The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurèe et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Caı tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plaits and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shati=ws or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages nont pas èté filmées.

L'institut a microfilıné le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliografhique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restauries et/ou pelliculees

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livrason

Masthead/
Gėnérique (périodiques) de la livraison

Additional comments:/
Commentaires supplëmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de zéduction indiqué ci-dessous.

The Flowers of Early Spring.*

by nev. J. W. CHICKERING, JH.
There is perhaps a nearly equal charm about the notes of the first robin, and the sight of the first Mayllower. It will be the object of this article to cnumerate, with a few notes upon cach, some of vur carlier floral visitors, in wood and mealuw, in Now England.
The list opens, not vory attractively, with a plant well-known to all, under the malodorvas name of Skunk Cabbage (Symplucarpus futidus), but whose flower is by no means so familiar, save to the ubserving botanist, and even he must be on the alert to obtain this dirst gift of Flura, in fall perfection of color and aroma. Early in April, or even in March, almost before the ice is fairly molted, may be found in low marshy ground, this flower, clumsy in form, repulsive and snaky in color, dark purple, with yellowish blotelics, and digusting in vilur, soon to be followed by the clump of large fleshy leaves, conspicuous during the rest of tho summer. Liko Stranomium, and most other noxious and unsightly weeds, it has been tried as a remedy for asthma, and with about as much effect.
In very pleasing contrast comes next Epigca repcas, or, as it is sometimes miscalled, Trailing Arbutus, better and more appropriately known throughout New England as tho Mayilower.
This, among the very carliest, is also the choicest gift that Flora has in this latitude to offer us, alike for its beauty of form and color, its delicious fragrance, and its charming habit of peeping out, almost from tho edgo of the retreating snowdrifts. To find the first bunch of Mayflowers is the ambition of many a boy and girl, as well as not a few children of larger growth. The finest specimens ever seen by the writer wero frum a mountain in Camden, Maine. It has also been used as a medicinal agent, but with no better nor worse results than many others. It is a true wild gower, resisting all attempts at domestication. Closely associated with this is found tho. Hepatica, in its two forms of triloba and acutiloba, one with rounded, the other rith pointed leaves, probably mercly varietics. The little clump of fluwers pushes its way through the ground, often in advance of the leaves, and t th the varying shades of pink, blue and white, seen in different plants, is a relcomo addition to our spring bouquet, though lacking the fragrance of the Maytlower.
About this samo time tho southern aspect of rocky hillsides begins to whiten with the cheerful, though not specially graceful or showry flowers of the Early Saxifrage (Naxtfrage Virginicnsis), and in forcst marshes the inconspicuous little Golden Saxufrage, withaname longer thanitself (Chrysosplcnum Ancricamem). Soon in tho neadows the carpet of living green is embroidered with the golden flowers of Caltha paliustres or the English DLarsh ALarigold, improperly called

[^0]Cowslip, and whether correctly or not, nssocinted with creamy milk and yellow butter, whilo a littlo later are seon in tho morning sun, the whito stars of tho Bloodroot (Sanyuinaria Canadensis), as fragile as thoy aro beautiful, gencrally lasting but forn day. Its orange-colored juice is much used in medicine as an emetic, an oxpectorant, and a liniment. This plant readily bears transphanting, increases in sizo under cultivation, and becomes one of tho most attractive ormamonts of the early flower border. In some parts of tho country is found a somewhat similar flower, the Twin-leaf, or Rheumatism Rout (Jeffersonuc d:yhyllut) also well repaying cultivation.

Muanwhile the pastures aro beginmme to whiten (last year remarkably) with the mudest little Huustonia, or Innocenco (Oldentemda carculca), whene a host of violets are making their appearance. Vizola blanda, a wee, white, sweet-secnted species, in tho Wvods; cucullata, with its large blue flowers and houdshaped leaves, with their currous palmate varuety ; rutundifolu, with yellow illuwers and shiny leaves ; and on the hillsides and in tho pastures the widely rarying sagittata. Claytonia Firginica, well named Spring Beauty, must not bo neglected in its mois and generally shady bed.
Aung streams in open woodlands, we may find the Spring Cress(Cardannancriwnbordea), with large, whito flowers; and just shooting up its green s.alk, its first cousm the Winter Cress (Barbarca vulgaris).
Nor should the floral efforts of trees and shrubs be disregarded. Among the earliest indications of spring the Hazelnut (Coryles rostrata) shakes its lung catkins along the roadsides, befure any signs of swelling leafbuds are visible, while the Willows (Nalix), Whose name is legion, begin to burst their warm wintry covering. The Savin (Jtuliperus Firginiuna) is covered with its curious little Ilowers. The Hemlock (Abics Canadensts) is carly in flower, as also the American Yew (Taras baccata). All these requure close examination to detect their influrescence, but well repay it. The two maples, Accr dasycaipum (the Silver Mayle) aud - icer rubrum (the Red Maple), hang out therr showy pendants very early. The siseet diale (IIfrica $^{\text {Gale), along the cdges of swamps, }}$ and the Sweet Fern (Compto:act usplentiolici), whose dried leares are the basis of juremle attempts at stnoking, are now in flower; and Dirca palustris, well named Leather-wood from the marvellous toughness of its bark, such that it is frequently used in default of leather or twine in repairing broken harnesses or sleds, hangs out its littie yellow bells in adrance of any leaves.
Wo close tho list with the fragrant Sassafras (S. officinale), well-knorn by its aromatic bark and curiously lobed leaves, not so well by its carly clusters of yellow flowers, somewhat resembling those of the Sugar-maple; and the Spice-rood, or Feverbusli (Benvinu od riferim) also highly arumatic and possessing, like the Sassafras, medicinal ralue as an aromatic stimulant. Such aro the carinest flowers, which in forest, ficld or fen, invite the search of the botanist and the loser of nature.
Perhaps subsequent articles may give some notes upon tho flowers of later spring, summer and autumn, with a floral calendar, and possibly an enumeration of sono plants and shrubs well worthy of a place in garden or shrubbery; but hitherto neglected. If this
shall succed in leading any to a cluser study of nature's beauty, and tho goolness and glory of tho Creator, its object will be answered.

On Essence of Sassafras.*

Essence of Luurys sassafres is colvurless when first rectified, but turns gradually yellow after exposure to air and light. Its smell rescmbles that of essenco of funmel. Its density at zero is $10081 \overline{0}$; it rotates the polarised ray to the right, and its rutatuly power is 3.5° for a length of 10 contimetres. It is a mixture of dextrogyruus hydrucarbun with an inactive oxygenated principle, and also cont:ins small quantities of a budy, which is apparontly a phenul, and which gives it the lower of reducing nitrate of silver. This body is separated from the essence $2 y$ stirring with this latter an aqueuus solution of potash, which, after the additiun of chlorhydric acid, precinitates sume oily drup,s, having a strong smell of eugenic acil, and coloured light green by ferric chloride. Dy distilling this body with stean, a culuurless liquid was obtained in just sufficient quantits to permit analysis, which gavo $\mathrm{C}=71 \cdot 43, \mathrm{H}$ $=646$. Such cexremely small proportions are found in the essence that it can scarcely be said to do moro than exist. The hydrocarbide (safrène) contains $\mathrm{C}_{10} \mathrm{H}_{10}$, which formula is confirmed by the density of its vapour, which, ascertained by Dumas's method, was found equal to $4: 31$ (theoretical. ly, $4 \cdot 7$). Safrene boils between 155° and $15 \sigma^{\circ}$, is dextrogyrous, and its rutatory power is $17^{\circ} \cdot 5$ for a length of $10 \mathrm{c} . \mathrm{c}$.; its density at zero is 0.8345 .
Nine-tenths of the essence are extractula after the first distillation between 230° and 236°. They consist of an oxygenated priuciplo (safrol), which distils chicfly between 231° and 233°. This latter has nöt a constant boiling point, for it always changes and becomes slightly resinous under the influence of much heat. It is insoluble in water, lut difficult to dry orer chlorido of calcium, and requires rectification in a current of pure hydrogen before analysis. Its vduur is similar to that of the cssence; its density 1.1141 at zere ; it exerts no influence on polarised light, and remains liyuid at a culd as low as- 20°. Safrul will nut cumbine with hisulphites, dissolve sudium, ur decumpose chloride of benzoylo at its builing foint. It will not dissolve alcoholic putagh erven at 180°, but is changed by it intu a blach, nuncrystallisable resin.
Treated with boiling iodhydric acid at 127°, it yields a thick green iodised oil; with perchloride of phosphorus it gives only a protochloride, and no trace of oxychluride, and the thick riscous body left in the retort after distilling the protnchloride shuuld be a nonochhoruretted safrol. It docs, in fact, present the appearance and qualitics of thuse monobromised derivatives obtained by merely adding a molecule of bromino to a molecule of safrol, but if excess of bromino be added, a solid crystallized derivativo of pentabromised safrol, $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Br}_{5} \mathrm{O}_{2}$ is obtained. To prepare this body, dissolve safrol in sulphide of carbon, and add five times its meight of bromide; after a fer days the vessel wall be

[^1]found to contain crystals. Dissolve these in chloroform, wash the solution wati: potash, and concontrate, rectangular and porfoctly whito flakes of pontabromised safrol, $\mathrm{C}_{10} \mathrm{H}_{5}$ $\mathrm{B}_{\mathrm{Sr}_{2} \mathrm{O}_{2} \text {, will soparato. }}$
This body melts at 100° or 170°, is but slighty soluble in alcolol or other, ovon at the boiling point, and dissolves in about fifteen times its weight of chluroform, with simultaneous production of a very smell quantity of another bromised derivativo molting at 109°. Upon subjecting safrol to the action of sundry other reagents, no satisfactory results were obtained. Nitric acid, even i.hen much diluted, renders it resinous, with production of oxalic actd; it dissolves in the funing acid, yjelding rnon-crystallisable derivative, solublo in alkalies at moderato temperature. When heated with chloride of zinc or phosphoric anhydride, it quickly decomposes, leaving much carbon; sulphuric acid produces the same effect. liusing potash attacks it with difliculty; a distillation of the essence over molting potasl 2 modifies its boiling point; that which formerIf distilled between 230° or 234°, 110w comes over between 245° and 250°, and even at from 247° to 248°. Tho analysts of this body gives the same figures as that of the essence.

On Some Oonstitaents of Ergot.* by j. carl merrmama.

The author extracted 20 oz. finely powdered ergot Fith ether and obtained 6 oz. of a brown-yellow thickish non-drying oil, of an armmatic odor and acrid tasto, at $18^{\circ} \mathrm{C}$. of 0.92496 spec. grav., which at a lower temperature soparated floccules of a solid fat.

