.7	36.5	34.9
March	36.0	30.2	31.7	$22_{4} \cdot 2=8.2$	37.0	32.6	$37 \cdot 23$	34. ${ }^{3}$	6 S. 2	46.0	36.6	36.6
April	41.0	29.0	30.7	29.733.0	36.0	28.5	32.7	35.0	77.4	Fo.:	$45 \cdot 7$	40.0
31 lay	30.2	25.0	$35 \cdot 2$	25.0333	42.73	36.0	45.6	$39 \cdot 1$	66.5	51.5	35.0	38.9
Junc.		31.0	32.0	$2 \mathrm{~S} \cdot 544.0$	${ }^{65} \cdot 0$	36.0	65.75	54.51	$79 \cdot 2$		36.2	46.9
July..	50.7	44.7	47.0	57-4 70.2	75.5	S. 2	97-7	94.01	103.8	90.	85.2	75.5
August..	53.2	56.2	$47 \cdot 4$	39.556 .0	60.55	$5 \mathrm{~S} \cdot 9$	67.6	79.4	91.2		72.2	63.3
September		33.5	31.2	41.523 .5	$43 \cdot 2$	49.2l	44.0	48.7	60.2	67.	56.0	44.6
October...	19.7	26.2	23.0	29.628 .6	32.54	45.0	34.7	39.4	42.0	$43 \cdot 5$	39.2	33.5
November.....		21.2	22.2	$28.5=7 \cdot 0$	29. 2	$43 \cdot 2$	3 S -4	${ }_{4} 8.2$	$43 \cdot 2$	38.5	39.0	31.9
December.....	23.8	27.2	$23 \cdot 5$	33-7,30.6	31.4 ${ }^{1}$	395	$32 \cdot 2$	50.0	47.6	30.4	33-2	$33 \cdot 5$
Average week for 12 months...				$3.436 .2$	$43 \cdot 2$	$43 \cdot 0$	47.4	$4 \mathrm{~S} \cdot 7$	66.6	54•9	\|45.9	43.0

14. Avcrage Weckly Mortality of Adults and Children above 12, for cack month from Fan., 1855, to Dec., 1866

It was natural to expect that there should be some difference between the mortality at different seasons of the year. It is found in England, on the average of 10 years, that this difference docs not affiect in the same degree the town and the comitry population.

15. Englisk Scasonal Variations betwecn Town ana Country MTortality.

| | | |
| :---: | :---: | :---: | :---: | :---: |

The town excess is thus shown to be intensified most in summer, and next in autumn; no doubt because the zymotic poisons are rendered most active in the hottest weather, and their influence continues till the frosts of winter. The effect of the heat in the five plague y/urs of London which have been recorded in history is very noteworthy. The bills of mortality shew the following average for every 1000 persons living.

16. Plaguc Ycars in London.

But if there are no special stenches to be drawn-out into virulence by the summer sun, the cold of winter renders it:the most unhealthy of the seasons; as shown by the following table for a year in which the minimum temperature was 11°.
17. Mortality of London Seasons in 1830.

The same is shown in the average of all England for 1857; when, the average quarter being assumed as 1000 deaths, winter furnished 1050 , autumn 1045, spring 955 and summer 950 . A long series of observations has led to such uniform results in England that the Registrar General is able to predict a definite excess of mortality for every considerable fill in the thermometer. The severe frost of Jan. 1867, caused an excess of 732 deaths in a fortnight in London alone; of which ouly 50 were of young persons under 20, and 411 were of old people about 60 . The same frost raised the death-rate in the 13 large towns to 31 per 100.

It would therefore be maturally expected that in the extreme cold of a Lower Camadian winter, the death-rate would rise proportionally. But it is not so. For addults there is a marvelous uniformity between the different months of the year. Old people, and indeed all above 12 , do not appear to be rendered moribund either by the intense frosts of winter or the unhealthy heats of summer. On the average of 12 years, it does not appear that their mortality varies more than 9 out of erery 10,000 living at all ages; or as 10 to 12 between Jamary, the most healthy, and April, the least healthy of the months. The lowest recorded mortality was in January, 1855, (many of the moribund adults having been cut off by cholera in the previous summer); and the contrast of the year is consequently the greatest, being 16.8 between that month and February. The highest recorded mortality of adults was in April, 1866, when the thawed stenches of an unusually severe winter were precipitated on the putrifying corruptions of previons years; the contrast of the year between April and July being $9 \cdot 0$. The year of death, 1804, affords a somewhat greater contrast, viz., $12 \cdot 1$ between April and September ; but those above twelve years old do not appear to have been more unhealthy than usual.

