 TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiquas

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink ii.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou roire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cele était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue biblographique, qui peuvent moditier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matèriel supplémentaireOnly edition available/
Seule édition disponible

Pages wholly or partially oisscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par uri feuillet d'errata, une pelure. etc., ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in rinted paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et d'e la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche á droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

3. GENERAL SECTION ON LINES C-D E-F LAKE OF THE

Gneiss

Laurentian
\square Zones characterized by conglomerate.
Schistoze 4 slaty zones

- 6 much altered Auronian

Huronian

BRITISH NORTH AMERIOAN BOUNDARY OOMMISSION

REPORT

ON TIIK

GE0L0GY AND RESOURCES

OF TILE

REGOON IN TUE VICINITY OF

THE FOR'TY-NINTII PARALLEL,
FHOM THE LAKE OF THE WOODS 'TO THE ROCKY MOUNTASS.
witi
LIS'S OF PLAN'S AND ANIMALA coLLECTED, ANH NOTES on THE FOSSILS.

BY
GLORGE MEROER DAWSON, Assoc. R.S.A., F.G.s., urulogint anio butasiat te the cummimana,

ADDKESSED To
MAJOR I). R. CAMERON, R.A..
m.s. hotsbakt commantonfa.

MON'IREAL :
DAWSON BROTHERS, S'T. JAMES STREETT.
LONDON: SAMPSON, LOW \& CO. I NEW YORK: B. WESTERMANN \& CO. 1875.

Tい, MAIOR I. R. C.IMERON, R. A.
II. M. .Vorth American Boundary Commissioncr:-

Sith,-I have the homesur to present herewith, my fimal Rejurt of work in "omnection with II. M. North American Bumalary Commissiom. In midertaking single-hmided the care of Natmal History work in comneetion with the Bommery Comminsion, it wave ohvione that in attempting tex much it might happen that mothing should be well dones I therefore decided to give the first place to geologe; and in that tied th colleavome to work out an fine as possible the stracture of the cometry, ant to make illustrative collentions of rocks and finsils, mather thath to amiso large haral eollertions, at the experise of general mindmation. Sind time an could be spared firom the geological investigations, has beren deroted 10 collection and work in other departmonts; and in this Repritt the rasults are presented, claberated in so fill at the time milly dixposal womblallow, and supplemented also by noveral valuable noticos of the collections in special departments, by gentlemen whowe names are elsewhere stated.

The field work, in extent, has directly covered a regiom, stretching from the Lake of the Woods on the enst, to the Rocky Momitains on the west, and lying in the vieinity of the forty-ninth paralled, which here forms the Intermational Boundary. In time it has extendel over two seasons, those of 1873-74. Owing to the vastness of the region covered by the oporations of the surver, moth of the period actaally spent in the field has been necessarily employed in more or less arduons, and often almost continuous travel.

To yourself I am muler groat obligations for the facilities readily granted for work in the department entrusted to me, and fire the interest you have taken in its progress. To all the officers of the Commission l
must tender my most cordial acknowledgmonts for thoir general eo-operation, and it should bo mentioned specially that to the indefatigable assistance of Dr's. Burgess and Millman-tirst and second Medical officers to the Commission respectively-are due many of the most interesting plants enumerated in Appendix F.

In arranging the information accumulated for publication, I have discarded the form of diary or journal often adopted, and by so doing have boen able not only to group the facts under certain general headings but by avoiding repetition and useless dotails, very materially to condense the matter. At the same time, in the arrangement adopted, it has become necessary sometimes to pass more than once over the same region, in treating of diffe:ent formations, or classes of facts.

The main geological result arrived at is the oxamination and description of a section over 800 miles in length, across the central region of the continent, on a parallel of latitude which has heretofore been greologically touched upon at a few points only, and in the vicinity of which a space of over 300 miles in longititude has-till the operations of the present expedition-l'emained even geographically unknown.

In working up the goological material, I have found it necessary to make myself familiar with the geological literature, not only of the interior region of British America, but with that of the western portion of the United States to the south, where extensive and accurate geological surveys have been carried on. It has been my aim to make the region near the boundary line as much as possible a link of connection between the more or less isolated previous surveys, and to collect by quotation or reference, the facts bearing on it from either side. In this way it has been attempted to make the forty-ninth parallel a geological base-line with which future investigations may be connected. The matter containod in the special preliminary report on the Lignite Tertiary formation, published last yoar, has in this final report been included, in so far as necessary to complete the general section on the line.

The topography of the generul map is in the main from that lately published by the Department of the Interior, which is based on that of Captain Palliser, but includes also the work of the Commission Survey: In laying down the boundaries of formations north of the localities which I have mysolf visited, use hus been made of the geologieal maps of Dr. Hector and Prof. Hind, and nlso of facts from Prof. Bell's Report, printed in the Geological Survey Memoirs for 1873-74. In the map of the Lake of the Woods, Proi. Bell's Reports huve again been consulted; but for the regions I was unable to examine, Dr. Bigshy's map-elsewhere referred to-has been the chief authority. For the topography of the region near Lac Plat, I am indebted to Mr. A. L. Rassell. The remaining uncoloured sketches and diagrams, with the exception of Plate xvt, are copied from pen-and-ink sketehes of my own, by the photo-engraving process of M.r. D. C. Dallas, Grey's Inn Road, London.

I am indebted to Principal Dawson for notes on fossil plants collected ; to Prof. Cope for a report on the vertehrate fossils, and to Mr. S. H. Scadder for a description of a part of the collection of inseets: Also to Dr. P. P. Carpenter for the determination of the Unionide; to Prof. Macomn for his examination of the grasses, carices, \&e; to Mr. G. Barnston for a list of the mosses. Dr. Hooker has also kindly undertaken the determination of a number of critical and difficult flowering plants.

Dr. Elliot Coues, who accompanied the United States contingent of the Boundary Sursey, as naturalist, is, I believe, preparing elaborate reports on the zoology of the region.

Sapper Thomas Duekworth, detailed as taxidermist and collector, and working under my durection for two years, proved very useful and zealous in his department.

Your obedient servant,
GEORGE M. DAWSON.
MeGill College, Montreal, July 19, 1875.

CONTENTS.

CHAPTER I.

PIYYSICAL GEOGRAPHY AND GENERAL GEOLOGY.

Abstract

Genemar. Physical Geograpiry--Interior region of the Continent-Eastern home dary-Westem boundary-Slope of the region-First prairie level-Second prairie level-Third prairic level-Transwerse watersheds-Deseription of the southern transwerse watershed-The northern trmserse watershed-Areas dramed by different river systems-Area of the phains. (iexeral Outhene of the Geologr,-General nature of the region-Silurime serics-De vonian suries-P'ossible existence of Carboniferons rock-Perminn and Triassic-Jurassid-Cretaceons formation-Lignite Tartiary formation-Authoriticsom the Geology of the region - - . - - . - . . - - - - 1 . 1

CHAPTER il.
geology of the lake of the woods. laurentian and HURONIAN.

Position and (imograpin of tie Lake-Clear-water Lake-Sand-hill Lake-Whitefish Lakr-Lac Plat-Fonmen Geological Exploners-Lactentian Foumation -Vicinity of the North-West Angle-Flag Islamd to Rainy River-Bigsly Islamd-Middle Islame-North Ishand--Shebashea-Maea of mech-altered Hfroxian.-Intresive Gbanitic Mass of Nobth-West Angle-Its formNorthern branch-Goutbern hranch-Included area of altered rocksIlenoniax Rocks-Angle 1nlet to Ka-Ka-he-wabec-Quartzite-Conglomerate
 Ka-ka-he-wabec Ghante-Hehonan locks Ka-ka-ke-wanec to liat Portaoe -Sehistose belt-Conglomerate of Lacrosse Island-Extensive Schistose belt with some conghomerates- Junetion of the Lavimentian and Huronian at liat Portage-Gexeral Digthibetion and Attitcdes of tie Rocks-Main divections of flexure-Comparison with other localities-Chanacter and Age of tim so-called Heronian Rocks-Nature of the Conghomerates-Meti-morphism-Dykes and veins-Minerals of economic valle - - - p. 22

CIIAPTER III.

STRUCTURE OF THE ROCKY MOUNTAINS IN THE VICINITY OF TlIE FOR'TY-NIN'TH PARALLEL.

General Featcres-Interscetion of the Momitains and Forty-ninth ParallelGencral Geological structur--Rocks in the vicinty of Waterton Lake -Series A.-Series B.-Siries C.-Rocks in tine Kootanim Pass-Sindivisions of Leries C.-East Fork-Roeks west of East Fork-The Water-shed-West Fork-hocks exposed in Mt. Yarrell-locks nean the Boun-
dary Moncment-Scries H.-Section of Scries F. and G.-Eastern Front op tie Watensied Ranoe, Mt. Wilson and Cmef Mountan-Review or the Siecton-Comparison of the Rocks with those of othea Localiting-Rocks deseribed to the North-Roeks described to the Sonth-Limestones like those of Series B, and D.-Underlying beds-Upper red beds-General tonclusions-Periol of elevation of the Mountains - p. 56

CIIAPTER IV.

CRETACEOUS AND TERTIARY GOCKS OF THE VICINITY OF THE FORTY-NINTH PARALLEL-PEMBINA ESCARPMEMT TO WOOD MOUN'TAIN.

Cnetaceors Rocks.-Pembina Escarpment-Niobrarin group-Fossils of the Boyne River-Pembina Mountain yroup-Rocks near the Boundary-line-Seetions in Pembina River-scections in Long River-Thieknens of beds exposed-Lithological character-Lignite Tertiary Roces on the Socris Rifen-Driftcovered region-La Roche Percée-Section on Short Creek-Sections west of Short Creek-Sections near Wood End-Gap in the Section on the Boundary-hine-Lignite Teltiaiy Rocks of Great Valley, and Pyramid Claer-Sections on divent Valley-Sections on Pyramid Creek-Lionite Temtiary Roeks of loreipina Cheme-Eightedn-foot lignite bed-Liontre 'Teltiary hocks on tue Tuaders' Roal - - . - . - . - . p. 78

CHAPTER V.

CRETACEOUS AND TERTIARY ROCKS OF THE VICINITY OF THE FORTY-NINTH PARALLEL-WOOD MOUNTAIN TO THE ROCKY MOUN'TAINS.

Lignite Tertiary Rocks near Wood Motntan-Sections in Bad Lands South of Wood Mountan-Nature of Bad Lands-Divisions of Section-Fossil plants-Vertebrate fossils-Sections West of the Bad Lands to Whits Myd River-Cretaceous No. 4-Fossils-White Mud River-Cretaceons Nos. 4 \& 5-Relations of beds, White Mud River and Bad Lands-Sections West of Wood Mountain Settlement to White Med Riner-Bay of Cretaceous Rocks-Tertiary Plateau-Cretaceous No. 4, with fossils-White Mid Rived to Mile River-Cretaceous plain-Tertiary Platean-East Fork of Milk River-Section near West Fork of Milk River-Age of Beds exposedCretaccous plain-Milk River Valley-Sections in Milk River ValleyUpper arenaceous clays, \&c.-Sandstonc Zone-Lower arenaceous clays, \&c. Mile River to the West Butte-Sections North of East Butte-Nature and height of the Buttes-East Butte-Igncous rocks of the Buttes-Middle Butte-West Butte-West Butte to the Rocky Molntaing-Synclinal west of West Butte-First Branch Milk River-Vertebrate fossils-Second Branch Milk River-Fresh Water deposits-St. Mary River-Disturbance of Beds-Coal Bed-Marine Fossiliferous Beds-Exposures nearest the Mountains—South Fork of Belly River - - p. 102

CHAPTER VI.

GENERAL ARRANGEMENT AND EXTENT OF THE CRETACEOUS AND LIGNITE TERTIARY FORMATIONS.

Cietaceous No. 1.-Typical series-Representatives westward-Dr, Hector's Group E-Lignites in Lower Cretaceons Rocks-Lignite from Rainy River.-CasTaceots No. 2.-Typical series-Representatives westward-Beds of this age
on the Saskatchewan-Dr. Hector's Group D.-Creraceocs No. 3.-Typien serles-Representatives westward-Thepresentatives in Munitoha-Caetaceous No. 4.-Typleal series-Pembina Mountain Group-Representatives on the Line westward-Effect of this Formation on the country-Modifying effect of Drift-Saline springs-Prof. Hind's Section-Dr. Hector's Group B. and C.-Castaczocs No. 5.-Typical series-hepresentatives on the LineProf. Hind'b Section-Distribution of Cretaceots Surdivisions-Lianite Trertiary Formation.-Relations of heds on the Line-Easturn limit of the Formation-Western Representatives-Persistent zone of SandstonesResemblance of western series to Judith River beds-Tertinry beds observed by Dr. Hector p. 136

CHAPTER VII.

CONDITIONS OF DFPOSIT CRETACEOUS AND TER'TIARY. BURNING OF LIGNITE BEDS.-COMPOSITION ANI ECONOMIC VALUE OF LIGNITES AND IRONSTONES.

Conditions impled by Creteceols and Tertiary deposits-Period of shallow waterExtant und nature of subnergence daring Niobrara period-Detrital beds of Font Pierre group-Clesing period of shallow waters-Extensive hund areas during Lignite Tertiary-Conditions of formation of lignites.-Combrstion of Lafintr bens-Appearances indicating this action-Effects produced on surroundiag beds-Area over which sinilar phenomena have been observedQuestion whether such fires are spontaneous-Extent to which lignites have heen destroyed-Composition and Economic Valuk of ligittes and Inon oresAnalyses of lignites-Nature of lignites-Classes of ligaites representedVarialiility of water content-Lignites as faels-Import of the St. Mary River coal-Other similar fuels neme the mountains-A dea of lignite-bearing formation-Ironstones of the Lignite Tertime-Ironstones of the CretaceousProbability of their future economic importance - - - - - - p. 150

CIIAPTER VIII.

age of tie lignite-bearing formation and position of the LINE SEPARATING THE CRETACEOUS AND TERTIARY.

Age of the Lagnite Fonmation-Nature of the question-Physical brenk between Cretaceots and Tertiary of Europe-No physical breik in Interior Continental region-Unity of the Lignite formation-Tertiary age of Eastern representatives not directly questioned-Summary of tacts and opinions learing on the age of Lignite formation-Stratigraphical-Invertebrate fossils-Fossil plants-Vertebrate remains-Character of Junction Cretaceous No. 5 and Lignite formution-Contemporancous deposit of No. 5 over the entire area-Review of the Evidence-Plants-Fresh-water mollusesMarine molluses-Vertebrates-General conclusions p. 183

CHAPTER IX.

GLACIAL PHENOMENA AND SUPERFICIAL DEPOSITS.

Glaciation and Suprrficial Depobits, Lake of the Woods-The lake-basin-Depth of the lake-Direction of glacial striation-Superposed striation in different directions-special instances of glacintion-Pre-qlacial age of ontfall of lake-Distribution of boulders-Upper Silurian limeston:: boulders, with fossils-N. E. limit of limestone drift-Methods of accounting for limestone
drift-Drift Piateau of Eastein Manitora and Nortiein Minnesota-Kámes and Eskery-N. W. limit of red deift-Helght and contour of the plateme Sections on Ronemi liver-Genemaf. Featimes of Glacial Pumnomena E. of Reo Riven-Elevation and slope of the Lamentima axis-Cominent glacier eovering the Lanrentimn region-Former sonthern outfall of Lake of the Woodn-Duft Deiosits of the Skcond I'mahie I'lateay, ani Thefle Mocentain -Surface of the phatem-Treraces of Pembina Exentpment-Sections on Long River-Numerial madysis of constitmente of the dritt-T'urtle Monn-
 Platmau-The Missomri Cotem-Ancient river valleyb-Errntles of the Cotean-(2turtzite drift - - - . - - - - 1. 203

OII APTER X.

Glactal phenomena and superfficial deposir's-(Continued.)

Margin and Eastrin Reqion of the Timbp Plateau (Continued)-Drift deposite near Wood Monntain-Northern Extension of the Cotean-Sonthem extension of the Cotenn-General aspeet of the Cotem-Methods of aecoming for the formation of the Cotem-Dhet Debosits of the Time Plasteau west of Wood Mountas-Boulder-chay of Eust Fork of Milk River, \&e.-Composition of the Drift near Milk Liver-The Three Buttes-Western limit of Lamentian drift-Glacial Action in the Roghy Mocntainh-Fomer gheier of Waterton Lake-Terraces in the mouth of the S. Kootanie Pass-Origin of gohl-Domines and lakes-Cirpurs-Genemal Composition of the Dhaf'lims liso liven Valas-Its dhameter and inclination-Alhuval depositsSoctions from borings at Winniper and Fargo-Yollow marl deposits-Comnestion of deposits of hed liver Valley and Missomi Comery-P'mb-maclal aspect of the Coentir-Former sonthern llow of Red liver-First stage in depression-Correlation of levels of phateans and terraces-Depth of submergence whengreatest, and action at this time-Emergence of the conti-nent-Diffienities met with in explaining the phemomena-Post-tiacial Phenomena-l'ossible existence of a phaial perion-(breat river valliesAltermative vallies-Valley of the Rad hiver-The lommention of conlere. - - - - - - - - - - - - - - - - - - p. 232

CHAPTER XI.

CAPABILITIEs OF THE REGION WITH REFERENCE TO SETTLEMENT.

Region in the vicimity of the Lake of the Woods-Afeas capable of eultivationBarren region-Vagetation of the lake-hegion batween the Lake of tie Woods and Red Riven Prame-Comitry in the vieinity of the Govemment Road-Country bordering on the Reed and Rosean Rivers-Height of Land Muskeg-T'he Red Rived Pramb-Soil, and nature of the surface-Mchsure of agrienltural capacity-Wood-Climate-Progress of the spring here and at other points in the Fertile Belt-Rainfull-Water supply-Country of the Second loamie Steppe-Pembina Liscarpment-Western margin of the great plains-Turtle Momntain-Timber-Country in the vieinity of the Somis River-Mcteorological cycle-Countiy of time Tman Paname SteprePlatean of the Tertinry-Sastern limit of buffalo-Big Camp of half-breeds Fertile Belt nt the buse of the monntans-Timber of the mountainsClimate of the Third Steppe - - - - - - - - - - - - p. 269

CILAPTER XII.

CAPAIMLITIES OF TILE REGION WITH REFERENCE TO SEITTLEMENT.-(Contimued.)

Calbes Detrubent to Shttlement and Aamcllotue.-Future of the North-west-Cli-
 -Origin of the insect-Its range-The young and winged swarms-Its flight-Years when it has uppeared in Manitobi-Means of prevention-Tue Supley of Wood in tus Nonti-west-The phans never entirely woodedCanses tending to destruction of forest-Cinsers of treelessness of prairieDryness of soil and atmosphere-Causes of drought-Ciluses of greater rainfull on wooded areas-Facts tending to show progressive desiceation in the west-Similar drought brought on cisewhere ly destruction of forest -Amelioration of clinute by planting forest-Treeless aren of the continent -Norinal nrea of country which should be in ferest-successful growth of trees in the west-schene for the planting and preservation of trees, p. 301.

APPENDIX.

(A)-Note om the Plants, colleted ly, Mr. G. M. Dawsom, from the Ligmite Tortiary Deposits, wrer the Forty-minth P'erallel

(C)-Lake of the Woods-Treble showing the menture and distances of the dykers and weins observel . 339
(D)-Notice of the Butterftiess enm Orthoptera, collected by Mr. G. M. Darsom, as Naturalist of the B. N. A. Bommluty Commissiom 341
 vicinity of the Forty-minth Parallel-Lake of the Woods to the Rocky Mountains.
(F)-List of Plants collected during the summers of 18~3-74, in the vicinity of the Fortyninth Parallel-Lake of the Woods to the Rocky Mountains 351

BRITISH NORTH AMERICAN BOUNDARY COMMISSION.

REPORT ON GEOLOGY, BOTANY, \&c.

CHAPTER I.

PHYSICAL (GEOGRAPHY AND) GENERAL (iEOLOGY:

Abstract

General Pirysical Geogariny- - Interior region of the Continent Contern bom-dary-Western bomdary-slope of the region-First prairie bevel siecond prairie level-Third prairic level-Transverse watershels- Wescription of the southern transverse watershel--The northern transverse watershed-Areas drained by different river systems-Area of the plains. (ibwemi, Octuns: of the Geobons.-General nature of the regin-Silurian serics-beronian series-P'ossible existence of Carboniferons rocks-l'ermian aml l'riaswie-Jurassic-Cretaceous formation-Lignite Jertiary formation-Anthnitiew on the deology of the region.

General Physical (toography.

1. The great region of plain and prairie which oceupies the whole of the contral part of the United States and British America, where it erowes the forty-ninth parallel, is included in longitude between the 96th and 114th meridians. It narrows rupidly northward, ehiefly by the encrochment on it of its eastern border, and is limited to the north by the skirt of the coniferous forest, which nearly follows the line of the North Saskatchewan River. This great inland plain has an area in Briti:h America, between tho forty-ninth and fifty-fourth parallels, of athout 295,000 squure miles.
2. Its onstern boundary is the slope of the old erystalline nucleus of the continont, which extends north of the River St. Lawrence and the Great Lakes, from Labrador to the Lake of the Woods, and, then furning suddenly at an angle of about sixty degrees to its former gencral direction, runs with a north-north-west course to the Aretic Ocean, where it is deseribed as appearing along the coast-line for some four humbed miles. The crystalline and highly metamorphic rocks forming this axis, are mostly referable to the Laurentian formation; bnt, no doubt, inelude
throughout their whole extent patches of the newer IIuroniam series, as they have becol foblad to do where cardinlly examined noth of the St. Lawence, and atso in the Lake of the Woreds district as finlly shown in amother part of this report. The Ihwomian rocks are included with the Lambentian in their theximen, and to a areat extent also partake in the in
 ahmost conformably upen them. Thin eastern harier resembles more a rooky platem, than a momutain rexiont; there is no well-detined height of hanl, an: the watershed follows a very simus direction among the immmerable lakes, small and great, which cover a large part of its surface. Northwand from the Lake of the Weorls, it divides the waters thowing into Hudsomis Bay, firm thowe draining directly into the Aretic Ocem, with one impertmen exception. The Velson River, carrying the acemmatated waters of the Sakkitchewan River, the Red liver of the North, and immmerable smaller streams, breaks through the Lamentian harier at the north end of Lake Wimipere, and empties into Hudson's Bay at York Pactory. Through the same grap the Churehill or English Piver, a mot ineomsiderable strem, also passes. The geolugical ciremmetances whirh have allowed the drainage of the phans to tind this easy oxit; and the age and chanatere of the vallies of the Nelson and Churchill Rivers, are interesting questions still awaiting solution.
3. The Rocky Mountains on the west, rise abruptly from the elevated plain at their base, presenting often to the east almost perpendicular walls of rock. They are composed, not of a siugle upheaved ridge, but of a number of more or less nemply parallel ranges, which have a general direction a little west of north, and a breadth ot over sixty miles, extending from the margin of the great plains to the vallies of the Columbia and Kootanie Rivers. In the vicinity of the forty-ninth parallel, the geological continuity of the comntry is as sharply broken by the line of their eastern base, as its physical character; and we pass suddenly from the little altered or disturbed strata of Cretaceous and Tertiary age, to searped mountain sides of palaozoic rocks, metamorphosed and erumpled in a violent manner. Southward, the mountains have not the same abrupt character on their eastern slope ; and to the north, after having culminated hetween the fifty-first and fifty-second parallels, the ranges not only become more diffuse, but decretse rapidly in height, till on the border of the Arctic Ocean they are represented by comparatively low hills. In intimate connection with this change in the character of the mountains
is the remarkable fact, thest clenty pointed out by Dr: Hecthe, that the rivers thowing into Itwden's Bay and the Aretic Ocean have their someres

 rise in the abrint eastern vallies of the tiost range. 'The Kimanaskis

- Riser, ono handred miler to the noth, rises in the tirst lomgitminal valley, of at the foot of the second bage; Bow hiver firm the thind
 from the tifth, and the Peare liser still finther to the west.

4. The interion region of the continent, shope grathally bational from the elevated plains fying at the base of he Rovely Momatains, th the fiot of the Samentian highlands; mod though the inelination is mure
 speepinl attention. Between the tifte-fourth and tiorty-ninth degrees of latitude, howerer, along two lines which are in a gemerah wiy parallol, and hold a north-west and romth-onst comse acrose the phains, wer remarkable step-like rises acerur. These esatuments farm the cantern bomulates of the two higher pratio phatems, and the most ensern of them overlooks the lowest prarie level, or that or the Rend Riser Valley, from the west. The three praire steppes thus detined ditier murbin inge and chanacter ; they have been impressed on the soft firmations of the phans by the adtion of subarital domudation, ot the seat, and of fimmer great lakes, and thomgh the precise mode of theire fimation is more filly disenssed elsewhere, they deserve notico here, as being amonge the great primary features of the comutry.
5. The actual increase of elevation accounted for in the two exampments, however, is bat slight comparsd with that due to the mifinm eastward slope of the plains. The ciacetion of their greatest inelination is towards the north-oast, and a line drawn from the intersection of the forty-ninth parallel and the momitains, to a point on the time prairie level north of Iake Winnipeg, will be found to eross the oscarpments nearly at right aggles, and to have an average slope of $5 \cdot 38$ teet to the mile. From the same initial point, in a due east line to the lowest part of the valley of the Red River-a distance of 750 miles-the phans have an average slope of $4 \cdot 48$ feet per mile.
6. The first or lowest prairie level, is that of which the southern part lies along the Red River, and which northward embraces Lake Wimnipeg and associated lakes, and the flat hand surroumding them. A great part of its castern border is conterminous with that of Lake Winnijecg, and
formed by the rocky front of the Lambentinn; Lut east of the Red River it is lommed by the high-lying dift termees survomming the Lake of the Vooks, and fomming a purt of the drift phatem of northern Minnesotn. TU the west, it is limited by the moro or less abrupt edge of tho necond pritic level, forming an escurpment, which, thongh very regular in some phaces, has been broken throngh by the broad valleys of the Assincome mal other rivers. 'The esconpmont, where it crosses the Line, is known as Pembinn Monntan, mul is continned northwind by the Riding, Duck, Porenpine, and Busquia llills. 'The aremge height above the nea, of this lowest lovel of the interior continental region is about suof feet; the lowest part heing that smombling the Wimipeg grong, of lakes, wheh have an eleration of abmit roo feet. From this it slopes up southwad, and athains its proatest clevation- 9 for fert-at its termination far south in Minnesota. 'The edges of this paibice level are also, motwithetanding its apmont horizontality, considembly moro elevated than its central line which is tollowed hy the Red River. Its width on the forty-ninth parallel is only tifty-two miles; its moa, north of that line, may be extimated at 5.5, $; 00$ ngume miles, of which the great syentem of lakes in itn morthern part-inchaling I : Ses Wimipeg, Mmitoba, Wimnipegosis, Codar and St. Martin's-ocempies $1: 3,000$ miles. A great part of this pratio level is wooded more or less delisely, and much of the low-lying land near the great lakes appers to be swampy and liable to thood. The sonthern part, extending fom the bomdary line nearly to the sonth end of Lake Wimnineg, includes the proirie of the Red River Valley, with an area of about $\mathrm{i}, 900$ square miles; one of the most fertile regions, and, at the sume time, the most accessible portion of the North-west.
7. The supertieial deposits of this stage aro chietly those of a great lake which occupied its area after the glacial submergence. This part of the interior of the continent being the last to emerge from the Aretic waters, and having been covered for a long time afterward by a sea of fresh water, held back oither by drift deposits, or by rocky barriers, which hure subsequently been cut through, and which must have united all the lakes now found in the region into one sheet of water, which extended with narrower dimensions about two hundred miles south of the Boundary line.

The Red and Assineboine Rivers and their tributaries have not yet ent very deeply into its alluvial deposits, and its surface is lovel and little furrowed by denudation.
8. The sccoud steppe of the plains, is bounded to the east as already
indiented, and to the wewt by the Minsomi Cotean, or edge of the third
 fifty milew, and on the tify-fourth of probalily abemt two humberd, though it camot there be so strictly dethed. Its total area is abant 100,0001 spuare miles, und includes the whole enstern portion of the great plains properly mo-culled, with an appoximate urea of 71,300 spume miles. These seceny its ronthern and western portions, mond are contimoms westwand with thene of the thind prairiesteple. To the somth, the lumblaries of this region appen to become more indetinite, ant in the wnthern pat of Dakota, the thee primary levels of the eomatry so well morked moth of the bine, are probathy searedy separable. The rivershaveatent on this region for a much longer time than on the hast, and are now fimm thavint with miform currents in wide dithlike vallies examated in the soft material of the phaits, mad often depressed from owe-humberl to threehandred feet below the general surfice. In these, the comparatively insigniticant streams wander from side to side, in tortuons chanmels, which they ouly leare in times of fook. The surfare of this pratice stepre is also more diversified than the last, being broken into gentle swells and umdulations, partly, no doubt, by the attion of denulation, and partly also an will appear, from the origimal mequal deposition by current. and ice, of the drift material which here comstituter the sulperticial formsution. The averuge altitude of this region may the tuken at 1,600 fieet, and the chamater of its soil and its adaptability for agriculture, difler much in its different portions.
9. The third or highent pratio steppe, may be said to have a general normal altitnde of abont 3,000 feet, though itw enstern elge is sometimes little over 2,000 feet, and it atthins an elevation of 4,2010 feot at the foot of the Rocky Momotains. Its area, inclucling the high hand lying along the base of the mountains, is about $13+400$ square miles, and of this by far the greater part, or ahout 114,000 square miles, appears to be almost entirely devoid of forest ; the worled regim being contined to a matll area of its northern extension near the North Saskatchewan River and its tributaries. Its breadth on the forty-ninth parallel is fom humbed and sixty-fivo miles, and its enstern bomblary is well marked, leing the broken hilly country known as the Cotean de Missouri or Great Cotenu, which crosses the Bomulary near the 10.4 th meridim, and thence runs north-westward nearly to the Eilbow of the South Savkatchewam. It is then-accorling to Palliser-continued to the north by a range of high lands, of which the Eagle Hills west of Fort Carleton constitute a palt.

Heres howerer, it beromes broken and madefined. The Thickwood Hills neme the bilhow of the North Saskathewam, and the Red Deer IIths, probahly form ontlying portions of this phatem, mat the high gromed west of the Saskitchew:m, neat: Fort litt, may be its eastern limit in that "egion.
10. 'This portion of the ereat plane wate the tirst to emerge fiom the waters of the 'lordiay, and fom those of the glacial submergence, and its surtioe may have been subject fo demmation thonghagreat part of the two later previols of' the 'Terliary, as well as in post-grlatial times. Thowe portions of it which still remain but little moditied, form tablelambs, the surfaces of which, from the horizontality of the mulerlying Lignite 'Tertiary strata, may be in many places nearly the stme as those of the last deposited beds. It bears some evidenee, however, of having heou subseguently levelled by manime action. The immense demalation which has aken phace by man and rivers, is evidenced by the size and depth of the allies of rivers and streams, both of pre-gheial and postghacial atre, the great ravines and grullies which have been cut, and are still extembing themselves among the soft studstones and clays of these newer formations, and the isolated phateans and buttes, which now stand far out on phains of lower level, semmed with newer systems of coulées and groures. Deposits bolongring to the glacial period, and tramsported bonlilers and aracel, are found on this highest steppe, but are not suead with the same miformity as on the lower levels, and a great part of the surface is hased almost immediately on Cretaceons or Lisuite Tertiary herls, amd varies in the chameter of its vegetation amd appanance areordingly The natme of the soil and prospective agricultaral value of

 aks the northern extemsion of the (ivent Americm Desert, with its mufter of sun-baked clay or samb, scarcely supporting a thingrowth of Cutctus amd Stipa.
11. Thongh thas so remarkably simple and detinite in its grand featmos, the interion region of the eontinent shows many irveghation and exerptions in detail. The second steppo has some elevations on its
 the Assinchoine River and its tributaries, appean to have become abmomally depresed, making some portions of the eastern elge of this prairio level, which worlook Manitohat Lake, more to resemhle ontlyers thim integral pats of it. The third stepere, thongh so inceralar in many
of its details, shows eridence in the closely correspembing heights of the portions now remaning of its orginad surtare, of previous miformitys. The apparent indefinitemess of the there prabic levels and other featmes of the combtry the worth, no donbt, arises in great part, from the deticiency of our knowledge of that pertion of the rergion, and it is highly probable that sulseguent investigation will whow the serome and thind stopges to the well manked in the elevated district hetweon the Saskat chewan and Mankemgie Rivers.
12. The rentral purtion of British North America, may therefore be regarded as a great shallow trough, of which the western edge is fermed by the Rocky Momatain watershed, the eastern by that of the Lamemtian axis, but of which the western portion of the flow is now mone clevated than its eastern rim. The age of the former ot these hombling watersheds, with that of the greater part of the momentans themselves, probally deses not go much further back than early Tertary times. The latter is a part of the otdest watershed and axis of the continent. There are, howerer, two other and transerve watersheds in the area in question, which, though apparenty wot marked by ayy great geological hreaks, are of great importane gergraphinally. Of these the somthern, with a genemal
 the boundary on the forty-ninth paralled. It separatew the waters of the Rod River and saskatehewan, whid tind their way through Wimuiper Lake to Hudsonis Bay, from those of the Mississippi and Missomi and their varions fributario. Commencing with an chevation of ahome 1.6 bow fed, in that region of swamp and lake in nothern Mirneseta which feeds the warionsly destined head-waters of the Wimuiper, St. Lawrenere, Mississippi and Red Rivers; it dipssmenwarl between the tributaries of the lat ter two streams, and passes betweon Lake Traverse and Big Stome Lake, about two homedred miles somth of the Lime, with an eleration of only 960 feet. Thence, pimining a genemat moth-wetrand course along the high-ande formal by the som thern extemsions of Pombina exarpment and the Missomi Cotem, it finally hecomes identitied with the latter, and erosses the Bomdary-line near its intersertion with the 10 th meridian, three hundred miles west of Red River, and contimes with the same comse toward the Eilow of the Somblaskatchewam. 'The tributarie of the Sumbis River here lie along the north-enstern have of the Cutean, white those of the Miswomi ent deply inte the soft Lignite formation of its sonth-western side. Between these river systems it lies as a belt of country without determinate direction of drainage or systems of .iver
vallies, hat comsisting of broken tmmultums hills of drift material. It has a width of over twenty miles on the forty-ninth parallel, and a height of about 2,200 led, and is very detinite; but widens when followed the the borth-west, and beromes more dithise, and where comsed by the old 'Tratrors land to Whaly Mountain, the trihutaries of' the Sourin River are fomm rising within it, amb the lino ot watershed leaving it mat falling batck somewhat further to the sombth, so that at Woorly Mountain setflement in lamsitule $100^{\prime} 30^{\prime}$. the primury watershed lies only from difteen (1) womte miles moth of the forty-ninth parallel. It is necessmry fo perify the primary water-hed, an it womblapear that most of the smatl Abrams mow pmong mothward in this resion, are interepted by the monnts and rideges of drift material, amd canght in waline laken and ponls. Many of them maty, howerer, still tind their way to the Snskatchewall in seatsons of thod.
13. The watershed neat Whody Mombtain is a narrow flat-topped platean componed of Lignite Tertiary strata, irregnam in outline, but with : general as and west comse, and furvod on either side by the vallies of streamo which ramify in it, and which, were dommation advancod a litte fiurther, might inosculate. The height of the water-shed is here about :3.200 teet. litty mike wost of Woody Mratain, and twentyfive morth of the line, where the waternhel was again wessed, it prexerves mose ot the chamelors just indicated, but has been still more extensively redmed by demulation, and has a height of only about 3,000 feet. West of this point it trends northwarl, and is again foum in the Cypres Mills, Corty miles north of the Line in longitude $110^{\circ} 30^{\prime}$, where it still :ppears to follow a bidge of Lisnite 'Tertiary deposits. now but a seanty remnant of that one extensive formation, as the streams on dither sithe soon wehmeh on phans of (retaceons strata, from which the Tertiary has been removed by their action. West of the Cypres Hills the watershed again trends southward and crosses the line abont thirly miles from the base of the Rosky Momatans for the last time. It here separates the watere of the st. Mary, a bibutary of the Belly River, from these of one of the "pper hranches of the Milk Riser, and is seamely imbented by any physical featme, thath so imporiant hydrographically, The valley of the hihmary of the Mill River and that of the St, Mary River, aro deep,

 llills. The lower part of the watershed region hetween them is
undulating with some small lakes and swamper, while the hills are flatopped and dry, and in wome piaces coalence to firm a high-level $p^{\text {lateann. }}$
1.t. This somthern tranverse watershed is throughout chameterized by difliseness, and is indeterminate in direstion. It hate, in all poobst bility, been outhed at first by some very gentle thexure of the strata on a harge seale, produced during tho chovation of tho Crotaceons amb 'Tertiary bels to their present position; but has been subsempently shatpen ly the demulation of the osoft formations on all sides. Such an devation would verg likely bo acompanied by corresponding parallel dopressions, like it, slight in amomat but matensive in arra, which womb indieate the valleys of the Saskathewan and Missomia. 'The mastern extension of the morthern of these syonclanals might alaso aneomet for the passage of the Nelson and Churdhill Rivers thoough the otherwise continuons harier on metamophic roeks there.
15. The Tertiary phain of the thind pairie steppe mast firet have been seared by rivers flowing firm west to citat, and then by their muneroms branches flowing to the morth and sonth to the preesursers of the Saskatchewan and Missomri. By these the whata have been gralually cot down and hack, till an extensive table-tand separated the valleys of the two streams. Waste still comtinning, has reduced this in many plares to a mere dividing ridge, or hat abowt altugether remened it. The quantity of material carried away hats been vast, amd by tar the greater part of this dematation appats th have been aceomplished before tho glacial period.
16. Of the secoml great transerse watershal but litte is known. It separates the waters of tho Siskat chewan systom of rivers from those which pass directly into the Aretice Ocean by the Mackengie liver. Where crossed by the camoo ronte at Methy Portage, near its eastern junction with the Lamrentian, Sir J. Richardsom gives it an elevation of 1,560 feet. Accorling to Mr. Hertor's olservations, its westem emd would appear to hatve an allitute of ahmot 2,400 feet. The intermediate portion is probathy less elevated than either of the extremitios.
17. Of the area at at first defined, exteming liom the lacky Momtains to the base of the Lamentian combly, and lying between the fifty-fourth and forty-ninth parallels, the great Saskatchewan River and its tributaties dains hy far the largest part, all areat of about 139,000 sifuare mites. The Red River and its great tributary the Assineboine, drain 70,500 square miles; the vallies of mumerons small streans flow-
ing into the Wimipeg gromp of lakes, inchuding the area of the lakes themselves, cover $\mathrm{a}^{2}, 800$ sinure miles. The hem waters of the Missomri, and especially of its tributary the Milk River, drain a considemble area to the somith, embracing aboit 22,800 square miles; while the A thatusca and North Pembina Rivers, flowing into the Mackenzie, drain an area of only about 10,000 spurare miles in the north-western corner of the region.
18. The total area of prairie comutry within the same limite, including that of all three prairie levels, may be cestimated at 192,900 square miles. Though much of this vast region is mot absolutely treeless like its southwestern part, its aggregate tree-dad areat is quite insignificant as compared with that of its open phans. Nowth of the fifty-fourth parallel, the area of the pratirie region is inemsiderable, and has not yet been so well detined as to rember :uy estimate possible.

General Outline of the Geology.

19. After the Imronian periox, the geography of which cammet yet be detined, the suceeding formations of the western prairio region seem to have acemmalated on a great submarine platean, stretching westward from the hase of the Lamentian and Muronian wage, and probably contimums with an ocem orecupying the present position of the Pacific. The region now ocerpied by the western momtain ranges, was at different times ontlined by areas of shoals and sand-banks, hat true marine limestones were formed ower it at sereral eprochs. At least as emrly as the close of the Cretaceons perion, the elevation of mountain ranges appears to have hegrut ; and from this time, the formations aceumulating between them and the Lamentian and palacozoic barriers to the east, were those of a great interior continental basin. These waters, at first in free communication with the sea to the sonth and uorth, were som, by the gradually increasing eleration of the coutinent, ent off from it more or less completely ; and, after a period of tanaition, became a great freshwater lake or series of lakes. At the close of the Lignite Thertiary formation-generally attributed to the Eocene period-the elevation of the Roeky Mountain ranges was resumed with renewed rigon', and in lakes of constantly decreasing size, the sands and clays of the later Tortiaries were deposited. These inchule, in great aboudance, the remains of the numerons land animals which inhabited the then extensive area of the continent ; but are not yet known to ocelur north of the fortyninth parallel. The Cretaceons and Tertiny rocks lying along the baso
of the mometains followed them in their elevation, and thas, at a very late stage in the history of the continent, the great region of the platis acequired its castwarl slope. In the vicinity of the forty-ninth paralled, these rocks have heen mised almost horizontally to a height of ower 4,000 feet above the sea; to the south their eleration is eren greater, while northward the platean which they form falls gradnally. It is interesting to observe that while the Cretacons and Tertiary heds of the interior, have thens been raised on masse by the slow exercise of immense force, their hroken remunts on the west coist have sameely been elerated above the level of the Pacitic.
20. The details of the Laurentian amb Huronian rocks receiving more extended motice in subsequent pages, these need wot be mentioned in this preliminary sketch. On theirwestem hamks, and resting diree " \because on their contorted and demuded edges, limestones of Lower Siturian age appear. They have been deposited trampilly around the Lamentian shores, and in general still rest almost horizontally upon them, though they have been described as occurring much disturbed at one locality on the sonthem shore of Lake Wimnipeg. Upier Silumian rocks are mot certanly known to exist in place, though limestones of this age probathy remain concealed by drift and allurial deposits, amd may eren at we time have overlaped a great part of the Samentian platean, and have been contimons with those which appear to muderlic the whole flat margin of IItelson's Bay on the north-western side of the sand Lamentian region. The best known exposine of the Tower Silurian limestones is near the Stone Fort, on the Red River, twenty miles south of Lake Wimineg. It was examined as long ago as 1848 by Dr. Owen, then enguged in a Geological Survey of the Northern Territories of the United States. He comeisely deseribes the limestone as "of a light hatt" colom", sometimes mottled, spotted, or banded, with light hrown," and in his report gives the most extensive list of the fossils yet matde, and figures nome of them. The list includes serenten forms, but-unleses some mistakes in the reference of these has ocemred-shows a mather mixed fama, but one which, accorling to D ? . Owen, agrees with that of the lower beds of the Uplere Magnesian limestone of Wisconsin, and may therefore be taken as representing the Trentom.

Dr. Hector aliso gives a short list of fossils collected at the same place, in his report.

The limestone is highly magnesian, and afforded Dr. Shmard, who
has made analyses of two samples, $40 \cdot 5$ and $17 \cdot 8$ per cent. respectively of magnesic curbonate,*

Prof. Hind has also recognised limentones of the Trenton, Birdseye and Chazy divisions of the Lower Silurian, and the operations of the Canadian Geological Survey lately extended to this region, will no donbt, soon show the true relations of these heds, with their nearest representatives in Minnesota and the neighboming states, where the arrangement is as follows in descending order: \dagger

Hudson IR. Maquoketa Nhales.
Trenton. $\quad\left\{\begin{array}{l}\text { Gialena Limestoue, -(buff and blueish magnesian limestone, } \\ 180 \text { feet. }\end{array}\right.$
Chazy. St. l'eter Sambane, -(white and friable pure quartz sand,) 10: "
Calciferons. Lower Magnesian Limestone, (light biff, some beds sand,)abont 200 " St. Croix Sandstone, - (massive white or buff coloured, shale at hase, over 500 "
Potsclam. Potsilam Sandstone,-(hard sandstones, often red,) at least 400 "
22. Fragments, known by their mineralogical character and the fossils which they contain, to hatve belonged to these Silurian limentones of the first prainie level, have boen strewn broalcast over the plains almost to the Rocky Mountains, by glacial aroncy during the period of the drift.
23. They also, without donbt, underlie the greater part of the interior continental area, though completely covered by rocks of later date; and they aro known to ocenr again in some parts of the Rocky Mountains' but considerably modified in appearance and thickness. Their eastern lino of onterop follows the Iaurentian, to the north, ocenpying a broad belt of country to the head waters of the Mackenzie, where they appear to be overlapped by Devonian strata. Other smaller areas of Silurian, howerer, appear further north along the same line of strike, and limestones probably referable to this age, again expand widely on the shore of tho Aretic Ocean.
2.4. Limestones very similar in appearance to thone of Silurian age, but known to be Devonian by their included fossils, oceur on Manitoba and St. Martin's Lakes, and elsewhere along the western border of the the northern part of the first prairie level. Prof. Hind has defined by observations in several localities a belt of these rocks at least fifty miles in width. He describes them as in intimate connection with the brine springs of that district, the waters of whieh yield an excellent quality of salt on eoncentration. From the eontinuation of such saline springs to

[^0][^1]the southwarl, he has deduced the direction of the outerop of the formation, where, from the thick covering of drift and alluvium, no natural exposures exist. While this method of tracing the limit of the Devonian beds, probably affords as near am approximation to the fict as ean at present be made, it must be remembered that where so great a thickness of muconsolidated drift and alluvium intervenes, and where formations even of Cretaceons age may overlap these older rocks, saline waters, aven though emanating strictly from a single sories of heds, may travel far in the porons layers of the superficial firmations before reaching the surface.
25. The Devonian rocks alrendy mentioned as ocenring on the head waters of the Mackenzie near Methy Portage appear, from Sir J. Richardson's observations, to occupy a wide belt of cometry from that pace to the Aretic Sea. 'Their eastern edges rest against the border of the Lanrentian region, and the moderlying Silurian appens only in isolated localitios. The rocks consist of limestones and shales highly charged with bituminous matter. He obtaired from them specimens of Producte, Spirifer, Orthis resembling O. resnpinatu, Terebratula reticularis, and a Pleurotomaria which Mr. Woodward considered Devonitm.* Also a Pteropod "apparently Tentaculites fissurella of Hall, a Chonetes, the Strophomena setigera of Madl, and Avicula livis of the same anthor," a Strombodes (Cystiphyllum?) and Facosites, like F. polymorpha. Prot. Meek, who has had the advantage of'studying a collection of fossils from the Valley of the Mackenzie, made by Major R. Kemnicoit and some of the Hudson's Bay Company's servants, has described and figured a number of species, some of them for the first time, in a paper contributed to the Chicago Acudemy of Sciences. \dagger IIe refers the beds from which they were obtained, and which are the same as those ahready doscribed by Sir J. Richardron, and are very extensively developed, to the horizon of the IIamilton rocks and Genesee Slates.

Prof. Meek gives the following list of forms from this wery interesting area of the Devonian :-

Cyothophyllum areticum, Meek; Cystiphyllum Americanum var arcticum, Meek; Aulophyllum? Richardsoni, Meek; Zaplrentis recta, Meek; Zaphrentis Macfarlanei, Meek; Sinithia Verrilli, Meek; Combophyllun multiradiatum, Mcek; Paldocychs Kirbyi, Meck; Favosites polymorpha, Goldfuss; Alveolites callorum, Meck; Lingula minuta, Meek; Strophomena demissa, Conrud; Strophomena (Strophodonta) sub-demissa,

[^2]Mnll; Orthes Mucfarlunei, Meek; Orthis Lowemsis? Hall. Producta dissimitis? Hall. Two other imperfectly chameterized species of Producta. Chonetes pusillu, Mall ; Rhynchonclla castance, Meek; Pentanurus borealis, Meek; Atrype asprea, Schotheim; Atrompa reticularis, Linn.; Cyrtinu Bellingsi, Meek; Cyrtima Itamiltonensis, Itall; C'yrteme patede, Meek; Suirifor hémicotti, Neok; Surififor rompuctus, Meek; Spirifer (Martinia) sublineatus, Meck; Spirifier (Martinial) Richardsoni, Meok; Spirifer (Martinia)' Meristmiles, Mevk; S'piritior (Martinia) Pranblimii, Meek; Rensselevia leeris, Meek; a Pleurotomaria; and Gyroceras Loyani, Meek.

2 $($; A more extended explonation of the Devonian rocks of the North-west is much to be desired. Their proppertive value as a saltbearing gromp is great, not only in the sonthern part, hut fin to the north on the Mackenzie River, where Richardson deseriben very copious brine nprings. Their morthern extemsion is also everywhere ansociated with hituminoms deposits, from Methy Portage to the Aretie Ocean. Sir J. Richardson expecially mentions certain localities on the Athabusen River, near the position of a firmer trading establishment, now known as Lat viend Fort de la Riviere Rouge, "a copious spring of' mineral pitch issues from a crevice in a diff compowed of sand and hitumen. It lies a few hamdred yards batck from the river in the middle of a thick wood." Of another locality he writes: "The whole comntry for many miles is so full of bitumen, that it tlows realily into a pit dug a few feet below the surface,"* and similar references abound in his Jourmal. Where bitumen exists in such almatance on the surface, there is every probability that flowing oil wells might be obtained without going to my great depth, the bitumen being generally but the inspissated residue of lighter oils beneath.

The bifuminous limestones and shates have, ats abready stated, been referred, by Prof. Dleek, to the Ifamilton and Genesee cpochs. The "Black Slate" of the Western and Southern States, has been shown to be the equivalent there, of the latter. It "holds exactly the same position with relation to the Itamilton beds as tho clear water and Athabasca shales" of the Mackenzie River regionf and is very frequently comected with oil and brine spings. This being the case, it is highly probable that the same formation in the intermediate region sonth of Methy Portage and in Manitoba, where it is to a great extent covered by Cretaleons rocks, would, if properly explored, be fonnd to yiedd mineral oil as well as salt.

[^3]\dagger Trans, Chicago Acal. Sci., vol, I., p. 65.
27. The possible existence in the vienity ot the settlements of the Red River Valley, of heds referable to the period during which the deposits of coal in most parts of the world were produced, is a fuestion of considerable interest, and has abready atteactal some attention. No exposures of Cabomiferous rocks are known, and considering the how angles at which the Silurian and Dovonian beds rest, and how close the area supposed to be oecopied by the later lies alome the eatern efge of the Cretaceons, it is probable that the margin of the carboniterons series is altogether concealerl. Prot, Itiml made at ajecial search fir the omterop of these rocks along the base of the high-lands west of Mantobat Lake, which appeass to the the mont likely locality for their oremerenee; but minsuceessfully:* It would no donbt be powsible, by boring in judicionsly selected localities, west of the excarpment of the Cretacemes, in the Riding, Duck and Porcupine Itills, to penetrate that fiemation, and diseover rocks of Cabloniferons age; which may probahly exist there at wo yery great depth. We know momething of the Caboniffrous formation ot the interior continental regiom, howerer, from its development on the uppere waters of the Mississippi, and it would appear that the search for any coal heds of economic value west ot Lowa, is almont hopeless. The character of the rocks, ats compared with those producing valuable coal heds further to the east, changen eompletely; the thick shales and sandstomes of the latter region, being represented by limestones aceumulated in deep water. It is true that seams of coal are known as tar west as Nebraska, but they do mot exceed a few inches in thickness, and seem to tio on the very margin of the coal-beuring basins of the east. This estimate of the valuelessness of the rocks of Carboniferous age which undertie the great plains, is contirmed by an examination of their representatives yet further west. Where again emerging to view along the slopes of the Rocky Momatans, they are not known either in the Unitel States or in British America, to show amy sign of reverting to their castern coal-bearing chameter. This being the case, it wonld appear that the western prairio regions must depend for their supply of fossil fuel on the coals and lignites of the Cretacems and Tertiary formations, there so extensively developed.
28. Rocks of Permian or Triassie age are muknown in the interior region of British North America, with the probable exception of some beds of the Rocky Momutains, the equivalents of which south of the forty-

[^4]minth parallel have been refermed to the perions. They must either hatwe been removed by domitation along the eastem mangin of the area, provinus to the Cretarems period, or may nover have beon depositex there; an an clevation of the ocemie phatem to asmetheient hoight to allow the formation of conso sedimentary beds on its western margin, would probathy lay the enatom bordering region dry for at great breath,
29. The durasie perion, also, has left few reeords in the rocks of the North-west. It is hardly probable that strata of this age come to the surface in my part of the great interior continental valley worth of the Line, thomgh Richardson, when with Sir J. Pranklin in 1820, obtained some tossils which Mr. Sowerthy retored to the "Oxford Oolite mad Combasha."* As they canne from the limestome beds of the Mackenzie, howerer, and if placed in the Jumasie serios, would appear necessarily to cary with them the hitmminons shates now condusively proved to be Devomian, there is no dombt some arror in the reference. Prof. Meek writes, apparently with regand to the sane fossik; "from one of these beds Sir John Pramklin collected in 1825 some finsils referred to Spirifer acutas, :and severul Terebratala, rosembling I'. resupinata,"—"Spirifer acutus, however, heing a 'abomiferous species, and Torebratula resupiata a Siassic form, it is ovident thero is some error in these identitientions." ψ Rocks known to be Jurasie by their fissils, are bowever, found in the Roeky Momatain region of Montana, and their equivalents-thongh not yieding fossils-mpear among the highest rocks seen in the vicinity of the South Kootimie lass, and will probably he found above the carlmoniferons limestone much fint ther north in the range.
30. The Cretaceons rocks, corresponding in age with the great chalk formations of Europe, though very ditherent from them in mineral charaeter ; are those which spreall over ly fill the greatest surffee. Except in a few localities, and those chiefly in proximity to the Rocky Mountain region of uplift, they are still almost as porfectly horizontal as when originally dejosited. 'The eastern edge of this formation partly overlaps the underlying Sihurian and Devonian beds, and runs nearly parallel with the base of the Lamrentian range at a distance of about one humdred and thirty miles, from the fifty-third to the diftieth parallel of latitude. Southward it trends to the east, and probably crosses the fortyninth parallel east of Red River; while in sonth-western Minnesota Cretaceous rocks repose directly in some places on gramites, which are no

[^5]\dagger Trans. Chieayo Acul. Sei., vol. I, p, 66,

 Ridling, Durk. Porcoppine and Baspuia Momatains, All there appeat to

 whow-salient puints of the enge of the serond patem, and the generally
 the immense demutation which must hase taken patae in companatively modern times.
31. North of the Banquia Momatain, fiom the very wanty informat tion we at present gusems, the elge of the Cretaceons wombld appar to rom westwal and erns the Saskatehewan hiver near Fort it la Corme, where at Cole's Palls a dark-edomed shato which has herol reterem to the lowent momber of the series, berem. It may very probably be nealy conterminous with the elge of the seromb platean, which, acoonding to Mr. Selwy, erosses the riser fintr-tive miles lolow the Fort. The western border of the Cretarenus sems in some phane to follow rlonely along the base of the Rocky Momatan Rame, hot many ciremmetames arise to complicate the question in that region, and it will only be after the accumulation of much mone intimation than is at present in our prosession, that the line can be laid down with any aneronary. la some parts of the range, Cretaceons rooks have heen inchubled amomg the montans themselves, and comsiderably altered; but the greatio pirt of the nower stata, which must have covered the palawoic rowk wh this region when the uplift first toek pare, have heen removed hy demulation.
32. The Cretacens rocks thas defined in breath, month of the
 and Prof. Bell, in many localitioson the secome prairie level, some of which are more particularly refered to in the sequel ; and are known to extent in a broal gone from the North Sakatebewan to the Meximan fiontien and southwarl. In the wostern Territeries of the linitel states, the statigraphical sequence aul palsontoley of the ('retacems herls, have been calefully stulied by De. Witaden, Drofessons Copr, Nowhery, Mansh, Sespuerenx, Leily and others. South of the fing-minth paralled, however, the Cretacems itself is to a great extent comealed loy depesits of Tertiary age which, though they hare been acermmbated at different

finund to rest on the Cretaceous in other than a conformable powition. North of the Line, the only one of thene later formations yet recognized is the lowent or Lignite 'Tertimys.
32. Onf knowledge of the Cretacems heds beyome the North Siakatchewan, is as yet vory limited, mad depends almost entirely on the observations of Sir J. Richardson, aided by whe mates of other explorers not profersed geologists. It is likely, however, that a trongh or serien of more or lens isolated basins of lignite and coal-bearing strata, follows nem the easterm base of the momatains the whole way to the Aretic Sen. A pmrt of these bells is known to represent the Lignite Tertiary of the sonth; but julging from their association olsewhere, they will probahly be fomul to rest on Cretaceons rocks throughout. Indeed, from the fingmentary nature of the information concerning this great northern regiom, and the misetuled questions with regard to the age of the coal neries of the amulogons region near the momntains and south of the North Saskatchewm, it is imponsible to decide whether nome of the comls and lignites deseribed, myy not belong to the Cretaceras formation itself. The existence of Cretacems beds has, however, only been dotermined with certanty at a single locality, on the Bear Lake River, near its junction with the Mackenzie. Sir J. Richardson here discovered an Ammonite among sandstones and shater which he states resemble those of the coal measures. Prof. Meek has detected frugments of an Ammonite and Inoceramus in Mr. Kennieott's collection from the same place, * and had formerly deseribe itwo species of Ammonites from that neighbourhood, submitted to him 'y Prof. IIind, as A. Barnsoni and A. Billimgsi. \dagger
33. The sumbivision of the Cretaceons, an it ocems in Manitola and the North-west 'Ierritomies will require discussion after the systematic description of the localities in which it has been examined. From its elose general resemblance lowever, to that which has been studied in the western part of the United States, it will be usefal to have the Upper Missomi Seetion of Meek and Hayden, which has now become typieal, as a standard of comparison.
: The tormation is there composed as follows in descending order:

- Trans. Chicago Acad. Sci. vol, J., p. T2.
\dagger Iteport Assineboine and Saskatchewan Expleditlon, p. 184.
ition. ed is

Forth llo other ough aring way the else-oughinilig mid to $\times \mathrm{nnll}$ some ceotis only Jake here stutes ments n the from ii and
a and matic m its ied in pical,

Later Cretartous. -

No. 5. Fiux Hidi Mads, - frey, ferruginour and yellowish nandstones and arenaceons clays. I/wine ahells. 500 feet.
" 4. Finkt lighas (inouls-Dark grey and blueinh
 remutins

Eurlier Cretaceous.—

No. 3. Nobmaba (inotep.-Calcareoms marla. Darine

- 2. Fort hinton (inour--Dark grey lamimated claya, with some limestone. Marine shells.......... 800) "
" 1. Dakora (inor'r-- Yollowish, reddish, and whitish samdatonee, and clay, with oecasional lignites.
 spermons lentes . 400 "

Giving, as an mpproximate thickness of tho formation in that region, 2,600 feet.
34. The Lignite Tertiary rocks north of the line are not bounded by any great physical features of the country, but adhere closely to the upper members of the Cretaceons, and behave as an upper member of that formation might be expected to do. Though no doubt originally deposited in extensive hasin-like depressions of the Cretaceous strata, these are now generally fomed forming slightly elerated platenus. Denudation must have acted on these rocks on a vast semle, but they still cover an immense area, and emitain the greatest stores of mineral fuel known to oceur in the vicinity of the forty-ninth parallet. The line of their eastern elge crosses the purallel near the 102 nd meridian, and thence appears to pursue a north-westward course, remaining for some distance nearly parallel with the elge of the thirl platean. Beyond the Elbow of the South Saskutchewan, though the same physical fenture continues to the north, it is not known what relation it may bear to the outerop of this formation, nor has its northern limit been ascertained. Between the North and South branches of the Saskatchewan River there is a great twact of comitry; the geological features of which are still very imperfectly known, but where it is highly probable, outlyers, if not direct extensions of this Lignite formation will the met with. To the west, it appears to extend, at least in some places, nearly to the bave of the Rocky Mountains.
35. A thick mantlo of sands and clays, referable to the glacial period, and to former great lakes, covers almost the entire surface of the plains. A geologist may often travel a hundred miles without once
being able to observe a seetion of the muderlying Cretaceons or Tertiary rocke, and but for their great mitormity and simplicity of strocture, it would be a very diffient task to maravel the grendogy of so vast a region. The very momotony of the platins is, howerer, to a great extent, a corollary of the attitude of the strata beneath them, and of their mamomolidated and homogreneons chanacter.
36. In the theregoing brief summary of the Physienl Gergraphy and (ieology of the interior region of British America, I have availed myself' freely of the varions sourees of information on that subject, some of which have been atready acknowledged. Thongh there are wimy works beming more or less direetly on the general mature and :.apect of the comtry, the genogical bibliography is as got quite smatl, and the knowlenge of some districts has mot heen extended since the date st the tirst oherevations, made many years ago. The principal anthorities on this region, exclisive ot thene relating entirely to its Arefie pertion, are as follows:-

Sir J. Richurdson, in his "Jommal of a Boat Voyage throngh Rupert's Lamb," 1851. Also in "Topographical and Geological Appemdix to Fianklines Secmad Jomeney to the Aretic Sea," and varions parers in the Jomraal of the Geolugieal Society of Lemdon. Itis perwomal ohempations were chictly continel to the Canoe Ronte, from Lake Superion to the month of the Mackenzia, abll to the regims lying near the const of the Polar Sea.

Dr. Bigsky, in two papers published in the Jomrnal of the Gealugical Soriety: 1851 and 1852, gives much information on the Sake of the Woods regiom, as more filly mentioned in mother part of this report.

ITr. Ishister, in the Jommat of the Geological Society for 1855, gives a concise accome of the general geology of the morthewem regions of America, ats then known, and a geological map chiefly hased on that of Richardsom.

Prof. IV. Y. Hind, in hin varions reports of the " Λ ssinotwine and Sakkatewai Bxploning Rxpedition," organized be the Canalian (iovern-
 general chanater of the comotry traversed.

Dr. Hector, geoblegist to the exploming expelition sont ont by the Imperial (iovermment muler Capt. Palliser, traversed am immense extent of comblry during the years 1855-58-59. To him the tirat really trustworthy gencral geological map of the interim portion of B. N. America is due; and he han besides acemmulated aud publinhed a great matso of myself' which works of the ad the ? the ties on oll, are
"pert's ulix to in the rations to the of the

Mugical of the
rort.
, gives ;ons of that of ne aml fovern$g y$ and
by the extent - trinst merica hatss of
geological ohservations, the signiticance of mamy of which appears as the comery is more thoroughly explored. Ilis repret is jubishert, together with the other results of the experlitim, by the British (iovermment, as at Bhe Book, bearing date 18tas. He has also contributed a priper to the (ieological Society's Jommal on the sulpeet. (Vol. xtii.)

Dr. D. D. Oren, in his " (ieology of' Wiseomsin, Iownand Minmenota" (1852), tonches incidentally on the Silurian limestones of Red River.

Prof. Kertiny, in 1823, made some ewsery oherevations on the same limestones, and on the reeks of Lake of the Woons.

Prof. F. B. Weck, in a paper entitled "Sketeh of the (ieology amd Pabeontology of the Valley of the Mackenzie liver," pmblinhed in the tirst volume of the thanations of the Chicago Acatemy of sciences (18t8), deseribes a member of fossils collected by Mr. Kemmicott, and reviews the geolegy of the region.

Prof. Heer, in his wonk, "Flura lossilis Arctice", gives three plates, and deseriptions, of fossil phants foom the Mackenzie River.

Mr. Selwyn, dirertor of the Geological Survey of Gamala, in the Report of Progress, for 1873-7.t, gives the results of a preliminary examination of the Nowth Nakatelewan region. Prof. Bell, in the same volume. reports on the comitry in the vicinity of the Somth Savkateliowan and (qu' Appelle Rivers.

CHAPTER II.

($\mathrm{H} O L O G Y$ OF 'THE LAKE OF THE WOOIS. LAUREN'TIAN AND HURONIAN.

Position and Groarapin of the Lake-Clear-water Lake-Samd-hill Lake -White-fish Lake-Lae l'jat-Former Grolmacai Explorebs-Laurentian Formation - Vicinity of the North.West Angle- Flag Island to Rainy River -Bigshy Island-Middle Island-North Island-Shelashen-Arra of muchalterbi Huronian.-Intrisive granitic Mass of North. West Angle -Its form-Northern branch-Sonthern branch-lnchaled area of altered rocks-Huronian Rocks-Angles lnheit to Ka-ka-ke-wabfe-QuartziteConglomerate belt - Schistose rocks - Second Conglomerate belt-Second Schistose belt-Ka-ka-kr-waneg Granite--Huronian Rucks Ka-ka-ke w. bec to Rat P'ortade--Schistose belt-Conglomerate of Lacrosse Island Exiensive Schistose helt with some conglomerates-Junction of the Laurfatian and Muronian at Rat Pobitage-General, Distmbution and Artirudes of the Rocks-Main directions of flexure-Comparison with other localities-Charactrr a Age of tine so-caliele Huronian Jociks Nature of the conglomerates-Metamorjhism-Dykes and veins-Minerals of economic valur.

Position and Geography of the Lake of the Woods.

37. The Lake of the Woods is over seventy miles in extreme length, and from its exceedingly irregular form has n very extended const line. It belongs to that system of inland waters which includes the Great Lakes to the cast, and is continued in the north and west by Lakes Winnipeg, Athabasen, Great Slave and Great Bear Lakes; all of which lie along the southern and western margin of the great metamorphic nucleus of the continent, where its crystalline rocks sink below those of Silurian and Devonian age. This lake, in its geogrephicul and geological relations, thus differs from those which cover so great a part of the surface of the erystalline metamorphic series itself, and which appen to oceupy shallow rock basins in it.
38. The water supply of the lake is derived chiefly from the northward and eastward by the Rainy River, a magnificent stream, draining the western slope of the watershed which divides the water: flowing to the Lake of the Woods, from those falling eastward into Lake Superior. The tributary streams from the country lying west of the lake, though comparatively numerous, are unimportant; as the low ridge which separates these from those passing westward into the Red River, lies very noar
the lake. The lake discharges its waters by the Wimipeg River at Rat Portage, and there begins the descent of about three hundred feet to Wimipeg Lake, by a fine cascade and rapid.
39. The northern part of the lake is studded with immmerable islands, comparatively fow of which are marked on any map. Some are several

Lake 'REN'IIAN iny River of muchT Anole f altered tartzite-- Second KA-KA-KF lslandhe Lad. ION AND son with n Roc'ks Iinerals
length, ne. It aken to 5, Athang the of the ian and lations, of the ballow
northing the ing to perior. though parates y 1102 r miles in length, others of very smallsize, hut they are invariahly eomposed of solid rock, and seldom have more than a very sementy rovering of soil. The shores of this part of the lake are also rocky and hold, and the water clear and deep, giving rise to its common name of' Clear-water Lake. It communicates by several narrow pussages through a maze of islands, with the somthern portion, which is totally different in character. Here, islands are comparatively rare, and the lake torms a hroad sen-like expanse, which is easily thrown into violent ngitation by the winds, rendering ano navigation somewhat precarions. The shores are for the most part low mad swampy, in some places covered with a dense growth of tamarac, but often bordered by low sand-hills, and stretching out behind them in great reedy Muskeys.* The water is comparatively shallow and somewhat turbid. To this part of the lake the name Lake of the Woods is genemally applied, but it is more properly called Lake of the Sand-hills. A third great division of this system of waters lies between the ontern bays of Clear-water Lake and Lake of the Sand-hills. It commmieates with the former by narrow channels, and from the latter is entered across a rocky division known as Turtle Portage. This part of the lake is desigmated White-fish Lake, and hus never, so far as I can learn, been properly exmmined or surveyed. Lac Plat, situated to the west of Clen-water Lake, may, though much smaller than the others, be counted a fourth division. It is, I believe, entered in one place without monoaling cumoes, and also by sevoral easy portages. It would appear to be shallow, merging into swamp westward, and is the great rice ground of the Indians. The North-west Angle Inlet, is a narrow arm ruming westward from near the junction of Sand-hill and Clear-water Lakes. On it is, situated the eastern terminns of the road from Wimipeg, and i_{1} connection with this there is a Government station for immigrants. There is also a Post of the IIulson's Bay Company, several traders' ':ouses, and usually al large camp or Indians. At Rainy River is another (Govermment post, known as Hungry Hall, and between this place and the North-west Angle a steamer now plies regularly, forming

[^6]a link in the through route fom Lake Suprion to Manitoha. The month of Rainy Riser is also, and has heen from time immemorial, a farourte ramping place of the mativers. At hat Portige there is a small Iludson's Bay. Post, sarrombed by a stockate, and trading with Indians hanting wer a great areat of country.

Former Geoloyical E.rplorers.

40. The geology of the Lake of the Wookls wats fint discuseed hy Dr. J. J. Bigshy, in a paper which :ppeared in the seventh volume of the Jommal of the Geological Society (1552), and gave the results of an examination mate, I helieve, in 1823 , during a visit to the lake in lis capacity as Medical Officer to the Bomdary Commission Surey of that date. This paper gives a remarkably clear general account of the geology of the region, and I must express my obligation to it for several facts incorporated in the general map appemel to this rejort. Prof: Keating, associated with Major long, in a United States Govermment expelition to the someces of the St. Peter River and neighboming comitry, pasisel through the Lake of the Woods by the Canoe Ronte in 1823, and gives a few notes on the lithological chanacter of the rocks observed. Prof. Hind mentions some facts bearing on the geology, in his Reports (18.) a and 1805). Prof. Bell, of the Canallian Geological Survey, in his Report for 1872, gives a short accomt of the rocks seen during a comoe voyage from Rat Portage to North-west Angle, and some conclusions on the general geology.*

Detail of Obsercations on Geology.-Laurentian. \dagger

41. On approathing the Lake of the Wooks from the west, by the roal from Wimipeg, the first rock in place is seen atout three miles east of Birch ('reok Govermment Station, and comsists of Laurentian granitoin gneis. Ahout eleren miles east of the same phace, and on the eastern margin of the Caribon Muskeg, a large surface of a similar rock is exponed, and is seen to be traverned by veins of red felspar. A mile further east, amother goxul series of exposures ocems, the rock being a greyish gneiss, the lamination of which has a strike of N. $60^{\circ} \mathrm{E}$. It is intersected by many veins of red felspar ruming in all directions. About formed miles

[^7]east of Birell ('reck, a well stratifed and thinty hedded gmeiss rodk is

 areondance of strike, were seen between the bast mentioned place and the North-west Angle.
42. Near the י pher part of the North-west Angle Inlet, rock exposmen are extremely are ; but this region is also apparently materlaid by Lamentian. A few humbed yards borthward fiom the Reference Somment, and in the midst of a demse wookl, a bow romulem mass of dark gineissie poek rises atwe the genemal level. It holds appurenty both hombleme and mical, which are arranged in thin and regular laminate, and is nempy vertieal with a strike of N. 7 ${ }^{\circ} \mathrm{E}$. On the opmesite side of the intet, in the entanace to a reedy creck, a tew yards of a compact greprish-blatek micaceons row appeats nemly at the water level. Its attitule is mot
 inches wide, with a comese of's. $75^{\circ} \mathrm{E}$.
43. The rocks in the vicinity of the Nurth-west Angle Inlet are thrown intosome comfusion ly the presence of a great granitiond syentic intrusive mass, more fully noticed on a subsequent page. Somth of this intrusive mass on the west shore of the lake, the first rock deany Lamentian, oceurs about tive miles somthward from the entrance of the Inlet, and alont a mile fiom the southern end of the granitic peninsula, known as Fag Island. The rock might here mudoubtedy be ealled a granite, and in some parts is quite coursely erystalline, with latge and prominent felspar erystals. The whole, howeser, shows a foliated structure, and other remains of stratification parallel to the direction of this, are to be seen in places. The general line of strike thus imbicaterl, is mealy east and west, turning sometimes a little north of east.
44. This rock is traversed hy dykes and reins in many places, and one instance of comionsly complieated intersection of these was observerl. The oldest introsion is a rein of red felspar, but a few inches thick, and rmning about morth-east. This is divided hy a dyke thee or fom feet wide, of greenish dionte, which includes firgments of the much-altered gncissic rocks, and gives oft some diserging branches. A thin seam of very dark homblendic dionite of still later age, euts across both these, and is in turn intersected by an irreghar vein of red granite. Lastiy, a movement farallel to the direction of the largest dionite dyke, ame subsequent to all the others, is indicated by a coack-mank, along which the gromite vein has been slippect. (Plate 1.)
45. The gueiss alove desmibed, extends along the shore sonthward for about a mile and a hadf, and then sinks below the level of the water, and for about fifty miles, following the const-line, 一which treals westward and forms two deep bays,- - norock is seen in place; the shore consisting of sand and wide-streteling grassy swamps. The rock next appeats forming the north-eastern point of the southern promontory of the lake, which is about eighteen miles due south of the last mentioned exposure. It is very possibly a much altered gueiss, but assumes the appearance of a finegrained gronite, very compact, and pinkish-grey in colour. It is much broken up by intrusive dionte dykes of large size, which have a genem direction of from N. $20^{\circ} \mathrm{E}$. to N. $40^{\circ} \mathrm{E}$. These are very compact, darkgreen, with irregular grains of iron proties; and show large isolated green-ish-white btotches which give the rock a roughly porphyritic aspect, and are composed of felspme crystals, which have undergone fincture in several directions since their formation. A small rocky islet, about a mite and a half north-east from the point, is composed of a similar material ; it was covered, when visited, with nests full of young cormorauts (Graculus dilophus). Both these diorites essentially resemble that composing an island near the first exposure of Laurentian rocks south of the Angle Inlet.
46. Four miles eastward, the north-eastern point of the southern promontory is found to consist of rock in place, which extends for more than a mile along the shore. It consists of thinly stratified gneiss and hornblende schist, much broken up ly small faults, and twisted, but showing a general dij of from N. $50^{\circ} \mathrm{E}$. to N. $70^{\circ} \mathrm{E}$., at angles of 50° and upward.
47. From this point to the vicinity of Rainy River no rock appears. Near the mouth of the river, limestone has been reported to exist, but I did not find this rock except as seattered boulders, in which form it is common along the whole southern border of the lake.
48. A fow miles north of Rainy liver, the Laurentian rocks again rise above the level of the drift, as hornblende schists, associated with thinbedded gneiss. Where first met with, their strike is N. $85^{\circ} \mathrm{W}$., and the dip southward at a high angle. At two prints a little further north, the strikes were found to be $\mathrm{N} .73^{\circ} \mathrm{W}$. and $\mathrm{N} .78^{\circ} \mathrm{W}$. respectively. The homblende sechists are generally composed of back homblende and white felspar, and are tine grained and thinly bedded. In some places, however, the homblende changes to a rather light green. The rocks are traversed by numerous sinuous red felspar veins, and in minor cracks show streaks of
ward for ater, and ward and g of sumd forming which is t is very f a fincis much general ct, darkd greenaspect, cture in about a similar cormorble that s soith 3 mpore than d horilhowing 0° and ppears. t, but I (11) it is

in rise

 h thinnd the th, the . The white wever, sed by aks of

$\underbrace{2}$
epidote. A small island oft Windy Point is of gneins, with a strike of N. $51^{\circ} \mathrm{W}$. and a high dip to the sonth.
49. Making a traverse of three miles to Bigsly Island-which lies to the north, and is the most somthem inland of the chain which atretches across the eastern bay of Sund-hill Lake-the rock is found to be a gromitoid gneiss with a strike of N. $\mathbf{7 0}^{\circ} \mathrm{W}$. It probably belongs to a strutum considerubly underlying the last deseribed leds, on the numinland. The south-enstern point of the island shows grey and homblendie gneiss striking N. $50^{\circ} \mathrm{W}$. The eastern point is formed of grey grmitoid gneiss, only showing in a few places sufficient truces of stratifiention to allow the strike-which is $\mathrm{N} .65^{\circ} \mathrm{W}$.-to te ohsorved. In neveral places in this vicinty there are large irregular segregation veins composed of red orthochase felspar mod white quartz. The felspar crestahs, have as usual, formed first, and their erpstallization is very bold; one of them beautifinly cut and polished in section ly glacind action, measming seventeen inches in length. The quartz has tilled irregular prockets remaining anong the felspar crystals. Two miles north, and still on the same island, a point was observed where grunitoid guciss of the usial type, reddish-grey in colour, and also holding veins of felspar, was eut by a large dyke of very compuet dark-green dionite. The northern portion of this ishand is entirely composed of grey grmitoid gneiss, in some places scarcely distinguishable from granite, and of which the strike and dip is indeterminate. At the extreme northern point, it forms low gently rounded knolls which rise slightly above the surface of the drift.
50. Middle Island, opposite the north end of Bigshy Island and for about two miles northward, is composed of thinly bedded and often ribbon-like gneiss and mica schist, with some greenish layers like those intercalated in the strata last described on the mainland. The attitudes at three points, begimning at that furthest south, were found to be resjectivoly: $\operatorname{dip} \mathrm{N} .53^{\circ} \mathrm{E} .<68^{\circ}-\mathrm{S} .60^{\circ} \mathrm{W} .<35^{\circ}-\mathrm{S} .65^{\circ} \mathrm{W} .<38^{\circ}-$ indicating a well marked synclinal fold. The beds where they dip north-oastward on the south side of this synclimal, are probably the return of those last seen on the mainland, and must overlie the granitoid gneiss of Bigsby Island. It can hardly be supposed, however, that the phenomenon is a simple anticlinal in which all the beds from Windy Point to this locality are included, as the distance is at least eight miles, and the angles of inclination high. It is more probable that a series of sharp flexuros having an approximate east and west direction, are superimposed on a long gentle swell of the strata parallel to them, and
the higher part of which has heen antirely removed by demudation. Nonth of the last mentioned lomatity grey granitoid greiss again con-

 and materlie to the north. Northwarl, alont two miles from the mothern pint of the island. hermblembe sehist appeats with a dip of $\mathrm{s} 39^{\circ} \mathrm{W} .<53^{\circ}$. This is inmediately surceeded by granite, being a portion of the great intrusive mase of North Intand, and forminge aho the northern part of this istand with the exception of alont halt a mite along the northenstern shore ; where the emstern eme of a small maticlinal of
 red folspar reins, is intersected by several of dark green diorite having an east and west coinse. 'The granite in the nomern part of the ishand asserts itself by giving the country a much higher and boder appearme, and is evidently introsive, as it holds detahed fragments of chemely stratified gneiss nour its june ion with that roek. It is homogeneons, of red and greyish-red tints and tine grain ; mal is travered hy ocensiond feldatr veins, some of which were fombl to have a condese of $\mathrm{N} .30^{\circ} \mathrm{W}$.
51. Opposite the north ent of Middle Istand, Nometh listand in componed of grey gneiss, dip N. $35^{\circ} \mathrm{W} .<30^{\circ}$, and probably commected with that just noticed. This is immediately followed to the noth by pink tinegrained granite, enclosing lange mathered masser of the grocis. The remander of the istand is formed of simitar gromite rock of grey, grey ishred, and red tints, and very compact.
52. The junction of this great mass of intrusive gramite with the rocks to the northwade is comecaled behow the watets of the strat which reparater North Island from the manland, and which is firm three quarters of a mile to a mile in width. The rock where next seen is a backish homblendie sechist, dipping N. $6 \mathcal{S}^{\circ} \mathbb{W} .<40^{\circ}$, or anay from the granite, and inchaling red felspar veins more or less nealy confomable with the strike, which are probalbly comected with the eruptive mass.
 mike, atm is deeply imbented with hiys of very irregular ontline, and fringed with high roeky intanks. Tha rock, with the exeeption of two or three gramitic manes of eomparatively smath size, is homblende selhist and greiss, and with at few exeptions, has 1 general somb-westerly dip, and nearly coincedes in its strike with the gemeral line of the comst. In a deep bay, a short distance west of the last mentioned locality, and separated from it by a boss of rewl gramite holding gneinsic fagments; hatek and aill (c) 115, sem (\%olmes -OII the I dip of being 1 also the the along linal of , bevider , having 10 islame canance, clemly mous, of cusioml $1^{\circ} \mathrm{W}$ munused allh ink tiner. Tho preyish-

re rocks

which three (11) is a on the rmable nass.
cight IC, and two or int allul ip, and a deep burated k : mel
 a tew humberl garde finther methward herome wertical. Neme the hottom

 hast masw. This is followed by grey guise, strike, N. s: $3^{\circ} \mathrm{E}$, Rather ower

 501. This rock, in following the shore, is immediately suleceded by well-
 seensinee learing North lisiand. It constitutes the shome and islamis fin at leant two miles. Its colom in manally grey, and in mo locality it showed a direction of strike N. $45^{\circ} \mathrm{W}^{\text {., and a dip at high angle to the nomthward. }}$
 direction of strike or dip. Near the peint where this compact gneiss
 the ent of the promontory dividing Simethill and Clear-water Lakew. This chanere is closely fislowed ber the strata, which show a simultaneons tendeney to atter their strike toward the same direetion. The rock again
 is probably the representative of the thick series of homblembe schists mentioned as oremring in the first hay west of North lasand. It heromes micalems west ward, and includes sonne gneise bamis; and comstitutes the shore tor about two miles, having in two phaces where ohservations were

 which lies to the semth of the great North-west Angle int rasive mass. The actual junction between the two formations at this peint is comeeraled ty water, hat they show a remarkable apmaname of contomity, the mext rock seem, heing a soft greenish slate, with a dip of S. $60^{\circ} \mathrm{W} .<45^{\circ}$. It
 entian and so-called Harmian roks have been moticed by Prof. Bedl, ths ocemping on the Albany River at Martins Falls, and also in the neighomer horol of White Riser:*

Arect of Muth-altered Ihurmian Rocks lying South of the Intrusive Gramuc Muss of the North-rest Angle.

55. This detached arem of Huronian is compuratively small ; its grentest diameter, which lies nearly mast and wost, may he stated as about eight miles, and its wilth at about fome. So fin an comblde ascertained by an oxamimation of the ishmuls which fill this murow part of the lake, the northern mul western edges of the aren are bommed ly introsive rock, and the enstern passes in the mamer alrealy described into the Jamentian; but, as the southern edge is only defined by the murgin of the belt of ishands, and the falling away of the rock surfice below the waters of the lake, it may possibly extend much further in this direction. Indeed, considering the clove manner in which the torm of the lake accommodates itself to the arens oecupied by the softer rock formations, it in not improhable that much of the somthern part of its basin may have been excavated in Intronim rocks softer than those now treated of, which have assmmed an altered character from their proximity to the granitic mass.
56. The rock first fiomud on leaving those of the Lamrentimn series, and belonging to the eastern end of the arean now in question, is a dull-green soft homblendic slate, separating into rather thin lamine, often brownish in colour along the division plames, tund where weathered. It includes, in some places, more or lens lenticular masses of grey rock renembling gneiss in appenance, which may have been intruded purallel to the stratification planes, but is more prolmbly bedded, and formed of material differently affected by metamorphism. A short distance west of this, the rooks assmo a vertical attitude, with a strike of about N. $80^{\circ} \mathrm{E}$. Quartzites of greyish colons proponderate, and are associated with a rock rosembling diorite, but which may possibly be a much altered sediment. The quartzite shows many joints running in all directions, and in some places is so cut up by thom as to render it difficult to break off a clean-faced specimen. The joints are sometimes slickensided and generally rusty. West of this, at about six miles east of the northern end of Flag Island, the strata dip $\mathbf{N} .27^{\circ} \mathrm{E} .,<70^{\circ}$, the rock being a soft, very fincly laminated micaceous schist of a grey colour; the mica in which is black. It is intersected in one place by a well defined dyke of diorite, not of great width, but with a fixed direction of S. $40^{\circ} \mathrm{E}$. For about a mile south-west of this, the rock, where seen, is a thinly bedded grey gneiss, imperfectly erystallized. It was found to have at three points where observations were taken, the following attitudes:-N. 8°

Gramsic ; its greatbout eight ined hy an lake, the sive rock, aurentian; he belt of ers of the ulead, conmomolates mprohable anvated in swuned an
series, and dull-greon brownish ncludes, in wombling ol to the - material ' this, the f. $80^{\circ} \mathrm{E}$. th a rock red sedias, and in cak off a id genern end of oft, very which is diorito, or about bedded at three

- N. 8°

 mul wertherly dip, towat the intrinise masw.

57. Somth of the last mentioned locality, on the somthern wide of the
 Nowen of, is a hardened chloritic slate of dark-green colow, ind luding thin belte of gneiselike material, which although parallel to the strike, may to
 bold indands. Ther are very protally the return on the somthern side of'
 described, and which, ubout four miles to the morth-cvist, were fomud dipping somth-westward oft the thanks of the Lamentian.
58. Three and a half'miles east of the north end of Flag Inand, rocke, averlying the hast, consint of dark micacoons schista, dipN. $10^{\circ} \mathrm{W} .<$ 45°. In the ishands to the west, the selist is replaced by hard darkgreen attered rocke, which prolnably hod a somewhat higher phaee in the series. The istandw to the north, are composed of light-colomed gromitic rooks, the line of junction bra een which and the green rocks, is everywhere covered by water. These green rocks generally yiell ouly an "pproximate dip or direation, bint were fimul to give in two placen N. 12° W. $<45^{\circ}$, and N. $5^{\circ} \mathrm{W} .<800^{\circ}$. Near the western extremity of the lluromian area, they compose a large island lying immediately eant of Flag Inland; and on cronsing a passige three glatere of a mile wide to the latter, the rock changes to compact pinkish introsive gramite (sift). A little tongue of much attered and contorted green rock, ocernpies the castern whore of Flag Island for a thew hadred yards, and seems to the the outlying end of a minor syenclinal fold, the greater part of which hats been removed ly denudation. A similar outyer of the same rock river above the lake as a small water-washed islet, in the somthern part of the hay sonth of Flag lalaud, and may extend westwand mater the low shore of the buy.
59. The general chameter of the rocks of this area of much-altered Inwoniam, is quite different from that of the typienl Laurentian of other parts of the lake. They are softer, and more sehistose and slaty, and give a different appearance to the comitre, and a more bagged imil twoken chameter to the shore. Dark green shades are prevalent, the most prominent minoral constituent of many of these attered rocks being green hornblende, generally crype-cystalline, and often oceuring with searcely a trace of felspar. From the evidence of other rocks surrounding the
 had this been superimpered on that which is seen to effere the Lamentian
 that they mow have. They differ, hewever, from the altered Itarmian on the now th side of the gramite, in the ahacence so far ats oherved, of roeks dearly representing attered comglomerates, som comon there.

Intrusive Giranitic Muss of the Morth-te'st Anyle and Vieinity.

(i0. This int rusion mag te considered as roughly separang the Iturmian series of the nor hern fart of the lake, from the Lamentian of the simth; lout cuts oft the area of much altered IImonian rocke, jinst dexerilewl, from the rest. Its gememal form, sut itu as I have leee whe to detine it, is that or' the letter \mathbf{Y}, the bithureation taking plawe west ward, and the now them bunch passing almost directly up the North-west Angre Inlet, while the

 to the somth and north, to be highly alterem Ihmonian, hut may ako include some beels of the Laurentian.
tit. The multitule of large and small islands sepamater her namo and tortuons ehamels, which fill the lake opmosite the Forth-west Angle Inlet, are due to the superior hatherse of this mass, and its sumponding

 stricts this pate of the lake. Its most western visilale extemsion is seem at
 from the low swampe grome of the berthern shore of the lalet, some seren miles cast of the government lambing, and amo cight miles fiom the Lambentian reck already deserihed as existing at the Reference Momment not far from that phace. The gramite is mokerately comse, and grevish-red in colour. It has seattered throngh it irregular mases of greyish fine-gratined homblembic rock, which is sotfer and weathers a way into hollows, and probably represents included fragments of surromeling
 quat\%, oecem, with a genceal course mearly east and west. They rom very staight in some places. but do not exceed a fion in width. Bast watd from Mrkays latam, on the moth shome of the Talet, seremal points show n granite similar to that there represented. grey in colour, and often holding segregations of red felpar and quat\%.
dism. :mel laurentian oect from uronitu on ul, of rocks

inity.

the Iluronfthersouth ; ribed, firem (c it, is that os nowherm t, while the of the \mathbf{Y} :In those bying (mily also narmow :and rest Angle mromuling wiy, rums ich I is seemath londly out Inlet, some miles from Refierence onarse, and masises of hersawiy Mounding spar with They rimu Bast wand mal points alours, and
62. Bucketé lslanl, on the sonth side of the hatet where it widens to the lake, is also eomponed of gramite, belotging to the same mass, hut red in colour. Here are abo many segregated veins amb hanches of felepar and quatz. Several of the veins were fomen to have a direetion of N. $40^{\circ} \mathrm{E}$. The felspar is pale pink, the quart/ somerely milky, and there are oceasional phater of white mica; the verins thes showinge all the minerals of the matrix. The quatz pernetrates the felforar moth mone tham is untal in such aggregations. 'Two and a half miles ceast and a
 the mass is again seen, hat considemally reduced in beemth, and homeded on cacti side by highly altered Huronian.

B:3. The Southern bumeh is seen finthest south, about a mile south-
 deseriled, and is there reddish grey and compact. It comtinies in a
 bealy the entire mass of Fag lisma, and then mas cantwad fin a mile or two, and finally again takes a morth-cast combe ame pasies into the main mass. The somthern part of Flag hand is composed of greenish-grey and pinkish-grey syenitic granite, of rather comse grain and somewhat pecoliar aspect. The telspar is greyish and pinkish, the grat\% nearly transparent and colourless, and the mica and homblende back. This rock is traversed ly miny reins and lentionlar masser of compact, greenish-grey mek of diontio aspert, tine-graned and siliceons.
 masses already deseribed as ocernering between the bayers of greemish
 in straight lines, with a general comse of morth-exist and somth-west, and though presenting much the appearance of stratitied heds which hand resisted the metamorphism comserting the sumbunting rocks into granite ; are evidenty intrusive dykes, and contain broken frements of the contaning rock. The granite here also shows small, irregular pockets and veins of vitreons (fuartz.
64. The nothern part of Flag kland is compused of a compact pink
 beyond this the roek becomes syenitie, changing time to a red syenite, and then to a grey roek, which might he eallenl a semitio diorite.
65. The main berly of the intrusion mass. Where emosed ahumt cleven miles east of the Angle Station, has a breadth of ahout two and a half miles. Its northern edge, in this place is composed of a pinkinh gramite,
very deticient in quartz, and the mica of which is black and forms irregular segregations in the predominating felfortr. It is traversed by weveral systems of irregular fetspar, and quartzfelpar veins. Going southward it changes to a syenitic gromite, whowing perfect felspar crystals in a base of black hernblende, the latter sometimes so much in excess, as to give the rock a very dark eolour. Here also many manses of altered selimentary rocks are included. Still further south, red nyenite of a granitic appearance oecors, and is traversed by felspar and quartz-felapar veins. In one phace a grey diorite dyke muning N. $30^{\circ} \mathrm{E}$. wats observed, which from its appearance and course may possibly beiong to the same series as those seen in the southern part of Flay Island.
66. Along its southern alge, and where almost in contact with the altered sedimentary rocks, the intrusive mass seems to assume a still more basic character mod darker colomr; heing represented by blackish diorite of gneissie anpect, and grey syenitie diorite. In one place the sedimentary rocks were observed in close proximity to the granite. The dip was fomed to be N. $25^{\circ} \mathrm{W}$., or directly toward the intrusion, at an angle of 45°, the rock being a had altered slate, somewhat resembling the green altered rocks seen further wouth, but so much changed as to simulate a cleavable diorite.

Isolated Arest of Muronian Rocks.

67. The area of altored rocks, which lies hetween the two western bumblies of the intrusive mass, is not separated by a great width of the later, from the roclis of similar chameter to the north; and as these have also similar directions and dips, the two mity well be considered in comnection. The most eastern portion of this area examined, is composel of a harid grey rock of gheissic appearance, but consisting mainly of quatz and hormblende, and in some places passing to a distinct quartzite. It is then not so highly metamorphosed as to ohliterate the forms of the grains of sand, which are rather fine, and contain among them many hornblente erystals similar in size. This rock is travereed by many grante dykes, and by quatz-felspar veins, which are newer than, and intersect them. It is probable that rocks belonging to this area occupy the greater part of the large lay between Buckete and Flage lstants. An island in this hay, not far north-west

irregular y several lhward it 1 a base of ogive the dimentary ic appears. In one from its as those with the still more ish diorite sedimenThe dip t an angle nbling the ged as to
o western wilth of Id as these considered mined, is consisting sing to a sed as to - fine, and ize. This par veins, that rocks y between uorth-west it, lipping 2 to 3 feet ich nexty
follow the strike. Numerons ctack-lines are also olservable on weathered surfiaces, and run N. $10^{\circ} \mathrm{W}$. Another inland near this is eomposed of a similat mieaceons rock, which hats a dip of N. $40^{\circ} \mathrm{W} .<60^{\circ}$. Along the north-west shore of Flag Island are numerons small rocky islets, and half'sulmerged rocks, some of which are composed of black hormblembe rock with large and numerons red felknar veins, while others are of red and grey: in gramite. It is quite posible that in this part of the region, some beds belonging to the Laurentim series, may have heen brought I1) an connection with the disturbances due to the intrusion of the granite, and appar here with those, the true amalogy of which is with the Ifuronian rocks to the north.

Huromiun Rocks North of the Intrusive Mass, to Fa-ka-ke-ucabec.

68. North of the granite mass, and reposing on its elge just east of Bucketé Island, a grey, gneiss-like, finely stratitied rock appears, dipping about morth-north-west at augles of from 25° to 30°, and holding-as is msual with the rocks in proximity to the granite-many reddish veins, chiefly eon posed of orthoclase felspar. At a distance of two and a half miles car fored from this, and nearly in its line of strike, a simikur rock occurs, and is again seen to about directly on the granite. Its dip near the latter is $\mathrm{N} 20^{\circ} \mathrm{W} .<45^{\circ}$, and it continnes in a direction at right angles to its strike for nearly three-quarters of a mile, at which distance it was found to have a dip N. $5^{\circ} \mathrm{W} .<35^{\circ}$. It is cut by many red felspar veins, and one dark homblemle dyke with nearly east and west course was observed. The rock, though close-grained and quite gneissic in aspect, and of a grey colour, is here evidently a much altered conglomerate of the kind abundant further north, which has been called greenstone conglomerate. On weathered surfaces the original fragments are still quite diseernible, forming lenticular areas of coarser texture and lighter colour than the uniformly grey matrix.
69. Orerlying this, and forming the islands opposite the southern border of the Small Promontory-which extends from the north shore of the Inlet about four miles cast of MccKay's Island-and also feen on the promontory itself, is an important series of quartzites. With the possible exception of those lying south of the granite ($\$ 56$) these are the most extensive on the lake. It is quite probable, imfeet, that the bels represented in both localities may be the same, and that the gramite hat mevely separated them. The sonthern part of the quartzite, ir this place, is shattered and traversed by many rusty joints, but uearly white
on frilly firathred surface. It has a strike of N. $76^{\circ} \mathrm{E}$., with a dip at an angl of 55° moth ward. The pat on the man land, moth of this, is a very tinc-grained homogeneous grey rock, of which the constituent particles are barely visible, and which inchules small crystals of pyrites. It is somewhat disturbed, but may he stated to have an average dip of N. 35° W. $<80^{3}$. This quartzite belt oectupies a width of about one third of a mile, and mikes minnow complications affect the strata, must hate a thickness of at least 1,500 feed.
70. Five and a hate miles west of this pint, and in immediate juntaposition to the northern edge of the granite mass, a quartzite, so little altered that it might almost be called a sambtome, mexpertedy appears. It is tine gained, and grey in colone and is penetrated by a dyke of gromalite with quart\% seams, and small included crystals of molybdenite. It has a dip of $\mathrm{S} .37^{\circ} \mathrm{E} .<6 ; 3^{\circ}$, or toward the granite, hat this is no doubt lo enol, ant hue to finding competed with the extrusion of that mass. It probably represents the same hame of quartzite an that last descrolsel, and it so, the no mem che of the granite rums obliquely to the strata to such in extent as to corer or remove the whole of the western extension of the mulerlying conglomerate series.
th. In describing the details of rocks of the remaining portion of the lake, the order of those bels seen along the shore of the mainland between the Northwest Angle, and Rat Portage, will be followed. That part of the coast line is laid down with sufficient accuracy on the map to enable points to be fixed with some degree of certainty. In discussing each well marked series of beds, it will then be traced eastward as far ats my observations extended. The accompanying general section (Sect. 3) will be found of use in following the descriptions, but must be accepted as moly accurate in a general way, as subordinate intercalations of slates and whales, ocemring among preponderating greenstone and conglomerate beds, have not been indicated. Indeed, where the rocks have suffered great metamorphism, as in the neighbourhood of the various granitic mas es, it is exceedingly difficult to hay down precise lomodaries; and such accuracy could only bo the result of long and patient tracing out of well mated beds and datum lines.
7.. The rock immediately succeeding the last deserted quartzite in the small bromonery, is a dark-green crystalline homblendic material, with lamina of chlorite. It might be an eruptive rock, but mather seems to belong to the series of greyish and hackish schist next in order, which, miso overbooked among the much altered rocks a few miles
a dip at ff this, is mstituent fyrites. ge dip of hout one atal, must ate juxtaso little : dyke of ylulenite. it this is n ot that that list iquely to le of the on of the nland be4. That e map to iscussing as fall :as (Sect.3) accepted attions of and concks have various madarics; tracing

urzaite in

 material, er seems n order, w milesenstwarl, has no representative there, and must rim out in that direction.
73. North of this, and forming the enstern point of the Small l'romontory, havi greenishand backish hornblendie atoted rocksippear. They
 veins oceur, cutting through them in all directions. Rocks similar in appearance, also spotten, and much altered, areagain seen on the strike of these, in the bay to the sonth-west of the Small Promontory. They have a dip of N. $53^{\circ} \mathrm{W} .<50^{\circ}$, and probably helong to the same series, which appears to be one of rather fine-grained, but much altered conglomenates. These stand in phace of the vast thickness of conglomenate rocks oecurriag to the east. The eastern part of the conglomerate belt apparently absorts the slate band last referred to, and by its great inerease in thickness deflects morthward the next slate band, in its eastern extension.
74. At a distance of a little over five miles from the small Promontory; the conglomemate belt covers a breadth of two and a half miles, the angle of dip thronghout heing very high. Where crossed from sonth to
 characters amd attitules.-Harl gneiswic altered rock, strike N. Sto b. Hard altered conglomerate with some qualrtzite, strike N. 79^{2} E. The two last apeeces of rock are rery frequently associated, and in some lowalities, one eren seems to paiss into the other. Hard dark-grey rock, whin h resembles a puatroite, hat has minute hormbende and mica crysials developed in it, and shows the ferms of origimal pebles diftering from the matrix in heing felspathic. A little finther north, grey highly altered conglomente of greissic apparance. This contimes for some distance, and then changes to less altered conglomerate with much siliceons matter in its composition, and grey in colour. Strike N. 60° E., with a dip at a high angle to the sumth. This roek constitutes the northern elge of the conglomerate belt now in fuestion.
75. The eastem end of the next belt, which is of highly altered slate, rums into the fist bay north of the Small Promontory. It is not of great width, and apmears to marrow eastward, where it bends northward to pass rom the convexity due to the thickening of the conglomerate helt just described. The castern portion is a roft thin-hedded hornhlendie sehist, composed chiefly of black hornblende and white quarty, with but little felspar. It inclules a few compact grey lenticular masses, which may have originally been pebleses, and seem to assimilate it to the conglomerate, At the place examined, it had the some-
what almormal dip of S. $\mathbf{2 5} 5^{\circ} \mathrm{W}$., and wats nearly vertical. About six miles westward, what I believe to be the same bed, appears as a soft fine-graned micneoms schist, hrownish in colomr and thinly cleavahle. Dijn S. $30^{\circ} \mathrm{F}$. $<45^{\circ}$.
76. The next bund, which is composed of conglomerates and similan hard rocks, seems to be tho cemse of the point immediately north of the Sinall Promontory, and distant about a mile and a half from it. This belt runs north-westwad for some time pretty nemly parallel to the main shore, forming an interrupten dhain of large and bold islands. At the point just mentioned, the rock is greenish and spotten, dij S. $23^{\circ} \mathrm{E} .<60^{\circ}$. Malf a mile further westwarl a hard greenish-back hornblendic rock ocemes, which, though it may he a contempomenns diorite, shows spots which are apparently remains of pelblen. Tho homblende ciystals are minutely acicular. Ifalf a mile still further west a similar rock is seen, but silica now so much preponderates that it might be called a homblendic quartzite. Three miles west ward from the point, the rock is a trone "greenstone conglomerate," much disturbed, and showing a local strike of N. $10^{\circ} \mathrm{E}$. Six and a half miles northward and westward from the same place, the rock is again a typical greenstone conglomerate, hard and considerably altered and contorted, but with a general strike of N. $43^{\circ} \mathrm{W}$. In one place a polished and shlaciated horizontal section, shows what appears to be the nose of a compressed synelinal fold; a thin layer of conglomerate imberked in compact greenish altered rock, loing bent round at a very acute angle. The inner side is quite rough and irregnlar in outline, as though representing the former upper surface of the breceiated material. A mile further north-westward, the roek is a hard, spotted, highly alterel conglomerate, or greenstone. For about two milos, still in the same direction, greenstone conglomerate continnes, with fragments larger or smaller, and often weathering rough superficially. Ac the oxtreme northern edge of the belt, the rock is harl, green, altered, eontorted, and of spotted appearance, but gives an approximate strike of N. $57^{\circ} \mathrm{E}$.
77. North of the belt just described, an extensive series of schistose rocks is found forming tho north-westorn shore of the lake for a long distance. Many of these are softer and loss altered than any yet described, but are locally hardened by the occurrence of several minor masses of intrusivo rock. The rocks belonging to this series, probably form the shores of the greater part of the second large bay north of the Small Promontory, though they were not actually observed there. Five miles north-westiward
from the proantory, they are represented on a matl island off the main shore, by a soft, green, chloritio schist with a strike of N. 70° bi. and vertheal. Ahout a mile further wertward, and opmosite the mouth of the thim large hay, the rock in a thinly laminated soft mica-schist, silvery on the faces, with a dip ot'S. $58^{\circ} \mathrm{E} .<70^{\circ}$. The same bed, a short distance further on, forms the high rock called Picturo-rouk Point ; and iss there seen perfectly vertical, with its line of strike parallel to that of the shore. A large island lying behnd the point, and within the month of the lay, shows much-altered grevish-wreen rock, abatting aganst an important granitic mass, which given oflother minor dykes nearly paralle to its own direction. The altered rock, hats a dip of N. $\boldsymbol{t}^{\circ} \mathrm{W} .<70^{3}$, and the grat nite appeares pretty nearly to follow its strike. The granite has a mather deep red colour, from its felepar, which is largely in excess. It is also homblendic, the hornhlende being bark, and forming erypo-ery:talline ageregations in the felspar. In its genemal aponance it much renembles some parts of the intrusive granite of the North-west Augle.
78. Pieture-rock Point, is son named trom the remains of hation devices maked upon the broad that surface of the slate in red paint. A mile northwert from it, the same thin-herlded bright slate, still forms the share, the direction of the strike and that of the emest-line nearly coinciding. Twomiles from the same pint, and still nombly on the same genlogical horam, is a fincly laminated greenish-grey talense schist, lying very stmight and erem, vertical, amd with a strike of N. $58^{\circ} \mathrm{E}$. Thare and a quarter miles from Picture Point, and still tollowing the shome, the rock is a grey altered siate, vertienl, and with a strike of N. 55° E. Beyond this, fir : whort distane, greenstone is seen, hut it is not very clear whether it is intrit wive, or contemporanenus. A mile beyond the last locality, a rather massive duartzite comes out on tho shore, dipping S. e:3 3° E. at an angle of 55° in one place, Int generaliy nearly vertical. It apparently muderlies the sehists and slates, fust described, but no rock precisely resembling it was seen in any other part of the lake. It is very pure, tramslucent, light greenish-grey, with oceasional thin fibres of chloritic matter. It weathers a dead white, and is traversed in the hel byimmerable joints and semes. Beyond this the whates become considerably altered, from proximity to intrusive masies and dykes, which are alont on the same horizon ats fhose deseribed in Pieture Point Bay, fund may continue behind the line of the coast to this place. Therock is, here, however, a arther impertect granite, grey in colonr, with romded white felspar erystals, and small cobical erystals of iron pyrites. It resembles the intrusive mass of Ka-ka-ke-
walner lying to the northward. A whort distime finther westward, on an isham, a dyke of similar material, also grey, and with pryten crystals, and a large excess of whitish felspur, ocems. It thaverses a hard green altered rock, with a comse of N. 183° E., anel probably follows the strike. Two mile west ward trom the first appearance of the introsive rock, it is again seem, and is a whitivh granite, with bather large bark mica crystals. It colts through a soft dark-green chloritio slate, with a strike of N. 77° E., which the intrision tollows, thengh inegular and lentionlar.
79. Firther north, and appurently morlying the last, is a hard dosegraned slate, with mother irregular cleavage, and a strike of N. $75^{\circ} \mathrm{E}$. Beyond this, the rock comtinaes to be highly altered, and of a darker green colomr, the strike being somewhat obeme, but gememally nearly east and west. A mile aud a que: ier south of the southern end of Ka-ka-ke-waber, the rock is had, greengrey, ferpathic, and mather comeregraned, with scales of tale. Strike N. $80^{\circ} \mathrm{E}$. Next this, on the north, is a belt of thin-hedded and finely cleavable wate, greenish-grey in colour, and chloritic or taleose. It dips N. $5^{\circ} \mathrm{W} .<80^{\circ}$, a position which appears to indicate the morthern side of an anticlinal, the axis of which must rom nearly east and west. This is further contirmed, by the reapparance of a rock preciely similar to that last descritherl. Beyond this, to the north, is a hard much-altered greenstone eonglomerate, with a strike of N. $72^{\circ} \mathrm{F} .$, and on edge. The thickness of this bed is not clearly shown, lant it camot be very great, as it is immediately suceeded by a much altered rock, piobably not a conglomerate, in which a good deal of pale-green homblende is developed, and which hats a nearly vertical attitude with a strike of N. 55° E. The harrow helt of conglomerate was mot noticed on the sonth side of the antirlinal, but my observations teme to prove that these roeks are only locally comstant.

Intrusice Mass of Ka-kid-ke-wabee Ishind.

