GANADDAN IPRGIPRC F/ARINWMY.

 (COTMFSAN:
RUMES FOR

RAMEMY LOCATION

RULES

FOR

Railway Location

Compiled by the
LATE H. L. JORDAN,
Assoc. Mem. Can. Soc, C.E,
Div. Eng. of Construction, Can, Pac. Ry

The 1 veys and Line and

The C Engineers Division E
Asst. Eng loca Div
Resident I
rep
The fo eers on loc systematic alterations by the Chi

Before the factors should be ((2) Operat engineering be stated a tenance of

Their 1 is dependen The most st present or F

For he ton mile a should be lo

ORGANIZATION.

The Construction Department will have charge of all surveys and construction of New Lines and Extensions, as well as Line and Grade Improvements of existing lines.

The Organization of Construction Department from Division Engineers will be as follows,-
Division Engineers with authority as assigned.
Asst. Engineers in charge of several sections of construction, location parties, or other important work, reporting to Division Engineers.
Resident Engineers in direct charge of a section of construction, reporting to Asst. Engineers.
The following rules are intended for the guidance of Engineers on location and construction, and are to be carefully and systematically followed. Suggestions for improvements or alterations are requested, these must in all cases be approved by the Chief Engineer before being used.

LOCATION.
 General.

Before deciding upon the general location of any railway, the factors which go to make up its commercial effectiveness should be carefully considered. These are (1) Gross Earnings, (2) Operating Expenses, and (3) Fixed Charges. From an engineering standpoint, and as affected by location, they may be stated as (1) Traffic, (2) Cost of Transportation and Maintenance of Way, and (3) Cost of Construction.

Their relative importance, if amount of profitable traffic is dependent on location, may be considered in the order named. The most serious errors in location, occur in keeping away from present or probable traffic centres.

For heavy traffic, line should be located so as to reduce ton mile cost in transportation, while for light traffic, line should be located to reduce train mile cost.

Before any location or construction is decided upon, the commercial factors should be figured out. With a stated traffic, the Engineer must consider construction cost in connection with operating expenses (transportation and maintenance) before he can decide on the economical location of alternative lines in regard to gradients, distance, curvature, and rise and fall, the values of which are hereinafter given.

TRAFFIC AND TRANSPORTATION.

The cost of Transportation varies most directly with the number of trains required to transport a given volume of traffic, for which reason the train mile is taken as the operating unit. The commercial economy of operation is generally shown by the number of tons or passengers per train, and the ton mile and passenger mile are therefore taken as the commercial units.

Train Mile Cost may be divided into direct cost, which varies directly with train mileage; and indirect cost, which is constant under small changes in volume of traffic and varies only in a minor degree with large differences in volume. In comparing the commercial advantages of alternative lines, the Engineer will consider that excess traffic in both directions can be carried for the direct cost per train mile, and, if traffic is secured which will tend to balance trains, that it can be carried for one half direct train mile cost.

The direct train mile cost varies from 40% to 70% total cost, depending on volume of traffic, grades, locomotive power, etc.

With a given volume of traffic, train mileage will be multiplied by direct train mile cost to show the operating economy of different grades.

The value of characteristics of location, which affect cost of operation, is assumed to vary as the number of trains.

With a stated volume of traffic, a more economical location is obtained when interest and renewal charges on additiona expenditures for construction are saved in decreased operating expenses, or when increased operating expenses are saved in reduced interest and renewal charges on cost of construction the most economical location being obtained when these value balance one another.

After : unaffected Expenses f The expen of the Main as the num

Cost c certain tra trains requ raffic. Th factor in op

Train 1.20, and may be asst or increasec so saved n hauled do 1 1200 tons, train mile.

Excess per train n loads canno trile.

If traffi fill up empt?

These 1 fines which

Cost o 100\%assista over 80 mil mile, both a ways, with 40 c .

If daily will be used: 40 miles per 50 miles per 6o miles per

I, the com ted traffic, sonnection rance) beIternative 1 rise and
with the of traffic, tting unit. shown by ton mile cial units. ist, which
which is nd varies lume. In lines, the directions f traffic is be carried
10% total ve power,
be multi. onomy of
ffect cost ns.
1 location ıdditiona operating saved in struction se value

After a line is once constructed, fixed charges are practically unaffected by variations in the volume of traffic. General Expenses for small increases, or decreases, are also unaffected. The expenses of conducting, transportation, and a proportion of the Maintenance of Ways Expenses, vary more or less directly as the number of trains required to transport traffic.

Cost of Transportation.-The direct cost of handling a certain traffic may be considered to vary as the number of trains required to carry same, rather than the actual amount of traffic. The train mile may therefore be taken as the economic factor in operation.

Train Mile Cost.-Train Mile cost varies from 90c. to $\$ 1.20$, and if no accurate data is at hand to compute same it may be assumed at $\$ 1.00$. If the number of trains is decreased or increased in handling a certain amount of traffic, the amount so saved may be considered at 50 . per train mile, if trains hauled do not average over 800 tons; with heavier trains, $800-$ 1200 tons, 55 cents per train mile; 1200 tons or over, $60 c$. per train mile.

Excess traffic may be considered to be handled for 60 . per train mile provided return loads are secured. If return loads cannot be had, cost will be considered at $\$ \mathrm{l} .00$ per train mile.

If traffic is unbalanced, any traffic which can be secured to fill up empty trains may be figured at 30c. per train mile.

These latter values will be used in comparing alternative lines which touch fewer or more traffic centres.

Cost of Assistance to direct Operation.-The cost of 100% assistant engine, tractive power 20,000 tbs., averaging over 80 miles per day will be assumed at 35 c . per engine mile, both assisting and returning light; if engine assists both ways, with no light running, the cost per engine mile will be 40c.

If daily mileage is less than 80 miles, the following values will be used:-
40 miles per day, $50 c$. per engine mile, single crew.
50 miles per day, 45 c . per engine mile, single crew.
6o miles per day, $40 c$. per engine mile, single crew, 45 c . double.

70 miles per day, 35 c . per engine mile, single crew, 40 c . double. 80 miles per day, 35 c . per engine mile, single crew, $37 \frac{1}{2}$ c. double. Over 80 miles per day, 35c. per engine mile, single or double crew.
These values are for 100% locomotives, if heavier locomotives are used, add 2% for increase of 10% in tractive power.

If road engines are at divisional point, and are used intermittently for assistance, the cost per engine mile will be 10% less If yard engine is used, 35 c . per engine mile.

The Minimum Cost for Assistant engines when not at a divisional point or used for yard work, is $\$ 7,000$. per year for single crew, or $\$ 0,000$ per year for double crew. To this $\$_{1,000}$. per year will be added for Capital investment. The total number of engines required on a section when assistance is used is generally reduced, and a credit of $\$ 1,000.00$ per year per engine saved must' be allowed in the general scheme.

The cost of Doubling will be figured at 45 c . per additional engine mile, plus $\$ \mathrm{r} .0 \mathrm{oo}$ per train doubled.

The Cost of Switching is $27 \frac{1}{2} \mathrm{c}$. per engine mile, and the Cost of Light Running is 25 C . per engine mile.

OPERATING VALUES for DISTANCE, CURVATURE, RISE and FALL, values capitalized at 5%.

DISTANCE.

Competitive traffic. Through rates. Traffic based on RATE PER MILE NOT INCLUDED.

Distances aggregating less than two miles in an engine run, not affecting track force, or train wages:

30 cents per train mile $=2$ cents per foot, per daily train per annum.

Cap. Value $=40$ cents per foot, per daily train per annum. Distances affecting train wages, but not requiring extra siding:

48 cents per train mile, $=\$_{175}$ per additional mile per daily train per annum.

Cap. Value $=\$ 3,500$ per mile per daily train per annum. Distances requiring extra side tracks:

62 cents per train mile, $=\$ 225$ per additional mile per daily train per annum.

Cap.
Distances
$\$ 1.00$
Cap. 1

Main Line per daily t
Main Line, $\$ 5.00$ per c Unimporta dail
Vhen Cus
is
On main li
per
On unimpc
To thi braces, tie

Curves causing ch reated sep

Within frei per 1
Minor grad per 1
Over 0.51 train Ruling grac When within . 05 Grade.

When p. 1 of ruling
c. double. c. double. or double
comotives ar.
sed intere 10% less
l not at a
r year for his $\$ \mathrm{I}, 000$. otal numis used is jer engine
additional

1 the Cost
'ATURE,
on RATE
n engine。
aily train annum.
a siding: per daily
innum.
per daily

Cap. Value $=\$ 4,500$ per mile per daily train per annum pistances adding to engine districts:
$\$ 1.00$ per train mile, $=\$ 365$ per daily train per annum
Cap. Value $=\$ 7,300$ per mile per daily train per annum

CURVATURE.-ALL TRAINS.

Main Line,'Grades o.6 and under. Cap. Value $\$ 6.00$ per degree per daily train per annum.
Main Line, Grades over o. 6 and important branches. Cap. Value 5.00 per degree per daily train per annum.

Unimportant branch lines. Cap. Value $\$ 4.00$ per degree per daily train per annum.
Vhen Curves are Eliminated, the Cap. Value per Curve in Excess of Value per Degree is

On main line and important branch lines, $\$ 50.00$ per daily train per annum.
On unimportant branch lines, $\$ 25.00$ per daily train per annum.
To this should be added all extra construction cost of rail praces, tie-plates, and guard rails.

Curves at the foot of velocity grades, at station sites, or causing check in speed are very objectionable, and must be reated separately.

RISE AND FALL.-ALL TRAINS.
Within freight-train velocity limits of 30 and ${ }_{15}$ M.P.H. \$2.00 per foot per daily train per annum.
Minor grades 0.5 and under (exceeding velocity limits) \$12.00 per foot per daily train per annum.
Over 0.5 (exceeding velocity limits) $\$ 25.00$ per foot per daily train per annum.
Ruling grades, $\$ 35.00$ per foot per daily train per annum.
When ruling grade is 0.5 or under, figure minor grade to within .05 of ruling grade, after which assume grade as Ruling Grade.

When ruling grade is over 0.5 , figure minor grade to within p. 1 of ruling grade.

LOCOMOTIVE TRACTION AND TRAIN RESISTANCE

To find the maximum traction of any well designed locomotive, weight on drivers being known,

Maximum traction $=. \frac{1}{4}$ weight on drivers.
This result can only be obtained on very dry rail, when engine is working at slow speeds, and train resistance accord ingly high. Engine must also be carefully throttled or wheels will slip, reducing co-efficient of friction between wheel and rail

For Ordinary Traction over ruling grades, a speed of about ten miles per hour should be allowed. At this speed, the cylinder power is the limiting factor of the locomotive, and traction should be figured accordingly.

To find Tractive Power at Drivers, boiler pressure (P), diameter of cylinders in inches (d), stroke in inches (S), and diameter of drivers in inches (D) being known, Tractive Power in pounds for Simple Engine =

$$
\frac{.8 \mathrm{Pd}^{2} \mathrm{~S}}{\mathrm{D}}
$$

For Compound Locomotive $\mathrm{d}_{\mathrm{h}}=$ diameter high pressure $\mathrm{d}_{1}=$ diameter low pressure cylinder, and $\mathrm{R}=$ ratio of cylinde areas.
Tractive Power in Pounds for 2 -Cylinder Compounds $=$

$$
\frac{5}{6} \quad \frac{\mathrm{Pd}_{1}{ }^{2} \mathrm{~S}}{(\mathrm{R}+\mathrm{I}) \mathrm{D}}
$$

Tractive Power in Pounds for 4 -Cylinder Compound $=$

$$
\frac{5 \mathrm{PS}}{6 \mathrm{D}}\left\{\left(\mathrm{I}-\frac{\mathrm{I}}{\mathrm{R}+\mathrm{I}} \mathrm{dh}^{2}\right)+\left(\frac{\mathrm{d}_{1}{ }^{2}}{\mathrm{R}+\mathrm{I}}\right)\right\}
$$

In any well designed locomotive, the results obtained from above formulæ should be about $1 / 5$ weight on drivers, and which may be taken as the tractive power at drivers if other data is not at hand.

