The Institute has attempted to obtain tr: ; best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Caltes géographiquis en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se pcut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmérs.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculèes
Pages discoloured, stained or foxed/

Pages detached/
Pages détachées

Showthrough/
Transparence.

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison Additional comments:/
Commentaires supplémentaires: Various pagings.
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

STEAM USEIS

Desirinu the aerolecs of COMDPKTRNT ENGINLSNES of thy rlisa, con obtath sober, diltelliunue anil rellable men, by applying to

camadian association

STATIONARY ENGINEERS.
A. E. Eokins, l'resident, care lbiler Insjuc. tion \& Insumnce Co., Joronto.
Ias. Roukrison, Secretary Montreal IBranch. 1430 Mignonne Strect, Montreal.

In Complicated Legal Questions

A WISE MAN WOULD SEEK CUUNSELORS AT THE HEAD OF THEIR PROFEESION : N SERIOUS ILLNESS HE WOULD SKND FOR PHYSIRIANS OF KNOWN Profesisional sklil.
IN PURCHASING MACHINERY
EOX METAL, WHY BHUULD HE NOT PATRONIZE A COOD
ARTICITH MADE 3 IV A
RELIABLE MAN WHO
offers a strong guarantee OF HIS GOOO FAITH. I DO TEIIE; THEREFORE, WHY MOT BUY MY

ITS REPUTATION 19 GOOD,
ALONZO W. SPODNER. \rightarrow PORT HOPE, ONT

COPPERINE

Superintendent's Office, Water Works Depit, Toronto, January 6th, 1891. Alonzo W. Spoonser. Esq.,

Port Hope, Ont.
Dear Sik I am pleased to say that after nearly three years constant use day and night. on our largest engine, yoint Copperine has stoon its work well. I have not had to renew any of the heavy bearings yet, so I consider that spenks for itself. 1 amplensed to recommend it to any one in need of metal to stand hevvy work.

I am, yours traly,
J. C. FERGUSON.

Chict Enginecr Toronto Water Works.

F. E. Dixon \& Co.

manutactureks of

LEATHER BELTING

70 KING STREET EAST, TORONTO.

Headquarters for Electric and Dynamo Belting.

We have the following Leather Jelts in use in the works of the -

One 36 inch belt $9 \mathbb{S}$ feet long.
[This tell hats leeen in constant use since dugust, 1885, and looks sood for another len yiars yet.] Also
One 36 inch belt 100 feet long. One $3 \$$ inch belt 100 feet long. One 36 inch belt 123 feet loug. One 24 inch belt 100 feet long. And over 1500 feet of 8 inch belting.
Alt the above bells are DOUBLE TillekNESS and are all piving satisfaction.
The 38 inch bett is the largest beit ever made in this Province.
The following Electric Companies are also using our Belting :
The Toronto Construction and Electrical Supply Co.
The Ball Electric Light Co.
The Hamilton Electric Light \& Powe Co.
The Niagara Falls Electric Light Co.
West Toronto Junction Electric Light Works.
The St. Thomsis Electric Light Co.
The Barric Electric Light Co.
The lierlin Electric and Gas Co.
The Woodstock Electr - Light Co.
The Manitoba Electric and Gas Light Co., Winnipeg.
The Goderich Electric Lisht Co.
The Markham Electric Light Co.
The Oshanat Electric Light Co.
The Orangeville Electric Light Co.
The Port Arthur Electric Railway Co.
AND OTHERS.
We are the only Belt Manufacturers in this Province who can show Belts of OUR OWN MAKE which have been in use AS LONG AS FIVE YEARS. We can point to belts of oue own make in THIS CITY ALONE which have been in constant use for TEN, THIRTREN and even NINETEEN years, and are still gooc.

We are prepared to Surnish Belts of any size, two or three ply, of any,
width. Every leit fully guaranteed.
Send for Discounts. Dixon's Belting Hand-Book mailed free on application.

Earle's Air and Steam Injectors:

THE BEST DEVICE IM THE MARKET

For burning hard or soft coal screenings under steam boilers, for working gas producers, \&c., \& Cc, exhausting gases from mines, ventuating ships, buildings, \&c. Cith be applied to any boiler without disturb. ing the present setting. Guamnteed to do the work satisfactorily. Can give the lest of testimonials showing their efficiency. THE CANADIAN OLl.ED CIOTHING CO. (I'TD).
Mannfacturers of

S. R. Eaxle, Esq., Belleville, Ont. Pont Hork, June ajrd, aEyz. Drak Sir, - We have had in use for some time, your Combined "Air Injector and Exhauster" and with pleasure we state that it is giving us the most consplete "atisfaction. Regarding the saving its fuel, we we e burning, before using injector in, we lamo iwo ton hard conl scieenings per week at a cokt of $\$ 2$ os making a saving of $\$: \infty 0$ per week, which speaks for itself. We have 2 much cleaner and letter fire and far less irouble in keeping xie im. We consider your invention a bocn to all parthes using steam boilers. Wishing you every' success, weare, Yoars truly, (Signed) Tur Canadian Oilxd Cloturag Co
per S. Henderson, Manager.

Canadian General Electric Company (Limited)

General Oflecs:

63 to 69 Front Street West, TORONTO, CANADA.
Inelordes:
HETERBOROUGH, ONT. HAMILTON, ONT.
atraseken:
hal.jfax, n. S. Montreal, qur. Winnipeg, man. Vancouver, b. C.

Manufacturers and Contractors

Continuous Curvent Dynamos,
Aliernating Current Dynamos, Generators for the Transmission of Power; Arc Lighting Apparatus.

Electric Railway Motors and Equipinents.
Electric Mining Apparatus.
Electric Mcitors for every possible duty.

Electric Cables and Conductors for Telcphone, Telegraph and Electric Lighting and lower Circuits.
出
Flexible Cords and General Electrical Supplies of every description.

COFFRSPOINDEINOH INNVINED.
Please address all correspondence to the Company.

Kay Electric Works

NO. 263 JAMES ST. N.
HAMILTON, ONT.

DYNAMOS

Fov Are and Incomelescent Lifhting.

MOTORS

From 1-8 H. P. to 50 H. P.
El.ectro plating machinfs and general eleectrical.

- applances. special. attention to mill. AND FACTOKY LIGHTING.
WRITE FOR CJRCULARS.

.... OUR SPECIALTY....

We also manufacture Horse and Trail Cars - of every description.

PATTERSON \& GORBIN. ST. CATHARINES, ONT.

wF Manufacture Standard Bell Telephones Warehouse Felenhones. Also
Garbon Transmitter Telephones. Local exchanges fited up. All lne material suppled. Ste Jutit. Sept. 5th. 1892.
T. W. NESS, EsQ. Montreal.

Dear Sir. We are happy to state that your ielephones and switches are giving us goorl satisisfaction. We bave three sorts of switches and we find yours tar pieferable. There: is now about forty of your telephones in operation on our line Every one works well, and we intend to use no other. Yours very ind y. Tie Megantic Telebinone Co Write us when you want anything elcetrical. Fey Nockets, Magucto Belle, Sitritehes, Aямннciators, cient-outs, fichls, Hire, Bntlerdes. J'soh Inttons, AC., Dynasea amod Motory

CANADIAN
 Electrical NeWs

AND

STEAM ENGINEERING JOURNAL.

THE GUELPH ELECTRIC LIGHT COMPANY.

Ture Guelph Electric Light Company has been doing business for a little more than five years, and so rapid has been the development of its business that three times during that period increased accommodation has had to be provided for its requirements. The last move in this direction was made early last spring when the company determined upon erecting an new building, which would meet its present and future necessities. This new building took the form of an addition to the buildings heretofore occupied by the company. Theold buildings originally did duty as a flouring mill, being known as "Allan's Mills." They are situated close beside a branch of the Speed nver, and in proximity to the two railvay stations.
Considerable difficulty was experienced in obtaining a good foundation for the newbuilding as the site, originally the river bed, had become filled up with decayed vesctable and other material of an elas-

New Centhal Station, Guelim Electiol Ihgut Company.
afterwards painted over their entire surface. A wire tower, 14 feet square, occupies the north corner of the building.
The extension of 42×63 teet above referred to, used for boiler house, coal room, store room, reparr shop and wheel house, is only one story high, and is roofed with iron.
The machincry has now been in operation about a month, and it is considered that during that time the building has been subjecteal to as great a strain ats it is likely to be called upon to endume at any time in the future, owing to the fact that there has been more vibration than there will be after the machinery, shafting, etc., has been go: into perfect working order.

Some particulars concerving the nature of the plant and the manner in which it is arranged will no doubt be of interest. The motive power consists of both steam and water. The water is brought a distance of about fifty yards from the river Speed by means of a stone raceway, which passes right
tic nature. The foundation, which is of stone built in cement, is about $4 / 2$ feet in thickness, and is carried to a considerable distance below the surface of the ground. There are two stone piers supporting the superstructure, and a number of others supporting the engines and shafting.

The whole building is of stone, the walls varying in thickness from 27 inches at the basement, to 22 inches above the dynamo room. The buildings are irregular in shape, the size of the new main portion being 45×63 feet, and of the old portion, $4 \times \times 63$ fect. The height of the ceilings is 7 fect clear in the condensing room. and to feet 6 inches in the other stories.

On the second floor, used as engine and oil rooms, there are oak posts resting on stone piers, supporting the upper floors; The dynamo room floor is constructed of $13 / 4 \mathrm{inch}$ pine, supported by 14 feet 6 inch $\times 14$ inch ioists, which in turn are supported throughout their entire length by trussed girders. Where timbers come adjacent to one another or to the piers, sufficient space is provided to prevent vibration by contact, a point which was insisted on by the engineer.
The walls are built in cement and plastered on the inside; the ceiling is lathed and plastered on the roof boarding between the rafters, making the roof, in the opinion of the underwriters, fire proof. The roof of the newly erected part of the building is shingled, the shingles having been dipped in mineral paint, and
through one end of the building and enters the wheel house at the south corner. The head of water is 14 fect. There was ori, inally in this wheel house, an old penstock, 12×5 feet; this has been replaced by a new one $12 x i 4$ feet, two-thirds of the space required for which had to be blasted out of solid rock, the space around the water wheels had also to be decepened in the same manner, to allow of the free exit of the water.

There are two turbine water wheels, each 33 inches in diameter, of the Little Gant pattern; one of these is a new wheel which has taken the place of a 17 inch wheel.
The volume of water varies considerably at different times in the year, and the amount of avaulable power varies from 120 to 30 horse power. While the writer was mspecting the wheel house, the drive was started up, and an opportuntry afforded of notceng how smoothly and noiselessly the wheels operate. When water is abundant, the smaller of the two engines with which the station is furnished, is used as an auxiliary to the water power, and as governor of the speed of the water wheels.
The boiler room contains two boilers, each of 75 horse power capacity. These boilers are encased in brick work.
The basement of the newly constructed building is occupied by the condensing apparatus, and is divided from the race by a 4 feet wall. The supply of water for condensing purgoses is drawn from the race into a brick tank, and from this tank the
condensers draw their supply, there is also a brick tank for receiving the condensation and water for the condensers, and from this the water supply for the boiters is pumped. There are two condensers and two pumps, the pump connections being so arranged as to supply one or both boilers. The floor of the basement is of pressed brick laid on edge.

An unusual appliance in electric light stations is here to be seen in the shape of a gas meter. The building is piped throughout for gis, which is used by the employees when the clectric plant is shut down on moon light nights.

The engine room contins a Wheclock cross compound engine of 150 horse power capacity. This engine is mounted on a solid stone foundation extending down 9 feet below the basement floor. The driving whee: is 13 feet dianmeter, and 22 inch face; there is also a single cylunder condensing engine of 100 horse power, with a nly wheel it fi. 6 in, diameter and 20 inch face, the foundation for which corresponds to that of the larger engine. This engine was the one formerly used, and was moved from the old stattion. There is a commter-shaft driven off main shaft for operating the pumps and condensers. Adjoining the engine ronm, and separated from it by a 36 inch wall, is the oil room.

The dynamo room contains four are and one incandescent dynamos, viz., 75 light, 35 light and 25 light Ball machines, a 50 light Reliance machine and a 500 light Royal alternating incandescent machine. The 50 light Reliance and 65 light Ball dynamos are used to sup. ply current to the street circuits, and the smaller machines 10 furnish current for commercial business. These dynamos are belied to at line of shaft. ing extend. ing from end to end of the building; cachdynamo is driven from a clutch

Virif of Dinaho Room, Gublph Electric lagut Compant.
furnish electric power for manufacturing purposes; the opening for busmess in this direction appears to be very promising.

An external view of the station together with a view of the dymamo room, are presented herewith.

IN RECOGNITION OF DEPARTED WORTH.

Editor Blxctaical News.
Sth,-llamilton Association_No. 2, C. A.S. 1:., at its regular mecting held October 7 th, idopted the following resulutions:-
"Wheteas it has pleased the Almighty in his great wisdom to remove from us our late Brother, Douglas S. MeKenzic, and
"Whereas this Association wish to recognize his many stirlng. qualities, therefore it is
"Resolved-That a fitting tibute be paid to the memory of the departed, setting forth that in lanenting his removal from anongst us, we mourn for one who was worthy of our most sincele estectl? ;
"Resolicel-That we offer our heartfelt condolence to the bereaved ones in this their time of deep affiction, and most earnestly besecch them to seek consolation in their bereavement from our Heavenly Father, who in His great wistom has seen fit to remove from them a beloved father and husband, always remembering that He doeth all things well;
"Resolved-That IIamilion Association No 2, C. A. S. E.,

Hamiliton, Oct. 7th, 1892. extend their heartfelt sympatily to the family of the de. ceased;
"Resolved -That the Charter be draped for the period of 30 days as a tribute to the memory of the dep.rted Brother, and that these resolutions be placed on the records of this Association, and a copy be sent to the fanily of the deceased pulley, and can therefore be operated independently or in conjunction with all the others.

The switch board has been erected in the north comer, beneath the wire tower, and is fitted with the usual current indicators, etc. The engine and dynamo rooms are connected by call bells and speaking tubes.
The millaright work and power plant were supplied by Nessrs. Goldie \& McCullough, of Galt, and the belting by the J. C. MeLaren Ilelting Co., of Montreal.

The architect who designed and superintended the construction of the building, is Mr. Joln Day, of Guelph.

As most of our renders are prooablv ware, the electric light and gas interests of the city are unde: one control. The president ofhoth eompanies is Mr. D. Guthrie, Q.C., M.P.P., and the vice-president, Mr. Richard Mitchell. Both of these gentlemen have held similar relations to the gas company from the time of its inception, twenty-two years ago. The management of both companies is in the hands of Mr. John Yulc, who has flled the position of manager of the gas company most satisfartorily during the last 21 jears. Mr C J Jordan, the electrician in charge of the plant, has also been with the Electric Light Co. from its inception.
The company is a most cnterprising one, and is now in possession of one of the most substantial and best arranged central stations to be found in the Dominion. It is their intention, we understand, shottly to install a power generator to

Brother, also to the mechanical press for publication.

$$
\left.\begin{array}{l}
\text { War. Morkis, } \\
\text { E. C. Johnson, } \\
\text { R. Mackir, }
\end{array}\right\} \text { Committec. }
$$

CANADIAN ELECTRICAL ASSOCIATION.