If winter cold does not specially kill the aged, we are not surprised to find that it appears by no means unhealthy to children.

The five coldest months ard uniformly the most healthy; the two hottest, not.only uniformly unhealthy, but so frightfully destructive that July lills off 247 children out of every 10,000 of all ages living, in culdition to the 184 utho die in November; which is as 23 to 10 , or more than double. This is necorly double the excess of the terrible year of death 186.4 over the niost healthy of the years 1858 . These facts are brought out in fearful contrast in the following table.
17. Comparative Weckly Mortality of each Month, on the avcragc of 12 years; $1855-1866$.

But this is mot all the contrast. It is rendered even more marked by comparing not the months but the wocks of greatest and least mortality. This is done for each year in table 18. It will be noticed that the maximum is uniformby in July or the first wetk in Alugust. The minimum is always in one of the cold months; or at least, as shown in the notes, a cold week appears with nearly as low a rate. There is one distinct exception for the mininum of 1866 , which appears in-June: for this there is a clear reason, which will presently be shown to add a striking confirmation to the general rule. In the year of mothers woe, 1864 , there is an excess in July of 101 deaths over the $4 \pm$ of October; which is the same as adding $\mathbf{5 1}$ per 1000 to the death rate of the city. In the cholera year, the deaths rose from 33 to 281 ; which last, if continued, would have added 195 per 1000 to the death rate of the city.-a mortality which only admits of parallel with the plague years of London before the fire. In this table, the extremes are of total mortality; as we have seen but little change in that of adults, there is no doubt that if the maxima and minima of children's
deaths had been eliminated, the result would have appeared even more appalling.

18. Weeks of Maximum and Minimum Mortality in Montreal, 1855-1866.

[^6] weeks in the year are 40 or above.
\dagger December 2x is quoted at 55.
\ddagger October 17 is quoted at 45.
§ Jan. 20 and Dec. a are each quoted at 45.
II Average range per 1,000 , without cholera year, 42.
IT Actual range of variation, on the average of 12 years, (leaving out 1854 , 72.
The number of living children in Montreal under 12 is to the total population as 29,249 is to 90,323 : those of children under 5 years to the total children as 15,196 is to 29,249 ; those under 1 year to those under 5 as 3,700 to 15,196 . From these elements, furnished by the census of 1861, and from the corresponding totals of deaths, the deaths of Montreal children under 12 years may be calculated in proportion to those living, of the sume ages.
19. Death-rate of Montreal Childron under 12, as compared with 1000 children living at the same age.

Average of years, months, and ages.	Estimated number of living children.	Total Deaths of Children	Deathsper 1000 hiving children.			
Average of 12 years, $1855-1866$, for all children under $12 \ldots$.	29,090	2,344	772		İr	ivi
The child-killing year, 1864 , for all children under 12.	33,591	3,536	105.2	$2:$	،	¢.
The least minealthy year, 1866, for all children under $12 \ldots \ldots$.	36,060	2,384	66.1	15	"	¢.
$\left.\begin{array}{r}\text { The most unhealthy month } \\ \text { Juty, } \$_{55} \text { to } 1866 \text {, for all } \\ \text { children under } 12 \ldots \ldots . . .\end{array}\right\}$	29,099	3,927	134-9	71	"	"
The least unhealthy month, November, $1855-1866$, for ail children under 12.	29,099	1,630	$56 \cdot 3$	18	،	"
Lower Canada, less 4 cities, 1861, for all children under $1=$	293,579	10,796	36.5	27	"	"
Average of Montreal children under 5 years, $1855-1866 \ldots .$.	15,119	2, 139	141.5	7	،	،
Average of Montreal children under 1 year, $1855-1866 \ldots . .$.	3,681	1,599	434.1	$2 \frac{1}{3}$		"