To find the weight of train in tons that any locomotive can take up a given grade at ordinary slow speeds,

$$
W=\frac{T}{20 g+5(\text { or } 9)}-W
$$

$\mathrm{W}=$ being weight of train, $\mathrm{w}=$ weight of engine and tender, $T=$ tractive force of locomotive, $g=$ rate of grade

Train res If train is

The force of ls is increas horse pov

To fil
items of g A rough however, from whi pressure i per minu

Mean Ef

Rev. per I
P.C. Boile

Rev. per I
P.C. Boile

For $($
To el
Hour (M.

From this the Tracti

To find F multiply t by 375 ,

SISTANCE ned locomo
rail, when nce accord d or wheel eel and rail ed of about the cylinder nd traction
: (P), diam. 3), and dia-
h pressure of cylinde
$=$
$=$
; obtained lrivers, and rs if other motive can
ngine and of grade.

Train resistance $=5 \mathrm{tbs}$. per ton loaded 2 contents to 1 of tare. If train is all tare, use 9 Hbs . resistance instead of 5 .

The increase in train resistance and decrease in tractive force of locomotive must be taken into consideration when speed is increased above eight to twelve miles per hour, as then the horse power of the locomotive is the limiting factor.

To find the Horse Power of a given locomotive, the separate items of grate area, heating surface, etc., would have to be known. A rough estimate of the tractive power at different speeds can however, be made from boiler pressure, cylinders, drivers, etc., from which H.P. can be figured. The mean effective cylinder pressure in per cent. of boiler pressure, per Revolution of drivers per minute being given, is as follows:-

Mean Effective Cylinder Pressure (M.E.P.) in Per Cent Boiler Pressure (simple engine).

Rev. per Minute....... $20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120 \quad 140 \quad 160 \quad 180$
P.C. Boiler Pressure. . . $90 \quad 90$

Rev. per Minute....... $200220 \quad 240 \quad 260 \quad 280 \quad 300 \quad 320 \quad 340 \quad 360$
$\begin{array}{llllllllll}\text { P.C. Boiler Pressure. . } & 32 & 29 & 26 & 24 & 23 & 22 & 20 & 19 & 18\end{array}$
For Compound Engines add 5% to these figures.
To change revolutions per minute (R.P.M.) to Miles per Hour (M.P.H.) diameter of drivers in inches being known,

$$
\frac{\text { R.P.M. } \times \mathrm{D}}{33^{6}}=\text { M.P.H. }
$$

From this the M.E.P. at any speed can be found approximately, the Tractive Power at that speed will then be

$$
T=\frac{M \cdot E \cdot P \cdot x^{2} S}{D}
$$

To find Horse Power at any given speed in miles per hour, multiply tractive power at that speed by the speed, and divide by 375 ,

$$
\text { H.P. }=\frac{\mathrm{TxS}}{375}
$$

`TRAIN RESISTANCE.

Train resistance varies with speed, length of train, weather conditions, wind, etc., and also if train has been standing or has been in motion for some time. The starting resistance may be considered at 15 Hss . per ton for long trains, and 20 Hts . for single cars. For speed of ten miles per hour and over, use the following formulx, for ordinary train resistance in tbs. per ton. Trains loaded two contents to one tare, engines with tractive power about $30,000 \mathrm{tbs}$. or 1,000 H.P.

$$
\begin{array}{ll}
\text { Grades } 0.3 \text { or } 0.4 . & \mathrm{R}=4.0+\frac{\mathrm{V}^{5} / 3}{100} \\
\text { Grades } 0.5 \text { to } 0.7 . & \mathrm{R}=4.0+\frac{\mathrm{V}^{5 / 3}}{80} \\
\text { Grades } 0.8 \text { and over. } & \mathrm{R}=4.0+\frac{\mathrm{V}^{5 / 3}}{60}
\end{array}
$$

If train is all tare, use 9.0 lbs . as constant. The H.P. required to move train at any given speed will be found by the formula,

$$
\text { H.P. }=\frac{\mathrm{R} \times \mathrm{S}}{375}
$$

in which $\mathrm{R}=$ train resistance at given speed; $\mathrm{S}=$ speed in miles per hour.

GRADES.

The essential feature in a location for freight traffic is the ruling grade. Passenger trains are limited by speed requirements rather than tractive effort of the locomotive. This is also true for freight trains on long sections of continuous rise, the H.P. of the locomotive being the limiting factor.

Where low ruling grades of from 0.3 to 0.5 are being worked to and can only be obtained by long sections, about ten miles in length of continuous rise, and supporting ground for same is not obtainable except by very long cuts and fills, it would be economical to insert steeper grades, not to exceed ruling grade more than o.I, provided adverse grades are not inserted and engine can be worked to full capacity over slack grades.

When section, it which can be the ru

On ne the immed seneral co dopt as ic fiate sumr bistance ca rade shou on it will I

When hem adja pusher gre grades shot

Ruling probable tr imilar, an raffic. A ections wi

Train ng to prol rom zero f ruling g f ruling g f ruling gi $=1 \mathrm{I}$
At inte xceeds 0.4 ollowing cl Iain Line, Iain Line, on \mathbf{s}
n, weather :anding or resistance and 20 Hbs . 1 over, use in tbs. per ,ines with
e H.P. rend by the
d in miles
ffic is the 1 requirehis is also ; rise, the
are being about ten round for b, it would ed ruling t inserted grades.

When any grade limits the weight of the train over any section, it is termed the ruling or limiting grade. Steep grades. which can be operated with assistance or doubling, need not be the ruling grade.

On new lines where certain main divides must be crossed, the immediate approach to which is steep, compared to the general country through which line passes, it is advisable to pdopt as low a ruling grade as possible, surmounting the immediate summit by using a continuous heavy grade, as by this, fistance can be saved, and work reduced. The rating on this rade should be from 50 to 60% that of ruling grade, and trains on it will be operated with assistance.

When pusher grades are necessary, it is advisable to have them adjacent to divisional points, and divisional points and pusher grades should be so located when possible. Pusher grades should be located out of, rather than into, divisional points.

Ruling grades should be arranged to economically handle probable traffic; over adjacent main line sections they should be imilar, and at junction points, to suit increased or decreased raffic. A greater percentage of same ruling grade on different sections will also cause reduction in train rating.

Train stops on ruling grades should be compensated according to proportion of ruling grade to length of section, varying from zero to 10 feet.
If ruling grade one way is 70% of section, compensate stops $=0$.
If ruling grade one way is 40% of section, compensate stops $=5{ }^{\prime}$
f ruling grade one way is 10% of section, compensate stops $=10$.'
At intersections on grades, in which the difference in rate xceeds 0.4 , vertical curves will be used, which will have the ollowing change in rate per 100^{\prime} :-
Kain Line, grades under o.6, vertical curves 0.05 in sags, o. 1 on summits.
Iain Line, grades 0.6 to 1.2 and Branch Lines, 0.1 in sags, 0.2 on summits.

Unimportant Branch Lines, 0.2 in sags, 0.4 on summits,
Ruling grades on curves will be compensated . 04 per degree of curve. Light grades should be made continuous on curves and tangents.

COMPENSATION OF GRADES IN TUNNELS.

Compensation of grades in tunnels is one which is usually eliminated by conditions. Tunnels usually occur near summits and only require grades for drainage. Under special conditions, if length is not much increased, a good rule is to make grade half maximum grade. If a maximum grade is required, the following reductions are figured to allow for bad rail, and decreased tractive power of steam locomotive:-

Length	Ruling Grade	Ruling Grade	Ruling Grade
of	0.5	1.0	2.0

Tunnel. Tunnel Grade. Tunnel Grade. Tunnel Grade.

200	0.5	1.0	2.0
500	0.45	0.9	1.9
1000	0.4	0.85	1.75
2000	0.33	0.75	1.55
5000	0.25	0.60	1.25

Compensation for curves, Tunnel under 500 . 04 per degree.
" \quad " " Tunnel 500 ' to 1000^{\prime}. 05 per degree.

GRADE REDUCTIONS.

When grades on operated lines are to be reduced, the new ruling grades on adjacent sections or sub-divisions should be so arranged that the least delay to through traffic will be necessitated, and assistance to direct operation reduced to a minimum. Steeper grades over one section may be nullified by using heavier locomotives.

The economic value of different grades will be determined by the number of trains required to handle a certain traffic. On operated line the actual traffic will be taken for as long a period as possible; and with this as a basis, the yearly number of trains required multiplied by the length of the section will
give the t train mile, resulting f_{1} mileage m

Trains grade acco section, th

The v 'volume o

The v standard f

In all amount in as per sta1 energy stor ing grades:

The v 5-40 M.P.

The v of ruling g that the tr speed than which trair

To use which has has been la be found t the grade at the inter
its,
per degree on curves sonditions, take grade uired, the 1 , and de-
ng Grade
2.0 iel Grade.
2.0
1.9

1. 75
2. 55
3. 25
egree.
r degree. sgree.

I, the new should be be necesminimum. ag heavier
etermined in traffic. as long a y number etion will
give the train mileage. This multiplied by the direct cost per train mile, will give the yearly cost of operating. The saving resulting from the adopting of flatter grades and reducing train mileage may thus be determined.

Trains will be figured lighter than the rating over ruling grade according to its rate, and total length as compared with section, the reduction will generally be as follows,-

$$
\begin{aligned}
\text { Grades } & 0.3, \\
0.4, & 20 \% \\
0.5, & 18 \% \\
0.6, & 16 \% \\
0.7, & 14 \% \\
0.8, & 12 \% \\
1.0, & 10 \%
\end{aligned}
$$

The values for assistant engines, doubling, etc., is as per "volume of traffic."

The value and cost of grade reductions will be shown on standard forms X. 11, 35-36-37-38.

VELOCITY GRADES.

In all work, when it is possible to save a considerable amount in cost of construction, velocity grades will be used as per standard sheets. These sheets are figured so that the energy stored up in a moving train may be utilized in surmounting grades steeper than the ruling grade for which train is loaded.

The velocity heads and speed grades are shown for speeds 5-40 M.P.H.

The velocity head does not represent the height in excess of ruling grade which train could overcome, owing to the fact that the tractive power of the locomotive is much less at high speed than at low speed; this decreases length of steeper grade which train can surmount.

To use sheets, select the one corresponding to the grade which has been adopted as ruling grade and for which the train has been loaded at io M.P.H. The speed acquired or lost will be found by following along the curved line eorresponding to the grade on which the train will run, the starting point being at the intersection of the horizontal line corresponding to speed,
the final speed being shown by the intersection of grades, and vertical line corresponding to the distance passed through.

The maximum allowable speed for freight trains is 30 M.P.H and minimum 10 M.P.H.

After ascending a steeper grade by use of velocity, if ruling grade will follow, assume the limit of speed at in M.P.H., if grade is 0.1 less than ruling grade 10 M.P.H., and if 0.2 less, 9 M.P.H. which is the minimum speed to be figured to in any case.

Velocity grades should only be used where considerable saving will be effected by their introduction, and where no inci dents will occur in operation which will reduce speed below that assumed, curves at the foot of velocity grades must be avoided or speed reduced to safe limits.