4 oz. of the oil were saponfied with caustic soda; during the boiling, trices of ammonia and trimothylamina were obserred in the Fapor. The crude soap had a brownish-yellow color, which remained in tho mother liquor on salting out tho sonp; this gradually became sticky in the nir. The fatty acids were separated by sulphuric acid and repeatedly boiled with water; the first portions of which assuned a golden-yellow color and separated a brown powder, which was similar in color to powdered crgot, retained a little fat, had an acrid bitterish taste, the odor of the oil, was insoluble in water and dilute acids, readily soluble in alcohol, ether and alkalios, and may be regarded as coloring mattor.
The aqueous liquid was distilled, and small quantities of butyric and acetic acid, were found in the distillate, whale nearly half an oz. of glycerin was obtamed by concentraing the rasidue left in the retort and treatimg it with strong alcohol.
ine fatty acids were filtored in a water bath funnel, combined with carbonato of soda, and the soda soap in alcoholic solution precipitated by acctate of lead. The resulting plaster was washed with water and cehaugted by ether. The undissolved powder contained 1.45 water, $50-10$ oxide of leul and 39-61 fatty acid (mean). On evaporating the ether the lead soap was left of the consistence of a soft extract, and yijelded $1 \cdot 72$ water, 19.37 oxide of lead and $78 \cdot 40$ fatty acid (mean).
To determine the nature of the fatty acids, a portion was prossed between bibulous paper
"From Witatela's Viertelj. Schr: Ia Am. Jour. Flamn.
and repentedly cryatallized from lint alcohol; tho dry crystals fusell at $62^{\circ} \mathrm{C}$., and congealed between 57 and $58^{\circ} \mathrm{C}$; they ennsisted of puro hydrato of palmitic acid. Ultimato analysis proved the correctness of this inferenco.
Tho extract, like load soap, was decomposed by muriatic acid, and thio fatty ncid taken up by ether; it proved to be ole"c acid.
The proportion of lead oxide to the acids is $5: 4$, and tho fatty acids aro 1 palmitic to 3 oleic acid; tho composition of the plaster is thercforo, $\mathrm{C}_{32} \mathrm{H}_{31}(2 \mathrm{PbO}) \mathrm{O}_{3}+3 \mathrm{C}_{33} \mathrm{H}_{33}$ (PbO)Os. By the action of cthor this was decomposed so as to yicld a basic palmitato and an acid olcinate.
The coloring principle contained in the oil was obtained by treating it with ammoniacal alcohol, and evaporating the alcohol. curresponds, tho solubility in other excepted, with Wigsers' crgotin, and to it the oil owes its color, aromatic odor and acrid tiste.
The anthor also disproved the assertion of Manasservitz, that the oil of ergot nas not saponifiable by caustic potassa.
Sinco Manassevitz did not succeed in isolating Wenzell's ecbolina, tho author operated upon 30 oz . powdered ergot by nearly tho process described by Wenzell (in Amer. Journ. Ph., May, 1864) and isolated the alkaloicl, which possessed the appearance and reactions indicated by Wenzel!. Herrmann also digested tho precipitate by lichloride of morcury in Wonzell's process, with carbonate of lead, exsiccated the mixture and exhnusted with 90 pr. ct. alcolhol, which dissolved ecbolina, together with a traco of chloride of lead. The author promises further researches on ecbolina, also on Wenzell's crgotina and ergotic acid.

1000 grs. powdered ergot contained 50 grs . water, and yielded 22.01502 ashes, consisting of cluloride of sodium, silica ($14 \cdot 67 \mathrm{pr}$. ct.,) and potassa (30 pr . ct.,) snda, limo, magnesia (4.83 pr . ct., alumina, iron, manganeso combined with phosphoric acid ($4 \tilde{0} \cdot 12 \mathrm{pr} . \mathrm{ct}$.):

Assay of a Pure Amerioani Opiom,*
From Popples grown at Hinacock, verumbt, hs Mr. c. य. llobbins.:

> gI WILLIAY PROCTEIT, JU.

On the 18 th $_{2}$ of January the writer receired a sample of about an ounce of upimm from Messrs. Rosengarten \& Sons, with the information (in the form of a copy of a letter from Messrs. Howe \& Fiench, of Jooston, Misss.) that it was rececived from Mr. C. M. TLobbins, of Hancock, Vernuont, who raised the poppies producing it from-foreign seed, which had cost ten dollars per ounce. The opium was obtained by scarifying the capsules in tho manner it is done abroad, and tho oxuded juico collected and dried in the sun, when it turns dark coloured. No leaves, or capsules or other forcign substance is ndmixed, but its consistenco is that of an extract rather soft than fim, but the softness does not appear to be due so mucli to moisture as to its canutchoucoid character, as after long drying it lost but firo per cent. of its weight, and broke with a short, slining fracture when quito cold. The entire crop of this oxperiment was 11 ounces, and in its odor and tasto closely resembiles good Turkoy opium. In a ietter from Mr. Rolbins, sinco shown to me by Messrs. Rosengarten © Sons, ho says, "I

- From the Americin'Joarnal of Pharmact, Navch, 1870.
planted about 15 square rods of land [about one-tonth of an acre] in poppics, rows two fect apart, hills ono foot apart. It was in growth from June 1st to Octobor 1st. The heads woro punctured only onco a day, in the aftornoon; wo cut sevoral small gashes in the sides, being carreful not to cut through the inside. The opium was scraped of noxt morning and dried on plates in iio suin. In my opinion wo did not get half tho opium that might have been obtained. Tho poppy seed was not planted early onough by two or thireo weoks. The ponpy grows well, and seoms hearty, and requires dry soil."
Ono hundred grains of this opium was rubbed with water in in mortar until the wholo was cmulsionized. After standing s̀everal hovers with occasional agitation it was thrown on a cared filtor, a aftordraining, tho dregs wore woll washed with water, dried, and woighed 38 grains. Tho liquid thus obtained was carefully oraporated, at n moderato hoát, to six fluidrachms, mixed with its builk of alcohol and filtored; 30 grains of aqua ammonim, sr. gr. 960 , mixed with threo times its bulk of alcohol was slowly added with constant stirring until a decided oxcess was obtainod well stirred, and allowed to stand 24 hours. The ammonin caused an immodiato granular precipitate, which increassed on standing. at the end of the period mentioned, it was collected on a tared filter, thoroughly washed with cold water and dried. The precipitate ras of a uniform light drab color, and woighed 18.2 grains. It was now boiled in repeated portions of otheri washed on a filter wilh that liqnid and then dried, When it weiglied 16.25 grs . This substanco has the properties of norphia, boing reddened by nitric acid, blued by sesquichloride of iron, but is colored. It was therefore dissolved in repeated portions of boiling alcohol, the solution filtered and oraporated and crystallized. The filter was well washed, and, on drying, tho brown mattor weighed 0.5 gr ;, maiking the yield of crystallized morphia 1575 grs .

The ethereal washings of the morphia precipitato yielded nearily 2 grains of crystalling matter, which fomned a clear yellow solution with nitric acid, consisting chicfly of narcotina, with a little brownish amorphous matter around the edge of the dish.
The liquid from which the morphia precipitated ras fuund to yield a décp red coloration with sesquichloride of iron, and was treated with a slight excess of chloride of calcium, the gelatinous precipitate collected on a filter, washed, suspended in a fluidounce of watci, at 190° F. ain excess of diluto hydrochloric acid added, filtered hot, and allowed to stand some hours. Thio crsstalline granular precipitato of bi-meconate of lime was collected and treated with hot diluted hydrochloric acid, when the meconic acid in colored crystals, separited on standing, was washed and dried.
The original undissolved residue of the opium, weighing 33 grains, was now treated with coal oil, benzine, nearly pure, until oxloausted, and the darkl liquid evaporated until all tho benzine was removed. A suft elastic residuc of caontchouc ras obtained, weighing 11 grains. This prohably contained some narcotina and other principles as resin and fixed oil, but it was not further treated-ino chief object of its extraction locing to show by its quantity a sufficient cause for the softness of the opium in the absence of the usual percentago of moisture.

The residue left by the beyzine wis incinerated in a platinum cruciblu, yielding 00 gr. of light fawn culored ash.

The result frum 100 grains, therofure, is as follows:-
Morphin.................................. 1575
Narcotina, impure......................... 2.00
Meconic acid.
Cavutchunc, fnity matter and resin 1100 Insolublo residue (including 0.5 of
ash)..
22.00

Batter suluble in water uther than
salts of murphia and narcutina,
as gum cxtractive, ete.,*
Water,
5.00

Messrs. Rusengarten \& Suns meanwhile made an examination of this opinun for morphia, for their uwn satisfaction, and oltained nbout-15 per cent., which corroborates this result for that ingredient, tho sliscrepuncy in amount boing dua to more careful manipulation in this assay.

No examinations was made of the gim or extractive ingredients. On tho whole it may be inferred that the opium chtained by Mr. Rubbins is pure and of extraurdinary strength, indicating it to be tho inspissated juice of the capsule of the poppy, unmixed with either organic or inorganic adulteration, and it is to bo hoped that the producer will, in the coming season, give his carnest attention to another and more extended oxperiment, particularly in relation to the extraction of the juiceso as to aroid loss. The quantity of soil under culture in this instance was about one-tenth of an acro, and the product was worth at the market rate per single pound ($\$ 14 .-{ }_{16}^{16}=\$ 9.62$) wurth nearly $\$ 10$ or about $\$ 100$ per acre. If, as Mr Robbins says, he obtained only half of the juice, this result may bo doubled. Too much stress cannot be laid on the importance of leeping the product unmixed with impurities, and especially extractive matter as an adulteration, as in Mr. Wilson's so-cnlled opium, which is almost wholly an extract of the leaves of poppics.

On Zinc Sulpho-Phonate.t

DY DR. HAGER,
The preparation of this salt presents no difficultics if pure crystallized phenol and puro monolyydrate of sulphuric acid aro operated on. Equal weight parts of both are digested at about $125^{\circ} \mathrm{F}$. for two or three days. When the phenol is pure a clear, ycllowish, thick liquid is obtained, which on cooling deposits conglomerations of crystals (probably uncombined phenol), but which soon congeals to a whito crystallized mass. Althougla all conditions are present to combine ell the sulphuric acid with the phenol, jet there remains always, and no matter how long the digestion may be continued, a surpius of about 10 per cent. sulphuric acid. For this reason it is advisablo to mix 120 parts of sulphuric acid to every 100 parts of phenol. After two or threo days the combination is accomplishod, and the mixture is thon diluted with ton timesits bulls of water. Now tivico as much ss the quantity of sul-

