

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in tha reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagéCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations on couleur
Bound with other material/
Relié avec d'autres documerits
Tight binding may cause shadows or distortion along interior margin/
La re liure serríe peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
If se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n 'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pagas endommagèns
Pages restered and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages détachées

Showthrough;
TransparenceQuality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du ma:ériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc.. ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

Additional comments:/ Pagination is as follows : 279-290 p.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy fllmed here has been reproduced thanks to the generosity of:

Douglas Library Queen's University

The images appearing here are the best quality possible considoing the condition and legibility of the original copy and In keeping with the fllming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated impression, or the back cover when approprlate. All other original coples are filmed beginning on the first page with a printed or illustrated Impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each mlcroflche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included In one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams Illustrate the method:

L'exemplaire flimé fut reproduit grâce à ia générosité de:

Douglas Library Queen's University

Les images suivantes ont été reprodultes avec le plus grand soln, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec lise conditions du contrat de fllmage.

Les exempiaires originaux dont la couverture en papler est Imprimúe sont flimés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la promière page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle empreinte.

Un des syınboles suivants appareîtra sur la dernière image de chaque microfiche, selon le cas: le symboie \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérleur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'lmages nécessaire. Les dlagrammes suivants Illustrent la méthode.

The Rainfall in 1896.

By F. W. W. DOANE, M. Can. Soc. C. E., City Engineer, Halifax, N. S.

From the Transactions of the Nova Scotian Institute of Science, Vol. IX, Session 1896-97.

The EDITH and LORNE PIERCE COLLECTION of CANADIANA

2ueen's University at Kingston
VI.-The Rainfall in 1896. Br F. W. W. Doane, M. Can, Soc. C. E., City Engineer, Hulifux, N. s.
(Read 10th May, 1897.)
The systematic and accurate registration of the rainfall is a matter of the greatest importance to the Engineer. It is absolutely necessary in order to enable him to design intelligently works for water supply, sewerage, water power, drainage of roads, bridges, culverts, \&c.

He requires certain data to enable him to design dams spillways, storage reservoirs, sewers, bridges, \&c., so that every possible requirement may be provided for.

The quantity of rain that falls annually in any one place varies greatly from year to year; the extreme being sometimes greater than 2 to 1 . As a general rule, more rain falls in warm than in cold countries, and more in elevated regions than in low ones. Local peculiarities and conditions, however, sometimes reverse this, and also cause great difference in the amount in places quite near each other. It is sometimes difficult to account for these variations.

The earliest known records of rainfall were made in Paris in 1668. Sir Christopher Wren designed the first rain gauge in 1663. This great architect also designed the first recording gauge, but it was not constructed until 1670 .

The rainfall records of some portions of the United States cover periods extending into the last century. In Canada, the average amount of rain falling in Ontario has heen taken by the officials of the Magnetic Observatory at Toronto for the past 56 years. The meteorological station at Halifax was established in 1869, and observations began at Truro in 1873; a systematic registration of rainfall has been made at Yarmouth since 1879, and the record at Sydney dates back to 1893.
(279)

An examination of the records of the United States reveals some interesting and important facts, which it may be well to quote at this stage for the purpose of comparison.

The greatest annual reinfall on this continent is recorded at Greytown, the Atlantic entrance to the proposed Nicaragua Canal. It there assumes the enomous total of 240 inches (20 ft.), a figure which is only surpassed in the Western Hemisphere on the Mexican Gulf Coast in the West Indies, by Guiana and by the coast of Brazil. It is reported that from 7 to 10 per cent. of the total annual rainfall may descend in one day. The results of such a precipitation can be better imagined than described; dry river beds become torrents in a few minutes, the water coming down in a wail several feet high ; marshes change to lakes, and the power so quickly developed is necessarily very dangerous to any work of man.

