PAGES

MISSING

Canadian Architect and Bullder.

VOL. VII.-No. $10 . \quad$ OCTOBER, $1894 \quad\left\{\begin{array}{l}\text { PRICE 20 CEN1S } \\ \$ 22.00 \text { PER YEAR. }\end{array}\right.$

Canadian Architect and Builder, A Monthly Journal of Modern Constructive Methods.
(With a Weekly Intermediate Edition-The Canadian Contract Record).
published on the third thursday in each month in the interest of
ARCHITECTS, CIVIL AND SANITARY ENGINEERS, PLUMBERS, DECORATORS, BUILDERS, CONTRACTORS, AND MANUFACTURERS OF AND DEALERS IN BUILDING MATERIALS AND APPLIANCES.

C. H. MORTIMER, Publisher,

Confederation Life Building,
TORONTO, CANADA.
Telephone 2362.
Branch Office: New York Life Insurance Building, Montreal. Bell Telephone 2299.

ONTARIO ASSOCIATION OF ARCHITECTS.
OFFICERS FOR 1894.
PRESIDENT
IST VICE-PRESIDENT
2ND VICE-PRESIDENT

REGISTRAR AND LIBRARIAN :
W, A. LANGTON
Canada Life Buildıng, Toronto.
PROVINCE OF QUEBEC ASSOCIATION OF ARCHITECTS.

OFFICERS FOR 1895.

President ist Vice-President 2ND Vice-President Secretary Treasurer

Chas. Baillairge, Quebec. A. C. Hutchison, Montreal, A. T. Taylor, Montreal. A. T. Taylor, Mont
J. Venne, Montreal.

Joseph Perrault, Montreal.
COUNCIL:

A. F. DUnlop				
Montreal.				
J. Nelson				
Montreal.				

Auditors-L. Z. Resther, W. McLea Walbank.

TORONTO BUILDERS' EXCHANGE.

BOARD OF DIRECTORS :
Wm. Pears, President,
Wm. Park, ist Vice-President.
Geo. Oakley, and Vice-President.
Dayid Williams, Treasurer.
John Aldridge.
Jas. Crang.

Fred, Wakefield.
WM. Bоотн.
Jas. Isaac.
H. Lucas.

Jas. Thomson
H. Martin.
H. Martin.

John L. Phillips, Secretary

For the benefit of Advertisers, a copy of this journal is mailed each week to persons mentioned in the CONTRACT RECORD'S reports as intending to build, with a request to consult our advertisement pages and write advertisers for material, machinery, etc.

Recent tests at the School of Practical Science, Toronto, of samples of porous terra cotta brick of ordinary red brick size, for use as interior linings of brick and stone walls, are said to have demonstrated the fact that these bricks have an average ultimate crushing strength of 12 tons per foot, and that a 6 -inch arching is sufficiently heavy for ordinary office building construction.

In the present number is printed the first of a series of articles which will appear regularly in succeeding issues of the ArCHITECT AND BUILDER, over the nom de plume of "The Bystander." These articles will be written in the form of notes by a member of the staff of this Journal, and will treat of architectural and kindred matters of current interest. The publisher will appreclate any information which friends of the Architect and Builder may place at "Bystander's" disposal, and which would assist him to give interest and value to his department.

In our illustration pages will be found portraits of all but two or three of the officers of the British Columbia Institute of Architects. We regret our inability to include in this group portraits of all the officers of the Institute, owing to the failure of some to respond to repeated requests for photographs. After delaying publication for several months in the hope of being able to complete the group, we have been obliged to present it in the somewhat unsatisfactory form in which it appears in this number. Friday, the 2nd of November, has been fixed as the date on which the annual meeting of the Institute will be held in the City of New Westminster. We hope to be able to print in our November number an account of the proceedings.

The citizens of Montreal are considering whether or not they will hold an Ice Carnival during the coming winter. To those who favor such a project we would say, don't do it. No doubt the festivities of these Carnivals are pleasing to many and attract a large number of visitors to the city, but the advertising usually done for the occasion is of a kind calculated to do Canada more harm than good. It is unfortunately true, that outside of this country the opinion of the majority of people is that we are entitled by climate to the exclusive use of all emblems suggestive of cold weather. This is not more true of Canada than of many other countries. In proof of this statement we can point to the variety of crops that are produced here, including all fruits grown outside of the tropics. There is a habit, altogether too prevalent among our people, of representing life in Canada, or thoughtlessly allowing it to be represented, as if the distinguishing characteristic of the climate were extreme cold with almost perpetual snow and ice. We are all familiar with such representations in many Canadian pictures. We wish to protest against such a setting for Canadian works of art, whether in print, on canvas or in more enduring forms, and would like to see our people and artists in every line co-operating to correct the wrong impressions, which, as stated, are already too widespread. Our aim should be to show Canada to the best possible advantage at every opportunity.

The voters of Chicago are to decide next month whether or not they will erect a new City Hall and Court House at a cost of about five millions of dollars. It is proposed to remove the present Municipal and County buildings which were completed eighteen years ago at a cost of three and a half million dollars or so, and rebuild on the same ground. All the world knows that Chicago has had a marvellous growth within the last eighteen years, but it is not for this reason alone that a new City Hall is wanted. The buildings to be removed have been undergoing repairs alnıst constantly since completion. The manner in which the Corporation is setting about the proposed new work is likely to result in another gigantic failure so far as securing the best possible design and economy in the expenditures are concerned. Advertisements are out for a farce com petition which will probably secure one set of plans and one estimate, duplicates of plans which, it is understood, the com mittee in charge alleady have in their possession and intend to use. The great need in the erection of large public buildings here or anywhere else, is honest competition for architects and contractors, and no effort should be spared to bring about these conditions.

ONE of the principal features of the annual convention of the Province of Quebec Association of Architects this year, was the exhibition of architectural drawings in the galleries of the Montreal Art Association. We are pleased to notice that in addition to the large exhibit of the work of local architects, a considerable number of drawings were contributed by members of the Ontario Association of Architects. The exhibition was attended by a large number of leading citizens, and cannot fail to serve a useful purpose in arousing public interest in the work of the profession and in architectural matters generally. This is one of the objects which the O.A.A. at its last meeting proposed to attain by means of a series of public lectures. It might not be out of place for us to suggest to the O. A. A. the advisability of undertaking an enterprise similar to the one which has been so successtully carried out in Montreal. No doubt the authors of many of the drawings which were exhibited at Montreal, would consent to have them come to Toronto. It is several years since anything in the line of a public exhibition of architectural drawings was attempted here, and there consequently exists the better opportunity for a successful effort in this direction. Reverting to the Montreal meeting, it is to be regretted that there were not more papers, and that the opportunity for a profitable discussion on the two excellent papers presented by Messrs. Baillairgé and Taylor, was not taken advantage of.

A NEW organization was formed in New York last month to be known as "The Employers' and Builders' League." The purpose of its formation is that by careful, conservative action, the interests of owners, contractors and journeymen may be, conserved ; also that by arbitration and discussion all necessity for strikes, lock-outs, liens and disputes may be avoided. One provision in the constitution of the league in favor of workmen is as follows : "The (directors) may nominate, appoint and remove when expedient, four journeymen in each craft, who shall be representative conservative men, to be known as master stewards, and these men shall be the recognized medium of communication between the Board of Directors and the journeymen." The organization is purely defensive, with the object of securing fair play for employers and employees. Union or non-union men will all be treated alike. A strong provision in favor of employees 1s, that every man will have a guarantee from the organization that he will get his wages. The membership roll includes fifty eight employers and every branch of the building trades. We do not understand just why the objects sought for could not have been as well promoted by and through the New York Exchange of the National Builders' Association, but the fact that another organization was considered necessary by a large number of the most prominent New York builders convinces us that the field for its usefulness is plain and raises the question again, why should not Canadian contractors be more generally and thoroughly organized? It would be simply absund to say that the conditions are so different with us that contractors do not need to work for each others' interests on the lines that are followed elsewhere. The conditions are not likely to be just the same in different large cities or in different parts of the country,
more or less remote from each other, but as between Canada and the United States the situation will average very much alike. We firmly believe as much good can be accomplished in Canada for contractors and builders through better organization, as in any other country. It is not our purpose in this connection to set out in detail our reasons for this opinion. We have had occasion to refer to some of them in former issues and will probably do so again in the future. We would be glad to assist by all possible means in promoting a greater interest in this question among contractors, and should they provide a suitable opportunity, will endeavor to point out some methods which could be adopted with benefit to all parties interested.
The statue of Sir John Macdonald, which
the Queen's Park on Saturday, variously estimal ${ }^{2}$ I 3 th inst., before an assemblage, appropriate ceremonies 15,000 to 18,000 people, and with Hamilton McConies and speech-making, is the work of Mr. Canadian sculptor. The C. A., the well-known and talented opposite the Ouer, The site selected for the statue, directly tive Buildings, could hardly and in front of the Ontario Legislaable for a purpose of therdly have been more prominent or favormade, that the position is so. The criticism, indeed, has been been held for a sotation is so exceptional that it ought to have tor is spoken of in kindly and Majesty. The work of the sculpcapable of judging ond $\begin{gathered}\text { and } \\ \text { complimentary terms by those }\end{gathered}$ marked advance on the stistic merits, and it is undoubtedly a the hands of Mr. McCarthy. The Egerton Ryerson, also from Canadian artist, McCarthy. The statue itself, the work of a duction. The granite was pedestal entirely a Canadian proand was shipped to this city in its rough in Province of Quebec cutting, polishing, and the whits rough state. The designing, city by D. McIntosh \& Sons. These was done in this naturally suggest a reference to the excellentiling ceremonies column, "Notes on Some Aspects of the City paper in another Mr. A. T. Taylor, and which was read before of the Future," by ciation of Architects at the was read before the Quebec Assosuggestion of this paper is that the this month. The particular our larger communities, the the time has arrived, when, in all mittee, which will contiture ought to be in existence a comtribunal, who will decide institute a special artistic authority or ments, statues, and the in the matter of selection of our monupublic squares, embellishment generally of our streets, intellig squares, etc. Mr. Taylor pertinently remarks: "How doctors on matters of consult lawyers on all legal questions, hydraulics and machinery, but on matters matters of drainage, they are quite capable of judging for thers of art and taste think inittee, it is to be expected, would ber themselves". Such a comexperts in artistic pursuit, would be composed of men who were in existence in pursuits Were a committee of this character future generations wouldies of Canada, as well as elsewhere, planation why this would not be called upon to ask for an exlocating a citizens' manner of designing some public building, had been done with park, or placing some statue or monument, thought andob with so little regard to esthetic and artistic of money wasted ination. In how many cities are large amounts had been imsted in undoing, in the line of public work, what question has pocket, even an economic bearing that must touch the language of the phreno the artistic organs, to employ the The suggestion, as as a scheme of the kin. Taylor has pointed out, is not chimericai, has also a municipind is in operation in Boston, and New York object of providing art society "established with the express for public buildings and parks" $"$ tural and pictorial decorations used that in the newer cities parks." The argument is sometimes utilitarian a basis to permit of the affairs are conducted on too Those in the newer citimit of thought in artistic directions. communities, might well profiting by the experience of older ner, and if no other avoid the mistakes made in this manabundance of force, as has alre will move the people there is economic and financial bearings of the question

Sandpaper is at present made

sand. Glass is readily pulverized with powdered glass instead of throwing it into water, pulverized by heating it red hot and mortar.

MR. CHARLES BAILLAIRGÉ

WE have pleasure in presenting to the readers of the ARCHITECT AND BUILDER the accompanying portrait of Mr. Charles Baillairgè, the newly-elected President of the Province of Quebec Association of Architects. Mr. Baillairgé was born in the city of Quebec, on the 27th of Sept., 1826, and received his early education at the Quebec Seminary. Subsequently he engaged in the study of surveying, architecture and engineering. Many of the principal churches and other public buldings in the city and province of Quebec were erected from his designs. In 1866 Mr. Baillairgé was appointed City Engineer of Quebec, a position which he still holds. He has found time in the midst of a life of unusual activity to contribute to the technical societies and the technical press of this and other countries a number of valuable papers on a variety of subjects. He is likewise the author of several books.

We are pleased to observe that Mr . Baillairgé is keepıng in view the important subject of the proper education of the rising generation of architects, and we hope to see some definite action taken during his term of office in the direction of providing the means of imparting to students the knowledge without which they cannot properly rank as architects.

MEASURING AIR.

Speaking of the work of the Massachusetts State inspectors of public buildings, the Boston Journal of Commerce says that, in inspecting the means of ventilation in a school house, great care is taken by the inspectors to secure all the data for an accurate and intelligent report. The barometric pressure, temperature, and relative humidity of the outside air are first taken, together with the force and direction of the wind. The location of the building as to points of the compass, the position and direction of the freshair ducts, and location of the inlets and outlets in the rooms, are also noted. Upon entering the room to be examined, thermometers are placed in various positions, on the. inlets and outlets, at the teacher's desk, at the breathing line and floor among the pupils, and near the outer door.

Careful measurements are then made of the volume of air supplied to and removed from the room by the ventilating apparatus. These measurements are made by taking the velocity in feet per minute of the air at the inlet or outlet by a standard anemometer, and then multiplying this velocity by the average working area of the opening in square feet.

For example: The inlets and outlets are usually covered by wire gratings or by ordinary register facings, which obstruct, to some extent, the flow of air, and it is seldom the case that the air is found to be flowing alike through all parts of the opening.
Proper corrections being made for these variations, and for the running of the anemometer, a very close approximation to the actual volume of air passing through may be obtained.
After keeping the doors and windows of the room closed for one hour, a test is made to ascertain the amount of carbonic acid in the air, the amount of this gas present being considered as a fair index of the other and more dangerous impurities in the air of the school room.
This test, unless great accuracy is desired, is usually made with an instrument invented by Professor Wolpert, and called, for him, a Wolpert air-tester. This instrument is very simple, consisting only of a glass test tube, on the bottom of which is a black mark, an inner tube of glass, and a rubber bulb, all of a specified size, and a stand in which to hold the tube.
The test tube is filled to a certain height-marked on the tube -with lime water, and by means of the inner tube and bulb air

Mr. Chas. Baillatrgé.
President Province of Quebec Association of Architects.
from the room is passed through the water until, by the formation in it of carbonate of lime, the water is rendered so opaque that the black mark or spot cannot be seen.

A table, furnished by the inventor, shows by the number of times the bulk has been filled how many parts of carbonic there are in 10,000 paits of air.

There are various sources of error, both in the measurement of the volume of air and in determining the amount of carbonic acid, which have to be carefully guarded against by the inspector.

This has been so well done in testing the air that in a large number of tests made with a Wolpert tester at the same time that samples of air were taken for chemical analysis, the average difference between the amount given by analysis and by the Wolpert test was only 67-100 of one part in 10,000.

Tests to show the circulation of the air through the room are also made, usually by means of gunpowder smoke.

The report of the inspector, when complete, gives, in addition to the outside conditions already noted, the volume and temperature of air supplied and removed, the temperature of the room, the relative humidity of the air, the amount of carbonic acid found in it, and the results of the tests for circulation.

For determining the barometric pressure, relative humidity, and temperature, and also for measuring the flow of air into and out of the room, the very best and most accurate instruments to be procured are furnished to the inspectors by the State.