[^2]phuric acid oposated upon, or better, a little more, of dry barium carbomato, is gradially ailded (tu 120jarts 11 s. 245 parts isa c). The l.itter had butter bu tritpratel with zunu water before it is added to the acid. Under evolution of carbonic acid harium sulpho phenato is formed, a salt soluble in water and in alculol. At the same time any excess of free sulphuric acid is notralized and transformed into barimes sulphate. The whule is alluwed to stand in a warm place fur sume hours, and is then filtured thruath it damp filter; the remainder on the filter is washed with sume warm water. 'lhe filtered sulution of barimm sulpho-phenate may bo evaponated to dryness, whereby it remains behind as a white salt deprived of its water of uyshallization. This is suluble in two parts of water. A shall quantity of thas buritum salt is retained, the boblucis is dissulved in water in the prupurtion of 10 parts of the first to $30-40$ parts of the latter. Tu this filtered solution a sulution of 6 parts cryst.alized zinc-sulphate in abunt 18 parts of water is added. Of this zinc sulution it small quantity is also rotained. Nuw, after leaving the misture in the water bath for several hours, about 10 drous of the supernatant sulution are diluted in a t tst tabe with about 100 drops of water; this being divided in two parts, the one is examined with sume drups of the retained zinc-sulphate solution, the other with the barmum sulpho-phenaté solution. If any reaction cnsucs in enther case, the one or uther of the retained sulutions has carefully to lo added to the bulk of the solution, in uriler to accomplish the exact decompusition. 1 slight excess of zinc-sulphato should, however, prevail, so that tho barium may he compictely precipitated.
Finally, the nilterel solution of zine sulpho phenate is evaporated under continual stirring until a drop, when allowed to fall on a cold ghass plate, congeals to a solid mass. The liquid is then allowed to cool under frequent stirring, and the resulting salt mass is dried in a warm place. When completely dry it forms a white salt.
Tho eraporation of the solution of the barium sulpho-phenate, its re-solution and the filtration, are only required when a phenol has been operated on which was not palpably pure. When this, however, is the case, the solution of barium sulpho-phenate may bo deconposed, without any further operation, by the zinc-sulphate solution, with the precaution to retain some of the first solution in order to meet an accidental excess of the zinc solution. For every 100 parts of phenol operated uyon, 152 parts of crystallized zinc sulphato may be added, of which only one-trelfth may be retamed for further addation if required.
The preparation of ane sulpho-pherato may be facilitated by the use of perfectly pure reagents. When they have been mixed and combined in the above stated proportions and process, the warm solution, after having been diluted with twice its bulk of water, is gradually neutralized with zinc-oxide (free of oxide of iron). When no moro oxide is dissolved the warm solution is allowed to cool, and is then filtered; the filtrate is evaporated to nearly half its original bulk, and is then mixed and shaken with ten times its volume of alcohol ($90-92$ per cent.), and the mixture is allorred to stand in a cool Flice for several days. The zine sulphate soparates as a powder; tho supematant
alcoholic solution of zinc sulpho-phenato maily eithur be directly evaporated to dryness or the alcultul may first be restored by distillativn, and tho evapuration may then bo accomplishod. Tho residue is white zinc sulpho-phenato of a purity that it yiolda with barium chloride but a slight reaction.
One equivalent phenol, or phenyl:alcohol, furms, with twu equival, munohydrato of sulphusic acid, a compound ethor sulphophenic acid ($\mathrm{C}_{4} \mathrm{HF}_{5} \mathrm{O}, \mathrm{SO}_{3}+\mathrm{HO}, \mathrm{SO}_{3}$). This, when combned with barium oxide, forms $\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{O}, \mathrm{SO}_{3},+\mathrm{Ba} \mathrm{U}, \mathrm{SO}_{3}{ }^{*}$ and, with zinc oxido, the correspunding zine salt. The barium salt, "hen erystallized from its ayueulus sulution, furms rhombic cryatals, with thre equivalents water of crystallizatiun, the zinc salt, when crystallized, forms bright lamellas, with seven equivalenta crystallization water. The officinal salt derived by exsiccation is doprived of the water of crystallization; it dissolves in two parts water of meelium temperature, and in five parts alcohol of 90 per cent.
The preparation of 21 c sulpho-phenate frum a nut quite pure phonol yields different results. The sulpho-phenic acd is then dark colured, and the solutions of the sales therevith propared have a pink color. The rine suly hu-phenato whon crystallized has a pink culur ; when desiccated, a reddish tint. This culuration, however, does not at all inpair their medicinal valuo and their therapeutical action.
These mure or less colored solutions of the zinc sulyho-phenate, when near tho end of their evaporation, enaanato a remarkably fine odor, resembling that of polargonium. This observation may likely trace to a now source a fine perfume. Sonse of our most. brilliant colors aro derived from a similar origin.

Zinc sulpho-phenate combines the therapeutical virtues of zine sulphate and of phenol. Its solation for injections is obthined by dissolving 1 part of the salt in 100 to 200 parts water.

Light Salphate of Quinine-A Fraud. \dagger

by Louis staehl.

A small lot of quinine was recently'purchased in this city, bearing the following label : "Light Sulphato of Quinine; Manufactured by Lord Bros., Ludgat. Hill, London." The manufacturez being unknown, the " quininc" was submitted to the ordinary tests for its purity.

A casual glance at the article excited no suspiciun, but upon a closer scrutiny, the crystals were found to be colorless rhombic prishs, about a line in length, distinct and not interlaced to such an extent as no see them in sulphate of quinia. The taste was bitter, resembling that of the latter alkaloid. The crystall'ทe shapo could be readily distinguished by the naked oyc.

The crystals were entirely soluble in cold rater, and this solution, when treated with chlorine water and ammonia, gave no characteristic indication of quinia. Chlorine water added to a solution of the salt, followed by ferrocyanide of potnssium and afterwards by a few drops of water of anmmonia, gave no indication of quiaia.

The above results show tho entire nbsence

[^3]\dagger From the Pharmacist, Marcli.
of quinia in tho so-called "Light Sulphato of Quinino."
An arduevers sulution of tho salt was precipitated by ammonia mad a purtion of tho filtiate, treated with chloride of barium, gave no precipitate, showing the absence of sulphuric acid. Another portion of the filtrate was slightly acidulated with metre achd, cad trented with nitrate of silser, which producerl a copious whito precipitate, solnblo in oxcess of ammonia, showing the presence of hydrochloric acid.
It having been demonstrated that tho article contained no quinia, further examination was decided on, havingin viow the identification of tho alkaloid. It is frecly soluble in cold and much more so in lot water, suluble in alcolool; cold concentrated sulphuric acil disshlves it without change of color; but am odor of hydruchloric acid is developed; on tho application of leat the solution becomes light brown; the crystals are frecly suluble, withuut clange of colorin cuacentratud hydruchlutic and mitric acids. Soluble in chlorine water without change of color, and upon the addition of ammonia a dirty white precipitate is produced not soluble in excess of mmmonia, the liquid filtered from the precipitate was of a straw color.
Λ solution of the salt, to which a few drops of dilute liydrochloric acil wero added, when trented with ferrocyanide of potassium, yielded a copiuus yelluw precipitate. Upon the application of a gentlo heat tho precipitato dissolved, and the solution upon cooling deposited an abundance of beautiful golden ycllow crystals.

These tests while showing, the absenco of quinia, furnish conclusive ovidence that the alsaloid is chinchonia, containing traces of cinchonidine.

Tho reaclion with nitrato of silver, almeady mentioned, sliows the alkaloid to be in combination with hydrochloric acid. The "Light Sulphate of Quinine" is, therefore, hydrochlorate of cinchonia. Tho latter salt resembles quite closely in appearance the sulphato of cuinin, and it is at substitution which might readily pass unnoticed. The manufacturers have tiken advantage of this resenblance to perpetrate an exteasive and most reprehensible frand, and it is to he hoped that their field of operations may be transferred from Ludgate to "Newgate," with the privilege of conducting business in the latter locality for an unlimited period.

- Chicago, Feb., 1870.

A new and very delicate test for arsenic has been discovered by Bettendorli. its seusibility is so great that it as said to bo capable of detecting grie jart of arseme in a million parts of solution; and the presence of antimony dows not affect it. In order to apply this test, the arsenious, or arsenic fiynid is mised with ayuevus hydric-chlorido (hydrochloric acid), until fumes aro apparent; thercupnn stamnous chloride is added, Which produces-a basic precipitate, containing the greater part of the arsenic as metal, mised with stannic oxide.

A sum of about $£ 1,400$ hasbeen subscribed, chicfly among men of science, towards the memorial to the late Prufessor Faraday. It is expected it will take the shape of a statuo or monument in the British Muscum.

CANADIAN PMARMACEDTICAL SOGIETY.

Phesinent, - - - War. elliot, Esq.
The regular meeting of the Socicty take plac: on the Finst Friday evening of earle menth, at the Mechanics' Institute, telieni, after the t_{1} chsuction of insiness, theric ss a papier read, or discussion engaged in, upon subjects of interest and valuc to the members.

The Society admits as members, Chemists and Druggistsof yood standing, and their assistants and apprcntices, if clected by a majority vote, ard on payment of the following fecs:
Prinoipals,
$\$ 400$ per Annam
Assistants \& Apprentices, 200
The Journal. is furnished Frae to cill numbers.

Purties wishing to join the Socicty may send their names for propusal to any of the members of the Society. A copy of the Constitution and By-luns of the Suicicty will be furnshed on application.

HENRY J. ROSE, Sccretary.

THE CANADYAN

E. B. SHUTTLEWORTII, EDITOR.

TORONTO, ONT., APRIL, $18 \% 0$.
Corresponilence and gencral communications, of a character suited to the objects of this Journal, are invited, and will alrays bo wel. come. 'The writer's name should accompany his communication, but not necessurily for publication.
Subscriptions will not be acknowledged by letter, as our sending the paper may be taken as sulficient evidence of the receipt of the money.
All conmanications connected with the paper to be addressed, post-paid,
"Emitor Casadian Phàmaceutical Joumal To:osto."

New Process for the Extraction of Copper from its Ores.
The process devised by Dr. T. Sterry Hunt, F.R.S., the well-linown clemist of the Geological Survey, and Mr. James Douglas, jr., is likely to effect a complete revolution in the tweatment of copper ores, in countrics where the usual methods of reduction are carried on. It is also to ko hoped that Canadn will reap a fair share of advantage by tho discorery, for althongh pussessing abundant mineral deposits, of the most valuable description, they have herctofore profited us little; as cither from lack of enterprise, skill, or fuel; or perhaps from all threo causes, our mincral wealth might be almost as advantageously located at the north pole.

The mothods devised, hithertu, for the reduction of copper by the moist may, consist of the precipitation of "cement copper," from acid solntions, by means of metallic iron. The metal obtained thus is not only.
very impure-containing gonorally from 20 to 40 per cent. of porsalts of iron ; but, in practice, the consumption of iron has beon found to bo unduly large, ofton nmounting to 300 parts fur tho precipitation of 100 of copper; although, theorotically, but 88.3 should bo required. This arises from the unavoidablo excess of acid used in dissolving the ore, and from the action of tho air on tho solution of protosalt of iron formed during precipitation-insolublo porsalts rosulting.