The most remarkable rainfall is recorded at Cuyamaca Dam in San Diego Co., California, about 40 miles east of San Diego. Duing a storm ending February 27, 1891, the record shows that 23.40 inches fell in 54 hours, of which 13 inches fell in 23 hours, and 7 inches in 10 hours. The elevation of the reservoir is about 4500 feet above sea level. The highest surrounding mountains are 6500 fcet above sea level, and lie to the west of the reservoir between its watershed ard the direction whence the stoms come. The eastern boundary of the basin is on the rim of the desert at an elevation of not over 5000 ft . The topngraphy of the country is such that a rain gauge at the dam would not be likely to indicate the maximum precipitation on the three peaks that bound the water shed on the west. The most notable thing about the above remarkable rainfall, however, is that the place where it occurred is within a few miles of one of the very ditiest regions in the world. The average annual rainfall at Indio, San 1)iegn Co., a station on the Southern Pacific Railway, about 50 miles east of the Cuyamaca Dam, is given by General Greely as but 1.92 inches, and he says of this and Camp Mohave, Arizona, where the average rainfall is but 1.85 inches: "These stations, doubtless, have the snallest known
rainfall on the face of the globe. Statements have been made frequently that rain never falls in these localities, but there is no year at any station where a measurable rainfall has not bee n recorded, the least observed being that at Indio, 0.10) in., during the seasonal year 1884 8.5."

General Greely's "Ainerican Weather" gives the following instances of heavy rainfalls, which exceed the above record: Mayport, Fla., Sept. 29, 1882, 13.7 ins. in 24 hours; Newtown, Del. Co., Pa., Aug. 5, 184.3, 13 in. in 3 hours; and at Brandywine, Hundred, Pa., 10 ins. in 2 hours.

Nevada Co., C'alifornia, reports the rainfall for the month from Dec. 23, 1861, to Jan. 23, 1862, 45 ins. Providence, R. I., lecords a rainfall Aug. 6, 1878, 4.49 ins. in 1 hour, 3.5 ins. of which fell in 30 minutes. At New York, the heaviest fall is Aug. 19, 1893, $1 \frac{1}{2}$ ins. in 20 minutes; for 12 hours Aug. 23, 1893, 3.81 ins. ; 24 hours Sept. 23-4, 1882, 6.17 ins. ; month Sept., 1882, 14.51 ins.

The average annual rainfall at Halifax from 1869 to 1895 was 55.862 inches. It varies from 45808 ins. in 1894 to 66.294 inches in 1888 . A rainfall of 39.51 inches is reported for 1860 , but as the Meteorological Oliservatory had not been estatilished at that time, it is doubtful if the record is reliable. There is no doubt, however, that the rainfall for that year was far below the average. The scarcity of water, meagre supply from the lakes, and consequent inconvenience to householders lead to the purchase of the water works from the company in the following year, 1861.

Reference to the records shows that the years of smallest rainfall are immediately followed or preceded by years of greatest rainfall. Thus in I888 the rainfall reached the maximum 66.294 inches. In the following year it dropped to 48.659 , within 2.851 inches of the minimum. In 1894, as already noted, the season was very dry. The rainfall was the smallest recorded since the establishment of the Observatory at Halifax. The sources of our water supply dried up so that there was danger of a water famine. Similer conditions were noted throughout the New

England States. In the following year the records show a total of 62.152 inches, while in 1896 Mr. Allison, Dom. Government Meterological agent at Halifax, reports 69.862 inches, 3.568 ins. greater than that of any previous year. Rain or snow fell on 183 days. The greatest monthly rainfall on record previous to 1896 was 10.34 in February, 187C. In 18s8 the heaviest monthly fall was 7.764 , which is recorded in December. In 1896, 8.729 ins. fell in July, and 8.786 inches in March, while in September and October, the record shows 12.092 inches and 15.0:39 inches, respectively. Rain fell on 16 days in September, and on 20 days in October. The fall on the 7 th, 10 th, 13 th and 18th of September, was 1.232 ins., 3.912 ins., 3.146 ins., and 1.510 inches, a total for the four days of 9.8 ins., or more than $\frac{3}{4}$ of the whole precipitation for the month. In October, 4394 ins. fell on the 19 th, 29 per cent. of the rainfall for the month, and 6 per cent. of the total for the year. The first month, January, gave the modest total of 1.72 inches, while for January, 1895, 10.131 inches is recorded.

There were four heavy storms during the year. Early in the morning of July 31st, rain began to fall, and during 3.8 hours the gange showed 3.506 inches, or at the rate of .92 inches per hour. The rate of fall was the heaviest on record, although the quantity was exceeded in subsequent storms of greater duration.

