IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommageteCovers restored and/or laminated/
Couverture restaurés et/ou pelliculéeCover title missing,
Le titre de couverture manque
Coloured maps/
Cartes géographiquas en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relií avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Lareliure serrée peut causer de l'omtre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées st/ou pelliculées
Pages aisco!oured, stained or foxed/
Pages décolorées, tachatées ou piquèes
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule edition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc., ent été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessolis.

The copy filmed here has been reproduced thanks to the generosity of:

D. B. Weldori Library

University of Western Ontario
(Regional History Room)
The images appearing here are the best quallty possible considering the condition and legibility of the origina: copy and in keeplng with the filming contract specifications.

Original copies in printed peper covers ere filmed beginning with the front cover and ending on the last paga with a printed or Illustrated impriszion, or the back cover when appropriate. All other original copies are flimed beginning on the first page with a printed or lllustrated impression, and ending on the last page with a printed or illustrated Impression.

The last racorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meening "END"). whichaver applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entrely included in one exposure are fllmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as requirsd. The following dlagrems illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:
D. B. Weidon Library

University of Western Ontario
(Regional History Room)
Les images suivantes ont été reproduites avac la plus grand soin, compte tenu de la condition at de la netteté da l'exemplaire filmé, et an conformité avec les conditions du contrat da filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commançant par le premier plat at en terminant soit par la dernidre page qui comporta une empreinte d'lmpression ou d'illustration, soit par le sacond piat, selon le cas. Tous les autres exemplaires originaux scint filmós en commençant par la premidre page qui comporta une empreinte d'impression ou d'illustration et on tarminant par la derniére page qui comporta une talla emprainte.

Un des symboles suivants apparaitra sur la dernid̀re image de chaqua microfiche, selon la cas: le symbole \rightarrow signifie "A SUIVRE", la symbole $\boldsymbol{\nabla}$ signifle "FIN".

Las cartes, plenches, tableaux, otc., peuvant êtra filmés à des taux de réduction différants. Lorsque le document ast trop grand pour ètre reproduit en un saul cllché, il ast filmé à partir de l'angle supérieur gaucha, de gaucha à droita. at de haut en bas, en pranant la nombre d'ímages nécessalre. Les diagrammes suivants illustrent la méthode.

Alller \& Cos Exurational serics.

Elementary Algebra
 - BY -

J. Hamblin smith, m.a.

0: gonville and catus colleze, and late therurer at ST. Fater's colleae, cambudaz

With appendix, By

ALFRED BAKER. B.A.

 MATU. TUTOR UNIV. COL. TORONTO.6TH C.LNADIAN COPYRIGHT EDILION.

Authonized by the Education Desavimbut, Onta, io. A:thooized bu the: Courcil of Public Instruction, Q:sebeco Recomunended by tite Senzte of the Univ. of Halijax.

PRICE, 90 CENTS.

TORONTD:
ADAM MILLER \& CO. 1879.

Entered according to the Act of Parliament of the Dominion of Canada, in the year one thousand eight hundred and seveniy. seven, by Adam Miller \& Co., in the Office of the Mine ister of Agrizalture.

PREFACE

Tac design of this Treatise is to explain all that is commonly included in a First Part of Algebra. In the arrangement of the Chapters I have followed the advice of experienced Teachers. I have carefully abstained from maki:ng extracts from books in common use. The only work to which I am indelted for any material assistance is the Algebra of the late Dean Peacock; which I took as the model for the commencement of my Treatise. The Examples, progressive and easy, have been sclected from University and Collcge Examination Papers and from old English, French and German works. Much care has been taken to secure accuracy in the Answers, but in a collection of more than 2300 Examples it is to be feared that some errors have yet to be detected. I shall be grateful for having my attention called to them.

I have published a book of Miscellaneous Exercises adapted to this work and arranged in a progressive order so as to supply constant practice for the student.

I have to express my thanks for the encouragement and advice received by me from many correspondents; and a special acknowledgment is due from me to Mr. E. J. Gross of Gonville and Caius College, to whom I am indebted for assistance in many parts of this work.

J. HAMBLIN SMITH

OAMBRIDGE, 1575.

CONTENTS.

Eis: P.
I. Addition and Subtraction pags
11. Mulfiplication 7
III. Invoi.ution 17
IV. Division 29
V. On the Resolution of Expressions into Factors 33
VI. On Simple Equations. 43
Vil. Problems leading to Simple Equations 57
Vifi. On the Miethud of finding the Highest Common 61Factor
IX. Fractions 67
غ. The Lowest Comson Multiple 76
88Xi. On Addition and Subtraction of Fractions
Xil. On Fractional Equations 94
Xili. Probi mis in Fractional Equatioks 105
XiV. On Miscellaneous Fractions 114
126XV. Simultaneous Equations of the First Degree
142XVI. Problems rfsulting in Simultaneous EQuations
XVII. On Square Root. 154
XVIII. On Cube Root 163
XIX. Quadratic Equations 169
XX. On Simultaneous Equations involving Quadratics 174
XXI. On Problems resulting in Quadratic Equations 186
XXII. Indeterminate Equations 192
XXili. The Theory of Indices 196
XXIV. On Surds 201
XizV. On Equations involving Surds ${ }^{2}{ }_{3}$

E
I.
1.

BOLS
may b
2.
are, in
alphab
'Thu
3.
all nun process

Thus
and so
4. T
tion of
Thus
and
5. T]
${ }^{\infty}$ the res
[${ }_{2}$

I. ADDITION AND SUBTRACTION.

1. Algebra is the science which teaches the use of sTmBoLs to denote numbers and the operations to which numbers may be subjected.
2. The symbols emploged in Algebra to denote numbers are, in addition to those of Arithmetic, the letters of some alphabet.
Thus a, b, c
$x, y, z: \alpha, \beta, \gamma$ \qquad $: a^{\prime}, b^{\prime}, c^{\prime}$ \qquad read ^ dash, b dash, c dash \qquad $: a_{1}, b_{1}, c_{1}$ read a one, b one, c one are used as symbols to denote numbers.
3. The number one, or unity, is taken as the foundation of all numbers, and all other numbers are derived from it by the process of addition.
Thus two is defined to be the number ihat results from adding one to one;
three is defined to be the number that results from adding one to two;
four is defined to be the number that results from and so on. adding one to three;
4. The symbol + , read plus, is used to denote the operation of Addition.
Thus $1+1$ symbolizes that winich is denoted by 2,
and $2+1$ 3,
5. The symbol $=$ stands for the words "is equal to," or ${ }^{\alpha}$ the result is."
[8A.]

Thus the definitions given in Art. 0 may be presented in an algebraical form thus:

$$
\begin{aligned}
& 1+1=2 \\
& 2+1=3, \\
& 3+1=1
\end{aligned}
$$

6. Since
$2=1+1$, where unity is written wice,
$3=2+1=1+1+1$, whele unity is written tirace times, $4=3+1=1+1+1+1$ four times,
it follows that
$a=1+1+1 \ldots \ldots+1+1$ with unity written a times,
$b=1+1+1 \ldots \ldots+1+1$ with unity written b times.
7. The process oi addition in Arithmetic can be presented in a shorter form by the use of the sign + . Thus if we have to add 14,17 , and 23 tog. "ler we cinl represent the process thus:

$$
14+17+23=54
$$

8. When several numbers are added together, it is indifferent in what order the numbers are taken. Thus il 14,17 , and 23 be added together, their sum will be the same in whatever order they be set down in the common withmetical process:

14	14	17	17	24	23
17	23	14	23	14	17
23	17	23	14	17	14
-	-	-	-	-	-
54	54	54	54	54	54

So also in Algebra, when any number of symbols are added
rati 'I nect
the sake of brevity represented by $2 a$, the tigure prefixel io the symbul expressing the number of times the number denoted by a is repeated.
Similarly $a+a+a$ is represented by $3 a$.
Hence it follows that

$$
\begin{aligned}
& 2 a+a \text { will be represented by } 3 a, \\
& 3 a+a \text {.................... by } 4 a \text {. }
\end{aligned}
$$

10. The symbol -, read minus, is used to denote the operation oi Subtraction.
Thus the operation of subtracting 15 from 26 and its connection with the result may be brielly expressed thus;

$$
26-15=11 .
$$

11. The result of subtracting the number b from the num. be‘ a is represented by

$$
a \cdots b .
$$

Again $a-b-c$ stands for the number obtained by taking 0 from $a-b$.
Also $a-b-c-d$ stands for the number obtained by taking d from $a-b-c$.
Sunce we cannot lake away a greater number from a smaller, the expression $a-b$, where a and b represust numbers, can denote a possible result only when a is not less than b.
So also the expression $a-b-c$ can denote a possible result only when the number obtained by taking b from a is not less than c.
12. A combination of symbols is termed an algebraical expression.
The parts of an expression which are connected by the symbols of uperation + and - are called Terms.
Compound expressions are those which have more than one term.

Thus $a-b+c-a$ is a compound expression made up of four terms.

When a compound expression contains

$$
\begin{aligned}
& \text { tivo terms it is called a Binomiul, } \\
& \text { three Trinomial, } \\
& \text { four or more Alultinomial. }
\end{aligned}
$$

Terms which are preceded by the symbol + are called positive terms. Terms which are preceded by the symbol - are called negative terins. When no symbol precedes a term the symbol + is understood.

Thu' in the expression $a-b+c-d+e-f$

$$
\begin{aligned}
& a, c, e \text { are called positive terms, } \\
& b, d, f \ldots \ldots \text { negative }
\end{aligned}
$$

The symbols of operation + and - are usually calied positive and negative Signs.
13. If the number 6 be added to the number 13, and if 6 be taken from the result, the final result will plainly be 13.
So also if a number b be added to a number a, and if b be taken from the result, the final result will be a : that is,

$$
a+b-b=a \text {. }
$$

Since the operations of addition and subtraction when performed by the same number neutralize each other, we conclude that we may obliterate the same symbol when it presents itself as a positive term and clso as a negative term in the sume expression.
Thus

and | $a-a=0$, |
| ---: |
| $a-a+b=b$. |

14. If we have to add the numbers 54,17 , and 23 , we may first add 17 and 23 , and add their sum 40 to the number 54 , thus btaining the fimal result 94 . This process may be represented algebraically by enclosing 17 and 23 in a Bracket (), thiss:

$$
54+(17+23)=54+40=94
$$

15. If we have to sultract from 54 the sum of 17 and 23 , the process may be represented algebraically thus:

$$
54-(17+23)=54-40=14
$$

16. If we have to add to 54 the difference between 23 and 17 , the process may be represented algebraically thus:

$$
54+(23-17)=54+6=60 .
$$

17. If we have to subtract from 54 the difference between 23 and 17 , the process may be represented algebraically thus :

$$
\therefore 4-(23-17)=54-6=48
$$

18. The use of brackets is so frequent in Aigebra, that the rules for their removal and introduction must be carefully considered.

We shall first treat of the removal of brackets in cases where symbols supply the places of numbers corresponding to the arithmetical examples considered in Arts. 14, 15, 16, 17.

Case I. To add to a the sum of b and c.
This is expressed thus : $a+(b+c)$.
First add b to a, the result will be

$$
a+b
$$

This result is too small, for we have to add to a a number greater than b, and greater by c. Hence our final result will be obtained by adding c to $a+b$, and it will be

$$
a+b+c
$$

Case II. To take from a the sum of b and a
This is expressed thus : $a-(b+c)$.
First take b from a, the result will be

$$
a-b
$$

This result is too large, for we have to take from a a number greater than b, and greater by c. Hence our final result will be oltained by taking c from $a-b$, and it will be

$$
a-b-c
$$

Case III. To add to a the difference between b and a_{0} This is expressed thus : $a+(b-c)$.
First add b to a, the result will be

$$
a+b
$$

This result is too large, for we have to add to a a number less than b, and less by c. Hence our final result wiil be obtained by taking c from $a+b$, and it will be

$$
a+b-c
$$

Case IV. To take from a the difference between b and c. This is expressed thus : $a-(b-c)$.
First take b from a, the result will be

$$
a-b
$$

This result is too small, for we liave to take from a a number less than b, and less by c. Hence our final result will be obtained loy adding c to $a-b$, and it will be

$$
a-b+c
$$

Note. We assume that a, b, c represent such numbers that in Case II. a is not less than the sum of b and c, in Case III. b is not less than c, and in Case IV. b is not less than c, and a is not less than b.
19. Collecting the results oltained in Art. 18, we have

$$
\begin{aligned}
& a+(b+c)=a+b+c \\
& a-(b+c)=a-b-c \\
& a+(b-c)=a+b-c \\
& a-(b-c)=a-b+c
\end{aligned}
$$

From which we obtain the following rules for the removal of a bracket.

Rule I. When a bracket is preceded by the sign + , remove the bracket and leave the signs of the terms in it unchanged.

Rule II. When a bracket is preceded by the sign -, remove the bracket and change the sign of each term in it.

These rules apply to cases in which any number of terms are included in the bracket.

Thus

$$
a+b+(c-d+e-f)=a+b+c-d+e-f
$$

and

$$
a+b-(c-d+e-f)=a+b-c+d-e+f .
$$

20. The rules given in the preceding Article for the removal of brackets furnish corresponding rules for the introduction of brackets.

Thus if we encloce two or more terms of an expression in a bracket,
I. The sign of each term remains the same if + precedes the bracket
II. The sign of each term is changed if - precedes the bracket.

Ex.

$$
\begin{aligned}
& a-b+c-d+c-f=a-b+(c-d)+(e-f), \\
& a-b+c-d+e-f=a-(b-c)-(b-c+f) .
\end{aligned}
$$

ers that SE III. , and a
oral of
ign + s in it
ign tcrms
the re-introon in a

+ predes the

21. We may now proceel to give rules for the Addition and Subtraction of algebraical expressions.

Suppose we have to add to the expression $a+b-c$ the expression $d-e+f$.

$$
\begin{aligned}
\text { The Sum } & =a+b-c+(l-e+f) \\
& =a+b-c+d-c+f(\text { by Art. 19, Rule I.). }
\end{aligned}
$$

Also, if we have to subtract from the expression $a+b-c$ the expression $d-e+f$.

$$
\begin{aligned}
\text { The Difference } & =a+b-c-(d-e+f) \\
& =a+b-c-d+e-f \text { (by Art. 10, Rule II.). }
\end{aligned}
$$

We might arrange the expressions in each case under each other as in Arithmetic: thus
$\begin{array}{cc}\text { To } a+b-c & \text { From } a+b-c \\ \text { Add } d-e+f \\ \text { Sum } \frac{\text { Take } a-e+f}{a+b-c+d-e+f} & \text { Difference } a+b-c-d+e-f\end{array}$ and then the rules may be thus stated.
I. In Addition attach the lower line to the upper with the signs of both lines unchanged.
II. In Subtraction attach the lower line to the upper with the signs of the lover line changed, the signs of the upper line being unchanged.

The following are examples.
(1)

$$
\begin{aligned}
& \text { 1) } \begin{array}{c}
\text { To } a+b+9 \\
\text { Add } a-b-6 \\
\text { Sum } \overline{a+b+9}+a-b-6 \\
\text { and this sumı }=a+a+b-b+9-6 \\
=2 a+3
\end{array}
\end{aligned}
$$

For it has neen shown, Art. 9, that $a+a=2 a$, and, Art. 13, that $b-3=0$.
(2)

$$
\begin{gathered}
\text { From } a+b+9 \\
\text { Take } a-b-6 \\
\text { Remainder } a+b+9-a+b+6 \\
\text { and this remainder }=2 b \div 15
\end{gathered}
$$

22. We have worked out the examples in Art. 21 at full length, hut in practice they may be abbreviated, by combining the symbols or digits by a mental process, thus

To $c+d+10$	From $c+d+10$
Add $c-d-7$	
Sum $2 c+3$	Take $c-d-7$

23. We have said that

$$
\text { instead of } a+a \text { we write } 2 a
$$

......... $a+a+a$......... $3 a$,
and so on.
The digit thus prefixed to a symbol is called the coefficient of the term in which it appears.
24. ${ }^{*}$ Since

$$
\begin{aligned}
3 a & =a+a+a \\
\text { and } 5 a & =a+a+a+a+a \\
3 a+5 a & =a+a+a+a+a+a+a+a \\
& =8 a
\end{aligned}
$$

Terms which have the same symbol, whatever their coefficients may be, are called like terms: those which have different symbols are called untike terms.

Like terms, when positive, may be combined into one by alding their cocfficients together and subjoining the common symbiol : thus

$$
\begin{aligned}
& 2 x+5 x=7 x \\
& 3 y+5 y+8 y=16 y
\end{aligned}
$$

25. If a term appears without a cocfficient, unity is to be taken as its coefficient.

$$
x+5 x=6 x .
$$

26. Negative terms, when like, may be combined into ons term with a negative sign prefixed to it by adding the coelficients and subjoining to the result the common symbol.

Thus

$$
\begin{aligned}
2 x-3 y-5 y & =2 x-8 y \\
\text { for } 2 x-3 y-5 y & =2 x-(3 y+5 y) \\
& =2 x-8 y .
\end{aligned}
$$

So again

$$
3 x-y-4 y-6 y=3 x-11 y
$$

1 at full mbining
27. If an expression contain two or more like terms, some being positive and others negative, we must first collect all the positive terms into one positive term, then all the negative terms into one negative term, and finally combine the two remaining terms into one by the following process. Subtract the smaller roefficient from the greater, and set down the remainder with the sign of the greater prefixed and the common symbol attached to it.

EX.

$$
\begin{aligned}
& 8 x-3 x=5 x \\
& 7 x-4 x+5 x-3 x=12 x-7 x=5 x \\
& a-2 b+5 b-4 b=a+5 b-6 b=a-b
\end{aligned}
$$

23. The rules for the combination of any number of like terms into one single term cnable us to extend the application of the rules for Addition and Subtraction in Algelbra, and we proceed to give some Examples.

ADDITION.

(1) $a-2 b+3 c$
(2) $5 a+7 b-3 c-4 d$
$\frac{.6 a-7 b+9 c+4 d}{11 a+6 c}$

The terms containing b and d in Ex. (2) destroying one anothes.
(3) $7 x-5 y+4 z$
$x+2 y-11 z$
$3 x-y+5 z$

- $\frac{5 x-3 y-z}{16 x-7 y-3 z}$
(4) $6 m-13 n+5 p$
$8 m+n-9 p$
$m-n-p$
$\frac{m+2 n+5 p}{16 m-11 n}$
SUBTRACTION.
(1) $5 a-3 b+6 c$
(2) $3 a+7 b-8 c$
$\frac{3 a-7 b+4 c}{14 b-12 c}$
(3) $5 a-6 b+2 c$
(4) $x-y+z$
$\frac{x-y-z}{2 z}$
(5) $3 x+7 y+12 z$
$\frac{5 y-2 z}{3 x+2 y+14 z}$
(6) $\begin{array}{r}7 x-19 y-14 x \\ 6 x-24 y+9 z \\ \hline x+5 y-23 z\end{array}$

29. We have placed the expressions in the examples given in the preceding Article under each other, as in Arithmetic, for the sake of clearness, but the same operations might be exhibited by means of signs and brackets, thas Examples (2) of cach rule might have been worked thus, in Addition,

$$
\begin{aligned}
& 5 a+7 b-3 c-4 d+(6 a-7 b+9 c+4 d) \\
= & 5 a+7 b-3 c-4 d+6 a-7 b+9 c+4 d \\
= & 11 a+6 c ;
\end{aligned}
$$

and, in Sultraction,

$$
\begin{aligned}
& 3 a+7 b-8 c-(3 a-7 b+4 c) \\
= & 3 a+7 b-8 c-3 a+7 b-4 c \\
= & 14 b-12 c .
\end{aligned}
$$

EXAMPLES:-1.

Simplify the following expressions, by combining like symbols in each.

1. $3 a+4 b+5 c+2 a+3 b+7 c$.
2. $4 a+5 b+6 c-3 a-2 b-4 c$.
3. $6 a-3 b-4 c-4 a+5 b+6 c$.
4. $8 a-5 b+3 c-7 a-2 b+6 c-3 a+9 b-7 c+10 a$.
5. $5 x-3 a+b+7+2 b-3 x-4 a-9$.
6. $a-b-c+b+c-d+d-a$.
7. $5 a+10 b-3 c+2 b-3 a+2 c-2 a+4 c$.
m
ins
tin
wl
sar
is
bra
I

A

EXAMPLES:-ii. ADDITION.

Add together

1. $\quad u+x$ and $a-x$.
2. $a+2 x$ and $a+3 x$.
3. $\quad a-2 x$ and $2 a-x$.
4. $3 x+7 y$ and $5 x-2 y$.
5. $a+3 b+5 c$ and $3 a-2 b-3 c$.
6. $a-2 b+3 c$ and $a+2 b-3 c$.
7. $1+x-y$ and $3-x+y$.
8. $2 x-3 y+4 z, 5 x-7 y-2 z$, and $6 x+9 y-8 z$.
9. $2 a+b-3 x, 3 a-2 b+x, a+b-5 x$, and $4 a-7 b+6 x$.

EXAMFTES.-iii. SUBTRACTION.

1. Fron $a+b$
2. $\ldots \ldots .3 x+y$
3. $.2 a+3 c+4 l$
4. $x+y+z$
les given ithmetic, ht be exles (2) of
ke sym-
5. From $m-n+r$ take $m-n-r$.
6. $\ldots \ldots . a+b+c \quad \ldots \ldots a-b-c$.
7. $\quad \ldots . .33 a+4 b+5 c \quad \ldots \ldots .2 a+7 b+6 c$.
8. $3 x+5 y-4 z \quad \ldots . .3 x+2 y-5 z$.
9. We have given examples of the use of a bracket. The methods of denoting a bracket are various; thus, besides the marks (), the marks [], or $\}$, are often employed. Sometimes a mark called "The Vinculum" is drawn over the symbols which are to be connected, thus $a-\overline{b+c}$ is used to represent the same expression as that represented by $a-(b+c)$.

Ofien the brackets are made to enclose one another, thus

$$
a-[b+\{c-(d-\overline{e-f})\}] .
$$

In removing the brackets from an expression of this kind it is best to commence with the innermost, and to remove the brackets one by one, the outermost last of all.

Thus

$$
\begin{aligned}
& a-[b+\{c-(d-\overline{e-f})\}] \\
= & a-[b+\{c-(d-c+f)\}] \\
= & a-[b+\{c-d+e-f\}] \\
= & a-[b+c-d+e-f] \\
= & a-b-c+d-e+f .
\end{aligned}
$$

Again

$$
\begin{aligned}
& 5 x-(3 x-7)-\{4-2 x-(6 x-3)\} \\
= & 5 x-3 x+7-\{4-2 x-6 x+3\} \\
= & 5 x-3 x+7-4+2 x+6 x-3 \\
= & 10 x
\end{aligned}
$$

EXAMPLES.-iv. BRACKETS.
Simplify the following expressions, combining all like quantities in each.
I. $a+b+(3 a-2 b)$.
2. $a+b-(a-3 b)$.
3. $3 a+5 b-6 c-(2 a+4 b-2 c)$.
4. $a+b-c-(a-b-c)$.
5. $14 x-(5 x-9)-\{4-3 x-(2 x-3)\}$.

ง. $4 x-\{3 x-(2 x-\overline{x-a})\}$.
7. $15 x-\{7 x+(3 x+\overline{a-x})\}$.
> 8. $a-[b+\{a-(b+a)\}]$.
> 9. $6 a+[4 a-\{3 b-(2 a+4 b)-22 b\}-7 b]-[7 b+\{8 a$
> $-(3 b+4 a)+8 b\}+6 a]$.
> 10. $b-[b-(a+b)-\{b-(b-\overline{a-b})\}]$.
> 11. $2 c-(6 a-b)-\{c-(5 a+2 b)-(a-3 b)\}$.
> 12. $2 x-\{a-(2 a-[3 a-(4 a-[5 a-(6 a-x)])])\}$.
> 13. $25 a-19 b-[3 b-\{4 a-(5 b-6 c)\}]$.
31. We have hitherto supposed the symbols in every expression used for illustration to represent such numbers that the expressions symbolize results which would be arithmetically possible.

Thus $a-b$ symbolizes a possible result, so long as a is not less than b.

If, for instance, a stands for 10 and b for 6 , $a-b$ will stand for 4.
But if a stands for 6 and b for 10 ,
$a-b$ denotes no possible resnlt, because we cannot take the number 10 from the number 6 .
But though there can be no such a thing as a negative number, we can conceive the real existence of a negative quantity.

To explain this we must consider
I. What we mean by Quantity.
II. How Quantities are measured.
32. A Quantity is anything which may be regarded as being made up of parts like the whole.
Thus a distance is a quantity, because we may regard it as made up of parts each of themselves a distance.
Again a sum of money is a quantity, because we may regard it as made up of parts like the whole.
33. To measure any quantity we fix upon some known quantity of the same kind for our standard, or unit, and then any quantity of that kind is measured by saying how many times it contains this unit, and this number of times is called the meanure of the quantity.
uро
by
the

For example, to measure any distance along a road we fix upon a known distance, such as a mile, and express all distances by saying how many times they contain this unit. Thus 16 is the measure of a distance containing 16 miles.

Again, to measure a man's income we take one pound as our unit, and thus if we said (as we often do say) that a man's income is 500 a year, we should mean 500 times the unit, that is, $f^{\prime}, 00$. Unless we knew what the unit was, to say that a man's income was 500 would convey no definite meaning : all we should know would be that, whatever our unit was, a pound, a dollar, or a franc, the man's income would be 500 times that mit, that is, $£ 500,500$ dollars, or 500 francs.
N.B. Since the unit contains itself once, its measure is unity, and leence its neme.
34. Now we can conceive a quantity to be such that when put to another quantity of the same kind it will entirely or in part neutralize its effect.

Thus, if I walk 4 miles towards a certain object and then return along the same road 2 miles, I may say that the latter distance is such a quantity that it neutralizes part of my first journey, so far as regards my position with respect to the point from which I started.

Again, if I gain $£ 500$ in trade and then lose $£ 400$, I may say that the latter sum is such a quantity that it neutralizes part of ny first gain.

If I gain $£ 500$ and then lose $£ 700$, I may say that the latter sum is such a quantity that it neutralizes all my first gain, and not only that, but also a quantity of which the absolute value is $£ 200$ remains in readiness to neutralize some future gain. Regarding this $£ 200$ by itself we call it a quantity which will have a subtractive effect on subsequent profits.
Now, since Algebra is intended to deal with such questions in a general way, and to teach us low to put quantities, alike or opposite in their effect, together, a convention is adopted, founded on the additive or subtractive effect of the quantities in question, and stated thus:
"To the quantities to be added prefix the sign + , and to the quantities to be subtracted prefix the sign -, and then write down all the quantities involved in such a question con nected with these signs."

Thms, suppose a man to trade for 4 years, and to gain a pounds the first year, to lose b pounds the second year, to sain c pounds the third year, and to lose d pounds the fourth year.
The additive quantities are here a and c, which we are to write $+a$ and $+c$,
The subtractive quantities are here b and d, which we are to write $-b$ and $-d$,

$$
\therefore \text { Result of trading }=+a-b+c-d
$$

35. Let us next take the case in which the gain for the first year is a pounds, and the loss for each of three subsequent years is a pounds.
$\begin{aligned} \text { Result of trading } & =+a-a-a-a \\ & =-2 a .\end{aligned}$
Thus we arrive at an isolated quantity of a subiractive nature.
Arithmetically we interpret this result as a loss of $£ 2 a$.
Algebraically we call the result a negative quantity.
When once we have admitted the possibility of the independent existence of such quantities as this we may extend the application of the rules for Addition and Subtraction, for
I. A negative quantity may stand by itself, and we may then add it to or take it from some other quantity or expression.
II. A negaiive quantity may stand first in an expression which we may have to add to or subtract from any nther expression.

The Rules for Addition and Subtraction given in Art. 21 will be applicable to these expressions, as in the following Examples.

ADDITION.

(1) $5 a-7 a=-2 a$.
(2) $4 a-3 b-6 a+7 b=-2 a+4 b$.
(3) To $4 a$

To $4 a$	To $5 a-3 b$
Add $-3 a$	Add $-2 a-2 b$
Sum $-a$	Sumin$3 a-5 \dot{b}$

In tice ment necess indep

$$
{ }^{*} \mathrm{~N}
$$ the res

to gain a car, to gain purth year. we are to we are to
in for the ubsequent
subiractive
$£ 2 a$.
the indextend the , for
we may or expres-
xpression ny other
a Art. 21 fllowing
(4) $6 a-5 b-4 c+6$
$-5 a+7 b-12 c-17$
$-a-8 b+19 c+4$
$-6 b+3 c-7$
(5) $7 x-5 y+9 x$
$-18 x+9 y-5 z$
$\frac{-3 x-8 y+z}{-14 x-4 y+5 z}$

SUBTRACTICN.

(1) From x
or we might represent the operation thus,

$$
x-(-y)=x+y .^{*}
$$

(2) $a+b-(-a+b)=a+b+a-b=a$.
(3) $-a-b-(a-b)=-a-b-a+b=-2 a$.

$$
\begin{gathered}
\text { Take } \frac{-y}{x+y} \\
\text { Remainder }
\end{gathered}
$$

$$
\begin{array}{r}
-3 a+4 b-7 c+10 \tag{4}\\
5 a-9 b+8 c+19 \\
\hline-8 a+13 b-15 c-9
\end{array}
$$

(5)

$$
\begin{aligned}
& x-y-[3 x-\{-5 x-(-4 y+7 x)\}] \\
= & x-y-[3 x-\{-5 x+4 y-7 x\}] \\
= & x-y-[3 x+5 x-4 y+7 x] \\
= & x-y-3 x-5 x+4 y-7 x \\
= & -14 x+3 y
\end{aligned}
$$

(6)

$$
\begin{gathered}
7 a+5 b+9 c-12 d \\
-3 b-12 c-8 d+6 e \\
\hline 7 a+8 b+21 c-4 d-6 e
\end{gathered}
$$

In this example we have deviated from our previous practice of placing like terms under each other. This arrangement is useful to facilitate the calculation, but is not absolutely necessary ; for the terms which are alike can be combined independently of it.

* Note.-The meaning of Subtraction is here extented so hiat the result in Art. 18, CASE IV. may be true when b is less than a.

EXAMPLES.-V.

(ı.) ADDITION.

Add together
I. $6 a+7 b,-2 a-4 b$, and $3 a-5 b$.
2. $-5 a+6 b-7 c,-2 a+13 b+9 c$, and $7 a-29 b+4 a$
3. $2 x-3 y+4 z,-5 x+4 y-7 z$, and $-8 x-9 y-3 z$.
4. $-a+b-c+d, a-2 b-3 c+d,-5 b+4 c$, and $-5 c+d$
5. $a+b-c+7,-2 a-3 b-4 c+9$, and $3 a+2 b+5 c-10$.
6. $5 x-3 a-4 b, 6 y-2 a, 3 a-2 y$, and $5 b-7 x$.
7. $a+b-c, c-a+b, 2 b-c+3 a$, and $4 a-3 c$.
8. $7 a-3 b-5 c+9 d, 2 b-3 c-5 d$, and $-4 d+15 c$.
9. $-12 x-5 y+4 z, 3 x+2 y-3 z$, and $9 x-3 y+z$

(2.) SUBTRACTION.

1. From $a+b$ take $-a-b$.
2. From $a-b$ take $-b+c$.
3. From $a-b+c$ take $-a+b-c$.
4. From $6 x-8 y+3$ take $-2 x+9 y-2$.
5. From $5 a-12 b+17 c$ take $-2 a+4 b-3 c$,
6. From $2 a+b-3 x$ take $4 b-3 a+5 x$.
7. From $a+b-c$ take $3 c-2 b+4 a$.
8. From $a+b+c-7$ take $8-c-b+a$.
9. From $12 x-3 y-z$ take $4 y-5 z+x$.
10. From 8 - $0+7 c$ ake $2 c-4 b+2 a_{0}$
: $:$ From $9 p-4 q+3 r$ take $5 q-3 p+r$.

36 equa
T]
'Tl
by a.
Th
symb
[s.

II. MULTIPLICATION.

36. The operation of finding the sum oi a numbers each equal to b is called Multiplication.
The number a is called the Multiplier.
b Multiplicand.
This Sum is called the Product of the multiplication of b by a.

This Product is represented in Algebra by three distinct symbols :
I. By writing the symbols side by side, with no sign between them, thus, $a b$;
II. By placing a small dot between the symbols, thus, $a . b$;
III. By placing the sign \times between the symbols, thus, $a \times b$; and all these are read thus, " a into b," or " a times b."

In Arithmetic we chiefly use the third way of expressin ${ }_{0}$ a Product, for'we cannot symbolize the product of 5 into 7 by 87, which means the sum of fifty and seven, nor can we well represent it by 5.7 , because it might be confounded with the notation used for decimal fractions, as $5 \cdot 7$.
37. In Arithmetic

$$
\begin{aligned}
& 2 \times 7 \text { stands for the same as } 7+7 \text {. } \\
& 3 \times 4 \text {.......................... } 4+4+4 .
\end{aligned}
$$

In Algebra
$a b$ stands for the same as $b+b+b+\ldots$ with b written a times.
$(a+b) c$ stands for the same as $c+c+c \ldots$ with ε written $a+b$ times.
[s.A.]
38. To shew that 3 times $4=4$ times 3 .

$$
\left.\begin{array}{rl}
3 \text { times } 4= & 4+4+4 \\
= & 1+1+1+1 \\
& +1+1+1+1 \\
& +1+1+1+1
\end{array}\right\}
$$

Now the results obtained from I. and II. must be the yame for the horizontal columens of one are identical with the vertical columns of the other.
39. To prove that $a b=b a$.
$a b$ means that the sum of a numbers each equal to b is to be taken.

$$
\begin{aligned}
& \therefore a b=b+b+\ldots \ldots \text {. with } b \text { written } a \text { time } \\
& =b \\
& +b \\
& + \\
& \text { to } a \text { lines }
\end{aligned}
$$

Again,

$$
\begin{aligned}
& b x=a+a+\ldots \ldots \text { with } a \text { written } b \text { times } \\
& \begin{array}{l}
\left.=\begin{array}{r}
a \\
+a
\end{array}\right]
\end{array} \\
& + \\
& \text { to } b \text { lines } \\
& =1+1+1+\ldots . . \text { to } a \text { terms } \\
& +1+1+1+\ldots . . \text { to } a \text { terms } \\
& + \\
& \text { to } b \text { lines. }
\end{aligned}
$$

Now the results obtained from I. and II. must be the same, for the horizontal columns of one are clearly the same as the vertical columus of the other.
40. Since the expressions $a b$ and $b a$ are the same in meaning, we may regard either a or b as the multiplier in forming the product of a and b, and so we may read $a b$ in two ways:

$$
\begin{aligned}
& \text { (1) } a \text { into } b, \\
& \text { (2) } a \text { multiplied by } b \text {. }
\end{aligned}
$$

41. The expressions $a b c, a c b, b a c, b c a, c a b, c b a$ are all the same in meaning, denoting that the three numbers symbolized by a, b, and c are to be multiplied together. It is, however, generally desirable that the alphabetical order of the letters representing a product should be observed.
42. Each of the numbers a, b, c is called a Factor of the product abc.
43. When a number expressed in figures is one of the factors of a product it always stands first in the product.
Thus the product of the factors x, y, z and 9 is represented by $9 x y z$.
44. Any one or more of the factors that make up a product is called the Coevficient of the other factors.
Thus in the expression $2 a x, 2 a$ is cniled the coefficient of x.
45. When a factor a is repented twice the product would be represented, in accoriance with Art. 36, by $a a$; when three times, by aaa. In such cases these products are, for the sake of brevity, expressed by writing the symbol with a number placed above it on the right, expressing the number of times the symbol is repeated; thus

These expressions $a^{2}, a^{3}, a^{4} \ldots .$. are called the second, third, fourth......Powers of a.
The number placed over a symbol to express the power of the symbol is called the Index or EXPONENT.

$$
a^{2} \text { is generally called the square of } a
$$ a^{3}........................ the cube of a_{n}

46. The product of a^{2} and $a^{3}=a^{2} \times a^{3}$

$$
=a a \times a a a=a \alpha a \alpha a=a^{5} .
$$

Thus the index of the resulting power is the sum of the indices of the two factors.
Similarly

$$
\begin{aligned}
a^{4} \times a^{6} & =\alpha a \alpha a \times a \alpha a \alpha a \alpha a \\
& =\alpha a \alpha a \alpha a \alpha a \alpha a=a^{10}=a^{4+6} .
\end{aligned}
$$

If one of the factors be a symbol without on index, we may assume it to have an index ${ }^{1}$, that is

$$
a=a^{1} .
$$

Examples in multiplying powers of the same symbol are
(1) $a \times a^{2}=a^{1+2}=a^{3}$.
(2) $7 a^{3} \times 5 a^{7}=7 \times 5 \times a^{3} \times a^{7}=35 a^{377}=35 a^{10}$.
(3) $a^{3} \times a^{6} \times a^{9}=a^{3+6+0}=a^{18}$.
(4) $x^{2} y \times x y^{2}=x^{2} \cdot y \cdot x \cdot y^{2}=x^{2} \cdot x \cdot y \cdot y^{2}=x^{2+1} \cdot y^{1+2}=x^{3} y^{3}$.
(5) $a^{2} b \times a b^{3} \times a^{5} b^{7}=a^{2+1+6} . b^{1+++7}=a^{8} . b^{11}$ 。

EXAMPLES.-vi.

Multiply

I. x into $3 y$.
2. $3 x$ into $4 y$.
3. $3 x y$ into $4 x y$.
4. 3abc into ac.
5. a^{3} into a^{4}.
6. a^{7} into a.
7. $3 a^{2} b$ into $4 a^{3} b^{2}$.
8. $7 a^{4} c$ inio $5 a^{2} b c^{3}$.
9. $15 a b^{4} c^{3}$ by $12 c^{\prime \prime} b c$.
10. $7 a^{5} c^{7}$ by $4 a^{2} 3 c^{3}$.
11. a^{8} by $3 a^{3}$.
12. $4 a^{3} b x$ by $5 a b^{2}{ }_{5}$
13. $19 x^{3} y z$ by $4 x y^{3} z^{2}$. 14. $17 a b^{3} z$ by $3 b c^{2} y$. 15. $6 x^{5} y^{8} z^{3}$ by $5 x^{2} y^{1} z^{3}$. 16. $3 a b c$ by $4 a x y$. 17. $a^{\uparrow} b^{2} c$ by $8 a^{\top} b^{3} c$. 18. $9 m^{2} n p$ by $m^{3} n^{4 n} p^{2}$. 19. $a y^{-z z}$ by $b x^{2} z^{3}$. 20. $11 a^{3} b x$ by $3 a^{17} b^{15} m^{2}$.
47. The rules for the addition and sultraction of pof ers are similar to those laid down in Chap. I. for simple quantikies.