The invention to which wo havo reforred, which, we may add, has been patented in Great Britain, the Unitod States, Canada, and Nerfoundland, is based on the nction of a solution of protochloride of iron on the oxide of copper; peroxide of iron, and a mixture of proto and dichlorido of copper result. The first of these salts is readily soluble in water, and the second may be dissolved in brine. A bath is made contrining tho protochoride of iron; either directly by the action of hydrochloric acid on the metal; or by double decomposition botreen sodium chloride and ferrous sulphate (common salt and copperas); an excess of salt is added for the purpose of dissolving dichloride of copper. The ores, in a pulverized state, are subjected to the action of this solution, cither by a maceration of threc or four hours' duration, or by percolation. By this means nearly all of tho copper is dissolved. A. practical trial showed tho oxhausted ore to contain less than half of one per cent. of the metal. Any silver that may be present is also dissolved, and may be readily recorered by filleation through cement copper. Gold remains behind with the peroxide of iron, and in this state may be casily extracted by trentment with chlorine, after the method of Plattner. The copper is obtained from the solution by the action of metallic iron; 170 to 172 parts of copper may be precipitated by 100 parts of iron. It will thus be seen that the bath is again in the coudition for use a second time, and, could the air be excluded, the process might be reperted an indefinite number of times, but a loss of iron is observed, duo to the separation of oxychloride. This loss may bo made up (1) by the direct application of protosulphate or protochloride of iron, (2) the addition of sulphate of copper obtained from the roasted ore, (3) the use of sulyhurous acid.
In the case of sulphuretted ores a preliminary calcination is necessary. This may bo done by roasting in kilns, or in the open air, and effects the oxidation of the sulphuret into a mixturo-of oxyd, and sulphate. Carbonates also require calcination, in order to get rid of carbonic acid; but the non-sulphuretted ores, meluding the oxyds and oxychloride, require no preliminary treatment.
Tho following extract from a letter written
by Dr. Etunt to Professor Wurtz, and published in the Americal Gees Light Juturnal, of New York, gives an account of a practical trial of the process, at Harvey Hill, Quebec :
"Thio ores hulding about 20 per cent. of copper as sulphurets (yollow and purple oro), with a considerable amount of earthy carbonates, were ground, passed through a sievo of forty holes to the linear inch, thon roasted in Ω mufflo fumnco, after which they. held about 5 per cent. of coppor as suluble sulphate. The roasted ore was treated in a Preiburg barrel with the prescribed bath of protochlorid of irnn and common salt, previously heated to about $212^{\circ} \mathrm{F}$., and the nixture agitated during six hours, at the end of. which time the solution of the coppor was so nearly complete, that the gangue did nor contain more than half of one per cent. In several trials on solutions thus prepared, and holding from 60 to 100 pounds of cuppor, it was found that 100: parts of metallic iron tlurew down from 170 to 172 parts of pure cement copper. The precipitation is very rapid from hot solution, and in twolve hours the rogenerated bath is nearly from copper and fit for the treatment of a fresh portion of oro. To supply by the uso of sulphurous acid the loss of the bath in iron salt, we find it preferable to adopt a mode indicated in the American patent (but inadvertently omitted by mo in the specification as published by you), which consists in treating by sulphurous acid from the roasting furnace, not the whole. of the bath, but the residue. of insoluble ferric salt and oxyd left after subsidence, and the withdrawal of tho clear coppor solution.

ThThe action of cupric acid on sulphuretted ores of copper, such as coppor glance and purplo coppen, which gives. rise to cuprous chlorid, is analogous to that long since observed by Karsten betweon cupric chlorid and sulphid of silver, which yields cuprous chlorid and chlorid of silyer; a reaction which lies at the foundation of the Spanish patio process for silver ore. Wo havo had occasion to verify this reaction in the case of certain Canadian conper ores holding silver, which is dissolved toycther with tho copper by our bath, and nay be readily separated by filtering the solution through cement copper, which throws down metallic silver. Further experiments on regulus from copper ores containing both silver and gold, show that: after thus remoVing the copper and silver, the gold remains with thio forric oxyd in a condition most favorable for chlorination. Theso results prove that our new copper process may be advantageously applied to the treatment of copper ores holding one or both of the precious metals."

Researches on the Active Principle of Gelsemium Sempervirens.
α valuable contribution to our knuwledge of the chemical composition of this plantthe yellow, or Carolina jasmin-appears in the American Joumai of Pharmacy for January. A caso of poisoning by three drachms of the fluid extract, administered to a woman, through the mistake of a druggist, rendered an investigation into the matare of the root necessary. A series of experiments were made by Dr. Wormloy, Professor of Chem-
istry and Toxicology in Starling Medical College, tho results of which are embodicd in the paper before us. The guid extract, as prepared by Tilden \& Co., was selected as the basis of oxperiment. This proparation was freed from resinous matter, hold in solution by alcohol, by concentration to onecighth its bulk, and subsequent dii.ation with water. The filtered solution, again concentrated, was acidulated with hydrochloric acid, and agitated with twico its bulk of ether which upon evaposation doposited colorless groups of cryatals for which the namo gelseninic acid is proposed. An average of several experiments gave two and a quarter grains of the purified acid to sixteen ounces of the fluid extract. This now body is possessed of strongly acid properties, complotely noutralizing bases, and forming salts, which with the exception of those of the alkalies proper, are sparingly soluble in water: The acid is freely soluble in chloroform and ether, but requires about one thousand times its weight of wator for completo solution; it crystallizes in the form of slender needies. If the acid, or any of its salts in the solid state, be treated with concentrated nitric acid, a yellow, or reddish color is produced, which by treatment with excess of ammonia becomes blood red; the author considers this to be a characteristic test; showing distinctively tho 10,000 th of a grain of the acid. Sulphuric, or hydrochloric acid produce no striking action. Caustic potash, soda, or ammonia, when added to the acid, dissolve it, producing a fluorescence which is perceptible in a solution containing $1,000,000$ th part. The Gluorescence resombles that observed in solutions of quinine, with the difference, that in the case of the latter substance the colorntion is only observed in an acid solution; whereas, with gelseminic acid the fluoresconco" only manifests itself in presence of an alkali, disappearing on the addition of an acid. The fluid extract, even when diluted with one hundred parts of acid and treated with an alkali, exhibits a similar appearanco.

Gelsemininc, gelscminic, or gelscnia, are the names proposed fur the new alkaloid which was obtained from the concentrated extract from which gelsemenic acid had been extracted by the foregoing process. The liquid rendered slightly alkaline with potash, was agitated with chloroform, wlinch dissolved the akaloid together with foreign matter; ofter repeated purifications, galseminine was obtained in the form of a whitish powder, possessing an intensely bitter taste; of stiong basic properties, forming soluble salts; itsolf but sparingly soluble in rater, but dissolving freely in chluroformand ether. The action of anumber of reagents was tried, but none was found which could be reganded as prominently oharacteristic of the presence
of the alkaloid. From experimonts mado on some of the lower animals, gelseminino ap. pears to bo an active and powerful poison; in the caso of poisoning alluded to, death resulted from taking about the one-sixth of a grain. The symptoms sobsorved woro nausen, dimmess of vision, and great restlessness; after the expiration of five hours, tho pulso becamo feeble, irregular, and intermittont: tho extremities were culd, the eyes fixed, with inability to raise the eyolids, the pupils oxpanded and insensible to light. In seven and a half hours after taking the poison, death occurred, without being preceded by convulsions. It will be remembered that only about thye drachans of the fluid extract had been taken, and as this quantity corresponds with about one-sisth of a grain of the alkaloid, it would appear that gelsuminine is one of the most potent poisons at prosent known.

Formation of Iron Rust.

In a paper on "the Composition of Iron Rust," read by Dr. Crace Calvert, at the last noeting of the Chemical Suciety, the author was led to inquiro to which of the constituents of the atmosphere the formation of rust was to be chiefly attributed. To demonstrate the mattor, clean blades of iron and steel were introduced into tubes filled with various gases, to tho action of which they wore exposed for a period of four months. The results were as follows:-

Blades in dry oxygen.--No oxidation.

Blades in moist oxygen.- Out of three experiments, only in one a slight oxidation.

Blades in dry carbonic acid.-No oxidation.
Blades in moist carbonic acid.-Slight incriistation of a while colour. Out of six experiments, tro did not givo this result.

Blades in dry carbonic acid and oxygen.No oxidation.

Blades in moist carbonic acid and oxygen. -Most rapid oxidation.
Blades in dry oxygen and ammonia.-No oxidation.
Blades in moist oxygen and ammonia.-No oxidation.
These facts led the author to assume that it is the presenco of carbonic acid in the atmosphere, and not oxygen or wator vapour; which determines the oxidation of iron.

Use of Sulphurous Acid in Distiluing and Brewing.
Considerable attention has lately been directed to the use of sulphurous acid; or its salts, in retarding fermentation. The practice of burning a sulphur match in wine caska to check, or stop fermentation, is, indeed, of ancient origin, but nōt until later years have the sulphites been employed for that purposo. At the present time, the sulphite of lime is largely used in this country for keeping cider "swect"; and on the continent of Europe,
as well as on this side of tho Atlantic, sulphurous acid has recoived a now application in the process of distillation, being applied, in diluto solution or in tho griseons stato, to the mash or wort. By this means the process of extraction may be much prolonged, and the grain can be, consequontly, much moro thoroughly exhausted, without subsequent "souring."

Until lately, tho acid lass been prepared by the ordinary method, viz.: deoxidation of sulphuric acid by charcoal, tho gas being led directly into a vessel containing the water to bo charged. Wo notice, horiover, in tho Scientific Americen, of April $2 n d$, that a patent has been secured in Hungary, by Moritz Hatschek, of Pesth, for an apparatus in which the acid is directly obtained from sulphur. The invention consists in thearrangement and construction of a fumnco, in which the sulphur is burnt, and a current of nir brought to it, and of a detaining chamber and combining column, the latter receiving water at the upper end, and spreading it into a fine spray, in which state it is most apt to tako up the ovolved gascous acid, the nitrogen passing off through the column.
Some years ago, Dr. Craco Calvert projected a similar process, it consisis in burning the sulphur in a small furnace; conducting the geses through earthenware tubes, surrounded with cold water, and leading them into a wooden column, 40 feet high, and about.four feet wide, filled with pumice, through which water is kept slowly trickling. The ascending current of gas becomes, in great part, absorbed by the water, forming a concentrated solution, which is collected in a suitable receiver at the foot of the column. In another process colso is made to take the place of pumice.

Another plan was Intely proposed by Stolba; it is said to bo economical. Anlydrous sulphate of iron, or copper, is heated with tivo equivalents of sulphur, giving rise to sulphurous acid, and a sulphide of the metal employed.

New Alloy of Ammonium and Bis-
muth.
Tho American Journal of Science and Arts, for March, contains a notice of the interesting rescarches of Dr. Gallatin, of New York, on s supposed' alloy of ammonium and bismuth. Ammonium had never yet been seen united with any other metal than mercury. Mercury being the only metal fluid at ordinary tomporatures, should another alloy be formed it would be solid. Some bismuth was melted in a procelain dish and alloyed with sodium by dropping a piece of that metal on the clear surface of the fluid bismuth. Chlorid of ammonium was then dust-
cd on the fluid alloy, and then water added in a fino quicks stream. Tho bismuth swolls, appears pasty and porous, and thon congeals. Abundanco of hydrogen escapes from the water, and the ammoniacal odor is set froc. This body must now bo dried. If it be placed near the ear.a distinct crackling noise will bo heard, a phenomonon which ondures for some days. To ascertain if this bo ammonium escapiag from the bismuth, the body was placed beneath the surface of water, when bubbles of hydrogen escapod, easily to be collected and recognized; tho ammonia, if auy, must have bcen absorbed by the water. To test for this red litmus-paper was placed in tho liquid. Wherover the currents from the bismuth struck it a blue spot became visible. On dissolving sulphato of copper in distilled water and placing the well-dried bismuth theroin, the characteristic flocculi of ammonio-sulphnto of copper appeared nt once.
It remains to show that tho hydrogen escaping is in the nascent state. There was not enough of it to test with phosphorus. The bismuth compound, when placed in a solution of sulphato of copper, becomes rapidly coated with motallic copper. Now bismuth unalloyed will not precipitato coppor from its sulphate. To test if the precipitation of the metallic copper was due to the presenco of nascent hydrogen, an alloy of bismuth and sodium was made and dipped in a solution of sulphate of copper. It instantly becamo coated with that metal, owing to the nascent hydrogen escaping from the water. The hydrogen was therefore escaping in the uriscent state from the bismuth and ammonia, and therefore it was a true alloy of bismuth and ammonium. If the temperaturo of this alloy be raised, it will rapidly deconpose with a crackling noise. On one occasion it exploded, sharply scattering the metal. Tho loud crackling noise produced by this substance may be heard for many days after it is made. That there is no more surface-action is shown by the pores which areformed by the escaping gases in both cases. In the amalgam these pores may bo seen produced by the escaping ammonium long aftor the water has exhausted the sodium. In the mercurial body the pores are evanescant; in the case of bismuth thoy remain, and may be oxamined at leisure. These are different phenomena from those displayed by spongy platinum when it forces hydrogen and oxygen to combinc.