On Sept. 10th, rain fell during 7.5 hours, the quantity registered being 3.912 ins., or at the rate of .52 ins. per hour: 0.186 inches fell on the 11 th during 4.1 hours, 0.13 ins . on the 12 th during 2 hours, and on the 13 th, 3.146 ins. fell during 9.5 hours, or at the rate of .33 ins. per hour. The total fall for the four days was 7.374 inches. On October 19th the maximum quantity was recorded, the precipitation being 4.394 inches during 14.3 hours, or at the rate of .30 inches per hour.

The September rains referred to above raised Long Lake about 32 inches, the highest level reached being 10.5 inches above the waste weir. In October, the ground was saturated with
water, and the rain fulling on the 19 th flowed off rapidly. Long Lake was raised 20 inches by the heavy storm of the 19 th in about 24 hours. The water level was 25 inches above the spillway of the dam, while at Lower Chain Lake it overflowed the screen chambers and ran over the floor of the old gate horse. Drains and culverts were destroyed, roads washed out and bridges carried away. Jubilee Rnad was excavated by the rush of water for a length of 100 yards, the road metal being carried away for a width of half the roadway and a depth of 6 ft . Heavy stones were deposited at the foot of the hill, while the lighter material went to sea. The main trunk sewer on the common was not only full to overflowing, but a torrent of water followed its course on the surface, sweeping through the gardens and down South Park Street, until it found an outlet at South Street.

The Meteorological Agent at Truro reports about 30 hours rain on the 18 th and 19 th October, the greatest on record with regard to duration. At Yarmouth and Sydney the rain fall was light.

September 10th-13th, Sydney reports no rain ; Yarmouth and Truro comparatively light rains. July 31 st, moderate rainfall at Sydney, Truro and Yarmouth.

Comparing the Halifax records by months we find :July, 1896, 8.729 ins.-next-July, 1884, 8.294 ins. Sept., 1896, 12.092 " " Sept. 1876, 6.094 " Oct., 1896, 15.039 " ${ }^{\text {Oct., 1875, } 9.98 \text { " }}$
Mr. E. H. Keating, City Engineer, says in making his report un a design for the Halifax sewer system :-
"The heaviest rainfall in a short time, of which I have any information, occurred on the 19th June, 1872, when 0.183 of an inch fell in half an hour."

He also reports a rainfall of 4.406 inches in 18 hours on the 10th October, 1875.

Our sewer system was designed to discharge a rainfall of 0.38 ins. per hour, together with the house sewage when running
two-thirds full. The designer made a liberal estimate in determining the capacity required, and yet during the past year it was plainly demonstrated that the capacity of the sewers was not sufficient to carry off the rainfall, and great trouble, damage and inconvenience has been caused in consequence. There is not the slightest doubt that the greater part, if not the whole, of this trouble would have been obviated if records of self-recording rain gauges had been available. While the greatest rainfall on record in 1876 was 183 inches in half an hour, we had in 1896 a storm lasting 7.5 hours, with an average rate of fall of .52 inches per hour, and another lasing 3.8 hours, with an average fall of .92 inches per hour. The maximum rate must have been greatly in excess of even the latter figure, but as the storm came on the dark hours of the inorning, and the rain was not measured by self-registering instruments, we can only guess at the maximum rate per hour.

The design of sewers depends principaliy on two classes of storms. These are short storms of great rates of precipitation, and long storms of ordinary rates of precipitation. It is not sufficient to know the rainfall per hour. The severity of a storm often reaches a maximum during from 10 to 20 minutes only, and this maximum should be determined, if possible. It is also most important that the loca: conditions of the surface should be known. If the ground is saturated before the storm the rainfall will run off more rapidly.

A chief purpose to be subserved by a rainfall record is not merely how often does the maximum rainfall occur at each point, for that is an event which only cccurs once or twice in a century. The great desideratum is: How often do the heaviest rainfalls of varinus rates occur, and for how long a maximum and average time does such a rainfall continue? The records from which such laws are deduced nust necessarily be somewhat voluminous, and yet by proper study, aided by records of a number of years, a very close approximation to the real probabilities could be obtained and drawn graphically on charts, which would be of the greatest aid to hydraulic and city engineers; and even without
this, the bare records would give to a man who might be designing works at special points, material for digging ont for himself some approach to a law where now ali is guess work, and often very bad guess work.