The exceutive, realizing the advantage of taking time by the forelock, have set about making arraneements for the January mecting.

The Secretary is in correspondence with certain members of the Association in the various departments of the electrical field, regatding the preparation of papers for the approaching meeting, and the consent of some has already been given. It is hoped that no one who has been asked to assist in this way to make the meeting a success, will decline to make the attempt, except under circumstances which would make compliance impossible.

A full meeting of the executive will be held a few days hence for the consideration of this and others matters.

The new power house of the Toronto Street Railway Co. and the Toronto Electric Light Company's new station, will, it is expected have arrived at completion by the first of the new year; these with the new Bell Telephone Exchange, and the headquarters of the local electrical manufacturers, will well repay a visit of inspection.

The Executive will welcome suggestions from any member of the Association which will be likely to promote the ruccess of the coming meeting or the general interests of the Association

SUagestions to enaineers on TEnding dynamosELECTRICAL TERMS EXPLAINED.

Pace the oil-catchers under the drip of the dynamo bearings, and never allow then to overflow on the floor.
Keep the floor of the dynamo room swept clean, so that no nails or other small pieces of metal can be drawn into the armature.

Never use or Jeave iron or steel tools near the mathine, while at work, as these are also likely to be drawn into the armature if left too near it.
Oil cans made of copper or zinc are best for use about electrical apparatus.
Never allow oil to accumulate on the armature or shants of the dynamo.

When the wires coming out of the shaft to the commutator becone bare from cleaning, they should be recovered with kerite or okonite tape, or guin cloth, and shellaced, and allowed to dry for about eight or ten hours before being used.

If the shellac on armature bobbins or field magnets becomes worn off, these parts should be reshellaced.

A good bellows will be of sersice in getting dert out of the crevices of the armature, and around the commutator and rockers.

If the rocker springs are fastened to a wood base, see that the screws which hold them are kept tight as the wood dries.
See that all thumb screws in the binding posts are kept screwed down tight on the wires. Special care should be exercised in regard to this in the case of incandescence machines.

In placing biushes, take pains to clamp them firmly in position, allowing them to rest squarely and evenly on the commutator. Be very caref. .ot to screw down one side of the clamp tighter than the othe, but clamp them evenly, so that both edges of the brushes will be held in place.
The clamps holding the brushes must be perfecily clean, so as to make good contact.

Brushes must bear on the commutator with a reasonable pressure, not too hard, nor so lightly as to allow them to flap or chatter. Occasionally, by accident or otherwise, the brushes will get bent, or sprung, and bear too lightly on the commutator. This condition of affairs is always attended with many sparks, and a very rapid cutting, or wearing of commutator segments. In fact, segments may be worn out in a few days, in this way.

If brushes are perfectly straght when put into the clamps, sufficient pressure will usually be obtained.

In an arc light, or high tension machine, if the brushes are rocked too far forward in the direction of rotation of the conmutator, the sparking will quite disappear, but the lights will go out occasionally, each extinction being attexded by a few very long sparks on the commutator. This trouble may be correcte:' by rocking the brushes backward a short distance. If brushes are moved too far back, there will be sparking, and a consequent diminution of light in the lamps, and occasionally extinctions of the lamps, similar to those which occur when the bushes are too far forward.

The proper point for the brushes is as far forward as possible, so as to make the sparks small, and yet back of the point where flashing will occur. In low tension, or incandescence machines, the brushes should be adjusted to show no spark, or only a very minute one, otherwise the wear on the commutator and brushes will be very heary.
Too much oil on the commutator will cause sparks similar to those which appear when the brushes are not pioperly adjusted.
When brushes are worn neatly through, clip them off squarely at the worn ends, and move them up to the same position as before.

Cleanliness is absolutely necessary to the successful operation of an electric lighting plant. Too often the salesmen of manufacturing concerns give the impression that an electrical plant will almost take care of itself, and that it does not matter where you put $i t$, whether in some out-of-the-way corner, on in onelf, or anywhere, so that it is not in the, way. It is not reasonable to expect this of a dynamo machine, any more than of any other fine riece of machinery. Treat your electrical apparatus fairly; fi:e 't a location that shali be as clean as possible; grant it some attention, and you will be better satusfixd. Poor and dirty oil will cause hot bearings, rapid wear, etc., and is, of course, muck more expensive in the long run.

The commutator is a very important part of a dynamo, and should be given special care. It is well to wipe it of frequently with an oiled cloth, and whenever the machine is shut down, carefully brush off any particles of dust or copper which may have collected about the connecting wires, or other parts of the commutator. Should your brushes be of the style composed of a number of wires, soldered or bound together at one end, you will find that they have a great tendency to collect dust, copper filings and oil, which must be cleaned out. If they are attended to mumediately after shuting down the dynamo, boiling water will generally clean them nieely. If, however, the oil and dirt are allowed to become dry and hard, it mas, perhaps, be necessaty to soak the brushes in kerosene oil for several hours. Care should be used in handling these wiee brushes to avoid bending, as when bent, some parts of the brush do not do their work, and others are obliged to do much more than their share.

There are some places about a dymano where oil will do mote harm than good, as, for instance, the connections of the fields, and in and around the armature. It will sometumes work its way into the later place, if care is not used to prevent same. In time oil is apt to rot the instation, and the constant collecting on this sticky surface of dust and me:al particies, tempt the current to break through the rotten insulation, resulting in a burnedout magnet, armature bobbin, or perhaps the entire armuture.
Contacts of all kinds should be examined occasionally to see that they are bright and clean, as poor contacts make high resistance, and hence call for more power. They are also liable to heat up sometin.es to a dangerous degree, this heating sometimes being so great as to cause a fire.

It is hardly necessary, we presume, to mention the fact that to obtain a clear and steady light from arc lamps, the carbon rods, as well as all other working parts of the lamps, must be kept perfectly clean, and in condition to work freely and promptly. The contaty points in the cut-out mechanism should always be bright, so that in case they are called into action, a good firm contact will be made. A clean globe may, perhaps, not be absolutely necessary to the proper working of a lamp, but it certainly looks much better and offers no obstruction to the light.

No sooner has a dynamo been mstalled in a factory, or, we may suty that as soun as its instatlation is completed and negotiations opened, we begin to hear about amperes, volts, ohms, megohms, etc., etc. It may, therefore, be of interest and profit to conside;, briefl) and simply, the meaning of these tems, as, when they are clearly understood, other matters are grasped more readily.
E. J. Houston, in his "Diction:ry of Electrical Words, Terms and Phrases," states: "The ampere is the practical unit of electric current. E:ch a current (or rate of flow or transtmession of electricitv) as would pass with an electro-motive force nf one voll, througl a circuit whose resistance is equal to one ohm. That is to say, a current of the definite strength that would fow through a circuit of a certain resistance and with a certain electro-motive force. Since the ohm is the practical unit of resistance, and the volt the practical unit of electro-motive force, the ampere, or the practical unit of current, is the current that would flow against unit resistance under unt pressure or electromutive force."
The ohm, as mentioned above, is the unit of resistance, and the volt the unit of force or pressunc. A very simple and easy way to fix in one's mind these terms and their meanangs, is to take the common illustration of the flow of water thiough a pipe. We will assume, for convenience, that we have a pipe one unch in diaucter, and, say, five feet long, offering to whatever liquid is to be put through it, a friction of resistance of one ounce. We We now wish to put through this pipe one gallon of water, and therefore must havea certain amount of pressure to accomplish this result. Let us say that it requires a pressure of one pound to push the one gallon of water through the pipe mentioned, the friction resistance of the pipe being one ounce. Transpose this case into an clectrical question, and it would be about as follows. The one gallon of water would represent one ampere of current. The friction resistance in the pipe would represent one ohm, and the one pound pressure would iepresent the electro-motive force (e. m. f.) necessary to drive the one ampere of curreut through a given length of wire having a resist.ance of one ohm.
The term megohm is formed simply by the addition of the prefix meg, or million, meaning, therefore, one million ohms.Scientific ifachinist.

Care of steam boilers.*

By Alurrt E. Bokins.

Tuis is a subject which is for should be) of deep interest to all engineers, not only for our own safety and our employer's property, but more espectally for the protection of our fellow employees and the general public agamst loss of hife and limb.
I have often thought that this matter does not receive from us that just and careful consideration that it should.
there might be much satul or written on this subject in connectoon with the construction, material and setting of steam boilers. I shall, however, endeavor to keep as close as 1 can to my subject, touching only such pounts on the care of boilers as may be in iny opmon conducive to safety and economy.
We know from expenence that all bollers are gradually weakened by the work of destructuve agents upon them from the tune they are put onto operation until they are discarded and carted awaty to the scrap heap in some rolling mill yaul.
The tapedity with which this deteriorition takes place depends to a great extent on the following. ist. The quality of materal and workmanship, and. The lecition of boiler setting; 3rd. Last, but not least, the amount of care bestowed upon it by the man who is plised in charge.
Une of the woist enemes of a steam boiler, with whith we have to contend, is external corrosion, and it is to a great extent caused by negligence. Thus form of corrosion is often caused by the guage cocks, man holes, flange joints, tube ends, rivetted seams, \&ec., being allowed to leak and drip down the front and shell of bollers day after day where sof tumes) "out of sight, out of mind," the plate is caten away in a surprisingly short space of tume to such an extent is to become dangerous. I notice that It is a very common thing to find the heads of boilers in the vicinity of the hand holes eaten away from the above cause. How often do we hear a man make use of such an expression as this after making a hand hole joint and findung it leaks a hatile, "Oh, it's groad enough." Every englaeer in this room will agree with me when I say that there is nothing good enough fora steam boiler in the way of care and attention, unless it be the very lest whith the engmeer his in his power to gion:
The old saying, "As a man sows so shall he re..., is never more upplicuble than to a boler in regard to the result of good, bod or indifferent hauding as the case may be. Just as soon as a leak is discovered atound a boiter it should be attended to, as of not it oul) teads to make manters worse, as I have before slated by inducing corrusion, as hut water and coal soot combined are currusive arents of kreat strength and at is surprising how soun the, will eat atw, the sheet to one-half of its onginal thickness. As I stated above this is a very common occurrence around hatod hule deors and the phate of often found eaten away to such .me extent as to need patching. I can attribute such c.ises as this to nuthing but curelessness, as it can always be prevented by a litte care and pains in naking a pome. I have yet to find the hand hole that I conit make tught.
My way of mahing a hand hule joine is as fullows. Wean the phate and sheet well, then wind abut three turns of cotton wick tishthly round the plate, cut a gusket of $\%^{\prime \prime}$ rubber to fit plate snugly, then on top of it smeas well wath black lead or plumbago and wil. I never use red or white lead around a boile: except for pipe threads, and eien for that I believe plumbago is the best. By using the black lead and oil on the rubber it can be removed at any time, and the gasket will adhere to the plate, having a smooth face, and can often be used three or four tumes. I have ofien packed so-called "hand ones" in this manner and made them quite tight when other means have failed.

For man hole plates I always use ${ }^{2 / 4}$ asbestos board cut to fit the plate snugly, then soak it in water for an hour, put it on the plate smearing the side comis., in onntact with the boiler shell, well with black lead and oil. Then when breaking joint again it will only be necessity to pour some water over the asbestos to soften it and apply more black lead and oil, and it is ready for use again. I have made joint for a manhole in this manner which has lasted four years and been broken every three months. I believe this to be the cheapest joint for a man-hole plate, taking everything into consideration. Asbestos is a good steam packing, but I would not advise its use on water joints, such as hand-holes, as the water will soak through it.

We now come to the internal corrosion, which is another form of wasting away, but it is not quite so rapad as extermal corrosion when left to take its own course. The action of internal corrosion may be classified under the following headings, viz. Chemical, Galvanic, and Mechanical. It is chemical when seen in the form of the rusting away of plates in a uniform manner. When galvanic, its presence is made known by the rivet and stay he.ds beink caten away also by pitting taking place in the tuhes and slieets. We also find the ends of gauge glasses caten away thin in some boilers from the same cause. Cialvamism is a species of electricity which is excited by estaplishing contact or communication between tiro metals through the medium of a liquid and it possesses energetic decomposing power. Mechamcal action, such as grooving and buckling of plates, is caused priucipally by uncyual expansion and coneraction. If we look into this matter alitte it with not be harrl to understand the cause ot buckling and groowng. Take for instance in internally fired boiler such as the Lancashire or Galloway, and it is very evident that the difference of expansion between the furnace flue and the shell must be cons: ierable, owing to the high temperature of the fire, and is the flue cannot expand very much endways on account of the rigidity of the heads, it has to adapt itself under these conditions sumewhat to the shape of a bow! and it is from these actions that the grooving occurs in the roots of angle trons that secure the flue to the heads in this class of booler. Mechanical action like the above frets and irritates the iron ot steel until the skin is broken. The fracture is also acted upon by any acids which may be present in the water until the groove or fracture extends in many cases clear through the sheet. This action of grooving is frequently found, as I said before, around the roots of angle irons and flange plates of Gilloway and Lancashire boilers, but is not found so frequently in the horizontal tubular bonter as commonly used in this country. A short tume ago the writer saw some furnace flue angle irons taken out of a large Galloway boller which were grooved the whole circumference with the exception of a space about 2 inches long.
The practice of some engineers of opening the furnace doors of boilers to check the peneration of steaminstead of having and using dampers cannot be tao severely conlemed, as leaky seams, rivet cracks, and other evils must follow such a practice, to say nothing of boiler maker's repair bills, and yet it is danly persisted m by some men.

It should be the aim of every fieman and engmeer to keep the temperature of the furnace as near one point as practicable, if they wish to hwe a boiler free from leaks and thus reduce the sudden expansion and contraction to a minimun. The man who throws on a heavy fire and lets it burn up and die down untul there is barely enough incandescent fuel to ignte fresh coal, and charges up his furnace again with green coal is not doing his duty either to his boiler or his employer as such slovenly work cannot fail, in time, to produce bad results to the boiler, to say nothing of such a course being uneconomical in the generation of stcam.