Velocity grades steeper than twice the ruling grade rate + 0.2 should not be used except in special cases.

RECONNAISSANCE.

The field force of a reconnaissance party will vary accord ing to settlement of country through which surveys are being made. For unsettled country it will consist of Engineer in charge, and assistant, with or without subordinates, cook, packer or teamster, and horses.

The first step is to obtain the best available maps of the country, these should be studied by the Engineer, so that the general idea of the watersheds may be clearly fixed in his mind

The reconnaissance must not be of any line, but of an area and a thorough knowledge obtained of the controlling features of the country, included in as large an area each side of the air line between the two terminii as there is any possibility of the line passing through. Prepossessions in favor of the most obvious route should be set aside, especially when such route runs near highways or open districts.

Lines hard to traverse on foot seem worse than they really are, especially if country is covered with a smeil and close growth of timber. Ruggedness of detail, rock points, etc., extending over short distances, seem much more difficult of economic location than long rolling slopes which will necessitate
more expt the value Short sec balance of uniform cl

When liance is tc ters shouk of which plotted or true elev: may then

If it i the change ary will bu the day m This will a

The f forms).

The E be entered interest pe

A com water cour proceeds; another, u the area 1

After decide tha the area si second rec respecting on first ele The E and reasol location, n two sides and operat
grades, and rough.
s 30 M.P.H
ty, if ruling H., if grade i, 9 M.P.H. case.
onsiderable ere no inci below that be avoided
ade rate +
ary accord; are being ngineer in ites, cook, laps of the o that the his mind. of an area, $1 g$ features : of the air lity of the the most such route
they really and close ints, etc., lifficult of necessitate
more expensive construction. Routes will be compared upon the value of total cost, both in constructing and operating. Short sections of expensive work, when averaged with the balance of a line, may show less cost per mile than a line of more uniform character.

When checks cannot be made on known elevations, and reliance is to be placed on barometer reading, two or more barometers should be used, one barometer being stationary, observations of which should be made every half hour, and a daily curve plotted or calculated showing difference between readings and true elevations, the readings of the exploration barometers may then be reduced.

If it is impracticable to have a regular stationary barometer, the changes morning, noon and night, when barometer is stationary will be noted, from which the variation at any time during the day may be approximately figured, and elevations reduced. This will also be done as a check on stationary barometer.

The form of notes will be as per standard (see note book forms).

The Engineer will also keep a diary, which should preferably be entered into note book. This should include all items of interest pertaining to the work.

A complete sketch map of the country, showing the principal water courses and divides, should be made as the reconnaissance proceeds; this should show where each stream crossed joins another, until both have passed beyond the possible limit of the area under consideration.

After the first reconnaissance, the Engineer can usually decide that one or two lines are preferable to the others within the area survèyed. Over this line, or lines, he should make a second reconnaissance, so as to obtain more detailed information respecting grade, alignment, cost, etc., and to obtain check on first elevations.

The Engineer should note determining features of the line, and reasons for avoiding prominent objects, and sections of location, noting particularly the physical difference between the two sides of the same valley, and their effect on construction and operation.

Lines should be explored from the main divides, working down to the lower elevations.

The really vital and dangerous errors in location, such as erroneous selection of general route or gradients, passing by local towns or probable centres of traffic, are always committed in the reconnaissance or exploration survey.

The reconnaissance report must always be accompanied by map and profile (see Maps, etc.).

PRELIMINARY SURVEY.

The full preliminary or location party will consist of locating engineer, transitman, head and rear chain, leveller and rodman; draughtsman with or without assistant, topographer with one of two assistants, cook and cookee, teamster, packers.

When surveys run near wagon roads or in the prairie, it is preferable to drive to and from work.

Engineers are in immediate charge of parties, and are expected to see that all instruments, tents; stationery, provisions, etc., which they require for the proper and vigorous prosecution of their work are supplied, and outfit kept in repair (see lists).

Before the preliminary survey is commenced, the Chief Engineer will determine, from the exploration surveys, the ruling grade and maximum curves to be used. He will also determine the probable volume of traffic, indicating the number of daily trains for which line is to be located, as well as purpose of line, and standards of construction. The route of best grade and alignments should be first projected, afterwards side lines which avoid heavy work by broken alignment but do not decrease traik rating, and finally the introduction of temporary steep grades and broken alignment, as well as permanent grades which under increased traffic will be operated with assistance.

All surveys should, however, be made with regard to future permanent construction, and temporary work introduced should be cut down to the least amount possible. Preliminary lines should be run with speed, and to approximate closely to the located line, all unnecessary clearing should be avoided at the
expense o liminary is may be co

When note the p his prelim 0.05 and

In ve line mus should be for the accurately pther and

At cri the deflect short chor

Comp learing ca peed of p heck in tr

All co aken, the

To ob hould be ions for ttain a de

To illu nen aroun bject glas ubber banc

A good acing line n small su om magne Plot all
By rev rors may 'pographer r, packers. rairie, it is
ad are exprovisions, rosecution (see lists). the Chie! the ruling determine r of daily se of line, grade and side lines)t decrease rary steep nt grades ssistance.

1 to future sed should nary lines ely to the led at the
expense of introducing more angles The object of the preliminary is to form a base for the topography, so that the location may be correctly projected

When following down a suspended grade, the Engineer will note the probable curvature of the located line, and compensate his preliminary grade to suit; the compensation is generally 0.05 and runs in mountainous country to 0.2 .

In very rough, steep side hill, especially in ravines where a line must be carefully fitted, two or more preliminary lines should be run, and tied together, this will serve as a frame work for the topography, and different locations may be accurately projected. The practice of running lines near each pther and plotting on separate plans must be avoided.

At critical points where the maximum curve will be inserted, the deflection on the preliminary should be figured to suit, and short chords used.

Compass lines will be used only when considerable time and learing can be saved. This is not the case if the level limits peed of party. Compass readings must always be taken as a heck in transit work.

All courses of the line, both true and magnetic, must be aken, the former only being noted on plans.

To obtain true north, an observation of the north star hould be taken when starting survey, and additional observafions for correcting meridinal divergency when the survey shall ttain a departure of one-half degree of longitude.

To illuminate cross wires at night, wrap a piece of tracing nen around the object end of telescope, so that one-half of bject glass is loosely covered. This linen may be secured by ubber band, then illuminate by lantern from one side.

A good night foresight may be had by marking an X on racing linen tacked over box with a candle or lantern behind it. n small surveys the true north may be assumed by deflecting om magnetic readings.

Plot all lines by latitudes and departures.
By reversing telescope on alternate angles cumulative rors may be nullified.

Designate preliminary lines by the first letters of the alphabet, A, B, C, etc., and variations to these as $A^{1}, A^{2}, B^{1}, B^{2}$, etc.

LOCATION.

The location will be projected from the "preliminary," the direction of tangents being obtained by scaling and figuring the natural tangents from the base lines of the latitudes and departures, the intersection angles of curves being thus obtained, protractors will only be used for checking

In running the first location only correct the more serious errors by backing up. Minor improvements should be noted but not re-run, as the first location advances. After completing the first line, if instructed by the Chief Engineer, the second location should be run. In any case the topography or plans must be full enough to enable improvement in location to be projected, and estimates made. Location stakes shall be marked L, and changes in same L^{1}, L^{2}, etc. The second location shall be designated by 2 L , and changes or deviations in same as $2 \mathrm{~L}_{1}{ }^{1}$, $2 L^{2}$, etc.

The location of stations, water tanks, coaling plants, cross. ings, etc., should be very carefully considered, and grades adjusted for same, so as to reduce the disadvantage of train stops to a minimum. Train stop at the foot of grades should always be avoided if possible, both on account of stopping and starting, when unavoidable, either by change in location or stopping point, the grade should be reduced, so that heaviest trains can start without inconvenience.

Broken alignment should also be avoided at the foot of grades, especially if same is to be run by velocity or speed re. duced to safe limits; in no case shall velocity grades be figured for speeds exceeding 30 M.P.H.

A grade of 0.2 is required for drainage cuts.
The Locating Engineer will note the material along line observing quarries, timber, etc., adjacent to line, with a view to their use in construction, also water powers, traces of minera deposits, etc.

Stream diversions usually prove cheaper, both in first cos and maintenance, than bridging, especially when excavated material can be used for filling.

Trest should no of trestle :

Engin required, margin of area draine at flood hi foundation

Detail be made of for at leas also paralle shown by c down-strea of rock sou grade line,

Engine districts. used, but s manent strı Suitabl be carefully the Chief for locomot especially justifiable e When with any a must be ma same may profile; the plock, or so

Broken ional defec
he alpha, B^{2}, etc.
ary," the uring the d departined, pro-
re serious be noted ompleting re second , or plans ion to be je marked tion shall ne as $2 L_{1}^{1}$,
ats, cross rades adrain stops Id always 1 starting, stopping trains can
ie foot of speed re. be figured
long line a view to ff minera

1 first cos excavated

Trestling, unless required for waterways, or temporary line, should not be used unless cost of embankment exceeds first cost of trestle and subsequent cost of filling

Engineers will pay special attention to the length of bridges required, and size of culverts. The same should allow for a margin of safety, but should not be unnecessarily large. The area drained should be noted, and cross-sections of streams taken at flood height. The material of bed of stream and probable foundation for structure should also be noted.

Detail profiles on a natural scale of 20^{\prime} to the inch should be made of all important crossings; this should show centre line for at least 100 feet beyond each end of the proposed bridge, also parallel lines at 25^{\prime} each side of centre line; these should be shown by dotted lines, the up-stream line being even dotted, and down-stream dot dash. Highwater mark, surface indication of rock soundings, etc., should also be shown, as well as stations, grade line, and rate of grade.

Engineers must beware of being misled by so-called rainless districts. Timber structures for waterways may be judiciously used, but should always be made of sufficient size, so that permanent structures may afterwards be economically built.

Suitable and well situated sources of water supply should be carefully noted. Sealed samples of water should be sent to the Chief Engineer for analysis when suitability of water for locomotives is doubtful. If possible avoid grade crossings, especially with foreign lines. $\$ 40,000$ may be considered justifiable expenditure to eliminate single track crossings.

When beginning and end of line forms a junction point with any constructed line of railway, full notes of connection nust be made, and lines run along constructed railways, so that same may be accurately located on plan and levels taken for profile; the junction point should also be tied in to nearest headplock, or some fixed point.

ALIGNMENT.

Broken alignment, unlike heavy grades is not a constituional defect in operating especially if curves are properly
spiralled. Curvature, however, is often introduced where with a slight increase in construction cost, it might be greatly decreased or cut out entirely.

The use of sharp curvature at one place does not justify its use at other points in the same section.

Curves on the first location will not be spiralled unless same is to be used as a final location. The beginning and end of curves will be marked "B.C." and "E.C." When spiralled the designation will be "BS," "BC," "EC," and "ES." Compensate ruling grades on curves 0.04 per station per degree of curve, the compensation to begin at the nearest full station to beginning or end of curve, or if spiralled, to middle point of spiral. If line is very crooked, extend compensation along tangents to avoid sharp changes in grade.

Spirals must be used on all final location. Under ordinary conditions the length in feet of spiral for main lines will be equal to the degree of curve multiplied by 100 feet, the maximum length being 400 feet. On branch lines or rough country spirals may be shortened, the length being equal to the degree of curve multiplied by fifty feet, the maximum length being 200 feet. The minimum length of tangents on main lines between curves in opposite directions will be at least equal to half the length of the two spirals required for curves, the minimum in any case being 200 feet. For curves in the same direction the minimum length should not be less than 800 ft . or 400 ft . between spirals.