It is to be regretted that the Meteorological Stations in this Province are not supplied with the most modern self-recording instruments. With an ordinary rain gauge it is not possible to determine the rate per hour of the fall of rain during a storm, without noting the time with a watch; and rs it is very inconvenient, if not impracticable in the majority of cases to do this, it is very rarely done, and when it is, an average rate is all that is generally ascertained, although it may have been raining faster or slower at intervals during the time noted. By the use of a reliable self-recording rain gauge the different ratis at which rain has fallen during a storm can be readily determined.

Depth of Rainfall and Melted Snow，and Duration of cacii Storm， for the Year 1896.

Day of Month.	January．		February．		March．		April．		May．		June	
	咭	$\begin{aligned} & \text { 華 } \\ & \tilde{0} \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\Xi}}{\underset{y}{4}}$	$\begin{gathered} \dot{\oplus} \\ \stackrel{\rightharpoonup}{\Xi} \\ \underset{I}{0} \end{gathered}$	$\stackrel{+}{\text { 邑 }}$		$\stackrel{\stackrel{3}{3}}{\square}$		邑	家		苞
1											0.180	1.5
2			0.440	20.	0.089	7.2					0.020	
3	0.065	1.75	＊T．		0.094	3.5	0.889	5.6				
4					0.510	5.7	0.015	1.				
5					0.186	4.	0.3323	6.5	0.106	2.0		
6							0.012	0.5	0.050	2.0	0.020	0.5
7			1.310	14.	0030	1．6					0.020	．．．
8					0.596	7.						
¢			0.010	1.					T		0.770	10.1
10	0.660	10.5	0.342	6.5					T．		0.970	11.3
11	0.030	2.5	0.480	3.	0030	1.1					0.090	2.3
12			0.100	1.	1.619	15.			0.130	0.5	0.444	8.5
13	0.040	1.5	0.020	1.7								
14	0.140	4.66	0.522	7.75			0.009	1.0			T．	
15	T．						0.034	2.0			0.841	14.5
16	0.020	10.	0.260	6.5	0.040	2.	T．				0.086	
17					1.655	13.5	0.040	2.5				
18			0.010	1.			0.015	2.0	0.250	1.0	0.010	0.5
19			0.200	5.2	0.020	0.8	0.020	0.8	0.068			
20			0.410	8.3	1.498	9.4	0.010	1.0	0210	3.5	0.050	1.5
21												
22	0.050	7.5							0.305	5.8	0.060	1.7
23									0.186	0.5	0．060	
24			0.075	2.								
25	0.390	10.										
2%	0.270	125			0.192	1.7					0.230	4.0
27	0.045	1.75			1.450	8.5			0.247	3.0	0.200	3.7
28	0.010								0.014			
29							0.046		0.540	2.7	0.700	8.3
30					0.274	8.2			0.426	6.0		
31					0.503	7.3						
	1.720		4.199		8.786		1.413		2.532		4.671	．．．

[^0]Depth of Rainfall and Melted Snow, ani Duration of eacif Storm, for the Year 1896.

Total Precipitation at Halifax, N. S.
Compiled from Returns furnished by the Meteorological Agent of the Dominion Government

Mostif.	1869.	1870	1871.	1872.	1573.	1874	1875.	18.6.	1577.	1878.	187\%.	1880.	1881	1882.
Jannary	4.53	7.11	373	388	7.83	5.42	394	3576	4200	7.534	4400	7.738	3.607	6840
February	438	10.34	5.88	4.49	1.61	5.31	583	6.401	1.809	2697	3.001	5122	5.329	5.949
March	7.95	3.02	616	537	409	3.98	2.13	6329	8.666	10.274	6.044	3.365	6556	7.068
April	2.57	391	485	2.85	286	45.5	338	3.208	3.801	3.452	3.481	4797	3498	4.824
May..	5.57	3.19	259	4.44	234	477	3.98	5662	4.024	5.769	4.687	4088	2.460	4.677
June	392	1.69	2.96	423	296	7.92	4.07	3376	3841	4477	1.191	1.34 .3	5301	5.507
July	292	321	3.38	2 SS	3.90	2.29	5.61	3.914	4.468	1453	3.843	3.086	3.177	5.071
August	2.58	220	369	6.82	4.45	337	355	1.909	3.539	3. 127	4.827	3.920	3.062	3925
September	1.57	3.33	4.81	141	4.48	504	2.06	6094	3.164	. 800	2.600	5702	3105	5.914
October	7.30	6.85	4.49	488	863	2.46	9.98	4076	6.857	5.060	4.760	4.590	4.206	7.403
November	547	6.28	4.18	665	7.98	3.58	5.54	7.397	8.678	6909	4837	4.710	4.420	1. 392
December	5.77	6.06	4.39	6.16	431	5.49	161	3.164	4.493	5120	4.029	4291	7.034	3.452
Totals	54.53	57.19	5114	54.06	5544	54.18	5148	55. 106	57.540	56702	47.700	52.752	51.755	62.022