Preparation of Cold Cream.

Mr. J. B. Moore (Am. Jour. vf Pharm.) suggests the following formula as producing a superior article, of good keeping qualities, and possessing, at ordinary temperatures, a good ennsistency. Should, however, the offect of the season or climate render tho ointment of too firm consistence, the quantity of wax may be reduced:
If Ol. Amygdal. Dulc.......f.žxss.
Cetacei3iji. 3rj. (Troy).
Cere Albæ...................3x.

1. Rosto....................gtt.vj. vel. gtt. x.

The first threo ingredients must bo melted together by means of a water bath, and, if necessary, straincd; stirring asuiduously
until congelation. Tho essential oil which may bo varied to suit tho tasto, is then added, and vigorous bouijig appliea until tho ointment is of a snowy whitences. Stray portions, which might harden on tho side of tho dish, must be rubbed smooth on a slab befnre being added to the rest.

OANADIAN PHARMAOEUTIOAL SOOIETY.

The regular monthly meeting of the Socioty was held at tho usual place, on Friday ovening, 1st inst.g with the Vice-Presidont in the chair.
After roading and adoption of minutes of last mecting, the following now members were elected.

PRINCIPAIS:
G. J. B. Lang. .Owen Sound.
J. T.IRobinson . Oshawa.

ASSISTANTS:

D. F. Lucas.

Gananoque.
W. Brorrne..................... Owen Sound.

Jos. Bell........................Meaiord.
W. A. CardOrono.

Mr. Shuttloworth read his report of the progress of the Journal for the past year, Mr. Elliott, on behalf of the printing committce, anid that not having completod their examination of the present position of tho undertaking, so as to place it beforo the Society clearly-and as the current number of the journal terminated the present arrangement with the editor, he asked the Society in the following resolution to placo the fnture course of action in the hands of the printing committee, promising a full ruport at a futuro meeting.
Moved by Mr. R. W. Eliott, seconded by Mr. Dilworth: That the printing committee be omporsered to act in regard to the futuro publication of the Journal, as they may think best, subject to the approval of the Socicty. -Carried.
The President then read a letter from Mr . Brown, of Edinburgh, in acknowledgement of his election to honorary membership, and the editor was advised to write him.
In pursuance of anotice of motion given at the January meeting, regarding tho amending uf the Constitution and By-laws so as to conform to the Pharmacy act, a committee vas appointed; consisting of Messrs. Brydon, Shuttleworth and Rose, to report on the alterations requir.
The President axid that from a conversation he had with one of the leading members of the Montreal Chemist's Association, there seemed to be some donbt of the power of the Local Iegislature to pass such an Act, as it seemed to interiere with trade and commerce which were subject only to tho legisiation of the House at Ottawa.

Mr. R. W. Elliott said that ho hand brought that question up, whilo endenvoring to obtain legislation last session, and tho opimon of tho Hon. MI. C. Cameron was that it camo within the powers of the Local house, in the samo way as laws restricting the salo of liquors, \&c. The necessity for early and persistent action on tho part of the Legislative Committee, wias then urgod by seyeral of the membors and approved by thoso members of the Cummittee present.
Meeting adjourned.
H. J. Rose,

Sccretary.
gitctious.

Oochinal.

An insect of the genus of Hemiptera, by far the most important of which is the coccus cacti, or cochineal cactus, so celebrated for the leauty of the color vhich it yiclds. This species is a native of South America, and was for a long time exclusively confined to Mexico, whore it feeds on a species of cactus.
It was introduced, about cighty years ago, into our Cast Indian territories by an enterprising individual, an officer in the Madras army. About sixty ycars ago, the Spaniards regarded this insect as boing invaluablo to them, producing a revenue to Spain larger than that afforded by their gold mines. It was the desire of the Honommble Ehast India Company to introduce the cochineal into thoir territories at the above period, and large reward was held out to speculative adventurers to tempt and encourage them to coloniso the insect on their various estates. But they could not succecd in their new undertaking. It may be decmed somewhat remarkable, when the great value of the cochineal insect is considered, that the natives have never encouraged it as an articlo of commerco. Certsin European adventurers have, however, endeavoured to tury the insect to a good account; but thoy have, $n^{\prime \prime}$ of them, sigmally friled in producing cured samples of any size, so ns to wear a favourable complexion in the London market, when placed in jurta-position with the grane fina of Mexico and Oaxace, and as none of the parties had had an opportunity of witnessing the mode in which the nopulcries in South America were managed, they were quite at a loss how to treat the insect.
Some conjectured that the fly was a wild species of the coccus coccinifera, whilst others considered that it was the wrong plant upon which it was reared in India; and on the other hand, it was decided that the climate was uncongenial to the prosperity of the insect, which, although it proved highly prolific, yet never arrived at any size. The Indian cochincal yiolds a stronger dye than that of Now Spain, and is in every way calculated to provea truly valuable article of commerce, if it could bo be brought to a sizo equal to that of the insect of Nev Spain or South America. A gentleman, living on the Coromandel coast, fed a small colony of these insects upon the cactus incrmis, a species of cactus opunlia, perfectly free from thorns, and which it is snid the South American coccus oxclusively feeds upon, but it quickly perished under the bite of the insect; although
the animalculo wero not usually numerous; and he was led to inagino that the large acicular thorns which protruded from the lobes of the prickly pear (for tho lonves aro truly lobate) would, if carefully removed, tendo considurably to promoto tho sizo of the insect in its gruwth. Ho also, anong several other experiments ho edoptod in his treatment of the cochinenl, rescinded a portion of the exuberant foliago of the plant, and diminished the quantity of larve on the leares so as to afford the shurb a moro fayorable opportunity of struggling against the innovations of the insect incubus. In this latter experiment he proved successful; and ho observed as the vigor of the plant developed in a corresponding ratio did the cocci increase in size, nor were thoy enveloped so thickly in flocculent matter as thoso which wero allowed to live unattended to and neglected.

Cochineal was fetching at this time in Calcutta eloven and twelvo rupees per seer of two pounds, which is at tho rate of 12s. per pound ; and yot, strange to say, the insect then abounded throughout India; and, with a little pains and attention bestowed upon it, might bo converted into a valuable article of commerce, and would, there can be little doubt, in time, oxpel the presonce of the Spanish insect from the market.
The female, or ofticinal cochineal insech, in its full-grown, preguant, or torpid state, swells or grows tu such a size, in proportion to that of its first or crecping state, that the legs, antennæ, and proboscis are so small, with respect to the rest of the animal, as hardly to be discovered by the naked eyo ; so that, on a general view, it bears a great resemblance to a soed of berry; hence arose that difforence of opinion which at one period subsisited among writers, somo maintaining that cochineal was a berry, whilo others contended that it was an insect.

When tho female insect is arrived at its full sizo, it fixes itself to tho surface of the lenf, and envelopes itsclf in a lind of white down, which it spins, or draws through its proboscis, in a continued double filament. The malo is a small and rather slender twowinged fly, about the size of a flea, with jointed antenne, and large white wings in proportion to its body, which is of a red colour, with two long filaments proceeding from the tail. When the female insect has discharged all its eggs it becomes a mere husk, so that great care is taken to kill the insect before that time, to prevent the young from escaping. The operation of collecting the insects is exceedingly tosdious, and is performed by wonien. "Formerly," says Mr. McCulloch, "it was in Mexico only that it was reared with care, and formed a valuable article of commerce, but its culturo is now more or less attended to in various parts of the West Indies."

The insect, of which there aro about 70,000 in a pound, being detached from tho plants on which thoy feed by a blunt knife, are put into bags and dipped in boiling water to kill them, after which thoy are dried, in the sun. It is principally used in dyeing scarlet, crimson, and other csteemed colors. The watery infusion is of a violet crimson, the alcoholic of a drep crimson, and the alkaline of a deep purple, or rather violet hno. It is imported in bags, each containing about 160 lbs . Messrs. Daniel Judison and Son, of Southwark Strect, inform us that no less quantity than 23 , 7 to bags of cochincal have been delivered from the lon-
don warehouses for home consumption and for oxportation during the first nino months of the current year, The stock at the end of Octobor being 0,071 bags. In tho yoar 1814, only 1,200 bags woro importod, when tho prico obtained varied from 30s. to 39s. nor lb_{b}., the present prices being about 3s. 3d. to 48 . per 1 lb .
The cochineal most estoomed for dyoing is called "black grain," being of a dark mulberry colour; whilo that cullod "ailver grain" resembles in colour the ore from which it derives its name. This latter wo should considor the cochineal of tho Pharmacopouia.
Messrs. Judson and Son have kindly volunteered to supply, free of charga, small samplos of the various linds of cochineal to any of our frionds who aro collecting specimens, or are otherwise intorestod in tho subject of our article.-Mather's Price Current, Dec. 1869.

Researohes on Tobacco.

From the investigations of Mr. Schloesing, reported in Les Monles, and abbreviated in the Chemrical News, it appears that tho inorganic substances contrined in tobacco aro Potassa, lime, magnesia, oxides of iron, and manganeso, ammonia, nitric, sulphuric, hydrochloric, and phosphoric acids, and silica. Tho organic substances are:-Nicotine, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}$; malic, citric, acotic, oxalic, pectinic, and ulmic acids; nicotianino; a green and yellow resin ; wax and fat ; albumenoid sulbstances; and colluloso. Nicotianine, also known as tobacen camphor, is a fatty sulstance, oxhibiting tho pleasant aromatic odour of tobacco-smoke, and having an aramatic bitter taste. Nicotianine is probably identical with counarine. Nicotine is an organic base ; it is, in the pure state, a colorless, oily liquid, of very ncrid taste, soluble in water, alcohol, other, and oil ; and a most dangerous poison. According to the author, the quantity of this substance contained in 100 parts, by weight, of dry, ununnufactured tobacco-leaves, ripped front the stenss, varies considerably, even for tobacco cultivated in France, from 7.96 to 3.24 per cent.; for American tobacco, the quantity varies from 6.87 to $2 \cdot 29$ por cent.; while the so-called Habana (properly Cuba) tobacco contains only 2.0 per cont. of this alkaloid. Snuff, which contains on an av erago 33 per cent. of wator, contains 1.36 por cent. of nicotinc. The quantity of ash contained in tobacco in dry state varies from 19 to 27 per cent. 100 parts of the ash contain:-Potassa, 29.96; soda, 2.76 ; lime, 39.53 ; magnesia, $9 \cdot 61$; chlorido of sodium, 9.65 ; sulphuric acid, 278 ; silica, 4.51 ; nhosphate of peroxido of irun, $4 \cdot 20$. The more or Iess easy combuatibility of tobacco does not dopend upon the quantity of nitre it contains, since experiments made by the author have proved that the Kentucky tobacco, which contains a largo quantity of valtpetre, burns badly, while Java, Marglind and Hungarian tobacco, which contain hainly any saltpetre at all, burn very well. The author found that tobacco which burns badly, or not at all (at least, not so as to be suitablo for the use of smokers) burns vory well after having been stecped for some time in an aqueous solution of an organic potassa: salt, (oxalate, ma'ate, citrate, or tartzato answor the purposo), and.next dried, A well-burning tobacco becomés badly-buming, or even non-combustible, by being steeped in aquoous solutions of sulphate of lime, chloride of
calcium, magnesia; or aramonia. The rationalo thereof lies in tho fact that the organic salts of putassa just alluded to yield, on com bustion, a very bulky, porous, and light coal, which burns off rendaly on excess of air. This baper cuntains some very mportant 1 facts relating to the preparation of tobacco and sunff, obtained 0.1 a very largo scale,
working with sume hundreds of thousands of working with sume handreds of thousands of ! tons annually

Ohlonoform and its Behaviour towards Light and Air.