Thus the sum of the second and third powers of x is re ${ }_{i}$,resented by

$$
x^{2}+x^{3}
$$

and the remainder after taking the fourth power of y from the fifth power of y is represented by

[^0]But when we have to add or subtract i.at same powers of the same quantities the terms may be combined into one: thus

$$
\begin{aligned}
& x^{3}+x^{3}=2 x^{3}, \\
& 3 y^{3}+5 y^{3}+7 y^{3}=15 y^{3}, \\
& 8 x^{4}-5 x^{4}=3 x^{4} \\
& 9 y^{5}-3 y^{5}-2 y^{5}=4 y^{5} .
\end{aligned}
$$

Again, whenever two or more terms are entirely the same with respect to the symbols they contain, their sum may be abridged.
Thus

$$
\begin{aligned}
& a d+a d=2 a d, \\
& 3 a^{2} b-2 a^{2} b=a^{2} b, \\
& 5 a^{3} b^{3}+6 a^{3} b^{3}-9 a^{3} b^{3}=2 a^{3} b^{3}, \\
& 7 a^{2} x-10 a^{2} x-12 a^{2} x=-15 a^{2} x
\end{aligned}
$$

48. From the multiplication of simple expressions we pass on to the case in which one of the quantities whose product is to be found is a compound expression.
To shew that $(a+b) c=a c+b c$.
$(a+b) c=c+c+c+\ldots$ with c written $a+b$ times,

$$
\begin{aligned}
= & (c+c+c+\ldots \text { with } c \text { written } a \text { times }) \\
& +(c+c+c \ldots \text { with } c \text { written } b \text { times }), \\
= & a c+b c .
\end{aligned}
$$

49. To sliew that $(a-b) c=a c-b c$.
$(a-b) c=c+c+c+\ldots$ with c written $a-b$ times,

$$
\begin{aligned}
&=(c+c+c+\ldots \text { with } c \text { written } a \text { times }) \\
&-(c+c+c \ldots \text { with } c \text { written } b \text { times }), \\
&=a c-b c .
\end{aligned}
$$

Note. IVe assume that a is greater than b.
50. Similarly it may be shewn that

$$
\begin{aligned}
& (a+b+c) d=a d+b d+c d, \\
& (a-b-c) d=a d-b d-c d,
\end{aligned}
$$

and hence we obtain the following general rule for finding the product of a single symbol and an expression consisting of two or more terms.
"Multiply each of the terms by the single symbol, and connect the terms of the result by the signs of the several terms of the compound expression."

ExAMPLES.-vil.

Multiply

1. $a+b-c$ by a.
2. $8 m^{2}+9 m n+10 n^{2}$ by $m n$
3. $a+3 b-4 c$ by $2 a$.
4. $9 a^{5}+4 a^{4} b-3 a^{3} b^{2}+4 a^{2} b^{3}$ by $2 a b$.
5. $a^{3}+3 a^{2}+4 a$ by a.
6. $x^{3} y^{3}-x^{2} y^{2}+x y-7$ by $x y$.
7. $3 a^{3}-5 a^{2}-6 a+7 \mathrm{by} 3 a^{2}$.
8. $m^{3}-3 m^{2} n+3 m n^{2}-n^{3}$ by n.
$5 a^{2}-2 a b+b^{2}$ by $a b$.
1 1. $12 a^{3} b-6 a^{2} b^{2}+5 a b^{3}$ by $12 a^{2} b^{3}$.
9. $a^{3}-3 a^{2} b^{2}+b^{3}$ by $3 a^{2} b$.
10. $13 x^{3}-17 x^{2} y+5 x y^{2}-y^{3}$ by $8 x y$:
11. We next proceed to the case in which both multiplier and multiplicand are compound expressions.

First to multiply $a+b$ into $c+d$.
Represent ${ }^{1} c+d$ by x.
Then $(a+b)(c+d)=(a+b) x$

$$
\begin{aligned}
& =a x+b x, \text { by Art. } 48, \\
& =a(c+d)+b(c+d) \\
& =a c+a d+b c+b d, \text { by Art. } 48 .
\end{aligned}
$$

The same result is obtained by the following process:

$$
\begin{aligned}
& c+d \\
& \frac{a+b}{a c+a d} \\
& \frac{+b c+b d}{a c+a d+b c+b d}
\end{aligned}
$$

which may be thus described :
Write $a+b$ considered as the multiplier under $c+d$ con. sidered as the multiplicand, as in common Arithmetic. Then multiply each term of the multiplicand by a, and set down the result. Next multiply each term of the multiplicand by b, an $\bar{\alpha}$ set down the result under the result shtained before. The sum of the two results will be the product required.

Note. The second result is shifted one place to the right, The object of this will be seen in Art. 56.
52. Next, to multiply $a+b$ into $c-d$.

Represent $c-d$ by x.
Then $(a+b)(c-d)=(a+b) x$

$$
\begin{aligned}
& =a x+b x \\
& =a(c-d)+b(c-d) \\
& =a c-a d+b c-b d, \text { by Art. } 49 .
\end{aligned}
$$

From a comparison of this result with the factors from * which it is produced it appears that if we regard the terms of the multiplicand $c-d$ as independent quantities, and call them $+c$ and $-d$, the effect of multiplying the positive terms $+a$ and $+b$ into the positive term $+c$ is to produce two positive terms $+a c$ and $+b c$, whereas the effect of multiplying the positive terms $+a$ and $+b$ into the negative tern $-d$ is to produce two negative terms -ad and $-b d$.
The same result is obtained by the following process :

$$
\begin{aligned}
& \begin{array}{c}
c-d \\
\frac{a+b}{a c-a d} \\
\frac{+b c-b d}{a c-a d+b c-b d}
\end{array}
\end{aligned}
$$

This process may be described in a similar manner to that in Art. 51, it being assumed that a positive term multiplied into a negative term gives a negative result.
Similarly we may shew that $a-b$ into $c+d$ gives

$$
a c+a i l-b c-b d .
$$

53. Next to multiply $a-b$ into $c-d_{0}$

Represent $c-d$ by x.
Then

$$
\begin{aligned}
(a-b)(c-d) & =(a-b) x \\
& =a x-b x \\
& =a(c-d)-b(c-d) \\
& =(a c-a d)-(b c-b d), \text { by Art. 49, } \\
& =a c-a d-b c+b d .
\end{aligned}
$$

When we compare this result with the factors from which it is produced, we see that

The product of the positive term a_{i} into the positive term c is the positive term $a c$.

The product of the positive term a into the negative term - d is the negative term -ad.
The product of the negative term $-b$ into the positive term c is the negative term -bc.
The product of the negative term $-b$ into the negative term $-d$ is the positive term $b d$.
The multiplication of $c-\dot{d}$ by $a-b$ may be written thus :

$$
\begin{aligned}
& c-d \\
& \frac{a-b}{a c-a d} \\
& \frac{-b c+b d}{a c-a d-b c+b d}
\end{aligned}
$$

64. The results obtained in the preceding Article enable us to state what is called the Role of Sigas in Multiplication, which is
"The product of two positive terms or of two negative terms is positive: the product of two terms, one of which is positive and the other negative, is negative."
65. The following more concise proof may now be given of the Rule of Signs.

Ta shew that $(a-b)(c-d)=a c-a d-b c+b d$.
First, $(a-b) M=M+M+M+\ldots$ with M written $a-b$ times, $=(M+M+M+\ldots$ with M written a times $)$ $-(M+M+M+\ldots$ with M written b times $)$, $=a M-b M$.
Next, let $M=c-d$.

$$
\text { Then } \begin{aligned}
a M & =a(c-d) \\
& =(c-d) a \\
& =c a-d a .
\end{aligned}
$$

Art. 39.
Art. 49.
Similarly, $b M=c b-d b$.

$$
\therefore(a-b)(c-d)=(c a-d a)-(c b-d b)
$$

Now to subtract $(c b-d b)$ from ($c a-c l(c)$, if we take away $c b$ we take away $d b$ too much, and we must therefore add $d b$ to the result,
\therefore we get $c a-d a-c b+d b$,
which is the same as $a c-a d-b c+b l$. - Art. 39.
negative e positive negative thus:
enable us plication,
tive terms siiive and given of -8 times, times) b times),
away cb $d d d b$ to

So it appears that in multiplying $(a-b)(c-d)$ we must multiply each term in one factor by each term in the other and prefix the eign according to this law :-

When the factors multiplied have like signs prefix + , when unlike - to the product.

This is the Role of Signs.

56. We shall now give some examples in illustration of the principles laid down in the last five Articles.

Examples in Multiplication worked out.
(l) Multiply $x+5$ by $x+7$.
(2) Multiply $x-5$ by $x+7$.

$$
\begin{aligned}
& x+5 \\
& x+7 \\
& \hline x^{2}+5 x \\
& +7 x+35 \\
& \hline x^{2}+12 x+35
\end{aligned}
$$

$$
\begin{aligned}
& x-5 \\
& \frac{x+7}{x^{2}-5 x} \\
& +7 x-35 \\
& \hline x^{2}+2 x-35
\end{aligned}
$$

The reason for shifting the second result one place to the right is that it enables us generally to place like terms under each other.
(3) Multiply $x+5$ by $x-7$.

$$
\begin{array}{lc}
\text { tiply } x+5 \text { by } x-7 . & \text { (4) Multiply } x-5 \text { by } x-7 . \\
x+5 & x-5 \\
\frac{x-7}{x^{2}+5 x} & \frac{x-7}{x^{2}-5 x} \\
\frac{-7 x-35}{x^{2}-2 x-35}, & \frac{-7 x+35}{x^{2}-12 x+35}
\end{array}
$$

(5) Multiply $x^{2}+y^{2}$ by $x^{3}-y^{2}$. (6) Multiply $3 a x-5 b y$ by $7 a x-2 b y$.

$$
\begin{array}{ll}
\begin{array}{l}
x^{2}+y^{2} \\
\frac{x^{2}-y^{2}}{} \\
x^{4}+x^{2} y^{2}
\end{array} & \begin{array}{c}
3 a x-5 b y \\
\frac{-x^{2} y^{2}-y^{4}}{x^{4}-y^{4}}
\end{array} \\
\frac{7 a x-2 b y}{21 a^{2} x^{2}-3 J a b x y} \\
21 a^{2} x^{2}-41 a x y+10 b^{2} y^{2}
\end{array}
$$

57. The process in the multiplication of factors, one or both of which contains more than two terms, is similar to the processes which we have been describing, as may be seen from the following examples :
Multiply
(1) $x^{2}+x y+y^{2}$ by $x-y$.

$$
x^{2}+x y+y^{2}
$$

$$
\frac{x-y}{x^{3}+x^{2} y+x y^{2}}
$$

$$
\frac{-x^{2} y-x y^{2}-y^{3}}{x^{3}-y^{3}}
$$

(2) $a^{2}+6 a+9$ by $a^{2}-6 a+8$.
$a^{2}+6 a+9$
$\frac{a^{2}-6 a+9}{a^{4}+6 a^{3}+9 a^{2}}$
$-6 a^{3}-36 a^{2}-54 a$
$+9 a^{2}+54 a+81$
$a^{4}-18 a^{2}+81$
(3) Multiply $3 x^{2}+4 x y-y^{2}$ by $3 x^{2}-4 x y+y^{2}$.

$$
\begin{aligned}
& \frac{3 x^{2}+4 x y-y^{2}}{3 x^{2}-4 x y+y^{2}} \\
& \frac{9 x^{4}+12 x^{3} y-3 x^{2} y^{2}}{} \\
& -12 x^{3} y-16 x^{2} y^{2}+4 x y^{3} \\
& +3 x^{2} y^{2}+4 x y^{3}-y^{4}
\end{aligned} \frac{9 x^{4}-16 x^{2} y^{2}+8 x y^{3}-y^{4}}{}
$$

(4) To find the continued product of $x+3, x+4$, and $x+6$.
To effect this we mist multiply $x+3$ by $x+4$, and then multiply the result by $x+6$.

$$
\begin{aligned}
& x+3 \\
& x+4 \\
& \hline x^{2}+3 x \\
& +4 x+18 \\
& \hline x^{2}+7 x+12 \\
& x+6 \\
& \hline x^{3}+7 x^{2}+12 x \\
& +6 x^{2}+42 x+72 \\
& \hline x^{3}+13 x^{2}+54 x+72
\end{aligned}
$$

Note. The numbers 13 and 54 are called the coefficients of x^{2} and x in the expression $x^{3}+13 x^{2}+5-1 x+72$, in accordance with Ant. 4 .

No obtai

Wl
it is
s, one or ar to the een from
$-6 a+8$
(5) Find the continued product of $x+a, x+b$, and $x+a_{6}$

$$
\begin{aligned}
& \begin{array}{l}
x+a \\
x+b
\end{array} \\
& \begin{array}{l}
x^{3}+a x \\
\\
+b x+a b \\
x^{2}+a x+b x+a b \\
x+c
\end{array} \\
& \begin{array}{l}
x^{3}+a x^{2}+b x^{3}+a b x \\
\quad+c x^{2}+a c x+b c x+a b c \\
x^{3}+(a+b+c) x^{2}+(a b+a c+b c) x+a b o
\end{array}
\end{aligned}
$$

Note. The cocfficients of x^{2} and x in the expression just obtained are $a+b+c$ and $a b+a c+b c$ respectively.

When a coefficient is expressed in letters, in this example, it is called a literal coefficient.

EXAMPLES.-viii.

Muitiply

I. $x+3$ by $x+9$.
2. $x+15$ by $x-7$.
3. $x-12$ by $x+10$.
4. $x-8$ by $x-7$.
5. $a-3$ by $a-5$.
6. $y-6$ by $y+13$.
7. $x^{2}-4$ ly $x^{2}+5$.
8. $x^{2}-6 x+9$ by $x^{2}-6 x+5$.
9. $x^{2}+5 x-3$ by $x^{2}-5 x-3$.
10. $a^{3}-3 a+2$ by $a^{3}-3 a^{2}+2$.
11. $x^{2}-x+1$ by $x^{2}+x-1$.
12. $x^{2}+x y+y^{2}$ by $x^{2}-x y+y^{2}$.
13. $x^{2}+x y+y^{2}$ by $x-y$.
14. $a^{2}-x^{2}$ by $a^{4}+a^{2} x^{2}+x^{4}$.
15. $x^{3}-3 x^{2}+3 x-1$ by $x^{2}+3 x+1$.
16. $x^{3}+3 x^{2} y+9 x y^{2}+27 y^{3}$ by $x-3 y$.
17. $a^{3}+2 a^{2} b+4 a b^{2}+8 b^{3}$ by $a-2 b$.
18. $8 a^{3}+4 a^{2} b+2 a b^{2}+b^{3}$ by $2 a-b$.
19. $a^{3}-2 a^{2} b+3 a b^{2}+4 b^{3}$ by $a^{2}-2 a b-3 b^{2}$.
20. $a^{3}+3 a^{2} b-2 a b^{2}+3 b^{3}$ by $a^{2}+2 a b-3 b^{2}$.
21. $a^{2}-2 a x+4 x^{2}$ by $a^{2}+2 a x+4 x^{2}$.
22. $9 a^{2}+3\left(i n+x^{2}\right.$ by $9 a^{2}-3 a x+x^{2}$.
23. $x^{4}-2 a x^{2}+4 a^{2}$ by $x^{4}+2 a x^{2}+4 a^{2}$.
24. $a^{2}+b^{2}+c^{2}-a b-a c-b c$ by $a+b+c$.
25. $x^{2}+4 x y+5 y^{2}$ by $x^{3}-3 x^{2} y-2 x y^{2}+3 y^{3}$.
26. $a b+c d+a c+b d$ by $a b+c d-a c-b d$.

Find the continued product of the following expression:
27. $x-a, x+a, x^{2}+a^{2}, x^{4}+a^{4}$. $28 . x-a, x+b, x-c_{0}$
29. $1-x, 1+x, 1+x^{2}, 1+x^{4}$.
30. $x-y, x+y, x^{2}-x y+y^{2}, x^{2}+x y+y^{2}$.

3r. $a-x, a+x, a^{2}+x^{2}, a^{4}+x^{4}, a^{8}+x^{8}$.
Find the coefficient of x in the following expansions:
32. $(x-5)(x-6)(x+7)$. 33. $(x+8)(x+3)(x-2)$.
34. $(x-2)(x-3)(x+4)$. 35. $(x-a)(x-b)(x-c)$.
36. $\left(x^{2}+3 x-2\right)\left(x^{2}-3 x+2\right)\left(x^{4}-5\right)$.
37. $\left(x^{2}-x+1\right)\left(x^{2}+x-1\right)\left(x^{4}-x^{2}+1\right)$.
38. $\left(x^{2}-m x+1\right)\left(x^{2}-m x-1\right)\left(x^{4}-m^{2} x-1\right)$.
58. Our prooi of the Rule of Signs in Art. 55 is founded on the supnosition that a is greater than b and c is greater than d.

To include cases in which the multiplier is an isolated negative quantity we must extenl our definition of Multiplication. For the definition given in Art. 36 does not cover this case, since we cannot say that c shall be taken $-d$ times.

We give then the following definition. "The operation of Multiplication is such that the product of the factors $a-b$ and $c-d$ will be equivalent to $a i-a d-b c+b d$, whatever may be the values of a, b, c, d."

Now since

$$
(a-b)(c-d)=a c-a d-b c+b d
$$

make $a=0$ and $d=0$.
Then $(0-b)(c-0)=0 \times c-0 \times 0-b c+b \times 0$,

$$
\text { or }-b \times c=-b c
$$

Similarly it may be shewn that

$$
-b \times-d=+b d
$$

EXAMPLES.-iX.

Multiply

> 1. $a^{2} \mathrm{by}-b$.
> 2. a^{2} by $-a^{3}$.
> 3. $a^{2} b$ by $-a b^{2}$.
> $4 .-4 a^{2} b$ by $-3 a b^{3}$.
> 5. $5 x^{3} y$ by $-6 x y^{2}$.
> 6. $a^{2}-a b+b^{2}$ by $-a$
> 7. $3 a^{3}+4 t^{2}-5 a$ by $-2 a^{2}$. 8. $\quad-a^{3}-a^{2}-a$ by $-a-1$.
> 9. $3 x^{2} y-5 x y^{2}+4 y^{3}$ by $-2 x-3 y$.
> 10. $-5 m^{2}-6 m n+7 n^{2}$ by $-m+n$.
> I. $13 r^{2}-17 r-45$ by $-r-3$.
> 12. $7 x^{3}-8 x^{2} z-9 z^{2} \mathrm{by}-x-z$.
> 13. $-x^{5}+x^{4} y-x^{3} y^{2} b y-y-x$.
> 14. $-y^{3}-x y^{2}-x^{2} y-x^{3}$ by $-x-y$.

III. INVOLUTION.

is founded is greater
lated negatiplication. this case,
peration of s $a-b$ and may be the
59. To this part of Algebra belongs the process called Involution. This is the operation of multiplying a quantity by itself any number of i.mes.

The power to which the quantity is raised is expressed by the number of times the quantity has been employed as a factor in the operation.

Thus, as has been already stated in Art. 45, a^{2} is calleal the second power of a, a^{3} is called the third power of a.
60. When we have to raise negative quantities to certain powers we symbolize the operation by putting the quantity in a bracket with the letter denoting the index (Art. 45) placed over the bracket on the right hand.
Thus $(-a)^{3}$ denotes the third power of $-a$, $(-2 x)^{4}$ denotes the fourth power of $-2 x$.
61. The signs of all even powers of a negative quantity will be positive, and the signs of the odd powers will be negative.

Thus

$$
\begin{gathered}
(-a)^{2}=(-a) \times(-a)=a^{2}, \\
(-a)^{3}=(-a) \cdot(-a)(-a)=a^{2} \cdot(-a)=-a^{3} .
\end{gathered}
$$

62. To raise a simple quantity to any power we multiply the index of the quantity by the number denoting the power to which it is to be raised, and prefix the proper sign.

Thus the square of a^{3} is a^{6}, the cube of a^{3} is a^{2}, the cube of $-x^{2} y x^{3}$ is $-x^{6} y^{3}{ }^{3}$
63. We form the second, third and fourth powers of $a+b$ in the tollowing manner:

$$
\begin{aligned}
& a+b \\
& a+b \\
& \overline{a^{2}+a b} \\
& (a+b)^{2}=\frac{+a b+b^{2}}{a^{2}+2 a b+b^{2}} \\
& a+b \\
& \overline{a^{3}+2 a^{2} b+a b^{2}} \\
& (a+b)^{3}=\frac{+a^{2} b+2 a b^{2}+b^{3}}{a^{3}+3 a^{2} b+3 a b^{2}+b^{3}} \\
& \frac{a+b}{a^{4}+3 a^{3} b+3 a^{2} b^{2}+a b^{3}} \\
& +a^{3} b+3 a^{3} b^{2}+3 a b^{3}+b^{4} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} .
\end{aligned}
$$

Here observe the following laws:
I. The indices of a lecrease hy unity in each term.
por
of b
I
corr sinc
II. The indices of b increase by unity in each term.
III. The numerical coefficient of the second term is always the same as the index of the power to which the binomial is raised.
64. We form the second, third and fourth powers of $a-\delta$ in the following manner:

$$
\begin{gathered}
\begin{array}{l}
\frac{a-b}{} \\
\begin{array}{l}
\frac{a-b}{a^{2}-a b} \\
(a-b)^{2}= \\
\\
\\
\frac{-a b+b^{2}}{a^{2}-2 a b+b^{2}} \\
\frac{a-b}{a^{3}-2 a^{2} b+a b^{2}}
\end{array} \\
(a-b)^{3}=\frac{-a^{2} b+2 a b^{2}-b^{3}}{a^{3}-3 a^{2} b+3 a b^{2}-b^{3}} \\
\\
\frac{a-b}{a^{4}-3 a^{3} b+2 a^{2} b^{2}-a b^{3}} \\
(a-b)^{4}=
\end{array} \frac{-a^{3} b+3 a^{2} b^{2}-3 a b^{3}+b^{4}}{a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} .}
\end{gathered}
$$

Now observe that the powers of $a-b$ lo not differ from tide powers of $a+b$ except that the terms, in which the odd powers of b, as b^{1}, b^{3}, occur have the sign - prefixed.
Hence if any power of $a+b$ be given we can write the corresponding power of $a-b$: thus
since $\quad(a+b)^{6}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$,

$$
(a-b)^{5}=a^{5}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{3}+5 a b^{4}-b^{5}
$$

65. Since $(a+b)^{2}=a^{2}+b^{2}+2 a b$ and $(a-b)^{2}=a^{2}+b^{2}-2 a b$, it appears that the square of a hinomial is formed by the following process :
"To the sum of the squares of each term add twice the product of the termis."

Thus

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+y^{2}+2 x y \\
& (x+3)^{2}=x^{2}+9+6 x \\
& (x-5)^{2}=x^{2}+25-10 x \\
& (2 x-7 y)^{2}=4 x^{2}+49 y^{2}-28 x y
\end{aligned}
$$

66. To form the square of a trinomial :

$$
\begin{aligned}
& \begin{array}{l}
a+b+c \\
\frac{a+b+c}{} \\
\begin{array}{l}
a^{2}+a b+a c \\
\\
\quad+a b+b^{2}+b c
\end{array} \\
\frac{+a c+b c+c^{2}}{a^{2}+2 a b+b^{2}+2 a c+2 b c+c^{2}}
\end{array} \text {. }
\end{aligned}
$$

Arranging this result thus $a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c$, we seo that it is composed of two sets of quantities:
I. The squares of the quantities a, b, c.
II. The double products of a, b, c taken two and two. Now, if we form the square of $a-b-c$, we get

$$
\begin{aligned}
& \begin{array}{l}
a-b-c \\
\frac{a-b-c}{} \\
a^{2}-a b-a c \\
-a b+b^{2}+b c \\
\quad-a c+b c+c^{2} \\
a^{2}-2 a b+b^{2}-26 c+2 b c+c^{9}
\end{array}
\end{aligned}
$$

The law of formation is the same as before, for we have

I. The squares of the quantitics.

II. The double products of $a,-b,-c$ taken two by two: the sign of each result being + or - , according as the signs of the algebraical quantities composing it are like or unlike.
67. The same law holls good for expressions containing more than three terms, thus

$$
\begin{aligned}
&(a+b+c+d)^{2}=a^{2}+b^{2}+c^{2}+d^{2} \\
& \quad+2 a l+2 a c+2 a d+2 b c+2 b d+2 c d, \\
&(a-b+c-d)^{2}=a^{2}+l^{2}+c^{2}+d^{2} \\
& \quad-2 a b+2 a c-2 a d-2 b c+2 b d-2 c d .
\end{aligned}
$$

And gencrally, the square of an expression containing 2, 3, 4 or more terms will be formed by the following process:
"To the sum of the squares of each term add twice the product of each term into each of the terms that follow it."

EXAMPLES.-X.

Form the square of each of the following expressions:
I. $x+a$.
2. $x-a$.
3. $x+2$.
4. $x-3$.
5. $x^{2}+y^{2}$.
6. $x^{2}-y^{2}$.
7. $a^{3}+b^{3}$.
8. $a^{3}-l^{3}$.
9. $x+y+z$.
10. $x-y+\%$.
11. $m+n-p-r$.
12. $x^{2}+2 x-3$.
13. $x^{2}-6 x+7$.
14. $2 x^{2}-7 x+9$.
15. $x^{2}+y^{2}-z^{2}$.
16. $x^{4}-4 x^{2} y^{2}+y^{4}$.
17. $a^{3}+b^{3}+c^{3}$.
18. $x^{3}-y^{3}-z^{3}$.
19. $x+2 y-3 z$.
20. $x^{2}-2 y^{2}+5 z^{2}$.

Expand the following expressions:
21. $(x+a)^{3}$.
22. $(x-a)^{3}$.
23. $(x+1)^{3} . \quad$ 24. $(x-1)^{3}$.
25. $(x+2)^{3}$.
26. $\left(a^{2}-l^{2}\right)^{3}$.
27. $(a+b+c)^{3}$.
28. $(a-b-c)^{3}$
29. $(m+n)^{2} \cdot(m-n)^{2}$.
30. $(m+n)^{2} \cdot\left(m^{2}-n^{2}\right)$.

6f, An algebraical product is said to be of $2,3 \ldots \ldots$. dimensions, when the sum of the indices of the quanities composing the preduct is 2,3 .

Thus
ab in an expression of a dimensions, $a^{2} b^{2} c$ is an expression of 5 dimensions.
72. given mine

The
73.

Thu
The
over t
In t divide
wo by two: ccording as mposing it
containing
$b d+2 c d$,
$b d-2 c d$. ining 2,3 , cess :
twice the ow it."

ns:

$$
x^{2}+y^{2}
$$

$$
x-y+z
$$

$6 x+7$
$4 x^{2} y^{2}+y^{4}$.
$y-3 z$
$x-1)^{3}$.
$a-b-c)^{2}$
\imath^{2}).
....dimenomposing
69. An algebraical expression is called homogeneous when each of its terms is of the same dimensions.

Thus $x^{2}+x y+y^{2}$ is homogencous, for each texm is of 2 dimenbions.

Also $3 x^{3}+4 x^{2} y+5 y^{3}$ is homogeneous, for each term is of 3 dimensions, the numerical coefficients not affecting the dimensions of each term.
70. An expression is said to be arranged according to powers of some letter, when the indices of that letter occur in the order of their magnitudes, either increasing or decreasing.
Thus the expreasion $a^{3}+a^{2} x+a x^{2}+x^{3}$ is arranged according to descending powers of a, and ascending powers of x_{0}
71. One expression is said to be of a higher order than another when the former contains a higher power of some distinguishing letter than the other.

Thus $a^{3}+a^{2} x+a x^{2}+x^{3}$ is said to be of a higher order than $a^{2}+a x+x^{2}$, with reference to the index of a_{n}

IV. DIVISION.

72. Division is the process by which, when a product is given and we know one of the factors, the other factor is determined.

The product is, with reference to this process, called the Dividend.

The given factor is called the Divisor.
The factor which has to be found is called the Qootient.
73. The operation of Division is denoted by the sign \div.

Thus $a b \div a$ signifies that $a b$ is to be divided by a.
The same operation is denoted by writing the dividend over the divisor with a line drawn loetween them, thus $\frac{a b}{a}$.
In this chapter we shall treat only of cases in which the dividend contains the divisor an exact number of times.
[s.A.]

Case I .

74. When the dividend and divisor are each included in a single ter n, we can usually tell by inspection the factors of which each is composed. The quotient will in this case be represented by the factors which remain in the dividend, when those factors which are common to the dividend and the divisor have been removed from the dividend.

Thus:

$$
\begin{aligned}
& \frac{a b}{b}=a \\
& \frac{3 a^{2}}{a}=\frac{3 a a}{a}=3 a \\
& \frac{a^{5}}{a^{3}}=\frac{a a a a \alpha}{a a a}=a a=a^{3}
\end{aligned}
$$

Thus, when one power of a number is divided by a smaller power of the same number, the quotient is that power of the number whose index is the difference between the indices of the dividend arod the divisor.

Thus

$$
\begin{aligned}
\frac{a^{12}}{a^{6}} & =a^{12-\delta}=a^{4}, \\
\frac{15 a^{3} b^{2}}{3 a b} & =5 a^{2} b .
\end{aligned}
$$

75. The quotient is unity when the dividend and the divisor are equal.

> Thus

$$
\frac{a}{a}=1 ; \quad \frac{x^{2} y^{3}}{x^{2} y^{2}}=1 ;
$$

and this will hold true when the dividend and the divisor are compound quantities.

Thus

$$
\frac{a+b}{a+b}=1 ; \quad \frac{x^{3}-y^{9}}{x^{2}-y^{3}}=1 \text { : }
$$

EXAMPLES.- - Xi.

Divide

1. x^{6} by x^{3}. 2. x^{10} by x^{2}, 3. $x^{4} y^{2}$ by $x y$.

4" $x^{5} y^{3} y^{3} z^{8}$ by $x y^{2} z$. 5. $24 a b^{2} c$ by $4 a b$. 6. $72 a^{2} b^{2} c^{3}$ by $9 a^{2} b^{2} c$. 7. $256 a^{3} b^{7} c^{9}$ by $16 a b c^{3}$. \quad 8. $1331 m^{10} n^{11} p^{12}$ by $11 m^{2} n^{3} p^{4}$.
79. $60 a^{3} x^{2} y^{5}$ by $5 x y$.
10. $96 a^{4} b^{6} c^{3}$ by $12 b c$.

DIVISION.

Case II.

luded in actors of case be d, when 1 the di-
76. If the divisor be a single term, while the dividend contains two or more terms, the quotient will be found by dividing each term of the dividend separately by the divisor and connecting the results with their proper signs.

Thus

$$
\begin{gathered}
\frac{a x+b x}{x}=a+b, \\
\frac{a^{3} x^{3}+a^{2} x^{2}+a x}{a x}=a^{2} x^{2}+a x+1, \\
\frac{12 x^{3} y^{4}+16 x^{2} y^{3}-8 x y^{2}}{4 x y^{2}}=3 x^{2} y^{2}+4 x y-2 .
\end{gathered}
$$

EXAMPLES.-Xii.

Divide
I. $x^{3}+2 x^{2}+x$ by x.
2. $y^{5}-y^{4}+y^{3}-y^{2}$ by y^{2}.
4. $m p x^{4}+m^{2} p^{2} x^{2}+m^{3} p^{3}$ by $m p$.
3. $8 a^{3}+16 a^{2} b+24 a b^{2}$ by $8 a$. 6. $72 x^{5} y^{5}-36 x^{1} y^{3}-18 x^{2} y^{2}$ by $9 x^{2} y$.

$$
\text { 7. } 81 m^{8} n^{7}-54 m^{5} n^{6}+27 m^{3} n^{2} p \text { by } 3 m^{2} n^{2} \text {. }
$$

8. $12 x^{5} y^{2}-8 x^{4} y^{3}-4 x^{3} y^{4}$ by $4 x^{3}$.
9. $169 a^{4} b-117 a^{3} b^{2}+91 a^{2} b$ by $13 a^{2}$.
10. $261 b^{5} c^{3}+228 b^{4} c^{4}-133 b^{3} c^{5}$ by $19 b^{2} c$.
11. Admitting the possibility of the independent existence of a term affected with the sign -, we can extend the Examples in Arts. 74-76, by taking the first term of the dividend or the divisor, or both, negative. In such cases we apply the Rule of Signs in Multiplication to form a Rule of Sigus in Division.
Thus since $-a \times b=-a b$, we conclude that $\frac{-a b}{b}=-a$,

$$
\begin{aligned}
& \ldots \ldots . \quad a \times-b=-a b, \ldots \ldots \ldots \frac{-a b}{-b}=a, \\
& \ldots \ldots .-a \times-b=a b, \quad \ldots \ldots \ldots \ldots \ldots \ldots \cdot \frac{a b}{-b}=-a ;
\end{aligned}
$$

and hence the rules
I. When the dividend and the divisor have the same sign the quotient is positive.
II. When the dividend and the divisor have diferent signs the quotient is negative.
78. The following Examples illustrate the conclusions just obtained :
(1) $\frac{a b x^{3}}{-x}=-a b x$.
(3) $\frac{-27 x^{3} y^{3}}{-3 x^{2} y}=9 x y^{3}$.
(2) $\frac{-12 a^{2} b^{3} x^{4}}{4 a b x^{2}}=-3 a b^{2} x^{2}$.
(4) $\frac{a x-b x}{-x}=-a+b$.
(5) $\frac{a b^{4}-a^{2} b^{3}+a^{3} b^{2}-a^{4} b}{-a b}=-b^{3}+a b^{2}-a^{2} b+a^{3}$.
(6) $\frac{-12 x^{3} y^{4}+16 x^{2} y^{3}-8 x y^{2}}{-4 x y^{3}}=3 x^{2} y^{2}-4 x y+2$.

ExAmples.-xiii.

Divide

1. $72 a b$ by $-9 a b$.
2. $-60 a^{8}$ by $-4 a^{3}$.
3. $-84 x^{8} y^{9}$ by $4 x^{5} y^{3}$.
4. $-18 m^{3} n^{2}$ by 3 min .
5. $--125 a^{3} b^{2} c$ by $-8 b c$.
6. $-a^{3} x^{3}-c^{2} x^{2}-a x$ by $-a x$.
7. $-3+a^{3}+51 a^{2}-17 u x^{2}$ by 17a.
8. $-8 a^{3} b^{2}-24 a^{5} b^{3}+22 a^{2} b^{8} b y-4 a^{3} b^{2}$.
9. $-144 x^{3}+108 x^{2} y-90 x y^{2}$ by $12 x$
10. $b^{2} x^{3} z^{2}-Z^{5} x^{2} z^{4}-l^{3} y^{4} z^{2} b y-b^{2} z^{2}$.

Case III.

79. The third case of the operation of Division is that in which the divisor and the dividend contain more terms then one. The operation is conducted in the fulluwing way :

Arrange the divisor and dividend according to the powers of some one symbol, and place them in the same line as in the process of Long Division in Arithmetic.

Divide the first term of the dividend by the first term of the divisor.
Set down the result as the first term of the quotient.
Multiply all the terms of the divisor by the first term of the quotient.
Subtract the resulting product from the dividend. If there be a remainder, consider it as a mew dividend, and proceed as before.

The process will best be understood by a careful study of the following Examples:

$$
\begin{aligned}
& \text { (1) Divide } a^{2}+2 a b+b^{2} \text { by } a+b \\
& \qquad \begin{array}{c}
a+b) \\
a^{2}+2 a b+b^{2}(a+b \\
\frac{a^{2}+a b}{a b}+b^{2} \\
a b+b^{2}
\end{array}
\end{aligned}
$$

(2) Divide $a^{2}-2 a b+b^{2}$ by $a-b$.

$$
\begin{gathered}
a-b) a^{2}-2 a b+b^{2}(a-b \\
\frac{a^{2}-a b}{-a b+b^{2}} \\
-a b+b^{2}
\end{gathered}
$$

(3) Divide $x^{6}-y^{6}$ by $x^{2}-y^{2}$.

$$
\begin{gathered}
\left.x^{2}-y^{2}\right) x^{6}-y^{6}\left(x^{4}+x^{2} y^{2}+y^{4}\right. \\
\frac{x^{6}-x^{4} y^{2}}{x^{4} y^{2}-y^{6}} \\
\frac{x^{4} y^{2}-x^{2} y^{4}}{x^{2} y^{4}}-y^{6} \\
x^{2} y^{4}-y^{6}
\end{gathered}
$$

(4) Divide $x^{6}-4 a^{2} x^{4}+4 a^{4} x^{2}-a^{6}$ by $x^{2}-a^{2}$. $\left.x^{2}-a^{2}\right) x^{6}-4 a^{2} x^{4}+4 a^{4} x^{2}-a^{6}\left(x^{4}-3 a^{2} x^{2}+a^{4}\right.$

$$
\begin{array}{r}
\frac{x^{6}-a^{2} x^{4}}{-3 a^{2} x^{4}+4 a^{4} x^{2}-a^{6}} \\
\frac{-3 a^{2} x^{4}+3 a^{4} x^{2}}{a^{4} x^{2}-a^{6}} \\
a^{4} x^{2}-a^{6}
\end{array}
$$

(5) Divide $3 x y+x^{3}+y^{3}-1$ by $y+x-1$. Arranging the divisor and dividend by descending powers

$$
\begin{gathered}
\text { x+y-1) } \begin{array}{c}
x^{3}+3 x y+y^{3}-1\left(x^{2}-x y+x+y^{2}+y+1\right. \\
\frac{x^{3}+x^{2} y-x^{2}}{-x^{2} y+x^{2}+3 x y+y^{3}-1} \\
\frac{-x^{2} y-x y^{2}+x y}{x^{2}+x y^{2}+2 x y+y^{3}-1} \\
\vdots \\
\frac{x^{2}+x y-x}{x y^{2}+x y+x+y^{3}-1} \\
\therefore \quad \frac{x y^{2}+y^{3}-y^{2}}{x y+x+y^{2}-1} \\
x+y-1
\end{array}
\end{gathered}
$$

80. We must now direct the attention of the student to two points of great importance in Division.
I. The dividend and divisor must be arranged according to the order of the powers of one of the symbols involved in them. This order may be ascending or descending. In the Examples given above we have taken the descending order, and in the Examples worked out in the next Article we shall take an ascending order of arrangement.
II. In each remainder the terms must be arrangei in the same order, ascending or descending, as that in which the dividend is arranged at first.
81. To divide (1) $1-x^{4}$ by $x^{3}+x^{2}+x+1$, arrange the dividend and divisor by ascending powers of x, thus:

$$
\begin{aligned}
\left.1+x+x^{2}+x^{3}\right) & 1-x^{4}(1-x \\
& \frac{1+x+x^{2}+x^{3}}{-x-x^{2}-x^{3}-x^{4}} \\
& -x-x^{2}-x^{3}-x^{4}
\end{aligned}
$$

(2) $48 x^{2}+6-35 x^{5}+58 x^{4}-70 x^{3}-23 x$ by $6 x^{2}-5 x+2-7 x^{3}$, arrange the dividend and divisor by ascending powers of x, thus:
$\left.8-5 x+6 x^{2}-7 x^{3}\right) 6-23 x+48 x^{2}-70 x^{3}+58 x^{4}-35 x^{5}\left(3-4 x+5 x^{2}\right.$
$6-15 x+18 x^{2}-21 x^{3}$
$-8 x+30 x^{2}-49 x^{3}+58 x^{4}$
$-8 x+20 x^{2}-24 x^{3}+28 x^{4}$
$10 x^{2}-25 x^{3}+30 x^{4}-35 x^{5}$
$10 x^{2}-25 x^{3}+30 x^{4}-35 x^{5}$

EXAMPLES.-XiV.