That is, three out of créry seven children born in Montreal, die before they are one year old!! Or, out of every 7 children under five years of age, living at the begiming of the year, one (on the average) will die before its close. Or, out of every 13 children, of all ages under 12, living in the city, on the average one will die during the year. It appears from the census returns, that even of the children living on the Island outside the city limits, or in any country district from Soulanges to Gaspé, out of every group of 27 one must expect to lose his life within the year; but if those children had been taken to live in Montreal in 1864, two out of 19 would have been seized by the destroyer; even if they had lived amongst us last year, when children had a better chance of life thim ever before, death would have seized one in every fifteen. Should these children spend July with their friends in the city, for twelve consecutive years, they must expect to follow to the cemetery twice that number of their companions.

Lastly let us compare the slaughter of the innocents in Montreal with their condition in different parts of England. Trable 20 compares the deaths of children of different ages with the total deaths at all ages during the same year.
20. Death-rate of Childrcn living in MTontrcal and in England, compared zoith ea'ery 1000 deaths at all ages.

	Deaths under I year.	Deaths under 5 years.	
North Lancashire.	174-3	318.7	$377 \cdot 3$
All England. .	214.5	391.0	$447 \cdot 4$
London. .	190.3	404.2	453.4
Iiverpool.	256.9	482.6	528.6
Montreal.	501.1	670.3	703.2
Excess of Montreal over Liverpool.	244.2	187.7	174.6
Do do North Lancashire............	326.8	351.6	325.9

The London death-rate of children is below the average, because of the large immigration of adults. There is perhaps a proportionate immigration into Montreal, for similar reasons. Liverpool is a commercial city, like our own with great natural advantages, but cursed with a neglect of the sanitary laws. It is cursed also by drink and by debauchery, to a greater extent than any other town in England. Being the most criminal as well as the most unhealthy city in the istand, it is called the Plague-spot on the MIFrsey. Yet the plague-spot on the St . Lawrence is nearly twice as fatal, in the first ycar of being, as the polluted queen of
the Mersey, with its cul-de-sac courts and tide-backed sewers; while round the sands of Morecambe Bay (within a fraction) only one of the coffins contains an infant of days to three which are laid within the bosom of our mountain forests, because the city rulers, and the owners and uccupiers of their dwellings, denied them the right to breathe, even for one short yemr, the pure air that nature is for ever wafting to our otherwise favoured city.

It was well said, in the Sanitary Report presented to the imperial parliament in 1858, pp. xxvi. that " 1 . The lives of young children, as compared with the more hardened and acclimatized lives of the adult population, furmish a verysensitive test of sanitary circumstances, so that differences in the infantine death-rates, are, under certain qualifications, the best proof of differences of household condition in any number of compared districts. 2. Those places where infants are most apt to die, are necessarily the places where survivors are most apt to be sickly; and where, if they struggle through a scrofulous childhood to realize an abortive puberty, they beget a sichlier brood then themselves. A high local mortality of children must almost necessarily denote a high local prevalence of those couses which determine a degenerution of race." These words are prompted by long experience, built on facts which cennot be gainsaid. If they are true of all high rates of infantile mortality, how awful must be their truth in this city where the rate is the highest yet presented! And if the number of graves in our cemeteries prove these things to be true on the average of the whole city, what must be the harvest of death if we subtract the population living on the healthy mountain-side, and mark the coffins from the houses in Griffintown! Surely a fearful responsibility rests on the members of the City Council, and especially on the members of the Health and Road Committees, as well as on all owners of property and householders in the city. Has any man a right to draw money from the rents of houses, by living in which children cannot but be killed? Has the Council a right to compel owners and tenants to cleanse their premises, while it leaves the streets, over which it assumes the entire control, unsewered and even recking with the surface filth of years? *

[^7]During the year 1864, without any known special predisposing cause, but apparently through the cumulative virulence of the deadly agencies alucuys at work, the fearful scourge of mortal disease carried off 3,516 of our children, or 341 out of every myriad of our population, which exceeded even the abnormal number of our births ly 280 . It does not appear that the legal guardians of the public health took any steps to mitigate this frightful calamity; and again in 1865, the mortality of children (as well as of adults) was above even the high average of twelve years.