80. The continuity of the strata is here interrupted by the important intrusive mass of Ka-ka-ke-wabee Island. The southern point of the island is high and elifflike, and forms the eastern side of the narrow and picturesque passige separating it from the main shore. The rock is there a granite, quite similar to that last deveribed, and with smatl cubical crystals of prrites. It continues to occur northward, on the west shore of Ka-kilke-wabec, for nearly a mile; but changes its aspeet somewhat, becoming in some places a greyish-red homblendic granite, and including large masses of highly altered siliceons slates, the stratification of as crystals, hatel green the strike. rock, it is a crystals. of N. 77°
harid closeN. $75^{\circ} \mathrm{E}$. rker green y east :and ke-wahee, ined, with a a holt of lour, and h :1ppen's a must run mance of : e north, is N. $72^{\circ} \mathrm{E}$, tit camnot ered rock, cen hornh a strike ed on the that these

important

 it of the trow and The roek ith small the west eet somenite, and ication ofwhich is quite obliteruted, and which indeed often rescmble diorite from the coarseness of their erystallization. This zone ot intrusivo rocks, may pun east wardalong way; and probahly forms the andens of the chatin of large istands which here extemd across the lake, but are not correetly represented on the mans. This supposition is contimed by the circumstance that the northerin shores of these istands are composed of soft and finsile rocks, which could larrlly have held their gromid maters so silpported.

Huronian Rorks from Ka-ka-ke-irabec to Rat Portaye.

81. The north end of Ka-ka-ke-wabec Istaul, is componed of rough green charitic rock, not showing any upparance of excensive alteration, and forming the sonthern margin of another extensive belt of selistose strata. The comparatively small distance to which these rocksare altered, northwarl from the intrusive mass, would almost lead to the conclusion that they have been bromght into contact with it by a fall, nearly following its northern edge. 'lhe next rock observed, which occupien a josition somewhat inferior to the last, is a chloritic slate, of rusty appearance, caused ly the weathering of dolomite, with which it is minately interleaved. A short distance north of this, near the main shore, is a soft thinly bedded talcose schist of a grey-green colour, almost nacreons in places, and iucluding partides of dolomite. It hats a strike of N. $88^{\circ} \mathrm{E}$., and is vertical. A mile and a half' west, and nembly on the same strike, a similar thin-hedded talcoseschist appears, again showing traces of dolomite, and on elge. North of this, and about a mile north of the eastern end of Katka-kr-wabee, is a somewhat micaceous schist, with greenish-white felspar, like all the rocks in this part of the lake, vertical. Strike N. 85° W. Near the horizon of these schists, and about a mile sonth of Latcrosse Island, is a whitish thim-bedded talcose slate of rather remarkable aspect. Strike N. 82° W. Passing northward from this toward the sonth ond of Lacrosse Istand, the rocks, so far as could bo ascertained from an examination of the islands, were:-Thin fine-bedded chloritie schist, including lentieular masses composed of dolomite and quartz, round which the layers of rock bend-vertical, strike N. $77^{\circ} \mathrm{E}$. The rocks here bear the appearance of having been intersected, while still nearly horizontal, by jointage phanes at right angles to the stratification, and entting it neatly; which, wow that the beds have been folded throngh an angle of 90°, produce on weathering, in some places, almost perfectly horizontal areas. These are as smooth as though subjected to the action
of elacier ice, but that they have not heen produced it this way, is ovi-

 diameter, was fimmet, being the omly limestome boulter wheresed in the whole nor theren purt of the lake. it did not appers th have travelled tien, aud dithere moth in chanacter trom those subserplently to he mentioned
 talline, highly magnesim, and weathering to a deep-brown colour. It much resemble the dolomites fimm in the Bantern 'Townhije of (Quebere in assordation with the alterent rok lisere; and such limestomes maty very prohally areme inter-bethed with the dolomitie sedists already deseribed, but in pats of the reries, which from their more reatily decomponable nature, are f meally concealed ly water or owergrown by wools.
82. North of this on a small islame, atrongh greenish sehist appears, spoted where weathered, and having a strike of N. 75° E. It is in contace to the north with a thinly cleavable nadeome selist, minutely mutubating and of white and ruldish colours. Another small istand nearly on the same line of strike shows a rongh, green, and anther hard chloritio selist; dip N. 5° E. $<55^{\circ}$.
8.t. Latcrosse Lstame, so-called on Dr. Bigshy's mat, ${ }^{*}$ and deriviner its mame from the fact that some patis of it are level and open, and have heen used by the Indians at one time, fir this, their farompte game, lies about nine miles somith of lat Portage. Its extreme sonth-western foint is composed for at least 100 feet of dark-coloured diante, rather tinc-rgained, and with little segregations of epidote where in contact with the slates; but coarser and porphyritic at some distance from them. The line of junction with the stratified rocks is rertical, and rums very straight, with a course of S. 25° E. North of this, fion nealy hall a mile, the western shore is composed of very thinly cleavable sebists, whitish and greenish in tint, and though regnlanly beded, minutely undulated thronghont; strike N. $58^{\circ} \mathrm{E}$., dip northward $<88^{\circ}$. The shore for about a mile, is then ocenpied by greenstone conglomerato and associated rocks, forming a belt, with a brealth of about half a mile across the strike, which was observel to be N. $46^{\circ} \mathrm{E}$. at the sonthern, and N. $78^{\circ} \mathrm{E}$., at the northern edge. The rocks are had and compact, and though breaking with a

[^8]way, is wiseen pecling nt phano. singreatest rreel in the ravellent tire e mentionsed mely cryscolomr. It is of (Qumbere stones may ists alreally readily deergrown by
ist typears, is in contact - mudulating aurly on the ritic selinet;
doriving its thave leen -, lies ahome pome is ne-rerained, the slates; The line of aight, with he western greenish in out; strike le, is then fioming a which wat northern ng with n
 matrix, as do mow the jointage planes of the rock. It is omly on a weathered surfere that the structure is plainly apparent. This helt of eongefmerate was mot oberved westwasl, in the vicinity of the main whore of the lake, and if it dow mot thin out altogether hefure renching that plare, is probally but feebly representecl. It is possible, howover, from the attitule of the strata to the morth and somath of this mass on Latrosse Island, that it may loe brough up on the rilge of men anticlinal, the axis of' which dips away westworl. The reork suleceothing this morthwarl, and finming the northern part of the iwland, is a whitish, somewhat mereons selinst; which, if the last suppesition is onerect, mast represent that forming the sonthern patt.
85. The band of slates lying north of the Laerosse Istinul eonghomerate, was seen also in soveral places along the main shore, and neighbomring islands lying to the north-west. The sonthern part seems to eonsist mainly of soft green and greenish chboritie sehists, which are peculiar in weathering rough, and showing pitted surfaces. These sehists were formd to have in one phate on the manlam, a strike of N. 43° E. vertical, or with a high dip nerth-westward. They :ne sureceded to the north hy whitish and greenish thin-beded silvery schists, and the most northern part of the belt there exmmined, consists of chloritic, but rather hard, green sehists, with small interealations of dolomite. The same helt, where crossed a fow miles enstward, among the islands north of Lacrosse thand, appears to be much more alterel, wherever exponed to view. It is prolable, however, that as this is an opell reath of the lake, the greater part of the softer beds has heen removed. Immediately heyond the north end of Lacrowe Island, a small ishand shows hard whitish sehistose rock, with some greenstone conglomenate. Strike about N. $48^{\circ} \mathrm{E}$. vertical. Many parallel crack-manks appear, having a course of N. $80^{\circ} \mathrm{E}$ Half' a mile further north, a second istand shows hard green altered rock, with a probahle strike of' N. 35° E. 'Still further north, and near where the dolomitic zone seen on the manland should pass, according to the strike, a hard green attered rock appears.
86. This schistose belt is detined northwarl, on the mainland, by a bed of eonglomerate which comes to the shore at the end of the large point, which, a mile or two north of Lacrosse lslana, constricts the widh of the lake to about two miles. It resembles a breccia, the fragments being of all shapes, and varying mueh in size. They are montly of quartzite, and imbedded in a greenish chloritic base. It dips N. $17^{\circ} \mathrm{W}$. at a high
magle. 'This rork was not observed on the enst nide of the lake, hat maty very possibly be represented there,
87. North of this, mother extersivo belt of shate rorks crosses the lake, but thestrata in this remion mo not rograbr, and it is diflentt to cor-
 the eonglomemte, on the weot side, was a close-grathed grey wehist, with a
 rocks were observed, and agian vertieal. Rough, weren, and mathor watt chloritice schists then appear, abel we the predominant rock till within about half a mile of the morth-west end of the lake. On the eastern side
 bring it to the shore, ani prohably in immadiate proximity to its continn-
 and wo determinate dip or didertion. Nortin of this, thinly laminated green chloritic shates ocemr, dmong there, on an iskun about theo miles sonthwad from the IIadson's Bay establishment ut Rat Portaree, a vein a font or two in width was observed to pass, upharently conforming with thein'strike. 'The vein-stone was white, but hal the appearance on the surftee of being stained by the decompraition of some ore of eoppres. It was, however, too boisterous to lamd with the cathe at the time. Northward, similar rocks contime, but beoome harlar. A mile fiom the IIndson's laty Pont, they wore observed to have an bast amd west strike and to be quite vertical. Alout half a mile somth of the Post, there is a somewhat extensive bolt of greenstono-like rocks, which, thongh conglomeritic 1 plates, do not show that chandeter persistently, but appens to graduate into compart homogeneons dionite. This helt seoms to eross the lake just south of its extremo morthero shore, and to strike into the western side, immediately south of the entrance to Rat Portage proper. There its pocks ocempy a headth of perhapis hatf a mile, and are separated fiom the Lamentian by a belt of shaty rocks of abont the same wilth. On this side they appear an compact dionite, but show cleavage planes, and resemble the sometimes eonghomeritic greenstone of the west shore.

Geology of the Vicinity of Rat Portage. Junction of the Ihuronian and Laurentian.

88. The Winnipeg Rivt:? on leaving the Lake of the Woods, fills into an elongated basin, which lies transerse to its general direction and stretches westward nearly prallel with the shore of the lake for some
ako, but may is croseses the iffleult to (corerved beyond schist, with :1 ilar :chistone in ruther mot ks till within o emsterolo side shistome would to its comtimusegregations, aly tamimated aloult three at Portage a y contorming
 are of coppur. at the time. A mile from fant and wost of the Post, ocks, which, persistently, e. 'This lelt shore, and to Hamee to Rat wh half' n mile, ecks of almont ite, but show areenstone of

Itronian

Woods, falls direction and we for some
distance. The river and lake are only a amod he a comparatively mare row ridge of rack, thongh which there are thee grow. The turthent west, or Rat Pontuge proper, dows mot carry my water; the second or middle gap, is that of the Rat Portage Rapide; the third or east one, near the Ihalson's Bay Fort, that of the Rat Portage Fall. (Plate 2.)
89. A band of naty rocks, with an average width of about halfa mile, separates the greenstone like series last deseribed, from the Lamrentian. Its lawest beds were seen just north of the gremstome, two and a quarter miles westward fiom the Dudson's Bay Pont, and at the entrance of the (chumbl, which leals to Rat Pontage proper The rock is a very fincegrained micucer-homblembice nehint of' a dark womer, and quite hard; verical, with a xtrike of N. $65^{\circ} \mathrm{E}$. Ehatering the river-like inlet, which lends northward and then westwad to the Portage path, similar rocks are seen, hat rather daker and more homblendic. They appen to have a high nowherly dip. The portage, from the waters of the lake to those of the river, at this place is not more than 150 yarls long. The southern end of the path passes over Ihuronian rocks, which may to dencribed as considerably altered wates, chiefly homblendic, grenish-htack in colour, arpto-erystalline, and silky in lustre. At the water's edge,-where they we worn mooth by the fent of the vogagems of oll time,- they were
 the Portage, and at its highest part, the rocks dipN. $17^{\circ} \mathrm{W} .<43^{\circ}$, wh! are then immediately succeedel by Lamentian greiss, which is grmitoid, anil of a light pinkish-grey colour ; lip N. $30^{\circ} \mathrm{W} .<89^{\circ}$. The junction is so close that me may actually lay the hand upon it, and the eparating line is remarkably straight and even. Followed about one humbed yards westward, it wats fomed to preserve the comse of S. $67^{\circ} \mathrm{W}$., or neally that of the strike of both series of rocks. The gneiss at this distance, has a strike of N. 7° F. E., and the green slate, just across the line of junction, and only a few yards removed, N. $73^{\circ} \mathrm{E}$.
90. Abont a mile enstwarl from the entance to the portage, the lake finds one of its exits by a passage at right angles to its shore, down which the water flows over a tine serien of rapids. At an island opposite this opening, the same greenish hornhlendic schist occurs, fine-grained, and sometimes almost choritic in asped, as before. A long portage on the onstern side of the rapids leads to the Wimipeg River, and a considerable breadth of very hard coase-grained green diorite is exposed, which has not the aspect of any of the altered rocks seen in the vicinity of the lake. It has all the chanzeter of a mass intruded along the line of'
junction of the gneiss and green slates, though its actual contact with either wan mot seen.
91. A mile still further eastward, at the extreme north-eastern corner of the lake, the Wimnipeg River, may toe said to begin, in a bold eascade, which falls northward, across the junction of the Laurentim and Huronian series, throngh a narrow passage between rocky clifts. At the fall, the roek is quite similar to that seen at Rat Portage proper, being a fine-grained, borubiendie shate, much hardened and of greenish colour; dip N. $10^{\circ} \mathrm{W} .<45^{\circ}$. Just below the fall, the red gneiss again suldenly appears with a dip $\mathrm{N} .18^{\circ} \mathrm{E} .<78^{\circ}$. The line of junction of the formations obtaned by protracting that at the fall, to that at Rat Portage proper, coincides remarkably with that already obtained by observation on a more limited scale at the latter place, and follows the summit of the ridge which separates the river from the lake. A rock quite similar to the eruptive greenstone seen at the rapids, is again visible at the entrance to the gorge of the fall. If it really belongs to this mass, it mast toward the eastern end depart somewhat from the actual line of junction, and may possibly attain this position by following the strike of the shates.
92. Notwithstanding the close aceordance of the strike of both series of rocks, and the direction of the line of junction, the evidence appears to be nearly conclusive, that the two formations are here brought together by a fault, with an extensive downthrow southward. If they are thes in contact merely by warp folding, the relative position must be reversed, as the dipes would carry the slate series below the greiss ; and it is dilticult to imagine such extensive flexnes taking place withont imparting a yet more highly altered aspect to the selhists than that which they now have. The straghoness of the line, and the shamp separation ly it of the two kinds of rock, also points in the same direction.
93. The change in aspect of the comintry to the north and south of this great fault, is very sudden and striking. Sonthward, the shores of Clearwater Lake are generally characterized, -where not caused to assume unusual boldness by hardeniug eruptive rocks, -hy low, gently-rounded rocky hills, which in their natural state bear a grod growth of trees. These hills, even when they have been burned over, retain a sufficiency of soil to canse the re-appearance within a year or two of a dense uulergrowth, giving them a miformly green aspent from a distance. Jorth of the fault, the Laurentian rooks firm a succersion of bohlly rounded and tumultuous hills, showing a great surface of bare rock, which may never have been covered by trees, but which more probably has had forcst and , in a bold entiun and tis. At the er, being : colour; dip mly appears ns obtained r, coincides ore limited idge which the erupte entrance anst toward metion, and te slates. ' both serios appears to lit together are thus in o reversed, d it is difliimpurting h they now on by it of
outh of this es of Clearto assume tly-rounded th of trees. sufficiency ense nudere. Yorth ounded and may never
forost and

what peaty soil supported it removed at once by fire. These hills also appear of light whitish and pinkish colours, even from a distance, and contrant remarkably with the sombre anpect of the slates to the south.

General Distribution and Attitudes of the Rocks.

94. From the evidence of the foregoing detailed observations, and that which I have been able to collect from other sources, I am inclined to believe that ahmost the entire southern division of the Lake of the Woods, known as Sand-hill Lake, covers rocks of Laturentian age, with the possible exception of the extreme south-western part, where Upper Silurian limestone may exist. The evidence concerning this formation will be more fully stated in reviewiug the drift deposits. The isolated area of Huronian, south of the North-west Angle gromite, may however, as already mentioned, extend further southward than supposed. From Dr. Bigshy's malp, the extreme eastern arm of this part of the lake, sonth of Turtle Portage, appears to be much complicated, and may also probably include some beds of the green slate series.
95. The general direction of strike of the Laurentian wherever it appears on the west side of the hake, is nearly east and west. Toward the extreme south of the lake, the few knolls which rise above the surface, show a tendency to north and south strikes, and vertical attitules. North of Rainy River, these rocks run generally east and west, or east-south-east and west-north-west. Similar directions characterize the rocks of Bigsby Island, while those of the northern islands, and shore of the distriet of Shebashcu, show bearinge from a fow degrees north of west, to north-west and south-east. The Laurentian rocks at the North-west Angle, and west of it on the roud to Wimipeg, have general north-east by southwest, or east-north-east by west-south-west bearings.
96. The Huronian rocks, though conforming to easterly and westerly directions in the ricinity of the granitic masses of the Angle, when followed northward, are found to take a north-north-east direction and nearly rertical attitude, which they retain in a general way as far as Rat Portage, with the important exception of the rocks in the vieinity of Ka-ka-ke-waber, which, for a considerable breadth, run nearly east and west. The rocks for some distance southward from Rat Portage, also show a tendency to turn north-east and east-north-east. The forces arting at right angles to these directions have been very great, and the rocks of this series are almost everywhere on edge ; and thongh probably repeated several times, the evidence of synelinal and anticlinal folds has
been almost obliterated. The conglomerate beds, however, north of the great granitic mass, have a genema dip morthward at comparatively dow angles, for some distanee; the southerly dip at their contact with the granite, shown in the general seetion, heing guite local. Λ well-marked synclinal axis appears to lie immediately morth of the Small Promontory, and to have a direction of east-north-east. There is atso some eridence to show the existence of an anticlinal axis, which wonld strike the main shore about a mile south of Ka-ka-ke-waber, and have a nearly east and west comse. From the attitules of the roeks, and from the recurrence to the north of Lacrosse Island, of shate beds chamaterized by small quantities of dolonite, and resembling those seen north of Ka-ka-ke-wabec, it is further probable, that another anticlinal axis runs north-east throngh the former. Besides these, however, there must be many folds not to be diseoverel without a minute topographical and geological stady of the whole lake; and it is even possible that overturned folds may oceur withont their existence leing suspected.
97. Two great series of movements seem to have conspired to give form to the rocks of this eegion, both of which appear to have been posthuronian in date. The first of these apparently producel folds which were not of a very abrupt character, Int involved great breadths of strata; and which rum in a general course a tew degrees north of west. The great masses of intrusive granite are probably closely comected with this series of disturbances, and are ne:urly parallel to the axes of the folds. These granites intersect indifterently rocks of Lawentian and Huronian age, and are consequently post-eozoic. The Imronian rocks of the vicinity of the North-west Angle, are-as already fully stated-much altered by these granitic outbursts; and by the superior hardness due to this alteration, and possibly also the support of the granitic masses with which they are in contact, they have been able successtully to resist the subsequent violent north-north-east and north-oast folding; - flexme in these directions at the same time affecting the softer remaining portion of the Inuronian, and bringing them up to a rertical position. These hardened rocks consequently now show comparatively molemate dips, and east and west strikes dependent on the previous disturbance. This arangement will be clearly Neen on an inspection ot the smaller section, (Sect. 2) the nearly vertical rocks at the northern end of which, are the first of those which extend with similar attitudes to Rat Porfage.
98. The chain of large islands stretehing northward from near Raing River, though composed of Laurentian rocks only, is nearly paradlel to
the folds of the ILuronian rocks in Clem-water Lake; and is probably dne to an mplift of hard lower gucios rocks ly ation at the seeond period, subsequent th that which has here been the chief agent in folding the Lamentian strata of this part of the lake.
99. Flexures corresponding pretty closely to those ahove indiated, are foum atfeeting Lamrentian and Huronian rocks at very distant locaditios. Sir W. E. Logat, in speaking of the Laurentian of the Ottawa region, says:-"The arrmgement presented by the outerop appents to depend on two sets of undulations, the axis of the one ruming in bearings approaching nerth and south, and of the other in bearings nearly east and west, the latter apparently relatel to the oldest system of lyker. The north and sonth mululations appear to be the more important and more numerons of the two, giving to the lines of outcrop in that direction the greater number of repetitions and the longer stretches. For about twentyfive miles from the Ottana and North Rivers, the bearing of these axis is about N. 10° E."* Mr. Hemry (i. Vemor, in disenssing the genemal relatioms of the Lamentian in the Come y of Liatings and vicinity, in Ontario, remarks:-" The geographical distribution of these rocks shows a series of north-east and somth-west malulations, throwing the upper division into long narrow tronghs in these direetions. These mudulations are crossed at irregular intervals by genlogical elevations which separate the ends of the tronghs, and hy depressions which mite their sides." \dagger The latter, on reterence to his map of the district, are seen to have north-westerly courses. The rock of supposel Ituronian age which are now being found by the Geological Survey among those of Laurentian date, in widely separated localities, also run in belts with general north-east and sonthwest bearings. It would thas appear, that the disturbances affecting the Laurentian and lluronian firmations have not only heen very violent, but very maiform in their action over a great extent of comentry, and indeed to have operated on an almost continental seale.
100. The granitic mass of the North-west Angle and vicinity, which, as already mentioned, is of post-huronian age, if it rmsenstward through the promontory separating Clear-water and Sam-hill Lakes, as suggested by Dr. Bigsby, probably closely follows its northern edge; as in treating of this part of the border of the lake, Dr. Bigsby mentions several districts of five or six miles in length each, showing a roek resembing syenite. This term might well be used in deveribing large areas of the mass where
[^9]I have seen it. It may pobably in this cave cut the eastern shore of Clear-water Lake at Red liff Bay, where the same muthority indientes the existence of a considemble breadth of syenitic-greenstone and granite. The direction thas indicated for the extension of the introsive gramite, appears to be further confirmed by the exceedingly even contour of the shore ats shown on the map, a feature which in other parts of the lake is found to arise from a parallol band of hard altered, or ignenos rock ; and which, in this case, has mantaned itself against the prevalent direction of glaciation. It would also agree with the general course of the mass where lant seen to the eastward, and with that of the fold in the sedimentary rocks, which it appars to follow. The granite resembles in appearance that described as cutting through typical Huronian and Lamrentian rocks on Lake IInron.*
101. Though the complicated structure of the roeks in the vicinity of the Lake of the Woods, rembers it impossible to give a detailed section of the formations there exhilited; an uppoximate idea of their arrangement may be oltained. The Laurentian formation appears to be reprenented, first, by a great thickness of granitoid and thick-bedded greiss, generally pinkish or reddish in tint, and characterized by orthoclase felspar. This passes upward into thin-beded greisses, and highly (rystalline micaceous and homblendic schists, often more or less epidiotic. The Ihuronian rocks are much more variable in character, but the lowest beds appear to be those represented south of the North-west Angle grante, and are, for the most part, hard green rocks with little trace of stratification, hut hold some well stratified micaceous and chloritie schists, and also the imperfectly characterized gneiss already referred to. ($\$ 56-57$.) On these rests a very great thickness of massive beds, characterized ly the predominance of conglomerates, but also inclading quartzites, and compact dioritic rocks. Above these is an extensive series of schistose and slaty beds, generally more or less nacreous, and chloritic or talcose; but often hornblendic and micaceous. They inchude also some conglomerate, quartzite, and diorite beds; but how often these recur, or on what horizons, it is as yet impossible to say,

Lithological Character and Age of the so-called Huronian.

102. The rocks spoken of throughout as Huronian, show considerable resemblance to the typical series of that age, as deseribed on Lakes 1 Luron and Superior, but differ markedly in some points. They

[^10]also resemble those of the Quebec group, as developed in the Provinee of Queber, lant do not, so fin an known, hom serpentines in the region now in phention.

10:3. The englomerater have been already fully deserribed an to their distribution; thoy mant ocenr at several diflerent horizons among the shaty rocks. but cover the greatest brealth at the narrow part of the lake north of the Angie Inlet. The particular series there shown mast be of immense thickness, and appers to grow thicker when followed eastward. A similar tendency to increase in importance ewtward, was observed with other belts of these rocks, in ditferent part of the lake, and ngrees with their general inconstant charader.
104. Perhaps the most usial form of the conglomerate is that which may appopriately bedexignated Slate Conglomerate. 'The whole rock is of a green colonr, rarying hetween the tint of epidete and that of the lighter shader of homblemede, and jossilly in some instances due to a development of both minerahs, thongh, generally I think to the latter. Where agrowl weathered surface is exposent, the rock is seen to comsist of mumerons fiagments of is regular shape, which in appearance resemble the harder parts of the associated shate rocks. Theseare imbeded in a matrix composed of similar compact green material, and joints-which are frequent in some localities-cut evenly through both. On a freshly broken surface no clear distinction appars: between the fragments: and the en(lowing material, and the rock only differs from the more compact altered selhists and slates in its rougher surface of fracture, and a somewhat spotted appearance.
105. Another finm of the conglomerate, which has been called by Dr. Bigsby and others Greenstone Conylomerute, appurs to consist of roughly fraetured pieces of somewhat erystalline diorite, the whole enclosed in at dioritic paste, similar in colows. The framents in this species are ofter larger, and the rock they compose is rery compart. A thind variety consists largely of quartaite and quartzose rocks, angular fingments of which are found imbedded in a greenish mass, or sometimes in a base also apparently of quartzite and of grey and greyish-green colomrs.
106. The whole of these rocks appear to be uncertain in their extension, aud one is sometimes found rephacing another seemingly in the same strike. They are associated generally with compact dark-coloured dioritic beds, which do not show any fingmentary apmarance, but which are not so coarse in texture as the well chanacterized intrusive diorites. The quartaites also show a tendency throughout this region to run with
the conglomerates. The conghomate rorks, have as 1 whole mirh the

 be aterompaime: I arthew of moten rock in the same neighomenowl; or many of then a.... maty have orimitally been ash-bels formed of the fine detutim fiom vole . remts. The material of there, having been at one time in a state of fin-an, womblate the chemical comporition
 (0) : subangent metamomphism than the survometing heds of detritus formed by subarebial weathering and tramported by water, and firm which at great part of the basie comstituchts hat heen removed. These rocks and the comglomerates, which have heen mited muder the datksreen colom in the appemete general section becanse of their association, would in this cane be properly classed together from their similar orgin.
107. A point of dillerence between the rocks of this series, amd those of some parto of the typical Huronitu of the localities already mentioned, is the centire alsence of fragments of the muderlying granitic and gneissic heds in the conglomerates and brececias. Fragments of their reddish fildans: do mot even oceme anomg the quatzites, nor are rocks of reddish tints, such ats might arise from their disentegration found. This is a remarkable fact, and might seem to indicate that the Samrentian had not sutiered much metamorphism lefore the formation of these rocks, and consequently that they are older than the true Inmonian. The appearance of confermity with the Laurentian, of the rocks of this and other similar, but widely separated areas; and their resemblance to some roeks described as Latureitian in Hastings Comnty, and elsewhere, would apmear to point in the same direction.*

10S. The absence of altered Lamentian rocks in the composition of this serio may, however, be supposed to show that their formation took place at a periex smberpent to that of the typical IImronian, but hefore the violent disturbuces which hought large areas of Lamentian again under the inflacnee of denndation ; and that their material was almost wholly de-

[^11]rived fiom the degrentation of eompanaticely maltered haronian rows. From the oremrence of mareons whists, and wher pints of besmblane to the recks of the Quebee gromp, the latter supponition may probathy prove to be the conrect one, and these rocks he chased as nemer in age to the Quebee grom than the time Hurmian. Mr. Scluyn, in treating of similar rocks exphered by him moth-west of lake Superion, writen: "d regarly the age of these so-whled Harmian rocks, the evidance in mot of tho most satistibery kimb. While statigraphically they reat direetly

 altered Quebee eroup, the they do thoe which on the heme of latke
 be definitely said with regard to the age of t', ks in the region of the Lake of the Wooks, taken by itnetf, is that the are newer than the typical Lamrentian, there largely developee whemen than the little altered and nearly horizontal Lawer silmian on sentomen of Fort fiary and Lake Wimiper.
109. Numerons bocalities present opmonity fin the stuls on the mature of metamorphism experienced by the rock of the green atate acries,
 shates, are obervel, when hearing such at centre of allowation, to berome harder and less tinely fissile, and to assme green and grey-grem coloms from the fimation of erypto-crystalline homblome and porilly aloo of epidote. They next lecome still harler and more compart, ehanging to a green altered rock, chanacterized by hombleate, and in which the origimal bedking can somstimes searely be distinguisher. Where immediately in contact with the eruptive rock, his is generally still further changed to a grey soft gneiss, be the appeanane of mica in phare of the homblemde. The conglomenter genembly shan a tembery to pass
 which still exhibit remains of the compenent fragments on fiactured surfaces.
110. A table whwing the chanacter amblirections of all the lykes and intrusive masses is apperded. The granitoid uncises and intrusite grath-
 white quartz. These appar to be tre segregation veme, fomed ly a re-arangement of the materials: of the rock themselves in cratck, ener-

[^12]ally irregular, and with mo very determinate direction. They are aloo (e)mmon amom homblembe and altered rovks smmonding the intrusive maness; and the latter, in such phacen, are prohably not fin below the surface, ath have supplied the materials tilling the veins. They have been seen to cout arcoss granitic dykes, which are probably outlying simes of the matin masses. The gramite and granitoid roeks of the southern part of the lake were also ohserved to bo penetrathed by the very large enare-grained diorite dykes alrealy deneribed. These were not sulficiently well expensed to warrant any very detinite statements eoncerning them, Dmingeared to thate general cast and west comsen, and may very probably the among the odent of the intrusions. Other diomte dykes, very hard and compact, ent both the granitie outbarsts, and allered Lamemtian rocks, with a general bearing of northenst and smoth-west. These are specially fiequent i, the vicinity of Flag Island.

Occurrince of Linurald of E'conomic 「'tluc.

 thronghont the district, were not ohered to neeme in any quatity. The existence of a vein with :ti leant traces of eopher, hat been abraly mentioned, and 1 have been shown specimens of copper pyrites from several parts of the lake which I had not time to visit, which give groum for believing that workable and valuble deposits of this ore may yet be fomod. Simall quantities of molybdenite were observed in comecetion with the altered rewks in one place. Slaty rocks, thongh abumdant, do not asome the chanacter of true roofing-sate in any part of this rearion which I have visited. It is mot always possible to ascertain how much of the cleavage of the roeks is due to bedding, and how moch to true superinducel slaty-cleavage. The Inmonian rocks are so elosely pressed therether, that the two seem often to egincide; and I did not observe any clear instance of slaty structure finming a considerable angle with the hedding. Ot' soip-stone, though not actually observed in phace, I have seen specimens from localities in the south-eastern part of Clear-water Late. Small quantities of magnetie iron sand are fomb along the shores of the somthern part of Samd-hill Lake, bat this mineral is known to be disseminated in small crystals through many parts of the Lamentian.
112. Rock of similar age and chanacter to those here called IHorian, and which occupy the whole of Clen-water Lake, are known to be metal-
liferons in other regions, and more enpecially in the comntry north and west of Lake Superior. They are there fomm to yield silver mid gold in paying quantitios, and also contan copper mat irom ores, and it is no improballe that systematic inventigation of the rocks of the lake of the Woods may lead to similar discoseries. The examination aud detinition of these bands of newer rocks among the Laurentian, therefore becomes important in view of fiture mineral discoveries, as well as interesting in a purely geological point of view.

CHAPTER III.

STRUC'TURE OF THE ROCKY MOUNTXANS IN THE VICINITY OF THE FOL'TY-NINTH 1'ALALLEL.

Abstract

Genfana Pearenfa, - Intersection of the Monntains and Forty ninth Parallel General (ieological stracture-Rueks is the viexary of Whtertos Lake divisions of Series C.- East Fork - liocks west of Fiast Fork-The Water-shed-West Fork-Rocks exposed in Mt. Yarrell-horks stak pill Boens. -lineks deseribed to the Nurth-Kacks described to the Soul-Limestones like thase of series B. and 1), - Vuderlying beds-Uprer red beds - General conchasions-l'eriod of elevation of the Montains.

General Features.

113. 'The enstern muger of the Rocky Momutains in the vicinity of the forty-ninth parallel, hav wat heretofore heen geohugically examined. The exploress of the West : 'Territories of the United States, have not get penetraterl so fill to the muth in this region; and Dr. Hecter's observations do not extem somblaward in the mange, beyond about latitude $60^{\circ} 30^{\prime}$. Lientenamt Blackistom, oriqinally attached to Captain Palliser's expedition, crossed the momtains by the Gonth Kootanie, or Bommeary Pass, and gives a map and protile of it in his Report to the Imperial Goverment,* but has mol furnished ally gendogienl motes.
114. The eastern ranges, where the forty-ninth parallel intersects them, seem to be retreating noth-westwarl, in a step-like mamer, or en echelon; the line formed ly the hase of the momatains as a whole, not coinciding in direction with that of the eomponent ridges. A similar strueture appears to occur fiequently both to the somth and morth of the region uow in question. Chief, or Chicf"s Momatain, which on Palliser's map is phaced on the Bomadar--line, was fimul to be alsont fime miles to the sonth of it. The Line, however. strikes into the hills and abrupt ridges surromalige its base; and then crossing the narrow valley of the Shatlo Fork of the Belly River, passes over the Mt. Wikon Range, of
[^13]Blackiston, and next imtermects Waterton or Chicf Momban Lake, which lies at the foot of the principal ratire. 'The Line than rums for
 by adetone of a few milos to the worth, may be entirely avonited, and waggons hrought to the north end of Waterton Lake without difficulty:
115. The genema structure of the main, or watereshed muge, is very simple, and so fill as I have been able to examine it, uppears to be very comstant; thomgh often eompliented by smaller superposed thexures muld fiults, which from the very denness with which they are shown, in the sides of the lame rocky penke, are apt at times to leme to comfision. The width of the range is aloon twenty miles, mul the height of its highest summits in this latituld is not ower ahome 10,000 fect. The rocks of the castern mod western thorders are finmed todipinward toward the water-shed line, and generally don not lie at very high agrles; while the centrat mountnins frequently show rocks mot far firom loorzontal, or affected by local mud irregular dips, and often exhibit some of the highest beds of the series. When these latter berls appear in the centaal region, they may form a part of the genemal aymelinal of the rage ; but when older rocks are fomm, they are probably separated liy fanting from those of the culges, as appears to bo the catse in the South Kootmie Pass. In the outer ridges of the range, the highest peaks menally oerem, and the attitule of the rocks determines to a great extent the fioms of the mombtains, which generally have their steep sides taciug ontward, and resemble waves corling over to break to the east and west, their imber sides sloping more gently along the dip of the leeds. (Sect. 4.)

Rocks in the Vicinity of Waterton Lake.

116. Dispegarding for the present the eastern outlying mages, I whatl deseribe the rocks seen in the vicinity of Waterton or ('hief Momntain 1 ake, which inclute the lowest onserved in any part of the region. The lower heds are bronght up by in inegular anticlinal fohd, which crosses the lake near its northern end, with a morth-west and somtheenst direction. They consist of a series of 'impme dolomites, and an overly ing limestome, which I did not elsewhere find exposed, hat which are here well whown on buth vites of the lake.
117. The dolomites, which fir convenience of ref rence I whall eat Series A.. present a very remarkable appaname in the bare momatain sides 'rom the pecmlianity of the tints assumed by them on weathering, which are for the most part bright reddish, and yellowish browns; and
alternate in broad belts, adoording with the stratification. The beding is sery regular, and is marked, besides the alternation of tint, by the erosion of some sotter hayers compused of thin thagey heds, which alternate with masive compace layers sereal feot in thickness. The fracture of the more mansive portions is conchoidal, with a dim lustre, and the colours of treshly broken surtites are much less maked than those of the exterior, and valy trom light grey, to dull purplish and fleshcolour, some beds being a pale pink.
118. The structure of the rock is gemerally very close and fine, and from the preponderance of redimentary matter, it frequently more resemble'es a metamorplosed muidrock, than a trine dolomite. It does not effervesce in cold ditute acid, but on heating gently, a brisk action commences; and when the whole of the matenesian :and calcareons matter has been removed, a coherent, though hrittle mats, remains. This, when examined microscopically, is fomed to comsint of very fine and miform argillacoous and silicions particles. The exposed surfaces are generally decomposed to a depth of a few lincs. Small grains of iron pyrites aro sometimes ineluded in the rock, but no (erganic forms of any kind were discorered.
119. Of these rooks, at least seren hundred feet in thickness is exposed ; they are well shown at the Caseade on the western shore of the lake, but to the south soon dip out of sight, and overlying beds come down to the water level. The somthern end of Waterton Lake, I was, howerer, mable to examine in any detail, from the precipitons and impassible nature of the mountains surromuling it, and the impossibility; in the short time at our disposal, of making at servicable boat or raft.
120. Resting directly on these peculiar dolomites, is a very massive bed of limestone, also dolomitic, which forms a prominent feature from the chalky-white aspeet of its weathered surtaces. It may te devignated by the letter B., and has a probable thickness of about two humdred feet, and includes at least one well-marked band of eothe magnesian grit. The limestone on tresh fracture is of a pale-grey colour, and has a highly metamophic aspect. It is very clowegrained and compact, and breaks with a splintery frature, the original phanes of deposition being almost entirely lost. Some biyers are excedingly cherty, the siliceons matter being at times aggregated into well-tetined notules, hat moro usmally disseminated, and forming in invegular skeletom, which gives to some weathered surfices of the limestone an exeeedingly rough
apmaname. With acid, the rock hatily effervesen in the cold, but on gronte hating is mpidy diswotred, leabing a comparatisely smallamome of residue, which, mater the microwerpe, appears mot to be of a detrital mature, hat to have the firm of mime coneretions protured during the metanorphism of the reve, hy the re-aramement of the silita. There does not appar to he any meonformity het wern this limestome reries and that of the umberying impure dolomites, of which it may be considered an upward extension. It indieates, lowerer, a well-marked change in the chatacter of the deposit; depembing on the explusion of the tine detrital matter forming so lage a part of the previons beds, - a change brought abont, perhaps, by the decperning of the sea. 'The limestome, where it crosses the lake foded into the antielinal already mentioned, from its superior harduces, torms a projerling print from cilher side, and a tramserse reed which atmont divides the sheet of water inter two.
121. Series C. overlying the last, is well expesed in the bare sides of the mombtains on both shores of the northern end of Waterton Latke. On the east side, a great portion of the western fromt of Mt. Wison is composed of it, while to the west, a monntain rising about,+ 000 teet above the lake, is almost entirely firmed of these beds, which have there been suljected to violent thexure. (Scets. if \& 8). As a whole, this division of the section may he deseribed ats comsisting of hard quarzites, samdstones, slates and shales; and its most remarkable feature is the rapid alternation of beds differing in colour and textme. Varions shades of green, purphish-brown, red, aul white, are the mosi prevalent tints.
122. In the almost vertical western side of Mi. Wikson, abont two thonstund feet of these beds is seem. They lie directly on the lant mentionel white limestone, aud it any unconformity exists it was not observed. ILere two pretty thick banls of magnesian grit appear among the other rocks of the serios, and may be distinctly traced along the momtain side for somedistance. At one cmi of the section a comsiderable thickness of red heds orems, as the highest in Series C., and in somo phaces these are seen to mulertie directly the limestome of Series D., next in order, while in others they are wanting, and D. rests on the fower green slates and saudstones, showing a well morked unconformity. (Sect. 6.) The momatain on the western side of the valley of the lake, whows hut a single hamd of the magesian samdstone, which is very irregntar in its thickness. The med beds are only clearly seen in a few places, and faults maty exist which complicate the structure more than is
apparent. There seemw, howerer, to he almore the red hand, a considerable thickness of slaty rocks, which are altogether wanting in the latst section.

Rocks in the Kootimie Puss.

123. The beds of Serien C. are, however, hest dixplayed in the sides of the South Kootanie Pass,-which enters the momatans three and a hatr miles north of Waterton Lake, -and were there separated tor convenience of reference into five sululivisions. The rooks at the chtrence to the pass have a general south-westerly dip. The lowest seen were in the bell of the brook, and must be well down in the series. They consist of harl greenish slates and compact thin-heded quartzites, much resembling those underlying the magereim sandsione, in the last mentioned locality. In the momtain on the north side these were seen to he overhaid by reddish, greenish, and bluish-grey samdstones, with some shaty beds, all considerably altered; but which form a talus, and are not very well exposed. These were designated suldivision 1 .
124. Aloont midway up the momtain, a massive bed of magnesian samlstone or grit, appears, and comstitutes sublivision o. It must bo about fifty feet in thickness, and groat blocks of it which have !noken off from time to time, are now strewn rombl the foot of the shope, and encumber the pass. It no doult correepenuls with one of the similar beds alrealy deseribed as oecmring near Waterton Latke and lithologically, also bears a close resemblance to that interculated in Series B. It is amposed of large well-romeded grains of transparent quartz, with occasional darker particles-the whole imbedded in an opaque white calcareons and magnesian matrix, which apidly turns brown on exposure to the weather.
125. Next in the series, and forming the summit of this mometain, is a considerable thickness of red. greenish, and bluish-grey sandstones and shates; which, dy their alternation give the cliffs a curions handed appearance. They resemble those of subelivision 1 , and may be named suldivision 3.
126. A series of bright-red beds appeas on the sope of the mometain on the south side, overlying the last ; they constitute suldixision 4 , and represent those alrealy moticed asocurring in Mt. Wilson and elsewhere. In: following the trail along the north side of the valley, they come down almost to the level of the brook, about one and a quarter mile from the entrance of the pass. Their thickness at this pace must be about two
handred feet, and from their exceotingly bright colom, they eonstitute Wherere they orent, an excellent reference lorizon, amb may ofton be detected even at a great distance. They are hard, med, this-hedded sambstonces, with frequent thin interealations of real argillaceons material, and one or two bets of small thickness, compored of pate-greenish, shaly quartaite. A fifth sumbisision which intervenes in some places hetween the red beds and the base of the limestome above, is not well seen in this part of the vallery.
127. Five miles westward in the pass, the valley forks, one branelt taking a morth-westwand direction, the other ruming west-sonth-west. The trail also divides here; one tack, which does not appear to be much used, taking the former, while the other takes the latter direction, and in doing so, follows the main stream of the hook. The morthewestern valley was not examined in detail, but the momotains surpomeding it athored from a distance, a fine general rection of the rocks from series C. upwaty.

12s. In following the main valley, after crossing the brook, the trail fon about half a mile pons parallel with the axis of a gentle anticlinal which has an enst and west conrse, and passes eventaally into the momitanions point which separates the two vallies. In the bed of the brook, and well down among the varicgated sandstones and quartzites of sublivisions 1 or 3 of Sories ('., is an extensive exposure of diorite. It appears to be intereabated between the beds, but is probably intrusive, as it was not elsewhere seen. Orer twenty feet in thickness is exposed. The rock is so traversed ly fissmes as to rember it almost imposible to break off a clem-faced specimen, and is dark coloured and compact. Some lage fingments found in the brook, which appear to have been derwed from the same bexl, show remarkable stellar aggregations, several inches in diametor, of pale green felspar crystals. Below the diorite, and in the bed of the brook, an extensive series of banded red and green sandstones and quartaites, with occasional white quartaite layers, appears. The beds are not inclined at high angles, or much disturbed, but are somewhat comported on a small scale. A species of slate conglomerate* is also not memmon, thongh not generally ocemring in beds more than a few feet in thickness. The roek so designated, is generally a mreenish or white quartaite, enclosing small irregular fragments of

[^14]green, or red, close-grained slaty rock. These state conglomerates are not uncommon at sereral horizons in Series C^{\prime}, and fingments of them have been recognised among the difit deposits fin ont on the phains.
199. The crest of a remarkatly bodd peak on the north-west sile of the pats, at this place, is componed of thick limestone beds, forming Serics D. of the general section. They weather light-brown, and fawn-colour on exposure, and are fomen to enter largely into the composition of all the monntains of this region. When, as in this instance, they form the summits of a peak or ridge disintegration proceeding most rapidly aiong vertical lines of fracture, prohnces extremely picturesque and rugged ontlines. When, however, merely exposed in the side of a momtan, and still covered by other beds, they form steep terrated stopes or perpendicular clifts quite difterent in anpect. 'The upper beds, are genemally more frequently divided by horizontal phanes than the lower. The entire thickness of the series must be ahout one thonsand feet.
130. About four miles beyoud the division of the valley, or Best Fork
 the momatains on the north-west side, overlying the limestome. 'Jhis hed, which is designated in the series by the letter E., must here be over fifty feet thick, thongh any very precise ertimate could not from its position be obtained. Great hocks of the trap have fallen into the valley below, and increase the difticulty of the trail. The rock is a dark-coloured and very compact diorite, hat has mmerons amyedaloidal cavities. Series F. and (i. oceur overlying the trap in this part of the pass, but were not here examined.
131. A deep transerse valley; filled in some phaces with fine spruce woods, lies allong the castern base of the actual rilge of the water-shed, and from the brook flowing in it, to the summit of the water-shed, an ascent of 1,022 feet is mate by the trail ; which here becomes exceedingly steep and hardly puacticable for heavily laden pack animals. The rocks of the water-shed ridge apparently belong, in this patee, entirely to Series C., but other beds may also be represented, as the expusures are not very grond From the evidence, I have been induced to indicate a fant on the semeral section, as sepating these trom the lant described westerlydijping beds of tha valley, thongh their relation was not actaally ohnerved.
132. The height of the water-shed where crossed by the trail, as bhe ted by the mean of there domely emperponding readings, taken on ut memy difterent days, and compared with Mr. Fish's nearly simul-
taneons ohservations at the West Butte, was 6,673 feet.* Lientenant Blac intom, in 1858 , mate the height 6,030 feet, by a single obereration in unsettled weather. The trail dereends on the west side of the watershed rifge very rapidly, and at the distance of three quartors of a mile, croseses a little brook which lies 1,325 feet lower than its summit, and 300 feet below the strem last crossed on the east side. It next pasees for about two miles along the face of a very steep hill-side, when a descent is again made to a piece of flat gromed in the botom of the valley, covered with a seatered growth of young pinos. (P. contorta, var. latifolia Eng.) This place may be called the West Fork, as a second valley as lange as that of the pass, here comes in from the south-east. The rocks in the hillside list mentionel, dij generally north-wostward; they appear to belong to the same series as those of the watershod ridge, and to be inclualed, at least for the most part,-in division C. The lower part of the hill is composed principally of greenish staty-rocks amb sandstones, while at the higher levels, rel samdstonos preponderate, and are seen to be overlad just nerth of the Went Fork, by a remmant of the great limestone D.
133. Wentward from the West Fork, the Valley of the Pass was examined for ahont fom miles. It is here hemmed in by two immense momntain massen, which were at once recognised as Mts. Yarell, and Kirby and Spence, of Lient. Blackiston. The rocks in these have a general easterly and north-easterly dip, and appear to be meomected with those of the central region last deseribeal, and probably separa al from them by a tanlt. About a mile from the Forks, in the north side of the Pass-which as before offers the bost sect -a great serien of reddish sandstones, often in quite massive layer- found. The tint is most pronounced in the upper layers, the lower bucoming interstratitiod with thin beds of yellow-weathering magnesian limestonc, often concretionary, which finally preponderate in giving colour to the strata. These rocks represent series F. and G., el w ore more 'ith: wate ' Below them, and forming a prominent feature is the tra, leai for retains its character as before dess ribed, but in Mt. Yarell, is muc: m, mat important, and must be at ieast 100 feet in thickness. The great limentrue D., is here also shown, underlying the trap; and is well situated for examination, as the whole of the beds come down in succession on the trail. It is not so highly magnesian as the limostone B., and generally

[^15]efferverces freely without the applieation of hean. It is hard and metamophic, hut clowe-gratinced, and mot arytalline. The colour of
 shade to a pate bhan-swer ; some havers, have, however, a yellowish tinge. Weathered surtaces are pabehown, fawn, on hatfeoloned, and show an irregularity of stracture which is mot apparent on firacture, but seems to arise from the unceral resistence to the weather of parts more or less largely impregnated with manewia; the difterentiation being producel bysomesort of segregative action. The mere highly magnesian layers are at times armared in pataes parallel the the of deponition, but also, not infrequently, quite invesperdive of it.
134. Below the limestone the lowest heds here seen orem. They are compensel of the variegated sandstomes and shate of seriew C . The former are gemerally redinh and greenish, the latter grey and green, but there are aloo many hands of white guartzite of small thickness. No, marked unconformity tween this serves and the limestone is here observalbe, lat sublivision + was not acognized, and it would seem that
 seem to le moch more metamorphosed than any of the rocks higher in the series, and are leamifully plicated on a small seale,
135. I was mable to where the rocks finther west than this point, which is athem ise mites firm the Flatheal Piver. The mometans were here, however, decreasing in altitute, and the watershed range was nearly pused thromgh.

Rocks near the Boundary Mon ment.

136. In the valley which rums sonth-eastward firm the Wext Fork, and leads almost directly toward the Bomadary Momment on the watershed, the rocks expenel in the hill-sides are chicfly red, of rellish sandstones, generally rather thin-bedded, but sometimes masive. They belong for the mosit part to the "pper red Series G. Series H., compused of flaggy fawn-coloured bets, which are modembt magnesian limentone of samestone, froms the soft-outlined and armbling summits of some of the monntains on the somth-west side. These porks-- the highest ofserved in the momatan region-were no dosely examined, thongin a greater or less thickness of them was frequently seen resting on Series Gr., $^{\text {and }}$ differing from it markedly in colour, it wats always at a great height above the valleys.
137. The spot known as Camp Akamina, the gastern terminal
station of the old North-west Bommary Commission, is siltated at the head of the valley jinst deseribel. It has ant elevation of alowt 6,000 feet above the sea, and is a sholtered hollow chanaterized ly thick sprace wools of tine growth. The Boundary Cairn is phaced on the watershed about a mile from the camp, and though built thirteen yoars ago was found in perfect preservation. It is important as marking not only the forty-ninth parallel or boundary between British North America and the United states, but as lying it the aljacent angles of British Columbia and the as yet unorganized North-west Territory.
138. Near Camp Akamina the rocks are red sandstones, but are not well shown or regular in position. In a mountain-side between the camp and the Bomadary Monument, however, a very good seetion is exposed; and here the structure of series F. and (6 , of the general section was best seen, and over six hundred feet in thickness examined. The section may be taken as embracing the lower beds of Series G., and the whole of Sories F. The highest bels examined onssist almont entirely of flaggy dull-red compat sandstones, which are ion uently ripple-marked. Above them ahout two hurdred feet of similar reddish beds was visible in distant hill-sides, and these again were overhat by the upper fawn-coloured Series II. In descending, these begin to altermate with beds of grey and fuwn-coloured sandstones, the hatter magnesian, and whitish on fresh fiacture. Lower in the section, while rod and reldish-purple sandstones still continue, whitish and fawn-colourer' imestones,-frequently concre-tionary,--are intercalated, and beeome thicker and more frequent toward the base. The lowest rock seon in Series F. is a datrk purplish sandstone, and not far below it is the trap designated in the general section by the letter E. Many of the sedimentary beds throughont the entire section are ripple-marked, and rain-pitting and sun-cracks are not infrequent. At several different ievels, too, the surfaces of saindstone beds show impressions cansed by salt erystaln, subsequently dissolved out. Some of these are as much as half in inch in diameter, and oxhibit distinctly the pecaliar hopper-shaped forms characteristic of sodic chloride. The conditions of formation indicated by the rocks are those of a shallow, land-locked, salt lagoon or lake; which was, perhaps, sometimes in communication with the open sea. No traces of fossils could be found.
139. The division made between Series F. and G., and that bet ween (f. adid H., are probably not of great importance. No unconformity obtains, and the same conditions seem to have prevailed throughout ; the deposition of reddish satudstone, alternating with that of pale delomitie sand-
stone, and magnesian limestone. It is one of convenience only, and fonded on the different colons of the zones as they appear in the mome tain sides.
140. The trap E. is still important at this place, but is not so thick as in the Mt. Yarrell sections. It is dark-purplish in eolour, and full of irrognlar amygrdaloidal cavitien, which are lined with green chloritic matter, and generally filled with white calcite. It overlies the great limestone, as before.

Eastern Front of the Water-shed Risnge, Mt. Wilson and Chief Mountain.

1.4. Northward from the entrance of the Sonth Kootanic Pass, along the eastern side of the momatans, for at least twenty-five miles north of the Line, the rocks exposed are similar to those already described. All the beds of the eastern ridges appar to dip westwad, or west-north. westward, toward the axis of the chatin; and are broken off abruptly to the cast, forming steep eliffy fronts towiad the plains. The lower and outer mages consist ahmost entirely of the variegated Serios C., of which the red beds are often visible at a great distance. Many of the higher mount ins are eapped by the limestones of Series D., and where graps in the castern wall allow the innor ranges to be seen, they frequently show the upper fawn-colomed, and red beds, with gentle dips forming steep, but straight-edged ridges. Section 5 represents the geological structure, and general contonr of the momotains to the north, as seen fiom a hill about six miles north of the entrance to the South Kootanie Pass. The most distant mountain of which the geological structure is indicated, was estimated to be about fifteen miles fiom the point of view. The more distant peaks shown on the horizon were but dimly visible, and must lie from fifty to one hundred miles northwarl. They appear to be of great height.
142. The outlying or counterfort range, which is sitnated on the east side of Waterton Lake, has a breadth from west to east of seven miles. It may be designated the Wilson Range ; that mame having been applied to a purt of it by Lieut. Blackiston. Its western side has been alrearly partly described in connection with Waterton Lake. As viewed from the uorth, its fiont is chiefly eomposed of the rocks of Series C., of which subdivision 4 , the red band, is conspicnous in many places. The eentral and highe. parts of the range we of limestone belonging to Series D. Rocks differ from the rest, and apparently brought up by a
fanlt, ocen at the north-eastern comer of the range. They were not clowely examined, hat may helong to Sories B.
143. Chief, or more properly Chietss Mountain, which projects still futher to the eastward, is one of the most remarkable momatan masses of this regrion. It is nearly isolated trom the rest, though surrounded by rugged fionthills, which are envered with dense woods and wind-tall, rembering it almost mapproachable. As seen trom the eastward, it resembles the base or a broken colnmon, and its ontline waw quite distinguishable from that of the remaimer of the monatains, even from the Sweet Girass Lills, a distance of' one hudrod miles. On three sides, the central mass of the mometain is precipitoms, mud its bate pockey Witts are of great height. To the west, it appears to sope more gradually, and its summit in eleft with deep ravines. It seems to owe its remarkable form to the peenliar weathering of the limestones of Series D., of which the perpendicular portion is eomposed. The rocks of the foot-hills are softer, and no doubt belong to Series O. Chief Momntain resembles in its structure the peak called Castle Momntain by Dr. Hector, each being formed of a huge qualmugular block of nearly horizontal limentone beds.

Revier of the Section.

14. The total thickness of the beds seen in this part of the Rocky Mountains monst be about 4,500 feet, though this can only be regarded as an approximation; as owing to the short time at my disposal, few of the beds were actually measured. The entire series arranged as a continuous section in descending order, is an follows:-
II. Fawn-colonred flagey heds, seen only at a distance, but prolably composed of magnesian samistones and limestones. 100 fect.
G. Beds characterized by a predominent red colour, and chiefly red san!stone, but inehding some thin greyish beds, and magnesian sandstones, the whole generally thin-hedded, though sometimes rather massive. Ripple-marks, \&ce., Weathers to a steep rocky tahns, where exposed in the mountain sides; anm passes grpadnally down into the next series. 300 feet.
F. Fawn-colonred flaggy beds of magnevian sandstone and limestone. Some red sandstones ocenr throughout, but are especially abumdat toward the top. Apparently a continnation upward of the limestone D., and only separated from it by the trap overflow. 200 feet.
E. Λ myghaloidal taip; dark coioured and hard. 50 to 100 fect.
D. Compart bluish linestone, somewhat magnesim, and wenthering brownish. This forms some of the boddest crags and peaks of the montains, and aprarently rests unconformably on Series C. 1,000 feet.
C. Sumdstomes, quartzites and slaty rocks, of virious tints, but chiefly reddish mu! greenish-grey; the individuml heds seldom of areat thickness, and the colour and texture of approximate beds mpidly alternating. In this series orears a band of hrightred rocks, of inconstant thickness, also two or more zones of coanse magnesian grit. 2,000 feet or more.
B. Limestone, pale-grey, cherty and highly magnewian; harl, muchaltered and weathering white. It inclules at least one band of coarse magnesian grit like that found in the last reries, which weathers brown. 200 feet.
A. Impure dolomiter and tine dolomitic quartzites; dank purplish and grey; but weathering bright brown of carions shades. 700 feet or more.
15. The trap E . is remarkable for its continuity over an extensive area withont any great variation in thickness or chanacter. It is represented along the eastern side of the momatains for probably at least twenty-five miles, holding always the same position in the series. It occurs also in the Bomdary Monntain, and in Mt. L'aw: $\begin{aligned} & \text { all anost at the }\end{aligned}$ extreme western margin of the lange. In a bold peak standing in the angle between the two branches of the pass at the Bast Fork, what appears to be a thin bel of a similar trap ocen's among the limestones of Scries. D. It can there be traced for a long distance on the eliffs, but was not elsewhere observed.
16. No granitic or greissic rocks were found in this part of the mountains; and, as elsewhere hown, they even disaprear as constituents of the drift before the frot-hills are reached in this latitude. These rocks are not known to occur in any part of the castern range of the mountains north of the forty-ninth parallel. Sonthward, they appear in some places as the basal rocks of the serics, and in Colonallo are quite extensivoly exposed, and hold in association with them the ores of the precions metals. In some cases these rocks are observed to be clearly overlapped by the Potsdian satudstone; and if not the equivalent of the Laurentian of the east, are at least Eozoic.
1.47. The diffrene in chatacter of the comery' on the east and west sides of the tiont runge of the momitains, which on the firty-ninth parallel constitutes the water-shed, is vory striking. Standing on one of the higher summits, glimpses of the treelens prairie can bo seen between the eastern bordering mountains. The madulations of the gransy foot-hills are, firom the eleman, completely lost ; and the plain appears to difter only in colom from the wea. Looking westward, oren where the view is most extensive, it is one of tumaltuons peates and ridgen, pine-chal or bare and roeky, to the horizon; and these are only the first of thone which in almost mbroken serion exteml to the Pacitic Comst, a distanse of fime hombred miles.

Comparison of the Rocks seen in the Vicinity of the Forty-ninth Partallel, with those of other Locallities.

148. Sir J. Richurdsom hasdeseribed the Rocky Momitains, where he met with them on the Mackenzio River, as being in great part eomposed of Curbomiferons limestome. Dr. Hector is, so fur as I know, the only other groologist who has examined their eastorn ramges in British America. He hat the opportmity of traversing them in several places, and has noted the occurrence of limestones of Catmoniferons age, in many localitios. In the eastern ange, where cith by the Bow River, he deseribes a "deep blue limestome, which weathers to a light blue colonr, and is traversed by veins of calespare. The surfices of these beds are very rough, and matsies of chert are left protruding by the action of the weather:" They were fond to contan fragments of Encrinite stems; also, Producta and Spirifer; and are consequently of Carboniferons or Devonian age. They are said, in this locality, to be associated with earthy shales.* Near the same place-in Castlo Momtain-limestone beds occur, which would appear from the deseription, to have been estimated at about 2,000 feet in thickness. They overlie quartzites and quartzite-conglomerates, though not directly.t Somewhat further west, at the head of the Vermilion River, a similar limentone is again found, with fossils like those last mentioned. Certain hill-sides are also deveribed ats consisting of "homizontal wimeta of blue slate rock, closely banded with red stripes" \ddagger which may be supposed to represent Series C.
149. On the upper waters of the North Siskatchewan, Carbomiferons

[^16]

IMAGE EVALUATION
TEST TARGET (MT-3)

Photographic
Sciences
Corporation

limestomes full of Enerinites and eomals, are mentioned; ; and near Ohd Bow fort, crean-coloured limestone, with eherty moklules and ohseme Eucrinite stems, blue crystalline limestone and compact enthy limestone, with Cyathophylhum and Fatositiss were found associated. \dagger
150. In Roche Xiette Momanan, near Jasjer LIonse, Dr. Hector obtained the following interesting section : $-\ddagger$

```
Hard, compurt blue limestone mul shale, with nodules of
    iron pyrites....... . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,000 flet.
Fissile shaters, almest hack. . . . . . . . . . . . . . . . . . . . . . . . . 300 "
Hard \&rey smadstone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 "
Shales, toward the upper purt with green and red
        blotehes, the lower part rustocoloured. ........... . 500 "
Cherty limestone and comese sandstone, obseured by timber
```

This shows a moderately close resemblance with the membe: of the Benndary seetion from D. to B., inclusive.
151. At the nor" h eud of lipe-stome Pass, a dark-blue limestone, containing Atrypa reticularis, and therefore characterized as Devonim, occurs. St
152. Near the U_{pl} (er Columbia Lake, on the west side of the main range of the monutains, Carbmiferoms limestone is fomad lying unconformadhy on slaty racks, a very interesting thet when taken in eonjunction with the supmsed meontomity of Series D. and C., on the Line. Dr. Hectur deseribes the "cherty Carboniferons limestone" as "resting on slate, heoth dipping th the mortheenst, hut the latter at a very high angle," $\mid f$ and in another place revern's to the ohservation an proving the nucomfinmity of the limestone on the molerlying series. 9
153. In summing up his observations, Dr. Hector considers the enstern range to be mainly compersed of thick-bethed limestones. IIe writen:-"Thesi limestones are of dark and light-blue colomr, crystalline, compact or cherty, with towsils that are either of Carboniferous or Devonian age, the princijual of which are Spirifer, Orthis, Chonetes, Conuluria, Lonsdalia, Cyuthophyllum, Lithostrotion, \&e. Along with them are softer beds of grity, samdy shate, generally of a dull red or purple colour."** " la the second range we have the same limestones and shales repeated as in the first, but at the base I observed traces of a magnesian limestone of a buff colour, containing Atrypa reticularis, a true Devonian finsil." \dagger "On the Kicking-horse River, in the third ronge, we have the

[^17]mountains again formed of blue limestone, along with a compact blue sehist with red bands riving a curious striped aspect to the rocks." *
154. Dr. Hector is mot very cloar as to the separation of the supposed Devonian and Curboniferous limestones, and they may intoed, very probably lelong to a single series. Prof. Meek, in dencribing fonsils from limestones occuring in the motutains south of the Boundary-line, which from the gencral facies, he believed to be Carboniforous; mentions the fact that the forms, without exeeption, belong to genera, which wre common both to that formation and the Dovonian, and of which a small number are represented also in the Silurian. \dagger
155. Dr. Peale, in his report to Dr. Hayden \ddagger describer, at Spring Canon, Montana, about two hundred miles sonth of the Line, aln interesting nection which is clearly comparable with Series !, F, G, and II. It may be summarized as follows:-

Cretaccous-

Red, purple, and grey saudstones, with brown limestone. . 200 feet.
Jirassic-
Brown and yellowish limestones, with sandstones and thin
quartzites... 449 "
Triassic-
Red and purple sundstones, sometimus culeareons, with one thin limestone neur the top...................... 68 "
Carboniferous-
Limestone, the upper layers aremeeous.
Allowing for the distance by which the two regions are sepanated, the agreement is suticiently close. We have first, a limestome comparable with D. The tratp E. of the Bomblary section, is probably intercalated among the beds here incluted in the Carboniferous, and separates the representatives of the lower compact limestone, from those of the upper flaggy and arentecous bels; which, in the Boundary section, are desigmated Series F. Next, a great ascending neries of limostones associated with reddish arenacuons beds.
156. The beds classed as Triassic, in tho above section, are so-named merely from their analogy with those of that period in other regions. Dr. Hayden, elsewhere, states his belief, that the Triassic and Devonian series are wanting in Montana, \S and that below the lignite-bearing formation, follow in doscending order, the Cretaceons, Jurassic, Carboniferous, and a great thickness of lower strata, probably Siluriam, which rest unconformably on granitic and gneissic rocks.

[^18]8 Ibid., p. 28.
157. The great series of limestones attributed to the Carboniferous periol, are also fomud to repose monformably on the rocks benenth them. 'Ihey lie in some places directly on the gneissic rocks, while in other locealities, 1,500 feet to 2,000 feet of Silurian strata intervene.* The entire thickness of the Carboniferous rocks is estimuted at from 1,000 to 2,000 feet. \dagger
158. Other limestones, supposed to be Lower Silurian, are alno described in this region, and said to have a " much older look than those of the Carloniferous." They are also " more compact, and contuin i greater per centage of silica, are full of cavitios lined with erystals of quartu, and wenther into much more rugged forms." \ddagger In another locality, limestones belonging to the two series are fomd almost in contact, and "althongh there is no positive non-conformity between the Carboniforous and Silurian, yet there appears to be a well defined physical line of separation. The Silurian limestones are more massive, brittlo, cherty, and have an ancient look, while the Cuboniferons beds are more pure limestone, and with thin, well defined layers." $\$$
159. On the Gallatin River the thickness of the varions formations is estimated an follows:-Juraswic, 1,200 feet; Curbomiferons, 2,500 to 3,000 ; Silurian, 800 to 1,000 . $\|$ Near the junction of the Gallatin and Missouri, a section shows "abont 2,000 feet of metamorphosed slates, clays, and quartzites of all textures and colours, but mostly thinly laminated," which Dr. Mayden has no donbt belong to the Potsdam group. Compact, grey limestones, also of Silurian age, are developed in this locality, and overlying the whole series the Carboniferons limestone is fomed. 9 The general resomblance of this section to that represented by Series C. and D. on the Boundary, is at once apparent.
160. At Jackass Creck, and near Gallatin City, seetions more or less closely comparable with those on the Boundary-line are also met with,** but many of the beds entering into the composition of the momutains in Montama, seem to be somowhat local and variable in their appearance.
161. In the mometains at the head waters of the Powder River, five hundred miles sonth-oasterly from the Boundary sections, the Carboniferous limestone, ayain oceurs, as a compact, cherty, yellowish-white rock, with few fossils, but enough to indieate its age. It there rests directly on an irregular surfice of quartzites and sandstones attributed to the

[^19]Potsdam.* Near the Suake River, on the western side of the water-shed, wo ugain timd as a conspicums feature, a "hatue, cherty Carboniferons limestone," overlatid ly siticeons rocke. \dagger In the Black Hills of Dakota, yellowish Carboniferoms limestones appearr, and rest on grey and ferroginous lotsifam samdstones, holding chameteristic organie remmins. Tho hater formation was here discovered for the tirst time, west of the Missomri River, ly Dr. Hayden, in 185̈. \ddagger
162. The rocks representing the Carmoniferons formation, in the Rocky Momutnin region, would therefore appear to be wide-spreal, and to be represented in great part by massive limestomes, which are remarkably constant in their lithological chanater.
163. A section examined by Dr. Hayden, in the Uinta Range, in Utah, is interesting as a stamdard of comparison with those on the fortyninth parallol. Here, red beds, supposed to he Triassic, and firom 150 to 200 feet in thickness, are first met with, and phiss downward into grey samdstones, quartaites and indurated arenale enns elays; then, alternate heds of thin groy limestome and sanlstomes; and flatly, a massive limestone, ahont 1,000 feet in thickness, holding Carboniferous fissils. Next, dull jurplish samdstomes, with a series of thin layers of slate and chay, gradually passing down into brittle reddish and grey quartaites, and being more compact and massive. In this wholo series, from the red bels above, to the lowest quartrites, no unconformity is appurent ; the junction between the base of the limestone and the underlying saludstone becoming elear and regular. The total thiekness of the beds exposed is estimated at 10,000 feet, of which 8,000 feet, is composel of the lower sandstones and quartzites. Of theso last, Dr. Hayden helieves the apper beds to be Silurim, and to pass gradually downward without any break in time, to rocks of Hurmian age ; the lower purplish quartaites being compared with those muderlying the Cretaemos and Cathoniferons rocks in Dakota, which are suppered to belong to that periond. S
164. The general similarity of this with the Bomadary section is apparent, and the resembance of the rocks underlying the great limestone in the two localities is particulaly interesting. The lowest impure dolomites of Series Λ, might very well be called purplish quartaiter on a superficial examination, and would be such but fire the presenee of a proportion of caleareo-magnesian matter. The magnesian limestone B .

[^20]appears to be wanting in the Uinta section, but its introduction would be in corronpondence with the increased qumntity of calcureous matter in the other rocks.
165. Red beds overlying the Carboniferoms limestone are frequently found in the western teritories. Some of them, from their fossils, are certainly Jurassic, while others are Triassic, or perhaps Permian. They have been alrealy more than once referred to. Near the head waters of the Cheyenne River, in some localities, between the Cabboniferous limestone and the supposed Jurassie red beds, they attain a considerable thickness, and hold gypsum,* the accumulation of which implies conditions similar to thone causing the bring lakes, shown to have existed after the deposition of the great limestone in the Bandary sections. Near the head of Wind River, the Caboniterons socks are followed in ascending order by 150 feet of arenaceous beds, and greyish, ash-colomed sandy clays; then by a great series of reddish, purplish, yellowish, and grey beds, samdstones fiagry limestomes and marls. Ripple-marked surfaces are common, and organic remains prove the rocks to be Jurassic. \dagger
166. Of the momatains abont the sombes of the Missouri, the Big Iforn, and Wind River ranges, Dr. Hagalen writes:-"A series of arentaecous beds, which we have called the red armaceous deposits, or Triassic, form one of the most eomspicuons featmes of the geology along the fanks of both sides of the prineipal ranges of mometains, and are almost always present." They are " sometimes called saliferous or gypsum-beariny beds, from the fact that they contain both selt and gypsum, the latter mineral oftentimes in great quantity." A portion of these rent herls is believed to be Triassic, but above them lies a series of mark, or arenaceons marls, of light or ashen grey colour, with Jurasisie fossils. f
167. Thongh the absence of fossils in the rocks of the monntains near the forty-ninth parallel, wherever I have examinel them, precludes the fixing of their horizons by palaeontologieal evidence, it seems possible to correlate them lithologically and stratigraphically with similar beds in other and better known regions of the west. This means of correlation npern's to be a pretty reliable one, from the great genoral constancy in suceession and character of the stratified rocks of the interior and western part of the eontinent.
168. On comparing the sections, it would hardly seem to admit of

[^21]doubt, that the great limestome series D. represents that attributed to the Carlmeniferous by Dr. Hector, to the north, and by Dr. H:ayden and otheres to the sonth. Sbove it, we have the realish and fawn-coloured beds of F., G. and II. Of the former, the lower purt probathly belongs to the Cuboniferous limestone beneath, being only separated from it by the trap E. The two latter may represent in purt what has elswhere been called Triassic, but, in all probability, are for the most part of Jurassie age.
169. Below the Carboniferons limestone, a break in the contimity of the series obtains in the Boundiry sections, and Series C. and B. resemble most closely the roeks which to the south have been called Silurian. The limustone B., in its rough, metumorphic, and cherty character, closely resembles some of the Silurian rocks of the southern region, but does not lie so near the base of the carboniferons limestome an is often the case there.
170. The rocks of Series Λ., its alrealy mentioned, may represent those which De. Hayden has compared with the Hurosian. This comparison, however, appems to rest on but slender evidence, and to be merely of the nature of a suggestion. The similarity of the impure dolomites of Series Λ. with those largely developed in the Upper Copperbearing rocks of Lake Superior, however, is so remarkatle an to deverve mention, though it be hardly safe to use lithologieal chanater as a criterion of uge at sio great a distance.
171. With regarl to the question of the age of elevation of the momatains, I have lne able to obtain Int little information in the regrion ex:mined, and that chiefly of a negative kind. Gretaceoms and Lignite Tertiary rocks have, however, shared in the resulting disturbance. Mr. Clarence King has dednced from his observations on the fortieth parallel, three great periods of uplift. The tirst, he refers to the Jurassic period; the second to the close of the Lignite Tertiary, and the third is supposed to have been simultaneous with the great volcanic ontbursts of the posttertiary. Evidence of elovation at the tirst of these periols, does not appear to have been very generally fonnd; and that it cannot have been very great, or such as to form a complete barrier between the eastem and western regions, the similarity of the marine mollusea of the lowest lignite beds of the momntains, with those of the rocks of the west coast, appears to show.*
172. Other evidence, however, goes to prove that some movement took
place prior to the periont of clevation above munet the secomb. Dr. Hector describes a hill of Carboniferous limentone, which appears to have been an inhmil at the time of the deposition of the sumponding Cretaceons or early 'Tertiary rocks, and to have beon subsequently pashed up to a greater elevation.* Dr. Peate believes that the Bridger lange, in Montama, was elevated probably at the close of the Cretaceous, while other neighbomring momutains were not formed till the close of the Eocene; \dagger and Dr. Inyden is also of opinion that a gentle elevation had commenced before the close of the Cretaceons \ddagger
173. The great periox of elevation, however, was that bringing to a close the formation of the Lignite Tertiary, and intervening betweon it and the later rocks assigned to the Miocene and Pliocene. Dr. Muyden has accumulated in the courso of his survegs an immense number of facts proving the violence and miversality of this dislocation. He holieves the series, up, the summit of the Lignite 'Tertiary, to have passed completely over the present position of the monntains, and writes: "From the Silurian to the upper Lignite group, inclasive, a thickness of " ;00 to 15,000 feet extented, in an mbroken, horizontal mass, over
aly or quite the entire arva of Montana, and probably much more widely: s
17. The evidence concerning the periods in the formation of the mountains, however, is as get hy mo means complete; and it is certan that elevatory movements antedating all these above mentionel, have taken place. Disrogarding thoso which hat effected the Boooic rocks previons to the deposit of the next oldost seliments known in the west ; we find at least one break in the serios at the base of the Carboniferous, and in different localities the Potsdam, Carboniferons limestone, 'Triassic, and Cretaceons are found resting on the denuded edges of Fozoic rocks, which must at these periods have formed coast lines.
175. The comparatively small total thicknoss of the beds ropresenting a great part of the Pabaozoic series, in the west, is remarkable, especially when taken in connection with the relatively great deposits of the Cretaceous and later ages. This, and the absence of coal deposits, even in the Carboniferous series, would tend to show that the area of dry land during the Palaozoic mast have been quite small.

[^22]id. Dr. to have etaceous up to a in Monto other ireno ; \dagger imeneed
ing to : whoon it Hayden - of facts holieves passed writor: kness of ss, over oh more n of the cortain ol, have ic rocks de west ; ifferous, Triassic, c rocks, prosentarkuble, posits of leposits, a of dry

The recontrence of magnesian rocks at mo may different horizons is ulao moteworthy.
176. 'The sudden natiore of the break between the nembly horizontal Ntrath of the phains, and the crumpled rocks of the momutains, is a remarkuble feature on the forty-ninth parallel. A similar jeculiarity of structure has, however, been obsorved in other and distrut purts of the range. Near the heal watern ot the Powder River, the Cretacomen and Tertiary beds, boymad ten to tifteen miles from the momitains, aro not fexel.*

[^23]
CHAPTERIV.

CRETACEOUS AND TERTIARE ROCKS OF THE VICINITY OF THE FORTY-NINTH PARALLEL-PEMBINA ESCARIMENT TO WOOI MOUNTAIN.

Abstract

Chetacrous Rocks,-Pembina Escarpment-Niohrara group-Fossily of the Boyne River-l'embina Monntain group-Rocks near tho Bomalary-line-Sections in Pembina River--Sections in Long River-Thichness of beds exposed-Lithologieal character-Linnite 'Thithamy Roeks on tife Sourin River-Driftcovered region-La Rache Percée-Nection on Short Creek-Sections west of Short Creek-Sectious near Wood Eni-(iap in the Seotion on tile Boundary- bing-Liontre Temitaby Ruck of (Gbat Valley and Pybimit Cbebk-Sections on (ireal Valley-Sechons on P'yramid Creek-Lianirk Terramy Rocks on Pobupine Geek-Eighteen-foot lignite bed-Lanste 'Tritiary Rocks on the 'Ibadebe' Road.

Cretaceous Rocks of Pembina Escarmment, Pembina River, and Long River.

177. On leaving the Lake of the Woods, and proceeding westward, the fice of the comutry is found to be thickly covered with drift and alluvial deposits. The Silurian limestones, which probably exist at no very great depth, are not observed, and the first rocks seen are thowe of the Cretaceous formation, along the base of the escarpment known as Pembina Mountain, which bounds the Red River Valley to the west. From this point westward to the base of the Rocky Mountains, no rocks older than the Cretaceons are found. The beds of this serios are seldom well exposed in the enstern part of the prairie region lying north of the forty-ninth parallel, and the information acquired concerning them by the few previous explorers has, in consequence, been frugmentary and inconclusive, though great areas of country have been traversed.
178. About twenty-five miles north of the Line, whore the Boyne River ents through the Pembina Esearpment, bels ocenr clearly referable to the 3rol or Niobrara division of Meek and Hayden's Upper Missouri section. (\$33.) Though mable to visit this very interesting locality, I have receivel speeimens of the rocks, through the kindness of Mr. A. L. Russell, which exactly resemble those coming from the Niobrara division in Nebraska, both lithologically and in the nature of the included organic remains,

17!. The rock is a cream-coloured, or nearly white limestone, breaking easily along horizoutal phanes, paralles to the surfaces of the shells of Ostreat and Snoceramus, of which it is in great part composed. The Inocerami are too frugmentary to admit of epocifice identification, and have served as supports for the oysters, which still, in many instunces, where to them. The oysters, appurently, all helong to a single species, mad wre identical with the Ostrea congesta of Comrad, so chancteristic of the Niobram limestones further south.
180. These larger shells are imbelded in a soft, whitish, eartlyy matrix, which is fomad, when microscoppically examined, to consist almost entirely of the more or less perfect remains of Formanifern, Coceoliths and allied organisms; together with the small irregular prisms arising from the disintegration of lowerani. The Foraminifera represented are: Textularia gibbosa D'Oub. Var. globulosa Ehr. Textulariat ayylutinans Var. py!mea D'Orb. Planorbulina globulosa Elir. Planorbulina farcta Var. ariminensis D'Orb. Gilobigerinu referalle to (i. cretacea, also occur though not abundantly. All these I have also illentified in specimens of the Niobrara limestone from Lau qui Court in Nebraska. The first named species was fomm by Ehrenberg in the Brighton and Gravesend chatk, being one of the commonest forms in the later. It also oecurs in the Mendon chalk of France, and is still living in the Mediterranean and elsewhere, at depths of from tifty to one hundred fathoms. The second textularine form is closely allied to, it not identicul with, one found in the English chatk, and is common at the present day in the North Atlantic and elsewhere; becoming, however, rare and small at great depths, and apparently most at home at a depth of about ninety fathoms in the latitude of Eugland. Planorbulina globulosa is common in the modern ocean, mul in the North Athantie is best developed from the shore-line down to fifly or seventy fathoms. The specimens from Manitoba resemble those from the greater depths in being considerably flattened. The second rotaline firm is abundant in the English chalk, in that of Möen, Demmark, and doubtless elsewhere ; and is also fomd in Tertiary and recent deposits. (Plate XVII., Fig. 2, in Appendix.)
181. The general facies of the forminiferal fama of these Cretaceons rocks of Manitoba, as well as those of like age in Nebraska, singularly resembles that of the English chalk. Both abomad in textalarine and rotaline forms of similar typen; the more abmand in
both, being the firm with ghonse chmomers, and enth having its rater analogne, with whmbers flaterned and more didiate,*
182. The ther part of the softer purtions of the rock, is composent almost entirely of the extremel! minute menties, which are included under the general manes-Corcoliths and Rhabdoliths. These are now known to belong to minute promie vegolable orgminme. Coreolithe are abmant in most moxern oreania dejusite, and have long lieen known to oceme in the chalk of Bughand and chewhere, bat do not appene to have been previonsly oberver in the Cretaremes rowks of America. The allied Rhatulolithes were diseovered by Dr. O. Schmilt in 1872, in the Adriatic Sea; but I do not know that they have heretotione been foum in the fossil state. Theso very minate berlies are well proserved in the limestono from Boyne River, and run through the samo set of forms ans those described by Dr. Schmilt. \dagger (Plate XVII., Fig. 1.)
183. The limestone, where it ocenrs on the Boyne River, appears to be interlenvel with beds of soft clay; but the accounts I have received, aro not sufficiently precise to enable any detinite conclusions ans to its thickness or extent, to be arrived at. Its oceurrence at this one loculity; enables the outerop of the Niobrara Division-or highest bod of the Lower Cretaceons series-to be detined at a point nemly fom-hundred miles further north than it has previonsly been known, and tixos the position of a well-marked horizon in the Cretaceous rocks of the Northwest. \ddagger
184. In the immelinte vicinity of the forty-ninth parallel, no rocks referable to the Niobarara division are found along the encarpment of Pembina Mountain, and their outerop is no doubt concealed by the great thicknoss of sundy and alluvial deposits piled against its base. The beds here seen in place appear to belong to the th or Fort Pierre group of Meek and Hayylen, which, in their Missouri sections, immediately overlies the last, and forms the baso of the closely associated group of Later Crotaceous deposits. From the seatreity of fossils in the great thickness of beds exposed in the Pembina biscarpment, and the want of informationas to the nature of the Cretaceous beds intervening between these exposures and those of the tributaries of the Missouri, caused by the thick

[^24]mantle of drif, it is impossible at prosent to fle this gromp as axactly contemporary with that detineel by Meek and Havden. I shatl thereforo refor to it in this Report merely an the Pembine Mountuin (iroup; a name
 which occur in the ravines of that escurpment, and which expresses its intimate connection with this groat fenture of the physical gengraphy of the plains.
185. In the valley by which the Comminsion Truil aseomen Pembima Monutuin, ten miles north of the Bomudary-line, and not fiur from the woseded projection known as Point Allard; rocks of this division were met with for the first time, it a bme hill-side, which is too gently sloping and erumbled by the wenther to yield a goond nection. The rock is a mather dark freenish-grey clay-shale, in which no orgamic remains appear. It holds at least one, und profably severnl, layers of chay iromstone an inch or two in thickness, durk brown frugments of which strew the tace of the bank. The exposure must represent at lenst 30 feet of the strata, which appenr to be quite horizontal. The ironstone is very perr, the iron in a sample examined amounting to only $10 \cdot 14$ por cent. Lt is almont wholly in combinution with carbonie acid, and is associnted with much clayey mater, like that of the surrounding beds.
186. Seven miles further west, on the second praitie platean, of which Pemlina Mountain forms the front ; the Calf Momtuin, no called, though ouly about thirty feet in height, firms a somewhit prominent feature on the phan. It appears to be an ontlyer of a gently sloping ridge which runs northward from it, und may be due to the surface contour of the drift, but more probably indicates the tine of onterop of a bed of the Pembina Mountain gronp somewhat more resisting than the rest.
187. Where the forty-ninth parallel euts the bise of the Pembima Escarpment, rocks of this series are well shown in the almost precipitous bunks of a small stremm. Some feet of the upper part of the section consist of drift material, in which frugments of the underlying shate ure mingled with gneiss and granite boulders. Below this, about forty feet of Cretaceous elay-shale are exposed, much resembling that alrendy deseribed, and of the same durk greenish-grey colour when freshly broken, but weathering to a lighter shade. It crumbles into little rectangular fragments by the action of the frost and weather, and the bank, oven where freshly exposed, is penetrated in all directions by cracks with rusty surfices. Several large lenticular septarian nolules oceur in the
section; one of them was fiond to be as much as six feet long, with a thickness of about two feet in the middle. The general sulstance of the concretions is nearly black in colour, and havd; and is composed of argillaceous matter, cemented togother with culcic cathonate, and not highly ferruginons. The veins which traverse them in all directions, are composed of white mad ambri-coloured calcite. In certain layers of the section, well formed selenite crystals are found in great athundance. They are often several inches in length and quite transparent, and sometimes form radiating groups. Some parts of the clay-shate yield also to carefal search mmerons tingmentary remains of small telositian fishes, consisting of detached seales, and bones, chietly from the vertebral colmm. (Plate 18.) These orgmic remains arc of an incompicions brown colonr, and little altered ; and from the crmbling nature of the matrix aro very dificult to preserve atw specimons.
188. Pembina River, where it debouches from the escarpment at St. Joseph's-a small settlement of half-breeds, a feew miles south of the Lino-does :oot show any good sections of the Cretaceons formation, its high banks being composed of drift material. 1 was mable to trace the rumours of the ocenrence of gold, conl, and other valuable minerals, in this locality, to any authentie souree.* That fugments of lignite, or even traces of golld, shombld exist in the drift deposits of any part of this region, is not impossible; but it is more probable that the roports concerning the latter, have arisen from the diseovery of iron pyrites in the Cretaceous clays.
189. The course of the Pembina River, west of the escarpment, will be seen on reference to the map. Where crossed by the Commission Trail, nearly twenty miles west of the edge of the escarpment, and alknt ten north of the Line, sections of the Gretaceons rocks are agran fomed. The river, though not more than thinty or forty feet in width, here flows in an immenso valley, about a mile wile, and three hundrel feet in depth. The banks of the valley are remarkably abrupt and steep, and in any formation composed of harder, or less miformly soft rocks than those of this part of the Cretaceons, would no doubt afford numerous and fine exposures. As it is, comparatively few sections are to he foumd, and these in the form, merely, of steep weathered bunks, in which the original stratification is not apparent till they have been searped down with the pick and shovel.

[^25] e of the f:ugillahishly mins, are s of the undance. nd somed also to in fishes, column. n colour, are very ont at St. h of the ation, its trace the nerals, in ignite, or rt of this - reports pyrites in
190. The most promising bank in this locality yiodded, when thas treated, the following rection:-

The lower shale is so soft as to merit rather the appellation of hardened clay. It is blackish in colour, from the almixture of a snatll quantity of carbonaceous matter, and also holds minute selenite crystals and fragmentary fish remains; the hatter quite comparable with those alreaty aleseribed, in form and state of preservation. Above this is a bed of soft decomposed clay-slate, rnsty in colour, und holding much selenite in small stellar gromps, which wre generally arrmuged in fissures and partings of the rock. They have been developed, no doubt, by the decomposition of' iron pyrites in the bed, subsequent to its deposition, und mader the influence of percolating waters.
191. The ironstone, though nodular, forms a nearly continnons sheet in some phaces of about two inches in average thickness. It is grey within and rather compact, though weathering brown and becoming soft externally: A sample oxamined was found to coutain but 21.78 ger cemt. of metallic iron.
192. The upper poetion of the section consists of harder clay-shale, which is, however, when freshly exposed and full of moisture, companitively soft, and shows little tendency to broak along ite deposition phanes. When dried and weathered it becomes harder, and splits easily into rather thin leaves. Its colonr when in the bank is sombre olive-grey, but on the surface a pule whitish-grey. It contains no fo.sils, muless certain branching rusty lines, or small tuben, with which some layers are penetrated in every direction, may represent fincoidal romains.
$1: 3$. The lower part of this stratum is probably sisty feet ahove the level of the Pembina Fiver, and though not aetually seen at a higher lovel in the bank at this place, it occurs at a groater elevation in other sections. Its erumbled remains also exist at a highor level near this place, and form the sulv, oil of the prairie wherever the surface has been disturbed sufficiently to bring it to view, for some distunce west of the Pembina Valley. As the beds appear to be perfectly horizontal, this stratum would have a thickness, measuring upward from its base in the section just given, of at least 240 feet.
 the Prembina Valleg, it is will more gorgelike and abompt, and whews areverel nertions of the liombina Mombain bede. One of those mint be over 100 fiee in height, and though the softer fishobearing shaten probahly oerome at its hase, they appar to be completely covered by the thatling down of dehris from the ermbling mper lieds. No modules or bands of
 wowt of the river valley, and someth of the Line, show more or lese perfeed seetions of the same hard ypher chay-shates.
105. Ahent firty milos west from the foot of Pembina Momintain, axpusuren of hads helomging to the same group ugain ocerme in the hamks of the valley of Long River and in neighbowing eonber. A elitf on the west side of Lang Riser, some miles merth of the line, shows a comsiderable thickines of shate near the water level, mulerlying a grent accumulation of diff. It is also seem at intervalds for ten or twelve miles somth alomg the river valley. It apmaim, as manal, to he quite horizontal, and as it is fomen at rawions levels from that of the hed of the river to the genemal surface of the prairice, it must still have a hhicknose of finly one humdred foed. The elay-shates here present exactly the physied chamereristies of those of the יyper part of the Pembina River nertions, and also resemble them in the palueity of their organis remains. The cmioms rusty markings, which may be the remains of small amelid burows, or of fuenids, are still wey common; and also other ohscure risty impressions more nearly parallel to the doposition surfaces. The mould of a small fragment of Lowerams, which shwel the prismatie structure of the shell, was fomm; also the flattened improssion of' a small naticoid shell, and other forms resembling boken portions of a ribled cephalopod.
196. Ohselme makings, like these, indicating the former positions of calcareons fossils, are frequently found in some layers of this clay-shate both here and at Pembina Momontain. The fossils themselves, lave, no doubt, been removed by the action of sulphuric acid, formed by the decomposition ly surblace wates of iron pyrites, contained in these little consolidated bods. The acid so producel, has attacked the caleic carbonate, converting it into the smphate, and this haw heen redistributed and deposited in the fissures and more porous layers of the heds an selenite. The elay, at the time of this action, must have been so soft as to chase in on the carities formed by the alstraction of the shells.
197. From this point, for over 350 miles westward, I have found no exposures of Cretaceons rocks in the vicinity of the forty-ninth parallel.

For allout 150 miles, tho comutry in mo thiekly covered with drift deponits,

 shoping and grassy lanks. When the rocks momerlying the drift we rgain meen, near La Roche Poreée, they belong to the overlying Lignite Tortiary neries.
198. The nection seen at the erosing-place of the Pomblinal River, and given almes, is the most instrintive, an showing the line of innetion of two pertions of tinis division of the Cretacems ; of these, the harder beds, highest in the nection, firm the sulastimem of the plains fore a belt th leant finty miles wide, and extemling westward firon the fromt of Pembina Mombain. The lower beds chameterized by their different lithological chanacter, and the eomparativo abomance of fish remains; not only form the base of the Pembina River nedion, but are extensively developer along the front and foot of Pembina Mountain.
199. Microseopically examinel, the clay-shater of the lower series are seen to consist of fine argillaceons matter, with some siliceons frains, not much rounded byattrition. No minute ongmisms are visible, and the rock does not effervesce when treated with an acid; proving the entire absence of caleareow matter. The "porer and hatrer chay-whates from Pembina Riverand Long River, show almost exactly the same charmeters. Siliceons particles are more abomdant, but of smaller size, and more miform ; and no otfervescence is cansed by acid. Both rocks contain small quantition of bitmminous or carhonacems matter. When heated they blacken, and that of the lower division smetimes even sustains a small flame tor a moment. When tho carbonacous mater is removed by urging the heat, a hard mass, with much the texture of lisenit poreelain, and of white, or very light dun-colour remains. Some layers of' these tine Cretacems clay-whales would yield excellent material for the manuficture of pottery.
200. These meks, themgh so barren palaontologically, ate of interest from the great area which they must maderlie, and the very great rarity of their exposimes. 'The upper pertion of the Pembina Momtan series, must have a thickness of at least sono feed, and taking into comsideration the gentle westerly dip which the Cretaceons rocks probathly pessess throughout all this region, and which tinally carries them muler the 'Tertiary, it may be much more. Of the lower protion, it is impossible to speak with cortainty, but it is probable that a thickness exceeding 100 feet was seen in the various sections examined. It is not pretended that the
division into two parts above indicated，is so distinct as to be of much stratigraphical importance，or of n nature to be constant over great areas． It expresses merely the composition of the series at the Pembina Mountain localities．

Lignite Tertiary Rocks on the Souris River．

201．In proceeding westward across the drift－covere，region above referred to，the upper beds of the Cretaceous are passed over．The Lignite Tertiury rocks next appenr，and are first seen in the valley of the Souris River at a point 250 miles west of the Red River，and about four miles east of the tributary from the south known as Short Creek．These beds may underlie the prairie some distance east of this point，but the banks of the Souris Valley near this place sbow a remarkable change， presenting numerous exposures of the Lignite Tertiary to the west，while eastward they are gently sloping and grassed from top to bottom．This change probably coincides with the eastern edge of the Tertiary basin． The line of junction runs north－westward，and from the contcur of the surface of the country，and other considerations，I have been led to indicate it on the map as crossing the Boundary－line near the 230 mile point．

202．From the point where the Lignite Tertiary beds are first seen， expostures occur at frequent intervals in the banks of the Souris Valley， westward，to the position occupied in the summer of 1873 by Wood End Depot Camp，a distance of about twelve miles by the Line，and consider－ ably more by the river．

203．The hard sandstones of the base of the Lignite Tertiary，fringe the Souris Valley near the mouth of Short Creek，and give it a pictur－ esque appearance．These nre not，however，the very lowest beds of the formation，as some miles east of this point，and underlying the sand－ stones，whitish and purplish clays，and arenaceons－clays occur；and in one place，a small bed of lignite was found．＊
駺號204．On the soutb side of the Souris Valley，and a short distance to the east of the valley of Short Creek，the Roche Percée group of rocks is situated．This locality has already been described by Dr．Hector and Cuptain Palliser，who made a branch expedition to it from the north，in

[^26]
cretaceous and tertiary-souris hiver.

August, 1857, being induced to do so by the reports of Indians and hate breeds.* These remarkable rocks, which have torus of matians and halfstition to the Indians inhabiting the survo long been objects of superchrions forms to the weathering away of a wounding country, owe their low a bed of similar rock which weather a sott grey sumelstone from leby an abundant calcareous cementhers yollow, and is rendered durable stones show false-bedded ntructure in Both the upper and lower sandupper hard portion, is on a smalle in great perfection; thongh that in the planes of the rock. The cappiner ncale, owing to the thinner divisional uniform manner, but in belts sevendstone is not hardened in a perfoctly north-west and sonth-cast direction, undrels in width, lying parallel in a disintegration. There is also a syston woparated by nomees more easy of angles to this main direction.
205. This combination of structures has given rise, under the long continued action of the weather, to the romarkably castellated, fantantic and picturesque roek sconery of this part of the Somis Valley. The bank, and the erosion of the underdy diagonally from the grass-covered eross joints, has, in several placering soft sandstone, parallel to the through them. The soft rock bees, produced window-like openings carvings, representing various animars in many places, rude Indian
206. Short Creek, already mimals and birds, strings of beads, \&c. shows many sections of the lignite strated an affluent from the south, assimed the most picturesque forms fata. The banks of the stream hare often quite red in colour from the alterom successive landslips, and are lignites. One of the most perfect seration of the clays by the burning of crossing place of the Commission sections is on the left bank, near the the prairic almost to the waters Trail, and extends from the level of

1. Soil.

[Plate 4, Fig. 2.]
2. Yellowish coherent sand

3. Grey clay........ Unio-like shells at its base holding
 with several very thin-leedded sands and sandy elays, 210
brange-red externally layers, weathering
6. Similar to No. 4, with ilecayed.. 6

8. Hard yellowish sans... 120
aceous. ... 30
${ }^{\bullet}$ Exploration of Rrition

- Exploration of Rritish North Anterica., pp. 49 and 225.

9. Good hard lignito... 22
10. Harl yellowish sandy clay 27
11. Goorl lignite.. 49
12. Greyish sand and sandy elay, showing lines of stratifiea-tion-in some phaces soft and ineoherent, in others with large conerutions, and sometimes forning a nenrly solid smadstnne $\ldots . . .$.
90

13. Groyish-yellow clay with many thin layers of orangewenthering ironstone \qquad
14. Lignite.. ${ }^{2} 6$
15. Greyish and yellowish hard saml and sanly clay......... 110
Section concealed by slope of detritus, about..... 120

Small spherical ferruginous nodules, resembling bullets, occur in consideruble number at the foot of the bunk. They have a calcareous cement, and are derived from one or other of the sandy layors. This exposure is remurkable for the very gentle graduation of one bed into the next, making it almort impossible to draw lines between them in a measured section.
207. Sections more or less pelfect are exhibited in many places in the Souris Valley, a mile or two went of the entrance into it, from the south, of Short Creek; and more especially on the north side of the valley. They show a great similarity, though not absolutely the same in any two places. One of the most perfect exposures seen was in the face of a bank from sixty to seventy feet high, and consisted of sand, sandy clays, and hard fine clays, very regularly and perfectly stratitied, and coloured in various shates of yellow-grey, grey, and light drab. At two different levels harder sandstone layers of small thickness were seen, and also three distinct beds of lignite. The lowest is a hard compact lignite resembling camel coal in alipeet, and two feet three inches thick. A few feet above this a second seam, eighteen inches thick, occurs, and still higher in the series, and about half-way up the bunk, a third, of the same thickness. At the top of the bank some large nearly spherical sandstone nodules rest, and have evidently been derived from a superior bed which has been removed by denudation. The clays, and arenaceons clays, at several ditterent levels include remains of mollusca, but these are very fragmentary, having been crushed by the compression of the containing material. A species of Unio is abundant, and remains of gasteropoda also occur, thourh ravely, and in poor preservation.
208. On the opposite side of the Souris Valley-which is here of con:riderable width-and not far from the last mentioned section, soft stundstone beds, capped by a harder layer also of sandstone, weather into
table-like forms. These beds are doubtlens the representatives of those which, a fow miles onstward, prolnce the Roche Percée.
209. Six miles north from Wood End Depot, on the bend of the river, the following section occurs:-

The beds appear to be perfectly horizontal. Those of sand and arenaceons clay, though having the appearance of well chamaterized layers at a little distance, and giving the banks a ribloned nspect, are found, on closer examination, to pass almost imperceptibly into each other. This peculimity is often to be observed in almost all localities where these rocks are found. The so-called "leaf-heds" are of "greyishpurple tint, and contain many impresssions of flug-like parallel-veined leaves, which, though distinct enough when freshly taken from the bank, it is impossible to preserve on account of the crumbling nuture of the matrix. The ironstone, though generally forming extensive sheets, is nodular in structure, and varies a grood deal in thickness. It wenthers a brighit brownish-red, is hard, compact, and very heavy, and on fiesh fracture is bluish to yellowish-grey.
210. A short distance south of this locality, the bank shows the following section very perfectly:-(Plate 3, Fig. 2.)

 howover, prove egually compmet with tho lower heds where undinturbed. Layor 18, is ome of tho fow instmes in which lignito was ohserver la lie
 and compatet in this section. Owing to the weming away of the sotter Ntrata a large quatity of this material strown the wirtione at the hillside.
211. This seetion does not seom to correxpmul at all with the last, thongh sitmed only a few lombred yards from it; and if monder for break in the stonta intervenes-and thero is no alpermere of my suchthe horizontal meertainty of thodeposit mast be very great. Fragments of a resicular material, resembling seorincoons lasa, are abundant in this locatity. The substance is problneed hy the eombustion of the lignite beds, a phenomenon which receives altention on a sulsequent puge.
219. Nemly three miles southward from the last mentioned locality, in following up the valley, another vory grod nection ocen's on the east side of the stremm, where in one of its muny devions windinge, it has undermined the bamk. This section is specially interesting, as affording one of the best localities for the collection of sholls of Mollusea characteristic of the formation. The section is as below, measurements being estimated :

913. The shell bed, is of hard grey sandy clay, and in some places is

Figure: Shart (ruek. (S:2ni)

1

very full of sholls, which are also less crinshod and in a better state of proservation than is usmal in this formation. The most common Mollane in Melanit Nebrascensis M. \& H., which oecum in all ntages of growth, and neveral varietal forms. There is alon a necomen necien of this genus, or of (ioniobasis; firmments of Unio and Palutina; mad a few examples of Corbula (Potamomya) mactriformis M. d. II. The latter must be considered a brackish-water type, but with this exception, no brackish or salt water forms me fomen in these sections of the Somin Valley. Tho Mollusca exaetly renemble thowe of the Fort Union or Great Lignite (iroup of the Misnouri, and fix with certainty the strmigruphical ponition of the beds here reprenented.
214. In the water of the strem, at this place, aro sereval large spheroidal sandatone concretions which have a temdency to split into hayers parallel to their flattened surfaces-one of them measuring fone or tive foet in diameter. These do not apqear in the bunk, but powsilily may have been washed out of the lower purt of the seetiom, which was not no cleurly Nhown.
215. South of the last section, and about me mile nearly dae mowth of the position oceupied by Wood End Depot, an expesure, showing the most valuable lignite bed I have seen in the Souris Valley, is situated. The beds are arranged thus:-(Plate 3, Fig. 1.)

216. The bottom of the lignite is about twonty-five feet alove the level of the river below, and this part of the sectiom, though npmurently consisting of yellowish sandy clays like those overlying it, is obsemre. The lignite is contimonsly visible for at leant two humedred feet along the face of the bank, and seems to preserve uniformity of charater and thicknens. Extermally it is often erumbling, and mixed with clay which has penetrated its joints from above ; but where freshly exposed, it is hard and compuet. It is quite black on freshly tractured surfaces, but has a brown streak, and in many places the structure of the original wood is still quite diseernible. Some surfaces are strewn with fragments of mineral charcoal like that found in many true coals. Other specimens are apparently structureloss, and resemble cannel coal in appoarmee, though not in composition. The upper beds of arenaceous clay yield a few poorly preserved shells (Paludina, \&c.)
217. On the opronito side of the river valley, near this place, thic upper part of the bank shows a grow mection of aronacome elay, helow which, and rome titteen or twenty feot below the pratio hevel, is a Neam of lignito of grosd quality, fo:ar feet in thickness. 'This lignite hed would seem to occupy a position matigraphically superior to tho last.
218. Somewhat further up the stream, and on the same side of the valley, about sisty feet bolow the pario level, ami sixteen feet abowe the river, a bed of lignite werems; of which the uper there feot only wo visible. The bank above it is not well exposed, but appeare (on consist of sumby chays. The lignite is of good quality, but much weathered at the ont-crop. It may very probahly represent the continution of that ot the Inst section.
219. The whole of these doposits, though in some platess showing a dip anomenting to a few degrees in one direction or other, apper to havo no determinate direction of incli: "ation, but over farge aroas to be ats nearly as possible horizontal.

Gap in the Siction on the Bomblary line.

220. West of Wood Ead, the Somris Valley rins north-westward along the base of the Cotem, diverging rapidly firom the Bomulary-ine. It losen, at the same time, its abrupt chameter, amb be sections either of Tertiary or Cretaceous rocks oceur on it tor a long distance. In following the forty-ninth parallel, the escarpment of the thind great prairie level is overcome, and it is not till atter having passed through the broken Cotean bolt, and reached the (ireat Valley, that exposures of tho maderlying rocks are ugain found. This valley is the most enstern great chamel of erosion which crosses the Line sonthward, towards the Missouri, and in it the beds of the Lignite 'lertiary are exhibited on a gramed seale. On the Boundary-line, thas, a space of sighty-two miles fiom the 263 to the 345 mile point, is completely slurouded by drift deposits. There is every renson to boliove, however; that the Lignite Tortiney beds stretch minterinptedly betweon the two loculities, and an exposure of these rocks, some distance borth of the Line, helpe to sustain this view.
221. This small exposure of the Lignite 'lertiay was diseovered at a locality on the meridian of tho 30 mile point, but nearly twenty miles north of the Line; where the 'lrader's Road to Wood Mometain, in going westward, erosses the Souris for the second time. Of the rocks at this place a very small section is seen, but sufficient to correlate them with
(a, thic below 1 , is :a ite bed last. of the above ly are inist of' at the of the
wing a 0 have bo as
thene to the eant mal west. At the water's enfere, alome eighteen inches of a heol of lignite appears, the bottom of the bed being eomeroled. It is owedaid by neveral the of preyish sally rlay, of rather tine texture. The lignite exartly resembles thone dereribed as oremring at Womb Emd, and in some places slows epots of amber.
 $166^{\circ} 30^{\circ}$)-the emontry wan examined on two lines; the firet nearly coinciding with the finty-minth parallel, the secomd following the Traders' Romb abowe memtioned, and at its firthest norlhe ely point being thirtyeight miles from the Jine. In deseribing the geology of this region, the general phan of taking lomalitien in sureossion westway, will be in so far departed from as to allow the deseription of these in the immediate virinity of the Line, before mention of these further to the north.

Ligmits Tertiary Rocks of the Circat Valley, and Pyramid Creek.

2e:3. It the gorge ahrealy referred to an the cireat Valley, the bets expened are at an clevation of alout seven hamerel feet greater than that of those lant seen on the Somis, near Wored Eald; and probably at leant six
 whation to sither of these suratigraphically, it is, however, impossible to detemine. The lowest heds seen are rimiously banded dhys and shales ; chay beds charged with phant remains aud carbmateoms matter, and having quite a purple tint when viewer from a little distance, altermating with clays nenrly white, and yellowish samdstones. Above these is a sambstome hayer which though of no great thickness, has in several places prodnced remarkable comical momeds ly neting an a protecting capping for the softer strat:i helow, the latter forming slopes or nearly perpendicular steps, areording to their relative hardnoss, which, taken together with the distinctive coloming of the beds, gives a sery striking anpeet to tho swenery. Plate 6 , which is acemately copied from a photograph, gives an idea of the pecoliar weathering of these berls. Alowe the samdstone capping of this lower part of the section, is a great deposit of samely clays and concretionary samalstones, among which three bells of lignite of various thicknesses are interealated. The beds are almost horizontal, but mudulate at low angles, and the valley of the strean appars to ocenpy, in the main, the centre of a shallow syullinal fold.
23.4. The upper purt on' the section in this valley consists of at least 100, and probably 150 feet of clays and argillaceous fine sands of groyish
and yellowish-grey colours, and well stratified. They contain thin leafbeds at several different levels, which are prominent from their greypurple tint; but though eontaining very many dicotyledonous and flag-like lenves, from their soft and crimbling nature, they to not yield determimble specimens.
225. This part of the seetion also inchudes at least three lignite bels. The highest of these is about $1+0$ feet above the base of the section, and three feet or more in thickness. It would appear to be of fair quality, though much decomposed and quite crumbling at the out-crop, from the action of the weather. The next is abont 120 feet ahove the same datum, and can be traced a very considerable distance along the face of the bank. l: is five feet in thickness, but inchdes, where examined, several thin layers of earbonaceons shale ; and, though of good quality in places, does not appear to have the same miformity in the various layers that is generally found in the coals of this region. The lowest lignite is some seventy-five feet above the base of the section, and is only a few inches in thickness.
226. The complete section may be this represented :-

1. Upper part, yellowish sands and clays, himmites, \&e
2. Hard grey and yellowish, somewhat false-bedled sandstone, forming a "capping rock" to beds below (about) 30
3. Greenish-yellow, thinly beidlel fine sand................. 150
4. Soft yellowish sandy elay 24
5. Greyish and yellowish hard beddel clay................. 26
6. Blackish thin -bedded clay or shale with plant remains. . 50
7. Greyish thin-ledliel clay, becoming darker toward the top, (pliant remains) graduating into next bed.
8. Hard, pale-brown, coupact clay, with very few plant remains...\ldots..
9. Harl, whitish clay, with some plaut remains, and a seattered layer of hcavy ironstone balls about a foot from the top..... ...
10. Thin-lvedlded greyish and blackish hard clays, with leaves,
and some sumal groups of selenite crystals, and some sunall groups of selenite crystals............