Divide

1. $x^{2}+15 x+50$ by $x+10$. $\quad 5 x^{3}+13 x^{2}+54 x+72$ by $x+6$.
2. $x^{2}-17 x+70$ by $x-7$.
3. $x^{3}+x^{2}-x-1$ by $x+1$.
4. $x^{2}+x-12$ by $x-3$.
5. $x^{3}+2 x^{2}+2 x+1$ by $x+1$.
6. $x^{2}+13 x+12$ by $x+1$. 8. $x^{5}-5 x^{3}+7 x^{2}+6 x+1$ by $x^{2}+3 x+1$. 9. $x^{4}-4 x^{3}+2 x^{2}+4 x+1$ by $x^{2}-2 x-1$.
7. $x^{4}-4 x^{3}+6 x^{2}-4 x+1$ by $x^{2}-2 x+1$.
tudent to
d accordsymbols ending or we have Examples take an angen! in is that in vers of x
8. $x^{4}-x^{2}+2 x-1$ by $x^{2}+x-1$. 12. $x^{4}-4 x^{2}+8 x+16$ by $x+8$.
9. $x^{3}+4 x^{2} y+3 x y^{2}+12 y^{3}$ by $x+4 y$.
10. $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$ by $a+b$.
11. $a^{5}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{3}+5 a b^{4}-b^{5}$ by $a-8$.
12. $x^{4}-12 x^{3}+50 x^{2}-84 x+45$ by $x^{2}-6 x+9$.
13. $a^{5}-4 a^{4} b+4 a^{3} b^{2}+4 a^{2} b^{3}-17 a b^{4}-12 b^{5}$ by $a^{2}-2 a b-3 b^{2}$.
14. $4 a^{2} x^{4}-12 a^{3} x^{3}+13 a^{4} x^{2}-6 a^{5} x+a^{6}$ by $2 a x^{2}-3 a^{2} x+a^{8}$.
15. $x^{4}-x^{2}+2 x-1$ by $x^{2}+x-1$.
16. $x^{4}+a^{2} x^{2}-2 a^{4}$ by $x^{2}+2 a^{2}$. 23. $x^{6}-y^{0}$ by $x-y$.
17. $x^{2}-13 x y-30 y^{2}$ by $x-15 y$. 24. $a^{2}-b^{2}+2 b c-c^{2}$ by $a-b+c$.
18. $x^{5}+y^{5}$ by $x+y$.
19. $b-3 b^{2}+3 b^{3}-b^{4}$ by $b-1$.
20. $a^{2}-b^{2}-c^{2}+d^{2}-2(a d-b c)$ by $a+b-c-d$. 27. $x^{3}+y^{3}+z^{3}-3 x y z$ by $x+y+z \quad$ 28. $x^{16}+y^{10}$ by $x^{3}+y^{3}$.
21. $p^{2}+p q+2 p r-2 q^{2}+7 q r-3 r^{2}$ by $p-q+3 r$.
22. $a^{8}+a^{6} b^{2}+a^{4} b^{4}+a^{2} b^{0}+b^{8}$ by $a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}$.
23. $x^{8}+x^{0} y^{2}+x^{4} y^{4}+x^{2} y^{0}+y^{3}$ by $x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}$.
24. $4 x^{5}-x^{3}+4 x$ by $2 x^{2}+3 x+2$. 33. $a^{5}-243$ by $a-3$.
25. $k^{10}-k$ by $k^{3}-1$.
26. $x^{3}-5 x^{2}-40 x-40$ by $x+4$
27. $48 x^{3}-76 a x^{2}-64 a^{2} x+105 a^{3}$ by $2 x-3 a$.
28. $18 x^{4}-45 x^{3}+82 x^{2}-67 x+40$ by $3 x^{2}-4 x+5$.
29. $16 x^{4}-72 a^{2} x^{2}+81 a^{4}$ by $2 x-3 a$.
30. $81 x^{4}-256 a^{4}$ by $3 x+4 a$. 41. $x^{3}+2 a x^{2}-a^{2} x-2 a^{3}$ by $x^{2}-a^{2}$.
31. $2 a^{3}+3 a^{2} b-2 a b^{2}-3 b^{3}$ by $a^{2}-b^{2}$. 42. $a^{4}-a^{2} b^{2}-12 b^{4}$ by $a^{2}+3 b^{2}$.
32. $x^{4}-9 x^{2}-6 x y-y^{2}$ by $x^{2}+3 x+y$.
33. $x^{4}-6 x^{3} y+9 x^{2} y^{2}-4 y^{4}$ by $x^{2}-3 x y+2 y^{2}$.
34. $x^{4}-81 y^{4}$ by $x-3 y$. 47. $81 a^{4}-16 b^{4}$ by $3 a+2 \dot{b}$.
35. $a^{4}-16 b^{4}$: y $a-2 b$. 48. $16 x^{4}-81 y^{4}$ by $2 x+3 y$.
36. $3 a^{2}+8 a b+4 b^{2}+10 a c+8 b c+3 c^{2}$ by $a+2 b+3 c_{6}$
37. $a^{4}+4 a^{2} x^{2}+16 x^{4}$ by $a^{2}+2 a x+4 x^{2}$.
38. $x^{4}+x^{2} y^{2}+y^{4}$ by $x^{2}-x y+y^{9}$.
39. $256 x^{4}+16 x^{2} y^{2}+y^{2}$ by $16 x^{2}+4 x y+y^{2}$.
40. $x^{5}+x^{4} y-x^{3} y^{2}+x^{3}-2 x y^{2}+y^{3}$ by $x^{3}+x-y$
41. $a x^{3}+3 a^{2} x^{2}-2 a^{3} x-2 a^{4}$ by $x-a$.
42. $a^{n}-r^{2}$ by $x+a$.
43. $2 x^{2}+x y-2 y^{2}-4 y z-x z-z^{2}$ by $2 x+3 y+\ldots$.
44. $9 x+3 x^{4}+14 x^{3}+2$ by $1+5 x+x^{2}$.
45. $12-38 x+82 x^{2}-112 x^{3}+106 x^{4}-70 x^{5}$ by $7 x^{2}-5 x+3$.
46. $x^{5}+y^{5}$ by $x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}$.

6o. $\left(a^{2} x^{2}+b^{2} y^{2}\right)-\left(a^{2} b^{2}+x^{2} y^{2}\right)$ by $a x+b y+a b+x y$.
GI. $a b\left(x^{2}+y^{2}\right)+x y\left(a^{2}+b^{2}\right)$ by $a x+b y$.
62. $x^{4}+\left(2 b^{2}-a^{2}\right) x^{2}+b^{4}$ by $x^{2}+a x+b^{2}$.
82. The process may in some cases be shortened by the use of brackets, as in the following Example.
$x+b) x^{3}+(a+b+c) x^{2}+(a b+a c+b c) x+a b c\left(x^{2}+(a+c) x+a c\right.$

$$
\begin{array}{r}
\frac{x^{3}+b x^{2}}{(a+c)} x^{2}+(a b+a c+b c) x \\
\frac{(a+c) x^{2}+(a b+b c) x}{a c x+a b c} \\
a c x+a b c
\end{array}
$$

$$
\begin{aligned}
& x-1) x^{5}-m x^{4}+n x^{3}-n x^{2}+n x-1\left(x^{4}-(m-1) x^{3}\right. \\
& x^{5} \text {. } \quad-(m-n-1) x^{2}-(m-1): c+1 \text {. } \\
& -(m-1) x^{4}+n x^{3} \\
& \underline{\underline{-(m-1)} x^{4}+(m-1): x^{3}} \\
& -(n-n-1) x^{3}-n x^{2} \\
& -(m-n-1) x^{3}+(m-n-1) x^{2} \\
& -(m-1) x^{2}+n x \\
& \frac{-\left(m-1 ; c^{2}+(m-1) x\right.}{x-1} \\
& x-1
\end{aligned}
$$

EXAMPLES.-XV*

Divide

1. $x^{4}-\left(c^{2}-b-c\right) x^{2}-(b-c) a x+b c$ by $x^{2}-a x+c$.
2. $y^{3}-(l+m+n) y^{2}+(l m+l n+m n) y-l m n$ by $y-n_{0}$
3. $x^{5}-(m-c) x^{4}+(n-c m+c) x^{3}+$
$(r+c n-d m) x^{2}+(c r+d n) x+d r$ by $x^{3}-m x^{2}+n x+r$.
4. $x^{4}+(5+a) x^{3}-(4-5 a+b) x^{2}-(4 a+5 b) x+4 b$ by $x^{2}+5 x-4$.
5. $x^{4}-(a+b+c+d) x^{3}+(a b+a c+a d+b c+b d+c d) x^{2}$
$-(a b c+a b d+a c d+b c d) x+a b c d$ by $x^{2}-(a+c) x+a \omega_{0}$
$y x+a$.
$-5 x+3$
the use
$x+a c$
6. The following Examples in Division are of great importance.

Divisor.	Dividend.	Qcoticit.
$x+y$	$x^{2}-y^{2}$	$x-y$
$x-y$	$x^{2}-y^{2}$	$x+y$
$x+y$	$x^{3}+y^{3}$	$x^{2}-x y+y^{2}$
$x-y$	$x^{3}-y^{3}$	$x^{2}+x y+y^{2}$

84. Again, if we arrange two series of binomials consisting respectively of the sum and the difference of ascending powers of x and y, thins
$x+y, x^{2}+y^{2}, x^{3}+y^{3}, x^{4}+y^{4}, x^{5}+y^{5}, x^{n}+y^{n}$, nud so on, $x-y, x^{2}-y^{2}, x^{3}-y^{3}, x^{4}-y^{4}, x^{5}-y^{5}, x^{6}-y^{3}$, and so on,
$x+y$ will divide the ord terms in the upper line, and the even in the lower \qquad
$x-y$ will divide all the terms in the lower, but none in the upper.

Or we may put it thats :
If u stand for any whole number, $x^{n}+y^{n}$ is divisible ly $x+y$ when n is oid, by $x-y$ never ;
$x^{n}-y^{n}$ is divisible by $x+y$ when n is even, by $x-y$ always.

Also, it is to be observed that when the divisor is $x-y$ all the terms of the quotient are positive, and when the divisor is $x+?$, the terms of the quotient are alternately positive and negative.

$$
\begin{aligned}
\text { Thuss } \frac{x^{4}-y^{4}}{x-y} & =x^{3}+x^{2} y+x y^{2}-y^{3} \\
\frac{x^{7}+y^{7}}{x+y} & =x^{6}-x^{4} y+x^{4} y^{2}-x^{3} y^{3}+x^{2} y^{4}-x y^{5}+y^{n} \\
\frac{x^{6}-y^{3}}{x+y} & =x^{5}-x^{4} y+x^{3} y^{2}-x^{2} y^{3}+x y^{4}-y^{5}
\end{aligned}
$$

85. These properties may be casily remembered by taking the four simplest cases, thus, $x+y, x-y, x^{2}+y^{2}, x^{2}-y^{2}$, of which
the first is divisible by $x+y$,
second $x-y$,
third neither,
fourth both.

Again, since these properties are true for all values of x and y, suppose $y=1$, then we shall have

$$
\begin{array}{ll}
\frac{x^{2}-1}{x+1}=x-1, & \frac{x^{2}-1}{x-1}=x+1 \\
\frac{x^{3}+1}{x+1}=x^{2}-x+1, & \frac{x^{3}-1}{x-1}=x^{2}+x+1
\end{array}
$$

Also

$$
\begin{aligned}
& \frac{x^{6}+1}{x+1}=x^{4}-x^{3}+x^{2}-x+1 \\
& \frac{x^{6}-1}{x-1}=x^{5}+x^{4}+x^{3}+x^{2}+x+1 .
\end{aligned}
$$

EXAMPLES.-XVI.

Without going through the process of Division write down the quoticnts in the following cases :
I. When the divisor is $m+n$, and the dividends are respectively

$$
m^{2}-n^{2}, m^{3}+n^{3}, m^{5}+n^{5}, m^{0}-n^{6}, m^{9}+n^{9}
$$

2. When the divisor is $m-n$, and the dividends are respectively

$$
m^{2}-n^{2}, m^{3}-n^{3}, m^{4}-n^{4}, m^{6}-n^{6}, m^{7}-n^{7}
$$

3. When the divisor is $a+1$, and the dividenis are respectively

$$
a^{2}-1, a^{3}+1, a^{5}+1, a^{7}+1, a^{8}-1
$$

4. When the divisor is $y-1$, and the dividends are respectively

$$
y^{2}-1, y^{3}-1, y^{5}-1, y^{7}-1, y^{9}-1
$$

by taking $x_{i}^{3}-y^{2}$, of

V. ON THE RESOLUTION OF EXPRESSIONS INTO FACTORS.

86. We shall discuss in this Chapter an operation which is the opposite of that which we call Multiplication. In Multiplication we determine the product of two given factors : in the operation of which we hava now to treat the product is given and the factors have to be found.
87. For the reso. etion, as it is called, of a product into its component factors no rule can be given which shall be applicable to all cases, but it is not difficult to explain the process in certain simple cases. We shall take these cases separately.
88. Case I. The simplest case for resolution is that in which all the terms of an expression have one common factor. This factor can be seen by inspection in most cases, and therefore the other factor may be at once determined.

Thus

$$
\begin{gathered}
a^{2}+a b=a(a+b) \\
2 a^{3}+4 a^{2}+8 a=2 a\left(a^{2}+2 a+4\right) \\
9 x^{3} y-18 x^{2} y^{2}+54 x y=9 x y\left(x^{2}-2 x y+6\right)
\end{gathered}
$$

EXAMPLES.-Xvii.

Resolve into factors:

1. $5 x^{2}-15 x$.
2. $3 x^{3}+18 x^{2}-$
3. $49 y^{2}-14 y+7$.
4. $4 x^{3} y-12 x^{2} y^{2}+8 x y^{3}$.
5. $x^{4}-a x^{3}+b x^{2}+c x$.
6. $3 x^{5} y^{3}-21 x^{4} y^{2}+27 x^{3} y^{4}$.
7. $54 a^{3} b^{6}+108 a^{608}-243 a^{8} b^{9}$.
8. $45 x^{7} y^{10}-90 x^{5} y^{7}-360 x^{4} y^{8}$.
9. Case- I I. The next cose in point of simplicity is that in which four terms can be so arranged, that the first two have a common factor and the last two have a cummon factor.

Thus

Again

$$
\begin{aligned}
x^{2}+a x+b x+a^{3} & =\left(x^{2}+a x\right)+(b x+a b) \\
& =x(x+a)+b(x+a) \\
& =(x+b)(x+a) . \\
a c-a d-b c+b d & =(a c-a d)-(b c-b d) \\
& =a(c-d)-b(c-d) \\
& =(a-b)(c-d) .
\end{aligned}
$$

ExAMPLES.-Xviii.

Resolve into factors:
I. $x^{2}-a x-b x+a b$.
2. $a b+a x-b x-x^{3}$.
3. $b c+b y-c y-y^{2}$.
4. $\quad b m+m n+a b+a n$.
5. $a l x^{2}-a x y+b x y-y^{2}$.
6. $a b x-a b y+c d x-c d y$.
7. $c l x^{2}+d m x y-c n x y-m n y^{2}$.
8. $a b c x-b^{2} d x-a c d y+b d^{2} y$.
90. Before reading the Articles that follow the student is advised to turn back to Art. 5(0) and to observe the manner in which the operation of multiplying a linomial by a binomial produces a trinomial in the Examples there given. He will then be prepared to expect that in certain cases a trinomial can be resolved into two binomial factors, examples of which we shall now give.

91. Case III. To find the factors of $x^{2}+7 x+12$.

Our object is to find two numbers whose product is 12, and whose sum is 7.
These will evidently be 4 and 8 ,

$$
\therefore x^{2}+7 x+12=(x+4)(x+3) \text {. }
$$

Again, to find the factors of

$$
x^{2}+5 b x+6 b^{2} .
$$

Our object is to find two numbers whose prolluct is 66^{2}, and whose sum is 56 .
These will clearly be $3 b$ and $2 b$,

$$
. . x^{2}+50 x+6 b^{2}=(x+3 b)(x+2 b) .
$$

EXAMPLES.-xix.

Resulve into factors:

1. $x^{2}+11 x+30$.
2. $x^{2}+17 x+60$.
3. $y^{2}+13 y+12$.
4. $y^{2}+21 y+110$.
5. $m^{2}+35 m+200$.
6. $m^{2}+23 m+102$.
7. $a^{2}+9 a b+9 z^{3}$.
8. $x^{2}+13 m+30 m^{3}$.
9. $y^{3}+10 n y+48 n^{2}$.
10. $z^{2}+20 p z+100 p^{2}$.
11. $x^{4}+5 x^{2}+6$.
12. $x^{6}+4 x^{3}+3$.
13. $x^{2} y^{2}+18 x y+32$.
14. $x^{8} y^{4}+7 x^{4} y^{2}+12$.
15. $m^{10}+10 m^{5}+16$.
16. $n^{2}+2 i n q+140 q^{2}$.
17. Caso IV. To find the factors of $x^{2}-9 x+20$.
Our object is to find two negative terms whose procinct is 20 , and whose sum is .-9.
These will cleariy be -5 and -4 ,

$$
\therefore x^{2}-9 x+20=(x-5)(x-4) .
$$

EXAMDIES.-XX.
Resolve into factors:

1. $x^{2}-7 x+10$.
2. $x^{2}-29 x+190$.
3. $y^{2}-23 y+132$.
4. $y^{2}-30 y+200$.
5. $n^{2}-48 n+400$.
6. $n^{2}-57 n+50$.
7. $x^{6}-7 x^{3}+12$.
8. $a^{2} b^{2}-27 a b+20$.
9. $b^{4} c^{6}-11 l^{2} c^{3}+30$.
o. $x^{2} y^{2} \tilde{z}^{2}-13 x y+22$.
10. Case V. To fint the factors of

$$
x^{3}+5 x-84 .
$$

Our object is to find two terms, one positive and one negative whose product is -84 , and whose sum is 5 .
These are clearly 12 and -7 ,

$$
\therefore x^{2}+5 x-84=(x+12)(x-7 .
$$

EXAMPLES.-XXI.

Resolve into factors:

1. $x^{2}+7 x-60$.
2. $x^{3}+12 x-45$.
3. $a^{2}+11 a-12$.
4. $a^{2}+13 a-140$.
5. $b^{2}+13 b-300$.
6. $b^{2}+25 b-150$.
7. $x^{8}+3 x^{4}-4$.
8. $x^{2} y^{2}+3 x y-154$.
9. $m^{10}+15 m^{5}-100$.
10. $n^{2}+17 n-300$.
11. Case VI. To find the factors of

$$
x^{2}-3 x-28
$$

Our object is to find two terms, one positive and one negative, whose product is -28 , and whose sum is -3 .

These will clearly be 4 and -7,

$$
\therefore x^{2}-3 x-28=(x+4)(x-7) \text {. }
$$

EXAMPLES.-XXii.

Resolve into factors:
I. $x^{2}-5 x-66$.
2. $x^{2}-7 x-18$.
3. $m^{2}-9 m-36$.
4. $n^{2}-11 n-60$.
5. $y^{2}-13 y-14$.
6. $z^{2}-15 z-100$.
7. $x^{10}-9 x^{5}-10$.
8. $c^{2} d^{2}-24 c d-180$.
9. $m^{6} n^{2}-m^{3} n-2$.
10. $p^{8} q^{4}-5 p^{4} q^{2}-84$.
95. The results of the four preceding articles may be thus stated in general terms: a trinomial of one of the forms

$$
x^{2}+a x+b \cdot x^{2}-a x+b, x^{2}+c x-b, x^{2}-a x-b,
$$

may be resolved into two simple factors, when b can be resolved into two factors, such that their sum, in the first two forms, or their difference, in the last two forms, is equal to a.
96. We shall now give a set of Miscellaneous Examples on the resolution into factors of expressions which come under one or other of the cases alrearly explained.

EXAMPLES.-XXiii.

Resolve into factors:

1. $x^{2}-15 x+36$.
2. $x^{2}+m x+n x+m n$
3. $x^{2}+4 x-45$.
4. $y^{6}-4 y^{3}+3$.
5. $a^{2} b^{2}-16 a b-30$.
6. $x^{2} y-a b x-c x y+a b c_{0}$.
$4 x^{8}-3 m x^{4}-10 m^{2}$.
7. $x^{2}+(a-b) x-a b$.
8. $y^{6}+y^{3}-90$.
9. $x^{2}-(c-d) x-c d$.
10. $x^{4}-x^{2}-110$.
11. $a b^{2}-b d+c d-a b c$.
12. $x^{3}+3 a x^{3}+4 a^{2} x$
13. $4 x^{2}-28 x y+48 y^{2}$.
97." We have said, Art. 45, that when a number is multiplied by itself the result is called the Square of the number, and that the figure 2 placed over a number on the right hand indicates that the number is multiplied by itself.

Thus a^{2} is called the square of a,
$(x-y)^{2}$ is called the square of $x-y$.
The Square Root of a given number is that number whose square is equal to the given number.

Thus the square root of 49 is 7 , because the square of 7 is 49.

So also the square root of a^{2} is a, because the square of a is a^{2} : and the square root of $(x-y)^{2}$ is $x-y$, because the square of $x-y$ is $(x-y)^{2}$.
The symbol $\sqrt{ }$ placed before a number denotes that the square root of that number is to be taken : thus $\sqrt{ } 25$ is read "the square root of 25 ."

Note. :The square root of a pcsitiye quantity may be either positive or negative. For -
since a multiplied by a gives as a result a^{2},
and $-a$ multiplied by $-a$ gives as a result a^{2},
it follows, from our definition of a Square Root, that either a or - a may be regarded as the square root of a^{2}.
But tirroughout this chapter we shall take only the positive value of the square root.
98. We may now take the case of Trinomials which are perfect squares, which are really included in the cases discussed in Arts. 91, 92, but which, from the importance they assume in a later part of our sulject, demand a separate consideration.
99. Case VII. To find the factors of

$$
x^{2}+12 x+36
$$

Seeking for the factors according to the hints given in Art. 91, we find them to be $x+6$ and $x+6$.

That is $x^{2}+12 x+36=(x+C)^{2}$.

EXAMPLES.-xxiv.

Resolve into factors:
I. $x^{2}+18 x+81$.
6. $x^{4}+14 x^{2}+49$.
2. $x^{2}+26 x+169$.
7. $x^{2}+10 x y+2 \check{a} y^{2}$.
3. $x^{2}+34 x+289$.
8. $m^{4}+1 C m^{2} n^{2}+64 n^{4}$.
$4 y^{2}+2 y+1$.
9. $x^{6}+24 x^{3}+144$.
5. $z^{2}+200 z+10000$.
10. $x^{2} y^{2}-162 x y+6561$.
100. Case VIII. To find the factors of

$$
x^{2}-12 x+36
$$

Seeking for the factors according to the liints given in Art. 92, we find them to be $x-6$ and $x-6$.

That is, $x^{2}-12 x+36=(x-6)^{2}$.

EXAMPLES.-xxv.

Resoive into factors :
J. $x^{3}-8 x+16$.
2. $x^{2}-28 x+196$.
3. $x^{2}-36 x+324$.
4. $y^{2}-40 y+400$.
5. $z^{2}-100 z+2500$.
6. $x^{4}-22 x^{2}+121$.
7. $x^{2}-30 x y+225 y^{2}$.
8. $m^{4}-32 n^{2} n^{2}+250 n^{4}$.
9. $x^{6}-38 x^{3}+361$.
ich are es dise they te con-
101. Case IX. We now proceed to the most important case of Resolution into Factors, namely, that in which the expression to be resolved can be put in the form of two squares with a neyative sign between them.

Since

$$
m^{2}-n^{2}=(m+n)(m-n)
$$

we can express the difference between the squares of two quantities by the product of two factors, determinel by the following method:

Take the square root of the first quantity, and the square r) of the second quantity.

The suin of the results will forin the first factor.
The difference of the results will form the second factor.
For example, let $a^{2}-b^{2}$ be the given expression.
The square root of a^{2} is a.
The square root of b^{2} is b.
The sum of the results is $a+b$.
The difference of the results is $a-b$.
The factors will therefore be $a+b$ and $a-b$, that is,

$$
a^{2}-b^{2}=(a+b)(a-b) .
$$

102. The same method holds good with respect to com. pound quantities.

Thus, let $a^{2}-(b-c)^{2}$ be the given expression.
The square root of the first term is a.
The square root of the second term is $b-c$
The sum of the results is $a+b-c$.
The difference of the results is $a-b+c$.

$$
\therefore a^{2}-(b-c)^{2}=(a+b-c)(a-b+c) .
$$

Again, let $(a-b)^{2}-(c-d)^{2}$ be the given expression.
The square root of the first term is $a-b$. The square root of the second term is $c-d$.
The sum of the results is $a-b \div c-d$. The difference of the results is $a-b-c+d$

$$
\therefore(a-b)^{2}-(c-d)^{2}=(a-b+c-d)(a-b-c+d) .
$$

103. The terms of an expression may often be arranged so as to form two squares with the nugative sign between them, and then the expression can be resulved into factors.

Thus $\quad a^{2}+b^{2}-c^{2}-d^{2}+2 a b+2 c d$

$$
\begin{aligned}
& =a^{2}+2 a b+b^{2}-c^{2}+2 c d-d^{2} \\
& =\left(a^{2}+2 a b+b^{2}\right)-\left(c^{2}-2 c d+d^{2}\right) \\
& =(a+b)^{2}-(c-d)^{2} \\
& =(a+b+c-d)(a+b-c+d)
\end{aligned}
$$

EXAMPLES:-XXVI.

Resolve into two or more factors:

1. $x^{2}-y^{2}$.
2. $x^{2}-9$.
3. $4 x^{2}-25$.
4. $a^{4}-x^{4}$.
5. $x^{2}-1$.
6. $x^{6}-1$.
7. $x^{8}-1$.
8. $m^{4}-16$.
9. $36 y^{2}-40 z^{2}$.
10. $81 x^{2} y^{2}-121 a^{2} b^{2}$.
11. $(a-b)^{2}-c^{3}$.
, 12. $x^{2}-(m-n)^{3}$.
12. $(a+b)^{2}-(c+d)^{2}$.
13. $(x+y)^{2}-(x-y)^{2}$.
14. $x^{2}-2 x y+y^{2}-z^{2}$.
15. $(a-b)^{2}-(m+n)^{2}$.
16. $a^{2}-2 a c+c^{2}-b^{2}-2 b l-d^{2}$.

$$
4+1
$$

27. $a^{4}-16 b^{2}$
28. $2 b c-b^{2}-c^{2}+a^{2}$.
29. $2 x y+x^{2}+y^{2}-z^{2}$.
30. $a^{2}+b^{2}-c^{2}-d^{2}-2 a b-2 a w^{2}$
31. $a^{2}-b^{2}+c^{2}-d^{2}-2 a c+2 b l$.
32. $2 m n-n^{2}-n^{2}+a^{2}+b^{2}-2 a b$. 31. $3 a^{3} x^{3}-27 a x$.
33. $(a x+b y)^{2}-1$.
34. $u^{4} l^{6}-c^{8}$.
35. $(a x+b y)^{2}-(a x-b y)^{2}$.
36. $(5 x-2)^{2}-(x-4)^{3}$.
37. $1-a^{2}-l^{2}+2 u b$.
38. $(7 x+4 y)^{2}-(2 x+3 y)^{2}$. 35. $(753)^{2}-(247)^{2}$.

104. Case X. Since

$$
\frac{x^{3}+a^{3}}{x+a}=x^{2}-u x+a^{2}, \quad \text { and } \frac{x^{3}-a^{3}}{x-a}=x^{2}+a x+a^{2} \quad \text { (Art. 83), }
$$

we know the fullowing important fact: :
(1) The sum of the cubcs of two numbers is divisible by the sum of the numbers:
(2) The diference between the cubes of two numbers is divisible by the difference between the numbers.

Hence we may resolve into factors expressions in the form of the sum or difference of the cubes of two numbers.

Thus

$$
\begin{aligned}
& x^{3}+27=x^{3}+3^{3}=(x+3)\left(x^{2}-3 x+9\right) \\
& y^{3}-64=y^{3}-4^{3}=(y-4)\left(y^{2}+4 y+16\right)
\end{aligned}
$$

EXAMPLES.-XXVii.

Express in factors the following expressions:

1. $a^{3} \div b^{3}$.
2. $a^{3}-b^{3}$.
3. $a^{3}-8$.
4. $x^{3}+343$.
5. $b^{3}-125$.
6. $x^{3}+64 y^{3}$.
7. $a^{3}-216$
8. $8 x^{3}+27 y^{3}$. 9. $64 a^{3}-1000 b^{3}$.
9. $729 x^{3}+512 y^{3}$.

Express in four factors each of the following expressions :
11. $x^{6}-y^{6}$.
12. $x^{6}-1$.
13. $a^{6}-64$.
14. $729-y^{6}$.
105. Before we proceed to describe other processes in Algebra, we shall give a series of examples in illustration of the principles already laid down.

The student will find it of advantage to work every example in the following series, and to accustom himself to read and to explain with facility those examples, in which illustrations are given of what may be called the short-hand method of expressing Arithmetical calculations by the symbols of Algebra.

EXAMPLES.-XXViii.

1. Express the sum of a and b.
2. Interpret the expression $a-b+c$.
3. How do you express the double of x ?
4. By how much is a greater than 5 ?
5. If x be a whole number, what is the number next above it?
6. Write five numbers in order of magnitude, so that \approx shall be the third of the five.
7. If a be multiplied into zero, what is the result?
8. If zero be divided by x, what is the result?
9. What is the sum of $a+a+a \ldots$ written d times?
10. If the product be $a c$ and the multiplier c, what is the multiplicand?
11. What number taken from x gives y as a remainder?
12. A is x years old, and B is y years olu ; low old was A when B was born?
13. A man works every day on week-dnys for x weeks in
not work at all. During how many days does he rest?
14. There are x boats in a race. Five are bumped. Hor many row over the course?
15. A merchant begins trading with a capital of x pounds. He gains a pounds each year. Hew much capital has he at the end of 5 years? left?
16. If n men can dig a piece of ground in q hours, how many hours will one man take to dig it? 21. By how much does 25 exceed x ?
17. By how much does y exceed 25 ?
18. If a product has $2 m$ repeated 8 times as a factor, how do you express the product?
19. By how much does $a+2 b$ exceed $a-2 b$?
20. A girl is x years of age, how old was she 5 years since?
21. A and B sit down to play at cards. A has x shillings and $B y$ shillings at first. A wins 5 shillings. How much has each when they cease to play?
22. There are 5 brothers in a family. The age of the eldest is x years. Each brother is 2 years younger than the one next above him in age. How old is the youngest?
23. I travel x hours at the rate of y miles an hour. How many miles do I travel 1
24. From a rod 12 inches long I cut off x inches, and then 1 cut off y inches of the remainder. How many inches are
25.

10, ab
26. A boy is y years of age, how old will he be 7 years hence?
27. Express the difference between the squares of two numbers.
28. Express the product arising from the multiplication of the sum of two numbers into the difference between the same numbers.
29. What value of x will make $8 x$ equa! to 161
30. What value of x will make $28 x$ equal to $53 ?$
31. What value of x will make $\frac{x}{7}$ equal to 4 ?
32. What value of x will make $x+2$ equal to 9 ?
33. What value of x will make $x-7$ equal to 15 ?
34. What value of x will make $x^{2}+9$ equai to 34 ?
35. What value of x will make $x^{8}-8$ equal to 92 ?
x shillings y much has
f the eldest ae one next
our. How
s, and then inches are
hours, how
factor, how
years since?

EXAMPLES.-XXIX.

Explain the operations symbolized in the following expres. sions:
I. $a+b$.
2. $a^{2}-b^{2}$.
3. $4 c^{2}+b^{3}$.
4. $4\left(a^{2}+b^{2}\right)$.
5. $a^{2}-2 b+3 c$.
6. $a+m \times b-c$. 7. $(a+m)(b-c)$.
8. $\sqrt{x^{3}}$.
9. $\sqrt{x^{2}+y^{2}}$.
12. $\frac{a^{2}+b^{2}}{4 a b}$.
10. $a+2(3-c)$.
II. $(a+2)(3-c)$.
13. $\frac{\sqrt{x^{2}-y^{3}}}{x-y}$.

J4. $\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x+y}}$.

EXAMPLES.-XXX.

If a stands for $6, b$ for $5, x$ for 4 , and y for 3 , find the value of the following expressions :

1. $a+x-b-y$.
2. $a+y-b-x$.
3. $3 a+4 y-b-2 x$
4. $3(a+b)-2(x-y)$.
5. $(a+x)(b-y)$.
6. $2 a+3(x+y)$.
7. $(2 x+3)(\tilde{x}+y)$.
8. $2 a+3 x+y$.
9. $\frac{b^{2}+y}{a-x}$.

19, $a b x$.
12. $a y(b+x)^{2}$.
13. $a b(x-y)^{2}$.
14. $\sqrt{5 b}$.
15. $\sqrt{y^{2}}$.
16. $(\sqrt{x})^{2}$.
17. $(\sqrt{x}+b)^{3}$.
18. $\sqrt{5 b x}$.
19. $\sqrt{2 a x y}$.
20. $\frac{a^{2}+b^{2}+y}{x+y^{2}+3}$
2I. $3 a+(2 x-y)^{3}$.
22. $\{a-(b-y)\}\{a-(x-y)\}$. 24. $3(a+b-y)^{3}+4(a+x) 4$
23. $(a-b-y)^{2}+(a-x+y)^{2}$. 25. $3(a-b)^{2}+\left(4 x-y^{2}\right)^{2}$.

EXAMPLES.-XXXI.

1. Find the value of

$$
3 a b c-a^{3}+b^{3}+c^{3}, \text { when } a=3, b=2, c=1
$$

2. Find the value of

$$
x^{3}+y^{3}-z^{3}+3 x y z, \text { when } x=3, y=2, z=5
$$

3. Subtract $a^{2}+c^{2}$ from $(a+c)^{2}$.
4. Subtract $(x-y)^{2}$ from $x^{2}+y^{2}$.
5. Find the coefficient of x in the expression

$$
(a+b)^{2} x-(a+b x)^{2}
$$

6. Find the continued product of

$$
2 x-m, 2 x+n, x+2 m, x-2 n .
$$

7. Divide

$$
a c r^{3}+(b c+a d) r^{2}+(b d+a e) r+b e \text { by } a r+b ;
$$

and test your result by putting

$$
a=b=c=d=e=1, \text { and } r=10 .
$$

8. Obtain the product of the four factors

$$
(a+b+c),(b+c-a),(c+a-b),(a+b-c) .
$$

What does this become when c is zero; when $b+c=a$; when $a=b=c$?
9. Find the value of

$$
(a+b)(b+c)-(c+d)(d+a)-(a+c)(b-d),
$$

where b is equal to d.
10. Find the value of

$$
3 a+\left(2 \hat{b}-c^{2}\right)+\left\{c^{2}-(2 a+3 b)\right\}+\{3 c-(2 a+3 b)\}^{\overline{3}},
$$

when $a=0, b=2, c=4$.
11. If $a=1, b=2, c=3, d=4$, shew that the numerical values are equal of
and of

$$
\{d-(c-b+a)\}\{(d+c)-(b+a)\}
$$

12. Dracket together the different powers of x in the following expressions:
(a) $a x^{2}+b x^{2}+c x+d x$.
(β) $a x^{3}-b x^{3}-c x^{2}-d x^{2}+2 x^{2}$.
(ช) $4 x^{3}-a x^{3}-3 x^{2}-b x^{2}-5 x-\infty$
($\delta)(a+x)^{2}-(b-x)^{2}$.
(ε) $\left(m x^{2}+q x+1\right)^{2}-\left(n x^{2}+q x+1\right)^{3}$.
13. Multiply the three factors $x-a, x-b, x-c$ together, and arrange the product according to descending powers of x.
14. Find the continued product of $(x+a)(x+b)(x+c)$.
15. Find the cube of $a+b+c$; thence without further multiplication the cubes of $a+b-c ; b+c-a ; c+a-b$; and subtract the sum of these three cubes from the first.
16. Find the product of $(3 a+2 b)(3 a+2 c-3 b)$. and test the result by making $a=1, b=c=3$.
17. Find the continued product of

$$
a-x, a+x, a^{2}+x^{2}, a^{4}+x^{4}, a^{8}+x^{5}
$$

18. Subtract $(b-a)(c-d)$ from $(a-b)(c-d)$.

What is the value of the result when $a=2 b$ and $d=2 c ?$
19. Add together $(b+y)(a+x), x-y, a x-b y$, and $a(x+y)$.
20. What value of x will make the difference between $(x+1)(x+2)$ ard $(x-1)(x-2)$ equal to 54 ?
21. Add together ax-by, $x-y, x(x-y)$, and $(a-x)(b-y)$.
22. What value of x will make the difference between $(2 x+4)(3 x+4)$ and $(3 x-2)(2 x-8)$ equal to 96 ?
23. Add together

$$
2 m x-3 n y, x+y, 4(m+n)(x-y), \text { and } m x+n y
$$

24. Prove that
$(x+y+z)^{2}+x^{2}+y^{2}+z^{2}=(x+y)^{2}+(y+z)^{2}+(x+z)^{2}$.
25. Find the product of $(2 a+3 b)(2 a+3 c-\Sigma b)$, and test the result by making $a=1, b=4, c=2$.
26. If $a, b, c, d, 8 \ldots$ denote $9,7,8,3,1$, fina the values of $\frac{a b-c d}{c d+c} ;(b c-a d)(b d-c e) ; \frac{b^{2}-c^{2}}{c+d}$; and $d^{-}-c^{d}$.
27. Find the value of

$$
3 a b c-a^{3}+b^{3}+c^{3} \text { when } a=0, b=2, c=1 .
$$

28. Find the value of

$$
3 a^{2}+\frac{2 a b^{2}}{c}-\frac{c^{8}}{b^{2}} \text { when } a=4, b=1, c=2 .
$$

29. Find the value of
$(a-b-c)^{2}+(b-a-c)^{2}+(c-a-b)^{2}$ when $a=1, b=2, c=3$.
30. Find the value of $(a+b-c)^{2}+(a-b+c)^{2}+(b+c-a)^{2}$ when $a=1, b=2, c=4$.
31. Find the value of

$$
(a+b)^{2}+(b+c)^{2}+(c+a)^{2} \text { when } a=-1, b=2, c=-3 .
$$

32. Shew that if the sum of any two numbers divide the difference of their equares, the quotient is equal to the difference of the two numbers.
33. Shew that the product of the sum and difference of any two numbers is equal to the difference of their squares.
34. Shew that the square of the sum of any two consecutive integers is always greater by one than four times their product.
35. Shew that the square of the sum of any twis consecutive even whole numbers is four times the square of the odd number between them.
36. If the number 2 be divided into any two parts, the difference of their squares will always be equal to twice the difference of the parts.
37. If the number 50 be divided into any two parts, the difference of their squares will always be equal to 50 times the difference of the parts.
38. If a number n be divided into any two parts, the difiference of their squares will aiways be equal to n times the difference of the parts.
wi

> tiv nu
39. If two numbers differ by a unit, their product, together with the sum of their squares, is equal to the difference of the cubes of the numbers.
40. Shew that the sum of the cubes of any three consecutive whole numbers is divisible by three times the middle number.

VI. ON SIMPLE EQUATIONS.

106. An Equation is a statement that two expressions are equal.
107. An Identical Equation is a statement that two exjressions are equal for all numerical values that can be given to the letters involved in them, provided that the same value be given to the same letter in every part of the equation.