No curves will be shorter than 300 feet or flatter than 1° unless specially allowed. Do not use very flat curves with large central angle, curves should not generally be shorter than 500 feet, not longer than 1500 feet, unless maximum curve is used, as over this length it is better to shorten curves and lengthen tangents.

On the same section of line if sharp curves and short spirals are necessary to avoid heavy construction, do not use this standard over whole section, but try to improve other portions so that fast speed may be made to compensate for slow speed over first mentioned portion.

On spirals wi spiral will maximum tables anc Conn or parish lines cros on and th section, ol to the nea

Care: ment are unless the

Wher
ments so
layout. § trict regis to the D secure onl of country complete,

In or take doubl in running correct err

Do no or making section, ba be changes ment of lo unless dire

In ru fifteen des inability ti

The ts at the end
ere with ecreased
ustify its
ess same d end of alled the npensate urve, the leginning jiral. If igents to
ordinary be equal im length s may be re multi:et. The res in opth of the ase being m length als.
r than 1° vith large than 500 e is used, lengthen
ort spirals use this : portions ow speed

On compound curves when difference in curves exceeds 2°, spirals will be used connecting curves. The length in feet of spiral will be difference in degree of curve multiplied by 50 , the maximum length being 200 feet. Spirals will be run as per tables and instructions furnished.

Connect with all township and sub-division lines, county or parish boundaries, as well as noting chainage of all fence lines crossed. These measurements should include the station on and the angle made by the location line with each township, section, or other land line, and the distance along the land line to the nearest section or quarter corner or other fixed point.

Care should be taken that three sides of a triangular measurement are not shown in plan together with one or more angles. unless these measurements check.

When line runs through villages or towns, take all measurements so that line may be tied to the fixed points in the town layout. Secure tracings of town plats as contained in the district registry office, with dates and certificates, and send copies to the Division Engineer's office. On preliminary surveys, secure only enough land ties so that line can be spotted on map of country, but on final lines all the land connections must be complete, for filing purposes.

TRANSIT WORK.

In order to secure accurate alignment on long tangents, take double sights by reversing telescope and splitting differences, in running in curves reverse telescope on alternate set-ups to correct errors in adjustment.

Do not run curves to intersection points unless unavoidable or making junction with other lines. If curves are run to intersection, back in curve so that the central angle can more readily be changed from end of curve, and so not interfere with adjustment of location. Spirals should not be run in on first location, unless directed.

In running in curves do not exceed a tangent angle of fifteen degrees unless necessitated by finishing out a curve or inability to secure set-up.

The transitman will assist draughtsman to figure out courses, at the end of each day's work.

LEVELS.

Levels in preliminary need not be taken with great accuracy at stations, especially when level limits speed of party, but at all turning points and bench marks strict accuracy is to be observed.

All levels should be reduced to sea datum if possible, or to same datum as levels at starting point, if same is from some recognized elevation. The difference between datum and sea level should always be noted.

Bench marks on preliminary, where time is limited, need not be closer than one mile, but good turning points must be made and location of same recorded by rodman. These records will be placed in level book at the close of each day's work.

The leveller should use hand level to work down in narrow hollows and over heights which can be turned by instrument.

Always keep level notes figured out as taken, so that any elevation of any point may be had when wanted by locating engineer. Try to keep backsights and foresights as even as possible. Bench marks on location should be put in at 1000 or 2000 ft . intervals, depending on nature of country, etc., and should be placed at or near the even ten stations, so that they can be found without notes or profile. Bench marks should always be shown on profile.

TOPOGRAPHY.

On preliminary wherever helpful to location, and on location where helpful to revision, topography must be carefully taken.

The limit of topography required will depend on nature of country over which line is run, 700^{\prime} each side of line being maximum. In nearly level but broken country it is preferable to run two or more lines than to extend the topography over too wide a belt.

Topography should be carefully taken, showing 5^{\prime} or 10^{\prime} contours, depending on nature of country and survey. Every fifth contour at 25 or 50^{\prime} elevation should be shown by heavy line.

On supported grade lines, the contour of the grade should be shown by dotted line.

Topog larger erro The final

The transit, le books shou to scale if giving date must be in Ink and notes mus liminary S be compile man, cours

On all tion should

Origin: ones admi marked on will be kep

All ma of the pape tween term be made to the paper, marked at ascending d be written with the lin Province, C he paper; t right ang with the ce hould be
accuracy y, but at is to be
ble, or to om some and sea
ted, need : must be se records vork.
in narrow ument.
that any , locating s even as it 1000 or etc., and that they should al-

1 location ly taken. nature of ing maxierable to
over too
5^{\prime} or 10^{\prime} - Every by heavy le should

Topography is not intended as a safe-guard against the larger errors of location, but for correct projection of detail. The final work in location must always be done on the ground.

NOTE BOOKS.

The note-books used will be memorandum books, transit, level, topography, and office books. Memorandum books should be ruled in squares, so that sketches can be made to scale if required. Field books must indicate each day's work giving date, and time of starting and finishing work. All notes must be indexed, the pages being numbered in pencil or India Ink and adopted or abandoned lines marked as such. All notes must be made clear, plain, and self-explanatory. Preliminary Survey notes must be made with care. All notes must be compiled in evening, the alignment notes given to draughtsman, courses figured, and profiles plotted.

On all surveys, especially those of small scope, all information should be placed in as few books as possible.

Original notes should be preserved, as they are the only ones admissable in a court of law. Note-books should be marked on outside of cover, and inside on first page, and all notes will be kept as per standard forms.

MAPS, PLANS AND PROFILES.

General.

All maps, plans and profiles are to be drawn with the top of the paper to northward or westward, the general direction between termini being considered. Lettering and figures should be made to read looking from the bottom, or the right hand of the paper, excepting the chainage, which on plans should be marked at right angles to the line, and read in a continuous ascending direction as it runs. Names and designations should be written parallel with the top and bottom of the paper, or with the lines of the object which they denote, as for instance, Province, County, or Township names should be parallel with the paper; the names of lot owners should be parallel with, or at right angles to, the lot lines; station names should be parallel with the centre line of railway, and so forth. All lettering hould be plain, neat and devoid of ornamentation, and
should indicate by its size, style and strength, the relative importance of the object designated. Specimen location plan and profile will be furnished, which should be followed closely. All plans must be dated and bear the signature of the Engineer in charge, and the draughtsman's initials; the date of any subsequent alterations or additions should also be noted and initialled. The scale or scales to which the plan is drawn must be shown under the title. The title should, if possible, be put on the right hand end of the plan, leaving ample room for notes, and should be plain and specific as to its nature and extent, stating the chainage and mileage of beginning and ending, the zero of both being noted. On the outside at each end of the plan or profile, sub-titles should be put giving similar information in a concise form. All plans should have a compass point indicating both true and magnetic north.

The names of all streams and rivers should be given and the direction of flow indicated by arrows. The names or destinations of all roads should be shown on plans, and any portions of existing railway lines should be marked at either end from or to its sectional or divisional points. Plans of track or work as existing shall be shown in full black, and work to be abandoned in dotted black lines. Proposed new work will be in full red lines (vermilion) and may be lightly tinted (carmine). Dotted red lines will indicate indefinite propositions or possible future extensions. As colouring is detrimental to blueprinting it should be used on tracing linen only where really needful, and then merely the lightest and most transparent tints. In using tracing linen, all drawing must be on the dull side, and colouring where neces. sary, on the smooth.

All plans smaller than 1200 feet to the inch shall be termed Maps.

Reconnaissance Maps.-The maps accompanying a report should be drawn to a scale of from $\frac{1}{2}$ to 4 miles to the inch, de pending on the nature of the survey, the prevailing scale being 1 inch to the mile. They will show the larger land sub-divisions towns, villages, and probable centres of traffic, the genera geographic and topographic features of the district, the wate sheds and all low divides. The topography shall be shown by
contours 25 mined, no Beyond tl tours may should be one of the 1. Horizon
2. "

Numb cross-sectio on transpal profile shot grades will Controlling places pass tude that n

Prelin to a scale o country, 40 rough coun tude and D ro inches e tions of ta intersection may be dir with every intervals should be structures, be affected and their shown in a being given tenth num plan in dot and all wate roughly the liminary lit
ve import. 1 and pro. sely. All Engineer any subseinitialled. be shown I the right nd should tating the ro of both or profile, | a concise ating both
en and the estinations of existing or to its as existing 1 in dotted lines (ver 1 red lines xtensions ye used on nerely the ing linen, tere neces.
be termed
ig a repor e inch, de icale being -divisions 1e genera the wate shown by
contours 25^{\prime} or 50^{\prime}, sketched in as nearly as can be determined, noting accurately elevations at controlling points. Beyond the limits of actual exploration presumable contours may be indicated in dotted lines. Existing railway lines should be prominently shown in black. A profile drawn to one of the following scales shall accompany the map: -
t. Horizontal, 1 mile to I inch. Vertical, 100 ft . to $\mathrm{I}^{\prime \prime}$.

Numbers 1 and 3 should be made on ordinary transparent cross-section paper 1o \times 10, and No. 2 , which is the general scale, on transparent profile paper, plate "A." On short survey the profile should be traced on same plat as the map. Ruling grades will be shown in firm full lines and broken grades dotted. Controlling elevations should be marked, and also the principal places passed through, and structures of any considerable magnitude that may be required.

Preliminary Plans.-These plans will be drawn generally to a scale of 200 feet to an inch, although in comparatively easy country, 400 feet scale may be used, and in mountainous and very rough country 100 ft . is desirable. The crossing points of Latitude and Departure lines forming angles of squares not exceeding ro inches each side, should be shown as a base from which directions of tangents on projected locations may be obtained and intersection angles measured. Contours every 5 or io feet as may be directed, will be drawn in sepia or brown ink in fine lines with every fifth one heavy, the lines being interrupted at suitable intervals to mark the elevation figures. Grade contour line should be shown in dotted blue. All contiguous buildings, structures, quarries, and probable water powers, etc., that may be affected by he line or any revision of same must be shown and their nature noted. The preliminary line run should be shown in a firm emerald green line, the stationing of all hubs being given and each 100 ft . station ticked off and every fifth or tenth numbered. The projected location should be shown on plan in dotted red. The astronomical bearings must be marked, and all water courses, and sufficient land lines shown for obtaining roughly the position of the line. Where several disjointed preliminary lines are run they should be distinguished by the first
letters of the alphabet, A, B, C, D, etc., and variations to thes A^{1}, A^{2}, B^{1}, etc., marked in plain bold lettering at junction and other appropriate points. Wherever possible these separat lines should be plotted in whole or in part on the same paper The original plat should be made on Manilla paper, $36^{\prime \prime}$ wide and a copy for the Division Engineer in 10 -mile lengths made or linen, $30^{\prime \prime}$ wide preferred, but up to a maximum of $36^{\prime \prime}$ may be used if necessary, and with only such breaks as are quite unavoid able. The point of breaking should be judiciously selected as near a long tangent as possible, and about 6 inches of the line itself should be repeated on the continuation. The Preliminary Profile will be on standard scale, horizontal 400 feet and vertica 20 feet to an inch, and plotted on transparent profile paper $11^{\prime \prime}$ wide in lengths corresponding to accompanying plan. When comparative profiles are plotted over each other, the severa ground lines should be distinguished by being shown full, or in short dots, long dots, or long and short dots, and the grade lines similarly in red.