Accordingto Mr. Anger, chloroform of comemerco contains, besiles real formyl-chlorido, other chlorinated enmpounds, which aro not readily soparated thorofrom. This is proved by the fact that, after the separation of alcohol and water, which aro invariably present in all commorcial chloroform, a fluid is obtained which begins to boil at from 60^{3} to 61°, and at tho end of the distillation buils at 65°. 13y repeated fractional distillation, it is possible to obtain pure chioriform, which can only be properly tested for by means of its boiling point and specific gravity. Pure chloroforin is not decomposed liy tho netion of light only. When chloroform is exposed to the direct action of the sun's rags, it becomes decomposed, exlibits an acid reaction to testpaper, and thero are found, among its products of decomposition, hydrocloric acid, chloroxycarbonic neid, formic acid, and free chlorine. Chloroform is decompused when air has access to it, eren in tho dark, althongh only slowly. A quantity of from 0.75 to 1 per cent. of alcohol added to chloroform, is sufficient to act as a preservative for keoping clloroform for years, oven when exposed to diylight. Chloroforn, cven if it does not exhibit an acid renction, may be in a state of decumposition This decomposition can only bo detected by the reaction such cloroform exhibits with ammonia, which then yields with it vapours of chloride of anmonium. Tho cause and products of this decomposition. are not ascertaincd. The boiling point and specific gravity of chloroform are variously determined by differentauthors:- The Pharm. Austriaca.-Boiling point, 635
1.49 to 15 . Dr. Strecker-Boiling point, 1.49 to 1.5 . Dr. Strecker-Boiling point, Biltz-Boiling point, $62 \cdot 00^{\circ}$. Specific gravity -At $10 \cdot 2^{\circ}=1.5085$; at $15^{\circ}=1 \cdot 6020$; at $17 \cdot 75^{\circ}$ $=1.4971$; at $20 \cdot 0=1 \cdot 4936$. -Pharm. Teits. für Russ. in Chem. News.

Alkaline Cantharidates and their Applioation.

MnI. Delpech and Guichard communicate an interesting article on tho alkaline cantharidates and their appliction as blistering agents, to the Bulletin Therapeutique. The authors condem the vasicating-plaster of the Paris Codex for the following reasons:-
The quantity of cantharidin contained thereThe quantity of cantharidin contained there-
in is variable, in some cases there is none at all, owing to tho use of very old cantharides; the fatty matter present which dissolres the cantharidin causes the medicament to run over the skin, and thus extends the action beyond the limits imposed by the medical man; moreover, the cantharidin is loy this incans sometimes introunced into the system in spite of the measures which many be talien to provent it; lastly, in the opinion of the authors, the resins presont are irritating, and have an odor almost insupportable to somo
porsons. To obtain a good blister thoy think that tho fint mind resin should bu oliminated and a known quantity of cantharidin introduced, so us to obtain a plaster which shall produce a definito offect. The case sulubility of cantharidin itsolf rondors it unfit to bo thed in tho soparato stato fur thes parpose, in roferanco to tho compounds of cantharidin describod by Massing and Draggenduaft in 1867. The results of these experiments led them to adopt cantharidato of putassa, a salt of tho liypothotical acid $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4} 2 \mathrm{HO}(0=8)$, of which cantharidin $\mathrm{C}_{10} \mathrm{CHOO}_{0}$, is tho anlaydride; 98 parts of cantharidin givo 103 parts of cantharidato of potassa. This salt is insolublo in chloroform and ethor, is solublo in ubout 11 parts of boiling water, in 24 of cold water, in 110 of boiling alcohol, and is nearly insolublo in cold alcohol. Taking advantage of its alight solubility in cold alcohol, MM. Delpech and Guichard preparo the salt by dissolving 2 grammes of cantharidin in 150 granmes of alcolnol slightly warmed, and adding 1.60 grammes of canstic., potassa dissolved in a very little distilled water ; the mixturo immediatoly solidifies and the alcoliol is soparated by pressure and filtration. Tho plaster is prepared by spreading the following composition on thin shects of guttinpercha, so that cael square decimetre shall coutain one centigramme of cantharidato of potassa:-
Gelatine 2 grammes.
Water . 10
"
Alcohol 10
Cantharidate of Potassa... 20 contigr smmes.
Glycerine....................... q. s.
Theso blisters should bo slightly moistened with water beforo application; they gave tho best of results in the hands of a number of medical men enumerated by the authors.Sidney W: Rich in the Chomist it Druggist.

Toilet Soapg."

Thro soaps consist cither of very pure orilinary curd soap, or of soaps prepared by tho cold process with lard, beef-marrow, or swectalmond oil, and porfumed in oither case with various essentici oils. To refme an ordinary soap-which should, of course, be as free as possible from colour and impurity-for toilet purposes, it is reduced to shavings, and melted over a water-bath with rose and orange-flower water and salt, 24 lbs. soap being thus mixed with 4 pints of rose water, 4 pints of orangeflower water, and 2 large handfuls of salt. The next day, if entirely cooled, the soap is cut up into small bars and dricd in a shady place, then melted anow in tho same quantities of rose and orange-flower water, and strained; afterwards cooled and dried again. This done, the sonp will be free from bad odour. It must be powdered and exposed for several lays to the air, but protected from dust. It is then ready to receive the intended perfume, and to bo moilliled and pressed into the desired forms.

Another methot is to melt 6 lbs. of best whito soap in 3 pints of water, and when liquid to strain it thaough a linen cloth. It is then rlaced in a kettle with a pint of wator and a table-spoonful of salt; a brisk fire is kindled under it; and the contents aro whipped or stirred to make them foam and froth. Tho fire is then put out; the balling

[^4]continuod till tho mass is sufficiontly inflater ; tho fire agam kindled, nud tho kottlo kopt un till its contonts swoll and foam. It is shen omptied into the coolng frames, and after solidification, taken out, cut into cakes, and pressed.

The perfumes used aro chietly volatilo oils, viz., the ols of roses, luergamot, mallow, lavender, thyme, rosemary, lomon, verbena, vanilla, bitter-rimond; nitro-benzino is also used instead of the last-mentioned oil.
l'uilet soaps are coloured bluo with ultiamarino, red with vormillion, brown with an allinline solution of burnt sugar. A peachblosscom tint is said to bo produced by ndaling a littlo cream of tartar to soap which has been perfumed with bitter-almond oil.

Tolet Soft Soup or Shaving Crcam is mado by guadually beating 00 lbs. of lard with 75 llos. of caustic potabh-lyó, marking $17^{\circ} \mathrm{Bn}$. S. G. 1-126.

Glycerinc Soay, which is used as a toilet soap for softening the skin, is mado by mixing glycerino with ordinary. sonp when transficred to the frames.

Light or Flotant Soap.-This soap is propared by threshing or agitating a solution of soitp, to which ono-fifth or one-sixth part of water has been added, with a rousor or paddle-wheel, until the latter has risen to twice the hoight of the soap solution, and then transforring it to tho moulds. A soap is thus oltained inflated with sir, which gives it sufticient buoyancy to fioat on water.

T'ronsparent Soap is prepared by drying ordinary soap in a stovo, dissolving it in hot alcohol, leaving the solution at rest to allow the impuritios to settlo down, or removing them by filtration, tho filter being supported on a funnel surrounded with hot water, then distilling off the alcohol till the residue acquires such a consistence as to solidify whon cooled in motallic moulds.

The Production of Sulphur in Oalifornia.

According to the Alta Californic, the production of sulphur and manufacture of its compounds in California, aro rising in importance. Tho cliof supply of the world is obtained from the sides of Mount Etna, in Sicily, and the States used the Sicilian brimstone until lately. Now the sulphur worles on the shores of Clear Lako produce four tons a day, as much as the coast can consume. Tho froight from the Mediterranean, tho increased clarge on account of the combustible nature of the material, and the necessity of keoping large stocks on haind, so as to prevont any disturbanco of trade in case a cargo should be delayed or lost, give decided advantages to the home manufacture.

The Sicilian brimstone cannot bo had in California for less than four cents per pound, and the domestic articlo is sold for threo and at half cents. Clear Lake occupies tho crater of an extinct volcane, and the evidences of volcanic action are ablindant in the vicinity. The triangle formed by the lake, the Geysers, and Sit. Helonn-cach about twonty-fivo miles from the other two-abounds with volcanic scoria, trap, lava, olsidian, tufa, warm springs, aurd other romains of eruptions, and signs of subterrancan heat at no gruat distance from the surface.

The sulphur bed of Clear Lake is about oight miles from the southern ond, on the castern shore, only a few hundred yards.from the water. There is a bank resembling ashes,
in which thero no numerous alkalivo and sulphur springs, and also, vent holes from which sulphurous fumes escape. These holes aro surrounded by beautiful crystals of pure sulphus doposited from the fumes rising from bolow. The carth containing about fifty 1 cr cont of sulphur, is placol in an irun rutusl, which is heated $t)$ it high tomperature, su that the sulphur is driven of infumes intu a receivnr, when it sottles in a liquil furm, and runs out into pine buxes, two feet lung and a foot s.quare. It is as pure as the Sicilian brimstone, but the lattor comes in sticks, which are more conveniunt fur handling, whon small picces are wanted.
The lump sulphur is used chiefly for making powder nind sulphuric acid, which last is omployed in making bluc-stone, giant Iuwder, nitric acid, and muriatic acid, and in refining gold nad silvor. The consumption of sulphuric, nitric, and muriatic acid on the const, amounts to $2,000,000 \mathrm{lbs}$., and the entire demand is supplied by home manufacture.
Lately the production of flowers of sulphur has been commoncea at Clear Lake. The fumes passing off from the roturt instead of being carried into a small hot receiver as fur brimstone, aro led into a large cool chamber, in which they condense into a llary, snowlike condition. This form of sulphur will bo needed in large quantitics next spring and summer, "as a cure for the mildew which attacks the vines and did great damare in many of the vinoyards last year.

The Lower Lako Bulletian says: There are no less than eight new mines of quicksilvor and sulphur now being opened up in this vicinity (sonthern part of Lake County); tho three mines of these minerels now in daily operation employ over 300 men . With eight more in practical operation, nealy 940 men and several millions of dollars in property valuation will bo added to this part of tho country. And these are not possibilitics, thoy are probabilities. The mineralis there; mon are employed there now in running tunnels and holding the ground, sad time will develop them. -Sćicntific American.

Use of Opium in the Diseases of Ohildren.