Thus,

$$
(x+a)^{2}=x^{2}+2 a x+a^{2}
$$

is an Identical Equation.
108. An Equation of Condition is a statement that two expressions are equal for some particular numerical value or values that can be given to the letters involved.
Thus,

$$
x+1=6
$$

is an Equation of Condition, the only number which x can represent consistently with this equation being 5.
It is of such equations that we have to treat.
109. The Root of an Equation is that number which, when put in the place of the unknown quantity, makes both sides of the equation identical.
110. The Solution of an Equation is the process of finding what number an unknown letter must stand for that the equation may be true: in other words, it is the method of finding the Root.
The letters that stand for unknown numbers are usually x, y, z, but the student must observe that any letter may ctand for an unknown number.
111. A Simple Equation is one which contains the first power only of an unknown quantity. This is also called an Equation of the First Degree.
112. The following Axioms form the grounilwork of the solution of all equations.

Ax. I. If equal quautities be added to equal quantities, the sums will be equal.

Thus, if

$$
\begin{gathered}
a=b, \\
a+c=b+c .
\end{gathered}
$$

Ax. II. If equal quantities be talien from cqual quantitics, the remanders will be equal.
Thus, if

$$
\begin{gathered}
x=y, \\
x-z=y-z .
\end{gathered}
$$

Ax. III. If equal quantities be multiplied by equal quantities, the products will be equal.

Thus, if

$$
\begin{gathered}
a=b, \\
m a=n i b .
\end{gathered}
$$

Ax. IV. If equal quantitics be ciivided by equal quantities, the quotients will be equal.
Thus, if

$$
\begin{aligned}
x y & =x z \\
y & =z .
\end{aligned}
$$

113. On Axioms I. and II. is founded a process of great utility in the solution of equations, called The Transposirion of Terss from one side of the equation to the other, which may be thus stated:
"Any term of an equation may be transferred from one side of the equation to the other if its sign be changed."
For let

$$
x-a=b .
$$

Then, by Ax. I., if we add a to both sides, the sides remain equal:
therefore
that is,

$$
\begin{aligned}
x-a+a & =b+a, \\
x & =b+a . \\
x+c & =d .
\end{aligned}
$$

Again, let
Then, by Ax. II., if we sulitract c from each side, the sides remain equal:
therefore
that is,

$$
\begin{aligned}
x+c-c & =d-c \\
x & =d-c
\end{aligned}
$$

of the
tities,
titics,
114. We may change all the signs of each side of an equation without altering the equality.

Thus, if

$$
\begin{aligned}
& a-x=b-c \\
& x-a=c-b
\end{aligned}
$$

115. We may change the position of the two sides of the equation, leaving the signs unchanged.

Thus the equation $a-b=x-c$, may be written thus, $x-c=a-b$.
116. We may now proceed to our first rule for the solution of a Simple Equation.

Rule I. Transpose the known terms to the right hand side of the equation and the unknown terms to the other, and combine all the terms on cach side as far as possible.

Then divide both sides of the equation by the coefficient of the unknown quantity.

This rule we shall now illustrate by examples, in which x stands for the unknown quantity.

EX. 1. To solve the equation,

$$
5 x-6=3 x+2
$$

Transposing the terms, we get

$$
5 x-3 x=2+6
$$

Combining like terms, we get

$$
2 x=8
$$

Dividing both sides of this equation by 2 , we get

$$
x=4
$$

and the value of x is determined.
Ex. 2. To solve the equction,

$$
7 x+4=25 x-32
$$

Transposing the ternis, we get

$$
7 x-25 x=-32-4
$$

Combining like terms, we get

$$
-18 x=-36
$$

Changing the signs on each side, we get

$$
18 x=36
$$

Dividing both sides by 18 , we get

$$
x=2
$$

and the value of x is determined.

Ex. 3. To solve the equation,

$$
\begin{gathered}
2 x-3 x+120=4 x-6 x+132, \\
2 x-3 x-4 x+6 x=132-120, \\
8 x-7 x=12, \\
x=12 .
\end{gathered}
$$

that is, or, therefore,

Ex. 4. To solve the equation,
that is,
or,
or,
therefore,

$$
\begin{gathered}
3 x+5-8(13-x)=0 \\
3 x+5-104+8 x=0 \\
3 x+8 x=104-5 \\
11 x=99 \\
x=9
\end{gathered}
$$

Ex. 5. To solve the cquation,
that is,
or,
or,
or,
therefore,

$$
6 x-2(4-3 x)=7-3(17-x)
$$

$$
6 x-5+6 x=7-51+3 x
$$

$$
6 x+6 x-3 x=7-51+3
$$

$$
12 x-3 x=15-51
$$

$$
9 x=-36
$$

$$
x=-4
$$

EXAMPLES.-XXXII.
9. $26-8 x=80-142$
2. $12 x+7=8 x+15$.
10. $133-3 x=x-83$.
3. $230 x+425=97 x+564$.

I 1. $13-3 x=5 x-3$.
4. $5 x-7=3 x+7$.
12. $127+9 x=12 x+100$.
5. $12 x-9=8 x-1$.
13. $15-5 x=6-4 x$.
6. $124 x+19=112 x+43$.
14. $3 x-22=7 x+6$.
7. $18-2 x=27-5 x$.

I5. $8+4 x=12 x-16$.
8. $125-7 x=145-12 x$.
16. $5 x-(3 x-7)=4 x-(6 x-35)$
17. $6 x-2(9-4 x)+3(5 x-7)=10 x-(4+16 x)+35$.

1S. $9 x-3(5 x-6)+30=0$.
19. $12 x-5(3 x+3)+6(7-8 x)+783=0$.
20. $x-7(4 x-11)=14(x-5)-19(5-x)-61$.
21. $(x+7)(x-3)=(x-5)(x-15)$.

$$
\begin{aligned}
& \text { 22. }(x-8)(x+12)=(x+1)(x-6) . \\
& \text { 23. }(x-2)(7-x)+(x-5)(x+3)-2(x-1)+12=0 . \\
& \text { 24. }(2 x-7)(x+5)=(9-2 x)(4-x)+229 . \\
& \text { 25. }(7-6 x)(3-2 x)=(4 x-3)(3 x-2) . \\
& \text { 26. } 14-x-5(x-3)(x+2)+(5-x)(4-5 x)=45 x-76 . \\
& \text { 27. }(x+5)^{2}-(4-x)^{2}=21 x . \\
& \text { 2S. } 5(x-2)^{2}+7(x-3)^{2}=(3 x-7)(4 x-19)+42 . \\
& \text { 29. }(3 x-17)^{2}+(4 x-25)^{2}-(5 x-29)^{2}=1 . \\
& \text { 30. }(x+5)(x-9)+(x+10)(x-8)=(2 x+3)(x-7)-113 .
\end{aligned}
$$

VII. PROBLEMS LEADING TO SIMPLE EQUATIONS.

117. Whes we have a question to resolve by means of Algebra, we represent the number souglit by an unknown symbol, and then consider in what manner the conditions of the question enable us to assert that two expressions are equal. Thus we obtain an equation, and by resolving it we determine the value of the number sought.

The whole difficulty connected with the solution of Algebraical Problems lies in the determination from the conditions of the question of two different expressions having the same numerical value.

To explain this let us take the following Problem:
Find a number such that if 15 be added to it, twice the sum will be equal to 44 .

Let x represent the number.
Then $x+15$ will represent the number increased by 16 , and
$2(x+15)$ will represent twice the sum.
But 44 will represent twice the sum, therefore

$$
\begin{gathered}
2(x+15)=44 \\
2 x+30=44 \\
2 x=14 \\
x=7
\end{gathered}
$$

Hence that is, or,
and therefore the number sought is $\%$.
118. We shall now give a series of Easy Problems, in which the conditions by which an equality between two expressions can be asserted may be readily seen. The student should be thoroughly familiar with the Examples in set axviii, the use of which he will now find.

We shall insert some notes to explain the method of representing quantities by algelraic symbols in cases where some difficulty may arise.

EXAMPLES.-XXXiii.

1. To the double of a certain number I add 14 and obtain as a result 154. What is the number?
2. To four times a certain number I add 16 and obtain as a result 188. What is the number?
3. By adding 46 to a certain number I obtain as a result a number three times as large as the original number. Find the originai number.
4. One number is three times as large as another. If I take the smaller from 16 and the greater from 30 , the remainders are equal. What are the numbers?
5. Divide the number 92 into four parts, such that the first is greater than the second by 10 , greater than the third by 18 , and greater than the fourth by 24.
6. The sum of two numbers is 20 , and if three times the smaller number be added to five times the greater, the sum is 84. What are the numbers?
7. The joint ages of a father and his son are 80 years. If the age of the son were doubled he would be 10 years older thinn his father. What is the age of each?
8. A man has six sons, each 4 years older than the ne next to him. The eldest is three times as old as the youngest. What is the age of each?
9. Add $£ 24$ to a certain sum, and the amount will be as much above $£ 80$ as the sum is below $£ 80$. What is the sum?
10. Thirty yards of cloth and forty yards of silk together cost $\dot{E} 66$, and the silk is twice as valuable as the cloth. Iind the cost of a yard of each.

PROBLEMS LEADIVG TU SLATPEE EQCHTHONS. 63

II. Find the number, the double of which being added to 24 the result is as much above 80 as the number itself is below 100.
12. The sum of $E 500$ is divided between A, B, C and D. A and B have together $£ 280, A$ and $C £ 260, A$ and $D £ 220$. How much does each receive?
13. In a company of 266 persons, composed of men, women, and children, there are twice as nany men as tiece are women, and twice as many women as there are children. How many are there of each ?
14. Divide $£ 1520$ hetween A, B and C, so that A has $£ 100$ less than B, and D \&OO less than C.
15. Find two numbers, differing by 8 , sach that four times the less may exceed twice the greater by 10 .
16. A and B began to play with equal sums. A won $2 \cdot$, and then three times A 's money was eriual to eleven times D 's money. What had each at first?
17. A is 58 years older than B, and A 's age is as mucl: above 60 as B 's acge is below 50 . Find the age of each.
18. A is 34 years older than B, and A is as much above 50 as B is below 40 . Find the age of each.
19. A man leaves his property, amounting to $£ \% 00$, to lo divided between his wife, his two sons and his three danghters, as follows : a son is to have twice as much as a daughter, and the wife $£ 500$ more than all the five children together. How much did each get?
20. A vessel containing some water was filled up by pearing in 42 gallons, and there was then in the vessel 7 times as much as at first. How many gallons did the vessel holr?
21. Three persons, A, B, C, have £76. B has $£ 10$ more thian A, and C has as much as A and B together. How much has each ?
22. What two numbers are thase whose diaterence is 14 , and their sum 48 ?
23. A and B play at cards. - nas $£ 72$ and B has $£ 52$ when they begin. When they cease playing, A has three times as much as D. How much did A win ?

Note I. If we have to express algebraically two parts ints which a given number, suppose 50 , is divided, and we represent one of the parts by x, the other will be represented by $50-x$.

Ex. Divide 50 into two such parts that the double of one part may be three times as great as the other part.

Let x represent one of the parts.
Then $50-x$ will represent the other part.
Now the double of the first part will. be represented by $2 x$, and three times the second part will be represented by $3(50-x)$.

$$
\begin{array}{ll}
\text { Hence } & 2 x=3(50-x), \\
\text { or, } & 2 x=150-3 \Leftrightarrow \\
\text { or, } & 5 x=150 ; \\
& \therefore x=30
\end{array}
$$

Hence the parts are 30 and 20.
24. Divide 84 into two such parts that three times one jart may be equal to four times the other.
25. Divide 90 into two such parts that four times one part may le equal to five times the other.
26. Divile 60 into two such parts that one part is greater than the other by 24.
27. Divide 84 into two such parts that one part is less than the other by 36 .
28. Divide 20 into two such parts that if three times one part be added to five times the other part the sum may be 84.

Note II. When we have to compare the ages of two persons at one time and also some years after or before, we must be careful to remember that both will be so many years older or younger.

Thus if x be the age of A at the present time, and $2 x$ bo the age of B at the present time,

The age of $A 5$ ycars hence will be $\div+6$, and the age of $\mathcal{B} 5$ years hence will be $2 x+6$.

PROBLEMS LEADING TO SIMPLE EQUATIONS. 65
Ex. A is 5 times as old as B, and 5 years hence A will only be three tinies as old as B. What are the ages of A and B at the present time?

Let x represent the age of B.
Then $5 x$ will represent the age of A.
Now $x+5$ will represent B 's age 5 years hence, ’ and $\quad 5 x+5$ will represent A 's age 5 years hence
Hence or or

$$
\begin{aligned}
5 x+5 & =3(x+5), \\
5 x+5 & =3 x+15, \\
2 x & =10 ; \\
\therefore x & =5 .
\end{aligned}
$$

Hence A is 25 and B is 5 years old.
29. A is twice as old as B, and 22 years ago he was three times as old as B. What is A 's age ?
30. A father is 30 ; his son is 6 years old. In how many years will the age of the father be just twice that of the son?
31. A is twice as old as B, and 20 years since he was thres times as old. What is B 's age?
32. A is three times as old as B, and 19 years hence he will be only twice as old as B. What is the age of each ?
33. A man has three nephews. His age is 50 , and the joint ages of the nephews are 42 . How long will it be hefore the joint ages of the nephews will be equal to the age of the uncle?

Note III. In problems involving weights and measures, after assuming a symbol to represent one of the unknown quantities, we must be careful to express the other quantities in the same terms. Thus, if x represent a number of pence, all the sums involved in the problem must be reduced to pence.

Ex. A sum of money consists of fourpenny pieces and six. pences, and it amounts to $£ 1.16 s .8 d$. The number of coins is 78. How many are there of each sort?
[s.s.]

Let x he the number of fourpenny piecas.
Then $4 x$ is their value in pence.
Also $78-x$ is the number of sixpences.
And $6(\%-\pi)$ is their value $i n$ pence.
Also $\mathscr{L} 1.16 s .8 d$. is eciuivalent to 440 perce
Inence

$$
\begin{aligned}
4 x+6(78-x) & =440, \\
\text { or } 4 x+468-6 x & =440,
\end{aligned}
$$

frominneli we finl $x=1 /$.
Hence there are 14 foumpemy pieces, and 64 sixpences.
34. A bill of $£ 100$ was pairl with cuineas and half-crowns, and 48 more half-crowns than gruners were used. How many of each wre prid?
35. A persen paid a lill of $£ 3.14$. with shillings and half-crowns, and give 41 pieces of money altorgether. How many of each were paid!
36. A man has a sum of money amounting to $£ 11.13 s .4$ cl., consisting only of shillings and fourpemy pieces. He has in all 300 picees of money. How many his lee of cath sort?
37. A bill of $£ 50$ is paid with sovereigns and moidores of 27 shillins each, and $:$ more sovereigns than moilones are given. How many of each are hised?
38. A sum of moncy momang to ext. 8s. is mate up of shillimgs and half-erown, ant there are six times as many half-crowns as there are shillings. How many are there of each sort?
39. I have f5. 1is. Bl. in sovereigns, shillings and pence. I have twice as many shillings and thre times as many pence as I have sovereigus. How many have I of cach sort?
VIII. ON THE METHOD OF FINDING THE HIGHEST COMMON FACTOR. f
119. An expression is said to be a Factor of another expression when the latter is divisible by the former.

I'hus $3 a$ is a factor of $12 a$,
$5 x y$ \qquad of $15 x^{2} y^{3}$.
120. An expression is sail to be a Common Fuctor of two or more other expressions, when each of the latter is divisible by the former.

Thus $3 a$ is a common factor of $12 a$ and $15 a$,
$3 x y$. of $15 x^{2} y^{2}$ and $21 x^{3} y^{3}$,
$4 z$ of $8 z, 12 z^{2}$ and $16 z^{3}$.
121. The Highest Common Factor of two or more expresaions is the expression of highest dimensions by which each of the former is divisible.

Thus $6 a^{2}$ is the Highest Common Factor of $12 a^{2}$ and $18 a^{3}$, $5 x^{2} y$ of $10 x^{3} y, 15 x^{2} y^{2}$ and $25 x^{4} y^{3}$.
Note. That which we call the Highest Common Factor is named by others the Greatest Common Measure or the Highest ummon Divisor. Our reasons for rejecting these names will be given at the end of the chapter.
122. The words Highest Common Factor are abbreviated thus, B.C.F.
123. To take a simple example in Arithmetic, it will readily be admitted that the highest number which will divide 12,18 , and 30 is 6 .

Now;

$$
\begin{aligned}
& 12=2 \times 3 \times 2 \\
& 18=2 \times 3 \times 3, \\
& 30=2 \times 3 \times 5
\end{aligned}
$$

Havifg thus reduced the numbers to their simplest factors, it appears that we may determine the Highest Common Factor in the following way.

Set down the factors of one of the numbers in any order.
Place beneath them the factors of the second number, in such order that factors like any of those of the first number shall stand under those factors.

Do the same for the third number.
Then the number of vertical columns in which the numbers are alike will be the number of factors in the н.c.F., and if we multiply the figures at the head of those columns together the result will be the H.c.f. required.

Thus in the example given above two vertical columns are alike, and therefore there are two factors in the H.c.f.

And the numbers 2 and 3 which stand at the heads of those columns being multiplied together will give the H.c.F. of 12,18 , and 30 .
124. EX. 1. To find the H.C.F. of $a^{3} b^{2} x$ and $a^{2} b^{3} x^{2}$.

$$
\begin{aligned}
a^{3} b^{2} x & =a a a \cdot b b \cdot x, \\
a^{2} b^{3} x^{2} & =a a \cdot b b b \cdot x x ; \\
\therefore \text { H.C.F. } & =a a b b x \\
& =a^{2} b^{2} x .
\end{aligned}
$$

EX. 2. To find the H.C.F. of $34 a^{2} b^{6} c^{4}$ and $51 \tilde{w}^{3} b^{4} c^{8}$.

$$
\begin{aligned}
34 a^{2} b^{6} c^{4} & =2 \times 17 \times a a \cdot b b b b b b . c c c c \\
51 a^{3} b^{4} c^{2} & =3 \times 17 \times a a a . b b b b \quad . c c ; \\
\therefore \text { H.c.F. } & =17 a a b b b b c c \\
& =17 a^{2} b^{4} c^{2} .
\end{aligned}
$$

EXAMPLES.-XXXiV.

Find the Highest Common Factor of

I. $a^{4} b$ and $a^{22} b^{3}=$
2. $x^{3} y^{2} z$ and $x^{2} y^{2} x^{2}$.
3. $14 x^{2} y^{2}$ and $24 x^{5} y$.
4. $45 m^{2} n^{2} p$ and $60 m^{3} n p^{4}$.
5. $18 a b^{2} c^{2} d$ and $36 a^{2} b c d^{3}$.
6. $a^{3} b^{2}, a^{2} b^{3}$ and $a^{4} b^{4}$.
7. $4 a b, 10 a c$ and $30 b c$.
8. $17 p q^{2}, 34 p^{3} q$ and $51 p^{3} q^{3}$.
9. $8 x^{2} y^{3} z^{4}, 12 x^{3} y^{2} z^{3}$ and $20 x^{4} y^{3} z^{2}$.
10. $30 x^{4} y^{5}, 90 x^{2} y^{3}$ and $120 x^{3} y^{4}$.
125. The student must be arged to commit to memory the following Table of forms which can or cannot be resolved into factors. Where a blank occurs after the sign $=$ it signifies that the form on the left hand cannot be resolved into simpler factors.

$$
\begin{array}{ll}
x^{2}-y^{2}=(x+y)(x-y) & x^{2}-1=(x+1)(x-1) \\
x^{2}+y^{2}= & x^{2}+1= \\
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) & x^{3}-1=(x-1)\left(x^{2}+x+1\right) \\
x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) & x^{3}+1=(x+1)\left(x^{2}-x+1\right) \\
x^{4}-y^{4}=\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right) & x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right) \\
x^{4}+y^{4}= & x^{4}+1= \\
x^{2}+2 x y+y^{2}=(x+y)^{2} & x^{2}+2 x+1=(x+1)^{2} \\
x^{2}-2 x y+y^{2}=(x-y)^{2} & x^{2}-2 x+1=(x-1)^{2} \\
x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3} & x^{3}+3 x^{2}+3 x+1=(x+1)^{3} \\
x^{3}-3 x^{2} y+3 x y^{2}-y^{3}=(x-y)^{3} & x^{3}-3 x^{2}+3 x-1=(x-1)^{3}
\end{array}
$$

The left-hand side of the table gives the general forms, the right-hand side the particular cases in wbich $y=1$.
126. EX. To find the H.C.F. of $x^{2}-1, x^{2}-2 x+1$, and $x^{2}+2 x-3$,

$$
\begin{aligned}
x^{2}-1 & =(x-1)(x+1), \\
x^{2}-2 x+1 & =(x-1)(x-1), \\
x^{2}+2 x-3 & =(x-1)(x+3), \\
\therefore \text { H.C.F. } & =x-1
\end{aligned}
$$

EXAMPLES.-XXXV.

1. $a^{2}-b^{2}$ and $a^{3}-b^{3}$.
2. $a^{3}+x^{3}$ and $(a+x)^{3}$.
3. $a^{2}-b^{2}$ and $a^{4}-b^{4}$.
4. $9 x^{2}-1$ and $(3 x+1)^{2}$.
5. $a^{2}-x^{2}$ and $(a-x)^{2}$.
6. $1-25 a^{2}$ and $(1-5 a)^{2}$.
7. $x^{2}-y^{2},(x+y)^{2}$ and $x^{2}+3 x y+2 y^{2}$.
8. $x^{2}-y^{2}, x^{3}-y^{3}$ and $x^{2}-7 x y+6 y^{2}$.
9. $x^{2}-1, x^{3}-1$ and $x^{2}+x-2$.
10. $1-a^{2}, 1+a^{3}$ and $a^{2}+5 a+4$.
11. In large numbers the factors cannot often be determined by inspection, and if we have to find the H.C.F. of two such numbers we have recourse to the following Arithmetical Rule :
"Divide the greater of the two numbers by the less, and the divisor by the remainder, repeating the process until no remainder is left : the lust divisor is the H.c.F. required."

Thus, to find the F.c.F. of 689 and 1573. 689) 1573 (2
$\left.\frac{1378}{195}\right) 689(3$
$\left.\frac{585}{104}\right) 195(1$
$\left.\frac{104}{91}\right) 104(1$
$\left.\frac{91}{13}\right) 91(7$
91
$\therefore 13$ is the н.C.F. of $\operatorname{CS} 9$ and 1573.

EXAMPLES.-XXXVL.

Find the 日.c.F. of

1. 6906 and 10359 .
4 126025 nil 40115.
2. $\quad 1908$ and 2736.
3. 15812¢: and 16758766.
4. 49608 and 169416.
5. 35175 und 236845 .
6. The Arithmetical Rule is founder on the following operation in Algebra, which is called the Proof of the Rule for finding the Highest Common Factor of two expressions.

Let a and b be two expressions, arranged according to descending powers of some common letter, of which a is not of lower dimensions than b.

Let b divide a with p as quotient and remainder c,
c.........b $b \ldots . . . q$ d,
d......... c...... r with no remainder.

The form of the operation may be shewn thus:

$$
\begin{aligned}
& \text { b) } a(p \\
& \left.\frac{p b}{c}\right) b(q \\
& \left.\frac{q c}{d}\right) c(r \\
& r d
\end{aligned}
$$

Then we can shew

I. That d is a common factor of a and b.

II. That any other common factor of a and b is a factor of d, and that therefore d is the Highest Common Factor of a and b.

For (I.) to shew that d is a factor of a and b :

$$
\begin{aligned}
b & =q c+d \\
& =q^{r}(l+d \\
& =(q r+1) d, \text { and } \therefore d \text { is a factor of } 0,
\end{aligned}
$$

and

$$
\begin{aligned}
a & =p b+c \\
& =p(q c+d)+c \\
& =p q c+p d+c \\
& =p q r d+p d+r d \\
& =(p q r+p+r) d, \text { and } \therefore d \text { is a factor of } a .
\end{aligned}
$$

And (II.) to shew that any common factor of a and b is a factor of l.

Let δ be any common factor of a and b, such that

$$
a=m \delta \text { and } b=n \delta .
$$

Then we can shew that δ is a factor of d.
For

$$
\begin{aligned}
d & =b-q c \\
& =b-q(c-p b) \\
& =b-q \alpha+p q b \\
& =n \delta-q m \delta+\eta q n \delta \\
& =(n-q m+2 q n) \delta, \text { and } \therefore \delta \text { is a factor of } d .
\end{aligned}
$$

Now no expression higher than d can he a fuctor of d;
$\therefore d$ is the Highest Common Factor of a and b.

129. Ex. To find the n.C.F. of $x^{2}+2 x+1$ and

$$
\begin{gathered}
\left.\operatorname{c}^{3}+2 x+1\right) x^{3}+2 x^{2}+2 x+1(x \\
\left.\frac{x^{3}+2 x^{2}+x}{x+1}\right) x^{2}+2 x+1(x+1 \\
\frac{x^{2}+x}{x+1} \\
x+1
\end{gathered}
$$

Hence $x+1$ being the last divisor is the H.c.F. required
lou. in the algebraical process four devices are frequently useful. These wo shall now state, and exemplify each in the next Article.
I. If the sign of the first term of a remainder be negative, we may change the signs of all the terms.
II. If a remainder contain a factor which is cleary not a common factor of the given expressions it may be removed.
III. We may multiply or divide either of the given expressions by any number which does not introduce or remove a common factor.
IV. If the given expressions have a common factor which can be seen by inspection, we may remove it from both, and find the Highest Common Factor of the parts which remain. If we multiply this result. by the ejected factor, we shall obtain the Highest Common Factor of the given expressions.
131. Ex. I. To find the $\begin{aligned} & \text { n.C.F. of } \\ & 2 x^{2}-x-1\end{aligned}$ and

$$
6 x^{2}-4 x-2
$$

$$
\begin{gathered}
\left.2 x^{2}-x-1\right) \\
6 x^{2}-4 x-2(3 \\
6 x^{2}-3 x-3 \\
\hline-. x+1
\end{gathered}
$$

Change the signs of the remainder, and it becomes $x-1$.

$$
\begin{aligned}
& x-1) \frac{2 x^{2}-x-1(2 x+1}{2 x^{3}-2 x} \\
& \frac{x-1}{x-1}
\end{aligned}
$$

The $\mathrm{H} . \mathrm{C} . \mathrm{F}$. required is $x-1$.
Ex. II. To find the n.c.f. of $x^{2}+3 x+2$ and $x^{2}+5 x+a$

$$
\begin{gathered}
\left.x^{2}+3 x+2\right) x^{2}+5 x+6<1 \\
\frac{x^{2}+3 x+2}{2 x+4}
\end{gathered}
$$

Divide the remainder by 2 , and it becomes $x+2$.

$$
\begin{gathered}
-x+2) \begin{array}{c}
x^{2}+3 x+2(x+1 \\
x^{2}+2 x
\end{array} \\
\begin{array}{l}
x+2 \\
x+2
\end{array}
\end{gathered}
$$

The н.c.f. required is $x+2$.
EX. III. To find the $\begin{aligned} \\ \text {.c.F. of } 12 x^{2}+x-1 \text { and } 15 x^{2}+8 x+1\end{aligned}$ Multiply

$$
\begin{aligned}
& 15 x^{2}+8 x+1 \\
& 1 2 x ^ { 2 } + x - 1 \longdiv { 6 0 x ^ { 2 } + 3 2 x + 4 (5 } \\
& \frac{60 x^{2}+5 x-5}{27 x+9}
\end{aligned}
$$

Divide the remainder by 9 , and the result is $3 x+1$.

$$
\begin{gathered}
3 x+1) \frac{12 x^{2}+x-1(4 x-1}{\frac{12 x^{2}+4 x}{-3 x-1}} \begin{array}{c}
-3 x-1
\end{array}
\end{gathered}
$$

The н.с.f. is therefore $3 x+1$.
Ex. IV. To find the H.c.F. of $x^{3}-5 x^{2}+6 x$ and

$$
x^{3}-10 x^{2}+21 x
$$

Remove and reserve the factor x, which is common to both

Then we have remaining $x^{2}-5 x+6$ and $x^{2}-10 x+21$.
The H.c.f. of these expressions is $x-3$.
The H.c.r. of the original expressions is therefore $x^{9}-\mathrm{e} x$

EXAMPLES.-xXXVil.

Find the I.c.f. of the following expressions:

1. $x^{2}+7 x+12$ and $x^{3}+9 x+20$.
2. $x^{2}+12 x+20$ and $x^{2}+14 x+40$.
3. $x^{2}-17 x+70$ and $x^{2}-12 x+42$.
4. $x^{2}+5 x-84$ and $x^{2}+21 x+108$.
5. $x^{2}+x-\not 7^{2}$ and $x^{2}-2 x-3$.
6. $x^{2}+5 x y+6 y^{2}$ and $x^{2}+6 x y+9 y^{2}$.
7. $x^{2}-6 x y+8 y^{2}$ and $x^{2}-8 x y+16 y^{2}$.
8. $x^{2}-13 x y-30 y^{2}$ and $x^{2}-18 x y+45 y^{2}$.
9. $x^{3}-y^{3}$ and $x^{2}-2 x y+y^{2}$.
10. $x^{3}+y^{3}$ and $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$.
11. $x^{4}-y^{4}$ and $x^{2}-2 x y+y^{2}$.
12. $x^{5}+y^{5}$ and $x^{3}+y^{3}$.
13. $x^{4}-y^{4}$ and $x^{2}+2 x y+y^{2}$.
14. $a^{2}-b^{2}+2 b c-c^{2}$ and $a^{2}+2 a b+b^{2}-2 a c-2 b c+c^{*}$.
15. $\quad 12 x^{2}+7 x y+y^{2}$ and $23 x^{2}+2 x y-y^{2}$.
16. $\quad 6 x^{2}+x y-y^{2}$ and $39 x^{2}-52 x y+3 y^{2}$.
17. $15 x^{2}-8 x y+y^{2}$ and $40 x^{2}-3 x y-y^{2}$.
18. $x^{5}-5 x^{3}+5 x^{2}-1$ and $x^{4}+x^{3}-4 x^{2}+x+1$.
19. $x^{4}+4 x^{2}+16$ and $x^{5}+x^{4}-2 x^{3}+17 x^{2}-10 x+20$.
20. $x^{4}+x^{2} y^{2}+y^{4}$ and $x^{4}+2 x^{2} y+3 x^{2} y^{2}+2 x y^{3}+y^{4}$.
21. $x^{6}-6 x^{4}+9 x^{2}-4$ and $x^{6}+x^{3}-2 x^{4}+3 x^{2}-x-20$

The
22. $15 a^{4}+10 a^{3} b+4 a^{2} b^{2}+6 a b^{3}-3 b^{4}$ and $6 a^{3}+19 a^{2} b+8 a b^{2}-5 b^{3}$.
23. $15 x^{3}-14 x^{2} y+24 x y^{2}-7 y^{3}$ and $27 x^{3}+33 x^{2} y-20 x y^{2}+2 y^{3}$.
24. $21 x^{2}-83 x y-27 x+22 y^{3}+99 y$ and $12 x^{2}-35 x y-6 x$

$$
-33 y^{2}+22 y
$$

25. $3 a^{3}-12 a^{2}-a^{2} b+10 a b-2 b^{2}$ and $6 a^{3}-17 a^{2} b+8 a b^{2}-b^{3}$.
26. $18 a^{3}-18 a^{2} x+6 a x^{2}-6 x^{3}$ and $60 a^{2}-75 a x+15 x^{3}$.
27. $21 x^{3}-26 x^{2}+8 x$ and $6 x^{2}-x-2$.
28. $6 x^{4}+29 a^{2} x^{2}+9 a^{4}$ and $3 x^{3}-15 a x^{2}+a^{2} x-5 a^{3}$.
29. $x^{8}+x^{f} y^{2}+x^{2} y+y^{3}$ and $x^{4}-y^{4}$.
30. $2 x^{3}+10 x^{2}+14 x+6$ and $x^{3}+x^{2}+7 x+30$.

3I. $45 a^{3} x+3 a^{2} x^{2}-9 a x^{3}+6 x^{4}$ and $18 a^{2} x-8 x^{3}$.
132. It is sometimes easier to find the H.C.F. by reversing the order in which the expressions are given.

Thus to find the H.C.F. of $21 x^{2}+38 x+5$ and $129 x^{2}+221 x+10$ the easier course is to reverse the expressions, so that they stand thus, $5+38 x+21 x^{2}$ and $10+221 x+129 x^{2}$, and then to proceed by the ordinary process. The H.c.f. is $3 x+5$. Other examples are
(1) $187 x^{3}-84 x^{2}+31 x-6$ and $253 x^{3}-14 x^{2}+29 x-12$,
(2) $371 y^{3}+26 y^{2}-50 y+3$ and $469 y^{3}+75 y^{2}-103 y-21$, of which the H_{m} C.F. are respectively $11 x-3$ and $7 y+3$.
133. If the Highest Common Factor of thrce expressions a, b, c be required, find first the н.c.F. of a and b. If d be the H.C.F. of a and b, then the H.c.f. of d and c will be the H.C.F. of a, b, c.
134. EX. To find the H.C.F. of

$$
x^{3}+7 x^{2}-x-7, x^{3}+5 x^{2}-x-5, \text { and } x^{2}-2 x: 1
$$

The H.C.F. of $x^{3}+7 x^{2}-x-7$ and $x^{3}+5 x^{2}-x-5$ will be found to be $x^{2}-1$.

The HFC.F. of $x^{2}-1$ and $x^{3}-2 x+1$ will be found to be $x-1$.

Hence $x-1$ is the Ir.c.z. of theo three expressiona

EXAMPLES.-xXXViii.

Find the Highest Common Factor of
I. $x^{2}+5 x+6, x^{2}+7 x+10$, and $x^{2}+12 x+20$.
2. $x^{3}+4 x^{2}-5, x^{3}-3 x+2$, and $x^{3}+4 x^{2}-8 x+3$.
3. $2 x^{2}+x-1, x^{2}+5 x+4$, and $x^{3}+1$.
4. $y^{3}-y^{2}-y+1,3 y^{2}-2 y-1$, and $y^{3}-y^{2}+y-1$.
5. $x^{3}-4 x^{2}+9 x-10, x^{3}+2 x^{2}-3 x+20$, and

$$
x^{3}+5 x^{2}-9 x+35
$$

6. $x^{3}-7 x^{2}+16 x-12,3 x^{3}-14 x^{2}+16 x$, and

$$
5 x^{3}-10 x^{2}+7 x-14
$$

7. $y^{3}-5 y^{2}+11 y-15, y^{3}-y^{2}+3 y+5$, and

$$
2 y^{3}-7 y^{2}+16 y-15
$$

Note. We use the name Highest Common Factor instead of Greatest Common Measure or Highest Common Divisor for the following reasons :
(1) We have used the word "Measure" in Art. 33 in a different sense, that is, to denote the number of times any quantity contains the unit of measurement.
(2) Divisor does not necessarily imply a quantity which is contained in another an exact number of times. Thus in performing the operation of dividing 333 by 13 , we call 13 divisor, but we do not mean that 333 contains 13 an exact number of times.
135. A quantity a is called an Exact Divison of is quantity b, when b contains a an exact number of times.

A quantity a is called a Multirie of a quazitity b, when a contains b an exact number of timos.
136. Hitherto we have treated of quantities which contain the unit of measurement in each case an exact number of times.

We have now to treat of quantities which contain some exact divisor of a primary unit an exact number of times.
137. We must first explain what we mean by a primary unit.

We said in Art. 33 that to measure any quantity we take a known standard or unit of the same kind. Our choice as to the quantity to be taken as the unit is at first unrestrieted, but when ouce made we must adhere to it, or at least we must give distinct notice of any change which we make with respect to it. To such a unit we give the name of Primary Unit,
138. Next, to explain what we mean by an eract divisor of a primary unit.
Keeping our Primary Unit as our main standard of measurement, we may conceive it to be divided into a number of parts of equal naguitude, any one of which we may take as a Subordinate Unit.

Thus we may take a pound as the unit by which we measure sums of money, and retaining this steadily as the primary unit, we may still conceive it to be subdivided into 20 equal parts. We call each of the subordinate units in this case a shilling, and we say that one of these equal rubordinate units is one-twertieth part of the primary unit, that is, of a pound.
These subordinate units, then, are exact divisors of the primury unit.
139. Keeping the primary unit still clundy in view, we represent one of the subordinat units he following notation.

We agree to represent the womis one-third, one-fifth, and one-twentieth by the syrabols $\frac{1}{3}, \frac{1}{5}, \frac{1}{20}$, and we say that if the Primary Unit bu divided into three equal parts, $\frac{1}{3}$ will tepresery one these parit.

If we have to represent two of these subordinate units, we do so by the symbol $\frac{2}{3}$; if three, by the symbol $\frac{3}{3}$; if four, by the symbol $\frac{4}{3}$, and so on. And, generally, if the Primary Unit be divided into b equal parts, we represent a of those parts by the symbol $\frac{a}{b}$.
140. The symbel $\frac{a}{b}$ we call the Fraction Symbol, or, more bricfly, a Fraction. The number below the line is called the Devominator, because it denominates the number of equal parts into which the Primary Unit is divided. The number above the line is called the Numelator, because it emmeratea how many of these equal parts, or Subordinate Units, are taken.
141. The term number may be correetly applied to Fractions, since they are measured by units, bat we must be careful to observe the following distinction :

An Integer or Whole Number is a multiple of the Primary Unit.
A Fractional Number is a mult wo the Subordinate Unit.
142. The Denominator of a Fraction shews what multiple the Primary Unit is of the Subordinate Unit.

The Numerator of a Fration shews what multiple the Fraction is of the Subordinate Unit.
143. The Numerator and Denominator of a fraction are called the Terms of the Fraction.
14\%. Fiaving thus explained the nature of Fractions, we next procced to treat of the eperations to which they are subjected in Algebra.
145. Def. If the ruantity x be divided into b equal paris, and a of those parts be taken, the result is said to be the fraction $\frac{a}{b}$ of x.

If x we the unt, this is called the fartion $\frac{a}{b}$.
146. If the unit be divided into b equal parts, $\frac{1}{b}$ will represent one of the parts. $\frac{2}{6}$
$\frac{2}{b}$
And generally, :

$$
\frac{a}{b} \text { will represent } a \text { of the parts. }
$$

147. Next let us suppose that each of the 8 parts is sube rivided into o equal farts: then the unit has luen dicided into be equal parts, and

$$
\begin{aligned}
& \frac{1}{b_{c}} \text { will represent one of the subuivisions. } \\
& \frac{2}{b c} \quad \text {.......... tow }
\end{aligned}
$$

And generally,

$$
\frac{a}{b \bar{c}} \ldots \ldots a
$$

148. To shew that $\frac{a c}{d c}=\frac{a}{b}$.

Let the unit he diviled into l equal parts.
Then $\frac{a}{b}$ will represent a of these perts. (1).
Next let each of the b parts be sublivided into c equal prats.

Then tne prumary unit has been divided into be equal parts, and $\frac{u c}{b c}$ will represent ac of these sublivisions.

Now one of the parts in (1) is equal to c of the suludivisions in (2),

$$
\therefore \text { a parts are cqual to ac sulstivisions; }
$$

$$
. \cdot \frac{a}{b}=\frac{a c}{a c} .
$$

Cor. We draw from this proof two inferences :
I. If the numerator and denominator of a fraction be
a si multiplied by the same number, the value of the fraction is not altered.
II. If the numerator and denominator of a fraction be diviled by the same number, the value of the fraction is not altered.
149. To make the important Theorem estal)lished in the preceding Article more clear, we shall give the following proof that $\frac{4}{5}=\frac{16}{20}$, by taking a straight line as the unit of length.