Location Plans.-These will be plotted on a scale of 400 feet to the inch, but in prairie sections 1000 feet may be used. They will be made similar to preliminary plans as regards framework of latitude and departure, and will show such contours as are necessary for revision of line. The crossings of all provincial, county, district, municipal, township, and range boundaries, must be shown, also all lots and sub-divisions, existing fences and roads, with the chainage and angles of crossing. All contiguous buildings, etc., will be as shown as on preliminary. The names of property owners must be ascertained and shown, and in final location plans, the length, width and area of land required from each given, especially in places where extra land may be needed to accommodate slopes.

The located line will be shown in a firm bold red (vermilion) line, and in final location the limits of right of way in fine red lines. Radial lines, if shown, should be fine dotted red, and curve centres marked with a small V The astronomical direction of all tangents must be shown, and the degree, central angle, spiral angle, and stationing of B.S., B.C., E.C., and E.S., of each curve marked. It is of the utmost importance that the connecting
point of any stablished xisting line or face of b

Locatio naximum 3 onvenience mits of the reed not be hore will cat lans and pri pecimen P1 hall be plot engths corr orizontal sc fill show tl nd railway rowths, stal pgs wherevi ow water s oundations

Railwa pecial plat ossings, als fid all navi pagnitude.
rossings sho hould give a the line to ortant strea nd should s pould be or intervals cross-sect

The alig w waters, 1 informati hould there
ins to thes netion and ie separat ame paper $36^{\prime \prime}$ wide hs made or $6^{\prime \prime}$ may te unavoid selected as of the line 'reliminary nd vertica paper 1^{11} an. When he severa vn full, or the grade
sale of 400 ised. They framework urs as are provincial, oundaries, ing fences All connary. The hown, and d required Id may be
point of any located line with an existing line should be definitely stablished in relation to some easily recognized point on the xisting line of such permanent nature as a station building, r face of bridge abutment.

Location plans will be made of a preferred width of $3 \mathrm{o}^{\prime \prime}$, paximum $36^{\prime \prime}$ and in length approximately 20 miles, but, for onvenience in preparing registration plans should conform to imits of the county or registration districts, that is to say a plan eed not be cut exactly in 20 mile sections, when a few miles hore will carry it to the end of the registration district. Location lans and profiles should be made after the manner of the Standard pecimen Plan and Profile which will be furnished. The profiles. hall be plotted on transparent profile paper, $\mathbf{I I}^{\prime \prime}$ wide, and in engths corresponding to its accompanying plan, and always to orizontal scale of 400 feet, and vertical 20 feet to an inch. They fill show the grades, curves and alignment, mileage, highway nd railway crossings, open drains and water courses, timber rowths, stations and structures proposed. At Stream Crossigs wherever structures are proposed the elevation of high and ow water should be marked and the nature of material for pundations noted.

Railway, Highway and Navigable River Crossings.pecial plans and profiles should be made of all railway ossings, also highway crossings, where structures are required, nd all navigable waters, and stream crossings of considerable pagnitude. The plans and profiles of railway and highway rossings should be made on a scale of 100 feet to an inch, and hould give all necessary elevations and details, including a profilethe line to be crossed. The plans of navigable rivers and imortant stream crossings should be on a scale or 50 of 100 feet and nd should show land contours every 5 or io feet. The profiles pould be on a 10,20 , or 40 foot natural scale. Parallel lines. intervals of 25 feet on each side of centre line should be run, cross-sections taken for soundings.

The alignment, grades, stationing, elevations of high and w waters, direction and rate of current, should be shown and 1 information as to the nature of ground for foundations. hould there be any existing railway or highway bridges over
these rivers in the vicinity of proposed crossing, profiles of the should be furnished showing waterway and headway clearance

Progress Profiles.-These will be made on ordina tracing cloth, as per standard, the colouring being done on th face with as bright tints as possible, the colours noted underneat being used. All grade or other figures or lettering should kept clear of the cuts and fills. The classification of materi and quantities should be noted immediately, over each cuttin by the initial lettering, C.E. standing for common excavatio H.E. for hard excavation, S.R. for solid rock, and L.R. for loos rock. Where embankments or any considerable portions of sam are made with rock, the letters R.F. for rock fill should be note underneath. At least $\mathrm{I} \frac{1}{3}$ inches should be left clear between th datum line and the bottom of the linen, providing room for a serie of three double parallel lines $\frac{1}{10}$ of an inch between each lin and $\frac{1}{8}$ inch between each set, and $\frac{1}{4}$ from the uppermost line the datum line. On the spaces afforded by these double line the daily progress will be marked, and the monthly progre coloured, of the Tracklaying, Ballast and Surfacing, in the ord named, commencing from the top. Also at the top of the profi underneath the notation of Timber Growth a double line of of an inch spacing will be drawn for indicating the progress Clearing. The standard monthly colouring for progress profil will be as follows:January....Sepia. February...Indian Red March. Neutral Tint. April. Burnt Sienna. May...... . Emerald Green. June....... . Carmine.

July.......... . Indian Ink. August..... . Chrome Yellow September... Cobalt Blue. October. Vermilion. November. . . Violet Carmine.
December... . Hookers Green No,

REGISTRATION PLANS.

Maps, Plans and Profiles to be examined, sanctioned an deposited with the Board of Railway Commissioners for Canao and the Local Registration.

General.-These plans will comply with the requir ments of the "Railway Act." They will be made on tra ing cloth of a maximum width of $36^{\prime \prime}$, preferred width 30 Ample space should be left under or alongside of the title
ford room ace should als may be

Map of ould be II miles to in pal towns filways, na the distric be constru ken of this ade, signed

Locatei milar to St ribed, with arture lines d areas of he centre 1 mits of righ shown, th ne. The le e County o: pt greatly iles on a 40 conformity there is r ay also the ould other

Plans 1 ONED OR tould be sir ades, curv tanges desir

Plans o d profiles nd profiles
Railway s ay in fine
files of the clearance on ordinar done on th undernea g should of materi ach cuttin excavatio R. for loo ions of san ald be note between th n for a seris en each lin most line louble line aly progre in the ord of the prof line of progress ress profil
nk.
Yellow
lue.
n.
armine.
Green No. le on tra width 30 the title
ford room for signatures, memorials, etc., necessary. This ace should be at the bottom of the linen, so that the Registrar's als may be easily affixed.

Map of General Location-as per Section 157 -This ould be made on tracing cloth to a scale of not less than miles to inch and will show in black the termini and the prinpal towns and places through which the line is to pass, the ilways, navigable streams, tide water, and physical features the district, within a radius of thirty miles. The line proposed be constructed will be shown boldly in red. From a vandyke ken of this tracing, three vandyke prints on linen should be ade, signed and deposited by the Secretary.
Located Line, Plan and Profile, Sect. 158.-Should be milar to Standard Specimen Plan and Profile, as already deribed, with the exception that no contour nor latitude and dearture lines need be shown, and also invariably, that the limits nd areas of all lands proposed to be acquired be shown in red. he centre line should be a firm bold vermilion line and the mits of right of way in finer red lines. Radial lines need not shown, the points of curvature being merely ticked off on the ne. The length of the plan shall be governed by the extent of e County or Registration District which it traverses, but should pt greatly exceed the prescribed length in one section of 20 iles on a 400 ft . scale. Profiles should be on tracing cloth and conformity with the accompanying plans. For short branches there is room, they may be shown on the same plat, as ay also the Book of Reference to accompany the plan, which ould otherwise be made on the Company's printed form.

Plans to Alter Location of Line, Previously Sanconed or Completed, Sect. 167. -These plans and profiles ould be similar to above, excepting that the original location ades, curves, etc., must be shown (in black) as well as the anges desired or necessitated (in red).
Plans of Completed Railway. Sect. 164.-These plans dd profiles should be made similar to the Located Line plans hd profiles already described, excepting that the centre line Railway should be shown in blue and the limits of right of ay in fine black lines. The blue used should be opaque for
blueprinting, and at the same time as bright as possible, a mixtur of Prussian Blue and Chinese White will do, but Cobalt Frenc Blue and Chinese White is best. The limits and areas of land ac quired should be accurately shown and computed, and all lan ties shown complete. Original fence lines should be finely dotte across the company's right of way.

Branch Lines not Exceeding 6 Miles. Sect. 221-225Plans, profiles and books of reference similar to those for locate lines should be made, but these should be deposited by th Secretary first in the local Registry office, and four weeks publi notice given, before application is made and plans deposite with Railway Board.

Rallway Crossings or Junctions. Sect. 227.-Three se of plans for these showing both roads at point of crossing mus be made on a 100 ft . scale, and also three sets of plan, and profile, made on a 400 ft . scale showing bothroads on eithe side of the proposed crossing for a distance of 2 miles

Highway Crossings. Sect. 235 to 243.-Plans of crossin to be on a 400 ft . scale and profiles 400 ft . horizontal and 20 ft vertical, and must show at least half a mile of railway and 30 feet of highway on each side of crossing. Also profile of Higb way for 300 ft . on each side on a sc le of 100 ft . horizontal and 20 ft . vertical.

Crossings of Navigable Waters, Beaches, etc., Sect. 18 -Two sets of plans, profiles, drawings, and specifications, mad on convenient scale, and, if possible, on one drawing.

ESTIMATES.

Estimates must be kept up with location and quantitie recorded on the profiles for each cut or fill, and tabulated for each mile section. They will show the quantities of clearing grubbing, grading, minor structures, foundations and all such information as the Assistant Engineer may be conversant with

The estimates for bridges and all items above sub-grad will be made by Division Engineer. Grading will be divided under the headings of "solid rock," "loose rock," and "common excavation." If cemented gravel or hardpan exists in suci quantities as to make it of importance, it should be reporte on and classified as "hard excavation."

The qu: ables or qu portant fact ollowing ta ABLE OF

Slope of Ground.
$5{ }^{\circ}$ 10°
15°
20°
25°
30°
ABLE OF

Slope of Ground.

When is verything 1 ill be mad ridging etc

Care shi pover slop urposes.

Estimat nd should equired to
e, a mixtur balt Frenc s of land ad nd all lan inely dotte

221-225. for locate ted by th eeks publi: s deposite
-Three se ossing mus f plan, an s on eithe
of crossin 1 and 20 ft ay and 30 le of Higb izontal and
., Sect. 18 ions, mad
quantitie bulated fo of clearing id all suct rsant with sub-grad be divide . "commor ts in such e reported

The quantities of excavation will be figured from level cutting ables or quantity scales. When the side slopes become an important factor, the proper additions should be made as per the ollowing tables:-
TABLE OF \% INCREASE DUE TO SLOPE OF NATURAL SURFACE.
20 Fr. Roadbed. Slope One to One.

Slope of Ground.	Centre Cut in Feet.								Slope of Ground.
	5	10	15	20	25	30	40	50	
$5{ }^{\circ}$	2	1	1	1	1	1	\cdots	.	$5{ }^{\circ}$
10°	6	4	4	4	3	3	.	\cdots	10°
15°	14	10	9	9	8	8	15°
20°	27	20	18	17	17	16	20°
25°	50	37	33	31	30	30	\ldots	..	25°
30°	90	60	54	51	49	48	30°

ABLE OF \% INCREASE DUE TO TRANSVERSE SLOPE OF NATURAL SURFACE.
16 Ft. Roadbed Slope $1 \frac{1}{2}$ to 1.