These gentlemen by long practice and habits of close observation have become very expert in the use of the apparatus employed in testing air supplies to school houses and other buildings, and they are also equally expert in regard to methods and systems of heating and ventilation, their wide experience placing their knowledge and judgment in such matters far above those of men of limited experience in such matters, or mere theorists.

PERSONAL.

The death is announced of Mr. John E. Turnbull, Inspector of government Buildings, in the maritime provinces. Mr. Turnbull was a native of St. John, N. B., and lived in that locality the greater part of his life. He established the first planing mill in New Brunswick. He had reached the advanced age of 76 years.

The marriage is announced on the 18th September, at Rusholme Congregational church, Manchester, England, of Mr. J. C. B. Horwood, architect, Toronto, Ont., to Mary Ethel, eldest daughter of Mr. John Jones, Manchester. The Canadian Architect and Builder would express the hope that, to Mr. Horwood and his bride the perspective of life may never appear less pleasing than at present.

In connection with the mention made in the Architect and BUILDFR for September of the materials which are being employed in the erection of the new Union Depot at Toronto, it should have been stated that Don Valley pressed bricks and terra cotta manufactured by Messrs. Taylor Bros., of Toronto, are being used in the building.
THE test of steam-pipe coverıngs, says Heating and Ventilating, leads to the conclusion that it costs $\$ 15.48$ to run one hundred of naked twoinch pipe at from 70 to 80 pounds pressure for one year of 3,000 working hours, with coal at $\$ 2$ per ton. With the least efficient of the coverings used in the test, this loss could be reduced to $\$ 4$, with t he most efficient to $\$ 2.64$. Siriking as are these figures they are probably beefficient to $\$ 2.04$. more than ten hours a day, and $\$ 2$ per ton is below the average cost of coal. Prof. Charles B. Gibson, in some tests made for the Manufaccoal. 'Prof. Core Insurance Company some years since, reached the conclusion that with coal at $\$ 4$ per ton and 3.000 working hours per year, the loss from a naked two-inch pipe was $641 / 2$ cents per linear font, conthe loss from and siderably more the estimates shows the imcoal at $\$ 4$ per ton. However, the lowest ood thing to attend to before portance of covering the pipes and it is a good
the present loss is increased by the coming cold weather.

THE BYSTANDER.
THE interest manifested by Canadian architects in the suggestion to throw open to competition designs for our national buildings, shows that many among the profession have been thinking along the same lines as Mr. G. F. Stalker, of Ottawa, in his article in these columns last month. The Bystander has talked with a number of architects recently, and they have been, without exception, of one mind on this question. The only point on which any seemed desirous of being guarded in their expressions was in their references to the present government architect, of whom all spoke in the highest terms. On this point, it was clearly shown how the force of agitation for a desirable reform may sometimes be broken by the faithfulness and ability of a public official, just as agitation for some reforms have their inception in the incapacity of an officer, where, perhaps, the system itself may not be faulty. As President Burke, of the Ontario Association of Architects, said to the Bystander, "There is a wide difference between the gentleman at the head of this department of the public service in the Dominion, and Supervising Architect O'Rourke, of the Treasury Department of the United States." "But then," continued Mr. Burke, "the principle involved in the suggested change is the same, whether in Great Britain, the United States, or Canada. And loyalty to the most efficient public servant ought never to be allowed to stand in the way of attaining that which principle establishes as right, and experience has shown is wise. In Great Britain the practice of giving the profession generally an opportunity to exercise their talents in designing for public buildings has proven an undoubted gain to the mother land, financially, and also from a strictly professional point of view, in securing a better class of buildings in every respect."

Other architects with whom the Bystander talked were just as definite in their statements as the President of the Architects' Association. If the subject is to be discussed from a public standpoint, there can be little question that the change is imperatively needed, and no doubt this fact has had much to do in securing the passing of the United States bill, a very clear outline of which was given by Mr . Stalker in the article published in last month's Architect and Builder. En passant, it may be remarked, that the estrangement of opinion between Secretary of The Treasury Carlisle and Supervising Architect O'Rourke has at last culminated in the head of the Treasury Department summarily removing Mr. O'Rourke, and the Architects' Bill, it may be generally conceded, has now, practically, become law. Mr. Glenn Brown, who entered into the question of architects' charges, exhaustively, in the American Architect and Building News of some few months since, comparing cost of construction of many buildings as under the supervision of the government architect, or when in private hands, has presented a case, which in point of financial cost, seems wholly unanswerable. The Bystander does not intend to burden his comments with any large quotation from Mr. Brown's article, but it is to be remarked, that when we find a building, erected under the supervision of a government architect, as was the case with the Custom House and Post Office at Albany, N. Y., costing $\$ 8 \mathrm{II}, 204$, or 102.8 c . per cubic ft . to construct, and requiring II years for completion, and we place alongside of this a building erected at Kansas City for the New York Life Insurance Co., the work under the supervision of a private architect, and this costing $\$ 950,265$, or 38 c . per cubic ft., and completed in two years, whatever may be the opinion among professional men, the conditions are of a character to set ordinary citizens thinking. This case is only one out of many cited by Mr. Brown in his carefully tabulated statement. Mr. Burke was asked, how so wide a difference in cost was to be explained. Was it a case of the government architect drawing a fat salary ? "It is not here the trouble rests," said Mr. Burke. "In fact, compared with the responsibilities of the office and the class of work performed, Mr. O'Rourke was in receipt of a meagre salary. The trouble is in the amount of routine about the busi-ness-the curse too often of all public work. There is a whole regiment of employees, civil service officers, connected with the department, and they do their work in a perfunctory manner that is never known in business circles, but that is indigenous to officialdom. Here is where the cost comes in. Push and energy are unknown, and the work is allowed
to drag along without much regard to the time actually consumed."
$\times \times \times \times$
The strongest argument in favor of a change in system, as seen by architects, was the advantage to be gained in the character and style of the buildings to be erected, if thrown open to competition. "It matters little how competent may be the government architect," remarked Mr. Langley, "he is bound to get into a rut, when the work is left continuously in his hands from year to year." A similar thought was given expression to by Mr. Siddall, of Siddall \& Baker. "No man," said he, "can give freshness to his work when he is burdened with all the details of management, as must be the case with anyone holding the position of government architect. There is a want of incentive for such an officer to keep in close touch with the advances that are being made in architectural and building lines. "The Bystander was reminded in this connection of a protest he had heard against uniformity in building in general, when this policy is pursued, as it sometimes has been pursued, by communities "Never lapse into deadly dullness, the modern classic monotony of later Spain." Perhaps it is that arguments of some force can be advanced against any change in the present system, so far at least as Canada is concerned, but the Bystander has so far failed to learn of any of these as he has talked over the matter with those active in the profession. The strength of experience is always worth much, and the fact that the system of public competition has worked so admirably in the public interest in Great Britain, as well as having given strength and encouragement to all interested in architectural pursuits, is to many minds sufficient argument to influence the various Canadian architectural associations to take steps to secure legislation along the same lines. In doing this they would only be following in the circle, along with the mother land, and their neighbors to the south.

Board, of Lond dosigns were asked for by Free Library library purposen, Ont., for the erection of a new building for and purposes in the Forest City. A statement of specifications and particulars was sent out to those architects who desired to compete, and about 20 architects, it is said, in different parts of the province, sent in designs. Within the past month the award was made and to the surprise of those who had adhered strictly, as they believed in honesty they ought to have done, to the requirements set forth in the specifications, they learned that the Free Library Board had accepted the plans of an architect in Brooklyn, N. Y., whose drawings, it is alleged, were not in accordance with the specifications. The parly who has been suc cessful in the competition was a former resident of London. It has been stated, now that his plans for the London building have been accepted, that he will return again to Canada. Just how far this is the case, however, the Bystander is not prepared to say, and whether any significance is to be attached to the fact that the award was given to an "Old London Boy" is a matter that the people will decide according to the various ways of measuring up a transaction of this character.
$\times \times \times \times$
of the profess of the Bystander was in ascertaining the feelings who weression in a case of this kınd. Messrs. Siddall \& Baker, members of the aggrieved parties, were seen, and both London of the firm were very indignant over the action of the signed, had been. They said a protest which they and others had would com forwarded to the Board, but whether any good Mr. Baker it ought to only would tell. In the opinion of against cond ought to be the duty of every architect to protest asking for plans on certain "What is the use," said he, " of deviate from these conditione if others are to be permitted to little more for their clients and undertake to secure, perhaps a continuation of this practice as a step to secure the award. A immoral methods in must inevitably lead to corrupt and this kind of thing in othpeting for work. We have enough of character of the other walks of life, and if the dignity and should act as one man, moression is to be maintained, we kind, but as one man, not alone, in denouncing conduct of the sible, its recurrence in inimously take steps to prevent, if poshad also enterede in other ways." Mr. Beaumont Jarvis, who ter. He had signed the protest that was being the mat-

with Mr. Baker he agreed that the subject was one that might fairly enlist important consideration from the architects of the country.
$\times \times \times \times$
The Bystander was amused by the rejoinder made to his enquiry by another well-known architect. This gentleman said : "I do not know anything about the London competition. Our firm certainly did not enter the competition, and have not been asked to sign any petition objecting to the award. But these people who have found themselves disappointed ought never to have entered the competition. They ought to have known better than to have expected anything like fair dealing in these competitions. We have long since refused to endeavor to secure business in this manner, having learned from our experience that the man who has the biggest pull on interested parties, or who has become an adept in wire pulling, is usually the one who 'gets there.' We are out of that kind of business." The argument was one, that seemed to give force to the contention of Mr. Siddall, that it was time for architects to unite in an effort to remedy so rank an evil. But when taking steps to remove the mote out of their neighbor's eye, what about the beam that may be in their own? The Bystander has bad this question suggested to him through a remark made by a builder a few days ago: "I never think of tendering for work in the hands of Mr . So-and-So, naming a certain local architect, for my experience has been that his office is a close corporation, and tenders for buildings of which he has control never go outside of a certain favored circle." Surely it cannot be that the architects of Canada will allow themselves to be tainted in any way with the spirit, and indeed the practice, of corruption, that seems to float about the air these days as do the bacilli of so many diseases that attack the physical man.

$$
\times \times \times \times
$$

The death on the 7th October, at his home, Beverley, Mass., of Oliver Wendell Holmes, the genial and clever author of the Autocrat of the Breakfast-Table, reminds one of a remark of the dead "Autocrat," when urging people who have information to impart of service to their fellowmen, "to set their thought-sprinklers to work." The Bystander in his journalistic experience has found it one of the hardest things possible to get men-ladies are excepted of course-to tell what they know to others. Every newspaper editor realizes how difficult it is to get men, well informed and with the ability to do the work, to put their pen to paper and to impart from out of their knowledge information of benefit to their fellowmen. It is sometimes almost as difficult to get some people to talk about what they know. They are as mum as an oyster, keeping their thoughts hermetically sealed. The Bystander has no brief from the editor of the Canadian Architect and Builder to quietly probe this journal's readers and ask them to be a little more generous in their discussion of matters of interest to others in the same line of business, but he is quite sure, if the editor is like other editors, that he will appreciate the setting to work of the "thoughtsprinklers" of his readers. The Bystander, as he meets with the architects and builders of the country from time to time, will be glad to have them turn the faucet on occasionally and keep him posted in what is uppermost in trade matters.

PUBLICATIONS.

The Rathbun Co., of Deseronto, are sending out a handsome catalogue relating to their porous terra cotta for fire-proofing purposes, with illustrations of the material and numerous public buildings in the erection of which it has been employed.

In the October number of the Engineering Magazine appears a new and very valuable feature in the form of a "Review of the Industrial Press," with an index to all the leading articles published currently in the technical Journals of the United States and Great Britain. The readers of the Magazine are not only made acquainted with the most important matter appearing each month in the technical Journals, but they can be supplied through the publishers with copies of any articles which they may desire to possess at a moderate cost.

It seems probable that a new City Hall for the City of Quebec will shortly be commenced. The Council has been authorized to issue debentures to the amount of $\$ 150,000$ for carrying out the project. The site which will probably be chosen is the Jesuit Barracks Square.

Gorrespondenge.

LLetters are invited for this department on subjects relating to the building interLLetters are invited for this departmenications must be accompanied by the name ests. To secure insertho, and necessarily for publication. The publisher will not
and address of the author, not and address of the author, not necessaris forrespondents.]

A CORRECTION.

Owen Sound, ist October, 1894.
Editor Canadian Architect and Builder.
Dear Sir,-We noticed in your September number an item referring to the Owen Sound Portland Cement Co., whose works were destroyed by fire, stating that the company is being re-organized under a new name. We wish to correct this statement, as there is no re-organization, or change in the company's name. We will still continue our business under the name of the Owen Sound Portland Cement Co., Limited. The cement works, which are situated at Shallow Lake, about nine miles west of Owen Sound, are being rebuilt at a large expenditure, and we expect to have our factory in full operation again about the ist of November. Some additions are being made to our machinery, and when completed we will be able to turn out even a better grade of cement than in the past, which was always considered equal to any imported cements. By makıng the above correction, you will much oblige.

Yours truly,
The Owen Sound Portland Cement Co.

A SUGGESTION FOR THE O.A. A.
 Toronto, October 6, 1894.

Editor Canadian Architect and Bullder.
SIR,- Some months ago you mentioned in your paper that the Province of Quebec Association of Architects had opened a reading room and other offices, into which the members could come at any hour of the day or evening, and so on.

Now, what is to hinder the directors of the O. A. A. from doing the same thing. In Montreal the sister association has far more to contend with than we bave here. They have not half the number of members, and they have a serious opposition to face which we have not. At our last convention it was considered advisable to do something "to keep ourselves before the public" and show them that we are an association with a definite aim and object, and not to let ourselves be forgotten or overlooked. Now what did we do ? We gave a lecture-I will not comment upon it-but we gave a lecture in public, one and only one-and that poorly advertised and worse attended, in a neighborhood not usual for public entertainments. I believe that if we had a fair sized room and had it something like the Montrea! arrangement, where we could meet, see each other, discuss common subjects, and have books of reference to study, and so on, and at least a brass plate at the door, the public would know something more about us, and we ourselves could have more interest in our Association. Our management follows a policy of " masterly inactivity." It professes to be doing a great work, but from one year to another, except for a sudden momentary ebuilition, I maintain it does little if any good beyond educat-ing-if it does that-the future architect.

Yours truly,
City Member.

COMPETITIONS.

The Verein zur Beforderung des Gewerbefleisses, of Berlin, is offering a silver medal and a prize of $\$ 750$ for the best paper giving a chemical and physical analysis of the iron paints mostly employed. Very little definite information is known regarding the application, duration, effect, etc., of these paints, and the papers above invited should contain (1) a description and classification of the paints mostly used, based on a chemical analysis. (2) A statement of the materials and mixtures which form the most suitable paints for application to all kinds of iron. All papers are to be sent in by the 15 th of November next.

According to the permit book in the office of the City Engineeer, there have been erected in London, Ont., since the first of the present year, 117 dwellings. Of these 78 are cottages and 39 more pretentious residences. The brick houses erected in the city since New Year's cost upwards of $\$ 118,550$. In ten instances no figures are given with the permit. The cost of frame houses during the same period was $\$ 22,475$, with the prices of four not given. Preparations are under way for the erection of a free library building to cost $\$ 12,000$, while the Y. M. C. A. will erect a $\$ 50,000$ structure.