Let the line $A C$ be divided into 5 equal parts.
Then, if B be the point of division nearest to C,

$$
\begin{equation*}
A D \text { is } \frac{4}{5} \text { of } A C \tag{1}
\end{equation*}
$$

Next, let each of the parts be sublivided into 4 equal parts.
Then $A C$ contains 20 of these subdivisions, and $A B$ 16

$$
\begin{equation*}
\therefore A B \text { is } \frac{16}{20} \text { of } A C \tag{2}
\end{equation*}
$$

Comparing (1) and (2), we conclude that

$$
\frac{4}{5}=\frac{16}{20} .
$$

150. From the Theorem established in Art. 148 we derive the following rule for reducing a fration to its lowest terms:

Find the Highest Common Factor of the numerator and denominator and divide both by it. The resulting froction will be one equivalent to the original fraction expressed in the simplest เิะตระ.
151. When the numerator and denominator each consist of a single term the h.C.F. may be determined by inspection, of we may proceed as in the following Example:

To reduce the fraction $\frac{10 a^{3} b^{2} c^{4}}{12 a^{2} b^{3} c^{2}}$ to its lowest terms,

$$
\frac{10 a^{3} b^{2} c^{4}}{12 a^{2} b^{3} c^{2}}=\frac{2 \times 5 \times a a a b b c c c c}{2 \times 6 \times a a b b b c c}
$$

We nay then remove factors common to the numerator and denominator, and we shall have remaining $\frac{5 \times a c c}{6 \times b}$;
\therefore the required result will be $\frac{8 a c^{2}}{6 b^{\circ}}$
152. Two cases are especially to be noticed.
(1) If every one of the factors of the numerator be removed, the number 1 (being always ε_{v} factor of every algebraical expression) will still remain to form a numerator.

Thus

$$
\frac{3 a^{2} c}{12 a^{3} c^{2}}=\frac{3 a a c}{3 \times 4 \times a a a c c}=\frac{1}{4 a c}
$$

(2) If every one of the factors of the denominator be removed, the result will be a whole number.

Thus

$$
\frac{12 a^{3} c^{2}}{3 a^{2} c}=\frac{3 \times 4 \times a a a c c}{3 \times a a c}=4 a c .
$$

This is, in fact, a case of exact division, such as we have explained in Art. 74.

EXAMPLES -XXXIX

Reduce to equivalent fractions in their simplest terms the following fractions:
I. $\frac{4 a^{2}}{12 a^{3}}$
2. $\frac{8 x^{3}}{36 x^{2}}$
3. $\frac{10 a^{2} b^{3}}{24 a^{3} b^{92}}$
4. $\frac{18 x^{5} y^{2} z^{3}}{45 x^{3} y^{2} z^{4}}$
5. $\frac{7 a^{5} b^{7} c^{8}}{21 a^{3} b^{2} c^{5}}$
6. $\frac{4 a x y}{3 a b c}$
7. $51 a y^{2} z$
[8.A.]
10. $\frac{210 m^{3} n^{2} p}{42 m^{2} n^{2} p^{2}}$,
11. $\frac{a^{2}}{a^{2}+a b}$.
12. $\frac{14 m^{2} x}{21 m^{3} p-7 m x}$
13. $\frac{x y}{3 x y^{2}-5 x^{2} y z}$.
14. $\frac{4 a x+2 x^{2}}{8 a x^{3}-2 x^{2}}$.
15. $\frac{a y+y^{2}}{a b c+b c y}$.
16. $\frac{4 a^{2} x+6 a^{2} y}{8 x^{2}-18 y^{2}}$
17. $\frac{12 a b^{2}-6 a b}{8 b^{2} c-2 c}$.
18. $\frac{c^{2}-4 a^{2}}{c^{2}+4 a c+4 a^{2}}$
19. $\frac{3 x^{4}+3 x^{2} y^{2}}{5 x^{4}+5 x^{2} y^{2}}$
24. $\frac{7 a b^{3} x^{8}-7 a u^{3} y^{2}}{1+a^{3} u c x^{8}-14 a^{3} b c y^{2}}$.
20. $\frac{10 x-10 y}{4 x^{2}-8 x y+4 y^{3}}$
21. $\frac{a x+b y}{7 a^{2} x^{2}-7 b^{2} y^{2}}$.
22. $\frac{6 a b+8 c d}{27 a^{2} b^{2} x-48 c^{2} d^{2} x^{6}}$.
23. $\frac{x y-x y z}{2 a z-2 a z^{2}}{ }^{2}$
25. $\frac{5 x^{9}+45 d x^{2}}{10 c x^{9}+90 c d x^{2}}$.
26. $\frac{10 a^{2}+20 a b+10 b^{2}}{5 a^{3}+5 a^{2} b}$.
27. $\frac{4 x^{2}-8 x y+4 y^{2}}{48(x-y)^{2}}$.
28. $\frac{3 m x+5 n x^{2}}{3 m y+5 n x y}$.

Proceeding by the usual rule for finding the $\begin{aligned} & \text { n.C.F. of the }\end{aligned}$ numerator and denominator we find it to be $x-7$.
Now if we divide $x^{3}-4 x^{2}-19 x-14$ by $x-7$, the result is $x^{2}+3 x+2$, and if we divide $2 x^{3}-9 x^{2}-38 x+21$ by $x-7$, the result is $2 x^{2}+5 x-3$.

Hence the fraction $\frac{x^{2}+3 x+2}{2 x^{2}+5 x-3}$ is equivalent to the proposer fraction and is in its lowest terms.

EXAMPLES.-xl.
I. $\frac{a^{2}+7 a+10}{x^{2}+5 x+6} \quad$ 2. $\frac{x^{2}-9 x+20}{x^{2}-7 x+12} \quad$ 3. $\frac{x^{2}-2 x-3}{x^{2}-10 x+21}$.
31.
32.
6. $\frac{x^{3}-18 x y+45 y^{2}}{x^{2}-8 x y-105 y^{2}} \quad 5 \quad \frac{x^{4}+x^{2}+1}{x^{2}+x+1} . \quad$ 6. $\frac{x^{6}+2 x^{3} y^{3}+y^{8}}{x^{6}-y^{6}}$.
7. $\frac{x^{3}-4 x^{2}+9 x-10}{x^{3}+2 x^{2}-3 x+20^{-}}$
14. $\frac{m^{3}+3 m^{2}-4 m}{m^{3}-7 m+6}$.
8. $\frac{x^{3}-5 x^{2}+11 x-15}{x^{3}-x^{2}+3 x+5}$.
15. $\frac{a^{3}+1}{a^{3}+2 a^{2}+2 a+1}$.
9. $\frac{x^{3}-8 x^{2}+21 x-18}{3 x^{3}-16 x^{2}+21 x}$.
16. $\frac{3 a x^{2}-13 a x+14 a}{7 x^{3}-17 x^{2}+6 x}$
10. $\frac{x^{3}-7 x^{2}+16 x-12}{3 x^{3}-14 x^{2}+16 x}$.
$14 x^{2}-34 x+12$
17. $\overline{9 a x^{2}-39 u x+42 \bar{a}}$

1 I. $\frac{x^{4}+x^{3} y+x y^{3}-y^{4}}{x^{4}-x^{3} y-x y^{3}-y^{4}}$.
18. $\frac{10 a-24 a^{2}+14 a^{3}}{15-24 a+3 a^{2}+6 a^{5}}$
12. $\frac{a^{3}+4 a^{2}-5}{a^{3}-3 a+2}$.
19. $\frac{2 a b^{3}+a b^{3}-8 a b+5 a}{7 b^{3}-12 b^{2}+5 b}$
13. $\frac{b^{3}+4 b^{2}-5 b}{b^{3}-6 b+5}$
20. $\begin{aligned} & a^{3}-3 a^{2}+3 a-2 \\ & a^{3}-4 a^{2}+6 a-4\end{aligned}$.
f which hers the ound by ct let us
terms.
F. of the
result is $c-7$, the
proposer
$x-3$ $x+21$

2I. $\frac{3 x^{2}+2 x-1}{x^{3}+x^{2}-x-1}$.
22. $\frac{a^{2}-a-20}{u^{2}+a-12}$
23. $\frac{x^{3}-3 x^{2}+4 x-2}{x^{3}-x^{2}-2 x+2}$
24. $\frac{(x+y+z)^{2}+(z-y)^{2}+(x-z)^{2}+(y-x)^{2}}{x^{2}+y^{2}+z^{2}}$.
25. $\frac{2 x^{4}-x^{3}-9 x^{2}+13 x-5}{7 x^{3}-19 x^{2}+17 x-5}$.
33. $\frac{15 a^{2}+a b-2 b^{2}}{9 a^{2}+3 a b-2 b^{6}}$
26. $\frac{16 x^{4}-53 x^{2}+45 x+6}{8 x^{4}-30 x^{3}+31 x^{2}-12}$.
34. $\frac{x^{2}-7 x+10}{2 x^{2}-x-6}$.
27. $\frac{4 x^{2}-12 a x+9 a^{2}}{8 x^{3}-27 a^{3}}$.
35. $\frac{x^{3}+3 x^{2}+4 x+12}{x^{3}+4 x^{2}+4 x+3}$
28. $\frac{6 x^{3}-23 x^{2}+16 x-3}{6 x^{3}-17 x^{2}+11 x-2}$
36. $\frac{x^{4}-x^{2}-2 x+2}{2 x^{3}-x-1}$.
29. $\frac{x^{3}-6 x^{2}+11 x-6}{x^{3}-2 x^{2}-x+2}$.
37. $\frac{x^{3}-2 x^{2}-15 x+26}{3 x^{2}-4 x-15}$.
30. $\frac{m^{3}+m^{2}+m-3}{m^{3}+3 m^{2}+5 m+3}$.

3S. $\frac{3 x^{3}+x^{2}-5 x+21}{6 x^{3}+29 x^{2}+26 x-21}$.
31. $\frac{x^{5}+5 x^{4}-x^{2}-5 x}{x^{4}+3 x^{3}-x-3}$
39. $\frac{x^{4}-x^{3}-4 x^{2}-x+1}{4 x^{3}-3 x^{2}-8 x-1}$.
32. $\frac{a^{2}-b^{2}-2 b c-c^{2}}{a^{2}+2 a b+b^{2}-c^{2}}$
40. $\frac{a^{3}-7 a^{2}+16 a-12}{3 a^{3}-14 a^{2}+16 u^{2}}$
154. The fraction $\frac{a}{b}$ is said to be a proper fraction, when a is less than b.

The fraction $\frac{a}{b}$ is said to be an improper fraction when a is greater than b.
155. A whole number x may be written as a fractional number by writing 1 beneath it as a denominator, thus $\frac{x}{1}$.
150. To prove that $\frac{a}{b}$ of $\frac{c}{d}=\frac{a c}{b d}$.

Divide the unit into ll parts.

$$
\text { Then } \begin{align*}
\frac{a}{b} \text { of } \frac{c}{d} & =\frac{a}{b_{l}} \text { of } \frac{b c}{\bar{l} \bar{l}} \tag{Art.148}\\
& =\frac{a}{b} \text { of } b c \text { of these parts } \tag{Art.147}\\
& =\frac{a c}{b c} \text { of } b c \text { of these parts } \tag{Art.148}\\
& =a c \text { of these parts }
\end{align*}
$$

(Art. 147).
But $\quad \frac{a c}{b d}=a c$ of these parts;

$$
\therefore \frac{a}{b} \text { of } \frac{c}{d}=\frac{a c}{b \bar{d}} \text {. }
$$

This is an important Theorem, for from it is clerived the Rule for what is called Mulinhication of Fractions. We extend the meaning of the sign \times and defme $\frac{a}{b} \times \frac{c}{d}$ (which - according to our definition in Art. 36 lats no meaning) to mean $\frac{a}{b}$ of $\frac{c}{d}$, and we conclucle that $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$, which in worls gives us this rule-"Take the product of the numerators to form the numerator of the resuluing fraction, and the product of the denominators to form the denominator."

- The same rule holds good for the multiplication of three or more fractions.

157. To shew that $\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}$.

The quotient, x, of $\frac{a}{b}$ divided by $\frac{c}{d}$ is such a number that x multiplied by the divisor $\frac{c}{d}$ will give as a result the dividend $\frac{a}{b}$.

$$
\begin{gathered}
\therefore \frac{x c}{d}=\frac{a}{b} ; \\
\therefore \frac{d}{c} \text { of } \frac{x c}{d}=\frac{d}{c} \text { of } \frac{a}{b} ; \\
\therefore \frac{x c d}{c d}=\frac{a d}{b c} ; \\
\therefore x=\frac{a d}{b c}
\end{gathered}
$$

Hence we oltain a rule for what is called Division os Fractions.

Since $\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}$,

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}
$$

Hence we reduce the process of division to that of multipli. cation by inverting the divisor.
158. The following are examples of the Multiplication and Division of Fractions.

1. $\frac{2 x}{3 a^{2}} \times 3 a=\frac{2 x}{3 a^{2}} \times \frac{3 a}{1}=\frac{6 a x}{3 a^{2}}=\frac{2 x}{a^{2}}$.
2. $\frac{3 x}{2 b} \div 3 a=\frac{3 x}{2 b} \div \frac{3 a}{1}=\frac{3 x}{2 b} \times \frac{1}{3 a}=\frac{3 x}{6 a b}=\frac{x}{2 a b}{ }^{\circ}$
3. $\frac{4 a^{2}}{9 c^{2}} \times \frac{3 c}{2 a}=\frac{3 \times 4 \times a^{2} c}{2 \times 9 \times a c^{2}}=\frac{2 a}{3 c}$.
4. $\frac{14 x^{2}}{27 y^{2}} \div \frac{7 x}{9 y}=\frac{14 x^{2}}{27 y^{2}} \times \frac{9 y}{7 x}=\frac{9 \times 14 \times x^{2} y}{7 \times 27 \times x y^{2}}=\frac{2 x}{3 y}$
e. $\frac{2 a}{3 b} \times \frac{9 b}{10 c} \times \frac{5 c}{4 a}=\frac{2 a \times 9 b \times 5 c}{3 b \times 10 c \times 4 a}=\frac{3}{4}$

IMAGE EVALUATION
 TEST TARGET (MT-3)

Phoiographic Sciences
Corporation

$$
\text { 6. } \begin{aligned}
\frac{x^{2}-4 x}{x^{3}+7 x^{2}} \times \frac{x^{2}+7 x}{x-4} & =\frac{x(x-4)}{x^{2}(x+7)} \times \frac{x(x+7)}{x-4} \\
& =\frac{x(x-4) x(x+7)}{x^{2}(x+7)(x-4)}=1 .
\end{aligned}
$$

7. $\frac{a^{2}-b^{2}}{a^{2}+2 a b+b^{2}} \div \frac{4\left(a^{2}-a b\right)}{a^{2}+a b}=\frac{a^{2}-b^{2}}{a^{2}+2 a b+b^{2}} \times \frac{a^{2}+a b}{4\left(a^{2}-a b\right)}$

$$
\begin{aligned}
& =\frac{(a+b)(a-b)}{(a+b)(a+b)} \times \frac{a(a+b)}{4 a(a-b)} \\
& \quad=\frac{(a+b)(a-b) a(a+b)}{(a+b)(a+b) 4 a(a-b)}=\frac{1}{4}
\end{aligned}
$$

EXAMPLES:-XII.

Simplify the following expressions:
I. $\frac{3 x}{4 y} \times \frac{7 x}{9 y}$.
2. $\frac{3 a}{4 b} \times \frac{2 b}{3 a}$.
3. $\frac{4 x^{2}}{9 y^{2}} \times \frac{3 x}{2 y}$.
$4 \frac{8 a^{2} l^{3}}{45 x^{2} y} \times \frac{15 x y^{2}}{24 a^{3} b^{2}}$.
5. $\frac{9 x^{2} y^{2} z}{10 a^{2} b^{2} c} \times \frac{20 a^{3} b^{2} c}{18 x y^{2} z}$.
6. $\frac{2 a}{\overline{5} b} \times \frac{4 b}{3 c} \times \frac{5 c}{6 c}$.
7. $\frac{3 x^{2} y}{4 x z^{2}} \times \frac{5 y y^{2} z}{6 \cdot x y} \times \frac{12 x z}{20: x y^{2}}$.
8. $\frac{7 a^{6} b^{4}}{5 c^{2} d^{3}} \times \frac{20 c^{3} d^{2}}{42 a^{4} b^{3}} \times \frac{4 a c}{3 b \bar{d}}$.
9. $\frac{9 m^{2} n^{2}}{8 p^{3} q^{3}} \times \frac{5 p^{2} q}{2 x y} \times \frac{24 x^{2} y^{2}}{90 m n}$.
10. $\frac{25 k^{3} m^{2}}{14 n^{2} q^{2}} \times \frac{70 n^{3} q}{75 p^{2} m} \times \frac{3 p m}{4 k^{2} n}$.

EXAMPLES.-Xlii.

Reduce to simple fractions in their lowest terms:

1. $\frac{a-b}{a^{2}+a b} \times \frac{a^{2}-b^{2}}{a^{2}-a b}$.
$4 \frac{x^{2}+x-2}{x^{2}-7 x} \times \frac{x^{2}-13 x+42}{x^{2}+2 x}$.
2. $\frac{x^{2}+4 x}{x^{2}-3 x} \times \frac{4 x^{2}-12 x}{3 x^{2}+12 x}$.
3. $\frac{x^{2}-11 x+30}{x^{2}-6 x+9} \times \frac{x^{3}-3 x}{x^{2}-5 x}$
4. $\frac{x^{2}+3 x+2}{x^{2}-5 x+6} \times \frac{x^{2}-7 x+12}{x^{2}+x}$.
5. $\frac{x^{2}-4}{x^{2}+5 x} \times \frac{x^{2}-25}{x^{2}+2 x}$
6. $\frac{a^{2}-4 a+3}{a^{2}-5 a+4} \times \frac{a^{2}-9 a+20}{a^{2}-10 a+21} \times \frac{a^{2}-7 a}{a^{2}-5 a}$.
7. $\frac{b^{2}-7 b+6}{b^{2}+3 b-4} \times \frac{b^{2}+10 b+24}{b^{2}-14 b+48} \times \frac{b^{3}-8 b^{2}}{b^{2}+6 b^{2}}$.
8. $\frac{x^{2}-y^{2}}{x^{2}-3 x y+2 y^{2}} \times \frac{x y-2 y^{2}}{x^{2}+x y} \times \frac{x^{2}-x y}{(x-y)^{2}}$
9. $\frac{(a+b)^{2}-\dot{c}^{2}}{a^{2}-(b-c)^{2}} \times \frac{c^{2}-(a-b)^{2}}{c^{2}-(a+b)^{2}}$
10. $\frac{(x-m)^{2}-n^{2}}{(x-n)^{2}-m^{2}} \times \frac{x^{2}-(n-m)^{2}}{x^{2}-(m-n)^{2}}$.
11. $\frac{(a+b)^{2}-(c+c l)^{2}}{(a+c)^{2}-(b+d)^{2}} \times \frac{(a-b)^{2}-(d-c)^{2}}{(a-c)^{2}-(d-b)^{2}}$
12. $\frac{x^{2}-2 x y+y^{2}-z^{2}}{x^{2}+2 x y+y^{2}-z^{2}} \times \frac{x+y-z}{x-y+z}$.

EXAMPLES.-Xliiil.

Simplify the following expressions:

1. $\frac{2 a}{x} \div \frac{3 b}{5 c}$.
2. $\frac{15 y}{14 z} \div \frac{5 y^{2}}{7 z}$.
3. $\frac{8 x^{4} y}{15} a b^{3} \div \frac{2 x^{3}}{30 a b^{2}}$
4. $\frac{4 a}{n x} \div 2 a b$.
5. $\frac{3 p}{5 p-2} \div \frac{2 p}{p-1}$.
6. $1 \div \frac{4 a}{5 x}$.
7. $\frac{5 x}{7} \div 2 . \quad$ 8. $\frac{1}{x^{2}-3 x+2} \div \frac{1}{x-1}$. \quad 9. $\frac{1}{x^{2}-17 x+30} \div \frac{1}{x-15}$.
8. We are now alle to justify the use of the Fraction Symbol as one of the Division Symbols in Art. 73, that is, we can slew that $\frac{a}{b}$ is a proper representation of the grotient resulting from the division of a by b.

For let x be this quotient.
Then, by the definition of a ruotient, Art. 72,?

$$
b \times x=a
$$

But, from the nature of fractions,

$$
\begin{aligned}
& b \times \frac{a}{b}=a ; \\
& \therefore \frac{a}{b}=a x
\end{aligned}
$$

159. Here we may state an important Theorem, which we shall require in the next chapter.

If $a d=b c$, to shew that $\frac{a}{b}=\frac{c}{a}$.
Since $a d=b c$,

$$
\begin{aligned}
& \frac{a d}{b d}=\frac{b c}{b d} ; \\
& \therefore \frac{a}{b}=\frac{c}{d}
\end{aligned}
$$

X. THE LOWEST COMMON MUITIPLE.

160. An expression is a Common Multiple, of two or more other expressions when the former is exactly divisille by each of the latter.

Thus $24 x^{3}$ is a common multiple of $6,8 x^{2}$ and $12 x^{3}$.
161. The Lowest Common Multiple of two or more expressions is the expression of lowest dimensions which is exactly divisible by each of them.

Thus $18 x^{4}$ is the Lowest Common Multiple of $6 x^{4}, 9 x^{8}$, and $3 x$.

The words Lowest Common Multiple are abbreviated into $\mathrm{L} . \mathrm{C} . \mathrm{m}$.
162. Two numbers are said to be prime to each other which have no common factor but unity.
Thus 2 and 3 are prime to each other.
1 163. If a and b be prime to each other the fraction $\frac{a}{b}$ is in its lowest terms.

Hence if a and b be prime to cach other, and $\frac{a}{b}=\frac{c}{\pi}$ and if \boldsymbol{m} be the $\begin{aligned} & \text { I.c.F. of } c \text { and } d \text {, }\end{aligned}$

$$
a=\frac{c}{m} \text { and } b=\frac{d}{m}
$$

breviated
ch other
raction $\frac{a}{b}$ $\frac{x}{b}=\frac{c}{d,}$ and
164. In finding the Lowest Common Multiple of two or more expressions, each consisting of a single term, we may proceed as in Arithmetic, thus :
(1) To ind the L.c.s. of $4 a^{3} x$ and $18 a x^{3}$,

$$
\begin{array}{c|c}
2 & \frac{4 a^{3} x, 18 a x^{3}}{a} \\
& \frac{2 a^{3} x, 9 a x^{3}}{2 a^{2} x, 9 x^{3}} \\
& \frac{2 a^{2}, 9 x^{2}}{}
\end{array}
$$

L.C.M. $=2 \times a \times x \times 5 a^{2} \times 9 x^{2}=36 a^{3} x^{3}$.
(2) To find the L.C.M. of $a b, a c, b c$,

$$
\left.\begin{array}{r|r}
a & \frac{a b, a c, b c}{b} \\
\mathbf{b} & \frac{b, c, b c}{1, c, c} \\
\hline 1,1,1
\end{array}\right] . \begin{aligned}
& \text { цс.м. }=a \times b \times c=a b c .
\end{aligned}
$$

(3) To find the L.C.M. of $12 a^{2} c, 14 b c^{2}$ and $36 a b^{2}$,

2	$12 a^{2} c$,	$14 b c^{2}$,	$36 a b^{2}$
	$6 a^{2} c$,	$7 b c^{2}$,	$18 a b^{2}$
	$a^{2} c$,	$7 b c^{2}$,	$3 a b^{2}$
b	$a c$,	$7 b c^{2}$,	$3 b^{2}$
c	$a c$,	$7 c^{2}$,	$3 b$
	a,	$7 c$,	$3 b$

LO.M. $=2 \times 6 \times a \times b \times c \times a \times 7 c \times 3 b=252 a^{2} b^{2} c$.

EXAMPLES.-xliv.

Find the L.c.M. of

1. $4 a^{3} x$ and $6 a^{2} x^{2}$.
2. $a b, a^{2} c$ and $b^{2} c^{3}$.
3. $3 x^{2} y$ and $12 x y^{2}$.
4. $a^{2} x, a^{3} y$ and $x^{2} y^{2}$.
5. $4 a^{3} b$ and $8 a^{2} b^{2}$.
6. 51 $a^{2} x^{2}, 34 a x^{3}$ and $a x^{4}$.
7. $a x, a^{2} x$ and $a^{2} x^{2}$.
8. $2 a x, 4 a x^{2}$ and x^{3}.
9. $5 p^{2} q, 10 q^{2} r$ and $20 p q r$.
10. 18ax, $72 a y^{2}$ and $12 x y$.
11. The method of finding the l.c.m., given in the preveding artucle, inay be extencled to the case of compound apressions, when one or more of their factors can be readily leternined. Thus we may the the following Examples:
(1) To find the L.c.sn. of $a-x, a^{2}-x^{2}$, and $a^{2}+a x$,

$$
\begin{array}{c|cc}
a-x & a-x, a^{2}-x^{2}, a^{2}+a x \\
a+x & 1, & a+x, \\
\cline { 2 - 3 } & a^{2}+a x \\
\hline 1, \quad 1, & a
\end{array}
$$

L.C.I. $=(a-x)(a+x) a=\left(a^{2}-x^{2}\right) a=a^{3}-a x^{2}$.
(2) To find the L.c.m. of $x^{2}-1, x^{4}-1$, and $4 x^{6}-4 x^{4}$,

$$
\begin{gathered}
x^{2}-1 \left\lvert\, \frac{x^{2}-1, x^{4}-1,4 x^{6}-4 x^{4}}{1, x^{2}+1,4 x^{4}}\right. \\
\text { L.C.M. }=\left(x^{9}-1\right)\left(x^{2}+1\right) 4 x^{4}=\left(x^{4}-1\right) 4 x^{4}=4 x^{8}-4 x^{4} .
\end{gathered}
$$

160. The student who is familiar with the methols of resolving simple expressions into factors, especially those given in Art. 125, may obtain the L.c.m. of such expressions by a process which may be best explained by the following Exauples:

Ex. 1. To find the L.c.m. of $a^{2}-x^{2}$ and $a^{3}-w^{3}$.

$$
\begin{aligned}
& a^{2}-x^{2}=(a-x)(a+x), \\
& a^{3}-x^{3}=(a-x)\left(a^{2}+a x+x^{2}\right)
\end{aligned}
$$

Now the l.c.s. must contain ai itself each of the factors in each of these products, and no others.
\therefore L.C.M. is $(a-x)(a+x)\left(a^{2}+a x+x^{2}\right)$,
the factor $a-x$ ocenring once in each product, and therefore once only in the L.c.s.s.

Ex. 2. To find the I.c.m. of

$$
\begin{gathered}
a^{2}-b^{2}, a^{2}-2 a b+b^{2}, \text { and } a^{2}+2 a b+b^{2} . \\
a^{2}-b^{2}=(a+b)(a-b), \\
a^{2}-2 a b+b^{2}=(a-b)(a-b), \\
a^{2}+2 a b+b^{2}=(a+b)(a+b) ;
\end{gathered}
$$

L.c.M. is $(a+b)(a-b)(a-b)(a+b)$,
the preompound e readily ples:
$4 x^{4}$,
$4 x^{4}$.
ethoils of rose given ions by a wing Ex-
the factor $a-b$ occurring twice in one of the prodncte, and $a+b$ occurring twice in another of the prodncts, ind therefore each of these factors must occur twice in the L.c.If.

EXAMPLES.-xlv.

Find the L.c.m. of the following expressions:

1. x^{2} and $a x+x^{2}$.
2. $x^{2}-1, x^{2}+1$ and $x^{4}-1$.
3. $x^{2}-1$ and $x^{2}-x$.
4. $x^{2}-x, x^{3}-1$ and $x^{3}+1$.
5. $a^{2}-b^{2}$ and $a^{2}+u b$.
6. $x^{2}-1, x^{2}-x$ and $x^{3}-1$.
7. $2 . c-1$ and $4 x^{2}-1$.
8. $2 a+1,4 a^{2}-1$ and $8 i^{3}+1$.
9. $a+b$ and $a^{3}+b^{3}$.
10. $x+y$ and $2 x^{2}+2 x y$.
11. $x+1, x-1$ and $x^{2}-1$. 15. $(a+b)^{2}$ and $a^{2}-b^{2}$.
12. $x+1, x^{3}-1$ and $x^{2}+x+1$. 16. $a+b, a-b$ and $a^{2}-l^{2}$.
13. $x+1, x^{2}+1$ and $x^{3}+1$. 17. $4(1+x), 4(1-x)$ and $2\left(1-x^{2}\right)$.
14. $x-1, x^{2}-1$ and $x^{3}-1 . \quad$ IS. $x-1, x^{2}+x+1$ and $x^{3}-1$.
15. $(a-b)(a-c)$ and $(a-c)(b-c)$.
16. $(x+1)(x+2),(x+2)(x+3)$ and $(x+1)(x+3)$.
17. $x^{2}-y^{2},(x+y)^{2}$ and $(x-y)^{2}$.
18. $(a+3)(a+1),(a+3)(a-1)$ and $a^{2}-1$.
19. $x^{2}(x-y), x\left(x^{2}-y^{2}\right)$ and $x+y$.
20. $(x+1)(x+3),(x+2)(x+3)(x+4)$ and $(x+1)(x+2)$.
21. $x^{2}-y^{2}, 3(x-y)^{2}$ and $12\left(x^{3}+y^{3}\right)$.
22. $\mathbf{C}\left(x^{2}+x y\right), 8\left(x y^{\prime}-y^{2}\right)$ and $10\left(x^{2}-y^{2}\right)$.
23. The chief use of the rule for finting the l.C.M. is for the reduction of fractions to common denuminators, and in the simple examples, which we shall have to put before the student in a subsequent chapter, the rules which we have already given will be found generally sufficient. But as we may have to find the L.c.s. of two or more expressions in which the elementary factors cannot be determined by inspection, we must now proceed to discuss a Rule for finding the L.c.M. of two expressions which is applicable to every cease.
24. The rule for finding the L.c.y. of two expressions a and b is this.

Find d the highest common factor of a and b_{0}
Then the L.c.m. of a and $b=\frac{a}{a} \times b$,

$$
\text { or, }=\frac{b}{d} \times a
$$

In words, the L.c.s. of two expressions is found by the following process :

Divide one of the expressions by the H.O.F. and multiply the quotient by the other expression. The result is the L.c.m.

The proof of this rule we shall now give.
169. To find the L.c.m. of two algebraical expressions

Let a and b be the two algebraical expressions.
Let d be their H.c.r.,
x the required L.c.m.
Now since x is a multiple of a and b, we may say that

$$
\begin{aligned}
& x=m a, \quad x=n b ; \\
& \therefore m a=n b ; \\
& \therefore \frac{m}{n}=\frac{b}{a} \text { (Art. 159). }
\end{aligned}
$$

Now since x is the Lowest Common Multiple of a and b, m and n can have no common factor;
\therefore the fraction $\frac{m}{n}$ must be in its lowest terms ;

$$
\therefore m=\frac{b}{d} \quad \text { and } n=\frac{a}{d} \quad \text { (Art. 163) }
$$

Hence, since

$$
\begin{aligned}
& x=m a, \\
& x=\frac{b}{d} \times a_{0}
\end{aligned}
$$

Also, since

$$
\begin{aligned}
& x=n b, \\
& x=\frac{a}{d} \times b
\end{aligned}
$$

170. EX. Find the L.C.M. of $x^{2}-13 x+42$ and $x^{2}-19 x+84$. First we find the H.C.F. of the two expressions to be $x-7$.
Then L.C.M. $=\frac{\left(x^{2}-13 x+42\right) \times\left(x^{2}-19 x+84\right)}{x-7}$.
Now each of the factors composing the numerator is divisible by $x-7$.

Divide $x^{2}-13 x+42$ by $x-7$, and the quotient is $x-6$.
Hence L.C.m. $=(x-6)\left(x^{2}-19 x+84\right)=x^{3}-25 x^{2}+198 x-504$.

ExAMPLES.-XIVI.

Find the L.c.y. of the following expressions:

1. $x^{2}+5 x+6$ and $x^{2}+6 x+8$.
2. $a^{2}-a-20$ and $a^{2}+a-12$.
3. $x^{2}+3 x+2$ and $x^{2}+4 x+3$.
4. $x^{2}+11 x+30$ and $x^{2}+12 x+35$..
5. $x^{2}-9 x-22$ and $x^{2}-13 x+22$.
6. $2 x^{2}+3 x+1$ and $x^{2}-x-2$.
7. $x^{3}+x^{2} y+x y+y^{2}$ and $x^{4}-y^{4}$.
8. $x^{2}-8 x+1 \tilde{6}$ and $x^{2}+2 x-15$.
9. $21 x^{2}-26 x+8$ and $7 x^{3}-4 x^{2}-21 x+12$.
10. $x^{3}+x^{2} y+x y^{2}+y^{3}$ and $x^{3}-x^{2} y+x y^{2}-y^{3}$.
11. $a^{3}+2 a^{2} b-a b^{2}-2 b^{3}$ and $a^{3}-2 a^{2} b-a b^{2}+2 b^{3}$.
12. To find the L.C.m. of three expressions, denoted by a, b, c, we find m the L.c.m. of a and b, and then find M the L.C.M. of m and $c . \quad M$ is the L.C.M. of a, b and c.

The proof of this rule may be thus stated :
Every common multiple of a and b is a multiple of m, and every multiple of m is a multiple of a and b,
therefore every common multiple of m and c is a common multiple of a, b and c,
and every common multiple of a, b and c is a common multiple of m and c,
and therefore the L.C.M. of m and c is the L.c.M. of a, b and c.

EXAMPLES.-xlvii.

Find the l.c.ir. of the following expressions :

1. $x^{2}-3 x+2, x^{2}-4 x+3$ and $x^{2}-5 x+4$.
2. $c^{2}+5 x+4, x^{2}+4 x+3$ and $x^{2}+7 x+12$.
3. $x^{2}-9 x+20, x^{2}-12 x+35$ and $x^{2}-11 x+23$.
4. $6 x^{2}-x-2,81 x^{2}-17 x+2$ and $14 x^{2}+5 x-1$.
5. $x^{3}-1, x^{2}+2 x-3$ and $6 x^{2}-x-2$.
6. $x^{3}-27, x^{2}-15 x+36$ and $x^{3}-3 x^{2}-2 x+6$.

XI. ON NDDITION AND SUBTRACTION

, OF FRACTIONS.

172. IHaming established the Rules for finding the Lowest Common Multiple of given expressions, we may now proceed to treat of the method liy which Fractions are combined by the processes of Admition aul Suletraction.
173. Two Fractions may be replaced by two equivalent fractions with a Common Denominator by the following rule:
Find the x.c.y. of the denominators of the given fractions.
Divide the L.C.Jr. by the Denominator of each fraction.
Multiply the first Numerator by the first Quotient.
Mnltiply the secoul Numerator by the second Quotient.
The two Products will be the Numerators of the equivalent fractions whose common denominator is the L.C.M. of the original denominators.

The same rule holls for three, four, or more fractions.
174. Ex. 1. Rednce to equivalent fractions with the lowest common denominator,

$$
\frac{2 x+5}{3} \text { and } \frac{4 x-7}{4}
$$

Denominators 3, 4.
Lowest Common Multiple 12.
Quotients 4, 3.
New Numerators $8 x+20,12 x-21$.
Equivalent Fractions $\frac{8 x+20}{12}, \frac{12 x-21}{12}$.
Ex. 2. Reduce to equivalent firetions with the lowest common denominater,

$$
\frac{5 b+4 c}{a b}, \frac{6 a-2 c}{a c}, \frac{3 a-5 b}{b c}
$$

Denominators $a b, a c, b c$.
Lowest Common Multiple abc.
Quotients c, b, a.
New Numerators $5 b c+4 c^{2}, 6 a b-2 b c, 3 a^{2}-5 a b$.
Equivalent Tractions $\frac{5 b c+4 c^{2}}{a b c}, \frac{6 a b-2 b c}{a b c}, \frac{3 a^{2}-5 a b}{a b c}$.

EXAMPLES.-xlviii.

Reduce to equivalent fractions with the lowest common denominator:
I. $\frac{3 x}{4}$ and $\frac{4 x}{5}$.
6. $\frac{a-b}{a^{3} b}$ and $\frac{a^{2}-a b}{a b^{2}}$.
2. $\frac{3 x-7}{6}$ and $\frac{4 x-9}{18}$.
7. $\frac{3}{1+x}$ and $\frac{3}{1-x}$.
3. $\frac{2 x-4 y}{5 x^{2}}$ and $\frac{3 x-8 y}{10 x}$.
8. $\frac{2}{1-y^{2}}$ and $\frac{2}{1+y^{2}}$.
4. $\frac{4 a+5 b}{2 a^{2}}$ and $\frac{3 a-4 b}{5 a}$.
9. $\frac{5}{1-x}$ and $\frac{6}{1-x^{2}}$.
5. $\frac{4 a-5 c}{5 a c}$ and $\frac{3 a-2 c}{12 a^{2} c}$.
10. $\frac{a}{c}$ and $\frac{b}{c(b+x)}$.
11. $\frac{1}{(a-b)(b-c)}$ and $\frac{1}{(a-b)(a-c)}$.
12. $\frac{1}{a b(a-b)(a-c)}$ and $\frac{1}{a c(a-c)(b-c)}$.
175. To sliew that $\frac{a}{b}+\frac{c}{d}=\frac{a c_{i}^{\prime}+b c}{b d}$.

Suppose the unit to be divided into bd equal parts.
Then $\frac{a d}{b d}$ will represent $a d$ of these parts, and $\frac{b c}{b \bar{d}}$ will represent $b c$ or taese rarts.
Now $\frac{a}{b}=\frac{a d}{b d}$, by Art. 148,
and $\frac{c}{d}=\frac{b c}{b d}$.
Hence $\frac{a}{b}+\frac{c}{d}$ wili represent $a d+b c$ of the parts.
But $\frac{a d+b c}{b d}$ will represent $a d+b c$ of the part3.
Therefore $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$.
By a similar process it may be shewn that

$$
\frac{a}{b}-\frac{c}{d}=\frac{a d--b c}{b d}
$$

176. Since $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$,
our Rule for Addition of Fractions will run thus:
"Reduce the fractions to equivalent, fractions having the Lowest Common Denominator. Then add the Numerators of the equivalent fractions and place the result as the Numerator of a fraction, whose Denominator is the Common Denominator of the equivalent fractions.

The fraction will be equal to the sum of the original fractions."

The beginner should, however, generally take two fractions at a time, and then combine a third with the resulting fraction, as will be shewn in subsequent Examples.

$$
\text { Also, since } \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b \bar{d}},
$$

the Rule for Subtracting une fraction from another will be,
"Redace the fractions to equivalent fractions having the Lowest Common Denominator. Then labtract the Numerator of the second of the equivalent fractions from the Numerato: of the first of the equivalent fractions, and place the result as the Numerator of a fraction, whose Dinominator is the Common Denominator of the equivaleif fractions. This fraction wha :., equal to the difference of the origimal fractions."

These rules we shall illustrate by examples of various degrees of difliculty.