Slope of Ground.	Centre Fill in Feet.								Slope of Ground.
	5	10	15	20	25	30	40	50	
$5{ }^{\circ}$	2	8	2	2	${ }_{8}^{2}$	8	\cdots	\cdots	$5{ }^{\circ}$
10 15	11 29	${ }_{22}$	${ }_{21}$	${ }_{2}{ }^{8}$	20	$\stackrel{8}{20}$..	\cdots	$1{ }^{10}$
20°	58	48	46	45	44	44	.	\ldots	20°
25°	I 35	106	103	100	99	98	\cdots	..	25°
30°	407	341	322	314	310	307	30°

When instructed by Division Engineer, estimates including verything necessary to complete the line ready for operation fill be made out on standard forms, the prices for grading, ridging etc., being furnished.

Care should be taken that sufficient right of way be taken b cover slopes and land required for station ground and terminal urposes.

Estimates should be made in as much detail as possible, nd should be full and complete so as to include everything equired to complete the road ready for operation.
SUPPLIES AND EQUIPMENT FOR FIELD PARTIESSUpplies for 14 Men, 30 Days.
Allspice, ground. ... $\frac{1}{2} \mathrm{tb}$. Milk, Condensed.... 1 case.
so Apples, evaporated. 50 lbs .
Macaroni I box.is Apricots, evaporated 25 tbsMatches.12 boxes.Mustard2 fbs .
100 Bacon. 100 tbs .
Baking Powder 10 tbs .Nutmegs.$\frac{1}{2} \mathrm{tb}$.
3 Baking Soda. 3 Hbs .
10 Barley. 10 tbs.
Beans. 50 tbs.Oatmeal............ 40 lbs .
Beef, dried. 25 tbs.
Butter. 60 tbs .

\qquad
Onions 20 lbs.
S
Peaches, canned. 2 cases.Peaches, dried...... 50 lbs .
so Candles I box. Pears, canned. 1 case.
Cheese. 25 tbs. Peas, canned. 1 case.
s0 Cherries, canned 1 case. Peas, split 20 lbs.
Cinnamon, ground. $\frac{1}{2} \mathrm{tb}$. Pepper, ground 1 lb .
Coal Oil. 1 case. Potatoes. 400 lbs.
Codfish 25 tbs. Pickles. 6 bottles
Coffee 40 lbs . Prunes, dried 50 Ibs .
Corn (canned) 2 cases.
Cornmeal 30 fbs.
Rice. 25 tbs.

1. Corn starch. 10 lbs. Raisins. I box.
१ 2 Corned beef 1 case.
Cream, evaporated 2 cases. Sago. 10 lbs.
Currants 10 lbs .
Sal Soda. 10 lbs.
Salt. 20 tbs.
Flour. 400 lbs.
Soap............... 1 box.Flour, Buckwheat.. . 50 tbs. Soda Crackers...... I box.Sugar................. 150 Itbs.
Ginger, ground. $\frac{1}{2} \mathrm{fb}$. Syrup.............. 5 gals.
Ham 100 fbs.
Tapioca.............. 10 tbs . Tomatoes. 2 cases. Lard.............. 40 tbs. Tea, Black.......... 15 tbs. Lemon extract. 1 bottle. Tomato Catsup. 6 bottles
Lye. 2 fbs .

Vanilla E Vinegar..

PARTIES

1 case.
I box. 12 boxes. 2 lbs .
$\frac{1}{2} \mathrm{Ib}$.
40 lbs. 20 Ibs .

2 cases. 50 lbs .
1 case.
I case. 20 lbs .
I tb. foo lbs.
6 bottles 50 lbs . 25 tbs.
I box.

10 lbs . io tbs. 20 lbs .
1 box.
1 box. (50 lbs . 5 gals. 10 lbs .

2 cases. 15 lbs . 6 bottles

Vanilla Extract..... I bottle. Worcestershire sauce 8 bottles. Vinegar.............. 1 gal.

Yeast Çakes........ 12 pkgs.

CAMP EQUIPMENT. (For One Field Party.)

1 Chopping Bowl.
1 Bread Board
3 Wash Basins.
3 Pepper Boxes
I Lunch Basket.
1 Broom.
${ }^{1}$ Scrub Brush.
1 Biscuit Cutter.
10 yds. Canvas.
2 Can Openers.
1 Alarm Clock.
1 Collander.
3 Candle Sticks.
1 Coffee Mill.
24 Coffee Cups
24 Enamelware Pint Cups.
3 Tin Pot Covers.
I Cake Turner.
2 Dippers.
2 Three cornered files.
I Flat File.
1 Flesh Fork.
36 Forks.
1 Carving Fork.
I Grindstone.
2 Griddles.
3 Butcher Knives.
1 Chopping Knife.
1 Carving Knife.
36 Knives.
4 3-Qrt. Pans.

4 4-Qrt. Pans.
4 6-Qrt. Pans.
18 Pint Pans.
6 3-Gal. Galvanized Water Pails.
36 Enamelware Plates.
12 Enamelware Pie Plates.
2 Iron Pots.
I 2 -Gal Coffee Pot.
I 2 -Gal. Tea Pot.
I Potato Masher
4 Pieces Stove Pipe, with detachable dampers.
16 Pieces Stove Pipe, without dampers.
(Pipe to telescope.)
io Roof Tins for Tents.
I Pick and Handle.
100 feet $3^{\prime \prime}$ Manilla Rope
1 Rolling Pin.
1 Handsaw.
1 Saw Set.
1 Claw Hammer.
1 Trase.
$1 \frac{1^{\prime \prime}}{2}$ Bit.
$1 \frac{3}{4 \prime}^{\prime \prime}$ Bit.
1 Large Screwdriver.
I Spoke Shave.
1 Cross-Cut Saw.
1 Meat Saw.
1 Bundle Sail Twine and Needles.

I Sail Palm.
I Sieve.
4 Stoves, Sheet Iron
1 Cook Stove, No. 8 or 9.
1 Spade.
I Round mouthed Shovel.
3 Enamelware Stew Kettles.
${ }_{I}$ Tea Kettle.
3 Stand lamps and six chimneys
2 Mess Chests.
1 Monkey Wrench.
5 lbs. nod nails.
1 Nutmeg Grater.
Io Yds. Table Oilcloth.
2 Stew Pans.
4 Drip Pans, 12×17.
1 5-Gal. Dishpan.

1 5-Gal. Bread Pan
1 Large Frying Pan.
${ }_{1}$ Small Frying Pan.
4 Large Iron Spoons, $12^{\prime \prime}$.
36 Teaspoons.
36 Tablespoons.
I Soup Ladle.
I Steel.
I Steamer.
I Tea Strainer.
5 Tents and Flies (14×14 pyramid $6^{\prime \prime}$ walls or 14×16 "A" Tent, with $4^{\prime} 6^{\prime \prime}$ walls).
I Slatted Dinner Table.
I Cook Table Top.
10 Yds. Towelling.
I Washtub, Board and Boiler

1 Box Ass
I Inkstan
3 Pads Le
2 Pyrami
6 Pencil F
6 Ink Era

- Bottle n

2 Bottles
I Bottle C
I Bottle I
2 Bottles gin's).
1 Pint Bo
24 Shipping
12 Field Bc
6 Topogra rison

ENGINEER EQUIPMENT AND STATIONERY.

(For One Field Party.)

I Transit.
I Level.
1 Chain.
4 Pickets.
2 Level Rods.
1 Barometer.
48 Thumb Tacks.
3 Camel Hair Brushes.
1 Steel Straight Edge (36" nickle-plated).
I Draughting Board Trestles.
I Stationery Chest, Tray and Board.
2 Hand Axes and extra handle
3 to 6 axes and extra handles.
I Hatchet.

I Brush Hook,
250^{\prime} tapes in cases, 2 without cases.
12 Blotters.
12 Papers 8 oz . tinned tacks.
2 Balls Twine.
I Sounding Rod, 3 joints, 8^{\prime} each.
6 6-H Pencils.
12 4-H Pencils.
and 122 -H Pencils.
12 Timber Leads.
2 Packages Large Manilla En. velopes.
2 Packages small Manilla En. velopes.
6 Penholders.
ile.
ad Boiler

ミRY.
z without
ed tacks.
joints, 8^{\prime}

INSTRUCTIONS FOR USE OF SPIRAL．

This Spiral is based on the following Principles．

1 The spiral is twice the length of the circular curve which it replaces．
2．The total angle of the spiral equals the central angle of that part of the curcular curve which it replaces．
3．The deflection angles from the beginning of the spiral to any points
5＇on same vary as the square of the distance from the B．S．to the given points，measured along the spiral
4．The offsets to the spiral from the tangent produced vary as the cube of the distance measured along the tangent（opproximate）．
5．Length of spiral should be 100 feet multiplied by degree of the circular curve to be spiralled．Spirals greater then 400 feet or less than 100 feet will not be used．When broken alignment is necessery， and the tangents are too short to allow use of 400 foot spiral， 200 or 100 fool spirgls may be used．
6 The curvature of the 400 foot spiral increases one degree per 100 feet of length for curves up to a 4° ；for curves sharper than a 4° curvature of spiral increases L＂x dexge⿻丷木斤 of cume per hundred feet of length．
The curvature of 200 foot spiral increases one degree por 50 feet of length for curves up to a 4° ，for curves sharper than 4° ，curvature of spiral incresses $1 \times$ dercese of curwe per fifty feet of langth．
The curvature of the 100 foor spiral incresses one degree per 25 feet of length for a 4° curve（which is the minimum used）：for curves sharper than 24° curvature of spiral increases 1° adgerce of curve per twenty five feet of length．
7．When curvature of spiral exceeds 5° ，fifty foot chords should be used in running in same

TO FIND DEFLECTION ANGLES FOR SPIRAL

A．With instrument at B．S deflection angle to set any point in 400 foot spiral up to 4° curve may be taken directly from Table 3．for curves shappe than 4° multiply deflection angle in Tabie 3 by derree ofcurre to be spiralled

For 200 foot spiral deflection angle to set any point oquals deflection angle for 400 foot spiral multiplied by 2.

For 100 foot spural deflection angle to set any point equals deflection angle for 400 foot spiral multiplied by 4.
B．With instrument at any point on spiral and backsight on B．S．or anjothet point between instrument and B．S defiection angle to turn tangent aquals deflection angle for a curve corresponding to the curvature of the spwal at instrument munus deflection angle taken from table 3 for the same distance Deflaction angle from tangent to set any point ahead of instrument equals
deflech the ins
C．\％With in spir distan
D．With
other A equals at insh Teble 3 point a pondin． ion an TO FIN Sub－ta of same correctia equals I
\qquad E．S．be 1 Let de Centra Tofal
Lengh
Let B
E．C．will
Sub－ta
＋correctic
$=913 \cdot 3^{\prime} \mathrm{c}$ or if P．

With is
77 fi $=0^{\circ}$
$=0^{\circ} 10^{\circ} \mathrm{T} \mathrm{Ta}$
this point
with i
tangent α minus de To set sta angle for． same dish

RAL.
IPLES. t replaces. that part of to any points to the given , as the cube ree of the of or less is necessery, † spiral, 200
ee per 100 - than a 4° of length. er 50 feet © curvature b.
per 25 feet irves sharper twenty five

Is should be
AL
in 400 foot c curves shape e sparelled
's deflection
is deflection
1.S. or anj other angent aquals of the spursal ime distance ment equals
deflection angle for a curve corresponding to the curvature of the spirat' it the instrument plus deflection angle taken from Table 3 for given distance. C. \& With instrument at E.C. deflection angle from tangent to set any.point in spiral equals deflection angle of the circular curve for the given : distance minus deflection angle taken from Table 3 for same distance.?
D. With instrument at any point on spiral and backsight on E.C. or any other point between instrument and E.C. deflection angle to turn tangent equals doflection for a curve corresponding to the curvature of the spial at instrument for the given distance plus the deflection angle taken firm Teble 3 for the same distance. Deflection angle from tangent to set any point ahead of instrument equals deflection angle for a curve corresponding to the curvature of the spiral at the instrument minus defledion angle taken from Table 3 for the given distance.
TO FIND SUB-TANGENT AND LENGTH OF SPIRALLED CURVE Sub-tangent for spiralled curve equals sub-tangent for simple curve of same total intersection angle plus one half length of spiral plus correction to be token from Table 2. Total length of spiralled curve equals length of simple curve pius one half length of spirsls.