In regard to internal corrosion, where it is unform and in the shape of rusting away of the plates, I believe the best thong is to get a sample of feed water analyzed and a compound pripared especially to counteract the action of the corrosive agent or agents in the water. Fortunately for us we are not troubled much in this part of Canada by this form of corrosion. For the second form of corrosion, which is galvanic, I know no remedy, except to watch boilers carefully and have them inspected regularily, so that all defects may be discovered and made good before they become actually dangerous. In the case of pitting, which occurs mostly in low pressure heating boilers where the condensation is returned continuously to the boiler, I would advise that a few pounds of sal. soda be put in the boiler during the winter, and when laying up the boiter for summer, afte: washing it out thoooughly with hose and making all joints good, put in 10 lbs . of sal. soda and get up 3 or 4 lbs of steam on boiler alone, then let boiler cool off and when cool fill up with water to the stop valve on main steam pipe. The above treatment will arrest the action of pitting, and in a damp place where a boiler stands idle all summer, after smearing boiler all over with coarse oil fill up with water and put in ten pounds of sal. soda dissolved and let it remain until the fall or whenever it may be wanted. This treatment will keep the boiler free from external corrosion caused by a damp cellar.

To guard against grooving and buckling, I would say, have
enough boilers to generate the necessary amount of stean with. out having to furce your fires, the efect of which is to shorten the life of your boiler and this to at the expense of cconomy in fuel. It is a mistake to put in two boilers of 100 h. p. rated capacity to do 250 h. p. actual work It would pay well in the long run to put in four boilers of 100 h p. rated capacity and run with slower fires and be in a position to shut one down at any time for cleaning There is no adrantage in forcing a steam boiler, look at it from any point we may, but 1 am well awate tisat it is a very hard matter to pet some steam users to regard it in this light as it seems to them always a matter of dollars and cents in the first cost.

1 came across a case not long ago where a man boasted to me with apparent pride that the man hole plate of his looiler had not been removed since the boiler was put in, which is some nine or ten years ago, and that be only took out the hand holes and washed out once a year. When such men as this are allowed to control steam boilers, is there any need to wonder that week after week we read in our daily papers of boiler explosions and loss of viluable lives and property? Many people think boiler explosions are purely accidental and can't be avoided, I maintain that this is a mistaken idea, and I feel sure that if all the detals of these explosions were known the cause would in many cases be traced to ignorance and negligence of the common sense rules which should govern the operation of steam boilers.

From the reports of the different boiler inspection and insurance companies of this and other countries, also of districts where an Engineers License and Boiler Inspection Law are in force and faithfully carried out, it is fair to assume that these boilers which have exploded during the past year would not have done so had they been inspected.
No boiler of the horizontal tubular type should be allowed to run over a month, when generating steam for power, without washing out, and the man hule should be removed at least every three months and the fireman go inside with scraping tools and dislodge all the scale and deposit he can, afterwards taking in the hose with him and washing, off tubes and shell thoroughly. It is a good thing two or three days before washing out to pump into the boiter to or 12 lbs . of sal. soda, as this will soften the scale and make it much more easy to remove.

In case a boiter is badly scaled I have found the following a good coarse to pursue. when a boiler wan be laid off for a few days, put in from 20 to go lbs. according to state of boler, of caustic soda and get up 60 lbs . pressure of steam, and keep it up for a day, then let steam down but keep enough fire gong: keep boiler hot and water at $212 \% \mathrm{~F}$. for a few days. Then let boiler cool down, let off water and wash with hose under good pressure, and repeat the dose if necessary. This treatment has been found to clean a boiler when everything else has f.uled. Some engineers are in the habit of blowing off a boilet under steam pressure and turning on the coll water to wash out white hot, as they claim by so doing it takes off the scalc. That it does so is no doubt a fact, as the sudden contraction of the plates is so rapid that the scale is cracked and falls off. In following such a course a man may get off some of the scale, but the damage done to the boiler from such sudden contraction is such that it soon means a bill from the boiler shop for repars.

The proper way to wash out a boiler is to let both boiler and brick-work cool down, if possible, then run off the water, and open up hand-holes, when the mud and sedment will be found in the bottom of shell and can be easily removed. After filling up the boiler with cold water put a slow fire under it and gradually warm it up. Forcing a heavy fire under a boiler iull of cold water is as bad or worse than blowing off under pressure and washung out hot, and the engineer who boasts of having got up 20 lbs . of steam from water at $45 \% \mathrm{~F} . \mathrm{m} 20$ mnute., only shows his own ignorance.

Every man who has charge of steam bnilers should take a pride in keeping them, and everything in connection with them, clean and in good order. He should be cool and collected in case of an accident, and not like a man I knew of a short time ago, who took a stluation to run a small engine and boiler and when the second day, the gunge glass jroke, put for the street and could not be induced to go back until the engineer fiom the next door had been in and shut off the valves communicating
with the boiler. Never allow any oil to enter your boiler. I am aware that many engineess believe that a little cylmeder oll in a boiler is a preventative against scale, but be this as it may (and I am not prepared to contradict it, it is a well known fact to many engineers that sery serious datuage has been done to baiters by reason of oil miaing with the impurities held in the water and forming " kind of paste which in some cases has fallen to the botion of boiler and remained there, and owng to the fart that this oily paste has icpt the water from taking the heat from the phate, the result has been that the phate has been heated to such a temperature that the pressure has bulged the plate down, and in some cases a fracture has taken place. Some engineers will tell jou they have allowed the oil from the condensation of exhaust steam to be returned to the boiler for years without any harm to the boiler, but I could tell you of places where it was only allowed to go in three months or so and the result was overheating of sheets, and when the sheets were cut out the oil and mud was found thich on the water side of sheet. The best cure for anything is preiention, and if the oil is being returned in condensation from your calhust heating system to to your boiler, my advice is to take means to prevent it at once, or if you neglect to do so you may have trouble. It is a pleasure to go into boiler rooms where cleanliness is observed, not only on the brass mountings and fronts, but up over the tops of boilers, which in too mans phaces serve is a lumber room tor pipes, bricks, old bags and a large quantity of ciust. A boiler should be kept as clean upon top as in front, and it is a very small matter to keep it so when once it has been put in that condition. The plea which is so often put forth by engineers as an excuse for a dirty, slovenly engine and boiler room, "Oh, if it suits the hoss it aill suit me," is about played out. The men who get on well are those who take an interest in all thes do, are clean and tidy about their engine rooms, and put in their spare time reading and studsins, in order that they may keep up to the times and be in a position to take advantage of a better position when it offers itself. It is this style of man who gets there every time.

This Association has been the means, both directly and indirectly, of bettering the positions of a good many engineers, and in so doing has been a benefit to quite a number of stean users, but I do not consider that the latter have given us that consideration and support which we were entitled to. Nevertheless we are gaining in this sespect steadily, and shall continue to do so as long as our organization is based on a pnnciple which recognizes the identity of interest between en,ployer and emplnyee, and the belief that true merit ull bring its reward is the shape of good wages without the intervention of stikes and the misery which follows them, and which we in Comada me fortunately free from in their worst form.

Mr President, officers and brethren, I thank you now for your kind attention to the reading of the paper. I only wish I had the ability to handle the subject better. I trust that in the future several papers will be read each year, on subjects interest ing to us all as engineers, as such papers camnot fail to be in structive, and will tend to prove to our fellow citizens and employers esperially that we are endicatoring to keep up with the procession and in adsance the cause of ste.mengineering.

PERSONAL.

Miss Yule, daughter of Mr John Yule manager of the Guelph Eilectric Light Co., left home on the asth of October to spend a year with frients in Scotland. Her companions in the office of the company presented her with a kindly worded address and a valuable field glass as a parting token of ther esteem.
Invitations have been issued for the wedding on the gth inst. of Miss Emily Selina Ryan, of Newport, K. I., and Mr. John Carroll, SecretaryTreasurer of the Eugene Plallyps Electriat Works, Montreal, and and VicePresident of the Canadian Electncal Association. The joyous event will tahe place at the residence of the bride's mother, 13 Bath Road, Newport. Taking it for granted that the bride is as charming as our fancy paints her, and knowing as we do the many excellent qualities of the groom, we extend to both our best wishes. Now that their days of "sparking" are over, may the future "current" of their lives fow smoothly and pleasantly on till the " circuit" of existence shall close.

The supreme cours of Michigan has decided that a street car company which is not obliged by law to give transfer tickets, and whech does not represent to the public that it will do so, may make its transfer tickets condiional upon being used within 15 minutes after being given.

THE TORONTO TECHNICAL SCHOOL.

Following is an abstract of the address delivered by Mr. Jolin A. Duff, Principal of the Toronto Technical School at the opening of the second serm on Oct. 3ul.:-

It has been anubuncetid that I an to spenk to-mght on • the Benefit of Techuent Knowledge in Ilechanical and Indusiftil t'ursuits. It would protably te inferred that $\{$ noulid endervor to eanumerate the advantages anis advocrte the clams of Tedmatil Education in geneial, but ido not think that any one will be dismpponied at hearing that such is not my intentlon, for Ifel sure that everyone will bee more interested in hearing what facilities for such edtuention are provided by the Toronto Techuical $\$ \mathbf{S} .501$. and be explaining the scope and bearing of the subjects taught I thank I can more eflectirely than in any other way make clair to you the ndvantages to be derived therefrom.
The history of the Toronto Technienl sistrool is bnef. In Deecmber of last yoar the City Councll pmsset a by law, appointing a board of Mamagement and giving theman appropriation of 80,000 and the free use of St. Lawrence Ifall. The board at once began the work of orgnilization, teachers were npp sinted, and the courmes of study decided upon, and St. Lawrence Hall laving been found unsutable, this building was secured and the neces. sary alterations mate with such expedition, that by the first of fiebruary the work of the session wis well commenced. I he attendance from the first was large, and was well mamtainetl throughout the term, and very satisfact ry progress was made.
Such has been the past. There is every ronson to hope that the coming year will be still more suceessful nad that the 'Toronto 'reclinical School will mpidly beconte a grent power for the dissemunation of scientific know. ledge and habints of correct thought. With additional teaching power we have leen able to make the course of stuily more comprehensive. Trigonome. try will be tuught twice a week instead of once, which was all lise linie we were able to devote to it last year, and, if necessiry, the classes in Arithmetic and Mensumtion will be sab-divided. Atrangernents liave beell made for three classes per week in Chemistry and lhysics, which will enable us to provide a tolerably complete course on electrecty-that mysterious power which seems destined to usher in a new erin of civilization, There is thus provided for the current year the fullowing distunct courses of study. Mathenatics, including Anthmetc, Mensurmion, Algebra, Euchud. Irigor nometry: Practiaal Geometry. Descriptive Geometry, Airchanical ant.' Archltestuml Deawing: Mechanics, Ineluding Siatics, Kinematies and Dynamies; Chenistry and Physics, including Ilydrostatics, Heat, Sound, L.ight and Electricity.

Einch student is allowed to select his own studiss subject only to the requrements of the time table. With only ten teaching hours in the week It is ampussible to make pruvision for ail the classes wathout having two different subjects oceur at the same time, and thus to some exent the Ireedom of choice in the selection of studies is curtailed. The tume table has, however been carefully arrangel. so that the least possibic incunvenience will be felt from this sourec for eximple. if a student has so far forgotien his Arthmette that it would te necessary for him to take lessons in that subject. he would not be able, until he has become fanilar with Arithmetical operations, to derive much benefit from the lessons in Mechanics. We linve therefore put Arithmetic and Mechanics doun for the same hour, and the students who find it necessary to review their Artibnetic, and who wish to study Mechanics, will find it not n hadship but very much to their advant:age, to take Arithmetic during the present session anil defer the Mechanies for another year. As the success of the student and therefore of the school depends largely on the proper selection of the course of study. tet me brielly descrite the different subjects taughs, and incidentally mention some of the advantages derived from cach.

Let us begin with Mathematics, the interpreter and herald of se:entific knowiedge, and without which litte real progress can be tuate Mathematics is one of the mosi potent instruments of scientufic investugation, besides being the only foundation upon which exact screntific knowledge can be buitt. In Science and Enginecting, Heorirs are of littie value unless they are exact and definite. and we cannot have this exactness withut Mathematics. A knowledgr of Matheniaties is not necessary in order to understand the general laws of nature, but it is necessingy in order 10 state those laws with exactness or mahe any practioal application of them Anyone can understand that water will flow through pipes but no one can calculate the quantity which will fow through a given pipe in a given time without a knowledge of Mathematices. 1 do not mean to say that Mathematics must be pursued to its highest developments but it is neressary to have at least a good waking knowledge of Arithmetic, Algeima and Geometry.
The course on Arithmetic-the corner stone of Mathematics-will compulse instruction in numeration and notation, the operntions of addition, subtraction, mutiplication and division, the use of fractions and decimals, ratio and proportion, the method of extracting square root and the atheory of logarithms-in shor a complete course in Pure Atithmetic, includiug all the arithmetical operations which are used in the other bmaches of Mathematics and Science, but exeluding Commercial Arithuetue, which is the application of the forgoing rules to the computation of interest, discount, stocks, annuities. Ac., and which finds its proper phace in the curriculum of a Business College

Along with Arithmetre are taught the rules of Mensuration, by means of which the areas of surfaces and the volumes of soluds may be calculated and compareat. A knowledge of these rules may be requited by any man at any time or place.

In Algebra the work will be the same as that which is ordinarily taught in
the High Schools of Ontatio. which is all that is usually required in pute or applied seience. I will not occupy your time with a more particular ennumeration, but I wish to impress upon all intending students the vital importance of Algebra in chromstry and physics. In these sciences formulae occur which ain only be properly expressed by nigebraic symbols, and the only practical method of solving problems or determining an unknown quantity is hy mimes of algebraic equations. But if Algebm is of so great impor Lunce in Chemistry and Physics, it is nisolutely indispensable to the proper stady of Natural Dhlosophy or Mechanics. Very few malculations involving force or motion can te made without its aid, nad without Algelsm a knowledge of Mechanics must nlways prove to be incomplete and unproductive What has lieen said of Algebra is true to almost ras reat a degree of 'rrigonometry' and Euclid's elements of Geometry. Euclid has the further advintage of being one of the most perfect systems of logic that has ever been constructed and no one can master Euctid without becomirg a logician.

Let me here remakk that the nint of higher education ought not to be so much to fill the student with dry ficts, as to tench him how to use what knowledpe lie already possesses-in other words to teach him how to think properlyand to net necordinkly. And one of the greatest works that a Technieal School can de is to teach mechanles the art of thinking. To do this there is no study so efficacious as Mathematics, for there is no other branch of knowledge so exact and definite, and there is no other in which the reason alone is cmployed.
In Chemistry, it is proposed to teach the mode of occurrence, the nature, and methois of preparation of the different cienients and compounds which arc of importance ir everyday life, special attention being given to those substances and processes whicla are of rechnical' value, such as electrolysis, coal, and the manufacture of coal gas, iron and steel, mortars and cements.
l.ying in the border land between Chemistry and Physics. is the study of the constitution and properties of matter, \rightarrow few lectures will be devoled to his very interesting subject.
l'nder llydrostatics will be taught the general chameter and propertics of liquids, and the theory of the comman hydrostatic and hydrautic insirtlments, such as the hydrostatic balance, hydraulle press, spirit level, hydrometers, electrometers. etc. Along with hydrostatics, though seareely be. longing to it, come the physical properties of gases and the atmosphere, the theory of the barometers, pumps, balleans and siphons.