Dr. Temple in a recent paper on the above subject argues in favor of a more liberal administration of opium inthis class of patients; that it is a mistake to suppose that children do not "bear opium woll." Me had given the $\frac{1}{8}$ of a grain to children twelve and fifteen months old without any unpleasant vesults, hut on tho contrary with beneficial effects. He know that the sense or rather the prejudice of the profession was against the liberal use of opium in disenses of children. In that rosition lio believed the profegsion to bo wrong. Not many years aso bloodletting was resorted to in almost every case, and it was also the doctrine that you had to salivate your patients in ordor to curn them. He would ask where is the melligent medical man who would nowadvocate such a doctrine? Time and expericnco had convinced the profession that it was wrong in its position respecting theso tro remedies-and if wrong in one thing could it not be wrong in another Upon tho plea that childron do not bear opium vell, he believed it to be as crroneciis to withhold the soothing influence produced by the administration of a dose of opium, is it was fommenly erroncous to advocate the
ductrino oi indiscriminato bluadletting anl salivatiun. The opposition to tho uso of opium in tho diseasos of childron was based upon thu "hyputhesis, which prevails amung sumo of the best minds of the profession, that there usists a difference in tho nervous urganization of the child and mluli. This dilference can only be in the degrea of the progressive duvelyp,nent of tho two organiza-tions---their natures are essentially tho same. This being truc, overything else boing equal, tho sane agencies being used in both organizations, results exnctly similar should follurf. I have prescribed upium fur children of all ages, and almost every variuty of complant. Size of dyso varying from the $1-25$ to 18 of a grain, being contrulled by tho ago and dovelupment of the child."-Philadelphat DLea. and Surg. Reporter.

A New Insect Poison.

M. Clocz, who is engaged at the gerden of the Paris ifuseum, has invonted, according to Scientific Opinion, what ho considers a comploto amnihilator for plant lico and other small insects. 'this discovery is given in the Revuc Horticule, withs the indorsement of its disinguished editor, E. M. Carriere. To reduce M. Cloez's preparation toour measures it will be sufficiently accurato to say, tako $3!$ o\% of quassia chips, and 5 drachme of stavesacre seeds, powdered. These are to bo put in 7 pints of water, and boiled until reduced to E pints. When the liquid is cooled, strain at, and use with a r atering-pot or syringe, as may be most convenicnt.

We are assurod that this preparation has been most eflicacions in France, mad it will be worth while for our gardeners to experiment with it. Quassia hias long been used as an insect destroyer. The stavesacro sceds are the seeds of a species of lark-spur, or Delphinium, and used to bo kept in the old drug stores. Years ago they were much used for an insect that found its homo in the human hend, but as that has fortunately gone out of fashion, it may be that the seeds are less obtainable than formerly. The stavesacro secds contain delphine, which is ono of the most active poisons known and we have no doubt that a very small share of it would prove fatal to insects.-Scientijic American.

Historical Kotes on Manna,

At a late meeting of the Pharmaccutical Society, Mr. Janiel Hanbury, F.M.S., alluding to the doubtful nature of the substance provided for the sustenance of the ancient Israclites, and termed by them manna, and the origin of the stibstances known in subsequent ages under that name, the author mentions tho factethat modern manna is derived from a species of ash cultivated in Calabria in Sicily. His inquiries had, however, clicited the carious fact, that in the early history of Sicily no mention is made of manna as a production of the island, and it was this and othicr results of his researches which formed the body of his interesting communication to the Pharmaceutical Society. With regard to the mama described in the Book of Exodus as falliug from heaven the author considers that, accepting the Mosaic account as the narrative of a real ovent, it may be safely affirmed that no phenomena is hown which is at all adequato to explain it, although the notion of tho
ancients, that manna is of the nature of dow, and f.lls from tho sky still lingers in tho East.
The authur wats, howover, specinlly anxious to ascertain the period at which ash-manna was first collected, to clucidato which point ho hadinvestigated the works of many authors of carly times. Another point of iuterest was the custum of making incisions in tho trees to promuto the exudation of tho mama, which had given riso to much controversy about the middle of the sixtpe di contrisy. Wo cannut, in cunclusion, do butter than recapitulate the puints in tho history of mana upon which Mr. Hambury's valuable efforts have succeeded in throwing hght.

1. That tho mama known in Europo in very early times was prubably of Oricital origin.
2. That the manna of tho ask began to bo collected in Calobria in the first half of the fifteenth contury.
3. That the practico of making incisions in the trees in order to promoto tho exudn: tion was not commonced until about tho middle of the sixtenth eentury, previous to which period the only manna obtained wos that whinh exuded spontancously.
4. That although the existenco in Sicily of a mountain called by the Arabian name, Gibilmanna, would seem to indicate that mama was collected during the poriod of Mussulman rulo in that island, ovidence has not been produced to prove tho fact, but that, on the contzary, it appears that manna was gathered in Calabria long anterior to its collection in Sicily.

Professor llentloy agreed with Mr. Hanbury in dismissing the question of the origin of Israelitish mamna.
Mr. Haselden all led to the various applications of manna a few years back. He considered its only present use was to make blue pills, for which purpose it served admirally.

Mr. H. Sugden Evans asked if Mr. Hanbury had ever met with any artificial manna. Ho had himself met with a sample from France.

Mr. Hanbury had heard of, but had never seen, artificial manna. Conceived it would bo dificult to initate its natural appearance.

Mr. Morson had known artificial manna to be made, or rather he had known common cheap manna to bo purified, and so moulded as to exactly resemblo the best natural article. -Chenist and Druggist.

Three New Anathetics-Iodal, Bromal, and Bromiform.

Scarcoly had the name of chloral became familiar to tho scientific world, when throo now substances of the same character are announced by Dr. Rahutcan, of France, (Gaz. TIebdornadairc, Oct. 22.) Iodal is produced by treating iodine witis alcohol and nitric acid. Bromal differs from chloral in having tho chlorine of the latter replaced by bromine. Bromiform is mad. by decomposing bromal with potassa. In its chemical and aneesthetio qualities it is very analogous to chloroform, and may be mistaken for it. But chloroform makes a violet colored solution of iodine, while that ${ }^{c}{ }^{\text {c }}$ bromiform is a magnificent car: mino. Dr. Rabuteau is inclined to placo tho latter before chloroform. Ho thinks it will produce ancsthesia without sleep so profound and dangerous. Bromal is irritating to the noso and oyes. Iodal has the same effect.

The iattor is unmanageablo in consequence of boiling at $77^{\circ} \mathrm{I}$. Injectod in tho rectum of a dog, it produced an:esthesia followed by convulsions and death. Tho breath of the animal was atrongly inpregnated with tho odor. Tho blood was found black, tho flosh red, the spinal narrow and brain congestedpresenting the samo toxic effects as chloral.Pacific Medical and Surgical Journal.

Irijurious Effects of Impure Alcohol Aniline Oolors.

Dr. Tillmanns.-The author has examined several varieties of alcohol, and tested the effects upon aniline colours. The most sensitive:cinong these, for inpure alcohol, is aniline purplo (phenyl-rosaniline). It appears thatempyreumaticsubstances, aldehyde, the peciliar fusel oils due to tho snbstances used in the manufacture of the alcololviz., grain (malted or raw), potatoes, the refuso of bect-rvot sugar manufacture-affect the aniline culuurs wher dissulved in such alcohols and boiled therewith. The best test for the purity of an alcohol is to dissolve in it 1 per cent. of perfectly pure caustic putassa, and to heat the solution, it should only acquire a bright yelluw coluur. Another test is to dissolve 1 part of the aniline purple
alluded to in 50 parts of the alcoliol to be alluded to in 50 parts of the alcoliol to be tested, and to heat the fluid for some time. If, after half-an-hour's heating, no change is observed, the quality of the alcolol is good; but if the latter is not pure enough, the mixture soon becomes turbid, and assumes a red colour. Aldehyde is often present in alcohol, especially if it has been purified by means of charcoal.- Rulletin de la Sociéte lencouragenchit pour l'Indistric Nutionale

A Strong Oemont for Iron.

To four or fire parts of clay, thoroughly dried and pulverized, ald two parts of iron filings free from oxide, one part of peroxide of manganese, one half of sca salt, and one half of borax. Mingle thoroughly, and render as fino as possible; then reduce to a thick paste with the necessary quantuty of water, mixing thorouglay well. It nust be used immediately After application, it should be exposed to warmth, gradually incrensing almost to whito heat. This cement is rery hard, and presents complete resistance alike to a red heat and boiling water.

Another cement is to mix equal parts of sifted peroxide of manganese and wellpulverized zine white, add a sutficient guantity of commercial soluble glass to form a thin paste. This mixture, when used immedintely, forms a cement equal in hardncss and resistance to that obtained by the first method.-Scientific American.

Mranipulation of Plaster of Paris.

Mr. James W. White, in a communication to the Dental Cosmos (Philadelphia) writes:-
Complaints are frequently made of unsatisfactory results in the manipulation of plaster of Paris, many of which are doubtless due to a failure to observe some necessary precautions.
Plaster alhould alk:ays bo kept in a dry place-nerer: in a cellar-and in winter time in a ramn rom. It will not rork satisfactory if cold, nor if mixed with cold wator. Premising that the article is good, the
observance of tho following directions should insure success:- Put tho required guantity of tepid water intu tho mixing vessel, and add the plaster gradually, stirring constantly, until the proper consistency is obtained. If too thin, it will not set as quickly. If for tak. ing impressions, it should le quito thich, and the addition of a small pinch of enlt will facilitate the setting, but tho cast will not be quite as hard. -Chemist \& I muggist.

For Dyclag Xoullue Night Grecin on Wool.

Dissolve the dye as follows: Mix 3 lbs. of the iodino green paste well with about 25 lbs. of cold wator; thon add successively, 1 lb . acetic acid, 8° Renunc; 80 lb . wafer, of a temperature of 140° Falr.; and 2 lb . spirits of ammonia, (aqua ammonia), stirring the mixture well all the while, and filtering the same before use. Bring the dye-bath to the boiling point ; put in as much nf the srintion ns is necessary for the siade required, and dye for half am hour, letting the bath cool off in the meantime. Then have a second water-bath of 140° Fahr, feady prepared as follows, viz For © every 20 lhs. of wion, atd $\frac{1}{2} \mathrm{lb}$. sulphuric acid, 66°; and $\frac{1}{3} \mathrm{lb}$. perchloride of tin crystals, the latter previously dissolved in an equal quantity of water. Take the grods from the first bath, withnut washing, into the sceond bath; turn them in it for 15 minutes, and the green will develop vividly. For yellowish tints, shado of with picric acid, which must be added to the second bath end dyed quickly. By this arethod, I lh. of iodine green pasie will dye 12 lbs. of wool medium slande. Preserve the first bath, inasmuch as one-third of the dye remains in it, which circumstance is inportant in renowing the bath. Use same, requiring one-thind less dyestuf, when feeding it up for the second lot.

Action of Nitric Acia mpon Extract of Indian Hicmp.
Messrs. Bolas and Francis found that when the resinous extract of Indian hemp was treat ed with nitric acia, sp. gr. $1 \cdot 32$, a violent action, secompanied with a copions evolution of nitrous fumes, took place. Whea the action lade subsided, the flask was heated forfive hours in a water bath; tho residual resin was again treated with nitric acid, sp. Sr. 1,420; the clear acid solutions were then evapporated to dryness on the rater bath, the resinous portion remaining in the flask being again treated with nitric acid, and so on until the whole was dissolved. The residues obtained on eraporating these acid solutions wero then wislicd with vater and dissolvcd in spirit, from which it crystallized in long flat prisms. When pure it is white, and gives an alcoholic solution neatral to test paper. It does not contain nitrugen. It gave on combustion numbers agrecing with the formala - $\mathrm{Cs}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$ The acid liquors which lanve deprosited "oxy-cannabin" jield on further evaporation a suall quantity of an acid substance, which crystallizes in phates. Medical Picss atd Circular.