11. Grey hard sand, with charcoal-like fragments in some phaces...... 30

12. Soft grey clay \qquad
13. In certain parts of the upper portion of this seetion, the remains of Mollusea occur in some abundance, but in a very bad state of preservation. By diligent seareh, however, some speeimens of Melania Nebrascensis were obtained; and also of a peculiar angular Paludina of
hin leaf ir greyons and ot yield ite beds. ion, and quality, foom the datum, to bank. ral thin ees, docs that is is some nches in
the type of Paludima (Vivipura) trochiformis, M.\& H. No shells, other than those of purely fresh waters, were found.
14. The lower part of the section forms a group well distinguished by its colour and the perfection of its stratification from the upper, and often endures, protected by its hard sandstone (No. 2), when the moro crumbling upere division has beon removed. The plant remains, though oecuring more or less throughout the whole section, are best preserved in the lower purplish layers. They consist chiefly of leaves of dicotyledonous trees, which appear to have fallen when mature, in the course of nature, and with the change of the seasons, and floated without violence to the grent lake in the fine silty deposits of which they have been prenerved. Populus, Cinnamomum, Quercus, and other forms, are represented. Leaves and small brauches of coniferous trees, referable to Sequoia Langsdorfii, and Gilyptostrobus Europeus, are particularly abundant at this place. Details concerning the fossil plants of the Lignite Tortiary, will however, be found on a subsequent page.
15. Mamy of the crumbling hill-tops in this valley have a brick-red colour resembling that seen in parts of the Somis Valley, and due, as there, to the combustion in situ of the deposits of lignite. The slag or clinker produced by this action is also found here, though it was not observed actually in place.
16. The next stream crosses the Line at the 351 mile point; it also flows through a deep valley of erosion, and may be called Pyramid Creek, from a remarkable prramidal hill formed of the usual clays and sands, capped by a portion of a layer of hard grey sandstone, the cement of which is calcareons. It hats a tendency to break into large quadraugular masses along iutersecting jointage planes, and shows conspichous fellsebelded structure. Below this is a thickness of about fifty feet of rather incoherent fine yellowish sand sometimes argillaceons. This, producing a sloping bank, is not very well seen, but constitutes about one-third of the thickness of the beds exposied in this valley. The middle third consists of soft crumbling samelstone or compact sand without any apparent cementing matter, and of which the constituent particles are rather coarse; contrasting strikingly in this respeet with the overlying material. It shows evidence of having been deposited by water in rather rapid motion, throngh its entire thiekness, but the false-bedding is very definitely ent off at many different horizons by perfectly horizontal planes, above which it again commences. The weather acting on theso beds causes the hill sides composed of them to assume a well-marked
torraced appearanee, on a small seale, each horizontal break produeing a terrace level. The sandstone contains here and there a few poorlypreserved shells, anong which can be recognized two species of Melania, fragments of Paludina and of' Unio. In one place a layer of iroustone, about three inches thick, is seen to run for some distance. The most notable feature, however, of this part of the section is the remarkable concretionary chameter of some layers of the sandstone. The concretions are hard, and of all shapes and sizes. They are generally spherieal or spheroilal, and two or more of them are often ennfluent, forming dumb-belllike masses or more or less continnous sheets of a lumpy character. Many are long and root-like, and project in a singular way from the bonk,
17. The lower third of the seetion in this valley is-as seems often to be the case with the lower layers of these rocks,-much more clearly defined, and divided into thimer beds in which dark colonrs predominate. Altogether the section here much resembles that seen in the last great valley; the lower bods of this probably correspond with the purplish leaf-beds there, and the great thicknoss of sands and sandstones above, eorrespond in a general way; though in this place they differ in the absence, so fur as could be ascertaned, of beds of lignite. The layers of hardened sandstone must also in this ease occupy different horizons in the two sections, but this is not to be womdered at, when the extremely loeal, and indeed often nodular character of the induration is considered, and the fact that it merely depends upon the introduction of a small proportion of calcureons cement among the particles already compacted by pressure.
18. The whole section in Pyramid Valley may be represented thus:
vekt, in.
19. Hard capping saudstone, (several fcet)
$\begin{array}{ll}50 & 0 \\ 50 & 0\end{array}$
$\begin{array}{ll}50 & 0 \\ 50 & 0\end{array}$
20. Soft yellowish sandy beds, forming a sloping bank, (about)
21. Soft yellowish sandy beds, forming a sloping bank, (about)
22. Stratified sandy clay, false-bedded, (about) 305. Purplish plant beds with thin layers of lignite, and mnchselenite in thin sheets, isolated crystals and stellargroups30
23. Ligmts, with many spots of amber. 16
24. Purplish ben, with a few plants 20
25. Grev slightly coherent sand, with nodules of arenaceous selenite crystals 40
26. Purplish bed, with obscure remains of leaves. 10
27. Incoherent arenaceous clay and sand 70
28. Purplish-grey arenaceous clay, with obscure plant remains and some fossil wood 30
29. Brownish clay with ferruginons layers. 60
30. Lignite 10
31. Brown earthy bed 06
32. Grey somewhat coherent coarse sand, with argillaceous matter 120About1440
ing n orlylania, about tuble merearo sphe-b-bellMany often loarly inate. grent rplish there, 11 the ers of pns in mely lered, small acted thus:

The rocks show no well marked dip, but appear to undulate slightly at very low angles.
233. The occurrence of gypsum as selenite was observel, here and elsewhere, to be nearly always in association with plant-beds, and generally with those hodling many half-obliterated vegetable remains, and of a purplish shade. This association is not accidental, but brought about by the action of the included vegetable matter, which when still mudergoing decomposition, would facilitate the deposition of iron pyrites by the deoxidation of iron compounds in presence of organic sulphur compounds. The porous character of the plant-beds, at a subsequent period, would allow the passage of surface waters containing oxygen ; leading to the decomposition of the pyrites, the formation of sulphuric acid, and by its action on the clays, of selenite or calcic sulphate.
234. A few miles west of Pyramid Creek several hills are capped with heary and hard sandstone beds, a feature quite exceptional in a comutry so gently mdulating. These do not appear to be perfectly horizontal, but have a slight dip to the west. They may be equivalent to the capping sandstone of the Pyzumid Hill, but more probably are yet higher in the series.

Ten miles west of Pyramid Valley, in the upper part of the valley of another stream, yollowish and grey stratitiod samdy clays, are again seen, but are not perfectly exposed.

With the exception of this exposure, the underlying rocks are nowhere clearly visible in the vicinity of the line from Pyramid Valley to l'orenpine Creek, a distance of alomethirty-five miles. One very considerable stream is crossed abont midway, but its valley is wide, and with gently sloping lanks. Highlauds appear to the north, and may possibly show sections of strata overlying those seen in the bamks of the streams, but I was unable to reach them, the ground, especially in the vicinity of these highlands, being covered with snow, and the time at my disposal limited.

Lignite Tertiary Rooks of Poreupine Creek.

235. In Porcupine Creck and the tributary vallies, many partial sections occur. Liguite is seen in three places near the Line, and just abore the level of the brook in each instance. The exposures sem to belong to the same bed, and if so, nearly a mile of its borizontal extent
can be traced. The lignite and associated beds undulate slightly in all the sections, the former decreasing from four feet in thickness in the most northern bank, to ono foot in that furthest south. The overlying rocks consist of yellowish and grey sumds and clays, well stratified, and much resembling those forming the upper part of the section in the Great Valloy. (Plate IV., Fig. 3.)
236. The best exhibition of these strata was obtained in a bank about forty feet in height, on romoving the decomposed material from the surface. The section was carefully measured as follows:-

	Soil.	fyrt. is
2.	Quartzite drift, several feet.	
3.	Soft greenish sandy clay, 2 feet or more.	
4.	Soft blackish clay	6
5.	Rusty crumbling sandy clay	
6.	Grey clay, with some plant r	
7.	Grey clay, with well preserved dicotyledonous	
8.	Impure ironstone in concretions	03
.	Yellowish sand and sandy clay, with obscure plant remains	90
10.	Greyish and yellowish fine sandy clay	
11.	Scattered layer of small ironstone balls	
12.	Grey fine sandy clay	0
13.	Rusty layer, with crumbling plants	
14.	Grey	04
15.	Detached masses of lignite showing the form of flattened tree trunks, about	
16.	Yellowish-grey fine sand	6
17.	Grey clay, with plant remains.	04
18.	Lignite, not of best quality. The grain and form of component wood generally clesrly perceptible. Bed undulating slightly. 3 to 4 feet. Soft grey arenaceous clay, \mathbf{l} to 2 feet.	

\qquad
237. The vegetable remains irabedded in the rocks overlying the lignite, are mostly those of deciduons trees, and in certain beds are very perfectly preserved. Lignite from this section was used for camp fires, in the absence of wood, but did not burn very freely, as it was taken damp from the bed, and piled on the ground without any provision for draught from below.
238. The most interesting and important section, however, in this region, is that which ocemrs in a valley joining that of Porcupine Creek from the west, exhibiting a bel of lignite eighteon feet in thickness, and yielding also some of the most perfect and interesting remains of plants. The bank in which this out-erop is situated is over half-a-mile outh of the Line. The beds are arxanged thus:-(Plate V.)

Figure 1 - Porempine (reek. (s 238 .)

Figure 2-Pormpine Clesk. (S - $\mathbf{2} \mathbf{4 0}$.)
sectuons of the llonite rentiany.

Face p. 93.

Though mudnlating a little, the strata have no trae dip, and are as nearly an possible horizontal on the large seale.
239. The lower part of the lignite bed is very compact and tough under the pick, and holds in some layers many drops of anber. The jointage planes form a conspicuons feature, and were not moticed in anything like the same perfection, in other lignite heds examined. They canse the coal to break otf in large cubical pieces which lie in the strean at its bave. Some of them show thin seams of white gypsum, and in one case a thin film of iron pyrites was detected, being the tirst appenamee of this mineral in comection with these lignite deposits.
240. This section also exhibits the tirst instince of dislocation, observel to effect the Lignite Tertiary formation. 'The eighteen-foot lignite and associated strata, are seon to have beon brought to their present position by a downthrow fault, on the other side of which their place is taken by underlying smuly clays. (Plate V., Fig. 3.)
241. The wombern side of the valley, opposite this great liguite bed, is broken down, and forms a gentle thagh irregular slope, which is encumbered by many large, stractigely whinel and coloured bowk at stone, much harler than any rocks ocenrring in the neighbourhoor, and in pieces larger than the erraties found in the region. They proved on inspection to consist of massen of boels such as those associaterl with the lignite, but induratel ly its combustion, which has also caused the interruption in the edse of the valley. About a fourth of a mile east on the same valley the great lignite is again exposed, and apparently in much the same development and association.
242. The plants in layer 5 , are in a beantiful state of preservation, and when the clay is first split open, show every vein-mak in perfection, not
only in the larger and conser lenves but in delicate forns, which are here unusually common. The matrix is, however, unfortunately very soft ; it crumbles easily, and tends to ernck on drying. A considerable number of specimens of fossil plants from the vicinity of Poreupine Creek, have been preservel, though all in a more or less shattered condition. Thoy are in the muin identicul with those of the Fort Union gronp, and include Glyptostrobus Europeus, Seguoia Lanysdorfiii, Thuja interrupta, Onoclea sensibilis, and one other specios of fern; and examples of the leaves of muny deciduous trees. For the identification of these fossils, and the notes on them which upenr in a subsequent chapter, I am indebted to Principal Dawson.

No molluscous remains were found in any of the Porenpine Creek sections.

Liignite Tertiary Rocks on the Traders' Road to Wood Mountain.

243. The furthest west of the sections in the vicinity of Porcupine Creek-that in which the eighteen-font lignite oceurs-is sitmuted nemr the 393 mile point on the Line, and lies about thirty miles south-east of the trading settlement of half ceds known as Montagne de Bois, Wood, or Woody Mountain. The point alove indicated was the terminal one of the geological work of the senson of 1873 . Reverting now to Wood End, on the Souris River, the exposures of Liguite Tertiary rocks on the Traders' Roal to Woorl Mometain-which rums nemly parallel with, but to the north of the Bomulary-line-require a brief notice.
244. The section tirst met with is that already deserribed as filling a gap in the sequence on the Line ($\$ 221$.) Westward for about ninety miles, no beds underlying the drift and surface deposits are seen in the vicinity of the Traders' Road. Beyond this pint, however, for the remander of the way to Wood Mountain-abont thirty milos-many more or less perfect exposures of the rocks of the Iignite Tertiary occur.
245. The road here follows along the northern slope of the watershed platean, or occasionally crosses over one of its projecting spurs. The whole region appears to be formed of rocks of Tertiary age, against which the drift deposits of the northern extension of the Cotean, elsewhere more fully described, are found to lie.
246. The north-castern exposure of this series is formed in a steep wooled hill, which forms the salient angle between two of the broal flatbottomed vallies, so common in this region. The section consists of alter-
nations of samd and memaceons chay of light-grey and drab colomes, the different layers not well detined. No lmol mandstone layern eropont, and the whole of the beds are of a very soft and menemsolidated antare. \boldsymbol{A} semm of impure lignite, two feet in thicknesw, occums. It is noft, hown in colour, and holds much samdy matter. Solenite crystals are aboudhut, and some thin layers of ironstone are alsw finuld. The whole appents to be quite horizontal, and the thickness more ore less perfetly displayed, must he over 150 feet.
247. The remainder of the sections from this point to Wool Momntain do not present my fentures of much interest, and resemble pretty closely that just deseribed. Yellowinh-grey, greyish, whitish, and drab, soft aremaceons cluys, and sandstones, uppour with unvarying momotony in all the searped bumk of the vallies, which here ramify in overy direction. No fossils, except the badly preserved remuins of plants, were found, nor were lignites of any importance observed, thongh some of the men on a hunting excursion, some miles south of the road, brought back samples of a fuir quality.

(:IIAPTHRV.

mocky mountals.

 plats-Vertehrate fossils Seotons Wres of the Bab Lanos to Winte

 Wesp of Woub Moenthan settomentr to Whire Mob Rovek Bay of Crutacous lonck - 'Pertiary llatean-C'retacous No. 4, with forsils-Whire
 of Milk River-Section near Went Fork of Milk River-Age of Beds oxpused - Cretaceors phin-Milk River Valley-Neetions in Milk River Valloy-
 Mhek Riven to mine West Berpe-Neetions North of Biant Butte-Nature anil height of the Buttes-Bast Butte-lgneous rocks of the Buttes-Milille
 of West Butto - First Branch Milk Miver-Vertelraten fossils-Neembl Branch Dilk liser-Mresh Water deposits-St. Mary Liver-l Disturbanco of Beds-
 sonth loork of Belly lisere.

Rocks near Wood Mountain.*

24. In the immediate neightourhool of the half.breed settlement of Woxd Mometain, no gromb expasimes were ohserved. Where rocks were scen, they were genorally hard greyinh sambtomes, which protrude here and there in the willes of the hills, and banks of vallien, the softer intervening beds being comeatod. These samdstones no doubt belong to the Lignite Tertiary, aml probably ocem at noveral different horizons. They have much to do with the detinite shape of the watershed platean, which bat for them would probably have heen but a diffuse ridge.
25. South-west of Wood Mountain, on the trail nsed hy the halfbreeds of that place in going to Fort N. J. Turney-a trading post south of the Line-manines cat in the somthern elgo of the water-shed platem show occasiomal sections of the Lignite Tertiary rocks. At nineteon miles from Wood Momtain, by odometer, the edge of the phateau is

[^27]reached, and a few miles finther on, the trail eronses the junction of the
 the lather formation. Near his phace, an exponare shown reveral neams ot lignite, one of which uppeared to be of gencl prabity and comsiderable
 bed turins out fiom the bank in which it oeroms, at "upions apming of cold
 thick aremacoun clays of purplish-mown colour; nott, mul comtaining nome selenite in crystals.

Sections in the Bad Lamels Sonth of Wood Mountring.

250. The mont instructive rection, howerer, in thes Wenal Mountain region, lies twenty miles simth of the settlement of that mane, on the forty-ninth parmblel nem the de5 mila puint from Renl River; here herts undoubtedly belouging to the Lignite 'Turtiary formation,-which, east of this locality, has covered wis great an area of comblry, -are found clearly supergoserl on indubitable Cretaceos romps. The exposures aro mumerons, and are producel by the strems flowing from the southern encarpment of the water-whed phatean, almowe refiered to, which hats here been gashad liy their action into mont pugged Bad Lands.
251. This term has attachend to it in the wentern regions of A murica, a peculiar significance, and is applied to the rugged and dewolate comntry formed where the soft, clayoy Tortary firmations are undergoing rapid waste. Steep irregular hills of chay, on which seancely a trace of vegotation exists, are fimmb, neparated hy deep, nearly perpendicularsided, and often well nigh impassable vallies; or, when denudation has advanced to a further stage-and espocially when some moro resisting stratum forms a natural base to the clayey heds-an arid flat, paved with the washed-down clays, almost as hard as stone when dry; is produced, and supports irregular cones and buttes of clay, the remmants of a former high-level platean. Denudation in these regions, proceeds with extreme rapidity during the short period of each yoar, in which the soil is saturated with water. The term first and typically applied to the newer White River Tertiaries of Nebravka, has been oxtended to cover country of similar nature in the Lignite Tertiary regions of the Upper Missomi, and other Tertiary areas of the west. In the Bad Inndr, south of Wood Mountain, the hills ansume the form of broken plateaus; degenerating gradually into conical peaks, when a harder layer of sandstone, or material indurated by the combustion of
lignite bels, forms a ressistant capping. Where no such protection is atforded, rounded mud-iumps are produced from the hosargeneos aremacoous clays. Waste próceeds entirely by the power of falling rain, and the sliding down of the half-liquid clays in the period of the melting snow in spring. The clay hills are consequently furrowed from top to base, by inmuncrable rumuels converging into larger furrows below. The small streams rapidly cutting back among these hills, have formed many narrov stee 1 -walled gullies, while the larger brooks have produced wide flat-bottomed vallies at a lower level, in which the streams pursue a very serpentine course. Donudation is even here, however, still groing on, as from the frequent change in the chamel of the stream, it is constantly encroaching on the banks of the main valley, underentting them and cansing landslips. The method of the immense denudation of Tertiary beds, which is proved to have taken place over the area of the western plains, is explained by the degrulation still going on in this way along their present borders.
252. The genoral section at this place, which though not exposed as a whole at any one spot, is remarkably clear; is naturally divided into four parts.

Taking first the highost bed seen, the order is as follows (Plate VII., Fig. 2.) :-
a. Yellowish sand and arenaceous elay, sometimos indurated in cortain layers and forming a soft sandstone. It forms the flat plateau-like tops of the highest hills seen. About 50 feet.
β. Clays and arenaceous-clays, with a general purplish-grey colour when viewed from a distance. About 150 feet.
γ. Yellowish and rusty sands, in some places approaching arenacoons elays, often nodular. About 80 feet.
ס. Greyish-blaek clays, rather hard and very homogenoous, breaking into small angular fragments on weathoring, and forr:ing earthy banks. About 40 feet seen.
The whole of the beds appoar to be conformable, and disregarding minor irregularities, am quite horizontal to the oyc.

253 The clays and arenaceous clays of the apper part of Division β are very regalarly bedded, and include a lignite-beaing zone. Three iignite beds, of from one to two feet each in thickness, were observed, but they are separated from each other by rather wide elay partings, and are not pure or of good quality. A bed rich in the remains of plants, imnediately overlies the upper lignite. It is composed of a very fine,

(treat Valley- Weathering of Lientite 'fertiary heds. (sue:3.)
and nearly white indurated chay, in which the most delicate structures are perfeetly preserved. From its soft aud crumbling character, it is amost impossible to obtain or keep goosl specimens; hut, in the fragmeris which were preservel, a few very interesting plants appars. Of these, some are chanacteristic of the Fort Union gronp, and identical with those of Porcmpine Creek. The association of remains is that of a freshwater pond or lake, and a fine new species of Lemna oreculs aboudantly.
254. In the lower portion of this division, the heds are more sombre in tint, and little diffierentiated by colour, which elsewhere often renders the stratificution appurent. They contain wome layers of sand and samelstone, which show much fakse-bedding and current structure, and sometimes terminate suldenly with abrupt mudulations. In some plates, sufficient calcureous cement has been introduced among the grains to form havd sundstones, but their thickness is never great, nor to they extend far. Much ironstone occurs in thin nodular layers, and some selenite. Alont one-thind from the base of this division a bed was found, in which curions fruits have been preserved, referable to a new species of . Esculus. (Plate XVI., Figs. 8 and 9.)

255 . The most interesting feature of this part of the section, howerer, is the occurence of the remains of vertebrate amimals. They are found exclusively in the lower portion of this division, and most of them below the fruit-hed just mentioned. They are generatly closely comected with the ironstone layers, and are often themselves impregnated with that substance. They are also, unfortmately, apt to be attached to the ironstone noclules, or incorporated with them, and traversed by crack-lines, in such a way as to render it difficult to obtain good specimens. A more prolonged search among these hills, than I was able to make, would, however, no doubt result in the discovery of localities where the remains are more abundant and in better preservation.
256. Professor Cope has kindly examined the vertebrate fossils obtained in connection with the expedition. Thosis from this place include fragments of severel, species of turtles, scales of a gar-pike, and broken bones of dinosaurian reptiles. Of the turtles, two are now species, to which Professor Cope has given the names-Plastomenus rostatus, and P. coalescens-and there are 1 ortions of species of Trionys and Compsemys. The gatr-pike belongs t: the gemus Clastes, and of the dinosaurian remains, though mostly too fiagmontary for determination, a caudal vertebre: sesembles that of Hadrosaurtis.
257. Division γ, the lower series of yellow sands and arenaceous
clays, is a much better defined member of the section than Division a. It is exposed chiefly in the banks of the smaller ravines, but also in the upper parts of those of the manin brooks. The nolules which it contains are large and irregular, lint often approath more or less closely to a spherical form. They are arranged in horizontal lines in the exposures. No fossils were found in this part of the section.
258. The line of separation between divisions γ. and δ., is quite well-marked by the change in colour. The latter shows scarcely a trace of stratification lines. I was very anxious to obtain fossils from it, but sueceeded only in collecting a few small fragments. They, however, indicute purely marine conditions; and one of them is referable to the gemus Leda or Yoldia. The identification of the horizon of this bed does not, howerever, depend on such slight grounds as these, as it was afterwarls traced westward, and found to be eontinuons with well-marked fossiliferous Cretacoons rocks.
259. Divisions a and β. of this section, clearly belong to the Lignite Tertiary. They probably represent, however, merely the lower layers, and differ somewhat in lithological chanacter and arrangement, from those seen at Porcnpine Creek, thirty miless east of this plaee, and at other localities still further eastward. These beds, no doubt, belong to a lower part of the series than is exposed in any of the sections examined between this locality and the Missouri Cotean, and are probably also older than any of those found in the Souris Valley. The beds described as occurring on the trail sonth of Wood Mountain, ((249) belong to about the same horizon, and it is probable that those seen in some places on the Tralers' Road, may not be much higher up in the series. It would appen that the conditions most favoumble to the formation of deposits of lignite, did not oceur frequently or continue long in the eurlier stages of the formation in this locality.
260. Division δ. being certainly Cretaceons, it only remains to classify division γ., which is so markedly different in charactor from the beds above and below it. This bed, I believe, represents group No. 5, of the Cretalceons ; or the Fox Hill group of Meek and Hayden. It was frequently observed at other places further west, and its relations will be more fully discussed in the sequel.
261. The Lignite beds oecurring in division β., have been burned away over great areas in this region. Numerous red-topped hills are seon, the capping being composed of indmated elays and sandstones, often with mach the colour and appearance of red brick. The tops of

these hills are all nearly on the same plane, and this, if traced back into some of the larger hills and edges of the platenu, exactly coincides with the zone there still containing the liguite. The heds, as there exposed, however, seem hardly of sufficient thickness or mportance to cause an alteration of the strata so extensive as has taken place. It is possible, from the irregular nature of these deposits, that over the areas destroperl by combustion, the lignite has been thicker aud of better quality, and that the fire may have been unable to extend itself into the thimer portions of the bed, where it is separated by clay partings and sorered by such a great thickness of other deposits. The combustion must have taken place ages ago, as isolated red-topped buttes now only remain to mark what must have been the level of the plain at that time. (Plate VII., Fig. 1.)

It will frequently be necessary to refer to this typical section, in discussing the Cretaceons and Tertiary rocks finther west.

> Cretaeeous and Tertiary Rocks South of Wood Mountain Plateau, and betueen the Bad Lands and White Mud River.
262. On proceeding westward along the Line from the sections above described, one passes over Cretaceons beds, while the southern edge of tho Wood Mountain water-shed plateau-which is here coextensive with the edge of the Tertiary-follows a more or loss nearly parallel direction at a distance of ten to fifteen miles to the north.
263. The sombre Cretaceous clays of divisision δ., may be traced almost continuously for a distance of about ten miles. Lower beds are, however, exposed, froms the general wight easterly dip of the rocks; which is proved by the fact that the sombre clays, though first seen in the bottoms of the vallies, soon form the whole sabstance of the hills. They attain this position much more rupidly than the slight westward slope of the surface of the country at this place, will account for. About ten miles westward, near the erossing of the forty-ninth parallel and trail to Fort N. J. Turney, where the Wood Mountain Astronomical Station was established, goed exposures of these rocks are again found in the banks of the valley of a large brook. On carefnl examination they wore found to contain fossils, and specimens of Baculites compressus, B. ovatus, and other forms characteristic of Meek and IIayden's 4th, or Fort Pierre gromp, were obtained. This horizon is also indicated by their powition relatively to the Tertiary, and their lithological character.
264. The rock is a soft clay-shale, which thongh fine, and regularly stratified, from its homogenious chnacter hardly shows traces of its
bedding. It crumbles down into earthy banks, which, however, in some places, exhibit prominent nodular hamds of iromstone, and in commection with these the fossils are, for the most part preserved. They nieg namily completely imbedded in the iromstone and filled with it, though the concretions must have beon formed some time after the deposit of the clay, as the larger shells are frequently crushed. The Baculites still retuin to a great extent, their original nacreoms lustre and play of colour. The ironstone nombles are often septarian, and from the rapid removal of the clays by denudation, their fragments strew the surface in abundance. selenite is diffused in small quantity through all parts of the beds.
265. Taking into account the difference of level between this locality and that of the section in the Bad Lams, the clays here seen must be at least 200 feet helow the base of division γ. The sombre Cretaceons clays of these localities resemble a good deal in lithological chatacter the beds of the Pembina Monntain gromp, and they also hold the same relation to the overlying Iignite Tertiary series, as that assigned to those deposits. They differ chiefly in being less comsolidated and darker in colour, and in forming when weathered a crumbling bank of earthy appearance, rather than one of somewhat sharp-angled shaly fragments. The scarcity of fossils in the Pembina Mometain sections, prevents any instrative palaontological comparison of these beds with them. It must be rememberel too, that probably at least several hundred feet of the upper part of the Pembina Monntain group, was no seen on the eastern margin of the basin, and it is this very part of the series which must be represented here. Taking into accoment, howerer, the great distance separating the exposures on the eastern and western margins of the region covered by Tertiary, the lithological and structural resemblance of the deposits is quite as close as could be looked for, even in an area characterized by such wille-sproad similar conditions, as the interior platean of the continent.
266. Westward from these sections, the continuity of the Cretaceons clays in the vicinity of the Boundary-line, is indicated by occassional small exposures, and at a distance of thirteen miles, a tolerably gool exhibition of the rocks again occurs. They are now found to resemble very closely the clay-shales of the upper part of the Pembina. Momtain series, and to diftier to a corresponding extent from those last described. They are firmer in texture, and lighter in colour, and are traversed in all directions by rusty-faced cracks. The peculiar moall rusty ficoidal markings, already more than once referred to,
are also ahmulant, though other fimsils are extremely scarce. A few impressions resembling tish seates, but very obsenre, were found; also a single specimen of Barulites compressus, heing a cast of the interior of the shell in soft ironstone, with the impressions of two gasteropedons shells, which had tallen into its outer chamber. One of the latter is of mationd type, with a short npire, and few volutions rapilly increasing in size. Not a trace of the calcareons subtance of any of these fossils remains ; and the clny-shale shows in many places, ohscure impressions, which apprently mark the former positions of other colleareons fossils, ats in th'; shmes of the Pembima Mountain series. The fact that two shells of d!fferent species, were caught up in the body-chamber of the single Baculite, which owed its preservation to an ironstome coneretion, taken in connection with the indiations just mentioned, would tend to show that organic remains were originally somewhat nbundant, but that they have been remosed by chemical action in the way already moticed.
267. Selenite in small crystals abomols, and is generally found filling the lines of fissure. Well-marked white bands indicate the the stratitication lines in some plates. They are occasionally several inches in thiekness, and have evidently been bleached subsequently to the deposition of the clays, by the percolation of water changed with sulphuric acid, produced by the decomposition of pyrites, along the more permeable layers.
268. Where the Line crossens White Mud River ; *or, Fremehman's Creek, numerons and very fine exposimes of the Cretaccons rocks oce me. The stream flows in the bottom of' a great trough, cut ont of the soft Cretaceons strita, over three humbed feet deep, and in some places fully three miles wide. Many ravines enter this valley from the sides, and numeroms lambsisps have brought down the upper beds to varions levels in its banks, and have proluced a rugged mass of conical hills and ridges. the tops of the banks on hoth sides of the ralloy are formed of yellowish fermginons sands, referable to division γ, of the Bad Land section. They are, in many places, harlened into layers of sambstone, and are nowhere very soft. Land-slips have confused the section, but they can be traced in their original position ats far up and down the valley as can be seen. I could fime nue fissils in these beds, though sixty to seventy feet of them must be visible in some places.

- Thete are probablv half-a-domen streanss of this name in ditferent parts of the North West. The hest known is that at the south end of Manitoha lake, with which this must not he confounded.

 the botlom of the valley. they show mather tho crombling enthy

 tatives of that group. Alout loo feed below the hase ot the gothes sameds, a bed chatacterized hy the exeat abomdance of the remoins of a

 itself.
 many large spharian ibomstome molules. In some phates, a horizontal sulane wh this hed has bern exposed, foming an abid wimblown expanso of ambled fiessments of the shate, which here and there supports all Atrmisin. and from which the bodular massos stand of at interals, as they haw heob exposed ly weathering. The comereotions
 form. but are semerally boken into fagments by the ation of the frowt.

 chaturteristic of the tht group of the Missomi River vertion. The fossils are mentumately interseeted hy the dacks which towerse the mass of the molules, in such a way as to render their presersation very diftioult. Some of them retain their nacreons lastre in all its original perfection. Bleachod bands like those alrealy deseribed, ocent in many parts of these chays.

2-1. The heds here :ppear to be perfectly horizontal, and the incerased elesation of the general surtace of the conatry will more that suttice to atcount for the reapperance of the yellow sandy deposits hat seen in the Bad Lamds-withont supposing the existence of any gentle

 of' nhant eight feet in the milo.

('rossiny I'lurc: on White Mul Riowr.

 the valley of tho While Mul Rivor, sixteen miles torth of the forty-

 water-shent phatean in finmer, ath before, of the lower bede of the Lignite 'lertiary, and projects like the prominent patis of at emaso, while the lower errombl, and the deoper protions of the vallegen af the wheams, wo

 About thity-fom miles west of that plase, sections of chanturteriatic
 ponetrates the calge of the 'fortiary phatern fom the morth in this vidinity. On asmending the phatean forming the weas wide of this bay,
 miles of White Mal River, when tho road dencends the westorn edge of tho phateati, athe again prases over the Cretaceons days.
273. A reference to the areompanging geoleg :exd map, will reader the arramement of the formations in this rogion cloms. In the absence of other information firs the diatrict morth-west of Woud Momatain, I wond have followed In. Thertor in provisionally indicating the berder of the Tertiary as rmming from the Cypress to the Thunder Breeding Hills. The ocearrenee of a bay of Cretaceons rocks on the north side of the

 вй

 Itipdonin fla group. Burulitis compressus is the most rommon fin'm,

 the norlh, -the former at the sllow of the somth siakateherwat, the

:75. The fossila resemble very elosely, both in their gemenal appen-

 the clays, and a lihoms mineral, which may luest be called a foro-caleite, ocours in diseontinmens layers parallel to the statitication; one of which Was ohserved to be nearly a foot in thickness. This substance was also fomed in comection with the somber clays of the Wood Momban Astronomical Station exposures, and with those of the Bal Lamds. ($\mathbf{S}^{2} 95-203$.) It is minutely prismatic, the prisms in some cinses, radiating trom a contre, but more manally mealy parallel, and at right angles to the beds. It is peary-arey within, hat weathers yellowish-grey, and in that state much resembles, at tirst sight, siliditien wood.

2ab，＇Ther valley of the White Mad River，where arosed ont thin

 the Crotmeen，ways withomt the intormedimion of drift materiat，is

 aro but well expmend．

 which 1 min indined to believe，is duen entirely tw armulation of hrifi．

 and clevation is，mo domb，based on the dark＇retarmons chay－whater，to about the 5ms mile print，where the prairie which hat hece grombunlly becoming moro mulalating and hilly，maker a wery detinite rive，and

 always mulubating and often quite hilly，harge qumtition of drift having
 and itw age might have remaned a dombltinl glestion，but for the vertions ocenring along its abornt western fiom．On moming to this edge，a great area of baren and ard praibe，at a lower leved，and hased on Creta－ ceons No．4，is seen stretching westward toward the Milk River．＇The
 Momatans，are also here seen fire the diest time，at a great distance， rising above the level horzon．The exponimes are not very clear or extensive，but indiate the existence near the lion of the encarpment， of a considemble thickness of greyinh and browninh arenatcerns clays， forming rather massive beds．Sone distance above these，a well－marked red zone occurs，and can be traced at various prints along the edge of the esearpment，as far as the cye can realeb．It is due to the combustion，in situ，of one or more lignite beds；pontions of which were found in one place，unatfected by the fire，liut not sufficiently well exposed to enable neasurements to be taken，or any estimate of their quality formed．The metamorphism produced，has been very extensive，and rocks are found
in all stages, from those simply reddened, to others completely porcelainized, or fused into lava-like material. Some of the baked sandstones still retain obscure impressions of plants. Overlying the red beds are whitish and yellowish archaceous clays, of such light tints, as to appear, from a distance almost like chalk.

The thickness of heds included between the highest and lowest exposures seen hero, mark be from two to three hundred feet, and so far as comparison can be male, the section shows a remarkable general agroement with that of divisions a, and β. of the Bad Lands, 115 miles eastward.
279. The valley of the East Fork of Milk River, where it erosses the Line, is wide and trough-like, with scarped banks about forty foet in height. The eliffs are composed entirely of drift duposits, and it maintains . "ter as far up and down as I have been able to examine it. Many fragments of Cretaceous fossils, and large masses ot tossiliferous ironstone, are found in the bed of the stream, and in the clay banks; and so large a proportion of the driit is formed of the redistributed matter of the Cretaceous clay-shales, that it seems probable that they exist here at no very great depth. Baculites grandis is among the fossils, and was not elsewhere observed: there are also a few species which are promaty derived from the lower beds of the Tertiary.
280. A most interesting section occurs in a deep valley about six miles west of East Fork. Exactly on the Boundary-line the banke show gool exposures of the Cretaceous shales, more closely resembling in their lithological character those seen in the upper part of the Pembina Mountain sections, than those of the same beds as occurring in the vicinity of Woorl Mountain. The rock is almost, or quite horizontal, is pretty hard, and well stratified, and ineludes white bands like those already referred to. On following the valley about a mile northward, these elay-shales seem to bend suddenly upward, and give plaee to a series of rocks, which appear to underlie them, and which differ from them altogether in chameter, and inciude massive layers of sandstone and thick arenaceovis clays.
281. A section was measured across the up-turned edges of these beds, which is given below, the measurements being reduced, so as to represent the actual thickness of the stata. The section-supposing no reversal to have taken place-is in descending order:-

1. Sombre Cretaceous clay-shales, Division 4. M. \& H. primf. in.
2. Grey and yellow arenaceous clays, with some remains of Ostrea in the lower layers (aiout)........................
3. Greyish-white arenaceous clay, with irregular sheets of
0

ironstono. 864. Carbonaceons shale
5. Grey arenaceous clay 6
6. Black carbonaceous shale 20
7. Dark shales, with carbonaceous bands 126
8. Carbonaceous shale, with poorly preserved plant remains 10
9. Grey arenaceous clay $30 \quad 0$
10. Brown shale, with indistinct impressions of plants, a fewinches
11. Grey arenaccous clay 36
12. Laminated carbonaceous shale, with spots of amber, andimpressions of plants0
13. Grey and yellow arenaceous clay 200
14. Yellowish arenaceous clay 110
15. Grey arenaceous elay 0
16. Soft beds-probably yellowish arenaceons clays, but notwell exposed359
17. Grey sandstone, weathering yellow, and with many jointage-cracks 1210
18. Greyish arenaceous clay 4511
19. Hard sandstone, breaking into large rectangular frag- ments, and weathering into pot-holes 40
20. Soft arenaceous clays 1210
21. Fine-grained grey-yellow sandstone, with dendritic mark- ings. 20
22. Grey and yellowish arenaceous clay, with some thin sheets of ironstone 345
23. Red-brown sandstone 20
24. Soft grey sandstone. 65
25. Nodular brown sandstone 06
26. Soft beds, with some thin sandstone layers. 240
27. Nodular red-brown sandstone (about) 30
28. Greyish and yellowish arenaceous clays, well stratified,and with small fragments of some lamellibranchiateshell at the base885
29. Greyish and yellowish arenaceous clays, well stratified 12110
30. Sandstone 30
31. Brownish arenaceous clays, crumbling and rotten where exposed 1344
32. Grey sandstone (Dip 45°) 16
33. Yellowish sandstone, thin-bedded and flaggy 340
34. l'urplish and brownish clays, with evident stratificationlines477
35. Impure ironstone,
11
11
36. Purplish shaly clays
10
37. Impure iroustone 266

38. Crumbling earthy-clays

The beds below these are not exposed sufficiently well to enable the section to be measmred. From blocks of sandstone strewing the banks, however, it is probable that one or more layers of this rock occur not far below the base, as here given.
282. When this section was examined, I had no doubt that the whole
af the heds imelmed in it wero truly lower than the dank Credarome chay-

 shates, to the hode of the 'Iortary. Ihving alforwarde examined the serdions of the lower part at'low 'Torliary in Nilk liaro, with which these

 molis, they wond prohably have hoon rofermb, withond dombt, to the

 extomive wormorn ar hat they have heor thrown down hy a reverved

 almos perfertly horizontal. If, howorer, tho heds are fruly (Getacomes, it still memsins mosertain whether they shonld be considerod an forming an important inlorealation in N a. 4 , or whether the lio entirely helow that division. The hatter is the more probato smponition, as where the
 Wast, in suld a mamore an to rovial a great part of their thickess; thongh
 this sories.

2st. 'The samdstones of these berls dittor a little in aspere from most samdsomes aremering in sedions clearly referable to the Tortiary, boings somewhat more miform in their bediding, thimer leaver, and
 and 12. aro thinly domallo, amd misht, in some phaces, he cathed impure lignite. One of the heds eomtains drope of amber, similar to those fomed in eomection with mimy of the lignite heds elsewhere; and plant remains are ahmdant, but too poorly prosered for recognition, It is evident that where these carbonacoos shates were fombl, all the conditions which misht lead to the acemmation of important heds of liguite obtained, and that suel beds as these might be fomm, if followed, to widen out, or coalesee with each of her within a short distance. The

Peekopee. The appearance of the valley of the river itself is strange and desolate.
289. The banke rise nearly three hundred fect above the level of the stream, and are more than a mile apart. They are almost bare of vegetation, and marked by bands of differant colourod clays and sandstones in a nearly horizontal position, as far as the cyc can reach. The descent into the valley cannot be made on horseback, but by taking advantage of the well-worn buffalo tracks, which are found leading down almost every conlé and ravine. The river itself is comparatively insignificant, and winds in broad curves from side to side of the valley, and is fringed by a growth of large poplar trees, and by willows. The bottom of the valley is marked out into three distinct levels, differing much in appearance, though only by a fow feet in height. Over the first of these the river must constantly pass in flood. It shows in many places a luxuriant growth of grass, and supports most of the timber. The second level, which the river can seldom if ever touch, is characterized by the abundant growth of Artemisia of several different species. A third level, which forms a kind of low terrace at the foot of the eliffs, and must be twenty to thirly feet ubove the strean, consists of hard, parched clay, the washings of the banks, and nourishes ouly the greasewood, and a few other thick-leaved drought-loving plants.
290. The sections in the banks are undistmrbed and regular. The beds are divided into an upper and lower series, by a zone of sandstones, which is about two-thirds up the bank near the Line, but about eight miles north-westward up the valley, is found forming the very summit of the cliff; which here, from the better support afforded by such hard rocks as compared with the clays and arenaceous clays of the rest of the formation, assumes a bolder and more rugged aspect, and a greater height than elsewhere. Fourteen miles south-enstward of the crossing of the Line, the same sandstone zone is again seen, but now only about one-third up the bank, indieating a general inclination of the beds in a south-ensterly direction,-which may not be exactly that of the full dip,-of about ten foet to a mile.
291. The sandatones, though often well and evenly belded, are not regularly havdened, but have a nodular character; and though in some localities indurated throughout their entire thickness, in other places not far removed, they may show only certain hard layers of comparatively small thickness, separated by beds of unconsolidated sand. They appear, however, to be very constant in extent, and do not differ
materially in thickness at the several lonalities where they were oxumined. They are slightly fermanoms, with prevailing light yellow tints, and are often more or less affected by false-bedding. Below the samdstones oceur elays, sands, and arenaceous clays, generally well stratified, and individual heds of which may often be traced a long way up or down the valley. The colours are usually light, but there are some zones of darker earbonaceous clays, and in a few places impure lignites of no groat thickness were olserved. These appeared to be less persistent than most of the other beds, and generally to thin out and disappear when followed far in either direction. From their appearance, and mode of occurrence, these lignites may well have originated from the drifting together of wood or peaty matter, and differ considerably from the pure and definite beds which eharacterize the Lignite Tertiary further east, and which appear to be formed of trees which have grown on the spot.
292. Above the sandstone zone is a great thickness of sands and arenaceous clays, forming more massive beds, in which the stratifieation is less perfectly marked. The general tints are pale greenishgrey, greyish, and light buff.
293. No fossils were found in this upper series or in the sandstones. In the beds below the sandstones organic remains are also singularly rare, but are not altogether absent. In a part of the section not far below the base of the sandstone zone, is a layer with large aremereons concretions, which contain in some places abundance of fossils.

Among these are Melania Nebrascensis, one or more species of Paludina, a Helix, several species of Corbula, and a Spharium, which is almost certainly S. formosum, deseribed by Meek and Hayden, from the Fort Union beds, and is identical with one afterwards found 110 miles further west, and within thirty miles of the base of the Rocky Mountains. A few rolled fragments of bone are also included in the bed, and some traces of fossil plants. Lower down in the section valves of Ostrea are foumd, sparingly scattered throngh the deposit, and not very far from the base a layer containing shells of Unio in a poor state of preservation was observed. Near the latter were found fiagments of the bones of a large verteb:ate. They were scattered, and not in a very good state of preservation, and had ovidently been strewn about after the death of the mimal, and before their envelopment by the sediment. These, with the other vertebrate remains, were submitted to Prof. Cope,
who prononnces them to be portions of the sacrum mod long-bones of a Dinosaurian.
294. A section of the upper beds and sandstones, observed in a ravine on the east side of the Great Dry Conlée, nemr the Lime, showed the following succession of beds:-

> 1. Light yellowish arenaccous clays and sands, indieated ingr. in. slopes and higher gromuls, but of which a few feet at the base only are well exposed
> ${ }^{6} 8$
> 2. Grey sand .. 48

> 5. Highly ferruginoms layer. A few inches.
> 6 Grey arenaceons chay, rather conspienonsly banded
> 1710
> 7. (irey soft simdstone. 145
> 8. Sandstones, hard and soft, brownish, yelowish and grey; often concretionary, generally well stratified, but sometimes false-bedded, forming elitts in the gorge, and weathering out into overhanging ledges, and horizontaliy tlmed walls
> About $90 \quad 0$
295. The most complete section of the beds below the sandstone zone was obtained abont eight miles north-westward from the intersection of the valley with the Line, and on the north-east side of the valley. It may overlap, the last by a few fect. or a few feet may be omitted; but, allowing for this slight meertainty, it forms a continnation downward of the base of the former section.

	Soft grey sandstone, forming*the top of	46
	Red-brown concretionary samlstone, with large flattened nodules.	46
3.	Hard grey sand	45
4.	Reddish nooluta	20
5.	Whitish arenacoons clays, with some selenite in the lower layers	2
6.	Greyish and yellowish arenaccous clays (banded).	3
7.	Yellow-grey arenaceous clay	10
	Greyish arenaceons clay in which stratitication is scarcely apparent	
	Yellowish sandstone, thin bedde	20
10.	Grey aronaceons clay	45
11.	Purplish shale.	16
12.	Grey arenaceous clay	56
13.	Brown shale, with imperfectly preserved plant renains..	06
14.	Grey arenaceous clay	4
15.	Purplish shale, with some thin layers of impure lignite.	810
16.	Purplish-brown shale.	10
17.	(ireyish arenaceons clay	7
18.	Grey arenaceous clay, npper part shaly	11
19.	Yellowish arenaceons clay.	45
20.	Purplish shale	10
21.	Yellowish arenaceons clay	1
22.	l'urplish shale.	22
23.	Greyish arenaceous cl	69

24. Sandstone, a few inches.
25. Greyish arenaceons clay..................................... 46
26. Yellowish arenaceons clay (lowest bed in which remains of molluses were fombl at this place. Ostreet).......... 4 . 5
27. Nomlurlarly hardened samdstone........................ 18
28. Yellowish arenaceons clay 31 . 0

Concealed in slope to river, about...... 30 . 0
Abont. 28410
296. The thickness of beets displayed in the above sections, when combined, is about 375 fee , anll the bottom of the river valley, is prohably not very far alove the bave of the Lignite Tertiary tomation. It will be olserved that the gemus Ostrea, is here fire the tirst time mentioned an ocenring in these heds; firthes west it becomes one of the most usual forms. The conditions of deposit implied by the beds on the Milk River, are those of an estuary, or shallow sea margin, where, while oysters and corbulas were living, the rematins of fresh-water shells and land vegetation were being carried, and mingled with them. The salinity of the water just indicated at Wood End, must have been here, however, well proinounced; a fact aceording with the observations of Dr. Hayden and other observers to the south.
207. The superposition of these beds on the Cretaceous clays of group 4, is not clear in this locality, as no jumetion of the two formations was observed. Their lithological character, might almost seem to render it probable, that they represent the same series as that supposed to come up from belaw the Cretaceons clays between the East and West Forks of Milk River. The beds here examined, however, can be traced almost continnously westward to the country round the Threo Buttes, and are there found clearly resting on Upper Cretaceons rocks, recognizable not only by their mineralogical similarity to those alrealy deseribed, but by their forsils.
298. Eight miles south of the Line, where the Commission Trail crosses the valley of Milk River, the banks are somewhat lower and less rugged, but exhibit the same rocks with very similar appearance and arrangement.

Cretaccous and Tertiary Rocks from Nilk River to the West Butte.
299. In the coulées and gorges which intersect the prairic on the west side of the Milk River, exposures of rocks similar to those described in the main valley ocem, the beds contianing to maintain a nearly horizontal attitude. Eighteen miles west of the crossing place of the
river, the same beds were agaill ohserved, and beyond this point small exposures very frequently occorr, ind show yellowish notulur si uditones, and arenaceous clays, pecisely resombling those of the Milk River.
300. Some miles fiurther west, neme the 620 mile point on the Line, a very interenting rection wats ohserved on the eantern side of a small coulé, where the flood-water haul cut away the hank. (Plate IV., Fig. 4.) The upper layer is of massive grey samdstone, about eight feet in thicknesw, and immediately below it in softer led filled with Ostrea shells oceurs. Below this, about six feet of aremaceous clay, with a few shells of Ostrea, and then in irregular and impure lignite abont a foot thick, which is underlaid by about seven feet of arenacoons chay similar to that above it, but nore perfectly stratified. Next, a carbonaceous shate, overlying a groy arenacos, chay filled with the :omains of small molluses, the most ahundant of which appers to he identical with Corbula undifera of Meek; a second species, prohably referrahle to C. mactriformis, is also sparingly represented. Below the shell-bed is another seam of impure liguite, which is slightly thicker than the upper, and holds in some places rather large drops of amber or fossil resin. Below this lignite, is a bed of grey arenacoons clay, underlying which is a foot or two of carbonareous shale, which rests on a grey, soft sandstone, constituting the base of the section as here exposed.
301. The beds in this section are exceptionally rich in the remuins of Mollusea, and the form referred to Corbula unilifera, constitutes abont half the substance of the bed which it chancterizos, ocenring in all stages of growth. The proportion of curbonaceons heds and lignites, is also greater in this section than in the corresponding beds exposed in the valley of Milk River. The conditions of deposit implied, are those of shallow water, perhaps estuarine, but of distinctly saline chanacter. The section is situated about fourteen miles north-eastward from the most eastern of the Three Butter, and the beels are horizontal. In a second locality, nor fir removed, is a fossiliferoms bed contaning a few specimens of Corbula undifera, mingled with Goniobasis insculpta, Meek, fragments of Ostrea, and a species of Dostia or Neritina, not yet specifically determined, but probably either N. patelliformis or N. Bellatula; forms described by Prof. Meek from Colville in Utah.
302. On approaching the East Butte to within ton or twelve miles, the hitherto horizontal beds are fomed to assume a gentle dip away from it, or on this side, to the northward. In the vallies of the streans which soam the flanks of the hills, and furrow the surface of the praicie around
them, mumerons more of less extensive exposures of the woks of the Lighite Fertiary, ocelir: As might he anticipated from the unture of the deposit, as it ham heen ulready notied on the Somis River and olsewhere, fow of the beds are fomb to have any areat horizontal constamey; but, from their genemb similaty; any very detailed acoont of the varions exposures would be but repertition. Clays, and arenareons days, with intercalated sands and sambenes, and in some places nolules and thin sheets of ironstone; in various morlitications of thickness aud arrangement, build up the formation.
303. The isolated momatans, called by the Half-breed hanters, Montagnes du Foin de Senteur, are known to trallers of the Missouri Region, as the "Sweet Grass Hills." They are roughly indiented on most grod maps of the went, and are there fomed under the geogisphical appellation of the "Three Butes." As indicated by the later name, there are three distinct momatain masses. A lino passing from the peak of the eastem, through the centaral mass of the westem Butte, would have a direction of about N. $80^{\circ} \mathrm{W}$., the ('ontral Butte lying between them, but some miles to the south. The highest stmmits are those of the eastern and western Buttes, which are about twonty miles apart, and rise nearly 3,000 feet nbove the level of the phans at their base. The beight of the summit of the bast Butte, as ancertained by the aneroid barometer, and taking the mean of two readings separated by ahout an homp, is 6,200 feet. That of the West Butte was fomed to be 2,746 feet above the D (pôt Camp at its base, by companison with nearly simultaneous realings there; and taking the height of the latter locality as $3,73{ }^{\circ}$ fect, the height of the West Butte above the sea, would be 6,483 feet.
304. The cental masses of the Buttes, are composed of emptive trappean rock, and around them, the previonsly horizontal beds of the plains have been tilted up, those immediately surbonding the igneons massen, resting at very high angles. The western Butte is the most important, and forms quite a little mountain region, hoving numerous peaks and lidges, with round or blunted tops, and deep, ahmost preeipitons vallies. The eastern Butte is next in importance, and consists of four man peaks, armored nearly as the angles of a square. The north-western of these is the most prominent and conical; the sonthwestern is ronnd-topped and comnected with the north-western by a ridge, and not far below it in height. The north-eastern and nouth-eastern summits are nealy equal in olevation, but considerably lews than the others The central Butte was not ascended, but appears to be considerably
smatler than the whers. It has, hewerer, an exenedingly symmotrical
 fiom an angle of nearly 45° wit! the horizon. Like the Bast and West Buttes, it is smromuded he grassy thet-hills, which aro sporially prominent out its northern shope.

30n. Dykes of eruptive material, traverse the redimentary rowks surromenting the Butter, in some places, mul appar gednerally to have a direction madiant from their higher peaks. In a valley about ten milows north of the smmat ot the biast butte, one of these is well expened. By the wearing away of the softer sumpumbing lieds, it mands if like at massive partly-ruined wath, the resemblance heing increased by the fart, that the rock has been luoken up he the weather, into quatrangulan hodek. Its olserved combe in N. 70° E. (mag.) The rock would prohably be iucluded muder the mane Kersamom, .of Vom Cotta's rlassification, and is a mica-tma, of dark greenish-grey colow, and not very hare ; in which small tabular ergsals of brown mica are thickly disseminated. It hat probally heen origimally of the same mature as the acidic central masses of the Buttes, but hats hecome more basic by the incorpmation of portions of the surromading selimentary rock ; and has arequired a ditterent mineralogical chanacter, from this ciremmstanee, and its more rapid cooling. The clays and samdstones on either side, are nearly horizontal, except immediately in contact with the dyke, where they are bent and contorted, and much altered. Some dark carbonareoms shates, esperially, are so much hardened, as to bear a chase resemblane to those usually found associated with coal beds in the Carboniterons formation. valves of Ostreat, are abmondant in some of the surrounding beds, and specimens of Corbula undifera were also recognised.
306. On ascending the Bast Butte, the harder beds are fomed comstituting more or less continuous ridges, bomb the central massos, while the softer intervening stmata are mot asmally well exposer. The total thickness of the beds seen is not very great, as the ground rises almost equally with the inereasing dip. There are, no dombta also many small dislocations which complicate the section. The sedimentary rocke, in some phares, rise to within alont one thonstund feet of the summit, and are then tomad much hardened and allered, and dipping very woeply away firom it. They are here also traversed, like the ignems rock itself, by many small seams of crystalline quarta, in which a careful examination tailed to detect a trace of any metallic mineral. As some of these veins appeared, however, to be not without promise, I afterwards panned
out a 'quantity of ermed in ome of the small howke, hut withem heing able to detert the presence of my valatabe metal; as small quantity of magnetic irom and gamet sumb trom the northern drift, twing the only result.

 reste a comsiderable thidkness of hated, biackisht, fiswite shate, in which me

 division of the Cretarems, and repreent the wombro chase, and claywhates, so frequently observed further eist. Aluwe this, in a mather estero
 in some phates is nodular, and gives rise in the vallies which cont thromgh
 Next in order are the chays, samdatomes and aremareons chays, chaturter-
 the phain.
308. The igneons material, composing the higher peaks and cent mal masses of' the momutans, though very hari and compart, is seldom neen adually in situ, the wolid rowk heing concealed under a great deph of its own fingments. These are vary irregular in firm, lint generally angular, and hombed by plane fares ; they vary in size from a few incher to athont two feet in grembent diameter, and rember the uper slopes interly
 is usually a Rhyolitie 'Trachyte-ponphyy; but, hy the introllaction of a small gumatity of homblume, sometimes passes, without onerwise much changing its appeature, into a matering iwhich may le callend a Sumidinetrachyte. The matrix is pate gremish-grey; porcellanons, but not perfectly homogeneons, and melowes crystals of samidine folspar, which valy from those harely visible, th others which attain an arerage size of about 3 millimetres. Quatz is present as a comstituent in sumall quantity, forming minute grambur aggregations; and sperks of pyriter are generally to be sem. 'The hombleme, when it werems, is fomd generally in very small erystals between these of the sanidine, but sometiames forms homenes an inch or two in ditumeter, which appear ats darker spots oin the surface of the rock.
. 309 The highest peak of the West Butte, is at i!: castern side, and is a large hant-tipped momain, which to the east presents perpendicular rocky cliffs. West and north of this summit, several important
peaks and ridges rise, and enclose a rugged, pine-elad, and rocky area of some extent. The foot-hills of the western Butte are also on a harger seate than those of tho others, and an examination of their rocks served to explain much tormerly in dombth. The nodimentary rocks are here, as at the east Butte, found to dip away from the central igneons intrusion on all sides; but a considerable mass of stratitied rock, has here been, us it were, caught up by the eruptive material, and oeconpies the depressed contral portion of the gromp of momentains. A great part of thene beds dip south-eastwarl at a mather high angle; they have been very considerably alterest, and consist now of slaty shales, mul hard, thin-bedded samulstones, in which I was mable to tind any fossils by which their age might be made certuin. I have little doubt, however, that they are Cretaceous. The truppean nuclens of this Butte is indistinguishable, lithologically, from that of the Bant Butte, formerly described, and forms shattered aud rubbly hill-tops, in the same way.
310. The clearest sections of the rocks surrounding this Butte, were met with on its western side, (Plate VIII., Fig. 2.) where a considerable brook issues from the central valley. The shaly-clays of division 4 of the Cretaceons, are here seen with a gentle westerly dip, somewhat indura'ed, and in plateos, baked into rather hard hack clay-shale, corresponding exactly;with that previously found surrounding the Last Batte. Their thickuens, an developed here, may be roughly estimated at about 800 feet, though the nature of the sections did not allow of precise measurements. They are not here fimad to be characterized by the same abundance of septarian nodules, an in localities east of' Milk River; a few such, however, occur, and minor arenaceons layers are also intercalated, and sometimes found to persist a considerable distance horizontally, though generally quite loeal and lenticular. In one of these masses a number of fossils were found, which though not in a very good state of preservation, are very interesting. They include one or two species of Inoceramus, several grasteropols resembling Fusus, frugments of an Ammonite, and a portion of a Belemnitella, probably B. Bulbosa, M. \& II.

Some fish scales, fomul with the other fossils here, aro specifically identical with some of those occurring in certain beds at Pembina Lscarpment, 600 miles distant, (Plate XVIII., Fig. 1.) and were not observed in any intermeliate locality.
311. Underlying those clay-shales of No. 4, in some places, are rather massive sandstones, tilted at high angles against the flwaks of the eruptive rock. They represent the sandstone beds found occupying a
area of larger nerved here, as ision on oll, In it pressed эne beds onsider--bedded heir age hey are tishable, ad forms siderable 4 of the at indur. ponding Their 800 foet, remonts.
dance of w such, ed, and though mber of reserva-
cies of
of an M. \& II.
cifieally embina
bre not
es, are of the ying a

มน

similar position on the East Butte, and probably inclicate the base of division 4, and the top of the next lowest division of the Cretaceous. They might very well represent the sandstones which apparently undertie the dark clay-shales noar the East Fork of Milk River. Overlying No. 4, are massive sandstone bels, yellow in colour, and though in this phace much more uniformly indurated, than those seen in the same relative position further east, no doubt represent the Upper Cretaceous samelstones of Division γ., of the Bad Land sections. These sandstones, from their superior hardness, generally form a prominent rilge, at a little distaice from the base of the Butte; some layers are flaggy and thin-beddel, but they did not appear to contuin any fossils. On the west flank of the Butte, they dip away at an angle of about 12°, and a thickness of over forty feet is exposed.
312. The exhibition of the lower rocks at the Buttes, enables the relative position of those forming the surface of the country-and traced almost continuously from Milk River to this point-which might otherwise have been a doubtful question, to be definitely akcertained. They are found to overlie the upper Cretaceons beds, and to be related to them precisely as the lowest beds of the Lignite Tertiary are, in the Bad Lands south of Wood Momitain. The character of the Cretaceous beds is little changel, though the tendency of No. 4 seems to be, to become somewhat coarser in this direction. The Lignite Tertiary roeks have, howerer, changed very materially, and especially in becoming more distinctly marine, and perhaps also less lignitiferons.
313. With regard to the age of the igncous masses, here so unexpectedly fomed, all that the sections prove, is that they are later than the Lignite Tertiary rocks, which are elevated by them and traversed by their dykes. They are probably protrusions quite local in character, aut not broally hased on similar rocks. This is indicated not only by the comparatively very wight metamorphism which the surrounding beds have sustained, but by the very rupid increase of the dip on approaching the anasses, and the short distance which the disturbarse consequent on their pretrusion is forud to extend. They have not, however, at all the character of modern volcanic cones, and I did not see my rocks in connection with them which had even probably cooled ot the surface. If of the nature of volcmoes they are very ancient ones, of which the cores, or stumps, now only remain, and from about which the whole of the ejecterl material has been removed. The denudution affecting the rocks tilted up romd the Buttes has been very great,
and from analogy with other ciremmstances, elsewhere more fully disemsed, mast have taken plate to a grent extent hefore the entavinl era. They have, inded, the apparance of having been subjected to a very long course of erosion in later 'Tertiary times, and may probably date from that period of disturhance closing the Lignite Tertiary preriod, of which very extensive traces are fomd elsewhere in this western region.
314. The quaquaversal dip of the sedimentary rocks round the central igneons masses of the Buttes, suggests a resemblance to Von Buch's craters of elecation. 'This, though rather an exceptional mole of momatain formation elsewhere, would appear from the observations of Dr. Mayden and others, to be common in the west. Bear Peak, nenr the Black Hills, may be taken as an instance; and there the features represented in the Buttes appear to be almost exactly paralleled. Dr. Hayden thas writes of the locality: "This peak is an isolated protrusion of basaltic rock, very compact, rising to a height of 1,500 feet above the prairie around, and separated from the Black Hills by an intervening space of seven or eight miles. All romed the peak the disturbed beds form annalar ridges, receding from the central point like the waves of the sea." * The central mass is elscwhere described as consisting of "porphyritic trappean rock." Near Fort Benton,-which is only abont eighty miles sonth of the Buttes, -eruptive rocks of post-cretaceous agre appear to be fiequently met with, and their contemporaniety with such masses as those of these momotains seems not unlikely. In the Report ust quoted, Dr. Maytlen says: "We have near the Arrow Creek a bed of erupted material thrust between Cretaceous rocks, which prenents a vertical wall of 150 to 200 feet at one point, and then suddenly ceases. These small centres of effusion of melted rock seem to cover the whole regrion." \dagger
315. In the very valuable coloured map accompanying the same report, the geology of the country surrounding the Buttes, or Sweet Grass ILills, is conjecturally indicated, and reproduced withont question in IVitcheock and Blake's map, published in 1872. The ammular structure there extended to these momntains from analogy, proves to be jnstified by the fact; but whereas in conformity with the structure of similar monntain masses to the south, rocks of Carboniferons, Triassic, and Jurasic ages, are represented as forming wide zones round the central protrusions, in a comntry based on the overlying Cretaceons rocks, I

[^28]could find no rocks ohder than those of the Upper Cretaceous in connection with the momutains, and the plain appears to be based entirely on the Lignite Tertiary beds.

Cretaceous and Tertiary Rocks from the West Butte to the Eastern base of the Rocky Mountains.

316. Westward from the West Butte, the beds are found to assume a gentle synclinal form, and exposures ure not infrequent in the steep banks of conlées. About six miles from the base of the West Butte, a zone of sandstone appears, which must hold a position considerably above the base of the Lignite Tertiary, as tho beds are still dipping westward at low angles. Two miles further west, the same sandstones are again seen, but now with a gentle eastward dip. The eastern and western outcrops of the samdstone form the low escarpments of a plateau, due to its superior harrdness, which occupies the trough of the synclinal. (Plate VIII., Fig. 2.) This synclinal arrangement is not, howerer, persistent, nor of great structural importance, ass, in proceoding westward, sundstones which appear to ocenpy the same horizon in the Tertiary, are soon again found nearly horizontal.
317. In a system of ravines south of the Line, about twenty miles west of the base of tho Butte, these sandstones are again well exposed, aud have an estimated thickness of over thirty feet. In these valleys they occur not much below the general level of the prairie, and forming the upper parts of the banks, give them a most picturesque and remarkable apporrance. The lower layers of the sandstone are genemally very regularly bedded, and some of them are exceedingly fine and thin, and show worm-tracks and other obscure markings. The upper beds are more massive and have a nodular character, which causes them to weather ont into the castellated forms, resembling in some places those of the Roche Percée. (Plate VIII., Fig. 1.) Underlying the sandstones are less permeable clays, or arenaceous clays, of light colours, of which I did not succeed in finding good exposures, but which turn out numerous small springs of a highly saline character. The beds appear to be quite horizontal in this locality.
318. Near this place, and about ten miles south of the Boundaryline, a bold escarpment occurs, facing southward, toward a great streteh of lower country. Its outline is that of any section of the bank in the last described valley, its abrupt edge being produced by the sandstone zone in the same way. From the rapid falling away of the surface of
the country to the south, it must also neurly mark the line which in this place bounds the southern margin of Tertiary.
319. T'wo hauches of the Milk River cross the Line with northeasterly courses between the Buttes and the Rocky Momntains, and ufter uniting to form the main streum of the Milk River, flow eastward, north of the Buttes, and reeross the forty-ninth parallel, with a south-easterly course, as has been already mentioned. The Line crosses the first of these tributaries, at the 696 mile point, and though the stream flows in a deep valley, the banks do not show anything but drift. Six miles west, however, a bend of the river again approaches the Line from the south, and it here exhibits very interesting sections of rocks probably belonging to the base of the Lignite Tertiary.
$3 \because 0$. The best exposures are found in a group of small hills, which assumes in miniature, the appearance of the Bad Jands, and stands like an island of older rocks among the drift deposits, which lap around its base. It is an outlyer of a plateau, which, with irregular edge, rums northward with a little easting, where it crosses the Line. The beds are horizontal, and are exposed for a thickness of about sixty feet. The lower portion of the section is of pale greenish-grey clays, while above, the greenish colour is not so marked, and there are somewhat massive sandstones. In some places the latter are almost conglomerates, and hold many small pebbles, the majority of which are of greenish shale. They also include fragments of reptilian bones and large Unio shells. Small nodules occur abundantly in some layers of the lower greenish elays of a tint similar to the matrix. The bones are found in considerable abundance in all parts of the section, but are much crushed and fissured. When imbedded in the bank, they are purplish-black in colour, but on weathering, assume whitish and rusty tints. It is very difficult to dig the bones out of the bank itself, from the great hardness of the dry clay relatively to that of the fossils, and where washed out by the rains, they are found only as broken fragments, difficult to reconstruct. From specimens obtained here, however, in the course of a few hours, Prof. Cope finds, besides many broken bones of dinosaurs, new species of Cionodon and Compsemys, which he has called C. stenopsis and C. agmius, respectively.
320. The greenish clay beds are doubtless formed of the disintegrated material of beds of green shale, similar to those represented by the pebbles in the conglomerates. A microseopic examination of the clay did not reveal any recognisable fragments of green mineral or rock, the
ich in this

ith north-

 , and after ard, north h-oasterly 10 first of flows in Six miles from the probably lls, which ands like uround its lge, rims beds are ret. The ile above, massive ates, and sh shale. o shells. greenish considerhed and lack in is very ardness out by recon-
f a few

B, new
sis and
yintegby the o clay k, the
colour apmarently residing in the very fine argiltaceous matter, through which a fow large partly rombled groins of trmsparent quartz are senttered. The bones, in the manner of their preservation, much resemble those of division β. of the Bad Lands south of Wood Mountain, which these beds may possibly represent. The lithological chameter, however, has changed eonsiderably, ats compared with any of the more eastern exposures of the Tertiary, though connecting links are supplied by the sections on the main stream of the Milk River, and in the vicinity of the Buttes. Sandstones are now more important, and coarser in texture, and the clays and argillaceous sands have assumed more definitely than ever before, the greenish tint above refered to.

322 . It is a curious coincidence that noar this place, also, green slaty shale begins to be an abundant constituent of the drift. It does not appear to be derived from the degradation of the Tertiary rocks, as the matrix of their conglomerates is generally harder than the enclosed shate, but must come directly from the slopes of the Rocky Mountains, and increases in abundance on approaching them. It would thas appear probable that even in early Tertialy times some part at least of the mountains was sufficiently elevated to allow a distribution of fragmental material similar to that afterwards taking place on a larger scale in the glacial period.
323. About fourteen miles further west, the Second Branch of Milk River is mot with, and in its valley, for several miles, beds resembling those last described are exposed and are still apparently quite borizontal. The best sections-which are near the river level-probably show beds somewhat lower in the series than those last described, which the higher parts of the banks on both sides of the valley more closely resemble. About forty feet above the level of the stream, a thin band of nodular and ferruginous limestone was fomed to be highly fossiliferous. The rock is dark bluish-black intornally, but weathers reddish-brown. Fragments from the same, or a precisely similar band, were previously found detached in the valley of the First Branch of Milk River, twenty miles eastward. The fossils are entirely those of fresh-water, and include speemens of Paludina, Limnca, Planorbis, Sphurrium, and a Bulinus or Physa. The Planorbis in nlmost certainly that called P. submbilicatus by Meek, from the Tertiary of Fort Clarke, (Valeata subumbilicata of Smithsonian Check List?) thongh I have not hald in opportumity of comparing it with authentic specimens. It also, however, appears to be indistinguishable from small specimens of Planorbis parcus of Say; now
so common over the North American rontinent. The Sphuerium is apecifically the sume with that previonsly foind on the Milk River 110 miles firther east, and referred to S. formosam M. \& H. The Paludina remains of are very fragmentury, but there are forms indistinguishable from specimens of' P. T'rochiformis and P. Conradii.
32.4. The oremrener of fresh-water forms so far west, while the genemal tendency of the lower bets of the 'Tertimy is to beeome more distinctly marine westwarl, would either teme to show that there were important excoptions to this rule, or that the beds here represented are high up in the series. The ocemrence of abmant Dinosamrian remains in the section described in paragraph 320 , would seem to tell against the latter conclnsion, and it would appear that the question must remain for the present an umbecided one.
325. Fifteen miles further west, is the St. Mary River, a tributary of the Belly River. Its banks show good exposmres for several miles, and here the disturiance comected with the elevation of the Rocky Momentans is first foond to begin. 'The sudden mature of' the break separating the nearly horizomtal beds of the country finther east, from the region of shap and frequent flexures now ontered upom, is a matter of surprise, as is also the very limited width of the belt of comntry much aftected by the disturbance, the St. Mary River, on the Line, being only about twelve milos from the bare sides of the outlying range of Chief Mountain.
326. The lowest rocks seen in the part of the river examined, were sandstones of greyish and yollowish tints, regularly bedded, and quite hard, with some surfaces showing ripple-marks and worm-tracks. They have a south-westerly dip at ans angle of 20°, and are present in considerable thickness. About half' a mile sonth of these lower beds, and overlying the upper layers of the same sundstone zone, a bed of fuel, with ath the mineralogical characters of true bituminous coal, was found.* It has a thickness of about eighteen incher only, and oceurs just at the level of the water in the river, b_{3}, which it is partly covered. It brenks with a clean frecture into cuboidal fragments with bright faces, and is indistinguishab'e in appearance from many coals of the true Carboniferous formation. Below the coal is n foot or two of dark carbonnceons shale, somerhat indurated, and holding imperfect remains of plants. A similar shale, but only a few inches in thickness, rests upon the conl, and is

[^29]followed in ascending order by a hard shell-bed eighteen inches to two feet thick, dark-coloured from included carbomecoms matter, but in the main compoed of shelts of Ostrea and Cyrena. Ahove this is a considerable thickness of flaggy and ripple-marked nandstones, greyish and brownishgrey, with a dij of S. $28^{\circ} \mathrm{W} .<35^{\circ}$. The ripple-markn indicate a current with a diree tion of S. $14^{\circ} \mathrm{W}$. (mag.)
327. A few handred yaridy sonth-enst of the hast exposure, samdstones similar to those overlying the coal are found well shown in a ateep bank. (Plate IX., Fig. ..) They are nharply folded into an anticlinal form, and wre overlaid by a considerable thickness of greenish-rey day beds. The latter are charged with small flat masses of calcite, formed apparently in fissuren. but now scattered over the surfite of the daybank, giving it a remarkable appearance. A sheib-bed very similar to that found in comection with the coal, hat probally not identical with it, as it wants the carbonaceons coloming mater, also appeats here. It probably muderlies the samdatone, but though large blocks of it are strewn about, it is not very well exposed. The rooks are se abruptly folded that they aprear in some places to be slightly overturned ; and in the absence of large or continuons rections, the precise relations of the beds camot be traced.
328. About two miles northward on the same river, it cuts through high banks which exhibit similar roeks. It here seems to follow atill more closely the line of fracture of the comintry, the beds on the eant side being not fir from horizontal, while those on the west are much disturbed, the lithological character and general appanance of both Neries being, however, much alike. No coal-beds, or beds containing fossils were seen here.
329. Four miles west of the St, Mary River, a hard fossiliferous bed comes to the surface, forming the crest of a ridge. It dips west-riouthwest, at an angle of 20°. Where exposed, it is an almost solid matis of fossil shells, forming a rough limestone. The same molluses are represented here as in the other seetions in the locality of St. Mary River, the most abmadant heing a species each of' C'yrence and Ostred. 'The former is probably C. occidentalis, M. \& II., and in some of its forms is searecely distinguishable fiom Cordata, Morris, it shell of the Euglish Eocene.* The Ostrea is a lavge shell, hrigonal, and very massive, but not get specifically determined.

[^30]330. A short distance fiurther west, a bed of hard sandstone appears, again forming the crest of a ridge, which can be traced for miles in a north-westward conrse. The strike of the madstono itnelf, as shown by the stratificution lines, is $\mathrm{N} .41^{\circ} \mathrm{W}$., (mak.) with a south-westerly dip at high angles. The persistence of this hed in the line of its strike seems to show that, though the strata are so merh disturbed, the folding has taken phace very regularly, parall to a men a cirection. The sandstone evident j_{j} underlies the shell her! : : : ferreal to, and must be some hundreds of feet below it. It is yothwithen not so much indurated as that seen in the bed of the river, some ayers thiser still quite soft. In this bed was found enclosed, a trunk of silicitied wood, the first actually observed in situ, thongh tragments are aboudant in the dritt several hundred miles eastward.
331. The whole of the exposures seen in the vieinity of the St. Mary River, evidently belong to one series of heds; but with so much disturbance and foiding, it is probable that in some places, beds both much lower and higher than those observel, must occur at the surface. Those seen do not precisely resemble any part of either the Cretacoons or Tertiary rocks previously examined. They belong, however, without doubt, to the batter series, and are probably near its base. The gradual change which is fom to cffect the lignite Tertiary, as followed westward, has hero reached its extreme. The oecenrence of a trine coal, differing altogether from the lignites previonsly fomm to cover so great an area of these western marine representatives of the Lignite Tortary, maises questions of much importance, which are more fully diseussed in the sequel.
332. Nearer the hase of the mometains, few exposmes of the rocks of the plains were seen, and these singularly deficient in fossils or other means of correlating them with their eastern representatives. From what I could see, howerer, I am of opinion that in the immediate vicinity of the forty-ninth parallel, rocks representing the Lignite Tertiary, come almost to the base of the bare rocky cliffis of the Mountains. I did not find almy beds eertainly Cretaceons, but it is highly probable that they are brought to the surface in many places, and cover larger or smaller areas.
333. About eight miles north of the entrance to the Kootanie Pass, saudstones similar to those seen on the St. Mary River, and clays charged in precisely the same way with flakes of calcite, were found within about two miles of actual exposures of the paleozoic rocks of the mountains.
o uppears, miles in a as shown sterly dip ike seems Iding has saulstone , be some lurated as soft. In tactually eral hum-

St. Mary h disturbthi much e. Those iccolls or without o gradual red westrue coal, so great Tertiary, cussed in he rocks or other From mediate Lignite of the ut it is placos,
e Pass, harged 1) about entains.

Five miles eant of the entrance of the pans, and north of the Momut Wilson Range, exponures of thin-bedded clays and argillaceoum sumblones, with occasional beds of hard flaggy sandstone, were seen. The whole are of vurious shades of light grey, and though enviously folded and finulted, not much altered. Some surfices of the sundstone ure strewn with smull carbonaceons frugments, but no recognizable fossils were fomid. (Plate IX., Fig. 1.)
334. The Sonth Fork of the Belly River-which rises between the Mount Wilsom and Chief Momintain runges, aul flows northword out upon the phain-where its valley is contructed among the mountuins, in some phaces lies betweon high banks, which though in most cases composed of drift, in one locality, abont four miles north of the Line, showed a section of beds probabiy Tertiary. The beds are thin sandstones aul clays, like the hast, and dip northward at an angle of about 15°. These beds here actuatly lie in a retired valley among the older rocks of the mountains. Further down the same stream, large fragments of lignite, exactly resembling that of the eastern Tertiary rocks, were fomd. A drift at this elevation is altogether derived from the mountains, and not so far travelled as that of the lower levels, it is almost certain that in this valley there oxist some bels of Tertiny lignite.

CHAPTERVI.

GENERAL ARRANGEMENT ANO EXTEN' OF THE CRETACEOUS AND LIGNITE TELTIARY FOLMATIONS.

Abstract

Cretacrovs No. 1.--Typical serien-Representatives westward-Dh. Hector's Group E-Lignites in Lawer Cretacems Rocks-Lignite from Lainy River.-CreTackoun No. 2.-T'ypieal series-liepresentatives westwari-heds of this age on the Naskatchewan-Dr. Hector's (iroup D.-Crftacemen No. 3. - Typieal series-Representatives westward-Representatives in Manitoba.-Crktacrous No. 4.-T'ypical series - Pemhima Momitain (ironp-Representatives on the Line westward-Effect of this Formation on the comitry-Modifying effeet of Drift-Saline springs-l'rof. Hind's Seetion-Dr. Hector's Groups 13 and O.-Crkiackors No. 5.-Typical series-Representatives on the Line nite Temmany Fobmatios. - Relation of hedy on the Line-Eastern limit of the Formantion-Western Representatives-F'ersistent zone of samistones Resemblance of western series to Judith River beds-Tortiary Beds observed by Dr. Hector.

Cretaceous No. 1.-Dakota Group.

335. The beds representing the Dakota, or lowest Cretaceoms division, in the typical Missouri River sections, are dencribe' is being "yellowish, reddish, and occasionully white sumbstones, with, a places, altermations of rarions coloured ehas, und beds aud seams of impure lignite; also silicified wood, and great numbers of leaves of the higher types of dicotyledonous trees," with "casts of shells referable to the genera Pharella, Axinea, Mactra, and Cyprina,"* and Unio Nebrascensis. This description refers to the eastern outcrop of the formation, and where the Cretaceons rocks are again exposed beyoud the western margin of the Tertiary basin, and along the buse of the Rocky Mountains, the whole Dakota group, appears to be represented ly a series of altermating clays and sandstones. Dr. Mayden says of the westorn representatives of this group:-" Along the margins of the mountain elevations, I have never been able to diseover a single specimen of organic remains that would establish the age of the rocks. I only know that there is a series of beds of remarkable porsistency, all along the margin of the mountain ranges, holding a position between well-defined Cretaceous No. 2 and Jurassic beds, and in my provions reports, I have called them transition

[^31]beds, or No. 1. They consint of a neries of hayors of yellow mid grey, more or less fine-grained sandstones and pudding-stones, with some interenhated layers of aremeeous elays. In almost all casen there is associated with these beds a thin series of carbonaceons clays, which sometimes berome impere coal, and contain massen of silicified worl, «ce." Alno, "on the enstern slope of the Big Horn Monntains, I ohserved this same series of beds in the summer of 1859, holding a position between Cretaceons No. 2, and the Jumasic marls, with a comsidemable thickness of earthy lignite," and lurge guantitionof petrified wood.* Frewh water shells of the genern Unio, Plenorbis, and probmbly Paludina, have been found in association with Ostrea, in heds appurently belonging to this part of the formation in the Black Hills region. It preserven a very smilar chanacter as far south as Colorado, and there appeare to have been nomewhat definitely correlated with the lowent Cretaceons of the enstern Missomi, by the discovery of certain plant remains. \dagger The conditions implied throughont, are those of deposits forming in shallow, salt, or brackish waters, with neighbouring extensive land surfaces, and a marked tendency toward the necumblation of carbonacems bed or lignites.
336. To this division of the Cretaceons, Dr. Hector is inclined to refer the group which in his general section he has designated by the letter E., \ddagger and which is characterized by great deposits of lignite. The proviso, however, is made, that the region which he had examined did not afford nufficiently clear evidence, to remer it certain that under the same title, he had not included some Tertiary rocks an well an Cretuceous. The rockn of Series E., are thus described: "Sandstone, course and friable, or argillaceous and concretionary, indurated shales and soft limestoner, ironstone nodules, beds of lignite 3 to 10 feet. Silicified wool, Taxites and selge-like stems in the sandstonow." §
337. It is highly probable that some at least of the coal and lignite bearing beds, described by Dr. Hector, are really Cretaceons, in view of some of the fossils which he has fomm ansociated with them. || The quostion might imbeed be considered as definitely settled in that sense, but for the remarkable mingling of Cretaceons fossils with those of the Lignite Tertiary, in the far wost; a sulject more fully noticed on a subsequent page. If then, it be admitted that a part of the carboniferous beds belong to the Cretaceons properly so-ealled, it would appear that they

[^32]must represent one or other of its lower divisions, as fiom the lithological character of the two Upree Creaceons groups, preserved with great uniformity, in the varions localities south of the Line, and also in the most widely separated exposures on the forty-rinth paratlel, it seems highly improbable that in a comparatively short distance to the northward, they should so change their chanacter as to hecome cond-beming. The known tendency of the Dakota group, would then certainly point to it as being the one represented. At the same time, I canhor resist the conclusion, that Dr. ITector wats right in supposing that some Tertiary beds are included in his division E., and it may even turn ont that a large proportion, or the whole, of this groun, really belongs to the base of the Lignite Tertialy. The sulbject is one not only of geologieal interest, but of great practical importance, for should it he femed, that there are two distinet carboniferons hoi:zons in the rocks of the North-west; the area over which valuable deposits of finel are to be expected, would-as pointed out by Mr. Sehwyn-be very latrgely increased.
338. The beds referred by Dr. Hector to division E., ippear to be extensively developed on the upper parts of nearly all the rivers flowing eastward fiom the base of the momutains, inchuding the Red Deer River, Nouth and South Branches of the Siskatchewam, Athabaska, and North Pen:binat Rivers. Their furthest east ward appearance on the North Sas. katchewan, is statel to be about fifty miles below Edemonton. Mr. Selwyn who has pxamined the coal-bearing rocks of this river in 18t3, inclines to the view that they are truly Cretaceons, and draws attention in this comection to the ficct, that the coal series of Vanconver Island is now known to oceur in the lower part of that formation.*
339. Rocks of the Dakota period have not been recognised in Manitoba, or in any locality along the eastern out-crop of the Cretaceous in British America. In the vicinity of the Line they are concealed below the alluvial lands of the Red River Valley, and if natural exposures ure to be looked for at all in this region, it must be in some part of the high lands marking the escarpement of the Cretaceons west on the great system of lakes. That the oceurrence and nature of these beds may not be an unimportant question, is shown by their charaeter in Nebraska, where they contain lignites, which though not of very good quality, or great thickness, have been more or less used economically, on accome of the great scarcity of finel in that treeless region. These beds, associated

[^33]ological h great in the t seems thwart, 5. The nt to it ho conry beds lauge of the st, but we two ic area winted to be lowing River, North h Sas. elvyn clines n this now

hero

reat

the

with carbonaceons clays, are mentioned as ocenring in mumerous localitien, and one of them-which appears, however, to be in transition beds between this and the neyt overlying division-is ceren stated to have heen " worked to a eonsiderable extent," and nsed by hatkimiths with some success.* Similar beds are now also known to occur in Cretareous rocks in south-western Mimesota, though not as yet found of a quality sufficiently gookl for use as fuel. \dagger
340. Through the kinduess of Mr. A. T. Russell, I have received a sample of lignite from a locality near Fort Framcis, on the Rainy River, east of the Lake of the Woods. An analysis of the lignite will be fomm in a subsequent chapter. It is said to be found below the water level, in several small streams, and thongh no geologist has visited the locality, it appears to occur in too great quantity to be accomed for as far travelled drift. It may prove that in this locality we have a Lower Cretaceons outlier similar to those of Minnesota, but here probably resting on the Laturentian.
341. The possibility of the discovery of suth fuels as these, in the Province of Manitoba, might not seem worthy of much attention; but there is no reason why in a sories such as this, grood and vabuble deporsits may not exist in some localities; a probability greatly heightened if'the lignites of the hase of the Rocky Momitains, are found to appertain to rocks of similar age. In any event, in the mpresentatives of the Dakota series in Manitola, there appoars to be a possibility that workable lignite beds may exist, and should this prove to be the case, they would offer the nearest and most aceessible soluree of fued, to the settlements of the Red River Valley.

Cretaceous No. 9.-Fort Benton Group.

342. The Fort Benton Group, or seeond division of the typical Cretaceons series, is so closely associated with the last, that firther investigation may probably remder it alvisable to mite the two under one name. This is enpecially the case in many of the more western

$$
\text { * US. Gcol. Surv. Territ, 1867. P. } 48 .
$$

+ Prof. N. II. Wincheil. Second Annual liejort Geol. Surs. Minu., $15 / 4$.
Prot. Winchell's concluslons on the Cretaceous coals (so called) of Mimnesota, are intcresting as bearlng on a comintry situated in many respects almost cxactly as Manitoha. He writes:-

1. The rocks that have heen explored hor coal on the Cottonword and Hedwool llivers, belong to the Cretaceons system, and do not promise to be productlve of coal in valuahle quantities. .2. The coal here taken out is of an inferior grade, though varying from camel coal to chareoal. 3. As the rucks of the Cretaceons period are believed to have existed throughont the most of the state, the only prohable exeeptlon being ln the south-western portion, including half-a-dozen comnties, such coal is likely to oceur in a great many places. 4. The "Float" coal which has so often attracted the attention of the neople, is derived, so far as yet known, Irom the disruption of the Cretaceous reeks hy the glaciers of the jep perlowl. It is scaltered through the drift, and is met with in wells and other exeavations, and may be oflen picked up along the beds of streams.
localities, south of the Black Hills, and along the base of the Rocky Mountains. In Nebraska, this division is deserpiled as consisting of "dark groy laminated clays, with lighter coloured arenaceons partings, and layers mad beds ot sandstone. Towards the upper part, near its connection with the Niobrara Division ahove it, it sometimes includes intercalated hyers of grey limestone, in all respects similar to the lower portions of the overlying rock; while at some other places,' its upper portion passes into a dawk shale."* Further west it is very extensively developel neal Fort Bonton on the Missomi, from which it takes its name. The bets here "assume the form of black plastic laminated clay; with mumerons caleareons concretions." \dagger The western edge of this division in Colonulo, shows shaty beds, whieh, though generally argillaceons, are occasionally quite arenaceons, and sometimes more or less caleareous; the total thickness varying from 200 to 400 feet. \ddagger
2. In the eastern region of British North Ameriea, this portion of the formation seems to have been pretty clearly recognized, on the Saskatchewam, near Fort a la Corno, by Prof. Mind, who says:"On the North Branch of the Saskatchewam, and a few miles above the Grand Forks, huge masses of a dark coloured, almost black shale, with shar'p well-preserved elges, jut out of the banks, and are oxposed whencerer portions of the face of the chay eliffs full into the river. Their appearance is such as to justify the expectation, that rock in position, from which they originated, is close at hand. Some specimens which I procured and sent to Mr. Meek, contain, according to that gentleman, tish scales, sharks' teeth and Inoceramus, which renters it almost certain that the masses were detached from rocks belonging to formation 2, or 3, of the vertical section." Cretaceous No. 2 is also stated to have been recognized from specimens found on the Assineboine River, 250 miles west of Fort Garry; || but, as the locality thus deseribed must be near Fort Ellice, where the exposures are few, and Dr. Hector, who has examined them, found fossils chameteristic of the 4th gromp only; it is probable that some mistake has arisen, either in the localization of the specimens, or from their obscririty.

34t. Dr. Hector, though he does not expressly state that he considers his Group D., as representing the Fort Benton, or 2nd group of Meek and Hayden's seetion, implies as much by placing it between beds
346. With this division Dr. Inector correlates group C , of his general section, eomposed of dark clays, with septarian nodules. These beds, however, I have, I believe, clearly identitied as forming an integrol part of Meok and Mayden's the group, as displayed in the vicinity of the Line, a conclasion also warmanted by the towsils obtained by Dr. Hector in them. If this is the case, none of the beds deserited by Dr. Hector can be cited as representing No. 3, miless, indeed, a part of those inchuded under I)., may belong here. The rocks which appear to eome up from betow No. 4, near the East Fork of Milk River, already fally deseribed; (S 280) firom their position might represent the Niobrara gronp, mal it is worthy of remars, that in their lithological charncter they pretty closely resemble Dr. Hector's group D. Limestone beds, or aven rocks containing many caleareons fossils, are, however, altogether wanting, and the occurrence of richly carbonaceous chays so close below the base of No, 4, is somewhat anomalons. A similarity also suggents itself hetween these beds and those described by Dr. Mayden, * as directly underlying the Julith River fresh and brackish-water deposits. These Dr. Hayden provisionally chasses with Cretaceous No. 1, and has observed in another loeality, to pass bencath No. 4; which appears to prove that in this particnlar region, Nos. $2 \& 3$, we murepresented. The lithological resemblanee is moderately elose.

Cretaceous No. 4. Fort Pierre Group.

347. This group appears to oceupy a very great extent of country in the region north of the forty-ninth paratlel The junction of this part of the formation with that next below it, is pretty definite, and there is not the same palacontological and lithological blending, that oceurs between the three members below it. At its base, ocemrs the tirst real break in the typical Cretalcous series of the interior of the continent; and here the line reparating the upper and lower portions of the Cretaceons has been placed. In the Nehataka section, this division is represented by a great thickness of" "fine, grey, and dark-coloured clays, in moderately distinct layers, but never presenting a laminated or slaty structure, like the Fort Benton group. When wet the clays are soft and phastice, but on drying they otte. (analk :mblerumble so ats to obliterate the marks of deposition in vertica! expmites." \dagger Toward the base, there occurs in this division, in some places, a thal bed of from ten to thirty feet in thick-
[^34][^35]sufficient to vindicate the character maintained through the whole of the Cretaceons period by the Rocky mountain region-that of deposit by more reppidly moving waters. West of this place, the beds of the Fort Pierre group are not seon in the vicinity of the Boundury-line, though I am of opinion, from the rapid southward slope of the country toward the Missomi Valley, that these beds of the Cretaceous must again come to the surface not fire south of the forty-ninth parallel. The Missouri, it would seem, flows for the npper part of its course in a trough excavated in Cretaceous beds, of which the sonthern part of the Lignite Tertiary, met with on the forty-ninth parellel, forms the northern edge.
351. The character impressed on the face of the country; whenever the beds of No. 4 immediately underlie the surface, is unfivourablo in the highest degree. Without the intermixture of foreign material, the debris of these rocks seems scarcely capable of supporting vegetation. Their fine anctuous character prevents any drainage from below, and the plains based on them, alternate with the season, from the condition of soft tenaceous mul, to that of hard white sm-crackod clay. I have frequently noticed spots poached up by the buttaloes in their spring migration, consolidated by the heat aad drought of summer to such an extent, that the passage of twenty or thirty loaded waggons will not suffice to form a level trail. These elays appear also to want the chemical ingredients of a good soil. Calcareons matter is generally almos t entirely absent, and from the small quantity of organic remains, and the refactory nature of the shales under the blow-pipe, phosphates and alkalies are probably deficient, tix felspar being, to a great extent, kaolinized. The saline waters of springs issining from these clays, impregnate the soil of the low grounds and vallies, and produce conditions favourable to the growth of Sulicornea, Obione, Sarcobatus, \&e., while the higher plains are the most perfect deserts met with on the forty enth parallel, and me often almost destitute of vegetation; or, sparingly covered with Cactus and Stipa.
352. Dr. Hayden, in treating of this group, writes:-"This formation is the most inportant one in the Cretaceous system of the Northwest, not only in regard to its thickness and its geographical distribution, but also in its influence on the agricultural capabilities of the country." "In summing up the extent of country underlaid by this great formation, we find that south of the Liguite Basin it occupies an area of two hundred miles in length, and one hundred in width; or, twenty thousand square miles. North of the Great Lignite Basin, by more rt Pierre I am of vard the eome to issouri, it xcavated Tertiary,
commencing at its first appenamce neur Milk River, we tind it covering an area of two hundred miles in length, and sixty in breadth; or, about twelve thousand square miles. I have been thus particular in estimating its approximate limits and extent of surface, on account of its influence on the tuture destiny of that region. Wherever this deposit prevails, it ronders the contry more completely sterile than any other geological formation I have seen in the North-west. We see from the above estimate that it renders barren, over thirty thousan i square miles of the valley of the Missomi." * The contrast between the combtry resting on this formation, and that based on the Lignite Tertiary, is very striking, and even in regions where the vegetation is stunted from the want of sufficient moisture, and where the dry uplands of the Tertiary would seem, int first sight, less farourable than the !ow-lying plains of No. 4 ; the former can support a short thick growth of mutritious grasses, where the latter has the character abose descrilect. In tracing the outlines of the varions formations in a conntry where exposmes are usually so rove and small, this difference of chararter in the aspect of its smfate in : mon remarked as a valualle aid.
353. These remark, howerer, only aply in their entirety to the region sonth of the great trunserse watershel, which approximately follows the firty-ninth parallel; and to the higher ground toward the base of the mountains. Wherever the cmuses which have produced the thick thift deposits of the phains, have operated in their full intensity, the influence of the underlying beds on the soil, hats heen greatly moditied by the addition of tumsported material. This molifying action has perhaps nowhere been more effectual, than over the areas coverel by No. 4 , which, from its comparatively yielding, chancter, has heen cut away into hollown and buried under great depths of travelled material. The improvement th'se effected on the country is especially notable between Pembina Esarpment, and the Missomi Cotean. I camot speak from persomal knowledge of the countly sonth-west of the upper parts of the Red River Valley, but it is probable that the drift agencies have here, to a certain extent, over-riden the low burver of the water-shed. Firtlier west, and sonth of the Tertiary plateans of Wood Mountain, and the Cypress Hills, the barriers to the north-eastern drift appear to have been nearly complete.
354. As already mentiomed, the waters of springs flowing from all

[^36]
 hyidrogen. Springs of this dass were spectally notod in the Pumbina Monntain region, and where the disturbed beats of this division are upturner at the Battes. In the latter locality some springe were fomber from Which sulpharetted hrifrgen wats given oll so frody, ant so little mingled with ofler gases, that it might be ignited on the sutfore of the water.

 were exmmineri ly Prof. Merk, and aided in fixing the position of the beak. 'The most interesting serelions deseribed by lrof. Jifut, are those on the Somris liver, a short distane above its jumetion with the Assinebon,
 the present western homelay of Manitohat. Sereal of the fossils obtaned were weribeally mex. 'The tollowing list is given: Anomia Flemingi, Inocerdmus ' 'andensis, Lede Hindi, Nälira obliqucira, Acellana ron-- anta and dmmomitas.* 'The two latter were obtaned at the Two Creeks on the A simboine, sixty miles westmonth-west of the Somis River experitues. Both these lowatios are interesting, as lying at no great distance moth of the Line, ant opposite a part of it where no sections appear. The other lowalities for this division, mentioned by Prof: Hind, are: Big Cut Arm Comek, :mul Seisoms ('reek, on the Qu' Appelle River; alsu the Sonth Siskatchewrn netu the Jilbow, where Avicula linguiformis was found ; usto midway up the escarpment of the second pratio steppe, at liding Momentain.
:3nti. Dr. Hector, in his mport consilers his group B., to represent No. 4. He deseribes it as consisting ot" "Jndmated olive-colomed shales, with bands aml fissumes tilled with clay ironstone. This formation he first met with at Jong River, the rocks of whidh are elsewhere deseribed in this report (s) 19.5) and are identical with those of the upper part of the Pembina Momban series, as developed on the Pembina River. In'. Hector, a few days afterwate examined the exposures near Forked Creek on the Assinchoine, from which some of Prof. Hind's fossils were obtaned, and thore formal the rocks to be exactly similatr. Leda Hindi Wis also fomm, and in : Whition Ostrea luyubris, scales of chomod fishes, atmelide duhos, amb phat remains. (iromp B., is also stlposed to oreur

[^37]main sorlic iphuretted o Pembina ion are apfound fiom tlo mingled o water. Cretareons mit whirh tion of the re those on Asinetoin, in, or near fossilk oblnomiat Flesellana conwo Creeks utis River t no great 10 sections rof. Hind, the River; inyuiformis me praicie ed shates, mation he deseribed peer part na River. r Forked sils were da Hindi d fishes, to oreur for a conronth, 1859;
siderable distance abore the Eagle Hills. The beds examined in the localities referreal to by both Hind and Mector, and thome of Prombina Momatain, would seem to belong to the upper part of the the group, fin Prof. Moek in writing of the sessils states that they are of specties which ocem in No. 5, as well as No. 4, lime mere commonly in the latter, which, with the lithological chatacter of "le matrix "leaves little rom todoult" that the beth represomt No. 4.
337. Division C., of Dr. Hector's section, correlatel by him with Ao. 3 of the Nebmaka series, may now, I helieve, also be certainly included in No 4. It is described as consisting of "dank purple and lownon laminated elays, with ironstome septaria, and sometimes aytald of welenite."* These beds were fomul at Font Ellice, on the Assinceminer ; at the ellow of the South Sakatchewam, in relation with the encalpment of the third prairec phatean; at the base of the C'ypresis Mountams on theib northernside, at the Bagle Lills, and on the North Sakkathewam all Fint Pitt. From the Souh Saskatchewan locality, Buculites rompressus: Tnoreramus (I. Crepsii of Romer and (omral?) Pholetomye orrithontis Morton, Cardiam, E'rogyra, Astarte Texana, and Cytherea were ohtainel, and are in themselves sufficient to mark the horizon with some revtainty.
358. I have described similur rocks, certainly referalle to No. I, about fifty miles sonthwarl of the Cypress Momitain locellity, refermen to in the last paragraph; and a considerable streteh of fomutry somth of' these hills appeas th be hased on this member of the formation. One handeel and twenty miles sonthward of the locality on the south satskatchewan, and south of the Lignite Tertiary platem, sombre ('retaceoms clays, with large septarian modules, exactly rexmbling those described by Dr. Hector, and containing some of the same firsil., are found, and are known to belong to division 4 , not only ly the forsile, hat by their stratigraphical relation. These rocks were also fomme as alrealy stated, to contain thick bands, indistinguishable from the harider elay-shales of Long River and Pembina Momontain,

Cretaceous No. 5.-Fox Hill Ciroup.

359. The Fox Hill group, is the highest of the Creticems morion of the west, and is thus described in the Nehnasianection:-"This formation is generally more arenaceons than the Fo. Pierre gromp, and also differs in presenting a more gellowish or ferruginoms linge. Thanalds

[^38]the hase it consista of samily clays, but an we ase end to the higher beds we that the arenaleoms matter increasing, so that at wome places the whole pasise into a sumbtone. It is mot reparated by mily stomery define line of demaration from the formation below, the change from the tine clays of the latter to the more satuly material athove, being very gradnal."* Nor does the tramsition aphear to be marked by any great change in life, as inded this division might almont an well be comsilered the dosing epoch of the last, Int fin the litholengionl break, and the persistemey of these mper sametomes over great areas. In the Black Ifills regiom, and along the base of the momentains, they are well developed, with similar lithological chamacter.
360. Though this division must border the casterm edge of the Lignite Tertiary, its rocks are not there exposed in the viomity of the fortyniuth parallel. The first heds distinctly retidable to it. were met with in the Bad Lamds sonth of Wood Mombatin, and in the general seetion there desigmated by the letter γ. Their onterop is agath seen on the White Mud River, and they must follow contimomsly athig the sumthern base of the Tertialy phatean, though sethom exposed. They were not seen at the jumetion of the Cretaceons and Tertialy, east of Milk River, but their position was marked lys sami-hills. On the thank of the Buttes, they are again brought to the surfite, and comsist of mather hard sandstone, with rome sufter and more argillaceous heds near the base. Judging from the few localities where they were ohserved, the extent of their induration appens to increase westward, being greater in the White Mud River sections than the Band Lands, and still more pronounced near the Buttes.
361. Prof. Ifind notes the occurrence of these rocks in two phaces only, both situated on the northern edge of the Wool Mountain Tertiary platean. The first is at the junction of the Eyebrow Mill stream, on the Qu' Appelle, where ferruginums clays, and hard greenish sandstones, with some veins of setenite, appear. The second locality is the Elbow of the South Saskatchewan, ψ where the rocks consist of greenish, and yellowishgrey sandintones, with some elays, and large imbelded concretions. The fossils obtaned from these were submitted to Prof. Meek, and by him stated to be chatacteristic of gronp 5 ; the following species being represented: Scaphites Conradi, Nautilus Deckyi, Avicula linguiformis, Avicula

[^39]higher beds shaces tho My strougly hange from ateres, being. Ned by my AN well be grical break, ais. In the ey are well I' the Thignite of the firtyo met with eral section Neoll on the the seuthern y were not Milk River, f the Butter, i have samil-1- the base. he extent of ther in the pronounced
two places in Tertiary am, on the tones, with bow of the yellowishions. The id by him fing repreis, Avicula
rv. Canada, p.

Webrescame, mend bestellarin Americama. As lecalition of this group, Dre Hector mentions dombthilly the Billow of Battle River, and the lawer pat of the section at the Rode Perces. The hatter may mow he inderted ertainly in the Lignite Tertiary. The firmer is not filly deneribed, and no forsils apreat to have heen obtaned from it.

Distribution of Cretaceous Subdicisions.

362. Tuking into areomit, the whole of the information aceessible on the Creaternst formution in the interior region of British North America, and the general contur and chamer of the combry; the limits of some of its members, and the area they cover, may he laid down with an apporch to arecuracy. The western bumdary of No. 4 aroses the forty-ninth parallel, between the 170 and ≥ 40 mile puints west of Red Biver, and probably nearer the latter than the firmer. Thence it rans west-north-west ward, and pasing borth of the Lignite Tertary leede discovered ly Prof. Bell near Dirt Itills, beemone nearly identitiel with the edge of the Missomi Cotem, before reaching that part of it called the Thumder Breeding Ifills on Pallixeres map. Thenee, after dipping somathward into one or two deep bays, it reaches the Cypress Jills. A narrow neek of the e Cretalceons rocks, may thene possibly pass romul the westeron escarpement of these hills, and unite with the wife area covered by them to the south, where they stretch from long. 109° to about lomg. $110^{\circ} 20^{\prime}$ on the Line. The strip of this formation northward of the Cy-
 ward from the Thumber Breding lills he has laid down the western elge of the rocks which 1 identify with No. 4 , as nemly following the edge of the third prairie platem,-previonsly ceserihed,-to the North Siskatchewan. South of the Wood Momatain portion of the 'Tertiary platean, the roek of this series, and of No. 5, have a breadh of ahout eighty miles on the forty-ninth parallel, and streteh northwad in the form of hays and inlets into the Tertiary. Round the whole of the northerin edge of the Missomi Cotem, the rocks of No. 5, probably cover but a narrow strip of gromel, between the boumbiny indicated for No. 4 and the Tertiary to the south; with, however, the exception of the lecality near the Ellow of the South Saskatehowan, where they aprear to be more important, and to underlie a considerable area.
363. Fastward from the edge of the thind platean, rocks of the age

[^40]

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences Corporation

of the Fort lierre group, probahly occupy nearly the whole a ca of the seromil platem, somth of the North saskatehewan, and between it and Hu Bumblary-line. Eistward, they terminate in the escarpment overlowking V:mitoba Lake, and the low lamels of the Red River Valloy. It is pminhe, bowever, that future expl pations may bring to light, over this erreat ared, many places where the beds of No. 5 have been preeread, from their superior hardness, especiully in such high-lands as the 'Tourhwoek IIills, and parts of the so-called 'momentains' of tho cistern escarpment. Outlyers of the Tignite Tertiary may even yot be fimul.
36.t. The rocks of the earlier Cretaceous do not seom immediately to muderlic:ayg great area on the castern edge of the formation, but to oceur berely :long the base of the high-lands formed by No. 4. In the vicinity of the fierty-ninth parallel, they aro completely hidden by allusial deposits. If it be supposol that No. 4 is shown nearly to its base, in Pembina Bearpment, on the Line; allowing the two lower divisions the same thickness assigned to them by Meek and Hayden in Nelnowkia, and taking the genemal slope of the prairie surface toward Reel liver, as representing that of the denuded elges of the rocks below, -sillywitions, none of which are probably far from the truth-then, rooks of the 3 3rd Group, with a thickness of 200 feet, would have their castorn limit about twenty miles from the base of the escarpment, while thone of the two lowest groups, would pass bolow the bed of the Red Riser, with a thickness of abont 1,000 feet. This would allow thom to about directly on the older Silurian or Laurentian rocks of the east. Rock : ipparently belonging to this formation, as provel by boring, underlie the alluvial and glacial drift deposits of the Red River Valley; at Morelocul, 180 miles to the sonth; and are also now kaown to orerlap J:amentian and Silurian rocks in south-western Minnesota.* Whilo it is proballe that they exist below the Red River prairic on the Line, at least ans far cast as the river, and very likely to the enstern paleozoic bromblary of the valley; it is hardly probablo that they do so in such fine ats ahowe indicated. The basin of older rocks containing those of the Cretiremes, probably shoals ripidly eastward, and would cause theno marginall belk to be thimer than those of the Nebraska section. It is alan probuble, that their castern elges may have a pronounced westwarl dip. Wherh would canse them to run out more rapidly. As a proof of the

[^41]ica of the en it and nent overralley. It ight, over tave been h-lands as 's' of the ven yet be adiately to it to ocenr In the aidden by arly to its wo lower Tayden in e toward eks below, th-then, have their ent, while the Red 5 them to the eans. boring, Valley, poverlap hile it is Line, at almozoic in such those of se thene 1. It is estwarl
of of the

 			पร! d.104! v Lovr(- I ${ }^{\circ}$	気
 		 snuaptitupta put shta.exuade "satussputs - д..!		
 	-	 all 		F
مyy 		 	 	年
		"! 	? 7 .an 010 : 	$\frac{\square}{x}$
				dal

[^42]general horizontality of the Cretaceons rocks, however, it is worthy of notice, that the difference of clevatio. hetween the station at the foot of Pembina Escarpment, -where No. 4 is seen,-and the point where the Cretaceons rocks are kiown to be overlapped by the Tertiury, 200 miles westward, is about 750 feet; 700 feet being the thickness nssigned to No. 4, in Nebraskia. This would allow the beds to be almost perfectly horizontal, as No. 5 is only about eighty feet thick, when seen near Wood Momentan, and the base of No. 4 is nut exposed at the first mentioned locality.