The course on Heat will embrace the mature, sources, transmission and genemi effects of heat, the theory and construction of thermometers, the determination of the melting and toiling points, freezing mixtures, distillation and evaporation, and the theory of steam engines.
Lectures will be given on the elementary theory of Sound and Light in, whilh the theory and construrtion of opsical and nusical instruments will be described.

Electricity will be taught in iwo divisions. The relation of Chemistry to electricity. and the theory and construction of electric batteries, wid be described in connection with the course on Chemistry. In connection with Plysics, there will be a course on magnetism and current electricity, the theory and construction of the dynamo, telephone and telegraph, and the applications of electricity in daily life.

In Chemistry and Physies the lectures will be illustmed by experment as fir as our appanatus will permit. We hope that very soon, though perhaps not during the present year, there will be a laboratory in connection with the school, in which practical work in Chemistry and Physics may be done by advencerl students. The advantages to be derived therefrom must be apparedt to all, and let us therefore hope that it will soon be an accomplished fact. There will be a course on Practical Geometry, which is mended to give facilty in the use of drawing instruments and the constructon of geometrical figures. It wi!! be lound very useful as an introduction to the course on Descriptive Geemetry or the theory of projection. That on Descriptive Geometry will comprise the representation of objects by ineans of a phan and clevation, and problenss leading up to and solved thereby, such as the determination of the form of the intersection of two cylinders or cylinder and a cone, together with instruction in oblique and perspectuve projection. This course, which involves the theory of drafing. is of great utility not only to those who are trying to perfect themselves as mechanical or arehitectuml dmftsmen, but to sheet metal workers and any whoseoceupation requires them to have some knowledge of working dranings, as pateern makers, boiler thakers, machunists, etc. In connection with the Descriptive Geometry, practical instruction will be given in the drafing room in instrumental drawing, lettering. etc., for which purpose copres and models of machine and building construction will be avallable. This in. struction will begiven to the students individually and for this purpose the drafting room will be open, and an instructor will be present during every teaching hour of the school. A student who takes this course of practical work in the drafting room should be able by the end of the year to read a a drawing without any difficulty, and also to make a fairly good original dmaing, and at the end of two years be should be a fairly good dmitsman. The course on Mechamies will embrace the theory of vectors, the representation, measurements and laws of forces and motions, the theory of equilibrium, theory of the lever, pulley, and other simple mechanical powers, the calculation of stuesses, theory of the simple beam, the tmnsmissuon oi force and motion, fnction, work, energy, power, the efficiency of machines and the elenients of machine design. I hope that this brief outline of the colises of instruction will enable intending students to choose wisely the subjects which they most require. But should there be nay who are still unable to nake a choice, the teachers will be glad to give
whatever further information may be required. Most students will find that they will be unable to pursue more than two or three courses of study during the year. I would advise tnose who thus find a necessaty to defer some of their studies, to take-their Mathemntics first, for the ieason which I have alrendy given, that a knowirdge of Mathematics is essential to a proper study of the other subjects. From what I have sati or from in reference to the prospectus it migh be inferred that we expected to complete all our courses of study in une year, but such is not the case. In Agebm, Eucided, Deseriptive Geometry, and perinaps some of the other subjects, two yenrs will be required to complete the course, and it is expected that the advanced classes in these subjects will be formed next October. And, without interfering with the perfect fredum of choice now enjoyed by students wishing to pursue a spectal line of study, it is hoped that we will then be able to announce the programme for a regular course embracing two or three yeus. The experience of the past winter inas convinced me that in loronto the demand for sechnical edueation is urgent. bit the citizene may rest assured that on the part of the Hoard of Management or the teaching stiff of the Technical School no effort will be wanting to supply that demand.

SPARKS

Six new vestibule cars and a sweeper are in course of constraction for the Ottawa Street Railway Company.
The Ottawn electric strevt rilway carried without accident during the recent exhibition in that city, 138,000 passengers.

It is proposed to increase the capital stock of the National Electric Tmmway and Lighting Co. of Victoria, B. C. to $\$ 1,00,000$.
A conductor named Snyder on one of the Humitton electric street cars, was crushed between two cars on October gth and fatally injured.

The Namaimo Electric Light Works were ndvertised to be sold by auction on the agth of October. The result of the sale has not yet been leatrned.

The wire, lampand fixtures department of the Peterboro Electric Light Co. has beeu purchased by Mr. J. II. Greer, an expetienced eleetrienan.

The establishnent in connection with the Ottawn Unversity of a depart. ment for the teacling of electricity, is understood to be in contemplation.

The town of New Glasgow, N. S., has been asked to npprove of a route for the electrie street milway which the New Glasgow Electric Co. propose to construct.

The town council of Cote St. Antoine, has decided to grant a franchise for the construction of an alectric street railway, to :he Montreal Street Ralwiy Company.
The Montreal Incandercent Light Co. are seeking incorpuratoon for the purpose of manufasturing apparatus ior electrical purposes. The capital stock is placed at $\$ 1,000,000$

The town of Chatham has granted the franchise to the local electric company, for the construction of an electric mibway, and the nght to furmsh light and motive power to tactories.

The vacancy on the board of directors of the Dominion Telegraph Co., caused by the death of Mlr. Alex. T. Fulton, of Toronto, has been filled by the election of Mir. Hector McKenze, of Montreal.

The St. Catharines electric street railway, which has been in liquidation ior some time, was sold by public auction on October a2nd. Mr. George Dawson, of St riatharines, was the purchaser, the price paid being $\$ 20,000$.

The elephone service in Toronto has been seriously affected by the heavy currents passing through the trolley wires. The difficulty will be aggravated when the electric cars are put in operation on Yonge street and the belt line. Meanwhile, the Bell Telephone Co. are pushing forward as rapidly as possible the work of putting their wires underground.

The generators that George Westinghouse is building to furnish electricty for the 93,000 incandescent lamps at the Worlds Fair are to be the latgest in the world. One of them will operate 20,000 lamps. "The ordinary generator supplies but 1,200 lamps," Mr. Westinghouse said, "and most of themt less. Our largest generator will supply 20,000 hamps, and most of the others will be of 10,000 lamp capacity each."

A file with which a young man named Black was engaged in filing a switch at the Toronto Street Railway poner house, recently, came in contact with the positive and negatue wires, with the result that a portion of the file was melted, and the young man severely injured. Had it not been for the fact that the file seceived a considerable portion of the charge, Black would not unlikely have been killed; as it was, he lust his eyesight for some days.
'The city of Brantford, Ont., voted recently on the question whether it should operate its own lighting plants and the local system. The result of the vate was against the project. Such ownership would be an interesting experiment to watch, could it have been undertaken, because of its novelty. but the vote showed that the ratepayers of the city were not sceking any novelty. Alunicipal ownership of electric plants does not seem to be very popular.-Electrical Indzustrics.

The Toronto Street Railway Co. are turning the building formerly used as stables, into a power house. There will be installed five compound engines, four of 550 horse power, and one of 325 horse power. These engines are to be placed in position in a few days. A chimncy stack 220 feet high, the tallest in the city, is in course of erection. The power house is expected to be in opera:ion by the first of the new year. The total cost of the plant will be ahout a quarter of million dollars.

PRICES FOR ELECTRIC LIGHTING IN BRANTFORD.

13kantyord, Oct. 29th, 1892.
Rditor Rexctmical. Name.
Sik, -Our aitention has been called to a short editorial which appeared in your issue of this month, which doubtless refers to us. Aftet a careful prerusal of same, we are forced to the conclusion that some one with very hitle regard for truth has imposed on you.
We have hadi the contract for the public lighting of the streets of Brantford by electricity for five years, and although the penalties provided for in the agreement were as binding and harsh as they possibly could be, our company never once during the whole of that time received any notice from the caty authorities that our lighting of the city was inferior, as alleged by you. And it is safe to s.ay that they would have a betterknowledge of the subject than either your good selves or your informants.

Tenders were called for in August last for another five years. Competition was keen. The Brantford Street Railway offered to light the city with sixty (60) lights more or less for twenty-5ix (26) cents per mght, all night and every night; our tender was twenty-three ar:l a half ($23 / 2$) cents. Allhough the lowest, the majority of the City Council, for reasons that are familiar to us, refused to aceepl our or any of the other tenders, and submitted a by-law to the ratepayers asking authority to issue debentures to enable the City Council to go into the public lighting business. Our company and their friends fought the by law and defeated it in every polling subdivision of the city. Every vote against the by-law was in favor of our company, and the action of the people is a rebuttal of your statement. The City Council then offered us the lighting for one year at $23 / 2$ cents per night, moonlight schedule, deducting from the $231 / 2$ cents per night every moonlight night, and this for only one year instead of five. The contract is now all night and every night. We had to accept these teims or be driven out of the public lighting business, and now you are disposed to allege that under the first contract we furnished inferior service, and on this account were driven into the position of accepting the present low figure. If we are to blame, with ample water power at our command, what have you to say about the offer of the l3rantford Strect Railway, owned now by the Canadian General Electric Co., of your city, who have to use steam power, and were very anxious to get the contract aganst a local company, at 26 cents?

Yours truly,
Brantford Electric Lighting Co.
[As the above letter reached us unly a few hours before going to press, comment thereon in this issue becomes impossible. We may deem it advisable to refer to the subject in our Decenaber number.-Editor Elisc. News.]

PUBLICATIONS.

The Arena for November closes its sixth volume with a table of contents at once strong, varied and of general interest. This Review contunues to grew in favor without lessening in a jot its bold assault on conventional shams and wrongs of the age. Nor does it show any sign of being less hospitable to new progressive and reformative thought. It is conspocuously fair and unquestionably the boldest Review of our time.

TRADE NOTES.

The 3 all blectric Light Company report as recent sales, 750 light alternating dynamo and installation, two 50 light 4 ampere are dynamos to Oshana Electric Light Co., Limuted, also 500 hght alternaung current dynamo and installation to Oakville Electric Light Co.; one 25 light 4 ampere are dynamo to Wm. Stuckey, Grand Valley, Ont. Quite a number of the Ball Co.'s stationary motors have been sold this month in Toronto. Londen and Ottava.

The first of a serics of meetings of officers and employees of the Bell Telephone Co., in Montreal, to discuss matters affecting the perfect working of the system, was beld recently in the ante-room of the nain exchange. Mr. Miller, superintendent of the inspectors' department, presided. Mr. C. E. Getz. manager of the exchange, also took part in the proceecings. The means of overcoming the dificulties caused hy induction from street milway currents were considered.
Cutting rubber for making gaskets or other purposes is always a difficult lask when a dry knife is used, no matter how sharp the blade may be. It is said that if the biade be wet with woter contatning potash the cutung may be easily done with the exertion of much less strength. A thin blade, suct as that of a case knife, is much better than a thicker blade, like that of a jack knift, and an easy way to sharpen a knife for cutting subber is on a round or half-round file, which gives a siw tooth edge that is very effective in cutting rubber, leather or other tenacious material.

fumlasitid on tilk fiest of every montil wy

CHAS. H. MORTIMER,

Office: Confeneration Life luyilding, Corner Yonge and Richmond Streets.

TOROINTO,
 OA.NADA.

64 Temple Building, Montreal.

Abstract

Advertising rates sent promply on aprlication. Oriers for advertising should reach the office of pulfication not later than the asth day of the month immediately preceding date of iswue. Changes in advertisements will be made whenever desired, of the advertiser, requeats for change should reach the office as early as the and day of the month. GOESSCRIPTION. The Elfectacal Naws will be mailed to subscribers in the Dominion, or the United States, post free. for $\$ 1.00$ per annum, 50 cents for six months. The price of subscription may be remitsed by currency, ia resistered letter, or by postal order payable to C. 11 . Mortimer. Plesse do not send cheques on local banks unless as cents is added for cost of discount. Money sent in unregistered letters must be at Union. Si. 50 per annum. Subscriptions are payable in advance. The paper will be di-continued at expiration of termi paid for af so stipulated by the subscriber, but dreontinued at expiration of termi pad for af so stipulated by the subacriber, but continue are received and all arrearases paid. Subscribers gayy have the maiting address changed an often as deured. When oritring change, afuegs arive the old as zell as the mow addiress. The Publishes should be notified of she fallure of subscribers to receive then papers promptly and regulaty. f:DTTOH'S ANAOUNCEERENTA. Correspondence is invited upon all topics coming legitimately within the scope of this journa!.

THR "CANADIAN ELKCTKICAL. NEWS' IHAS HEEN APIOINTED THE oyyICIAL Pajeg of the canadian mlecthical association.

CANADIAN ELECTRICAL ASSOCIATION.

OFFICERS:
 PRESIDRNT:

J. J. WRIGHT, Manager Toronto Electric Light Company.
K. J. DUNSTAN, I.ocal Manager I3ell Telephone Company, Toronto, aND Vice.PaEsideni:
JOIiN CARIROL,I, Sec-Treas. Eugene Phillips Electrical Works, Montreal. Secretary-Tkeasurrr :
C. I. MORTIMER. Fublisher Electrical News, Toronto. ExEcuTIVE COssuttere:
D. A. STARK, Royal Electric Company, Montreal.
H. O. FISK. Electrician Electric Light Company. Peterboro', Ont.
W. A. JOHNSON. Manager Ball Electric Light Company. Toronto.
S. J. PARKER, Matuging Director Owen Sound Electric Light Company. Owen Sound, Ont.
A. B. SMITH, Inspector Canadian Baard Fire Underwriters, Tosonto.
D. THOMSON, General Manager Hamilton Electric Light and Power Company, IVamilion, Onz
TIIOS H. WADIAND. Superintendent Consiruction. IBell Telephone Company. Hamilton. Ont.
I. A McFARLANE, Bell Telephone Company, Afontreal.

JOIIN YULEE, Manager Guelph Gias and Electne Laght Company.
Guclph. On.

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.

FXECUTIVR BOARD:

President, A. E. Eukins.
Viec-Itesident. G. IUNT.
Secreiny: W. G. E3i.лСкGROVx,
Treasurer. R. Mackie.
Conductor, Cilas. lient.
Door Kerner, F. Brisbois
Door herict. F. Misbois, -
Toronto Bravcil No - Montreal. Que. in Room D. Sheltesbury IIall. wis every and and ath Friday each month in Room D, Sheitebbury Kall.
Secretary. 63 Marlboreugh Ave.
Hapilton Brascit No. z-Meete ist and 3rd Fnday each month. in Aincrabee's Hall. W'. Sweet. Iresident: E Nish. Secretary. 89 Littic. William Strect.
Stratpond Branch No. 3.-John Hoy. President: Samael If. Weir. Secretary.
Brantrori Brancil No. f. Mects and and ith Fiday each month. Thos. Ihlprim. President. John Ogic. Secretiny, G. T, car shops.

Ioninon Brancil No, 5-Mects and Tuesday cachmonth. F. Mitchelt. President: J. Miclniosh, Secretary-

Mranimor, Mfan. BraNcil Nia. 8. -Mcets ist and 3m Friday each month. in City Hall A. R. Crawford, Preskient, Arthur Fleming. Secretary.