But in the spring of 1866, owing to a wholesome dread of cholera, a strong public opinion, an Order in Council, and the labours of the Simitary Association (then first formed), the Corporation appointed two Health Officers for three months, and detailed police to act as inspectors. Only a very purtial surface cleansing of the yards was the result; the streets remaining as before, the subsoil rctaining all its pollutions, and the production of fresh poisons unchecked; and yet what was the result of this, aided probably by the unusually cold, wet, and windy season? Four hundred and seventy lives of children were saved as compared with the previous year; and June, which on the average is the most unhealthy month except July or August, actually furnished the weck of lowest deeths. Yet, no sooner was the cleansing finished, and the July sun drew forth to the surface the substratum of xymotic poison, than the death-rate of the children rose at once from 362 per myriad to 552 ; and the deaths of adults in the whole year excceded those of 1865 by fifty-five.

But if this minute instalment of what ought to be done, produced at once such a marvellous benefit as the saving of 470 children's lives, what might not be expected, were councillors, owners of property and houscholders to perform their manifest duties? And if they are not willing, for the love of God and the good of their brethren, to obey the plain laws of health and remove the causes of disease and death, ought not the power of the law to protect the helpless, and prevent the selfish from robbing their neighbours of their happiuess, and the very lives of themselves and their children?

Editor's Note.-The present number of this journal is published April 26, 1867.

REVIEW.

Ferns: British and Forcign; By John Smith, A. L.S.
The well-known ex-curator of the Royal gardens, Kew, has lately published this most useful fine manual ; intended primarily to assist fern cultivators, it is nevertheless valuable also to botanists. He gives a very interesting history of the introduction of exotic ferns into European gardens; an essay on the genera of ferns and their classification; an enumeration of the ferns at present cultivated, and very full instructions on their cuitivation. Mr. Smith's mode of classification aims to be natural and his tendency is to multiply generia unduly. His enumeration extends to 108t species (nearly half of those known to science) ; he gives many synonyms, a reference to the best descriptions and engravings in standard works, and wood-cut illustrations of the genera. Sir William Hooker recently said of our author :-
"The formation of this fine collection [of cultivated ferns in "Kew gardens] is mainly due to the exertions and ability of Mr. "John Smith. His knowledge of ferns and his writings upon "them, justly entitle him to rank among the most distinguished "Pteridologists of the present day."

Mr. Smith gives us, northern North Americans, no eredit for laving the following ferns in our native flora:

Phegopteris rhætica (the Polypodium alpestre of British botanists), which is found on the castern side of the Rocky Mountains; Dryopteris Thelypteris, one of our commonest ferns; Polystichum Lonchitis, which has a wide range and is locally plentiful; Scolopendrium vulgare, which is local out also abundant ; Asplenium Ruta-muraria, which is found in all the neighboring States, as far west as Michigan and further south than Virginia; A. viride, which ranges from Newfoundland to the Rocky Mountains; and perhaps thence to the Pacific Ocean; and A. septentrionale, not uncommon on the Rocky Mountains. We learn nothing of our author's views on Woodsia; he gives only two species, Ilvensis and hyperborea, and gives North America credit for neither of them; moreover his wood-cut, which is said to be a frond of Ilvensis, is ummistakeably hyperborea, as we understand that species.

We believe the following to be bad species:-Aspienium Michauxii is A. Filix-fœemina, one of the most variable of ferns; Cystea tenuis is merely a form of the protean C. fragilis; Aspidium atomarium should have been referred to C. bulbifera; Osmunda spectabilis is not separable from 0 . regalis, nor does our Onoclea Struthiopteris differ from the European form. Onoclea gracilis, and Ophioglossum pedunculosum are unknown to us. Mr. Smith's arrangement of the following species of the genus Dryopteris (or Lastrea) is not understood by us. He places American plants thus: Filix-mas, remota, rigida, marginalis, Goldiana, dilatata, cristata, intermedia, spinulosa. We look on their affinities
in a different light, and would arrange them as shewn below. Four of these forms we consider to be unquestionably one species; dilatata is our more common form northward, and is well-marked as at varietr, intermedia is identical with spinulosia and remota (as we understand it) hardly separable from it, while cristata is more closely allied to Goldiana than to any of the forms of spinulosa.

