CIHM
 Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged/
Couverture endommagèe
Covers restored and/or laminated /
Couverture restaurée etoou pelliculėe
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches evou illustrations en couleur
Bound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge interieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted trom filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans 'e texte, mais, lorsque cela ètait possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmè le meilleur examplaire qu'il lui a èté possible de se procurer. Les details de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modifications dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees evou pelliculées
Pages discoloured, stained or toxed /
Pages décolorées, tachetées ou piquèes
Pages detached/Pages dètachées
Showthrough / Transparence
Quality of print varies /
Qualitė inégale de limpression
Includes supplementary material /
Comprend du matériel supplèmentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été tilmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are tilmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des decolorations sont tilmées deux fois afin d'obtenir la meilleur image possible.

This item is filmed at the raduction ratio checked below/ Ce document est filmé au zaux de reduction indiqué ci-dessous.

The copy filmed here hes been reproduced thenks to the generosity of:

National Library of Canada

The imeges appeering here ore the best quelity possible considering the condition end legibility of the original copy end in keeping with the filming contrect specificetione.

Originel copies in printed peper covers ere fllmed beginning with the front cover end ending on the lest page with e printed or illustreted impres. sion, of the beck cover when epproprleto. All other originel copies ere filmed beginning on the first pege with e printed or lllustroted Impression. and ending on the leat pege with eprinted of illustrated impression.

The lest recorded treme on eech microtiche sholl contain the symbol \rightarrow (meening "CONTINUED"), or the symbol ∇ (meening "END"). whichover applios.

Meps, pletes, cherts, etc., moy be filmed ot different reduction retios. Those too lerge to be entirely included in one exposure ere filmed beginning in the upper loft hend corner. left to right and top to bottom, es meny fremes es required. The following diegrems illustrete the mothod:

L'oxemplaire fiimd fut reproduit grace is générosité de:

Bibliothèque nationale du Canada

Les imegas suiventes ont eté rsproduites avac le plus grand soin. compte tenu de la condition of de lo nertet' de l'exemplaire filme. st en conformite evec les conditions du contret oe fllmege.

Les exemplelres origineux dont te couverture on pepier est imprimbe sont filmes on commencent par to promler plet et en terminent soit par to derniere pege qul comporte une emprainte d'impraselon ou d'illustretion. soit per le second plot. selon to ces. Tous los autrus exemplairas orlgineux sont fllmes on commencent par to promidre pege qui comporte une empreinte o'impression ou d'llustration at on tarminent par le dernidre pege qui comporte une tolle emprainto.

Un des symboles suivents spperaitre sur la derniére imege de cheque microtiche. selon le ces: to symbole signitie "A SUIVRE", lo symbole V signltio "FIN".

Les cortes, plenches, zableoux, atc., peuvent ótra filmes des taux de réduction differents. Lorsque le document est trop grand pour itre reppoduit on un seul clichd. il est filmd a partir de l'engle supd́rieur gauche. de gauche à droite. et de haut en bes. en prenent le nombre d'imeges nucessaire. Les diegremmes suivants lllustrent to methode.

MICROCOPY RESOLUYION TEST CHART

(ANSI arid ISO TEST CHART Na. 2)

APPLIED IMAGE Ine
1653 Eas: Main Street
(716) 482-0300 ~ Phone
(716) 288 - 3989 - Fax

Canada's First Consrete Truss Bridge

BARBER \& YOUNG
BRIDGE AND STRUCTURAL ENGINEERS
57 ADELAIDE ST. EAST
TORONTO

Canada's First

Concrete Truss Bridge

BARBER \& YOUNG
bridge and structural engineers
57 ADELAIDE ST. EAST
TORONTO

00924647

CANADA'S FIRST CONGRETE TRUSS BRIDGE

No:'suther. dive $^{\prime}$

The arehitect says with trith of the bridge engineer that the ainns only at results which are useful and scorns the ixeautiful. The general form of a steel truss is of ten teecided upon with no thought of iesthetic design, and a lew dollars afterwards spent on ornamental railings or other details will newer remedy the defect. .Ind yet mathematics and astheties go hand-in mad, and a simple steel truss with the upper pand pnints lying on the singularly graceful curve, the common parabola, can be designed with more economy of material than the unsighitly steel truss with parallel chords. If the "ost of the former would be greater under present condations, then shop prictice and facilities are principally to blane. But shop practice is no bugaboo to the designer in concoete, and the form of truss which is the most economical is also the one which is the most natural and t'se most beautiful. The massive and gracefully arehed compression chords are, perhaps, the most notable features of the few concrete truss bridges which have as yet been built.