Montreaz. Brascil No. y-Micets ist and 3rd Thursday each noonth. in Micchanics Institutc. 204 St. James street. Thos. Naden. Iresident: Jos, G. Robertson, $1+90$ Migrionne street, Secretary;
Sr. I.AURENT Branch No. 2. -Mects ist ard 3rd Tucsiay cach month. in Mochanics' Institute, 204 St. James street. Nathias Guimond. President: Alfred latour, Secretary. 306 Denisie street. St. Cuneronde

On October 1 g th, two boilers in a rolling mill at Portsmouth, Ohio, exploded, wrecking the mill and injuring nine men. Four hundred men were at work in the mills at the time, and it is a wonder that not more were injured.

We understand that the Bill wheh is proposed to be introduced in the Dominion Parliament at its next session, relating to the electical interests, will cover the testing of electric light meters, an insulation test of the consumers' wires and regulations in regard to a constant supply of enerxy at the consumers' terminals.

A telephone circuit one thousand miles long has just been completed, establishing connection between New York and Chicago. The line has been tested and is said to work satisfactorily. There was used in its construction 50,000 poles,-fifty poles to the mile-on which are strung two lines of No. 8 copper wire.

Bonlers used for heating purposes are very liable to suffer from internal corrosion of the tubes. The use of the same water returning from the heating colls has much to do with it. The remedy is to change the water during the winter by occasionally blowing some off, and filling up with fiesh water. A boiler should not be allowed to stand idle with the same water in it that has been used in making steam. If the water is to be idle, It is better to empty the bonter and fill up with fresh water.

We referred recently to the fact that the advocates of the storage battery system of street car propulsion were e ndeavoring to crente opposition to the trolley system in Montisal, in the same manner as mas done in Toronto, and that the president of the Strect Railway Company had offered to stake the sum of $\$ 5,000$ on the result of the finding of an impartial committee of experts, if the storage battery advocates would deposit a similar amount. This offer does not appear to have met with any response, but to satisfy the citizens, the City Engineer was commissioned to visit Boston, and report on the merits of the storage battery system. In his report he publicly states his opinion that the storage battery as applied to the operation of street railways, does not fulfil the requirements. He believes that the trolley has come to stay, and that it will be found to work well even under the severeconditions imposed by winter in the Province of Quebec.

THE high rate oif speed at which the electric cars have been run'in Hamilion, has been the subject of remark by visitors to that city. Whether from this cause or otherwise, a number of accidents more or less serious have taken place. In the case of the last of these accidents, the coroners jury, while attaching no blame to the mortorman or conductor of the car, recommen:1ed that the City Council should pass a by-law, to regulate the speed of cars to six miles per hour. In Toronto and elsewhere a similar suggestion has been made. It is one which in some respects, is open to objection. It might be made 10 apply to the smaller cities, where only shert distances have to be covered, and to the central parts of large cities. In the case of the later, it should not be forgotten, that one of the chief advantages of the clectric system over horse cars, is its ability to carry passengers to their destination in less time, and if an arbitrary rule is to be applied which will regulate the speed of electric cars to that of horse cars, this great advantage of the electric system will prove valueless.

We relersed to the fact recently that the experience of the town of Toronto Junction with the operation of its own electric jighting plant, had proved in be unsatisfactory, the cost having been far in excess of what it would have been bad the light been supplied under contract. The Town Council appears to have carried the experiment as far as is considered desirable, with the result that negotiations are now in progress for disposing of the plant to a private company. It is understood that an agreement for the purchase of the plant by the local street rail. way company, at the price of SiS,000, under a 19 years' franchise had been almost concluded, when some additional privileges, such as the free use of water for condensing purposes and exemption from taxes, were demanded, which has been the
means of reopening consideration of the question. It is rumored that a Toronto electric light comapny is also making an offet for the plant and franchise. The experience of loronto Junction should serve as a warning to other municipalities who are thinking of attempting to do their own lighting,

Corrosion of metal is sure to lake place if small leaks in steam boilers are allowed to go on. A large leak disturbs the supply of steam and alarms the man in charge, but little ones are often allowed to exist till the streng(l) of the metal is diminished and explosion follows. Look out for the little leaks and have them stopped. The brickwork was removed from around a boiler in this city a few weeks ago, and on clearing away the dirt, about a dozen places were seen where the plates were eaten into small holes nearly through the entire thickness. The brick setting was not renewed around the boiler.

In a recent issue, mention was made of the fact that the electric strect railway in process of construction in the city of Montreal, would have to encounter severe difficulties in winter, owing to the large amount of snow and severity of frost which are the accompaniments of winter in that locality. This difficulty has evidently received careful consideration on the part of the management of the road, and the plan and means of overcoming it have just been decided upon. Mr. Everelt, the managing director, states that it is the company's intention to begin at once the construction of one hundred sleds, which are to be used for the removal of the snow. - There have also been purchased three powerful sweepers and a scraper. As soon as the snow begins to fall the company will at once put to work one thousand men to shovel it into the sleighs. Mr. Everett is of opinion that the company will succeed in keeping the streets sufficiently clear of snow and ice to enable then to continue traffic uninter ruptedly throughout the winter. The attempt to accomplish this will be watched with no litte interest by the citizens of Montreal, as well as those of other cities similarly circumstanced.

Several boiler explosions, attended with dis:astrous results to property and human life, have recently taken place ia various parts of Canada. The most recent accident of this nature occurred a few days ago in the basement of one of the large bustness buildings in Hamilton. One of the large boilers used for heating the building exploded, wrecking as second boiler and setting fire to the premises. The fire department fortunately succeeded in putting the fire out. The boiler must have exploded under a very low pressure of ste:tm, otherwise the results would certainly have been more serious. Occurrences of this kind emphasize the need fot a higher standard of proficiency on the part of persons entrusted with the care of steam plants. Steam boilers in the hands of incompetent persons are almost as dangerous in the basements of buildings as a package of dynamite. The law should require persons who aspire to take charge of steam boilers to show by examination that they possess the knowledge which would qualify them for the position, and a penalty should be imposed on persons assuming the duties of such a position without having undergone examination. Unless some provision is made which will insure competency, we may expect to hear of disasters even greater than those which have already occurred.

On the 4 th of October, the United States Court of Appeals gave final decision in the case brought to establish Ar. Edison's claim to be considered the original inventor of the incandescent lamp. The case has been before the courts since 1885. The decision is favorable to the Edison claim, and will prevent the manufacture of incandescent lamps, except by arrangement with the General Electric Co., who are now the owners of the Edison patents. This decision will have an important bearing on the interests of those who have entered the business of manufacturing incandescent lamps, but viewed from their standpoint, will be much less serious than it would hase been if the decision had been rentered shortly atier the case was commenced, owing to the fact that the Edison patents bave now only about three or four years to run. The General Electric Co., recognizing no doubt that it would neither be possible nor profitable for them to attempt to do all the manu-
factuing of incimdescent lamps, have expressed their intention of allowing manufacturets to contanue busmess on payment of a fair royalty. There is no doubt that another effect of the decision will be to stimulate inventors to produce lamps which camot be held to be infringement, of the Edison patents; indeed one of the leading compettors of the General Electric Co., the W'estinghouse Co., of l'ittsburgh, has already announced that it has succeeded in perfectung an meandescent lamp, wheh differs entirely in constutuction from those heretofore manufactured. Thus it would appear that the ultmate result of the decision just given by the courts, is likely t.) be advantageous to the manufacturers and users of incandescent lamps. In the meantime, the General Electric Co. will profit considerably by the monopoly gramted them.

Tue' last annual meeting of the Camadian Association of Stationary Engineers, was the most interesting that has yet been held, and secims to have resulted in infusing new life into the organization. For the first time papers were read on engineering topics, followed by considerable discussion. This is a step in the right direction, and is following out the professed object of the Association, which secks to be regarded as an educational factor. We ubserse that the telation of ensineers in future to the electrical industries, came up for consideration. We have more than once pointed out that the care and operation of electric apparatus, in perhaps the majority of instances, will in future devolve upon engincers, that this is the time when engineers should be fitting themselves for the new duties which ere long they will be ralled upon to discharge, and that those who neglect to do so, will be relegated $t o$ inferior positions. The Association is no doubt working on proper lines in keeping aloof from trades unionism, and inste.td of demunding that its members, irrespective of qualification, should be patd a certan standard of wages, leaving the matter of salary to be settled between employce and employer, and devoting its attention to raising the standard of qualification of its members, so as thereby to enable them to command higher wages. The fruits of this policy are already beginning to appear. In numerous instances, those who have availed themselves of the means of improvement supplied by the meetings of the local associations, have been enabled to improve their positions. The fact of an engineer belonging to an association which is thus secking to educate its members, is not likely to remain unknown to the ownets of steam plants in the locality, and when a vacancy requires to be filled, they will natually seek to fill it from the the ranks of such men. We think it would increase the interest in the Association if the meetings could be held semi-annually instead of annually.

We note with a sense of gratification that there are several electric lighting companies who are making use of ss carbon and a single lamp for all night lighting. As this is decidedly a step in the right direction we wouli be pleased to see the system more universally used. True the carion must be of at least fourteen hours duration to last through the longest night; but as this is a mater that the manufacturers of carbons have ar. complished, there need exist no fear of being unable to procure such a carbon. It is of great importance to those who may contemplate putting in an all night lighting plant to use the single lamp and $\$ 8$ carbon, for by its use the cost of operation cin be considerably lessened as compared with double lamps burning with $7 / 16$ carbons. In the latter, three carbons are required for a 14 hours run, while in the former, but one and a halfare necessary: Again, it is imperative that the double lamps be patrolled all night (if it is desired to give first class service) to keep them lighted, whereas with single lamps and the large carbons this is hardly required, at least not to such an extent. It is a well known fact that fully three quarters of the "outs" in 7,16 carbons are caus. ed by "passed carbons," or in other words by carbons burning to a point and a heavy feed causing them to pass by one another and frequently lock, requiaing the patrolman to set them back in their place before a light is again produced. This is not the case with Y carbons. One reason is that they do not burn to a long point, and a flash on the dynamo or a heavy fecd can only bring them down until they touch-ihey cannot pass by and consequently cannot lock, and the light cannot go out from these causes. We know of cases in which "carbon passes" on the Sk lamy were
never known to occur, but with a 7,16 th would be a rare thing to find one lamp of a large number that had not this cause for being out recorded against it on more occasions than one, particularly if, as frequently happens, the carbons are slightly crooked. All things considered we feel we are but echoing the sentiments of the present users of \& carbons when we repeat that in an all night lightung plant there is an advantave in their use.

In the Ammal Report of the Chef of the Bureau of bteam Enginecring of the United States Navy for last year, attention is called to the fact that from neanly every war vessel in service in the navy, reports had come of the ineffictency of the firemen, and of the msuffictent number employed. The Chef points out that no mater how efficiem the sessel and the equpment may be in every oller department, falure in the boller room spouls the whole. If during an action, when the fullest power of the machinery is required, unskilfulness on the part of the fireman should let the fires become dull or choked with ashes and clinkers, all hope of success would be gone. The repont urges upon the Government the necessity of attempting to remedy this evil and to encourage the firemen in becoming skilled and expert in therr dutes. In all factones and establishments where steatn is used there shoukd be more attention given to this very mportamt subject. In these days of compettion profits can be made by skill and care in saving. Begin here, not as is $\mathbf{t o 0}$ often done by employing the man who is willing to work for the lowest wages, but the man who can earn good wages by skill in the use of the coal shovel. A few years a_{s} o a certain flour mill in Canada was closed. The engineer was ordered to dismiss his staf of firemen. In about three months the mill was again started, but the fitemen had gone elsewhere looking for work, and the old hands could not be found. With the same engineer and same machinery, but whth new firemen, twelve tons of coal per day were required to do the work formerly done with nme tons. Here a change of firemen increased the fuel bill by $331 / 3$ per cent.

A cast: has come under our ubseriation quite recently in which an existing electric light company was about to purchase a power generator for the supply of power to numerous small manufacturers and in which there existed the doubt as to whether it should be of 250 or 500 volts E. M.F. Eventually the 250 volt generator was given the benefit of the doubt. It may be pointed out to those similarly stluated, that for many reasons, the 250 volt machine is undoubtedly the proper one to install. The principal reason is that it is absolutele safe to handle a current of this volage. As the current is required to be carned into buildings and rooms in which there are quate a number of employecs, this safely in landing becomes most imperative, for white thete may be but one person whose duly a will be to handle and take care of the motor, there will likely be some mqustive young person about the phace who when opportunity offers will try his hand at it, and ten chances to one receive a shock, if it is possible to do so, before he gets through. If a low tension current is used it can do no greater ham than frighten, whereas if it were of 500 volts potential and contact were made with it for any !engh of tume, a magh not only cause a severe siaking up, but serious resuls would in all probability follow. True the cost of constructing the line will be much greater if $=$ ₹o volts are used than it would be with 500 volts. Another point to ennsider is the lesser liability to shon circuiting of the lines from any cause, for with the 250 volt circuit there will only be one half the risk of scrious results following such short circuit ; an are of any length cannot be maintained; whereas with 500 volts it is quite easy to produce and keep going such an are as would cause damage on the machine or some of its pants, or set fire to the building if not checked prompty. We are of the opinion therefore that the 250 volt circuit possesses an element of safety quite superior to that of the 500 volt, and is the only one that should be used for supply of small motors that are liable to be used in all manner of places and under all sorts of conditions. We cannot condemn too strongly the practice of connecting such morors on a grounded strect nilway circuit, as is done in some places. With $; 00$ volts and a prounded carcuit, it becomes absolutely dangerous, and should not be handied by other than a practical namat any time much less shoukd it be placed in a position to be handled by those who
perhaps have not the faintest conception of the danger luaking therein. It is not the purpose of this article to make it appeitr that a 500 volt circuit is what is recognized as a dangerous one, for such is not the case, but we feel that we are not over-stepping: the bounds when we again repeat that contact with a grounded 500 curcuit is dangeious, particularly if such contact is made for any length of tune.

CENTRAL STATIONS OPERATED BY WATER POWER.

Mr. (jeorge A. Redman writes on the above subject in the columns of Practical Electricily as follows:
The adaptation of water power for electrical purposes has grown very rapudly within the past few years : there are several causes operating to enbance the value of water power, none more so than that of electricity.
Streams that have had no pecuniary value heretofore are now being utilized for the puri: se of running electrical machinery ; yet at the same time the supple of water is diminishing, caused by the destruction of forests, and water right owners in various parts of the country are devising means of stoting water during the rany seasons to frish a supply during the dry season ; also storng it in the daytime for night use. One large water right owner in Western New York, during the months of July and August, places flash boards two and one-half feet high on top of his dam, at an expense of $\$ 100$, and stores up for night use the water whach is not necessary for him to use in the daytime, thereby saving in the two months a coal bill of $\$ 2,100$.
The Johnstown, N. Y., Electric Light Company have improved their water power at the Cuyadota Falls by erecting a dam 34 feet high on top of the falls, giving them a total head of 75 feet and nearly doubling the amount of power.
A survey of the upper Genesee River, between Mount Morris, N. Y., and the celebrated Pottage Falls, has been made during the past year, for the purpose of establishing a reservoir that will furmsh the city of Rochester 30,000 h.p. more daily during the entire year, than they have at present.
The earliest forms of water whecls were the paddle and fitter wheels, that only wilized the impulsive action of the water; these being followed by simpler wheels of the reaction type, and others.