The possibility of the diseovery of lignites in the lower Cretaceous, has been already adverted to, and the extent of this portion of the formation, may perhips become a question of some importance in this regared.

Lignite Tertiary Formation.

365. The highest heds of the Lignite Tertiary serics, in the ricinity of the forty-ninth parallel, are probably those which oceur about Porenpine and Pyamid Creeks, and the Great Valley, and high lands south of the Missonri Cotean; and I am inelinel to helieve that if there is any difference of horizon among the beds of these healities, those of the first mentioned may somewhat overlio the others. At the same time, in a region where local dips due to original irregularity of deposition, so much surpass in amome those due to any gencral inclination of the beds; and where individual strata have so little constancy, and good exposures occur with comparative muty, it is imposible to arive at any very precise knowledge of the equisalency of the beds of different localitios. The creeks above mentioned cross the Line at the 385,352 , and 345 mile points respectively, and have heen proved by the explomations of Lientenant Greene of the U. S. Northern Bommary Survey, to be tributaries of the Quaking Ash, an attuent of the Misomiri. In comection with this part of the section, numerons and important beds of lignite occur, in ansociation with greyish, yellowish, and purplish menaceous clays, sands, and little consolidated sandstones, and bands of ironstone. The deposit shows no trace of marine or lnackish-water conditions, and wherever remains of molluses are fomed they are those of fresh water. The lignites appear to prove the frequent elevation of parts of the area above the surfice of the water, and the general prevalence of plaut remains in the intervening sands and elays, show that at no time were land surfaces far removed.
is worthy of the thoot of t where the y, 200 miles assigned to ist perfectly near Wood mentioned

Cretaceons, "tion of the unce in this
the vicinity bout Porcirlands south here is any of the first time, in a n , so much the beds; exposures any very localities. 345 mile of Lienributaries with this occur; in s, samels, - deposit hierever lignites ove the s in the aces far

3i6. The uppre heds of the Souris River sections, in the vicinity of Wood End Depôt, though probably occupying a position inferior to those of the localities alme mentioned, canuot be separated from them by any determinate charncter. They show perhaps a somewhat more regulat deposition, and atmere mid alternation of conditions, but are little, if at all, more induatel. The lower beds of the Sombis River sections, including the nodilar sambistone of the Roche Percée series, are in great part aremeeons, which, together with the tirequency with which some of the molluses have sustained fiature of their shells during life, would indicate disturbed waters. Nothing of the mature of a conglomerate, however, ocemes, nor cam the samdstomen often be comsidered coanse. In beds overlying the Roche Percee samdstones, the only remains indicative of brackish-water,-being shells of Corbula,-were fonnd ; and these were in association with preponderating numbers of purely fresh-water forms.
367. In my Preliminary Report on the Lignite Tertiary, the following remarks, benring on the position of its eastern limit on the Bomedary, were made:-The Souris Valley, for about four miles east of the Roche Percée, contimes to show numerous sections of the usial clays and sads, and hardened sandstone beds, - the latter in one plate neatly three miles east from Ruche Percée,-forming a group almost equally pirturespue with it. Rather hard beds of sand and sumity clay are seen in several places to moderlie the sumdstones, and one of these was found to be filled with well-preserved specimens of' a preuliur Paludina. Abont a mile further east, the valley changes its chamater considerably; the banks formerly scarped and clayey, are rephacel by regular grassy slopes, and, though followed for a distance of ten or titteen mikes beyond this point, gielded no further sections This change I am at present disposed, in the absence of more certain data, to consider as indicating the passage from the Lower Tertiary heds to the Cretaceons. The enstern edge of the outcrop, of the havder beds comected with the Roche Percée, alson appears to be indicated by a slight, though pretty well defined step in the level of the prairie, which may be considered as the first gentle rise of the Missouri Cotem, and rums abont sonth-eastward to the Boundary-line, which it crosses near the 240 mile point. The spring, known among the Half-breeds ats Peter's Spring, lies at the foot of this step, not fill north of the Line, and is probably comnected with the junction of the more permeable sundstone beds with the underlying impervious clays. It is possible that lignite coals of importance may

 not, however, wery polablo that this is the mese, an the inve tigetions al Hayden mod otheres somth of the lina seem to shew that in the mastern ragion the daksition of lignite dial man commence till the combitions of the Cretaceons timation had distimetly pased anay:

 tribulary of the somin River, and this, taken in cmanerion with the prisition of the presmed reprencotativer of these samentomen in the western
 of Toertiary heds may mulerlie them. 'This wombldare the onterop of'
 than abowe stated; as shown in the map acompanying this hieport. North-westward from itw intersertion with the tivery-ninth parallel, the pmition of the line of jumetion lain dawn on the map, is mot tomuded on diene ohservation, the rombley lowing thickly rowerel with drift, bint

 from the truth.

36: The pabmondogial resemblane of the pertion of the lignite
 Their lithohagical similarity. thongh less to be deproded on, is mot less striking; but the rocks of the tarty-ninth parallel, when compred with the sections on the Missomi River, appene to show a gemeral tembency of the beds, northwad, to inelude more carbonacemen mater. The lignites are more frequenty tomad, we generally thicker, and almost always more compact and purer than those of the castern extension of the 'Tertiary to the sonth. 'The identity of the rocks on the Line, however, from the Rove l'oree westwarl to Wood Momitain, with the onstern fresh-water extension of the southern lignite Tertiany, generally known as the Fort Union Tortiary, does not almit of donb, and to whatever herizon the one is tinally adjudicated, the other must follow.
370. In continuing a review of the formation westwarl, the rections in the Bad Lamds sonth of Wrod Momatain next require mention. Here the Lignite 'Tertiary is fomed with a somewhat different apparance; and westwatd from this point it gradually changes, till in the region around the Butter, it has assumed ma apearance no entirely different
from that of ite castern development, hat wero seetions from the two lowalities diree tly romprew, it would be diflionlt to prove their canivaloncy. 'The berls best exposel in the Band lame, it is trine, are at the vory hase of the formation, and lower than any neen oast of this phace; atill their diflerence, when comparel with thowe of the Sombis, is mot very striking, and ehiedly obtaine with tho lowest heols of division β., which
 with its lignites, correspumls clasely enough with the lignite- lvaring bexde near Woral bial. In some of the lower beds of ab, a pale greenish groy tint, mot previonsly observerl, upperes; and the introndiction of reptilian bemes is a new fenture, beme having been fimm cant of this phaces. No mollaseroms fiossils were timul in the hede of this locality.
371. On the Milk River, where the next gevat nerien of exponires of this finmation oce ers, its chanacer has modergome a finther change. The pale greeninh whate is now mowe promuced, and characterintice of a greater thickness of the herls; mill while well marked fresh-water molluses ahomed, they are mixed for tho first time with the remains of Ostrea, a marine genus. Lignites still ocernr, though mot abmandy; and reptilian lomes are finm in cortain layeres. Milway in the section, is an important batul of satulatomes, which may be pheere, comjereturally, on the horizon of these of the Rowhe Pemee and division a, of the Bat Lands. The change firom salt to fresh water comditions, which, in the eastern regioms seems syuchomens with the clunge from Cretaceons to Tertiary, here begine to fail us an a test.
372. In the vicinity of the Buttes, or Sweet (irass Hills, while lignites and carlonareons clays still ocemr, the beds are chameterized by the preNence of Ostrea shells in great mumbert, with ome or more speecies of mollusen identical with hose of the Bitter Creek coal series of Wyoming, and a Dostia (Neritina) apparently indistinguishathe from those of Coalville in Utah. Near the first and seemud bumehes of the Milk River, where the formation is again well exposel, there is a remarkable reversion to fiesh water conditions, quite at variance with its general tendency to become more strietly marine west ward. Dinosamian and other reptilian remains, however, still occur in connection with Unio, near the First Branch, and on the Second Branch the hone-learing beds appear to overlie a considerable thicknoss of strala holding Limaca, Paludina, Planorbis, and Spherium-some of which are identical with those of the welldefined castern Fort Union beds. Greeninh-grey, arenarems clays, now constitute a large part of the nections, coarse sathdstones ocemr fre-
quonly, and alew beds of comglomerato aro moted. No lignites were, howerer, observed in thin pat of the firmations.
:373. Where next met with, wh the Sl. Mary River, the bede of the formation mepresented. aro probably considerably below thome ot the last localitien. 'They will have math the namo gememb chameter ; and
 hewever ; the coal fomid heredifiem considerahly from the ligniten of any of the mastern locilition, and the mollasea, thongh probatly ostmuino, are decidedly salt-water torms. No rephilian remains were fomm in this meighbompowl.
374. It would thas aprear, that thomen the genoral tendeney of the Lignite. 'Tertiary, is toward nalt-water combitions westward, and those of fresh-water lakes for the east, that theroare important exceptions; and that, while brackish-water forms angord east ward in the lower beds, as liar as the Roche Perces, fresh-water speries are nemtered westwarl, bearly to the hase of the momotains, and sometimes oremb in great abondance. A zone

 Lames it is about 150 fied above the (retaceons rocks. In the valley of the Milk liver, abont 200 feet above the have of the nection, and in the regien sumbombing the Buttes. at severat miles firom the hase of the momatains, and therofore, probably several bumdred feot up in the Tomtiny. 'The comedation of the sandstomes of amy one of theso western localities, with those of the Roche l'orée', might be open to great dombt; but firom their ocempence so persistently, at a horizon in the tormation, approximately tho same, l think that they may be considered as representing the Roche lereere, series with some degreo of eertainty. In the Missouri Regrion, sonth of the Line, the Lignite formation is assigned a theckess of about 2,000 feet. I have not mot with any locality near the forty-ninth parallal, where it might be ewon ifporoximately determined; but, assuming the horizontality of the herls, the rise in the general surface of the comntry would give it, in several places, a thickness of at least 1.000 feet.

From the Somis River, westward, the Signite Tertiary nearly alway ocernpies high gromal, and frequently forms a well-marked platoan, resting on the chays of Cretaceous No. 4.
375. Thongh I bave not yet had an opportunity of comparing the fossils, obtained in the western matine and brackish-water beds of the Tertiary on the forty-ninth parallel, with those from the Judith

River heds of the Missomri, I have little donbt of the identity of the formations. The age of these dulith River beds has bong been mon minothed question, and they hase only lately been includel by wome geologinas, with the remainter of the Lignite 'Tertiary, and called Cretacems. Dr. Hayden was mily prevented firom calling them Fort Union 'Tortiary* by the oedirreme of certain vertebrate remainsthe meaning of which is now better molderstonal. The lithologicoll resemblance hetween these heds of the Line, and those of the Judith livere, is close.
376. Prof. Hind did mot revognize the Tignite Tertiary Pormation in any part of the North-west thavered ly him, while in embertion with the Assineloine mind Saskutchewan Bxploring lixpedition. Dr. Hecter, while in some doubt whether to altach the beds seen by him near the Ruche Peree to the top of the Cretaceoms, or to the Lignite basin of the Misromi, appears to regarl the latter comelusion with mont livour ; and his supposition is now borne ont hy their fuller examination. He also comsiders Eorene 'Tertiary to be representen, in the upper beds of the Gypress Ilills, and colours them as marine Tertiary in his map and secetion publisheed in the Geologienl Society's Journal. The fishlowing fossils were obtained in this locality: Modiola,? sp. Ostreat V'eleniana, Unio, Cardium,? sp. "The existence of Tertiary strata, aserertained to be woby their organic remains, has only heen provel at one point west of the C y pross Mills, where Mr. Sullivan obtainel Ostrea Veleniana, issociated with a Modiola, and a few other fowsils which Mr. Bitheridge, who lus mamed all the Neozoie tossils bronght home, has been umable to identify. The beds firm which the forsils were obtained, comsisted of friable samdstones, with argillaceons and calcureons concretions, the bedding heavy and irregular, and often passing into incoherent pehble conglomerate. Judging alone from the mineralogical resemblance, these beds were recognizel over a considerable area, but always forming high gromed in the neighbombool of the Missomri Cotem, sonth-enst from the month of Belly River." \dagger
377. These remarks are interesting, as bearing on a bocality not forty miles north of the magniticent exposimes of partly marine Tertiary, in the banks of Milk River near the Line, and indeed, if the fossils mentioned an obtwined by Mr. Sullisan, were collected while on his branch expelition to the sonth, \ddagger they may have been derived from nome of the

[^43]\dagger Exploration of British North Amerlca, $\boldsymbol{\beta} .2 \boldsymbol{2}$.
sections which I have exmmined. I emmot doubt that these matine 'Tertiny berls are a purt of the series so extersively developed on the Milk River and in the region of the Buttes. The Cypress Mills, like the platem of Wool Monntain, and other 'leptiary platems nemur the Line, is charactorized by comparative fortility, nul nipports a gool growth of grase, while survombed by barven plains of Cretaceons No. 4. Cmptain Pulliner writes:-" In the midnt of the arid plains taversed by the Sonth Saskatchewan, there are isolated patehen of table-land, upon the norfince of which the vegetation beromes lasurient, and pasture of fitir ymatity may be fomd." ${ }^{*}$ The Hand llilis are mentioned as an exmplo of this peenliar teature, which so strongly suzpests the repetifion of the superposition of' 'lertiary rocks like those of Weal Monntain, an the Cretureoms.
 in his group, D., and comsist of sampatones and banded rlays, which much resemble in their lithological chameter those of the lignite 'Tertiary. 'lhongh it may la hazarlous to genemize in so vast a comatry, where our knowlenge is as yot so sematy, I cannot helf believing that some partjerhaps agreat part-of the thime prairie platem, marked in Dr. Hector's map as Lawer (retacons, misy yet be fomme to be the equivalent of the marine and estamine lase of the Tertiary.

[^44]
CHAPIER VII.

VAldE OF ITGN:'GE ANH HRONSTONES.

Abstract

 water-Extent and nature of whbuergeme durims Niohrman perionl-Detrital Lesle of Fiort l'ierre gronp- 'loming periond of shallow waters- Fixtensive hand arems during lignite 'lertiary-comitinns of formation of ligniten. - ('oss. prolucod on surrommling beals-Area over which similar phenomena have been wherved- (Gnention whether such tires are spontancmis-Extent to of lignites reprenented - Variability of water content-lignitem as fuels tmport of the Nt. Mury liver coal-other similar fuels near the mountainsArea of lignite learing formation-Iromstomen of the lignite 'Tertiary-Irom. atomes of the Cretaceons-l'robability of their future ecomonic importanes.

Comditions implied by the Cretuceous and Tertiary Deposits.-Nature and Origin of their Material.
378. The question of the origin of the material composing the Cretareons and Tertiary rocks of the interior comtinental region, is one of considerable interest. The general anpect of the beds of the first and necond divisions of the formation, is that of shallow-water deposits. They consist largely of sands, and coarse detrital materials, and, from the frequent occurvence of lamel-plants, and the occeasional preservation of freshwater molluscs, in both their eastern and western developments, argue the neighbourhool of' considerable areas of dry land. The third, or Niobrara division, in the eastern portion of the area, consists in great part of the calcareons remains of molluses, formminifera, ete., and resembles the aecumulation of a somewhat deep sea, from which cold aretie currents were excluded, and into which very little detrital matter was being carried. A general depression ot the present surface of the comtinent, to the extent of about 1,500 feet, womled give a depth of 700 to 800 feet, above the horizon of the Niobrana depusits; and would be amply sulficient to satisly the conditions indicated by their animal remains. A depression of this extent, would however, almost submerge the Laurentian barrier to the north and east, and wonld suffice in its present condition to open broad avenues
through it, to the waters mul currente of the Northern Sen. Before the
 its full height from locell elevatory netion, while its actual summit must have lseen murh highor than at present, as it hat not then sutfored the extensive demmation of 'lertian' time, mad of the ghatial periond. It would. therefine, stand sutheiently nhwe the water, with such a degree of contiontal submergence as that indiented, to form the eflejent barier to the morthemst, mad yet mot prewent a sulthent surfince of its own to sulb-merial demulation, to supply, under amlinary ciremmstumes, mush defrital mattor to the surrounding sems. liven at this time, the region of the fatare lacky Momatains, must have been marked out by shallown and
 posita do wot retain the charneter of their eastern developments, to thoir Western horders, bint are to agreat extent replaced by arenaceons and other mechanical sediments; while still comtatining a sufflecient number of the charmeteristic fossils of the Niobrara livision to prove the age.
379. Between this division of the (retncoons, mal the mext in meder of time-that known an the Fort Pierre groug to the Sonth, and represental by the Pomhima Momotain group in Manjobn, and aso extensively westwarl, th the moth mill somth of the lime-there exists mevilent break, which is mot alone marked by a paleontological rhage, but by the sudden substitution of fine bomogeneons angillaceons sediments, with sourcoly a trace of caleabooms matter, for those comsisting almost entirely of the ealeareons remains of marime life. 'The surface of the Niobrara deposits, has also been noticed, in some places, to have suffered erosion betore the deposition of the first bels of the next gronp. I am not awme that pronf exists of the elevation of ay part of the area, to such an extent as to permit sub-nerial demarlation, and it is probable, that the surface of these soft ealcureous beds, wan furrowed by the ate tion of mother strong marime currents; which now, from some change in the physical geography of the period, gained aceess to the region. Whether this change was brought alomt by the opening of an easy consonenication from the waters of the northern to the sonthern ocenn, beiween the Rocky Mountain region and the Lamentian land, by the submergence of mome barrier till that time existing, it is impossible to say with any degree of certanty. This would, however, seem to offer the most tenable solution, and it is further probable, that this change wats caused by a genemil movement of depression which brought rocks aceayed by sub-acrial weathering, under the action of the sea, and served to supply ready-moule material. In any

Before the by wripuired mmit must sutfered the perionl. It a dexreo of at havier to - its own to as, much do'egion of the hallowe and Mentemes deints, to their nuceons and it number of' in ago. t in oriler of 1 representextensively all evilent but hy the rents, with sist entirely
Niobram ed arosion not aware uch in exthe surface hor strong seogrophy ange was he waters untain reurier till ertainty. and it is ement of ig, under In any

 colvonts and deposited in asea of mone depth, rather than that finmed from the denudution of neighluming land. In the Rocky Mommtain regiom, howerer, thene depmites atill show the existence of nomewhat shallower water comblitions, and though generally matataining nomewhat the angect of these enstern representatives, contain much conmer matter.
380. In the clowing periox of the Cretaceoms "ppresemted ly its fifth division, we hase continumly shonling waters, and the introndietion tine comparatively limited intervill, of deponits, for the mont part, coarse mul arenaceons, and aimost destitute of orgmic remains. This shomling of the
 the continent, ans he the inereasing thickmens of the Creturemens deposits
 feet. If his was the conse the hmiks and shoals of the rexion now makem hy the rugen of the Rocky Momotnins, need mot have heow misem up into extensive lame areas, hat would retain the chanacter so long mainationd by that aren, and now ugain assumed by the interion continental region generally: The distribution of this arenaceons material was probathy dhe to aretic courconts, mo dombt, then as now forming a part of the general ocemice cirvulation. These, like those still flowing down the enstern coant of America, would to urged westward he the rotation of tho earth, and passing over the extensive shallow water aren of the eomtinontal platean, would find-if not a comtimes. nea-wide ntmits and operninge through the Jacky Momatain region, and fill thenee into the lleeper basin of the Pacitic. Proteswor Newbery, from the indieations finminherl by a comparison of the flomas, concludes that relative ditheremes of temperature, similar to those now oltaining, existed during the Cretaceons and Tertiary perioks, leetwoen the interior comtinental region, and the west coast.* If the former regiom was inflenenced in the manner alone supposed, by the arctie currents, while the shores of the latter were bathed in warmer waters flowing from the south, as at the present day, this maty easily be aceoment for.
381. It would thas appear, that the Credaceons ppenel with a periond of considerable hand surface, shallow waters, mad curvent-drivell salldbunks, which inso extemled to the Mississippi regiom, deseribed by l'rol: Hilgarel; and probably th the Cretacems conat-deposits of New Jemey.

This seems next to havo heen followed in the interior continental region, by a gradablabidence, during which the secomed division was formed. The cessation of subsidence-or possibly even a sight movement of ele-vation-and the advent of a prolonged perjod of comparative tamquility, with certain other favouring eiremmstames, gave rise to the Niobrara limestome formation. 'The indications next farour the belief of' a second subsidence, abmitting manine eurrents and bringing onimportant changes in physieal geography. During this period, according to Meek and Mayden, : part of the chays and green-sands of Now Jersey, were fonmed on the Atamtie coast ; and in the Mississijpi region, acording to Higram, the Rothen-limestone group was deposited. The fact that calcareons beds were being formed in the sonthern portion of the interior continental trough, while such purely argillaceous deposits were produced in the northerlo; would also tend to verify the supposition of the entrance of sediment-bearing waters firom the north. Closing the Cretareons, properly so-called, the fifth division shows the resimption of shoal water and sand-bank over the entire northern portion of the interior, a change probably at leant aded by devation. Bat that the decreased depth was perhaps mainly due to the filling up of the northern portion of the basin, seems io be indieated by the tact, that limestones and marlites still contimned to be deposited in the Mississippi region.
382. The anty Cretaceons period, from the evidence chiefly of the plants of the Dakota gromp, must have had a temperate climate. During the sueceeding nges, the heat was no doubt becoming greater, for thongh there is no complete sncession of land phats, we find a well-marked maximum of temperature, as stated by Prof: Iesperenx, in the early period of the Lignite Tertiary, and from that time the change was back again to a climate resembling that of the Dakota gromp, if not even cooler.

38:3. Prof. N. H. Winchell, in his last published report, amounces the diseovery of extensive heds of gataite decomposed in place, and kaolin-like matermal, covering the odest rocks of south-western Minmesota, wherever they have been protected by overlapping Cretaecous beds from the scouving of the drift period.* This throws much light on the origin of the tine clayey, and coarser sandy deposits of the Cretaceous, and shows that the rocks of the Lamentian axis mast have been muth decomposed by sult-acriad action prior to the opening of the Cretaceons period, and that these soft materials brought muler the action of the waves during

[^45]ental region, was formed. ment of elea trumpuility, he Niobrama of' a second tant changes ok :und ILaye fonmed on to Itilg:ard, :areous beds continental a the northentrance of aceous, proal water and change proth was perf^{\prime} the hasin, tes still con-
iefly of tho te. During for though uked maxuly period ck again to bler.

amomnces

blace, and an Minnebeds from origin of nd shows composod riod, and is during
the succeding periods of depression, could supply a great quantity of ready formed detritus.
384. The carlier beds included in the Lignite Tertiary series, while showing a contimed progression of the physical changes operating during the later Cretaceons prevols, exidence the clevation of much (ry land; and though these deposits are suppered to have passed entirely across the present Rocky Mombtain region in some phares, ${ }^{*}$ still, ahout this time a pretty comthoms barrier of land must have been fomed there. The nowthern comernt still passed along a narrow trough on the eastern margin of this hand, and piled up local and irrecgular samulhank, while numerous molluses of shallow and brackish-water typers, assisted in the formation of the deposits. At the sime time, or very shortly atterward, finther to the east, much finer sediments were leing laid down with considerable regularity; and only in the very lowest layers of theso do we find salt or brackish-water njecies of shells. The somee of the vast quantity of tine argilo-arenaceons material of the Lignite Tertiary; much of which must have heen depositsd in land-locked basins,-is a question of very great difticulty, muless, indeed, wo may suppose that some parts of the Cretareons series were already malergoing demadation by rain and rivers. If the Rocky Momentan region became an actual land barrier about the begiming of the Tertiary, the hater Cretaceons deposits of the west coast, should present a more conrsely detrital inpect than those of the western part of the interior of the continent, while those of the earlier Tertiary, should be relatively finer in the first locality. For, during the former period, the shallow banks and bars would supply material to the south-western drift, while during the latter, they wonld provent the access of other sediment than that derived from their own waste.
385. It is mneressary here to recelpitulate, in giving an accomit of the lithological.character of the beds of the Lignits Tertiary, which are fully deseribed in comection with the various sections on preceling pages. In some farts of the formation, however, the lignite beds themselves conetitute a not unimportant part of the thickness of the strata. In ono of the Souris River sections, in a total thickness exposed of 57 fect, the lignite amomats to 17 feet, and is disposed in seven distinct beds, separated by clays and samels. The lignites themselvos comparatively seldom show intercalations of shale or detrital matter, and their ash is found, as a rule, to consist of very tine whitish, to pale yellowish or reldish, earthy

[^46]matter, without coarse grains, and not more in amount than may have been contained in the substance of the original vegetable materials. Though some of the lignites may have been formed fiom necomulations of drift-wood in shallow water, it is difticult to menderstand how such collection could go on for long periods, without the contemporaneous deposit of sandy or mudly matters, which would have been suspended in waters moving with sufficient foree to convey the wood. It would also appear difficult under this theory, to explain the regular and even superposition of the sandy and clayey beds, which overlio the lignites, and the fact that these do not send extensions downward into them, as they must have done if formed above a tangled mass of irmens and branches of trees. It seems likely, therefore,- though layers like tro root-beds were only observed in one or two instances to moderlie the lignites-that at least the majority of these beds were produced by the growth and partial decay of trees, and also perhaps of peaty matter from swamp mosses, in the positions which they now ocerpy. Their method of formation would, therefore, agree with that already proved for coals of the true Curboniferous formation. This is rendered more probable by the circumstance that lignite beds are sometines immediately covered by beds holding leaven of trees, ferms, and grasses, a fact which has been noted by Dr. Mayden and others with regard to those further south, and which is also found to obtain with coal beds of the Carboniferous period. Some of the more impure beds, indeed, seem still to show evidence of having been formed from accumulations resembling those of a peat-bog, in which occasional logs of wood have been enclosed. A great part of such a bed is soft and structureless, but it holds irregular masses of hard jet-like material, with conchoidal fiacture, and evident rematins of wooty structure. As already stated, also, some of the more impure lignites seen in the further western portion of the formation, seem compatible with the explanation of formation from drift-wood.

Combustion of Lignite Beds.

386. In connection with the Lignite Tertiary, the phenomena of the combustion of lignite: As over great areas, and the metamorphosis of rocks, and featmes impressed on the commtry by it, is a subject of interest and importance. In no part of the world does this destruction of mineral fuels seem to have occurred on so vast ancale, as in the central platean of this continent. The appearances produced by this action were met with in the vicinity of the forty-ninth parallel, at the very eastern
than may have able materials. accumulations tand how such intemporaneous n suspended in It would also and even supergnites, and the 1 , as they must anches of treos. eds were only nites-that at e growth and - from swamp nethod of forr coals of the obable by the wered by beds as been noted pr south, and ferous period. evidence of ff a peat-bog, great part of asses of hard Is of woody pre lignites compatible
nena of the orphosis of bject of intruction of he central ction were ry eastern
edge of the Lignite Tertiary, and were also found in almost all the localities in which lignite occurred. The products of the combustion were first noticed as fragments of roek indistinguishable in appearance from modern lavas, and scorias, strewing certuin hanks, and in the beds of streams. The comnection between these traces, anl the combustion of the lignites was, however, soon established, and beds actually foumd which had been burnel but a short way in from the outerop. The bank of the Souris River,-as stated in the Preliminary Report already referred to-in one place shows an amphitheatrical depression a few feet below the general prairie level, in front of which a great quantity of lignite clinker, often in large masses, was strewn down the slope toward the river. Λ bed of lignite six feot thick, elsewhere well exposed and overlaid by about five feet of clay aud drift, was here completely burned away; (Plate IV., Fig. 1.) By reference to the detailed accounts of the varions localities, many similar instances will be found.
387. The effects produced on the lignites and associated beds, as derived from the examination of mumerous widely separated localities, admit of classification and gencral statement. The lignites themselves appear to be insainbly consumed in their entire thickness, and their immediate horizon is represented by a layer of ashy clinker, or of a material resembling scoriaceous lava, and vesicular in structure. The finsed masses are always dark coloured, generally blackish or dark groy, but sometimes opaque bluish or brownish-black. This clinker bed is doubtless composed of the ash of the lignite itself, and any intercalated shaly layers, or portions of carbonaceous clays associated with it ; the particles of which have been brought more intimately in contact with the burning matorial. The fusion may also be aided by the alkalies and alkaline earths of the lignite ash, which differs in composition from the surrounding clays.
388. The alteration extends much further above the position of the lignite bed than below it. The surrounding layers are very generally of the nature of fire-clays, and contain little or no iron, and a smal proportion of undecomposed felspar, or other fusible mineral, and are consequently very refractory. Those immodiately above the lignite, are frequently altered to hard jaspery, or porcelain-like rock, breaking with sharp conchoidal fiacture, sub-translucent, and of greyish-blue and dull greenish tints. In this substance, impressions of the stems and jeaves of plants are, however, nometimes recognisable The porce. $l_{\text {ainized }}$ beds are generally traversed in all directions by rusty fissures,
but on fresh fracture show the original stratification of the rock hy bands slightly difforing in tint. Their havdness is ubout 6.5 , and splinters are fusible on the edges, before the blow-pipe, with greater or less difficulty. In their fusibility they range from 4.5 to 6 of Van Kobell's seale, and when fised they form thanslucent beals. The thickness of the heds thes greatly altered is generally not more than a few inches. In the Bad Lands section a very fine white clay, containing numerons impressions: of plants, rests immediately on a lignite, which at a short distance, was found to be eompletely consumed, the representative of the white clay, being apparently a hard pure elan-like materinl of this kind, of pale bluish-grey colour, and wasy lustre.
389. Other clays and clayrshales not so closely in contact with the ligniter, are generally hardened into whiteish and crean-coloured rocks, resembling tiles or biscuit porrelain; and in these the impression of plants are often preserved with great beanty. I was not, however, so fortunate as to find any locality in which large collections of plants in this favonrable state of preservation could be obtained. The clays, or shaly-clays, seldom hold enough iron to give them a red hue when metamorphosed. The; sandstones and coarser arenaceons clays, are not usially much induated or otherwise altered, except in colour; but generally contain sufficient iron to couse a moderately striking red colomation, and some beds are very deeply tinted. Such sandstones are among the most prominent marks of the combustiom, and were observed in a great number of localities. In the Bad Land region, several isolated buttes eapped with intensely red sambstome, which had a remarkable prismatic structure, were seen. The structure resembled, on a small scale, the columnar appearance of basalt, the sandstone being divided by joints into vertical prisms, and breaking along these nemly at right-angles to its original bedding. The rock here precisely resembles ordinary red brick, and gives out a faint-ringing somd when struck. Such localities, Mr. Allen, who has studied similar metamorphism in Dakota und Montana, believes to indicate former vents by which the pent-up gases arising from the fire aive found exit. (Plate VII., Fig. 1.)
390. The effect of the combustion of the lignites over large regions, thongh to indurate the surrounding beds, is evidently from its observed relations with great demudation, more destructive than conservative. The strata appear to be cracked and fissured in such a way by the action, as to allow the entrance of surface waters to their mass, and accelerate their removal, 6.5, and 1 grenter 6 of Van Ye thickan a fow ontaining ite, which he repre-elain-like re. t with the red rockn, of plants fortumate is furour-naly-clays, rorphosed. dly much ally conbouration, ro among reed in a 1 isolated cmakkable n a small ivided by rht-angles inary red localities, and Monos arising observed tive. The pation, ats rate their
391. Similar combontion of lignite in situ, has been olserved to occur at varions places, over an immense area. South of the Line, Sewis mid Clarke have noted the phenomenon in the accome of their jonney up the Missouri, and mamerons references to it will be fomal in Dr. Hayden's varions reports. Mr. J. A. Allen, in his interesting paper alrealy referred to, * has collected a great deal of intiomation on this suljeect, and added the result of his own observations. As an example of the great arens over which it may extend, he mentions the Bad Lands of the Tittle Missomi, where, "with a breadth of twenty to thirty miles, these appenrances are said to be continuous fier fully two humdred miles. Throughout this vast areat, all the ridgos anel buttes are capped, or banded with the reddened and indurated shales." He is in error, however, in supposing that the phenomena do wot oceur north of the forty-ninth parallel, for, atcording to the accomis of varions travellers, they extend eren to the shores of the Aretic Sea.
392. The earliest notice of appeanamen referable to this camse appenes, however, in Sir Alexander Mackenzies accome of his voyage up the Peace River in 1793, where he refers to certain" chasms in the earth, which emitted heat and smoke, which diffised a strong, sulphurons stench." A lignite bed ou the Matckenzie River, near Bear River, was also observed to be on tire by Sir Alexander Mackenzie in his first voyage of discovery in 1792. Sir J. Richardsom, in 1848, found it still burning, and emitting smoke and flame, visible by night. "Some portions of the clay were semi-vitrified, and so hard as to receive no impression from a file." Sir J. Richardson also noted "bituminons shate" to be on tire, in 1826, nem Cape Bathurst on the Aretic Sea. "The clays which had been exposed to the heat were baked and ritrified, so that the spot resembled an old brickfield." He also had information from Chief Fartor Alexander Stewart, "that bells of coal are on tire on the Smoking River, which is a southern affluent of the Peace liver, sud crosses the fiftyseventh parallel of latitude." "There are coal heds on fire also near Dunvegan, on the main strean of the Peace River." \dagger Ins. ILector, in his report, mentions several localities where lignites have been thas destroyed. Near Fort Elmonton, the appearances seem to be particularly striking. Of a locality on the Red Deer River, lat. $52^{\circ} 19^{\prime \prime} 25^{\prime \prime}$, long. $113^{\circ} 3^{\prime}$, he writes:-"It was found to be as the Indians had asserted, and far along the banks of the Red Deer River, where the coal : 1 ppeared,

* Proe. Boston Society of Natural Mistory, vol. xus.
| Journal of a Boat Voyage through Rupert's Land, vol. 1., Plo. 159, 191, 2i1, 195.
the spontaneous fire was in netivity. The Indians say that as long ans they can remember this luss heen the case."*

393. This combustion, though often spoken of as spontmeons, camnot, I think, be proved to be so. In cases of the spontaneous comlustion of bituminous coal, which sometimes oceur when large masses of it are piled together, the proluction of the degree of heat necessary for its initation, is tracenble to the decomposition of pyrites, under the combined action of air and moisture. In my Report of Progress for 1873, I have written: "Such fires may.either be cansed by the ignition of the beds by prairie fires, or fires of Indians' or 'Traders' camps; or by the spomtaneous combustion of the lignite, when me dergoing decomposition at the onterop. The latter, however, seems improhable, as iron pyrites, the usual cause of such spontaneons combustion, is almost entirely absent from the lignites, which I have examined chemically:" To this I can now only add, that a further examination of the lignites, over a more extended area, confirms the almost total absence of visible pyrites, and the very small quantities of iron fomal in the ashes, wonld alone serve to prove its non-existence in any quantity. The only cleur case of the occurrence of pyrites, is in the lower part of the 18 -foot bed on Poreapine Creek, where small dises of the material, about the thickness of ordinary paper, were foum in the vertical joints. Mr. Marvine also, in speaking of the lignites of the same formation in a more southern region, remarks that the sulpher seldom rearhes one per cent., and is often nominally absent. \dagger Though it is chemically possible, that spontaneous combustion might arise, under certain circumstances, in the carbonaceous matter of the soft, crumbled outcrops of the lignites themselves; it is obvious that such places would offer the mont favourable opportunitios for the ignition of the beds by prairie fires. These, even when burning over very scmutily grassed regions, possess sufficient heat to ignite the bois des vaches, or dried buffalo excrement, with which the surface is strewn,-a much less combustible fuel. Mr. Allen says that several instances are well known of the lignite beds having taken fire from the burning of the prairie grass by the Indians. It would therefore seem that the aid of spontaneous combustion need hardly be invoked. \ddagger
394. The destruction by this agency, over great areas, of lignite beds

[^47]as long as ontmeons, neous comgre masnes necerssary -ites, under f Progross sed by the or Trulers' when unrer; seems pontaneous ch I have ; a fiuther nfirms the untities of xistence in s is in the Bises of the he vertical same forer seldom ough it is ine, under crumbled lees would beds by grassed or dried less comknown of irie grass ontancous
nite beds

[^48]which might have heen of value to the fiture population of the Northwest, is a matter of certainty. It would seem, however, that the combnstion does not atlect beds muless their edges have been laid bave to the weather by demudation; and the proportion thas exposed, in a country in which the strata are so nearly horizontal, must be smatl. The whole of the lignites, too, lying below the matural drainage level of the country mist remain matfected, and the tire would also seem muble to penetrate very far into a bed, unlens it lies so near the surface as to be able to open communication with it, for the escrape of its products of combustion, aud to obtain a supply of oxygen. The face of the exposure, (rumbling down on the ruins of the hed, must som stop all access of air in that direction; though from the almost complete conservation of the heat of a combustion thus taking place in the mass of the formation, a very limited supply of nir would be sufficient to maintain the necessary temperature.
395. The only place in which the combustion was still found to be in progress near the forty-ninth parallel, was in a locality on the Souris River, and then it was only evidenced by the issue of a little smoke of a tarry empyrimatic odour. Other loealities, from the immense amount of denudation which has taken place subsequent to the destruction of the lig. nite, show evidence that the fires have been extinct from a sery remote period; though as a rule, in the region which I have examined, the products of combustion appear to be pretty closely confined to the loealities in which this can be proved to have taken place. Mr. Allen, however, has foud "this igneous material in a water-wom state, ocemring in the drift which covers the general surface of the country, often many miles from the nearest seat of metamorphic action, as well as in the terraces that borler the larger streams," ${ }^{*}$ and concludes that the combustion must have berme before the close of the drift period-a very important fact.

Composition and Economic Value of the Lignites and Iron Ores.

396. The following are proximate analyses of lignites from various localities in the vieinity of the forty-ninth parallel, and of the eoal from St. Mary River. The greater part of these were published in the Report of Progress for the year 1873, already referred to :-
397. Souris Vallcy. ($\$ 207$.) Lowest lignite, two feet three inches thick. Conehoidal fracture with rather dull surfaces, and resembling cannel coal, ash reddish-white.

		By rapid coking.
Water	12.07	
Fixed carlon.	.45.44	38.90
Volatile combustible matter	39.74	
Ash.	2.75	
	100.00	

398. Souris Valley. (\$ 210) Layer 19. A wenthered speeimen sepmating into lmmine horizontally, Clay fom overlying bed filling fissures. Ash yellow-brown.

By rapid coking.

Water
13.9

Fixed carbon. 45.27
Volatile couthistible matter............3.. 10
Ash................................. $5.7!$
100.00
38.35

3 .35
399. Souris J'alley. (\$210) Layer 17. Weathered specimen. Black, compact, with shining fitees. Ash yellowish.

401. Souris Valley. (S 210.) Layer 2. A weathered specimen, soft and crombling. Ash greyish-white.

		By rapid coking.
Water.	. 17.97	
Fixcil carton.	. 32.56	30.10
Volatile combustible matter.	.44.56	
Ash.	. 4.61	
	100.00	

402. Souris Valley. (\$218.) Black compact lignite with mach woody strncture apparent. Ash yellow.

		By rapid coking.
Water.	.14.73	
Fixel carbon.	42.48	34.07
Volatile combustible matter.	39.99	
Ash.	2.80	
	100.00	

1 coking.

npecimen.
coking.
403. Sinuris Valley. (S 215.) 7 foot seam. Murl, compact, blnck lignite, breaking with pendo-conchoidnt timeture, and showing traces of stincture of woml. Ash yellowish-white, light.

404. Souris River, 62 m. W". Wood E'nd. (S ge2.) Itmminnted, and breaking up along horizontal plames on drying. Many small drops of amber or fossil resin. The wool romponing the bed has apparently been much decomposed. Ash redelish.

$$
\begin{aligned}
& \text { Fixed carbon. } 47 \text {.! } \text {. } \\
& \text { Volatile combstible matter . } 30.95 \\
& \text { Aslı............................... } 7.30
\end{aligned}
$$

405. Great Valley. (.925.) Loveest Liynite. Weathered specimen, crumbling. Ash grey.

Ash.......................... 5.03
100.00
406.* Great Valley. (S $2 \cdot 25$.$) Middl: Lignite. Wenthered specimen.$ Soft, breaking into layers along deposition suffaces. Largely composed of comminuted churoal-like frugments.

407. Great Valley. (S 225.) Upper Lignite. Ontcrop specimen. $^{\text {2 }}$. Crumbling. Tends to break into layers parallel to deposition planes.

408. Great Falley. Section on the forty-ninth parallel. Bed four feet thick. Ont-erop specimen. Brownish. Fractire almost conchoidal, Ash yellowish-white.

		Hy rapial coking.
Wiuter.	. 18.51	
Fixal carlmin.	37.12	28.44
Volatile combustible matter.	.42. (6.)	
Ash.	. 4.72	
	100.00	

409. Porrupiue Crock. (s:38.) Lower part of 18 foot sram. Tough, - rompact lignite, separating into horizontat hyers. Vach tumber in small notots, a from deal of wowly strueture apparent, and some minoral chatcoml. Ash light-grey.

		By rapid coking.
Witer.	.12.05	
Fixed Carlan	.46,18	41.03
Volatile combustible matter	35. 12	
Ash.	6.65	
	100.00	

410. Porcupine Crevk. (\$3:38.) Ulprer part of 18 foot seam. Outcrop npecimen, crumbling. Ash white.

	By rapid coaking.	
Water	16.87	
Fixed Cirbon.	34.32	24.30
Volatile combnatible matter	37.51	
Ash	11.30	
	100.10	

 inches thick. A strong coal not affected by woather. Trates of horizontal laminatiom, often showing more or lens mineral charcoal. Cleat in two directions neally at right ungles, with smooth shining faces, and often very thin tilms of calcite in the eracks. Certain parts show slight trmees of pyrites. Forms a perfect coke when rapidly heated, with the evolution of a quantity of rich ilhminating gas. When slowly heated, in powder, a weak coke is formed which may be croshed between the fingers. Awh reddish grey.

Water	5.05
Fixed carbon.	64.65
Volatile combustible matter.	25.30
Ash	5.00
	100.00

412. Rainy River.) (\$340) Compact Lignite, with woody structure plainly apparent. Ash yellowish-grey.

Water.	15.45
Fixed Carbon	43.45
Volatile combustible matter.	33.70
Ash.	7.40
	100.00

413. The lignite firom laning River, to which the lant amalysis refirm, is motied in the paragraph indiated alowe. The npecimen received was a small one; and not having visiterl the locality, I cumot spenk confidently an to the mone of its ocenrence. In itnappearance and composition it resembles many of the lignites of the 'Tertiary, but it in situ, it may more probably be fomed to helong tomontlyer of Lower Createcous meks. In any cane, it is fur removed firm the regions to which the other malynes refer, and does mot at present require finther comsideration.
414. The mineral fuels met with in the neighburhord of the Line, fall maturally into two distinct categories. The timet, including all except one, munt be colled lignites; the secomb, represented ly a single example only, is a true bituminome coal. The tirst cluss includes not only, therefore, the great majority of the fuels met with in the vicinity of the fortynith parallel, but also almost all known in the interior region of the contiment, both worth and south of this line. They are emphatically ligmites or brorn coals, and thongh they may be desiguated by the mame lignite coal, insomuch as they come under the generic class of coals, they certainly camot properly be named by the latter word alone, an by it an ontirely difterent kind of material is generally maderstome. The vast aren, and great importance of these heds of fiel, should mot the allowed to weigh in changing the name which would withont any hesitation be applied to them, were their ocemrence on a more limited scale. The word lignite has attached to it a definite mineralogical significance, and mast bo employel when it is desired to defince the position of these fuels in the scale of combustible materials. Lignites are found in conneetion with many of the later geological formations, and difter from true sonls in containing a harger percentage of water, hygroseopic and combined a greater proportion of hydrogen, oxygen and nitrogen, and less carbon. They also invariably give a brown streak or powder, gied easily a brown solution with caustic potash, and sometimes even to water, and, according to Fremy, may also be distinguished from coal and peat by their complete solubility in nitric acid and hypochlorites. The better kind of Tertiary lignites of the region now in question, differ from many foreign fuels of the same class, in their small percentage of ash, but show for the most part distinct evidence of having been produced from wood, and would therefere even be classed as lignites under the most restricted meaning of that term. The wood, from its microscopic structure, has been coniferous, and may have belonged to the sime species of Thuya, Sequoia, otc., represented by leaves in the associated clays.

lamality．						年	licmarks oli ．Islı．
1．Souris Vialley．．．．（\＄3：3）	23.5	$23^{\prime \prime}$		45． 48	341．73	2.71	liedrish white．
	4183	$3^{\prime} \mathbf{2}^{\prime \prime}$		113．18	3．3．90）	5.92	Yellow－brown．
	263	$1 \cdot 5^{\prime \prime}$		：31．51	80． 02	6.47	Vellowish．
4.110 ．．．．（s $4(x)$	213	$1^{\prime} 0^{\prime \prime}$		：18．118	4.4 .57	5.35	Likht Vellowish，
5．＂1．．．．．（\＄401）	2133	i＇ $\mathrm{i}^{\prime \prime}$	\％	34．82	48．30	4.88	Creyish－white．
6．＂ $10 . .$. （\＄412）	262		4	43.72	42.41	2.88	Vellow．
7．＂1 \quad ．．．．（\＄40：3）	2038	$7{ }^{\prime} 3 \prime$	寺	411.31	33．08	4.71	Velluwish－white．
8．＇rimulers＇lionul．$\quad \therefore$（\＄4（4）	308			48.93	：11．61	7.41 i	Realdish．
！．Vireat Valley ．．．．（s 40．3）	344	a few inches	$\begin{aligned} & \text { E } \\ & \text { 菏 } \end{aligned}$	38．6is	43．62	5． 13	direy．
10．＂＂\ldots ．．（s 4（ m ）	344	\％	H	48.181	34．90	4．4！	（ircy．
11．＂＂\ldots ．．．（\＄417\％）	344	3	此	36.122	44．05	6.13	White．
12．＂＂．．．．（s 408）	346	4^{\prime}		38， 133	44．48	4，89	Yollowish－white．
13．D＇oreupine Creek， lawer part．．（\＄40\％）		18^{\prime}		41.20	35． 14	6.66	Light grey．
14．Upper part．．（\＄410）	340	18^{\prime}		316.33	34． 97	11.70	White．
15．Kainy liver．．．．．（\＄412）				45， 22	35.118	7.70	Yellowish－grey．

Second－Lignite more or less distinctly horizontally laminnted， showing little appuent wooly structure，but sometimes a not inconsider－
inlmit of lint trownern apminerem. antrother pical, mmi Ig lnels. Lill ATAN

I dah.

1. white.

Inown.
ellowish.
white.
h-white.

1-white.

 prohably change their chandere fior the better, more or lewe completely,

 lines of jumelion with the enclosing elays, hat gradnate into them.
46. In the ganagen above given, it has mot been thonght meremsary to restried the cexmmintion th those berle which ne of workable thicknese,
 valuo in giving non inlea of the average gratitg of the ligniten of the
 light, int the same rexion. The amberes, therefore, inclate it welection fiom the varions nections; and noveral beds of goxd quality mad thick-

47. 'Thongh fiving the artanl amomit of hygroserpic anil eombbimed water, an fomml by malysin, it mast be premised that it depemps entirely on the eomitions to which the ligniter have previnasly been Noljerefed; and that, by prolonged expositre to dry air, it might huve been in many anses very considerably rednerol. It has, therefore, been thomght alvisable, in another place to rednce the results of nll analyses to dorrespond to n certain percentage of moistare, that they may be better compared with aidh wher, and with doreign lignites. The water content has been taten in the table, nt 12 jer cent., which has been mopted as the probable prationl limit of dessication by dry air, under ordinary ciremmstances, of most of the mamples. 'The lignites, it will be observed, are on the whole uniform in eomposition, and vontain an averuge of over 40 jer cent. of fixed farhon when the water is estimatel at 12 per cent. They thas fill somewhat behind the lignites fond in the vicinity of the Union Pacific Rnilway; lut it most he remembered that these only represent those semms whith hase been selected as workable from their good quality, and thicknoss; and also that many of them
helong to the extreme wentem part of the interior continental regiom, and to the better clasis of lignites fommed in the vacinity of the Racky Momatains, which are but slenderly reprevented in my collections. None of the lignites yield a proper eoke. They merely shrink somewhat in size during the expulsion of the volatile combustible matter, and turn out of the crucible in a dry incoberent powder. The volatile matter is, ns might be expected, comparatively foor in luminons gaser, and the lignites would, comsequently, he of little uso in the manufacture of illuminating gas.
418. 'The ash is generally of pate colours; grey and white, passing into yellowish-white, being the prevailing shades. One or two only yied a deeply-colomred ash, which is then brick-red. It is smatl in amount in most of the specimens, and does not nsually appear of a nature to firm troublesome clinker. The liguites when burning fich a peculian empyrumatic odour, but mo smell of sulphur; and indeed, as might be foreseen from the nature of the ash, the quantity of sulphur present is very small.
419. The proximate amalysen give, in a general way; the means of estimating the value of the lignites ans fiels, but there are many other considerations which refuire attention. The ash is not greater, and in many cases less, than that contaned in most ordinary eoals; and camot therefore be supposed to detract specially from the quality of the lignites. The amome of water present is, however, the most serious drawhack, as it not only comnts as so much incombustible material, being already fully oxidized, but absorbs and remders latent a considerable quantity of heat, which is necessaly to convert it into the form of stemm. Thus not ouly the total thermal effect of the fuel suffers, but the pyrometric intensity is reduced, which is a matter of special importance in metallurgical operations, and in the use of a fuel for raising stemm, when the space allotted to the combustion is limited. Besides the quantity of oxygen present in these fuels, already in combination with hydrogen to form water; there is an additional quantity, -not inconsiderable in amount and probably in the form of varions bitmminons compounds with cablon and hyidrogen,-which, as soon as combustion begins, combines also with the latter to form water. The weight of this oxygen, and the hydrogen necessary for its saturation, must thas also he deducted, together with the nitrogen, which is usually present in greater quantity than in true coals. We have then remaining, a propor-
ental region, it the Rucky ioms. None omewhat in and turn out matter is, as ces, and the muffacture of
white, pass or two only is small in or of a naturo del a peculiar ats might be wr present is
he moans of a many other enter, and in ; and cumnot - the lignites. s drawhack, eing already quantity of

Thus not byrometric c in metal1, when the quintity of ydrogen to iderable in mounds with , combines is oxygen, is also be present in ; a propor-
tion of carbon and hydrogen which may he comed on for the usefin production of heat, considerably less than that fimmed in the same way ferb most true coals, but much in excess of that fir wood or peat.
420. By taking into aceome all these circumstanes, with others of less importance, and aplying the knowledge to the examination of the resultes of ultimate amalyses of fiels, very exact estimates of their capabilities may he formed. Ot the lignites of the interion region of this continent, merorimately, but few reliable ultimate analyses are to be fomod, and of these omly two apply to those of British Nowth Amerina. I had hopeed to have alded such athalyses of some of the mete importimt lignites of the forty-ninth parallel to this Report, but the time at my disposal has not sufficed. The analyses referred to are from specimens collected by Dr. Heetor, and are as follows *:-

	1.	11.
Carbon.	$56 \div 0$	$50 \cdot 60$
Hydrogen.	365	3"4
Oxygen..	$18 \cdot 91$	14.41
Nitrogen	$0 \cdot \mathrm{~s}$	0.90
Sulphur	$0 \cdot 60$	$0 \cdot 4$
Ash....	$5 \cdot 62$	$15 \cdot 93$
Water (hygroseopic).	13.92	$14 \cdot 50$
	$100 \cdot 0$	100.00

No, I. from the Souris River nemr La Rocho Percée. No. II. firm a six-foot seam ocenrring near Fort Edmontom, on the norlh Sakiat chewan. The calorific power of these two lignites as eompared with that of pure carbon taken at 100 , is 59 and 53 per cent. respectively. \dagger
421. One of the most important practieal difficulties which hats arisen in comnection with the use of the lignites of the Western States, has been the cracking up of the material, on parting with its water, and its sipectly reduction to fragments when exposel to the weather. It has there been found preferable to use the lignites as som as possible, after their extanction from the mine, even at the expense of an alllitional quantity of heat, lost in evaporating hygroscopic water. As the lignites do not form a coherent coke, this camoot be remedied, as it might be with most bituminous coaln; lignite charcouls might, however, be produced; and though in most cases, these are fomed to be wather triable, many of the compat western lignites wonld probably give a groed result. The lignites are, howerer, now extensively employed fior locomotive engines, and other steam-mising porposes, and though mot directly

[^49]applicuble to most metallurgical processer, might be used in the form of charcoal, or perhaps more profitally in gas fimaces after the pattern of those of Mr. Siemens; and, as settlement spreads westward, and these fucls are more in demand, many new methods will no doubt be found for their application. When they exist in the vicinity of land capable of agricultural settlement, they will be of great value, not only for domestic uses, but for the manufacture of bricks, tiles, and pottery, for whicia many of the enclosing clay and sand heds are very suitable.
422. The St. Mary River coal, though unimportant in itself, from the thinuess of the bed, is jet of great interest. as showing that there is a region toward the base of the momains on the forty-ninth parallel, where fuel, better in quality than any heretofore found in the interior continential region, may be looked for. It is highly probable that important seams of similar coal exist even near the Tine; and I have heard of the oceurrence of similar heds on the Belly River to the north. Some tarders, inded, brought an sample of coal to one of the Depôt Camps on the Line, whieh, being handed to the hacksmith, was, before I returned to the place cutirely consumed; it being fomen well suited to smithy work, and thus differing from the lignites. I was umble to visit the locality from which this specimen came, but was informed that it lay about fifty miles northward, at the junction of the Waterton and St. Mary Rivers, that the bed lay nearly flat, and that what appeared to be the same seam was found on both rivers, being ahout five feet thick on the former, and six on the 'atter. It would seem that the conditions of Ceposit, or materials forming these coals and higher class lignites in the vicinity of the mountains, must have differed from those of the lignites firther east. Metamorphism accompanying and cansed ly the folding of the formation, would probably consert a lignite:into an antinaciate, without allowing it to pass through the intermediate condition of a bituminons coal ; and the bed hast referred to, and others of somewhat similar quality elsewhere, are found in a nearly forizontal position.
423. Four analyses of nuels obtained by the Rev. L. Taylor, and examined hy Prof. Hamel, of Victoria Collere, Coburg, have a very direct bearing on the question of the nature of the conls which may be expected to occur along the base of the mountains. The analyses appeared in the the Toronto (ilube in February, 187t, and their results may be thus sum-marized:-
in the form I the pattern rd, and these be found for id capable of for domestic if, for whic.1 itself, from that there is inth parallel, the interior e that imporare heard of h. Some traCumps on the turned to the hy work, and locality from abont fifty Mary Rivers, te simue seam former, and posit, or maticinity of the further cast. he formation, allowing it oal ; and the y elsewhere,
lor, and exavery direct be expected eared in the o thus sum-

	Sl' gr .	Moisture givon off at $212^{\prime \prime} F$.	Volatile Matler.	Flxed Carbon.	Ash.
I	1.375	11.88	28.66	57.25	2.21
II.	1.375	11.41	29.07	56.04	2.98
1II.....	1.340	6.69	33.70	53.25	6.36
IV............	1.337	6.89	33.57	50.90	8.64

No. I. from the North Pembina River 100 miles north-west from Fort Edmonton. No. II. from near Belly River. No. III. from Belly River. No. IV. from the Saskatchewan River nemr Fort Elmonton. Prof Hamel thas describes the specimens:-"I. and II. are bitmminous coals, of a bright lustre, irregular fracture, showing, to judge from the small specimens sent, no distinct lamination ; of a high specitic gravity, comparatively free from sulphur, and giving out little tarry matter upon coking. No. III. aud IV. are also bituminous, of a loss specitie gravity, lustre dull, distinct lamination; fracture at right angles to lamination, irregular with bright simfitces. Parallel to the place of lamination the slabs separated are dall ; gives out considerable tirry matter ujmi coking." It is stated that the two first do not form a coherent coke, and it is to be inferred from what Prof. Inamel says, that the others do. Nos. III. and IV. much resemble the St. Mary River coal in composition, and come from the vicinity of the coal bed described to me as oceurring at the junction of that stream with Waterton River.
424. In the Report of Progress of the Geological Survey of Canada for 1873-74, a number of interesting analysis of fuels from the interior region of British North America are given. Seven of these, by Mr. Christian Ifoffimann, refer to specimens collected by Prof. Bell nemr Dirt IIills,* and south of that place; not far from the north-eastern border of the liguite formation near the 106 th meridian. The quantity of water in these lignites when thoroughly air-dried, as shown by the analysis, varies from $12 \cdot 26$ to $19 \cdot 33$ per cent. They exactly correspond in other respects with those of about the same longititude on the Line. The second series of analysis, by Dr. B. J. Harrington, are of fuels collected by Mr. Selwrn, Director of the Survey, on the North Saskatchewan, between Roeky Mountain House and Edmonton; these, though Prof. IIarrington classes

[^50]them all as brown coals, are of a far superior quality, some of them approaching the St. Mary River coal, and equalling the best Tertiary fuels of the Western Stutes. The water found in the various specimens is as follows: $-7.82,11.81,10.90,12.93,7.50,11.09$ per cent. Some of these are stated to crack and fall to pieces on exposure, while others are little affected, and are considered suitable for transportation to a distance.
425. On reviewing the whole of the analysis of these fuels, and referring them to their localitles on the map, it will appear that lignites which contain, when thoroughly air-dried, nbove twelve per cent. of water, occupy the eastern part of the area covered by the Lignite Tertiary, while beyond about the 113th meridian, many, if not most, of the fuels met with contain less than that amount of moisture, and pass by eesy gradations, in some instances to coals indistinguishable from those of the Carboniferons formation. These two regions are not, however, mutually exclusive, for west of the line above indicated, lignites of the former class are often found, and also, apparently, fuels representing all intermediate stages. This mixture of the two classes in the extreme west would suggest either the presence of two distinct coal-bearing formations, or two different horizons of the same series of rocks. From the apparently complete gradation in the quality of the fuels, and analogy with the better known regions to the south, the latter would appear at present tise more probable explanation. In the Western States, this armangement is exactly paralleled, and the poorer lignites of the Fort Union Beds, are represented in the far west by those of good quality and comparatively small percentage of water in Colorado, Utah, \&c.
426. The total area of the western part of the prairie region between the forty-ninth and fifty-fourth parailels, now known by more or less connected lines of observation, to be underlaid by the lignite and coal-bcaring formation, or formations, does not fall short of 80,000 square miles; and should future investigation result in affixing some of the fuels to the Lower Cretaceous, it must be very much greater. The importanco of these great deposits of fuel, in a country naturally so destitute of wood over great areas, cannot be exaggerated. In Colorado the thick and workable lignite beds seem to occur only at the very base of the Lignite Tertiary formation, and though this may also be the case in the vicinity of the momntains further north, it does not hold with the oustern portion of the formation, on the forty-ninth parallel, where lignites are equally characteristic and abmudant at all horizons exposed.
of them ap:st Tertiary rious speci9 per cent. osure, while portation to n , and refergnites which t. of water, te Tertiary, of the fuels ass by ce:sy those of the er, mutually former class intermediate t would sug. ions, or two apparently th the better nt tise more at is exactly represented rall percent-
irie region vn by more lignite and ,000 square pme of the ater. The aturally so Colorado the very lso be the hold with lel, where
exposed.

Where the very base of the Lignite Tertinyry is seen in tho Bad Lands section, and further west near the 534 mile point, there appeurs, as already mentioned-to be a very persistent lignitiferous zone, but there is no appenrmuce of may fuel of hetter quality like those of the extremo west. It, therefore, cannot be supposed that the improved appearance of the St. Mary seam, and others, is due merely to their occupation of a lower hovizon than elsewhere exposed, irrespective of westward change in the character of the beds.
427. The ironstones of the Lignite Tertiary formation, to which frequent reference has been made, though occurving very often in the same sections and in elose proximity to the lignites, have not heen obsorved in any part of the arem examied to occur in considerable thickness. They generally appear in nodularsheets, or scattered nodules, following certain horizons in the clays and argillaceous sands, and are femmed in greater or less abundance in nemrly all the sections examined. Katernally, they weather to various shades of chocolate-brown and reddish-brown, but are hard and compuet in structure, mad within preserve their original bluishgrey, or yellowish grey colour.
428. The subjoined partial analyses of specimens collected in 1873, were published in the "Report of Progress" for that year. I regret that the time at my disposal prevents the execution of more complete analyses, or the exnmination of many other specimens sulsequently obtuined.

Clay Ironstone. Souris Valley-(§ 209.)
Protoxide of iron ... 49.00

Carbonic Acid lost on ignition. 28.57
Siliceous matter insol. in H Cl.. 17.04
Sulphuric Acid........ .. 0.26

Metallic iron per cent., in raw ore. 38.11
Metallic iron, in calcined ore.. 54.27
Clay Ironstone-Great Valley.
Protoxide of iron. 46.72
Water lost at $115^{\circ} \mathrm{C}$. ... 3.57
Carbonic Acid lost on ignition. 21.23
Siliceous matter insol. in H Cl... . . . 8.72
Sulphuric Acid.................... 0.30
Phosphorus . 0.03
Metallic Iron in raw ore . 36.34
Metallic iron in calcined ore . 49.90
A small quantity of iron is present as peroxide in each ore, but I have not thought it necessary to make a separate estimation of this,

A third speeimen from the Great Valley examined for iron alone, gave a percentage in the raw ore of 37,95 .

A detailed analysis by Jr. B. J. Harringtom, of a specimen of ironstone oltained by Prof. Bell, near the Dirt Iliths, will be found in the Roport of Progress of the Geological Survey of Camada, 1873-7.4, p. 241.
429. It would appear that the iron ore of this formation rank high in the chass to which they belong, and that if occurring in sufficient quantity, they might eventually become of great economie importance. I have not seen, however, in the vicinity of the Line, any place in which they are so abundant as to warrant the hope of the profitable production of iron. In some localities, great surfaces are more or less thickly covered with nodules which have been left behind by the erosion of the contuining rocks; and it is of course possible that further search may lead to the discovery of sections in which so many bands oecirr as to render it profitable to work over the entire bank for their extraction.
430. The poor ironstones of the eastern out-crop of the Cretaceons have ahready been deseribed ($\$ 185$). In the western oxtension of the same division of the Cretaceous, ironstone is much more abmodant, espocially where it holds the large septarian nodules described by Dr. Hector as characteristic of his group C. These in some phaces are rich and pure ironstones, and were noted to be specially abmadint in some of the soctions south and west of Wood Mountain. These rocks may in some phacos oceur with sufficient ironstone, near grod lignites of the Tertiary, to be of economic interest.
431. If the manufacture of iron is ever to he carried on on a large scale, for the supply of the interior region of the continent, it will probably be, however, toward the eastern base of the Rocky Mountains. There the fuels are better suited for this purpose, and ironstone probably still oceurs quite as abundantly in the formation. There, too, it may confidently be expected that sewreh will bring to light deposits of the richer classes of ores among the patrozoic rocks of the mountains.
iron alone, en of ironand in the 1873.74, p. mk high in at quantity, I have not they are so of iron. In el with noning rocks; e discovery nofitable to

Cretaceons

 sision of the dant, espeDr. Heetor h and pure of the seey in some e Tertiary, on a large will probans. There bably still may confithe richer
CIIAPTERVIII.

AGE OF THE LIGNITE BEARING FORMATION ANO POSITION OF THE LINE SEPARATING THE CRETACEOUS ANI TER'TIARY.

Age of the Liunitr pormatios-Nature of the question-Pliysieal hreak hetween Cretaceons and Tertiary oi Europe-No physical break in laterior Continental region - Unity of the Lignite formation - Tertiary age of Eastern representativen not directly questioned-summary of facts and opinions bearing on the age of Lignite formation-Stratigraphical-Invertebrate forsilsFossil plants-Vertebrate remains-Character of Imnction Cretaceons No. a and Lignite formation-Contemporaneons depusit of No. a over the entire area.-Revifi of the evidence-Plants-Fresl-water molluses-Marine molluses-Vertel)rates- (ieneral conclusions.
432. In adopting the mame Lignite Tertiary, as that of the great newer conl-henting formation of the west, ant using it-ats has heen done throughout-to designate the part of the series which lies above the 5th or Fox Hill group of Meek and Hayden's Cretaceons section, I have not done so carelesisly, but as the result of a caretinl, and 1 hope impartial, review of all the evidence bearing on the age of the formation, to which I have access ; ats well as the stuly of the rocks in the vicinity of the forty-ninth parallel, which have come under my more immediate altention, and which seem to throw important light on the question. It wonld appear only proper to state the reasons which have hal most weight in leading to the formation of this conclusion, and this will now be done as briefly, as possible. The subject is a delicate ome, insomuch as it has been the topic of muti eager controversy, but it is hoped that injustice has not lieen done to the views of any of the geutlemen concerned, and that if errors have creat in unobserved, grod intentions will serve ats an apology. Nor can the gralual change of opinion-now a matter of geotogical history-which has taken phace on some perints with the advance of knowledge with regard to the beds, be considered derugatory, for nothing cau be more honorable or truly scientific than that impartiality which allows, on the knowledge of new fitets of a different tendency, the prompt retractation or modification of views formerly upheld.
433. There is, perhaps, no more interesting problem in Ancrican geology, than that presented by the later deposits of the interior region
of the continent, and especially by that part or them silpposed to represent the clowing epoct of the Crotaceons and the introduction of the Thertiary. This question is at the same time one of comsiderable difliculty, somuch so, that the sysmatic position of a great werien of benk, in some places seremal thonsand feet in thiekness, and including the greater part, it' not the whole, of the valuable lignite deposits, is at present in douht. Varisus geologists who have devoted much time and study to the formution, atre almost equally divided in opinion as to the Cretaceons on 'Tertialy age of the rocke, or the correlation of a prortion with the former and a portion with the latter formation, and the position of the separating line.
434. Much of the difference of opinion, however, appears to have arisen from appromehing the problem with preconceived idens, and the attempted applieation of palacontologieal generalizations derived from the stuly of other localities, which have been formulated under too rigid laws. The break between the Cretacemen and Tertiary in Enghand, and in Europe generally, is one of the most complete and striking in the entire rook serics, and justities not only the strict separation of the Upper Cretaceoms and bocene beds, but the introduction of the great Classiticatory line dividing the Scoondary from the Tertiary. The Mastricht and Faxoe beds, and the Pisolitie limentome of Fronce, it is true, show an approximation to the thma of the Eocene, but are still distinetly Cretaceons, and go but a little way toward bridging the great hiatus letween the formations. The Upper Cretaceons beds of New Jersey, and the interior continental region, appear to represent these highest European members of the Cretaceons; and in the enstern const region of America the localization of the break between the Cretaceons and Tertiary at this horizon is also bome out, the lignitic series of the West being umrepresented.
435. It has been a common palaontological aphorism, baved especially on the study of the E:ropean series, that no single species is known to have passed -upwarl from the Cretaceons to the Tertiary, but this, like most negative generalizations in geology, is already found to be imperfect. On examining the typical localities, we find that the change in the form of life is not alone, but synchronous with vast physical ehanges, indicated by an entire alteration in the chameter of the deposits. There in every reason to believe, that the physical break was more sudden and potent in its effect on the forms of life, than any slow replacement of old types by new, by development or otherwise.
posed to roduction indiderable Nerien of including onits, is at time and as to tine aportion e position to have , and the ved from - too rigid land, and ig in the of of the the great Y. The nee, it is are still the great of New int these min coast
etaceous
in of the
, based species ertiary, y found hat the the vant cter of break an any arwise.

Animal life of a form hitherto werreely represented, is by the changed physical circumstances brought prominently forward, and alds much to the apparent completeness of the replacement. It was an appreciation of this thed, which led a few yemer ago to the extreme statement, that the Cretaceome periond atill exists in the deep soat
436. In the interior reyion oi America, no great phywical break took place at this time, and thongh the change in facies of life forms there, is probably mach more mpid than can be aceomed for without alding the acceleration due to physical change, the hatter advanced slowly and miformly, and, as might be toreseen, bo distinct separating pataontologienl line can be drawn. An geological knowledge increanes, it is fomen that its record of time in any one locality is much more imperfect than had been supposed. A combination of the reeords of all regions would, no doult, suffice to fill the galpe, and the Lignite formation of America appears to go far to close one of the greatest of them.
437. Dr. Hayden, who has been actively engaged in working out the geology of the great area west of the Mississippi, included in the Territeries, has attirmed and reiterated his belief', that the whole of the lignite-bearing rocks of the west belong to one great comected weries, however separated now in some regions by the upheaval of mountain chains, or by demudation.* This riew is also insisted on by Prof. Lesquerens for a great majority of the different localities, \dagger and is appparently accepted by Prof. Cope and others. The evidence is also irrefragable that these rocks, wherever their relations are clealy shown, or hatve been enrefully worked out, rest directly on the upper member of the well marked marine Cretaceons, in a perfectly conformable maner. The maderlying rock in invariably, or almont invariably, the yellowish arenaceons clay or sandstone referable palreontologically-wherever that (riterion admits of application-to Meek and Layden's 5th group, and entirely distinct in appearance from the greater part of the beds associated with the lignites above. \ddagger I can not find in the reports of the \mathbf{U}. S. geologists, mention of the occurrence, in the Rocky Mountain region or eastward, of beds of lignite or coal in the lower well-marked members of the Cretaceons, comparable to those of the Sankatchewan, which are provisionally placed on that horizon by Dr. Hector' with the possible exeeption of the coal ohserved by Prof. Marsh on the south side of the

[^51] (

Uinta Momntains in Utah,* and the Placiare roals of New Mexico, deseribed by I'rof' Newherry, which are considered as Tertiary by Prof. Lesguerenx, and have been stated to be so by Dr. Hayden. ϕ With these oxceptions, therefore, and learing out of comviderntion a few localities in Utah and elsewhere, with regard to which there may still remain some slight doult ; the age of the whole of the maluable lignite deposits of the West depends on that assigned to the series of beds immediately overlying Cretaceons No. 5, with which they are aswocinted.
438. The Tertiary age of the eastern representatives of these beds, in their typieal heatition, has never been directly quentioned. It is only if the Lignite formation of the eantern base of the mountains be referred to the Cretacemas, that it becomen necessary, from the homogeneity of the group, to consider these beld Cretaceous also. Prof. Newhery, however, has throughont mantained that these bets are Miocene, \ddagger while Prof. Meek more than hints nt their ultimate inclusion in the Cretaceons, s and Prof. Cope now detinitely chases them as Cretaceous; the two latter gentlemen arguing from the western beds cantward, in the mamer almeve indicated. There seems little doubt, however, that the general tenor of the evidence of these beds, when considered alone, favomes their Lower Bocene age. Their exact synchronism with the Frי"opean Ereene is a question apart from the present inguiry:

43!. It is in the western extension of the heds of the Lignite formation, in the Rocky Momutain region,-where, though preserving the same entire conformity with the maderlying well-marked Cietaceons, and nonconformity with the later Tertiary beds above them,-they have assumed preponderating salt and brackish-water chamacters; that the dispute with regard to their age hats been elosest, and the arguments on either side most equally balmeed. The shells of marine and braekish-water type, instead of oceurring merely in the lowest layers, here characterize a great thiekness of the strata. At IEallville, in Utah, 3,000 to $\mathbf{4 , 0 0 0}$ feet of eoal-hearing beds were laid down before the sea waters were finally excluded. \| Yet the tendency of the evidenee reems to point to the necessary inelusion of these coals of Utah, in whatever series those of Colorado are ultimately placel, though Mr. Marvine appears

[^52]xien, desby Prof. ith theso ralities in aill mome its of the ely overese bents, 1. It is itains be ie homoProf. bedts are nclusion them ats rin beds e doubt, Is, when synchropresent mastion, re same mid nomissimed dispute e:ther h-water wherize 4,000 s were p point series prears
to beliers that they represent a ditterent herizon. * The liguitebearing rocks of the firty-niath parallol, from about longitude $110^{\circ} 30^{\prime}$ westward, belong with tew exceptions to the walt and brackish water series, and closely resemble those of the eastern and wentern thank of the Rocky Momitains further south, Ineth lithologically ame paheontologically: Specitic identity probably obtains hetween molluses from the vicinity of the Butter, and luyth those of the Campille and Bitter Creek series of Dr. Hayden.
440. Dr. Hayden, whose authority with regand to the atratigraphical relations of the western beds cmu searcely he disputed, in all his artier publications and reports, refers the whole of the lignite-benting roeks,which an ahreaty stated be comsiders as an mbroken series,--to the Tertiary, and attaches them to the Miocene division. Writing in 1857, in conjunction with Prof. Meek, he salys:-" We have no erilence that any of the Tertiary deposits now known in Nehraka are oder than the Miocene. The great lignitic hamin, and the Mauraises 'Terres of White River, though probably both Miocene, are not exactly on a parallel." \dagger Agrain, in the same year, in his Notes exphanatory of a Map mul Section, he writes of these beds. "The collections of fossils now obtained show most conclusively that it posesses the mixed chanacter of a fresh-water and estuary deposit, and that it camot be ohder than the Miocene periocl." \ddagger In the published results of the Yellowstone and Missouri Expedition of $1859-60$, 冬 we find the entire formation atill retained in the Tertiary, but placed doubtfully on the horizon of the Eocene of Europe. The doubt seeming to oltain chietly with regard to the propriety of its separation from the Mincene, and to be based on Dr. Newherry's opinion on the plants. The emmpurison by Prof. Liedy of the animal remains with "types oven older than the Tertiary" is, however, mentionet. In 1868 Dr. Hayden still maintains the Tertiary age of the formation, and mentions enpecially the coal-bearing beds of the Larramie Plains, although in this locality, as he says, "some marine fossils are found in strata connected with the coal." $\|$ The admission is also made that there may here be "some thin seams of impure coal in the upper Cretacemas heds." In 1870, Dr. Hayden refers to the Lower Eocene, the coal formation of the Green River and Bridger regions, but designates his chassification of the beds there as

[^53]provisiomal only.* In the same report the position of the Conlville lignite series is mbitted as dombthal, the muereminty being cansed, howerer, by the lowal disturbances of the strata, the heds of Cretaceores No, a apparing to overlap them. The emelusion arrived at is, how. ever, that the coal is prolnaly in reality" above the black Cretaceous clays of No. 2. and forms a pert of the Upper Cretaceous yroup." \dagger On mother prge of the same report it in wated that while in some lowntitien the line between the Cretacems and Tertiary is well marked by the absenee of some bedx-presumably the of marine and batkishwater aspoerethat in others, as in the Bridger Pass district, the division, however minutely the beds maty the studied, must ahwas he ato abitrury one \ddagger In 1872 Dr. Hayden in fully prepared to atmit the Cretaceons age of agreat part of the series. Ho comsiders the evidence of the Cretaceons age of the lower roml heds in Utah, enpectally at Beme River and Combille, to be conclusive, and writes: "But if we admit that the conl beds of Wyming and Colorato are all of Cretaceons age, I think we may extend them all over the North-west and ignore the evidence from the forsil phants entirely. The falets, as we pensens them at the present time, seem to point to the comelusion that the lignite strata commened during the later prition of the Cretareons periosl, and eomtinued on into Tertiary times without any marked physical limenk, no that many of the Cretaceons typers, espeeially of the vertebrata, may have lingered on through the transition period, even into the Tertiary epoch." Also, in apeaking of the lignite-bearing strata of the region of the Gallatin Valley: "The evidence att the present t. prints to the conclusion that the lower portions of this group are (Tretareous, passing up by gradual transition into the Tertiary, and that the greater portion may be regarded ar of the nue of the latter period." In the mans and sections publinhed with some of the reports referred to, the Tertiary clansification of the bedn in question is albered to. $\|$ Profensorn Hitchcock and Blake have also adopted Di. Hayden's colouring in their general Geological map, benring tate 1872.

Dr. Hayden's explonations were begun on the eastern margin of the formation, but previous to 1857 he had examined the conntry bordering the Missouri as far west as Fort Benton, and on the present line of the Pacific Railway, to Green River. Cretareons t is, how. Sretaceous yroup," \dagger 0 ill some II marked brackish. edivision, 1 arbitrary Cretacemus Ice of the y at lemp we admit Cretaceous ignore the wness them nite strata , and break, no rata, may - Tertiary rexion of hts to the (N, pussing -r portion manis and Tertiary ns Hitchir general
fin of the orrerting ne of the
441. Prof. Meek, curly in the field, comente with Mayden, an we have seen, in 1857, in aseribing the lignite strata to the Mocese. As couly as 1860, it would nppent, however, that he hat referped some mollines from the lower part of the emablearing werien to the Cretaceons, and in $\mathbf{1 8 7 0}$ he takes the view that the beds of Bear River and Coalville in Utah, are $\mathrm{U}_{\mathrm{p}} \mathrm{per}$ Cretaceons, pasving up, through a serien of transition strata to Eocens: thomgh he is at the same time eareftul to guad against the supposition that he consideres the limite of cither one formation or other, to be exactly syochronoms with thove of the same names, and typifled by similar fossils in Europe.* Retwoning cutirely from the ressults of his examination of the invertebrate fossils, he places the lower heds, containing undoubted marine forms in the Upper Cretaceons, ansigning them a position superior to Cretaremen No. i , of the typiad sections, Those with esturime forms, are referped to the Tertiary; though in the conelusion of a mote, on fossils submitted to him by Mr. Clarence King, he remarks:-"While I am, therefore, willing to almit that facts may yet be discovered that will warmat the conclusion that some of the estuary beds, ko widely distributed here, shomble be ineluded rather in the Cretaceons than in the Tertiary, it seems to me that such evidence mast either como foom incluled Vertebrate remains, or from further diseoveries respecting the stratigraphical position of the beds with relation to other established horizons, sinee all the mollunean remains yet known from them seem to point to a later origin." \dagger The most typical Cretaceons forms reeognised in the marine beds are, Inoceramus, Anchuria and Gyrodes, "(ienera that seem not to have survived the close of the Cretaceons perionl." \ddagger Several other fossils of Cretaceous aspect, however, ocelle, and in some casen are compared npectifally with those of the higher Cretuceons beds of Califorinia. \& In summing up his arguments for the Cretaccons age of the lower beds of the Green River Basin, Prof. Meek lays especial stress on the securrence of Inoceramus, and a somewhat doubtful ipecimen of Anchuria, and also on the fite that there is no evidence of the existence of any strictly marine Tertiary deposits in the interior region of the continent. He almits that if the remainder of the molluseons fana were presented to any palaontologist umare of the existence of the Cretaceous firms mentioned, and the generalization

[^54]above staled, they might be mabesitatingly refered to the Tertiary.* In 1872, prof. Meek made a catelal examination on the spot, of many of the most interesting localities in the Rocliy Mon tain Region, and in his report reaffims and exteme his former views. It would seem, however, that the question was approached with some ready fommated rules. He writes, for instance, in mentioning the reference of the fossils to the Cretaceous in 1871. "This I did, mainly becanse there uere among them no fresh-water or strictly brackish-water type's; while up to this time ue know of no Tertiary of mariuc origin is all the interiar region of the Continent." \dagger At the same time two of the shells of hatekish-water aspect were refered, to the Eocene, though-as he himself alterwad states-they were subsegnently fomed to have belonged to the marine beds hast referred to. Nothing can show more clearly than this error, the delicacy of the investigation, even when followed on the evidence of the mollusean type only; or the tanger of depenting on the change firon marine, to brackish, and fresh water, as a detinite line. It is but fair to ahd, however, that the enllection inchating these forms was smatl and apparently in imperfect preservation. On another page, Prof. Meek says of the lower marine beds, represented in the Bitter Creek Series: "Although partly eommitted in favour of the opinion that this formation helongs to the Cretaceons, and still provisionally viewing it as probably such, I do not wish to disguise or conceal the fact that the evidence favouring this conclusion to be derived from the molluses alone, as now known, is by no mems strong or convincing." + The absence of all the chatateristie Cretaceons Cephatopota is moted as not satisfactorily explicable, and the decidedly Tertiary theres of the Corbute' commented on. Some of the latter, are similar to species fome in the brackish-water beds of the Judith River on the Upper Missouri, which have generally been regarded as Eocene, though now, together with the Fort Union beds, by some included in the Cretaleons. An Anomia, at the same time, so elosely resembles one from the cretaceons of Texas, that it is supposed to be identical with it. Directly associated with the Dinosambinn remans in the beris at Black Butte, is fomd a shell indistingrishable from Viviparus trachiformis, originally described from the typical Fort Union beds, near Fort Carke, on the Missomri. The mity of the lignite series now renders itself appment, and the impossibility of reforing their eastern

[^55]Tertiary.* f mamy of and in his , however, mules. He ils to the mg them no te ue know ontinent." \dagger e referreel, were sulbeferred to. acy of the 1scun type araine, to ald, howpparently ys of the 'Although helongs to such, I do uring this own, is by macteristic b, and the me of the ds of the regarded , by some (o) closely sed to be cmains in Viciparus beds, near ries now reastern
and western representatives todifierent formations. It becomen neessany, if consistency shall be preserved to inelnele the whole series in the Cretaceons or Tertiny, and the fommer comse is :dopted. Prof. Meek writes:-"The occurrence of this last mamed species here, along with a Cretaccous type of reptilian, and a Corhiculd apparently identical with C. cytheriformis of the Judith River brackish-water betw, together with the presence of Corbulas, very closely allied to Judith River species, at lower horizons in this series, and the occurrence of some vertebrates of Cretaceons affinities at the Judith River bocalifies, would certainly strongly farour the conclusion, not ouly that this Judith River formation, the age of which has loug been in doubt, is also Cretacems; but that even the higher fresh-water lignite formation at Fort Clarke ame other Upper Missomi localitien may also be Upper Cretaceons, instead of Lower Tertiary.'"*
442. Profensons Newbery and Lenquerens luse investigated the momerous and rich collections of plants oltained from bets associnted with the lignites. Prof. Newheryy, in 1869, in deseribing plants obtained by Dr. Hayden, thronghont refers to the tepesits an of Miocene age. The sjecemens examined at this time were from varions bocalities in the valley of the Misoma, from the extreme castern elge of the tomation at Fort Clark, to a point 100 miles up the Yellowstone \dagger Prof. Newherry still mantains the Miocene age of the Uper Missomi lignite beds, on accomen of the great similarity of their flemal to that of the Miocene of other regions, but indines to refer those of 'colorale, Wyoming, and Utah to the U_{p} per Cretaceoms. \ddagger This arrangement is apparently quite at variance with the stratigraphical mity of the formation, insisted on by Ifayden and others, and the resemblance of many of the mollusean types throughout.
443. Prof. Lesquerens, while admitting the Miocene facies of the plants from the lignite deposits, when compared with those of the old world, § places those of the Missouri basin in the Lower Eocene, and includes in the same category the greater part of those of the western Rocky Momatain region. IIe, howerer, points out the close correspondence of American Tertiary and Cretaceoms forms-plants from the lower beds of the (retaceons having originally been refermed to the Miocene of Europe. Prof. Lesefurenx visited and carefilly examined some of the most interesfing localities in 1872, and :ppears to have been

- U. S. Geol. Surs. Territ. 1sia. 1. 460 . \dagger Geological Report Vellowstone and Missouri Expedition. \ddagger Am. Journ. Sci. and Arts, April. 1sit. \quad An. Journ. Sci. and Arts, April. 1874.
confirmed in his opinions previnusly expressed. Ite believes the Eocene of America and Enroge to be identical in general characters, and as a resumé of his conclusions writes:-"I am, I think, authorized to deduce the following conclasions: That the great Lignitic gromp must be considered as a whole and well chatacterized formation, limited at the base by the fucoidal sandstone, at its top by the conglomerate berls; that independent from the Cretaceous muler it and from the Miocene alove it, our Lignitic formations represont the American Eocene."* In 1874, Prof: Lenquerenx appeans in some degree to modify this statement, by placing the heds at Carbon in the middle Miocene, and including those of Evanston and a few other localities, in the Upper Eocene, while elassing the great majority of lignite-bearing rocks-including those of Colorade and Wyoming, with those also of Coalville in Utah, Namamo in Vanconver Island, and the Placière coal of New Mexico-as Lower Eocene. \dagger He believes that the age of the florat of many of the European beds referred to the Miocene, has not been fixed with sufficient precinion to admit of their being used an terms of comparison.

44. Prof. Newbery draws attention to the fact of the diversity of Prof. Lespuereux's no-called American Eocene plants from those of the recognized Eocene of Europe, and does not think his reference of the lignite beds to the Eocene justified, writing:-"This conclusion I am mable to aecept, from the fact that the general facies of the Missour lignite flom, is altogether unlike that of the Furopean Eocene, and it is identitied with the Miocene flora of Aretic America, Jeeland, the Hebrides, and Central Enrope, by most of itn genema, and by a considerable number of well-marked species." \ddagger
45. Prof. Cope appears first to have reftered heds of this fiemat tion to the Cretaceons, on account of their reptilian fama in 1869 . § He has dencribed the remains of the Dinosamian reptile from the Bitter Creek series near Blatek Butte, where they oecur in the closest relation with a coal bed, and were surromeded by a mass of vegetable debris, and associated with Viviparus trochiformis, already mentioned. He insists on the impertance of this diseovery, allad writes:-"It is than conclusively proven that the coal strata of the Bitter Creek Basin of Wyoming Territory, which embaces the greatest area yet discovered, were deposited during the Cretnceons periond, and not during the Tertiary, though not very long preceding the latter." || and as a to deduce t be collt the lase that indeove it, our 374, Prof. y placing of Evallsussing the orado and tancouver ne. $\dagger \mathrm{He}$ a referred , admit of versity of se of the lee of the fion I am souri lig, and it is , the Hesiderable
is forma-
9.§ Ho he Bitter relation bris, and unsists on lusively ing Tereposited ugh hot

Prot. Marsh in stated to have found, "over the coal series, six milos from Green River, near Brush Creek, in Utah, a layer fuil of Ostrea congesta, Con., a typical Cretaceons fossil, and above this at erimoid, perhaps related to the Cretaceous Marsupites, and also seaken of a Bery.x, a gemus of Cretaceons fishes; and in shales below the coal bed, remains of turtles of Cretaceons types, and tecth resembling those of a Megalosaurus." * These beds, however, aecording to Prof. Cope, \dagger do not belong to the horizon of the lignite formation of Bitter Creek, but perhaps to Cretaceons No. 3 , and camot be accepted in evidence for the Cretaceons age of the Iignite formation properly soccalled.
446. The Cretaceous age or at least at considerable part of the Lignite formation of the Weat is also held by Messirs. Marsh, Stephenson, Emmons, and King. The latter places the line of division between the Cretaceons and Tertiary at Bitter Creek, at the level of the highest horizon of brackish-water shells-a distinction which has the appearance of being a purely arbitrary one.
447. The issue is perhaps closest with regard to these Bitter Creek representatives of the formation. By Prof. Cope, they are referred to the upper part of the Cretaceons, firom the occurrenco of the Dinosaturian, Agathanmas sylvestris. Prof. Meek, as we have seen, though not without much doubt, ako relegates them to this formation; while Prof: Lenquereux believes the plants to be unquestionably Tertiary and Lower Eocene. Prof. Hayden had previonsly remarked the impossiblity of laying down any exact line between the Cretaceons and Tertiary of this region, and believes a considerable thickness of "transition beds" to be developed; \ddagger a feature also insisted on subsequently by Dr. Bamnister. S Here at least, we fiud the co-existence of the remmants of a Cretaceous fumn, with a flora such as is usually considered Tertiary by palaontologists.
448. In the above brief summary of facts aud opinions, it has been endeavored to bring together the more important data bearing on the age of the western Lignite formation, and to illustrate the gradual change of opiniou which has taken place concerning it. For details med illustrations, it will only be necessary to refer to the elaborate and raluable reports of the gentlemen referred to.
449. The physical mature of the junction of the Lignite-bearing beds, and " transition beds," with the well marked Cretaceous, has already

[^56]been alluded to ; and that examined in the course of my own explorations, is fully described in :mother par: of this Report. As this junction is, howerer, a matter of great importance, a few additional facts eoncerning it may be alduced. Though in some localities, as at Bitter Creek, the separation between the miversally recognized Cretaceous, and beds belonging to the Lignite formation, may not be clemrly definable, this is very seldom the dase. Notwithstanding the locally variable character of No. 5, no division of the Cretaceons seems to be more constant in its general characters and appearance, over the whole western area of the interior region, an well as in the typical eastern wections. Palaomtologically; it is to a great extent a continuation upward of No. 4 , and the changes it presents as compared with that division, are mostly those necessarilly brought alout by the shoaling of the waters of the sea. There also appears to be, in many localities, a second zone of sandstone at about this level in the series, which has sometimes been attacheal by observers to the bane of the Lignite formation, and sometimes to No. 5, and to which Prof. Lesquereux has drawn particular attention. It is characterized ly the abundance of fucoidal remains in many places where he has examined it. It is not always casy to decide at once between these namdstones, and those more clowely attached to the summit of the Cretaceons, nor does the division appear to be one of great importance, an there is no real physical, or great paleontological break. In the valley of the Yellowstone, Dr. Hayden describes, "a deep reddish-yellow Sandstone resting on the well marked Cretaceons rocks which I camnot positively affirm as helonging to the upper part of No. 5, or to the lower bed of the Tertiary." A similar bed is found holding the same position, high up on the Missomi, and round the rim of the Lignite Basin where it skirts the Black Hills.* Again near the Raton Mountains, Dr. Hayden descriles "a massive heavy-helded sandstone, yellowish-grey or whitish, and rather concretionary in structure" an overlying Cretaceous No. 4 ; and this according to Lesquereux forms all round the mountains, the lase of the Lignitic formation. These sandstones are also described sonth of the Raton Pass, along the base of the Rocky Mountains by Dr. Leconte, as "formed like an immense terrace, which extends as far south as the valley of the Torejo, and perhapseven to the North bank of the Cimarron." \dagger In the valley of the Arkansas, Dr. Hayden mentions as resting on No. 5, a "thick led of risty-yellow

[^57] action is, neerning reek, the und beds e, this is character ant in its ea of the Paleon4, and the stly those is of the d zone of unes been sometimes attention. any places le at once ed to the be one of mtological cribes, "a Cretaceous eer part of al is found the rim of a near the dded sandstructure" eux forms these sandhase of the se terrace, preven to ansas, Dr. ty-ycllow
naulstone," which is regardent ats the lower hed of the Tertiary;* Though the Cretaceons sulndivisums are not well detinod in the Southern Rocky Momentan region, so much so that it has been said by Hayden, that "if they hat first been studied along the base of the momians only from Cheyenne southward, it is very doubthol whether the five distinct groups of stratat would have been made out," yet, even where the lines are than indetinite No. 5 is clearly represented, and holds the same relations to the malerlying and overlying series that it does on the fintyninth parallel. 'The hatack shales of No. 4 are said to " pass gradually up, into yellow rinsty arenaceons clays which characterize No. 5, and No. 5 passes up into the Lignite Tertiary heds where they can be seen in contact, without any well defined line of separation that I conld ever discover" \dagger In other localities Dr. Hayden has demominated arenaceous layers which scem to oceupy the same horizon, "transition beds." He writes "In varions portions of the Larmic Plains, Colorado, Raton Hills, \&e. I have observed between the well detined Cretaceons and Tertialy heds, a gromp of strata composed of thin layers of clay with yellow and grey sands and sandstones, which I have called transition or beds of passage." "There is no proof so tar as I have observed in all the Western comitry of non-conformity between the Cretaceons and Lower Tertiary beds." \ddagger Examples might he multiplied, but sufficient have been given to illustrate the nature of the junction, and its similarity over the broad area explored by the U.S. geologists, and on the fortyninth parallel and northward.
450. The perfect stratigraphical continuity of the Upper Cretaceons and Lignite formation is apparent everywhere. No break occurs from the base of No. $4, \mathrm{up}$ through that division and No. 5, onward through the whole thickness of the bels associated with the lignites. The period of the deposition of the Lignite formation, is however, almost everywhere, brought definitely to a close by the ocelurence of a mountain-making era, during which a great part of the Rocky Mountains was elevated, and the succeeding Tertiary beds, when they occur, are frequently found to rest unconformably on the Lignite strata below. One horizon only, in this great Upper Cretaceons and Lignitic series, is well marked, and that is fixed as definitely as any geological mark of time cau be. The yellow arenaceons beds of No. 5 are almost everywhere recognizable, and with then the lower sandstone of the Lignite formation is at least physically connected.
451. That the changed physieal conditions, and more turbulent waters, causiug this sandstone deposit, were circumstances simultaneously affecting the whole area in question, and not progressively passing ovor it in any direction, appen's cortain. This is shown by its palteonto\log al similarity, and by the fact that while umost immediately sueceeded by fresh-water conditions in the east, it lies far down among brackish-water and marine fossils in the west. The elevation of the continent following the deposition of these sandstoner, taking place gradually, and probably in a somewhat intermittent mannor, and with occasional slight relapses, brought certain mrens ubove the surfice in the eastern part of the interior continental region, and also oven toward the west, at least as far as to the position of the present Rocky Mountan uplift. The sen was not perfectly exeluded from the intervening shallowis in the cast, while in the west, the waters surromending the low-lying, forest-clad land, were osseatially marine, The enstern area was, howover, soon converted into one characterized by shallow lakes of fresh-water, from which the sea was permanently excluded. In and around these, the lignites and associated beds were formed; while westward, and soparnted perhaps by no distmet barrier, was a region more or less subject to alternations, and mingling of estuarine and marine conditions, but whore also the deposition of lignites was taking place in much the same manner as in the oast. Everything seems to fivom the belief that the deposit was simultameons, as here indicated. Thus it is, that while the change from salt to fresh-water forms, in the enstern area happens to be roughly synchronous with the inception of the Liguite formation, it is valueless when extended westward as a criterion.
452. In the castern region, the change frem (reaceous to Tertiary life-forms has been manifestly accelerated by the change of physical conditions. In the west, n similar acceleration has ulso obtained, but has not been so great, and while several thom:and feet of struta were being deposited, oecasional relapses of physical conditions allowed marine forms of Cretaceous asject to re-appear. The change in type of life on which a palæontologieal classification is based, and which the increase of knowledge continually tends to show was more uniform and gradual than formorly supposed, is therefore complicated over the intorior area of the continent by a superposed change from marine, though brackish, to freen-water conditions; and this did not take place simultaneously in all parts of the areat.
453. The dividing lines of geology are necessarily to a great extent
urbulent aneously passing alicontotely sucamong 1 of the ace grand with ce in the rard the Countain shallow: w-lying, rowever, ter, from lese, the eparated bject to at where manner deposit change roughly alucless Tertiary cal conbut has e being marine life on rease of al than of the fish, to y in all
extent
founded on our ignorance, or local knowledge, and had the recognised elassification of formutions been based on a stuly of the western interior region of North America, it is probable that there would have been no line drawn between Mesozoic, and Tertiary or Cainozoic; or had there been, it would bo placed altogether above the Lignite series, which represents, at least in part, the lower Tertiaries of other countries. This at lenst would have been the grmad classification founded on great areas, and not invalidated by the existence in a few places, -an probably at Evanston,-of beds of transition upwarl. If, however, it is desin:ahle to draw a line between Cretaceons and Tertiary for the sake of miformity with other and better known regions, and for use as a boundary in geologieal mapping; no physical non-conformity offering, it becomes necessary to turn to the included organic remains, which might indicate the position of some gap otherwise concealed. These we have seen, however, do not offer evidence of a very certain tenor; but from it, such as it is, our conclusions must be drawn.
454. The plants and fresh-water molluses do not appear to be eapable of rendering much service. The flora of the Dakota group,-the lowest of the Cretaceons of this region, and the probable equivalent of the lower or grey chalk of Europe-is well represented in some localitios, but is so essentially modern in type, that it was by competent authorities referred to the Miocene period. The distinctive facies of the flora of A merica, seems even then to have been sketched out; and from this early period to the present day, wherever a land surface presented itself, plants very similar in appearance, and differing for the most part only specifically, were ready to occupy it. No great wave of regetation of Indian and Australian type, like that characteristic of the typical Eocene of Europe, seems to have swept over this continent, and thas the plants of the American rocks are not strictly comparable with those of the old world. They belong to a separate region, the features of which are its own, and must be worked out by themselves.
455. Yet further doubt, however, rests upon the evidence of the plants; for Prof. Lesquerenx, from a careful comparison of the flora of different localities of the newer formations of the interior and western regions, is led to a sub-division and arrangement in series of the beds of these places, which is in many instances manifestly mutenalle in the face of other evidence. This is especially the case when he inclutes the Placière coal beds of New Mexico, and the Nanamo corals of Vancouver Island, from paleophytologieal reasoning, in the Lower Eocene. The
phant heds of the former locality being overdad by some humdreds*-in the latter liy several thonsand-feet of beds, with well-marked marine Cretureous forms. Prof. Newberry, also, -as pointed ont by Cope, \ddagger though so familiar with the plants, is himsolf obleged to appeal to the evidence of the animal remains to fix the age of the deposits; the plants not leing sulficiently chsely comparable with the Einropean. Nor does the wide difference of opinion, with regard to age, of two so able palarontologists in this tiedr, tend to inspire contidence in the floma as a guide. It would indeed appear, that the Cretaceons and Tertiary flomas of America mad Emrone are not yot sutficiently known to enable their use as tests of uge. The differences established between rarious localities, and thought when only a small area was known to indicate steps in a general progress; now seem to be dne, to a great extent, to the replacement of one flom by another loy migration, or to original differencen in climate or comdition, of the varions phaces.
456. In one respect, however, the plants appear capable of affionding a useful addition to the evidence. If, as appears probable chiofly from their study; a well marked maximmen perion of wamth was co-incident with the carly part of the Lignite formatiom, preceded and followed by cooler periods, represented by the Dakota and hiter Tertiary deposits respectively; it may be possible to correlate this with the warm period of the carly Eocene in Europe, and thus extablish a direet syndronism. This carries with it additiomal probatility: now that the possible dependence of such regular cerclical changes on astromomical causes, has been shown.
457. Fresh-water molluses, do mot usinally offer to the palmontologist a very safe eriterion. They peserve, from their earliest known appearance, a wonderfin similarity in genera and species; and their forms are longer lived than those of most amimals, and from the nature of the shell and its ornamentation, changes which may be specific, are not so well defined or clatly recognisable as in matine shells. Specifie relations, however, when demonstrable are of value, and it would appear that such exist between some, at least, of the mollnses of the disputed beds of the west, and those of the castern border of the Lignite formation, the Tertiary are of which has only been in dixpute since it heame necessary for the preservation of consistency, to inchude it with the former in the Cretaceous. The general facien, however, of the freshwater shells in so far as it may weigh, is certainly Tertiary.

[^58]458. The eridence of the matine Mollusen, has been fomm in paleontology the mont valuable, and from the large area orempied by the oeem, the mont complete of ming. The able paheontologist who has devoted his attention specially to the stady of this line of life forms, in the area in question; though assenting to the chassification of the disputed berts with the Cretareons, registers his opinion as to the preponderance of forms of Tertiary fineies. He almits in evidence agninst these a few weatered genern, which in other comotries, where the Cretaceons and Tertiny are widely sepurated by physieal comlitions, have been found chameteristic of the former. He cmindidy allows, however, the evidencewhich, thongh negative, must be accepted as of some importance-afforded by the non-uppearance of the Cretaceons Cephatopoda, oven in these regions where murine conditions have prevailed most extensively. A disposition has been shown, to fortify the Cretaceons position of the beds, by using the change from marine to fresh, or brackish-water conditions, as a line. It has been said, in discussing the age of the rocks of certain localities, that momine Tertiary beds are known. They can evidently never be known if' all marine bels discovered are uffixed to the Cretaceons. The non-ocemrence of Inocerami, and other such Cretaceons forms, in the base of the Tertiary of a region in which the change took plate so gradually, would be a matter of surprise. Blwand Forbes, and Sir Charles Lyell, have long ago pointed out the mingling of such typer, and Barrande and others have shown it to occur extensively, without at all invalidating the genemal tenor of the record. A certain form, may be characteristic of a formation in a given locality, but may not bo capuble of use as a tonchastone, in another and widely separated one. Prof. Lesquereux has, moreover, lately shown that the really authentic cases of the diseovery of Cretaceons molluses in the Lignite formation, are much fewer than had tiomerly been supposed.*
459. To the evidence derived from the vertebrate remains, great weight, no doubt, attaches, as must always be the case with that from the highest forms of life of any period. The few relies of dinosanrians, and other reptiles of Cretaceons type, have really afforded the initial point and strongest retreat, of the arguments for the Cretaccons age of the formation. If no other facts were fortheoming, a palmontologist, would with every probability in favour of his classification, phace the beds comtaining these in the Cretaceous, doing so, an would alone be possille, from analogy with other regions. It can hardly be almitted, however, that

[^59]by the discovery of these dinosmurian bomes among them, it is "eonelle Nively proven" that the lower ligniten were deposited in the Cretneoms. 'The fact of the ocermrence of these animals so high in the series, like that of the recurrence of phats and fresh-water molluses of typen similar to those of the murlior Gretacoons, deprended mo dombt, on the minterpupted continuance of hand areas with similat climatic conditions. The chatres which operated in the companatively mpid exchasion of som Cretareoun sult-water mollanes an will lived, from the area in guention, masi have tomed to sprome mad perpetmato the torrestrial fimmand flom, and the finct of the oxtinction of the few remaining dimomarians, white the conditions comtinmed at least an favomble to theirexintence an in the proceding perion, whow that they belomged to a type, gradmally weremb) ing to that deray; which neems to ottieet not only the imbividual, lint the *pocies and the race. 'This resilt may porlmps have been acederated, as sugrested by Prof. Cope, by an irpupion of mammuls fiom some othor quarter.
460. The Crotacoons formation cmonot be detimed an exatly eo-extensive with any one form of life, howerer great its classiticatory value maty be smplosed to be; and no classitieation, of any matmal objects or periodn, based on a single structure or law, has proved sufticiently fine to to include the facts, when all were known. By the eomparison of certuth eomelitions now existing, and their acoompmying firms of life, with thone of the Cretnceons, wo may in a similar way prove itn continnance to the present day. The vortebrate fimm, when takon as a whole, is not by any moms min exelusivoly Cretaceons one, hat ineludes accombing to Prot. Cope's comparntive lists,* hoth in Colorndo and Dakota, somu forms elnowhere supposed to he characteristically Tertiary. Of the vertebrate remains fond in eonnection with the lowest beds of this weries on the forty-ninth parallel, Prof. Cope writes:-"This is a charncteristic colloction of the reptiles of the Ft. Union Cretaceous, but with inerensed admixtmre of Eocene forms. Plastomenns is an Eosene genns, but the reference of the new npeeies to it is not final. But youn neml two Eocene gar nealen which have every appearance of belonging to the same formation. Will you re-examine your notes to inform me whether they really belong to the same horizon as the others?' \dagger I'.a gar senles referved by Prof. Cope to the gems Clastes, were obtainod at the very hase of tho Lignite forma-

[^60]tion, and brow the loweve lignite herl. They were not stryy sperimons, But were beomght to light in digging ant sonne of the turte bones in

 fivet of diem.
461. It whond beremembered in disenssing the age of these bedes, that the fossils of No. δ have been eompared with those of the Mastricht, \& ED, of Einope, the (betnecoms position of which has not at all times been modixpoted, and shonld my inolated patehes of higher bedes than the Mewtricht and asworinted formations oredre, Nowing even the ntrict contimmene of marine conditions; it is to bo donloted whether they womld he reterred to the Crotacooms. Dr. Hayden thon writes of the fifth diviNion of the western Cretacoms: "Wo wonlal anor remark that n fow of the forms fomm in our liox Lill beds, purticularly tho (iasteropoda, prosent such close speritio ufllmition to 'lutinury shelln, that wo would have donbted the propriety of rediring them to the Crotacous epod, were it lont lior the fact that wo find them ansociated in the name bed with Baculites, Ammmites. Scaphites and other Gretaceons genora and specien."
46°. The genemil beming of the ovidence, in so fir an it in now known, neems in fivome of tho Eocene 'Portiary nge of the western Lignite formation, thongh it may not be extutly symehronoms with that of limope; and its base is vely frobnbly somewhat lower than that of the formation in its typical Buropen locnlities. Inking intoconsideration, howover, the necelerntion of the extinction of those pelagic forms, on which our definitions of tho Cretaceons period are largely based, by geographical change in the area in question, there would neem to be no impropriety in allowing a great part of the strata to be called beds of transition. I am also of opinion, that further and more complete investigation of thene rocks of disputed nge, instend of indieating more precisely any line between the Mesoroic: and Cainozoje of the interior region of North Ameriea, will tend to show the overlaj of life forms of ditlerent type to be more and more complete, and the sequence more perfectly uniform. It will also prohathly he fombl, over this area, that the rocks of many diflesent loealities, with more or less distinct orgmiere remans, now considered as representing the life of separated periods in a linear sureession, may be fomm hy the mingling of the fanna and fora in other localities, as the area of stmely

[^61]

 geological，lout an hiological chasitiention．
 thet nuch，that exen allowing the chasvitatory importanee of the inceladed

 the lanky Momotains，womld in all probahility inclate the whole norion in the upwiad extemsion of＇the（＇retacomes，though dombte might begin to ansal him betion he reached the upper，or most eastern beds．
thit．Shonth it be desimble，bowerer，to draw alme lat this rogion，it
 mader my own whervation，and the evidemere aldwed firom ather heal－

 at all，amd here lies the only phyical dibementame which ran be need in the delincation of the formations on a map．From its miversality， and the prominemt ather it sometimes his on the smrtace of the combly， it seems partioulaty well suted for the purpose．It has therefore heor alopted as represemting the summit of the Crotacoons in the mapsaceom－ panying this lieport，and the herls overlying it have heen refermed to throughout as the lignite＇Tomiary．
fiomal ly in ill larlerl their domre ; down milin'u Tin'llu. ner ill lien in Lill to ion, il come local. Ilwo ely, if - lined
wality, will'y, - heroll ceollied to

Abstract

 Iיphth of the lake Direction of phacial atriatom Numerpmend striation in difforent diemetions- Noweinl inatancer of glaciationt I'reglacial age of ontfall fomsila-N. E. limit of limentome drift Methois of meenonting for limestome Kıunes mal biakers-N. W. limit of real drift-Height mid exoltoner of the Condhent ghaser wovering the lanrentian mgion Former nonethern ontfall of the drift 'Turtle Momatan- Romblere covered region-Maman and Fiastran - Bratica of the Cotemon guartaite drift.