THE LONDON, ONT., PUBLIC LIBRARY COMPETITION.
Much dissatisfaction has been caused to the majority of the competitors in the above competition by the action of the Board in awarding first position to a design which in a most essential particular does not comply with the instructions issued to all the competitors. A copy of the specified requirements as forwarded to one of the competitors by the Secretary of the Library Board, is as follows :
Messrs.
[Copy.]
London, June 27th, 1894.
Gentlemen :-In reply to yours of June 26 th, would say, Competition is open. We require plan of Basement, showing Lavatory, etc.; plan of Ground Floor ; plan of First Floor ; Front and Side Elevations.

Size of Building, 50×80 feet, of local brick faced with No. 2 pressed bricks.
Basement, size 20×50 feet, 8 feet in the clear of St. Mary's or Credit Valley stone, 8 feet to Ground Floor.

Ground Floor to have Librarian's Room, Reading and Ladies' Toilet Room, wood celling 14 feet high, pine floor and finished in clear pine.
First Story finished in grey plaster with 14 -inch base, no partitions, wall
to be at least 7 feet to plate, maple floor.
Roof to be of slate and at least $1 / 2$ pitch.
Building to be heated with hot air, with gas piping and wiring.
The upper floor to be deafened.
Plan to drawn to scale of 8 feet to inch.
Elevations be building and white,
In case the Building and Heating Apparatus cannot be erected for $\$ \mathbf{1 2}$,000 (twelve thousand dollars), the Committee will not pledge themselves to pay any commission
The successful competitor to receive $\$ 600$. The man whose plans are accepted to furnish plans, specifications, and superintend the erection of the
Building. Building.
Plans to be in by July 3 rd.
Yours truly, (Sgd.) C. E. Keene, Sec

The Canadian Architect and Builder has also received from a well-known firm of architects the following letter on this subject :

Editor Canadian Architect and Builder

Sir,-The united protest from all the architects who entered the London, Ont., Free Library competition and were so meanly chated by the Library Board, forms but another link in the chain of circumstances adverse to the straightforward practice ceivabression of architecture in Canada. It seems inconshould have so little respect for justich a position of public trust, should have so little respect for justice and fairdealing as to permit structing competitompetition, formulated for the purpose of ining, to be utterly disregarded in was required in the proposed buildWho would dare to assert in one of its most important clauses. petitors to a certain assert that it is right to limit all the competitors to a certain clearly defined portion of the lot on which design whing is to stand, and at the same time accept the only design which covers nearly the whole of the two sides of the lotsite? There is something wrong rectify such an injustice, althoug when no steps are taken to was at once called to the matter the attention of the Board The competition to matter.
that the design which best met then the district understanding library, would be adopted, met the requirements of a free public and reasonable condopted, providing it complied with the proper no sane person would expect the Board and of the site. Surely, no sane person would expect reputable architects to devote their understane elaborate designing of a building, upon the loose the competition that the instructions given did not form part of

Scale of Diagram-2oft. to the inch.

The following protest, in which the fairness of the award is called in question, has been presented to the Library Beard :To the Chairman and Members of the Free Library Board, London, Ont. Gentlemen :-We, the undersigned architects, having submitted designs for the proposed Public Free Library, to be erected in London, in accordance with your advertisement of June 1St, 1894, and the conditions furbeg to protest against for our guidance in preparing the same, respectfully beg to protest against the acceptance of a design which is not in accordance with those conditions
We were instructed to make the size of the building 50 feet by 80 feet, and all our designs were made to comply with that reasonable and feasible your instructions, has been awarded which totally ignored that portion of your instructions, has been awarded first place, notwithstanding the fact We, therefore res of one hundred feet by about sixty feet.
our advertisement, into the beg to submit that we have all been led, by in justice to us, you should reconsider your much time and money, and that date, and that the award reconsider your decision, at the earliest possible date, and that the award should be made to the best design conforming to
your conditions.

We have the
We have the honor to be, Gentlemen,
$\begin{array}{llll}\text { Respectfuily yours, } \\ \text { (Sgd.) T. A. Moore. } & \text { (Sgd.) Siddall \& BAKER. } \\ \text { (Sgd.) MCBRIDE \& FARNCOMBE. } & \text { (Sgd.) BEAUMONT JARVIS, } \\ \text { (Sgd.) M. L. BuFFY. } & \text { (Sgd.) MOORE \& HENRY, }\end{array}$
(Sgd.) George R. Harper, Toronto,
would do, if it did not exceed the specified cost, nor, if it did ex ceed the cost in this case, would it have mattered much? Pro-
bably not.

We believe there was an effort made to have the rules of the Ontario Association of Architects, for the have the rules of the tions adopted, but without success the advisability of appointing props. The Board did consider cide as to the best design, but this sensib qualified persons to deThe result is, the adoption of a design which idea was not adopted. fied person would have been in duty bounch any properly qualithe small expense of employing duty bound to reject. Probably cause of its not being done. It remains to assistance was the have or have not lost more by the course seen whether they twentieth century is near, and it is high course adopted. The tects should demand the discontinuance that qualified archiFrom the personnel of the Board in this case, this sort of thing. considerations of justice to occupy a prominent one would expect has been a wrong done, unwittingly a prominent place. But there but none the less a wrong, and common jubt, in the first place, to them that the least they can common justice should sugge,

ILLUSTRATIONS

COMPETITIVE DESIGN FOR THE PROTESTANT ORPHAN ASYLUM, COTE DES NEIGES ROAD, MONTREAL. IAMES R. RHIND, ARCHITECT.
The sum allowed, viz., $\$ 30,000$ was small for the accommodation called for, the design therefore had to be made very plain and inexpensive. But an endeavor is made to give a good outline by the grouping of gables and chimneys and the central "fleche" for ventilation.
RESIDENCE FOR MRS. MCNALIY, weston, ont.-J. A. ELLis, ARCHITECT, TORONTO.
The house is built of brown stone and red bricks, slate roof, with a complete system of plumbing, heated with hot water.
"MAPLEHURST," the residence of Dr. Charlton, weston, ONT.-J. A. ELLIS, ARCHITECT, TORONTO.
In the constiuction of this house, there has been employed Credit Valley brown stone, and Carlton brick, slate roof, modern plumbing, hot water beating. The house, which occupies a prominent site, contains a converiently arranged suite of offices.

HOUSES FOR DR. CAMPBELL, MONTREAL.-DUNLOP \&
HERIOT, ARCHITECTS.
PORTRAITS OF OFFICERS OF THE BRITISH COLUMBIA institute of architects.

STAINING WOOD.

THIS is a subject few writers in the magazines have touched upon, writes James Marks in Painting and Decorating. It is not so well understood as priming or painting; it requires a knowledge of wood, its nature and the beauty that a stain is to bring out, or at least not mar or destroy. All woods bave a transparent look, or what may be termed reflection; they change as light strikes them. Look at a varnished door of hard wood in one light, the cross stiles will look darker than the upright stiles. light, the cross stiles will change the light, and the reverse will appear. Examine a panel of bird's eye maple, or any curled wood, it will change as the light is reflected on it. This is the bead, that no grainer has ever been able to imitate.

To stain wood and keep this reflecting power or change of appearance, is or should be the object. It has been done, it can be done, but it very seldom is done. The conditions are against its being done on the ordinary work that is met with in our every-day experience. The first thing necessary is the wood itself; it must be clear, and free from sap, soft places and knots. Mill dressed lumber should be finished off with a sharp smoothing plane. No sandpaper should be used on the work; all ends of plane. No sandpaper should be used on the worta so as not to mortices should be carefully sized, before staining, so as n. No appear dark, by the extra quantity of stain they absorb. No lime or plaster should touch the woodwork, or a dark stain will be the result.
Let us varnish a prece of wondwork of this description, say white pine, with three coats of light hard oil finish, or, better, a good No. I coach varnish, and all the beauty of the wood is to be seen. Nothing is marred, nothing hid. Next let us stain and varnish, and the chances are that the fine, satin-like reflection is gone. There is something in the stain that mars the fine transparent reflection which is the beauty of all natural wood finish. The grain may be left, and even be brought out more prominently by an inferior stain ; but this is not or should not be the object sought for, for if the reflection which changes is destroyed with a filler or a stain, then it should not be used.
The average painter concludes that a coat of thin color that produces the desired tint is a stain, and will, and does, in a number of instances, meet the requirements of a stain best, but this is not a proper stain. No coating of any pigment, no matter how finely prepared, or how applied, in oil or distemper, can be applied to wood as a stain without destroying the real beauty of the wood, the reflection.

It is the natural tendency of all woods to darken under varnish or polish; how this is cannot be readily accounted for, except it be the action of light on the wood shining through the varnish or polish, either of which excludes air ; but when they darken in this way it is always with a change of This can be observed in of the wood in its native or new state. This can of old with a old oak furniture or mahogany, both of which grow ould be imitbeautiful transparent richness, the color of which should be imitated if possible.

Let me give an illustration: I have a strip of ash or light oak, the grain of which is as near to walnut as possible. This strip is to be stained the color of the walnut, and the reflection is not to be destroyed. The stain that will accomplish this is a proper stain and none other.

Staining has taken the place of graining, and while, on account of cheapness, it may be a substitute, so far as the average job is concerned, that is produced with a coat of stain and filler combined, or color stained, it has neither the beauty nor appearance of an average job of graining, and will not until woodwork is properly prepared and staining is properly done; then be assured it may compete with graining, but it will certainly cost more money. There must be a new idea formed, and a more correct one, of what is needed, and the makers of stains and fillers must be required to produce a stain that will do the work in a proper manner, under skillful workmen, and not adyance claims for their gogds that cannot be accomplished,

Students' Department.

ADVICE TO A YOUNG ARCHITFCT

THE following characteristic letter was prepared by the late Mr. William Burges, at the desire of a young architect, who consulted him about the worthiest course to follow in the study and practice of architecture :-
"My Dear Sir,-I venture to submit the following considerations to your notice
"You have passed your apprenticeship, done your Academy, and finished the usual Continental tour, and the question now arises as to what you are going to do ?
"If you follow the usual course, you would take an office, hunt up work, and do the same according to your lights, consoling yourself that many architects would do it much worse.
"Of course, there are various sorts of practice, all of which are open to you, and you might become simply a house doctor, or a warehouse architect, or a light and air man, or an architectural policeman (i.e., district surveyor), or a general partitioner ; and it is quite possible to make money by any of these, the amount depending on the extent of the practice, and that again upon the number of fiiends, besides the amount of the importunity and imprudence by which work may be solicited.
imprudence . But reflect are any of these men artists is true that when they die they may have made money, but what else will they leave to the world besides that? Their names are simply written in water.
"Now, it is quite open to you to take to all or any of these lines of practice, to make money, to bring up a family, to become churchwarden and, above all, to be pronounced 'warm' when you leave this world.
" My object in writing these lines is to suggest to you that there is another course open by which you may perhaps be the means of leaving some beautiful things to posterity, and by which your name may possibly survive after you have quitted this life.
"The question arises, 'Why not try to be an artist, an accomplished man, a creator of works of art, and an ornament to your profession?
"You have not the excuse that many have for not making the attempt, as I understand you are in a great measure independent of your profession.
"Why not use that advantage to be something more than an idler on the one hand or a money grubber on the othel ?
"Try at least for a couple of years. They will not be lost years, even should you eventually not take up the artistic branch of your profession ; for you will to a certain degree have educated yourself in the attempt, and you will be so much the better.
"Supposing you decide to try, let us see where you are. You know something of modern construction, enough to enable you to practice without letting your buildings fall. You can draw well, and in an architectural and geometrical manner ; but I know nothing of your perspectives, and your freehand drawing is woolly, and wants precision. Above all, you are very defective in the human figure. (You have, I presume, a fair knowledge of the history of architecture.)
"Now, I should recommend you to employ your next two years in three principal things :foundation of all good taste. I don't mean that you should spend weeks in frizzling up a figure in chalk, for you are not going to be a painter, but that you should learn to draw correctly and know the bones and muscles which go to make up the outline, and, in fact, to be able to account for everything you see.
" 2 . A serious course of reading of the best and well-known authors. This also will conduce to form your taste. Philosophy and science will not help you so much as works of the imagination. Bohn's Library furnishes fair translations of the best authors at 5 s . per volume ; but if the work is a translation, it is desirable to get two or more versions and to compare them together. In the Classics, I should recommend Homer, Aristophanes, Æschylus, Herodotus, Xenephon, Virgil, Horace, Apuleius. Of the moderns, Dante, Cha'ıcer, Shakespere, 'Faust,' 'Robinson Crusoe,' Undine,' and Lane's translation of the 'Arabian Nights.' Of course I could mentton many more, but these are sufficient for the present.
"3. To carefully study and draw various beautiful things; and whether the said thing be a piece of jewellery or a piece of iron work or a building or portion of a building-to do it thoroughly, to find its construction, and why this and that is done, the basis of the ornamentation, the particular form of the curves, and never to leave it until you know all about it. The result will be that the next time you see a similar thing you will know all about it, and won't want to study it again. Do everything by common sense ; don't make a drawing when you can make a rubbing, and regard all your drawing in the light of evidence which is worth next to nothing if it is not authentic.
"I consider you very lucky that you have such an apportunity of having your 'learning tume' over again, and I am quite sure that if you make up your mind to be industrious, your two years
spent in the way I have ventured to suggest will be very happy as well as very useful ones.
"Hoping you are not bored by the above.
"Hoping you are not bored by the above. "W, BURGES."
I remain, yours truly, "W, BU

ANNUAL MEETING OF THE PROVINCE OF QUEBEC ASSOCIATION OF ARCHITECTS.

The Province of Quebec Association of Architects met in annual session on Thursday, October the 4th, at 10.30 a.m., in their rooms in the New York Life Building, Montreal, the President, Mr. J. Nelson, in the chair. Among those present were: Messrs, . Nelson, President; C. Baillairgé, Vice-President; A. C. Hutchison, 2nd Vice-President and Acting Secretary ; J. Z. Resther, Treasurer; A. T. Taylor, E. Mann and J. Venne, Councillors; S. Lesage, A. F. Dunlop, Jos. Perrault, L. Z. Gauthier, H. C. Nelson, V. Roy, J. Z. Resther, F. X. Berlinguet, G. A. Monette, T. Danust, M. Perrault, W. E. Doran, W. McLea Walbank, G. W. Wood, A. H. Lapierre, J. R. Gardıner, A. Boileaú, etc.
The annual report of the Council, read by the Acting Secretary, stated that at the semi-annual examination in January four candidates presented themselves for admission to the study of architecture. Of these three passed. During last winter arrangements were made for the members of the Association resident in Montreal to meet once a month at dinner and subsequently to listen to papers and lectures. The Council regretted that these opportunities for social intercourse and instruction were not taken advantage of in the manner it was thought they would have been. Early last fall the Council endeavored to form classes for students engaged in architects' offices, in order to afford instruction in branches of study not usually obtained in an office, and so prepare them for passing their examinations. It was regretted that owing to the difficulty in obtaining teachers and to the lack of interest in the matter by members and students, these classes had to be abandoned. The Council strongly urged upon the Association the necessity of establishing classes for the systematic studv of the several branches of architecture, either in direct connection with the Association or in connection with an university. During the year the number of books in the library has been slightly increased by purchase and donation.