Note. When a negative sign precedes a traction, it is best to place the numerator of that fraction in a bracket, befo:e combining it with the numerators of other fractions.
177. Ex. 1. To sir uplify

$$
\frac{4 x-3 y}{7}+\frac{3 x+7 y}{14}-\frac{5 x-2 y}{21}+\frac{9 x+2 y}{42} .
$$

Lowest Common Muliple of denominators is 42.
Wultiplying the numerators by $6,3,2,1$ respectively,

$$
\begin{aligned}
& \frac{24 x-18 y}{42}+\frac{9 x+21 y}{42}-\frac{10 x-4 y}{42}+\frac{9 x+2 y}{42}, \\
= & \frac{24 x-18 y+9 x+21 y-(10 x-4 y)+9 x+23}{42} \\
= & \frac{24 x-18 y+9 x+21 y-10 x+4 y+8 x+2 y}{42} \\
= & \frac{32 x+9 y}{42}
\end{aligned}
$$

Ex. 2. To aimplifv $\frac{2 x+1}{3 x}-\frac{4 x+2}{5 x}+\frac{1}{7}$.
Lowest Common Multiple of denominators is $105 x$. Multiplying the numerators by $35,21,15 x$, respecively,

$$
\begin{array}{r}
\frac{70 x+35}{105 x}-\frac{84 x+42}{105 x}+\frac{15 x}{105 x} \\
=\frac{70 x+35-(84 x+42)+15 x}{105 x} \\
=\frac{70 x+35-84 x-42+15 x}{105 x}=\frac{x-7}{105 x}
\end{array}
$$

[8.A.]

EXAMPLES, -xlix.

1. $\frac{4 x+7}{5}+\frac{3 x-4}{15}$.
2. $\frac{3 a-4 b}{7}-\frac{2 a-b+c}{3}+\frac{13 a-4 c}{12}$.
3. $\frac{4 x-3 y}{7}+\frac{3 x+7 y}{14}-\frac{5 x-2 y}{21}+\frac{0 x+2 y}{42}$.
4. $\frac{3 x-2 y}{5 x}+\frac{5 x-7 y}{10 x}+\frac{8 x+5 y}{25}$.
5. $\frac{4 x^{2}-7 y^{2}}{3 x^{2}}+\frac{3 x-8 y}{6}+\frac{5-2 y}{12}$.
6. $\frac{4 a^{2}+5 b^{2}}{2 b^{2}}+\frac{3 a+25}{2 b}+\frac{7-2 a}{9}$.
7. $\frac{4 x+5}{3}-\frac{3 x-7}{5 \cdot 4}+\frac{9}{12 \cdot x^{2}}$
8. $\frac{5 a+2 b}{3 c}-\frac{4 c-3 b}{2 a}+\frac{c a b-7 b c}{14 a c}$.
9. $\frac{2 a+5 c}{a^{2} c}+\frac{4 a c-3 c^{2}}{a c^{2}}-\frac{5 a c-2 c^{2}}{a^{2} c^{2}}$.
10. $\frac{3 x y-4}{x^{2} y^{2}}-\frac{5 y^{2}+7}{x y^{3}}-\frac{6 x^{2}-11}{x^{3} y}$.
11. $\frac{a-b}{a^{3} b}+\frac{4 a-5 b}{a^{2} b c}+\frac{3 x-7 b}{b^{2} c^{2}}$.
12. Ex. To simplify

$$
\frac{a-b}{a+b}+\frac{a+b}{a-b}
$$

L.C.M. of denominators is $a^{2}-b^{2}$.

Moltiplying the numerators by $a-b$ and $a+b$ respectively, we get

$$
\begin{aligned}
& \frac{a^{2}-2 a b+b^{2}}{a^{2}-b^{2}}+\frac{a^{2}+2 a b+b^{2}}{a^{2}-b^{2}} \\
= & \frac{a^{2}-2 a b+b^{2}+a^{2}+2 a b+b^{2}}{a^{2}-b^{2}} \\
= & \frac{2 a^{2}+2 b^{2}}{a^{2}-b^{2}} .
\end{aligned}
$$

EXAMPLIS.-1.

1. $\frac{1}{x-6}+\frac{1}{x+5}$.
2. $\frac{1}{x-7}-\frac{1}{x-3}$.
3. $\frac{1}{1+x}+\frac{1}{1-x}$.
4. $\frac{x+y}{x-y}-\frac{x-y}{x+y}$.
5. $\frac{1}{1-x}-\frac{2}{1-x^{2}}$.
6. $-\frac{(n d-b c) x}{c(c+d x)}$.
7. $\frac{x}{x+y}+\frac{x}{x-y}$.
8. $\frac{1}{x-y}+\frac{2}{(x-y)^{2}}$.
9. $\frac{2}{x+a}+\frac{3 a}{(x+a)^{2}}$.
10. $\frac{1}{2 a(a+x)}+\frac{1}{2 a(a-x)}$.
11. Ex. 1. To simplify

$$
\frac{3}{1+y}+\frac{5}{1-y}-\frac{6}{1+y^{2}}
$$

Taking the first two fractions

$$
\begin{aligned}
& \frac{3}{1+y}+\frac{5}{1-y} \\
&= \frac{3-3 y}{1-y^{2}}+\frac{5+5 y}{1-y^{2}} \\
& r=\frac{8+2 y}{1-y^{2}} ;
\end{aligned}
$$

we can now combine with this result the third of the original fractions, and we have

$$
\begin{aligned}
& \frac{3}{1+y}+\frac{5}{1-y}-\frac{6}{1+y^{2}} \\
= & \frac{8+2 y}{1-y^{2}}-\frac{6}{1+y^{2}} \\
= & \frac{8+2 y+8 y^{2}+2 y^{3}}{1-y^{4}}-\frac{6-6 y^{8}}{1-y^{4}} \\
= & \frac{8+2 y+8 y^{2}+2 y^{3}-6+6 y^{2}}{1-y^{4}} \\
= & \frac{2 y^{3}+14 y^{2}+2 y+2}{1-y^{4}}
\end{aligned}
$$

Ex. 2. To simplify

$$
\frac{2}{(a-b)^{(b-c)}}+\frac{2}{(a-b)^{(c-a)}}{ }^{+1} \frac{2}{(b-c)(c-a)^{2}},
$$

t.c.3s. of first two dmominators lecing $(a-b)(b-c)(c-a)$

$$
\begin{aligned}
& =\frac{2 c-2 a}{(a-b)(b-c)(c-a)}+\frac{2 b-2 c}{(a-b)(b-c)(c-a)}+\frac{2}{(b-c)(c-a)} \\
& =\frac{2 b-2 a}{(a-b)(b-c)(c-c)}+\frac{2}{(b-c)(c-a)^{\circ}}
\end{aligned}
$$

x.c.m. of the two denominators being $(a-b)(b-c)(c-a)$

$$
=\frac{2 b-2 a+2 a-2 b}{(a-b)(b-c)(c-\cdots)}=\frac{0}{(a-b)(b-c)(c-a)}=0 .
$$

EXAMPIES.-li.

1. $\frac{1}{1+a}+\frac{-}{1-a}+\frac{2 a}{1-a^{2}}$.
2. $\frac{1}{a-b}-\frac{1}{a+b}-\frac{2 b}{a^{2}+b^{2}}-\frac{4 v^{3}}{a^{2}+b^{2}}$
3. $\frac{1}{1-x}-\frac{1}{10+x}+\frac{2 x}{1+x^{2}}$.
4. $\frac{x}{y}+\frac{y}{x+y}+\frac{x^{2}}{x^{2}+x y}$
5. $\frac{x}{1-x}-\frac{x^{2}}{1-x^{2}}+\frac{x}{1+x^{2}}$.
6. $\frac{x+3}{x+4}+\frac{x-4}{x-3}+\frac{x+5}{x+7}$
7. $\frac{x-1}{x-2}+\frac{x-2}{x-3}+\frac{x-3}{x-4}$.
8. $\frac{3}{x-a}+\frac{4 a}{(x-a)^{2}}-\frac{5 a^{2}}{(x-a)^{3}}$
9. $\frac{1}{x-1}-\frac{1}{x+2}-\frac{3}{(x+1)(x+2)}$.
sio

F
14. $\frac{x-a}{x-b}+\frac{x-b}{x-a}-\frac{(a-b)^{2}}{(x-a)(x-b)^{2}}$
15. $\frac{x+y}{y}-\frac{2 x}{x+y}+\frac{x^{2} y-x^{3}}{y\left(x^{2}-y^{2}\right)^{-}}$.
16. $\frac{a+b}{(b-c)(c-a)}+\frac{b+c}{(c-a)(a-b)}+\frac{c+a}{(a-b)(b-c)}$
17. $\frac{x}{x^{2}+x y+y^{2}}+\frac{2 x y}{x^{3}-y^{3}}$.
18. $\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{3}}{(a-b)(b-c)(c-a)}$.
19. $\frac{a+b}{b}-\frac{2 a}{a+b}+\frac{a^{2} b-a^{2}}{a^{2} b-b^{3}}$.
20. $\frac{1}{(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}-\frac{1}{(n+1)(n+3)}$.
21. $\frac{a^{2}-b c}{(a+b)(a+c)}+\frac{i^{2}-a c}{(b+a)(b+c)}+\frac{c^{2}-a b}{(c+b)(c+a)}$.
180. Since

$$
\begin{gathered}
\frac{a b}{b}=a, \text { and } \frac{-a b}{-b}=a, \text { Art. } 77 \\
\frac{a b}{b}=\frac{-a b}{-b}
\end{gathered}
$$

From this we learn that we may change the sign of the denominator of a fraction if we also change the sign of the numerator.

Hence if the numerator or denominator, or both, be expressions with more than one term, we may change the sign of every term in the denominator if we also change the sign of every term in the numerator

For

$$
\begin{aligned}
\frac{a-b}{c-d} & =\frac{-(a-b)}{-(c-d)} \\
& =\frac{-a+b}{-c+d}
\end{aligned}
$$

or, writing the terms of the new fraction so that the positive terms may stand first,

$$
=\frac{b-a}{d-c}
$$

181. EX. To simplify $\frac{x(a+x)}{a-x}-\frac{5 a x-x^{3}}{x-a}$.

Changing the signs of the numerator and denominator of the second fraction,

$$
\begin{gathered}
\frac{x(a+x)}{a-x}-\frac{-5 a x+x^{2}}{a-x} \\
=\frac{a x+x^{2}-\left(-5 a x+x^{2}\right)}{a-x}=\frac{a x+x^{2}+5 a x-x^{2}}{a-x}=\frac{6 a x}{a-x .}
\end{gathered}
$$

182. Again, since $-a b=$ the product of $-a$ and b, and $\quad a b=$ the product of $+a$ and b, the sign of a product will be changed by changing the signs of one of the factors composing the product.

Hence $(a-b)(b-c)$ will give a set of terms,
and $(b-a)(b-c)$ will give the same set of terms with different signs

This may le seen by actual multiplication

$$
\begin{aligned}
& (a-b)(b-c)=a b-a c-b^{2}+b c, \\
& (b-a)(b-c)=-a b+a c+b^{2}-
\end{aligned}
$$

Consequently if we have a fraction

$$
\frac{1}{(a-b)(b-c)},
$$

and we change the factor $a-b$ into $b-a$, we shall in effect change the sign of every term of the expression which would result from the multiplication of $(a-b)$ into $(b-c)$.

Now we may change the signs of the denominator if we also change the signs of the numerator (Art. 180);

$$
\therefore \frac{1}{(a-b)(b-c)}=\frac{-1}{(b-a)(b-c)^{\circ}} .
$$

If we change the signs of two factors in a denominator, the sign of the numerator will remain unaltered, thus

$$
\frac{1}{(a-b)(b-c)}=\frac{1}{(b-a)(c-b)^{.}}
$$

183. EX. Simplify

$$
\frac{1}{(a-b)(b-c)}+\frac{1}{(b-a)(a-c)}-\frac{1}{(c-a)(c-b)^{\circ}} .
$$

First clange the signs of the factor $(b-a)$ in the second fraction, changing also the sign of the numerator; and change the signs of the factor $(c-a)$ in the third fraction, changing also the sign of the numerator,
the result is $\frac{1}{(a-b)(b-c)}+\frac{-1}{(a-b)(a-c)}-\frac{-1}{(a-c)(c-b)}$.
Next, change the signs of the factor $(c-l)$ in the third, changing also the sign of the numerator, the result is $\frac{1}{(a-b)(b-c)}+\frac{-1}{(a-b)(a-c)}-\frac{1}{(a-c)(b-c)}$.
L.C.M. of the three denominators is $(a-l)(b-c)(a-c)$, $=\frac{a-c}{(a-b)(b-c)(a-c)}+\frac{-b+c}{(a-b)(a-c)(b-c)}-\frac{a-b}{(a-b)(a-c)(b-c)}$
$=\frac{a-c-b+c-(a-b)}{(a-b)(b-c)(a-c)}=\frac{0}{(a-b)(b-c)(a-c)}=0$.

EXAMPLES:-lii.

1. $\frac{x}{x-y}+\frac{x-y}{y-x}$.
2. $\frac{x}{x+1}-\frac{x}{1-x}+\frac{x^{2}}{x^{2}-1}$.
3. $\frac{1}{(m-2)(m-3)}+\frac{2}{(n-1)(3-n)}+\frac{1}{(m-1)(m-2)}$.
4. $\frac{1}{(b-b)(x+b)}+\frac{1}{(b-a)(x+a)}$.
5. $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}-\frac{2 a b^{2}}{a^{3}-b^{3}}+\frac{2 a^{2} b}{a^{3}+b^{3}}$.
6. $\frac{1}{4(1+x)}-\frac{1}{4(x-1)}+\frac{1}{2\left(1+x^{2}\right)}$.
7. $\frac{1}{(x-y)(y-\bar{z})}+\frac{1}{(y-x)(x-z)}+\frac{1}{(z-x)(z-y)}$.
8. $\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-a)(b-c)}+\frac{1}{c(c-a)(c-2)}$.
104^{-1} ADDITIO.V AND SUBTAACTIU. OF FRACTIONS.
18.1. Ex. "To simplify

$$
\frac{1}{x^{2}-11 x+30}+\frac{1}{x^{2}-12 x+35}
$$

Here the denominators may be expressed in factors, and we have

$$
\frac{{ }^{\prime}}{(x-5)(x-6)}+\frac{1}{(x-5)(x-7)}
$$

The J.C.ss. of the denominators is $(x-5)(x-6)(x-7)$, and we have

$$
\begin{gathered}
\frac{x-7}{(x-5)(x-6)(x-7)}+\frac{x-6}{(x-5)(x-6)(x-7)} \\
=\frac{2 x-13}{(x-5)(x-6)(x-7)}
\end{gathered}
$$

EXAMPLES.-liil.

1. $\frac{1}{x^{2}+2 x+20}+\frac{1}{x^{2}+12 x+35}$.
2. $\frac{1}{x^{2}-13 x+42}+\frac{1}{x^{2}-15 x+54}$.
3. $\frac{1}{x^{2}+7 x-44}+\frac{1}{x^{2}-2 x-143}$.
4. $\frac{1}{x^{2}+3 x+2}+\frac{2 x}{x^{2}+4 x+3}+\frac{1}{x^{2}+5 x+6}$
5. $\frac{m}{n}+\frac{2 m}{m+n}-\frac{2 m n}{(m+n)^{2}}$.
6. $\frac{1+x}{1+x+x^{2}}+\frac{1-x}{1-x+x^{2}}-\frac{2}{1+x^{2}+x^{4}}$
7. $\frac{5}{3(1-x)}-\frac{2}{1+x}+\frac{7 x}{3 x^{2}+3}-\frac{7 x}{3 x^{2}-3}$.
8. $\frac{1}{8(x-1)}+\frac{1}{4(3-x)}+\frac{1}{8(x-5)}+\frac{1}{(1-x)(x-3)(x-5)!}$.
\& $1-x+x^{2}-x^{3}+\frac{x^{4}}{1+x}$.

XII. ON FRACTIONAL EQUATIONS.

185. We shall explain in this Clapter the method of solving, first, Equations in which fractional terms occur, and secondly, Problems leading to such Equations.
186. An Equation involving fractional terms may be reluced to an equivalent Equation without fractions by multiplying every term of the equation by the Lowest Common Multiple of the denominators of the fractional terms.
This process is in accordance with the principle laid down in A.. III. page 58; for if both sides of an equation be multiplied by the same expression, the resulting products will, by that Axiom, be equal to each other.
187. The following examples will illustrate the process of clearing an Equation of Fractions.

Ex. 1. $\frac{x}{2}+\frac{x}{6}=8$.
The l.c.m. of the denominators is 6 . Multiplying both sides by 6 , we get

$$
\frac{6 x}{2}+\frac{6 x}{6}=48,
$$

or,

$$
\begin{aligned}
3 x+x & =48, \\
4 x & =48 ; \\
\therefore x & =12 .
\end{aligned}
$$

Ex. 2. $\frac{x}{2}+\frac{x+1}{7}=x-2$.
The l.c.sy. of the denominators is 14.
Multiplying both sides by 14, we get

$$
\frac{14 x}{2}+\frac{14 x+14}{7}=14 x-28
$$

or,

$$
\begin{aligned}
7 x+2 x+2 & =14 x-28 \\
7 x+2 x-14 x & =-28-2, \\
-5 x & =-30
\end{aligned}
$$

Changing the signs of both sides, we get

$$
\begin{aligned}
& 5 x=30 ; \\
& \therefore x=6 .
\end{aligned}
$$

188. The process may be shortened from the following considerations. If we have to multiply a fraction by a multiple of its denominator, we may first clivide the multiplier by the denominator, and then multiply the numerator by the quotient. The result will be a whole number.

Thus,

$$
\begin{gathered}
\frac{x}{3} \times 12=x \times 4=4 x, \\
\frac{x-1}{7} \times 56=(x-1) \times 8=8 x-8
\end{gathered}
$$

Ex. 1. $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=39$.
The L.c.m. of the denominators being 12 , if we multiply the numerators of the fractions by 6,4 , and 3 respectively, and the other side of the equation by 12 , we get

$$
\begin{aligned}
6 x+4 x+3 x & =468 \\
13 x & =468 ; \\
\therefore x & =30 .
\end{aligned}
$$

or,

Ex. 2. $\frac{8}{x}-\frac{15}{2 x}+\frac{7}{3 x}=\frac{17}{12}$.
The l.c.s. of the denominators is $12 x$. Hence, if we multiply the numerators by $12,6,4$, and x respectively, we get

$$
\begin{aligned}
96-90+28 & =17 x \\
34 & =17 x \\
17 x & =34 \\
\therefore x & =2
\end{aligned}
$$

EXAMPLES.-liv.

1. $\frac{x}{2}=8$.
2. $\frac{3 x}{4}=9$.
3. $\frac{x}{3}+\frac{x}{5}=8$.
4. $\frac{x}{4}-\frac{x}{7}=3$.
5. $36-\frac{4 x}{9}=8$.
6. $\frac{2 x}{3}=\frac{176-4 x}{6}$.
7. $\frac{2 x}{3}+4=\frac{7 x}{12}+9$.
8. $\frac{x+2}{5}+\frac{x-1}{7}=\frac{x-2}{2}$.
9. $\frac{2 x}{3}+12=\frac{4 x}{5}+6$.
10. $\frac{x}{2}+\frac{x}{3}=99_{4}^{3}-\frac{x}{4}$.
11. $\frac{3 x}{4}+5=\frac{5 x}{6}+2$.
12. $\frac{x+9}{4}+\frac{2 x}{7}=\frac{3 x-6}{5}+3$.
13. $\frac{7 x}{8}-5=\frac{9 x}{10}-8$.
14. $\frac{17-3 x}{5}=\frac{29-11 x}{3}+\frac{28 x+14}{21}$.
15. $\frac{5 x}{9}-8=74-\frac{7 x}{12}$.
16. $\frac{2 x-10}{7}=0$.
17. $\frac{x}{6}-4=24-\frac{x}{8}$.
18. $\frac{3 x+4}{7}+\frac{4 x-51}{47}=0$.
19. $56-\frac{3 x}{4}=48-\frac{5 x}{8}$.
20. $\frac{3}{x}-3=\frac{1}{x}-1$.
21. $\frac{3 x}{4}+\frac{180-5 x}{6}=29$.
22. $\frac{12+x}{x}-5=\frac{6}{x}$.
23. $\frac{3 x}{4}-11=\frac{x-8}{2}$.
24. $\frac{1}{4} x+\frac{1}{10} x+\frac{1}{20} x=40$.
25. $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=\frac{13}{12}$.
26. $2 \underset{4}{1} x+\frac{3-x}{2}=3{ }_{8}^{5} x-43 \frac{1}{2}$.
27. $2 \frac{3}{4}-\frac{3}{x}=\frac{1}{x}-\frac{325}{100}$.

2S. $2_{2}^{1}+\frac{18-x}{3}=1 \frac{1}{9} x+\frac{1}{3}+\frac{3-2 x}{10}+\frac{2}{5}$.
29. $\frac{x}{3}+\frac{x}{4}-\frac{5 x}{6}-12=1 \frac{2}{3} x-58$.
30. $\frac{7 x+2}{10}-12-\frac{3 x}{4}=\frac{3 x+13}{5}-\frac{17 x}{4}$.
189. It, must next be olserved that in cleariug an equation of fractions, whenever a fraction is precedel by a negative sign, we must place the result obtained ly multiplying that numerator in a bracket, alter the removal of the denominator.

For example, we ought to procesd thus:-
Ex. 1. $\frac{x+2}{5}=\frac{x-2}{2}-\frac{x-1}{7}$.
Multiply by 70 , the L.C.M. of the denominators, and we get

$$
\begin{aligned}
& 14 x+28=35 x-70-(10 x-10), \\
& \text { or } \quad 14 x+28=35 x-70-10 x+10,
\end{aligned}
$$

from which we shall find $x=8$.
Ex. 2. $\frac{17-2 x}{5 x}-\frac{4 x+2}{3 x}=1$.
Multiplying by $15 x$, the i.c.M. of the denominators, we get

$$
\begin{aligned}
& 51-6 x-(20 x+10)=15 x \\
& \text { or } \quad 51-6 x-20 x-10=15 x
\end{aligned}
$$

from which we shall find $x=1$.
Note. It is from want of attention to this way of treating fractions preceded by a negative sign that begiuners make so many mistakes in the solution of equations.

EXAMPLES.-lv.

1. $5 x-\frac{x+2}{2}=71$.
2. $x-\frac{3-x}{3}=5 \frac{2}{3}$.
3. $\frac{5-2 x}{4}+2=x-\frac{6 x-8}{2}$.
4. $\frac{5 x}{2}-\frac{5 x}{4}=\frac{9}{4}-\frac{3-x}{2}$.
5. $2 x-\frac{5 x-4}{6}=7-\frac{1-2 x}{5}$
6. $\frac{x+2}{2}=\frac{14}{9}-\frac{3+5 x}{4}$.
7. $\frac{5 x+3}{8}-\frac{3-4 x}{3}+\frac{x}{2}=\frac{31}{2}-\frac{9-5 x}{6}$.
8. $\frac{x+5}{7}-\frac{x-2}{5}=\frac{x+9}{11}$.
9. $x-3-\frac{x+2}{8}=\frac{x}{3}$
10. $\frac{x+1}{3}-\frac{x-4}{7}=\frac{x+4}{5}$.
11. $\frac{x+5}{7}=\frac{x+2}{4}-\frac{x-2}{3}$.
tha
12. $\frac{x}{3}-\frac{x-1}{11} r=x-9$.
13. $\frac{x+1}{2}-\frac{x-3}{3}=\frac{x+30}{13}$.
14. $\frac{x+2}{5}=\frac{x-2}{2}-\frac{x-1}{7}$.
15. $\frac{2 x}{7}-\frac{x+3}{5}=3 x-21$.
16. $\frac{x+9}{4}-\frac{3 x-6}{5}=3-\frac{2 x}{7}$.
17. $\frac{2 x+7}{7}-\frac{9 x-8}{11}=\frac{x-11}{2}$.
18. $\frac{7 x-31}{4}-\frac{8+15 x}{26}=\frac{7 x-8}{22}$.
19. $\frac{8 x-15}{3}-\frac{11 x-1}{7}=\frac{7 x+2}{13}$.
20. $\frac{7 x+9}{8}-\frac{3 x+1}{7}=\frac{9 x-13}{4}-\frac{249-9 x}{14}$.
21. $\frac{x}{10}+10 x=\frac{x}{2}+\frac{x}{5}+\frac{x}{40}-\frac{10-x}{7}+93 \frac{3}{4}$.
22. Literal equations are those in which known quantities are represented by letters, usually the first in the alphabet. The following are examples :-

Ex. 1. To solve the equation
that is,

$$
\begin{aligned}
a x+b c & =b x+a c, \\
a x-b x & =a c-b c \\
(a-b) x & =(a-b) c, \\
x & =c
\end{aligned}
$$

Ex. 2. To solve the equation
that is, nr,
th/refore,

$$
\begin{gathered}
a^{2} x+b x-c=b^{2} x+c x-d, \\
a^{2} x+b x-b^{2} x-c x=c-d, \\
\left(a^{2}+b-b^{2}-c\right) x=c-d, \\
x=\frac{c-d}{a^{2}+b-b^{2}-c} .
\end{gathered}
$$

EXAMPLES.-lvi.

1. $a x+b x=c$.
2. $2 a-c x=3 \hat{c}-5 b x$.
3. $b c+a x-d=a^{2} b-f x$.
4. $d m-5 x=b c-a x$.
5. $a b c-a^{2} x=a x-a^{2} b$.
6. $3 a c x-6 b c d=12 c d x+a b c$.
7. $k^{2}+3 a c k x+3 k=k x+3 a b i-k^{2}-a c k i n$.
8. $-a c^{2}+b^{2} c^{2}+a b c x=a b c+c m x-a c^{2} x+b^{2} c-m c$.
9. $(a+x+b)(a+b-x)=(a+x)(b-x)-a b$.
10. $(a-x)(u+x)=\simeq u^{2}+\simeq u x-x^{2}$.
11. $\left(a^{2}+x\right)^{2}=x^{2}+4 a^{2}+a^{1}$.
12. $\left(a^{2}-0\right)\left(a^{2}+x\right)=a^{1}+2 a x-x^{2}$.
13. $\frac{a x-b}{c}+a=\frac{x+a c}{c}$.
14. $\frac{m\left(p^{2} x+x^{5}\right)}{p x}=m q x+\frac{m x^{2}}{p}$.
i4. $a x-\frac{3 a-b x}{2}=\frac{1}{2}$.
15. $\frac{x}{a}-b=\frac{c}{d}-x$.
16. $\quad 6 a-\frac{4 a x-2 b}{3}=x$.
17. $\frac{x^{2}-a}{b x}-\frac{a-x}{b}=\frac{2 x}{b}-\frac{a}{x}$.
18. $a x-\frac{b x+1}{x}=\frac{a\left(x^{2}-1\right)}{x}$.
19. $\frac{3}{c}-\frac{a b-x^{2}}{b x}=\frac{4 x-a o}{a x}$.
20. $\frac{a b+x}{b^{2}}-\frac{b^{2}-x}{a^{2} b}=\frac{x-b}{a^{2}}-\frac{a b-x}{b^{2}}$.
21. $\frac{3 a x-2 b}{3 b}-\frac{a x-a}{2 b}=\frac{a x}{b}-\frac{2}{3}$.
22. $a m-b-\frac{a x}{b}+\frac{x}{m}=0$.
23. $\frac{2 a^{2} b^{3}}{(a+b)}-\frac{b^{2} x}{a(a+b)}+\frac{3 a^{2} c}{a+b}=\frac{2 a c x}{b}-\frac{b^{3}-2 a b^{2} x}{(a+b)}$.

2弓. $\frac{a x^{2}}{b-c x}+a+\frac{a x}{c}=0$.
27. $\frac{a b}{x}=b c+d+\frac{1}{x}$
26. $\frac{a\left(d^{2}+x^{2}\right)}{d x}=a c+\frac{a x}{d}$.
25. $c=a+\frac{m(a-x)}{3 a+x}$.
29. $(a+x)(b+x)-a(b+c)=\frac{a^{2} r}{b}+2 ;$
30. $\frac{a c e}{d}-\frac{(c+b)^{2} \cdot x}{a}-b x=a c-3 b x$.
191. In the examples already given the L.c.s. of the denominators can generally be determined by inspection. When compound expressions appear in the denominatore, it is sometimes desirable to collect the fractic a inio two, one
on each side of the equation. When this has been done, we can clatr the equation of fractions by undtiplying the une merator on the left by the denominator on the right, and the numerator on the right by the denominator on the hejt. and makingo the products equal.

For, if $\frac{a}{b}=\frac{c}{b}$, it is cerident that $a d=b c_{0}$
Ex.

$$
\begin{gathered}
\quad \frac{4 x+5}{10}-\frac{12 x-6}{7 x+4}=\frac{2 x-3}{5} \\
\therefore \frac{4 x+5}{10}-\frac{2 x-3}{5}=\frac{13 x-6}{7 x+4} ; \\
\therefore \frac{4 x+5-(4 x-6)}{10}=\frac{13 x-6}{7 x+4} ; \\
\therefore \quad \frac{11}{10}=\frac{13 x-6}{7 x+4} ;
\end{gathered}
$$

$$
\therefore 11(7 x+4)=10(13 x-6) ;
$$

whence we find

$$
x=\frac{104}{53}
$$

EXAMPLES.-lvii.

1. $\frac{3 x+7}{4 x+5}=\frac{3 x+5}{4 x+3}$.
2. $\frac{x+6}{2 x+5}=\frac{x}{2 x-5}$.
3. $\frac{2 x+7}{x+2}=\frac{4 x-1}{2 x-1}$.
4. $\frac{5 x-1}{2 x+3}=\frac{5 x-3}{2 x-3}$.
5. $\frac{1}{3 x-2}+\frac{2}{4 x-3}=0$.
6. $\frac{2}{1-5 x}-\frac{5}{1-2 x}=0$.
7. $\frac{1}{x-1}+\frac{1}{x+1}=\frac{3}{x^{2}-1}$.
8. $\frac{4 x+3}{0}=\frac{8 x+19}{18}-\frac{7 x-29}{5 x-12}$.
9. $\frac{x}{3}-\frac{x^{2}-5 x}{3 x-7}=\frac{2}{3}$.
10. $\frac{3 x+2}{x-1}+\frac{2 x-4}{x+2}=5$.
11. $\frac{1}{6}(x+3)-\frac{1}{7}(11-x)=\frac{2}{5}(x-4)-\frac{1}{21}(x-3)$.
12. $\frac{(x+1)(2 x+2)}{(x-3)(x+6)}-2=0$.
13. $\frac{3}{x+1}-\frac{x+1}{x-1}=\frac{x^{2}}{1-x^{2}}$.
14. $\frac{(2 x+3) x}{2 x+1}+\frac{1}{3 x}=x+1$.
15. $\frac{2}{1-x}+\frac{8}{1+x}=\frac{45}{1-x^{2}}$.
16. $\frac{4}{x-3}+\frac{3}{2 x-16}-1 \frac{5}{24}=\frac{2}{3 x-24}$.
17. $\frac{x^{4}-\left(4 x^{2}-2(x+2 \cdot 4)\right.}{x^{2}-2 . c+4}=x^{2}+2 x-4$.
18. $\frac{2 x^{4}+2 x^{3}-9 x^{2}+12}{x^{2}+3 x-4}=2 x^{2}-4 x-3$.
19. $\frac{1}{4} x-1=\frac{1}{16 x}\left(4 x^{2}-3 x-1 \frac{5}{8}\right)$.
20. $5-x\left(3 \frac{1}{2}-\frac{2}{x}\right)=\frac{1}{2} x-\frac{3 x-(4-5 x)}{4}$.
21. Equations into which Decimal Fructions enter do not present any serious difliculty, as may be seen from the following Examples:-

Ex. 1. To solve the equation

$$
\cdot 5 x=\cdot 03 x+1 \cdot 41
$$

Turning the decimals into the form of Vulgar Fractions, we get

$$
\frac{5 x}{10}=\frac{3 x}{100}+\frac{141}{100}
$$

Then multiplying both sides by 100 , we get

$$
\begin{aligned}
50 x & =3 x+141 ; \\
47 x & =141 ; \\
x & =3 .
\end{aligned}
$$

$$
\text { therefore } \quad 47 x=141 \text {; }
$$

therefore

$$
\text { EX. 2. } 1 \cdot 2 x-\frac{\cdot 18 x-05}{5}=4 x+8 \cdot 9
$$

First clear the fraction of decimals by multiplying its numerator and denominator by 100 , and we grt
therefore

$$
1 \cdot 2 x-\frac{18 x-5}{50}=\cdot 4 x+8 \cdot 9
$$

$$
\begin{aligned}
\frac{12 x}{10}-\frac{18 x-5}{50} & =\frac{4 x}{10}+\frac{89}{10} ; \\
60 x-18 x+5 & =20 x+4.15 ; \\
22 x & =440 ; \\
x & =20
\end{aligned}
$$

therefore
therefore therefore
1.
2.

EXAMPLES．－lviii．

1．$\cdot 5 x-2=\cdot 25 x+\cdot 2 x-1$ ．
2． $3 \cdot 25 x-5 \cdot 1+x-75 x=3 \cdot 9+\cdot 5 x$ ．
3．$\cdot 1205 x+\cdot 01 x=13-\cdot 2 x+4$ ．
4．$\cdot 3 x+1 \cdot 305 x+\cdot 5 x=22 \cdot 95-\cdot 195 x$ ．
5．$\cdot 2 x-\cdot 01 x+\cdot 00.5 x=11 \cdot 7$ ．
6． $2 \cdot 4 x-\frac{.36 x-05}{.5}=8 x+8 \cdot 9$ ．
7． $2 \cdot 4 x-10 \cdot 75=\cdot 25 x$ ．
8．$\cdot 5 x+2-\cdot 5 x=\cdot 4 x-11$ ．
9．$\cdot \frac{4 \cdot 0.5}{9 c}+3.875=4 \cdot 035$ ．
10． $2 \cdot 5 x-\frac{2+x}{7}\left(\frac{1}{4}-2\right)=5-\frac{5 x+3}{8}$ ．
I I．$\frac{8 \cdot 5}{2}-\frac{\cdot 2}{x}=4 \frac{1}{4}-\frac{1-\cdot 1 x}{x}$ ．
12．$\frac{\cdot 48 x}{6}-\frac{3-4 x}{.2}=1033$
13．$\frac{2-3 x}{1 \cdot 5}+\frac{5 x}{1.25}-\frac{2 x-3}{9}=\frac{x-2}{1.8}+9 \frac{7}{9}$
14．$\frac{2!\cdot 08}{x}+\frac{1}{x} \cdot \cdot 04(x+\cdot 9)=211 \cdot 2$ ．
15．$\cdot 5 x+\frac{.45 x-75}{\cdot 6}=\frac{1 \cdot 2}{.2}-\frac{.3 x-6}{.9}$.
16．$\cdot 5-\frac{3 \cdot 5 x}{x-2}-\frac{24-3 x}{8}=\cdot 375 x$ ．
17．$\cdot 15 x+\frac{\cdot 135 x-225}{6}=\frac{.36}{.2}-\frac{.09 x-18}{.9}$ ．
193．To sicew that a simple equation can only have one root．
Let $x=a$ be the equation，a form to which all equations of the first degree may be reduced．

Now suppose a and β to be two roots of the equation． Then，by Art．109，
and

$$
\begin{aligned}
& \alpha=a, \\
& \beta=\alpha, \\
& \alpha=\beta ;
\end{aligned}
$$

in other worl：，the two supposed roots are identical． ［S．A．］

XIII. PROBLEMS IN FRACTIONAL EQUATIONS.

194. We shall now give a series of Easy Problems resulting for the most part in Fractional Equatrons.

Take the following as an example of the form in which such Problems should be set out by a berinner.
"Find a number such that the sum of its third and fourth parts shall be equal to 7."

Suppose x to represent the number.
Then $\frac{x}{3}$ will represent the thind part of the number, and $\frac{x}{4}$ will represent the fourth part of the number.

Hence $\frac{x}{3}+\frac{x}{4}$ will represent the sum of the two parts,
But 7 will represent the sum of the two parts
Therefore

$$
\frac{x}{3}+\frac{x}{4}=7
$$

Hence
that is,

$$
4 x+3 x=84,
$$

$$
7 x=84,
$$

that is,
$x=12$,
and therefore the number sought is 12 .

> EXAMPLES.-liX.

1. What is the number of which the half, the fourth, and the fifth parts added together give as a result 95 ?
2. What is the number of which the twelfth, twenticth, and fortieth parts added together give as a result 38 ?
3. What is the number of which the fourth part exceeds the fifth part by 41
4. The diflereme between two mmbers is 20 , amb oneseventh of the one in "rimal to one-thind of the viher. What, are the numbers?
5. 'The sum of two mmbers is 31207. On dividing ono by the other the quotient is lommed to be 15 mbd the remainder 1335. What are the mombers?
6. 'The neres of two brothers amomet to a7 years. On diviting the are of the elder by that of the jomerer the guotient is $3 \frac{1}{2}$. What is the are of ench?
7. Divide 237 into two such parts that one is fonr-fifths of the other.
8. Divide $£ 1800$ between A and D, so that I 's share may be two-seventlis of . l's shate.
9. Divide 46 into two such parts that the sum of the quotients ohtaned ly dividing one part hy and the other by 3 may be egmal to 10.
10. Divile the mabor a into two such pats that the sma
 other ber 4 may be extal tob.
11. The sum of two mmbers is a, anil their diflerence is b. Find the numbers.
12. On multiplying a ceetain momber by 4 amd dividing the product by 3,1 ubtain :- What is the mmber?
13. Divide \perp Bit between A, B, mil C, so that A gets if of what B gets, and C s share is cipatal to the sum of the shares of A and B.
14. A man leaves the half of his propery to his wife, a sixth part to each of his two chihden, a fwelfh part to his - brother, and the rest, amometins to seom, to chatiable uses. What was the amomet of his proprerty?

2S. Find two mmbers, of which the sum is 70 , stich that. the first divided by the second ofives: as at yootient and 1 as a remainder.
29. Find two numbers of which the diflerence is 25, suth that the second diviled by the first gives $\$$ as a ghotient and 4 as a remainder.
(1), and oneher. What ivising: one remainder years. On or the chuo-(1)r-fifths of share may fim of the he wher by at the smm int and the iurnce is b.
ud diviling r 1
A rets $\stackrel{5}{11}$ - the shares
his wife, a purt to his itable uses.
, stich that at and 1 this
is 2π, su $=h$ utient and
30. Divile the number 208 into two parts such that the man of the founth of the greater and the third of the less is less by 4 than fondi times the dilference between the two parts.
31. There are thirteen days between division of term and the end of the first two-thirds of the term. How many days are there in the term?
32. Ont of a cask of wine of which a fifth part had leaked awity 10 gallons were drawn, and then the cask was two-thirds full. How much did it hold?

3 . The smm of the ages of a father and som is half what it
 will be in 20 years. Find the respective ares.
34. A mother is 70 years old, her damegter is exactly hatl that are. How many voms have passed since the mother was ab times the arge of the dimerhter?
35. A is $2:$, amp B is two-thinds of that age. How long is it since A wity 5 times as old as B ?

Note I. If a man can do a picee of work in x hours, the part of the work which he can do in one honer will be represented by $\frac{1}{x}$.

Thus if A can reap a field in 12 honrs, he will reap in one hour $\frac{1}{15}$ of the field.

Ex. A can do a piece of work in 5 days, and B can do it in 12 days. Ifow long will A and B working together take to do the work?

Let x represent the mmber of days A and D will take. Then $\frac{1}{6}$ will represent the part of the work they do dialy.
Now $\frac{1}{5}$ represents the part A docs daily,
and $\frac{1}{12}$ represents ine part B docs daily.