The seven-panelled parabolic bowstring truss, illusthated above, was built on the Midde Road, between the counties of York and Peel, and vilicially opened to trallie this month. An examination of it will show that the maximun stress in the lower whord is the same for all its members, ansequently the sume number of steel rods are used from one end of tite chord to the othera great advantage in construetion.

The vertical menbers of the web system are tension members, and the diagonals are of the nature of counterbraces, carrying no stress for live load covering the entire floor or from the dead load, and aeting alternately in compression and in tension for a moving load.

The eompression chord, 22 in . by 24 in . at the middle seg nent, is only slightly reinforced with twelve rods, $3 / 4-\mathrm{in}$. round, and bonded with smaller rods spaced 6 in . apart, exeept at the panel poicts, where somewhat
claborate detailing is resorted to in order to make the bond perfectly secure between the hangers and the chord. The maximun compressive stresa for this chord is 43° pounds per square incli for the concrete and $6,45^{\circ}$ pounds for the steel, or about 500 pounds per square inch for concrete and steel acting together.

The nraximunt tension in the lower chord is if,000 pounds for the steel, the concrete not being considered tor ill in tension.

The bridge was designed for a load of ten tons on two axtes, two-lhirds on the rear :axde, and a distributed load of 100 pounds per square foot. A very liberall impact allowance was adopted of one-half the live load.

The length of the bridge is so $(t$. in the clear ; roadway, 16 ft . wide; height above witter, 14 ft . at one end,

At the time the ahove view was taken about 70 head of cattle were
crowding over the it ructure-The weight was at least 35 tons, which may be regarded as a satisfactory test.

18 ft . at the other, making a grade of 5 per cent. It contains upwards of thirteen tons of steel, and weighs nearly 200 tons. Provision was made for expansion at one end by brass plates sliding between steel plates. It was tested at the official opening with a concentrated load of ten tons moving across the bridge, and by a herd of seventy cattle, all that could crowd upon the bridge, weighing probably thirty-five tons. The vibration under these loads was very slight.

The reinforcing comsisted of plain, round rods ex. cept for the floors, hich were reinforred with No. 10 standiard expanded metal ins mimufiresured hy the lix-

In designing this truss the engineers believed that the joints required the moat attention. It is easy to r :" portion all th members of a concrete truss on 'hat pal fect ronlidence may be placed in it if only the joint ina be relied upon. The enginesers tried to detioil the L se so that any member would fail in the baty rather than a a joint. A description on these details is not here : mpted, as it would, perhipls, be too technical to be of much interest to the general reader.

Extraordinary care was taken to awid porm bonding of successive days work. 1 or this purpose cricked ice wias latd in bigs upon the last concrete placed at night, and this viss found to le perfectly plastic the

The Middle Road Truse Bridge. showing Forme in position next morning, iss if it bad just been poured. This method of keeping concrete from setting by placing we upon it, and thus securing a perfect bond between concrete placed on successive days, was the invention of Mr. O. 1. . Hicks, the contractor for this bridge. It is here melltioned by his permission for the benefit of :llly who may wish to use it.

In order not to cause internal stress in the concrete by some of the rods not being straight at the time the concrete is poured, and in order that hair reracks should not develop ander 16,000 pounds tension in the steel the rods were given considerable tension before the concrete was poured by an ingenious device of the contractor.

The mixture used was one of cement to three of aggregate, consisting of sand and erushed stone, so proportioned as to leave a minimum of voids. The bridge was eonereted in one week by making speeial efforts, and the forms and floor were kept wet for another week. The conerete matured without showing any eheeks or hair cracks. Two inches was chiselled oft the eaps of the newel posts after the conerete had set as they were thought to be too large, and the mortar was found to be as hard as the stone which was embedded in it, for the stones would erack through quite as readily as the mortar. Owing to a misunderstanding these caps were left rough, but the writer regards this as a mistake. They should have been dressed sr.ooth to harmonize with the rest of the bridge. Whatever may be the life of lean conerete mixtures, which are often used in inassive work, the engineers believe that eonerete proportioned in the above-mentioned way will endure indefinitely and grow harder and strullser with age.