Gilacial Phenomeme and Sitperfirial Drqusits, Latlite of the Whodk.
H65. 'The general form of the lake has atrealy beon metirem

 below the surfiae of the water, mad show wherever exponed, the rombled forms due to ice uction. 'This morflow part of tho lake is also deep, and with regard to its firm and extent, it may be comsidered to hate remained cxactly an it now in, since the ghacial periont. The nombern and hager part of the lake, properly called Sant-hill Lake, washew hare Lamrentian rocks aleng its une thern wige, while the whole of itm somthern and mouthwesterm margin, is formed of sand and detrital mather, and sweop romme in large gently romaded lays, very different from the marrow, irregulan passuges of the north. This semthern part of the lake in alsor comparatively shallow, and perpetually extomling its lorvter somthwawl and wewtward, among the swamp, samd-hills mud lagoons hy which it is there surpounded, and womeang detrifus thous ohtanad over its bed. The evidence of this is everywhere apparent along its southern margin, where tamarack swamper are in some places being so rapially encroached
on, that the trees may be seen along the shore bending forward at every augle and filling into the lake. Some parts of the shore, have in this way hecome surrounded by an ahmost impassable belt of tangled and waterworn trunks and branches. The water of the sombern part of the lake is turbid from the wash of the waves on the soft: shorea, and mattor brouglat down by Rainy River ; giving rise to a formation of doposits of sand and clay now going on over the greater part of its bed. Before the water in its slow passage northward, through the natrow and complicated passages opposite the North-west Angle, gains the northern expansion; it has parted with nearly all its sediment, and does not receive any from the rocky shores by which Clear-Water Lake is bounded. The deposit forming here, as shown by soundings, is a fine slimy ooze, which is composed in great part of the shells of Diatomacea with spieulos of Spongilla and organic matter. The lake is thus an interesting exam ?le © romemporaneons deposits of two entireiy dissimilur kinds, taking paid. .ifferent parts of the same sheet of water.
466. The deepest somudings fomed in Clear-Water Lake, were at its extreme northen end, and near where the waters begin to collect themselves for their fall at Rat Portage, and show a considerable current in that direction. The following depths were observed at intervals from that phace sonthward to the North-west Angle Inlet, the soundings being taken generally in mid channel between the islands. The depths are given in feet:-

Rat Portage.

The bottem of the lake is gencrally flat, and deep water lies close off shore.
467. The outline of the lake follows very closely the changing charneter of the roek, spreading ont where the sehistose, and thinly cleavable varieties predominate, and becoming narrow and tortuous when the shores are composed of compact dioritie rocks, greenstone eonglomerates, and gneiss. The laminated sehist, and thin-bedded slates, offer little resistance to weathering. and even since the glacial period have been much broken down and shattered, in many parts of the lake, giving a peenliar character to the shore. The same roek, however, would, in its in this led and t of the 1 matter oosits of Before ow and orthern jes not ounded. y ooze, spicules xam ole taking vero at collect current ls from s being thes are eleavon the onglo8, offer have giving in its
presont vertical position, offer a much greater resi tance to mechanical violence; and before its layers had been widened by frost and weather, would support pressure and abrasion at right angles to its original berlding, almost as well as the most solid rock. So far as it goos, then, the close comection of the bed of the lake with the slaty rocks, would tend to show that it had been deeply outlined by sub-aerial weathering, before being subjected to glacial action. All the harder rocks of the regrion still show with the utmost perfection the seratching and grooving of the glacial period, and some of the more compact granites and intrusive diorites, retain a surface still perfectly bright and polished. Though the general direction of the northern part of the lake elosely follows that of the ice action, its form is probably due in the main to the strike of the rocks, which is parallel to its, greatest diameter. Still, on a small scale, even the hardest and most homogencons of the rocks show a tendency in the longest axis of their elevations, to parallelism with the glacial groovings.
468. The following table, shows the directions of glacial strio observed on the rocks in the varions parts of the lake, the bearings being magnetic.* The directions connocted by a bracket, were observed to occur together on the same rock sulace:-

[^62]
469. It will be observed from the above table, and on reference to the map, that the direction of glaciation is very constantly from the northeast and north-north-enst, and only uppears to suffer occasional slight deflections whea bronght in contnct with masses of resistant rock running athwart its course. In the vieinity of Lacrosse Island, the grooves show more westing than they do northward of that place to Rat Portage. Between Ka-ka-ke-wabee and Picture-rock Point, a well-marked westwaid deflection takes place, the ice appearing to have been crowded off the high rocky land to the south. The pressure exerted by the ice in this neighbourhool, as it forced its way among the rocky islands and channels, has been exceptionally severe. South cf this, the grooving resumes its normal direction, but at the mouth of the Angle Inlet again takes a marked sweep, westwarl, toward the low-lying comntry in that direction, and away from the high rocky islands. The ice, as it has passed down over' the rocks forming the north shore of Sand-hill Lake, has left remarkably uniform traces. Sonthward, among the inlands, the ice appears' to have turned a little from the west. The south end of Bigsby Island, shows a convergence of directions, as though ice coming fiom the eastern and western divisions of the lake had met at an acute angle, and overridden it to form a junction. The graciation here also is very severe
470. At two places on the west shore of this island, glaciation in the ordinary direction, which gives form to the rock masses, was observed to he superinseribed with courser seratehes, nearly east and west in direction. On a small area of granite and greenstone rock, forming the N. E. point of the southern promonotary of the lake, a remarknble series of strice exist. The most important direction, and that with which the form of

..... S $27^{\circ} \mathrm{W}$
$\cdots . .$.
S $40^{\circ} \mathrm{W}$
$\ldots .$. S $35^{\circ} \mathrm{W}$
$\cdots \cdot$ S $35^{\circ} \mathrm{W}$
$\cdots \cdots S_{S}^{22 \circ} \mathbf{W}$
$\ldots . . S_{15^{\circ}} \mathrm{W}$
..... S 20• W
...... S 25° W
..... S $13^{\circ} \mathrm{W}$
ference to the m the northasional slight ant rock run1, the grooves Rat Portage. ked westwaid off the high is neighbourchannels, has mes its norres a marked rection, and d down over remarkably ars to have ind, shows a eastern and verridden it
ation in the observed to st in direcg the N. E. -ies of strie lo furm of

Figure 1 dilacial striation crossing a preformed
hollow. (\$ 471.$)$

Figure: 2- lereheal lonks. (\$476)

Figure : (ilariation of a mint, indiating lateral pressure. (s 47.) a,

NRTTANGES OF GLACTATHON-LAEE OF THE WOODS
the rock coincides, is $\mathrm{S} .23^{\circ} \mathrm{W}$.; superimposed on which, at one place, are scratehes S. $55^{\circ} \mathrm{W}$., or N. $55^{\circ} \mathrm{E}$. Near this a direction of $\mathrm{S} .60^{\circ} \mathrm{W}$., or N. $60^{\circ} \mathrm{E}$, is seen, on which is superimposed striation S. $25^{\circ} \mathrm{W}$., a direction closely agreeing with the general one, and probably indicating a brief resumption of the original force after a short interval. Another surface showed seratehes S. 20° E., or N. $20^{\circ} \mathrm{W}$. A part of this marking may be accounted for by the packing of ice on the shores of this open reach of the lake, but much of it is not of this nature, mid appears to indicate the combined action of glacier and floating ice in the lower part of the region, toward the close of the ghacial epoch.
471. On the eavtern side of Flag Island, a small point composed of hard hormblendic rock, was observed to have its nearly perpendicular enstern front pla: ed off perfectly smooth, and beautifilly striated and polished, while its summit was only gently rounded, and showed comparatively little evidence of glaciation, and its southern front remained rough; the whole evidencing a strong movement of propulsion from the north, and intense local and lateral pressure. (Plate X., Fig. 3.) Not far south of this, on a surtace of graniteid gneiss, the ice action was seen to have shaped and romuded previously existing asperities of the rock without obliterating them. One instance was especially remarkable, a little hollow in the rock, obliquely transverse to the general direction of the force, had originally a sloping northern and perpendicular somth-western side. The ice had not tonched the weathered surface of the former, while it had bevelled off and polished the latter in the most perfect manner. Such phenomena as this, appear to show great preponderance of onward movement over downward pressure in the action of the ice. (Plate X., Fig. 1.)
472. The passages by which the lake finds its way over the junction of the Laurentian and green slate series to the Winnipeg River, do not depend on any evident conformation of the rocks. They cut across the hard ridge which marks the position of the fault bringing these formations together, nearly at right angles, and in a direction a few degrees west of north. They are probably due to some fault or crack structure traversing the rocks with that bearing, a course which agrees almost exactly with that of the fracture containing the large intrusive diorite of the south end of Lacrosse Island ($\$ 84$), and may tend to prove some connection between it and the simitar rock which appears near the line of junction at Rat Portage. The gorge of the fall is certainly pre-glacial in date, and has probably arisen from subaerial weathering along some such
line of weakness. The ghacial strise eross ower it oblignely, at an angle of about 30° with its direction, and the iee has had womderfilly little etfect on its shape, having succeded only in rounding oft somewhat the exposed angles of the cliths. Nor has the river had much etfect on the rocks, for they still retain their romoded aspect and show ice striation almost everywhere.
473. The distribution of boulders und travelled material in the Lako of tho Wooks region, is worthy of some atteation. 'The whole southern part of Sand-hill Lake is characterized hy the abundance of fragments of limestone, in association with bouklers of rocks represented in the northern part of this division of the lake, mad in Clear-water Lake. Dr. Bigsby in his paper alroaly reforred to* gives reasons for believing that a deposit of limostone of Upper Silmiam λ ge, overlaps the metamorphie series in the sonthern pat of the lake, and though I have been unable to confirm this idea by the discovery of any of the rock in situ, there is considerable evidence tending to show that his suppoposition may be correct. At Driftwood Point, five and three quarter miles sonth of Flag Island, the gravel of the shore is largely composed of compact limestone in small fragments. From this place to Reed River Bay, many large Laurentian boulders stand on the shallows far ont in the Lake, and much of tho shoregravel is of limestone. In the north-eastern angle of the Bay, in many places, about one half of the gravel of the shore appears to be of the stame limestone.
474. A mile north of Reed River, a dry point projects from the general tamarack swamp of the shore, and consists almost entirely of boulders and gravel. The greater part of the material is Laurentian, the bonders being of granite, gneiss, mica-sehist, \&e., precisely similar to that seen to the north, and from the size of pebbles to six and eight feet long. Next in numerical importance are the limestone boulders. None of these are so large as some of the Laurentian, but this may arise only from the fissile character of the rock, and the manner in which it is affected by frost, nearly all being angular and chip-like fragments. The stone is hard and compact, more or less concretionary in aspect, often cherty, and giving fire under the hammer. Its colour is greyish-drab, to cream-white, and yellowish or reddish, on fresh fracture; weathering to pure white. The weather also forms small reniform hollows in it, and in many specimens gives rise to a minutely pitted structure. From the limestones of this locality, and fragments of the same rock tound west of the Lake of the

[^63]11 angle of ittle effect exposed rocks, for n almost

the Lake

 southern gments of the northke. Dr. bolioving he metah I have the rock is suppo${ }^{3}$ quarter nposed of ced River out in the h-eastern the shorefrom the tirely of tiam, tho ur to that eet long. of thoso from the ceted by stone is rty, and n-white, te. The ecimens F of this o of the

Woorls, a few fossils were ohtained. They are not in a very gookl state of preservation, but the fill,swing genomare recognizalle. Strophomon, Pentamerus, Leperditia, Facosites, Stromatopora; also a few ppecimens of crathophyilteid corals, and hiscs of encrinal columns. Mr. Billings, of the Geological Survey, who has kindly examined these fowsils, pronounces them to be Upper Silurian forms, though not sufticiently distinet for spocifie determination. Dr. Bigsby gives the following list of fossils from the limentane, as determined for him hy Mr: Salter. A small Phacops ; Orthoceras, Faoosites Gothlandica, Cyathophyllum, Murchisonia, Pentamerus Knightii, Leptana, Avicula, Atrypa, Spirifer. He probably enjoyed a hetter opportunity for the examination of the rocks, from the low stage of the water at the time of his visit, and speaks of mateses ten to tifteen feet broal, and three deep, which though eracked and fissured, appear to him to be fixed.*
475. Leant in numerical importance, at the pint above referred to, are the boulders of Inmonian origin, from the region of Clear-Water Lake ; consisting of indurated slates, dioritie and epidotic roeks, and coarse greenstone-breecia of the kind alrealy deseribed, and with fragments from four to six inches in diancter. On the shore, in the wash of the waves, a tine yellow-white plastic clay is exposed, which may perhups be the representative of the boulder-clay of the ghacial periorl. It contains much calcareons matter, effervesing strongly with an acid. Some of the boulders in this locality show ture es of glaciation.
476. A mile south of Reed River, a second similar point occurs, where a ridge with an apparently southern course, comes out on tho shore. It is covered with boutlers in a similar way to the last, mud they occur in about the same relative proportion. Off Buffalo point, which Neparates Reed River and Musker Bays, a grod many large boutders stand up out of the water, and the shore is gravelly, and shows a considerablo quantity of limestone debris. The north-east pout of tho southern promontory of the lake, is heavily glaciated, and shows many bonklers of Laurentian, some of them forming fine perched blocke. One of these, of red granite, and actually lying in the grooves it had made, was found to to be eleven feet lohg by seven feet high. (Plate X., Fig. 2.) For several miles south-cist of this place, the border of the lake is moderately high, and whenever exposed, shows whitish-yellow finely laminated clay, which comtans many pebbles, expecially of limestone,

[^64]and appars to be rather a former latenstrine deposit, than the representative of the bondereclay. It is highly calcureons thronghout, but did not yeded any trues of organic remains even when microscopically extminerl. The samd spit opposite the mouth ot Ratiny River, called Oak Point, or Pointe du Chene, Nhows much limestone detritus in the form of gravel and sand. A few miles north of Rainy River, near Windy Point, several boulders of limestone occur among others of arystalline rocks. They beeome honoyeombed on weathering, in a mamer nomewhat different fiom any before seen. On the southern shore of Bigsby Island many bonlilers oecur. They are mostly of Tanrentian rocks, but some of the honegrombed limestone appear, and one was observed of a species of limestone brecein, with yellowish-white pelhbles in a reddish paste. Near the northern end of this island, a clay bank about ten feet his it forms the shore for some distance, the clay being hard, were mweathered, grey in colon', and having traces of stratifiention. It resembles in constitution the other elays examined, eftervescing strongly with ath acid; and holds small bouklers, and gravel, some of the latter being of limestone. A single limestone bonder was even as far north as the north end of this island. The limestone-brececia boulder above described, coincides exactly with a rock which Dr. Bigshy mentions ats occurring on Rainy River not firr from its month (S 47.)

47\%. It would thas appear, that a line dhawn through Driftwood Point and ruming south-eastwad to near the position of Windy Point, would have to the south west of it a reaion of abondant limestone debris; while though a caneful examination was made to the north-with the exception of two or three boulderv near Bigsly Island-not a single fragment of limestone was fomd. (See Map Take of Wools). This line, furthermore, runs in a direction amost exactly at right angles to the prevalent one of the glaciation. The distribution of the debris taken together with the erirection of the grlacial groovings, and the known comses of other erratias, wond seem to indicate the existence of a limestone flooring to the southern part of the lake, which in this case must have overlapped unconformably the older metamorphic strata; but may have been in great measure removed, before, and during the glacial period. No outlyers of the limestone were howerer founl, and I do not know of any memisited locality in which such may yet he looked for, with the exception of Giarden or Cornfiedd Iskand, which I wats mable to reach, and which lies low and flat as seen fiom a distance.
478. Two other modes of accounting for the appearance and distri-
he represenout, but did roscopically ; called Oak the form of indy Point, whine rocks. nomewhat $y *$ ly Island ; but some of a speeies dish paste. II feet his in ard, where cation. It effiervescing el , some of was eren ats cia boulder y mentions Driftwoorl ndy Point, ne debris; -with the single frug. This line, gles to the bris taken wn courses limestone must have may have iall period. ot know of , with the reach, and and distri-
bution of the limentone debris appere to ofter, I febergs, at some time during the ghacial periox, may have passed sonthward over the Lamentian watershed to the north-enst, bearing with them tragments from the limestone formations of Hudrom's Bay. In this case, it would be necessary also to suppose a subsequent developement of glaciers on the watershed itself, sufficient to remove this ofler debris to the south, as inticated by its position; und there is no sign of a heaping up of moraine matter, sullh an might be expected under these circumstances. It is also possible, that at a certain periok of submergence of the region, ice may have floated eastwarl, over what is now an expanse of drift and detritus, and carried blocks from the Red River and Winnipeg distriets, where, though no beds of Upper Silutian age are get known, rocks of the Lower Silurian and Devonian are fouml. This appars to be the more probable supposition, as other evidence seems also to point in the direction of a south-eastern drift in this regiom, toward the close of the glacial perionl. Whether, however, it be concoled or not, that the limestone finagments of the southern part of the lake, are derived from limestone immediately underlying, it is probable from the gencral contour of the region, that Silurian or Devonian roeks overlap the older formations about this place.
479. The bouklers of the northern part of the lake, are exclusively derived from Laurentian and Huronion rocks. They are generally atecumulated on the south sides of the islands, which are apt to show bare rocky shores to the north. The same is true on a greater seale, with regard to their distribution in the region generally, the northern shore of Saud-hill Lake, being much encumbered with boulders. About thirty miles enstward from the North-west Angle, where the shore is sheltered, occasional patches of an oll termede, ten to fifteen feet above the present water-level of the lake, are seen both on the main shore, and on the sonthern ends of islauds. It is composed of gravel and small boulders, and may probably be the littoral representative of the termaces of clay and finer material occuring in the south. A clay quite similar to that seen in the southern part of the lake, appears underlying several feet of stud, in a deep ditch at the side of the Wimnipeg Road, a few miles from the North-west Angle, and not far above the level of the lake. It is mather harl, yellowish-grey in colour, thin-bedded, and mingled with very fine sand. The boulders and erratic blocks of Clear-water Lake, are also entirely Lamentian and Huronian ; granite, gnei ; diorite, and greenstone conglomerate being most abundant.
480. The houlders observed on the roul from the North west Anglo to Winnipeg, were nearly all of the usual Lamentim materials. On the west side of the witersined, some boulders of limestone appear, and much of the gravel seen in banks is also of this material. It would soem that the edge of the limestone of the Red River basin camot here be fur below the surface.

Drift Plateau of Eastern Mranitoba an! Northern Minnesota.
481. From the above descriptions of the superficial deposits of the Lake of the Woods, it will be seen that those snsw ring to the boudier clay, properly so called, comparatively seldom appear, being covered for the most part by more modern aecumulations, either those of a hater period of the drift, or those producel by the lake itself, while standing a' a higher lovel than at present. Southwar and westward, from the Jake of the Woods, the comntry is studled with innumerable sinall lakes and swamps, which have formerly been more important, and the comparatively motern deposits of which, eover the more ancient glacial debris. The northern part of Minnesota, and the country immediately west of Lake of the Woods, may be represented as a great high-level platean of drit't materials, banked up on the sloping nums of the rocky Lamentian region to the north, and covering, often to a very groat depth, its old irregulnuities. It may also bo considered broadly as forming the eastern representative of the second prairie steppe, as it stmuls at about the level which that platean would have, were its gradual eastern slope continued thus firr.
482. The surfue of this platem, though frequently irregular in detail, and covered with bamks and ridgres of sand and gravel of the nature of "Kames" and " Eskers," is, on the whole, remarkably uniform. A section along the forty-ninth parallel, from the ridge bounding the allavial valley of the Red River to the east, to the Lake of the Woods-a distance of 77 miles-shows slopes which are so extromely gentle, as to bo almost imperceptible; the total general westward fall of the surface in that distance, being only about 90 feet. An examination of the profile of the Northern Pacific Railway, from Duluth, to Morehead on the Red River, 160 miles further south, * shows the nature of the southern extension of this phatem, whieh is here the histh-phace of tributaries of the Red River, the Mississippi and the St. Lawrence. Rising pretty rapidly from als. On the ar, mind much old neem that here be far

resota.

posits of the , the boulder covered for linter period anding $a^{\prime}: a$ in the Take all hakes and the comparacial debris. tely west of platein of Laurentian pth, its old , the eastern out the level e continued irregular in arel of the ly uniform. monding the e Woods-a yentle, as to 0 surface in he profile of on the Red hern exten; of the Red apidly from
the shore of Lake Superwor, the smmmit of the platean is reacher, and the same lovel mantained, with an extrome varintion in altitule of not much more than 200 feet, for 250 miter westward, when it compurttively rapid descent is made to the Red River Valloy. As in the northern region of the platem, the surface is covered, to a great extent, with lake and swamp, but the milway cuttings give oremsionnl opportunition fire the study of the mulerlying drift deposits. Near the westem edge of the plateau, at Thomson Junction; green waty rocks, apparently Huronian, project above the drift deposits, but beyond this point the moderlying rocks are nowhere visible. The euttings, which are chicily through banks more or less closely resembling eskers, show samly mal gruvelly materint, generally stratified, and not so much of the nature st till or bonkler clay, as of beds resulting from its re-nrmarament, in shallow, rapidly moving waters.
483. A line drawn north-east mul sonth-west, nomly parallel with the north-western shore of Lake Superior, but lying a short distunce back from it, and cutting the Northern Pacific Railway scone miles west of Thomson, in this part of Minnosota neparates sururticial deposits of different aspects. North-west of this line, the prevaling tint of the drift material is pule yellowish-grey, or drab; south-enst of it, redlish tints are nlmost universul, and become specially prominent on the northern part of the line of the Lake Superior and Mississippi Railway, and contime to St. Paul. The junction of these two varietion of drift, cannot of course be exnctly defined, but is interesting as an indieation of the direction of transport of materim in this region; the reddish matter being derived from the red rocks of the like shore.*
484. The average heisht of the Platean nbove the sea, on the line of the Northem Pacific Ratway, muy be ostimated at about 1,350 fect. Where crossed by the forty-ninth parallel, it has a general altitude of rather under 1,000 feet, showing a decline northward. The highest part of the platen appears, however, to lie abont midway between the Lake of the Woods and the line of the Northern Pacific, the elevation of the sources of the Mississippi being, according to Nicollet, at an altitude of 1,680 feet.

[^65]485. The most instructive sections of this great platemu were, however, observed on the Rosem River, which riving a few milew wontward of the Lake of the Wouls and approximately following the fortyninth parallel, though sometimen dipping to the somth, flnally flows into the Red River, north of the Line. From the enstern elge of the platem where it fronts on the Red River Prairio, fire about twenty-five miles enstward, high elifflike banks with gool sections, frequently overlook the stream. In their general character they all agree more ar less elosely, mud the sections often prescont femtures almost identical fir long distances. The lowest beds are of very the sumd, mud aremuceons clay; often quite plastic. These genemally show irregular and current bedding, and do not include large stomes or bouklers. Above these beds, and resting on their demuled edges, lie comerser horizontal deposits of romeded pebblen, and small boulders, chiefly of white limestome, mud appurently indicating littoral comditions; which as the commtry slopengently westward, must have passed over it in that direction, as the former grent lake of the Red River Valley grew smatler. Above thene gravel beds, yellowish, or white, clean, fine sand, several feet in thickness, is very generally. found; over which is a second pebble-berl, the fragments generally of limestone, and smaller and better rommed than in the lewer. On this rests the present soil, usuully from one, to two, or three feet in thickness, und colourod with vegetuble mutter.
486. Some sections showed near the water's edge, clay beds filled with stones, which though not well exp wed, probulaly represent the boulder-clay proper. From it must be derived a great purt of the large boulders which so encumber the courso in the stremm. The false-beded sands, and associated chays, thus seem to intervene between the boulder clay and the littoral lake deposits, and appen to indicate moderately deep water, with strong currents, but as a rule without ice. Careful search was made for organic remains, but with little success. Not a single Molluse of any kind was discovered, but one section showed a considerable quantity of carbonaceons and peaty matter along the irregular deposition planes of the sand, and about thirty feet from the top of the bank, a decayed tree trimk stool out. The wood is soft and crimbling, and staned yellow by oxide of iron, but from its microscopie characters appenrs to be a fragment of the ordinary cedur. (Thuja occidentalis.)
487. Figures 1 and 2 Plate XI, illustrate the nuture of the drift and superficial deposits of the plateau in this region. Section 1 , is romarkable for the great thickness of the finst gravel bed, and the large sized
olatenn were, w miles westing the fortyilly flows into of the phatemin IIty-five miles ntly overlow more or lesn ticul for long minceous clay; I'ent bedding, te beds, mad ts of roumded I :upurently grently weeter grent lake ls, yellowish, y genernlly generally of er. On this Hec foct in
beds filled present the of the large false-bededed the boulder erately doep reful suarch ot a single ved a conte irregralar e top of the crumbling, charaeters rtalis.)
e drift and cmarkable arge sized

Figue 1. (: が.)

boulders imbedded in it. Section 2 , is from a point abont twenty miles east of Red River, and is a grood typieal one. The lower irregularly bedded series, was here composed of yellowish-grey, fine aremeons chay, so hard as to form a perfectly perpendicular front; and where it had been undermined by the water, it had fallen down and actually separated into shab-like masser, ulong the plames of belding, like a soft samdistone.
488. About seven miles above Rosem Lake, on the East Rosean River, a little section showing the former extension of the waters of the lake, and their gradual reeession, was observed. The lower layers me of yellowish-white, fine, aremaems clay, like that forming in the beds of the present takes. Above this, lay about a foot of hminated peaty matter, showing the swamp or "muskeg" stage, and then about two feet of courser arenaceons chay, forming the present soil, and indicating the deposition of matter still going on from the oceasional overflow of the river. A similar series of events, is slowly taking place over the whele of this flooded region of the drift $l^{\text {nataman }}$, as the streams draming the lakes cut down their heds; and lakes and swamps in every stage cam be found.
489. Forty miles northward of the Roseau River, where crossed by the roal commecting Wimnipeg and the North-west Angle of the Lake of the Woods, the drift phaten appears to retain much the same structure and altitule. It is, however, much less miformly eovered with swamps and lakes, the flooded region being coutined more closely to the vicinity of the actual watershed.
490. The surface of the phatean, is very generully strewn with a profusion of erratics, am: some of them are of grent size. They are chiefly derived from the Lamentian and Luronian to the north, but there are also many of white limestone, with regard to the origin of which the remanks made in comection with the part of the district more immediately surromoling the Lake of the Woods, will apply.

General feutures of Glacial Phenomena East of the Red River.

4!1. The rocks of the Lake of the Woods region, lying on the soutbwestern side of the great Lamrentian watershed, fillow in their contour its geiserad direction of slope. The bave rocky hills foming the northern shore of Sami hill Lake, seem seldom to exceed 150 feet in height, and the avernge level of the comery, as seen from the lake, prolahly falls below 100 feet. The rorky substratum of the regiom, slopes away gradmally toward the south-west, till in the southern part of the lake, but one or two, tow, rounted masses, rise at all above the level of the
water. It may thus be safely assumed that the gencral fill of the surface of the roek; from the northern to the sonthern part of the region covered by this portion of the lake, is pretty nearly 100 feet. The distance by the direct course of the glacial striation is about thirty miles, and the resulting general slope of the country would be somewhat less than 3.5 feet to the mile. The generul height of the Lamentian watershed, whereever it has been ascertained, is extremely uniform, and the slope so gralual that it does not merit the designation of a mountain region, but rather may be called a rocky phatem. The arrage elevation above the nea, according to Sir William Logan, may be estimated at 1,500 to 1,600 feet.* where crossed hy Prof. Bell, between Lake Superior and Hudson's Bay. it is only 1,200 feet. The sonthem extension of the watershed, passing between Lake Superior and Lake of the Woorls, is estimated by Palliser at 1,500 feet. North-enst of the Lake of the Woods, the waterwhed region is but little known, but noar Lac Senl, which closely corresponds with the direction required by glaciation, according to Mr. Selwyn's measurements it cannot be over 1,400 feet. The summit of this great watershed, lies at from 200 to 250 miles north-eastward of the lake, and the glaciation is pretty nearly at right angles to its general direction. Estimating the maximum height of the watershed at 1,600 , and the elevation of the lake at 1,000 feet, a general slope of about three feet per mile results, and nearly coincides with that ancertnined on a smaller seale in the Lake of the Woods district itself.
492. This rate of descent is scarcely sufficient to account for the spontaneous descent of an ordinary glacier, over at comntry which Sir W. Logan has well characterized as " mammillated," yet the surface is heavily marked by ghacier action, and the supposition of the existence of many local glaciers, is negativel by the extreme uniformity of the striation. If icebergs and floating ice, be called in to account for the facts, the difficulties appear even more insuperable. To give rise to such heary parallel marking, it would be necessary to suppose ice moving under the influence of a determinate current, which must have crossed the watershed to the north-east. Icebergs having passed over this ridge, wonld in their subsequent conse float gradually into deepor water, acting on the rocks very feebly if at all ; the more so, as in their southern journey they would no doubt be continually decreasiug in size. Two suppositions only, remain ; either the glaciation was accomplished by the irresistalle movement of a great polar ice-cup,-wnch has has been considered a neces-

[^66]of the surface gion covered distance by iles, and the sss than 3.5 shed, wheree so graulual , but rather we the sea, 00 to 1,600 d Hudson's watershed, timated by the waterely corres"g to Mr. summit of rarl of the its general d at 1,600 , bout three ined on a he spontaLogan has narked by glaciers, tergs and appear arking, it nce of a d to the in their the rocks rey they positions (wistalle a neces-
sary agent ly some geologists-or the Laurentian axis was occupied at one time by a great confluent glacier, pressed outward mainly by its c.rn weight and mass, and directed only, by the pro-existing inclination. Having met with no evidence of the former, I prefer to account for the facts on the latter hypothesis, which will receive more extended notice on a subsequent page.
493. The general contour of the comiry surrounding the Lake of the Voods, and its position with regard to the watersherl, and axis of Laurentian elevation, seem to show that the direction of drainage has not always been as at present. The initial cause of the Lake of the Woods basin, has no doubt heen the occurrence of an area of softer IIuronian rocks, among the Latrentian; and the rocky surface as already shown, sinks gradnally but persistently away to the sonthward and westward, and in that direction, soon becomes buried under a vast acenmulation of drift and alluvial deposits. It is prolnble from the conformation of the country, that were the drift deposits now bloeking up the sonthern part of the lake renoved, its waters would flow southward, in conformity with its general, primary inclination. The watershed between the lake and the Red River Valley, lies close to the former, and has an average height of perhaps not over thirty feet, the summit being occupied by great muskegs. Sections were seen on the East Roscau River, not twenty miles west of the southern part of the lake, which showed nothing but sand and detrital matter, to far belew the level of its waters. Supposing then the absence of this drift material, the small streams now rumning into the northern part of the lake, would flow southward, along the belt of softer Huronian roeks, forming a valley; and towarl the sonthern part of the region now occupied by the lake, must have joined the larger stream of Ratiny River, and thon flowed south-wentward through the uorthern part of Minnesota, towarl the valley of the Red River, which-as elsewhere stated,-may very probably at this time have passed southward into the representative of the Mississippi of to-day.
49.4. During the glacial subsidence, the great deposits of sand and clay were formed, blocking up the entire sonthern part of the lake, and producing the low watershed to the west; through Clear-water Lake, as it tormed a bay in the Laurentian, and from its rocky and torthous outline, may probably have escaped the aetion of the currents bearing silt and debris. On the emergence of the comery, the waters of the Rainy River being dammed hack from the south, would probahly reep round the junction of the metamorphic rocks and drift deposits, to Clenr-water
lake, and tinding the lowest part of its rim in the preceristing motches arross the junction of formations at Ret Portage, would pase ower, and pursor its way ly the Wimepreg River to Lako Wimerpeg. This river
 series of roek-tasins, which often lie transeres to its comme; pawning down the shope of the lamentian asis, and merommodating itwelf' th the
 great spread of the Lake of the Woods, southwad, mast have heen due chietly to the artion of the waves on the incoherent deift material, a pros. cons which is still going fimwarl mitilly.

Drift deposits of the Scomen Prairic Pluteme Wist of the Red Riter, and of "wirtle Momatain.

49.5. In proveding westwand with an examination of the drift and superticial depenits, those of the Bad River Valley wombld next claim attention. As, however, they belome to a hater previol, than those of the higherergion to the west, mul repersemt a distinct pha\%e in the great series of plysital changes which hate passed ower the interion of the continent, it will be better to resorve them tior subsequent comsideration. Beginning at the Fsempement of Pembina Momatain, the western shore of the former tiveat Lake of the Red River Valloy-I shall deseribe those sections of the later deposits which seem to be yppieal.

49ti. The surfine of the socond praitio steppe, apmans to be atmost cerywhere thickly corered with drift deposits, and the madnations and slight irregularites ot its outline, are in the main due to the arrangement of these surthe matherials, amd though mo doubt somewhat moditied by whlaterial waste, does not serom to have heen much changed in this way. Over large areas, no system of coulees or strem vallies is to be found, and the genemally umdulated surtioer, must be due to original inequality of depositiom, demudation having ated only in removing a certain qumtity of the material from the rombed hillocks, into the intervening gentle hollows. Such an mrangemen, implies not only the porons mature of the subsoil, but is in acood with the comparatively very rmall min-fall of the region, and would tend to show, hat at no time sinee its emergence has the rain-fill been very great. The drift material is found generally to consist in great part of local dehris, derived from the immediately underlying soft formations, but this is always mised with a considerable quantity of far-transported material, which is generally most abmant in the upper hayers. Large ermies are in some localities very plentifnly strewnere the plain,
ting motchess an over, mill 'This river d therongh a se; pmaning tsilf' to then suherevinem! e heren duc

litior, amd

1) diflt and next claim mane of the the great rior of the vileration. tern shore rille thone
be almost tions and :lygement witiod by his way. mind, and ity of dematity of hollows. - subsoil, cregion, rain-tall in great t forma-ur-trans-
layers. se plain,
 of Lamentimu rocks, but oftern of whitinh, ar yollowinh limentome; the latter in some phares luing very abombant.

 coverel with drift. 'The tirst, or lawest termare, which is absut one-thion from the prairio level toward the the of the esenpmem, is the hest maked; but in ditiorent parte of the esearpment denes mot sem to prenopre exatly the same altitule. On the bemdary-line, its height almeo

 Peot. 'The surfice of the tirst tervere, whirh is here wide, is strewn with lomaders, an is also that of the seromb terrace and plateme above. There are chicfly of Lamrentian grows and gronite, hat a few smaller ones of limestone oreons. 'The lanks of manes ratting the top of the platean, and draining westward into the Pembina River, show, in some places, a grom thicknows of light-colomerl, yellowish, murly drift, with few boulderem cmbedted in it.
498. South of the Pembina River an the line of the trail from St.
 smmit of the esempment, was fimmen. Its height was almon 270 feet above the Pombina River, the smmit of the platean leing alumt 747 feet alowe the same datmon.*
499. The Pembina River, where it leaves Pemhina Bexpment at St. Joseph's, shows high lamks of yollowish drift material. The pebbles in the river valley, derived from the drift, are very varied in anpert, indoling Lamentian, and other metanomphar rock which may be Huronian; also whitish limestone like that of Wimnipeg, fragments of calcareons and gypeons nodnles from the Cretareons clays, and a single aperimen of silicified rood, simila to that foumd so atmudantly in the drift of some localities much firther west.
500. On the west sile of Pembina River-beyom the escarpment, where its comere is neally urith and south-many conlées and bamks whow yellowish and light-grey arenaceom on maty drift, often resting diredty on the ditys of the Pembina Momutain gromb, and then always chatgel with half rommel pehllew of the mulerlying rock. 'The river valley, where crossed by the Commission Trail, is aver a mile in width,

[^67]

 Allowing semething far the finll of the river, it womld thon momy

 gheial lake of the Rad Rivor Valley when neme ita highens, mal in thorefore proluhly of proghainl nge.

 origin, and the whole is mranged in a mamer implying 11 rery etromg

 of lang River was indieated helore the protion of the dritt. We have
 cuments in shallow waller, and then, it would serm, theopening of the

Dolis. The haresest bomber abserveal in this marion was in the valley of

 into the surtace of the prabie, and exposes dritt, rosembling that of
－is мquerinlly． ＂hunt 2000 fent with lumideres． 1 thins menly is mill＇Totten x interesting， ＂great jumat－ rhewt，minl im
harever the ，mumly drift tulen，which －plit in，an！
 I＇s in ahour tinet of the willt，in of l＇he prebiliteres of forrign ar atrong firom the It oft by the drift ＂then Mill 1．Jarge （＂）privia ｜miterl，is the villey We have pewerfin！ Me of the Herl ices， a bolow， ii．
ralley of operting －Meply that of

Long River, hat not so clenty. At one place 20 to :30 feet of drift forme a vertial clith. Bondere me ahmodant int the hed of the stream, and appear to bo chiofly Lamrentian.
505. It order to thecertain an fin as possible, the origin of the foreign material of the drift, and the rolative propertions of its varions constituents, the following method wanalopted. An average eollertion of pohbles, taken at random from the gravel of any locality, was male; stones above or below a certain size being rejected for comvenience, and cure being taken where possible, to eombine gatherings firon two or throe spots for each locality, and to make the collection a lage one. The pebbles ao obtained, were then earefinly emmemated, and "eided lithologieally into grouns, which were refered an far an pon,thle their formations. From the mumhers thas ohtained, perentay mane have been calculated. The comparative simplirity of the geon: fic: I featuren of the interion of the continent, the similarity of the lithengen anmactors of the formations over great areas, and the absences of arrier motar morphie rocks in the strata of the phains; are speciall!. . "(onable to such an inventigation, and the resnlts serve to show the general course of the drift in a region where rock surtimes eapable of prenerving glacial strise are entirely absent. It was at finst intended, to enmmerate tho boulders and harger erraties in this way, but the eriterion by smaller pebbles was found more frequently applicable, and wherever comparison was possible, the result obtaned from them appeared to agree elosely with the proportional importance of the larger masses. In one respect, the information to be derived from the waller constituents of the drift, is more trustworthy than from the larger, an the limestone sutfers rapidly from frost and weather, breaking down and easing to occupy a prominent position among the boulders of harder metamorphic rocks. Particular attention was, however, given to the larger erraties also, and it is hoped that information derived from different pats of an eant and went line, over 800 miles in length, across the central portion of the continent, may not be unimportant.
506. The first numerical examination was made on the Line about eighteen miles east of the present western boundary of Manitoba, with the following result :-

1. White limestone, of the ordinary kind,...................... 48.18
2. Granitic and gneissic rocks, gencrally lritksh............... . . 38.48
3. Felspar.. 1.2 .2
4. Pebbles, chiefly or entirely of crystalline quinrtz........... 9.75
5. Yellow chert. 2.43
6. Dark eoloured, hard, metamorphic rocks. 4.87
7. Soft redilish iecomıosed rock. 1.22
8. Grey rock ; probably fragments of Cretaceous nodules. .. 1.22

Alae mathy nplintore of Pemhina Momatain whale, being fiagmente of - linintograted pehblon.

 north of that phere, athl fiom thal'prer Silarime delwin already mentioned an appearing in the viedity of the Lake of the Woents. The frogmenter inchuded mader No. a. aro modoubt Lammentian. Nos. 3 and 4 aro also probably Lammatian. No. b , derivad trom the limontones. No. 6 probahly lluronian. Now. 7 allul 8 are lomal. 'The great quantity of limentone here present is remarkable, but will bo fomad to be characteristic of many other localities.
608. In this vicinity, atul wastand towarl 'rurllo Mombain, the ulldalations of the prairio becomo moro ntriking and apparent, and oftent form ruther ntop-sided litele hills. Theme are aldo freguently grouped togethor in miniature rameres, or form more or lose dethite lino nerone the phain. The whole of' there narftee tivituren, wo fare an could he ancertained, ara din th the arrangemont of the drift deponits. It in also observable, that wherever the gromat diven nlightly to form devations of the kind montioned, hasin-liko nwomps, and nmall pronds, aro almost certain (1) Lo femme. They domot theretiore, an a rule, oceme on the lowent pmrta of tho prairio surface, bit rather the reverne. It is almo a curions fatet, that the hill-tops athl swampes shonlal bo often equally charactorized by the abmadance of bonhlers, whilo the intermediate slopes, and the general surtice of the pairie, are almont free from them. A similar observation has also, I find, heon mato by Prof. soll in a part of the necond prairio ateple, considerably further north. As atrondy montioned, whb-uerial dembdation has taken phace to a very slight oxtent, and the ansoetation of these features, would appear to indicato slight orosion by enreuts, while smbmergence was still complete. These might ensily seoop ont hollows in some places, leaving the bonders and heavier massos; and at the snme time be romoving the finer debris from the exposed surfaces of hillocks.

50:). An examination of the ronstituente of the drift abont ten miles cast of"turtlo Momatain, and neven north of the Line, gave the following result:-

1. White limestone.

2. Quartz and quartzite.
3. Crystalline lionite..
4. Voudish lecomposed rock.
5. Fragments of nodules (probably Cretaceous). 0.0 .97

5 fingimionta of Lawers Silurian then oceluring ndy mentioned 'hu' fragments 1 are alan pro. in. (i prolinlly mentome hore whe of many atain, the mn14. and oftern ntly groupacl lines actome ahd ho aneer. t in almos ob\therefore fioms of the oust certain owont prats 1arions finet, elerizesl by the goneral hservation nd prairic sub-iterial nciation of currents, roop ont 4 ; and at wheres of
en milen
ollowing

 come firon the butter anmires.

 drif deponitn. It in a brokeln, hilly, wonded region, with an :men
 from the phain mromin it, uneve which it is eldated, at its highest
 of the hilly drift ragion prevismly deseribud, wil forms a prominemt
 somber tint of the folinge of its womls. From the west it can be seen firom a distance of finty-five miles, mon when thas viewed, han really murh tho pemeral ometine of 1 turtle stioll. It is hisected by the forty-minth parallel.
612. Chatain Palliser's expedition followed the Bomulary-tine thins far wew before turning morthwad, and Dr. Wowtor, from a general examination of the membain, comendered it th he compuend of drift. I have hat the opportmity of exmmining not only the outwints of this region, but of penet ating complety acerose it in the direation of the
 existence ofta hed of limestome in the chamel of one of the brooks in the interion of the montain, was reported to me, hut after having mado a sperial trip, orropying three days, fin the pmpere of visiting the npot, it was found to be merely a bage bomblder of rock, mush resembling the Lower Silurian limestone of Gimry, which had been lextged in an inclined pmition amomg many others of grouite and gneise, and was breaking up muder the weather. Nearly all the abrupt whom and bilges-of which there are many-whow bonders in abomdatiee, and these appear to be chiefly of Laturentian rocks. 'The shores of some of' the numerons 'akes are largely comporsed of white limestone with Laturentian fragments. and some greyish and greeniwh Huronian-like rocks. The westem is more abruptly hilly than the eastern side, and the more prominent ridges have a general northerly and southerly direction, with intervening vallies
 or only gently umblated grombl, are bowerar tomblin sume plares. The

 io in basin-liko hollown, and mol withatamling their great mumber, drain-
 quantity of thor material, however, seems to have beeri removed from tho hille mal ridgen, and re-deponited in the hollown, emaning the former to be atony and givivelly.
 resemblen that of the Cotemin, dewhere described, and from its altitule it is entitled to bank an an matyer of the thime nteppe. Similar hills, more or less woll matioed, and romposed of dritt materials, appear also to ocene in other purta of the secoml prairie nteppo. These, with 'Jurte Mombtain, form a line cast of the esengment of the thidedepre, but nemply pallal with it, inclanling from nonth to north:- Thrtle Monntain,
 wool IIIlls. These olevations do mot appear to be commerted with imything
 west of 'Turtle Momatain; morentheir aramement be shown to be due to any featmo of the muderlying rocks. 'They lie, howner, nealy on a line of equal altitude on the eastwod vate of the plains, atml show a rongh correspondence to the muin $\&$ fin the high land, commected with the escarpment of the recond stepe, the the east.* l'ittong anide the hypothesin of a muclens of limestane, or other solid rock, for which there appears to be no support, these elovations wond seem to have been formed by the tendency of icobergs bearing debris to congregrate in certain positions mader the influence of cmrents. A shatil once produced in this, or any other way, would tend to increase mpilly when the water became suffleiently shallow for the ice to gromed on it, and ite extent and dimensions would only be limited by the lengill of time during which suitable conditions prevaled, and the orosive power of the currents passing over it.
514. A careful examination of the pebbles of the thift, on the prairie enst of the first crossing of the Line and Sombis River, 170 miles west of Red River, gave the following latios:-

[^68]I. Whitish limestone 12.4:
2. Granitic anl gneisaic reeks. $18 \cdot 78$
3. Hard, green, and greeninh-black rocks, hornblendio and epi-
dotic, momethmen sehistuse. $7 \% 15$
4. Dark greenish rock, ovidently fragmental 248
5. Cryst:alline guartz 2 is
6. Quartzite mil hard jasper-tike rock 2.4
7. Fragnents of ferroginous concretions 110
8. Miea nehint 0.67
9. Hack hormblende ruck 047
10. Harl, coarse-grained, light-coloured quartzite 0 - 17
11. (inciss, with garnets. $0: 3$
12. Cryatalline diorite 0.31
815. With regard to derivatim, Nos. 2, 5, 8, 9 and 11, are almost certainly Lamrentim. Nos. 3 and 4 are ILuronian. No. 7, Crelaceons or Lignite Tortiary; and No. 12 indeterminate. Nos. i and 10 are the tirst madoubted examples of a species of drift which firther westward becomes incroasingly prominent, and which I have called, fio distinction, Quartaite drift. After having been observed in mamerons places during the seasmens of 1873 and 1874, this drift was tinatly traced to the Rocky Mominains, as its proballe place of origin. It is of conse possible, that nome stray pebliles indiatinguishable from the troe Quarzite drift, but coming from the east or north-ant may ocerr; or that some fragments from the lionky Mounhains may be indistinguishathe from those of tho Huronian, and incluled with them here; but I think, in the main, the conclusions an to origin may be relied on. From this geint onward th the thank of the momutains the Quartzite drift will be found to oecur more abuadatly in the latvelled debris.
516. Between the first and seeond erossings of the Sombin River, and near the Antler Creeks, no seetions of the pratirie sulb-soil are fomad. Boulders, however, are very numerous in some phaces, and are as usmai mostly Laurentian, though there are some of limestone, amb also at few of haud metamorphic blackish aud greenish rocks like Iluronian. Ocemsional boulders of pale pink samelstone, with darker colsured stratitication jhames, and also blecks of compact, rather coanse-grained, whitish sandstone, were also for the tirst time seen here. They belong to the Quartaite drift series and oxatetly resemble some roeks of the momatains near the forty-ninth parallel.
517. Near the 192 mile point, the superticial drift was tome! whe composed as follows:-

[^69]
518. The limestone is prohally :ltegether from the Red River region or northward. Nos. 3 and 4 camot he very definitely placed either in the Huronian or (Qumtzite drift, while No. 7 ahmost certainly belongs to the latter. The introduction of the material inchuded under No. 3 , in such large quantity is rather anomalous: Nos. 2, , b, and probably also most of No. 5 , are Lamentian.
519. The prairie south of the somth hamk of the Souris River-which heyond the Second Crossing roms nembly parallel with the Line for about thirty miles-is fir a brealth of :everal miles, strewn with an immense mumber of houlders. These are gencrally half buried in the soil, and in some phaces over extensive areat they are almost in contact. They ansist mainly of Laturentias roeks, but there are also a good many of limestone, and some of the hater parts of the local Tertiary sudstones. Some are of harge size, though most are not over a foot or two in diameter. They do not appear to he arranged ingroups, but are scattered very miformly everywhere. The north bank of the river as far as I examined it, is chanacterized in the same way; and Capt. Palliser who erossed the comatry heyomb it on his way to the Rewhe Percée, writes:-"As we approacheel this riser, the ground was so coverel with boulders that our calt could barely get along."* The region thas ovidently strewn with erratics, seems to be that which slopes gently toward the edge of the steep bank of the river. The boulders are by no means so frequent on the genemal surface of the prairic in this locality, and they would there seem to be covered with a finer supertions depmsit, which has been removed where denudation has taken place. The layer containing the boulders, howerer, camot be a thick one, is where waste has penctrated to a mueh greater depth, in the smali ralleys tributary to the Somris, the covering of bouklers is not sensibly increased.

520 . Near Wood End, 260 milen west of Red River, some gool sections of the drift oceme on the Sonris. The surface of the prairie here rises to torm a mather well marked phatean, but of small elevation, which may be considered an being the first asent toward the elerated region of the Missouri Cotean. The mulerlying rocks are here of Lignite Tertiary age, and as when resting on the Cretaceous, the drift reposing on

[^70] aceel cither in mly belongs to der No. 3, in probubly also River-which Line for about an immense e soil, aum in They \cdots nnany of limey s mdstones. two in diameceattered very as I examined o erossed the -"As we aplers that our trewn with ellge of the frequient on would there is hat been ntaining the penetrated -Somris, tho

10e good secprairic here tion, which ated region dignite Tereposing on
them is found to be very largely eomposed of their soft debris. At one plate about thee miles west of the firmer pesition of Wond Emil Bepor, a seapped bank of the stream, abmithty lied in height, is seen to be entirely composed of drift ; which is a yellowish sandy and grawelly depment, hard enough to stand in perpembicular-facel hanks, and in a general way much resembling that atremly described at Lomg River and wewhere. The boulders are of Lamentian and Limestome, with a good many holonging to the Quartzite drift, and fragments of local samstomes. Many of the thoulders and pobles are polished that, on one or more faces, and neored with glaciat markings. Agates and tragments of silicitied wool, though not atetnally ohserved imbeded in it, must also ocrur in the drift of this vicinity, as they are not mufreguently fomed in pehble beals formal trom its rearrangement. The agrites were here fomd more abmulantly than eksowhere, lime were mot in any locality oherved in the parent rock, though they no doubt occur in some of the Tertiary or Cretaceous beds of the region. They do not usaally show couspicuous banding, but are semi-transparent and of a pale yellow colour.

Maryin and Eastern Region of the Third Prairie Platian to Wood Mountain.

521. The localities so far deseribed, may be considered as belonging to the secom prairio steppe, and illustrating the mature of the drift of that level. Westward from this point, the comery though belonging in the main to the thirel or highest pairie level, is muel more diversitied, aud to muderstand the arrangement of the depasits of the glacial period, it is necessary to bear in mind its general contomp, of which an mutine has alrealy beengiven in treating of the watershed which rome through it to the Rocky Momtans ($\$ 9$ at seq.)
522. One hundred and twenty mules west of Turfle Momatain, the necond prairice platean comes to an end against the foot of the great beelt of drift deposits, known as the Missomri Cotean. Beyond this point, threo diverse zones of comentry cross the forty-ninth panallel in the order suldjoined.
523. Tumnltuonsly hilly comutry hased on a great thickness of hift, and forming the Coteau de Missouri, properly so called.
524. Fhat toped Watershed Platera, formed of rocks of the Lignite Tertiary, anll constituting a part of the First Transverso Watershed already deserribed.
525. Lower broken down region suth of the Phatean, partly baseet on the
 Iraliming toward tha Mismor"。

 flowing to the Biswnut, rise mear the somthern edge of the tirst division,

 Wextern Pains, and is cortainly the most remankable momment of the arlacial perion mow existing tham. Thomgh fropmently mentioned in
 filly madiod. I have hat the apportunty of examining more or leas
 lenserth of wor 100 miles.
62.4. Whare ent samewhat oblipuly ly this parallel, the rotean may

 with at this point eamon he mope than ahont thity mikes. On appromhang it trom the east, on that tail from Wowl Bul, which an alrenty stated, is somewhat more clevated that the pratio lying eas of it, a gradnal aseont is made, the the edze of the Cotean is reathed, amomenting in a distame of wenty-dive miles, to allumt 150 feet. The comity at the
 Momban from the das-bill almost before one is aware of the change,
 thoms hills, which consist entirely af drift material, and in many eases serm to be formod almost altogether of bonlilers and gravel, the finer matter having been to a gerat extent washed down into the hollows. Where it aplears, howerer, it is not mblike that of tho drift of the lower prabies boine rellowish and sathly. Among the hills are hasin-like vallies, ronnd, or imerndar in form, and without outlet; whichare sometimes dry but generaly hohd swampa or small lakes, which havo frequently been fillad in with material washed from the hills so as to beeome fatbottomed. The hills and vallies havo in general wo very determinate direotion, but askigt temdency to armagement in north and south lines was observable in some parts of this reqion. The hills culminate on the Lime alment the : 0 mile point, and westward from this place, they aro
 rongh amb bokea character, to that of rather boldy undulating prairie, arl, the ntreame e tirnt divisiom, ming agenties. fentures of the annmont of the mentionme in yet been caremoro or lews parallel, fion a

10 (6) Batu may dime of fiortyer, its extremo niles. On apieh an alroady : cast of it, a ; : momonting 'ountry at the aching 'Turte of the change, li, and timuln many canes rel, the tiner the bollows. of the lower re basin-like ich are nomerofrequently hecome flatdeterminato id south lines imate on the ro, they aro ides from :tas (inğ prairie,
without however falling much in general elevation holow the tops of the bodder hills further eant. We have in fact passed up over the maryin of the third irpat pratire nteppe.
525. 'The whole or the retom leol is chatacterized by the absene of drainage valleys, aml in consequen'r, its pools mal bikon are very often charged with nalte, of which those most abmadandy ropremented are sorlie and magnesic sulphates. The waline laken very generally dry up completely towad the end of the smmmer, and present wide expanses of white eflorescent crystals, which contant in colour with the crimson Salicornea, with which they are ofton fringeal. The erystalline ernst genemally rests on a thick stratam of woft bhack mod.
526. 'The boulders and gravel of the ('otean were here observed to ho chiedly of Lamrentian origin, with however a gered deal of the usmal white limestone, and a slightalmixture of (quartatedrift. On the wentern margin, some rather hare disined strean vallies were ween, hoding erains of saline lakes; hat their relation to the drift materialn of the Cotenn were not no cloarly whown as in other localities further morth, to be dencribed.
527. In passing westward, from the last exposires of the Tertiary roeks near Woorl End, to the bocality of their tirst apparance within the Cotesu, a distance of abont 70 milen ; we rise about foof feet, and attain an elevation of' sbont 2,500 feet above the sea. 'The slope of the surface of the Lagnite Tertiary then, assuring it to be miform, is a littlo less than one lumdred feet per mile; and on and against this gently inelined plane, the immense drift depesits of the Cotean hills are piled.
528. The general strmetare of the Cotean on the forty-ninth parallei, is ilhnerated in tigure 1 , Pate XIII. It agrees woll with the section given by 1)r. Sector, of the bor ler of the Cotean, on the Kilbow of the South Saskatchewan.* but it is interesting to observe that, in that locality, the underlying shope is eomposed of Crotaceons stata ; showing that the Cotean is not connocted with any particular formation, but forms a border round the northeastern olge of a gontle elevation, in which both Cretaecons and Tertiary rocks are involved, and which determines the watershed.
529. Passing westward for alout reventy miles, it is found to jreselve much the same appoatance. The prairie of the (otean foot, is rather modulatiag, and slightly mised above the gromed leval, but the adge of

[^71]the hilly conntry of the Cotean itself, is always from a distance well defined. To the northward and eastwarl, homolles, level. treeless plams stretd to the horizon. The Traders' Road to Worn Momatain, after passing along the hase of the Cotean, for the distance abowe indicated, tums westwarl, and croswes it, taking alwantage of a deop bay in itw edge, in Which also rises a man tributary of the Somris River. The rome then passes for abont tifty miles through the Coten belt, which mast here be about thity miles wide, and repents almost exatly, the physieal
 so tumultums nor so stomey an on the Lino.
530. Following the Traders' Road westward, for abont twonty-five miles, toward Woorl Mombtain, it passes for the most part between the southern elge of the Cotean proper, and the morthern margin of the Tertiary platean. Wherever, from any hill, a view over the Cotean to the north (anl be obtained, it is wen to stretch away to the horizon in a suceession of wavedike monds and ridges, which do not differ much in average altitude.

5:31. The intervening region, followed hy the road on aceome of its facility, has characters of its own. Wide and deep valizes, often fint-bottomed, with systems of tributary conlées, are foumb everywhere cut in the soft rocks of the foot of the Tertiary platean. Some have small streams still flowing in them, fed by the drainage of the platean ; but for the most purt these old vallies are diy or occoupied by chatiss of small saline lakes, the waters of many of which disappear eaty in the summer. The lakes usually have the long river-like forms of the vallies which contain them, and receive the waters of the brooks which still flow. One of the most important, probably nine miles in length, forms the drainage-basin for the streams of Wood Mountain ; its sides are abrupt, and the water appears to be deep. These old vallies are evidently of pre-glacial age, and have formed a part of the original senlpture of the country. The heaping up of the great drift deposits of the Cotem along the foot of the Tertiary platean, has blocked them up, and prevented the dranage finding its way northwad as hefore. Since the elevation succeoding the glacial subsidence, the lainfall of the district has never been sufficiently great in proportion to the evaporation, to enable the streams to cut through the !ambey thus formed. The existence of these vallies, and the arrangemont of the drift deposits in this region, have important bearings on several poblems connected with its genemal history, which will be again 1. Hinced th.
a distance well 9. treeless plains atiin, after passindicated, tums y in its elge, in er. The road M, which must lyo the physical y neillher quite unt twenty-five 't between the gin of the TerCoterus to the a horizon in a diftier much in
accoment of its often flat-botcere cut in the small streams t for the most 1 saline lakes, r. The lakes contain them, of the most basin for the rater appears ge, and have heaping up the Tertiary ding its way rlacial subsitly great in through the he arrangebearings on rill be again

Figme 2. Plate XIII. illustrates diagramatically the strmeture of the Coteau, \&ce, in localities morth-enst of Wiond Momntan.
532. The Cotemitself, and the degraded unthern elge of the Lignite phatem are equally chamaterized by the abmanace of Lamentian and Limestone frimgents, the drift being in fact chictly "omponel of northern travelled matter. On ascending towad the nummit of the plateat, however, the drift mpidly changes its chanater, the rocks previomsly abumant hecoming companatively searee; and on reaching its upher surface, it is found to be but scantily $\begin{gathered}\text { sered witl: drift deposits of : any }\end{gathered}$ kincl, and the material of these to belong to the Quartaite drift with but a very slight intermixture of Lambentian. South of the Tertiary phatean, and where it is broken down toward the trimataries of the Missomi, the country still remains but thinly covered with d:ift. Fragments of Laurntian origin and Limestone are bare, and quartaite abundent.
533. The Quartzite drift, where typically developed, differs not ouly in its composition, but in its appearauce and monde of deposition, from that of north-enstern origin. The fragments consmag it, while of very resistent weks, are not of great size, and rarely show any evident marks of ghacial polishing or seratching. They are romeded and smotl, like luach pehbles, or shingle, and appear th have been for a long time subject to the action of the waves. They do not geneatly form thick deposits or banks, but are pretty miformly spread, and often form a bed only a fiont or eighteen inches in thickness, with little admixture of clayey matter, which rests on the eroded surface of the Lignite Tertiary leels, and intervenes between them and the soil. Sections in Porempine, and Pyramid Creeks, and in the Great Valley, all showed a capluing of this material, and the mode of it:; oecurrence may be seen in some of those represented. The quartzites and similar rocks forming this drift, which are hore classed together, are often very varied in appenance, though all agreeing in the preponderence of fragmontal silica. In colon', the prevailing tints are gellowish :und brownish, sometimes verging on red. In texture, rocks may be found from those of a compact jaspery appeanuce, to others in which the grains of sand are coarse, and still plamly distinguishable from each other. Fragments of silicitied wood also occur.

CIIAPTER X.
GLICLAL PHENOMENA ANO SUPERFICTAL DBPOSITS-(Continuer.)
 near Wood Monntain-Northern extension of the Cotean-Southern extension of the Cotean- (ieneral nspeot of the Cotean-Methods of aeconnting for the
 Woon Mowntan Bonlder-clay of Fant Fork of Milk River, \&c.-Composition of the brit near Milk liver-The Three Buttes-Western limit of himer of Whift - Ghactal ac"tion in the Rocky Mountaing - Fommer ()risin of gold - Walke-Terraces in the mouth of the S. Kootanie Pass-Dhimp-The Red Rives and lakes-Ciques-Genhraf. Gompostrion of the deposits-Sections from borinasiey - Its character and inchation-Alluvial - Comnection of deposits of "A Wimipeg and Fargo--Vellow mand deposits Ghacial Aspect of tur of Red River Valley and Missouri Country-Pre. First stage in depression- Costry-Former sonthern flow of hed Riverof summergence when greatestation of levels of plateaus and terraces-Depth eontinent-Difienlties mot with inf action at this time-Emergenee of the Pinenomena-Possible eve in explaining the phenomena-Posp-alactal Altemative vallies-Valley of of a pluvial period-lireat river vallies-

Margin and Eastern Region of the Tiird Prairie Pluteat to Wood Mountain (continued.)
534. Following in the description of the drift deposits, as nearly as possible, the order pursned in systematically describing the older formations, it will next be necessary to consider the region westward of Wond Mour \&in, and between it and White Mud River. The three belts of country already defined, are here not sodistinetly marked, as the watershed platean turns north-westward, and does not maintain its elevation so uniformly as before. The third region, or that sheltered by the platean, consequently shows a somewhat greater admixture of foreign matter, though the preponderance of the Quartzite drift is still remarkable, and the size of some of its component fragments is greater than in any locality previonsly observed. After passing the 425 mile point, it rests upon the surface of the clay-shales of No. 4 of the Cretaceons formation. The average elevation of the region above the sea is about 3,000 feet.
535. A mumerical examination of the pebbles of the drift, near the 450 mile point, gave the following ratios for its eonstitnents:-

1. Quartzite drift, brownish, yellowish, purplish, and dark grey, and varying in texture as already deserjbed. $40 \cdot 66$
2. Tranitic and gneissic rocks. 25 . 83
3. White limestone. $19 \cdot 95$
4. Fragments of ironstone nodules (local) $4 \cdot 60$
5. Blackish and dark green hornhlendie and felspathie rocks,
sone of which might be called diorites 3.84
6. Crystalline quartz... $1 \cdot 53$
7. Suft yellowish sandstone (local)....................... 1 . 127
8. Gaructiferous gueiss............................. $1 \cdot 02$
9. Crystalline diorite... 0.77
10. Chert 0.51
11. Part of tie coanser quartzite of No. 1, almost exactly resembles that deserihed in the emmeration of pebhles on the Souris River. (\$514) Nos. 2, 7, and 9, are Lamentian; No. 6 is probably amost entirely Inorian. In this !ocality there are also a good many boulders of granite and gneiss of some size. A large limestone houlder, weathering pinkish white, but grey internally, was fomm to measure 10 by 6 by $2 \frac{1}{2}$ foet, neither the length nor thickness being fally exposed. Near here also, in some of the limestone ematics, specimens of a pecuiar Stromatopora were found in some abundance. The Quartzite drift of this locality, is mingled with a greater proportion of eastern and northern debris, than that of the country more completely sheltered by the Tertiary platean, further east, but is still well charactorized.
12. North of the platean, the increase of limestone and Laurentian roeks is very apparent. At a point about twenty-tive miles west of Wood Monntain, near the junction of the Cotean deposits and morthern slope of the platean, an examination gave the following result:-

$$
\begin{aligned}
& \text { 1. Limestone .. } 33 \cdot 33 \\
& \text { 2. Granitie and gneissic rocks (prevalent tints reldish and }
\end{aligned}
$$

538. Westward from Wood Monntain, the drift region of the Coteau trending northward, follows the base of the Lignite Tertiary plateau, and is not again seen in the vicinity of the Line. It would appear from Captain Palliser's map to run with a course about west-north-west to the Elbow of the South Saskatchewan, where, as already mentioned, it was met with by Dr. Hector. Here the edge of the 'Tertiary ceasing to be coincident with that of the third prairie steppe, appears to travel southwestward, while the edge of the third steppe is continued northward, by an escarpment which, acceording to Dr. Hector, is of Cretaceous rocks; and appears to be closely followed by the bordering drift region of the Cotean as before. The Cotean deposit, wonld even seem to extend to the latitude of the Thickwool IIills, north of the North Saskatehewan, as Dr.

Hector says of them, that their whole eastern slope, with its broken comery is "strewn with bombers, and wom into conical knolls and deep pat holes," fincibly reminding him ot the combly where the sonth Siskatehewn intersects the Cotean des Prairies ; and agmin on a follow. ing page-"The alnupt shope, facing to the onst, follows a cinved line tu the morth-west, mil is evergwhere strewn with houlders, principally of primitive rocks, amy angular mases of cheret and maghenian limestone." 533. The edge of the third prairie phatenn is, however, toward the nowth, losis detinite thmen sonthward, and is hoken up, into sepmate systeme of that-topped hills; and the arraugement of the drift depenits no donbt partakes of the same irregularity: I camot but believe, however, that the deep vallies, without outlet, which seem to have perplexed Dr. Heetor in this regiom, are explicable in the same way als thove found within the Coteman Wear Wed Mreantain, and that there also great deposits of dritt material have been piled on old surfaces seamed with pre-ghatial vallies. Of these Dr. Hector writes-with special reterence to certain instances in the Ear Hills, south of Battle River:-" The surtaces of the higher phanss ate in somo localities traversed by profond rents, resemb, ling the vallien of great rivers, but which, after rumning for some miles, are gererally fimm to be chosed at both ends. They are often occupied by drep lakes of salt water, depressed 200 to 300 tee below the phain, and from 500 yards to a mile in width." \dagger
5.40. The fieduent ocempence of saline lakes, in the rugged listriet of the edge of the highest pratire steppe, is also mentioned; and their position, generally at the stame altitude, and along a well-marked old const line, letads Dr. Hector to attribute their salinity to the rematins of the salts of the sea itself. To me it would appear more probable, both from the composition of the salts, and the fice than similar saline waters were frequently fome issuing fiom the roek-especially those of Cretaceons No. 4-that they primarally owe their salinity to chomical Cretaceons ceeding :mong the little consolidated beds valinty to chemical action proand its persistence to the want of beds of the Tertiary or Cretaceous; maly, they are totally distine want of damage vallies. Be this as it springs of Lake Manitoba, and the character and origin from the salt 541. South of the fint and the Red River Valley to the east. of drift material can also be tuat parallel, the contimuation of this belt izing the high gromed hetwed. It rims somth-etstwad, characterizing the high gromed hetween the tribmaries of the Missouri and the

[^72]pe, with its broken aical knolls mad deep y where the sonth wh again on a follow. own a ders, prineipally of gherian limestone." owever, toward the ito sepmate asyteman t deposits no doubt lieve, however, that we perplexed Dr. ay as those found arlso great deposits ed with pre-glacial ference to certain the surtaces of the mind rents, resemby. tip some miles, re often occupied low the plain, and

Co rugsel listriet ioned; and their marked old conast rematins of the bable, both from fle waters were of Cretaceors. fical action pro-- or Cretaceoun; Be this ats it from the salt e enst. III of this belt aril, charactersouri and the
p. 221,

Red River, but wamting the hacking of the Lignite Tertimy platem, it appeats to hecome more dilline, and apreals more widely over the comery. The drift depanits do not forme the high gremul, hat are merely
 nuclens of hand patmozoic rocke, ofer whin the Cretaceons is generally himly mend, but which apmen at the relehnated Pipe Stone Quary mad elsewhere. From what I emin leatin, it wonld appear that the so-called cotean de Prairies and Cotran de Missomri, hetween which a diatinction is often leve mate, are parts of the sume great feature. Their devation is similar, and nemly the stme as that of the Coteran on the Line, and they are equally chatacterized by the immense profinsion of entatics, with which they are strewn, and by basintike swamps and laken.
542. The following description of the Conem somth of the line, by Prof. Thomas, is the best I have been able to timl for that regrion, and will be vahuble as a term of comparison. "The surfice of the comatry between the valley of the Red River on the enst, and Missouri River on the west, may be deseribed, in genemal terms, an comsisting of high, rolling pariries, intersected by the vallies of a few strems which run sonth. But this general contour is interripted by two elevated phatems, which stand high above the general level, as momments reared by the vast aruatic finces of the past, an if to give ns some ideat of their stupendons fower. The smatler of thene elevathel plains, the Cotem des Prairies, extends from a point about forty miles west of the north end of Lake Traverse, latitude 46°, longitude $\$ 17^{\circ} 30^{\prime}$, southward, expanding and somewhat dividing towards its southern extremity. The western arm of this southern extension encroathes close upon Jumes River Valley, about latitude $44^{\circ} 15^{\prime}$, where it onds; the other arm reathers somthenas, pansing down on the east side of the head waters of Big Sions, and gradually fallos ont in the sonthwest enmer of Minnesota. The elevation of its surface averuges nearly 2,000 feet above the level of the sea, varying from 1,860 feet, to 2,040 feet, showing a rise above the plains east of it of about 800 feet, and above the valley wost of it of 700 feet. The other platem is the Cotean ot the Missomi. This hugs the valley, and follows the course of the Missumi, northwad firm Fort Sully to the great bend of the river near the mowth of the Yellowstome. Here it it receles, and extemls in a northwest direction into British Possessions, where it gradually fides out and is lont (?). It raries in width from thirty to fifty mites, and in height from 1800 to 2000 feet above the sea; but the surface is more inre-

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580

gular than that of the other Coteat, portions of it rising as much as 200 feet above the general average. The general elevation corresjonds very closely with that of the Cotean des Prairies, showing very clearly some relation between the origin of the two. On each are numerous small lakes, mostly impregnated more or less with saline matter, and at many points on each boulders are quite plenty."*
543. Dr. Hayden, treating of the same region, writes: "North of the Missouri River, from the Big Sioux River to Fort Clarke, there are districts where one might walk for miles across the plains, and over the hills without stepping upon the ground, so closely paved is it with worn or partially-worn boulders." \dagger Prof. Wincholl describes the extreme south-eastern part of the Coteau, ncar Lake Traverse, as characterized in a similar way, by the abundance of erratics, which, though some limestone boulders ocemr, are chiefly of gramite. \ddagger Minne Wakan, or Devil's Lake, in the watershed region of northern Dakota, may be but a larger example of the kind of lakes characteristic of the Cotean. Its waters are saline, and its shores appear to be fringed with innumerablo boulders of great size.
544. In the Missouri Coteau, we find a natural feature of the first magaitude. A mass of glacial debris and travelled bloclas, with an average brendth of, perhaps, thirty to forty miles, extending diagonally across the central region of the continent, with a length of about eight hundred miles. It would appear to go far toward satisfying the requirements of the theory which accounts for the glaciation of northern America and Europe, by the southward progress of a great polar ice-cap. It may be supposed that a projection of this great ice-sheet, filled the whole northern part of the interior of the continent, from the high ground at the foot of the Rocky Mountains on the west, to that of the Laurentian plateau to the east. It would be supplied by ice generated in the polar regions, and fed also by that of the Rocky Mountains and Laurentimn axis at its sides, and may be supposed to have passed southward, impressing on the eomutry all the features which now characterize it, and especially exeavating the basins of the great series of lakes which lie along the western base of the Laurentian. Hemmed in on the west by the higher ground of the watershed, it may be supposed to have been forced eastwarl, and leaving the Cotean as a gigantic lateral moraine, to have sent a tongue far southward in Dakota and Minnesota
over the low country of the Red River Valley. By wneh a series of suppositions, nearly all the observed phenomena may be accounted for; while it is easy to attribe the uniformity of the phans, to the action of such a glacial sheet planing its surface; but an almost infinite amount of force, acting from behind, must be among the first of the assumptions; a foree cupable of moving the supposed great ice-mantle across the northern transverso watershed, down into the valley of the Saskatchewan, lying athwart its course, and then for hundreds of miles up the northeastward s!ope of the plains.
545. The main facts to be accounted for aro these:-A phateau in continuation of the high land stretching eastward from the mountains; thinly covered with drift material of the nature of shingle, in which quartzite fragments from the slopes of the Rocky Mountains greatly proponderate.

A lower region to the southward, also characterized by quartzite drift, in which, when most perfectly sheltered from the north, northern and eastorn drift, rarely occurs; but appears to increaso in abundance in exact proportion to the detieiency of the northern barrier.

A second lower region to the north, thickly covered with glaciated northern and enstern debris, with comparatively little intermixture of western material, and heaped up especially on the foot of the plateau before mentioned.
546. From a careful examination of the Coteau and its surroundings in the vicinity of the Boundary-line, I have been lead to the opinion that not glacier-ico as such, but sea borne icebergs only, can account for the phenomena there prosented. From the great similarity of the nature of the Cotenu in all parts of its length, and its essential unity, it would seem that the nature of the origin of any one part must be that of the whole. Without therefore at the present time entering at any length into the general question of glaciation, it may be well to attempt to account as far as possible for this its greatest record on the plains.
547. It will be shown subsequently, that a depression of the continent amounting to at loast 4,000 feet, as marked in the Rocky Mountain region, has taken place in post-tertiary times, and during the subsidence and emergence preceding and following the period of greatest depression, it would seem that most of the features of the later deposits of the plains wero produced. To account for the Cotean deposit, it must be supposed that from some cause the level of greatest deposition of drift material, for some time coincided with its general altitude; but whether this line was
one at which the cmases problacing the drift dejosit acted for a very long periond, or whether its acermulatom matks a stage of lepression at which the Lamrentian axis, and its flamking Silurian rocks were most livomally situated tor degradation, are genemal questions hest discussed in the sequel. The Cotean belt is not exactly a sho:e deponsit, aud its ponition during the perion of greatest subsidence mast have heen deeply submerged, though this may have been for a comparatively short time.

548 . Here on the fibot of the Tertiary platean, from the North Siskkatchewan to the Line, heary ice from the north and eant must have grommed, boaring material from the Lamentian hims, a distance of at least four hundred miles; while at the same time from the north-west or, perhaps, even from the south-west, came lighter ice bearing debris firom the glaciers and coant line of the Rorky Mountains, and moving probably under the intluence of superticial currents, or prevailing winds. The material from the latter source, mast cither have been originally shore gravel, or have lain for a long time subject to the action of the waves on the shallow surface of the phateau, and heen there impressed with the character of shingle-a chameter not assumed by the debris of the Cotem. It is worthy of remark in this comnection that while fragments of siliceous rocks from the Rocky Momutains, which are mingled with the Laurentian matter of the lower levels, frequently retain marks of severe glaciation, those of the summit of the plateau ard higher levels, rarely show traces of it. South-westward of the Bomdary-line, the Tortiary platean being in most places absent, and the general surface of the comutry lower, it would seem-that the Cotean regrion is broaler and more seattered, and that much of the northern ice enay have passed over it sonthward. There is mothing to show that the siliceons drift is in any sense contined to the higher levels. It appears most abmulantly there, and decreases oastward, but in many western localities where the northern drift preponderates, as great a quantity of the western material may exist as in the thin covering of the platean ; but it loses its prominence, from its insignificance relatively to the north-enstern material. The total quantity of drift, area for area, on the third as compared with the second steppe, is probably not over one twentieth. It would appear from their mingling, that the two deposits if not exactly contemporaneons, are very nearly so.
in a very long wsion at which moxt liverally I in the sequel. ion during the erged, though
the North Saswit must have mee of at leant worth-west ir, 5 delnis from ving probally wials. The igimally nume of the waves ossed with the debris of the aile frugments agled with the arks of severe levels, rurely , the Tertiary urface of the broader and - have pansed ceous drift is st abuudantly ies where the tern material loses its proern material. mpured with lt would not exactly

Drift Denosits of the Third Prairie Plutrau Wr'st of Wood Mountain.

549. On the westem side of White Mad Riser, is a region of gentle hills somewhat elevated above the prairic to the west of it, and which ten miles north of the Lince, is about ten miles in width. From the contomr of the surfice it sould seem that this is in great part caured by an necenmulation of drift, though it may also be commeded with the ocenrence of outlyers of Cretaceous No. 5. From the 505 to the 535 mile points, an outlying portion ot the 'Tertiary phatean extends, and runs month-west wand to an monown distance. Its castern edge is somewhat cut up by old disused vallies, in one of which a large saline lake occurs. These may be of pre-glacial age. The western fiom is companatively little broken ly vallies, and is almpt mud escurpment-like. No sections or features of interest in connection with the drift were oherved, though some parts of the region show many boudders of mised origin.
550. Westward, a dat, arid plain stretches to the Bast Fork of Milk River. It is very stoney in many places, and an examination of the constituents of the drift near the 540 mile point gave the following resnlt :-

$$
\begin{aligned}
& \text { 1. Quartzite drift ... } 57.14 \\
& \text { 2. Granitic and gneissie rocks....................................... } 23 \cdot 67 \\
& \text { 3. Limestone, some of it rescmbling that of the liocky Mom- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. Crystalline rfuartz.. . . . } 1 \cdot 83 \\
& \text { 5. Soft samistone (lucal) } 1 \cdot 0 \\
& \text { 6. Fragnents of Ostrea (local) } 0 \text {. } 36 \\
& \text { 7. Chert . } 0 \text {. } 36 \\
& \text { 8. Woort, partly silicifici I) } \mathbf{3 6} \\
& \text { 9. Rocks unclassified. 0.73 }
\end{aligned}
$$

551. In the valley of a stream near the 547 mile point, good seetions of the drift appem. The material is a mather hard wemeoms clay, of a general brownish-grey colour, and some apparance of rough stratificntion. It shows stones of all sorts irregularly imbelded in it, many of them very evidently glaciated; and also contains specimens of a Cretaceons or Tortiary fossil Ostrea, erystals of selenite, and small angular fragments of a material more resembling true coal than lignite.
552. The surface of the country, befine reaching East Fork of Milk River, again rises somewhat, and is very thickly strewn with erratien, which show a mixture of northern and western drift. In the valley of East Fork, though there are no sections of the Cretaceons or Tertiary, very interesting exposures of true boulder-clay, resembling that last described, are found. The banks in some places, where the stream has cut away their base, are nearly vertical, and about forty feet in height. (Plate XII., Fig. 1.) The material is a very hard sandy clay, varying in
colour from yellowish to dull bluish-grey, and with rusty catacks traversing it in many directions. It is usually no homogeneous, that on weathering it asssmes vertical forms, and a rudely colummar apparanco. It seems to have been moved, and to some extent stirred togrothe" after its deposition, and contains many glaciated stones and small boulders scattered irregularly through it, and resting in all positions. In some places, however, current structure and filse bedding are very apparent. The included fragments are of the usnal metamorphic rocks, and Quartzite drift, with some white limestone, and ironstone nodules, selenite, fossil Ostreas and Cephalopods from the Cretaceous. Lignite and coaly lignite, like that already described, are not uncommon. The appearance is that of very haavy ice action, and it would seem that a great part of the material has been derived from the underlying clays of Cretaceons No. 4, which have been poached up, without having been far removed, and mingled with travelled erratics.
553. The valley of the West Fork of Milk River, shows nome suctions of similar clay, An examination of the superficial drift of this vicinity rove the following numerical result:-
554. Quartzite drift. 5207
2 Granitic and gacissic rocks, of prevalent pinkish and greyishtints2566
555. Limestone 717
556. Soft sandstone, clay-shale, \&c., (local) 566
557. Crystalline quartz. 3.77
558. Chert $2 \cdot 64$
559. Ironstone, (local). $1 \cdot 88$
560. Porphyritic trap 123
561. The colours of the quartzite pebblen of No. 1 , are generally yellowish, brownish and whitish, but among them have been included a few fragments of greenish slaty rocks, and many apparently intermediate between this and quartzite, but not clearly referable to either. The whole have therefore been placed under one heading, as probably derived from the momntains, though some-especially of the shaty sam-ples-may be Huronian. Among the limestone pelbles also, are one or two which resembled those of the mountains. It is interesting to tind here a few specimens of the truppean rock of the nucleus of the Buttes, which are situated sixty miles due west. A fragment of an Ostrea was also found though not enumerated.
562. No instractive sections of the drift were met with in the vicinity of Milk River. The surface of the plain is strown with boulders in many places, but the drift deposits do not appear to be thick. Near the 610 mile point, the plain has a general elevition of about 3,600 feet. An
ty cracks traneous, that on mar appearance. togethe" after small boulders ions. In some very apparent. s, and Quartzite , selenite, fossil d coaly lignite, oarance is that part of the maetaceous No. 4, removed, and vs some sections of this vicinity

5207
yish
… 2566
… 717
… 566
$\begin{array}{ll}\cdots & 5 \\ \cdots & 377\end{array}$
… $2 \cdot 64$
… $1 \cdot 88$
… 123
re generally yela included a few ly intermediate o either. The s, as probably f the slaty samalso, are one or cresting to find w of the Buttes, f an Ostrea was
with in the viciwith boulders in bick. Ne:ur the 3,600 feet. An
examinution of the superficinl drift at this phace gave the following result:-

$$
\begin{aligned}
& \text { 1. Quartzite drift .. } 55 \cdot 55 \\
& \text { 2. Granitic and gnessic rocks, provalent tint reddish, but much } \\
& \text { black hornblende... } 27 \cdot 77 \\
& \text { 3. Limestone, one fragment at least from the Rocky Mountains 6.11 } \\
& \text { 4. Crystalline quartz.. } 387
\end{aligned}
$$

> 6. Diorite..
> 7 Horublende schist.. . . . 0.5
> 8 Ironstone . 0 .52

An analysis by colour of the components of the Quartzite drift was also here attempted, and with the following result:-
Yellowish and brownish. $41 \cdot 23$
Reddish and purplish. $21 \cdot 64$
(irey and greyish $17 \cdot 52$
White, or only slightly iron stained. $15 \cdot 46$
Yellowish, compact. 309
Greenish 1.03

The yellowish and brownish specimens are as a rule very compact, though some are of coarse, granular quartzite. In the purplish and reddish series, coarse-grained and compact varieties are about equally divided, and several of the groyish, are quite coarse-grained, the constituent particles being of different coloured rocks.
550. The Three Buttes, or Sweet Grass Hills, already briefly described in treating of their structure, yielded but few tataces of action during the glacial period. Aware of the importance of these isolated mountains, I seurched carefully for any glacial markings upon them, but the shattered nature of the hard rocks of their summits, and the softness of the strata flanking them, has prevented the preservation of such striation, if it originally existed. The terraced aspect of the foot-hills, though at first attributed to marine ation; was afterwards found to be mainly, if not entirely, due to the urrangement of the subjacent rocks. The boulders of their immediate neighbourhood are frequently composed of the trappean rock of the summits, mingled largely with Laurentian and Quartzite erratics. A stream, flowing from the West Butte, at the foot of the steep slope of the mountain, has eut through a considerable thickness of rough, mostly augular, though not evidently glaciated stones, with which its valley had been filled. Of these the greater part were local and trappean, but some of foreign origin. Laurentian and Quartzite erratics are found in abundance to a height of over 4,000 feet.
557. The main stream of trappean fragments, which, in whatever
way the glaciation of the plains is aceomed for, must be supposed to have flowed away from the Butter. cmonot have taken a direct easterly or westerly coune, an specimensot the rock are searce in toth thesedirections. Nor does there apperir to be any eonsiderable accommation of dehris immediately north of the Buttes ; and a southerly comse, for the drift in this region, would seem to be indicated.
558. The Fiint Branch of Milk River, where it eronses the Line, flows in a mokerately wide valley with bamks forty to fifty feet high. These show good sections of bouldereclay, which ahmost exactly resembles that deseribed in the Fast Fork, $1+0$ miles eastward. It is, perhaps, however, of a paler tint, and mather yellowish in colour. It includes ghaciated stones, and shows here and there traces of stratification; and as before, tends on wenthering to break into upright colummar fragmeits, which give the cliffs a peculiar appearance. Pale green, slaty pelbbes were noted here in some abundance for the first time.
559. The superticiad drift examined in a favourable locality, six miles west of this place, gave the following pereentuge ratios:-

1. Quartzite drift... . . . 4257
2. (Eranitic and gneissic rocks, ehietly pinkish and blackish.... 22.27

3 Slates and altered clay-rocks, pale greenish, and greyish.... 18.31
4. Limestone, some evidently from the mountains, but the majority of fragments resembling that of the Red River comintry
6.43
5. Soft saudstone and clay-shale (local)......................... 4.45
6. Diorite 2447
7. Ironstone (local).......... .. $1 \cdot 43$
8. Fragments of Ostruat (loeal).................................. 0.99
9. Crystalline quartz 0.99
560. Nos. 1 and 3 are, no doubt, identical in origin, and in considering the derivation of the material whould he treated of together. The most striking feature in this collection is the remarkable abundance of the rofter rocks, which though associated with the quartzites in the momutains, hase not previously hecn observed to accompany them on the plains in any quantity. A portion of No. 4 is also from the mountains, but it is almost impossible to draw distinctions in all cases between the limestones of eastern and northern, and those of western origin. They have therefore been classed together.
561. Near the Second Branch of Milk River, the plains have an average elevation of somewhat over 4,000 feet, and lie about thirty miles from the nearest spurs of the Rocky Mountains. The drift, while chiefly from the mountains, contains boulders of Laurentian origin, and aymarently also a few of the castern white limestones. Fifteen miles
further West, in the neightmorloent of the St. Mary River, at atout the same elevation, Lamrentian fragments were oherver in certnin plares in some ubundance, but were lont sight of beyonl this point. 'The distance of these travelled blocks from the nearest prem of the Lamemtian uxis is over 700 miles.
562. We have here then, as closely aw it ean be defined in this latitule, the most western, and highest limit of the Lamrentimn drift, but not necessmrily that attained by the waters when at their highest stage during the glacial nubmergonce. Terranes, clemty implying a sea margin, are, iulven, fomm higher on the flanks of the montuins. A deprosion of the enstern region to an extent of 3,800 feet, would more than suffice to cover the bamrentian axis, as it is at present, and though in pro-ghacial times its height was greater, it must have stood, at this stage of subsidenee, seareely, if at all, ahore the level of the sea.

Glacial Action in the Rocky Momentains.

atia3. In the part of the Rocky Momatains crossel by the Bomedaryline, the eftieets of glacial action are very frepuently apparent, though no glaciers, properly so-called, now exist. The streams thowing from the momtains, cut through banks of well-rounded gravel, and small lowhders, similar in general character to that which has been called Quartzite drift. The stones were not observed to be glaciated.
564. Waterton, or Chiet Momtain Lake, oceupies a deep valley with exceedingly steep and precipitoms silles, which opens northwarl. Its height above the sea is 4,213 feot, and it is about ten miles in length, and fills the valley from side to side, with all areage width of alont threefourths of a mile. Near its nor hern end, is a collection of rommed and hommorky hills, which are evidently componed of morane matter, and show rocky fragments of all shapes and sizes; where these are not concealed by softer material, or the luxuriant vegetation of the region. The hard limestome of series B, where it crosses Waterton Jake, though not observel to show glacial markings, has the general romuled outlines produced by ice action. There is thas evidence that a great ghacier pushed northwatd down the valley of the lake, and debouched upon the $p^{\text {lain, being fel, no dombt, from the numerous maller transerse ravines }}$ which enter it.
565. Without going into detail in every case, it may be stated, that in all probability every valley of importance was in like manner oceupiend by streams of moving iee; and to their momines much of the contour of
the immediate foosthills of the momotuins is due. The brook issuing enstwnel from the mouth of the South Kontanio Pass, has cut through a great thickness of clean gravel drift, compreed of large and miform, well rommed pebbles, of which the golnerul timt, as viewed from a distance, is pale purple. Above the bed of the brook, on the thanks of the mountains, on the south side, are some well preverved termeres. In one place these were obsorred to have sulfered an uppurent dislocatiom, the top of ench turnee on one side, corresponding in clevation with the middle of the shope of that on the opposite side; the two systems boing sepmated only, by a stmight murow water-furow down the momenin side. The arrangement altogether was highly suggentive of faulting on a small seale, since the formation of the terraces ; an explanation rendered the more probuble from the fact, that terrares on the west side of the mountains diseribed by Dr. Hector, seem also to have been affected by very recent movements.* The highest of these terrares in tho Kontanie Pass, though its allitude was not actually measured, was estimated from that of the pass, to be alwout 4,400 feet above the level of the sen, and above this no reliable sea-mark was foum. From tho josition of the terraces in the open castern throat of the pass, from which the ground fulls rapidly awny, it would appen that they camot have been formed hy any smaller sheet of water; nor would the nature of the locality allow me to explain their formation on any hypothesis of a formor moniane blocking up the valley.
566. The material of the drift, westwarl from a line which may be drawn near the valley of the St. Mary River, appars to the composed altogether of the debris on the momatains of this immeliate vicinity; nor were any fragments seell which could not with great propriety he nssigned to one or other of the heds ohserved in place. The gold, which is known to exist in small quantity, in ahmost all the streams which have been prospected for it, can therefore hardy have other origin than that of tho drift, of which it appears to form a part. Though no metaliferous veins were observed in this part of the momatains, they are fomol sonthward in Montana, and may exist also here, but it'so nothing was observed which would lead to the levief that they were cither rich or numerons.
567. About four miles westward from the West Fork, in the valley of the Kootanio Pans, well preserved glacial strie were foumd, on a surface of hard green slate. Their direction was S. $40^{\circ} \mathrm{W}$. (mag.) or coincident with that of the main trongh of the valley. This is the only locality in

[^73]
 hereaks, nome large gravel termen remain on the momatain sides, and in one phace the hrook has cut through a mass of thugh boublerecray' of a light frewn eolome.
668. Four milex up the valley, on the wentern side of the waterned which runs somberast wiod from the Finks, it is howked by a series of very evident and perteet momine momils, trace of' which axtemb for nealy a mile. Thane lowes down the valley, have laed much moditied by water, and are merely steep rombled and irregilar knolls; while thone last left ly the ghacier, atill retain their abrept ringe-like form, and are comsex downwarl. Where a small lateral valley joins the main one, a Ntraighteedged ridge hat been proluced by the interference of its ghacer, after the retreat of the larger one. The monaine has, modemb, at one time hed in a kake, similar to those now existing in many on the vallies, but has long ago loen ent through ly the atram. The highest pertion of the momine is situated about tive miles betow the hat of the valley, and no intermediate ridges were ohserved. Here, and elsewhere, the are are
 retreat of the ghaciers.
569. The upper end of the valleys, sumbouming the higher peaks and ridges, are generally very abript, and take the form of cirques, or amphitheatrical depresions, of great depth, in the monntain siles. The backs mel sides of these are ofter nearly vertical, and they are sometimes only separated laterally, by steep knife-elge-like ridges, the crests of which form the most practicable pathis to the summits. Bach of these Hpor terminations of the valleys, genemally abo shows a small lake, or pond, in the hollow of the sumomaling elitfs; the basin of which has evidently been formed by ghacier ice-which must here have heen descending almost vertically-in the momane matter or shattered rocky floor. Further down some of the valleys, long river-like lakes are seen, evidently orempying the beds of old glaciens, but whether held in by monaine matter or not, I was unable to determine. The water of tho sualler lakes in the upper ember of the valleys, ass seen from the heights aromul, is of a loautitul semi-npalescent indigo-blue, and must be of considerable depth. The lakes are sinplied in part by the great banks of peremial show, which tupear in these sheltered hollows. The snow though not of the consistency of ice, is firm enough to be walked over with oase, and hat, no doubt, kept up the direct suceession, from the
time when grent nevers dilled the hemde of the valleys, mil the monntains aronme them were completoly somodelat; and are waiting only wome "hange in the climatice comitions, to manme agnin down the lines of the ond valleys, and norupy the phases they formerly fillend.

General Composition of the Drift.

570. In the sulpoined table, the vesults of the numerical umalysen of the dritt, have been rempanged mone bromily ; that a gemeral idea of its composition may lo mrived at. All elemply lamentian material is chasad under that mame. In the limestone colaman, cherephinly deriverl from the same hedx, lus heen inchaled. It being impossible in all rases tosepmate the momatain drift from the Hamimm, I have dintimgainhed those figures in which any uncertanty of this kiad may exist. It is pros

 on the bavelled drift mily, all local samples having been thrown ont. The groat mass tow, of the lower and malisturled drift, composed of woft matter mostly ot local origin is, of course, here quite unrepresconted; as not lhowing any light on the direction of tomed. Cryatalline quartz, dionite, dic., thomgh appearing in the catcolation, are mot represented in the table, as their origin is more or lesn uncertatin.
571. The limestone is all included in a single collman, und has lneen almost altogether derived from the enstern limestone heds, though from No. 7, omwarl, fragmente clearly referable to the monntains legin to appear, and in some of the more westerm localities, material of the latter kind may amonnt to even fifty per cent. of the whole. The nmall qumitity of limestone from the monntains compared with other rorks of this origin in the drift, exeept immediately on their flanks, is remarkable. The limestome beds, though forming so prominent a feature in the monntains, are, however, chiefly developed in the higher regions; and it may be that the action of the wares was chiofly direeted on the roeks of Series (\%, the gencral character of which closely resembles that of the quartzite drift, and which forms the lower and outer mages. The eastern limestone, though from the same direction as the Lamentian debrin, whichaprens at nearly the same percentage throughout ; in constrinst to it, runs out very rapidly toward the "pjer levels, a fact to be accomed for by its lower position on the flanks of the Lamentimn highlands, and consequent mpid sulmergence below the line of efficient action of the iee. The constant per-

tuins

Nome Iex of ves of of its inl is Mived chnes linlowl $\times{ }^{n+0}$ which even muled The of' wift al ; an frartz, sentel

01.89	†8.91	i	90-26			- neareld putul roj a		
(67.c9)	66.9	- ${ }^{\text {d }}$	E6.Ez	$00^{2} \downarrow$	20.	-6cs §	01	H6.02\%
(28.9G)	\$1.9	i	6t-82	$009{ }^{\text {c }}$	019	$\cdot \operatorname{ces} \S$	6	
(21.8 C)	80.8	i	\$6-88	$008{ }^{6}$	299	ecs §	8	
(99.89)	62.9I	2	89.85	$06_{6}{ }^{2}$	$0 \pm \mathrm{C}$	-oce §	$!$	
(92.0¢)	68.98	i	¢1.82	002'\%	Ott	$\cdots \mathrm{T}$ - §	9	
16.Et	+2.16	80.7	عc. 8%	$000^{\prime} \varepsilon$	0 et	$\cdot \mathrm{scs}$ §	ε	
ti-t	$10 \cdot \boldsymbol{t c}$	12.6	67-82					
$\mathbf{x} 10$ ze.t	66.e.	(+8.9)	80.c8	ct9 ${ }^{1}$	6.61	2188	\dagger	
co. \mathcal{E}	co-89	(1 1-01)	89 -9\%	E6s:1	011	¢ \ddagger S	ε	
δ	8 8.97	(88.91)	61:10	001%	011	6er:	ε	
¿	0c.es	(00.c)	oc.cs	$008{ }^{\text {f }}$ I	$\ddagger 9$	'90¢ §	1	
							n	

centage of Lamrentian, must not be supposed to show that orraties of that origin are equally frequent over the second and third steppes, for the total quantity of drift on the latter in comparatively smull.

The Red River Valley.

572. The valley of the Red River, is a continuation of the trough, in the northern part of which Lakes Winnipeg, Winnipegosis, and Manitoba lic. On the east, it is bounded by the phaten of drift materials, already described, which stretches sonthward from the Laurentian region. On the west, the nearly straight line of the Cretaceous escurpment, with the terraced front of Pembina Mountain form its limit. The part of this valley lying north of the Boundary-line, and between it and the southern shore of Lake Winnipeg, is ninety miles in length; while from the Line southward to Traverse Lake, it in 225 miles, griving a total length of 315 miles. On the forty-ninth parallel, its width is forty-six miles, and for a long way south of the Line, it preserves an average breadth of about thirty miles, though finally narrowing near Traverse Lake. The general course of the valley is exactly north and south, to which the river conforms, but not very precisely; fir at Grand Forks, seventy miles south of the Line, the Red Lake River-a stream of magnitude, equal to, or greater than, the southern branch which continues to bear the name of Red River-comes in at right angles without producing any corrosponcting bifureation or ehmge in the valley. The ralley appears to have been adopted by the river, not formed by it.
573. The slope of the valley northwird from the Line, probatly does not exceed six inches in the mile. From Morehead in Minnenot:1, 150 miles south of the Line; tive average fall of the river is a little less than one foot per mile, by railway levels, and that of the valley must be even less. The inclination of the sides of the valley, east and west of the central depression, probably seldom exceeds ten or twelve feet in the mile, and frequently falls much helow this. Its greneral aspect is that of a porfectly level plain, bounded only by the horizon, or by a belt of trees friuging some stream.
574. The whole of this valley, has at a time goologically recent, been oceupied by a great lake, with the tine silty deposit of which, it is now floored. The alluvial deposit is uniform and of great depth. I have never observed any organic remains in it, but leaves and fragments of wood appear to have been found in some places. The lake must have been a fresh-water one, but the remains of molluses are not found. The

liace p. 21s.

 Were mor with.

 of the immedinte valley af the liver, where anertion of from thirty-five

 Fronicly ön :

 which wan ralled a "samb," whon tho argilharoons mather was washod
 Crotamome may-whalen abevo montiomed.

Ei7i. 'Thetypical deposit, however, where I have examined it, ill the vicinity of Row River, is a fine !fellowish marly and aromererns clay, holding a goond deal of ealeareons mather, and eftervoseing freely with an acid. Uniler the mieronerope the anmer siliceman particlen, in their average nize, vary
 Hegilluserme matter.
 in many phane it in probable that moken of the Vrebareons serion may hate contributed largely to the formation of the alluvinm, as indeed
might be presulpesed from their relative positions. It is likely that the calcareons matter is much of it derived firom the chalky beds of No. 3.
677. In sections on the Rosean Rivar, the alge of the allavial deposit is fomm resting on the coanser natude and gravels of the drift ; and in the meighbomhood of Lower forl (iary and elsewhere, according to Prof. Hind's seretions, it rests direetly on houkder-clay.* In the vicinity of the town of Winnipeg, loring tor water has already been somewhat extemsively earried out, for information eoncerning which I have again to thank Mr. A. L. Russell. Wiater has grenerally heen ohtained at from dorty-five to sixty-five feet, the arerage being abont tifty. The genemal section met with is thas stated:

The most instructive Seetion of the leposits of the valley, in, however, that obtaned in a deep boring at Fargo, Dakota, about $\mathbf{1 5 0}$ miles sonth of the Line. The record is as follows, as given by Professor Thomas:- \dagger

262
The two sections may be thas paralleled:-

	Winnipeg.	Fargo.	
Soil.	4	3	feet
Upper lacustrine deposit	6	50	"
Lower lacustrine deposit.	30	42	"
Moditied d"ift.	unknown	10	"
Boulder eiay	"	115	"
Cretaceoss rocks	"	42	"

The lower parts of tho lacustrine deposit may have been formed at a time when the sheet of water was not limited by the Red River Valley, and perhaps even hefore the sea water finally left the area.

[^74]578. 'Whedrgosit of the Red Riser Valley, "omparen rosely with the lorss of the Rhime, mul with the allavial deposits which ocerom on the Min-
 Missomi, like that of the Red River, apmans to he tooned hy a very fine deposit, from benenth which as the gromol rises at the sides, the stony materint of the doilt emerges. 'The term grlowe marl, has beon applied to
 use of the smme mame to dexighate similan hat coarser deposits, of the sumponting hightands, which belong properly to the ghacial drith. The yellow muld doposits of the vallies, ami the light colomed maty drifts from whidh mon of their material has heen deriverl, are alike chameterized by their extremely favomalle intheme on the oxerlying wil ; mad all who have stadied the arricoltaral resomeden of the Wersern States and tervitories, concoll in athibuting the inexhamstable fertily of the soils of the lower level paraies, to the wide distribution of this maty material.

57!. South of the dine, the palle maty drift seems to extend on the
 entire enstern part of Nebraska. It womld appore to be limited westwand, by the smandy increasing chesation of the pratice, in that direction, and to spread sut in a fan-shaped form, firom the southern end of the great ;inerth and sonth depression, whish the Red River Valley it part oerempies. It is, mo doult, rommerted with the northern drift, and ly desoription arrees exartly with the pale-eoloned and manly drifts developed in British America, from the edge of the Pembina Lesengment westwad to the foot of the Misomui Cotem, thas ocelybing the whole of the secome great pravie steppe.
580. The similarity of the yellow maly allurium of the Missomi and Red River vallies, is not ome of chamee merely, nor to be aroonted for altogether by the resemblance of the ghacial dift from which moth of the material has heen derived. The trongh of the Red River Valley is continums beyond the somme of the river, and passing wouthward from Thavere Lake, from which the river rises, it still preserves its (hanater and direction, and in about six miles, Bige Stone Lake, the waters of whirlo empty into the Mississippi River, is attaned. In thas passing over the waternhed between Inudson Bay and the Gulf of Mexico, the elevation is forand to be at no point greater than trom 960 to 970 feet above the seat. The tigures are from Prof' 'Thomas' report; who has deawn attention to the importane of this remarkable physical feature.*

[^75]Pref. Winchell, who has visited the locality, thas describes it:-"A continuous valley, betweon blutis of the sume form and appemrance, and of nearly the same depth, connects the two lakes, giving the impression of one valley instend of two. The short interval constituting the divide betweon the two lakes is usually withont water, but is often orerflowed by the spring freshets, when a continnous overland watercourse is established between the Giulf of Mexico and IIudson's Bay." *
$\mathbf{5 8 1}$. The waters of the lake of the Red River Valley, oven if onty attaining the level of the margins of the great alluvial deposit on the Boundary-line, would flow freely throngh this gnp, which must then have formed a nurow strait, connecting the great northern lake, with that occupying the vallies of the Mississippi and Miswouri ; and at an entier stage in the history of the continent, when the waters were deoper, the communication must have been quite free. In some parts of the loess deposit of the Missouri, the remains of fresh-water and land shells, mingled with bones of the Bison, the Mastodon and other lately extinct, or still surviving forms, have been fombl \dagger The fresh-water origin of the deposit is thus demonstrated, but the further diffienlty at once presents itself, that there is no trace of any efficient barrier sonthward to hold in the great lake now required, and if the depression of the continent was such as to remer a burrior umecossary, the water filling the vallies must almost certainly have been that of the sea. This has been ingeniously accounted for by supposing that in such a comparatively land-locked aren, the flow of fresh water from the rivers and stroams would be sufficient to effect the exclusion of the salt.
582. Information is wanting as to the nature of the barrier existing in the northern part of the great Red River Valley, which prepented the waters of the region from draining away, as they now do, by a hollow across the Laturentian phateau. It may probably, however, have consisted of moraine rubbish, or boulder-clay. On the supposition that the deposits were formed in a fresh-water arm of the sea, which opened southward, it camot be sijposed that any passage existed northward also, or the tidal currents would have remdered the entire area salt.
583. The wide trough-like valleys, much depressed below the general level of the plains in which most of the rivers of the west flow, and in which the river itself is generally small and pusues a winding course, usually show a considerable thickness of nearly horizontal alluvial deposits, which, like that of the Red River Valley, have been

[^76]probluced in post-glacial times. Some of these have heen already incidentally tonched npon, and as the importance of these deposits is small they will not be further mentioned. In the alturial deposit firming the present hank of the stream, in the bottom of the Sourin Valley, near the secoml crossing, nbout tifteen feet from the surfine of the water, and six feet below the summit of the lank; a layer was fimul to contain numerons artiticial chijes and flakes of a hard wherty quartzite, fire which the powition indicates a very comsiderable antiguity. Bathalo bones are also frequently imbedted in thene deponits.

Pre-ylacial aspect of the C'ountry.