The publisher has done his part well, the book is neatly got up, well printed and remarkably cheap.

The question,-muder what circumstances is the author or emendator of a genus jusifified in writing his own name after such old species as he chosen to place in it? has lately been discussed; we incline to answer, "under no circimstances," being of opinion that a specific name should never be changed, and, that the original author's name should always be affixed to it. We append a catallogue of northern North Americim ferns, giving our views of the nomenci.ture and classification of this order; it includes all the species mentioned by Michaux and by Dr. Gray, and most of those mentioned by Pursh and by Hooker. The classification is based principally on that of Dr. Mettenius. Λ few species known to us only by name are omitted.

Suborder POLYPODINEA.

Iribe Achosticmes.
 Chrysodium, Fec.

1. C. auremm (Iimn. 1525).

Sl. 11.; Micha. Ml. Bor--Am. ii. (1520, 272 .

Tribe Polypodies.

rittaria, Smith.

1. V. lineata (Limu. 15:30).

Polypodium, Iimn. in part.
2. P. vulgare, Timu. 1544. wial. Sp. M1. ..., 172..
3. P. polypodioiles (Ijm. 152.).

Gymnogramme, Desvaux.
J. G. triaugularis, Kaulfuss,

Fanm. Fil. 75. Foundon Vaacouver laland by Mre. les.

Cheilunthes, Swatz.

There are three well-i, fined romedes of thin Hembs wizhin cray's limit-; bita as thy have burn
 kive eynomyens nor lio I know to which of the there.

1. C. Vestita, Swartz 123.

2. C. tomentosa, Gray's Mma.

3. C. lamuginosa, Nuttall. C. gracilis, Mcten. Cheil. 36.
('ryptoyramme, R. Bwwn.
4. C. exispa (Iimm. lije).
R. Jirown, App. Frank. Journ. Fit. Osmunda, Limn. Alloworur, Berndardi. © Inie INogal in Lake Suןcriar;"-Deore: probinbly the following.
5. (1. acrostichoides R. Br. 767.

Hooker considers there two planes to be specifically identical, which is prohnthly correct. As: Ahome combilless them gencrically ctistinet.

L'celleect, Linli.

1. 2. aracilis (alichx. 26),

II sk. Sp. Fil. ii., 133. 1'uris g. Michx. : 62. Pursh ifs. ledebour and Moore refer jpers villi ri (Gumbin) here, while swariz and Heoker reter it to C. crispus: shoth ithe former prove to he corret, this Hant must be named /'cllek Stelleri.
2 P. atropurpuren (Limm. 1534).
Jink, Fil. Hus. Iferol, w. Pteris a. Limm. Minix. 3in, lurnh gis.
l'eris, limn. in part.

1. 2. aquilina, Ijim. 1j:3:3.
P. cundata, Tinn, :S33. J'urah t68 is at varicty fomad in the Niuthern C'. S. and visewhere.
-idi(\&ntum, linn.
1. A. 1) edatum, Linn. 1557.

Tribe Aspleniere.

Blecthum, Limn., Presl.

1. B. Spicant (Iim. 1522).

Smith, furin T:ar,x,v. f11 O, mumh, tinn.:
 ㄹ. 13. servulatum, Rich.

Hoonduardia, Smith.

1. W. areolata (Tim. 1526).

Towner Jums, iv. t. sfo. W: angustralia.

2. Wr. Virginica (Lim.. Mant. 307). Snith, 1. c. \{11; W. Banisteriama, Mechx. 213. Scolopenidrium (Smith) Hook. §i cera.

1. S. vulgare, Smith 421 .

Asplenium Scolopentrium, Lim. 1537; S. otlicimarum, Swartz 89.

> § Camptosorus, Yink.

1. C. rhizophyllus (Limn. 153.36).

Link, Fil. Hort. Berm, ii. ©9.
Asplenium, Limm.