EXAMPLE 1 - TO SPIRAL A SIMPLE CURVE
Let bearing of tangent at B.S. be N. $54^{\circ} 50^{\prime} \mathrm{W}$. and bearing of tangent at E.S. be N. $2^{\circ} \mathrm{O} 2^{\prime} \mathrm{W}$, then total intersection angle equels $52^{\circ} 48^{\circ}$:

Let degree of curve bo 4^{*}; then length of spiral $=400 \mathrm{ft}$. (Soct 5)
Central Angle of spiral $=1 / 2$ angle of 4° Curve for $400^{\prime}=8^{\circ}$ (Sect $/ 1 \times 2$)
Total length of curve $=100\left(\frac{52 \cdot 6}{4}\right)+400=1720$!
Length circular curre $=1720-800=920$:
Let B.S. be at station $125+23$, then B.C. will be at sta. $129+23$, E.C. will be at $s t a .138+43$, and E.S. at sta. $142+43$.

Sub-tangent $=$ sub-tangent for circular curve of $52^{\circ} 48^{\prime}+\frac{1 \text { leveh of spial }}{2}$ + correction to be taken from Table $2=\frac{2644 \cdot 2}{4}+\frac{400}{2}+2 \cdot 2$ (by interpolation) $=913 \cdot 3^{\prime}$ distance from B.S. to P.I. This distance to be used for plotiting or if P.I should be set.

With instrument at B.S. to set station $126+00$ deflection angle for 77A:- $0^{\circ} 06^{\prime}($ Table 3). To set hub at $126+23$ deflection angle for 100 A . $=0^{\circ} 10^{\prime}$ (Table 3), $126+23$ being 100^{\prime} from B.S. degree of curvature at this point equals 1:

With instrument at station $126+23$ and backsight on B.S. to turn tangent deflection angle equals deflection angle for $1{ }^{\circ}$ curve for 100 A . minus deflection angle from Table 3 for same distance $-30 \div 10: 20^{\circ}$. To set station $127+\infty 0$ deflection angle from tangent equals defiluction angle for 1° curve for 77 A plus deflection angle taken from Tabte 5 for same distance $=23^{\circ}+06^{\circ}-29^{\circ}$. Tb set hub at $127+73$ deflection angle
from tangant aquals deflection angle for 1 "curve for 150 ff. plus deflaction angle taken from Table 3 for same distanee $=45^{\circ}+22 \cdot 5^{\circ}=1^{\circ} 07.5 .^{\circ}$ 12773 being 250 ff. from B.S. degree of curvature at this paint $=2^{\circ} 30^{\prime}$.

With instrument at station $127+75$ and backsight on station 126+23 to turn tangent deflection angle equals defiection angle for $2^{\circ} 30^{\prime}$ curve for 150 feet minus deflection angle tahen from Table 3 for same distance $=1^{\circ} 52 \cdot 5^{\prime}-22 \cdot 5^{\prime}-1^{\circ} 30^{\prime}$. To set hub at station $129+23=$ B.C . deflection angla from tangant equals deflection angle for $2^{\circ} 30^{\circ}$ curve for 150 Af, plus deflection angle tahen from Table 3 for same distance. $=1^{\circ} 52 \cdot 5^{\circ}+22 \cdot 5^{\prime}=2^{\circ} 15^{\circ}$. Stotion $129+23$ being 400 Af from 8.5 . degree of curvature at this point equals 4 :

With instrument at B.C. and backsight on station 127+73 daflection angle to turn tangent equals deflection angle for $4^{\circ} \mathrm{Cu}$ 埌 for 150 fuet, minus deflection angle taken from Table 3 for same distance $=3^{\circ}-22 \cdot 5^{\circ}=23^{\circ} 7.5^{\circ}$ To set hup at station $134+00$ deflection angle from tangent $=9^{\circ} 32 \cdot 5^{\prime}$.

With instrument at station $134+00$ and backsight on B.C. to turn tangent deflection angle equals $9^{\circ} 32 \cdot 5^{\text {: }}$. To set hub at station $138+43$ $=$ E.C. deflection angle from tangant equals $8^{\circ} 5 / 5^{\prime}$.

With instrument at E.C. and backsight on station $134+00$ doflection angle to turn tangent equals $8^{\circ} 51 \cdot 5$. To set hub at station $139+43$ deflection angle from tangent equals deflection angle for 4° curve 'for 100 ff. minus defliction angle taken from Table 3 for same dis, tance $=2^{\circ} 0^{\prime}-10^{\circ}-1^{\circ} 50^{\prime}$. Station $139+43$ being 100 At. from E.C. 'degree of curvature of spiral at this point equals 3:

* With instrument at station $139+43$ and backsight on E.C.toturn tangent deflection angle equals deflection angle for 3° for 100 At plus, 'deflection angle taken from Table 3 . or same distance $=10^{\circ} 30^{\circ}+10^{\circ}-1^{\circ} 40^{\prime}$.
To set hub at station 140+93 deflection angle from tangant equals deflection angle for 3° curve for 150 feet minus deflection angle taken from Table 3 for same distance $=2^{\circ} 15^{\prime}-22 \cdot 5^{\circ}=1^{\circ} 52 \cdot 5^{\prime}$. Station $140+93$ being 250 feet from E.C. degree of curvature of spiral at this point equals 1030 :

With instrument at $140 \cdot 93$ and backsight on $139+43$ to turn tangent deflection angle equals deflection angle for $11^{\circ} 30^{\circ}$ curve for 150 feet plus deflaction angle taken from Table 3 for same distance $=10{ }^{\circ} \mathbf{j}^{\prime}+225^{\circ}=1^{\circ} 30^{\prime}$. To set hab at station $142+43$ - E.S deflection angle from tangent; iequals deflection angle for $1^{\circ} 30^{\prime}$ curve for 150 fiet minus deflection ', ongle tahen from Table 3 for same distance, $=1 \circ 07 \cdot 5^{\circ}-22 \cdot 5^{\prime}=0^{\circ} 45^{\prime}$ ',

With instrument at E.S. and backsight on sfation $140+93$ to turn' tangent deflection angle equals deflection angle taken from Table ' 3 for 150 feet $=22 \cdot 5^{\prime}$ ' (see transit notes).

Asp wall bor なking , of spiral curve de subtract

Lot requirad curvatur used is

Lengt
B.C.S
E.C.s

With
angle fron
taken from
To set hu
angre for
for same
150ff: from
with
deflection
odeflection a
To set hub ion angle h 3 for sam 3oof: fram

With " deflection deflection a To set hub angle for Table $3 f$ Station 33 equals 4°

With ins tangent def minus(deflec $5^{\circ}-15^{\circ}=4$
E. foturn 00At.plus $0^{\prime}=1^{\circ} 40^{\prime}$. ' equals Yection . $/$ 's2.5.'. sture of
n tangent Eept plus $5^{\prime}=7^{\circ} 30^{\prime}$. angent flection - $0^{\circ} 45^{\prime}$. to turn' on TBble

A spiral between the two simple curves of a compound cure will be run in the same manner as the ordinary spiral, always taking into consideration the degree of curvature at the beginning of spiral, and adding or subtracting the spiral deflections from the curve deflections, adding if the curvature is to increase, and subtracting if the curvature is to decrease

Let station $31+725=$ PC.C between a 4° and a 10° curve. It is requirad to run in a spiral between tham Difference in degree of curvature of the two simple curves equals 60° therefore spiral to be used is similar to that used for a simple 6° curve.

Length $=400 \mathrm{ff}$. Central angla due to spiral $=\left(4^{\circ} \times 2\right)+\left(10^{\circ} \times 2\right)-\left(4^{\circ} \times 4\right)=12^{\circ}$.
B.C.S. $=31+72 \cdot 5-200=29+72 \cdot 5$, say $29+72$
E.C.S $=29+72+400=33+72$.

With instrument at $29+72=$ B.C S to set station 30.00 deflection angle from tangent $=$ deflection angle for 4° curve for 28° ' (deflection angle taken from Table 3 for same distance $x, 6 / 4)=33 \cdot 6+\left(0 \frac{3}{4} \times \frac{6}{4}\right)=34 \frac{4}{4}$ nearly. To set hub at 31.32 deflection angle from tangent equals deflection angle for 4° curve for 150 ft. plus (deflection angle taken from Table 3 for same distance $\times 9 / 4)=3^{\circ}+(22.5 \times 9 / 4)=3^{\circ} 34^{\circ}$. Station $3 /+22$ being 150 f. from B.CS. degree of curvature at this pount $=4^{\circ}+\left(1 \times \frac{6}{4} \times 15\right)-6 \%^{\circ}$.

With instrument at $31+22$ and backsight on S.CS to turn tangent deflection angle equals deflection angle for 6 is curve for 150 ff minus i
 To set hub at station $32+$ th deflection angle from tangent equals deflection angle for $6^{\circ} 15$ curve for 150 f. plus (defiection angle taken from Table 3 for same distance $\times 9 / 4)=4^{\circ} 41 \cdot 25^{\circ}+34^{\prime \prime}=5^{\circ} / 5^{\circ}$ Station $32+72$ benng 300k. fram B.C.S degree of curvature at this point $=4^{\circ}+(1 \times 9 / 4 \times 3)=8^{\circ} 30$.

With instrument at $32+72$ and backisight on $31+22$ to turn tangent deflection angle aquals deflection angle for $8^{\circ} 30^{\circ}$ curve for 150 ff minus deflection angle taken from Table 3 for same distance $=6{ }^{\circ} 22 \cdot 5-33 \cdot 5^{\prime}=5^{\circ} 49^{\prime}$. To set hub at $33+72$ darlection angle from tangent equals deflectioi) angle for $8^{\circ} 30^{\prime}$ curve for 100 ff plus (deflection angle taken from Table 3 for same distance $\times 6 / 4)=4^{\circ} 15^{\prime}+(10 \times 6 / 4)=4^{\circ} 30^{\prime}$. Station $33+72$ being 400 feet from B.C.S. curvature at this point equals $4^{\circ}+\left(4^{\circ} \times 6 / 4\right)=10^{\circ}$

With instrument at $33+72=$ E.C.S and bockisight on $32+72$ to turn tangent deflection angle equals deflection angle for 10° curve for 100 fien mimus(deflection angle taken from Table 3 for same distance $\times 6 / 4$) $=$ $5^{\circ}-15^{\circ}=4^{\circ} 45^{\circ}$.