584. Having in the above systematic detail, stated the facts no they came under observation, it may le well in briefly reviewing the phenomena, to arvange them in sequence as tar as powsible; nod that they may bo hetter understoon, compare these observations with those made in other neighbouring regions, and withont entering at length into the disputed questions of glaciution, account for them as seems to me most probable.
585. Before the close of the Tertinly, then, we find that the interior region of the continent had lost its charater as an area of deposition, and had become one in which denulation was progressing rapidly-the soft deposits, expecially of the lately formed 'Tertimry bels, sutfering by this process. We know that waste had been progressing for a very long time, not ouly on the mountains, but over the whole surface of the plains, before the advent of the period of cold. There is every reason to believe, that the Laurentian highlands had at this time a very much rougher and more mountainous charsucter than at present; while on the plains, the main drainage systems were alroaly marked out, and there is much evidence to show that every river and stream, if not flowing in exactly the same conrse as now, had at least its prototype.
586. The position of the valley of the Red River, must always have been that of an important stream, from its relations to the shope of the Lamrentian on the east and the softer Cretaceons rocks on the west. I think it wery probable, however, that in pre-glacial timen it flowed southward, and it is even possible that the waters of the great Saskatchewan Riveralso thus found exit, and were tributary to the representative of the Mississippi of to-day. For the Red River, a southern course would be the one coinciding with the general slope of the country; and by the flow of a large volume of water in this direction, the exeavation of the basins
of the Winniperg eromp of lakes, and the irgeat valley of the Red River itself; can be exphined; the river entting downwad and wostwarl on the sloping surfire of the Lamentian rorks, at the apenso of the Gretaceons strata, and later, of the limentomes of the Devomian amd Silmrim. The subsergent horking up of the sonthern exit, and changed direction of flow, being a phenomemon ombe similar to that which is known to have taken place with the Great Lakes of the St. Lawrence.
587. 'The altitule of' Take Wimnipers is abont 710 feet. That of the surfire of the paririe on the torty-minth parallel, 786 feet, the depth of the allurial depositwand drift being manown. It Farge, the elevation of the surface of the prative is 900 feet, but that of the surface of the muderying Cretaceons beds, as proved hy boring, is only 680 feet, and the rod may not have descemed in the deepest pate of tho old valley. The surface of the gromm forming the watershed between Traverse Lake and Big Stone Lake—as already stated-is only from 960 to 970 feet, and here the continuation of the great drift ridge of the Cotean should cross the valley. The present surfiae of the Mississippi at St. Paul is 670 feet. Prof. Thomas has drawn attention to the general direction of the tributhries of the Rel River; as a rule those on the west side flow sonth-east, and those on the east side south-west, till they approach the man stream, whon some of them tend abruptly northward.* This is a sugestive fact, as indicating the primitive southern slope of those parts of the hollow least encumbered hy drift or alluvinm.
'The evidence with regarl to the former dranage of the Latise of the Woods regrion, and the comse of the tributarien of the Red River, has already been fully stated. \dagger
588. Exactly how the gracial periol was introdnced, in the area in question, or by what phemomena its begiming was marked, it is now very diffent, if not impessilile to tell. Nor call any reliable estimate of itsclaration be formed, fir the eftect of the later periond has been, not merely to obliterate more or less many of the former physical features of the comntry, but such as to cover up and conceal those which antecedent glaciation may have produced. There is nothing to show, however, that erlacial
[^77]Since the above was written, i find that simllar conclinsions have heen arrived at by Major General G. K. Warren, and published hy himas "An Essny concernhig impertant lhysical Features exhibited in the Valley of the Minnesota liver, and now their signification " heing lart II. of Report on Mimnesnta River, submitted to Hrig. Gen. A. A. Immphreys, Chief of Engineers, Oet. 31, 1874. 1 ani indebted to Maj. Gen. Warren for eopies of his essay, to which I would refer, as throwing very inpurtant light on some phenomena eonnectod with the glacial perind. It is very gratifying to flind ny conelusion as to the formers uthern outfow of lake Wimiper, de. borne out by an entirely independent stady of the Minnesota inver, which must hive tarried its waters. I eamot agree with (Gen. Warren, however, in making the formation of the great southern ontlet post-glacial [loc cit. p. 8,] as I thlnk the evidence of its pre-griaeial formation is complete, and that it was after the glacial period re-oceupied.
conditions prevailed for a very long periond before that of the greatest sultsidence, nor do we meet with any phemomena not easily explieable by the action of the waters and ice during the subididence and subsequent elevation. There is also reason to beliove that the chevation took place rapilly as compared with the subsidente.
589. The first act, then, in the serguence of the eold perionl, which can be definitely recatled hy its effects, is that in which we find the waters ganing upon the hand, and flowing up over a great part of the eastern plains. The wide channel thos formed along the western base of the Laurentian region, thongh it may have existed for some time in the form of two deep bays, one opening northward to the Aretic Sea, the other southwurd, und separated by the highland of the present second transerse watershed ; must soon have formed an open strait hetween the Aretic mad Sonthern Ocems. At this perioxl, if mot betere, it must have been invaled ly the saltwaters of the sea; and it was cucumbered with icebergs which were strewing lomblders and finer detrital matter over the former surfine of the land, and protucing the lowest portions of the dritt. There is no indication on the Laurentian platemu to the enst and north, of a great northern ice-cup, such ashas been suppowed to be necessary to acconnt for the glaciation of certain regions. The slopes of the platean, as alrealy shown, are too gentle to account for the descent of glaciers from it in the ordinary way except on a scale altogether too small to explain the general uniformity and amount of its glaciation. I can therefore omly suppose that this platean, or gently sloping ridge, of granitic and gneissie rocks; was eovered by a thickness of ice sufficient to form a confluent glaeier, which by its own weight, reinforced by the gentle inclination of the rocks, moved forward along its whole front into the rea. The subsidence eontinuing, the conditions of a sea margin passed in succession westward over each part of the plain; then that of water deep enough for ice of small burthen only, and lastly deep water, hearing icelergs of great size. In conformity with this sequence, we find on the higher levels the lower portion of the deposit to have a decidedly local character, and that in ascending in it, travelled stones beeome larger and more frequent, while in the superticial layers the larger boulders are most abundant.
590. On leaving the enstern region, we cease to find in grooving and striation, a guide to the direction of the action of the glaciating foree, and must trust instead to the distribution of the rocky fragments. Southward, however, as far as lat. 41° on the Mississipip River,
where Cathoniferons limestones eme to the surfine, they are smonthed by the action of ice, and whow morth-enst and sumth-west striation, eroseed by seratching in other directions.* Similar phemomem would no doubt generally present themselses over the area of the phans, were there surfaces of hard rock to reecive and proserse them.
591. Remehing the level of the find of the thial prairicesteppe, the elge of which had already been marked out by sub nerial demulation, the artion of the waves on its base no dombt rendered it more detinite, and the heavier ice following them, and gromuling on its lower shopes, began the deposition of the Cotem. It may bo that the degredation of the lamrentian hills was at this time proveeding with inereased mapidity, but in tuy case thix deposit, formed in grent part of their material, must have increased equally fins with the depression of the land, and preservel the edge of the Lignite platem from the destrontive action of the waves.
592. The average height of the Cotean near the forty-minth parallet, may be taken at about 2,200 feet; and above this the higher hummoeks and ridges probably do mot rise more than fifly to eighty, or one handred feet. Its somthern extelisions have ath average altitude of 2,000 foot. It is not neressaly to suppose that the shome line stowd fine a long time nearly at this level, the the heavier iere masses no doubt comtimed arounding on the elge of the thirel phateatu, even when the waters stoml near their greatent devation. The data are perhaps yet too slight fore generalization, but there appeas to be a tembency in the Cotem to ocenpy a somewhat lower level sonthwarl, which may indicate a less subsidence in that direction.
593. Bast of the Red River, we find the great drift phatean atretching southward and westward from the Lake of the Worsh, with an average elevation varying from 1,600 to 1,000 feet; and which, though donbtless everywhere hased on the loulder chay, shows in its upper layers a considerable thickness of roughly stratified samds and gravel, indicating the action of rap ind and varying enverents. On these rest the seattered bonders deposited at a still latter periowl.
594. Probahly contempormeons in origin with the platean just referred to, are the terraces with a level of 1,435 feet, which Prof: Hind deserihes at Dog Portage, two hundred miles east of Lake of the Woods, on the Lake Superior side of the watershed. These he afterwards

[^78]compares with high-level termees, fimad on the hille west of Manitobat
 We have therefore the most atinactory evidene of the fiemer depression of the hand to this extent in the rastarn rerim, and it is diflient to mulerestand by what waters it was covered, it mot thone of the seat. The conrempondence in height of these terzaces, and the phatem south of the Lake of the Wools, is rematholide. 'The height of Methy Portuge1,5bib feet-which aroording to Sid J. Dichardmon's deacription may be a similar drift phatem, with a morthwardfaciug aseapment, alow corresponds; and su, in a perneral way, lowes the averuge heright of the Lamentian axis, and that of the somethero part of the ('oncom. Sulpming the depression to lave heen everywhere "pmal, the water mans at this time have rement to near the fien of the thind prabie stepre, on the fortyninth gmandict.
895. On passing up on to the higher levels of the prairic, we continue to tiad prowt of the former action of the satat at greater elevations. On the summit of the thind prairie steppe, with an arerage altitude of nhent 3,000 feet, dehris of Lamentian mod its thakking Silurim limestones is fount over nearly the whole area; thongh now mingled with a prepombating quantity of Quartaite drift from the Rovey Mountains, and in many easer with a great propertion of softer material from the underlying rocks. The river valleys, and lower levels, frequently show true till or bublderechay, while the summite of the platetus are gencaly eovered with shingly depowits, which may have bero derived in part from the re-mrangement of houldereday, but appar to consist ehiefly of beach material, like that of the flanks of the Rocky Mountains, and may have been carred here by small icelorgs from the momenins themselves, or by shore ice. The larger icelergs, with Lathrentian and Silurian limestone dehris, must have drifted to the west on south-west with a prevailing eurrent, bearing the momane matter of glaciers; while the smaller bergs and floes of the Rocky Momatains, came generally enstward with frevalent wind or surface curronts. it does not appar prohable that they came direetly castwand. Ther may have cone from the south-ast, berne by a superticial current mingling with a deep northern flow, in a manaer analagone to the Aretie current and Gulf stream on the Newfomulland hanks; or, perhaps even more probably, have floated from the north-west, or ponvilly from the morth, tonching here and there on their way on the shores on the Rowky Mountain land.
 With oll the forty-ninth parnllal, lis fine west as longiturle $113^{\circ} 20^{\prime}$, at
 a rerion timther to the worth, din mot time the wellanay lanrentian

 Whether thene mat have come fom the Laturentime or mot hut taking

 that they wo at anstern origit.
597. 'The entimated height af' the highent terracen ohserved, thone in
 doult hat that these are of marime origim. About thirtyenis milas morth of the Lime, Lient. Blakiston mensured there termere levels, amb bombl

 from the level afthe river to the platin above, aften in sight fir miles.
 at the head wateren of the Buw, Noplh Saskatehewan, abl Nthabanea Rivors, and states that they "may loe comsidered as ranging on the east side of the Rocky Mombtaion, from 3,500 to 4,500 fent above the nea." ψ He finther natys "mitil we approach clone to the momntains, these teronce deponits are contined to the vallies of the lagrer streans, hut gradmally they spreme out, and at lant cover the whole comitry along the have of the momatans, filling up the hombors and vallies of the onter ranger to a depth of sevoral humbed feet." \ddagger "Shingle beds of a similar kind are fomm to cap, the Cypress Hills, which have an altitude above the sea of 3,800 feet." There hills, as has been alrendy stated, we without doubt an extension of the platean of the Lignite Tertiary; and the whole of these shingle beds and termes belong to the deposit which I have anlled the Quartzite drift. Yet further worth, on the upper waters of the Peace River, Sir Alexamder Mackenzie describen the comotry as steplike or termaced an far an the oye could reach. His royage was made in the your 1793, and though not viewing the eountry with the eye of a genlogist, he appars to have mato remarkably carefal and accurate observations.

[^79]598. Dr: Wherom concheles from the relations of the drift deprate of

 thomgh foreign drift is not met with ont the Rocky Mombtains, of their
 this lime the enstern granitie rexioh, which hall always heen the great
 (ab) may hate maintained itaclf for sembe time after the water was netmily abse the level of the rovely sulostratim, but mast ere this have NHיCllimberl.
599. Dr: Huyden araking of rexions finther anthward, where the alevaterl phatins of the extreme west are higher, and streteh fiather
 often stated in ing frevions reports, I hure bever beren abla to timd any
 morthern drift." \dagger la mentioning the ocemperce of terveer on the western tributuries of the Minombi, in the Rovely Mommtains, he stater his heliel' in the rommon origin al these, and these on the western side of the same range, and in the finet that the monntains may have been chepressed, till only their highest peake rone above the waters. \ddagger
(i00. 'There is mevidence that this perio: b!' maximmm depression entured long, mor that during the re-elevation of the combinent, the waves aeted long at my partionlan level; and though ice, loming dehris, no doubt still encembered the waters, it does not neem neessary to suppose that any important adilions to the deposits towk plate at this time. Some beds which may in purt be composed of moslitied and re-armanal boulder-clay, wich espeesally as those of the thimp prarie steppe, and of the phatem sonth of the Lake of the Wooks, may perhup, howeres, owe their present appaname to action at this time.
601. On the retreat of the wea, eath part of the rountry would agnin hecome for a short time a shore-line, and the rivers mind streams on the omergence of the hand, "pren in most cases to have resumed their former chamels, and begran to re-excavate their beds in the drift material with which they hat been tilled. At one periox, as Dr. Ilector has pronted out, a great bay must have existed, bomded sonthward and westward by the enrved line of the Cotenn and third pravie escoupment, and north-

[^80]ward by the high gromd beyond the pesition of the prevent Saskatchewan River. At this time, the noth and sonth hamehes of the Saskntehewn formed separate rivers, and divided between them the whole of the dranage of the thite phatean. Turtle Monntain, and ot her similar neemme lations ot drift, and the high hills of the Cretareons, overlooking Manitola Jake, formed islamds or shoals. The edge of the Pembina esearpment and the second steppe mext becoming the shore, the united waters of the Saskatchewan, the Assinehoine, and other smaller streams, flowed castwad into the inlet of sea-water; occupying the lowest prairie level, Which, as the clevation continued, berame that great lake of the Red River Valley, the history of which has heen alrealy traced. There is evidence, too, to show that as the Lamentian region rowe above the water, it was again eovered with glaciars tor a short time; but that these did ont last till the very elose of the submergenee, appens to be shown by the very tine character of ath the later deposits of the Red River Valley, The fow fragments of rocks which are fomb, being not more than may, with probability, be attributed so the iee of the great lake itself.

60 . In attributing the glacial phenomena presented by the central platean of the continent, almost entirely to seat bone ice-bergs, I have adopter that explanation which appeared on consideration of the facts, to embrace them best, and which wonld aceont for them mont simply. In so doing I am in aceord with Dr. Wector, and also I believe with Dr. Mayden; who have sturlied the phenomena most extensively on the fromad. That some ciremmstanees, howerer, give at lenst negative evidence agatinst matine graciation, must be admitted. The most important of theso is the complete allence, so tir as I have onserved, of any marine animal remains in the drift. This is found equally over the entire western portion of Ameriea, and thongh it has been supposed to show that the drift was deposited in fresh water, this explanation does not seem to remove the difficulty. It is impossible to imagine a submergence so great in amome as to overflow nearly all the barriers, with the continued exchsion of salt waters; and though the absence of marine shells is remakable on one supposition, that of lacustrine forms is almost equally so, on the other. That mollascous remains might have been preserved, hat they heen imbelded in the deposit, is shown by the oceurrence of specimens of Cretaceous or 'Tertiary Ostreas. The nomoremrence of molluses in great deposits older than the drift, and known to be of marine origin, is, however, an accepted fact ; and in such eonglomeritie beds ats those of the drift, it is most frequently obrerved. Recent
dredging operations, aks, in the vicinty of the sumth polat ghaciers, scem to show the possibility of the deposit of non-fissiliferous matine boulder-claty.
603. The secomd diftienty, is fomed in the comparatively small amomet of ehange, which has heen wronght on the extensive area of the phains, composed of yiddingr, nearecly solidified sediments, by suast at revolution in physical grography as that implied by the old water marks. This objection, however, "pplies even more foreibly to athy gromeral system of glacintion by a northern ice-cap ; and it is semerely possible to imatine a mass of ice, like that implied by such a theory, passing sonthward across the sott rocks of the platins, agrainst the general slope of the combtry, and yet not obliterating its predormed rivar valleys and features. Such a continental glacier, too, thongh it might have heon Icaled with lamrentian debris on its eastem margin, and with fragments from the Rocky Mombtans on the west, can seareoly aceoment for the west and east transport of these materials for hmmbeds of miles, and their deposit in great quantities in the central region. If surh an ice mas, be supposed instead, to have moved down at right angles to the Lamentian axis, and passed ont across the phans in an mboken sheot; setting aside the difticulty of supplying ath efficient motor powar, and other minor diremstances; it will be fond necessary to suppere that it climbed up and over the abrupt eastern edge of the second steppe, without destroying it, and proceded 700 miles westwat up an ineline averaging about five feet per mile.
604. Mr. Belt, in an tuteresting paper lately publisher,* deals with Nimilar diftientien in explaining the glaciation of Siberia. The northern part of Asia, sumponded on all willes sate the north, hy momatan chatins, forms an interior continental basin, covered with "vast leval sherets of samd and loam." Marine shells are absent from the deposits, cxepp near
 not fomme. Mr. Belt, to aceomit for the tacts, resorts to a throry tirst suggested hy him eight years ago, by which he suppose the existence of a polar ice-shect, capable ot blocking up the entire nothern front of the combtry, and holding back its waters to form an immense fresh-water lake. Prof" N. Il. Winchell, in an artiele in the "P'opalar Science Monthly," of Jume, 1873, broally acomes for the glacial phenomena of the North-west, on the supposition of a polme ghacier. Ilis illustrations

[^81]are chicily horowed trom ar carefil staly of the region somth of the great lakes of the St. Lawrence, bat as he includes the valley of the Red River, and the cotire North-west, in his dednctions, its mention here may not be inappopriate. 'The most shgerstive pat of the paper is that in Which-like Ar. belt- he traces the neeresary production of a great
 gradaally retreats northward down an inclined plane.
605. Ingrenious as this hypother is umbomberlly is, its inapplicubility to the phenomena and physical teatures of the region now under consideration, must le at onere apparent. The greal deph to which submergence took place is one of the most patent difliculties. From the dencription of the Rad River Valley alnealy miven, it will be evident that the entire dranage of the sreat lake mast have passed somthwad hy it. There is here mo range of monatains to be crossed, amd mases the retreat of the grane Was very lapid, uo reavoll ("all be assigned, why at bamel ome formed, shond not have heen cut down throngh the gentle swell ot the waterned, and remained the permanent exit of the datange of the eomatry. Again, the distrihution of morthern eraties in lines fixed hy the altitute of the comblry, and their equal spread ove: the central and marginal regions of the plans, and the interpenctation of the eastern and western drift, do not almit of explanation on the supposition of a sonthward moving te shect ; bor does the surfue of the combly show any trace of the progress of such a mass. The whole guestion is a very interesting one, and it Wonld seem probable that a solmion once amived at, will be fomed to apply equally to North America and Northern A sia.

Post-Gilacial I'henomena.

(iot. The existence of a period chanacterized by great ratifall, of phaial periond. has been very genemally supposed for the West. Such all event maty probably have supervened at the end of the ejoch of araciattion, hat it would seem that much of the evidence brought to prove its oxempence is not of the most mexereptionathle natime

B67. Chief'among the phenomena which at first sight seem to imply the artion of large beries of moming water, are the great vallies which the streams of the prairie combtry, themsolves often so insigniticant, have proluced in the yielding stratat. These vallies, like that of the Pembina Rivery are sometimes more than three hundred teet in tepth below the plain, and over a mile in width; and are fremently depressed more than one handred feet below the genemal surface. The stream generally veco-
mel,
whel,
gain,
If the
us of
$\mathrm{ft}, \mathrm{d} 0$
5 tce
piek but a very narrow strij of the botom of the valley, and winde often in the most tortume manner from side to side of its level flows. It is usually the lirst idea of a traveller, that a great river has orempeed the valley at some former time, and completely tilled it. Λ little comsideration, however, serven to monlify this belief; and it is rery gencrally found on examination that the comparatively puny stram ly reason of its tortuous character, is still in somo place excavating and modermining the banks of the man valley. Evidence is also fimul of the cemstant change of the position of the atrem in the flat valley boftom, and places may be seen, where the excasations of late yems are being covered by a sod of graw, Given only time emogh, and the formation of these great tronghs in the pratio, is acemonted fien by finees still in operation. There are vallegs, it is true, which do mot show any erosion of their silles now groing om, and in which the immediate hollow of the strem is deeply ent, and a comblition of companative equilibrima attained. Some of these, may require for their explanation a perion of grater man; but at a certain stage of developement, every valley is apt to fall into this state, if the flow of water be mot actually increasing.

60s. The valley of the Souris River, gives some excellemt illustrations. Near Woxkl End it in of an average wilth of abont me fompth of a mile. The strem is quite smath, and in summer barely runs from peol to peol, hetween the stones of its bed; yet it is fomed, that at atmost every eonsex bend, the banks are scarped and bare, and are year by year heing undermined. For about six miles, the river preserves the same chameter, and then joins, alnowt at right angles, a larger old valley, abont a mile wide, in which there is no flow of water atove the phace of junction. Here, though there is ahmolant evidence of the changeable nature of the river bed, in the presence of lagoon-like ponds, the hanks are comparatively ruinons, and covered with vegetation, aul are seldom approached by the stream.
609. The rivers are proved to have ferpently changed their comeses, and great vallegs orem in which litte on no present waterfow takes place, hut which may mee have carmed impertant streans, now diverted. Prof: Hind has shown that the Somth Saskatchewnat prohably flowed at a former perion by the great valley now oecupied by the Qu'Appelle, and River That Turns, to the Aswinelomene: If the part of

[^82]the valley separating the sources of the Qu'Appelle and River That Turns, has mot lwen heirhtened very considembly by the necomulation in it of debris from its sides, the South Saskatchewan must have cut down its present bed, since its ocrupation, abont eighty-five feet. Prof. Himd also believes that the Souris River flowed southward at one time throngh the great depression now ocempied by the Back Fat Laken, and joined the Pembina River, a fact which may assist in explaining the formation of the great valley of the latter. Such changes of bed may have arisen from some general alteration in the inclination of the country, and it is perhaps worthy of remark. that both the instancos cited, show chango from courses easterly and southerly, to north-easterly; and such as would be bronght about by alight elevatory movement of the transverse watershed in the vieinity of the finty-ninth parallel, or an increase of depression northward.
610. One of the most remarkalile instances met with of this sort of change, is that of the disused serobd valley of the Souris, near its first intersection with the Line. 'The old ralley lies to the east of the present one, and is separated from it by about two miles of prairie. They are about equally wide, and depressed about 90 feet below the general surface, thongh from a barometric eomparisom, the valley of the present stream appeas to be from ten to eightern feet below the disused one. In the old valley, the combe of the stream is still discermable, and is occupied in some phaces by smatl, and somewhat saline pools.
611. Another striking instance is fomod in the (ireat Dry Conlée, which joins the valley of the Milk River, a few miles north of the Iine, and, according to Patliser, extends morth-westward to the junction of the Bow and Belly Rivers. Mout equidistant from the Milk River and the latter locality, the valley contains a large saline lake, known as Peekopee. It would appear that the waters of the Bow and Belly nonst at some time have passed thes to the Milk River, and it this is the case, a northward diversion of the water must have taken pate here also.
612. The so-called Riviere des Lacs, which crosses the Line at the 227 mile $\mathrm{i}^{0,} \mathrm{i}$, also seems fo ocrupy the bed of a former stream. This sheet of water, where it is intersected hy the Line, must he nearly three quarters of a mile wide, and is not fordable. It ocempies the bottom of a valley, and is over fifty feet below the prairie level. Northward, it extends about four miles, becoming gradnally narower, und ending in a broad, dry coulée, which shallows and dies away in a strip of bouder-covered ground, which stretches northward toward the Souris River, five miles distant,
and is somewhent lower than the general surfare of the plain. Southward, it is said to extend about seventy in les, and finally to join the sombern bend of the Somis River, where it gives issue to a small rumning stream. The present condition of aftairs, however, will not serve to explain its formation, nor does it resemble the bed of an old tributary to the Souris, from its sudden northward ending, and the absence of systems of conlées ramifying from it. It may be accounted for by supposing that it has been a former shorter chamel of the Somris itself, but in that case, either its northern end must since in some way have been bloeked up; or the river being dammed back in is own chamel, has spead over the prairio in a lake-like expansion, which has finally found exit southward by the Riviere des Lacs Valley. The valley occupies just the position, which such flood water would take, and bends round the most castern portion of the high ground, rising toward the third prairie steppe.
613. Vallies such as those above described, appear, from the accounts of different explorers, to occur in many parts of the great prairie region,* and though some of them may tend to show the adion of greater borlies of water than those now flowing in them, they cannot all be accountel for in this way. It is difficult to conceive any ordinary cireumstance, which would cause a stream to leave a wide valley; otten over 100 feet in depth, and to commence the formation of a new chamel of like proportions. The blocking of the strean by ice jans, or accumulations of timber, though capable of explaining change of course in rivers flowing through alluvial country, not much below the general level, camot be supposed to he a sufficient cause for deflexion on so groat a scale. Λ careful study of these phenomena, over great areas, may eventatly bring to light some general cause, such as local, or unequal, elevation or depression. At present I can only accome for these duplicate vallies, on the supposition that most of them are alternative channels, of the strems at present in existence. In a level region, composed of soft materials, it is probable that since the rivers first flowed armss its surfare, they have been sulject from ice and timber, to frequent obstruction in certain places. Before the river bed had been deeply won into the surtare, the stream might thus easily be turned aside; and before many years, a simiku ocenrence in the now chamel might canse it to revert to the old. By wach oscillation, a single river may cut out two or more beds simultaneously, and to nearly an equal depth. Some of these great dry vallies, may agnin

[^83]become river chamels, but in most cases they seem to have been now long disused This may arise either from a gradual decrease in the noment of flowing: water, and in the intonsity of the spring thools; or from an increasing searcity of timber capable of foming obstructions, in the regions tratersed by the stremms, which seems on other grounds to be undeniable.
614. The Red River is still not firl below the level of its bordering pairie, and from the fixed clevation of its out-fall in Lake Wimipeg, camot be lowering its bed appreciably, though the bordering prairie is no donbt gradually gaining somewhat in height from the sediment deposited in seasons of flood. The course of the river is exceedingly tortuons, and it is yearly becoming more so. An examination will show that all the concave sides of the bends are being eaten away by the stream, and the stumps of old half:hmied oak, and elm trees, leing there exposed; while the opposite, or convex sidew are almost insariably gaining by the addition of banks of sediment, which as soon as they are formed are taken possession of by thickets of yomg willows, and comsolidated lig their roots. When this process has been carried to an extreme, it is naturally remedied by the breaking of the water across one of the marow neeks separating two of the bends, daring some period of excessive flool, and the formation of a new course. I do not know of any very modern instance of this, but old portions of the river-chamel, may fiequently be observed forming ponds and small hakes on the prairie, sometimes more than a mile from the present stream. These, like the parent river, may be fringed with trees, and are generally smromed by a donse growth of reeds, and filled with ramk aquatic vegetation.
615. The floods of this river, arising from the metting show in spring, are intensified by its northern course; the soures being broken no and in flool, while the ice at its month is still quite firm. Extensive ice-jams are apt to form, and a small increase in the elevation of the water above the bamks, serves to overflow a great area of domome The silting up of the mouth of the river, may also, as has been suggested, have something to do with the recurrence of great floods at somewhat regular intervals, and may require some such matural paroxym fin its remely.
(616. The systems of ramitying comberes with gently sloping grassy banks, but with neither brooks nor regular strean comber, when seen during the dry weather of summer, may seem to require for their expla-
nation some apresus agency more potent than the present, and appar to resemble the disused beds of latge tributary strems. To any one, however, who has examinel them in carly spring, und during seations of flow, their origin in apparent. The whole thickness of the soft prairie alluvium, is then completely saturated with moisture, and the conlés are brimfill with water, holding in stspension a great guantity of tine earthy matter, amd flowing with a regular, though gentle and often seareely pereeptible current, toward the main stream. At their extreme ramifications, little streams may be fomm, gathered together almont imperceptibly from the halffflooded surface of the prairice, and directed into at certain coure-perhaps by means of snow-banks, which have not yet entirely disappeared-and just engaged in eutting through the tough prairie sod in the first process of the extension of the valley.
617. During the poxt-ghedial emergene of the country, every strem must at one time have flowed, as the Red River now does, into a great lake not much below its own level, and have been in the same way, more or less sulbjeret to floods and overflows. Many of the conlées now foumd bordering the river vallies in the higher prations may date back to this time, and may not have since reeceived important incremert,
618. An examination of the beds of the rivers and streams, white probably leaving some balance in favor of a period of greater minfall, does not appear to offer any evidence of its great intensity. Other facterseem to point to the ocenurence of a period when the rainfall was greater than at present, and it would even seem that a groudnal dessization is yet proceding over great areas of the west. This does not appear, however, to be more than can he accounted for by the decreasing area of forest-a subject elsewhere more fully mentioned. It is hardly probable that the prairies ats a whole have been at any time wooled, but that large areas of forest have existed where bare plains now spreal, is undoubted. The existence in some places of great quantities of the remains of land and frewhewater shalls in the older river deposit of the Missonri, which now oremr rarely if at all in the neighboming region, has been mentioned by Dr. Hayden; and seeming to imply for the mper waters of that river at no very distant time, a considerable forest area, is one of the most striking facts in theonr of a change of climate. Any very great or long contimed excess of ranfall over the patirie region is, howerer, negatived loy the appearance which its surfice prevents, and
espereinlly by tho existence of large areas which since the drift poriod have nover loveloped sistems of datange valleys, and yet rotain with little modification the imegular appeamere of the original norface of the drift deposit, and are doted with mamerome pomde and lakes without outfall. The pre-ghacial ntreams too, choked upalong the edge of' the thind steppe by the drift of the Cotem, and which havo since been unable to clent their chansels, give ovidence of this kind.

CHAPTER XI.

CAPABILITLES OF THE REGION WITH REFERENCE TO SETTLLEMENT.

Abstract

Reonin in the vieinity of the Lake of the Woons-Areas capable of eultivation - Barren region-Vegetation of the lake-Region betwfen the Lake of the Wooln and Reid Riyel Pbabig-Country in the vieinity of the Govern. ment Road-Comintry bordering on the Reed and Roseau Rivers-Height of Land Maskeg-The Red Rivir Prabie-Soil, and nature of the sufaceMeasure of agricultural eapneity-Woor-Climate-Progress of the spring here and at other points in the Fertile Belt-Rainfall-Water supplyCountiy of the spconp Prairie Steppe-Pembina Esearpment-Western margin of the great phans - Turtle Mountain - Timber - Country in the vicinity of the Somris River-Metcorological cyele-Country of tha Third Praikie Streppe-I'latean of the Tertiary-Eastern limit of buffalo-big Camp of half-hreeds-Fertile Belt at the base of the mountains-Timber of the mountains-Clinate of the Third Steppe.

619. In this chapter it is proposed to examine briefly the nature of the comntry in the vicinity of the 49 th parallel ; with regard especially to its aluptubility for settlement and agriculture, and its superficial fentures. The mature of the surface, however, depends so closely on the underlying rocks, and especially on the drift deposits, where these are largely developed, that much has already of necessity been given, which might properly be included here. It is not intendod to go over any of thase general points which have received notice, but merely to touch on those which have not yet been mentioned. asing the material of the foreroing chapters as a substratum.

Lake of the Woods Region.

620. A very small proportion of the country immediately surromding the Lake of the Woods, is at all suitable for agricultural wettlement. The northern and eastern shores are entirely composed of barren rock, and thongh valleys in this district-and especially in the part of it occopied by Huronian rockn-may be found of better appearance, the soil will probably be sandy and poor. Pine timber of fair growth occurs in some localities, but forest fires have already
dommed queat areas of both treas and noil. leaving only tha hare, Pombled, porky sulatimbin of the comitre.
bid. 'The areas apable of raltivation atre miafly those hased on
 Ishad, and other ishads, mul whelterod hays, shom comsidemabe remmants. of this terince. It also forms the that fround sumpounding the Northwest Angle, and has thero beon roltivated to at small extent, the Indians growing patches of mize which thrives well comsidering the small momint of uttention given to it. Wheat, I an informed, has been sown as an experiment, and sureoerls well. Patatoes yidd excollent crops, and all the orlinaty regretales and remeals womb doulthes flourish, with carefinl farming ; were there suftheient indurement for their coltivation. The same tervore forms some that hat in the chatin of lame iskands of Smal-hill Lake, and it is also extensively developed on hoth sules of hainy hiver, and from the aceonnts of Prof. Hind and others, would apjean to rim along way up that stream. Wentwad firom the month ot the river, and foming the morthern shore of Minmesota, it extemla for ahout ten miles, amb thongh generally swampy, has an clevation suticient to admit of drainare, and sustains at thit growth of elm, poplar, cerlat, spruee, and hireh. 'The
 though considerably higher than ohewhere Its sumfore is whe and dad with athick growih of poplar and bireh. Kit-a-yune-minis, or (iamben laland, has been from time immemorial cultivated by the ladians of the lake, and is one of their sreat meeting places and head quarters. Its area most be from one to two sifuare miles, and thomgh I was umble to visit it. it "plears from a distance to be level, and to suppot at lair growth of timber. It is now almost descerted.
tize. All these localition are based on the ohd phatean or ternace level, a formor hake bottom ; and the soil where I have examined it, is compored of tine sand and rallemreons debis, deticient in vequetable matter; which When it occurs, is at to finem a peaty acermmation on the surface.

62:3. 'The greater part of the somthern and western margin of the lake is utterly useless, and a more forbidding and desohte region can sarcely he imagined. The immediate border of the lake, is here formed by a low ridge of samd, of ten blown into miniature samd-hills, but sometimes bound together by the roots of varions grasses. Behind this margin is very genemally a streteh of grassy swamp and lagroon, of a mile or two in width, and bordered in the distance by a firest of
 somo placos, low, swampey nammal fornts directly on the lake, unl inis I have wed fringed attor a gale, by a belt many feet in wilth, of hrown vegetable pulp, equaliy impossible (10 walk on, and impassable for the eanoer On other parts of the eoras, 6 graning the summit of' a penty hank at fow feot in height, which is breaking off undry the artion of the whes, an expmane of wwimp, with small dead tamarmek

 and is med by the lalimes for making mats. The root is alsen eaten at certain neasoms. Where the watere is quite shoal, and in renches proteremp fiom the fill fince of the waves, the rosems grass (Phraymites commamis) eovers great areas. It does not apper to be tomgh mongh for the mannfurture of pile it can be applies. 'The wild, or Inlian rice (Zizania apuatica,-ma-nu-mia of the Chippeways) does not ocemr abmantly in the somthern part of
 of the northern division, and esperially in Iate Plat, where the Indians collert large ghantitios of the reed in anthann, for winter inse. The plant "pperne to thrive best, where growing ip, throngh seremal feet of water in sheltered hagoms and inlets, and certain arean formory moted for its prodartiom, have of late years, firom the higher lovel of the water, berome umprolnetive. Scarcely sufficiont attention seems to have been given to this mative grain. (irowing fiar for the noth, in aroas altogether unsaited for other crops, it seems to athod a propere of itilizing great regions of lake aml swamp, otherwine irreclamable. Its growth might mo doubt be oncomaged by the use of proper precantions, and improved varieties result from carefinl selection. The krain, thongh dark in colour, is palatable, and the straw in now coming somewhat extensively into use in the mannfieture of paper.

1:25. Many of the less deeply submerged swamps wond yield large quantities of matural hay. Those in the vicinity of the North-west Angle tre alrealy mate to fimish hay for the stock kept there, which though rather coarse, it is fomme to be matritions.
626. The flom of the conntry virpomuling the Lake of the Wonds, closely resembles that characteristic of tho Laurentian region, north of the St. Sawrence River, and differs from that of the prairic country to the went. A few western and sonthern fomm, however, ocem in association with those of eastern and northem aspert. The majority of the forest
trees are coniferome, nod firm the wamply chameter of the conntry, the tamarick is perhaps mont ahmolant. The cerlar (Thuja occidentalis) was ill a few phaces ohsemval, forming groves of limited axtont. 'The real pine, Banksime, or seruls pille, and white pilne, (Pimus resinosa, P, Bamkisma, nul P. strobus, also weromb where the promad is dry, mad especinlly on the samly ridges sopmating the swamps ; hat mot in very

 along the adges of the wooks. Kim, oak, libeh, and the ash-leaved maple, alsw oeroll sparimgly.
(i22. 'Whe rlimate of the region immerliately bordering on the Lake

 bamy troste are thas prevented, and the nighte, which at a like clevation on the prairie west of Red River are frequently wida, aro here, as a rule,
 value in this region, a great area of the lottom of the lake might be laid dry, at emparatively small expense, ley removing the rocky harier at Rat Portuge, the water heing thas lowered about eighteen feet.

Region betwern the Lakt of the W'oods and the Red River Prairie.

B28. West of the Take of the Woods, is an extensibe wooldel, and very grenerally whampy region, which extends to the enstern edge of the alluvial praisie of the Red River. Where crossed by the rowd from the North-west Angle to Winnipeg, the wooded rengion is about sixty miles in brealth; on the firty-ninth parallel, abont seventy-five miles. On the northern line of seetion the character of the "ountry is as follown :-From the North-west Augle to Birch Creek Government Station, is for the most part thickly wooled, but almost a contimons swamp, with here and there a rocky or sambly ridge rising above the gromeral level. Murh of the soil woald dry "p if the woods were removed, but appeared to be samdy and poor, and of little or no use for agricultural purposen. There is much tall, hat slight, pine timber, suitable tion milway sleepers, but not of much use for the saw mill. The sand of the ridges is generally of yellow ferruginous colour, and the gravel, when it occurs, is chiefly of small limestone
fimgments. 'Ten milen east of' Bibeh ('reek, in the watershed swmup,

 noil, which thomgh warm, is tow light to attrmet the ngrionlturaliat. The Banksian pine abomals. From thin phace lo Broken Ilend liver, and

 "ompares tivombly with that of the praide to the west.

 the fimmer, asmall stream llowing into the Latio of the Wionds, the latere,

 in the nurthern pant of Minmestat. 'The erossing was edtered in the
 Inark "anoe ; and from the waters of the lake lo those of the Red River, orexpied nino days; much delay arising fiom obstructions by drift timber in the rivers, the state of the pertage on the height of hand, and the bad rapids on the lower part of the lisseat River. 'The route though long known to the Indians ; and used by the Chipgeways and Sionx an a watpath hotweon their reveretise combtries, hat remaned
 had intended passing by this ronte to lied liver in combection with the Assindnoine and Saskatchewan lixploring lixpedition, in 1857, but wore

 the water on which is, apparently, not more than fonr or tive tied deep. The lower portion of the river itself, for abont fom miles, is both wide mat deep, and not very tortnous. Near tho month, it passes through a getasy wamp, and for some miles the shores continue swampy, though genemally bovered hy bushes and small trees. Boyond this the river, though still deep, beromes narrow and tortums, and retains this waracter thronghout its \quad pher part, which for several miles lefore reaching the source is often not more than sixteen feet in width. At the satme time,
the enrent becomes much stronger, thongh not assmming anything of the chameter of a mpid. For abont two ant a half milos from the beginning of the narrow portion of the river, in a general seath-westerly comese, the banks rise several feot above the water, and suport a moderntely grool growth of aspen mud balsam poplar, with some oaks, and a few tamaracks. Most of this higher gromm has, howerer, been burned over years ngo, and the wreater part of the timber thas destroyed. 'The soil is bather retentive, being eompose of a fine, grey, sandy elay. Boyond this, and to its somree, the stream is fringed ly grassy swamps, borfered at a short distance by a dense grow th of tamamek, seareely, if at all above the level of the water. The current, however, is still strong, ant the stream, though very narrow and tortuons, remains diteh-like and deop.
631. On arporoching the east end of the Portage the tamarack first retreats further from the stremm, and the latter remains merely as a narrow int among the reeds. The bottom of the swamp, though here covered by a few inches of water and decayed vegetable matter, is hard, and firm, and consists of fino whitish arenacoons chy, of such a nature as to be almost completely impermiable to water. Tt here becomes necessary to track the canoe with ropes, and for a few hondred yads the swamp was found so shallow, that it was best to lighten the emoe, and portage the stuft by hand. On thins entering the Muskeg Portage Swamp, the tamamek trees become small and seattered, and soon remain only in isolated groves, standing out like islands in the grassy expanse. After passing the shallow edge of the swamp, above described, whieh may be about half a mile in width, it becomes softer and deeper, and is entirely composed of peaty matter and soft swamp mack, in which in some places one sinks from knee to waist deep, and often no finm bottom exists for a depth of five or six feet, and probably mach more. In some spots small fishes were seen among the gras. In the softer parts, gas arising from the decomposing vegetable matter, booys up portions of the sod, which, however, easily sink mader any weight.

The surface of the swamp is usually grassy, but some extensive pallos of $^{\text {ill Spirca bushes oecur. Ledum latifolium, or Labrador tea, }}$ Sarracenia purpurea, the pitcher plant, and Andromeda polifolia, also occur abmendantly ; Lobelia Kalimi, Parmassia Carolinianı, and Drosera longifolia, were found in flower.
632. The sonve of the Northeast Rosean River, is six and three quarter miles from that of the Reed River, in a south-westerly direction; but the track through the maskeg doviates considerably in some places, leginon'se, rutely a fow I over 10 noil eyond rlered alove ad the ecp. k first y as a h here shard, ture as ceswary swamp ortage 1p, the nly in After bay be ntirely places s for a ; small y from which,
ensive
1 tea, , occur yifolia,
three ection; places,
to avoid tamarack groves, de., and increases the actual distance which must be passed over in taking a canoe from one river to the other. On approarhing the sonre of the Rosean River, the swamp agatu becomes shallow and hurd-bottomed. The stream, as at first found, is a rimmel scarcoly wide enongh for a eanoe, but falling westward with a swift corrent. The height of land maskeg, julging from the line of levelling on the forty-ninth parallel-about six miles south-and from the courent of the Reed River, cannot be move than ten or twele feet above the Lake of the Woods. It has all the appearance of having been at one time a shatlow lake-basin, with a hard hot tom of drift material ; and has been gradnally filled by the growth and decay of vegetable matter.
633. I believe that this and other swamps of the rention of the watershed, might yield important supplies of peat fue! to the woolless prairie country to the west. The peat would, of course, reguire to be mamfactured by one of the processes now employed elsewhere, and advantage might be taken of the upper part of the Rosean for its shipment. The peat here found mast be pretty pure, though not formed by the acemmlation of the Sphagnum or peat moss, but from grasses and other agnatice phenogrania.
634. The North-east Rosean, is at tinst narrow abd tortuons, like the upper part of the Reed River, and the smrounding country is swampy and covered with tamarack, and willow bushes. The hanks soon, however, begin to rise higher, and poplar hecomes the prevailing wood. Fine oaks, elms, and ash-leaved maples also fringe the stream. The forest retans this character as far as Rosean Lake, and where small openings occur, rose bushes, asters, convolvulus (Calystegia sapium) widd hop (Ihumulus lupulus) the prickly chomber (Echinocystis lobata) and high-bush eranbery (Viburnum opulus), form a tangled thicket.
635. About three miles from the soure of the river, and two-imilahalf from its erossing with the forty-ninth parallel, a tributary neamy an large as the main stream enters from the north. A few mike above RoNean Lake, a serond large stream comes in from the south-east, amb may be called the Somtheast Rosem. The hatis of this part of the river are usually high, and are as much as tifteen teet alove the water level where it crosses the Line. As far as ean be seen from the elges of the river, the land continues in most places dry, and supports a grow growth of timber. For several miles betore reaching Rosean Lake, howerer, the dry banks merely form narrow ridges at the sides, and open grassy swamp lies both north and south of them. The whole upper on North-east Rosean
river is at present much enemmbered hy jams of drift timber, and beaver dams.
636. Rosean Lake, is a shallow expanse of open water in the midst of a sereat region of reedy swamp. It lies abont fome miles south of the Line. The bast Rosean enters at its southern part, and the West Rosean flows ont on the same side, at less than a mile distant from it.
637. The upper part of the West Rosean River, for about ten miles following its comse, has banks sufficiently high to support a small growth of pophar, oak, and willow hushes. The trees then disappear, the eurrent becomes much more shugrish, and the river enters the Great Rosean Swamp. This vast mosker is absolutely without trees or bushes of any kind, hot is covered by a rank growth of grass and reeds, and intersjersed with small ponds and lagoons. The distance throngh the swamp, following the conrse of the river, which is exceedingly tortuous, must be at least twenty miles. For a few miles before reaching the fortyninth parallel, the river in again fringed with trees-atk and elm being abundant.

6:38. A short distance sunth of the Line, and before re-erossing it, the first iskand ocroms, and boulders become plentiful in the bed of the rivor, which, thongh mencmmbered and deep from Rosean Lake to this point, now becomes shallow and ripid, and so continnos till the border of the Red River prairie is reached. The banks are high throughout, and this belt of country, abont twenty miles in width, is of much improved appearance. The sub-soil is of gravel and fincesand-as already noted in conneetion with the drift deposits-and most of the surtace is dry, thongh large swamps still oceur. It is partly of a prairie character, but is broken up by extensive groves, which are usmally of poplar. The soil, though lighter than that of the Red River Valley, shows in some places a considerable depth of vegetable mond ; and wonld be warm and easily worked, and bring erops rapidly to maturity with carefin eultivation. The presence of so much limestone debris in the drift, lats a favourable influence.

Poplar, oak, and elm, attain a large size along the margin of the river in this part of its course.
639. In this region of oak and poplar 'openings,' there is, to some extent, a mingling of eastern and northern woodland plants, with those of the plains. East of the edge of the true prairic land, the conferons forest eomes to an end, in abont longitude $90^{\circ} 30^{\circ}$; and coniferous trees are not again found in any foree-with the single exception of the mom-
tains known an the Threo Buttes-till the immediate flanks of the Rocky Mountains are reathed
640. The West Rosean River would seem to be narigable ly steam launches, or stern-wheol boats of light draught, from the Red River neally to its intersection with the old St. laul and Garry roact. From this place to its crossing of the ferty-ninth parallel, it is harred by the rapids above mentioned, which, from their shallow and boulder-strewn chanacter, are difficult of navigation, even in a bark canoe. From a point a few miles south of the Line, a small steamer might pass throngh the Rosean Swomp and Rosean Lake, and possibly ascend the Bast Rosean, nearly to its intervection with the forty-ninth paratlel.
641. If the wooded comentry between Lake of the Woorls :and the margin of the Red River prairie, a comparatively smatl proportion therefore appears to be fit for cultivation, though much of the surface could be rectaimed at small expense. The areas formerly orempied by small hakes whow hetter soil than the ridges and higher gromds, which are generally saudy or gravelly. The chief present value of the region would however seem to be an a reverve of fuel, and timber for construction, for the more fertile prairie land bordering the Red liver. A large quatity of valuable red pine (Pinus resinosa) lumber has been cut during the last few years on dry ridges near the Pine River, which rmens into Rosean Lake from the north; and similar pine-bearing highlands, will probably be fomul in other parts of the area. The timber cut on Pine River, was floated into Rosean Lake, and thence by the West Rosean River, to Red River. It therefore passed for a portion of its course through the northern part of the State of Mimerota. The Roscan, and probably also the Rat River, may be used in the conveyance of fire-woot to the Red River comintry, should the demand require it.

The Red River Prairic.

642. Of the alluvial prairie of the Red River, much has alrealy been said, and the unitiom fertility of its soil camot be cexagremated. The surfiace tor a depth of two to four feet, is a dark mould, composed of the same material as the subsoil, hut mingled with much regetable matter. Its dark colom is, mo doubt, in pat due to the gradual acemmatation of the charred grasses left he the prairie tires. The soil may be said to lie ready fier the plough, and in turning the tough thick protirie sonl, the first year, a crop of potatoes may be put in, though it is not efficiently horoken up till it hats been subjected to a winter's frost. When the sod has rotted,
the soil appears as a light friable mould, easily worked, and most fuvorable for agriculture. The marly allusimm underlying the vegetable mould, would in most comutries be considered a soil of the best quality, and the fertility of the gromed maty therefore be considered as practically inexhanstible.
643. The area of this lowest prairic has already been approximately stated as 6,900 spuare miles, but of this the whole is not at present suited to agriculture. Small swamps are scattered pretty uniformly over its surface, and in some places very large areas of swampy land oceur, as will be seen on reference to the large map of Manitoba lately published hy the Govermment. The greater part of these swamps, are, however, so situated, as to be easily draned, exier into the Red River or some of its tributaries, which are usually depressed thirty to forty feet below t..e level of the surfuce. At present the swamps in the vicinity of the se:flements are male to yield supplios of natural hay ; and matil hay-grass is sown and regrularly cultivated, the 'hat-swamps' will continne to be a necessary part of the economy of the settler. The wide overflow of these swamps in the spring, when the season is wet, or when the dissolution of the winter's show takes place very rapidiy, is shown by the large area often found to be strewn with the dead shells of fresh-water molluses, chiefly of the gemus Limnea.

644 . As a measure of the possible agricultural capacity of this great valley, take one halt of the eutire area, or 3,400 square miles equalling 2,176,000 acres, and, for simplicity of ealeulation, let it be supposed to be sown entirely in wheat. Then, at the rate of 17 bushek per acre-which, aceording to Prof. Thomas, is the average yiold for Minnesota-the erop of the Red River valley would amount to $40,992,000$ bushels.
6.55. The wooled area of this lowest prairie steppe is quite small. The Red River and its tributaries are fringed with trees, of which oak, (Quercus macrocirpa, var.) clm, (Ulmus Americana) poplar; (Populus tremuloides, $(f \cdot r$.$) and ash-leaved maple, (Nequndo aceroides) are the most$ abmudant. In some places the trees attain a latge size, and the oak woots bordering many of the streams are especially beantiful. Much of the best timber has, however, already been eulled out, and it is jearly derreasing, withont any systematic attempt for its preservation. The stemmers pmoning on the Red River are among the largest eonsumers. Away firom the immediate borders of the streams, the prarie, thongh covered with a loxmiant sorl, is almolately treeless. It is fortmately the ease, howerer, that the heal River Valley is bordered on the east by the
forests alrealy deseribed, and on the west lye the woonded district of Pembina Mountain and its northern extensions.
646. The elimate of the Red River Valley; like that of the whole interior of the continent, is an extreme one, the cold of winter being exceedingly severe, and the heat of the summer seaton also excessive. The courses of tho summer, and winter isothermal lines across the continent, do not require notice here, as they have alrealy been ally discussed, and laid down as far as the observations now at command allow. It would seem, however, that between the Laurentian highlands on the east, and the Rocky Mountains, a great summer wave of warmth passes far to the north, reaching its highest latitude near the eastern lase of the latter range; while in winter a compensating aud long-continued flood of cold air invades the whole region of the plains, and the eastern and western flanking ranges.
647. The watershed between the Rel River, and the St. Lonis and other streams flowing into Lake Superior, forms a pretty well marked elimatal line. The influence of the lake, and the high wooted ground forming a partial barrier to the north-westerly winds, reuders the autumn in the latter region warmer; while in spring the ice accumulations of the lake, and wooded character of the surrounding country, keep the temperature much lower than in the Red River Valley. The temperature of the Red River country, like that of the prairies generally, depends very closely on the direction and origin of the wind, though in years to come, when great regions of the plains have been planted with trees, much amelioration may result. A single instance-though an extreme one-may be mentioned. On the 8th of May last year, a strong south wind raised the tomperature at Dufferin to $100^{\circ} \mathrm{F}$. At Wimepers, 60 miles further north, the temperature was $94 \cdot 5^{\circ}$, the mean temperatwre for the month being $52 \cdot 52^{\circ}$. The Red River Valley, as the lowest trough of the interior region of the continent, would also seem to serve as a channel of eflux for the cold northerly winds in spring; for immediately on passing ont of it, aid up to the level of the second steppe, the vegetation was found to be slightly, but distinctly, more advanced.
648. The following noter taken at Dufferin in the Spring of 1874, will illustrate the alvance of the seasm, and serve for comparison with other localities:-

April 15.-(ieneral surface of the prairie free from sunow, and in some places already quite dry, though frozen below. Coulees holding large suow-banks. Pouds hegiming to open. Dueks observed, and several of the smaller birls of passage.

Aluril 94.-Ploughing eommenced, but gromnl still partly frozen.
" 25. -First frog hearl.
" 26.-Many ducks, geese, and cranes, flying northward.
" 27.-Quite in eoneert of small birils in the thickets for the first time. Buds of the earlier willows and proplars lorsting.
" 29.-Flies and Mosyuitoes becoming abmilant. Frogs noisy.
May ..- (irass heginning to look a little green in swampy hollows.
" 8.-First thunder-storm.
" 9.-Most of the willows, and the aspen pophar (Populus tremoloides) in full blom.
 Sweet Coltsfoot (Narrlosmiat sugittta) in Hower. First Strawberry blossom fomul (Freffrian V'irginimuc.)
" 10. - Grass beginuing to assume a general green tint.
" 18. - Mosspuitoes tronblesome for the first time. Many geese Hying overhearl, with a favouring south wind.
" 21 .-Grass in hollows, where the ground has not been burneil over, now forming pretty good feed; where the fire has passed last autumn, though very green, still guite thin. Grum trifhrom, abumant in some localities; in full bloom Anemone putens, in many plaees with seed alrealy forming, sepals having fallen. C'arex Douthlasi, Remunculus rhomboideus, in full thower.
" : 2-The common bhe Violet (Viola cuculata,) in full bloom, almurdant. Viola peduta, I'. Canalemsis and I'. puhescras, just in tlower. The Serviceberry (Amelanchior Cunadmsix) Choke-cherry (I'rumas Viryiniana) Wild Red Cherry (P. Pemusyltomiea) Wild I'lum (P. Americana) ; just about to bloom. Poplar groves showing green.
649. A reference to the eatalugue of plants will serve to continue this record, though after the above date, the observations for 1874 refer to the eountry west of the Red River Valley. The plants in flower in June, 1873, cem however be found by referring to the list.
650. The following list gives the arrival of some of the more important birls in the spring of $1874:-$

$$
\begin{aligned}
& \text { Birts arririuy predious to April 15th. } \\
& \text { Gorvus Americauns.-Common Crow. } \\
& \text { Eremophila alpestris.-Horned Lark. } \\
& \text { Spizella monticula.-Tree Sparrow. } \\
& \text { Plectrophanes Lappomicus.--Lapland Longspur. } \\
& \text { Circas Inedsomius.-Marsh Harrier. } \\
& \text { F'alco columbarius,-Pigeon Valeon, } \\
& \text { Accipiter juseus.-Yigeon Hawk. } \\
& \text { Junco lyemulis.-Black Finch. } \\
& \text { Collurio borealis-(ireat Northern Shrike. } \\
& \text { Scolecophayns ferrugineus-Iusty Grackle. } \\
& \text { April 15th to } 30 t h \text {. } \\
& \text { Anas boxchas-Mallard Duck. } \\
& \text { Querguedula Carolinewsis-ireen-winged Teal. } \\
& \text { T'urtus migratorius-Robin. } \\
& \text { Atplems jhimiceus-Red-winged Blakbiral. } \\
& \text { Totanus melamolcucus- (ireater Tell-tale. } \\
& \text { Wifialitis rocifarur-Kikleer Plover. } \\
& \text { Grallinayo Wilsonit? Snipe. } \\
& \text { Colapte's auratus-Golden-winged Woodpeeker. } \\
& \text { Passerclla iliara-Fox Sparrow } \\
& \text { Regulus calendulus--Rnby-erowned Kinglet }
\end{aligned}
$$ yiniuna)) ; just

Ayril .20th to 25 th.
Mer:uns cuenllutus-Mooled Merganser. Spatule elypeuta-Shoveller Duck.
Bucephthath thlberla-Buffle-headed Duck.
Dendrecte coronata-Yellow-crowned Warbler.
April S5th to 30th.
F'ulica Americana-Coot.
(i) ura C'unadensis-Sanl-hill Crane.

Dufïle acuta-l'in-tailed Duck.
Marece Americant-Widgeon.
F'ulignte marila-Scan! Duek.
Boturus minor-Bitterin.
Ceryle alcyon-Kingfisher.
Sturnella magma-Prairie Lark.
Xanthocephalus ictervecyha/us--Yellow-hemled Blacklird.
The remaining hirds appeared relpidly after this time.
May sth-A Autrostomus rociferus-Whippoorwill.
May 1zth-Trochihes cohuhis-Ruby-thronted Humming Bird.
May! lath-Ectopjsistes mi!grutorius-Wild ligeon.
651. Observations comparable with those above given fir the Red River Valley, are on recorl for three points on the Saskatehewan River, approximate to valious parts of the 'fertilo belt.'
652. Sir John Richardson compiled the record for Cumbertand IIonse, from which the following extracts are selected, from his own observations, in 1820, and thove of Chief Fictor Lewis, in 1839-40*. Cumberland Honse is situated in about lat. 54°, long. $102^{\circ} 20$, or west of the Northern end of Lake Winnepeg.
April 7.-Crows (Cormas Americomus) seen. Not till April 19th, in 1820.
" 8.-Snow-birils (Plectrophanes mieulis) seen.
" 9-A Merganser seen, 1820.
" 10.-Willow eatkins beginning to burst.
" 12.-Geese and Swans seen, 1820. It 1840 not seen till 20th.
" 13.-Buds of Popmelus buctsimififre bursting 1820.
" 17.-Plovers, (irackles, and Orioles seen, and on the following day, Canadian Jays, and Fly-eatchers, Frogs croaking.
" 20.-Coltsfoot (Narlosmin pelmutt) Howering. Sap flowing in Ash-leaved maple (Nrgume areroidex.)
" 26.-Alder flowering.
May 1.-Anemone patems in flower, leaves not yet expanded.
" 2.-A fall of snow to the depth of two feet.
" 13.-Planting potatoes.
" 14.-Sowing barley, 1820. Nequmblu necroides, and gooseberry bushes in flower.
" 17.-Willows, gooseberries, and Aspen ($/$ 'opmhes (rrmulbilles) in leaf, 1820. In 1840 the trees only hursting their buls at this time.
" 24.-U/mus Americames flowered, in 1820.
" 25.-Prunu: Pemayluanica, P. Virginiaua, and Ameltuchier in flower.

[^84]


```
    |
```



```
        1.\:-
    * In Nimm matlinmi, 14,14
```



```
    ":
```


[^85] （110）lux lowen


```
    " *" ||小心1 1%N=1
```


the mature of the western torritories womth of the lime, have pased
 apractiad limit to the tide of mettement in that divertion. Sine it has

 the statemonts ot interented milway and where companices, to elevate it to the imaginaly position of an arricoltaral comitry. Now, howarer, that

 itreclaimahls.

 that it is often dithenlt to arrive at athy vory exice romelasions. ('hief' monge these is the distribution al preapitation with regarl to varoms seanoms. In ordinany ciremmstames, only that rain which bills dering the spring and stmmer, when the drops are in the grobuch, is of importather. Much, however, deponds on the nature ot the whinoil, lior, wherea comsiderable thickness of poroms matherial is based on impervious porks or
 the antmonal and winter previpitation, and esperially the food-water of the meltings show in springe, may also be combed on. Many eonsiderable areas of pratic eombley are thas sitmated. 'The genemal water lovel has in some cases been ascertained to be not far trom tho surface, even in the athtum, and the moisture rising by eapillary attration prevents the entire desiccation of the surface soil. 'The natare of the swit hore enters ats all important factor.

6ins. It is stated by Bumsingrall, howerer, that in ligypt, where no ratin falls during the perion of growth, that the distribution of seventeen and one-third inches of water over the surfite, during the season, of one humbed and fifty days, suffiees to bring the crops to matmoity. The gromal is here water-soaked to begin with. In India, in a season, of the Name lometh, sixteen and one-third mehes of irvigation water are distributed, the rainfall making the amome up to nineteen and one-half inches. The evaporative effert of the air of the wester? plains is no donnt nsually less than that in the commtries above named, rendering a somewhat smaller quantity of water necessary.

 the observations of the three patat yeare, is $15 \cdot 46$ inchere.
bitio. The tollowing detailed talle of mintall at he hast mentioned
 its distribution therorgme the gear, ind it will ho apparent that the
 fin agriculture.

The precipitation in the Ral River Valley wond appear to be least near the Bomulary-line, an al l'embina the average for three geare in stated to lo $13 \cdot 16$ ind hes. In 1873 , it was $14 \cdot 185$ inches, against 1700 at Wimbeper, while at Fort Alererombie, 180 miles somth of the forty-ninth panallel, it was alum 15 s , and at fort Wiakworth, 50 miles finther sonth, $29 \cdot 45$; the avenge for tive years at the latter pate heing 1806 , 中 or probally alout the same an at Wimipeg.

Gif1. Prof: Dam's genemal mems of total precipitation for different areas of the comtinent may lee compared with the athove. It in estimated that the eastern portion of the continent, from the Gull States to Labmalur, including the greater part of New Enghand, New York, and the Athatic States, and Temassee and Kentucky; receive 40 to 45 inches or more. Michig:m 30 inches, A latere part of Ohio, Indiana, Illinois, and New York, wowd the St. Lawrence, 33 to 40 inehes. Regions beyoud the Mississippi, 25 to 15 and 10 inehes.

[^86]662, It would mpear mot only on theoretiral gromads, but an the rosult of experience, that the min-fail of the Rad Rivor Valley, ansinted by the water remaining in the soil from the spring floods, is as a rule amply sufficient for agriculturai purpones.
663. The question of water supply, neemed nome yearn ugo a difllent one in the Red River Valley, (irent areas of level mul fertile prairic, lie far from nuy strenm, or moonly tmversed by conlees, which dry up completely during the smmmer, 'The stincture of the comintry rembers the existence of surfue springen almost an impossihility. This mppurent difficulty in, however, being nolved in the most satisfactory manher ; an it is found that there we fow rexions where ordinary wells of modernte depth do not succeed in finding muple supplies of water ; and this not only fur removed from the rivers, hat in their immediate vidinity, thongh the water level of the etream may lie considerably lower than that of the bottom of the well. The rather impervions mature of the prairie subsoil, ronders it probable that thene wells are supplied either by intercalated coarser layers, or, -as apears to be more likely-hy water circulating in fissures; which formed origrimally by the eracking of the soil at the surface, often penetrate its homogeneous mass to a considerable depth.
66.4. The success of artesian wells, at Wimipeg (\$577) also tends to Nhow that no apprehension need exist, with regard to water supply. Water is there formed in a gravelly stratmm lying above the boulder-chay, and has, I believe, suffieient head to form flowing wells. It is further probable that a second water-hearing stratum might be reatched by continuing the boring through the bonder.elag, to the more porous stratum which usually intervenes between it and the solid rock.
665. For the supply of theshallower wells first referred to, the water is no doubt mainly derived from that which fills during the wet months, on the surfice of the prairie itself. The water obtained by the artesian wells, however, has not this solmree, and comes from below the most tenaceous beds of the alluvium. It is introduced, no doubt, at the ediges of the more permeable layers where they come to the simfice east and west of the alluvial valley. That there must necessarally be a considerable underground circulation of water, is rendered evident on inspecting the region near Pembina Momatain. The graps worn in the front of this escarpment, are occupied by streams, some of which drutin considerable areas, and are not diy even in the latter part of the summer. All these, except a few of the very largest, where they debouch on the low-level
phin, occupy conlées nt some depth below its grenemi surface, which, howerer, grmhully die ont, the atremm at the same time dismpenring.

Country of the Second Prairie Steppe.

666, 'The extremo western murgin of the Red River prative, in the vidia.y of the who of Pombina Momban, is diversitied ly groves of ask, which stretch out from its hase; und woald mo doult, be much more extensively wonleal, bint for the comstant recorrence of prabie fires. The foont of the excmipment, and its smmmit, forming the edge of the second prairie steppe, ure in nome places thickly worded, und always now extensive phtches of timber. The forenteovered aren increases northwestward. In the vidinity of the Line, the womls owe their preservation to the protection arninst tires abmided hy the broken mature of the edge of the escarpment, by the great valley of the Pembina River, and its Nystems of tributary conlés, and to the treguent oecomence of patehes of swanp. Poplar is probably the mont abmulant tree, thongh even after ancemding the escargment, groven of oils are fonnd. The wooded region has, howerer, in all localitionsuffered much from local tires; most of the trees at present living are small, while traces of aformer henve forent growth frequently appear.
667. In some places pretty extensive prairio areas ocelur between Pembina Escapment, und Pembina River, and with the exception of a few localitios, near the edge of the excarpment, where the Crotaceous clays are near the surface, the soil is of excellent quality, and ditfers from that of the Red River Valley by the addition of a consilemable proportion of sandy material. Swamps are here pretty thickly seatiered, and some of thom attain large dimensions in apring. Those parts of them which are permmently wet, howerer, bear laxurient crops of natural haygrass, and the general aspeet of this region is favomable.
668. On erossing the Pembina River, the eastern margin of the great treeless plain is entered on. No wools now appenr, except those forming narrow belts along the vallies of the streams, and soon, even the smaller bushes become rare. The shimbe met with are genemally stunted, from the absence of shelter against the wind, and the frequent passage of prairie fires. The little thickets consist, according to situation, of dwarfish snow-berry (Symphoricarpus occidentalis) S'piraa, roses, and willows fringing the small swamps and pooks. The metallic-leaved silverbery (Eledanus argentea), comparatively rave in the Red River Valley, now begins to ocelle in abmolance on the drier areas. In the last

Week of May, 187t, the common flowering phats on this enstern purt of the tirst pativio stoppo, were; Vioha cacullata, I. predete, Remuncuhas rhombeidrus, Anemonr preteres then going to seed, and the whole prairio concored with its brownish woolly heals; (iram trithorm, fomm most abmalatly mear tho edge of the esearpment, less commen westwand; Astragalus cargocarpus, beoming mpidly more abmalant westwand, Atennaria plantaganifolia, Lithospermun cane'seces, tiosa bossoms.

B69. The madnating chameter of the pratie hetweon lembina
 and ermedy hilleress, has received mention in the chapters on the dritt. With reference to the soil west of Pembina River, wealy the same remanks apply as to that east of it. It is fertile, thomgh mot so deap or

 almond, hot their atea is quite small as eompared with that of the dry

Towam the end of the smmmer, most of these swampes dry up completely, and axtemsive regions are then without other water supply than that derived form the streams and rivers, which lie in deep vallies.
 would le fonnd in ohtaning water, by wells sumk in ang of the lower parts of the prabice. 'Ther raintall of this rearion is probably slightly less than that of the Red River Valley, but apream to be suthe ient tor aricollurall purpores.
botl. It secoms probable that at a period mot very remote, a ireat part of this distriet was covered with torest trees. The hamidity of the suil and climate is suthicient for their growth, and in some places, little hommocks, resembling those formed in a forest, and kown as 'equllo hills' were olserved. On approathing Turtle Momatain, the temency of this part of the paide to reclothe itself, is shown by the oermerese of thickets of seedliner pophars on the sheltered sides of the madnations, wherever the fires have not passed for a few years. Between Pembina River and 'Turtle Monntain, and experially toward the latter place, the dep narow paths, or ruts, made ly the buthalo when towedling, are still quite apge rent; thongh the animal has not heen known so the cast fior maty years. They have here a remakiably miform north-west mul south-east direction.
671. 'The water of' the swampes and pouds of this part of the prairio is generally sweot, but one distinctly saline lake was seon. It had not the thick fringe of gitasses and sedges of the other ponds, und here, for nunculus e patirie and mocse whard; ill, Aten'emblina of stony the drift. :llle rodeep or melly, y-g.". the dry וןי ציploper vallies. itlicully " lower ally less or agrifat part the swil lo humce hills' his part hickets werer er and marrow e: yeals. theeant
the first time, the sulficornet was met with in some ahmulatere. Phere were also many dead shells ot Limmed, and Plamorbis pareus; but whether these molluses lived in the satine water, or were washed thithere from sume neightoring swamp, I was mable to determine.
 atrealy beon desoribed in amother comertion (S5 51t). Forming as it does, a more on less thickly wookled area, which may be estimatern ats over 300 square miles, it cammot hut he a valuathe marlens fier the utilization of
 matering, and as a relnge fir wintering stork, whirlo during the summer has been herded at harge owe the patirice. Thengh the chevated and broken area of' the 'momitain' is prelty nearly "ybally divided lay the

 of the so-calleal mometain, which, homgh more bahlly mululatilig that the praire, show groul soil, and will eventally low chated for agriculture. There are indications that this wowled arear reveives a muel mome cobions maintall than that of the survombing comentry. 'The 'momian' is now the lean guartors of a barge band of sioms ladims, many of whom were concerned in the Minnesota masadere. They are at rather gront looking and well-dispused race, and derive a moderately comtiortable subsimbere from lounting the moose, wapiti, de.

 of the forest, and thems growes on the ridges, of grows interepersed with other trees. White birch (Betult allot) is almulam, thenght not forming

 cama) are also fomed, the latter attaning emsiderable dimensime in some of the mare sheltered vallies. The largest peplats ohseremb must have been orer two feet in diameter at the base, and of gomb height. The areatge size in many grove is alnout eighteen inches. The oak amd birch are seddum over two fied in diameter, and the hatter are getmerally much less; luat growing in thick maseses, and very tall. Most of the

 Astra.

 wyinn.

 1 ma .
tios. The valley of the sombis hiver is here mearly a mile wide. It

 "imbing.

 I, Am:n vorign
 ןiniol!
 y llowir
 ling\%. which , Nluel, ri, lill winn 4 Whlar which highor Noul ul' y y y Miol oll

Sullion 11 whin aloullhomph lnoיl

 of both limmations being compholely manked by the thisk deponit of manly drilt.

plain. Last yand, this mgion was pasked over during the last dayn of
 grass being fresh and good. 'The shord pation grass, howevor, oven
 (o) that of the swampand hallows.
tisis. West of Turlle Momatan, the comitry in mumentiomaly dryer

 much of this region is sulliciont fior the maturing of arops, with a soil
 talked of as a demedy for the defiedont mintall of many western regions, is only applicablene those comparativery small districts, whore water
 in vallies mand depressed helow the gemeral level of the planes, and havins a rey small rate of deseent, amot he used in this way. It would "ypear that vast areas of the western phans, somth of the Vertilo Belt of the 'askatherwat reqion, and west of the Missomi Cotean, must remain as pasturo gromms, for which they aro in areat prot well tited.
(is). 'Ihe procipitation during the smmomer months, on these grent, patins, aplatis to he almest wholly ot the nathe of local shwers, aceompanied he dischate of eloctricity. 'The extreme mifurmity of the sme face af the combly, when the weather is settled-allows a well marked
 oflen completely amolless. but as somen as the simis heat begitis to ho

 ing comtinally laber, and more momerons, drift with the prevaling wind-which is gencrally wosterly-and about three or four whock in the atternoom, small local thander starms and doveloped. Several of these
 leace to tiom larger storms, this is companatively rave. During the night

BS5. It wonld seem that the chameter ot the second pratio phatean where erossod by the lorty-niuth parallol, is that of much of the north-

 less maiting.
day' of (int, the $1 \cdot$, oven y them y liyer weromen fall wer han and ll much regrions, 0 wnter
 all hasfortid ile belt II, must titted. Ne great , accontthe Nillmarked sir and in to ho by local 0 growevailing k in the of these ads coatte night e dawn. platean a northrapidly 10 vicilırier and

('owntry of the: I'hirel I'wiris S'ropes.

 thickly wooded, i,ut fior the pribie tires, which here semmetimes rum homdrede of miles in the dry weather of the antmon. An it is, the want of wood is one of the most serions drawhack; athe animale liod over these hills insmmer, wonld regnive to he wintered in some of the diver vallion to tho nordi, or in tho wooled mines of tho 'lertiary phatean to the somill.
687. A sample of the efloreseent waline matter, of one of the ' A lkaline' lakes of the Cotrian, give on analysis, tho following rewnla :-

Mannesie sulphate	$4!06$
Sorlic milphate	4773
Sontie chtorite	117\%
Irom	traces

The inon oremen anotoxide, and appans to be proterted by organie matter present in the mase. Λ gualitative examimation of a similab saline incernstation from the Somin Valley, near Wood Eucl, showed the presence of magnesic and modic sulphates, only. A small quantity of thin satine matere of 'alkali' is not foman to tre injurions fo corns, in the Wertern States, where sulticient moistare exists; nor does it appear to be detrimental to the growth of grasis.
(i88. Gonth and west of the Cotean, lies the great platean of the Lignite Tertiary, which may be waid to begin about the 3550 mile point, mul oxtend as a well defined table-lamd, as find as White Mul River-a dintance of 115 miles-in the vicinity of the Line. Its form is very irregular, but its area may be about 12,000 ngume miles. The soil of this
 are that the randall, excopt in a few favonred nots, is too small for the growth of the ordinary crops. Its elevation also, no doubt, renders it
more sulbject to early and late frosts, than the prairie to the east, though the winter is probably not so severe as that of the Red River Valley. On reaching this purt of the third platean in June of last year, the vegeta-tion-from a comparison of the flowering plants-appeared to be about a week behind that of the second steppe. The platean of the Tertiary is for the most part, only adapted for pastoral occupation; but being covered with a goold growth of grass, is well suited for this use. The strip of country between the platem and somithern edge of the Cotean, partakes in some measure of its chameter, but has a less favourable appearance.
689. An important advantage of this platem, is the existence along its edges of sheltered ravines and vallies, contaning groves of poplar; and also the presence beneath it of great deposits of lignite coal. In one of these sheltered valleys, the half-breed rettement known as Wood Momutain, is sitmated. No cultivation of the ground has been sttempted ly the few families frequenting the place, and its prosperous days are alrealy over, as the buffalo, on which its existence depends, now rarely come so far east. It is, in fact, merely a base for a certain number of hunters and traders, who have found it convenient to erect wintering shanties there.
690. South of the plateau, as far west as Wood Mountain, the region draining to the Missouri, is also based on the Tertiary, and generally bears a close, short growth of grass. Beyond Wood Momntain, the low ground, both to the north and sonth of the platean, is hased on the Cretacenus clays, and is, in most places, dry and barren. The 'grease-wood' (Sarcobatus) and other pecnliar chenopotimm., now appear in the flat, clay-lotomed vallies of the streams; and many varieties of 'satge' (Artemisia), and other shrubby composita are found. The dise-leaved cactus (Omuntia Missouriensis), in some phaces forms extensive bels, and in the last week in June, was found to be in full flower. The drier slopes, which are scareely capable of supporting a sol, show among the stunted grass Selaginella rupestris, and a small species of lichen. Many peeuliar sonthern, or extreme western plants, were here met with for the first time, and here also the 'jack rabbit,' and 'sage eock ' (Centrocerus urophasianus) find their castern limit.
691. The White Mud River, or Frenchman's Creek, may at present be considered the eastern limit of the buttalo, in this battitude. During the last sixteen yea:s, their front has been driven back, in the vicinity of the Line, over two hundred miles, and it is proballe that their northern limit has been contracted to at least a like amoment.
692. West of White Mud River, to the 505 mile point, an mululating prairie is passed over, resubhling in its regetation the surtace of the Tertiary phatean. It is decply drift-covered. Beyond this peint, an outlying portion of the 'rertiary patean stretehes for about thintr miles. It is moch ent up by moines, and sometimes very stony, but is covered in general by a dose sod, amd shows at few swanpe with grod grats.
603. There is avidence that over the whole eastern part of the third prairio steppe, and especially over the 'Tertiary platem, the season of 1874 was an exreptionally dry one. Grassen en the drier hill-siden, which had ripened their seeds the season hetore-ats evidenced by the seed stalks-in 1874 showed no thower, and even the leaves were searcely green.
69.4. Beyond this portion of the Tertiary phatem, an arid plain stretchos with little interruption for fitty miles, or nealy to the Milk River. It also extends fir north-westwad lowarl the Cypress Hills, and appears to coalesce, along their western front, with a similar desert region, which-aceording to Palliser-exists to the north. It appears to be irremediably sterite and meless, being hased on Cretaceons No. t, and in great part eomposed of the debris of these rocks. (S 351.) In carly spring it is evidently, in many pheters wet, but in summer, dry, hard, and fissmed, and seancely supporting a sol. It is thaversed by the vallies of the East and West Forks of Milk River, which rise in the vicinity of the Cypress Hills; but both the main streans and their tributary conlees become neatly dry before the end of the smmmer.
695. The western limit of this plan, is fommed ly a stip of more elevated land, lying between it and the Milk River, and about fivo miles wide. This is again based on the Lignite Tertiary fomation, and shows a miform, short sod; with some lakes and swampes, surromeded with the hay-grass, along its eastern border.
690. Were, during July and August of last year, the greater part of the 'Big Camp' of the half-breens, wais situated. The hunters and traders in this region congregate for mutual protection, and form, as it were, a tribe among the Indinns. They live under no law or restaint, other than that impore by necessity am by the genemal consent, of hy the priest who accompanies them. Spending the summer at lange, in the neighboumood of any district which happens to be well stoched with butfabo, they fall wack castward for winter puarters. I tew ot them going to Wood Mountain, but most to the White Mud hiver, south of the Line, near a traling post known as Fort N. J. Turnay. A eompara-
tively small proportion of the rohes obtained by these people, fint their wily to Wimipeg; most of the thate being carried on towand the Missomi. The smmmer hunt is ehiefly to ohtan pemicen meat, the skins of the linfalo killed being lixernent! wasted, lat the antumn mul ealy winter, when the skins are prime, volues are the chief olyect. The Indians, though some of them are friendly to the he hifhreds, and ghat enomgh to trade with them, are naturally jenlous of their humting, mid shaghtering buthalo for themselves. In July last, the ' Big Camp' consisted of' over two humbed tepees, most of them of dressed skin, like those of the Indians, hat some ot camvins. Wery family owns carts, at least egual to in momber to that of its members; and when the amp is
 horses; the tents being pitched romal the whole. The total momber of honses possersed by the camp was stated to be about 2,000 , vahed at from $\$ 20$ to $\$ 100$, according to their aptitude in hathalo moning. A few weeks before our :urival, the hatf-hereds hat been in the ('ypress IIElk, and hat there assisted, or combenamed, the Siomx in a tight with the Barkteet, in which eight of the latter tribe were killent. The ramp is assiduomsly gharded, to prevent surprise or hopse stealing.
(6)\%. From what I combleam, I believe, that at the present rate of axtermination, twelve to fomben years will see the destruction of what now remains of the great northern hame of hattalo, and the termination of the thate in robes and pemicam, in so far as regads the comtry north of the Missomri Rivel.
698. Westward from the Milk River, the infertile Cretaceons chays do not recom, the comntry being based on the Lignite Tertiary. To the base of the East Butte, the surface, thoush not of the same desert charaeter as that met with east of Milk River, we covered hy a short, thin sod only, and is in many plates stony also. The mofivonahle appearance of all this region, does not arise so mach from any deticieney in the soil itself, as from the absence of sufficient moisture. The vegretation, in fixet, depends ehiefly on the saturation of the rromed by the water of the melting snow, and spring rains; and, when this is exhansed, is brought to an end as effectually as if by the onset of winter, thongh long before that event.
699. The general appearance and extent of the Sweet Grass Hills, or Three Buttes, have alreaty been noticel (S. 30:3.) Their height and mass is sufficient to canse the formation and arrest of clouds in their immediate vidinity, where the rainfall is in consequence much more copions.
nd their arl the he skins x cully Indians, enough mingteristell of e those at least $:$ for the number , valued mming. the ('yix in killes. aling. mate of ff what ation of orth of s clays To the chanaeinll sod ince of litself, 1 fact, of the rought before ills, or it and ir imopions.

These momatains, mid the broken ground aromed them, form a favourite hame of the buttialo; which here tind abmandare of foold and water. The *pring, arixing from some purts of the Buttew are very cop ions, und form streams, which on leaviig the sheter of the wooded vallies, and iswhing on the plains, are mpidly ahsorbed by the dry soil and atmosphere-at least in thesmmmer seasom. One of these way observed to be a mpidly flowing hrokk during the night and morning homs, but in the afternoon hecame quite dry: The timber of the Buttes is chiefly pine, (P. Banksiana ?) much of it hats been bumed, but it shows a tendency to renew itself. The trees are not of great size, and generally in somewhat imneeessible parts of the momutains, but cammot be considered unimportant in a comitry so treeless. A tew of the plants, found at elevations ahove 6,000 feet in the Rocky Momtains, appear also on the summits of the Butter.
700. The comutry sumponding the Buttes, is said to have been for a long time a mential gromm between various hostile tribes of Indians. That it has been so, is evidenced by the almost complete absence of buffialo bones in their neighborthowl, and the rare necurvence of the (dirles of stones, marking eamping places. The region is at present a debatable ground between the Bhackfeet, Peagrans, and Bloods of the west; the Sionx and Assincboines of the east, and the Crows and other tribes of the Upper Missomi. It is not passed through save by war parties, strong in mumbers, and travelling rupidly, Ten miles north of the central Butte, the brolies of orer twenty Crow Indians were fome unburied, on the seene of a conflict.
701. From the Sweet Grass IIills, toward the Rocky Momntains, the comatry improves in apparance, and shows evidence of a greater minfall. The catctas, grease-wood, and Artemisia cease to appear. To the Second Branch of Milk River-a distance of 55 miles-the country is generally much broken, but shows remains of a former more elevated surface, in somewhat extensive flat-topped hills, which, when aseemded, are fonnd to be nearly of equal height, and show much drier and more gravelly soil than elsewhere found in the region. There is usually a dose, thick growth of grases, and the swamps and sloughs, which are mumerons, generally hold grasses and Carices to the exclusion of the rushes formerly most ahmulant. The watershed region, from the Second Brameh of Mitk River, to the St. Mary River, is ot' a similar character.
702. The portion of the fertile belt fringing the eastern side of the Rocky Momenains, in the neighbourhood of the forty-ninth parallel, is
about twenty-five miles in width. On crossing the St Mary River, a very marked and rather sulden inhuge for the hetter is ohserved. The surface, at the same tiane, becomes more undulating und lyoken, nud is quite hilly befons the actual hase of the momatain is reached. It is now covered with a thick vegetuble soil, supporting a lixuriant growth of grass; and wherever the tire has spared them, trees are to be fomul in all stages of growth. Many phants, hast sern in the neightombend of Pembin Mountain mad the Red River Valley, and which across the more arid plains have been ludsing only in sheltered hollows and danp, coulées, now re-ippear over the surfine of the comatry generaliy: The rivers and streams, also, entirely change their chanacter, and inte id of flowing shuggishly with a milky opacity, now hoh clear blue water, rum swiftly over stony and gravelly beds, and are tilled with trout.

The thickets are genemally of pophar, hat in the immeliate vicinity of the montains show bireh and coniferons wees mso. The Eloagmus found in stmuted thickets on the plains, mow forms a well-grown bush, and the vallies and hill-slopes in Angust were gaty with varrims species of Aster, Solidayo, Epilobium, Castilleia, and with Geranium Fremontii.
703. I was informed by traders, who had wintered in the vicinity of St. Mary River, that the snow does not lie here for more than about three months, the temperature also being much milder than in localities fiuther east. It would appear probable, hovever, from the altitude of the eountry, that early and hate frosts may shorten the season agriculturally, to a greater extent than indicated by the above statement, As the Momed Police are, I believe, at present wintering in this neighbourhood, more anthentic information on the climate will no donbt soon be forthcoming. The buffalo are said to frequent the foot-hills of the mountains in winter, in great numbers, and their remains were found in the South Kootanie Pass, as far as the hast patch of meadow land, on the east side of the watershed.
704. For this part of the eomatry, the momutains form in inexhanstable source of wool for construction, and also for fuel, though extensive areas are known to be mderlatid by coal. The timber in the momutans is chiefly coniferons, and not of large size, exeept in certan seeluded vallies. A species of pine, somewhat resembling the Banksian pine, but which I believe to be Pinus contorta, is tomnd pretty abmodantly in some localities, especially on the gravel terraces, and valley battoms. It would afford good straight timber, but does not attain a great girth. The Douglas pinc (Abies Douylasii), also occurs on both sides of the is now owth of nd in all of l'em. te more couléer, vers:and tlowing swiftly
vicinity 'loagmus il busla, species mtii.
inity of it three further of the turally, As the urhoor, e forthuntains , Sonth tst side xhansttensive mtains clucted n pine, itly in 1s. lt girth. of the
watershed, but is generally small. The largent timber ohserved, was in some of the higher and more seeluded vallies. The trees resembled the back spmoce, but wore probubly Abics E'nyflmami. It is mmecessary here to enter into detail with regard to the alpine and aretic flom of the higher parten of the momentins. I was only able to devote a few spare homes to the collection of phants, bit a mumber of very interesting forms were obtained, and will be fomblatalogned in the apremed list.
705. The foregoing descriptions will show that the chnracter of the third stepre is much more varied than that of cither of the others ; but also that no part of its southern extent compares fanvouraly with the land of the Red River Yalley, or that of the best purts of the second steppe-always exeepting the land along the immaidate base of the momntains. At the same time, the explorations in comection with the Boundary Surver have served to show, that this comutry, fiomerly considered nlmoss absolutely desert, is not-with the exception of' a limited aren-of this chameter; that a part of it may be of tature importane agriciculturally, and that a great area is well suited for pastoral occopation and wock firming.
706. The fertile region at the hase of the Rocky Momentans, aceording to Palliser aud other explorers, marrows somewhat about tifty miles north of the Line, but then spreads eastward, while the momentains tread to the west, and includes a great area of fertile comntry in the vicinity of the North Saskatehowan, the wore northern position of which is more than compensated for, by its decreased altitule, and the lower and more open mountain passes to the west.

This fertile helt to the north, must form the hasis for the settlement and utilization of the western plains. The eactus-eovered desert trate does not seem to streteh firr to the north of the Line; but there is an extensive region of the third prairie steppe south of the fertile belt, which is described as haring a poor soil, with sennty herbage, and no wool, except on northern exposures.
707. With regard to the climate of the third prairie steppe in the vicinity of the Line, not much iuformation is at command. In two places, I was thbe to ohserve the temperature of copious springs, flowing out at such a depth from the surface, as io rember it prohable that their waters were not far from the meen annual temperature. On both oecoasions, the thermometer indieated $4^{\prime} t^{\circ}{ }^{\circ} \mathrm{F}$. One of the localities is near longtitude $106^{\circ} 30^{\prime}$; the other at 116°. 'The mean temperature of'
the groater part of Montana, to the sonth, in estimated to ln 48°; showing, if the observations are to be tusted, a lower mean temperatare liy two dagrees on the forty-ninth parallel. Climatal lines, however, are not very ntrict or well marked on the western phains, and it is probable that the climate of a great part of the thind steppe nearly coincides with that of northerol Montum, where more continmons records exist than any arailable for the renton to the morth.
708. 'The mean temperature for each month nt Fort Shaw, one hundred miles south of the Line on the 112 th meridian, is, in the following table, placed side by side with that of Winniper \dagger :-

Jamary	Ft. shaw. $21 \div 8$	Whaipeg $\vdots .91$ y	July	Ft shaw. $70 \cdot 2$	Whnlpas. (1.7. 87
February	30139	$2 \cdot 9$	Angust	.. $67 \cdot 15$	64.75
March	36.58	$9 \cdot 0)$	September	$54 \cdot 04$	51×9
April	$46: 1$	$30 \cdot 21$	October	4912	$40 \cdot 01$
May	56.04	$51 \cdot 18$	Nuveniber	3092	14:58
June.	64.98	63.64	December.	26.75	10.56

The mean momal temperature of Fort Shaw is 47.33 , while that of Winnipeg is 3259 . 'The temperature of the six wamer months, May to October inclasive, m morthern Montana and the Red River country is protty nearly equal, showing a balance of only whout four degrees in fivour of the former. The six winter months we, however, very much colder in the eastorn locality; mnd this notwithstanding the fact that Fort Shaw is ahout 3,000 feet higher than Winnipog. Thus, while the menn ammal temperature of the Red River Valley stands abont $1 \pm$ degrees lower than that of Montma, this is not brought about by any great defieiency of summer heat, but by the long continuance of steady eold weather in the winter. The extreme of winter cold is probably almost as great in Montama as in the Red River country, the thormometer at Deer Loolge showing a minimum of $-30^{\circ} \mathrm{F}$. in several years, but the cold weather is not of long continuance. The snow fall is very light, and seldom exceeds a few inches in depth at any one time. The total annual precepitation-mean of two years-amounts to 8.95 inches ouly.

As a pastoral and stock-raising country, the higher mean anmal temperatme gives the thind platean an important advantage over the region to the east.

[^87]showing, , hy two , wre not dile that vith that han uyy
one hunpllowing

CHAPTER XII.

CAPABILITLES OF THE REGION WITH HEFERENCE TO SETTLLEMENT,-(Continucl.)

 -Climate-Wintering of stock-Difticulty of access-Inionan or whe Gikassntupp: Its flight-Years when it has appeared in Manitola-Means of prevention-
 wooled-Canses tending to destruction of forest-Causes of treelessness of prairie-Dryness of soil and atmosphere-Canses of dronght-Canses of greater rainfall on wooded areas-Facts tending to show progressive desiecation in the west-Similar drought brought on elsewhere by destruction of forest-Amelioration of chimate hy planting forest-Trecless area of the continent-Normal area of comitry which should be in forest-Snecessful growth of trees in the went-scheme for the planting and preservation of trees.
709. The description of the region in the vicinity of the Bomalaryline, given in the last chapter, may serve to indicute those mrens best fitted firs settlement, in that direction. Aecurate and detuiten infirmor tion of the smme kind is now in process of aceumalation over a grent part of the North-west, and it will ere long be possible to estimate the protuble value of the whole interior jortion of the Dominion. Fucts as at prosent known, appear to show, that after the fertile valloy of the Red River is taken up, the progress of settlement will follow the valley of the Saskatchewan River to its heal, and then spread north and sonth along the castern base of the momatains ; that the great pastorat area of the plains south of the Fertile Belt, will be entered from the north, while the northern forests and lakes will become tributary in their products to the settled region, from the other side. Toa certain extent this progress of settlement will regulate itself, and will be a matural growth tuking alvantuge of the cupabilities of the country, but there are certain adverse influences, which will require early and elose attention, if lhis growth is to be as rapid and sound as it should. It is proposed here-withont enlarging on the great advantages of the North-west-briefly to disenss some of these, and to indieate the bearing on them if the resmits of expertience gained in other regions similanly sithated.

7ft. Manitobat, and agreat part of the North-west, has bedore it the future of a great agriveltuan comntry, and comagh is already kinwn to show that over immense urean mines of metultic minerals cammot be relier
on as some of wealth. It is improbable that metallie ores, other than those ot aron, will he tomud over the area of the platims, umderlatad they are by the sott and little disturhed roeks of the Mesozoic and 'Tertiary. Goll, it is true, is known to exist in small ghantities in the drift materials of some localitios, ${ }^{*}$ and may here and there be fomed in remunorative proportion, but its production will probably nover assmme much importance. The great aroa coverod by the eotal and lignite-hearing formations, as they are at present known, insmes a suphly of finel for all time, to the settlers of the western portion of the phaning, but coal mining will only becone an important industry, when the eomitry has been opened uj, and there are extensive agrientimal commmaties depending on it. The igreat present olyost ot those interested in the North-west, shonld theretore be to tiurther agriculture, and the interests of the agriculturist and storkfarmer, in evory possible way.
711. Climatic conditions have already received nome attention, and it , hot hero proposed to discuss them further. They have a very direct bearing on the utilization of the combtry, but for the present they mast be taken as they are, and the speeial prohlems presented in each district will be wolved by experience rappelly acpuired. The severity of the winter samon in certainly one of the groatest disalvantages of the North-west, ats an area for settlemont, but, ingrioultmally, the intensity of the cold is mot no moch a mater of importanee an its duration; and where-as in this regrion-the length and heat of the summers are known to be sufficient to mature all the ordinary orops, it may, to a groat extent, be dispegarded. For stock raising, both the duration and intensity of the cold must be taken into aceomt, though oven hero the former in the more important. I an aware, that in this region, homes and attle aro at present frequently allowed during the winter, to feod themselves as best they may. They generally survive, and ofton do not look much the worse for their had treatment; but this haphamed plan will not find fivome with earethl farmers. In the Red River combtry, animals to which proper attention is shown, roquire alditional food to be supplied to them, either in the form of hay or roots, for at least six monthe in the year. For the cultivation of the latter varioty of erops, the soil of the Red River Valley appears to be excellently suited.
212. In northern Montanti, the contitions are somewhat different, and stoek is ther systematieally allowed to winter out indepondenty, or with only very slight aid in the way of fed. Similur comditions of

[^88]climate mo dombt pevail orer the greater part of the thind stepre. To
 quently possess large bands of time, though smath animals, which they value at a low rate. Mr. Selwy, in advorating the iden of inducing the lodians to become stock-miners, and eathe-heremes, as tho bothato heromo extinct, mentions instanees ot shay rattle wintering out suceressfinly on the North Saskatehowan.* In July of last summer, I suw a band of cattle in the vieinity of the Lines, sonth of Wood Momatain, which had strayed from one of the U.S. forts to the sonth. 'Ther were quite wild, and almost as ditionolt of approath as the hatialo; and motwithatanding the tact that they had eome oriminally fiom 'Texas, and were manemstomed to firost and snow, they had pased through the winter, and were in capital condition.

7l3. In the tisture, when the North-west is somewhat thickly sottled, the long perion of the year during which out-loor agricultural work is impossible, will tend to fister the growth of manutactures; and especially of mills and fatories for the daboration of the erude materials proluced in the combtry itself. 'Then only will the fall me vantage of the emomous liguite and coal deposits, and water-puwer be devoloperd.
714. The thre most important remaining natural deterreats to the settement of the North-west appear to be:-Distance from makets, and dithentty of attamment by the immigerant ; the grasshopper visitations; and the treolessmess of exreat areas of the platins, and general scarcity of timher.
715. The tirst of these difticulties, will seon be to a groat extent remedied, especially as regarls the aceess of immigrants. 'The romoteness of matkets will, however, continto to he felt in some metsure, and when the local demand tor the eheaper grans, and homier food stufts, is satistied, stock rasing and the produrtion of light and vatublo erops, which will hear a comsiderable chatge for tamport, will remain the mont protitable tor a long time to come. 'Though wheat may be easily grown in immore : quantity, the protit to the farmer mast be light, as long ats the cost af trameport forms so large a part of its lotal value at the eastern poits. Wool and dairy produce will demame attention, and for the growth of thas, hops, de., a great part of the western regions, -and esperdally of the lied liver Valley-is well sutad. Flan and
hemp have already been coltivated with stlecens in the Red River country, in former years, the ILudson's Bay Company granting a small bounty for their proluction. Their growth was discontimed chiefly, it would seem, from the want of proper milling facilities*: The natural limit of agricultural settlement to the west, renders it certain, that as the enstern regions are more exclusively taken up for this purjose, the western phans, unfit fior other use, will become more valuable as pastoral lands.
716. The inrome of the western devasiating grasshopper, or locust, must be combed among the greatest diseouragements to the settler, and in some of the newly occupied Western States have cansed actual ruin and famine. The grasshoppers forming destructivenwarms in the region of the plains east of the Rocky Monntains, appear to belong to a single species, which has been called Caloptenus spretus. This insect much resembles the Caloptenus femur-rubrum, or red-legged grasshopper, which in exceptional years has been destructive to crops in various parts of the Eastern States. \dagger Spretus differs, however, from femur-rubrum ipecitically, and cam not only be distinguished from it in form, but possesses to a fur higher degree the instinct and power of migration; circumstances suiting it to the almost boundless plains which it inhabits. It is not here intended, however, to enter into a zoological deseription of the inseet, for which Prof. Thomas' Synopsis of the Acridide; or the Seventh Anmual Report on the Insects of Missonri, by Mr. C. V. Riley, may be referred to.
717. The locusts are not natives of the eastern region of the plains, where their devastations are most severely felt. They come from the fir west as a winged swarm, and where they happen to be when they are mature, their eggs are deposited. From these eggs, in the ensuing spring, the young eome forth, and canse often more complete destruction of crops than the winged alults; for they attack the young grain, eating it down as fast as it grows. The young so promined, however, appear not to have so much vitality as those coming fresh from the wost. A great part of them may reach maturity and migrate some distance, but their progeny in the third season scems rarely to give much tronble.
718. The real home and permanent souree of supply of the locusts, has been a question giving rise to comsiderable disemssion. Mr. Walsh and others have supported the theory that they come from the alpine

[^89] :hiefly, it e natural , that as jose, the pastoral or locust, ther, and tual ruin er region a single much rewhich in ts of the specificmsen to a nstances not here asect, for Annual erred to. ${ }^{2}$ plains, 1 the far they are 5 spring, of crops it down to have part of progeny
regions of the Roneky Momatans, and issming from their vallies and camons, spreal eastward over the plains. It seems, however, to he now very generally conceded, that the high and dry phans along the whole eastern base of the monntains, are their chiet breding phaes; to which in British Americal may, I believe, be added the ontire area of the Lignite Tertiary phateall, and probably also the greater part of the third great pruirie steppe.
719. The range of the insect (meming ly that tem not only their chief breding places, but the whole area known at one time or other to be overrmo by them) is not bommed to the west by the Rocky Momatims, exeept where these constitute, an in British America, the unbroken front of the western region of forest. Ther spread acooss the watershed in Coborado and Utah, and appear to have been observed by Mr. Byers in the valley of the South Fork of the Columbia River, near Fort Hall. Sonthward, aceording to Prof. Thoman, they extend ins far as the Raton Momntains and into Texas; while to the east they have spreal to the paririe combtry of the Mississippi, and have been known, on more than one ocension, to penctrate far into Iowa, The entire Province of Dlanitoba is liable to their incmsions, and they have peneteated in swams as far east as the Lake of the Woods. Northward, they are probably only limited by the line of the coniferons forest, which approximately follows: the North Saskatchewan River.
720. The eges of the locust are not deposited promisemonsly; on uniformly distributed over the surtace ; whether in their mative breeding places or in their eastern colonies. High and dhy situations, with hard soil, are preforvel. Thus, when the young are hatched, trom this original disposition of the egge-and no doubt also from a natural surgurions ten-dency-they form colonier, which are often widely separaten. These I have seen on the third prairie platean in 1874, and the young insects are also noticed to he thus distributed in the Red River combtry this year,* and elsewhere, wherever they have been careliully observed. The inseets do not seem to travel fiar from their hatching phace for some days; but when they have increased somewhat in size, Jeyin to move forwad together, and in a determinate direction, though not by any means invariably from north-west to sonth-east. Dh: Stulley, of Kansas, has experimented on the unfledged grasshoppris, by sifting flom on them in the moming, and meanming the distance travelled over by the insects so marked at night; and tinds that
their rate of progress is trom one-fourth to one-half mile per diem. In the last week of July, 1873, I met the grasshoppers hatehed out in the northern part of the Red River combery, travelling senthward down the valley. They were in the pupa stage, and appeared to be advancing more rapidly than the atove measurement would indicate. Their fixed determination to travel somthward was remarkable.

721 . On oltaining their wings, the graswoppers prepare for flight, and only wat the advent of a tavouring breeze, to set out in the direction which their instine leads them to pursue. On July 12th of last year, I obeered swarms realy for flight on the high plains of the third platean, west of White Mud River, (long. 107° 35') The day was hot and calm, and though many of the insects were on the wing at all altitudes in the atmowhere, they were following no determinate direction, but sailing in cireles, and crossing each other in fligat. The greater number were hovering over the wwamps and spots of laxuriant grass, or resting on the prairie. A slight breath of air would induce them all to take to wing, causing a noise like that of the distant sound of surf, or a gentle breeze among pine trees. They appoured ill at ease, and anxionsly waiting a favorable wind.
722. The grasshopper has not intrinsie power of swift flight. It can bear itself up on the wing for a long time, but depends chiefly on the wind for propulsion, and travels fast or slow according to its motion. It flies only in the sumlight and during the warmer hours of the day, coming to the gromed about 4 p.m., if the day be fine ; or at any time when a heavy cloud covers the sum, or on the approach of a storm. Nor the it fly in any direction the wind may happen to bow, but has the extraordinary instinet to travel only on those days when the wind may favour it in its appointed course. This, as alrealy mentioned, is generally sonth-enstward, from its high-land breeding grounds to the lower and more fertile eastern regions. It is mot by any mems invariahly so, however; and some of the brools hatched this spring are alrealy showing a similar persistent desire to move northward, while get in their full strength and vigour. When the locust reaches nearly its eastern or southern limit, the organization of the wwams appears in great measire to fail, they move in almost any directon with the wind, or remain long on the gromed where food is abmendint. After the deposit of eggs, which in the normal equence of events nest happens, the inseets are much exhansted, and som die, though often making a last short fickle flight.
723. Such is the usual life-history of the insect. The canses which

In the o loorthvalley. rapidly tination r flight, irection year, I platean, II calm, in the iling in er were ; on the o wing, breeze niting a

It ean

 ne wind It flies ning to heavy it fly in rdinary it in its th-eastfertile er ; and itar pergth and 1 limit, y move ground normal d , and a whichfortunately prevent its increase and continued abode in the eastern prairie region, appear to be chiefly elimatic. It would seem that the loenst requires to bring it to healthy matmity the dry warm climate of the higher plains. In the eastern colonies the young are sometimes hatehed in considerable numbers by a mild autum, and perish in the succeeding winter. A relapse of cold and damp wather after their hatching in the spring, causes the death of great numbers. The eastern brood is a weaker one, and is accordingly more sulject to the attacks of disease, and parasiter. Mr. Riloy catalognes fiour of the latter.* The two first (Trombidium sericium, and Astoma yryllaria) are mites; the two latter (Tachina anomyma, and Sarcollaya carnaria) flies, the larve of which feed on the grasshopper and live within it. All these seem to have appeared in connection with the swarm of 1874 , and their progeny of this spring, in Manitoba. The Trombidium or silky mite attacks the egg. The Astoma attaches itself to the mature insect, genemally under the wings.
724. The first appearance ot the locusts in formidable numbers in the Red River Valley, seems to have been in the yoar 1818, six years after the fomdation of Lord Selkirk's colony. They then arrived on the wing in the last week of July, and destroyed nearly everything but the wheat erop, which partly eseaped, being nearly ripe.t Eggs were deposited, and in the following spring, the what and all other crops were destroyed as fast as they appeared ahove ground. Eggs seem again to have been deposited in 1819, and in 1820 the creps are said once more to have suffered greatly. The next recorded incursion is that of 1857 , from which it would seem that tor 36 years the insect hat not appeared. In 1857, the crops are said to have been so far advanced as to cseape great damage, but eggs were deposited, and in 1858 all the joung grain wats devoured. In 1864, they again appeared, and left their eggs, hat neither the allults, nor the young of 1865 were sufficiently numerous or widespreat to in much damage. In 1867, numerous swarms poured in, but did little injury, the crops heing too far advanced; their progeny in the ensuing Spring, however, devoured everything, causing a fimme. They again appeared in 1869, the young in 1870 doing much harm. In 1872, fresh swarms arrived, hut as usual, too late to do much damage to wheat. Eggs were left in abundance in the northern part of the Province, and :n the following Spring the furmers over considerable districts did not sow.

In 187t, winged swams agatn emme in from the west, arriving earlier
 ligne wore deposited in almost all pata of the Province, and the result has yod to be seen.

Fis. 'To the question: what ean be done to prevent the mages of these insects? 'The athswer is he mothes so satisfinctory us conld ho desired; set it apeas that mueh may be done by eombination, and the cultivation of a self-reliant spirit among the tiontior sottlers, aded hysuch wise legishtive measures as may be fimmed, and caried into exeention with a healdh commensurate with the teritary to whieh they shomal apply. It is mow known that a very great aron, comprising the chief breoding gromme of the lorenst, must always momain unsetted, or ocenpied only as pasture grounds. It emmot therefore be hoperl, that advancing raltivation will restrict the breding area pet evon here it seems that some affort may usetinlly be malde. 'The vast extent of' the western plains might at tiat seem to prechale the possibility of ombrang them in :my comprohensive measmro, but their charncter remders this less difficult than wonlal appear. By a system of inspection, in which many men need not be amployed, the chief localities in which oges were deposited in the antum, over immense areas, might he learned. Then when the young brood appears in spring, the systomatic tiring of the prairie grass orer these areas, wonkl, if' it did not destroy the whole of the young in-sects-yet rember tho eomotry for a time so baren that the greater part of them womld probably perish. To preserve the prairie arass from tires the prodeding antum, would bo the nost difient! part of this seheme, but by taking advantage of rivers mud other natual features, and the addition of plonghed lines, as tire-gnabds in some places, a very great areat might be so divided into isolated blocks, as to prevont the very wide spread of amy aceidental fire. This precantion seems a desirable one also, as a measure in the systematic preservation of timber trees. Supposing, howerer, that it bectume known that errasshoppers in great numbers had hat shed. and were likely to deseend on the settlements, it would appear posible by preoncerted arrangements, to lorm, by firing the prairie at the appopriate time, a broad black zone arross the line of their migration, which the inseets wonld not willingly eross. There would be litte

[^90] 1 mg iner part min fires cheme, ind the at area y wide 10 also, posing, r had appenr irie at migraelitlle
 gested-in proxlacing within a few dayw a helt of black comatry 100 milew wide, allugether beyond the present limits of the P'rovine of Manitoha.

72t. When a horde of wingel locists comen down on the sethements, eomparatively little em he done to prevent the destraction of the arome Swarm follows swom, often for days thgether, and eventally owernan resistance. By the use of smoke, which is allowed to drift aterosis the fields frem smothered tires or 'smmulges,' many of the inseets maty be prevented from alighting. In somthern Minmesota, a proeess called roping' tho grain has been attembed with comsiderathe suceoss. A horso being fastened to earh end of the rope, it is draged to and fro ateros the field, brushing the insects firom the ntalke, and often cansing them at late (1) fly off. They may atso be caught in great mambers in seoop-mets and bags, especiatly when somewhat torpint, in the evenings and mornings; and where the area affected is limited, this may be useffilly emplayed.
727. Whenever the grase-hoppers have deposited their erges, attentim should be turned to these. The methex of destruction which seemes to have been found most sureessinl in the Western states, and decwhere, is fall plonghing. The cegg-tules are thes deranged, mind most of them buried by so deep a layer of arth, that they either do mot come to life at all in the succeeding spring; or hatch oo late, amd in such small mmoners, that they do comparatively little injury to the crops. This alson allows carly spring sowing, and gives the grain time to atlain some growth hefore the young locusts come down on it. This ploughing should extemb, ats Mr. Taylow has shown, to ruats and oher
 ited applicahility is the collection of the eggs by hamed, prantised in ditferent parts of the okl worll.* The inhabitants, armed with slanpermed aticks or hoes, go out together th the spots where the oggs are known to be most aboudant, and receive a gevermment lomuty by measime fior the eggs coflected. In at comitry where the setted areat is quite smatl, in comparison to that lying waste, this would probably have lithe result, exrept in cates where the deposit of egges wats confined to a somewhat limited area, when its vigomens aloption might mot only save the arop of the immeriate vicinity, hat those of other localities which the grasshappers might visit, when alterwards taking light.
728. In apring, the wir should becontinuel, and ar som an the gomg

[^91] destruetion of locusts are here mentioned, and statistics, se., concerning theme biven.
are hatehed, means mast he devised for their destruction, aided if need be by government homties. Buraing the prabie in dry wonther ; the use of heary rolless ; driving the yomer insects tongether by ronverging cireles, and destroying them with llat worden shovels; driving them into stame, which is aftervards tired, or into tires, streams, or ditches, have all beell employed with greater or less suceess. The varions species of blackbirds, the puarie herns, and other birds, will also aid in their destruction at this season, and where large fock of lomestic fowls are kept they will
 wherever a ditch of modotat "ut surrombling them, can bo filled with water.
729. Tho locust appean to be woth igh ombivorons, and though Nowing a preference for certain kinds of food, will ent almont any plant it case of need. There is therefore no (rop which may be grown with assumance in a grosshoperer year. It is rery genemally foumb, however, that they : woid sorghum and broom-oon; and when other food is to be had they do not eat potatoe-tops, beets, or tomatoes. They also appear to inave a general dislike to the Legrminose, and prefer other phants to peas and beans. This last fact maty stand in cansal connection with the great ahmadare of legmanoms plants fomed on the western phains, an abmadane obtaining both specitically and mmerically. What wonld appear to be ono of the surest erops, when foreign swame are axpected, as it very geneally ripens betore their arrival. That it may do so, howerer, it is neeessaly that the seed should be sown as promptly as fossible in the spring.