We now have the improved forms of the Lefincl, Victor, Lesner, Success, and many others. There is a demand for the best and most cconomical turbine that can be manutactured.
Turbnes should be built to secure the delivery of the water upon the turbine without checking the velocity of the water more than one-third, and to permit the free discharge of same after passing through the turbine, and to work with as good efficiency under part gate as under full gate, and to be made of the besi phosphor bromze, to stand the wear and tear under high heads.

It is essential in locating central stations to be run by water power to locate them where there is no great danger of a flood, or so protected by a breakwater as tomake it perfectly safe, and also to avoid nouble with backwater upon the turbines. Where a station is situated on the bank of a river, it is best to take the water from the river by means of a raceway, with the headgates parallel with the flow of the water ; and at times of a freshet or running of:anchorice, it will more than pay any expense incurred by so doirg. The raceway should be of a sufficient depth and widh to permit the water to flow not more than go feet per minute, and a waste gate should be placed in the side or end of the race to use in case of emeryency; and when cleaning out the raceway a rack should be buite across the race to prevent driftwod and other rubbish from passing into the turbines. For that purpose I recommend a rack built of iron slats two inches wide, onc-cighth of an inch thick, and placed five-cighths of an inch apart on seven-cights inch iron rods, at an angle of $\$ 5$ degrees. Particular attention should be taken to keep the rack clean by raking. A trough or platform should be placed over and immediately back oi the rack to rake the rabbish and anchor ice into, and so arranged that the current of water from the race will pass through the trough and carry off all of the rubbish, clc. For any station that is using $100 \mathrm{~h} . \mathrm{p}$., or over, it will be a great saving in labor to them and pay well for the extra expense. For winter serice a boom should be placed in front of the headgates, and the current will carry off a large portion of the anchor ice and other foating objects.

The headgates sloould be built to work with a rack and pinion;
also a roller should be placed back of each gate stem to facilitate the handing of the gate. The gates should have a protection built over them, to protect the gearing from the storm. In a cold climate, where the gates are apt to be frozen in, salt is essential in frecing them fromice. All headgates and tmbers should be of the best quality of oak, and should be well bohed, and not less thim two gates :o one raceway. The tail rate should have no less than wo or three feet of dead water when the whecls are not in motion. Where the tail race runs under the station, cement foors should be laid, to prevent morsture in the station; a floor of that material will soon pay for itself. Vertical turbines should be placed so that the steps arecovered with water at all times. In adapting turbines to very high heads, or to conform to location, it becomes necessary to set the turbines above tail water, and conduct the water away from the turbines, through a draft tube.

THE SUPPLY OF CURRENT BY METER.

Br T. P. Wilmshust.
TuE method of charging for current adopted by the Yorkshire House-to-House Company, as published in The Electrician of the 30 th ult., raises a question of some importance. A large number of supply companies have adopted the plan of allowing sliding scales of discounts to consumers, aud of those who have no sucin published tables the majority find it expedient to make to their larger customers a substantial reduction of price, based on the quantity of current used.
The system in vogue is to allow a rebate to a consumer after a certain number of units have passed through his meter, irrespective of the number of lights that consumer may have. This, though undoubtedly the sin:plest method, is by no means an equitable one. Take the following instance. A customer, A, has 100 lamps which he uses an average of one hour per day throughout the year; 13 has 10 lights, and uses them io hours per day throughout the year. The number of units consumed by each is the same, and hence each receives the same rebate. B, however. is a far better customer to the supply company, for he helps to equalize their load curve, and only requires the use of one-tenth of the generating plant that A does.

To obtain a more cren distribution of this load curve throughout the 24 hours is the fervent wish of central station officials. It was predicted that the more extended use of motors wonld bring about this happy result; but, unfortunately, it is found in practice that the hours of motor load overlap the hours of lighting load. One company, I believe, actually proposes to influence the lower parts of the curve by flooding the market with such apparatus as electric griddles, electric curling-tongs, and the like.

The simplest way out of this uneconomical state of affairs is, in my opinion, the application of an equitable system of rebates, which shall operate not simply on the numbers of units consumed per annum, but on the number of units consumed per lams per annum. This will place the consumer with a small installation (but who wishes to use his light ticely) on an equal footing with the consumer with a larger installation. Bearing these points in mind, the following table has been worked out for use at the Exeter supply station :-
Cost to a consumer of a $30-$-uatt lamp in use for 365 days for the hours named in first column, at a sliding scale charge of 73 d . per unit up to 12 units, $6 \underline{1}$ d. about 12 and not exceeding 36 , jhd. atrove 16 and not cxceeding 20, and 4 Id. above 20.

Hours of burning exch day.	Units used per annum Der $30 \cdot 1 r a$Lamp. Lamp.	No. of units at							Price if at 7\% c.		
		3 3 d	61/2d.	s\%d.	43\%d.						
1	20.95	20.95			\cdots		S. 6.10$\}$				
2	21.9	12	4	4	2.9		123	6\%inl			
3	32.85	12	4	$+$	12.85	0	16 4il	6 cr.	1	-	${ }^{3}$
4	43.8	12	41	\pm	23.8	\pm	06	5id.		7	
5	5.75 6.75	12		\pm	34.75	1	46	3 Jd.		1	
$\%$	-6\%	12		+	45.7		828			1	
8	876	12	41	4.	67.6		1630	5.05			92

One of the most interesting features at the recent exhibition in Oitawa wiss the heating apparatus invented by Mr. Ahearn. The vsitors were enablet so witness the baking of bread and the heating of louildings by meins of the electric current. The tea and coffee supplied from the lunch rooms were nlso heavel hy the same means.

BOGUS BOILER INSPECTORS.

Toronto, Sept. zist, 1892.
Editor Elezcticicat. Nisws:
DEAR Silk, In a city not 100 miles from Tomonto there is a flourishing manufacturing concern, at the head of which is a man who is very wise in his own estimation. A few weeks ago it was decided to shat down this establishment in orter to put in new marhinery The manager decided that this would be a good chance to have the boilers inspected, and, with this end in view tried to make arrangements with a boiler inspector to make an inspection of his boilers. For some reason best known to themselves, the proprietor could not induce the inspector to make the examination, and he at once commenced to look around for someone clse. He was not forced to look long; a man came along one day who clamed to have the necessary ability and experience to cramine a boiler in the most scientific manner. He was at once engated for the job, and was to give a written teport as to the condition of the boilers.

The engineer had everything in readiness for the "Inspector," who turned up on time, and after much talk about what he knew of stam boilers, commenced operations. He went in at the manhole of one boiler, and, in a few moments came out and announced that he had found a hole in the boiler, and that the brickwork along the side with the hole in it must be taken down to enable him to examine the hole externally. The brickwork was taken duwn, and the hole, which turned out to be a one inch plug, was examined, to tie evident disgust of the "Inspector" and owner. The side of the boiler had been tapped to attach a pipe for some purpose. The "Inspector" had seen the hollow spot in the plug which had been screwed in, and pronounced it a hole in the sheet. Of course the brickwork had to be made good again and the owner had rightly enough to foot the bill. This man who was proclaiming himself a boiler inspector turns out to be a cross between a blacksmith and tinker or something of the kind.
I couid relate another case where a tramp called on a concern and succeeded in persuadiug them that their engine was working very uneconomically, and that he was just the man to fix it. In fact he represented himself as an inspector from Messrs. Goldie \& McCullough, and said he was going around the country adjusting the valves of their engines. He worked on thes engine, which was a Corliss, all Sunday, and "fixed it" as he called it. On Monday he called early and took anay twelve good dollars of the firm's money for his services.
The engine did not appear to be right, but the foreman thought she must be in good shape as Messrs. Goldie \& McCullough's inspector had fixed her up. However, the superintendent made up his mind to have the engine indicated, and an engineer was sent for. The first card taken off that engine after the "fixing" is shown below, and must be pronounced a "diusy."

(iakb Pakben after Engine was " Fixem."

Card Taken from Engine after adusting Vadives.
This should prove a warning to steam users to look out for tramp engineers. If an engine is out of order, let them employ a reliable man to put it in order, and not squander their money on the first loafer that comes along.
Above all, lookout for a genius purpurting :o be an inspector from Messrs. (ioldic \& McCulloch. If Messrs. Goldic \& McCulloch had an inspector to examine their engines, he would carry an indicator and use it, and would not lounge around hotels for two or three days at a tume, an cxample of the effects of too much "fire-water."
lours traly,
Dssill lot.

tHE ARRANGEMENT OF STEAM PIPES.

Wr: have, from time to tume, called attention to the importance of suspending and securing steam pipes properly, and providing for their expansion and contraction. In this article we

entraming water from the other boilers in the battery, as well as water of condensation, settles in the space between the stop valve and the steam main. Then, when the boiler is put in use again, in order to prevent any sudden strain from being thrown on the boiler, the stop valve is not opened until the pressure in the boller has risen shighty alove that in the mann steam pipe. When it is opened there is a surden outfow of steam, which raises the water in the connections, throws it against the first elbow, and, if that does not break, hurls it the full length of the horizontal pipe against the second elbow, and then up into the main steam pipe. The shocks so produced are greater than would be imagined by one who has not had experience with waterhammers. In one case that came under our observation recently, three elbows were fractured in succession from this cause. When the first one broke the superintendent of the mill considered that there must have been a flaw in it. It was replaced by another, which lasted only a few days. A third elbow was put in, with a precisely similar result, and by that time the superintendent had become satisfied that something was wrong with the arrangement of the piping. The defect was pointed out to him, the pipe was re-arranged, and there has been no trouble since.
It might be said that the stop valve should be opened when the pressure in the boiler is just equal to that in the main. This is true, but it is not easy to determine, with any degrec of

precision when these pressures are cqual and the engineer very property prefers to err on the safer side, and have his boiler pressure a trife too great, ruther than too little.
The danger may be greatly lessened by puting in a drip pipe, as shown by the doted lines in Fig. I. The drip should enter the value at as low a point as possible, and care should be taken, when the ude boiler is about to be thrown into use, to blow all the water out through the drip pipe immediately before opening the main stop valve.

Fil. 2-A SaFe Nlode of Consertios. If this were ratefully amended to each time, the armagement of piping shown in Fis 1 should give no trouble; but it is a matier of every day experience ie find engineers, who perhaps do ron fully recognize the impontance of the drip pipe, growing somewhat careless about it. Afier they have used it consciemiously fifteen or twenty timos, there is a iendency to slight it a litite, and open the main valve before the watet is all
out. If no trouble resulte, this is apt to fix itself on the man as a babit ; and some day, when he is in a hurry, he may pay no attention att all to the drip, but open the main valve at once, exposing himself to the danger described above
It is a far better plan to fix the pipe right, and do away with the dip. A proper arrangement of the connections is shown in Fig. 2. The piping passes up above the steam man, wheh it eniers at the top; and the stop valve is placed in the horizontal part of the connection, and as near the steam main as it can be, conveniently. It will be seen that with this arrangement there is no possibility of trapping water. The entire connection, from boiler to main, remains dry, and no water-hammer action is possible. Fig. 3 shows another way of arranging the connection so as to avoid the trapping of water. In this arrangement the pipe enters the steam main at the side, the elbows are done away with, and an angle value is ased to connect the horizontal and vertical pipes. A perspective view of this method of connection was given in The Locomotive for May, 1892, on page 66. When new work is being put in, we usually recommend the arrangement shown in Fig. 3; but if the piping has already been put up, in the manner shown in Fig. 1 , or in any similar manner that involves the same element of danger, the arrangement shown in Fig. 2 is cheaper to put up, because it enables one to use the same valve that was in use before.-The Locomotive.

EXPERIMENT WITH A STEAM BOILER.

The author of a paper read to the Institute of Civil Engineers has been experimenting with a boiler:-

In calculating the evaporative capacity of boilers, it is usual to reckon it at so many pounds per square foot of heating sur-

face. But the author is of opinion that this method is not sufficiently accurate to determine the maximum evaporation at any given poini, since evaporation is not and cannot be uniform throughout a boiler. A boiler becomes overheated at its hottest part, that is, the part subjected to the greatest heat, and the largest quantity of water will be here evaporated. To study the phenomena of overheating, the effects of he:t at this particular Fir. 3-Avomer Safe Mode point, and the amount of evaporation from it must be determined. The author isolated a portion of a boiler plate immediately above the bridge, where the heat is known to be greatest and overheating most frequently takes place. He placed upon it a small vertical iron tube, which was firmly bolted to the bottom of the boiler; the top of the tube rose above the level of the water and opened into the steam. The tube was fed through a sepatate pipe with water at the same temperature as that in the rest of the boiler, and the quantity of water exaporated by this limited area of heating surface was carefully measured.
The experiment was made on a cylindrical boiler, with four sepamie lateral feed-water heaters. The boler was to feet long, and \geq feet $=$ inches in diameter, with a heating surface of 35.4 square feet ; heating surface of the feed heaters, 107% sq. feet; total, 142ki square fect. The grate surface was 3.85 square feet, and a blower increased the draft when a stronger fire was required. The small expenmental tube was 4 inches in diameter, with a heating surface 19.3 square inches, bolted to the boiler, and the joint made with asbestos and india rubber. The tube was connected to the water gauge of the boiler, and
the same level of water maintained in both. Previous to an experiment the boiler was heated for several hours, and communication was then cut off between it and the experimental tube. During the tinals the pressure in the boiler was kept at about 60 pounds. The fire was stoked as usual, the consumption of coal noted, and the total evaporative power of the boiler determined.

With different intensities of fire, the consumption of coal per hour per square foot of grate varied from 16 pounds to 48 pounds. The author, however, does not advocate such excesswe dutv, and considers that any consumption of coal above 30 pounds per square foot of grate represents a rate of firing inconsistent with the safety of the boiler. As a rule, with stationary boilers having the above proportions of heating to grate surface, from 1.6 pound to 2.4 pounds of water are evaporated per hour per square foot of total heating surfice. Here the maximum evaporation was 94 pounds, and the minimum 19 pounds, or from two to four times as much as in a locomotive boiterEvaporation was extremely active from the portion of the boiler surface covered by the tube, varying from 30 pounds to 49 pounds of water per hour per square foot of heating surface with moderate firing, and from 40 pounds to 48 pounds with strong firing. The forced draft increased combustion but not evaporation. The author concludes that, with stationsry boilers working under ordinary conditions, exaporation at the part most exposed to overheating ought not to exceed 20 to 28 pounds of water per square foot ot heating surface per hour, and never attain to pounds in practice.