The report submitted by the Treasurer, Mr. L. Z. Resther, was of a very satisfactory character.

The reports of the Council and the Treasurer having been adopted, the election of officers was proceeded with, and result ed as follows, the scrutineers being Messrs. E. Mann and A. H. Lapierre :-
President- Mr . Charles Baillairgé, Quebec.
ist Vice-President-Mr. A. C. Hutchison, Montreal.
2nd Vice-President-Mr. A. T. Taylor, Montreal.
Secretary-Mr. J. Venne, Montreal.
Treasurer-Mr. Joseph Perrault, Montreal.
Council-Messrs. A. F. Dunlop, J. Nelson, A. Raza, L. Z. Gauthier, Montreal ; F. X. Berlinguet and I. B. Bertrand, Quebec.

Auditors-Messrs. L. Z. Resther and W. McLea Walbank, Montreal.
The most pleasing part of the morning session then took place. It was the presentation of a large photographic group of the Montreal members of the Association to their confreres in Quebec. The photograph, which is placed in an antique frame,
is a really fine specimen of the photographer's art. Mr. Jas, is a really fine specimen of the photographer's art. Mr. Jas.
Nelson having explained that he and Mr. Taylor had been charged by the Montreal members with the arrangements for the picture, called upon Mr. Taylor to make the presentation That gentleman alluded to the fact that the Montreal members had already recelved a photograph group of their Quebec confreres, and the former felt that the least they could do was to reciprocate as soon as possible. It was hoped that the photograph would be received and kept by the brethren in Quebec as a pleasant memento, and that for many years to come their successors might look at it and see the gentlemen who started the Association and carried on the work for so long.
The newly-elected President returned thanks on behalf of the Quebec members, and spoke of the artistic merit of the picture saying that although the idea of the Quebec and Montreal sections of the Association presenting photographic groups to each other had perhaps originated with the former, the latter had improved upon it in many ways. The photograph represents forty-three Montreal members of the Association assembled in a a handsome room, the background being a reproduction of a view of the Senate Chamber in the Palace of the Doges in
Venice. Mr. F.
Mr. F. X. Berlinguet also briefly returned thanks, after which the gathering adjourned for luncheon.

AFTERNOON SESSION.

The newly-elected President occupied the chair at the afternoon session, which opened at $2: 30$, and contributed the following paper :

FOUNDATIONS IN DEEP AND UNRELIABLE SOILS.

An article in the Engineering Record of New York, on "Foundations of High Buildings." by W. R. Hutton, M. Am. Soc. C. E., etc., has reminded me that in the Province of Quebec we have had several failures of an expensive nature to make good, due to fanlty foundations, as at Joliette, St. Bazile, St. Casımir, Nicolet, etc., and in Upper Canada at Cornwall and elsewhere.
As it is more satisfactory to know exactly how the foundations of certain the subject how they should be buid down to learn from any treatise on Hutton's article as extremely interesting and instructive to the profession,
and then allude to the Canadian cases mentioned. In New York the rock
at from 15 to 50 and 70 feet below the mixed with clay and containing pocketsor be, and overlaid by yellow sand ings rest on piles driven to refusal, though bed nof nuicksand. My yellow sand the rock. Under the city building law, each pile massarily to, nor always to The permanent wet level is about that of high emay be loaded with 20 tons. not to decay, should be cut off at or about this level in the harbor and piles, drains, which may lower it being taken into considedry seasons and deep occurs in the rock and bottom can not be reached consideration. When a gap
to carry to carry the walls above it, as was done inched, an arch is When a gap
(Field) Building own over (Field) Building on Battery Place.
The method in the case of the Washington
"Equitable Building" and the "Union Trust" are so gaining favor. The ings loading the soll to 2 and $2 \frac{1}{\text { t nion trust " tone so built with wide foot- }}$ and "Times" buildings hare fool a few feet below the surface have suff foundations. Older builde " World quick-sand into deeper neighbouffered, probably from the lateral at only are at too great a depth to render such excavations. The newer buildings pits are sunk and quick-sand makes it a result at all probable ner buildings structures, concrete should be at hand to prarance, endangering adjoining the danger.
promptly fill the pit and preven tiguous buildings, the foundations of the " Merping to the old walls of conbuilt in alternate piers surrounded with sheet pulingt Book Concern" were case of the ; Me whole arched over and the walls ; the intermediate pier street level, with foundations 55 Insurance Building " enough could not be driven to 55 feet deep to rock-a total of 408 feet above was that of pneumatic caissons. Fifteent weight. The system adopted 9 square, varying from 13×13 feet, to 21×26 fifteen them, of which eleven are 9 to 15 feet, in diameter, cover some $\times 26$ feet, and four circular ones from area of the site. The collective area of the square feet, or about half the square inch (say allowed by city regulations nam is proportioned to the square inch (say eleven tons to the foot), the brick from 150 lbs , to the The caisson rey may be loaded to 200 lbs. the brick piers being somewhat to 20 feet in in is strengthened with I beams, inch, $14 \frac{1}{2}$ tons to the foot. by means of depth below the Broadway level, The whole area is excavated 12 feet of fine mipressed air 35 feet further level, and the caissons are sunk with sand, and micaceous sand, layers of mud with rock. They pass through by tons were sunk by bard conglomerate over the usual gneiss rock. The avoid weight of the brick pier the soil beneath them from the inside, and reduced inflow of quicksand whichultantously built upon them, and to reduced hy blowing out the semi-fluid materccur when the air pressure was but upon trial it was ascerteine all material in buckets pipes, it was decided but upon trial it was ascertained that the pressure could beugh the air locks, removed. It is to be the compression taster, and the me maintained while lines of the caisson be noted that any flow of quick the soft earth was thus ings. When the caissons have caused settlements of the from outside the crete. "At the caissons reached the roctlements of the were neighboring buildcrete. "At the date of writing," says Hutton (September, rilly with con-
all the caissons had been sunk occurred in adjacent buildings, sonk to place and no apperecr, 1893), " nearly general excavations (20 feet below of which rests on piles at the level had on the ratural soil several feet abovereet level as already stated) the of the is said to have been ten per cent of ". The cost of these 55 feet foundations mendable feature in the "Manhat the entire cost of the building. A cound distribution of the load upon each pier Life Building" is the symmetrical built upon the outside edge of each pier. Commonly is the symmetrical inside the thickness of the wall, concentra, with the footings almost entirely foundation pressures much above the averagg upon the outer edge of the the supports are centrally or symmetrically plain the "Manhattan Life," side walls in "Carders extending from side to side of upon the caissons, and The engineer-contralever," to borrow a form of of the building sustain the an interesting application of the building, Messrs. Soozsmith the French. the Seventh Avenue bride same method in foundingith \& Co., made diameter. Their experience, New York. This is a cirgg the draw pier of risk of cracks in the masonry from convinced them that there 59 feet in calsson, this one was made annular in plan mover ments of a very great ro feet wide. When sunk upon in plan, 59 feet in outside diameter large with concrete, it formed a cofferdam site, cemented to the rock and fill the masonry "in the dry" after the within which it was expected and filled the rock bottom of the central space water was pumped out, but to build removed by pumps, and it became necitted water faster than it could in layer of concrete put in place under wecessary to cover the bottom with be cumpletion of the pier.
In Chicace under water to close the seams and permith the instead eago, foundat instead of only 30 feet to 50 feet, as in in New York there is fo the fact that
feet of blue drift clay for water and containing beds of rock, a material having a greater to 100 boasts some of the highest buildings yand, and yet upon this soil avidity timber were imbedded in the buildings yet erected. Formerly poil Chicago the great weight of recent structures and piles rarely driven to platforms of and the tops cut off below all future druires that piles be driven tock, but the wet", or detached foundations under eage, that they may be to the rock carefully proportioned in area to the under each wall and pier be always "in resistance of the soil. The best the weight to come upon ther, with footing square foot, or say $\mathrm{I} \frac{1}{2}$ tons, but this is freqits the weight to
ment is expected ment is expected, and it is sut this is frequently exceeded to $3,000 \mathrm{lbs}$. pe far as possible, to render the settli, by proportioning surface. Some setile As the wide footings when setling uniform.
oftsets, forming a truncated of masonry must be built in high and under
basement floors basement floors of muched of their height, under each pier or wall, thus roarrow
where, due to the where, due to the comparative cheapness of the practice in Chicago robbing to form the footings of tiers of these bars of iron or steel bars and and elsesuccessive tier laying across or at right laid on a concrete foundation, and acros and across the wall alternately angt angles to the one below, each allows of a greater breadth of offset, the their greater transverse strength inches, instead rapidly or in a lesser height weight is said of from 7 to 8 feet in some cases where ing from 18 to 30 the pier. The bars or theas reduced by about 4 per cene of masonry. The first dipped in hot asphalt or sometimes of second 4 per cent, of the load upon covered with concrete to pror tar, carefully bedded hand railroad iron, are of course, depencrete to protect the metal from rust. Such filled in, and undisturbed. As on account of the such a depth that the a foundation is it must flow laterally if not preventesoft nature of the clay adjoining soil be a vessel in a lock would do, or dry from doing so, just as as svater supporting,
tained by some solity tained by some solid surrounding. Same large structure, if not laterally re-
been erected been erected upon a continuous. platform of concrete building in Chicago have public building constructed in this way acular settlement of a the whole and in the concrete platform, has brought the matied by cracks in the walls
GMETGA-OF MDS MGANALYO-FOVEE-

been applied with better results when the platform has been made with iron beams covered and protected with concrete.
It has been observed in Venice, a city founded on the marshy bottom of a lagoon, that many large buildings constructed in the $144^{\text {th }}$ century and before, rest upon a platform of masonry broader than the building it supports. The masonry itself rests upon a bed of puddled clay which shows signs of a powerful artuficial compression. These structures show no notable change. while many others of later date, built upon piles, show by numerous cracks the irregular settlements they have incurred. It is said that the tower of St. Mark's does not rest on piles.
A difterent method has been adopted for a part of the foundations of the new "Stock Exchange" in Chicago. The foundation is generally upon piles about 50 feet long driven into the hard clay which overlies the rock; next to the "Herald Building," however, which adjoins it, wells were substituted, lest the shock of the pile driven close to its walls should cause settlement and cracks. A short cylinder 5 feet in diameter, made of steel plates, was first sunk by hand, reaching below the footings of the Herald plates, was first sunk by hand, reaching below the base of the cylinder, sheet piles about $3^{\frac{1}{2}}$ feet long were driven, and held in piace by a ring of steel inside their upper ends. The material inside the sheeting was excavated, and a similar steel ring was placed inside their lower ends, of wedges the lower ends of the sheeting were forced back. This operation
until another course could be driven outside the lower ring. until another course could be driven outside the lower ridg. was repeated until the excavation had reached In this material the excavation was continued without sheeting, in the form of a hollow truncated cone to a diameter of $7 \frac{1}{2}$ feet, sheeting, in the form of a hollow truncated cone to a dille with concrete. The wells are spaced about 12 feet, the loads upon them vary; some of them will carry about 200 tons-something less than 4 tons to the square foot. The material excavated was a soft putty-like clay to a depth of 40 feet, where a firm clay was reached, deemed capable of carrying the weight proposed. of the foundation is upon piles spaced 3 feet between been tested to 50 tons at with about 30 tons per pile, similar piles having been the Chicago Library foundation. They are drive surface, capped and filled hammer without brooming, are cut off below lake surface, capped ate the load in with concrete. A series of short transverse
transversely, and longitudinal beams prevent local settlements.

The foundations of the Washington monument at Washington have heretofore been well described, but having been commenced in 1848, now some 45 years ago, a description of the method employed may not be uninterest ing or uninstructive to the younger members of the profession. This structure, when I visited Washington in 1856, had obtained a height of 156 feet. The monument was commenced on a national subscription then limited to $\$ 1.00$ per head, to afford every citizen the advantage of contributing his mite towards honoring the memory of the great man whose name it bore, and I myzelf have the honor of being one of the original subscribers, the receipt for which, of the size of an ordinary bank note, engraved on white paper of the consistency of a bank of England note, with a cut of the forenir albums, ment at one end of it, I probably still have in one of my souvenir albums. Almost every nation of the earth had contributed a souvenir in the shape of a block of its most precious stone or marble, bearing a fitting inscription, and which were so placed as to bé seen and felt and read by every one ascending the inner stairway, reaching, at the time of my visit, to the then top of the structure, and intended to be continued upwards to the full height of 600 feet then proposed; while hundreds of similar blocks from all the crowned heads of Europe, not excepting His Holiness the Pope-blocks of solid copper and nearly solid gold and silver and the like, were either incased in the monument or lay strewn about the ground awating each its turn to do hon
independence.

At the date of my visit the works had been for some time interrupted, owing to unequal settlement of the foundation. In 1878 , says Hutton, the work which had been in the hands of the Washington Monument Association was turned over to the general Government and completed with money appropriated by Congress. The work as finally constructed is a plain shaft 500 feet high with a pyramidion on top of it 55 feet in beight. The shaft is 500 feet high wit the base, 30 feet at top, the interior being say 20 feet 55 feet square at weight over 90,000 tons. The original foundation was of rubble masonry in lime mortar, $23 \frac{1}{2}$ feet thick and 80 feet square at the base, the footings thus projecting $12 \frac{1}{2}$ feet all around beyond the outer lines of shaft. The soil upon which it rested was a sandy clay; 13 feet below this was a bed of gravel. The area of the base was too small, and the soil under Was a bed of gravel. it not sufficiently resisting thick, extending 23 feet 6 inches outside of the old base, and 18 feet feet thick, extending 23 inder it, increased the bearing surface and carried it down to the gravel. under it, increased the Thearete extended 5 feet under the walls of the shaft itself. The conThe concrete extenork of concrete under a shaft 156 feet high and weighing truction of this blork of con operation, accomplished in this way:-On the 36,000 tons, was a delicate opers diagonally opposite, cuts or trenches 4 feet ast and west sides, near core made from the outer lines of the foundation, wide and $13 \frac{1}{2}$ feet deep and extended by tunnelling is feet under the base of the old foundation. When completed they were filled with concrete, and other cuts opposite When completed they were manner, carried under the old base and filled to them were made in like manner, carried bearing surface in these two with concrete. The removal of was sufficient to cause motion in the tunnels under the old foundation cut was made at one time. The work was continued and completed by this system of narrow cuts, which were filled with concrete until the entire sub-base was finished. After this, ro feet in thickness of the outer part of the old foundation was removed in sections 10 feet wide and replaced wiih concrete extending ro feet out on the new base.
Being under the impression that when I saw the monument, at that time 56 feet high as stated, it inclined somewhat out of the perpendicular, and as Mr . Hutton in describing the underpinning and strengthening of the foundation did not allude to the fact, I wrote him through the Engineering Record and my letter and his answer appeared in a recent issue of the Record and my to the effect that it did incline slightly, but that its rectification was eftected through the process of underpinning, though he does not say precisely how. I remember, however, that previously to strengthening the oundations in the manner described, it had been proposed to excavate beneath the monument, introduce a series or upper ancing some hundreds of imber with uprights or posts between them, jack-screws and letting down the monument gradualis onodified form and evel of the other. This process I applied mysel factory chimney some 80 feet in height at Hook's mills, in Grant street, Quebec. After cutting away a eet in height at Hook's mills, In Grawstreet, quebec. Athaft, or between it wedge shaped slice of the brick work from beneath the shat, or betweench, and its foundation, by means of the thickness of the wedge sawed out bearing the same proportion to the breadth of base as did the inclination over to
clined some two feet from the perpendicular.