Hence $\frac{1}{5}+\frac{1}{12}$ will represent the part A and B do daily.
Consequently $\frac{1}{5}+\frac{1}{12}=\frac{1}{x}$.
Hence

$$
\begin{aligned}
12 x+5 x & =60, \\
17 x & =60 ; \\
\therefore x & =\frac{60}{17} .
\end{aligned}
$$

That is, they will do the work in $3 \frac{9}{17}$ days.
36. A can do a piece of work in 2 days. B can do it in 3 days. In what time will they do it if they work torether?
37. A can do a piece of work in 50 days, B in 60 days, and C in 75 days. In what time will they do it all working together ?
38. A and B together finish a work in 12 days; A and C in 15 days; B and C in 20 days. In what time will they finish it all working together?
*39. A and B can do a piece of work in 4 honrs; A and C in $3_{\overline{5}}^{3}$ hours; B and C in $5_{\overline{7}}^{1}$ hours. In what time can A do it alone?
40. A cau do a piece of work in $2_{\frac{1}{2}}^{1}$ days, B in $3_{\frac{1}{3}}^{1}$ days, and C in $3 \frac{3}{4}$ days. In what time will they do it all working together?

4r. A does $\frac{3}{5}$ of a piece of work in 10 dalys. He then calls in B, and they finish the work in 3 days. How long would B take to do one-third of the work by himself?

Note II. If a tap can fill a vessel in x hours, the part of the ressel filled by it in one hour will be represented by $\frac{1}{x}$.
Ex. Three taps running separately will fill a vessel in 20, 30 , and 40 minutes respectively. In what time will they fill it wien they all run at the same time 1
n do it in 3 ogrether?
in 60 days, all working
; A and C e will they
; A and C e can A do in $3 \frac{1}{3}$ days, all working
then calls gr would B the part of d by $\frac{1}{x}$.
essel in 20 , they fill it

Let x represent the number of minutes they will take.
Then $\frac{1}{x}$ will represent the part of the vessel filled in 1 minute.

Now $\frac{1}{20}$ represents the part filled by the first tap in 1 minute,
\qquad $\frac{1}{40}$ third

Hence

$$
\frac{1}{20}+\frac{1}{30}+\frac{1}{40}=\frac{1}{x},
$$

or, multiplying both sides by $120 x$,
that is,

$$
\begin{aligned}
6 x+4 x+3 x & =120, \\
13 x & =120 ; \\
\therefore x & =\frac{120}{13} .
\end{aligned}
$$

Hence they will take $9 \frac{3}{13}$ minutes to fill the ressel.
42. A vessel can be filled by two pipes, running separately, in 3 hours and 4 hours respectively. In what time will it be filled when both run at the same time?
43. A vessel may be filled by three different pipes: by the first in $1 \frac{1}{3}$ hours, by the second in $3 \frac{1}{3}$ hours, and by the third in 5 hours. In what time will the vessel be filled when all three pipes are opened at once?
44. A bath is filled by a pipe in 40 minutes. It is emptied by a waste-pipe in an hour. In what time will the bath be full if both pipes are opened at once ?
45. If three pipes fill a vessel in a, b, c minutes running separately, in what time will the vessel be filled when all three are opened at once ?
46. A vessel containing 755. $\frac{1}{4}$ gallons can be filled by three prpes. The first lets in 12 gallons in $3 \frac{1}{4}$ minutes, the second 15_{3}^{1} gallons in 2_{2}^{1} minutes, the third 17 gallons in 3 minutes: in what time will the vessel be filled by the three pipes all ruming tagether?
47. A vessel can he filled in 15 minutes hy three pipes, one of which lets in 10 gallons more and the other 4 galions Jess than the third mach mimite. The cistern holds 2400 gallons. How nuch comes through each lipe in a minute?

Note IIT. In questions involving distance travelled over in a cortain time at a certain rate, it is to be observed that

$$
\frac{\text { Mistance }}{\text { Raie }}=\text { Time. }
$$

That is, if I travel 20 miles at the rute of 5 miles an hour,

$$
\text { number of hours I take }=\frac{20}{5}
$$

Ex. A and B set out, one from Newmarket and the other from Cambrinw, at the same time. 'The instance between the towns is 13 miles. A walks 4 miles an hour, and $D 3$ miles an hour. Where will they met?

Let x represent their distance from Cambridge when they meet.

Then 13-x will represent their distance from Newmarket.
Then ${ }_{:}^{x}=$ time in hours that B has been walking,

$$
\frac{13-x}{4}=\ldots \ldots \ldots . \ldots \ldots
$$

And since koth have been walling the same time,

$$
\begin{aligned}
\quad \begin{aligned}
\frac{x}{3} & =\frac{13-x}{4}, \\
\text { or } \quad 4 x & =39-3 x, \\
\text { or } \quad 7 & =39 ; \\
\therefore x & =\frac{39}{7} .
\end{aligned} .
\end{aligned}
$$

That is, they meet at a distance of $5_{i=}^{4}$ miles from Cambridge.
48. A person atarts from Ely to walk to Cambridge (which is distant 16 milesy at the rate of $4 \frac{4}{9}$ miles an hour, at the same time that another person leaves Cambridge for Ely walking at the rate of a mile in 18 minutes. Where will they meet?
49. A person walked to the top of a momatain at the rate of $\Omega \frac{1}{3}$ miles an hour, and down the same way at the rate of $3 \frac{1}{2}$ miles an hour, and was out 5 hours. How far did he walk altogether?
50. A man walks a miles in b hours. Write down
(1) The number of miles he will walk in c hours.
(2) The number of hours he will be walking d miles.

5 I . A steamer which started from a certain place is followerl after 2 lays by another steamer on the same line. The first irges 244 miles a day, and the second 286 miles a day. In how many days will the second overtake the first?
52. A messenger who goes $31 \frac{1}{2}$ miles in 5 hours is followed after S hours by another who goes $22 \frac{1}{2}$ miles in 3 hours. When will the second overtake the first?
53. Two men set out to walk, one from Cambriage to Lonton, the other from London to Cambridge, a distance of (i) miles. The former walks at the rate of 4 miles, the latter at the rate of 3_{4}^{3} miles an hour. At what distance from Camıbridge will they meet?
54. A sets ont and travels at the rate of 7 miles in 5 hours. Fight hours afterwards B sete out from the same place, and travels along the same road at the rate of 5 miles in 3 hours Aftex what time will B overtake A ?

Note IV. In problems relating to clocks the chief point to be noticel is, that the minute-hand moves 12 times as fast as the hour-hinul.

The following examples should be carefully studied.
Find the time between 2 and 40^{\prime} clock when the hands of a 9 clock are
(1) Opposite to each other.
(2) At right angles to each other.
(3) Coincident.

(1) Let $O N$ represent the position of the minute-hand in Fig. I.
$O D$ represents the position of the hour-hand in Fig. I. M narks the 12 o'clock point.
T 3 o'clock
The lines $O M F, O T$ represent the position of the hands at 3 o'clock.

Now suppose the time to be x minutes past 3.
Then the minute-hand has since 3 o'clock moved over the arc MDN.

And the hour-hand has since 3 o'clock moved over the arc TD.

Hence are $M D V=$ twelve times arc $T D$.
If then we represent $M I D N$ by x, we shall represent $T D$ by $\frac{x}{12}$.
Also we shall renreacnt $M T$ by 15 , and $D N$ by 30.
ief point to es as fast as

cl.

hands of a

e-hand in

$$
\begin{aligned}
M D N & =M T+T D+D N, \\
x & =15+\frac{x}{12}+30, \\
\text { or } \quad 12 x & =180^{\circ}+x+360, \\
\text { or } \quad 11 x & =540 ; \\
\therefore x & =\frac{540}{11} .
\end{aligned}
$$

Hence the time is $49 \frac{1}{11}$ minutes past s.
(2) In Fig. IT. the description given of the state of the clock in Fig. I. applies, except that $D N$ will be represented by is instead of :30.
Now suppose the time to be x minutes past 3 .
Then since

$$
\begin{gathered}
M D D_{N}=M T+T D+D N, \\
x=15+\frac{x}{12}+15 .
\end{gathered}
$$

from which we get

$$
x=\frac{360}{11},
$$

that is , the time is $32 \frac{8}{11}$ minutes past
(3) In Fig. III. the hands are hoth in the position ON.

Now suppose the time to be x minutes past 3 .
Then since

$$
\begin{aligned}
M N & =M T+T N, \\
x & =15+\frac{x}{12}, \\
\text { or } \quad 12 x & =180+x, \\
\text { or } \quad x & =\frac{180}{11},
\end{aligned}
$$

that is, the time is $16 \frac{4}{11}$ minutes past 3 .
55. At what time are the hands of a watch opposite to each other,
(1) Between 1 nol 9,
(2) Between 4 and 5 ,
(3) Between 8 and y ?
56. At what time are the hands of a watch at right augles to each other,
(1) Petween 2 and 3.
(2) Between 4 and ${ }^{R}$
(3) Detween 7 and $\%$?
57. At what time are the hands of a watch together,
(1) Between 3 and 4,
(:) Between 6 aud 7 ,
(3) Between 9 and 10 ?
58. A person buys a certain mumber of apples at the rate of five for twopence. ILe sells half of them at two a penny, and the remaining half at three a penny, and clears a penny by the transaction. How many docs he buy?
59. Λ man gives away half a sovereign more than half as many soverejgis ás he has: and again half a sovereign more than half the sovereigns then remaining to him, and now has nothing left. How much had he at first ?
60. What must be the value of n in order that $\frac{2 a+n}{3 n+696}$ may be equal to $\frac{1}{33}$ when a is $\frac{1}{3}$?

6r. A borly of tronpa retreating lefore the enemy, from Which it is at a certain time 25 miles distant, marehes 18 miles a day. The enemy pursues it at the rute of 20 miles a day, but is first a day later in starting, then after 2 days is foreed to halt for one diy to repair a briblere, and this they have to do again after two days' mone marching. After how many days from the beginning of tie retreat will the retreating force be overtaken?
62. A person, after paying an income-tax of sixpence in the pount, save away one-thinteenth of his remmining income, and had $f^{2} 510$ left. What was his original income?
\because 63. From a sum of moncy I take nway $£=0$ more than the half, then from the remainder $£ 30$ more than the fifth, then from the second remainder for more than the fouth part: - and at last only $£ 10$ remains. What was the original sum?
64. I bonchit a certain number of exiris at 2 a penuy, and the same number at 3 a peony. I sold them at 5 for twopence, and lost a penay. How many egogs did I buy
65. A cistern, holding 1200 gillons, is filled ly 3 pipes A, J, C in 24 minntes. The pipe A requires 30 minintes more than C to fill the cistem, and 10 gallons less run through C per wimate than through A and B together. What time would each pipe take to fill the cistem by itself?

C6. A, B, and C driuk a batrel of beer in 24 days. A and B drink ${ }_{3}^{4}$ rels of what C does, and B drinks twice as much as A. In what time would each separately drink the cask?

6,7. A and E shoot by turus at a target. A puts 7 bullets out of 12 into the centre, aud B puts in 9 out of 12 . Between them they put in 32 bullets. How many shots did each fire?
68. A farmer sold at market 100 heal of stock, horses, oxen, aud sheep, selling two oxen for every horse. He oltained on the sale $£ 2,78$, a head. If he sold the horses, caen, and shcep at the respective prices $£ 22, £ 12,10$ s., and $£ 1,10$ s., how mar.y horses, oxen, and shee: respectively did he sell?
69. Iu a Euclid paper A gets 160 marks, and D just passes. A gets full marks for book-work, and twice as many marks for riders as B gets altogether. Also B, sending answers to all the questions, gets no marks for riders and lalf marks for book-work. Supposing it necessary to get $\frac{1}{5}$ of full marks in order to pass, find the number of marks which the paper carries.
70. It is between 2 and 3 o'clock, but a person looking at the clock and mistaking the hour-hand for the minute-hand, fancies that the time of day is 50 minutes carlier than the reality. What is the true tume?
71. An army in a defeat loses one-sixth of its number in killed and wounded, and 4000 prisoners. It is reinforced by 3000 men , but retreats, losing a fourth of its number in doing so. There remain 18000 men . What was the original force?
72. The national debt of a country was increased by one. fourth in a time of war. - During twenty years of peace which
followed $£ 25,000,000$ was paid off, and at the end of that time the interest was reduced from 42 to 4 per cent. It was then found that the interest was the sime in amonnt as before the war. What was the amonnt of the delot before the war?
73. An artesian well supplies a brewery. The consumption of water goes on each week-lay from 3 A.M. to 6 p.M. at double the rate at which the water flows into the well. If the well contained 2250 gillons when the consumption began on Monday morning, and it was just emptied when the consmmption ceased in the evening of the next Thursday but one, what is the rate of the influx of water into the well in gallors per hour?

IIV. ON MISCELLANEOUS FRACTIONS.

105. In this Chapter we shall treat of various matters cons: nected with Fractions, so as to exhihit the mode of applying the elementary rules to the simplification of expressions of a more complicated kind than those which have hitherto been discussed.
106. The attention of the student must first be dirceter to a point in which the notation of Algebra differs from that of Arithmetic, namely when a whole number and a fraction stond silde by side with no sign betwcen them.

Thus in Arithmetic $2_{\frac{3}{7}}^{3}$ stands for the sum of 2 and $\frac{3}{7}$.
Ent in Algebra $x \frac{y}{z}$ stands for the product of x and $\frac{y}{z}$.
So in Algebra $3 \frac{a+b}{c}$ stands for the product of 3 and $\frac{a+b}{c}$; that is, $3 \frac{a+b}{c}=\frac{3 a+3 b}{c}$.
f that time It was then before the war? consumpto 6 P.m. at e well. If ition began in the conty but one, in gallons

TIONS.

atters conapplying sions of a herto been
e directer om that of tion stanl
$\operatorname{na} \frac{a+b}{c} ;$

EXAMPLES.-lX.

Simplify the following fractions:
I. $a+x+3 \frac{\pi}{x}$.
2. $\frac{a^{2}+a x}{x^{2}}-2 \frac{x-a}{x}$.
3. $\frac{x-y}{x}+2 \frac{y}{x-y}$.
4. $4 \frac{a+b}{a-b}-\frac{a^{2}-b}{a^{2}+b^{2}}$
197. A fraction of which the Fimerator or Denominator is itself a fruction, is called a Complex Fraction.

Thus $\frac{x}{\frac{a}{b}}, \frac{y}{c}$ and $\frac{\frac{x}{\frac{y}{m}}}{\frac{m_{i}}{n}}$ are complex fractions.
A Fraction whose terms are whole numbers is called a Simple Fraction.

All Complex Fractions may be reduced to Simple Fractions by the processes already described. We may take the following Examples :
(1) $\frac{a}{\frac{a}{n}}=\frac{a}{b} \div \frac{m}{n}=\frac{a}{b} \times \frac{n}{m}=\frac{a n}{b m i}$.
(2) $\frac{\frac{a}{b}-\frac{c}{d}}{\frac{m}{n}-\frac{p}{q}}=\left(\frac{a}{b}-\frac{c}{d}\right) \div\left(\frac{m}{n}-\frac{p}{q}\right)=\frac{a d-b c}{b l} \div \frac{m q-n p}{n q}$

$$
=\frac{a d-b c}{b d} \times \frac{n q}{m q-n q}=\frac{n q(a d-b c)}{b d(m q-n p)^{\circ}}
$$

(3) $\frac{1+x}{1+\frac{1}{x}}=(1+x) \div\left(1+\frac{1}{x}\right)=(1+x) \div \frac{x+1}{x}$

$$
=\frac{1+x}{1} \times \frac{x}{x+1}=\frac{x(1+x)}{1+x}=x
$$

(4) $\frac{\frac{1}{1-x}-\frac{1}{1+x}}{\frac{x}{1-x}+\frac{1}{1+x}}=\left(\frac{1}{1-x}-\frac{1}{1+x}\right) \div\left(\frac{x}{1-x}+\frac{1}{1+x}\right)$

$$
\begin{aligned}
& =\frac{1+x-1+x}{1-x^{2}} \div \frac{x+\tilde{x}^{2}+1-x}{1-x^{2}} \\
& =\frac{2 x}{1-x^{2}} \times \frac{1-x^{2}}{1+x^{2}}=\frac{2 x}{1+x^{2}} .
\end{aligned}
$$

(5) $\frac{3}{1+\frac{3}{1+\frac{3}{1-x}}}=\frac{3}{1+\frac{3}{\frac{1-x+3}{1-x}}}=\frac{3}{1+\frac{3(1-x)}{1-x+3}}=\frac{3}{1+\frac{3-3 x}{4-x}}$
$=\frac{3}{\frac{4-x+3-3 x}{4-x}}=\frac{3(4-x)}{4-x+3-3 x}=\frac{12-3 x}{7-4 x}$.

EXAMPLES.-1Xi.
Simplify the following expressions:

1. $\frac{x+\frac{4}{5}}{7}-\frac{x}{3 \frac{1}{23}}$.
2. $\frac{x}{y}-\frac{y}{x}$.
3. $\frac{1-x^{2}}{1+\frac{1}{x}}$
4. $\frac{y\left(\frac{x}{y}+1\right)}{x\left(1-\frac{y}{x}\right)}$.
5. $\frac{5+x+\frac{1}{x^{2}}}{2-x+\frac{1}{x^{2}}}$.
6. $\frac{a-\frac{1}{a^{2}}}{1-\frac{1}{a}}$.
7. $\frac{\frac{x}{x+a}+\frac{x}{x-a}}{\frac{2 x}{x^{2}-a^{2}}}$.
8. $\frac{2 x}{x^{2}+\frac{1}{1 \div \cdot x^{2}}}$.
9. $\frac{x}{1+\frac{1}{x}}+1-\frac{1}{x+\frac{1}{1}}$.
10. $\frac{\frac{x-y}{x+y}+\frac{x+y}{x-y}}{\frac{x-y}{x+y}-\frac{x+y}{x-y}}$

$$
\begin{array}{ll}
\text { 12. } \begin{array}{ll}
\frac{1+x+x^{2}}{1+\frac{1}{x}+\frac{1}{x^{2}}} & \text { 14. } \\
\begin{array}{ll}
\frac{2 m-3+\frac{1}{m}}{\frac{a}{m}} \\
\frac{1}{b}+\frac{b}{a+b} \\
\frac{1}{a}+\frac{1}{b} & \text { 15. }
\end{array} & \frac{\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}}{\frac{a^{2}-(b+c)^{2}}{a b}}
\end{array}
\end{array}
$$

198. Any fraction may be oplit up into a number of fractions equal to the number of terms in its numerator. Thus

$$
\begin{aligned}
\frac{x^{3}+x^{2}+x+1}{x^{4}} & =\frac{x^{3}}{x^{4}}+\frac{x^{2}}{x^{4}}+\frac{x}{x^{4}}+\frac{1}{x^{4}} \\
& =\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\frac{1}{x^{4}}
\end{aligned}
$$

EXAMPLES.-lxil.

Split up into four fractions, each in its rowest terms, the following fractions :

1. $\frac{a^{4}+3 a^{3}+2 a^{2}+5 a}{2 a^{4}}$.
$4 \frac{9 a^{3}-12 a^{2}+6 a-3}{108}$
2. $\frac{a^{2} b c+a b^{2} d+a l c^{2}+b c d^{2}}{a b c d}$.
3. $\frac{18 p^{2}+12 q^{2}-36 r^{2}+72 s^{2}}{3 p q r^{3}}$.
4. $\frac{x^{3}-3 x^{2} y+3 x y^{2}-y^{3}}{x^{2} y^{2}}$.
5. $\frac{10 x^{3}-25 x^{2}+75 x-125}{1000}$.
6. The quotient obtained by dividing the unit by any fraction of that unit is called Tee Reciprocal of that fraction. Thus $\frac{1}{\frac{a}{b}}$, that is, $\frac{b}{a}$, is the Reciprocal of $\frac{a}{b}$.
7. We have shewn in Art. 158, that the fraction symbol $\frac{a}{b}$ is a proper representative of the Division of a by b. In [^.A.]

Chapter IV. we treated of cases of division in which the divisor is contained an exact numwer of times in the dividend. We now proceed to treat of cases in which the divisor is not contained exactly in the dividend, and to shew the proper method of representing the Quotient in such cases.
Suppose we have to divide 1 by $1-a$. We may at once represent the result by the fraction $\frac{1}{1-a}$ But we may actually perform the operation of division in the following way.

$$
\begin{gathered}
\text { 1-a) } \begin{array}{l}
1\left(1+a+a^{2}+a^{3}+\ldots\right. \\
\frac{1-a}{a} \\
\therefore \quad \frac{a-a^{2}}{a^{3}} \\
\frac{a^{2}-a^{3}}{a^{3}} \\
\\
\\
\\
\\
\frac{a^{3}-a^{4}}{a^{4}}
\end{array} .
\end{gathered}
$$

The Quotient in this case is interminable. We may carry on the operation to any extent, but an exact and terminable Quotient we shall never find. It is clear, however, that the terms of the Quotient are formed by a certain law, and such a succession of terms is called a Series. If, as in the case before us, the serics may be indefinitely extended, it is called an Infinite Series.

If we wish to express in a concise form the result of the operation, we may stop at any term of the quotient and write the result in the fullowing way.

$$
\begin{aligned}
& \frac{1}{1-a}=1+\frac{a}{1-u}, \\
& \frac{1}{1-a}=1+a+\frac{a^{2}}{1-u}, \\
& \frac{1}{1-a}=1+a+a^{2}+\frac{a^{3}}{1-a}, \\
& \frac{1}{1-a}=1+a+a^{2}+a^{3}+\frac{a^{4}}{1-a^{3}}
\end{aligned}
$$

1 the divisor idend. We is not conper method
lay at once it we may e following
nlways being careful to attach to that term of the quotient, at which we intend to stop, the remainder at that point of the division, placed as the numerator of a fraction of which the divisor is the denominator.

EXAMPLES.-1Xiii.

Carry on cach of the following divisions to 5 terms in the quotient.

1. 2 by $1+a$.
2. m by $m+2$.
3. $a-b$ by $a+b$.
4. $a^{2}+x^{2}$ by $a^{2}-x^{2}$.
5. $a x$ by $a-x_{0}$
6. b by $a+x$.
7. 1 by $1+2 x-2 x^{2}$.
8. $1+x$ by $1-x+x^{2}$.
9. $1+b$ by $1-2 b$.
10. $x^{3}-b^{3}$ ly $x+b$.
11. a^{2} by $x-b$.
12. a^{2} by $(a+x)^{2}$.
13. If the divisor be $x-a$, the quotient $x^{2}-2 a x$, and the remainder $4 a^{3}$, what is the dividend?
14. If the divisor be $m-5$, the quotient $m^{3}+5 m^{2}+15 m+34$. and the remainder 75 , what is the dividend?
15. If we are required to multiply such an expression as

$$
\frac{x^{2}}{2}+\frac{x}{3}+\frac{1}{4} \text { by } \frac{x}{2}-\frac{1}{3}
$$

we may multiply each ..rm of the former by each term of the latter, and combine the results by the ordinary mathods of addition and subtraction of fractions, thus

$$
\begin{aligned}
& \frac{x^{2}}{2}+\frac{x}{3}+\frac{1}{4} \\
& \frac{\frac{x}{2}-\frac{1}{3}}{\frac{x^{3}}{4}+\frac{x^{2}}{6}+\frac{x}{8}} \\
& \frac{-\frac{x^{2}}{6}-\frac{x}{9}-\frac{1}{12}}{\frac{x^{3}}{4}+\frac{x}{72}-\frac{1}{18}}
\end{aligned}
$$

Or we may first reduce the multiplicand and the multiplier to single fractions and proceed in the following way:

$$
\begin{aligned}
\left(\frac{x^{2}}{2}+\frac{x}{3}\right. & \left.+\frac{1}{4}\right) \times\left(\frac{x}{2}-\frac{1}{3}\right) \\
& =\frac{6 x^{2}+4 x+3}{12} \times \frac{3 x-2}{6}=\frac{18 x^{3}+x-6}{72} \\
& =\frac{18 x^{3}}{72}+\frac{x}{72}-\frac{6}{72}=\frac{x^{3}}{4}+\frac{x}{72}-\frac{1}{12}
\end{aligned}
$$

This latter pouss will be found the simpler ty a beginner.

EXAMPLES.-iXiv.
Multiply

1. $\frac{x^{2}}{3}+\frac{x}{2}+\frac{1}{5}$ ly $\frac{x}{3}+\frac{1}{4}$.
2. $\frac{a^{2}}{5}-\frac{a}{6}+\frac{1}{3}$ by $\frac{a}{4}-\frac{1}{5}$.
3. $x^{3}+x+\frac{1}{x}+\frac{1}{x^{3}}$ by $x-\frac{1}{x}$.
4. $x^{2}-1+\frac{1}{x^{2}}$ by $x^{2}+1+\frac{1}{x^{2}}$.
5. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$ by $\frac{1}{a^{2}}-\frac{1}{b^{2}}$.
6. $\frac{1}{a}-\frac{1}{b}+\frac{1}{c}$ by $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
7. $1+\frac{b}{a}+\frac{b^{2}}{a^{2}}$ by $1-\frac{b}{a}+\frac{b^{2}}{a^{2}}$.
8. $1+\frac{1}{2} x+\frac{1}{4} x^{2}$ by $1-\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{10} x^{3}$.
9. $\frac{5}{2 x^{2}}+\frac{3}{x}-\frac{7}{3}$ by $\frac{2}{x^{2}}-\frac{1}{x}-\frac{1}{2}$.
10. $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}+2$ by $\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}-2$.
11. If we have t) divide such an expression as

$$
x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}
$$

by $x+\frac{1}{x}$, we may proceed as in the division of whole numbers, carefully observing that the order of descencling powers of x in.
$1 \quad$ Yocoso $x^{3}, x^{2}, x, \frac{1}{x}, \frac{1}{x^{2}}, \frac{1}{x^{3}} \ldots \ldots$

Any isolatel digits, as $1,2,3 \ldots$ will stand between x and $\frac{1}{x}$.

Thus the expression

$$
4+x^{3}+\frac{1}{x^{3}}+3 x^{3}+\frac{3}{x^{2}}+5 x+\frac{5}{x^{2}}
$$

rrenged according to descending porwers of x, will stand thus,

$$
x^{3}+3 x^{2}+5 x+4+\frac{5}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}
$$

The reason for this arrangement will be given in the Chapter on the Theory of Indices.

Ex

$$
\begin{gathered}
\left.x+\frac{1}{x}\right) x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}\left(x^{2}+2+\frac{1}{x^{3}}\right. \\
\frac{2 x+x}{2 x+\frac{3}{x}} \\
\frac{2}{x} \\
\frac{1}{x}+\frac{1}{x^{3}} \\
\frac{1}{x}+\frac{1}{x^{3}}
\end{gathered}
$$

Or we may proceed in the following way, which will be found simpler by the beginner.

$$
\begin{array}{r}
\left(x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}\right) \div\left(x+\frac{1}{x}\right) \\
=\frac{x^{6}+3 x^{4}+3 x^{2}+}{x^{3}} \div \frac{x^{2}+1}{x} \\
=\frac{x^{6}+3 x^{4}+3 x^{2}+1}{x^{2}} \times \frac{x}{x^{2}+1} \\
=\frac{x^{4}+2 x^{2}+1}{x^{3}}=\frac{x^{4}}{x^{2}}+\frac{2 x^{2}}{x^{2}}+\frac{1}{x^{2}}=x^{2}+2+\frac{1}{x^{2}}
\end{array}
$$

EXAMPLES.-lXV.

Divide:

1. $x^{2}-\frac{1}{x^{3}}$ by $x+\frac{1}{x}$.
2. $c^{5}-\frac{1}{d^{b}}$ by $c-\frac{1}{d}$
3. $a^{2}-\frac{1}{b^{2}}$ by $a-\frac{1}{b}$.
4. $\frac{x^{3}}{y^{3}}+2+\frac{\eta^{2}}{x^{2}}$ by $\frac{x}{y}+\frac{y}{x}$.
5. $m^{3}+\frac{1}{n^{3}}$ by $m+\frac{1}{n}$.
6. $\frac{1}{a^{1}}+\frac{1}{a^{2} b^{2}}+\frac{1}{b^{4}}$ by $\frac{1}{a^{2}}-\frac{1}{a b}+\frac{1}{b^{2}}$.
7. $\frac{x^{3}}{y^{3}}-\frac{y^{3}}{x^{3}}-3 \frac{x}{y}+3 \frac{y}{x}$ by $\frac{x}{y}-\frac{y}{x}$.
8. $\frac{3 x^{5}}{4}-4 x^{4}+\frac{77}{8} x^{3}-\frac{43}{4} x^{2}-\frac{33}{4} x+27$ by $\frac{x^{2}}{2}-x+3$.
9. $\frac{a^{3}}{b^{3}}+\frac{b^{3}}{a^{3}}$ by $\frac{a}{b}+\frac{b}{a}$.
10. $\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}-\frac{3}{a b c} b y \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
11. In dealing with expressions involving Decimal Fractions two methods may bl atopted, as will be scen from the following example.

Multiply $\cdot 1 x-2 y$ by $\cdot 03 x+\cdot 4 y$.
We may proceel thus, applying the Rules for Multiplication, Addition, and Subtraction of Decimals.

$$
\begin{aligned}
& \quad \begin{array}{l}
1 x-.2 y \\
.03 x+\cdot 4 y
\end{array} \\
& \begin{array}{l}
003 x^{2}-.006 x y \\
+.04 x y-.08 y^{2}
\end{array} \\
& \frac{.003 x^{2}+.034 x y-.08 y^{3}}{} .
\end{aligned}
$$

Or thus,

$$
\begin{aligned}
&(\cdot 1 x-2 y)(\cdot 03 x+4 y)=\left(\frac{x}{10}-\frac{2 y}{10}\right)\left(\frac{3 x}{100}+\frac{4 y}{10}\right) \\
&=\frac{x-2 y}{10} \times \frac{3 x+40 y}{100} \\
&=\frac{3 x^{2}+34 x y-50 y^{2}}{1000} \\
&=003 x^{2}+034 x y-05 y^{2} .
\end{aligned}
$$

The latter method will be found the simpler for a beginner.

Examples.-lxvi.

Multiply :
I. $\cdot 1 x-3$ by $\cdot 5 x+07$,
3. $3 x-2 y$ by $\cdot 4 x+7 y$,

5 Find the value of

$$
a^{3}-b^{3}+c^{3}+3 a b c \text { when } a=03, b=\cdot 1 \text {, and } c=07 .
$$

6. Find the value of

$$
x^{3}-3 a x^{2}+3 a^{2} x-a^{3} \text { when } x=7 \text { and } a=03
$$

204. When any expression E is put in a form of which f is a factor, then $\frac{E}{f}$ is the other factor.
Thus

$$
\begin{aligned}
a+b & =a\left(\frac{a+b}{a}\right) \\
& =a\left(1+\frac{b}{a}\right) . \\
a b+a c+b c & =a b c \cdot \frac{a b+a c+b c}{a b c} \\
& =a b c \cdot\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right), \\
x^{2}+2 x y+y^{2} & =x^{2} \cdot\left(\frac{x^{2}+2 x y+y^{2}}{x^{2}}\right) \\
& =x^{2} \cdot\left(1+\frac{2 y}{x}+\frac{y^{2}}{x^{2}}\right) .
\end{aligned}
$$

So
2. $\cdot 05 x+7$ by $\cdot 2 x-3$,
4. $4 \cdot 3 x+5 \cdot 2 y$ by $04 x-06 y$.
$+3$. $+\frac{1}{b}+\frac{1}{c}$.
mal Fracfrom the
plication,
and

ExAmples.-lxvii.

1. Write in factors, one of which is $a_{1} x$, the series

$$
a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots
$$

2. Write in factors, one of which is $x y$, the expression

$$
x y-x z+y z .
$$

3. Write in factors, one of which is x^{2}, the expression

$$
x^{2}+x y+y^{2} .
$$

4. Write in factors, one of which is $a+b$, the expression

$$
(a+b)^{3}-c(a+b)^{2}-d(a+b)+e .
$$

203. We shall now give two examples of a process by which, when certain fractions are known to be equal, other relations between the quantities involved in them may be determined.

This process will be found of great use in a later part of the subject, and the student is advised to pay particular attention to it.
(1) If $\frac{a}{b}=\frac{c}{d}$, shew that

$$
\frac{a+b}{a-b}=\frac{c+a}{c-d}
$$

Let

$$
\frac{a}{b}=\lambda
$$

Then

$$
\text { and } c=\lambda d .
$$

Now

$$
\frac{a+b}{a-b}=\frac{\lambda b+b}{\lambda b-b}=\frac{b(\lambda+1)}{b(\lambda-1)}=\frac{\lambda+\mathbf{1}}{\lambda-1},
$$ and

and

$$
\begin{aligned}
\frac{c}{d} & =\lambda ; \\
\therefore a & =\lambda b,
\end{aligned}
$$

Hence $\frac{a+b}{a-b}$ and $\frac{c+d}{c-d}$ being each equal to $\frac{\lambda+1}{\lambda-1}$ are equal to one another.
(2) If $\frac{m}{a-b}=\frac{r}{b-c}=\frac{r}{c-c}$, shew that $m+n+r=0$.

Le.

$$
\begin{aligned}
\frac{m}{a-b} & =\lambda, \\
\frac{n}{b-c} & =\lambda, \\
\frac{r}{c-a} & =\lambda, \\
m & =\lambda a-\lambda 0, \\
n & =\lambda b-\lambda c, \\
r & =\lambda c-\lambda a ;
\end{aligned}
$$

chen

$$
\frac{c+d}{c-d}=\frac{\lambda d+d}{\lambda d-l}=\frac{d(\lambda+1)}{d(\lambda-1)}=\frac{\lambda+1}{\lambda-1} .
$$

$$
\therefore m+n+r=\lambda+\lambda b-\lambda c+\lambda c-\lambda a=0_{0}
$$

EXAMPLES.-1XVili.

I. If $\frac{a}{b}=\frac{c}{d}$ prove the following relations:
(1) $\frac{a-b}{b}=\frac{c-d}{d}$.
(5) $\frac{8 a+b}{4 a+7 \bar{b}}=\frac{8 c+d}{4 c+7 c}$
(2) $\frac{a}{a+b}=\frac{c}{c+d}$
(6) $\frac{a^{2}-b^{2}}{c^{2}-d^{2}}=\frac{a b}{c d}$.
(3) $\frac{3 a}{4 a-5 b}=\frac{3 c}{4 c-5 d}$.
(7) $\frac{11 a+b}{11 c+d}=\frac{13 a+b}{13 c+d}$.
(4) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}=\frac{c^{2}+d^{8}}{c^{2}-d^{2}}$.
(8) $\frac{a^{2}-a b+b^{3}}{a^{2}+a b+h^{2}}=\frac{c^{2}-c d+d^{2}}{c^{2} \tau c d+d^{6}}$
2. If $\frac{l}{a-b}=\frac{m}{b-c}=\frac{n}{c-a}$, then $l+m+n=0$.
3. If $\frac{a}{b}=\frac{c}{d}=\frac{c}{f}$, prove that $\frac{a}{b}=\frac{l a+m c+n s}{\overline{b+m d+n f}}$

4 If $\frac{a+b}{b}=\frac{b+c}{c}=\frac{c+a}{a}$, prove that $a=\ell=c_{0}$
5. If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$, shew that $\frac{a_{1}}{b_{1}}=\frac{2 a_{1}+3 a_{2}+4 a_{3}}{2 b_{1}+3 b_{2}+4 b_{3}}$.
6. If $\frac{a}{b}, \frac{c}{d}, \frac{e}{f}$ be in descending order of magnitude, shew tha: $\frac{a+c+e}{b+d+f}$ is less than $\frac{a}{b}$ and greater tian $\frac{e}{f}$.
7. Ii $\frac{x_{1}}{y_{1}}=\frac{x_{3}}{y_{2}}$, shew that $\frac{4 x_{1}+5 y_{1}}{7 x_{1}+9 y_{1}}=\frac{4 x_{2}+5 y_{3}}{7 x_{3}+5 y_{2}}$
8. If $\frac{a}{b}=\frac{c}{d}$, shew that $\frac{a^{2}+a h}{c^{2}+c d}=\frac{a b-b^{2}}{c l-d^{2}}$.
9. If $\frac{a}{b}=\frac{c}{d}$ shew that $\frac{7 a+b}{3 a+5 b}=\frac{7 c+d}{3 c+5 d}$.
10. If $\frac{a}{b}$ be a proper fraction, ellesp that $\frac{a+c}{b+c}$ is greater than $\frac{a}{b}, c$ being n positive quantity.
11. If $\frac{i t}{b}$ be an improper fraction, shew that $\frac{a+c}{b+c}$ is lesy than $\frac{a}{\dot{b}}, c$ being a positive quantity.
206. We shall now give a series of examples in the working of which most of the processes connected with fractions v.lll be introu:iced.

EXAMPLES.-lXiX.

1. Find the value of $3 a^{2}+\frac{2 a b^{2}}{c}-\frac{c^{3}}{b^{2}}$ when

$$
a=4, b=\frac{1}{2}, c=1 .
$$

2. Simplify $\frac{2 x^{3}+x^{2}-8 x+5}{7 x^{2}-12 x+5}$ and $\frac{a^{3}-30 a+70}{a^{2}+4 a-45}$.
3. Simplify $\left(\frac{a+p}{a-p}-\frac{a-p}{a+p}\right) \div\left(\frac{a+p}{a-p}+\frac{a-p}{a+p}\right)$.
4. Ald torether

$$
\frac{x^{2}}{4}-\frac{y^{2}}{6}+\frac{z^{2}}{8}, \frac{y^{2}}{4}-\frac{z^{2}}{6}+\frac{x^{2}}{8} \text { and } \frac{z^{2}}{4}+\frac{x^{2}}{6}+\frac{y^{2}}{8},
$$

and subtract $z^{2}-x^{2}+\frac{y^{2}}{2}$ from the result.
5. Find the value of $\frac{a^{2}+b^{2}-c^{2}+2 a b}{a^{2}-b^{2}-c^{2}+2 b c}$ when

$$
a=4, \quad b=\frac{1}{2}, c=1
$$

6. Multiply $\frac{5}{2} x^{2}+3 a x-\frac{7}{3} c^{2}$ by $2 x^{2}-a x-\frac{a^{3}}{4}$.
7. Shew that $\frac{t^{3}-b^{3}}{(a-b)^{2}}=a+25+\frac{272^{2}}{a--b}$.
8. Simplify $\frac{x-y}{x}+\frac{2 y}{x-y}+\frac{y^{3}-x y^{2}}{x^{3}-x y^{j o}}$
9. Shew that $\frac{60 x^{3}-17 x^{2}-4 x+1}{6 x^{2}+9 x-2}=12 x-25 \div \frac{49}{x+2}$.
10. Simplify $\begin{aligned} & x^{4}-9 x^{3}+7 x^{2}+9 x-8 \\ & x^{4}+7 x^{3}-9 x^{3}-7 x+8\end{aligned}$
11. Simplify $\frac{x^{3}}{x^{4}-1}+\frac{1}{1-x-\frac{1}{1+x-\frac{1}{1}} \text {. }}$
12. Simplify $a+a b+b^{2}\left(a+a b+b^{n}-b\right)$.
13. Multiply together $\left(l+\frac{1}{l}\right)\left(l^{2}+\frac{1}{l^{2}}\right)\left(l-\frac{1}{l}\right)$.
14. Add together $\frac{1}{a+1}, \frac{1}{b+1}, \frac{1}{c+1}$, and shew that if their sum be equal to 1 , then $a b c=a+b+c+2$.
15. Divide $\frac{x}{a}-1-\frac{b}{a}-\frac{b^{2}}{a^{2}}+\frac{b}{x}+\frac{b^{2}}{x^{2}}$ by $x-a$.
16. Simulify $\frac{\frac{a}{b} \div c+\frac{b}{c} \div a+\frac{c}{a} \div b}{\frac{c}{a} \div c+\frac{c}{b} \div a+\frac{a}{c} \div b}$, and shew that it is equal to $\frac{s(s-a)+(s-b)(s-c)}{b c}$ if $\Omega s=a+b+c$.
17. Shew that $\frac{1}{1+\frac{1}{a \div x}}+\frac{1}{1-\frac{1}{a \div x}}+\frac{2}{1+\frac{1}{a^{2} \div x^{2}}}=\frac{4 a^{4}}{a^{1}-x^{4}}$.
18. Simplify $\frac{a+b}{a-b}+\frac{a-b}{a+b}-2 \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
19. Simplify $\frac{b}{a+b}-\frac{a+b}{2 a}+\frac{a^{2}+b^{2}}{2 u(a-b)}$.
20. Simplify $\frac{a^{2}-a b+b^{2}}{a^{3}-3 a b(a-b)-b^{3}} \times \frac{a^{2}-b^{2}}{a^{2}+b^{5}}$
21. Simplify $\frac{2}{\left(x^{2}-1\right)^{2}}-\frac{1}{2 x^{2}-4 x+2}-\frac{1}{1-x^{2}}$.
22. Simplify $\frac{a^{2}+b^{2}+2 a b-c^{3}}{c^{2}-a^{2}-b^{2}+2 a b} \div \frac{a+b+c}{b+c-a}$.
23. Simplify $\left(\frac{x}{1+\frac{1}{x}}+1-\frac{1}{x+1}\right) \div\left(\frac{x}{1-\frac{1}{x}}-x-\frac{1}{x-1}\right)$.
24. Find the valיe of $\left(\frac{x-a}{x-b}\right)^{3}-\frac{x-2 a+b}{x+u-2 b}$, when $x=\frac{a+b}{2}$.