NEW TECHNOLOGICAL BUILDINGS, MONTREAL.

The new Technological Building in connection with McGill University, Montreal, is a most substantial structure, and its perfect arlaptability to its purpose, evidences the painstaking thought bestowed upon it by the designer. The various parts of the building are isolated from one another by fice-proof doors. They include draughting rooms, pattern rooms, machine shop and blacksmith shop, each fitted with the appliances necessary for imparting instruction of a practical character to the students,and one of the best equipped testing laboratories in the world. This laboratory contains two testing machines, iepresentung the most perfect English and American patterns, each with a capacity of 100,000 pounds. These machines are operated by means of a small electric motor. They are capable of determining both the tensile and crushing strength of materials. The laboratory also contains a chemical balance capable of weighing 125 pounds or the fraction of a grain, a fac simile to a small scale of the Montreal water works, by which the head of water necessary to supply a given population may be determined; apparatus for measuring the volume and rate of flow of water in a running stream, ctc.
Here may also be seen the only standard cement testing department in Canada.
Other features of interest are the electrical department, which contains a $250 \mathrm{~h} . \mathrm{p}$. dynamo driven by a sixty h. p. enginc. There is not a belt in the place, the dynamo being driven straight on end. There are two engines each 500 h . p., and the space occupied by each engine is only 5×9 fect. The bottoms of the engine beds are hollowed out, which has the effect of preventing rocking. This department is in charge of Prof. Worknan, and possesses every facility for imparting electrical knowledge of a theoretical and practical character.
One of the most interesting and vauabie features of the institution is the library, which contains 6,000 volumes ofscientific books, being one of the most complete libraries of its kind in the world.
At the top of the building, enclosed in glass, is a muscum of mechanical models, which for completeness is sard to be unequalled anywhere in the world. These models are the work of a celebrated German maker named Releaux, and were many of them made expressly for this institution. They illustrate almost every conceivable mechanicai movement, and will be of areat serice, not only to the students of the school, but also to manufacturers and inventors. They are valued commercially a \$8,000.
The Physics building, which is as yet incomplete, seems likely to be as perfect in its arrangement and appointments as could be desired.

TESTING DYNAMOS.

By Fokke bats.
Electrie business generally is done in a most unbusiness.like way. A purchaser orders of the manuacturer a dymamo of the des red capacity; the purchaser gets the machare antu pustion. pats the belt on, turns the swith and off she goes - that is. if she goes at all. If the dynamo does not start off inmediately and bring all the hamps and everything clse in the circuit up to the expected point of excellence, or if. from some similar caluse, the dynamo doesn't "generate." it is at once condemned. The cause of the trouble may be an open circuit, or it may be the connecrons are not made correctly.

There ate a great number of teasons why a dynamo will not always start up at once and all of the reasons should bx: looked into before judgment is passed. Ihave seen engineers spend weeks to find the "pound" in their engine and they tid not " damn" the man that made the engine because it pounled. An engineer knows that there is a reason for it, and sets to work systematically to find the cause. Bill let a dynimo get ous of order, and this same man will lose his head at once. 1 once went 150 miles to put a brush down on the communator of a dynamo. An engmeer of a certan plant in a large establishment in a suster city had been running a $120, \cdot \operatorname{loght}$ incandescent plant for more thin a ye.tr. Fin, tlly when h- started up one night one of his dynamos would not "genemte." He had "looked everywhere for the trouble." and gatve it up. I was sent for, and in a few moments, by a little systematic testing, discovered that :he upper brushes did not touch the commutater by a small fraction of an inch. The stem on which the brushes were nomuted had beconse shighty loose and had turned back enough to lift the brushes from contact wath the commutator. The brush holders were of the kind having a haming stop cach way. The remedy was, of course, very simple. The trouble could lave easily been found by the engmeer had he used a little "horse sense" and as I have be. fore said a little systematic testing: I do not always mean hy this, a series of guesses, but tests bised upon sound judgment. Go of in a corner and think it out, but do not hop around and try a dozen different thmgs wathout knowing the reason why you are doing them. It is seldom that trouble of this kind is cured accidentally.
1 went to Milwaukee one time to find the trouble with a large Brash Are machine. The dynamo man satd he had not leen able to find the trouble, and that it had not worked for three days. It seems incredible when I relate the cause to have been that one section of the commutator had been renoved and was missing. How the man in charge could have failed to discover it is more than I can understand, but he was ignorant of the fact until I pointed it ont. If 1 thought it would make interesting reading I could relate, I venture, at least, one hundred as ridiculous cases as these, where a little thinking and a general knowledge of the machues in charge could have saved tine and money to the owners. I will not attempt in this article to describe how these tests should be made in order to locate trouble, for there ate hardly any two cases alike. It will therefore be necessary to adopt a systematic method which I will endeavor to present at another time. There are two sides to every story and the engineer or dynamo men are not always to bhane. The owners of plants should not look to them for all the trouble that occurs until they have first performed all they should before the plant is given into thear hands.
Every plant that is put in sheuld be tested, "reseived" and accepted by an independent and competent electrical engineer, one who is in busmess for himself and expects to remain so, so that he could give a fearless and hontst opinion to his employer. He should closely examme the dynamo for capacity. insulation. continuous run, efficiency and an importint and often overlooked guality, medhanical construction. And then come in a number of munor fentures which should be looked after: inductive velocity of the armature-it may be greater on a drum than in a ring armature ; rise of temperature on full land should recelve close attention; hysteresis and foaveault currents are much more noticeable in badly consirncted and pro. portioned machines than is usually suspected. I have known a case where these swo ever present evils have absorbed more than ten per cent. of the power of the dynamo. The heating of switch contacts and other joints should be noted, the resistance of the circuuts as a whole, and in sections, should be measured. In fact, every condition should be carcfully noted. If the dynamos are compounded, see that the rise with laid corresponds with this loss in line, also be careful to note if there is more than one compound dynamo, whether the equalizer is large enough. The resistance of the equalizer should not be less than one-half the resistance of the larger armature.
There are numberiess points of this kind that should be carefully inspected by a competent man before a plant should be accepted, and I believe that if owners understood more of the importanec of these seemingly little pants -but, in fact, very important factors to the success and economical maintenance of every plant-that there would not be so many butchers in the business manufacturing electric light apparatus to-day:-Efecfrical Indusfries.

The blue glass insulators, heretofore used on telegraph wiecs, have always had an atraction for the stone throwng boy, and in consequence, a considemble loss has been entailed on the companies. The experiment has been tried of substituting for the blue glass, insulators of an inconspicuous shade of color, and the result is highly satisfactory. The breakages have thereby been reduced by about 5° per cent. As the result of the experience thus gained, the companics will hereafter use only instilators of the kind last mentioned.

RECENT IMPROVEMENTS IN ELECTRIC TRACTION.

A committee appointed to deal with the above stbbece reported to the Street Ratilway Association of the state of New York at list convention as follows:

We understand anything which tends to an increase of reliability or cconomy of operation of an electric railway to be an improvement, and it is with the intention of bringing before you in a brief manner the results of my experience and observittion during the past year, upon these points, that this article has been written.

As you of course know, electric systems as first constructed wete buit on altogether too light a plan, and the increasing tendency year by year has been, and is, for heavier and more sold construction in every department, but particularly in the way of track station equipments. It has been well said that no new departure is ever perfect at the beginning, and no one realizes this more than he who has wathed the development of electric traction during the last few years.

The storage battery has made but little progress during the past year and is not likely to cut much of a tigure in electric traction until it is able to make better showing, financially, than it has in the past.

It may seem strange that the management of roads, even at present operated by horses, cannot sec that a change of some kind must come soon owing to the great cry for rapic: transit, and yet 1 know of roads at present being laitl with flat centerbearing rails on stringers in streets being newly paved. I do not mention this as an improvement, but simply to show that what may be regarded as an improvement by some would be called simply a makeshift or temporany piece of work by others.
The general tendency of the times in consolidate all common interests under one management is showing its efforts in electric traction more now than ever, and scarcely a weck passes that we do not hear of some syndicate obtaining control of some horse road, and the information usually ends with the statement that "it is intended to equip all the lines with electricity." From many points of vien this is an improvement, and e marked one. TR.ICK.
The improvement in track construction has been very great, and, although many expensive errors have been made, we ought, on the whole, to feel satislied with the progress.

The carly forms of track construction were tyo light and soon went to picees, but during the past year heavier rails have been rolled and better joint plates made, so that it is possible to keep the road bed in perfect line and surface. This improvement has been a great help to the electric equipment and has reduced the cost of maintenance. As the cost of laying tatack is about the same, whether light or heavy, it is economy to put in only the best.

Now, on the question of what constitutes the best form of track there is considerable variance of opinion My experience and observation has convinced me that the deep girder rail, about nine inches high, spiked directly to the ties, is the best form for paved streets, and, in dirt or Macadam streets, a six-inch girder rail laid in the same manner. In the country where the local authorities are willing, I would lay a tee rail spiked directly to the ties.

The weakest place in all forms of irack construction is at the joins. Evely manuficturer of rails, and many of the railroad companies, have tried to overcome this trouble. There are probably as many patents upon rail joints as upon car couplers, and most of them about as impracticable. Up to the present time there has been nothing brought out which surpasses a properly designed "fish plate."

While speaking of track construction it might be well to call attention to the bonding of rails for the seturn circuit. Many forms are used and some of them are still in operation. I believe that a copper-bond wire long enough to connect with the web of the rail on each of the fish plate :o be the best plan, and then grounding the whole system at frequent intervals, and abandon the supplementary wire which thas been the custom so use whth the commen form of bonding.

> ELLSTKIC EQUIPMENT.

Probably the greatest advance in iny particular line has been in the mater of amatures for motors and dynamos. I consider that the introduction of the "iron-clad" type will do more toward reducing the bill for repairs in that direction than any other one
thing that has been introduced during the year. The electric companies have all, I believe, now adopted this form as their standarl, and all roads that have ried them will, I think, agree with me that for simplicity, ease of repair and ability to stand the hard usage they receive they stand at the head.

In the manner of controlling the motors most of the companies still use the time-honoted rheostat, althrughi believe one company is enteavoring to introduce a new type of controller which they will doubtiess be happy to explain at a later date.

Many roads acting under a misapprehension of the requirements, started off with motors too small for the work, and endless trouble has been the result. Some new classification should be adopted by electrical companies for designating the power of their motors, as the present "office classification" does not afford a proper understanding of its capacity, and the "horse power" term is but little better, depending on so many liniting conditions. A more satisfactory way would be to specify the number of pounds the motor can pull at different speeds, with the maximum current for which it is designed.
the power station.
This may rightly be called the heart of an electric system. The trolley and feeder wires form the arteries, the rails and return wires the veins, and the cats the capillaries connecting them. The liblical injunction to "guard thy heart with all dilisence, for out of it are the issues of life," would certainly seem applicable to the station. The chief element to be considered should be reliabilty, and after that economy. Just what means shall be used to attain this end seems so far to be a disputed matter, as shown by the stations now in operation, which contain almost every conceivable device--good, bad and indifferent; all shapes, sizes and descriptions of engines, boilers and dynamos. Many designers of stations-if some of them can be said to have been designed at all--seem to have gone at their task utterly regardless of the future and oblivious to the experiences of the past. However, through it all I can say that a very marked improvement is observable lately. The designers of stations are learning wisdom from their past experiences and the makers of apparatus are more alive to the requirements of the system, and better material and workmanship can be had where required.

The recent introduction of large multipolar dynamos has brought about at change in station arrangements no: herctofore obtainable, and in all large stations now being built countershafting is dispensed with entirely and the general tendency is toward reduction of parts, which in turn means simplicity. Is is very probable that we have reached now a form of station that will befairly permanent and the main point in the future will be the size of the units. For medium-sized stations engines with releasing valse gear bolted direct to a multipolar dynamo will be the best where the price of land is not excessive, and direct coupled engines and dynamos for langer stations. To my knowledge there have been no comparative tests made as to the economy of the varinus types of stations, although all reasoning would point to these latest types as being by far the most economical.

There has been heretofore too much taken for granted or assumed in electrical work, and the rapid growth of the business has called into it mang who were totally unqualified for the positions which they have obtained. I attribute nuch of the unsatisfactory work in the past to this cause, but am happy to note that the great majority of these are passing into the background and their places are being filled with men of good judg. ment and mechanical resources.

TRUCKS.
The first car trucks employed in electrical work were of the pedestal form; that is the trucks were fastened to the car body and oscillated with the car. The motors, of course, had to be suspended from the car body, and the result was that the grinding of the gears was transmitted to the whole car, also the oscillation of the carbody caused the motors to correspondingly rise and fall. This was very undesirable and it was soon found necessary to adopt the post form-in which the truck was complete in itself and the motors supported directly on the frame of the truck. The body was connected with the iruck only by springs, thus being entirely free from the jolts and pounding of the truck.

In this form eight spiral springs were first used, the same as
in the previous styles, but it was soon found that the high speed attained caused the body to oscillate to such a degree that it became very objectionable, and the different builders then modified their trucks by extending the side bars beyond the axle boxes a sufficient distance to allow an auxiliary spring to be added at each end. For this auxiliary suppott coil and elliptical springs have been used, both forms with marked success, and it is now possible to carry a car body twenty-eight feet over all practically without oscillation. This last modification has been a very great improvement and has settled the long car question on most street railvays. I mean by this that but very few double truck cars will be used, though of course there are places where two trucks can be used to advantage, and in such places they will still be employed. But we are able to carry nearly as many people on four whecls as on eight, and to apply the power equally on each axle, so that as there is no possibility of lack of traction, there can be no gain to the railroad company in using etgit wheels.
cars.
The car bodies first employed were of the same style and proportions as those used for horse roads, and were not properly designed for electrical purposes; first the framing of the roof was too weak and would not support the trolley boand properly; second, the framing of the floor was not adapted for the use to which the cars were put, for not only was the framing too weak, but it also was not well planned for putting in the trap doors which are required in order to inspect the machinery underneath the floor.

Thetear body which it seems to me is best allapted for the present service is one erghteen feet six inches long inside, whut platforms three feet six inches long. The rafters should be strengthened with stecl plates and the framing throughout should be heavier.
The coloring of ears and the necessary signs are atracting consterable attention from the different ralway companies, but up to the present ume I do not thank any concerted action has been taken. For my part I belteve that all the cars on a system should be paintel the s.une color, that is to say, each separate line should not have a distinct color, but signs should be used to designate the different routes, preferably by means of the wellknown reversible sign on the top of the car, both at the sides and froat. All might the lines may be distinguished by the color of the ventilator glass, which would in each case be the same as the ground color of the reversible sign.