Gravel and sand are counted among the incompressible materials for oundations, when prevented from spreading sidewise. The resistance to lateral spreading is usually furnished by the adjacent sand, and when this is
insufficient the surface rises as the building sinks, precisely as water does around a vessel in a lock, with the additional weight of an in-going cargo. I have said that from faulty foundations several Canadian structures have been wrecked to a considerable extent, but I shall only here allude to the new Joliette church, from having myself seen it now two years ago, and the blame ought to be fixed somewhere for a fault which it will probably cost all of $\$ 10,000$ to make good. had actually sunk not ites, tearing itself away completely from the adjoining walls or remainder of the facade ; and as lateral portions of the facade had also sunk, mainder of the facterging down the side or aisle walls of the edifice, the church wardens had the whole front of the facade cut away from the sides to allow of any future sinking of the tower without dragging the sides with it to destruction. The other churches I have mentioned as at sides with it to destruction. Bazile, have been affected I am told, exactly in Nicolet, St. Casimir and due to a similar cause, to wit, the omission on the the same manner, and dis part to so proportion the breadth of footings as to cause every square foot thereof to bear an absolutely equal load on such a soil as at Joliette, where there are some eight feet thick of sandy clay overlying some 20 to 30 feet of mud or of clay of such a soft and semi-liquid nature that anyone can drive an iron rod into it to a depth of 20 feet or more. And this proportioning of the area of footings is such a simple thing more. And this proportional to say the least, to neglect doing it. Again, in this case of the Joliette structure, the foundation I am told of the tower and隹 of the aisle walls, a very foolish thing to have done, as it left less of the comparatively solid upper stratum of sand between the wooden platform under the walls walls to penetrate into the soft substratum. Now the architect who planned walls all responsibility in the premises, as not having been enstruction of the building; and the prepared by the architect, and so between them both it appears that the prepare will the to foot the bill of reconstructing the whole facade and tower at the parishioners' expense.
I had the honor at our last meeting in Quebec of reading you a paper on I had the honor at our last meeting in Quebec of reading you a paper on I should more aptly have said, " for Canada as a whole," since similar failI should mave occurred in Ontario; and now I presume it will not be denied that ures have occurred in a school is of paramount necessity, where an aspiring architect may be such a schoolsortance of sounding and boring the soil he plans to build on, taught the importance not on solid rock or an unyielding base, not fail to and in any case where not on sole them truly proportional to the respecspread his footings in a way to bear.
tive weights they will have to bear. Errors so expensive the walls sank some two feet, and the masonry had to be almost entirely rehuilt at a cost of some $\$ 12,000$. At Cornwall, the settlement entirely rebuilt at a cost of some $\$ 12,000$. At was not less than two feet ten inches, and occurred all at once, I am told, on was not less than two feet ten inches, wall tearing itself away from the reor during a single night-the front bodily and equally, though, or in a way mainder of the church and sinking bodily and equall, without the necessity to allow of making good the levels of the dower.
of demolishing and rebuilding the front and tower.
Foundations may be considered the engineering part of architecture, and Foundations may be considerew, while an engineer will never attempt to it is strange and hard coisson or start the foundations of any structure without sounding the soil he has to build on, an architect can consider himselt less liable to the danger of unequal settlement. The Canadian ArchiTECT AND BUILDER, in an article in its November issue of last year, insists on this engineering knowledge on the part of architects, and it is to be hoped, that the abso
gotten in the future.
Not settlement is to be guarded against, but solely inequality of settlement in the different portions of a foundation. It is just as easy to erect a heavy structure on a mud foundation and insure iop on tis bed of water This canse a heaver base of This can be done, as said, by thoroughly proportioning the area of base of each portion of the structure to the weight it has to bear, wut if one or two corners equalty of settlement in any homogeneous structure be on rock or any such unyielding foundation, then becom it peremptory in the rock or rest on it by the propy
 pression, and divide the weight, or spread it out over such a number of feet pression, and divide the weight, or spread if a reliable bottom is to be reached by piling through a bed of stift or compact and so to say incompres sible sand, it must not be forgotten that material aid can be had by applysible sand, it must not be forgotten that material aid can be had by applywhen boring in 1876 for the tests as to the nature and impermeability of the soil or river bed to be built on. The sand was so compact that a two or three inch tube could not be driven into it to more than a few feet without the aid of a jet of water forced down through an inner and smaller pipe, and the aid of a jet of water forced down through an inner and smaller pipe, and
which loosened and to cause it to sink to a depth of 70 feet to rock bottom, while room was made for the advancing pipe or pile or borer by the water forced down, as said, through the inner tube, coming up or returning through the space between the tubes and bringing up the loosened sand with it. Ordinary wooden piles may be driven in the same way through stiff and otherwise un yielding soil, by the use of water under pressure forced down through a pipe or hose attached to the side of the pile and reaching to its shoe or point and easily removable, and to be used again on each succeeding pile. This most effective mode of loosening the soil is much used and has been for some years past, in pursuing excavations under water, and it fact, in all possible situations, and the material removed, it must be remembered, can now, instead of having to be so removed by cartage, be blown away to any distance by forcing it through pipes of adequate size or even rubber or canvas conduits under air pressure, or which is the same thing, by pumping ou the air in front or ahead of the material to be discharged or removed, when the mere atmospheric pressure
the stuff along to destination. that now being pursued in putting in the piers for the American Surety Company's building in course of erection opposite Trinity church, corner of Broadway and Pine street, New York, by Bruce Price, architect of the new Frontenac Hotel, Quebec. These foundations are 70 feet deep to bed rock, while the building of 22 stories, or 360 feet in height above road level, and therefore higher than Trinity church itself, will have a total height of Soozless than 430 feet, its cost being pirm of contractors. I say "engineering,' smith \& Co. are now-a-days, the responsibility for solidity and permanency of con struction, devolves on the contractors equally with the designing architect. These firms of builders employ the highest engineering talent, for it must Tot be believed, as popularly thought, that all the engineering difficulties are not be believed, ashe out and solved by the designers, on the contrary, Sir Benjamim Baker, in the construction of the Firth bridge, where the twin
spans are each some 1,700 feet from pier to pier, gives the greatest credit to the work. In the case under consideration - the Americices in carrying out the woilding,-there building, -there are (13) thirteen brick piers on as many rectangular steel
built caissons of $1 /^{\prime \prime}$ stuff, braced on the inside built caissons on $1 / 2$ sheath the reat 7 feet bigh benove the roof, with a two feet filling of concrete on which two feet all around above the roof, with a two feet filling of concrete on which the brick piers rest. The whole foundation was excavated bodily, and taken out down to 20 feet beneath the roadway, at which depth water was reached. The cais-
sons were then put in place-not all of them together sons were then put in place-not all of them together, but in alternate
series, so as not to risk deranging the foundations series, so as not to risk deranging the foundations of adjoining structures, sunk to a lesser depth than that to be arrived at. To each caisson is applied a tube of oval horizontal section, and of such size, some 3×5 feet inside-
drain, in the clear of jointing flanges, as to allow of the men down, to and from their work, and to give passage to me passing up and come, by which the excavated material is raised from withinckets, go and the surface. The brickwork upon the caisson prom within the caisson to gradually to destination with its increasing burden of advancing mon sinks As the pier advances or is added to in weight, additional leng masonry. shaft, or well, or vertical tunnel-way, are added and bolted lengths of iron course ; and as the shaft gains height, the air lock rises with it air-tight of struction and use of the air lock, though presumably well known to all con. having now so often and for so many years been used, as in the to all, from of piers of the Brooklyn Bridge and elsewhere, is a mere cylindertruction ponent portion of the shaft, high enough and of sufficient syize for, a commen to stand in at a time. It has an under and an upper door or hat several through which the workers in the caisson pass up and down or to and fry, their work. If there were no water to contend with, the simple and from through the pier would be sufficient, the men working under ordinaty way mospheric pressure, but the water has to be kept out to allow of excary atto the required depth to reach the rock. The pressure of the incoming water is counteracted, resisted by the pressure of the air from within the caisson cutward. This pressure increases with the depth, and hence the necessity of the air back, wherein, while the ingoing and outgoing gang or band are in it, the pressure of the air, by opening a cock in the floor for or ingoers, one in the roof for the outgoers, is gradually increased or diminish ed in a way to accommodate the lungs and give no trouble to the individu--cause him no discomfort. This would seem to be slow work, but on the contrary, it is, under the trying and difficult circumstances, very rapic on the we consider that as much as 52 feet has thus been sunk in a single weel nearly nine feet per diem, which would entail a delay of only I_{3} weeks or a little over three months if each pier had to be sunk separately to destination, whereas three to four of the piers can proceed stimultaneously, and the work be done in a month or a little more.
In the manipulation of the caissons, great ingenuity is shown, to remove no more earth than that which is vertically under the caisson, to avoid dis turbing adjacent buildings. In sinking caissons in river beds, no such pre cautions bave to be observed, and the material excavated in semi-fluid state can be blown out instead of bucketed out, as was done in the case of the Brooklyn bridge foundations, where on one side of the river, after the caisson reaching bottom at 40 feet depth of water, there remained 40 feet of sand still to be removed to reach the rock foundation, and this immense mass of some $70 \times 100 \times 40$ feet, say 10,000 cubic yards, was actually blown out by air pressure through the twelve four nnch pipes provided for the purpose,- two to each of the six compartments into which each caisson was divided--the pipes running from the floor level of the caisson, through the roof thereof, and up through the masonry as it progressed, with an elbow at the top of each,
throwing the stuff out into the river. A caisson for the found hrowing the stuff out into the river. A caisson for the foundations of a
building has also sometimes to be moved laterally, and this is building has also sometimes to be moved laterally, and this is done and has been done effectively, with its load of brickwork on it, by thrusting it forward by struts and jack-screws from the off-side, while the on-side, or that to which the pier is to be moved, is caused to be gradually worn away by the disintegrating action of water already alluded to, the operation being performed by jets of water under pressure, some of them from above downward, while others as effectively do their work from beneath the lower edge

Mr. A. T. Taylor also contributed the following paper :
notes on some aspects of the city of the future.
Many fanciful pictures have been drawn in literature of the condition of man in the future on this earth, most of them with more than a strong tinge of romance. There seems no doubt that in the near future the hygienic conditions of life will be greatly improved, and that the physical surroundiconwill more and more be laid under tribute to minister to the well-being, comfort and pleasure of mankind. It behooves our profession to be in the forefront of all such movements.
As a population aggregates at particular centres, and crowds together to make up our large towns and cities, problems of how best to honse and minister to its physical, mental and higher nature, present themselves for molution to all earnest-minded men. The wise solution of such is not for soluor if neglected or ignored they bring their own Nemesis in misery, diseas and death.
In a sity's growth there are two elements which go to make the ideal in
what we may call its externals, viz : Ist, wise and comprehensive what we may call its externals, viz.: 1st, wise and comprehensive building by-laws; 2nd, wise and artistic guidance in the laying out and beautifying of its conformation, its buildings and their surroundings and general embel. lishments. These two aspects concern us very closely as architects, and hink need no apology for being brought before you to-day.
The necessity for the first of these has been more recognized than the second. Most towns of any importance have formulated some kind of building system to govern the erection of buildings, their general strength and healthiness.
In the case of our own city, the present by-laws have been amended from time to time, and are still somewhat inadequate, so that it is felt by many that the time has come when an entirely new building by-law should be pre pared ; and as you have heard from the Secretary's Report to-day, a Committee of our Association is working upon this at the present time. It is no easy work-nay, it is impossible, to frame such laws as to please everybody, or to cover every possible contingency ; but it should be the desire of such a committee to frame them so that good building-both as regards materials and workmanship, may be the result, and bad building discouraged. It naturally, of course, follows that such laws require to be enforced, and they will need firm and judicious enforcement.
Many new materials are employed and many new modes of building adopted, so that building laws of to-day require to be more extensive and all-em-
bracing than of old. It is proverbial that skilful bracing than of old. It is proverbial that a skilful, and if there is such a thing,
an unscrupulous lawyer, can drive a coach-and-six through any Act of Parlia an unscrupulous lawyer, can drive a coach-and-six through any Act of Parlia-
ment, and it is difficult to make by-laws ment, and it is difficult to make by-laws that unscrupulous jerry builders and
dishonest contractors may not evade, or that ignorant and stupid dishonest contractors may not evade, or that ignorant and stupid men-
architects in nothing but the name-may not stumble and blunder over. It is in checkmating the one and helping the other that these laws will be most useful, and with the plumbing by-laws recently enacted, incorporated, the result should be a reduction in the death rate, fewer fires, healthier homes,
and greater peace and contentment. Only in a very general way