1. A. pimatifidum, Nuttall, Gen. X. A. Phans, ii. 2 ni.
2. A. montanmm, Willd. 34%. A. Adiantum-nigrum, Michx. git.
3. A. Ruta-muraria, Jimm 1idt.
4. A. septentrionale (Linu. 1524). Hothan, Dents. Fi. ii. 12.
ј. A. riride, Iludson, Fl. Ang. 3 B'; A. Tri.-ranomm Lime 154.
5. A. Trichomanes, Limm. 1540. A. melanocan:on, willut; Pursh Gobi.
6. A. cbencum, Aiton,

7. A. marinum, limn 1540 .

Attributed to the Lower Provinees by Sir Wim. Hooker,--problathl in error.
9. A. angustifolium, Michx. 263.
10. A. thelypteroides, Michax. 265.

> Athyrium, Roth.

1. A. Filix-fomina (Lim. 1551).

Hoth, Fl. Germ. iii. is ; N. filix-f. and N. ariolemisides, Mbelix. abs: also Aspla, nugustum, Willd., 1'ursh 6G4. l'erlaps an Asphenium.

'Iribe Aspidies. 1'hegopteris, Fec.

1. P. Dryopteris (Limn. 1555).

Fic, Gen. Wil. 213. Nephrolium D., Michx. 9ot. (Mr. Meore refers Michams's phat to the next -jucies.)

2. P. Robertiana (IToffm.).

P. calcarea, Fíc, 1. c. 2!3; Polypudiam enlenremm, Smith; dombtimly distinct irom 1' Mryapteris. Uni Ucreally hat erronconsly nteributed to Nurth Americi.
3. P. connectile (Michx. 271).

Polyphiliam Phegoparis, Linn. 150; I . comnectite, Wilht. 200, Pursh Gio. Michanis mane ombet to be metoril) 20 this piant; it has prierity over thase of Fie or Me:tenias.
4. P. hexagonoptera (axichx. 271). Féc, Genern Filicum, 233 .
5. P. rheticn (limm. 1552).
 Ifoppe : Aspidinm rhatiom, Swartas. Cowsendes; mocky Mis. sy" N. Lat, Br. Lyall.

[P. montana (Volger).

More properiy Aspidiom montanum; though it has been placed here by Fie.)

Aspidium, Swartz.
Polystichum, Roth. ; Dryopteris, Adakun.
§ Dryopteris (Schott) A. Gray. I.astrea, Yresl : Nephrodium, Richards, It. Brown, ILooker; Polgstichum, D.C., Koch, Ledebont.

1. 1). Thelypteris (Timn. 1528).

Gray*s Manual, Ed. Ist. 630.
2. 1). Nov-Ehoracensis (Limm 1552). Gray, i. e. 630, X. thelypteroides, Midhx. soz.
3. D. montana (Volger).

Aspol. Orempteris (Thrhart) Swartz 50. Mr. Moore sans that Aspichum montemun hats bero found in Vermont-certainty an error.
4. D. spimulosa-dilatata.
 tatum. Swart/ :20; and Λ. dumetoritm, Wilht. :(a). D), dilatata, Gray, I. c. ©i31. Ir. Gray justly cousidets this feth (which in common in enstum f^{E}. f., to be morely a variety of sispiditom sininulosian Su:art:
5. D. spinulosa-vera.

Polyporliam spinuloum Reczius: Aspd. к. Swartz 51, 6 Cominon werit of Qucbec.
6. D. spinulosa-remota.

Asph. remotum, A. Br.; Nephrodium r. Hook.
 Gray refers brengtoris remota here (as A. spimlosten var. Beotfirs-it may prove to be at dibtinct spries; it is not well known to me.
7. 1). cristata (Limm. 1551).

Gray; 1. c. 631; A. Lameastriense, Spreagel, Swarty $3 \pm$.
8. var. majus (Faton).
A. Gili-mms, Purih Giz?
9. 1). Goldiana, ITook.

Gray, 1, c. 631; A. filix-mas, Pursh 662?
10. D. Filin-mas (Jimn. 1551).

Schott, Gen. Fil. t. 9. Hocky Mts.
11. D. marginale (Limn. 1552).

Gray, 1.c. c33.
12. D. arguta (Faulf. 242).

ふ. risidum var, Americanum, Hook. Sp. Fil. ©0. 13. D. rigida (Llofim.).