7:30. Manitoba, from its more northern position and proximity to the great borest regions, appears to be less liable to widespreat visitations of the locust than the regions further south, and the swarms which appear do not seem to be so dense on destructive. Some of the abore mentioned means may consequently be amployed bere with success, but I believe that a great part of the Western States and tervitorien will always remain subject to periodical invasions. The extensive planting of trees, and the establishment of belts and groves of woodland over the area of the platins suitable for acriculture, seems to offer a future prospect of amelioration. The breaking up of the surface of the comentry in this way, will not only tend to prevent the swarms from spreading themselves so widely and uniformly, but will encomage the increase of birds and other animals likety to prey on the insect; and will besides tend to bring about a change in elimate, which will render it less
cul if need ther; the onverging them into s, have all s of backmetion at they will y insects be filled d though any pliant own with howerer, 1 in to be (1) plauts to with the lains, an at would xpectel, y douso, mptly as imity to d visitaes which re alowe Cens, but ries will plimting wer the re prosntry in reading rease of besides it less
suitable to the invalems, and ofocially manited for their propugation and inerease.
733. The supply of wool for lmilding, fencing, and find, wer a great part of the North-west, is a matter which appats to reguire immediate attention. The existence of great areas of phath, almost entirely dextitute of timber trees, is now generally known, mind on another page of this Report, it has been uttempted to estimate the part of this region which lies to the north of the Bombary line. A arre trom the great inmediate disadsamtages of so vast all cextent of treeless prairic, its preseromer and the complete abseme of ferest-clat areas, cammen hat hate a very serions effect on the climate of the whole interion region of the continent.
733. Seread writers have devoted attention to the calle th the ree-
 the whole, or almast the whole, interior region of the cor ata : as been forest clad; it has been comtended by others that the greater, a in af the area has never heen covered with trees, and reman me . ans be heen hrought formand which show, in the opinion of those on. ans site of the controvery, that the pariries are incelpalle of sumperting a forest prowth. The plains are known to have heen thickly elad with comiterons and wher forests, in the Teriaty perisel, hat thereare other ciremmstanes tembing to show that in companatively modern, and post-mpacial times, a very much greater area was tree-chal than at present. (Chicf among these is the great abundance of land and fresh-watere shells, in the bater deposits of the Missomi, ahrealy mentioned, and the graulat desiceatiom, which, on the testimeny of mally ohervers, has been, and is still, gringe on wer great areas of the West. This, though it maty at present be imensitiod
 mate, camot be entirely attributed to sulth calleses, but is the mathal result of the decreasing area of the region of forest. Agatiant theso tacts may be phaced others tending to an opposite conclasion, or at least to the molitioation of the iflea of the finmer miversality of forents. The absence of syatems of drainage vallien in mathy regions, has been aldeady refermen to, as showing the imporabiality of fimmer great rainfall. The absene of any remains of old forests, or of roots, or drift-wood in the subsuil and alluvial deposits of the greater patt of the plans, would appear to hatve a like meaning, It would seetar most aceorlant with the facte, abs they are at pent kinow, to comclude that, sine the ghatial period, the phans have newer been entirely:
avered with forent; but that extonsive prairies bave contimed to exist in the drier regions, from that time to the present day.
733. The canson now in operation tombing to the perpetration mad
 their attembant conserpemees. dulging from the present origin and influence of these conthgentions, it cim hardly be doubted, that ever since the thest peopling of this continent, the aren of treeless prorie has been in process of enlargement in an incrasing matio.
734. In the virinity of the forty-ninth purallel, west of Turtle Monntain (long. 100°), trees me nover fombleming on the open surface of the phain. When they exist, they lark in sheltered river vallies and maines, where they aro patected, in great measure, from the nweep of pravie fires, and find more abminat moisture; yot even in these retreats. :dey suffer perioclical destruction. On the growth of trees fior anmber of years, they become smbombed with much vegetable matter, and the fire catching in this, bams down into the valley, and sweeps away a grenter or less area of woollatud.
735. 'The increase of the area of the plains at the borkers, ant the destruetion of the forest, are chanly pereptible, and have been noticed by ull the explorers of the region. (fipt. Palliser writes:-" Large thatets of comatry now prairie lands have at one time envon valuahte forests, and their present absence is the result of the repeated raviges of the. Where a seattered and stanted growith of willows is fomal, as a genoral rule was amejent forest lamd, which, when dug te a suflejent depht, still discloses mumerons poots of destroyed timber," and in amother phace:-_" It is most lamentable to see so often such matsies of valuable timber destroyed, almost invariably by wanton carelessness amd mischiof. The most trivial signal of one ladian to amother has otten lost humdreds of aceres of forest tres, which might have brought wealth and comfort to the fintme settler, while it has bromght starvation and misery to the Indian tribes thamselves, by spiling their homting groumbs. The Indians, however, never timght by experienee, still use 'sigmal fires' to the same extent is in former years, lriving the anmats from their retreats, amd marring the fitir the of nature for the fature eolonist." 米 Mr. Selwyn, in his last published repert, makes the following remarks on the same sulpert: "The drying up of the combtry alvenly alluded to has bean aseribed to varions cilluses, but is gemerally supposed to be con-

[^92]meeted with the aradmal destruction of the forests over latge areas, by tire, diminishing the minkill. Whatere the effer may be of thene destrone ive ronflagrations, in referene to the water supply of the region, there is mo dombt that at difterent times alorost every ngume mile of the comntry between Red River mul the Rocky Monntains, has been subjocted to them; :am that himdrods of miles of torests have thas been converted into wide and almost troeless oxpmases of prinitie." Now that attention is so prominontly drawn to the North-west as a region for settemont, it seems time that some logislative action, having for its oljoet the provention of these disasterons prairio tires, should be taken.
736. With such a potent canse as this still in active operntion, it would semreely seem neressary to search further ; yet to acenunt for the present treeless comdition of the phans, many theories hase been bromght torwaid. It has been eontended that the extreme fineness of tho wairic soil prevents the growth of trees,* bit in the Red River mad Mississippi Vallies, trees are fomd growing, and attaining a very large size, on the finest varioties of this soil. Xigain, the peaty chander of the soil, is mged as a canse of tredessmess. It is supposed to have been formed daring the gradual recession of groat lakes, and to be mafaromable to the growth of trees, like that of morern praty swamps, fiom the propertion of almice neid which it containst The firm und tomgh nature of the prairie sod, and the well establishod suprenatey of the grimses, is also mentioned, and is mo doubt athe ratuse to a certain extent. 'The presence of 'alkali' or saline mattor in the soil, has also been shggested an a eanse, and though it may have some effect in exceptional localities, I have not abserved that its ocerrrence in small quantity is incompatible with the growth of trees, except in so fill as it may tend to show the too great dryness of the soil. It has also been stated, that as at a comparatively modern perion, the whole interion region of America has been submerged, and as large lakes are known to have covered extensive areas of low-lying prabie in even more moxlern times; that the forest growth has not get had time to spread again over the reedevated surface. * It seems to have been forgotten by the alvomates of this hast theory, that many of the trees best anited for growing on the puraric, have light winged and
fenthered needr, capable of long nerial flights, The vationn nperien of poppars and willows may te specially mentioned, and it is a fact which
 wooks, drifting over the open conntry with the snow. "are are frobably few lurge areas of the phins which are not every jer : more on lens thickly reeded with, int least, willow and pophar.
737. The excess of moisture in the soil, during some momathe, hats also been brought forward, but certninly camot aply to any comsiderable area west of tho Missiswippi and Red hiver. The drgoess of the soil and atmonphere, as a comse of treelesnieser, !ans denervedly received more attention, and is modobledly a trite cmase over great arems. Prof. Dana upholds this theory, and has very clearly shown the relation of prairios and regions of drought,* Tho needs of trees mad shruhes, and of all phants, except those suited to withstand tho greatest desicemtom, though they may be seattered broadenst, and may germinate in the spring, wre, in many districts, within it few monthe killed ly drought; or, even where the moisture may be suthicient for their growth, it may not be enough to atford protection from tiro. In these regions a putel of forent once destroyed does not renew itself, and cim only be restored by care and cultivation.
738. The area of the interior phans cin never, since the complete desation of the Rocky Momatains, have heen a very moist one. The winds with their prevailing direction toward the east, in passing over three to five hundred miles of serried peaks and pidges, loose a great proportion of their moisture; and a great part of the rain which shond be spreud over the entire west, is expended on a comparatively nurrow strip of coming along the comast. All the facts at present kown, however, strengthened also by amalogy with other comatries, appear to show that the dryness of the plains is in great mensure intensition hy their treetessnes. The very dryness of the atmonshere and soil, is thus bronght about, to a great extent, by the destruction of forest areas lyy fire, and the effect is a cumulative one. When therefore it is asked-why, if the pruiries were originally in groat part forest-elad, they do not now show any tendency to revert to that condition, or even to renew the growth of trees over lately burned areas? It may be answered : that while the area of prairie was still quite small, there would be an immediate effint in that direction, lut that as the prairie with its hot, parched, and min-repelling

[^93] fiut from are pros on loss thes, hats emonidon of the received

Prof. lation of N, anul of siceation, 0 in the dronght; , it may a patch restored
plete elche winds - three to ronertion (e) epreal Nutip of however, how thit treelenslht about, the effect prairies :any tenof trees e area of t in that repelling
surface increased, the effort womld heome more feeble. Aromid itw lorders the forest in howevor still cuphble on' npreading mpontme ously where protection from fire is aftorden; ; mid it is olservalile, that in many direcetions the pratirie land has alremby reached its matural limit, mod that its further extension, and the aecompanying inerense of dronght, are checked ugrainst regions too mach broken by irregularity of surface, or sub-divided by swmp and lake, to allow wideripread conflugruions.
733. Many fhete are alremy known which tend to show the progressive desiccation of the West in modern timen ; and explorep ure constantly meeting with :ulditional ovidence of the name kind. Over the greater part of Montana, forent oneo dentroyed in not matamally renowed, here and there a fow trees are fomed which ajpear to be remmants of former torests, and there is nome reason to believe that "even where modisturbed by the hand of man, the finesten are gradaally disappeming from natural cansen,"* Similme facte are also oherved in Califormin. In) Datkota, Prof. Thomas timds 'dry lakes,' or the dry basins where lakes formerly existed, now ontirely tevoid of water, and which do not appeur to have been in this ntate many gears. Beven the hakes which still contain water, are said to have the apparance of decreasing year by year. There are also evilences of formor nwampy , pots where the grass is still more luxariant than that surrombling it, but the water hats disappenred from the surfice." \dagger These hollows and lakelets no donbt resemble those of the second prarie phatem north of the Line, and hough I believe many of the appeameer bear other interpretations, there still appense to be aresidnum of evidence in favonr of change of climate fir the worse. In south-wostern Minnesota, Prof. Winchell has recorded facts concerning the former deposit of calcareons tuta, which appear to have a similar bearing. \ddagger Mr. Selwyins observations to the same effect on the second prairie steppe between the Qu' $\Lambda_{\text {ppelle and the Saskentenan, have been }}$ alrealy referred to, be writes with regard to the little lakes of the prarie :-" They appar all to be gradually dimanishing in size or drying up. This, Matedmald tells me, has been going on steadily for several years. Ife says that what were formerly large lakes are now small pools, and all the lesser ones are already quite dry, and their beds overgrown with grass and weeds." $\$$
740. Evidence similar in teno to the above, is met with constantly

[^94]on the plains, and the change toward desiceation would therefore appear to he widespread, and is often, even by the least seientific observers, attributed directly to the dereased area of torest. That this may at least be a great part of the canse, is rendered evident from the proved effect of the destruction of forest-land, in other and better known regions. Where eombries sitnated in a too humid and chilly climate, have been to a great extent bared of forest, direct andiomation appears to have resulted, bat where this denadation has been canrici to excess, or where the ranfall is naturally not more than sufficient, disastrous effects have followed. The ammal raimith has been observed to diminish, or in paces where it is small, the stummer precipitation hats failed altogether. The elimate has become more exteme, springs have disappeared, and distriets formerly under cultivation have had to be abandoned.

7t1. Sir R. Murchison observel such effects in Russia. He writes: "The axe of the miner has been a prime calase of this increasing Wrought. The inhatitants of the Ural Mombtains, complaining of the ammal decrease of water, invariably refer this effect to the clearing away ot the forest." Dr. Sturelecki, speaking of Now Sonth Wales, says: "The destruction of forests has renderel the climate drier, and is threatening the interests of agriculture.'* Similar results have been observed to follow the clearing of forest lands in France, Spain and other countries of Europe, in Atrica, in India, and elsewhere; and were the fact disputed it might be substantiated by other references and quotations. Boussingault, Sir John F. W. Herschel, and other meteorologists, who have given the subject attention, conemr in their estimate of its importance.
742. The converse of this proposition can, however, :ortumately be proven, and increased rainfall and general amelionation of excessive climates, have been fomd, to a greater or less extent, to follow the renewing of forests, and in some cases to result from the judicions phanting of companatively inconsiderable areas of trees. These results have naturally been observed, for the most part, in the old world; and espectally where attention has been paid to forest growth and eulture fior some time. Babinct and Blangi concur in stating that minfall has been caused in the previonsly rainless region of Lower Egypt by the

[^95] in other oo humid st, direct ation has not moro 1 raintill the summe more der cultinereasing ig of the clearing h Wales, |ricr, and bave been pain and and were nees and metento-- estimato nately be excessive Jlow the judicions e results orld ; and dedture infall hats pt by the
growth of plantations, and a similar effect, coupled with the increase of springs in number and volume, has been noticed in France, South Ameriea, Australia, Madeira, St. Mchena, and other cometries.*
743. A comntry elothed with arboreal vegetation is, to a great extent, protected from denading agencies, ly the mat of vegetable soil with which it becomes coverod. The shade atforded by the trees, also prevents the too rapid abstraction of moisture from the soil, and it is accomolated in the subsoil, and the supply of springs and rivalets regratad and maintaned. The precise manner, bowever, in which a mantle of trees acts, in cansing increased precipitation, is mot so well known. The foliage, no doubt, tends to retard and arrest currents of air, and by lowering the temperature of the statum wearest the carth canses the formation and growth of clonds. It would appear, however, that a great part of the influence is of a more subtle nature, and dopends on the clectrical state of the air and earth. Mr. Fryer evidently inclines to that opinion. Trees rooted deeply in the damper layers of the soil, and ending upwards in immonerable ronducting points and edges, must tend silently to nentralize the difterently electrified air and earth, and relieve that state of tension, which, when it exists in the former, canses the repulsion of the apmeons particles, and prevents their coalesence and precipitation. The pratie grass when it is green and frosh, may, to some extent, have, in this way, the same effect as trees; but it is at once apparent, that a hot and parched surface, whether of rock or sand, or dry, withered grass, must not only not attract rain, but actually tend to repel it, and prevent the precipitation of the moistare existing in the atmosphere. Last year, on the recond prairie steppe, I noticed the formation of clouds over the broken and wooled area, known as Tortle Mountain, which, though it may have been brought about in some measure by its elevation, seemed to he cansed chiefly by its forest-chad surtace. The wind was fresh, and blowing from the south-south-east. and though the whole sky was hazy, with light clouds, a persistent cloud-cap seomed to form over the higher wooded area, and tail away towards the north, some light showers falling upon the mountain at the same time.
744. The Creat West of America is too new to have yet aceumulated many farts from experience, but in several directions, encouraging results have ahready heen observed to tollow the advance of settlememi, and the phanting of trees. "Whon the Mormons tirst settled in Utah, they found
the district barren. Water had whe hrought almost incredible distances, in wooden pipes. Trees were ararefully phanted, and nomished with the water so brought, and now the distriet may be termed the garden of the world, and is not dependent on water brought from a distanee, but enjoys a steady rainfall."* I am informed by Mr. Groo, editor of the Salt Lake Herald, that the climate is still changing rapidly, he writes: "The lake in gradually rising, and has been tor many gears. It is perhaps four or five feet deeper than it was twenty years ago. This is donbtloss due to change in the character of the seasons. Eatch year the amomut of rain that talls in this valley is greater than that which fell in the previous season; hene the streams of water which fow into the lake are larger. The water of the lake is not so strongly impregnated with saline matter as fimmerly; and not so mueh salt is fomat on the shores, as there was a few years ago." Di. Mayilen, as tar back as 1867, is athe to write:-"The settlement of the combtry, and the inerease of the timber have already changed for the hetter, the climate of that portion of Nebraska lying along the Missonv, so that within the last twelse or fomsteen years, the main has gradually increased in quantity, and is much more equally dise tributed thronghont the year." \dagger And again, in 1870, "It is true that, over a width of one humbed miles or more, along the Missouri River, the little groves of timber are extenting their area; that springs of water are continually isuing trom the gromed where none wore ever known before; and that the distribution of min througheme the year is more equable." \ddagger Mr. R.S. Bltiot states that there is a popilar persatision in Kamsas, "that a climatie change is taking place, promoted by the spread of settlements westwardly, hreaking up portions of the prairio soil, and the covering of the earth with phats which shade the ground, more than the short grasses. The that is also noted, that even where the prairie soil is not disturbed, the shom buftalogras disappears, as the 'frontier' extends westwad, and its phace is taken by growses and other herbage of taller growth."s

7t5. Tho treeless phains of the western portion of the United States are estimated to have an area of 400,000 square miles; adding to this the plains north of the forty-ninth parallel, with a probable area of 192,000 square mites, we obtain as an approximate total areat of the great treeless plains of North America, the sum of meally six hundred thomand square mitos. The ingurions effect of a treeless region so vast

[^96] hence ater of merly, s years settledready lying I's, the lly dis. e that, River; ngs of e ever year is Dersutaby the mairie round, re the as the other

States
0 this
rea of
f the
ndred
p vast
as this, on the climate of the western part of the continent gemerally, cammot but he very ereat; and it in the conse of time, any considerable fration of it can be phated with trees, or bronght under the plongh, the resulting amelioration in chmate will he remarkable.
746. Mr. Elliott in his report, makes the following very suggestive remarks:-"Were it possible to break up the surface to a depth of two feet, from the ninety-seventh meridian to the momntains, and firom the thirty-fiftl to the forty-fifth parallel, we should have in a single season a growth of taller berbage over the entire area, less reflection of the sm's heat, more humidity in the atmosphere, more constancy in springs, pools, and streams, more frequent showers, fewer violent storms, and less capriee and finy in the winds. A single year wond witness a changed vegetation and a new elimate. In three years (fires kept ont) there would be yomg trees in momerons places, and in twenty years there would be fair young forests. - The limited arrea which it is in our power to turn up by the plongh, will have the same results in kind, to follow a breaking of the entire sufface, but less effective than if the operation were muversal. Yet a beriming can be made by the Railway Company, and by individals. - A few acres at intervals across the plains, or only a few clumps of trees growing withont regularity will be a demonstration more effective than theory." *

The possibility of the successful growth of trees on the prairie, when the most witable localities are chosen, and proper eare qiven to their phanting and coltivation, has already been demonstrated in many parts of the West. Many interesting facts on this point, and on the rapidity of growth of the trees, will be found scattered through the varions reports on the Wortern Territorios of the United States. Dr. Hayden gives the following statisties of growth of plantations in Nebraska, some of then situated on the higher level prarie, six handred feet above the Mismon' River \dagger Cotton-wood (Populus monilifera) of seven yearagrowth, With a circumference of $\boldsymbol{2}$ feet; ten years growth, $\boldsymbol{2}$ feet $\mathbf{4}$ inches to 2 feet 11 inches, and $2 ; 5$ to 30 feet high. Soft maple (Acer rubrum) of seven years growth, with a circumference of 1 foot 10 inches, to 2 feet 1 inch, and 15 feet high; ten years growth 2 feet 8 inches. Box-elder (Negundo acervides) ten yeurs old with a circumference of 2 feet 2 inches. And other varieties of treen showing similar rapid increase in size. Dr. Ihayden is of opinion that within thirty to fifty years forest trees may be

[^97]\dagger U, S, Geol. Surv, Territ., 1807-60.
grown large enough for all ecomomical purporex, and instancen a cate in which, in ten yeure time a farme was able to supply his own fuel from the limbs and dead trees of his platations, which would otherwise have gone to decay,
747. It has beem extimated that athont one-hind of the surfare of a country should be in the state of forest to secure the greatest climatic alvantage, and to yield a sufficient supply of wood for the various purposes of settlement and civilization. Such an estimate is necessarily only approximately correct, and there are varions cireumstances, differing in each lueality, which tem to moxlify it, chief among which is the presence of mineral finel, and the neighbomborl of extensive and mbroken tractw of forest. If, however, it be reduced to one-fondth, to cover the case of the parts of the North-went more immediately suitable for settlement, it will still be apparent how far these fall short of the respured proportion. In the territory of lakota, the highest estimate places the timbered area at from 3 to 5 per cent ot the whole only. The proportion of timber in the Province of Manitoba, ats at present constituted, is much greater, hat is still too small ; enpeeially when it is taken into consideration that a great part of the woodland lies together in the eastern region, and is far remove from many of the districts lest suited for agriculture. Went of the 100 th meridiam, there are regions of greater size than this Province ir which the tree-covered area is almost nothing.
748. In Manitoba, and the North-west generally, then, on the first introluction of settlement and civilization, problems concerning the maintanence and planting of forests are fond, which have not presented themselves till late in the history of most comtries, and have then given rise not only to extensive enquiry and researeh, but to the inclusion of Forestry as a branch of the Civil Service, and the appointment of skilled superintendents and conservators. Thongh it has been clearly proven that there is an area of the Camadian North-west capable of immediate settlement, and sutficient for some time to come; there are vast regions in which the evils of the absence of timber, and its attendant results, are too great for the settler to struggle against maidel. Considering that the amelionation of the conditions in these regions must be aw and of tim, it camot le too som lecgm, and must proced either an a public wont : on : encomaged and protected by the Govermment. Woods and wolts of timber, alrealy existing, shombl be protected and manatual, :wion formerly woobled, "ephanted; and the planting of wood-
 climatic uns puressatily liffering the prenheroken Ner the nsettlerequired aces the oportion is much msidera1 region, iculture. h:In this

the first

 ing the resented en given Insion of ment of clearly pable of bele are tendant l. Conmust be her ats a riment. ted ind of woodmot bedoubted that the results of such a policy will be, not only the redemption of great areas of wild, open paried but a very semsible improvement of climute.
749. The ghestion, however, for its satisfinctory und rapid solution, ruguires the formation mad oxecution of a comprehensive scheme, which shall embrace not only the direct phanting and protection of trees, but he shaping of the genern policy, with regurd to the settlement of the country, to the same end. In such a scheme it would appear to be necessary to consider the following points:-

I. The planting of trees should be undertaken and encouraged.

750. This might require to be carried out as a public work in the remote districts, but where settlement is going on, or has taken place, the planting of sufficient areas might be brought about by legislative atetion; which might take the form of exemption from taxation for a certain number of trees set ont, or even in exceptional circumstances, he of the nature of adirect bounty on phanting. In several of the Western States and Territories such a course has been adopted. In Nebraskal, where more planting has probably been done than in any other comntry so new, the act of 1869 exempts from taxation property to the value of $\$ 100$ for five years for each acre of forest-trees planted and cultivated for timber. It being provided that the trees are kept in good growing order and set not more than twelve feet apart. This enactment is said ahrendy to have probluced a very considerable effect, many settlers availing themselves of it. The French, Italian, and other Governments have similar regulations.*Russia with regard to the distribution of its forests much resembles British Ameriea, for though its wooded area is estimated at f ty per cont of the whole, it is very mequally distributed, and internal, ummicainon is yet imperfect. The Southern Provinces are very ju" in timber, and since 1842 a (iovernment Forest Administration lats been phor ting largely. Between 1866 and $1870,20,000$ acres have be en phanted exc usive of the action of private owners. \dagger
751. An important item under this head is the collectio and cireulation of information, hoth with regard to the speries of trees most suitalle for exch locality, and the best methods of planting and cultivation. Experin ental plantations of different kinds of trees, indigenous and foreign, in the various districts, would be very instructive. Naure, wi course, to a certain extent, indicates the best species to oceupy advanced positions

[^98]on the phans, hat there mity be others, which ifintroduced, would wareed at least equally well. The various sperios of sproce and pine, thongh not ocemring natmally on the prabie region, if the will grow tace, wond form elficient wind-breaks. Among other trees particularly suitable, may be mentioned the various speries of pephers and willows, whieh have the alvantage of being easily froparated by contings, where the soil is a all damp in spring; and also the ash-leaved mathe. All these are trees of rapiol growth. For low grommer the borders of slonghs and eonlées, chms sugrest themselves as a valuable addition; and to seeme the permancence of wools when once establishol, oaks-of which several
 shouk be phanted among the poplas: and maphes, amb when these are failing, will still be in their tirst rigorous growth. It has also been arger with much show of retson, that to prohure the freatest amonnt
 othor meods of the settler, the trees shomble phated much eloser toreher that suggented by the Nehaskit law. They then suphort ('.dh other better atwinst the boisteroms wimk of the pratio, and form clean long sticks. which can he thinned ont as oreasion reduires. It has also been pointed out by Mr. Hodges la, it they whate the gromed when thickly phanted, and prevent the growth of grass from intertering with them.
752. From facts alloudy stated it will be seon that the growth of trees of fair size is not necessabily the work of a erreat many years, especially if some cible be given them, and plonghing ahont their roots attended to while young. The wood ent ont in thiming a few acres, will, after a few years, serve the famer for thel, which if comoted at the coment rates, will in a short time pay the cost of planting and attention. 's'he settler then finds himelf' with a valuable area of woodland, worth perhaps $\$ 100$ to $\$ 200$ jer acre. When it once becomes well understood that the growth of timber trees from the seed, is as certain as that of any other crop, and that they require a comparatively small amount of coltivation, it will cease to be neeessaly to induce the settler to plant and care for them.

II. Economy in the use of Wood should be observel

753. This must be done for the most part indirectly, bepulariaing substitutes for this material. For holding prepsen, where wood is scarce it has ouly to be shown that it is possible th make concrete or artificial stone from some of the grivels of the district ; which will make

1 suceed culgh not re, wonlld abe, may ich have the suil hese are ughx aud to sceure haverual oll trees, these tre lxo been t amomint fing, anul (h) clower sup uiric, and requires. liade the mins from
rrowth of at many hout their ng is few f comuted ting and of woollecomes eed, is als aratively aduce the

ularivint

woonl is
te or :arfill make
as substantial aud warm buildings, and more promanent ones, to disromage the use of trees for this purpose. May of the prairie subsoils aud chass will make bricks, but thel is usually reguired to burn them. It has heen fomal, however, in some parts of the western territories that prossed and sundried tricks staud very well.
754. It is for fuel, bowerer, that the greatest quantity of wool is required; and to cemomise in this respert it is necessary to enemuage in every way the ofrening up of the various belds of coal and lignite. Also to have the arens likely to yichl wheh tuel carefully surveyed and tested by boring, otherwise, so that the most elgible parts of them, and those nenrest the thickly settled districts shall be determined. The probahility of the discovery of such towsil fuel in varions parts of the prairie region, has already been disenssed, and something has been said on the possibility of ohtaning a supply of peat, with experial reference to the valley of the Red River. This is a materiad not to be dempised, when it can be obtained of the best quality; and which, when the price of finel is rather high, will heal transport to a considerable distance. There are also many areas which giod an inferior peat, much mixed w!h arthy matter, which may yet be dug and used on the spot with alvanage. This may be distinguished as slough peat. and an it oceurs on the pramies, generally formsa comparatively shallow stratiom of a foot or two at the buttom of the little depressed swamps, of halfotivy lakes. Many a tarmer, by a little seareh in his immodinte neighbourhookl. might tind spots where it would be ensy to ohtain this material, and by digging it out in bloeks and starking it, might lay by the greater part of his ainter's supply of fued at a small cost in latwerr.*
755. Under this head, twe, comes the opening up of proper means of eormmaniation, by which eoal firm the mines, which may be estahlished, and wool from the larger forests, may be brought to districts imperfectly :mpplied, and prevent the destrnction of scattered areas of woodlanct.

III.--Prevention of Prairie and Forest Fires.

750. No subject requires more immediate and strict attention than this, for unless mensures are taken to stop, these destrurtive conflugra-tions-the effects of whieh bave been aldredy referred to-no appreciable benetit will result from the adoption of the other means. It may loe saisi that it is very diffecult to prevent the Indians from firing the

[^99]prairic, which is trne, but only applies to the regions far heyond any in which sottloment is likely to talise place for a long time; and these fires sellom spread many handred miles, without being checked hy rain or otherwise. It is unfortmately the case, howerer, that the settlers themselves havo adgured a habit of firing the grase in antumb or early spring, with the idea of problucing hetter grazing, amb cleming out the hay swamps. It seems mrgently necessary that legislation, enfored if' need be by rather severe penalties, shombly bring this constom to an $\quad \cdots$; or at least if it ho consilered a hardship to prohibit it altogether, to restrict it greatly, and allow it to be uppled to small areas only, whieh are surromuled ly a good broad phomghed line. It should also be rembered imperative that the fire shond be watched during its progress, that if through any earolessness, it surpasses the bomme, the person setting the fire shomble be in aneasme responsible for the consequences. It is of comse easy to ciremoseribe fields, hidhlings, and fences, or plantations, with a tew plough furbows, which if curefully turned, form a very effirient barier to the Are; bit the wood growing at large on the pairie, and the belts of timber along the rivers mad ronlées, sufter almost annmally from the inemesions of fires, and are prevented from spreading, as they otherwise would. A better illustration of this cannot be found than the Red River Valley sonth of the Boundary-line. The fires on the western, or Dakota bank, are much more trequat, and have a broaler sweep, and are also very generally urged forward by the prevailing wind. The wools fringing the strem on this side are consequently thin and poor, compared with those on the eastern bank; and there aro great areas eovered only with burned 'rampikes,' and straggling bushes. The fire sweeping across the prairie is almost immediately extinct, but when it is curried forward to the thick belt of oak or elm trees, maintains itself in the dry vegetable soil and half-tecayed timber, and may be detected by its lmid glare at night, often for a long time.
757. The advantage derived from burning the old grass is very slight, and the yomg blades are exposed to the action of the night frosts, and to dronght, in a mamer which canses them to become stonted and soon dry. If the hay-xwamps were properly ent tho preceding year, they would not require to be burned. It will also be found more advantage he to enclose ground, med sow proper hay-grass, and to place less relisuce on the comparatively poor and thin prairic hay, which the farmer has sometimes to gro a long way to obtain.
ond any nd these cked by that the allumn ad clentsislation, s custom prohilit plied to reel line. watched anses the sible for mildings, if carere wool ong the of fires, A better y sonth rank, are lso very fringing red with red only weeping 4 emried If in the ected by is very ht frosts, nter and ng yem, e advanHace less bich the

APPENDIX.

APPENDIX.

De J. W. Dawnin, Fill.s.
The sperimene consist of leaves and other remains preserved in shate, and of

 nites, and can be developed by the nethon of cmatie potash, or nitrie acid.

> 1.-l.kaves kte., in shale-(ibate xyo.)

 of speries ocewre in dark arey shate from dient Valley, from heds beliewed to the wery nearly on the wame geoherial borizon with the others. 'The tirxt mul more important grobp, with referenere to numbers and state of prevervation, we may desigmate the the I'ercupine Creek (irmup; the necomd, the Cicrat l'alley Giroup.

The phants of the first of these groupere for the most part idention with thense fomd by the Ameriem Ceologists in the Fort Union series, dow which have bern

 by Heer, and represented ly sperimens in the collertion of the deolngionl survey and of the University. They alse apponel very mosely to the se-called Mioneme theras of Alakka and tirecolamb, an deseribed by Heer ; and in their fiecies and in neweral of their speres, they coincile with the Mioneme flora of Europe.

If we were to regard the affinitien of the plante merely, and to compare them with the Miocene of other eountries, mand alse to comsider the thet that several of the species are identical with those still living, and that the whole facien of the thora coincider with that of modern temprate America, little hesitation would be felt in asxigning the formation in which they oceur to the Diocene perion. On the other hand, when we consider the lact that the lower beds of this formation hohe the remainx of reptiles af Mesozoice type, that the heds pans downward into rocks hoblding Baculites and Inocryami, and that a thora essentially similar is fonmel asociated with Cretaceoms marine animal remains both in Dakota mad in Vimeouver's Jsland, we should lee inclined to assign them at least to the base of the boedre. They have in finet heen thus variously placed, and recently Lerequereux has attempted to smi-divide the bedk of the corresponding rocks in the United states into a serics of groups, ranging from the Cretneeous to the Mievene.

Photographic
Sciences
Corporation

In my judgment, any precise dedision as to their geological age is premature. We lave before us the fact that at a time when the Cretaccous fama still prevailed in the sea, the land plants of A merica hal alruady come in under the existing generic forms, and that some modern speetes hat lieen introduced, and in the intervening time, while very decided chauges have taken place in animal life, this flora han persisted with only spuecifee change, and with no marked breaks. At the same time, it is eviclent that local diversitios of station were sufficient to produce very distinct floras in different locilities nt one and the same time, and the paleontological botanist is constantly in danger of mistaking local diversities for differences in age, and on the other hand, if correlating beds of different ages, in consequence of the similarity of their fossils.

In these circumstances, it is rash to identify the beds, on the evidence of plants ulone, with purticular sulb-divisions of the Tertiary elsewhere. In order to do this with certainty, it will be necessary to wait until the stratigraphical relations of the beds are better unclerstood, and until sufficiently extensive collections have been made to enalule us to eliminate local difficences, and to understand the actual progress of the clanges on the great scale which have occurred hetween the Cretaceous period and the present time. In the meantime, it is sufficient to hold that we have here a flora which in Europe would be regarded as Miocene, but which in America probably began to exist at a much earlier date.

The small collection of plants from a dark clay, at Great Valley, indicates a somewhat different assimblage of sprecies from that of the other loealities, though believed to be oa the sime geological horizon. The leaves are mostly fragmentary, and not so well preserved as those of Porcupine Creek. Among them are Conifers referable to Sequoin Langsdorfiii and Glyptostrobns Eurousux, a Populus with large round cordate leaf, having distinct obtuse tecth, aud pimate venation, and resembling P. grandidentatus, a Supindus, perkaps S. affinis of Newlecry, a Cinnamomum, one or more narrow-lcaved species of euercus, a leaf similar to Hederu McClureii of Heer, and the remarkable equisetaceous plant described below, Physagenia Parlatorii, Heer Such an assemblage, supposing it to be on the same geological horizon, may be accounted for by supposing a marked difference of station, or some local change of vegetation, depending, for example, on an extensive forest fire, or perhaps the affluence of a river bringing vegetable material from a distance. The flora as a whole has perhaps more resemblance to that of Lesquereux's fourth or Green River group, as mentioned in Hayden's report of 1873.

The following list of species intludes all the forms which I can certainly identify with the aid of the present material. In determining several of the species, and in comparing them with those found in the United Staten, I have been much aided by the kindness of Prof. Newberry.

Filices.
Onoclan sensimlas, L.-This well-known modern Fern, which oceurs also in the Miocene of the Isle of Mull, in Scotland, and in the Fert Union group of Dakota, is fomed in great abundance in the clays at Porenpine Creek. Dr. Newherry has shewn that it is not distinguishable from the existing forms, but most resembles that known us var. obtusilobu of Torrey.
remature. prevailed g generic tervening a has pertime, it is net floras otanist is nd on the Harity of J do this ms of the mye been tual proretaceous t we have America

idicates a

 :s, though gmentary, Conifers rith large esembling m, one or of Heer, orii, Heer 1, may be hange of the afflua whole er groupy identify
*, and in
aided by

Dayalla (Stengloma) tenctifolia, Sw.-In the collections from Porempine Creek, there are several fragments loth of limeren and fertile fromids, which I rannot distinguish from this widely distributed Asiatie species; I give magnifed tratings of portions of the fossils for comparison. I have not had recent specimens of the barren frond, and my determination in therefore based upon comparison of the fortile fronds, for spec'mens of whith from the Himalayas, I have lecen indelited to the kindness of D. A. a . Watt, Espl., of Montreni. In any take, this fern in of the type of D. tcuuifolia, and represents a genus unt uow tomm in North America. It is found in the same heds with Onoclea semsibilis. It appoars to me just possible that the burren fronds described by Heer, as Sphempteris Blomstrundi may be of this splecies. (Ill. xyi., Figs. 1 and 2.)

Equisetacer.

Equsptum, sp.-Numerons fragments of an Equisetum, not teterminable; but similar to E. Arcica, of Heer, from the Miocene of Spitabergen; Porempine Creek.

Phygagenia Parlatorn, (Fign. 3 and 4,) Heer, Grent Valley.-Thin curious plant first described by Heer, from the molasse of Switzerlant, consists of cylindrical striated stems, with nodes at considerable intervals, and prolucing whorls of inflated or sack like botien (ampullac,) which may have heen of the nature of roots, or of submerged hollow leaves, or badiders. Heer seems at a loss to refer it to nny definite phee, but inclines to regard it as submerged portiobs of an Equisetaceous plant. The specimens from Great Valley are not distinguisiable, specifically, from those he figures.

Coniferse.

Glyptostronts Etropars, Heer.-Branchlets and leaves, Porcupine Creek. This specien is common to the Miecene of Switzerland, Alaska and Greenland, and is found in the Fort Union group of Dakota, Newberry. South Pork, Lesu.

Sequol Langsdoaffi, Brt.-Bramehlets, leaves and cones, Porenpine Creek; Dirt Hills, R. Bell; McKenzie River, Greepland and Switzerland; Ulso Fort Union group and Black Hills, accorthing to Lesquerelix.

Theja interrepta, Newherry.- Very abundant at Poreupine Creek, and wood of the structure of Thuja is abmedant in the lignites with whith it oecurs. Remains of its fruit neem more to resemble that of the western Th. giganten than that of the Th. occidentalis, which, nowever, the leaves and branchlets are sul like as to be searcely distinguishable. This species is characteristic of the Fort Vnion gronp.

Monocotyledones.

Lema (spiaodela) scutata, N. S., (Figs. 5 and 6.)—Fronds round kidney-form, entire or slightly umdulate at the edges, sometimes an inchin diamster, slagle or grouped. Roots numerons, filiform, proceeding from a round spot near the noteh of the frond.

This species in very almmelant at the Bad Lamis, south of Woody Mountain, where it is associated with great qumetities of roots, and roothets, or filiform sub-aquatle leaves. It was an aquatic phant with flouting disc-like: lenves, and I ean refer it to nothing else than Lemna.

At the same place is foumd a smaller tri-lobed frome, with three equal ovate divisions, and a diancter of three or four lines. It may indicate a second species, but as only a single prefect frontl was found in the collection, 1 hesitate to describe it. (Fig. 7, a.). On the same slab are roots with pinnate or radiating rootlets, and which are very common in these beds.

Puraomites? sp-Ashociated with the nhove and also at Por ipine Creek, are numerous indlstinguishable remains of rects and other grass-like phants.

Scmpus, ap.-Spikes small, mmerotes, hess than a line long, each with four to five pairs of incurved lanceolate scales. Bad lands.

Scmpes, spl-A -Aother species, with about six pairs of seales und two lines long. Porcupine Creek.

Dicotyle fones.

 cribed by Heer from Mackenzie lifier and (ireenland, is represented by a few fragnume only in these collections.
 and in (hremhand. A few lemers mpene reforable to it bat not with certninty.

 from the Fort Union Gromp.
C. Ammeana. - Watt., Porempine Creek.-This ulno is a recent species and in credited hy both Nowherry and Lasipureme to the Furt Thion firmp. Tloms beth our Americin Hazels ocerir in these deposits; mal ustill finer npecies, C. MucQuarrii, Heer, is found at Mackenaie River and in the Fort Unlon beds.
 Lignite 'Pertiary formation. 'The specien is fimmel in the Fort Union group.
 Greek, but cannot certainly identify them with miy of the nueries deseribed from other parts of these formations.
 found also in the Fort Union licels.
linamses, sp.-(irent Valley, 345 mile point. A simple leaf, wanting purt of the tip and lnase, hat otherwise very perfect. It correspunds, as far as preserved, with R. Eridmi of l'nger, which ocemes in (irecoland, hat it may he one of the species deseribed hy Lestmerenx from the Lignite I'many of the Vnited states.
 the Fort Laiongroup.

Carya astiqcomem.-Newherry, Porempine Creck.-This species is nlse fond in the Fort Union group.

Jeghans cinaba? Porempiar Creek-A leaf no mear this species that 1 henitate to separate it. It resemhles, however, I. bilinice Ung.
 of '. lonceolate, Newhery, from Fort linion (iroupl.
other lemes in this collection may represent a spectes of l'rames, a Thatietrame diflerent from our modern American sjecies, and several other phants, lint not detes minable without more material.

Aescrues antiques, N.S. (Fiers. 8 and 9.)-Pericarp $1 \frac{1}{2}$ inches in length und 1 inch
 wooly spines on the uprer hulf. Secd of similar form but smouth or with a few torthons impressions, Bad Lamels west of Woerly Mominain. This frnit is almost certainly an Acsenhas, bint with characters intermediate in some respects between the Lorse Chesmat and the Amerien Brek-eye.

Thapa banealis?-Here, (Fig. 10.)-A fow obscher prints seom to indicate 16 species of this genus, which may he identical with the ahove species deseribed by Heer from Alaskn. They are associnted with stoms and linear submerged lenver which may have hedonged to this plant, und simihar to those deseribed hy Heer from Alaska. In ohe of my specimens, the two laternd tubereles seen in Heer's figures seem to be produced into spines, making six in all. The specimens ure from Bud Lands, west of Woody Mominin, mal there is an ohseure example of the same form from fireat Valley.

Cambolathes, n.-An ovate frnit of the form nud size of C. Innetus, of Newbery, but not distinctly striated. Bal Lands, west of Woorly Mt.

The following are the species catalogatel by Heer, from Richardson's collections on the Mackenzic. As they lelong to this region, they are given here for comph-rison:-

IIPENDIX A

sur, des-s y a few aic River r
rommon Newherry al is errlwoth our centerrii,
from the
ormpine w.d from

או
t wif the , with R. ciex desi-
necurs in
found in
hexitute urge leaf mhictram
it deter

11 inch I strong 1a tew Himust rens the
livate n brd by \times whach Alaska. m to be west of n Great
wberry,
retionn
conipn-

1. Elyptontrolous limopinis, Brat.
2. Sicquoia Langedortlii, Itrgt.
3. P'inins, sp.
4. Smilax Franklini.
5. Populu. Miehnrdsoni.
6. Populus Aretica.
7. Popmine Hookert.
8. Sulia maman.
!. Itholla, sp.
9. Corylus Matparril, Fulr.
10. Suricrone Ohatiseni.
11. Platams Aceroider, tinept.

1:1. Hedera Meclurii.
14. I'trompromiters dintatus.
15. Phyllites aroidens.
16. Anitholither amissins.

17. Carpolither seminmlan.

> H.-consmboirs woons. -(ridate xv.)

Large quantitios of silicitied fossil wow, derivedapmerently from the demmation of the Tertiary ligaite formation, are senteren were the phains, but the trees are
 hate locen mode, and in whlition similar slieres from the saskatelowan mad the McKemaid River, in the eollections of the tiendogical Surves. The greater momber are

 possibly some day lo refered to their proper speries. They indiente a large momber

Ckmoxy,os.-A wood of this type is very common, mad may very possilhy have
 occidmemlis, (Fig. 1.) There is also a serome speres of this gemes, with shorter

Patoxtoos-Winel of this tyjer, similar the the mondern Prinus, is rate; lint one

 kenkir River.
 to trees of different penera. The following kials are well charaterized:-

Speries (c.)-With one row of lises on the ceils mad manerome mednlany mass

 have belomged to (ilyphemtroluns, (Fit 4.)

Spucies (l.)-Narrow wooderelle with one row of dises and many resin cells.

 rays, (Fif. 5.)

Spuries (f.) -Womed cells very wide, with several rows of scattered dises. This
 from Banks' Land.

Taxoxyon.-A wood not well preserved, hit with spipally lined wool- erells of the type of those in the mondern Tinas, abd dises with a slit instand of a romat pore.

There are probably other sinecies, with the wood less distinctly characterized or preserved; and the lignites when treated with canstic potash, show abmant coniferons tisenes of the types of Thuin and soquie, which thas serm to have largely contributed to their mass.

> m.-astiosprmmocs woobs.

Of these the sperimens sliend which were suftidently preserved for determinution, ure referulhe to the genus Populan, which gemus is also largely represented among the fossil !enves.

(B.)-Report on the Vertebrate Fossils from the Fort Union Group of Milk River.

By E. D. Cors.

The fowsils sulbitted to my examination loy Mr, Dawson, are generally in a fragmentary condition, and belong to a number of distloct individuals. In hut few Instances are the fragmentes so characterintic as to admit of sjeedile diagnosis, hut they leave no donibt as to the ordinal relations of the animala to which they belonged. 'These are exclusively IDinomarin, tortoises, and gar-tivher, no Mammulia or marine vertebrata being indicated.

The collection is of especinl interest, as furnishing one more station whener a glimpse of the life of the "transition perloll" of the history of the western part of Amerien may be obtained. And the resnlting luformation is similar to that already derived from studies of the palaontology of the sane horizon hy Prof. Leidy and myself in Dakota, Wyoning, Colorado, cte. The apecies are evidently the Jatest examples of the terrestrial lite which charaterized the Mesozoic agen, and which preeded the advent of the mammals in the northern lismisphere. 'The formations in which the fossils oecur consint of greenlsh-hrown arenaceons chayg of various degrees of hardness, frepuently ineluding small gravel-stones, and nometimes forming a hard cement between them. The fossils were found anar the base of thil formation, and "not more than one or two bundred feet above yellow arenaceons beds, which I conceive represent Cretaceous No. 5, and which are rapidly followed in deseending by well-marked No, 4 with characteristic forsils." (Extracted from letter of Mr. Dawnon.)

The species are the following: Clastes, sp.; Compsemys ogmius; C. 9 victus; Plustomenus costatus ; - P. coulescens; Trionyx 9 vagans; Trionyx 9 sp.; ? ILalroxuurus $?$ sp.; Cionodon stenopsix.

The dinosaurian remains are quite abondant, and indicate several apecies, but are mostly so fragmentary as to le unfit for determination. The diagnostic genera of this lint are Compsemys, Plastomenus, and Cionodon; the spucies referred to Ifulrosuurus being represented by caudal vertebre only. The first-mamed genus is characteristic of the Fort Union epoch only; the fragment referred to C. victus, the only species of the list previonsly known, is too small for final specific reference. The Plaztomenus coalescens is represented by a more perfect specimen than any other species referred to this genus from the Fort Union Beds, but is not sufficiently complete to render the reference to this Eocene genus final. It is, in any case, not a member of any other known genus. One species of Trionyx is represented by a hyonternal bone, and in not definable; while the fragment

[^100]
 quite anflicient for palamintological purpuses.

In comelusion, it may la statel that there are present two permern in thas

 forms; that the sperides reforred to l'hestomemes constitute an indication of athinity
 this formation is as yet periliar to this nat the dudith River lonatities. As these

 mimal life yet charly themminal. Fitt the evidence is fur from theing as weighty in indiation of Tertiary relations as is the preseme of the suminus in question as
 their allies baving swarmod in the durassie sens, and it is therefore altogether ren-
 age. 'Ila rarity of the londition of the former dement neromis for the late date of their discovery there.

OIONODON, C口и:

Bull. Its, Guol, Survey Turre., No, 2, p. 21.

 beds of Colorado. The following armote varative me derived from the typiat spacimen of this spertes. The penterior portion exhibits a suture, prolnally for mion with the palatine hone, while the rest of the interior magein is fere. It is removed some distance from the tooth line in conseguence of the horianeme expmen of the bone, while the onter fate is vertiend.

The teeth are rod-like; the upper portion sulnevindric in sertion, with the inner
 vation to the midda, for the arommonaiaion of the reown of the sucerssimal teoth. The inner face of the tooth, from urex to hase, is shielded by a plate of ramel,
 giving rise to two shallow longitudimal tromghs. The remainlers of the tooth is covered with a layer of some dense sulhatance, possili!y cementum, which overhps the ranishing margins of the anmel. The outer inferior excowation of the whaft presints a median longitalimil groove, to necommadate the keel of the elosely-nppressed crown of the successiomal tooth. The nuex of the tooth being obtusily wedge-shatpal, the functional tooth is poshed forward and transvarsely, townel the immer side of the juw. 'The towth slides downward in a closely-fitting vertical groove of the onter nlvolar wall. The inner wall is oblique, its seetion forming with that of the onter $n \mathrm{~V}$; it is furrowed
with promvers similar mui ophowite to thone of the ontar wall, lant intircly discomeneted from them. 'Ihu bise of the simak of the functional tooth, on buing dixplared ly the suceresiomi, slides downward and inward nlong the

 the inmer. 'The new erownes mere, howerer, protruded suctexively in series of three,
 shank in front of it is a litte mote prominent, and the third stands bevome tha
 ('. arefuns, the section inerenses in size with protrosion ; hence, lufore the apherar-
 'Thus, in the onter longitudimal row, only avery third tooth is wom by functional use we one time ; in the midhle series, ull are in use; while in the inmer, wery third one is simultanconsiy thrown ont in the form of a minnte stump of the shank, if not ratirely grouml up.
 posterior: mpitular urtionlar faces, if existing, ure slighitly marked. The \%ygumplysen are bint littla prominent heyond the ardh. A candal vertehra is plano-
 the femur bave a short are and chord; the heme of the tibia displays a laver ememind arest, but in mot amarginate behinal.

The type of dentitime exhinited hy this gemus is, perhan, the moxt complex

 molars of mamimating mammax, the monle of comstruction is entirely altered by the materials at hanal. Thas, the permiarly simple forin und mpid replacement of the reptilian dentition is, be a system of compliation by repertition of parts, mande to sulaserve an and identical with that scerned ly deep plication of the cown of the mote speciatized molar of the mammal.
 tion. In that genms, necorimg to laidy, the suceresiomal crowns uprerr on the frome
 that the tooth is distinguished into rown und whit. It also follows, from this ar-
 worn to the ront, in which 'ilse there con be only one fimetionul teoth in a transverse section, instumb of two or three.

Cigonodon atenousis, Cope.

This Dimomar is represented ly framents of muxillary homes, with a íw wontaincel pieces of teeth. Prohnly, severn! of the mumerous lumes of reptiles of this
 us yet momenns by which to distinguinh them foom other speries of Ihedrosaurider in the collection.
'Ihe maxillaries whibit the vertion growers chancteristic of the gemes, and the
 similarly compresed. An important difference in the teeth is seon in their lack of

Fromin six miles west of First limeli of Milk River, neme latitude $\mathbf{4 9}^{\circ}$.
Mensurcturnts,

Merisurctiments,	
	M.
Inopth of the maxillary lone on a dental growe.	0.11260
Dianteter of the mandlary trite exterinal th atvoili	0.0240
Hameter of a turoth......	0.0048

COMISEMYS, Ladly.

?his genus presents the charncters of kimy in its welledeveloped marginal bones,
 whinh is semptured in two of the known sperdes. One of there, the ce rietus, batily, has beron fommad to lave hala whe range in the West during the Fort Union epoch;
 Dakota.

Compremys adalus, Cojee.

Bepresented in the collections of the British Americm Bomalary Comminalon by portions of the curupare nad plastron. These are massive, and indicute a species of largesize. As in other simelles of the genus, the extermal surfure is a dense layer of crement or allied sulstanec, which in senlptured with shallow pits.

A portion of the costal home is conerave, mal inerenser rapidly in thickness in one direction. The suthere is coarse, hat beither gomphosial nor sqummonal. A portion of the plastron is thimer, not curved, und displays a very comerse medinn siture, in part sqummonal in character. The seulpture consists of shatlow pits, not wider than the low, smooth ridgen which sepurate them. There are derep superibind grooves, marking the homdaries of dermal mrens; afenture in which this tortoise difiers much from the Plantomemes coolescefus, und resembles the species of Compsemys.
 wilt be further extublished.

From six milers west of First Brand of Milk Rherr, uear Iatitule $\mathbf{4 9}$.

ILAASTOMENUS, Cope.

This gemus has heen discovered to ambraer tortoiner liaving characters of both Trionyx mal Emys. The cornpuce is like that of the former, in the absenee of artiche lated margianl bones, and the presence of a sumerficial cement layer, which is seuptured in various putterus. The phatron remembles that of wome emydoid genera, but presents cortuin fontandles indieating an incomplete grade of ossification. The species known to possess the typicul structure are fomal in the Eocencs of Wyoming and New Mexico; and those bere referred to it are nll from the Fort Union or Transition beds of the Cretmeons. In none of them is the sternmm no well-preserved as to exhihit the characters which shonld fimily refer them to the genus I 'hastomenns. This is due to the fact that they, as well as other vertebrate remains from this horizon, are always much broken or disloeated. growive oll tict is mlas) ne oll its ". atenupsin, lig mearly flue of 10 dine inorder .0046
inal lonнен, lune inyer, clux, Laclily, lon (yporin; cimindary of
minsion by
 ise layur of
dicknoms lı cmosal. A rse metinn ow pite, not sulpurticinl lis turtuine C'ompinemy.s. that genur

crs of both

 cof articud is neulpbll genera, tion. 'The Wyoming Union or -preserved lastomenus. from this

 mul situral growere are wlao wanting. The purtione of the plastron pireserved are

 of the existener of margimid luilles.

 borders. They are will makeif on the phastron, and are more or lexs lougitminal. The My marance is that of a Trimenge.

Meusuremenes.

 Fiour arealu: III (01", 10.
 Janden minth of Wurly Munitain, Intitule a!?

l'lantomenen contatis, Copr'

 individus. 'The lwhen are thimer than corresponding ones of the two whar mperiok of tortoine demeribed, from the same lorality, "xcepting at the contul enlargement, whith is remarkably prominent and welledefined on the mader side of the rampure. The dense or coment layer of the carngue is thrown into very deliente, lat promiment ridges, whieh ring parallel to the axts of the emrumere, and oreasionmily

 is uot, is is usuml, lewn prominent than the inferior.

Measurcments.

'The costal lome of this spacien is much like that of a Trionyr, thet the character of the plastron refers it to Plastomenns.
(8) Lake of the IVoods.-Table showing the nature: and diroctions if the dykes and veins observed, and the rocks which they tratersp. (The

 eect, their relative agre lowlug in the orider of the liat.

Nampiar liack.		Character of Dyke or Vein.	Character of rock travernel.	Course of byke or Veit.
McKay's Inland. \square $\left\{\begin{array}{l}\square \\ \square\end{array}\right.$ Buckete Island \qquad		Red felnpar and Reduart\% fulspar Red felmpar Vitroun yllart\% (smanl) Red felspar and "، Itart\%". Granite lykes lied felppar and yuart\%		
$\left\{\begin{array}{l}= \\ \square\end{array}\right.$ Cormorant liock. Near Windy Pt. Bigsiny lsland Midille Istmad " " District of Shebashca		Red felnpar (small) Hard dioritic Bhack hornblendic (8)uall) Red granite Coarse diorite (with "lled felspar Red felspar and 4 ${ }^{4}$ arrtz Diorite lied felspar Black diorite Red felspar "Diorite	Granituid gneiss Granite Hornblende sehist Gineiss\&Hnb. achist Granitoid gnciss Grey gneiss Granitoind gueiss (irey gneiss Granite Hornblende schist Homblendic slate	
Picture-roek Bay. Ka-ka-ke-wabec. . Rat Portage Lncrosse Island . \qquad \qquad \qquad \qquad		Rel granite Grey grauite "" Coarse liorite Diorite Grey granite "" "" Red felspar and quartz Grey diorite	Altered slate ". " Junction Laur. \& Hur. Altererl slate Slates Quartzite Granite "	N. E. \qquad E. \& W. S. $25^{\circ} \mathbf{F}$. N. $77^{\circ} \mathrm{E}$. N. $63^{\circ} \mathrm{E}$. Irregular. Irregular. N. 30° E.

(1).)—Notice of the Butterfies and Orthoptera, collected by Mr. (icorge M. Dauson, as Naturalist of the B. N. A. Boundary Commission.

By Samcel H. Scudder.

The inseets recorded in this list were taken along the boundary line letween British America and the United States, from the Lake of the Woods, in W. long. 95, to the Rocky Mountains in W. long. 115 . The principal localities referred to are:Dufferin, on the Red River of the North, altitude 780 ; Souris River, (a trilutary of the Assineboine), between long. 99° and 102°, altit'de about 1600°; and Woody Mountain, about long. 107°, on the watershed between the Missouri River and the streams flowing north, the elevation of whose plains is about 2,500 . A few specimens were also taken at Roseau River, lying letween Red River and the Lake of the Woods, and flowing into the former; Wood End, on the Souris River, long. 103^{3}, altitude 1700^{\prime}; the east fork of Milk Biver, which erosses the line in long. $109^{\circ} 30^{\circ}$, at an altitule of 2700°; and West Butte, the western part of the Three Buttes, in long. 111° 30°, altitude $4,000^{\circ}$. The highest clevation from which specimene were hrought, was the summit of the Rocky Mts., in long. 115°, the altitude from $7,000^{\circ}$ to $8,000^{\circ}$.

If we compare this list of butterflies with that of the Yellowstone Experlition of 1873 ,* we shall find some interesting and striking fuets, although no great number of spectes were taken by either party. The two collecting grounds, while not more than one or two hundred miles apart, lay mostly in different drainuge arcas; and if we omit from the present list the species found only at Woody Mt. and westward, as being upon the summit of the water-shed between the two river basins, and therefore likely to impair the value of the result, we find that out of the forty-three species found in the two collecting grounds, only seven were taken in both. Of the twenty-two Nymphales, only three occurred in both regions, viz. : Vimessa cardui, Argynnis Nevadensis and Phyeiodes Tharos, the first and the last species of muusually wide distribution. Of the five Rurales, none of the speeies were taken in both localities. Of the seven Papilionida, two were taken in both, Eurymus Philodice and E. Eurytheme; nlso species of a very extended range. Of the nine Urbicole, two were brought home by both parties: Thorybes Fylades and Thanaos Persius, the former certainly, and the latter probably, of exeeptionally wide geographical distribution. Of the seven species occurring in both regions, only one may be said to have a range at all restricted, and they are mostly such species as one might find in almost any part of America, east of the Rocky Mts.

The same will be notiecd, though less conspieuously, on comparing the species of single genera; thus Cononympha Ampelos of the Assineboine Basin is replaced hy C. Galactina in the Yellowstone; and Basilarchin Arthemis of the former, by B. Weidemeyer: of the latter. B. Disippe was taken only on the Yellowstone, but cer-

- Soe Proc, Boet, Soc. Nat. His ,, XYII, 86-91,
tatuly occurs in the Assinchoine reglon. Argymis Edwardsli of the Yellowstone Is replaced ly A. Bremneril la the Assimeboine, and probahly almo by A. Aphrodite, althongh this was taken at Woody Momatain. The two species of Enrymns, however, were taken in beth regions, and a species of Argymis (A. Nevadensis) was also foumb common to both.

The watershed betweren the Assimebohe and Saskatehewan bashas on the one slde, and the lasin of the Missouri, of which the Yellowstone is a tributary, on the other-a watershed which follows a course nearly coinciding with the ammal isotherm of 45° Fabr. (corrected fir altitude)—wombl seem, therefore, to be, in all proability, the dividing line between a more northern and a more sonthern fama; or perhaps, more correctly speaking, between a north-ematern and a somth-wentern fanna. The northern branch of the Missemri, to be sure, intervemes between the regions travered by Messers. Dawnon and Allen, lint ite fama must menestionahly have a fimeies essentially similar to that of the Yellowstone. We si: . 11 , however, look with interest for Mr. Edwards' fortheoming repert upon the butterties collected by Dr. Cones through this region, to see whether the facts will add to, or detract from, the weight of the considerations we have presented, from the seminty material at our disposal

Cambmide, U. S., March, 1875.

nuttenfles.

1. Eheis Uheri.-A single male, remarkahly small, measuring but 45.5 mm . in expanse, was taken in the vicinity of Woonly Momatain, hetween the middle of Jnne and Jilly 7.
2. Enodia Porthandia.-Two males were taken in the moighbourhood of the Lake of the Woods between the middle of July mad the middle of August.
3. Ctenomympha Anuelos.-A badly broken sjecimen, probably referable to this species, was taken at Dnfferin.
4. Danaida Ilexippus.-A male was taken in the Red River valley, June 20.
5. Basilarchia Arthemis.-A female was taken at Dufferin betweren June 21 and 26, and another near the Lakr of the Woods between the middle of July and the middle of August. The latter specimen is interesting from its large size, (expanding 84 mm .) and in the extent and dulness of the red spots of the under surface, in which it begins to show no inconsiderable resemblance to B . Weidemeyerl.
6. Polygonid Progne.-A male was taken in the vicinity of the Lake of the Woods between the middle of July and the middle of Angust ; a female was taken at Dufferin.
7. Papilio Antiopa.-One specimen was taken at Dufferin between June 21 and 26 ; another at the Lake of the Woods between the middle of July and the middle of August.
8. Aglais Milberti.-A single male was taken near the Lake of the Woods between the middle of July and the middle of August.
9. Vanessa cardui-C mum at Dnfferin, June 14.
10. Argymis Aphrodite.-One male was taken in the vicinity of Wooly Mountain between June 15 and July 7 , and another near the Lake of the Woods between July 15 and August 15.
11. Argymis Nevadensis.-A single fresh male was taken at the close of June at Wood End; fresh specimens of both sexes between Woody Memntain and the buse of the Rocky Mountains, from July 15 to August 7.
12. Argymnis Bremnerii.-A male was taken at Dufferin.
13. Brenthis Bellona,-A male was taken at Dufterin in June.
14. Euphyitryas Phueton.-Oine female was taken at the Lake of the Wooks betweren July 15 und Augint 15.
15. Ihyciodes Tharos- - 'wo males wero taken nenr the lake of tho Wocrin betwern July 15 and Angust 15.
16. Everes Comyntas.-One made was takennt Dniforin mad mother rast uf Wordy

 of the wings, which beror no small rememhance to those of lightly maked njevineris of Cymiris neglecta.
17. Eurymus Philotice.-A male mind a lemale of the pude form were taken nomr the Lake of the Woorle between the middle of July und the middle of August.
 Whods, taker, at the mane time with the proverding.
18. I'aruassius Sminthens-T'wo fresh nperimens wrire taken on the wnmmit of the Rocky Mts. (nome the borth-westorn cormer of Montana) at an elovation of from G-7,000' on Angunt 9. 'They were hoth of the type tigured by Edwarik, in his plate: Iounnamalien 11.
19. Thorybes Pyludes.-A male wins taken at Diffierin.
20. Thames I'rrsias.-A female, vary ludly rublurl, but nppurently belonging to this sureries, was laken neme the Lake of the Wouds leriween the midille of July abd the midille of August.
21. Authomester Ifucas.-Two males ware tuken betwgen Woody Mt. and the Inta of the lorky Mts., letweon the milille of July und the end of the lirst werk in August.

OHTHOPTKHA.

1. Seudifrio curvichudu.-A male wis taken at Rosem Miver on Angint 30, and a frmule in the vieinty of Somris River.
2. Ciphidium sulturs.-One male and five females, Somris River. Deretofore known only from Nelraska and the neighboring rekion.
3. Anabrus purpuruscens.-Four males and four femulew were taken at Wist Butte July 29 ; in the vicinity of Woody Mt., between June 15 and July 7 ; and in the neighbourhood of the Somris liver. 'ihe specimens from the two former pheces lack the mottrel markings of the nidemen so pecentiar to this speceies there are, bowever, ne other distinguishing fontures. Mr. Thomas, while retaining the generic mane Anabrus, refers this speces to 'Thumbotizon; but wrongly, for it is congeneric with A. simplex Inald. the type of the gemus.
4. Caloprenus spretus.- Spelmens of this destructive insect were bronght home from Dulferin, the Sonfis liver, the vicinity of the Lake of the Wouds, nad the East Fork of Milk River. In the latter place they were "forming swarms" on July 1fith. Mr. Dawson also writes me, that his purty "met with great nwarms of these insects on the high plains north of the Missenri and Milk Rivers, in Jnly, 1874."
5. Caloptenus bilituratus.-'Two females wore taken at Souris liver.
6. Culoptenus bivittatus.- \boldsymbol{A} single female was taken near the: Lake of the Woods, July 30. This is the true hivittatus of Siny, with which the Acrid. lencostomn of Kirby is prohably synonymous ; and distinct from the femoratus of Burmeister (the Acrid. thevovithtum of Harris), with which ald reeent anthors, mysulf ineluded, have hitherto confonded it; this suceics las the hind tilias ghaceos and yellow; in C. femoratne, they are red; and the speride can be instantly distinguished by these peenliarities.
7. Pezotetlix horenlis.-A single pinir of this specties was taken in the vicinity of the Souris River.
8. Pczoteflix Dawsomi nov. sp.-Brownish fuseoms face, sides of hend and pronotum yellowish, with the exception of a hroad, redlish-brown stripe extending from the cyes to the posterior sulention of the pronotum; anteme yellowish at the base,
beyond infuseated; tegtaina lialf as long as the uldomen, broad lanceolate, acuminate, dark brownish fuscons, with a few seattered indistinct blackish spots, sometimes eollected into a mesial neries; hind fenora very obliquely and brondly bifaseiate with blackish brown, the tip black, the superior carina yellowish; hind tarsi dull, almost dusky, yellow. Cerei of male ruther namall, compressed, simple, but little tapering, rounded at the tip, curved gently upward, obliquely sulcate at the extremity. Length of body, t $14 \& 16 \mathrm{~mm}$.; of tegininh $\delta 6 \& 6 \mathrm{~mm}$.; of hind femorn 8.75 ¢ 9.25 mm . One male and two females were taken at the Souris River.
9. Gomphocerus clepsydra nov. sp.-Browninh yellow ; antenne infuseated at the slightly expanded tip; hend more or less spotted and handed with dark brown and blackish, but with a lighter yellow, immaculate, vertieal stripe between the lateral carime of the face, and the deep suleation following the lower angle of the eyes; this suleation in black, slading off into brown posteriorly; a broad dark band, blackish nbove and edged at this point with yellow, extends from behind the eye upon the pronotum ; it is of equal wilth ns far as the greatest constriction of the lateral carine of the pronotum, but beyond thin narrows rapidly, and scareely reaches the posterior edge of the same; a small triangular patelt of the same colour appears, however, at the posterior lateral augles of the pronotal dise; and the lateral lobes of the pronotum are heavily marked with the same, especially in front, the lower portion always immaeulate; tegmina half the length of the aldomen, lrownish, with a few longitudinal fuseous fleeks in the lower half; hind femora blackish along the middle, deepest next the carine; hind tibie yellowish, flecked minutely with brown, the spines tipped with black; base of the abdominal joints heavily marked with black at the sides. Lateral foveolm of the head distinct, three or four times as long as broad, equal, moderately deep, the walls abrupt; median and lateral carina of pronotum equally sharp and distinet, the latter strongly approximate in the midelle of the anterior twothirds of the pronotum; and since they are edged interiorly with yellow, forming, with th. yellow line bordering the blaek band of the head, a clepsydral outline. Length oi body $\$ 19 \mathrm{~mm}$.; of antenne $\$ 5 \mathrm{~mm}$.; of tegmina $\& 5 \mathrm{~mm}$; of hind femora $q 11$ mm . Two females were taken on the Souris River.
10. Arphia frigida nov. sp.-Dark veddish brown; antenne reddish-brown at base, infuscated beyond; tegmina flecked obseurely and rather uniformly throughout, but least at base, with small dusky spots ; wings pale yellow at base, with a moderately broad, blackish fuliginous bent land beyond the middle of the wing, faintly interrupted with pale fleckings on either side of the nervures (though the nervures themselvee in this part of the wing are blackisit), occupying the entire space between the two principal veins of the upper area of the wing, from the base three quarters the distance to the outer border, but paling next the base, at the extremity bent downward and outward as far as the outer border, thence following it ncarly to the anal angle; beyond the band, the apex of the wing is fuliginous, slightly the darkest at the extreme tip ; the costal margin is yellowish, tinged with dull orange above the transverse portion of the fuliginous band; hind femora indistinetly transversely fasciate with dark brown ; liind tibie livid, broadly elouded with fuliginous just before the middle and at the apex, dusky at the base, the spines black, excepting at base. A pair of minute frontal foveola scparute the lateral foveole of the head from each other, and also the vertex from the frontal costa ; they are distinct, minute, longitudinally quadrate, confluent above, their bounding ridges, as well as those of the lateral foveole, punctulate. Pronotum rugose above, especially on the anterior half; median carina low, uniform, almost straight, once interrupted; posterior border of pronotum bent at a rounded right angle. Length of body: δ $18 ; 727 \mathrm{~mm}$; of tegmina : 才 22 ; $\% 25 \mathrm{~mm}$.; of hind femora: $11 \delta \mathrm{~mm}$. A single female was aken near Wood End in June. I have also a male from the Yukon River, Alaska, collected by the Inte Mr. Robert Kennicott.
11. Arphia tenebrosa - A single male was brought from Souris River.
12. Hippiscus phonicopterus.-A male and two females were taken at Dufferin, Junc 13 and 14.
13. EEdipoda trifasciata.-One female was taken at Wood End in June. This is the most northern loeality from which it has been obtained.
14. Trimerotropis verruculata.-A female was taken at Dufferin.
e, acumimetimes jate with I, almost tapering, Length 7.25 mm .
d at the own and e lateral es; thin blackinh pon the d carine posterior vever, at ronotum s immaitudinal est next s tipped e sides. ual, moequally ior twong, with Length ora $q 11$
own at broughwith a e wing, ugh the e entire he lase , at the wing it iginous, ed with a indised with s blaek, reolæ of are disges, as ecially rupted dy : ذ . single Yukon
ufferin,

This is
15. Telfigidea acadica nov. sp.-Head blackish fuscous, rather thickly studded with minute, pallid, raised points; the mouth parts paler, but the tip of the labrum hack; pronotum pale cinereous, thickly studded with minute, whitisl, raised points and a few little black dots on the upper surface next the middle of the tegmina; the sides, above the tegmina, dark brown like these organs; legs pale cincreous, heavily fleeked with black, the hind femora less so than the other parts; hind tibia blackish at the base, in the middle, and more broadly at the apex. Median carina of summit of head sharp, equal, extending over its anterior half; pronotum extending back ward to the tip of the abdomen, forming a low crest, highest anteriorly, falling raphly in front, and raised above the level of the head by about as much as the width of the vertex between the cyes; wings reaching to the tip of the abdomen. Length of pronotum, 9.5 mm ; ; breudth of name, 3.1 mm . A single female was taken neme the Lake of the Woods.

The Gryllides were not determined.
(E.) -Land and Presh-rater Mollusen, collereted duriny the summers of 1873-74, in the vicinity of the J'orty-ninth Parallel-Lalie of the Woors to the Rocky Mountains.

 mumes. Over the grent aro of the plains, "very pood and river has its more or las

 very diflerent in appramere, but which are all more or lese closely comected hy intermediate varicties. hulims hyporum is prohnlly one of the most comstant ha form, la all ite localition.
 considerally ingemeral facies from thowe of the Ited River Valley mal phans west of
 and given rise to a dislinet serien of varictal modificutions. In the poole and swimp, of the pradries, food und calcareous matter no doult equally abound. Segmentina armigera there aswumes its varictal form campestris; Phenorlis Irivoleis oftell apprurs in its varlety mecrostomus; limneet staynalis, and I. clenles incrense in size and welght of shell, and other nuecies mre similarly uffected. By carcfully noting the station of each ferm, and enpecially the nature of itw foest, and the prohable presence or absence of sufticient enlectreone matter in the water ; many piagling shells are fomel to be varieties dejending on these circmastancers. The momer employed are chiefly those of the monographes in the Smithsonim Miseellaneone Colle tions.
G. M. D.

GAStembroda.
Rishoides:
Amnicola pullida, Huld. Lake of the Woots.
Amnacola porata, Sily. Lake of the Woorls.
Somatogeirus depressus? 'Tryon, 500 Mile Lake. Eist Fork Milk River.

Paluminads:

I'aludina decisu, Say. Lake of the Woorls.
V'alvata tricarinata, Sny. Lake of the Woods. Last Fork Milk River (worn specimens, may have travelled from pools near the Cypress Hills.)
Valvata sincera, Siny. Eatw Fork Milk River (worn specimens.)

Heluetide:

Helix striatilla, Anthony. Lake of the Woods, Dufforin. Pembina Momintain. Turtle Momatain. Woorl Mountain,
Helix pulchella, Maller, Lake of the Woods, Pemhina Monntain, Wool Mountain.
Helix limitaris, Sp. nov.-Shell conspicnonsly mbilicated, globosely depresed, solid, conrse ; whorls carimate at the periphary, and sub-carimate near the umbilicus, giving the mouth n distinetly rhomboidal form in young
specimens; peripherul corimation almost obsolete on the last half whorl; aperture romudedly lumate, very olligue, sllghtly retlexed at the umbiliens, so ats to interfore semewhat with its circilar ontline ; peristome meute, thickened within; callus deliente, truspurent ; whors 5 ; ; suture slightly impresed d, becoming more distinet in the lust lalf whorl ; surfiue marked with eomese trasverse wrinkles, mad taint rewolving lines, the latter searcely pereeptible on the unter whorl ; colour, dull ydlowinh, with four hrownish revolving bunds, two of which appent pretty constant, and are situated on cacle side of the peripheral carime, which is generally whitish; the two remaining lnade near the suture and mabiliens rexpeetively, fainter and less constant. Animal resembles $1 /$. solitaria in gencral form, pale, with brownish spote.
Grentext diameter 17 mm . ; lenast diameter 14 mm .; height 11 mm . Young specingens only 4 mm . in diameter are very strongly corimuted, and hat tened above ; semi-trmenpurent, brownishotawny in colour; delicately murked with close revolving and transverse lines.
This shell is closcly allied to Irrix solitaria, but is smaller, darker coloured and rougher, more distinctly carimated, especially in young specimens; the shell is also semewhat thicker, the umbilicus is marrower, and the lip encroubless slightly on its circular outline.
Loc, Waterton Lake. Rocky Momitains.
Vitrina limuida, Gould. Lake of the WoodN. Turtle Momintain. Wood Momintain
IIy/uina arborea, Neweomb. Lake of the Womels. Dutliorin. Turtle Mountain, Wood Momitain.
Myalina fulva, Draparnaud. Lake of the Woods. Pemblina Mountain. Turtle Mountain. Wood Mountrin.
IHyalina viridula, Menke. Lake of the Woods. Dutferin. Pembina Mountain. Turtle Mountain. Wood Mountain.
Succinea obliqua, Say. Lake of the Woods. Dufferin. Pembina Momntain. Turtle Mountain. Many specimens slowing a deejded approximation to S. Yotteniana, but with intermediate forms.
Succincu avara, Say. Lake of the Wouds. Corresponds exnetly with Say's deseription and figurc, but many of my npecintens exceed 6 mm ., the latgest mensuring 9.5 ly 5 mill.
Succinea ovalis, Gould. Lake of the Woods.
Succinea Mcydemi, var minor, Binney. Pembina Mountain.
Succinect lineata, Binney. 30 miles 14. of Wood Mountain. 20 miles S. of Wood Momintain. The specimens agree protty closely with this species, and appar to belong to it, though they do not show any distinct revolving lines. The callus is very deliente. The arreement with Bimery's tigure is more sitisfactory than with the description, my specimens having the aperture longer than half the length of the shell; shell solid, amber coloured, to greenishyellow.
Cionelle sub-cylindrica, Lin. Lake of the Woods. Dufferin. Pembina Mountain. Turtle Mountain. Wool Mountain.
Pupa,-Near Saline Lake, enst of Turtle Momntain. (One specimen only, inmature.)

Limneidis:

Limnea stagnalis, Lin. Lake of the Woods. Pointe du Chêne. Dufterin. Long River. The specimens from the prairie region are often very weil grown and robust, the shell being thick and showing strong growth-lines. Some specimens from pools nt Dufferin measured 56 ly 26 mm .
Limnea elodes, Say. Lake of the Woods. Pools and swamps of the Red River prairie. Pembina River. Saline Lake, east of Turtle Mountain. Turtle Mountain. Riviere des Lacs. Souris River. Pools near Traders' Road. 500 Mile Lake. Creek near East Fork Milk River. . Pool 30 miles west of West umbilicus, tile acute, re slightly We marked er scarcely brownink lituated on the two rer and lews ith brown-
n. Young d lintte $14 \cdot(1$ arked with
ar coloured imens; the the lip en-

Momutain

Mountain.
in. Turtle

Mountain.
in. Turtle to S . lot
$v^{\prime} \times$ descripthe largest
of Wood ind appear ines. The hore satisure longer greenish-

Mountain.
only, im-
in. Long cii grown ен. Sme

Red River 2. Turtle Road. 500 st of West

Butte, de. Ocenring In very many varletal forms, which are all here Included. Specimens from coulé, 'Traders' load measured 36 by 13 mm .
Limnen humilis, Suy. Lake of the Woods. Dufferin. Pemblua Mountain. Saline Lake, E. of 'T'urtle Mountain, T'roders' Rond.
Limnea decollati, Mhabels. Lake of the Woodn. Abundant on mome parts of the shores of the Lake of the Woule, generally mombrerks and boulders on an exposed comst, and creephig over the stones even ha the wash of the waver, with the habit of "Littorinu. Well grown apecimens melawure 15 hy 11 mm . Colour pale, yellowinh-brown; surfice marked with lines of growth, whech are aomotimes rather coarse, had in the onter whorl are nomatimes crosed by gentle, irregular, revolving ridges, dividing the surface into quadrate arems, in manner resembling thut frequently seen in limmen rodes. Wellpreserved specimens aise show very the and close undulating trinsverse lhes, and deficate revolving strier, giving the shell a lustrous surface. Lip uниally thickened, and tha drownish-purple.
Limnea catasroninm, Say. Dufferin. Riviere des Laes. Pool 'Traders' loomd. Creek near East Fork Milk River. Wast Butte?
Limnæa catascopium. Var pinguis, Say. Creck nemr E. Fork Milk River.
Limnea caperata, Sity, Dufferin. Pembina Mountain. Pemblan River.
Limmeat pallidng Nuar Dutferin.
I'hysa heterostroph", Siny. Lake of the Woods. l'ointe du Chene. Duiferin.
1'hysa ancillaria, Say. Lake of the Woods.
Physu ampullacea, Gould. Creek 13 miles west of Wood Mountain. Measurement of largest specimens 22 ly 13 mm .
Bulinus hyphorum, Lin. Lake of the Woods. Pools on Red River prairic. Pembina Mountain and River. Turtle Monntain. Riviere dee Laces. Trudern' load. Specimens from Lake of the Weods attain sometimes 20 mm . Those from the patirie region rellel 23 mm .
Ancylus parallelus, Huld. Lake of the Woods.
Ancylus rivuluris, Say. Rosenu River. Souris River,
Planorbix trivolvis, Say. Pools on Red River Prairie. 'Turtle Mountain. Traders' Rond. East Fork Milk River.
Planorbis trivoluis var. neterostomus, Whiteaves. Lake of the Woods. Pools on Red Kiver Prairie.
This varicty is not almondant at the Lake of the Woods, but is the common form in the pools and conlees of the Red River Prairic, where caleareons matter and food equally nbound. Some specimens 28 mm . in greatest diameter.
Planorbis campanulatus, Say. Lake of the Woods.
Planorbis bicarinatus, Say. Lake of the Woods. East Fork Milk River.
Plonorbis corpulentus, Say. Flag Island, Lake of the Woods.-The specimens are from Say's typical locality, and agree perfectly with his description, the form being even better marked than in his figure. I^{\prime}. Irivoleis, and its varicty macrostomus, also occur in the Lake of the Woods. If P. corpulentus is also a varicty of trivolvis, as has been suggested, it in a very well marked one, and is characteristic of the open reaches of the lake.
I'lanorbis exacutus, Say. Lake of the Woods. Dufferin. 500 Mile Lake.
I'lanorbis parvus, Say. Dufferin. Saline Lake, E. of Turtle Mountain.
Segmentine armigera, Say. Luke of the Woods.
Segmentinua armigcra var campestris, Pointe du Chênc. Dufferin. Traders' Road. 500 Mile Lake. This is a large fine varicty characteristic of the prairie region, which I have distinguished by the above varietal name. The normal form, with the usual number of whorls (4) is abundant in the Lake of the Woods, and surrounding wooded region. Specimens seldom at all execed 6.5 mm .

The varicty campestris oceurs abmadatly in mome pools and conloes of the
 more whorls, and only in yonng sperimens show the ceeth. Coloner generally wax yellow or pale hrown. Diameter of lagest sperelmens from 10.5 man. to 12.5 mm , whoris often six, wiי'limens to $7 \% \mathrm{~mm}$. often, but not Invariably, show terth; ahove thls wige no teeth were recogniad.

Corbrctlada: :

hamkithlilanchata.
Spheriun sulcutum, Lamarck. Lake of the Wouls. Pemblan River.
Spherinu striutinum, Lamarek. Lake of the Woods, Pembline River,
Spherium partemeiam, Suy, Lake of the Wools. Duffierin.
Spherium rhomhoidenm, Siny. Lake of the Woods. Pemhime River.
Spherium tenuc, Prime. Somis RIver.
Spherrinn solidulum, Jrime. Lake of the Woods. Somis River. East Fork Milk River (worn кресіменк).
Spharium 9 stumineum, Conmul. Pembina Rivar.
I'isifinm Viryinicmu, Bourgolgunt. Lake of the Woods.

Unionids:

For the lenentifention of species in thin family, I am indelited to Dr. P. P. Cur-penter:-

Metapterualutu, Lam. Red Rivar; rarre.
L'nio spultulutus, Lera. Red River.
Unio rectus, Lam. Lake of the Woods. Rosemu liver, Somewhat rare.
I'lectomerus undulatus, Barnes. ($=$ laticostutus, Leen.) Red River. Rosenn River.
llyridella cardium, Raf. ($=$ ventricosa, Burnes var. $二$ subovitu, Leas.) Rosentu River. Red River; not common.
M!lridella ligumentina, Lam. Iosem River.
Hyridella luteolu, Lam. (=siliquoides, Barnes.) Lake of the Wools; vary common. Sourls River; very common. Hosean River; Hbundmat. Hed liver. Pembina River.
Lampsilis fluves, laf. (Erubiginosus, Len.) Red River. Rosenth River.
Theliderma quedrulus, Rnf. ($=$ lachrymosum, Len.) Red River; nbualant.
Leptoideu leptodon, Raf. ($=$ phenu, Barnes, $=$ purpuruscons, Swnins. \# tenuissimu, Len. \% = velum, Say.) Sonrls River.
Complameriu complenata, Barnes. Sonris River; abundant. Roseau River. Lake of the Woods; somewhat rare.
Complemaria costuta, Raf. (=rugosa, Burnes.) Rosem River; rare.
Chiopsis ? Perussuciana, Len, Lake of the Woods; nbunelant.
Serophitus Pemnsylcanicus, Lam. (=Anodontu rugosu, Swains. [Not Alusmodonta ruyosa, Bames.] =. Inoidonta anduluta, Siny. [Not Alasmodonta undulata, Say]. Rosenin River.
Anodonta Footiana, Lea. Souris River; very common.
bers of the rger, with generally 6 mm . to a vilubly,

(F.)-List of Plants collected during the Summers of 1873-74, in the vicinity of the Forty-ninth Parallel-Lake of the Woods to the locky Mountains.

It has not been attempted to make this list a general one, ly the addition of ileformation from other soureen, bearing on parte of the same, or on contiguons regions. Those plants only are catalogued, which were vilaer collected or observed, in connection with the Bommary Comminsion Expedition. The lowiliten given are in general those from which specimens were netmally obtained, thongh in some canes I have mded udditional laformation from my note-book. I have also endeavoured to give the date of ench sperimen, and a note as to its state of wivnee at the time; that the list may also serve us a contribution to the phenology of the region. The places mentioned by mone may le fond on the general geologleal map necompanying this leport.

I must exprens my obligations to Dr. I'. J. W. Burgens, and Dr. Millman-Chief and seeond Medieal Oftiesers to the expedition respectively-for their assistance in making collections. 'Tu them many very lnteresting plants are due.

I am also indebted to Prof. John Macoun, for the determination of the Juncaces: Cypreraeer, mad Grominew, to Mr. George Banatom for that of the Musei, de. Dr. Hooker las kindly consented to eximine and name neveral of the more difficult and critical flowering plants, which have been sent to him for that purpose, and if in the will be added to the Appendix.
G. M. D.

hanunculacke.

Aquilegin Canadensis, L. Dufferin, (thicket), June 7, '73, in flower.
Aquilegio flwescens, Watron. Kootanic Pask, (thick wood) Ang. 16, '74, in flower, but with mature need aiso.
Anemone I'ennsylvanict, L. Dufferin, (thicket) June 6, '73, first blossoms. First crosking Souris River, June 3, '74.
Anemome nemorosa, L. Pembina Mountain, (wood) an:-y, 23, '74; in fiower: abumdunt.
Anemone Petens, L. Var. Nuttalliuna, Grey. Near Dufferin, May 4, '74, in flower. May 21, flowering nenrly past. Common in certain places on the lled River prairie, probably choosing dry open suil. Very abundant on the kecond prairie steppe. Flowers were found neme I'urtle Mometain and Long River on Ang. 7, and in the second week of Sept. respectively, but only where the prairic bad been burned early in the summer.
Anemone multifida, D.C. Winnipeg and N. W. Angle Rd, July 2, '73, in flower. Badger Creek, (open prairie) June 28, in Hower. Turtle Momitain (open giades) July 10, '73, in flower. Short Creek, July 10, '74. First flowers. The last named is the white varicty.
Ancmone parviflora, Mx. Rocky Mountains (7,000 feet) Aug. 18, '74, in sced 31 inches high.
Anemone Alpina, L. Rocky Mountains (6,000 feet) August 16, 1874, in seed.

 III thens.
 flawartuk.

 lint with mature neril hlet.

 '74, in tlow

Kanunculus ahortiows, I. Dutherin (thicket), dunc a, '7:3, in flowere,

 with fully formed werd.

 sholtored lowalifien taking the form of R. apolis. Howkor.

 atrimin.

Thalictrum , lisicum, I. Intlirin, (open prairiv), dume i, '7.3, in flower. Viry
 pratric, nhondent in tower.
Thalictrum divicum. Var. pmommacens, D.C. First iononsing Nomin River, Jums $5,74$.
Thalirlum cornuti, L. Dufierin, (thicket and lowiors of woois), June 25, '73, in flower.
mentisikamace.k.
Menispermum cancidense, L. Dnflerin, (thleket), June 21, '73, in flower.
behbehidack.k.
Berberis (Mohonis) "quifolium, lursh. Rocky Monntains. With ripw finit in Ang. Dwarf, raroly excerding ane foot in holght. Ilourgenit may it in found on wrat aide of Rocky Monitains only, lut on the forty-nint? parallel it in almindant also on the castern slopes.

NYMPHEACEA.

Nuphar adrena, Ait. Lake of the Woods. July 30, '73, in flower.

sarracentaces.

Sarrarenia pirpuret, L. Swamps near the Lako of the Woods. Common. July 5, '73, in flower.
'73. Iмит y 24, '74,

In flow In Hownr.
:1. Woond
4) Ang. in, In Hower. 1, '7:1, 111 1 varioty. in flownr, In Hown',
l'rוmhine If μ rowis. If more Punl Find, Ik livar, levalere if

Monntain, in flower. r. Viry mid "リッи vor, lumu $25,73, \mathrm{in}$
fruit in in follond lel it is

paparbinackis.

 Howner. linligur.

v'malliche.s.

 wlili rip. newd.

 cronlil.
rilevimas.

 Jinse 21, '79, II flewerr.

 '74-III lluw.r.

 Kipht. I, '7.I-ntill fil flower.
 flowar.

Sis!ий

 follul In Hic Northern Sinten.
 flower.

 prefire a dry, clayey, and mulo-kaline woil. Northwarl to the Snsknteliewnit (Bonrgentu.)

 in fill H1win.

 liol biter. Commun.
pabiansiatkes:

 "ontren limit of the sporis.s.

HVFRHUACK,
 flow:r.
c.unvoruti.I.M'R.E:

 thwer.

 flowers ramaining.
 - (m) . 11 in fown.
 Alomer.
 thencer.

MAIVACREN.

 flowiv.

IINAIEAR.

 Alughe firimbingl thewr.

hKilaniatma:

Cicrominm, Nן, 1.

mathaminalerik.

anas:allilarkiz:

V'VACNA.

HIAANAI'RGE.

 14, '7.4. Ihall in firit.
acemana.
Acer rubrum, L. Kontnnir Pase, Momitaink near Winterton Lake.
Segundo aceroides, Manell. Laise of the Woods, Red Hiver Valley, and westward in the vallice of rivers. In flower at Dutierin, May 8, 'T4. Finds its northern limit on the N. Siskintehewn in lat. 54°, necording to Richardson. Ite sap is frequently collected mad boiled down to make sugar in epring.

DOLVGAIACEA:

Folygula pelyguma, Writt. Lake of the Woenk, July 24, '73, in flower.
Polygula senegu, L. Bising gromad E. of Red River prairic, Jnur 20, '73, in fower. Lake of the Wowls, duly 22, 73, with ripe seed.

Leguminobe.

Astrugulus Comodensis, I. Wimipug and N. W. angle road, July 6, '73. Red River praitic, Juur 24, '73. Turtle Momentu, July 30, 73 . Woon End, July 12, '74-nll in flower.
Satragalus Camadensis, Var. Wood End, Jme 30, 'r4. Lake of Wood Mountain, Jume 27, '24-both in flower.
Astrayalus caryocurpus, Ker. Rising gromad E. of Red River pralrie, June 20, '73fruit fully firmed. West of lembina eschrpment, (dry bank,) May 26, '74, in thwer. Viry common on the second pratie steppe, W. of Pembina River--I'ar. Wood End, idry hank), dune 11, '74, with larger leaves and fiwer thewers, hut not ugreving with A. mexicame, nud A. caryocarpms of the momal form, growing on the sume bank, hut having its fruit fully formed.
Astragulus hymoylnttis, L. Red River Pruirie, May 22, '74, first hosenme. Jume 4, '73, in tower. First crossing Souris R (Valley nnd open prairie), June 3, '74, in flower. Abmdant. 'Traders' lid. June 19, '74, in flower. White variety.
IAstagulus Alexuosus, Douge. Red River Prairic, June 27, '73. Turtle Mountain (dry link,) luly 26, 73 . Wood Momitain (dry open pratrie,) Jume 2k, '74. All in tlower.
 Creek (יjen prairie) June I0, '74, first blessoms.
Astragalus Minsouriemsis, Nutt. Nemr Short Creek, (dry hill sldes), June 10, '74, in tlower.
Astrayalus pectinata, Dongl. First (rossing Somris River, (dry open prairie), June 3 , $\mathfrak{i} 4$, first blossoms. Plant with a strong unpleasant odour.
Astrayalus adsurgens, J'all. 'Traders' Road, (open prairie), June 21, '74, in flower, forming dense tufte nowut 18 inchers high. South of Wood Mountain, June 30, 74 , in flower.
Astrayalue aboriginorm, Rich. Pemlina Momatain, (open prairie), July 4, '73-in flower. Short Creck, June 10, 'T4-in flower.
Istragolus Bourganii, Grey. Rocky Momntains, (6,000 feet): August 17, '74-in flower.
Astrugulus trijhyllus, Pursh, (not I'lucu cesspitosu Nutt.) First erossing Souris River, (liy gruvelly bmike, June 3, 'i4, lust blonsome. Forming dense matted tufts, flowers white with bright purple tips when fresh.
Astralagus cesppiosus, (irey. White Mud River, (dry bank), June 3, '74, with seed mearly ripe.
Astrayalus tegetarius, Watson. Koutanic (Pask, dry lunk,) August 14, '74-in thewer.
Desmodium Cumadense, D. C. Lake of the Woods. July 28, 't3, in flower.
Hedysarum boreale, Nutt. Font Iills of Roeky Mountains, (thickets and borders of streams). August 15, '74, still in flower in sheltered localities.
Lupinus argenteus, Pursh. South of Woody Monntain. July 25, '74, in flower.

Cuminus aryentens? Wood Find. September 1, 73 , in flower.
Lathyrus maritimus, Bigelow. Lake of tho Woods. Angust 7, '73, in flower.

Lathyrus ochroleucus, Hook, Dufierin, (thicket). Juar :I, '73, in flownr,-First erossing Souris River, thicket in valley. Junc 5, 'ith, tirst blossums.
 White Mul River (dry hank) Joly :3, 'T4, still in thower. Fiest crossing Somris River, Jume 3, '74, (dry open praisic und gravelly lanks) in tlower. White varicty.
Orytropis splemdras, Domgl. (var, westita, Mook). 'I'urtle Momitain, (open puiric) July 10, '73, in thwer.

 the last, and might ahomst rank as a difiorent species, espectially as fomal growing nemrly in the name locality. 'The leaves are abost ali regularly pinnate, with satarely a trace of verticitlate arrangement in the leathets.
Psoralea brachath, Dongl. Risiug promad enst of Real Liver prairie, June 1:1, '73, in thower. Wond Lim, (open prairic), July f, '74, still in thower. East Fork Milk liver, July 18, 'it, past thweriug.
Psoralea aryonhylla, l'ursh. 'Turtle Momutain (open prairie) July 3o, '73, in thower. N. crossing White Mud River, July 1t, '74, tirs hlensonis. From the anstern edge of the second phairie stelper, to the Rosky Momatains, abmanant. Flower, colmitt hilice.
I'etdostemon riolareum, Mx. Rising gromd E. of Red River prairic, Aug. 27, '73, in flower. Turtle Momintin (opern prarie) duly 25, '73, in flower. West Buttu, July 24, '74, in Hower.
Petutostemon comdidum, Mx. var. 'Turtle Mommain, (open prairie) Joly 21, '7s, in thower. S. of Wood Momatain (dry prairic and lith-wiles) Inly 2, '74, first
 Does mot agrees exactly with Michame's lifure.
 spots on the open prairie and hill-sides). Ime 3 , '7t, in thower.
 pairie) June 11, '73; (thicket) June 12, '73; near Shart Creek, June 10, 74. both in flower.
Ticia Americuma, Muht, var. B., Howkre Nemr Turtle Monntain (opern parie), dues 1, '73. Near Wool Momatain (open praixie), Juse 25, 74. Both in thower. A well-marked variety, inhabiting dry exposed pratices.
hosales.t.
Ayrimonia eumatoria, L. 'Turthe Mountain, (thicket) July 23, '73, hast howsoms,
Amelnuchier Canadensis, 'T. \& G. Dufferin, Jume 3, '73, in flower. Foot Pembima Mountain, May 22, 74 , first bossoms. Common on the forty-ninth parallel from Lake of the Woods to the Roeky Momintains. West of the Red River conntry, only occurs in sheltered valleys, but hecomes very abmand again on the foot hills of the mountains. In many varietal forms.
Crategus coccimea, L. Dufferin, June 2, '73; second erossing Souris, June 8, '74. Both in flower.
Comarwm pulustre, L. Wimipeg, and N. W. Angle Rotad. July 3, '73, in flower.
1ryers octopetala, L. Mocky Monntains, (6,500 feet). Augusi 18, '74, in flower. Abundant on grovelly lanks in the Kootanie Pass, where plantes showed half ripe seeds at the same dute.
Pragaria Viryiniana, Whrlart. Dulkerin, Jvan. 2, '73, in flower. Found growing on the thirl prairie steppe in sheltered parts of the valley of White Mad River.

Fragarin nesca, L. Winnipeg and N. W. Angle Road. July 4, '73, flowers and fruit. Geum triftorum, Pursh. Red River prairic, May 21, '74, in flower. Inne 19, '73 styles 3 in inches long. Northward to Athabrseat Lake (Richardson), and the Pence River (Macom.)
Geum macrophyllum, Willd. Turtle Monataln (thicket). Jnly 15, '73, in flower. Foot-hills of locky Monntains. Augnst 12, '74, flowering nearly over.
Geum strictum, Ait. Winniperg and N. W. Anghe Rond. Jnly 3, '73, in flower.
Potentilla tridentata, Ait. Winnipeg and N. W. Angle Road. July 4, '73, lust blossoms.
P'otentilla norvegica, L. Red River. Ithe 29, '73, in flower,
Potentilla fruticasa, L. Wastern border of Red liver Prairie. June 20, '73. Wimiperg and N. W. Angle Romd. Joly 3, '73. Woody Monutain, June 22 , 74 ; all in fower. Abundant near Woody Mountain, ind on the Foothills of the looky Mountains.
I'otentilla anserina, L. Dufferin, June 10, '73. Now Short Creek, June 10, '74. Both in Hower.
Potentilla aryuta, Pursh. Red River, June 28, '73; near Wood Momitain, June 27,74 (01en prairie). Both in flower.
Potentilla glandulosa, L. Rocky Mountains (6,000 feet, Aug. 16, 'i4, in flower. Varicty, with petals considerully excereding the sepals.
Potentilla eflusa, Dougl. Pembina Mountain (gravelly houk) May 20, '74, first blossonss. Long River, (opell prairie') Mry 29, 'i4, in tower ; first crossing Souris River, (dry hank) June 3, '74, in flower.
Potentilla gracilix, Dongl. Pembinn Mountain (open prairie) July 6, '73; Turtle Mountain, (open prairie) July 9, '73, hotlı in flower.
Putemilla Pennsylaanica, L. Var. striyosa, Pursh. Turtle Momntain, (open prairic) July 10, '73; Wood Krid, (open prairic) June 13, '74. Both in flower.
Potentilla hippiana, Lehm. Wood End, (open prairie) July 7, '74, in flower.
Potentilh Sp. I. Wood Mountuin, June 24, '74; Truders' Road, July 15, '74. Both in flower.
Potentillu, Sp. II. Rocky Mountains (6,500 feet), Aug. 18, '74, in flower.
Potentillut (Ivesia) Sp. III. N. Antler Creek (open prairic), Jme 7, '74. Wood End (open prairie), June 14, '74. Both in flower.
Prunus Virgiuiana, L. Dufierin, June 4, '73. First crossing Souris, June 3,'74. Buth first blossoms. Distrilution same ns Amelmehier Canadensis. The Toqua-e-minure of the Lake of the Woods Chippeways. The Indians collect the berries, beat them till the stones are crushed, and then dry them.

Prunus Americana, Muwh. Dufferin, June 3, '73, in flower.
Prunus P’ennsylvanica, L. Foot Pembina Mountain. May 22, '74, flowers just opening.

Prunus depressu, Pursh. Lake of the Woods.

Rosa blanda, Ait. Dufferin, Jume 19, '73, in flower. Near Wood Mountain, June 30, 74 , in flower. Grows commonly in a stmated form on the open plains of the Red River, and westward on the second prairie steppe, as far as Turtle Mountain. Beyond this point, it is sehtom seen, except in sheltered spots in vallies, and along the borders of stremms.
Rubus strigosur, Mx. Dufferin, June 19, '73. Wood Mountain, June 24. Both in flower.
Rubus triflarus, kichard. Dufferin, Jme 3, '73. Wood Mountnin, June 24. Both in flower. , and the

Rubus Nutkanus, Moc. Kuotanie Pass, Ang. I6, '74, in flower, Also common on the Foot Hills with ripe fruit.
Spiruate salicifolit, L. Lake of the Woods. Duffirin. June 30, '73. Balger's Creek, (open prairie). Junt ary 7, 73 . Pembian Monntain, (open prairie). Jmatary 4, '73. Winniperg and N. W. Angle Rond. July 5, '7s. All in flower. Abmandant on the castern portion of the second prairie steppe, wherever the soil is at all damp. Forms stanted thickets. The form most charneteristie of the open plains seems to be one with sumall but homa leaves, slender stems, panicle small and elose.
Spirace betulifolia, Pall. West Butte, July 28, 'it. Kortmic Pass, Auguat 16, '74. Both in flower.
Silbuldia procumbens, L. Rocky Mountains, (7,000 fect), August 18, '74, in flower. Abundmat but much stunted. Senreely an inch high.

ONAGRACEAE.

Ciresea alpint, L. Lake of the Worels, July 9, '73, in flower.
Epilobiam angnstifoliam, L. Lake of the Wools. Trurtle Momatain (thicket.) July 13, 74 , in thower. Var. cunesefns. Lake of the Woods. August 7 , in flower.
E/ilobium lutifoliam, L. St. Mary River, near the Rocky Mountains. (Border of stremm), August 9, ${ }^{\prime} 74$. Nearly phist flowering. Locky Mountalins, (7,000 feet). August $18,{ }^{\prime} 74$, in flower.
Ejilohiam pulustre. Var. lineare. Grity. Near Wood Momentain, July 3, '74, in flower. Foot-hills of W. Buttr, (border of stremm), August 2, '74. Second Branch Milk River, August 4, '74. 'Whe two last in flower lout also with fully formed pods.
Epilobium palustre, var. alhiffori, Hook. Near Wood Monntain, (swamp) July 7, '74, in flower.
Epilohium colorutum, Muhl. Lake of the Woods, July 18, '73, in flower. Foot hills of W. Butte, (border of stremm) Aug. 2, 'T4, in flower, hut witl, ripe pouls.
Epilobium origanifoliam, Lam. Rocky Mountains, Camp Akamina, (6,000 feet) growing in the shade of thick woods, in lower.
Gaura coccinen, Nutt. Badger Creek, July 7, ${ }^{\prime} 73$, in flower. Wood End, (dry banks) rare, June 11, '74, first tlowers. Common westward from these localities, on the dry platees.
Myriophyllum spicutum, L. Lake of the Woods, Aug. 1, '73.
Ginothera biemnis, L, Lake of the Woods, (dry sandy shore) Jnly 7, '73, in flower. Tuitle Monntain, July 25, '73, in flower.
Gmothera marginuta, Nutt. ($=$ (Enothera casppitosa, Nutt,) in Portur \& Coulter, Syn. H. Col.) Short Creek, June 10, '74, (lly clay Imak) fragrant. Acmilessernt var.
Enothera heterontha, Nutt. Traders' Romd, ('ppea prairie) Juav 14, 'i4, in flower.
Enothera leucocarpa, Comien. Turtle Mountain, (open pairic), July 26, '73. Wood End, July 18, '74. Near Wood Momatain, July 9, '74. All in flower. Agrees with Hooker's description, but the anthers appear to be versatile, not alnate.
Enothera pumila, L. Lake of Woods, Aug. 20, '73, last flowers. A depauperated variety, with flowers bright yellow, seare ly four lines in diamster.
Gnothera albicaulis, Nutt. Pembina Momitain, N'p. 6, 'r3, in flower. Unique. Glahrons viricty, with white petals.
Enothera, Sp. I (near allucaulis). Woorl Whin (open pairic), July 7, '74, in flower. West Butte (open prairic), July 30, '74, in tlower.
Genothera, Sp. II. Second Branch Milk River, Aug. 4, '74, in thower.
Onothera, S_{P}. III. Milk River, July 19, '74, in flower,

Symphoricarpus occidentalis, R. Br. Lake of the Woods. Red Hiver, Jone $27,{ }^{\prime} 73$, in flower.

loasaceat.

Mentzelia ormua, Pursh. and Nutt. Fout-hills of West Butte (sheltered valley), July 31, '74, in tlower.
cactaceze.
Opuntia Missouriensis, D. (: Specimens apperar to belong to var. rufispina of Englemmn \& Biglow's Report in eomuection with the P'mific Railway. The phant is very variable, however, and no domit other varieties are represented oln the forty-ninth purallel. Near Wood Monntain, June 2b, '74, in Hower. The plant coules very suddenly into blom, mad is very gay for a few days. In '7.l, from June 26 to July 3 . Common everywiere, hut espreially charatererisite of dry hills mad larren valleys, with parched and clayey soil. From Waod End, Long. 103°, to near the E. Butte, Lomg. 111°. East and west of these points the raindull increases, and it is prohably this couse that limits the phant. Collected on the Saskutehewan, hy Bonrgean. Macoun colbeeted a cactus, which he refers dombtfully to this species, near Dumregan, on the Peate River.
Manelharia (Coryphanthu) vivipara, Haw. Wood Enel, June 27, '74. Near Wood Mominain, July 6, '74. Both in Hower. Range similar to last, lout not nemely so almadat. Berry colible, ripe in sept. The thowers, before being dried, are not purple, but carmine.
The locality furthest enst where Cluti were onserved, on the forty-ninth parallel, was on the plains near Turtle Mombain. The form there seen was not in Hower, and did not appur to be growing laxarianty. It was rare, and may be a depanperated varicty of U. Missouriensis, but is prohably distinct. Sir J. Richardson mentions the ocentrenee of a Cactus on the Lake of the Woods. He writes, "We gathered Opantia (Homerata, or the C'rapaite Verd, of the voyagenrs, on the Lake of the Worls." (Jonin. Boant Voyage, Vol. II., 1. 277.) 'Though some time on the Lake of the Woods, I did not sueced in contirming the presence of this form, and from the dampmess of the climute am led to suspect that some error in reference has ocenred.
(huossulacke.
Ribes aureum, (Pursh). West Fork Milk River, July 18, '74. Frult formed, but not ripe. Seon only at this place.
Ribes rotunlifolium, Mx. West Fork Milk livor, July 18, '74. Rije frnit.
Ribes florilum, h. Her. Dutherin, Iune 2,73 , in thower. First crossiug Souris River. ${ }^{\circ}$ dine 3, '74, in Hower. Lake of Woodn, de:
Ribes rubrum, L. Wimbipeg, mal N. W. Angle Road, July 4, '73. Ripe fruit.
Ribes eynosheti, L. Pembina Monntain (thicket), Mny 27 , '74, in Ilower.

cucubitaceat.

Echinocystis lobata, T. \& S. Lake of the Woods (boggy shore), July 8, '73, in flower. Turtle Monntain, July 23, in flower.

chasstlaces.

Sedum stenopetalum, Pursh. Summits of three Buttes, or Sweet Grass Hills, July 29, '74, in Hower. Rocky Mountains (6,000 to 7,000 feet), Aug. 18, '74; in Hower.
Sedum rhodiola, D. C. Ilocky Mountains (7,000 feet), Aug. 18, '74,]ast flowering. Sedum, Sp. I. Kootanie Puss, dry bank.

gaxifragaoge.

Heuchera cylindrica, Doug. Kootanie Pass, Aug. 14, '74. With ripe seed.
Heuchera Richardsoni, R. Br. Red River Prairie, June 18, '73, In flower. Abundnnt. From the Lake of the Woods, westward,

June g dried,

Leptarrhena pyrolifolia, Brown. Mocky Momntains. Camp Akamina (6000 feet) Aug. 17, '74. Secol nedrly mature. (irowing on the shaty hank of a monntain strem. The seeds ure shemder, spindle-shand, thickened in the middle, the two endes slightly lurnt in ditterent directions.

Mitella mula, L. Wimepreg and North West Angle lamal (thick womi), July 5, '73, seed nemily mature.

Mitella pentandra, Howk, Rowky Monmiains. (Gmup Aknminu (6000 fect, thick wood), Aug. 18, '74, neril monrly mature.
Saxifrayu hrteranthe, Howk. Hocky Monntaius. ('mmp Akmmina, (gono fuet, lank of stream), Aug. 18, '74, in flower. A wouk viricty, with smooth leaves.
Saxifraga Dahurica, Pall. Koutmio liass, Aug. 16, '74, pist floweriug.
Saxifraya brunchialis, D. C. West Butte (5000 tient), July 29, '7.4, in flower. Roreky Momitaine (bi000 fort), Aug. 16, 74, just howering.

Saxifraga vernalis, Willa. var. B., llook. in Fl. lBot. Am. Rooky Momitains (7000 feet), Aug. 18, '74, in Hower.