Were it possible cognizance of the design and appearance of the buildings and pass judgment upon all der authority, thoroughly competent, to criticise and hide an advantage to the appearance of gur stee erected, it would no would never see latitude in choice light. But this authority would , 100 familiar with, authority in face of style, and any special prodild have to give the widest tendency of all any particular style would bave on the part of such avoided but the mbunats is to stereotyped forms be controlled. The ability, but with carefil selection by such a tribunal of would have to be check this. Persposite predilections as to styles of men of undoubted selected, Personally I am in favor of such a tries, \&ce, would effectually reconnized artistic knowledge and abil ty
In In Europe certain restrictions and abil ty.
in vogue : - Thus, in Paris, no no front wall on of buildings have iong been
65 ft . in Vient than 50 ft , wide the limit is about 77 ft , and iny street can be higher that the opposite side of height of a building must nut exdon, in new streets less recognized by our neighe street. The wisdom of exceed its distance from so flourished as to utterly derross the border, where ." sles is now being and enactments are being destroy the unity and symmety scrapers " have ings. It may be that sary in our own city. In France, I unde
authorities of the cities have supreme corther than this, and the municipa I referred bings-the style of architecture over the treatment of the exI referred to the danger of sterehitecture adopted, the tribunal of fixed predilections stereotyped forms in etc
in this connection to a similar and I would take the opportunity of red by a connection with the designs and more imminent and antunity of referring department of the government all government buildings grievous danger in sion in Ottawa a goeared inent. A well-timed letter from emanating from a AND BUILDER, which in the last number of the Crom one of our profesto be unsupportable in the Sould do well to read. The sysian Architect been passed to throw the States, and, as you all know, system has been felt sion at large. Without dispe designing of public buildings has recently Provincial government disparaging in any way buithings to the profesof all, when I say that, in the ts, 1 think I will bave the unar Dominion or f wise selections of architects nature of the case, better result wous support such buildings.
We pass on
laying out, beautifying and embellishz: Wise and artistic guidance in the have been allings of a city. This has been the streets, parks, buildings millions of dollars to grow either at haphazard, like ously neglected. Cities through dense population ; on widening the streets our own city, and then as prosaic and population ; or have been laid out in simpletting new ones ing to its site and the rela it is possible to imagine. nored by authorities and by archite site to the building, has been of a buildthe new Boston Public Librarchitects. As an example of the fin too often ig. relation to its environments : and as is, to my view, very unsatisfay cite nearly all of our public build and as examples of the second I unsatisfactory in gard to vistas, or of being made, which are planted down withoy refer to notable exception to this, and in the lay features in our streets. Paris restreets, and in the arrangement of her public buildings squares, gardens and is an example to the world. On this continen, Wa
effects as I have named. All cities of the future, which laid out city for such development of the cowpath of the country and which are not simply the be laid out with some regard to numerous and the lane of the village we vards and noble buildings, placed in such open spaces, radiating boull vistas. There will be more gardens and parks pesitions as to afford beautiful
that these that these are greater moral factors in parks, because men will haveautiful rowded tenements and low saloons. Charming effects in citions
radii. Who has not delighted often obtained by curved streets of large Street in London, or endorsed Win the windings of the Strand and Flge glorious street?" when he describes it as " The stream-like weautiful High
I have touched on the desi statues, and thenture a word or two public and government buildings. I Is it not the truth, that very generally of our streets, publir monuments taste? In nearly all large cities ew of these are satisfactory squares, etc what dreadfistic, so unworthy of their s , monuments, stathes, uture held up to thl crime the unfortunate their position, that we are led \&c., ar innocent the ridicule and pity of future committed that he should wonder guilty. guilty. Under existing arrangements, nay, in many respects not wholly ments for these memorial it were otherwise. The selat this should be ments for these memorials and adornments The selection and auld be men-very worthy, no doubt, but not educats are generally in the arrangewill wisely deciding such matters. It is extrated in art, and therefore o health, engineers lawyers on all legal extraordinary how intelligent no health, engineers on matters of drainage questions, doctors on matters matters of art and taste, think they are quite capable machinery, but on
selves. I have
questions w cherished the dream will decide such matters. Is a special artistic authority future, all such in the near future in our Is it too much to hope that ty or tribunal, who for such a scheme has our own city? This is by no means may be realized have succeeded in has already been put into operation means a Utopian idea matters as I have spoken an Art Committee appointed ioston, where they members, who serve win of. There the Committee to supervise all such The Mayor of the city without any remuneration and is composed of five the President of city, the Chairman of the Thand consist of the following um and the Presid institute of Technology Trustees of the Public Librgry, have such. President of the Society of Archite President of the Art Mury worthy aldermen mittee appointed here? It Aects. Would it be possible to and conscientiously exceedingly perplexeds to me that some of gladly hail the assy to decide matters of taste and when they try honestly "ipse dixit" on these of such an Art Committee and that they would We have made these things
but there is much still to be progress in art matters in by other cities. The art atta
it is quite within ournt of people is a measure of step in endeavoring province as an association of their civilization, I think might consist of say, the Mayor, the a tribunal appointect to take the first President of the Royal Acadory the President of the Ad. The members President of the Royal Academy or some representative Association, the President of the Association of Architects, and say a repre of the same, the

Government Board of Manufactures or such other bodies as might be arranged. Had such a committee been in existence I feel sure some monuments which have recently been put up in our city would have been relegated to the limbo of
Both New York and Boston go further even than this, however, for in hese two cities Municipal Art Societies have been established, with the express object of providing adequate sculptural and pictorial decorations for the public buildings and parks. I understand that the first work done in this way in New York was the decoration of a wall in the new Criminal Court Burlding, and other work of a similar kind is contemplated. All such efforts are entirely praiseworthy, and the liberality of generous-hearted men might well find an additional channel in the beautifying of our public buildings by pairting and sculpture.

Nature bas done much for our city, rolling a magnificent river past ou ${ }^{r}$ doors, and heaving up a beautiful verdure-clad eminence for our habitations to cluster round; let us do our part in making these habitations worthy of their natural surroundings, so that they may be healthy, comfortable and beautiful-worthy dwelling-places of a happy, virtuous and contented people.

These two papers were listened to very attentively and were much appreciated. On the proposition of Mr. W. E. Doran seconded by Mr. J. Z. Resther, a hearty vote of thanks was accorded the contributors for the papers, after which the meeting adjourned.

THE CONVERSAZIONE.

A delightful conversazione was given in the evening in the galleries of the Art Association to inaugurate the opening of the Exhibition of Architectural Drawings under the auspices of the Province of Quebec Association of Architects. There was a large and fashionable assemblage of people.

Gruenwald's Band discoursed sweet music, and refreshments were served during the evening in the large class room adjoining the gallery. The evening was a thoroughly enjoyable one, This is the first Exhibition of the kind held in Montreal, and has proved more successful than the promoters had ventured to hope for, and may be taken as a favorable augury of what will be accomplished in the future.

The following is a list of the drawings exhibited
Gordon \& Helliwell, Toronto-Church of the Messiah, Toronto ; residence of Captain S. Crangle, Toronto ; Town Hall and Market, Orillia, Ont. Darling \& Curry, Toronto-Church of St. Mary Magdalen, Toronto ; Organ of St. James Cathedral, Toronto : Competitive Design for Ontario Legislative Buildings, one large perspective in pen and ink, and two elevations of the same. Frank Darling, Toronto-Head Master's House, Port Hope School, Ont.; house at Niagara; house on College ave., Toronto. W. A. Langton, Toronto-Sketch St. Hilda's College, Toronto. Siddall \& Baker, Toronto-Nos. 12 and 14 Colborne street, Toronto (stores) ; railway station at Janesville ; staircase to Music Room, Nordheimer's Building, Toronto : perspective of Competitive Design for Government Buldings, British Columbia. Thos. Fuller, R.C.A., Ottawa-Public Buildine, Brockville, Ont.; Public Buil ling, Sorel, P. Q.; two views of Public Buildings at Galt, Ont.; design for Superintendent's residence, Experimental Farm, Ottawa : Public Building, Victoria, B.C.; Drill Hall, Toronto; Public Building, Charlottetown, P.E.I. R. Dawson, Toronto-Residence of A. T. Lytle. A. T.Taylor, F.R.I.B.A., Montreal-Interior sketches of huse at Ottawa ; street scene in Louvain ; Hon. Geo. A. Drummond's residence, Montreal ; Bank of Toronte, Montreal ; Bank of Montreal, west end branch, Montreal ; seconded premiated design for Glasgow Municipal Buildings, Scotland ; the Engineering Building, McGill College; the Redpath Library, McGill College ; interior view Bank of Montreal Head Office ; Almhouses, Chiselhurst, England ; scene in Perugia, Italy ; the Cathedral, Malineo, Belgium ; the Physics Building, McGill College ; Bank of Montreal, Vancouver, B. C.; Siena Cathedral, Italy ; view in Ghent, St. Antonio, Padua. A. C. Hutchison, R.C.A., Montreal-Residence of C, E. L. Porteous, Montreal ; residence of W. W. Ogilvie, Rapids Farm ; Cote St. Antoine Academy ; Erskine Church, Montreal ; Young Women's Christian Association Building, Montreal ; design for a Bank ; Montreal High School ; Window, Front Gable Erskine Church, Montreal. Brown \& McVicar, MontrealResidence of F. G. Guadinger, Montreal ; residence of George Hyde, Montreal ; Taylor's Church, Montreal ; Masonic Temple, Montreal. David R. Brown, Montreal-Westminster Church D. Norman McVicar, Montreal-Tower of Eglise St. Jean, Amiens ; Calle off Grand Canal Venice. Miss M. P. Taylor, Edinburgh-St. Giles Cathedral, Edinburgh; Norman Staircase, Canterbury ; interior of St. Mark's, Venice. Edward Maxwell, Montreal-Study for residence of H. Vincent Meredith, Montreal ; group of three sketches for country houses ; view in hall of house for General Manager Bank of Montreal, also exterior view of same ; business premises of R. Sharpley \& Sons, Montreal ; residence for Hugh A. Allan, Montreal ; residence of D. McIntyre, Montreal ; Competitive Design for Masonic Temple, Montreal. J. W. and E. C. Hopkins, Montreal-Merchants Bank, Montreal ; residence of R. B. Angus, Montreal ; business premises of John Murphy \& Co., Montreal ; North British and Mercantile Insurance Co.'s Building, Montreal ; Bank of Montreal, Ottawa ; the J. C. Wilson Building, Montreal ; Montreal Street Railway Co.'s new building, Montreal. E. C. Hopkins, Montreal-St. Patrick's Cathedral, Dublin. Dunlop \& Heriot, Montreal-St. George's Church Tower ; houses for Dı. F. W. Campbell, Montreal ; proposed residence for Hugh Graham,

Montreal. A. F. Dunlop, R.C.A., Montreal-Residence, Edgehill avenue, Montreal ; Ice Grotto, Victoria Rink, Montreal ; "Dunlop of Dunlop," Ayrshire ; St. James Methodist Church. J. C. A. Heriot-Design for a Country House; design for a Country Church ; design for a Suburban Residence. Perrault, Mesnard \& Venne, Montreal-Church for Pawtucket, U. S. A.; Church of the Sacred Heart ; Laval University, Montreal ; Banque du Peuple Building, Montreal ; perspective of first scheme for Monument National, Montreal ; elevation Monument National, Montreal ; design for a church. A. Raza, Mon-treal-St. Bridget School, Montreal ; residence for Ald. A. Dubuc, Montreal; residence for Ald. J. Brunet, Montreal. W. McLea Walbank, B.A.S., Montreal ; residence for Dr. F. Buller, Montreal ; competition design for Masonic Temple, Montreal ; competition design for Montreal Board of Trade. R. Findlay, Montreal-Residence of Jas. Morgan, St. Anne de Bellevue ; Sun Life Buitding, Montreal. Roy \& Gauthier, Montreal-Competition design for Chicago Court House, U. S. A.; houses St. Louis Square, Montreal ; Sacred Heart Church, Ottawa, Ont.; college at St. Thérèze, P. Q. J. R. Rhind, Montreal-Competition design for St. John the Divine Cathedral, New York; competition design for Masonic Temple, Montreal ; premiated design for Protestant Orphans' Asylum, Montreal. A. Flockton, Montreal-Residence of L. H. Taylor, Montreal. J. and H. C. Nelson, Montreal-Design for an Educational Institution. J. Rawson Gardiner, Montreal-Design for Business Block ; Choir Bolton Abbey; Old Houses, Sussex. Eric Mann, MontrealDesign for an Office Building. A. J. Cooke, St. Lamberts-The Founder's Tomb, St. Bartholemew, Smithfield ; design for a Reredos; design for a Font. C. Dufort, Montreal-Design for Chamber of Commerce. G. A. Monette, Montreal-Design for a Villa Residence. P. B. Williams, Montreal-Design for Memorial Front, St. Michael's Mission, Stepney, London, E. C. L. A. Venne-Design for a Country House ; study for stained glass, Head of our Lord, a fragment of window, and design for stained glass and decoration exhibited by Messrs. Castle \& Son and Messrs. Spence \& Son ; also a large cartoon for a window by Castle \& Son, and five decorated plaster models of the Alhambra, which were kindly loaned by Mr. R. B. Angus for exhibition.

On each side of the two doors are beautiful examples of old Chinese wrought iron work, lent by the Hon. Geo. A. Drummond. They are all four floral studies of chrysanthemums and lillies, most interesting and perfect in therr design and finish. In the entrance hall two vigorous plaster models are exhibited by Mr. Hall, and in the doorway is hung a beautiful eastern camp sent by Mr. D. A. Watt.
Mr. A. T. Taylor contributed some fine water color sketches of picturesque views and scenes in Italy. Amongst the many beautiful buildings erected in the Romanesque style by this author, the West End Branch of the Bank of Montreal, the Redpath Library and the Bank of Toronto may be mentioned. Another good bit of designing by the same author is his competitive design for the Glasgow Municipal Buildings, of a classical character, and rendered in pen and ink, which was awarded the second premium amongst a large number of competitors. Mr. Edward Maxwell has also some very effective water color sketches, and bis study for Mr. H. Vincent Meredith's bouse is nicely rendered.

Mr. A. C. Hutchison has some good pen and ink drawingsfor instance, Mr. C. E. L. Porteous' house-original in conception and good in rendering, as are also his drawings of Erskine Church, his St. Antoine Academy and his house for Mr. Ogilvie.

The design of Mr. J. C. A. Heriot for a suburban residence possesses some merit.

We are glad to see the design of Messrs. Datling \& Curry, of Toronto, for the Ontario Legislative Buildings, which ought to have been erected, and would have been an ornament to Toronto, and their perspective of the magnificent Church of St. Mary Magdalene, Toronto.

Mr. J. R. Rhind has an ambitious design submitted in the competition for the St. John's Cathedral, New York, showing an immense deal of labor both in design and draughtsmanship.

Mr. A. F. Dunlop shows a view in pen and ink of St. James Methodist Church, which hardly does justice to the beauty of the original.

Siddall \& Baker's design for the Government Buildings at Victoria, B. C., is well shown by a crisp pen and ink perspective.

Mr. Thos. Fuller has enriched the exhibition by a number of small but most dantily rendered water color perspectives of buildings he bas designed.

Messrs. Perrault, Mesnard \& Venne show a good sepia perspective of therr Laval University, Montreal.

Mr. Findlay, amongst other things, shows a very picturesque country house at St. Anne's, and Mr. A. Raza tivo city residences in the Renaissance style and elaborately decorated.
For the first undertaking of the kind ever attempted in Montreal, the Exhibition is a marked success, and it ought to encourage the Province of Quebec Association of Architects to hold similar exhibitions at regular intervals in the future, which would do so much for the education of the public and the profession at large.

CANADIAN CEMENT, LIME, AND CLAY PRCDUCTS.
Under the title "The Utility and Value of some Common Mineral." the following interesting particulars were presented in a paper by Mr. A. Blue, at a recent meeting of the Ontario Mining Institute:-

The two most abundant minerals in this country are clay and lime, and they are likewise among the most useful. They furnish the raw material too for mineral industries of the first importance, in which a large amount of capital and many laborers are employed. Yet in the vulgar opinion, clay and lime are not worthy of being called minerals, and the seekers after gold, silver, copper, nickle and iron would scorn to recog nize the workers in clay and lime as fellow miners. I think it will not be hard to show, however, that these very common minerals possess a value not in any degree inferior to the metals, and that they are deserv value not in any degree infirior to the metals, and that they are deserv-
ing of much greater attention than they have yet received in this country, ing of much greater attention than they have yet received in this country,
at the hands of moneyed men, and men of the best technical training in at the hands of moneyed men, and men of the best technical training in
the mineral industries. But let it be premised, that in this paper lime (using the term in its colloquial sense) will be dealt with only as materia for the production of cements.