$\sigma \cdot \sigma 6$ $\circ \cdot \mathrm{O}$ $\circ-18$ oi-24 $a \cdot(a)$ (a.s. $\frac{0}{6}$ $\frac{0}{0}-42$ $\frac{0 .+\theta}{0.5 j}$ d.SA t-00 10	1.06
10	$\left.\frac{1}{1} \cdot 12 \right\rvert\, 18$ -18 I-2: 130 $1^{\circ} \cdot 3616$ $t^{\circ}-42$ 7.48 18 2:51 19 2.00120 206121 2.12 2. 1823 -2424 2. 30.25 2-36. 26 2.4:27 24828 2-5d 290 $3-0.0130$ 5-0. 310 3-12 38

5:18 33
3-2134
3-503 350
5: 36$] 360$ $3-4270$ $3-46380$ 3-54 390 $2=00400$

		DEFLECTIONS ${ }^{\text {TABLE } 3}$									
			1	2	3	4	5	6	7	8	9
O－0．	10	O－00			－000	$0^{\circ} 000$					
	20	$0 \div 00^{2}$	0－00		0－03	0.008					
	30	0：01	$0:$		0.01	0.01	$0^{\circ} 0^{\circ} i^{\circ}$			0.012	
$0 ; 24$	40	0.012	$0 \cdot$		O－0，	$0 \cdot 02$	0．02	$0 \cdot 0$			
a^{2} ．	50.	0－02	$0 \cdot 02{ }^{\circ}$	O2：	0．02	0－03	$0^{\circ} \cdot 03^{\circ}$	\％ 0.03	O．O	O．O．	
（1）． 3	60	0.034	0－03年		0.04	0.04	－0．04．	0.04	$0^{\circ} \mathrm{O}$	\％	dot 0
	70	d．0．	O－05	．		0．0． 0	O－0．	\％ 0.	10.06	0.06	$0 \cdot 064$
\bigcirc	80	$0.06 \frac{1}{2}$	0.06	－003	0.07	0.07	O－O	O．O	0．ō＇2	10．07	0．08
disf	90	$0 \cdot 08$		OOP ${ }^{\circ}$	$\bigcirc{ }^{\circ}-6$	$0 \cdot 08{ }^{\circ}$	0.09	0：09	$\mathrm{O}^{\circ} \mathrm{O} \cdot \mathrm{Og}_{2}$		0.093
7－00	100	$0^{\circ} 10^{\circ}$	$0 \cdot 10$	010	$0^{\circ} 110{ }^{\circ}$	$2 \cdot 103$	$0^{\circ} \div$	\％$\quad 11$	$0^{\circ} 11$		
1：06	110	$0^{\circ} 12$	$0^{\circ} 12{ }^{\circ}$	${ }^{\circ} \cdot 12$							
1：12	120	$0^{\circ} \cdot 14 \frac{1}{6}$	0－4 ${ }^{\circ}$	$0^{\circ} 15$	$\stackrel{1}{\circ} 15$	$0^{\circ} 15^{\circ}$			$0 \cdot$	0°	
［18． 18	130	$0 \cdot 17$	0－174	$0^{\circ} 177^{\circ}$	O－17：	0.18	$0^{\circ} 1$		0°		$0^{\circ} 19$
1－24	140	$0^{\circ} 19{ }^{\circ}$	0．20	$0^{\circ} \cdot 20$.	$0^{\circ} 20^{\circ}$	$0^{\circ} 20.8$	$0 \cdot 21$	$0 \cdot 2$	$0^{\circ} 212$	0：22	\％ 224
130	150	a．22	0－22	0．23	$0^{\circ}-23$	$0^{\circ} 0^{\circ} 3^{\circ}{ }^{\circ}$	$0^{\circ} 24$	$0^{\circ} \mathrm{O} 244^{\frac{1}{2}}$	$0^{\circ} 24$	$0 \cdot 25$	
10，36	160	$0.25{ }^{\text {a }}$	0.26	$0^{\circ} 26$	O． 26 ？	0．27	－ 02	$0 \cdot 27$	0．28	0．2	O． 0.288°
$1{ }^{-42}$	170	－ 283	$0^{\circ}-29$	0\％29	0－30	$0^{\circ} \mathrm{Ba} 0^{\circ}$	$0 \cdot 3$	$0^{\circ} 31$	$0 \cdot 314$		${ }^{\circ}+32$
$1{ }^{\circ} 48$	180	$0^{\circ} 32{ }^{\circ}$	0․33	10．33	0．33＇	$\stackrel{\circ}{\circ} 34$	－ $0 \cdot 3$	0，34 ${ }^{\circ}$	0．35	0．3	$0^{\circ} \cdot 35$
1：54	190	$0 \cdot 36$	$0 \cdot 36{ }^{2}$	$0 \cdot 37$	0．372	$0^{\circ} \mathrm{O} 3718$	0，38	o－ 3 82	1039	$0 \cdot 0$	${ }^{\circ} \mathbf{3} 392$
2：00	200	Co	$0 \cdot 40$ \％	－ 0.41	0，4it	$0 \cdot 412$	$0^{\circ} 42$	8．42t	$0^{\circ} \cdot 42$	10：4	$0 \cdot 80^{\circ} 0^{\circ}$
2－06	210	0：44	a． $44 \frac{1}{2}$	$0 \cdot 45$	$0 \cdot 45{ }^{\circ}$	$0^{\circ} 45^{\circ}{ }^{\text {a }}$	$0^{\circ}+1$	0．46s	0．47	0.4	0＇48
2．12	220	$0^{\circ} 48{ }^{\circ}$	$0^{\circ} 488^{2}$	0\％40	$0^{\circ} 495$	d． 50.4	O． 5	10．51	${ }^{\circ} .51$ ¢	$10^{\circ} 5$	$00^{\circ} 58$
2	230	$0^{\circ} 53$	$0^{\circ} 53$	$00^{\circ} 53$	0，50，	0\％54	$0^{\circ} \cdot 55$	$10^{\circ} 55$	$0^{\circ} 56$.	－ 0° ．56	$0 \cdot 57$
	240	O．57	0．58．	$0 \cdot 58$	$0^{\circ} .59$	$00^{\circ} 59{ }^{\circ}$	1：00	1：00．	$1: 01$	\％ol	1：O？
2．30＇	250	1.02	1.03	1：03t	$1-04$	io4 ${ }^{\text {a }}$	1：05	1－0．5t	1.06^{\prime}	$1 \cdot 06$	$1: 07$
2：36	260	iof	1.08	1.081	i－09	$1.09{ }^{\text {a }}$	1\％103	$1{ }^{10}$	1：11\％	i－M	$\mathrm{i}_{1} 122^{\frac{1}{2}}$
	270	（ 13	1：13家	1：14	1\％14	1815	1：15	1：16：		i $17 \frac{1}{\text { ¢ }}$	－ッブ
	280	1：18 ${ }^{1}$	1：19	1：192	$1: 20$	$1: 20$	i－2if	$1 \cdot$ 2i3	1：22＇	1：23	1．232
	290	1：24	1．24	$1 \cdot 25$	1－26	1．26t	$1 \cdot 27$	i－27	$i \cdot 28:$	$1.28{ }^{2}$	i29 ${ }^{\text {a }}$
	300	18.30	1－30	1：3／4	1：314	1：32：	1：33		1：342	$1{ }^{1 / 35}$	1－356
5^{3-0}	310	i．36	1－36 ${ }^{\text {¢ }}$	1．37	1－38	7－38i	1：39＇：	$1{ }^{\circ} 40$	$1: 40 \frac{1}{5}$	1－41	i－4i？
3－12	320	1＋2	1．43	1－43	$1: 44^{\prime \prime}$	i－45	1－45	$i^{\circ} 46^{\circ}{ }^{\circ}$	1：47	1．479	1748年
3－18	330	1：49	1．49：	1．50．	1－51	i－5is	1－592	i．53	－532	1－54t	1－55
	34	1．55	1.56	1－5；	i．57	$i^{\circ} 58{ }^{\circ}$	1.50	ㄱ．53］	$2^{\circ} \cdot 0 \cdot 0$	$2 \cdot 1$	2：014
	350	2：09	2\％3\％	$2{ }^{\circ} \mathrm{O}$	$2^{\circ} \mathrm{OH}$	2．05 ${ }^{\circ}$	2：06	$2 \cdot 06$	$2^{\circ} 07$	$2 \cdot 00^{\circ}$	2：09
5：	360	2．09	2 10	2：11	2： 117	$2^{2} 1 / 2$	2\％133	2\％／4	2：H2	$2^{\circ} \cdot 155^{\circ}$	2：164
	370	2：17	$2^{\circ} \cdot 1 /{ }^{\prime \prime}$	2\％ 18 \％	2：19	2＊${ }^{\circ}$	$2 \cdot 20$	$2^{\circ} \cdot 2 \prime$	$2^{\circ} 22$	$2.22{ }^{2}$	2：23年
	380	2．24	2－25 ${ }^{\text {a }}$	2.26	$2^{\circ} 26{ }^{\circ}$	2：27	2：289	$22^{\circ} 2$	2：20］	2：30＇	$2^{\circ} 31^{\prime \prime}$
3，54	390	2.32	$2^{*} \cdot 3$	2：302	2：34 ${ }^{\circ}$	$2.35{ }^{\circ}$	2：36	$2.36 \frac{1}{6}$	2．37	$2^{\circ} 3{ }^{\circ}{ }^{\circ}$	2：392
	400	2：40									

	METH		KEEP	ING	RANSit ing
Station	Description	Deflection	Total	Calculated	Magnetic
		$s^{\circ} 5 t^{\text {a }}$	$44^{\circ} 48^{\prime}$	N. $10^{\circ} 02^{\prime \prime} \mathrm{m}$	N10.00W
138土43	E.C.	${ }^{\circ} \mathrm{s}$ it	$35^{\circ} 56^{\prime} \frac{1}{2}$		
$138+00$		$200{ }^{\circ}$	$35^{\circ} 05^{\circ}$		
-132+00		2.00^{\prime}	$33^{\circ} 05^{\prime}$		
$135+00$		$20^{\circ} 0^{\prime}$	$31{ }^{\circ} \mathrm{O} 5^{\circ}$		
-135+00		$20^{\prime} 0^{\prime}$	$29^{\circ} 05^{\prime}$		
		$9{ }^{\circ} \mathrm{x} 2 \mathrm{c}^{\circ}$	$27^{\circ} 05^{\circ}$	N. $27^{\circ} 45^{\circ} \mathrm{M}$	N. $27^{\circ} 45$
-134+00		200	$17{ }^{\circ} \times 28$		
-133+00		200	$15^{\circ} \mathrm{3} 2 \%^{\circ}$		
-132+00		20°	13'32\%		
- $131+00$		$2^{\circ} 00^{\circ}$	$11{ }^{\circ} 32 \%$		
-130z00.		(c) 32%	$9^{\circ} 32{ }^{\circ}$		
	$36^{\circ} 48^{\prime}$	2.37\%	-00	N. $46^{\circ} 50 \mathrm{~mm}$	N.46\% $45^{\circ} \mathrm{W}$
$-129+23$	A.C. $4^{\circ} \mathrm{R}$	$2^{\circ} 15^{\circ}$	$5^{\circ} 22 / 2$		
-129+00		1.51	$4^{\circ} 5812$		
-128.00		$0 \cdot 21$	3.28\%		
		$1 \cdot 30$	3.07\%	N. $510^{\circ} 42 \mathrm{~m}$	N. $51{ }^{\circ} 45^{\circ}$
-122 +73	$2 \cdot 30 \mathrm{C}$	1-07t	$1 \cdot 37 \%$		
- $122+00$		$0 \cdot 29$	$0^{\circ} 59{ }^{\circ}$		
		$\bigcirc \cdot 20$	$0^{\circ} 30^{\circ}$	4. 54.20 m	14.54. $15 . \mathrm{m}$
- 126 +23	$1 \cdot \mathrm{c}$	$0^{\circ} 10$	$0^{\circ} 10^{\circ}$		
$\underline{126+00}$		$0^{\circ} 06$	$0 \cdot 0{ }^{\circ}$		
-125.23	A.s.				
				N.54'so'm	N54*45

NOTES

-

les per hi