Not of Gray, l. ce 631, A. rigidam, Swartz. 33. Attributer to North America by Mr. Benthandoutriess In crror.

§ Iolystichum, Schott,

Presl, A. Gtay ; Axpillum, lichards, 1 . 13mon, Dedrbour.

1. P. fragrans (Limn. 1550).
A. fragrans, Swartz, 51. In techanical chameters this platit is more properly Dryopheris firugans. and is bo conshdered by llooker, hedelonir, cre. I anrew with Dr. Gray in considering that iis natural aninity places it hers:
P. aculeatum (Limn. 1552).
A. aculeatum and A. lohathm (diton) Swarts. 33, anil A. angular. Willd. an". The typical form (d. senk-atum, Wind. ctc.) has not leen fotmi in Xroth Amerlea. Mr. Moore's remark-" extends "from the custa ra U.S. to Columbia on the nortit"west crati"-is certainly sul error. Wo have, lowever, two well-anarked and constant varicties.
var. Braunii (Koch).
A. Bramia, Spenner; P. I3rannii, Fie; which is
 nllime to
anymbar.
2.

var. lobatum; Deakin.
A. Robatum (aiton) Swartz, Willd. 260. . Ism dium deculectann var. lohateme was foumid be Mrs.
 near Ste. Amac.
4. P. Lonchitis (Linm. lij4s).

Schott, Gen. Fil. t. 9.
5. P. acrostichoides (Michx. 207). Schott, Gen. Fil.t. 9.
6. P. munitum (Kanlf. e30).

Referred by Mr. Mowore to A. felkinellum, Swartz ti. Yaucura lshat, ath ty- A. Lat., 1)r. Ly:all.

> Cyslect, Smith.

I atopt Sir J. V. Smith's characterintio atme for thin genke, as I do noi conrid.r berthatherd's genera to be of much valuc.-EMg. Fi. iv. 200, 2,

1. C. bulbifera (Limm. 1553).

Aкрiihum b., Swartz 69. "A. atumarinm Muh1.", Gray!
2. C. fragilis (Limm. 1553).

Smith, 1. c. sin ; N. temut, Michx. 269; A. atomarinan and h. tenue, Pursh 665.
3. C. montana (Lamarek).

Angidiam, Swartz 61. Said to be found in nortin-webtern Americt.
Woodsia, ?:. Br.

1. Wr. Ir ensis (Limm. 1523).
R. Mr. Mimn. Trans. s. 173 ; Niph. rudiduham,
 660.
2. Wr. alpina (Bolton).
 Ferns, t. i; W. abima, Mon, Nat. pr. Mr. Ferns. i.
 Scarcely distinct iroun.io. 1 - from whin, h, wher,
 shorter pinazs, mose manded haose, and darker ("feen almost ebencous) stia es which have iener ncales.
3. W. hyperborea (Liljeb.)

Nowfonadana, ber Geolorimal Surver. 1 ice gard the herasticham hegwithen s. n oi Latioblatat quite distinct irom the - t, whimem of Bohen, tFil. Brit. t. tiz), and as vary cluedy allacil to Aue 4.
4. TV. glabella, R. Brown.

Rich. Apo 39: 11wek. Fl. Bor.-Am.t. 23F. Probatle identical with Not 3 mat thus if: huperhoria var. plabelhe, but very distinct frum dos. 1 ande.
5. W Oregona, Eaton.

In Can. Nat. (1sti) 90.
6 W. scopulina, Daton.
I. c. 91.
7. W. obtusa (Sprengel).

Torray, Cat. Me. 1810; Aspidham, Swatz :20, Purdh grien.

Onoclert, Limm.

1. O. sensibilis, Jimn. 1517.
O. Whasibdata is marcly an nbmornal form having semi-feride frombs.
2. O. Struthiopteris (Limm. $\overline{5} 2 \%$).

Suarta 1h: Struthiqut-ris Lomaylmanica,
 from Onoclen.

Tribe Davalifees. Dicksonia, L'Heritier.

1. 1)? punctilobula (Michx. 268).

Kunz. in Silliman's Tournal, Nov. (1845) 88.
1). pilusiusema (Muht.) Wild. 48; Pursh 671.