As to the extent and growth of the industries, information is afforded by the census reports of the Dominion Government. But for comparative records we can only go back to 1881; no account was taken of cements in the Censuses preceding the one for that year, and the earlier statistics of the brick industry are of no use in showing its growth.
The statistics of the two industries in Canada and the Province of Ontario respectively, are given in the following table for the years 1880 and 1890 :-

	Canada.		Ontario.	
	1880	1890	1880	1890
Cement : No. establishments......	9	19	3	12
Hands employed.	115	243	29	128
Wages paid.	\$38,151	\$85,960	\$7,000	\$39,245
Value of product........	91,658	251,175	29,200	153,400
Brick and Tile : No, establishments	560	697	400	463
Hands employed.......	4,129	6,737	2,768	3,791
Wages paid............	\$608,690	\$1,428,489	\$405,311	\$797,257
Value of product........	1,541,892	3,584,713	971,158	2,154,152

The noticeable feature in these statistics is the large share Ontario claims in the progress of the ten years. Ten new cement establishment were added, and all but one are credited to Ontario. The nqumber of hands employed by the industry increased by 128, and all but 29 are returned for Ontario works. The amount paid for wages was greater in 1890 than in 1880, by $\$ 47,809$, and two-thirds of it was earned in tario. The increase in the value of product was $\$ 159,517$ eand in Onfourths of it belong to Ontario. The progress of our Province in the manufacture of brick and tile was less conspicuous in the decade, although in number of works, employees, wages and value of output, she though in number of works, employees, wages and vall exceeds all the other provinces combined. In the increase of works from 1880 to 1890 , her share was 63 out of 137 ; of workmen employed it was 1880 to 1890 , her share wases paidfor labor it was $\$ 391,946$ out of $\$ 819$, 799 , and of value of articles produced it was $\$ 1,182,994$ out of $\$ 2,042,82$ I.
But assuming the absolute accuracy of these figures, there is one aspect of them that arrests attention, viz: the relativity of the cost of labor to the value of product in Ontario and the other provinces. For the whole Dominion, in 1880, the ratio of labor to product was $1: 2.53$, and in 1890 it was $1: 2.50$-a proportion which every one would be disposed to accept as likely. For Ontario, however, the ratios of labor to product were $I: 2.40$ and $I: 2.70$ for the former and latter years respectively, while for the other provinces they were $1: 2.95$ and $1: 2.27$. The use of improved machinery would account for this disparity to some extent, although not wholly. So also would fluctuations in the price or the efficiency of labor. The latter cause can be dismissed as improbable, in view of the proximity of the provinces; and while the former might flat ter our vanity, it would, in view of all the circumstances, be fatuous to claim for it more than a very modest share of potency in the radical disturbance of ratios. The real cause will probably be found in the different scales of values adopted in different parts of the country, and it is to be regretted that in the Census enumerations account was not taken of quantity as well as of value.
In the statistics collected by the Bureau of Mines last year, the manufacturers of cement in Ontario, gave the value of their product as $\$ 127$, 415 , while the number of workmen they employed was 224 , and the amount of wages paid for labor $\$ 60,208$. Their product included 74 ,353 barrels of natural rock and 31,924 barrels of Portland cement. In 1890 there was no Portland cement made in our province, but the value of cement manufactured that year according to the census was greater than last year by $\$ 25,985$. while the number of workmen employed was less by 96 , and the wages paid for labor less by $\$ 20,963$. Had we the ouput for the Census year in quantity, the cause of the discrepancy would more clearly appear. The Bureau's returns of brick and tile for I 893 are also much lower in value than those of the census for 1890 , but this is no doubt due to the fact that the financial stringency of last year caused many works to close down early in the season, while others were idle the whole year. The number of men employed was 2,874 , the amount paid for wages $\$ 531,686$, and the value of product $\$ 1,339,873-$
the ratio of labor to product being

It has been shown that being $1: 2: 52$.
cement in Canada increased from $\$ 91,658$ values the manufacture of The whole of this product was $\$ 91,658$ in 1880 to $\$ 251,175$ in 1890 . from supplying our needs. from supplying our needs. In the fiscal year 1880-1 we imported $1890-\mathrm{I}$ to the value of $\$ 313,690$ cements to the value of $\$ 53,765$, and in $1890-$ I to the value of $\$ 313,690$. But since the fiscal year $1886-7$ the
Trades Tables, give us the quantity Trades Tables, give us the quantity as well as the value of cements im-
ported, and they show that the demer ported, and they show that the demand has been largely on the increase.

The following table gives our imports of Portland and Roman cements the Portland variety :-

The total importation in the seven years was 1,140,200 barrels, valued $\$ 455,445$ of customs dues paid to the but to this should be added the and insurance and the profits of the Government, the costs of freight by the consumers-an agrefits of importers, in reckoning the price paid seven years the increase in quantity not less than $\$ 3,250,000$. In these per cent. But a more striking tity was 123 per cent., and in value 113 per cent. But a more striking evidence of the growing demand is afford-
ed by a comparison of the 1880-81 and 1802-03 the imports of Portland and Roman cements for 1880-81 and 1892-93. In the former year their value was only $\$ 45,646$,
and in the latter it was $\$ 316,179$, cent. in twelve years. This is a reing an increase of nearly 600 per in any other article of Canadian rate that perhaps has not been equalled and is the demand likely to lian importation. What is the secret of it, The answer to likely to be maintained ?
term of very modern usuage on this be summed up in a very significant setting in of the era of uage on this continent, viz., good roads. The ed States, does era of good roads in this country, as well as in the Unitbeen learned on the subject ten years, but in that short period much has specialist and quite subject, and the street engineer is now as much of a mining engineer. The Roman ris way as the military engineer or the the traffic of two thousand years, have Europe, which have lasted out that the only sure way to make a have taught him the invaluable lesson foundation. But instead make a good road is to lay a good and strong constructing their by them in the construction ory roads, he has adopted the concrete used of whose walls have buct on temples and other public buildings, some by Agrippa, the friend as Gibbo of Augustus, the immortal monument of the Rotonda - is an edifice in assaulted by the Huns and Goths, it is still ingh ravaged by fire and years. Concrete is the street engineer's material for more than 1,900 his chief reliance in the making of it is material for street building, and natural cement, but the stronger is not Roman or any other kind of during the last five years not less and more durable Portland. In Toronto been used in making concrete for street construction, and cement have Mr. Rust tells me that not hydraulic cement "Up more than 4,000 barrels have been the native imported Portland. "Up to the last year or two," he says, "it was all the Dominion cement from Europe." In other towns and cities of in building sewerent is also being used in steadily increasing quantities that the sewers and streets, and the results are so uniformly good that the material promises to grow steadily in favor. It is almost certain will that for many years yet to come the demand for Portland cement will continue as experience proves the utility and permanency of the concrete roadbed,
But why should
Portland cement? We have in andent on foreign sources of supply for producing it. In scores of in Ontario abundance of raw material for tent and excellent scores of localities beds of white shell marl of large exlakes in whichent quality are found, some of them at the bottom of thickness of the dyriads of fresh water shells yet survive, to add to the on the sites the deposit as one generation follows another; others of them continual elevations long ago filled up with peaty mould or drained by continual elevations. This marl, if unmixed with sand, clay, peat, or other matter of mineral or vegetable origin, is almost pure carbonate of land cement. The ne principal material for the manufacture of Port ment, but in ell necessary proportion of clay is a matter of experi marl, tario have acquired theiret a right mixture. Our manufacturers in On
Mr. Rathbun
Mr. Rathbun told me that it cost him five years of testing, with the his works. Mr. thousand dollars Butchart also told me that it cost his company severa England-where he was admite of the best two experts in the constructiod as a special favor-and the service of produce a commercial Owen Sound Compan article. But the Rathbun Company and the they have been producing succeeded, and during the last two year quirement.
Mr. C. H. Rust, Deputy City Engineer of Toronto, makes this state "Since 1802 it, in a letter which I have just received from him:
Rathbun Co 1892 we have used a quantity of Portland cement made by the Lake. Both these panee Mills, and by the Owen Sound Co., at Shallow ed cements, and increaseds, and no doubt, when their facilities for manufacturing or facture." nearly all the cement used in this city will be of home manu-
The Ow
by fire, but it is understood that a new had the misfortune to lose its mill company has a large suitable clay for arge supply of raw material alongside of the works doubtless the capacity of the new mill immediately below the marl, and requirements of the trade.
Tank in the other Portland cement works in the Province are at Marl nearness to County of Hastings. The site was chosen because of it was put into the business, and presumably but although English capital enterprise had to pass through the delay before a successful The output of those three mill was made.
of them did not start until late in the year was 31,924 barrels, but one half the year. Had their late in the season, and another only worked hardly have supplied the quantity of Portland as great they could

E. Maliandaine, Hon. Treas.

Richard P. Sharp, M.S.A., N. Westminster

John Gerhard Tiarks, Victoria, Member
of Council.

C. Osborn Wickenden, Vancouver, President.

Cornelius T. Soule, Victoria, Vice-President.

Thos. Hooper, Victoria, Mem. of Council.

T. T. Honevman, Nanaimo, Mem. of Council

Alan E. McCartney, Vancouver, Member

Canada during the fiscal year 1892-3, and obviously therefore there is ample room for home manufacture to grow. With raw material so abundant and accessible, and with capital seeking new channels of investment, and labor seeking employment, why should we not produce in the country all the Portland cement that our market requires. An article of uniform quality will always be in request by customers, and with care on the part of the manufacturer there is no reason why he should not be successful in supplying a distinct brand. But as long as we are dependent on foreign makers we cannot hope to be supplied with cement of uniform quality, for where larger orders have to be filled it is a common practice even of large mill owners to buy lots from other manufacturers and so make a prompt shipment. The result is that there are as many brands as makers, and with cements of different quake a firstquick setting and some slow setting, it is hardly possiboided if orders are
rate concrete. This is a risk which may easily be avoider rate concrete. This is a risk which may easily be avoided if orders are placed at home, with the home manufacturer, and the good results obtained from our Ontario cements are no doubt due to the fact that orders are honestly made up, each manufacturer being jealous of his own reputation.

As regards the products of clay, it is not necessary that much should be said. Taking the various articles of common and pressed bricks, terra cotta, tile, sewer pipe, and pottery, the number of men earnings of $\$ 601,686$. The aggregate value of their products was $\$ 1,684,873$, or more than one-fourth of all the mineral products of the Province in the same year. This fact alone suffices to prove the importance of our clay industries ; yet it is obvious that they are capable of greater development. The manufacture of pressed brick and terra cotta began here only five years ago, and last year, in spite of the collapse in the building trade, the value of the output of six works was $\$ 217,373$. It gave employment to 224 workmen, and paid them wages to the amount of $\$ 80$,686. The improvement already noticeable in the architecture of our cities as a consequence of the use of pressed brick and terra cotta is bringing this mate-ial fast into favor, and it may be said that the earth affords no better building material than a properly burnt brick, and none which so readily lends itself to the production of handsome architectural effects. In the strong and fine-textured shales of our Hudson river and Medina formations, conveniently situated and easily quarried, Ontario is favored above most Provinces and States in America.

The same shales are also found to be suitable for the manufacture of sewer pipe, with proper mixtures, and last year the output of two establishments employed in this industry was $\$ 230,000$.

Another clay industry is now on the eve of commencement, and if successfully established it promises to be a great boon to our towns and cities, viz: the manufacture of vitrified brick for street paving. In Ohio, Illinois, Iowa and other American States, this has grown to be a very important industry, and it is supplying a material for street construction which on all points of merit is not equalled by any other material hitherto employed for the purpose. Many mistakes were committed by the first makers of paving brick, and there is much yet to be learned as to the clays or clay mixtures which give the best results, as well as to the proper degree and duration of heat to produce a hard, tough and impervious brick. But much is already known, and with careful experiments and close observation many works are enabled to produce with regularity a high percentage of paving brick of uniform quality from every charge of a kiln. A number of experiments have recently been made in Toronto, Hamilton and elsewhere in this Province, and although each expert will assure you that he alone knows the secret, and that no one else has the clays for a right mixture but himself, you may rest assured that in a matter of this sort the key and the ward are not so hard to match as the tribe of experts would have you believe. In several instances encouraging progress has been made, especially with the Medina and Hudson River shales.
We may, therefore, I think, look with confidence to an early beginning of the production of paving brick in Ontario ; and when that time comes we shall no longer be at the mercy of trust concerns like the owners of Pitch Lake asphalt, as illustrated the other day in the case of a contract for paving in the city of Hamilton. When we are producing Portland cement from our own shell marls and clays to the full extent in which it is required for street concrete, and paving brick from our own shales to cover the concrete, we shall be as independent as we ought to be in supplying ourselves with the materials of such everyday requirements as are called for in the building of good roads. In so do ing also, we shall be utilizing our raw materials of clay and lime, otherwise of no value, finding profitable investments for capital lying idle in the banks, and giving employment to hundreds, if not thousands, of men who for lack of work to do are finding it hard to win their daily bread.

With one suggestion to the professors and instructers in the School of Practical Science, Toronto, and the School of Mining, Kingston, I close. Reference has been made to the experiments conducted by the manufacturers of brick and cement, preliminary to the building of works to commence production on a commercial scale. These experiments demand patience, exactness and scientific method, as well as the use of costly appliances. Why should they not be taken up in our technical schools, where there are professors having the necessary expert knowledge and training, and the appliances for making tests and ascertaining results with unerring accuracy? The importance of the clay industry has been so well recognized by the State Legislature of Ohio, that a course of practical and scientific instruction in the art of clay-making and ceraof practical and scientific instruction in the art of clay-making and cera-
mics has been added to the educational work of the state University, and mics has bern added to the educational work of the state University, and
the first term of the department opened yesterday. Work of that character is as much needed in Ontario as in Ohio, and the professors of our scientific schools cannot too soon prepare to enter upon it.

discussion.

Mr. R. W. Prittie said he had been for a number of years interested in the brick industry, particularly in the manufacture of paving brick. This article was coming largely into use in the States, and he had seen pavements which had been down for 16,18 and 20 years, with but little repairs. It was giving the utmost satisfaction, and made a superior pavement in every respect, being smooth, lasting, easily cleaned, and affording a good foothold for horses. He was interested in a large vitrified brick factory which had been started at the Humber, near Toronto,
ast year, and was got partially under way when the financial crash on the other side affected the enterprise and brought it temporarily to a stop. He hoped, however, that the operations would yet be begun. It was the company's intention to put up a plant capable of turning out 50 millions of brick per annum, and employing 400 men.
Dr. A. P. Coleman, in reference to a remark in Mr. Blue's paper, thought it only fair to say on behalf of the School of Practical Science, that they had begun the work of testing cement, brick and similar materials. If provided with proper appliances, the authorities of the terials. If provided with proper appliances, the extensively in such work.
Mr. J. Latimer asked if there had been any development in fire clay,
Mr. Blue-Not in Ontario.
Mr. Bell-There are good deposits of fire clay in Nova Scotia, but they are not made use of.
Mr. J. M. Clarke said it was well known that the manufacture of articles like vitrified brick in Ontario had engaged the attention of outsiders more than the people of the province. Outsiders were now investigating the subject with the view of beginning the manufacture of paving brick here.

BEARING POWER OF FOUNDATIONS.

From the valuable note-book of Mr. E. L. Corthell, of the Western Society of Engineers, we have been permitted to extract the following data respecting the bearing power of foundations.

Clay.-From 2 to 8 or 9 tons per square foot, without allowance for friction.

Sand.- The different kinds vary greatly in bearing power. Sand mixed with loam will not bear more than 5 tons per square foot. 9.3 tons per square foot were placed on fine gravel and sand at Urk viaduct ; masonry piers on cylinders 4.8 inch diameter ; friction neglected.