Camphor Vater.

ir. Jeannel. -The question of the solubility of camphor in mater has been viten discussed. According to the author, an alcoholic solution of camphor was made conhaning 0.375 grm . perc.c.; and a litre of water at
10° docs not dissolvo more than 0.75 grm . of camphur from this solution aftor twenty-four hours' contact and freyuont shaking. Tho authur states that alcohol does joit mererso pereoptibly thosolubility of camplion inupater; alcuhol at 20° only dissolves 2.43 jig grms, of camphur, and at $35^{\circ}, 6$ grams of that subl stance per litre of alcohol.-Chems, Newis.

coal tar colourx.

Ono hundred lbs. of coal tar yiold-3.lbs. of raw, and 12 lbs. of pure benzol. This quantity yields-3 lus. of nitrobenzol, $2 \cdot 25$ liss. of rosaniline, 3.37 lbs . of aniline red, and 1.12 lbs . of fuchsine; 1 lb . of pure fuohsine requires $3,000 \mathrm{lbs}$. of pit coal. The quantity of coal-tar produced by the entire number of gas works of Europe is sufficient to yeld, nimually, $53,000 \mathrm{cwts}$ of fuchsine.

Explowion cinageil by the Incautious Mintrge ap of a aredlelnal prenurniton.
The fulluring prescription was handed to a jhamuacentist. -Chlorate of potassa, 8; hypophosphite of soda, 4; simple syrup, 62; water, 125. The operator puit the dry salts iat an hu, har, and commenced suibibing them vigipunsly, when a most viulent explosion ensued, wheroby the mortar was smashed to atoms and the operator scriously mounded. The proper course would hare beento dissolve each of the salts separately in water.

Hhemyl maper

This article would bo useful for packing ment and other substances liable to deciay. It can be prepared by fusing five parts stearic acid at a gentle hent, mixing well with two parts carbolic acid and fire parts melted parrafino, and stirring until the wholo has become solid, and applying the same manner as wax paper is made.

Texi for Copper and Eron.

It is stated in the College Courant, that an alcuholic tincture of logwood furnishes a test for copper and iron, of extraordinary delicacy ; the hematoxylin combining with either metal, producing a pure bluo color. $13 y$ this test an appreciable result is obtained. in mater haring only one per cent of iron or cupper in taenty millions; and it will give an indication when galls or prassiato of potassa fail. When the water has been thus rendered blue, tho coloring matter will precipitate in light flocks after several days, a deposit being thrown down when the water contains only one part of metal in five million parts of water.

Cheap Geygen.

A correspondent of tho Scientific American describes the process of M. MI. Nontmargon and Delaire for obtaining oxygen by absorption by charcoal. The method of obtaining it is by exposing charcoal to the air, and then sat: $\begin{aligned} \\ \text { ating } \\ \text { it with mater: } \\ 100 \text { litres of chur- }\end{aligned}$ coal rill absorb 925 litres of oxygen, but only 705 litres of nitrogen. On saturating it with water, all the mitrogen escapes, sare 55 litres, while 5 万j litres of oxygen remain. The residual yas is collected by neans of an air-pump. The gas thus obtained is comparative pure oxygen; but if it is desired to make it free frota all nitrogen it may be subjected to tho same oneration again, until tho whole of the uitrogen has cscaped. Oxygen, in large quantities, is prenured in this way
vory cheap; all that is required is the apparatus. Tho charconl may be used in subscquent treatments, as it dues nut loso its yirtue by tho operation.
Thore aro many other substances which absorb oxygen from the air; anong which the most prominent aro blood, phosphate and carbonite of sodium. These absorb about tein per, centmore oxygen than nitrogen, and may be treated in tho camo way as charcoal.

人 Revircment.

The "Journal do Chomio Medicale" states that an excellent cement mny bo made by dissolving I part of amber in 11 phart of bisulphido of carbon. This liquid is applied by a brush to the gurfaces it is wished to unite, and on pressing them together, the cempent dries alnost immediately:

A paper on "Tho Determination of the Flashing Point of Petroleum" was read by Dr. Roynulds, at a meeting of the Ruyal Dublin Socicty, on the 17th ult. His opinion was that trienty-five minutes was the average tine for rousing the oil to the flashing-point licat for testing purpuses. An electric spark was tho most genuine test fur the flashingpoint, and by it an absolute standard of the quality of oil would bo obtained.

Is is said that glycenne may be punfied by adding one-tenth of its weight of iron filings-alloring the mixture to stand somo days, and shaking frequently.

Chauges.

A dissolution of the firm of Lyman, Elliot \& Co. has taken place, Messrs. Denjamin and Heury Lyman buying out the business ciriried on on King street, as well as the mills and laboratory, which will be continued under the stylo of Lyman Bros. \& Co.

Messrs. William and Robert Elliot hare bouglit the busincss of Messrs. Dunspaugh \& Watson, and will carry on tho trade in all its branches at No. 3 Front strect, under the style of Elliot \& Co.
Messrs. Dunspaugh \& Watson retire from business, having carned their otitm cum dignitatc by an nctive and prosperous carcer.

zetotes mui Querits.

Jewellea's Rovee.-A puro peroxide of iron, periectly freo from grit, and eminently fitted for polishing purposes, may be made by decomposing sulphate of iron by oxalic acid; both substances must be in solution. A precipitate of oxalate of iron falls, |rhich must be well washed and dried; on being gently heated the salt takes fire, learing oxide of iron as an impalpablo porcicr.
Artapicial Chmpior - According to Watts, this compound mary be formed by saturating rectified oil of turpentine with lhydrochloric acid; keening the liquid cool; pressing the crystals which form after some hours, and purifying by recrystalization from
hot alcohol. It may be sublimed, like ordinary camphor, wheh it veiy nuch resembles, both in appearance and odor.
A. Z.-Aqueots Extract of Jalap. An aquecous extract of Jolap mado from the root previously exhanstel with alcohol, is inert.
Toxiculogist.-Arsenic in Eydrochloric AcID.-This is a very common impurity; it may be detected best by Marsh's method, for an account of which you had better consult some work: on clacmistry ; or sulphuretted hydrogen may be passed through the suspected acid, which, if arsensic is present, will cause a lemon-yellow precipitato of golden orpiment, readily solublo in a solution of carbonate of potash, or soda. This contamination of commercial muriatic acid arises from the use of oil of vitriol obtained from pyrites.
Ascistuct ashs, "What quantity wuuld you give if three grammes of hydrate of chlural were order:d." If placed in such an embarassing position, and dcubtful of the truo sulution of the mystery, we should feel inclined to throw up our commission until we had qualified ourselves for our position by learning the metrical system of weights and measures, and their equivalents; then me might be able to answer- 46 grains.
J. E. K.--Resturation of Oir of Levon. -It is said that agitation with in solution of borar, with which some animal charcoal has previously been mixed, will deprive old oil of lemon of its bad odor and color, agitation with boiling water is also stated to be effec. tral.
B I.- Penomide of Inon, the antidote to poisoning by arsenic, is most readily prepared foradministration, by mixing aboui tro ounces of lignor ferri perchlor, with a solution of carbonate of soda (sal soda) about onc ounce of the crystals will bo sufficient; a quarter of an ounce of calcined magnesia may be substituted for tho soda. This will render ten grains of arsenic innocuous. Forric hyrate will not keep well, becoming, after the lapse of eren a short time, inert as an antidote; after being lecpt fire months its porrcr is diminished to one fourth
I. Wilson.-Iig. Bismetir. et Asuron. Crr.-Yon are right in supposing this preparation to contain more than indicated by tho official name; it is in reality a solution of citrato of bismuth in a mixture of nitrato and citrato of ammonia. It is to be hoped that the British authorities will change the mode of preparation, as with the bismuth at present in the market, it is rery troublesome to mako a preparation free frm copper.

Solderiva Ligoid.-A saturated solution of zinc in hydrochloric scid is much prefer-
able to resin or stearine, in soldering tin. It is said that if the solution of chloride of gime be neutralized with carbonate, or oxido of tin, the corroding effect of the compound on tho scams will be avoided.

שraic 3rpart.

Business, during the presont month, has improved considerably. Many large büyers have been dorn, and have bought pretty extonsively, showing their confidence in an improved state of things for the summermonths. Payments have also been met with gratifying pron-ptness. The stocks of sume descriptions of goods is mather low, and spring arrivals are anxiously waited for.

Prices may be said to have generally adranced, 0 pum still continues to puzzie buyers and has again raised in price, being quoted at $\$ 12$. Talsam Copaiba, slightly higher; Vanilla beans adranced $\$ 2$ pèr lb.; Cardamous and American Saffion, considerably higher; Quinine and Morphia very scarce; English oil of Larender, higher; Cod Liver oil, slightly advanced, Those articles which faror buycrs are Citric Acid, Chiratta, Canada I3alsam, and the oils of Citronella, Juniper, and American Pepermint. Alcohol has fallen in price to $\$ 1.77 \frac{1}{2}$.
Paints and oils, as usual at this season of the year, have been in very brisk demand; linseed oil both raw and boiled, are slightly higher, and turpentine has also adranced in price.

THE EUROPEAN MAII:
A Wcekly Summary of Hews for North America
TSUAL CONTENTS:-Accidents; Art and \cup Scicnce; Births; MFarriages and Deaths; Commercial Summary; Correspondence; Court; Criminal; Emigration; Forcign and Colonial; Gazette, Gencral Summary; Imperial Parliament; Irelard; LatestShipping; Legal; Literary; Market Reports; Medical; IIcrcantilc ; Military; Misecllaneous; OInsie and the Drama; Natural History; Ninval; Obituary : Political ; Prices Current ; Scotland; Shipping and Frcights; Special Amerionn Notes; Sporting;Stocks and Shares; Wills and Bequests; \&c. sic.
Subsciphion, payazic in adrauce, its $4 d$. per anлum, inclusitc of yostage.

R. C. JAMITESON \& CO., Tacergites Rnd toxpane DISTILLEMS AND IMTORTEBS OF American Turpentine, Benzine, Rosin, Pitch, Tar, \&c., \&c. menurss 1 s
 Iinseed Oil, Leads, Paints, Colours, do

R. C. J. a Co. hare basiness connexions threughout the Dominion of Canala.
18-Oricrs 1 romplty aflendetito and formardica rcith derpaleh.
Nomirrat, Junc, ISGS.
3.6 m

WFIOIESAIE PRICES CURRENNT-APEII, 1870.

[^0]: -This article, Thich originally appeared in tho " American Saturallst, "rich oriminals appeared in thio "AmeriNere Englatid States, Jut as most of the specimacns alluded paper will prove gencrally seceptable to our readers.

[^1]: 'From u:c Cbentical News.

[^2]: * No attempt was analo to isolate cither coticia, narcica meconla or other woll defincd princlples of opinn, cxisting in sinall ganitilies
 Trabslated from Dr IIsger's Phamanceatischer Centralhalle, No. 1 , $15 \% 0$ (Jniuary $0,18 i 0$), ly Dr. F . IIomimann in tho American Journal of phainamey, Jiarch,

[^3]: "Numenclature and notation tre that of Dr. Hager.

[^4]: "From the article on "Suap," in 3fr. Watts" Dictionary of Chemextry.