Sub. HYMENOPHYLLEE.

II!menophyllhm, Smith.

1. 11. ciliatum: Swartz 147.
pursh citl. Doubtlesk an et, or of Push; ho
 found in ele Southern States.

Suborder SCHIZAINE E.

Schizu'c, Smith.

1. S. pusilla, Pursh 657.

Lygodium, Swartz.

1. I. paluatum (Limn. 1518). Snartz 151; Ct...inum paniculatum, Michx. 275. Hyalmglossum, Hilld. 8i, Putsh ítj.

Suborder OSMUNDINEA.

Osmunda, Limn.

1. O. regalis, β. Lim. 1521.
2. npectahlis, Willd. 38 , Pursh 6.59 .
3. O. Claytoniana, Iimn. 1521. Puth Gü̈; O. :nterrupta, Michx. 273, Pursh tis.
4. 0 cimamomen, Limu. 1522.

Suborder OPHIOGLOSSBE.
Botrychium, Swartz.

1. 13. Innatia (Limm. 1519). Swartz 171. Osmanta, Limm.
1. var. simplex. 33. simplex Hitcincoek.
2. 13. matricariafolium, A. Braun.

Onmanda matricaria, bresh. B. rutaceum, Swar:z171. Ponibly identical with Su. 1. Donatifully North Amanim.
4.
var. lanceolatum.
 Magotrom. Possibly a distinet apecits.
5. J3. virginianum (IInn. 1519).

Swartz 171; I'ursh Gúf; 13. gracile Pursh G:x; Entryphe, Michx. 8 I.
6. 13. lumaroides (Michx. 274).

Srartz lizi n. iumarioides, Pursh Gris.
7. var. obliqumm, Gray. In. obliqum (Doir.) Muht., Pursh 6:
S. Vir. dissectum, Gray. 13. disbicitma (Poir.) Minhl., Pursh cije.

Ophioglossum, Linm.

1. O. vulgratum, Iimn. 1518.
O. vilgatum and O. bullostan, Michx. 275-6, Parshais.

[^0]: *Ebiton's Note.-In revising aud preparing this for the press, the original paper has been considerably abridged by the omission of portions, whose place is indicated in the text. Some explanatory notes have also been added.-T. S. H.

 Vol. III F No. 2.

[^1]: * Here follors, in the original, a lengthened analysis of the memoirs of Messrs. Logan, Dawson, Carpenter, and Hunt, published in the Quarterly Journal of the Gcological Society of London, and already reprinted in the Canadian Naturalist.

[^2]: * These belong to the primitive gneiss formation of Scaudinavia, which the geologists of Canada, so long ago as 1855, referred to the Laurentizn system.-WT. S. H.

[^3]: * This is evidently an error of the author, since the black spruce has always been employed for making this kind of small beer.

 The French of Lower Canada apply the name of Ipinette to several trees; the Larix Americana is by them called epinette rouge, and the white and black spruce are respectively épinctte blanche, and épinette noire, while the name of epinettc grise is given to what we regard as a variety of the latter, P. mgra var. grisea. The origin of this word, which is not applied to any tree in France, is by no means clear. It has, however been used from an carly date in the history of the colony, as will appear from the following citation from the Histoire Naturelle du Canade, of Pierre Boucher, 1663. "Il y a une autre espéce d’arbre qu'on nomme épinctte; c'est quasi comme du Sapin, si non qu'il est plus propre a faire des masts de petits vaisseaux, comme des chaloupes et des barques, estants plus fort que le Sapin."

[^4]: * This is the latest return accessible at the free library in the Mechanics' Institution. It represents an average of many jears. Not a single district in England is found to have a mortality less than 15 per 1000, or more than 36.

[^5]: * This simple mode is not exact, being less than the real rate. But as the recorded deaths are also below the real numbers, the lower totals of population make the averages more near the truth.

[^6]: * Nov. 5 and 19 are each•quoted at 33 ; Oct. 8 at 32 ; and Jan. 8 at 33 . All other

[^7]: * Instanees were recorded by the Samitary Association, of women who were compelled last summer to open their windows over the recking fumes of the back courts, because they could not bear the still greater stenches of the street.