In India, on coarse sand in deep foundations, not over 9 tons are used.
In experiments 20 tons have been put on sand withput measurable settlement.

Friction.-Side friction varies from 200 to 600 pounds per square foot.

All the above are in gross tons $=2,240$ pounds.-B. Baker, April 17, 1888.

Clay.-Black Friars Bridge, 5 tons per square foot. Settled badly.-Randall Hunt, Engineering and Building Record, June 23, 1888.

New London Bridge, 5 tons per square foot on piles, $=80$ tons per pile. Settled badly.

Newcastle-on-Tyne, I $1 / 2$ tons per square foot ; no settlement.
Fargo, Dakota, four-story bulding, $21 / 3$ tons per square foot; failed. Then $11 / 2$ tons per square foot ; no settlement.

Cleveland, new viaduct, 1 to 1.7 tons per square foot.
Washington Monument, 9 tons per square foot, inside edge. Clay and sand, 3 tons per square foot, outside edge.

Sand.-Coney Island pier, 5 tons per square foot.
New York Steam Company's chimney, 4 tons per square foot on fine sand settled.

Brooklyn Bridge anchorage, 4 tons per square foot.
Nantes Bridge, 6.8 tons per square foot ; settled.
Berlın, considered safe, 2.3 tons per square foot.
Sometimes used to 4.1 tons per square foot.
Albany Capitol, 2 tons per square foot; settled.
Cairo Bridge, fatigue weight :
Channel piers, 3.34 tons per square foot.
River Piers, 33.08 tons per square foot.
Friction on sides taken at 4,000 pounds per square foot; fine sand.

Sioux City, Pier III ; sand, 2.64 tons per square foot.
Soft Soil.-India, one ton per square foot used.-Journal of the Association of Engineering Societies.

To Test White Lead. - Those who desire to test in a practical way the merits of white lead will find some useful hints in the instructions issued by an American Association of Master Painters. Substantially it is as follows :- Coat a board primed in ochre with a mixture of one ounce of oil and two ounces of lead. Then put on a second coat over the entire face of board, excepting a small portion in the middle. When this is done, put a third coat over all, excepting another small space, with a mixture also of one ounce of oil and four ounces of lead. Allow one week to elapse between each coat, and paint the boards while in an upright position. The board will, when finished, have been painted as follows. In the middle there will be a narrow space showing ochre priming, and on the left of it another similar space of one coat of lead; on the right on the ochre priming space, as well as on the left of the one coat space, will be similar small spaces, each being covered with two coats, coass, and on the right and left respectively of these will be a larger space, covered with three coats. After the last coat has been on three or four days, place the boards where they will get a southern exposure, and if put over a roof at least two feet above same. If the boards are dry to the touch, they should be placed out of doors for a day or two between coats. The brush should be used to finish the mixing, and the boards should not be sandpapered. The test being one of comparison a separate board must be painted with each of the leads about to be tested. It will not be necessary to use a separate brush for each board if there are so many of them. Benzine is chosen as being more volatile than turpentine to wash out the brushes. Keep the brushes in oil when not in use. The test is intended principally as one of durability, and as after long exposure the covering qualities of the different leads will not be easily determined, they should be noted at the outset.

PLUMBERS' EXAMINATION PAPERS.

THE following are the examination papers used in the Exam inations in plumbing by the city and Guilds of London Insti-tute:-

ORDINARY GRADE.

1. (a) How would you make a reliable joint between a lead branch and an iron soil-pipe? (b) How would you make reliable joints in a stack of ron pipes receiving wastes from baths, sinks and used lavatories, with hot-water supply? (c) Describe the cements used for ordinary jointing purposes and their composition.
2. (a) Give the composition of ordinary and fine solder, and the melting point of each. (b) If a pot of solder is "poisoned," i.e. rendered porous or unworkable by the introduction of some foreign substance, how would you remedy it? (c) What fluxes are used for jointing copper, brass, lead and iron to lead?
3. Describe the process of autogenous soldering: when should it be used, and what are its advantages?
4. How should sheet lead be set out and cut in order to line a sink 2 feet long by I foot wide inside, 12 inches deep at back and sides, and six inches deep in front, with 7 lb . lead, turned over on top edges $11 / 2$ inches all around? Describe or show by sketch. What would be the total weight of the lead? What would be the total weight of the solder you would use?
5. Show what you consider the best possible arrangement of waste.pipe from a sink, bath or lavatory, with its discharge to drain.
6. Sketch various forms of defective traps with which you are acquainted, and also improved kinds you would recommend in place of same.
7. The well supply to cistern in an old house having permanently failed, it has become necessary to lay on the supply from
the town main: what alterations would have the town main: what alterations would have to be made in order to efficiently accomplish this?
8. The drain receiving large quantities of waste water from scullery sinks is frequently choked: what remedies would you suggest?
9. Enumerate the common defects found in waterclosets, which are bad in principle and construction, and show by sketch what kind of fittings you would suggest in place of same.
Io. Show or describe what you consider the most complete arrangement of waste-pipes and services for a range of three urinal basins with automatic flushing tank over, and proper surface drainage from floors, with the sizes of the various pipes?
II. What precautions would you take in fixing the water pipe (a) from a refrigerator where food is stored, (b) from a sink or lavatory?
10. Sketch a lead bend, elbow and set-off, and enumeraie the various tools required in the formation of same.

HONORS GRADE.

1. What cisterns and pipes would you recommend for the storage and distribution of (a) rain-water, (b) hard water, (c) seawater? State your reasons for such selection.
2. Describe the process of manufacture of milled sheet lead and pipe.
3. Show in the accompanying sketch of sectional house, having a water-closet on each floor, bath on first floor, lavatory on ground floor, and sink in basement, the plumbers' work required and the positions you would suggest for the above-mentioned fittings. Describe the form of each fitting you would use, and the size and the arrangements of the various service, soil and waste pipes.
4. Show on the accompanying, plan what arrangement you would adopt for a complete system of drainage for the house described above, and give the various sizes of pipes, \&c.
5. A water-pipe running alongside a leaking drain receives an injury: describe the circumstances under which sewage can be sucked into the pipe at the point of injury while the pipe is charged with water. A cistern kept charged with water is situated in the roof of a house having three stories. A service pipe from this cistern supplies a bath on the first floor and a bath on the ground floor. Under what circumstances can water in the bath on the first floor be made to discharge through this pipe into the bath on the ground floor?
6. Describe the principles of a common syphon, and state what is the greatest height a syphon will draw water when once set in action.
7. It is impossible to obtain a good fall to a system of house drains: what precautions would you recommend to prevent stoppage? What do you consider the best and also the least fall to be allowed for a 6 -inch main drain?
8. Describe or show by sketch what methods you would adopt for ventilating a water-closet apartment which is not placed next external wall, and give your reasons.
9. (a) Give some of the causes of "humming" noise in rising mains to cisterns. (b) What defects in a system of hot-water circulation will cause norses in the pipes, \&c.? (c) Give causes of concussion in pipes and their remedies.

Io. Describe or show by sketch the "cylinder" system of hotwater circulation and the "tank" sistem, and give the advantages and distdvantages of each: explain the reason of hot-water circulating in the pipes.
II. Show by plan and section how you would arrange a lead flat, 22 feet by 20 feet, giving size of bays and gutters and formation of approximate weight of the whole?
12. What precautions would you take for the protection of fittings and service-pipes from frost in a country house situated in
a very exposed position?

A HOUSE HEATING GAS FURNACE

At the recent Industrial

hibited by Mr. A. H. Dixon Exhibition in Toronto, there was exfurnace, the construction and moronto, a house heating gas described: The furnace has a large operandi of which are thus mitted to the burners on both a large fire chamber; the air is adin fine streams over the top of burners. The a perforated shield tion pass from fire chamber of burners. The products of combusly surrounds the fire ing of this drum is placed. Between the outer and inner casing of this drum is placed a partition which forms a flue and causes the product of combustion to pass four times around drum face of the outer and inner to chimney. Besides the large surof tubes are placed in the casing or sides of the drum, a series top and bottom heads the drum, which extend through both ing the winding flue, forming and through the partition formas the cold air enters into the ang ather large heating surface, out heated at the top and passes into end of the flues, and comes The evaporating pan is placed into the dome of the furnace. connecting to an outside reservoir; top of the fire chamber, from the inner pan distributes eventy in this way the moisture leading from furnace. The dome of the furnace is provided with an opening and allowing ready access to the water provided with

ENAMELLING CAST IRON.

It is noted as a somewhat singular fact that there are not more than two processes for enamelling cast iron, notwithstandOne of these is the hot process in put forth in this direction. vivid heat, is powdered with a fin which the iron, heated to a distributed with a sieve, then a flux powder, borosilicate of lead, it is powdered afresh with heated, and, when the flux fuses, of the enamel ; but this operation is soluble, forming the glaze not adapted to large articles or for decoratio with danger, and is cess, which meets the objections named, consists in second procoating the article first with magnetic oxide, consists in dressing or borosilicate of lead, coloured by metallic , then dipping it in added a little pipeclay, in order to getalic oxides, to which is article thus covered cold, by dipping or with more body. The the furnace, the enamel adhering and with brushes, is put into furnace temperature used by enamellers, vitrifying at the usual ing of coloured enamel with a brush ens, and by putting a coating of coloured enamel with a brush on a first coat simply plain,
it is possible to make any decorations desired.

CONCERNING CHIMNEYS.

Americans do not make as much of chimneys as do most ly honest about his chimnitries. The builder is not sufficientprominence, overloads thimneys. Either he gives them undue them as though he were afraid of them sted material, or he treats sterdam are beautiful indeed and arr. The chimneys of Amesqueness of that city. Likewise in Pareatly to the picturtreated in a way somewhat more decoras, while they are there the rest of the world, they are handled in an honest way, no effort being made to conceal them, and their in an honest way, no effort artists. There is often the idea their decorative works is that of tain a symmetrical relation to the rest chimney should mainever, in no section of the world symmetry in chimneys succesful ; we find a high regard for most beautiful chimneys incessful ; on the contrary, we find the allowed to have largely their own way the world where they are in unexpected places and unexpected coming out of a building the hand of an artist.-The Clay Worker.

A very
A very important conference on the practical setting and
workmanship of artisians is Trades Conferenartisians is likely to arise out of the Building Springgardens, London. It will pecently at the County Hall, the motion of Mr. Gay, It will perhaps be recollected that on Federation, it was decided chairman of the London Building Tiades the whole question of apprenticeship committee to consider carefully considered the matter the preliminary report, which it is propost has been prepared of at a general conference of all it proposed should be discussed bodies that evince a desire to the trade unions and industrial the following: To consider the existing Among the subjects are to obtain a thorough training as a skilling opportunities for a boy apprenticeship-its gradual discontinuance artisian-viz., (a) restoration; (b) technical instruction-its and its possible whether theoretical or practical inction-its proper direction, classes and their comparative ut, the character of the existing classes with relation to the needs the supervision of the existing of the district, the character of classes to men actually engaged in the various restriction of the question of assisting the various teaching bodios trades, and the

TWROUGHT IRON PANEL, I6 HOSPITAL STREET

A WILLING WITNESS

TO THE BENEFITS DERIVED
FROM ADVERTISING

GEORGE CLATWORTHY.

Weneral agent for ..
Willer's Patent and Wilson's cot Mow Yorki Patent Rolling Blinds
English Venetian Blinds
Rolling Steel Shutters
6 Reiliding Blinds,
Syen weste faly 6 1894 le. A. Mortiner En Ganaduan ancturemranilen bets
Sran Siv,
Bering au ciruition in yom Paper if pame yeavs danding: Shame revilto abtained therefrow,
about ym thalf go leceuce to arventije, thurmese at onve dectives. In you viow to gmo (llor wowth) Hiy afina ain aphenex in the arolitiet t puilesion \& beverts as a dhico sesult enguries are comung in from ale gneding if ar distont jomith firm
 un the buert.
fies of the vatue of you a buth gose pideo
 Yaus bro.lolaturestar

A NEW STONE ELEVATOR.
The Engineering and Mining Journal for August 4th describes the Jeffrey stone elevator for the handling of crushed stone, ore, broken coal, and similar materials. An illustration shows the elevator used in connection with a stone crusher, receiving the product directly from the delivery chute of the crusher and discharging it into a revolving screen at the top. The elevator is constructed of two strands of steel chain covered completely with a coninuous line of buckets, which prevents the gritty material from coming in contact with the chain and the other principal wearing parts of the machinery, thus greatly increasing its life. The buckets are made of heavy steel with riveted seams, in sizes to suit the capacity. The peculiar shape of these buckets makes it possible to operate the elevator at a very slow speed, at the same time effectıng a cleaner discharge than is produced by high-speed machines, to say nothing of the saving of wear and tear. At suitable intervals wrought-iron cross-bars are attached to the chain, carrying rollers at each end, extending outside of the buckets, which support the weight of the chain, bucket, and the material ; this causes a roller friction, reducing the strain on the machinery to a minimum and requiring the least possible amount of power.

Here are a few facts about the Chicago Masonic Temple: The frame of the building is of steel bolted together, 4,700 tons of steel having been used. The walls are of stone and pressed brick with marble and bronze trimmings and terra cotta partitions, 2,200 tons of the latter entering into the work. There are eighty-eight miles of electric wiring, and the plate glass would, if laid flat on the ground, cover four acres. The pumping apparatus used in running the battery of fourteen elevators would easily supply water for a city of 60,000 souls. The elevators run at a rate of nine miles an hour and each elevator runs every year 123,136 miles. There are twenty-one stories and on the top floor is an observatory and roof garden.

ARCHITECTS and ENGINEERS
 The NEW COLOR PROCESS CO.

214 St. James St., Montreal
for Instantaneous Reproductions in Colors of Drawings and Plans
WILL SAVE YOU . . .
MONEY $\begin{gathered}\text { Copies on Manilla Paper } \\ 4 c . \text { per sq. foot. }\end{gathered}$
LABOR No recoloring by hand
TIME We print without the aid of
TME the sun.
ERRORS We give exact fac-
TRACING CLOTH
We print direct from originals on paper.
DISSATISFACTION
We guarantee un:formly perfect work
Originals sent from a distance returned with copies same day as received.

Hales Pateont Steef Lath

约HAS NO EQUAL IN ANY PARTICULAR

. . . Used in more important buildings . .
THAN . . .
all other styles of metal lathing combined.

SOLE MANUFACTURERS
 The Metallic Roofing Co.
 OF CANADA, LIMITED.

BRANCH OFFICE :

706 Craig Street MONTREAL

82 to 90 Yonge Street TORONTO

The Wall Tie

WEESE'S PATENT WALL BRACE OR TIE
Warm, Dry, Fireproont
Warm, Dry, Fireproof Buildings
Churches, Public Buildings, Hotels, Dwellings, etc.
THE Minvactumen av.
THE MAC MACHINE CO,
вहLLEvLLLE

Don Valley Pressed Bricks

TVYO HIGHEST AMYARDS AT CHYCAGO Gold Medal for Bricks -:- Gold Medal foago
 "In our est

 be compared to those manufactured are the Exhibition Grounds to60 Adelaide Street East

PAGES

MISSING