Considère, the eminent French engineer, was the originator of the conerete truss, and he has built several of them in Europe. The approaches to the Sparkman Street Bridge at Nashville, Tenn., are also of this ferm. The bridge here deseribed is the first concrete truss to be built in Canada.

The principal differences between Considere's concrete trusses and the Middle Road bridge are in the curved upper chords and in the handrailing and other details. Considere's compression chords are much lighter than those of the bridge here described. The upper chord segments of the former bridges consist of heavily hooped concrete columns, an incention of the designer. This results in high unit stresses and light chords. The designers of the Middle Road bridge considered that a more massive construction would have a better appearance in a concrete bridge, lesides being more rigid. Consequently the compression chords in the latter bridge are only slightly reinforced, and the concrete itself takes most of the compression. This construction is no more expensive than light wound columns.

Compared with the ordinary (unhinged) concrete areh, the concrete truss has advantages and disadvantages. In the areh the horizontal thrust is resisted by
ree of one, so The special for anhowing lled of set as ar was bedded readily se caps uistake. monize the life n inas-propor-indefiseveral arkman s form. russ to 's conin the d other lighter upper heavily esigner. ls. The that a appearrigid. bridge If takes 10 more
the abutments, which are more or less perfectly restrained from spreading by the natural beds of the abut-ments-clay, rock, or whatever it may be. In the concrete truss the horizontal thrust of the arched compression chord is resisted by the steel rods in the lower chord. The advantage of this for the truss is that the toes of the arched chord are perfectly tied together at all times, and the upper and lower chords expand and contract together with temperature changes, provision for which is made by sliding bearing-plates at one end of the truss. Again, the tendency of the arched chord to deform for different positions of a concentrated load is resisted hy the web members of the truss so that the line of resultant pressure in the compression chord does not move from the centre of its section. For this reason the chord segments act as posts, and are proportioned by their area.

In the arch, on the other hand, the abutments often spread somewhat, causing cracks in the spandrel walls. Again. temperature stresses and moving loads cause deformation of the arcl-ring, which causes the line of pressures to vary in position. Even in a well-designed arch, where the resultant pressure never leaves the "middle third" of the section, the unit pressure at certain sections of the ring will be zero at the intrados and double the average at the extrados for certain temperatures and loadings, which state will be reversed for other conditions. Thus the section of the arch-ring must he proportioned by its moments of inertia, and will be greater than if the arch could be braced against deformation like a truss. We helieve that hracing, where it is possible, is better and more economical than increasing the section.

To recapitulate, the arch has the great advantage, that no lower chord is necessary, or, to put it another way, the natural earth forms the lower chord; but the abutments are often not rigidly held from spreading. temperature stresses are considerable, and deformation must he resisted by making the arch-ring very heavy. In the case of the truss, an expensive lower chord must be supplied, hut the toes of the arched chord are morc rigidly held together ly it than is often the case in arches, there are no temperature stresses, and the tendency to deformation is perfectly resisted by a web system, and a minimum amount of material results.

The Commissioners of York and Peel, for whom the bridge was built, were without exception delighted with
the structure. When tenders were opened the bid the concrete truss was found to be the second lowe four tenders for a steel bridge being higher and o lower. Warden George Henry, of York, well support by Warden Jackson, of Peel, spoke strongly in favor the concrete bridge as heing the most suitable bridg and the cheapest in the end. Concrete was felt to especiatly suitable for a hridge on a grade. Here tean cannot be prevented from trotting over it. The resultir vihration is likely to loosen joints and crystallize th steel, but is almost non-existent in concrete.

The reason that a truss was adopted at the Midd Road rather than an arch was that the truss hridg utilized the old stonc abutments and an arch desig could not.

The report of the York Commissioners to the Count Council contains the following reference to this bridge "It is a credit to the counties, and atl municipal officer requiring bridges should inspect it."

The Commissioners for whom the bridge was buil are W:arden Henry and Commissioners Annis an Harris, of York, and Warden Jackson and Commis sioner Kennedy, of Peel. The contractor was Mr. O. L Hicks, of Humber Bay.

The hridge was designed by and erected under the supervision of Barber \& Young, Bridge and Structural Engineers, Toronto, Ont.

vell supportedly in favor of
itable bridge,
as felt to be
Here teams
The resulting
crystallize the
the Middle
truss bridge
arch design
o the County
this bridge: cipal officers
ye was built Annis and d Commis. Mr. O. L.
d under the Structural