OVERHEAD CONSTRUCTION.
There has been a general improvement in all parts of the overhead material. We are using the stiffer poles, stronger span wires, better trolley wire insulators and handsomer curve fittings, so that the general appearance of the system is much pleasanter. The quality of insulation now in general use is far superior to what we had two years ago, and, as double insulation is now employed on the span wires, very little trouble from leakage is experienced.
The method of feeding the line is a very important matter and should receive careful attention. The best arrangement is to divide the system into several sections, so that in case of trouble along any portion of the line, such as fire, etc., that section can be cut out and the balance of the system run as usual.

A PERFECT OVERHEAD ELECTRIC CONSTRUCTION.*

By Charles h. Smith.
The president has appointed me a committee on "A Perfect Overhead Electric Construction." In thus selecting me to prepare a paper on this subject, he evidently intended to pay a passing compliment to my imaginative or inventive powers. He asks me to describe something that dues not exist, someihing that I have never seen, although I have searched diligently for it. I can, therefore, give only my ideas of how an electric overhead line should be constructed, based upon facts and information derived from personal experience and observation.

Iron or steel poles have proved to be the most desirable. I would therefore recommend the following: the poles to be of tubular iron 32 feet in length, and made of threc sections, in the usual way. The lower section should be at least 7 inches in diameter, and the other two sections 6 inches, and 5 inches,
-Report of a committee of the American Strect Railway Association, read at their Cleveland meeting.
respectively. The poles should be set in concrete, and at least 6 feet in the ground, and should not be more than 125 feet apart. The top of the pole should have about 2 per cent. of rake away from the curb, and should be fitted with a suitable pole clamp, so that the span wire can be easily adjusted to the required height, which should be 22 feet above the track. On top of the pole should be a malleable iron cross arm to carry the feeder wires, and guard wire spans. This cross arm should be insulated from the pole by means of a wooden plag inserted in the top of the pole. The insertion of the joints of the pole should be at least is inches, and the joints should be made solid throughout their entire length by means of shims or other contrivances. If these joints are not properly made, the poles will not stand the strain. For curves or extra strain, there should be larger poles of the same make.

Span wires should be of No. 4 B. W. G. silicon bronze wire and should be fastened to pole clamps by means of insulated turn buckles. Great care should be taken in insulating these turn buckles from the poles.
All well-built lines should be sectional, and the trolley wire should not be of too great a size. I would therefore recommend No. 4 B. W. G. silicon bronze wire, which affords sufficient carrying capacity and has great strength and durability.
Sections should not be of a greater length than two niles, and should be separated by trolley breakers, of which there are now a number of good ones in the market. In cities and villages where there is great liability of fires it would be advisable to put trolley breakers at short intenvals. Trolley wire hangers and pull-off brackets should be of the lightest make possible, and still have the required strength and the very best insulation. There is a vatiety of such hangers and brackets now in the market.
As it is important to have as small a number of joints as possible in the trolley wire, it should be put up in mile lengths, and twisted splice joints should be made and brass cone : haped slipped over the wire before the splice is made. After completing the splice, the larger ends of the mbes should be brought together over the splice and a little solder dropped through a small hole made in the tubes for that purpose, in order to keep the joint in place.

Ovehead switches or switch pans, should be avoided, if possible, as they become a source of great annoyance. I would strongly recommend a double trolley wire for a single track road.
Great care should be taken in erecting the guard wire spans. They should 'e properly insulated from the cross arm by means of a strain insulator, or something equally as good, and should be of at least No. 6 best galvanized iron wire. There should be two guard wires over each trolley wire at least three feet apart and four feet above the trolley wire. The guard wire must be well insulated from the guard spans; in case of other wires falling, this would be of great importance. Pull-off and anchor guy wires, or other wires for the same purpose, must be of the very best material, and of at least No. 8 galvanized iron wire.

Feed in taps must not be more than five poles apart and should take the place of trolley span wire at that point. They should be of at least No. o insulated wire.
The trolley wire being sectional, it is necessary to run a feeder wire to each section. I would, therefore, recommend that the feeder wire be at least 30 per cent. larger than the occasion demands. It will be found that this is money weil invested. The insulation on the feeder wire should be the best that can be procured, and I would advise using locust or iron pins with mica insulatiors or something equally as good, for the purpose of fastening the feeder wire to each pole, and great care must be taken to protect it from trees and other obstructions.

A cut-out box should be located on the pole at each trolley breaker, and should not carry a fuse. It should have the same wire running through it as there is on the outside. The fuses should be at the station, with ampere meter and cut-out switch for each section; then in case of trouble on any section, the location can be easily seen, and that section cut out, if necessary, until repaired.
Lighening arresters are of great importance on the line, and I would strongly recommend using them at least every thousind fect. They can easily be attached to the poles, and can be prorected by means of a box.
In conclusion, I would say that no matter what expense is incurred for material, or care used in constructing, a gond line cannot be insured without a thooush daily inspection.

Abstract

Mr. A. Carmichael and Jacoh Hose have purchased the Rat Pornge 1:iectrie L, ight, Jelephone and Power Compmin's interests, and took posse'ssion of the property on the ast of October. the Iotomo and seathorough bilectre l.ight and bower co. has been estubhished, und atrangetments are being made to begin immediately the constation of an riectric sailway from the Woodline to Little York, in finst Toronto. This ine is to be completed and put in operation lefore the cuth of the pesent year. The directors of the company ate as follows: D. (j. Stephernson, Reve of Disst Torunto, Ald. Innllam, J. F. Melaughilin, W. T. Msurray, J. J. loy, (1.C.. Robert D.ıvies, J. I'. Murray, Johu Stark, II. M. Pellati and A. W. Ingeman. The officers are: President, D. G. stephenson ; vecepresidem, Ald. Hallam.

The "Unique"

TELEPHONES

Made especially for Exchanqe and Private uso.
The cheapest, simplest and most effective Electrir Telephones in the world.

The "Unique" Transmitter is the only one made which does not require adjustment and that is not affected by atmospheric changes, or rust up.
ALWAYS THE SAME.
Will transmit over the longest distance without readjustment.
"Samson" Batteries supplied with the "Uniquc."
Senal for Telephone Circular and I'rice List. manufactushid onis hy
John Starr, Son sic Go., Ltd. Manufacture's and Dealers in ELEGTRIGAL APPARATUS AND SUPPLIES, 2,4 and 6 Duke Street,

Duke Street,

THE "CLARK" WIRE.
 Insulestion Guaruiferal irliricrer used, teriat,

In a lefter from the Inspertor of the lboston lise 'inderwriters' L'nion, he states: "A thoronghly relable and desimble Wire in every respect."
The rubiver uved in invulating onf wires and caber is especially rhemically frepared, and is guarantced to be water-proof, and will not deteriopate, oxidize or crack, and will renam tlexilse in extreme cold weather and is no affected by lieat. The insulation sprotected from me ha ical ibjury by one or more braids, and the whote slicked with Chat's Datent C mpound, and special extra finish, whic' we hive now adopted for all our solid wires ss an extra weatherp oof proter tion, and also preventing chafing of all gaves and dizineter of insulation for Telegraph and Electic hights from stock. Cables made to order. We ate now prepared to furnish our Clark Wire witha white finish for ceiling cleat wotk as well as our standard color.

Clark Jolnt Gum shmold be used for making waterproof joints This is put up in half pound boxes, in raps about one foot lowg and five engh hs inch wide, and when wrappeds abut a jomet and ressed firmly th makes a sohd mass. For rallway and Motor use, we matic al sires of strand a ald hexitic with Chai i su'aion We guaranteo our Ingulation wherever used, Aerlal, Underground, or Submarlne, and our net prices are as low, if not lower

A Great Loss

If you have any pipes or boilers uncovered, you are losing on same at the rate of So cents every year on each square foot of surface exposed. By having them covered with our

Mineral Wool Sectional Covering

you will save S_{5} of this loss. The saving thus effected in fuel will in one year more than pay the cost of covering, which we guarantee to last as long as the pipes. Our corering is the best fuel saver on the market.

CANADIAN MINERAL WOOL CO, Ltd., 12: Bay Street, Toronto.

SPARKS.

The Toronto Technical School has decided to purchase $\$ 300$ worth of electrical appamtus.
Mr. C. Hazlett, receally with the Kingston Electric Light Co., has been appointerl chief engineer of the Winnipeg electric light stution.

Mr. Walter J. Wiggett, of the oflice staff of the Canadian General Electric Works ut I'eterboro', was married recently to Miss Gertrude May, daughter of Mr. A. Grover Heath.

It is reported that the Quebec and Levis Elec. tric Light Co. have purchased the Montmorenci Falls, with all water power rights, buldings, etc., at the price of $\$ 235.000$. The company has been paying about $\$ 5.000$ per year for the power necessiry to operate its circuits, and as additicmal power wats reguired for this purpose, it was no doubt deemed ndvisable to purchare outrght the whole of the available power.
The 'rantford Electric Lighting and Power Co. has been organized, with a capial stock of $\$ \$ 50,000$, to acquite tie interest of Mr. A. Watts, in what is known as the "Grand River level. together with the plamt, buiddings, etc., of the existing electric light company. It is propused to expend the sum of $\$ 30.000$ on the erection of a stove dam and other improvements. It is estimated that on the completion of these improvements. the lands will be worth $\$ 20,000$ abo e the cust of reclaiming then, and that 300 horse power will be available.
Mr. John Patterson, of Hamilion, is the prime -.over in a scheme for bringing electrienty Irom Niagara Falls to Hamilion for power purposes, and for the opsmation of electric railways connecting with a number of the leading towns within a radius of to miles of that city. The total cost of rarrying out the scheme is estimated at $\$ 2.500 .000$. and the city of Hamition is asked to subscribe s:00,000 of stock. Articles of incorporation are being applied for. It is proposed to crect the power house on the Canidian side of the Niagara River.

The Brash Electric Co. of Ontario. Iomuted. is secking incorporation, with the object of generat. ing and supplying current for electric lughung. heating and power in the town of Tienton, and for the manafacture and sale of electreal machin. ery and apparatus, and to acquire the right to furnish and operate electric railways within the province of Ontario. The headquarters of the company will be at Trenton, and the amonnt of its caputal stock $\$ 25.000$. The promnters of the enterprise are: William Scudder Rogers, Samucl Marion Hamill. John Potter, William B. Bolton. of Cleveland, Ohio; Gilbert Wellington Ostrom, William Joseph Clarke and Robert Fraser, of Trenton. William S. Rogers, Samuel M. Hamill, John Potter, Wm. B. Botion and Gilbert W. Ostron are to be the firsf directurs of the cons. pany.

${ }^{\text {twe }}$ TORONTO ELECTRIGAL WORKS

Manufacturing Electricians and Engineers.
Dealers in Electrical Supplies.
Makers of Dynamos and Motors. Dealers in Electrical Books.
35 Adelaide Street West.
TORONTO.

Padkand Higl firiade Incandescent Lamps

MANUFACTURED BY THE

PACKARD LAMP CO., LTD.

96 to 100 King Street, :MONTREAL

TORONTO.
Prevention of Accldent our chief aim.
NO'TE-The offices of the Company have been removed trom above address to the Canada Lific lluildiug.

OUR MAKE OF
STEAM PUMPS ARE THOROUGHLY RELIABLE.
G. W. HENDERSON

ESTIMATES FURNISHE:I FOR
Lighting, Power and General Electrical Gonstruction.

THE ECONOMIC
ELECTRIC
MFG, CO.
nostons.
251 ST. JAMES STREET $\bar{\square}$ $\xrightarrow{\ldots}$ MONTREAL.

SPARKS.

The Victorin and lisquimault Telephone Co. are remodeling their whole system, at a cost of $\$ 15.000$ to 570,000 .
The Unomitoa Strect Ratilway Company pxist Into the city tomary the sum of $\$ 3.436$ as the city's pertion of profiss and mileage fees tor the quarter ending September 26 ih, an increase of $\$ 1.226$ over the previons quater.

The Ifmition, Waterilown und Guelph Electric Railway Company, Limited, wilh a capionl slock of $\$ 500,000$, is sceking incorponition from the Ontario Government. The directors are: Sir W P. Howland, Toronto Wm. Laking, W. Oscar Sealey, Nex. W. Brown, Jacolb Flatt and Win. D. Ilatt, Hamilon, John 1. Flatt. John
 and 1 red. Shater, Dr. |oln O. McGregor and Charles Salley, Vatrrdown.

it may be interesting to know

 That when excurston mates are made to Chicago for peuple who live in the Eist, to enalle them to attend the World's Faur next yeir, it is contemplated by the Western roads to also make excursion tates from Clicago to all princepal busmess anis soutist puints in the West. North west and Southuest. It may le well 10 consider this subject in adt ance of the actual lunc of start mg. and the Chicago. Aliwaukee \& Si paul Railway Co. bas issted maps and time tabies and other instructive reading matter, wheh it will be glad to furnosh free of expense upon application by postal card addressed to A. J. Taylor Canadian lassenger Agent, + l2 almer House Block, Teronto, Ont., or to (jho. Hi. hesafrord. General Passenger Agent, Chicago, III.RASTLAKE metallic roofing co TORONTO
STEEL SHICLLS
TENDERS WANTED
A Weekly Journal of advance intorma. tion and public works.
The recomized melium for advertiseGANADIAN CONTRACT RECORD TORONTO

Hill Patent Pricion Pulleys

AKD CUT OFF COUPLINGS

For Electric Light Stations and all purposes where intermittent power is*required.

Miller Bros. \& Toms,

(Succoscora to Miller Bras. A Mithell)
Toronto Office : 74 York Street.
MONTREAL, QUE.
ESTABLISHED 1869.

GHAS. F. ERNST,

TNME NATELONALL CAREHGN CUCD.

- and The Standara Carbon Co. OF CLEVELAND, ohio. Agent for Electric Light Supplies for all systens. - Write for prices. Annunciators for Hotels and private houses.
Arc and Incandescent 1ynamos.
Electric Kailway and Pouer Motors, $3 / 10100$ H. P.

\longrightarrow Electric Burglar Alarm for Banks, Warchouses. \&c.

THE RELIANCE ELECTRIC MIFG. CO., LTo.

WATERFORD, ONT.

manufacturers of all kinds of

HIWCTRICAT MEACHINHRY

FOIL LIGHTYNG AND TRANSMISSION OF POWER.

Constant Current and Constant Potential Dynamos, for Arc and lncandesceat lighting.
Electric Railway Generators and Motors.
Stationary Motors of any horse-power, to run on Are and Incandescent Circuits.

Arc Lamps for Constant Current and Constant Potential Circuits.
Our Dynamos, Generators and Motors are automatic and self-regulaing.
All kinds of Station Fixtures, Switches, Lightning Arresters, Rhenstats, Ammeters, Volt-meters, \&c., \&ic.

We give special attention to Long Distance Transmission of Power. Our apparatus ls simpler
and contalns more merit then any other on the market.
WRITE US FOR PARTICULAK'S AND PRICES.
Head Office and Works : WATERFORD, OMT.
Toronto Office: 141 King St, West, TORONTO, OHT.