Total Precifitation at Halifax, N. S.-(Continued).

Month.	1883.	1884.	1885.	1886.	1887.	1888.	1889.	1890.	1891.	1892	1893.	1894.	1895.	1896.
January	6.930	4.406	6.388	867	7.656	5.442	4.391	3.963	8.383	6.321	4.781	7.122	10131	1.720
February	3.860	6161	5090	3.84	6.735	6.284	6.181	4.645	8740	2.605	5979	3571	4.605	4.199
March	4.941	7.034	3.889	4.03	4.629	4.310	2.046	9889	2685	5.986	2.303	3.623	5.931	8.786
April	3.703	7.213	3.520	0.82	6.386	3.675	7.403	2958	4010	2653	4209	5648	3.956	1.413
May	8.613	3.629	3.252	8.82	2.126	2.877	3.871	3970	4.195	5.459	5054	1.769	4.089	2.532
June	3.322	3.773	2.749	2.71	2.121	4.939	3.755	3440	4.131	3.638	1.753	3.803	1.827	4.671
July	3.542	8.294	5.817	6.53	2.045	5.001	2.668	2.141	4.003	2.710	4.757	1.0\%9	3.924	8.729
August	5.342	2.771	3.001	$4.5{ }^{2}$	8351	7.000	2.633	7.042	3385	6809	5.954	3.993	5.502	3.037
Septembe	3864	1.788	2.497	4.46	3.308	5.331	1.399	4.534	3052	1.744	4.391	1.010	2.491	12.092
October	5841	3.093	6.280	2.13	3.058	6 S5S	4.179	6.603	9621	3.492	5.640	3863	5.627	15.039
Nov mber	2.478	5.992	5.423	5.28	6718	6.772	7.145	3.716	2.388	9.240	3.760	5.785	8223	4.396
December	6.678	9.124	8.693	5.47	4.120	7.764	2.988	7.202	4.076	-3053	10.167	4.562	5.846	3248
Totals	58.112	63.278	56.629	57.29	7.253	66294	48.659	60103	58.669	53.690	58.748	45.808	62.152	69862

Precipitation at Truro in 1896.

Montil.	Rainfa!i	Melted Snow ${ }^{\text {- }}$	Total.
January	067	2.3	2.37 inches.
February .	0.12	1.5	1.62 "
March .	411	1.0	$511 \quad{ }^{1}$
April	0.60	05	1.10 ،
May	1.45		1.45 "
June	3.44 619		3.44 "
Augast	619 2.24		6.19 "
September	501		2.24 "
October .	1147		11.47 ، ،
Noveinber	2.58	062	$\begin{array}{rr}1.47 \\ 3.20 & \\ \end{array}$
December	1.49	0.65	2.14 "
Totals	38.77	657	45.34 inches.
July 31.	0.44	-	
Sept. 10-11	033		
$\begin{array}{rrr}\text { " } & 13 \\ \text { ct. } \\ 1-3\end{array}$	0.35		
Oct. 1-3............... .	465		
	402	.	
Average rainfall for Octo ber, for 23 years......	451		
Average precipitation for 17 years.	43.85	

Precipitation at Yarmouth,

Heaviest recorded rain, 4.16 inches, August 5th, 1885, in 8 hours.
Greatest precipitation in a month, 107 inches, October, 1888.
Total in 1888, 71.57 inches, 22.5 above the average.
Precifitation at Sydney.

Heaviest rain on record, 2.04 inches, August 17th, 1893.

[^0]: ＊Trace．