Saxifraga bscholizii, Sturub, Rocky Momatains (7,000 foct), Aug. 18, '7.4. I tirst ohtained a specianem of this plant from Major Cameron, who fond it on the summit of a momatan mon the Kontanie lass. A few days niterwarl, I fomad it grewing in comsiderable abmanare on the peake near the Bomatary Monmment. It forme a dense, mated soal, and is penerally seen prowing bet tween stones in the shady and retiod purts of the monataine, notur meiting snow hanks. Nost of the specimens were past thowering om the date mentioned. Described by Sternbery from Nomethern Asia, lint fonmed also on the north west comst of Amerion, lat. $\mathbf{6} 9^{3}$, Behring's Strat, and on the Aretie sea shore, mone Mackemaie liver.

 the height of hand in the Lewley Momatains, mem the someers of the Cohmbin, mad at l'ortage liver.

UMHELAIFERIS

Cicuta Maculate, L. Lake of the Woods, July 31, 'i3, in tlower. Wimuines, and N. W. Angle Renal, Inly 2, '73, in flower.

Carum Gairdueri, Benth \& Hook. Sonth Fork, Belly liver, Ang. 15, in Hower. Abundant.
Cymopteris, Sp. I. Wuod End, Iane 11, '74, in tlower.
Heracliun lanatum, L. Red River, prainie, Jnly 3, in flower.
Osmorrhiza brevistylis, D. C. Kootanie Pass (thick wood), Ang. 16, '74, with ripe carpels.
Osmorrhiza longistylis, D. C. Wood Mountain (thicket), June 24, ' 74 , in flower.
Peucedanum Sp . I. Wood End, June 11, '74, with seed nearly ripe.
Sanicula Marylendica, L. Led liver, June 20, '73, in flower.
Sium lineare, Mx. Lake of the Woods, July 31, '73, in Hower. 'Iurtlo Monntain, July 25, '73. Both in flower.
Thaspium trifoliatum, Gr. Dufferin, Jume 4, '73, first hossome. 'Traders' Road, Thne 14, 'T4, in thower. Abundmat over the first and second prabie steppes, und very variable.
Umb, I. Foot Hills of Rocky Momtains (dry banks), Aug. 7, 74, in Hower.
Umb. II. Neur lembina Mountain (open prairie), May 22, '74, in flower.
13. N. A. BOUNDARY COMMISSION.

ARALIACEAS.
Aralia nudicaulis, L. Wood End, Sonris River (thicket), June 11, '74, past flowering.
Aralia hispida, Winnipeg and North-west Angle Road, July 5, '73, in flower.

cornacea:

Cornus Canalennis, L. Wimnjpeg and N. W. Augle Road, Jnly 4, '73, in flower.
Cornus paniculata, L'Her. Dufferin, June 6, '73, llist blossoms. Sceood crowsing Souris liver, June 8, '74, in flower.
Cornus stolonifera, Mx. Lake of the Woods.

CAPRIFOLIACEA:.

Diervilla trifida, Mench. Wimnipeg, and N. W. Angle Roud, July 4, '73.
Linnera Lorealis, Gron. Lake of the Woods, July 9, '73, in flower.
Lonicera involucrata, Banks. South Fork of Belly River (in the Momatains), Aug. 15, '74. Kuotanic Pass (thicket), Ang. 16, '74. Both in flower.
Lonicera oblonyifolit, Mulal. Winnipeg and N. W. Angle Rond, July 3, 'is, in fruit. Lonicera parviftora, Lam, Dufferin (thicket), Jume 14, '73, in flower.
Viburnum opulas, L. Duflerin (thicket), June 12, 73, in flower.
Viburnum lentago, L. Dufferin (thicket), Jnue 13, '73, in Hower.
RCBIACEAS.
Galium boreale, L. Dufferin (open prairie), Jnne 17, '73, in flower. Wood Mountain, June 23, $\mathbf{7 4}$, in flower. Very abundant, especially on the Red River prairic.
Galium triftorum, Mx. Lake of the Woods, July 8, '73, in flower. Turtle Mountain, Jnly 19, '73, in flower.
Galium trifidum, L. Winnipeg and N. W. Angle Road, Jnly 3, '73, in flower.
Houstonia ciliolata, 'Torr. Wimnipeg and N. W. Angle Rcud, July 3, '73, in flower. Houstonia tenuifolia, Nutt. Lake of the Woods, July 7, '73, in flower.
valerianacers.
Valeriana s,ylvatica, Richards. Rocky Mountains, (6,000 fect) Aug. 16, '74, last blossoms.

composita.

Achillea millefolium, L. Red River, prairie, July 2, '73, in flower. Abundant everywhere from the Lake of the Woods to the Rocky Mountains.
Ambrosia psilostachya, D. C. Lake of the Woods, July 18, '73, in flower. Westward, at least over the first and second prairie steppes.
Ambrosia tritida, L. Var. integrióolia. Near Milk River (low, fertile prairic land) July 19, '74, in flower. Specimens about 1 foot high, with a single flowering spike.
Actinella acaulis, Nutt. West Bntte (dry hill), July 30, '74, in flower. Plant not uncommon, but only a single flowering specimen obtained.
Amida hirsuta, Nutt. Foot Hills of West Butte, July 30, '74, in flower. . Plant with a heavy, muleasiant, minty smell. Number of ray flowers inconstant. Found only in this locality, and growing in a sheltered hollow in great abundance.
Antennaria plantaginifolia, Br. Red River Prairic, May 20, '74, in flower. Pemlime Mountain, May 26, '74, in flower.
Antennaria dioica, var. rosea, Gaertn. Near Short Crcek, June 10, '73, In flower,
Antennaria Alpina, Gaertn. Rocky Mountains, Aug. 18, '74, in flower.
'74, pinst

Antennaria Sp, I. 385 Mile Polnt, Foot Hills of Imoky Momitalns, Aug. 1, '74, past flowering.
Aplopmpus Nuttallii, T. and G. White Mad River (dry lank), July 3, '74, In flower.
Aplopappus spianlosus, D. C. Turtle Monntain, Ang 23, '73, First Crossing Sonris liver, July 30, '73. Both in Hower: Not common on the necond puider steppe, but abmand westward, on the drier platins.
Aplopappus lanceolatus, 'l', and (i. First Brunch Milk River, Aug. 5, '7.i, in flower,
Aplopappus, Sp. I. Short Cr., June 10, '74. Growing in dense, matted tufts.
Arnica angastifolia, Vnhl. Somris River (open prilite), Jume 7, 74, in flower, Abundant.
Arnica Menziesii, Mook. Kootanie ['ıss (thicket), Ang. 16, 'T4, In flowerr.
Arnica longifolia, D. C., Enton. Recky Momutains (7,00n firet), Aur. 18, 'i4, in flower.
Artemisia frigidu, Willd. Rixing gromme, rast of Red River prairle, Aug. 23, '63. Wood Eud, Supt. 1, '73, Both in fower.
Artemisia Douglasiana, Bess. Sunth of Wood Momutaln, diy clay bunks ln the but-lands, June. 29, 'T4, in flower.
Arlemisia Indoviciana, Nutt. Vil'. I. East Fork, Milk River, Aug. 23, '74. West Fork, Milk River, Sept. 10, '74. Buth in flowor. This is the most commom variety of "suge" on the thide prairie platemn, and grows very almmdantly on dry, open plains and dry vallegs. On the wecond prairie platean A. frigide is probably more abmulant.

Artemisia Luloviciana, Nutt. Var. gnaphuloides, 'T. \& O. Woon End, Jnly 14, '74, not yet in flower. 385 Mile Point, Sept. 18, '73, past flowering.
Artemisiu Canadensis, Mx. Lake of the Woods, Ang. 7, '73, in flower. Wood End, July 14, '74, not yot in tlower. Font hills of loocky Monntains, (diy hillsides) Aug. 7, '74, in flower.
Artemisia elscolor, Dougl. Kootanie Pass (dry luank), Ang. 4, '74, in flower.
Artemisia dracunculoides, Pursh. Second Crossing Milk Iliver (dry hank), Ang. 5, '74, in flower.
Aster multiflorus, L. Trutle Momntain Aug. 12, '73. Sreond Braneh Milk River, Ang. 4, '74. Foot hills, Rocky Mountuins, Aug. 26, '74. All in flower. Almadant from the Red River to the Rocky Momitains.
Aste • macrophyllus, L. Lake of the Woods, Ang. 7, '73. Turtle Momentain, Ang. 11, '73. Both in flower. A struggling variety, with broad winged petioles.
Aster graminifolins, Pursh. Height of Land Muskeg, letween Lake of the Woods and Red River, Ang. 21, '73, in Hower.

- ster carneus, Nees. Foot Hills of Rocky Mountains (damp thicket), Aug. 26, '74, in flower.
Aster levis, L. Second Crossing Souris River (thicket), Aug. 11, '73. In flower. Abundant. Foot Hills of Rocky Mountains, Ang. 26, '74, in flower. Specimens from the first locality coming under var. levigatus, those from the lutter appronching var. cyaneus.
Aster miser, Lake of the Woods, Aug. '73.
Aster salsuginosus, Rich. Rocky Mountains (6000 feet), Ang. 16, '74, in flower.
Aster. Sp. I. Nemr Wood Mountain. Saline soil. Sejp. $15,{ }^{\prime} 74$, in flower.
Aster, S_{l}. II. Turtle Mountain, (open prairic). July 26, '73, in flower.
Aster, Sp. III. Nerr Wood Monntain, (snline soil.! September 15, '74, in flower.
Bidens Beckii, ''orr. Lake of the Woods. Angust 18, '73, in Hower.
Bidens chrysanthemoides, Mx. Lake of the Woods. August 18, 'T3, in flower.

Chenuctis, D. C., Sp. I. Wowd Momotuin. Shore of Saltne Lake. July 20, '74, lin tlower.
Chrysopsis villosi, Nutt. Rising promad east of hed Hiver prairic. Angust 22, ${ }^{2} 3$. Thitle Monntuin, (opren paide.) July 23, 73 . Both in ilower. Abundant (•verywhere on, ilry stony phains.
Chri,sopsis (Diphopappes) hispidu, Howk. Wood End, or Wood Momitain. (Lablel of spechimen lost.) Abundant in the Cotemu.
Cirxium mutiem, Mx. Lake of the Woots. IIuly 30, '73, In llowe'.
Cirsiun ullissimum, Spring. Turtle Monntain, (open prairle.) August b, '73, in Hower. Kowtunie linss, (membow.) August 14, '74, still in tlower.
Coreopsis tinctoriu, Nutt. South of Woorl Monntaln. July 1, '74, first hossoms. West Fork Milk Iliver. August 2:, '74, in flower. Not aboudant, nor oberverd on the northern side of the watershed.
C'repis elegonx, Hook. Kootanle l'uss. August 15, '74, still in flower. Found on gravel bunks flouded in Spring.
Diplopuippus umbellutus, F. and G. 'Turtle Momntain. Angust 11, '73, In flower.
bchinatea parpmen, Manch. Wool Eal, (open privie.) July 8, '74, In tower.
Erigeron Cumadense, L. Lake of the Wonls. July 22, '73, in flower. var, pusillum, Nutt.' August $1,{ }^{\prime} 73$, la thower.
E'rigeron strigosim, L. Lake of the Woods. July 22, 73. 'Turtle Momentaln August $2,{ }^{\prime}$ ' 3 , both in tlower. Swert (Graws Hills, July 24, '74, in flower.
E'rigeron glabellum, Nutt. Dutherin. June 14, 'ỉ3. 'Turtle Momatain. August 1, '73. Nemr Short Cr, June 10, '74. Sonth Fork Belly liver, August '74. Ali in flowers. Ahmant across the whole pruiric region mad assmang muny varictal forms.
Erigeron pumilnm, Nutt. Wood Lha, (open prairir,) Inne 27, '74, In flower.
E'rigeron compositum, l'ursla. Roeky Mountains, (7,000 feret,) Augnst 18, '74, in dower. Ven ty with ciliate jutioles, bat glabrons leates.
Frigeron ulpimm, L. Rocky Monntains, (7,000 fect, Augnst 18, '73, in llower. Mued reduced forms.
Einpetoriam perfoliutume, L. Lake of the Woods, July 3 , ' $7: 3$, in flower.
Euputorium parpereum, L. T'urtle Monituin, (marsh) Ang. 3, '73, in lower.
 tuin, July 4, '74. Sonth of Wood Monntain, June 2i', 'i4. All in flower.
Grindelat squarrose, Dmanl. First Crossing Souris River, Aug. 7, '73. West Butte, Aug. 2, '7.4. Second Branch of Milk River, Sept. 1, '74. All in flower.
Gnaphalium polycephatum, Mx. Lake of the Woods, July '73, in flower.
Helenium utumaule, L. Second Crossing Souris River, Aug. 11, '73; Sept. 20, '74; both in flower.
Heliopsis scabra, Dun. Red River prairie, June 21, '73, tirst blossoms. Turtle Mountain (thicket), Ang. 2, '73, in flower.
Heliauthus rigidus, Duf. Rising ground east of Red River valley, Aug. 23, '73. Turtle Mountain (open prairic), July 26, '73. Second branch Milk River, Aug. 6, '74. All in thower.
Melianthus giganteus, L. Dufierin, Sept. 1, 'T3, in flower. Coming up in great abundance where new prairie land ploughed, probably from seed stored by the gophers in their underground burows.
Hieracium Canadense, Mx. Lake of the Woodk, July 25, '73. Turtle Mountain, Ang. 2, '73. South Fork Belly River, Aug. 15, '74. Foot hills Rocky Mountains, Alug. 26, '74. All in flower.
Hieracium triste, Willd. Rocky Mountains, Aug. 16, ${ }^{\prime} 74$, in flower.

(Label

 obiserviddower.
n tlower.
ser. var.
Aomituln wer.
August 1, '74. All uf many
ver.
8, '74, in
n thower.

T'urtle
5. 23 , '73. lk River,

in grent

 tored lyCountain, y Moun-
 Hower.
Mieracium venoam, L. Red River prairie, June 20, '73. Woad Mountala, June 23, '74.

Seo axillaris, Parth. Near Short Creek (open prairie), June 10, '74. Not obe served further cast than this locnlity, hat ahmelant westward, growing geverally on hard, dry chay soil, which has beon thooted in spring.
Lactuct elongutu, Muht. Lake of the Woods, July $28,{ }^{\prime} 73$, with ripe seed.
Lepurhys columnarix, T. \& G. First Crossing Souris, July 30, 'T3, in flower. Wood End, (oprin prairic), July 7, '74, first hossoms. White Mud Biver, July 11, '74, tirst hlossoms.
Lymosyris Ifowardii, P'ary. Sceond Branch Milk Miver (dry chay lmak), Sept, 1, '74, in Hower. Tufted from a stont low wooly.
Ly, mosyris grearolens, 'I. \& G. Between Lake of Wonds and 350 Mite l'ohit, 1873, (label of spechuen lost.)
Liturix seariosu, L. Turtle Mominin, July 30, '73, in Hower. Abundant on the tirst and second prairic steppes.

 in patches of praite, cant of the Red hiver; mad also west of the Red kiver ower the secomid prairic steppe.
 flower. Observel mearly to the edge of the seromel prairie stepere, bint very rare cast of Turtle Momintain. Almmbat westward on dry phans hoth north and south of the watershed.
Macherumtheru cunescens, (lrey. South of Wood Momintain, (dry clay-bottonacd vallies, sub-saline soil). Variety 6 to 8 inches high, with entire leaves.

Mucrorrlyncus troxamoides, F. and G. Duffirin, June 10, ${ }^{\text {is }} 3$, in flower.
Mucrorrhyncus glaucus, Torr. Red liver Prairic, Iune 7, 20, '73, (open prairie ucar Somis River, September, '73. Nemr Turthe Monatain, (open prairic) June 2, '74, all in flower. I cannot separate this form satisfacterily from the last, which is muelh less nhundant. Specimens from the Red River Valley have leaves 10 inches or more long; seapes 12 to 14 inches. In specimens from the secomd prairie steppe, the laves are shorter in proportion to the seape, and have assumed a thicker mad more rigid character.
Mucrorchyncus, Sp. I. Rocky Mountains, (6,000 feet), August 16, '74, in flower.
Mucrorrhyncus, Sp. II. Kootanie Puss, August 16, 'T4, in flower.
Mulgeditm acrminatum, D. C. Lake of the Woods, July 30, '73. Trurtle Mountain, July 26, '73. White Mud River, July 4, '74. All in Hower.
Mrlgedium leucophreum, D. C. Lake of the Woods, July 31, 'i3, with ripe seed.
Nabalus Boottii, D. C. Var. South Fork Belly River, Aug. 13, 'T4, in flower. Growing in thickets und much taller than asian. Propers seales of involucre about 12. Head nbout 12-flowered. Leaves below tringular, tapering abruptly to a broad-maryined petiole.
Nabalus albus, Hook. High land cast of Red River prairie, Aug. 24, '73, in flower.
Nabalus, Sp. I. Kootanie P'ass, Aug. 15, '74, in flower.
Nurdosmia sagittata, Pursh. Dufferin (low damp thickrt). In full hoom in the tirst week of May, '74. Seed nearly ripe, Jone 4, '73. Flower with an odour like that of Crutergus, white, tinged with purple.
Pieredenia (Actinella) Richardsoni, Hook. 'Traders' Road (dry hills) June 18, '74. White Mud River, July 4, '74. Both in flower.
 July 2:3, '73. Herla in flower,
Rudleckin, fulyiln, Ait, Dufferin, Jume 30, '73, in flower.
 June 2, '7.1, in thwer.
 dower.
 thewer.
 fect), dugant 17, '74, in flewar.
Senecio cames, llook. Whilu Mul Liver, (dry lmak, , July i, '74, in flower.

 where in many varictal forme.

 Momatah, (Nhore of suline lake, July ene, '74. Firnt Dranch Milk liser,

 a height greater than 8 inchers. S. temithlit vor. if. Hook.
 1h., september 11, '7.i, hoth in thower.
Solidayo riegn-enuren, L. Turtle Monntain, Ang. 21, ${ }^{744}$, in flower.
 18, '74, in thewr.
Solidugo C'omadensiv, L. T'urtlu Mominin, August 5, '73. Nume F. Fork Milk ll., Soptemher 11, 'it. Fisst Branch Milk M., Angunt $6,{ }^{\prime} 74$, nll in fower.

Solidayn !ngentea, Ait. 'I'luree Butten, July 28, '74. Nemr Socond Mranch Milk likere, sept. 1, '74. Buth in thower.
 flower.
Solidugo stricta. Voot Hills of Rocky Mommtuine, Ang. 26, 'T.t, lu Hower.
Solituyo nomoralis, Ait. Wood End (0)e'n prairie), Jnly 14, 'T4, not yet in flower. There butter, July 25, 74 , in thower.
Strphunomerite minor, Nutt. Var. Sonth of Wood Mountnin (dry clay hank), Jume 29, 'T4, in tlower. Heads δ tlowered. Ligulate flowers pink-purple. P'uppus of abont 23 plumone setio.
Thraxuctum dens-leonis, Duf. Dufferin, Juare 6, '73, in flower.
Tinthium strumarium, L. Lake of the Weods, Aug. 10, '73, in flower.
Lenthium echinatum, Murr. Banks of the Red Liver. Abundint.
homeliacken.
Lobrlin Kalmii, L. Haight of Jand muskeng betwern Lake of Woods and Red River, Ang. 23, 'т3, in flowre.
 thower.
campanulaceas.
Campanula rotumdifolia, L. Red River prnirie, Jume 18, '73, in flower. Abundant.
 Lake of the Woods (grassy swamp), July 21, '73. Both in flower.

nilleaces.

 makerg luetween Lake of Wouds and Med Hiver, Aug. 22, 173, In flower.

 111, 'IV, III tlowir.
 towering.
Giaultheria prorumbeus, L. Lake of the Woods.
Leclum, Intifolium, Ait. Wimulpeg and N. W. Anglo Remul, duly 5, '73, past fowering.
 flower. drowing in matted champs in little momews frepuented by mome tain sherep.
 18, '74, in thower.
 'Thick woul.
 of llell liver Valley. 'Purthe Montatin (thicket), July 27, '73, in thwer.

 16, '7.t, in tlawer.
I'yrala rolunififlit, L., Var. incornata, Fiseh. Nemr Wood Mountain (wooded raviau), July 7 , in Hower.
I'yroln axarifolia, Mx. Wimipeg and N. W. Augle Mome, duly 4, '73.
I'meriminm myrtillnides, Ms. Kentanle Pase (hill niders), Aug. 16, '74, with ripe fruit. Lenver do not show any puleneence.
monotropes.
Monotra, miflori, 1. Lake of the Woods (thick wood!, Aug. 1, '73, in flower.

1'IANTAGINACES.
I'lantago Mujor, L. Rud River.
Pluntugo eriopodn, Torr. Nemerndger Creek (diry, open brairie), May 30, '74, in fluwer.
I'luntage P'otagonira. Virr, gnaphatoitrs, Gray. Near Woud Momatain (dry hill sidere, Jume 30, 74. This plant was first met with at the pilace alove mentioned, hat ocenreel in great abundance wewtwat to beyond the Three Buttes, growing among the short grose of the dry phins. Latere ngevimens mensinte 4 inches. The forty-ninth parnlled is prohmbly not its morthern limit in the western interior region. Known in Trexas, California, and Western Wiseonsin (Watsens). Also common on the larren plains of the Columinin (Douglas), which Hooker belicves to be about jten northern limit on the west corst.
 with rifu serd, ti inchers high. Kıown from Benich, California (biglow), and in Salt Lakr Valley, Utah (Watson).
l'antryo, Sין. I. eriopoda, smooth var.
I'lantayo, Sp. II. eriopode?
lomilackid.
Amdrosere orrillutalix, Porsh. Foot Pembina Monntain (opern prairie), May 22, '74, in Hower; not exceeding 2 inches.

ti. N. A. Dolintiatt commisntun.

Ambrosefer seppemerionnlis, I. Whanlper nud Ne if

 Ihaicromthron istegritiolionn

te the locely Mombatus.

Trientalis Americiona, Jursh Lake of the

Itriculariar ruternis Th

Orobanche, Spl I Gmomanchace.as.
Wome bind (open prairie), Inno : 0 , iff, in flower.

Crstillein coceincor, spring. Vollow variets.
Jome 20, 'is, in flower. Red variety ou lising gromad mast of hed hiver,
 in flower.
Castillein pallida, Kinth. Red and white var. Foot-hills of Rocky Monetaine
 Chelone glabur, L . Luter
(teravilio purpuren, L We Winuls, (swampl, July 31, '73, in flower.

(Irutioln ligyinimen, var. Dutiver (open swamp), July 2s, '73, still in flower.
Mimulus rimgens, L, Jumerin. 12, '73, in flower.
Mimnlus Lereisi, Purblh Antler Crenk, July 31, '3:3, in flower.
llower. Ohserved growing in mase (horder of strenm), Ausust 16, '74, in in the monntains, but no where very nbundant ing strentus, to 6,000 freet masky odour. Very abundant. The recent phant has a
 at $46^{\circ} \mathrm{F}$.
Melammyrum Americamm, Mx. Lakn o. the Woots, July 8 , '7i, in flower.
Pcdicularis Cemadensis, L. Rising gronnd enst of Red River in flower. in flower.
('74, in flower. I'rifieularis S_{p}. I. Rocky Mountnius, (1,500 feet) August 18, '74, in flower.
I'chestemon pubrscens, Soland. Lake of the Woods, July 22, '73, in flower; rare
Wood Mountain, (open prairie) June Pritic, June 20, ' 73 , in flower. Nenr Peutstemon glaucus, Grah. Sour

Angle Remul, Inly 3, '73, May is, 'i.l. I'ruirie' men'
 ill thower. Also westwaril
 кtrinmes), JIme 30, '7i, In'
ani Inly : 'T, 's, in fluwer. of the Woorts.
Marsh), 3mat 19, '73. Lake
12, '7:3, punt llowering.
'i3. Swanly West of the
7.1, in llower.
momal mast of lied liver, r. Lake of the Wiserls.
try hill sidew dume a, 'i.l,
ills of Rocky Mommenins, the mombains letweren
, '73, ill flower. b, in flower. , '73, will in flower. r.
ilower.
ain), August 16, '7.4, in ratreante, to $6,0 \mathrm{OH}$ feet The recent plant has a
, 'is, in flower. Also the water of a spring

'73, in flower.

r Prairic', June 19, '73,
se wood), August 13,
, '74, in flower.
'73, in flower; rare. 73, in flower. Near

 OII III "xponed ridge.

 hllue.

 Hower.

verhenates.e.

1.Allatid.

 Wist Buthe, Nug. a, '7.1.

 Wesi Bullo, , Inly 2a, '7.4, in llower.
 ' $3: 1$, in flower.
 7, '7.4. Both in Hewwer.
 farin, suldember :s, $7: 3$, still in lawor.
Sculchlurin gulerimhla, I. Winniper mal N. W. Mugle Rome, July 3, '73, in Hower.
hohimainaleaz.

Achinospermm, florihm,
 dinne 24, '7.1, in Hower.
 flower. Ahmolat. Woml liml, Jume II, 'al, in fower.

11 N .1 HW I


```
    Almblun!
```



```
    ámmelam!.
```



```
M,
```



```月いいい
```


 lorl ill hewry．

いいいいいいいだ，

 1r． \ln ．

 lavmer ait jalo proplo．

 flowrd
 15，＂4．in fowner．

思いいいた。
 （i）H1＂！ 1

i，＇i：1，in Hnime Nul

A，HII Hum Namblin＇

H1sun

Mand finmorim

 （llilhal rmill limil lha

 ilimtr：lha loonbon lhath－

 inl mad thichat！，Am！nal H1いいけ．

 II Hollos．Suntl Puale

AFOGNTMF

 flow：

 Hいない

NIUAHCNTH：

 （1） 111414

 llatro．
 Ni． 11

amallantacham．

Dallonvrimeas．

DOLYGONACERA.

Eriogomum erassifoliam, Bentlı. Wood Eind, (gravelly hill, Junc 24, '74, in flower.
Eriogonum, Sp. II. Truder's Road, (dry rocky hilli, dune 17, '74, first blossoms.
Eriogonum, Sp. II, South of Wool Mountain, (dyy, clay-bottomed Valley), June 27, '74, in tlower.
Eriogonum, Sp. 1V. (ireat Valley, dry clay banks), September', '73, in flower.
Eriogonum, Sp. V. Rocky Mountains, (6,000 fect), August 16, '74, in flower.
Oxyrt (ligyme, Campal. Rocky Monntains, (6,500 feet), Aug. 18, '74, past flowering.
Pol!!!omm amplihinm, L. var. terestre. Lake of the Woork, July 21, '73, in flower. Trmater' Rond, July 15, '74, in flower. Var. aquaticum. Winmipeg and N. W. Angle Hel., July $5,{ }^{\prime} 73$, in flower.
Polygonum hydropijervides, Mx. Lake of the Woutls, July 10, '73, in flower.
I'olygonm, Pemusyleanierm, I. Lake of the Woods, July 8, 'T:3, in thower.
J'olygomm dmmetorum, 「. Wimmper and N. W. Angle Rond, July 3, 'i3. Turtle Momatain, July 25 , both in flower.
Polygonum cilimode, Mx. Winnipeg and N. W. Angle Rd., July 5, 'i3, with ripe seced.
l'olygonmm "anf, Mx. Lake of the Woords, July 2:3, i^{3}, in flower. Foot Hills of the Fiocky Mountains, (damp meadow; August 7,' '4, in flower.
Polygomm ariculare, L. Near Wood Momatain, crlay bank, July 2, 'i4, in flower.
Polyyomm ariculare, L., val'. creftim, Roth. West Butte, (coulee) July 25, '74, in flower.
Rumex salieifotins, Weinm. Real lliver, lune 28, '73, in Howes. Sonth of Wood Mountiln, June 27, '74, serd formed.
Kumex renosus, I'msk. Sonth of Woud Mountring, (bank of stream) June 27, '74, with ripe seced.
Rumex, Sip. I. Rocky Mountains, (6,500 fect) August 18, '74.

HLLEAGNACEA゙

Eleagues argentea, Pursh. Dufferin, June 13, '73, in towor. Second crossing Somris liver, dune 8, 't4, in flower. Somth Fork Belly River, August 15, berry fully fomerd. Extends on the forty-ninth parallel, from the extreme castern colge of the pario to the lase of the lacky Mountains $1 t$ is not common on the ked Rirer Prnirie, hat freguent on the higher level prairie to the cast, and abmant westward, expecially on the second prairie level, forming seattered chmons, where no wher shiubs are seen. The phant on the phans rarely attains a locight of over two to three feet, hut near the mountains is a large hash, cxtremely fragrant.
Shephrria aryentea, Nutt. White Mul River, July 4, 't4, berries half grown. Not observed rast of Wood Mountain.
Shepherdia Comadensis, Nutt. Kootaniu Pass. August 14, '74, berries rije.

SANTALACEAK.

Comember fullila, 1). C. Prairie: near 'Turtle Momitain, Jmbe 1, 'i4, tirst hossoms. The first specjes secems to pass into this form westward.

Filphombiacera.
 2, 'i4, in flower.
1), June 24, '7d, in flower'. 1e 17, '74, first blossoms. ay-bottomed Valley), June
tember, ' 73 , in flower. 1st $16,{ }^{\prime} 74$, in flower. ag. 18, '74, pust flowering. e Woorls, July 21, '74, in ir. aquaticum. Winnipeg
ly 10,73 , in fower.
y 8,73 , in flower.
Rond, July 3, '73. Turtle
l., July 5, '73, with ripe
in flower. Foot Hills of in flower.
ak, July 2, '74, in flower. ', (conlee) July 25, '74, in Hower. South of Wood of stream) June 27, '74, '74.
lower, Sccond erossing Brlly River, August 15, rallel, from the extreme - Mountains It is not the higher level prairie he second prairie level, re seen. The jlant on three feet, but near the
't4, beries half grown.
,'74, berries rije.
5. 'is. in flower. Alinnlowering.
Jume 1, 'T4, first blosWestwird.
" (dly clay bunk), Jnly
trivicalem,
 '73, in tlower.
Letportea Cemadenviy, Gaudich. Roscan liver (Womls).
Ulmus Americumu, L. Dufferin, May 8, 74, in tlower.
Urtica gracilis, Ait. Tuttle Monntan, July 15, rois, in flower. Wood Mountain (thicket), June 23, '74, in flower.

CUPLLAFERAK.

Corylus American", Walt. Dufferin, May 8, '74, in flower.
Quercus macrocarp, Mx. I'at. Turtlo Monntain, Junc 1, '74, in flower. 'This is the common oik in the Red River conntry, und uttuins a good size along the streams and in sheltered loculities. The froit, however, is mond smatler than typical mucrocar"n. Acorn 9 lines long by 6 lines broad; rup 7 to 8 lines brond, 5 lines deep. '1his is probally the species which Bourgean referred to Q. ollusilobu, Mx. (Pulliser Gxpl, ib. N. Am.,) but which (iray, in an appendix to the report, calls Q, macrocary.

S4LJCACEA.

Populns tremuloides, Mx Dufferin, May 8, '74, in flowre. 'The most almudmet poplar in the eastern priaie region, attaning along the lien River generally a height of 30 to 40 feet.
Populus monilifera, Nit. South Fork Belly River and St. Mary liver, attaining a large size.
Populus balsamifera, L. var. cathlicans, Ait. Milk River, growing along the border of the stream.
Salix nigra, Marshall, Dufferin, June 10, '73, past flowering. Second erossing Souris River, June 8, '74, in flower. Turtle Mountain.
Sulix, Sp. II Dufferin, June 6, '73, in flower.
Salix, Sp. III. Dufferin, June 4, '74, past towering.
Salix, S_{p} IV. Dutferin, May 8, '74, in flower.
Sulix, Sp. V. Dutferin, May 8, '74, in tlower.
Salix, Sp VI. Dufferin, May 8 , '74, in flower.
Salix, Sp VII. Dufferin, Muy 8 , 74 , in flower.
Salix, Sp. V11L. Dufferin, May 8, '74, in flower.
Salix, Sp. IX. Dufferin, May 8, '74, in flower.
Sulix, Sp. X Dutherin, May $8,{ }^{\prime} 74$, in flower.
Sulix, Sp. XI. Rucky Monntains $(6,500$ fect $)$ August 18, '74, witlı ripe secel.
conifelle.
Abies Douglessi, Lind. Recky Mountains, nenr Waturton Lake, east slope, not attaining a labge size.
Abies Englemani, a tree of large growth pobably this speries, forming dense groves in retired vallies at a heipht of 6,000 to 7,000 teet in the Roeky Mountains.
Abies Allor, Michn. Lake of the Woods.
Abies nigra, Poir. Lake of the Woorls.
Abies halsamed, Marshall. Lake of the Wouds.
Larix Americana, Michx. Lake of the Woorls.
Pinus Banksiono, lambert. Wimmipeg and N. W. Augle Romd and Lake of the Woods.

Pinus Rexinesa, Ait. Lakr of the Woods.
Thuiu occidentalix, L. Lake of the Woods, Rosenn River, de.
Juniperus liryinima, L var. procumbetw, Hook Lake of the Woods.
Pinns contorta, Dougl. var. latifolia, Eng. Kootanie Pass. Very abundant.

ARACEAS.
Acorus Cenlomus, L. Lake of the Woods.
Arisxma triphyllum, Torr. Dufferin, July 6, '73, in flower.
Calla pulustria, L. Winnijeg and N. W, Angle Roud, July 5, 'is, in flower.

TYPIACEAS.

Spuryaninu emycarmm, Eng. Lake of the Woods, August 5, '73, in fruit. S_{p} urganium natans, L. Lake of the Weods, August 1, '73, in flower.
T! ! inh lutifoliat, L. Lake of the Woods.

LEMNACRS.

Lemnu trisulea, L. Small lakes. Red River prairic. Lake of the Woods. Lemna minor, L. Common in the same localities.

KAladaced:

J'otemogeton pusillus, L. Lake of the Woods, July 8, 'i3, in flower.
Potemogeton natans, L. Lake of the Woods, August 1, '73, in flower.
potemogeton perfoliatus, L. Lake of the Woods, Jnly 8, '73, in flower.
alisyacea.
Alisma plemtayo, L. Winnipeg and N. W. Angle Road, July 4, '73. 'Iurtle Momtain, July 25, '73, both in Hower.
Sugittaria cariabilis, Eng. Lake of the Woods, July 30, '73. S. Antler Creek, July 31, '73. Wood Fnd, July 13, '74. All in flower.
Triglochin maritimum, L. Near Wood Mountnin, border of saline pool, July 9, 'it, in Hower.
Triglochin pulustre, L. Var, elutum, Nutt. Wimnipeg and N. W. Angle Road.
orchidaces.
Calopoyon pulchelluw, Brown. Wimipeg and N. W. Angle Road, July 5, 'i3, in flower.
C'yprinedium pulescens, L. Dufferin, June 13, '73, in flower.
Platanthera hyperboren, Lindl. Lake of the Woods, thicket, July 8, '73, in flower.
Platanthera psyeodes, Gray. Lake of the Woods (grassy swamps), July 20, '73, in tlower.
Platanthera bracteata, Torr. Eastern border of Red River prairic, June 20, '73, in flower. Pembina Mountain, May 27, '74, first blossoms.
Spiranthes cernut, hichard. Lake of the Woods, July 20, '73, in flower.
AMARYLLDDACEA.
Hypoxis crecta, L. Dufferin (damp meadow), June 13, '73, first flowers. North Antler Creek (open pruirie), June 6, '74, first flowers.
midacen.
Iris versicolor, L. Winnipeg and N. W. Angle Road, Jụly 3, '73, in flower.
Sisurinchinm muc ronatum, Mx. Red River prairie, June '73. First crossing Souris River, June 3, '74, in flower,

hiliacer:

Allium cernum, Roth. Lake of the Woods, July 6, 'i3, in flower. Went Butte, July 26, 'i4, in thower.
Allium reticulatum, Frazer. Near Badger Creek, (dry hill sides, May 30, '7.4, in flower.
Allium, Sp. I. South Fork Belly River, August 13, '74, in flower
Lilium I'hiludelphicum, L Red River, June 21, '73, in Hower. Alundant.
Lilium Phludelphicum, L. Bur. Near Turtle Monntain, (open prairie', July 15, 73, in flower. Probably an albino, petals pale yellow, not spotted; more narrowly lanceolate, and with longer claws. Rare,
Polygonutum giganteam, Dietrich. Duterm, ithicket, Junc 22, '73, in flower.
Smilacina stellata, Desf. Dufferin, thicket, Junc 2, '73, in thower. Pembina Mountain, (thicket), May 2i, '74, first blossoms.
Smilacina bifolia, Ker. Dutferin, June 7, '73, in fluwer.

MELANTHACE E:

Tofieldia glutinosa, Willd. Rocky Mountains, (6,000 feet), August 17, '74, past flowering.
Veratrum album, var: Escholtzii, (iray. Foot Hills Rocky Mountains, Angust 7, '74, still in flower.
Kerophyllum tenar, Pursh. Rocky Momatains, (6,000 teet), still in flower. Abmilunt and past flowering at this date in the lower vallies. The leaves forming a coarse matted soil in some upland meadows.
Zygadenus glaucus, Nutt. Near Turtle Mountain, (open prairie), June 10, '73, in flower.

EQUISETACEEA.

Equisetum arvense, L. Dufferin, June 10, '73. Late specimens springing up on banks emerging from flood.
Equisetum limosum, L. Lake of the Woods.
Equisetum levigatum, Brown. Red River.
Equisetum hyemale, L. Souris River.

FlLiCES.
Aspidium Lonchitis, Swartz. Rocky Mountains (6,500 feet), August 8, 'i4. Spores not ripe.
Aspidium spinulosum, Willd. Lake of the Woods.
Botrychium Virginicum, L. Woods on Roscau River.
Botryehium lunarioides, Swartz. Lake of the Woods at mouth of Rainy River, July 19, '73, spores not ripe.
Cystopteris bulbifera, Bernh. Lake of the Woods.
Cystopteris fragilis, Bernh. Near Short Creek. Rocky Mountains (6,500 feet.)
Ophioglossum vulgatum, L. Lake of the Woods at mouth of Rainy River, July 19, '73, spores not rije.
Onoclea sensililis, L. Lake of the Woods, July 30, 'i3, spores not ripe.
Polypodiun Dryopteris, L. Wimmipeg and N. W. Angle Road.
Polypodium vulyare, L. Lake of the Woods, July 6, '73, spores not rije.
Woodsia ilvensis, R. Br. Lake of the Woods.

WCOPGHATEs:

Salcopmitanm lucilulum, Mx. Lakn of the Woouls.
Seluyinclla rupestris, L. Lake of thu Wheds also westward, growing among stunted grass on exposed hillsides, on the third pratirie steppe.

Juncacex, Cypernceo and Greminere, determined by Professor. John Macoun.
Jixcaces.
Junceus alpinus, var. insignis, Fries, Lake of the Woods, (boggy shore) Garry and North-west Angle Roal.
Juneens actuminatus, Michx First branch Milk River, (river margin.)
Junerus xiphioides, E. Mayer. Var muntunus, Engl. South Fork Belly River.
Juneens Buthicus, Wilhe. Dufferin and hed River coumtry generally, (damp, open prairie.) North Antler Creek and prairie generally, (damp) ground.)
Juncers Buthiens, var. montums, Engl. Lake of the Woods.
Junccus Nolosus, L? Garry and N. W. Angle Roal.
Junceus Mertensiamus, Boug. Rorky Mountains. Cump Akamina, G,000 feet, (wet ground) August 17, '74, in Hower. Kootunie Pass, (border of stream) August 17, past fluwering.
Luzula parviflora, var. melanocarpa, Dest. Roeky Mountains. Camp Akamina.
cyperacem.
Carex aperta, Boott. North Antler Creck, (low ground), June 6, '74, in flower.
Carex lanuginow, Michx. Dufferin, June 7, '73, in flower.
Curex longirostris, Torr. Souris River, (walley, damp ground), June 3, '74, past flowering.
Carex riparia, Curtis. Lake of the Woods, (santly swamp), July 9, '73, past tlowering.
Curex polytrichoides, Muhl. Winnipeg and N W. Angle Road, (thick wood).
Carcx seirpoidea, Michx. Between Badger Creek and Turtle Mountain, (swamp).
Carex supina, Wahl. Red River, (open prairie swanp), June 19, '33, past owering.
Carex atratu, L. Rocky Momitains, Camp Akamina, (damp wood), August 17, '74, in flower.
Carex fostiva, Dewey. White Mud River, (open prairie swamp), July 10, '74, past flowering.
Carex aurea, Nutt. Lake of the Woods, (thicket), July 8, '73, seed nemrly ripe. Rocky Momentans, Kootanie Pass, (border of stream).
Carce streminea, Wahl. Duffrrin, (damp prairie), June 7, '73, flowering. Winnipeg and N. W. Angle Rotid, July 4, '73. Turtle Mountuin, (luw open prairic), July $26,{ }^{\prime} 7$.
Carex Richurlsoni, R. Br. Souris Valley.
Carex alopecoidea, Tucker. Turtle Mountain, (low, open prairie.,
Carex pseudo-c.jperus, L. Lake of the Woods, (marsh.)
Carex lupulina? Muhl, Wimipeg to N. W. Angle Road.
C'arex rigidu, Guod. Rocky Mountains, (summits) August 17, '74, in flower. .

 the pmatle of the Red Liver.
Carcx murcidu, Boott. Ihed hivar, open prairle srampl Junc 20 , 73 , past flowering ; uther specimens, probably this spertex, in flower, June 3.
Carex ampulucel, or etriculath, Red River, prairie) June 20, '73, in thower. Similar Carex, immature, souris Valley, June 3, '7.4.
Carex stricte? Lam. Red liver, June 28, '73, In flower.
Carex rosea, Schk. Red River, (swamp.)
Carex siccuta, Dew.
Carex stenophyllu, Wahl.
Eliochuris pulustris, R. Br. Dufferin (tamp, open prairie). Souris River (open prairic).

Eliocharis uciculuris, R. Br. Red River (open prairie swamp). Lake of the Woods (boggy shore).
Eriophoram latifolium. Between Badger Creek and Turtle Mountain (swamp), May 31, 74 , in flower
Eriophorum polystuchyum, L. Winnipeg and N. W. Angle Rond.
Scirpus merritimus, L. Satine Lake, near Turtle Mountain, September, '73, in Hower.

Scippus ariophorum, Michx. Winnipeg and N. W. Angle loond (swamp). Lake of the Woods (in water).
Scirpus validur, Vahi. Winnipeg and N. W. Angle Road. Traders' Road.

GllAMNEA.
Agrostis scabra, Willd. Lake of the Woods. Jnly, '73, immature,
Alopecurus alpinus, Sinith. Garry and N. W. Angle Road (damp ground, July 3, '73, in flower.
Andropagon furcatus, Muha. Turthe Mountain (open prairiel, August 11, '73, in Hower. Lake of the Wouls (diy rocky soil, July 20, '73, in flower South Antler Creek, August 1, ${ }^{\prime} 3$, in Hower.
Andropugon scopurius, Micha, Souris River (dry bink), August 24, 'T4, seed shed,
Avena striatu, Michx. Wimipeg and N. W. Angle Lioad (dry samdy soil), July 4, '73, seed furmed
Beckmannia cruciormis, Hiart. W'st Fork Milk River, July 18, '74, jast flowering
Boutelona oligostacky, 'Torr. Turtle Mountain and westward to St Mary's River. Common everywhere on the dry phains, forming a close, short sod where other grasses hardly grow.
Bromus ciliatus, L. Lake of the Woods South Branch Belly River (fint), Angust $13, ~ ' 74$, seed formed.
Catabrosa aquatica, Bearr. Near Woody Momntain, July 7, '74, in flower.
Dauthonia spicuta, Beaur. Lake of the Woods (dry rocky soil, July 25, seed perfected.

Elymus Canadensis, L. Wood End (clay bank), Jaly 13, 'r3, in flower. 'Turtic Mountain (thicket, July 25, 73 , in flower.
Elymus Cunedensis, var. glaucifolitus. Lake of the Woods (sandy shore), July 7, 'i3, in tlower.
Elymus Lirginieus, L Rosema River, (river banks).
Ericoma cuspiduta, Nutt. White Mul River, (dry hank), July 4, '74, seed perfected
bestuca ovina, L. Red River, (open prairie).
Festuca borealis? Mert. Lakre of the Wouls, (in watert, July 20, '7 1, weed perfeeted.
 ing Dufferin, (open paitic)
Hicrochoa borentis, Rowem \& Schaltes. Red hiver, (opeen prairle, Foot Pembina Mountain, May 22, '7.4, in tower. Dufferin, (open prairic), June 3, '73, in fiewer.
Ifordenm, jubutum, I. Red Biver Praitie genernlly.
Koeleria cristata, Ders. Dufferin, June 25, '73, Jin fower. Traders' Road, June 10, '74, in flower.
Lephirus paticulahs, Nutt. Near Wood Momintain, barren prairie).
Pomicum pauciforum, Ell. Hed River, (swampy prairle), Jume 21, '73, in flower.
Phaleris arundinacea, L . Red liver, (open praitie), June 19, '73, immature. Jake of the Woods, (shore), July 9, '73, seed mature.
Phragmites commanis, Trin. Rosean grass. Lake of the Woods, Rosean Lake, de. Very eommon. Borders of pools, liat River prairie. Also on the Souria River.
Phleum alpinum, L. Rocky Momatnins (6,000 feet), Aug. 18, '74, in flower.
Pou pratensis, L. Dutticrin (open prairie), June 10, '73, immasture.
Poot apina, L. Recky Mountains (6,000 feet).
Pon cusia, smith. Var, strictior. Hed River. Near Wowly Mountain lopen prairic).
Poa flexuosa, Muhl? Red River (open prairie', June 20, '73, in flower.
Spartima gracilis, Roth. Neat Wood Momatain (bmak of stream), June 30, '74, in flower.
Spartina cynosuroiles, Willd. East Souris (low ground, 2 to 4 feet, July 30, '73, in flower. Winnipeg and N. W. Angle Rond, July 3, '73.
Stipa spartinu, Trin. Pembina Mountain (open priric), June 30, '73, seed perfeeted. Garry and N. W. Angle Road prairie', July ${ }^{3}$, '73, seed perfected.
Stipa ririlula, Trin. White Mud River bottom land, July 3, 74 , secel perfected. Wood Encl, July 30, '74 seed perfected.
Triticum repens, L. Var. Lake of the Woods (sandy shore).
Triticum strigosum, Stend. Wood End (bunk), July 30, '74, in Hower. Near Wood Mountain (clayey valley), June 27, '74, in flower.
Zrizania aquatica, L. Lake of the Weods (in water), August 18, '73, in flower.
Trisetum? Red River, (Open prairic.)
Festuca? Red River. (Open prairie.)
—— E. Fork Milk River. (valley of creek.)
—— Rocky Mountains. \quad,, 000 feet.
—— Nr. Wood Mountain. (Edge of saline pool.)

Mosses, Lichens, dec., determined by (icorge Barnston, Esq.
musci.
Funaria hygrometrica, Hedw. Durerin.
Bryum cernum, Hedw. Rising ground east of Red River prairie
Bryum cermum, Hedw? Lake of the Woods.

0 N.

July 20, '7, seed perfected. ul, July 4, 73, past flower-
a pruirie, fooct Prubina pruiric), June 3 , '73, in
'Traders' Road, Jume 10, ren pairic). , Juber 21, '73, in flower. 19, '73, immature. Lake
he Woods, Rosean Lakr, ar prairic. Also on the
: 18, '74, in flower. manture.

Woody Momutain (open
'73, in flower.
of stream), June 30, '74,
2 to 4 Peet, July 30, '73, ; 73.
, June 30, '73, seed per3, '73, seed perfected. ly 3 , '74, seced perfected.
(e).
), '74, in Hower. Near
er.
ist 18,73 , in flower.

APIENIIX F.

Dicranum milulotum, Turner. Laks of the Woonds.
P'olytrichem communi, L. Lake of the Wonds.

Cerathen purpureus, Brid. Lake of the Woods.
Dicekere pennete, Hedw. Lake of the Wonds.
Pylusea intricata, Br. Fur. Lake of the Woods.
Climucium Americumm, Brid. Lake of the Woods.

Mniun rostrutum Schang? Lake of the Woods.
Jhiem "flime, Bland. Lake of the Wonds.
Hypman serpens L ? (a variety with short enpsulen). Lake of the Woods,
nepatics:
Marchantia polymaryha, L. Winnipeg and N. W. angle liond.
lichenles.
Cmbilicariet Inillenii. Lake of the Woods.
Ifuduthect phetilihylle. Lake of the Woods.
l'eltigere uphehesa, Hoffm. Lake of t^{1} • Woonts. Platysma? Lake of the Woorls.
C'laducere cristetello, Tuck. Lake of the Woords. Claduccre grucelis, Fr. Lake of the Woods. Cluldorert furcith, Hoffin? Lake of the Woods. Claducem remyiferina, Moffin? Lake of the Womeds.

Figure 1.

Figure 3

Figure 4

MCHONCOPIC STHLCTLRE OF WOODS－LANITE＇IFRTLAKI．
（a），Tangential Sections．（b），Radial Sections．

 hiths (io) fiom the • etacents of loyne River, Man., (s 15:.)

Figure 1-P'umbina bisempment and West Butce. (s $157-310$)

Figure 2 -l'embina River. (S1:00.)

Figure 3-P'embina liver. (\$190.)

Fisil scales fhom the pembina motstan ghour and cheraceots no. i.

\qquad

SECT. 8. Height 4,000 ft. Distance $31 / 2 \mathrm{ml}$.
\square Series E. \square Series $F \in \mathcal{G}$.

SECT. 4. KOOTANIE PASS.- Horizor

SECT. 5. EASTERN RANGE ROCK

SECT. 6. Height 3,500 ft. Distance $1 / 1 / 2 \mathrm{ml}$.

SECT. 7. Heighht 3,000

E PASS. - Horizontal Sccale 1 Míle to $3 / 1$ Inch.

N RANGE ROCKY MT.S - Lookin§ North.

I N D E X.

Age of the binter

12

Age of the lignite formation
Agriculture, basis if presperits of the Northwest.
Agrieulture, wentern limit of
Ak:unin:, (':amp
Alkali, so calleal, imalysis of

Allen, I. A , whembinstion of Libnites I
Allovian of tiver vallies
Allusimm of the ked kiver villey

Natime of the Ved kiver Vialley, fesh-water origin of.
Altered llumonian rochs, atea of.
Altermative chamels.
Ameriean desert, bortherin ixtension of the
Alalysis of irometomes.
Amaysis nt

Analysis of Dignites
Analisis, ultimate, of Lixultex
Auticlinal, probable, s. of kit-ka-ke-wabe.
Irea, tutal of parie in mitish Amerite....
Areas of seemat prairic level.
Aren of first pratiric lesel.
Area of third prairje level.
Area of platus in british America.
Artevian luring at fismo.
Aresiall breme at Wimuiper
Hadger t'reek, irift delusitw of
Bad Latuds, Lignite Tertiary of
Bad lands, Lixhite Tertiary of ..
Rad lands sonth of Winal Mt., sietions in...
Bear's an Monmtans, the distant view of...
Bear lake R, Cretacenos beds at.
Belly liaver, coal from...
Belly liver, Lifute from.
Helly liser. sumth liurk of
$111 . . .$.
.Bell, l'ref. referred tu.
\qquad
Prof. Peferrel 10.
self, Prof, om beyrht fanremtian Watershal..
bell, Prof, oll emformit! Latmentian anal Ilaronmat
 tiary.
thary.............
Jelt. Mr. on glaniation of Siberia............. 2 en
Biblingraply. treolugial of interine IS. N Ameria

- Biy Camp the, of hatf-hrewh..e. ent

Hirshy, Ir. , I. rifermel to...
Bigaly latind, roeks of
Dirds, arrival of, at Dufferiil, bät
Hirel ('reek, rocks near
Nitter ('reek beds, elisputed are of the
tilumend ${ }^{\prime}$ armal dil ine of the
at lank shat :.
"Biack kiate," equinale nt of om Markenzie Is Bbr kistan, bient, ".. humphts of termers..
Blas!:ston, lie.ut, wfermel to

 reytion.
Humbleq-atared refim
Wumber mhay, ol bake of the Wouls
Imomary domotain, rowis of the
Bommlary Bommanat, roeks near the
 Momitatios
there liser lindym troup

Bramehes of the Milk Risur
$1 \times 2$301 3 14 14 167
 $25: 2$ $25: 3$
301 (i.) - $1 ;$ 1 si 1st 2th latin 170 40 10 5 4

Brambes of lilk River

Bullitlo, nhl pathes of.
4
Butfala, wolmble sxtimction of the eht

Bulalo prase tutern linit nf.............

Buttes, the theseription of . 128
Buttes, the deseription of 188
Buttex, dykes near 12
Ilittos, ertpitive rocks of 122
Buttes, ine uf the..
Buttes, how representerl on Dr. Ilagilen's ma!上...

12
Buttes, enmparisoll of with simblar himses elsewhere.
Buttes, lignite l'ertiary of Li.
Buttes, comintry surrmumbing the. *an

falf Mumbtain, probable cathe of 8 . 8
Can! dkannint. 6
Ciwhomiferous fommation, probable existence uf in Inanitubas.
Curbmiferoms rucks, chariuter of, in Ve Draska.
Carbonifecoms fommation, characterof, lu Roeky Monntain region.
Carbaniferons limestome of Rocke Wommanims.

(iuleton llouse, wlvance of spring at....... . .
Caribun Sluskerr rucks wear
(nttle, wild, living ont through the winter...

Chief Mommtain, struture uf
Chicf Momutain lake or Witertun Lake, rocks in the vicinity of
('hief Jomutain lake, former theier of........ 243
'implues lin the Racky Momatains.. 245
'lay-eliale of Pembina Momatain yroup, charaster of. .
('lear-water hake, charater of
('linate of Eistern hase of Rucky Dhumtains. .has
('linate of third l'mirie steppe................ 2 .

Clinker, froms l.ignite, we urrence of.......... . . . 16 .
Conlx, imalysio of by lruf. Ilathel.... 1 is
('and, lituminuns, oll St. Wary Kiver.... 182
(oral of st. Satry If, importance of 175
Conats romorirs of its moviremee at lembinat Jonthtilll.

Cohe's Fialls, Cretateroms heds at 17
C'mbluation of lignites, whether spunta-
\qquad
('mmlustion of liforite beds 16
fomblusions, generil, on the lake of the
Win!ls.
comfumbty, apharent of laturentian mat

Comglomerate, shate............................
('onghmerntes. lluronian, brigin of the..... .
Conifernes timber, westerin limit of.
('ole, lrof., on the age if the tixnite format
tion. 10

5
8

[^101] $-$
, .

[^102]15156972
282424-5743858
23
8
8 78
801716849130130
$\vdots!$61
512$\because 2$
102

[^103]3

[^104] 4
89

[^105][^106]
INDEX.

Copper ore, memrenen inf on lake of Winds,. is Cormmant, hreeding place of the Cotenu, appronch to the
Cotean, aprearmace of the
rotean, breulth of the, on lat. iv
cotenu des I'rairics.
Cotenu, disused strean ralleys of the
Cotean, formation of, by thoating ice.
Cotean, height of
Cotena, Minsuuri
Cutean, on the Trulera' lond.
Cotem, suppoltions to areount por
Cotean, anotherncentinuation of the
Cotenu, northern extonsion of the
Couleses, formation of
asjuct of haurentian ountry compara

$$
\begin{aligned}
& \text { and Huronim? } \\
& \text { netry of the }
\end{aligned}
$$

AdF:
31
51

Country of the Third Praire steppe........
Country ut the seand proitiesteppe
Cretacentis heds at Bear lake Wiver.......... 20.3

Cretacenis beds morth of N. saskatchewan River.
 nf.
.... 151
Cretaceous formatian, thicknows of wh burer Missouri.
Cretaceolla, irmstones of iso
Cretnceons, junction of, with Lignite formation.
Cretacenus limit of ematern wite of
Cretaceons No. 4. winth of Wowl Monitan.. 1
Cretaceous 5o. 4. menth of 10 osl

Cretaceons No. s. Dta.l Latuls sections.
fremeons So, s. Han fathessections......... 120

Cretncens, posbible wecurrence of lifnites in.
tretacentis roshy, by whom examin d.
Cretacems rocks, ouditions of depusit of
Cretacenas, nubsidence and elevathon during the...
Cretaceous, nubdivisions, peneral distribution
of...
Cretacenus sasth of Wind Momatain, dije of beds.
Cretacemis, wentem burder if..
Crotaceous, lpper Mlssomri, section of the
Cumborland llotase, advance of spring at.
Crprens Ilillm, watershed in...
Cypress Hills, marine Tertiay leds at
Dailr meteorolnkitual wele
Dakota group, general aplicarance and diatri hution of
Inna, Prof, on rainfall
Inwain, Ir J, W., in Fusull plants.
Dawson Rusi, country near the.
Ienudation, peet-tertinr).
Demmation, armiel on for............. 2 e
Desert enarer 26
tachar eountry overlying Crota-
enert, Americu iortherin exteusion of the
Deslecation of the plaina, facte tending to show.
... 31.5
Devonian and Carhoniferous of Wucky Mountains.
pewoion, bitumes and mineral oil in
Denudation, action of on third prairie level.
Devonian, as a salt-hearing formation........
Devonian, exploration of in Manitnbas derirable.

I)eroninn, ite distribution.

Devonian of Sanitoba lake.
Jevonian of Mackonzie R...
गlorite intrues in K.................... 12
Dirt
Division a of L.snite lertiary 104
Division β of liknite Tertiary................ 104
Wivivion y of Línite Tertiary.... 104
Jivision 8 of liknite Tertiars. 104
bivivion Be of br Hecto:s' Soction Path

Dne l'ortage, terracen at......................... . . . 2.04
bolomites of seriew A in looky Mombtains.
Dramate, primary xytems of.
brift dephests, miform enating of
Injft depenits of 'Turtle Mountain.
Wrift conered region.
Drift, bencral comporsition if 24
1rift, Datuentian, its western limit 24
brift, mmucrical examinathon of constitnents
rift of the Red River Valley. horings
throurh
brift latean. S. W. of lake of the Woods.... 212
brift, lied, \lesssim. W. limut of
Drift, Sectiong of, on Roseau R................ . 21
britt, the gnartzite 2
bykes, pomplicated intersection of
lijkes whersed in Lake of the Wionds region. Is
Dikes near the Butter.
Ea=t lutte, spetions north of
Ea-t Furk of Nilk River, drift deposits of....
Fant Fork of Kuotanie Pasy.
Eant Fork of Milk Kiver, Cretaceons fowsils at IIt
Edmunton, alvance of spring at............ 2sis
Edmonton, coal from............................. 17.
E.levation :4ter slacial subsidenee............... 259

Flevation oi Rocky Mountains, period if..... is
Elevations, errrelation of......................
Ele vatinn of first prairic level.................
lilevation of reond pratio level..
File vation of third prairie level
Ellintt, Mr. R. S., on amelioration of dimate
by phatimetrees.
mmons, Prof., on the age of the Lignite formation
Ficere are of lluite formation. 193
Pwarments 201
Exarpments of the pairie atepres..........
Furse artesian horing at
. 250

Fauma, firaminiferal of Xiobrara group.....
Ferro-calcite, wenrrence of in cretaceous
shates....................................
Fertile Belt, simultanenus adrance of spring
ertioe seit, purt of in the forty-nintit
rthe belt, part of the the forty-nintit
parallel.. maralle
Fires, forest, in phrthe iomo.......
Firsw, prairie, necessity of prevention of...
First liranch Milk lifer, expmates near.... .

Flexures affecting the Laurentian and Iturunian
Flora of comotry surrounding lake of the
Wmis..
Foraminiferal fausa of the Niobrara group... Fis
Furest, seheme for the culture and preserva- 321
Forest, dentruction of, "ausing decreared rain fall.
Furest of icmbina Siomiain.......................... 287
Forest area of lurtle Monntain.............. 289
Fork, east of Komaine Pasm....
Fork, east of Kontaine Pass
Forty-ninth paralle:, cretacents roeke of the,
compared with other dections..........
Fort benton Group, general arraugement nud dintributions uf.

I61

Furt Pierre drompst Wext hutte.................... 180
Fort Pierre (broup, conditlons of deposit of, 160
Fort Pierre (Iroul at White Mad River..... 10
Fort l'icre Gromp, weathering of, at white Mry River.

110
Ent lown timup. probable reprenchatise of in lemahna Nontutahn

Fort Pierre Groty, wemeral aplearance amd distrilution in.
Fort Pierre (ironp, had clfu't of, on appearmice of emantry
Fort Pierre Groll woth in Wexkl Mountain. 10
Fort shaw, man temperature off............
Fort linion hromp, weilern repreantatise of...
Fort t:nion (imoup, lertiary age of .
Pussil plants of lakiute Turtiary

Iati

Fossil verteloraters
1.sis

- s..
oran, Devnian, frona Markenzio kiver.
Fowsils from first branch Malk Kiner.....
Fossily from Milk River.
Fussils from seethos north of Binst Bulte
Fossils from seeond branch silk River
Fussils from Wes lsutte.
Fussils, mole ur prearvation of in Crothe....
No. $4 \ldots, \ldots . .$.
vile of "retateons No. f, south of Word Sruntain
Fossits of Cretaceons No. 4 , koud loeality for 112
Fussils, roferred to durassie trom Mackenzie Kiser
Fox Itill dimup at white blud kiver........... 108
lox llill Group at liest Butte.
Fox ltill dromb, keneral diverthation ai
Fux Hill (iromp, ambltanety of aceporit of
Fox Hill tiroug in Beal hands suctions 12

Fox [1/H Girulu, 'lertiary faces of mollue. from
Fos lifll (broup, charanter of
Fox IIill (rroup, conditions of depunit of..
 1.18

Fenelmastis creek, of White Dad River, sections int.............................. inll.
Puet lise of luat to cembulize konk
Fuch, atear oecuphed by different clanses of. in the Weat.
Fuels, value of ligniter is
Gialdatim K., Montana, section on.
解 ace and lamiltonsernehs, equivaly at
senerat sectimn in the laneky Bowntans.
(ienerul entelasions, Lake of the Winsta
foublisy, general ontline wi.
Gerbogiod bithlingraphy of interior is. . America.
dealogicat explorers. former of the lathe of the llumls.
Glacinl perion, introduction of
Glacial phepomena.
(lal lied 1
Aacial strie of Lako of the Wiands region.
dacial sulmuergence
Gheial submergence, ditheolties of theory
thacial action in the lanek! Momatalns. .
Ghacier, enthont, on the Laturentan axis.
Blacier, former, of Witterton Lake
shbingerine..
Eneissic rocks, abeence of, in Lineky Jomn tains, of thth paratlel.
athl. rumotrs of its vecurrence at pembina Ilountain.
(:racuhns dilophus (cormorant) breethig phace of the .
Granite, intrisive, of the North-nent Angle probinte convere of the
Granite, intrusive of N. Island
ermitic rucks, abmene of in Horky Numbain on 4 th h parallel.
Grante, intrisite of N . \boldsymbol{W}. Amsle
Grans, burning of reprebensible, on the phains sef trasshopler. (sed landot.)
Great Iry conlee, a rlisused River Valley.... 2ht
Great bry couter, the.
Creat ibsman mwall.

(ireat Valley, fisealy from the stalen..

Gredsatone emphomerate
51
Grit, Baghe finn, of merter C.... ©
(irum, Mr. 18., ond freat salt Lake............. 318
Ilamel, I'ros., analyses of lightes by 17
Halt-breals, big etmp ofi, the..................
Hanifton and benese epochs, uquivalents of,
on the Matekenze kiver...................
Liarrington, Dr. B. J., anatyses of lignitey by 170
Hawden and Heek, secton oi c'retaceous tin tiper Misconti hy
Hayden, Dr.. on the age of the Liguite formation.
...... 18
Hasiden, br., on anclionation of climate by phating trees.
mantine trees... 318
ayden, Ir., on southorn extension of the rinte:lu. .
Hayden, lr., section in liath Hamre by.......
Hay swanp, promiscuons burning of, reprehensible.
Hector, br., referreal tu........................ 20
Hector, br., wh surces of rivers in lfocky Somatams.
Hectur, Dr., in structime of Rock Biomtaths.........
Hector, Dr., his cretabeous section comphren with others
flector, lls., on salleys without butlet...... 23
Henche, in., on northern oxtension of the Coteath.
Iecter, Ir., on Turtio Sommata
llecter, inte, on hachits of terrace
-
Heer, i'rus., reterred to.

Alime, I'rof., on limustones of Lake Wimhlper
llind, Iraif, in earbunferous of Manitaba
Hand, l'pot. Ils.. refervel to.
 titerens No_{1} t............................
Itind. Irof, bealtios in which he famme cretheerons No. 1.
 vith a
lind, lrof, on terrates at loy bortare....
Hinht, I'ruf., on chatege of couree in mers.
Iloffman, C., hansses of ligniters by
Hhaser liail, pasition of.
Harmian roeks, alteret area of
harmath roeks, atteret arcil of
flumbinm rocks, ibelated areat of............. hatar-ke watec. furmian ruw s, from the kitkikewabee to lat Portace.
Iturnimn and Latarenthan, junction of the, at Ratl bertige.
flurnain unt Laturentan, dueree effect of, on cometry
In matian diatribution of tho, on Wio Lake of the Wimals.
Ilumonian and Laturentian, Ilexure of the, on the latke of the Werds.
lurusu, bthutury us take of the wo
Il uromian and Larmentian, Lake of the Wools, general - $\begin{gathered}\text { tituence }\end{gathered}$
Intmian of Late of the Wionls and al. where, emplation.
huronian, se-tated, are of the................
Hurnman emplomerates, origin of the.
Iurminu, metamurphism of..
Huromian, pmaihle wecturence of, in Roeky Monntithes..
Indiamderoces on la hoche Pereée........... 87
Invecte, list of 341
nterise chatimential hasin............. 10
hatruibe mase of lia-ka-ke-wabee 40

Ironstunes of the lignite Tertias
Iromston of of fretidcemts.
Irrigntion, limited ajl abibity "if
Isbister, Alr., reierred t.".
Isolated aren of llaronian Ihorks.
Julith Ikiver hals, enmelat ion of, with beds in the line..
Jumetion of the laurentian and lluroman at Rut Partage.
Jurassic, rocks helongium to, in liweky Monntain region.
Jurassic, fussible necurrence of, on Mathenale River......
Jurassic, oceurrenee uf, in Rowky Domintains..
Ka-ka-ke-wahee, int moive mass in.
Kicating. l'mof referreal to
Sing, Charence, on the ge of the lismite firr mation.
Kingston, Prof, in rainfall of Wimilue.
Kirly and spence Mit., Honftnic l'ins....... tii
liersment, at the huttes.
linotanie Piss rocks of $1 \because 4$
Kootatie Piss. rucks of
lobotante liass. Wateishoul in tho...
laterswe I
lace Plat.
lace Plat...............
laku of the samilh.
latie of the Wourls, pusition of
lake of the Wroms, gendury uf.
bake of the Wroods, whter sulply of
Iake of the Wimels, fergraphy of
bake of the Woman. dincharse of
Lake of the Wenls, northern part of
Lake of tho Woonds outlets of the
sake of the Womis, whtlets of the
e of the lroms, benoral conelnsinals 1 on genlory of the.
Lake of the Woons, flacial phenomena of...
Lake of the Womds, luyth uf................
Lake of the Womis, cenneotion of bisin of, with the rocks.
Lake of the Wis... wharacter if worthern mad soblhern jarta.
Lake of the Wionds, seteral direction of slacial strixe of
Lake of the Wuorls, unture of outiall of.... Bo.
lake uf the Wonde, Viper silarian lime
stone in.......................................
Lake of the Wionds, finmer wnithern ont lot "............. timber if itwintry sur. rutumbing the
Iake of the Whods, charicter of retubs sirr ronmitiog .
lake of the Wisuls, smmid area fle formantinathon hear.
Lade of the Womls, thon of emmatry surremaill 118 .
Lake, Saline, nemr 'lourtle Mountain.
Lakes in gheier vallies in the lowey lamtains

hamrentinn axis, its premeral course.....
laurentian avis, its nature..................... turentian, nost western rucks of netor
Lake of tho Woscls............................. Wionde.
Laurentian and llurnmat, junction of the at Kat Portige
Iaurentian and Intomian, liverse effect of, o. eonntry
Laurentian, dist ribution of the, on the lake uf the Wents
Iaurentian and flurunian. Slexnte of the, "in the lake of the Wimaly
Laurentian, thexures affecting the, in Ilastings County.
Lampentian, hexures sffecting the, oill the Ottawa
Lanrentimanl Intmitat, lake if the Whants. general sequence
isarrentian waterbhed, mane af..
laturentath llift. its wobitern limit
rur $1+1$
$1=1$
183 1×2 2 24
3
 firmastinh.... hespurreus, I'rof. on Tertiary age of erentiain cutals..
Lifo, chatse of ravelerated, jow physiail eon(litions.

191
...... 104
disnite gertiary furmation, lommations of. 19 lisnite Tertiary, nectoms suris Valley, molluses of 91 Limite 'Tortiary, expusure of $0 \| 1$ Pradery Road.

112
fraitul le tixtern
Lifnite, onmhantion of. in diai lamis sertions 103
lifnite Tertiary, mearest the menntatins.... 134
lisnite on wath furk of Belly Kiver.......... 135

136
limnite, probathility of liscovery uf, in lakota (ivoll).

134
Lignite irom Fort rrancis, kaby laver...... $1 ; 89$
ldanite 'lertiary formation, quateral armare-
ment and iliutribution..................... 162
lisuite Trertimy, different horizons of...... 152
lignite 'l'rtigary. enstern boumary of....... 1 l 3
lignito-benring formation, tasterit lindt of tine
imbine 'Tertars, bodsuf, beluw liowhe Percée -illalntonte.

153
ikniter 18
IIf
lignite 'lortiars, irronstomes of 181
limuite formation. nge of the.............. 183
iuntito formation, mity of the.... 185
lignite formation, junction of, with' "reta"
remills. .
Lisnite formation. lineme aqe of.................. 201

li, mite, neenrremes of, in trift................ 240

Kiver, de..................................

irnites amalyses of 100
iunitum usential phrmeters of $1=17$

denitex, three typers uf, thet with............. $17 t$
liumites, variable water enntent of
175
limites, their value as finds.................
176

ignitex, behavior on buating..................... 17B
Livnites, mltimate amalyes of 177
dightes lladil as fitelx.......................... 177
lignites from satatehewan River............ 17%
livmters fiom |rirt IIills...................... 179
Lisultem, analyses of hy lor. Warringenn...... 170

Liznites, regions ucenpical by differont elayses
uf...
Lightes, owemrence and mokle of furmathon

lisnites, pmsiblencenrrence of, in Cretheeone lis5
limeatuhe, lawer silurian, at the Stome fort 11
limestune, repnorted exintence of, near hainy laver.
fimestnate of Series 13 in Iforky Mrantaina...
limestome, grent, of Suries I), Rucky Motin-

Limestone of series
lituestume. f'arlmuiferons, uf Itneky Jmmo tilils 63

dimestone ! !rift, orょin "f 210
limentone debris, north-eststern limit of....... 210
limestone, repwrted nechrrence of, in Thrtle Moshltill.
A.s..... 22
limestomes, C'alloniferoms amd Silurian, of

Line，the linumdary，remrse of，in the Ranky Pam Monlititins．
 Huronitan，latke of Wumble
Little Itacky Morantains the．．．．．． 50
Little＇lomeliwors Ilills
lonenst，ineroule of the
$\xrightarrow{3} \mathrm{P}$
facust，egye tanl young of the 301
acont，chas and yother of t＇ic 100°
docust，magrtion int the 306
lacust，pears of inrobuls of，in Minitohat． banenst，prarevites of the．

lanensts，preetutions ugationt the | $306 i$ |
| :--- |
| 307 | 307

307
bunsts bus of
 trees．

310
fowutats，houlle uf the
：30． 1
 rentiath rueks．
bagan，sir W．Fi，on liengh Lamrentian watershed．
Lenar River，sectimes of Pembint Mlambtain
troup in
Lamer River，drift depmesits of．
Lower Silurian，deponsits of ．．

lawor silurian，series in Minnesota，de．
Mickenaite，areat dramed hy，south uf lat．ins．
Meliay＇s Islamd，manite of
Magnesiatu gril on seriese
Danitulat，illmade of lancuats int
Marsiat of thiml prairic steple
Markets，distance from，deterrent tor wotle－ ment．
Marrons，lates des．．．．．．．．＇${ }^{\text {a }}$ ．
Marali．l＇rof．，wh the ure of the lignite format－ tioll．

1113

Neck ant Jlayden，neetion of Cretateemas on V性er Nissomri，by．
Sleek，Jrof．，list ot Devollian fossils tromin Ditckentio lkiver，by
Meek，l＇rof．Ir．B．，referreal to．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Meek，I＇rof．，on the tive ni the lignite format－ tioll．．
Matamorphism of II uronith racks． 150
Seterrohogical cycle，taily．．．．．．．．．．．．．．．．．．．．． $2 . .2$
Methy Vortate，height of ．．．．．．．．．．．．．．．．．．．．．．．．．
Mid川life｜shami，rosks of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 27
Midnle Ishann，rosks on
\qquad
Milk liver，sections in villes of ．．．．．．．．．．．．．．．．．．．．．．．．．．il

Ditk ltiver，erossingr phace of the．．．．．．．．．．．．．．．．． $1 \underline{1} 1$
Dilk Itiver，brithehes of ．．．．．．．．．．．．．．．．．．．．． 130
Wilk lkiver，lipnite Tertiary of．．．．．．．．．．．．．lin
Mintral ail ：thal hitummo．in｜tevomiant．．．．．．．．．｜l
Ninte Wakair．
Missomutit＇o．．．．
Nissombi kiser are draiuel his in iritivi
sumbil Rivel，area dramed by，in lritish 10
Americia．． 10
Mississipli，sontrees of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

 les．

11
Molluses，fravi－water，evidene of with re gatil to age of hignite formation ．．．．．．．．．．
Mollusen，maritue，esidence of，with regibl th are of lignite formation

19

Wolybienite，
Montignes du Finin de Sentenir，（eseriftion of los
Honmment，lomalary，on the watershed．．．．．

Jovements wiving rise to structure ot batke it Wirulas rocku．

Muskeir．
114.4

Stisked … ．．．
 proed with IS．N．A．vections．
Newhers，lrof．，oti temperature of lignite Tertiay probe．

Newherry，l＇rof．，on the me of the lignite fiormation．．．．．．．．．．．．．．．．．．．．．．．．．．

Niobrart perith，depth of sinhiorgence
thritur ．．．
Nindules，Jarere，in I＇embint Mombtain shates
Nurth last Rosetat River．
Nurth Gast Rosentul
Nurth West Angle．
Nurth West Amgle．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
North West durle Inlet，rueks onf．．．．．．．．．．
North Island，rocks of．．．．．．．．．．．．．．．．．．．．．．．．．
 from．． mberical examination of emastituents of drift．

221
Ores on lakke of the Wimsto．
5.4
$23!1$
thatreat，wecourenee of，ht ilrift ．．．．．．．．．．．．．．．．．． $2: 3!$ ．
Gutfill of latke of the Wionk．．
（Iitluls of the lake of the Wimits．．．．．．．．．．．．．．．．．
twen，1）r．，referren to．．．．．．．．．．．．．．．．．．．．．．．．．．． 11
l＇a－ga－ta－wa－minis，or lacrosse Ishand，rocks

feale，br．，secton in Niping fanom．．．．．．．．．．． 3！7

 lat． $\mathrm{d}!=\ldots$.
Pombina River valley，exposures in．．．．．．．．．．．
lembina Monntaintironp，thickness（exposed in Jembina River Valley．
cmbina tomutain Gromp，exposures in Long River Vrulley
entina do．．．．．．．．．．．．．．．．．．．．．．．＂
embina hommtan of ．
embina River，arift acposits on．
Pembina liscarpment，Iritt deposits ol．．．．．．．． 21
l＇ent swumps ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\frac{9}{8}$

＇embina River，eomntry near the．．．．．．．．．．．．．．．．
Dermian and Triassie of the interior con－ tinental region
Plysieal feograply，qe．．．eral outline of．．．．． 1
1＇ceture liock Puint，rocks of ．．．．．．．．．．．．．．． 27
l＇ine timber on the Roseary liver ．．．．．．．．．．．．
＇ipe－Stune l＇ass，rocks of
Ilains，area oft，in British Americal．．．．．．．．．．．

मrains，fucts tending to show qralual dessica－ $1 \mathrm{lon} \mathrm{Ol}^{+}$
Vomurhelints ！flohuloste．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 79
 Yilli＇y．
liants lossil，from lomapime Creak．．．．．．．．．． 107
llants，fossil，from lhal lamds section ．．．．．．． 10
＇lants，evidence ot，with regard to age ot 1 dig－ nite formation
plants crilleeted，list ol $+\ldots . .$.
Himts in thower on second prairia steppe，

latean，dritt，southwest of lake ol the Wrods．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
＇luvial periot，possiblo oceurrence of．．．．．． $21 i^{2}$
＇onds and hills second prairie steppe．．．．．．．．$\frac{92}{2}$
＇orenpine＇Creok，analyses of lignites from．．． 172
formpine Greek．eigliteen－foot lignite neur．．As
Porenpine t＇reek，exposures in
Porcupine t＇reek，fossil plants from ．．．．．．．． 100
Post－gheial phenomenta．
bottery，material for matimbeture of．．．．．．．．．．．．． 8 ． 85
powder River，tharbonifurons limestonc on．．
＇rairie，total area of，in Mritish America．
＇ratiris，the Real lkiver．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Prairies，cumses assigned tor the truelessuess of．
rivius alt．．
raties，chitivathon or tres on．．．．．．．．．．．．．．．．．．．3！ 31

Prairies, why uat rechothel with trees ilt

Pre-glacial anpert ot tho country

$$
\text { J'yranlid l'reek, somtions on } 14
$$

(114 Appelle, ath thil rivor valley

$$
\text { tumrtaite, נu import:unt ben of } \quad \text { in }
$$

(puartaite, oncurrence of. 37
thartate irift.
Guartaite ilrift, the.号it
kiantahl, never excessive on the huins. Bit

Raintall, least mewessary amonint of. : : 1
 Rainfall. drevease of, bat destrmetom of forest 3ltit

$$
\text { ureats..... } 11
$$

Reinfall increased un planting tores. 317
Rainy Riven, analysur of lignite fiom 17 .
Rat Partage, pronition of
Hat Jortame cealogy ut. \qquad

Rocky Montitails ${ }^{\prime \prime}$..................... 7

kon hiver, amblamed hy
kelliver. wimtly noitr the 27

Hel kiver millutry, arrivat of hirds in spring 2al
Kol River aumtry runfall of 2 as
lied River comintry, inmalo at lownsts in. 301
Red River prurie. . . 27
hed River pratie, measure of atridiltural

Ilminer Vialley 246
Rom laver Valley, allovian of the $\ldots . .299$
Led River Vatley, eombertion with the
Mississighi sunthwarl....
Red River Valley, hirnation and komer gr
-I River Valley, climate 1 $27!$

Ked Kiverr. Bualy of
Leal Riser Valley, formur commanhation of, with the Mississippi

Rhyolitio tsachsto; porphyry of the lhattes.
Riclarikom, Sird., on Ifevobian of Mankenze River.
i kive of 13
 Aohntains
Hicharilsum, sir .s., on Mothy lortagu............ . . . $2: 37$
Riley, Nr., on parasitas of the locust 307
liver Vithers, large
kivar valleyg, ave of
Rivers, champe ot enums in

lloles, trade in...
IReky Nomatains, aspect of their eastern fimit
Rocky Mountains, man of plevation off.... 7
 those of the phans.
Itocky Monntatins, ciryus in the 5
Hocky Monntains, comparison of rocks with those wit other locidities..
Rocky Monnains, eastern front of the tit
Joxky Monutains, elevation of 10
Hoeky Mumbtaios, Leneral ntructure oft, acrording to Jor. Hector
Rucky Mountaine, thatial uetion in 213
Rocky Momatains, marine moumls in the.... !l
Fincky Mommtains, timber of tho
 ka-kt-walice
Rocks, Jumonian, from Ka-ka-ke-wabee to liat portme.

Noble Mietto Muntain, sectlom in. Panes (hwe:th River, sectiothe of mitt oll... 214 inveath liver, eonntry mear tho........ 273

linstillt Latake.
finsell, A. L_, reforred to. 78 273
.276
thsedi, d, L, lisuiti rectivod from. 139
Sallue likn of the f'oteati. 424
un lakes course of 2.45
Silite lake nome Turtle Nountain. 293
alimenprings 145
Salt springs of Mamtola lake.
sall in Ibvomian rucks 11
sanidine-trathyte of the Ihaters. 135
sand-hill Juk 23I ertiary
150
Sanistomes, wenthoral, ol lä Rowle Percée. 81
Saskatchowati Kiver area drajned by. 9
179
Saskatelowan River, liguites from 179
st Misry Kiver, anal rim. 1.22
st. Miry River, nalyses of andibom. 172
t. Aari livar, Minu at eometry rear $2!18$
 1514
 1411
Suldhev ahl inserts millette. 1 $34:$
secrid branch Milk Hiver, expositres on1161
131
Eecomil pratire level
suconil prairio stelpe, endge off, on Saskatclie-wall
 218 218
sarmil prairie stephe, whatry of the.
Gewnd praitie steppe, drat depmits ol $21 N$
Envtion, wemeral, in the Rocky Nountaing.
S.rction in Pernbina lilver valley 43
تection, impurtant, near Fast Fork Milk
 114
Sxlwyn, Alo, on height of labrentian water-Whent216
sulnite, its associntion with phant-lmeds 97
Itmonian, Lake of the Wookls50
-ribes A of leacliy Nomatain bede 67
Suries If of Rocky Nonntain beas 68
69
 tio

62
Sottwimpt, leterrents to, in the North West
Sethoment, capalinitios of the repion withwherrence in
Shoal Lake, see Lace l'lat 23
Shart Crack, section ont. $r 7$
Furt by..11
Sinlian, western and uorthern extension ofShat emplomernta ot Series (', RuckyComplom
Mombtains.
Slon of the intorior resion of the eontincint. 3
Smanl fromenatory, the. 31
Saike Kivor, Cabsoniturous limestome on Sail ol the second pratie stepre. .Soil of' the Ked Kiver pruirie248
277
Sobl, lextility of, dhe tu y ellow marl. 21
couria Valles, inalyses of I ronstonse trom 181
109
Sours Valley, analyses if lip:ites from. 290
ohis hiver, cruatry neal 290
146
sontis liver, Valley, changetel of 2 6 解
Somris River, drilt depos ts of 2.5
Gonden River, Lignite Tertiary rulks on 86
$9 t 4$
sonsis River, disnsed valley of264
26
Sonth Eist Josean Hiver.275
Sunth Fork ot Belly lliver.24

index．

Sprink，idvaner of at Firmonton

Sbrimg，alvabuo of ith Keak kivar emuntry＂${ }^{\prime \prime}$ 284
$27!$
Spring，advance of at combednad Ilouste．．
Spring，wlyame al at t＇arletom Ilouse．．．．．．．

ppriuk ，．．．．．．．．．．．．it
天prabs，tenturature of on thime．．．．．．． $19(4,1$

Steples of the prairic，their lamadhg bacarpo wents．
Stork，winturink ot
3
102
Stunt dircles，mistern limit of．．．．．．．．．．．．．．enti
Sthata，Heturber，nuar East Fusk of Dilk

114 2115

Subuergener，glarial，1）r． 11 aydon ont．．．． 250
Suhmergeme，glacial，bitliculties of theory etho

Submergence，limit of west of Herky Momi－ taind

259
Sublivinions at Suriow i＇，fontamio Pass．．．．di0

Tempratume，meth，if Furt shaw ．．．．．．．．．．．．．．．． 300

＇Jermors at losg l＇urtaga．
Terrares in the kocky Momatuins，hotghts of． $2: 8$
＇Jertimy，libute comblitions of depusit off．．．．latis
T＇urtiary，ligute，pussible morthorn exten－

Trimbleria ayplutinum．
Tr．rthew＇al githas：
＇Thick wome Hills．
＇I＇hird jrairie level．
Whird pratric level．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
lhird prairia stevere，womtry of Ha．．．．．．．．

＇Thitd prairic，strljer，flimatr of＇
＇Three Buttes，placial phentmonda ol＇
Thumas，Jrof．，on raintall of the Wrist．．
lhomas，l＇rot．，on wouthern extensinn of the fotcall
Timber
＇Simber of erontry surmandiar lake of the Wumls．．．

279
＇rimber of the looky Blouttains．．．．．．：
＇limber of the ked hiver dentraged ly tire．． ＇Tinnchworl Hills．
$3!15$
Irachyte－purphyry of the buties ．．．．．．．．．．．．． 1 ．．．．．．
＇I＇radire＇Rosul，fotwan on the ．．．．．．．．．．．．．．．．．．． 2 ：30
＇I＇mhers＇hoad，exjestares uf Lignite＇l＇ertiary on
ulers

Trees couse at their attect un raintail ．．．．． 317

＇Irees，＂unctments＂Heouraging planting of＂ 321
Trees，phanting of，increasing mintall ．．．． 817
＇Trees，llanting of＇，necessary in the Nortl Wैext．．．
＇Trues，rapil growih of on the plains．．．．．．．．．．．．． 314
＇Iroes，selarme lir the enlture and preserva－ tion of ．．
． 321
Triassic anj Permian of the interior eon－ timental rogion．．
Triassie，question ut uxisterer ot in hontana 7 Trinssic，securmence ot，in larky Nountatis．． 74
Turtle Meumtuin dritt dapesits ati
Turtle Sumntain，tirmation ot，by floating ice
Turtle Momatain，ome of a suries of drift ele－

＇Turtle Dountain，reportod oecturence of lime－ stont in．．

Turtle Mountain，trees fonnd on， Patie

linta lathцe，sention in the．．．．．．．．．．．．．．．．． 73 2×9
 Wowky Jomutains． 7
Liner stolumbin Iake，rouks of．．．．．．．．． 70 75
70

所届（opper－hearing worlew，rucks resem－ bling，in liow k y Momutains．
＇गリrr silmian limestone on Iake ol＇the Womals
Ituh，iurwased rainfall hy planting trees $\mathrm{l}_{3} 317$
Finlios，antient，of lhe Cotcau ．．．．．．．．．．．．．．． 230
Vabley of the Hed kiver ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 248
Gallies，harge，of rivers．．．．．．．．．．．．．．．．．．．．
Falliex，tommation of kreat alteanative ．．．．．． 265
 t ：in locks．．
Vortelmates，ovidence ol，with regard to age of liguite tormatims．．．．．．．．．．．．． 10
Firtelmates of lignite formation，not nll in Cretacestes type．．．

0
Fertenates，from laknite formation，in lat 49 ，luating off，wh question of rate of thrg hists
colsmic oripin of lluronian emplomenites， do．
W＇urmth，purjol al，incrased．jossibly syn－

Waren，Mapr－dencral \mathcal{G}, K ，on Minnesota liver de．
Watersherls，bonnling the interion crintinentul repiont．
Waterslud，the sonthern transvirse． 7
Watersheds，fransverse，uf interior conti－ HP！tul region．

7
Witershed，the northern transverse ．．．．．
Ghtershed，the southern transverse，its （ansenc．
W^{W} atershud，the，in the Ruxky Monataing．．．． 02
Wratershedplateau．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 227
Watur sumply in the lied liver Vable．．．．．．．．．．286
Whtertur lake，rueks in the viciuity of．．．．．． 67
Waterton Lake，former ghacler ot：．．．．．．．．．．．24，2
Wells．decter ramil shallower in the Red River Valley．．
Frest Lsuite，descriptio．．．．．．．．．．．．．．．．．．．．．．．．．．．． 28 ． 28
West lutte，sectimis near． 125
F－．．．．．．．． 1 ． 6
Viest hat aftlilk Diver 117
West lork of Dilk River．．．．．．．．．．．．．．．． 117
White－tish lake．．． 274
White Mud River，or Freminan＇s C＇reek， sections ith．．

Whiti Mus River，weathering of C＇rathe．．．．． shaters at
White Jud kiver，country hear．．．．．．．．．．．．．．．．．．．．．． 291
NDitthesed，lol．，on red dift．．．．．．．．．．． 213
Wisum Mombain，structhro of．．．．．．．．．．．． 66
Winclu－lh，I＇rot．N．II．，pre－eretacous decom－ pusitioll of kanites．．．
W＇indsell．，Prof．，on pular ice－cap．．．．．．．．．．．．．．．
Winchell，l＇rof，un southern extersion of the Coteatl．．．．．．．．．．．．．．．．．．．．．．． 9
Winni＂g gronj of lakes，area crvered by．．
Winmipes liver，bpginning of the．．．．．．．．．．． 44
Wimuipeg liver，origin of．．．．．．．．．．．．．．．．．．．．． 207
Winmipers，artesian boring at．．．．．．．．．．．．．．．．．．．． 250
Wimipeg and N．W．Anple leoul，wountry
near the．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 272
Winnijerg，mean temperature of．．．．．．．．．．．．．．．．．． 300
Wintering of stock ．．．．．．．．．．．．．．．．．．．．．．．．．． 80. 82
Wolf Hills．
Wiokl，means to comomize use ot：
Wrand of the lind lkiver．．
322
Woorl，questim of supply of 278
Fock，questin！of supply of．．．．．．．．．．．．．．．．．．． 311
Whol Find，sections of drilt near．．．．．．．． 226
Wond Ilonitinin，watershed near．．．．．．．．．．\＆
Woni Nountinn，Lignite Tertiary near．．．． 102
Yirrell Mountaini Kootanie Pass．．．．．．．．．．．．．
Yellow marl，tortility ul＇soil hased on．．．．．．．
s

[^0]: - Dr. D. D. Owen's Reprort.

[^1]: \dagger See Prof. N. H. Winchell's Regorts, \&e.

[^2]: * Journal of a Boat Voyage through Rupert's Land, vol. I, p. 122. \dagger Trans. Clicago Acad Sci., vol. I.

[^3]: * Journal of a Boat Voyage, vol. 1., ipr. 125 and $1 \because 6$.

[^4]: * Prof. Hind figurcs a specimen of Producta, whleh Mr. Billings eonsidered to be of Carboniferous type. It appears to have been derived from a bounter found near Fort Garry.-Rep. p. 19\%.

[^5]: * Journal of a Boal Voyage, vol. 1, p. 17\%.

[^6]: * A Chippewa word genurally adopled to designate the wide grassy swamps of this region.

[^7]: * To Mr. A. L. Itussell I am Indebted for mueh informaton concerning the fart of the lake which I was mabie persmally tovisit: also for an upportnity of examining speeimens colleeted by him fin hae Nat, and ussistane in bringing the map ip to date by the addition of the results of recent sutreys.
 \dagger^{\prime} 'he betrings fiven hiroughont this ehapter are magnetle. The variation at the North- West Angle

[^8]: - Called by the Indians l'a-ga-ta-wa-minis.

[^9]: *Geology of Canadi., p. 43, \quad Kejorl of D'rogress Geol, survey of Canada., 1870, p. 145.

[^10]: * Geology of Canada., p. 68.

[^11]: *s.an on the latter point, Geol. Comada., p. 32. Report of Progress Geol. Surv. Cunalar. 1scc, p. 91, et seq., mad iout nute to 1, 93 ; also 1866-69, 1, 143, et seq.

[^12]: * Repurt of P'rugress Geol. Surv. Canadal, 1572-73.

[^13]: - Further Pajers lelative to the Exphoration under Capt. Padliser, sc., 1860 .

[^14]: * Though the name slate comglnmerate best deveribes the constitution of this roek, it differs much in appearance, and probably also in origin, from the lluronian slate conglomerates. (8 lut.)

[^15]: 20th, 10.20 A.M., 6, 850.

[^16]: *Palliser Exploration of British North Aunerica, 1863, 11, 99-100 \dagger lbid., p. 10:
 ; lhid, J. 10 .

[^17]: * Exploration of British Nurth Ameriea, 1. 113.

 || Ibid. . 13. 154.
 it Juuris. Geul. Suc., vol. vil., p 443.

[^18]: * Exploration of British Nurth America., p. 230.
 \dagger U. S. Geol. Surv. Territ., 1872,, p. 432 .

[^19]:

[^20]:

[^21]: - Geulogical Heport Yelluwstone and Jissouri Expedition., j. 70.
 + 1bid., 11p. 82-83.
 \ddagger U. S. Geol. Surv. Territ. 1857-50., [1], 112-113.

[^22]: *Exploration of Britiall North America., p. 115,
 | U.S. Geol. Surv. Territ. 1872, p. 113.
 Exploratiod or Elevation of the Rocky Mountalus, Am. Journ. Sclenee and Arts., May, 1862 .
 \$ U.s. Geol. Surv. Territ. 1872 .. p. 83. Oeolngical Report Yellowstone anh Mlasour 'Expedition., p. b. Also, for the Bhack Hills and Laranie Mounains, U. S. Geol surv. Territ. 1857-59., p. 70.

[^23]:

[^24]: *The microscopic argal..sms from this rock are described, and their relatlons more fully diseussed, In the Canadian Naturalist., vol, vil., p. 255.

 A Anh. and Mag. Nat. Hist., 1872 ,
 I Specinens sinec ohtalned by the Canadinn Geological Surves, west of Lako Winniferosis, seem to beleng to the same dlvision, and enables its outcrop to bo trued still further to the north. Sce Report of Progress, 1874-75

 The rocks of the Niobrara divislon In Nebraska, are found to yield the best quicklimu of any in the State, though Carboniferous limestones also oceur thore.

[^25]: * Rumours prevaleut at least since 1 s 52 . See Dr. D. D. Owen's Rejort on Wisconsin, lowa and Minuesota.

[^26]: ＊The soctions and details of exposures of the Lignite Tertlary roeks of this part of the Souris River， nud westward to tho 303 mile point，Were published in s soparats form，as a part of the Report of Progress
 of Gcological Work in connection with the Boundury Commission，lu 1873 ．They are here repeated，in so of Gcologrical Work in connection with the Boundary Commassion，in 1873 ．They are here repeated，in so
 far as is e日sential，as a part of the general section on the forty－ninth parailei；being rearranged so as to folluw the general order of description，from emst to weat，

[^27]: - The name Wood, or Wionly Monntain, is sometimes used to desiguate the whole, or an Indefnite part, of the Tertiary watershed plateau. It is here restricted to the balf-breed settlement and its iminediate vicinity.

[^28]: *Geologieai Report Yellowstone and Missouri Expedition., 1569. p. $42 . \quad \dagger$ Lbid., p. 96.

[^29]: * I am indebted to Mr, W, A, Ashe, of the Survey party, for first calling my attention to this deposit.

[^30]: * Figured in Journ. Qeological Society, Vol. X. Meek, compares C. occidentalio with this peeies,

[^31]: * Geological Report Yellowstone and Missouri Expedition.

[^32]: * U. S. Geel. Surv, Territ. 1857-59., , 113
 † U. S. Geol. Surv. Territ., 1873. Vol. The lettering affixed to Dr. Hector's of the Jeurnal of the Geologleal socticty, differs. in his official Reprert, and in his paper in § Exploration of British North America, p. 22i. || See especially Foot Note to p. 233, Op. cit.

[^33]: * Report of l'rogress. Geol. Surv. Canada, 1873-74. p. 50.

[^34]:

[^35]: * Geological Report Yellowstone and Sissourl Expedition, p. 40

[^36]: *Notes explanatory of a Nap and Seetion of Contry hordering on the Missouri. $: 55 \%$.

[^37]: - Deseribed imu lignmed in llephrt Assinchain mul Sankalchewan Exploring Expedition. Toronto, 1859; and Nartative of the Canadian led River Lixploting lixpedtion. London, lseo.

[^38]: * Exploration of British North America, p, 2.26 ,

[^39]: * Geological Report Yellowstone and Missouri Espedition, p. 22.
 \dagger This is probably also the lucality described by I'rof. Bell. Report Progress Ceol. Surv, Canada, p. 75. 1873-74.

[^40]: *Journ, Geol. Soc., vol. avil.

[^41]: - I'rof. N. 11. Winchell, Second Amnual Report Geol. Surv, Minn., 1874.

[^42]:
 Compabtive Table of the Rocks of the Chetacenes Semes in the Interor Reion of British Nokth America,

[^43]: * Proc. Acal. Nat. Sci. Phil., May,1875.

[^44]: - Exphoratlon of Itritish North Amerlea, p. 11.

[^45]: * Second Ammual Rejprt, Geol. Surv, Mim.

[^46]: Dr. Itayden. Geological Reporl Vellowstutic and Missourl Expedllion, p. 5. U. S. Geol. Surv, Turrit., 1867-60, 1. 70, 8c.

[^47]: * Exploration of British North America, 1 . 88.
 \dagger U. S. Geol. Surv. Terrlt., 1873., p. 110.
 : it slould be mentloned, however, that such gool authoritles as Profs. Lesquereux and Meek refer to the spontaneous combustlon of Ilgilte slack, at Carbon and Coalville respectively. U. S. Geol. Surv. Territ., 1872, pp. 368, 449.

[^48]: , p. 110. il Meek refer Geol. Surv.

[^49]: Dr. 'erey's laboratory. lkoyal selool of Mines.
 \dagger As calculated by Mr. Itaymond. Quoted by Mr. Marvine In U. S. Geol. Surv. Territ., 1s73, p. 114.

[^50]: - This name seems to be rather loosely applied to different parts of the north-eastern edge of the Coteau, the polnt so called on the aceompanging geological map, is not that referred to by Prof. Bell, which is further to the west and north.

[^51]: - Am Journ. Sci, and Arts, 1868, U. S. Geol. Surv. Territ. , 1870, p, 165. U. S. Geol. Surv. Territ., 1872, p. 14, \&c. $\quad \dagger$ lbid., 1. 350 . Haydea. U. S. Geol. Surv. Terril., 1807-60, p. 122, de.

[^52]: * See Cope. U. S. Geol. Surv. Territ., 1873, p. 433, Prof. Dana in the last edition of hls Manual of Geology refers to those beds as belonghing to the disputed lignite formation.
 \dagger U. S. Lieol Surv. Territ., 1859. Ann. Journ. Sel, and Arts, June. 1874.
 \ddagger Geologieal Report Yellowstone and Nissouri Expedition, ison. Am. Joum. Sel. and Arts, April, 1874. § U.S. (Heol. Surv. Territ., 1872, j. 400. || Hayden, U. S. Geol. Surv. Territ , 1870. p. 166.

[^53]: - U S. Geol. Surv. Territ., Isis, p. 107. † Deseription, New Species and Genera Fossils, \&e. p. 19.
 ; Notes Explanatory of a Maj, and Seetion of the Country Borderirg on the Missouri River. p. θ. § Gerlogical Report Vellowstone and Missouri Expedition, p, 20, et seq.

 II U. S. Oeol. Surv, Territ., 1807-09. p. 100.

[^54]: * See Prof. Meek's very Interesting review of the quentien in U. S, fieol. Sur. Territ., 1870, Mp, 200, 291.
 : U, S. Geol, Surv. Territ., 1870, p. 210 .'
 \$The inelusion of remalns derived from the disintegration of older but unconsolldated beds may account for some of these facts. In the drift clays of the western plains, I have seen little altered Cretaccous shells imbedded, in a manner which would have been very puzzling, had their Crotaceous affinitles not been known.

[^55]: * This seems to have already oceurred, as Mr. Bitheridge, Poleontologist to the Geologieal Survey of Great Britain, has referred shejls obtalned by Dr. llector at the Cypress 1111 s , - Which in all probability bolong to this formatlon-to the marine Eocene.
 \dagger U.S. Geel. Surv. Territ., 1872, p. 458.
 \ddagger Ibid., 1. 458.

[^56]: - Manual of Geology. Dana. 1875. p. 457.
 +10.8. Geol. Surv. Territ. 18,3, 15. 439.
 \$ U, S. Geol, Surv. Territ., 1870. p. 75 8 U. S. Geol. Surv. Territ., 1872 . p. 52.5 .

[^57]: * Geologrical Report Yellowstone and Missonri Expedition, p. 58 .
 \dagger See Lesquereux U. S. Geol. Surv. Territ., 1872. p. 321.

[^58]: * Newherry. Am. Journ. Sci. and Arts., 1874.
 † Richardson, in Report of Progress Geol. Surv. Canada, 1872-73.
 \ddagger U. S. Geol. Sury. Territ., 1873, p. 443.

[^59]: * U. S. Geol. Surv. Territ., 1873. p. 367, et seq.

[^60]: - U, S. Geol, Surv, Terrii , 1373, D. 433

 4 Prof. Cupe refers the Green River and Bridger beds, overlying the Lignite formallon, to the Focene Prof. Cope alsin says ol this collectlon, ha paper read before the Actalemy of Natural Sclences, PhlladelProf, Cope also says ot this collection, in a paper read before the Acoulemy of Natural Sclences, PhiladelCretacenos to Eoecne life nore clearly than any yet obtahned in the West."

[^61]: * Geological Repurt Vellowstone and Missouri Expedition, p 26.

[^62]: * See p. 24.

[^63]: * Also in a paper on the Erraties of Canada, Journ. Geol. Soc., 1851.

[^64]: * Journ. Geol. soc., vol. vin. 1. 405.

[^65]: * The junction of the red drift of Lake Superior with the lighter-eoloarad western material, of northern Mimesota, has, I flnd, heet already noted by Whittleery, in his valuable memoir on the "F'resh water Glacial Drift of the North-western States." (isto.) "Ih. duscending the St. Louls River, the ashcoloured drift elay of the Embarras and Savannah rivers, assrmes a more purpte hue near the mouth of the Savannal.. The purple graduates into red, botween this point and the Kinife lapids, aml becomes entiroly red on the Grand Portage. The red extends alomg the shores of Lake superior to St. Mary's and to Lake lluron. It is found on all the tributaries of Lake superior which flow into it from the south up to their sources, and beyond the summit, on the streams that rum southerly into Lake Michigin." p.9. .

[^66]: - Geology of Canialia, p. 9.

[^67]: * 'The measurements of terraws here given mast be eonshlered approximat as merely, the weather being mesetfled, and the readings from a single sinall bitronetor,

[^68]: ${ }^{*}$ For a deseription of Monse Monitain kee Exploration of Mritish North Anerien, p. 40. For the Tonchwood Hills, Report of I'rogross Cleol. Surv. Canula, 1873-4, 1. 28.

[^69]:

 3. (ireyish, hard, altered rock, resembling gurtzite. it it
 4. Quartzites and hard altered rocks. 100
 j. Crystalline quartz. .

[^70]: * Exploration of Dritish North America, p. 4s.

[^71]: * Exphoration of Hatish North America, p. 317.

[^72]: *Exploration of British Northa Abierica, p, of,

[^73]: * Exploration of British North America, p. 317.

[^74]: * Papers relative to Exploration bet ween Lake Superior and Red River.
 \dagger U. S. Geol. Surs. Territ., 18i2, p. 30I

[^75]: * U. S. Geol. Surr. 'Territ., 1872, p. 292.

[^76]: *Second Ammal Report Geol. Surv. Minnesota

[^77]: -1. s. (Geol, Surv. Terril, 1872, 12. 283.

[^78]: ${ }^{*}$ U, S. Geol. Surv. Territ., 1s70, p. 19.

[^79]: * Exploration of British North America, p. 221. † lbid., p. 222. \ddagger Ibld., p. 222.

[^80]: * Exploration of British North America, 1. 224.
 \dagger U. S. Geol. Surs. Territ., l872. j. 85 ,
 : U S. Geoi. Surv, Turrit, 1870, p. 174,

[^81]: * Jour. Gcol, Soc., Nov., 1874.

[^82]: * Assineboine and Saskalchewan Exploring Expedtion, y. 24,

[^83]: *See especially U. S. Geol. Surv. Territ., 1870. p. 170.

[^84]: *Journal of a Boat Voyage through Ruperl's Land, Vol. II, p. 235.

[^85]: - Im ior n •s

[^86]: * See I'rof. Thomas in U.S. (Deol. Surv, Territ, , lx70.
 \dagger See Major Farquhar's Report on the Itenl River.

[^87]: †Temperature of Fort Shaw U. S. Geol. Surv. Territ., 1872, p. 811. Geol. Surv. Territ, 1871, p. 260, That of Wimipeg, from three years observations, is kindly suplied by Prof. Kingston,

[^88]: * Ileport of Progress, (deol. Surv. C'unala, 1873-7t.

[^89]: -Prof. Hind, Assinetoine and Saskatchewan Exploring Expediton.
 Vegetation, p. 165.

[^90]: * With the idea of acquiring as much information as possible on the invasion of $18{ }^{\circ} 4,1$ issued a umbber of circulars to Minitoha, the Western slates, and various parts of the N. W. Territorles. 1 have to thank the gentlemen who have been khod enough to return these eirculars, fur unch valuable informat tion. The number received has, however, not been so great as expeeded, nor has the hiformation in all eases been precise as to direction and date. Thave therefore been abliged to abanton the idea of emnstrueling a eomplete map of their migrations for last summer, but may yet make nse of the general information obtained.

[^91]: * See the translation of an essay by Y, Motchalsky, in the Smithsonian Repurt, 1atis. Many phans of

[^92]: ${ }^{\bullet}$ Exploration of British Nurth America, Ill. 83, 30 .

[^93]: * See uspecially Anı. Juur. Sel. and Arts, vol. XL., 1 . 297.

[^94]: ${ }^{*}$ U. S. Geol. Surv. Territ., 1871 , + U. S. (ien, Surv. Territ., 1872. 1. 305.
 :t Second|Anmal Report. Geol. Surv., Minn., p. 197,
 § Iheport of Progress. Geol. Suiv. Canada, 1873-74, [. 27.

[^95]: * tutoted by A. Fryer, in a series of artieles, entitled the Influence of Foresis on Rainfall, published In "The Sugar Cane," Anch valuable informution on this subject has been callected by Alr. Fryer. Stee also meniorial on behalf of the Board of Agriculture to the Legislature of Slaine, 1869.

[^96]: - gunted by Fryer, lue cit. 1 U.S. Gen Surv. Territ., 1867 89, p. 14.
 ! U.S. Geol. Surs. Territ., 1s70, p. 104.

[^97]: "Lec. cit., p. 457.

[^98]: * See Fayer loc, cit.
 †P. N. Werekia Notice sur les forets et leur produits. Quoted in Nature, Jan. 28, 1875.

[^99]: * Compare N. 11. Winehell in Seond Anmal leport Geol. Sury Minn., where an intcresting ristime of the variousprocesses emploped in peat mannfacture will also be fomin,

[^100]: *Two species are provisiouaily reforred to the Tertiary genus Plastomenns, but are too (raymentary for final determination.

[^101]:

[^102]: 15

[^103]: 105

[^104]: .

[^105]:

[^106]: \qquad