2\%. Simplify $\frac{a^{4}-(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(a-c)^{2}}{(a+b)^{2}-c^{3}}+\frac{c^{2}-(a-b)^{3}}{(b+c)^{2}-a^{2}}$
26. Simplify $\frac{\left(x^{2}-4 x\left(x^{2}-4\right)^{3}\right.}{\left(x^{2}-2 x\right)^{3}}$.
27. Simplify $\frac{\left(a^{2}-1\right)\left(a^{6}-1\right)}{(a+1)^{2}\left(a^{2}-a\right)^{2}}$
28. Simplify $\frac{1}{x^{3}}+\frac{1}{x^{2}}-\frac{1}{x}-\frac{1}{\left(x^{2}+1\right)^{2}}+\frac{x-1}{x^{2}+1}-\frac{3}{x^{2}\left(x^{2}+1\right)^{2}}$
29. Divide $\frac{x^{3}}{a^{3}}-\frac{x}{a}+\frac{a}{x}-\frac{a^{3}}{x^{3}}$ by $\frac{x}{a}-\frac{a}{x}$.
30. Simplify $\left\{\frac{a+b}{2(a-b)}-\frac{a-b}{2(a+b)}+\frac{2 b^{2}}{a^{2}-b^{3}}\right\} \frac{(a-b}{2 b}$.
31. Simphify $\frac{(a+b+c)^{2}+(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}{a^{2}+b^{2}+c^{2}}$.
32. Take $\frac{1-x-3 x^{3}}{\left(3-2 x-7 x^{2}\right)^{3}}$ from $\frac{1+3 x^{3}+2 x^{3}}{\left(3-2 x-7 x^{2}\right)^{4}}$.
33. Simplify $\left(\frac{x^{2}+y^{2}}{x^{2}-y^{2}}-\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) \div\left(\frac{x+y}{x-y}-\frac{x-y}{x+y}\right)$.
34. Simplify $\left(\frac{x^{2}}{y^{3}}-1\right)\left(\frac{x}{x-y}-1\right)+\left(\frac{x^{3}}{y^{3}}-1\right)\left(\frac{x^{2}+x y}{x^{2}+x y+y^{2}}-1\right)$.
35. Simplify

$$
\frac{a^{2}-a b}{a^{3}-b^{3}} \times \frac{a^{2}+a b+b^{3}}{a+b}+\left(\frac{2 a^{3}}{a^{3}+b^{3}}-1\right)\left(1-\frac{2 a b}{a^{2}+a b+b^{2}}\right)
$$

3C. Simplify

$$
\frac{1}{2(x-1)^{2}}-\frac{1}{4(x-1)}+\frac{1}{4(x+1)}-\frac{1}{(x-1)^{2}(x+1)}
$$

37. Proye that

$$
\frac{1}{a b x}+\frac{1}{u(a-b)(x-a)}+\frac{1}{b(b-a)(x-b)}=\frac{1}{x(x-a)(x-l)}
$$

38. If $s=a+b+c+\ldots$ to n terms, shew that

$$
\frac{s-a}{a}+\frac{s-b}{b}+\frac{s-c}{c}+\ldots=s\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\ldots\right)-n_{0}
$$

39. Multiply $\left(\frac{x^{2}}{x^{2}-y^{2}}-\frac{y^{2}}{x^{2}+y^{2}}\right)$ by $\frac{\left(x^{2}-y^{2}\right)^{2}}{\left(x^{3}-y^{2}\right)^{2}+\left(x^{2}+y^{2}\right)^{\mathbf{x}^{2}}}$
40. Simplify $\frac{1+\frac{a-x}{a+x}}{1-\frac{a-x}{a+x}} \div \frac{1+\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}{1-\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$
41. Divide $x^{3}+\frac{1}{x^{3}}-2\left(\frac{1}{x^{2}}-x^{2}\right)+1\left(x+\frac{1}{x}\right) d y x+\frac{1}{x}$.
42. If $s=a+b+c+\ldots$ to n terms, shew that

$$
\frac{s-a}{s}+\frac{s-b}{s}+\frac{s-c}{s}+\ldots=n-1 .
$$

43. Divide $\left(\frac{x}{x-y}-\frac{y}{x+y}\right)$ by $\left(\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}-y^{2}}\right)$.
44. Simplify $\frac{1-\frac{2 x y}{(x+y)^{2}}}{1+\frac{2 x y}{(x-y)^{2}}} \div\left(\frac{1-y}{1+\frac{y}{x}}\right)^{2}$.
45. Simplify

$$
\frac{p^{4}+4 p^{3} q+6 p^{2} q^{2}+4 p q^{4}+q^{4}}{p^{4}-4 p^{2} q+6 p^{2} q^{2}-4 p^{3}+q^{4} \div \frac{p^{3}+3 n^{2} q+3 p q^{2}+q^{3}}{p^{3}-2 p^{2} q+3 p q^{2}-q^{3}} \text {. }}
$$

47. Reduce $\frac{1-2 x}{3\left(x^{2}-x+1\right)}+\frac{x+1}{2\left(x^{2}+1\right)}+\frac{1}{\mathbf{C}(x+1)}$.
48. Simplify $\frac{1}{x+\frac{1}{y+\frac{1}{z}}} \div \frac{1}{x+\frac{1}{y}}-\frac{1}{y(x y z+x+z)}$.
49. Simplify $\frac{\frac{1}{a-x}-\frac{1}{a-y}+\frac{x}{(a-x)^{2}}-\frac{y}{(a-y)^{2}}}{\frac{1}{(a-y)(a-x)^{2}}-\frac{1}{(a-y)^{2}(a-x)}}$
50. Simplify $\frac{\frac{3}{a l, c}}{\frac{1}{b c}+\frac{1}{c a}-\frac{1}{u b}}-\frac{3-a-b-c}{a+b-c}$
51. Simplify $\frac{a+\frac{\dot{b}}{1+\frac{a}{b}}}{a-\frac{b}{1-\frac{a}{b}}}\left(a^{b}-z\right)$

XV. SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE.

207. To determine several unknown quantities we must have as many independent equations as there are unknown quantities.

Thus if we had this equation given,

$$
x+y=6
$$

we could detemine no definite values of x and y, for

$$
\left.\left.\left.\begin{array}{l}
x=\dot{2} \\
y=4
\end{array}\right\}, \text { or } \begin{array}{l}
x=4 \\
y=2
\end{array}\right\}, \text { or } \begin{array}{l}
x=3 \\
y=3
\end{array}\right\}
$$

or other values might be given to x and y, consistently with the equation. In fact we can find as many pairs of values of x and y as we please, which will satisfy the equation.

ITen equatic

We must have a secoud equation independent of the first, and then we may find a pair of values of x and y which will sati.sfy both equations.

Thus, if besiles the equation $x+y=6$, we had another equation $x-y=2$, it is evident that the values of x and y which will sctisfy both equations are $\left.\begin{array}{rl} \\ \text { since } \quad \begin{array}{r}x \\ y\end{array}=2 \\ y+2=\end{array}\right\}$, since $\quad 4+2=6, a, i^{2} 4-2=2$.

Also, of all the pairs of values of x and y which will satisfy one of the equations, there is but one pair whicli will satisly the other equation.

We proceed to shew how this par or values may be found.
208. Let the proposed equations be

$$
\begin{aligned}
& 2 x+7 y=34 \\
& 5 x+9 y=51
\end{aligned}
$$

Multiply the first equation by 5 and the second equation by 2, we then get

$$
\begin{aligned}
& 10 x+35 y=170 \\
& 10 x+18 y=102
\end{aligned}
$$

The cocfficients of x are thus made alike in both equations.

NS OF

is we must a unknown
tently with fi values of n.

If we now subtract each member of the second euriation from the corresponding member of the first equation, we shall gret (Ax. II. parge 5S)
or

$$
\begin{aligned}
35 y-15 y & =170-102 \\
17 y & =68 \\
\therefore y & =4
\end{aligned}
$$

We have thus oltained the value of one of the unknown sjenbols. The value of the other may be found thus:

Take one of the original efrations, thus

$$
2 x+7 y=34
$$

Jow, since

$$
\begin{aligned}
y=4,7 y & =28 ; \\
\therefore 2 x+2 y & =3-1 ; \\
: x & =3 .
\end{aligned}
$$

Hence the pair of values of x and y which satisfy the equations is 3 and 4.

Note. The process of thus obtaining from two or more equations an equation, from which one of the unknown quantities has disappeared, is called Elimination.
209. We worked out the steps fully in the exnmple given in the last article. We shall now work an example in the form in which the process is usually given.

Ex. To solve the equations

$$
\begin{aligned}
& 3 x+7 y=67 \\
& 5 x+4 y=58
\end{aligned}
$$

Multiplying the first equation by 5 and the second by 3,

$$
\begin{aligned}
& 15 x+35 y=335 \\
& 15 x+12 y=174 .
\end{aligned}
$$

Sulbtracting, and therelore ?

$$
\begin{aligned}
23 y & =161, \\
y & =7 .
\end{aligned}
$$

Now, since

$$
\begin{aligned}
3 x+7 y & =67, \\
3 x+49 & =67, \\
\therefore 3 x & =18, \\
\therefore x & =6 .
\end{aligned}
$$

Hence $x=6$ and $y=7$ are the values required.
210. In the examples given in the two preceding articles we made the coefficionts of x alike. Sometimes it is more convenient to make the coefficients of y alike. Thus if we have to solve the equations

$$
\begin{aligned}
& 29 x+2 y=64 \\
& 13 x+y=29
\end{aligned}
$$

we leave the first equation as it stands, and multiply the second equation by 2 , thus
"

Subtracting,	$3 x=6$,
and therefore	$x=2$.
Now, since	$13 x+y=29$,
$26+y=29$,	
$\therefore y=3$.	

Hence $x=2$ and $y=3$ are the values required.
1.
4.
ple given the form
by 3 ,
g articles more conWe have
tiply the

EXAMPLES - IXX.

1. $\begin{aligned} 2 x+7 y=41 \\ 3 x+4 y=42 .\end{aligned}$
2. $5 x+8 y=101$
$9 x+2 y=95$.
3. $13 x+17 y=189$ $2 x+y=21$.
4. $\begin{aligned} 14 x+9 y & =156 \\ 7 x+2 y & =58 .\end{aligned}$
5. $x+15 y=49$
$3 x+7 y=71$.
6. $15 x+19 y=132$ $35 x+17 y=226$
7. $\begin{aligned} & 6 x+4 y=230 \\ & 3 x+15 y=570\end{aligned}$
8. $30 x+27 y=105$
$52 x+29 y=133$.
9. $72 x+14 y=330$
$63 x+7 y=273$.
10. We shall now give some examples in which negative signs occur attached to the coefficient of y in one or both of the equations.

Ex. - To solve the equations:

$$
\begin{aligned}
& 6 x+35 y=177 \\
& 8 x-21 y=33
\end{aligned}
$$

Multiply the first equation by 4 and the second by 3.

$$
\begin{aligned}
& 24 x+140 y=708 \\
& 24 x-63 y=99
\end{aligned}
$$

Subtracting,
aid therefore

$$
\begin{aligned}
203 y & =600 \\
y & =3
\end{aligned}
$$

The value of x may then be found.

> EXAMPLES.-IXXi.

1. $2 x+7 y=52$
$3 x-5 y=10$.
2. $4 x+9 y=79$
$7 x-17 y=40$.
3. $171 \hat{x}-213 y=6 \pm 2$
$114 x-326 y=244$. [s.4.]
4. $7 x-4 y=55$
$15 x-13 y=109$.
5. $x+y=9 ่ 0$
$x-y=2$.
6. $x+19 y=97$
$7 x-53 y=121$.
7. $\begin{aligned} 29 x-14 y & =175 \\ 8 . x-56 y & =447\end{aligned}$
8. $43 x+2 y=266$
$\therefore 12 x-17 y=4$.
9. $5 x+9 y=188$ $13 x-2 y=57$.
10. We have hitherto taken examples in witch tut coefficients of x are both posilive. Let us now taise twe followo ing equations :

$$
\begin{aligned}
& 5 x-7 y=6 \\
& 9 y-2 x=10
\end{aligned}
$$

Change all the signs of the second equation, so that wi get

$$
\begin{aligned}
& 5 x-5 y=6 \\
& 2 x-9 y=-10 .
\end{aligned}
$$

Multiplying by 2 and 5 ,

$$
\begin{aligned}
& 10 x-14 y=12 \\
& 10 x-45 y=-50
\end{aligned}
$$

Subtracting,

$$
\begin{aligned}
-14 y+45 y & =12+50 \\
\text { or, } 31 y & =62 \\
\text { or, } y & =2
\end{aligned}
$$

The value of x may then be found.

EXAMPLES.-IXXil.

1. $4 x-7 y=22$
2. $9 x-5 y=52$
$8 y-3 x=8$.
3. $17 x+3 y=57$
$7 y-3 x=1$.
4. $5 x-3 y=4$
$12 y-7 x=10$.
5. $3 x+2 y=39$
$3 y-2 x=13$.
6. $5 y-2 x=21$
$13 x-4 y=120$.
7. $9 y-7 x=13$
$15 x-7 y=9$.
8. $12 x+7 y=176$ $3 y-19 x=3$.
9. In the preceding examples the values of x and y have been positive. We shall now give some equations in which x or y or both have negative values.

Ex. 'To solve the equations:

$$
\begin{aligned}
& 2 x-9 y=11 \\
& 3 x-4 y=7
\end{aligned}
$$

Multiplying the cquations by 3 and 2 respectively, we get

$$
\begin{aligned}
& 6 x-27 y=33 \\
& 6 x-8 y=14
\end{aligned}
$$

Subtracting,

$$
\begin{aligned}
-19 y & =19 \\
\text { or, } \quad 19 y & =-10, \\
\text { or, } y & =-1 .
\end{aligned}
$$

Now since $9 y=-9$,
$2 x-9 y$ will be equivalent to $2 x-(-9)$ or, $2 x+8$.
Hence, from the first equation,

$$
\begin{aligned}
2 x+9 & =11, \\
\therefore x & =1 .
\end{aligned}
$$

ExAMPLES.-Ixxiii.

1. $2 x+3 y=8$
$3 x+7 y=7$.
2. $5 x-2 y=51$
$19 x-3 y=180$.
3. $3 x-5 y=51$
$2 \cdot x+7 y=3$.
4. $7 y-3 x=139$
5. $4 x+9 y=10(;$
$8 x+17 y=198$.
6. $2 x-7 y=8$
$4 y-9 x=19$.
7. $17 x+12 y=59$
$19 x-4 y=153$.
8. $8 x+3 y=3$
$12 x+9 y=3$.
9. $69 y-17 x=103$
$14 x-13 y=-41$.
10. We shall now take the case of Fractional Equations involving two unknown quantities.

Ex. To solve the equations,

$$
\begin{aligned}
& 2 x-\frac{y-3}{5}=4 \\
& 3 y=9-\frac{x-2}{3}
\end{aligned}
$$

First, clearing the equations of fractions, we get

$$
\begin{aligned}
& 10 x-y+3=20 \\
& 9 y=27-x+2
\end{aligned}
$$

from which we obtain,

$$
\begin{aligned}
& 10 x-y=17 \\
& x+0 y=2 \varepsilon
\end{aligned}
$$

and hence we may find $x=2, y=3$.

EXAMPLES.-lXXIV.

1. $\frac{x}{2}+\frac{y}{3}=7$
2. $10 x+\frac{?}{3}=216$
3. $\frac{x}{7}+7 y=251$
$\frac{x}{3}+\frac{y}{2}=8$.
$10 y-\frac{x}{2}=290$.
$\frac{7}{7}+7 x=209$.
4. $\frac{x+y}{3}+5=10$
5. $7 x+\frac{5!!}{2}=413$
-6. $\frac{2 x+3 y}{5}=10-\frac{10}{3}$
$\frac{x-y}{2}+7=0 \frac{1}{2}$.
6. $x-\frac{y-2}{7}=5$

$$
4 y-\frac{x+10}{3}=3
$$

$30 x=14 y-1609$
$\frac{4 y-3 x}{6}=\frac{3 x}{4}+1$
10. $\frac{x+9}{3}+8 y=31$

$$
\frac{y+5}{4}+10 x=192
$$

8. $\frac{x}{4}+8=\frac{y}{2}-12$
$\frac{x+y}{5}+\frac{y}{3}=\frac{2 x-y}{4}+35$.
9. $\frac{0}{7} \frac{-y}{7}+3 x=2 y-6$

$$
y+3+\frac{y-x}{6}=9 x
$$

9. $\frac{3 x-5 y}{2}+3=\frac{2 x+y}{5}$
10. $\frac{x-2}{2}-\frac{10-x}{3}=y-19$

$$
8-\frac{x-2 y}{4}=\frac{x}{2}+\frac{11}{8}
$$

$$
\frac{2 y+4}{3}=\frac{4 x+y+i z}{4}
$$

13. $\frac{5 x-6 y}{13}+3 x=4 y-2$

$$
\frac{5 c+6 y}{6}-\frac{3 c-2 y}{4}=2 y-2
$$

14. $\frac{5 x-3}{2}-\frac{3 x-19}{2}=4-\frac{3 y-x}{3}$

$$
\frac{2 x+y}{2}-\frac{9 x-7}{8}=\frac{3 y+9}{4}-\frac{4 x+5 y}{16}
$$

15. $\frac{4 x+5 y}{40}=x-y$

$$
\frac{2 x-y}{3}+2 y=\frac{1}{2}
$$

215. We have now to explain the method of solving Literal Equations involving two unknown ituntities.

Ex. To solve the equations,

$$
\begin{aligned}
& a x+b y=c \\
& p x+q y=r .
\end{aligned}
$$

Multiplying the first equation by p and the second by a, we get

$$
\text { Subtracting, } \begin{gathered}
a p x+b p y=c p \\
a p x+a q y=a r, \\
b p y-a q y=c p-a r, \\
\text { or, }(b p-a q) y=c p-a r ; \\
\therefore y=\frac{c p-a r}{b_{p}-a q} .
\end{gathered}
$$

We might then find x ly sulstituting this value of y in one of the orminal equations, but usually the safest couse is to beetinafresh and make the coefficients of y alike in the original equations, multiplying the first $l y q$ and the second by b, which gives

$$
\text { Sultracting: } \quad \begin{aligned}
& a q x+b q y=c q \\
& b p x+b q y=b r . \\
& a q x-b p x=c q-b r, \\
& \text { or, }\left(a q-b q^{\prime}\right) x=c q-b r ; \\
& \therefore x=\frac{c q-b r}{a q-b p} .
\end{aligned}
$$

EXAMPLES.-lXXV.

1. $m x+n y=e$,
$p x+q y=f$.
2. $a x+b y=c$
$d x-c y=f$.
3. $a x-b y=m$
$c x+e y=n$.
4. $c x=d y$
$x+y=\varepsilon$.
5. $m x-n y=r$
$n^{\prime} x+n^{\prime} y=r^{\prime}$.
6. $x+y=a$
$x-y=b$.
7. $a x+b y=c$
8. $a b x+c d y=2$
9. $\frac{a}{b+y}=\frac{b}{3 a+x}$
$d x+f y=c^{2}$.

$$
a x-c y=\frac{d-b}{b d} . \quad a x+2 b y=d .
$$

10. $b c x+2 b-c y=0$

I I. $(b+c)(x+c-b)+a(y+a)=2 a^{2}$

$$
b^{2} y+\frac{a\left(c^{3}-b^{3}\right)}{b c}=\frac{2 b^{3}}{c}+c^{3} x . \quad \frac{a y}{(b-c) x}=\frac{(b+c)^{2}}{a^{2}}
$$

12. $3 x+5 y=\frac{(8 b-2 m) b m}{b^{2}-n 2^{2}}$

$$
b^{2} x-\frac{b c m^{2}}{b+m^{2}}+(b+c+m) m y=m^{2} x+(b+2 m) b m
$$

216. We now proceed to the solution of a particular class of Simultaneous Equations in which the unknown sumbols appear as the denominators of fractions, of which the following are examples.

Ex. 1. To solve the cquations,

$$
\begin{aligned}
& \frac{a}{x}+\frac{b}{y}=c \\
& \frac{m}{x}-\frac{n}{y}=d .
\end{aligned}
$$

Multiplying the first ly m and the second $b y a$, we ges

$$
\begin{aligned}
& \frac{a m}{x}+\frac{b m}{y}=c m \\
& \frac{a m}{x}-\frac{a n}{y}=a d .
\end{aligned}
$$

Subtracting,

$$
\begin{aligned}
\frac{l m n}{y}+\frac{a n}{y} & =c m-a d_{0} \\
\text { or, } \frac{b m+a n}{y} & =c m-a d, \\
\text { or, } b m+a n & =(c m-a d) y, \\
\therefore y & =\frac{b m+a n}{c m-a d}
\end{aligned}
$$

Then the value of x may be foum by substituting this value of y in one of the original equations, or by making the tems containing y alike, as iu the eximphe given in Art. 215.

Ex. 2. To solve the equations:

$$
\begin{aligned}
& \frac{2}{x}-\frac{5}{3 y}=\frac{4}{27} \\
& \frac{1}{4 x}+\frac{1}{y}=\frac{11}{72}
\end{aligned}
$$

Multiplying the sccond equation ly 8 , we get

$$
\begin{aligned}
& \frac{2}{x}-\frac{5}{3 y}=\frac{4}{27} \\
& \frac{2}{x}+\frac{8}{y}=\frac{11}{9}
\end{aligned}
$$

Subtracting, $\quad-\frac{5}{3 y}-\frac{8}{y}=\frac{4}{27}-\frac{11}{9}$.
Changing signs, $\frac{5}{3 y}+\frac{8}{y}=\frac{11}{9}-\frac{4}{27}$,
or,

$$
\frac{5+24}{3 y}=\frac{33-4}{27},
$$

whence we find

$$
y=9
$$

and then the value of x may be found by substituting 9 for y in oue of the original equations.

EXAMPLES.-lXXVi.

1. $\frac{1}{x}+\frac{2}{y}=10$
2. $\frac{1}{x}+\frac{2}{y}=a$
3. $\frac{a}{x}+\frac{b}{y}=0$
$\frac{4}{x}+\frac{3}{y}=20$.
$\frac{3}{x}+\frac{4}{y}=b$. $\frac{b}{x}+\frac{a}{y}=d$.
4. $\frac{a}{x}+\frac{b}{y}=m$
5. $\frac{7}{x}+\frac{5}{y}=19$
6. $\frac{5}{3 x}+\frac{2}{5 y}=7$
$\frac{a}{x}-\frac{b}{y}=n$.
$\frac{8}{x}-\frac{3}{y}=7$.

$$
\frac{7}{6 x}-\frac{1}{10 y}=3
$$

8. $\frac{m}{n x}+\frac{n}{m!y}=m+n$
$\frac{5}{a x}-\frac{2}{b y}=3$.
$\frac{n}{x}+\frac{m}{y}=n^{2}+n^{2}$.
9. There are two other methods of solving Simultaneow Equations of which we have hitherto made no mention, because they an ot gencrally so convenient and simple as the method which we have explained. They are
I. The method of Substitution.

If we lave to solve the equations

$$
\begin{array}{r}
x+3 y=7 \\
0 x+4 y=12
\end{array}
$$

we may find the value of x in terms of y from the first equation, thus

$$
x=7-3 y
$$

and substrtute this value for x in the second equation, thus

$$
2(7-3 y)+4 y=12
$$

from which we find

$$
y=1
$$

We may then find the value of x from one of the original equations.
II. The method of Comparison.

If we have to solve the equations

$$
\begin{aligned}
& 5 x+2 y=16 \\
& 7 x-3 y=5
\end{aligned}
$$

we may find the values of x in terms of y from each equation, thus

- $\quad x=\frac{16-2 y}{5}$, from the first equation.
$x=\frac{5+3 y}{7}$, from the second equation.
Hence, equating these vames of x, we get

$$
\frac{16-2 y}{5}=\frac{5+3 y}{7}
$$

an equation involving only one unknown symbol, from which we oltain

$$
y=3
$$

and then the value of x may le fuund rom one of the original equations

1. $5 x+7 y-2:=13$
$8 x+3 y+z=17$
$x-4 y+10 z=23$.
2. $5 x+3 y-6 z=4$
$3 x-y+2 z=8$
$x-2 y+2 z=2$.
3. $5 x-3 y+2 z=21$
$3 . x-y-3 z=3$
$2 x+3 y+2 y=39$.
4. $4 x-5 y+2 z=6$
$2 x+3 y-z=20$
$7 x-4 y+3 z=35$.
$5, x+y+z=6$ $5 x+4 y+3 z=22$ $15 x+10 y+6:=53$.
5. $8 x+4 y-3 z=6$
$x+3 y-z=7$ $4 x-5 y+4 z=8$
6. $x+y+z=30$

$$
8 x+4 y+2 y=50
$$

$$
27 x+9 y+3 z=64
$$

8. $4 x-3 y+z=9$
$9 x+y-5 z=16$
$x-4 y+3 z=2$.
9. $12 x+5 y-4 z=29$
$13 x-2 y+5 z=53$
$17 x-y-z=15$.
(10. $y-x+z=-5$
$z-y-x=-25$
$x+y+z=8 j$.

XVI. PROBLEMS RESULTING IN SIMULTANEOUS EQUATIONS.

219. I* the Solution of Problems in which we represent two of the numbers sought by unknown symbols, usually x and y, we must obtain two independent equations from the conditions of the question, and then we may obtain the values of the two unknown symbols by one of the vrocesses described in Chapter XV.

Ex. If one of two numbers be multiplied by 3 and the other by 4 , the sum of the products is 43 ; and if the former be multiplied by 7 and the latter by 3 , the digerence between the results is 14. Find the numbers.

4

Let x and y represent the numbers.
Then

$$
\begin{aligned}
& 3 x+4 y=43 \\
& 7 x-3 y=14
\end{aligned}
$$

From these equations we have

$$
\begin{gathered}
21 x+28 y=301 \\
21 x-9 y=42 \\
37 y=259 . \\
y=7
\end{gathered}
$$

Subtrating,
Therefure
and then the value of x may be founa to be $\overline{3}$.
Hence the numbers are 5 and 7 .
$y+z=9$
$y-5 z=16$
$y+3 z=2$
$5 y-4 z=59$
$2 y+5 z=53$
$y-z=15$
$+z=-5$
$-x=-25$
$+z=3 Ј$.

N SIMUL-

h we represent ls, usually x and from the condiin the values of ses descrived in
d by 3 and the if the former be nce between the

EXAMPLES.-lxXViii. ()

1. The sum of two numbers is 28 , and their difference is 4 , find the numbers.
2. The sum of two numbers is 256 , and their difference is 10 , find the numbers.
3. The sum of two numbers is $13 \cdot 5$, and their difference is 1 , find the numbers.
4. Find two numbers such that the sum of 7 times the greater and 5 times the less ma be 332 , and the product of their difference into 51 may be 408.
5. Seven years ifo the age of a father was four times that of his son, and seven years hence the age of the father will be donble that of the som. Find their ages.
6. Find three numbers such that the sum of the first and second shall be \%o, of the first and third So, and of the second sud third 90 .
7. Three persons A, B, and C make a.joint contribution which in the whole amounts to $\mathscr{E} 400$. Of this sum B contri. butes twice as much as A and $\mathscr{L}^{2} 0$ more; and C as much as A and B together. What sum did each contribute?
8. If A gives B ten shillings, B will have three times as much money as A. If B gives A ten shilinigs, A will have twice as much money as B. What has each?
9. The sum of $\mathscr{E} 60$ is divided between A, B, C. The shares of A and B torether exceed the share of C by $\mathscr{2} 240$, and the shares of B and C together exceed the share oí A by $£ 360$. What is the share of each?
10. The sum of two mabers diviaed by 2 , givee as a quotient 24, and the difference between then divided by 2 , gives as a quotient 17. What are the numbers?

1I. Find two numbers such that when the greater is divided by the less the quotient is $\frac{1}{2}$ and the remander 3 , and When the sum of the two numbers is increased by 38 and the result divided by the greater of the two numbers, the quotient is 2 and the remamber 2.
12. Divide the mmber 144 into three such parts, that when the first is divided by the second the ynotient is 3 and the remainder 2. and when the thind is divided by the sum of the other two parts, the quutient is \simeq and the remainder $\boldsymbol{v}_{\text {. }}$
13. A and B buy a horse for $£ 120$. A can pay for it if B will advance hall the money he has in his pocket. $I 3$ can pay for it if A will adyance two-thirds of the money he has in his pocket. How much has each?
14. "How old are you?" said a son to his father. The father replied, "Twelve years hence you will be as old as I was twelve years ago, and I shall be three times as old as you were twelve years ago." Find the age of each.
45. Required two numbers such that three times the greater exceeds twice the less by 10 , and twice the greater together with three times the less is 24 .
16. The sum of the ages of a father and son is lialf what it will be in 25 years. The difference is ene-third what the sum will be in 20 yeurs. Find their ages.
17. If I divide the smaller of two nmmers by the greater, the quotient is 21 and the remainder 0157 . If I divide the greater number by the sumbler, the quotient is 4 and the remainder 742 . Find the numbers.
18. The cost of 6 barrels of beer and 10 of porter is £51; the cost of 3 barrels of beer and 7 of porter is $\mathcal{L} 32, ~ \leftrightharpoons s$. How much bear can be bought for $£ 30$?
19. The cost of 7 llos of tea and 5 lbs of coffee is $£ 1,9 \mathrm{~s} .4 \mathrm{~d}$.: the cost of 4 lbs . of tea and 9 lbs . of coflee is $£ 1,7 \mathrm{~s}$: what is the cost of 1 lb . of each?
20. The cost of 12 horses and 14 cows is $£ 3 S 0$: the cost of 5 horses and 3 cows is $£ 130$: what is the cost of a horse and a cow respectively?
21. The cost of 8 yards of silk and 19 yards of cloth is $£ 18,4 s$. 2 l .: the cost of 20 yards of silk and 16 yards of cloth, each of the same ruality as the former, is $2 \mathscr{L} 5,16 s$. Sd. How much docs a yard of each cost? है
22. Ten men and six women earn $£ 18,18 s$. in 6 days, and four men and eight women cam $£ 6$, cs. in 8 days. What are the carnings of a mam and a woman daily?
23. A farmer bought 100 acres of land for $£ \pm 220$, part at $£ 37$ an acre and part at $£ 45$ an acre. How many acres had he of each kind!
from
ly for it if B 13 can pay te has in his ather. The old as I was as you were
e times the the greater 3 half what it vhat the sum
y the greater, I divide the is 4 and the
orter is £51; S2, 2s. How
is $£ 1,9 s .4 d$: 7s.: what is

0 : the cost of a horse and a
ls of cloth is ards of cloth, 6s. scl. How
n 6 days, and 9. What aro my acres had

Note I. A number consisting of two digits may be represented algehraically by $10 x+y$, where x and y represent the significant digits.

- For consiler such a number as 70 . Here the significant digits are 7 and 6 , of which the former has in conserquence of its position a local value ten times as great as its natural ralue, and the number represented by 76 is equivalent to ten times 7, increased by 6 .

So also a mumber of which x and y are the significant digits will be represented by ten times x, inereased by y.

If the digits composing a number $10 x+y$ be inverted, the resulting number will be $10 y+x$. Thus if we invert the digits composing the number 76 , we get 67 , that is, ten times 6 , increased by 7 .
If ε number be represented by $10 x+y$, the sum of the digits will be represented by $x+\%$.
A unmber consisting of three digits may be represented algebraically by

$$
100 x+10 y+z
$$

Ex. The sum of the digits composing a certain number is 5 , and if 9 be added to the number the diggits will be inverted. Find the number.

Let $10 x+y$ represent the number. Then $x+y$ will represent the number of the digits, and $10 y+x$ will represent the number with the digits inverted. Then our equations will be

$$
\begin{gathered}
\therefore x+y=5, \\
10 x+y+9=10 y+x,
\end{gathered}
$$

from which we may find $x=2$ and $y=3$;

$\therefore 23$ is the number required.

24. The sum of two digits composing a number is 8 , and if 36 be alded to the number the digits will be inverted. Find the number.
25. The sum of the two digits composing a number is 10 , and if 54 be added to the number the digits will bo inverted. What is the number?
26. The sum of the digits of a mumber less than 100 is $\mathbf{9}$, and if 9 be added to the mmber the digits will be inverted. What is the number?
27. The sum of the two dierits composing a number is 6 , and if the number lie divided by the sum of thes eligits the quotient is 4. What is the number?
28. The sum of the two digits composing a number is $\mathbf{9}$, and if the number be divided by the smm of the digits the quotient is 5 . What is the number?
29. If I diville a certain number ly the sum of the two digits of which it is composed the quotient is 7 . If I invert the order of the digits and then diville the resulting number dininished by 12 by the difierence of the dimits of the originel number the quotient is 9 . What is the manber?
30. If Iq divitle a certain number liy the sum of its two digits the quotient is \mathcal{C} and the remander $B^{\text {a }}$. If I invert the digits and divide the resnling mumber ly the sum of the digits the quotient is 4 and the remainder 9 . Find the number.
31. If I divide a certain number by the sum of its two dinits diminished by 2 the quotient is 5 and the remainder 1. If I invert the digits and divide the resulting number by the sum of the digits inereased by 2 the quotient is 5 and the remander 8. Find the number.
32. Two digits which form a munher clange places on the aldition of 9 , and the sum of these two numbers is 33 . Find the numbers.
33. A mmber consisting of three digits, the absolute value of each digit heing the same, is 37 times the sfuare of any digit. Find the number.
34. Of the three digits composing a number the second is double of the third: the sum of the tirst and third is 9 : the sum of all the digits is 17 . Find the number.
35. A number is composed of three dicits. The sum of the digits is 21 : the sum of the first and second is greate" than the third by 3 ; anl il 198 be added to the number the digits will be inverted. Find the numbs.
in 100 is 9 , e inverted.
imber is 6 , digits the mber is 9 , digits the of the two If I invert nse number he originel
of its two invert the of the digits umber. of its two mainder 1 . ber by the nd the re-
aces on the 33. Find
olute value are of any
e second is d is $9:$ the er than the digits will

Note II. Λ fraction of which the terms are unknown mare be represented by $\frac{x}{y}$.
Ex. A certain fraction becomes $\frac{1}{2}$ when 7 is added to its fenominator, and 2 when 13 is added to its numerator. Find
the fraction.

Let $\frac{x}{y}$ represent the fraction
Then

$$
\begin{array}{r}
\frac{x}{y+7}=\frac{1}{2} \\
\cdot \frac{x+13}{y}=2
\end{array}
$$

are the equations; from which we may find $x=0$ and $y=11$.
That is, the fraction : $\frac{9}{11}$.
30. A certain fraction becomes 2 when 7 is added to its numerator, and 1 when 1 is subtracted from its denominator. What is the fraction?
37. Find such a fraction that when 1 is added to its numerator its value becomes $\frac{1}{3}$, and when 1 is added to the denominator the value is $\frac{1}{4}$.
38. What fraction is that to the numerator oí which if 1 be added the value will be $\frac{1}{2}$: but if 1 be added to the denominator,' the value wild be $\frac{1}{3}$?
39. The numerator of a fraction is made equal to its denominator by the addition of 1 , and is half of the denominator increased by 1 . Find the fraction
40. A certain fraction becomes $\frac{1}{4}$ when 3 is uaken from the numerator and the denominator, and it becomes $\frac{1}{2}$ when 5
is adled to the numerator and the denominator. What is the fraction?
41. Λ certan iraction lecomes $\frac{7}{9}$ when the denominator is increased by 4 , and $\frac{20}{41}$ when the numerator is diminished by 15: determine the fraction.
42. What fraction is that to the numerator of which if 1 be added it becomes ${ }_{2}^{1}$, and to the denominator of which if 17 be adled it becomes $\frac{1}{3}$?

Note III. In questions relating to money put out at simple interest we are to observe that

$$
\text { Interest }=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100}
$$

where Rate means the nmmber of pounds paid for the use of $£ 100$ for one year, and Time means the number of years for which the money is lent.
43. A man puts out $£ 2000$ in two investments. For the first he gets 5 per cent., for the cecond 4 jer cent. on the sum invested, and by the first investment he has an income of $£ 10$ more than on the second. Find how much he invests in each case.
44. A sum of money, put out at simple interest, amounted in 10 months to $£ 2250$, and in 18 months to $£ 5450$. What was the sum and the rate of interest?
45. A sum of moncy, put out at simpic interest, amounted in 6 ycars to $£ 5200$, and in 10 years to $\mathcal{E C 0 0 0}$. Find the sum and the rate of interest.

Note IV. When tea, spirits, wine, beer, and such commolities are mixed, it must be olbserved that quantity of ingrerlients = quantity of mixture, cost of ingredients $=$ cost of mixturc.
Ex. I mix wine which cost 10 shillings a gallon with another sort which cost 6 shillings a gation, to make 100
hat is the ninator is uished by
ich if 1 be h if 17 bc
at out at
the use of years for
or the first 1 the sum income of invests in
amounted j0. What
amounted dhe sum

such com-

 allon wit! make 100gallons, which I may sell at 7 shillings a gallon without prolit or loss. How much of cach do I take?

Let x represent the number of gallons at 10 shillings a gallon, and y 6 \qquad

Then and are the two equations from which we may find the values of x and y to be 25 and 75 respectively.
46. A wine-merchani has two kinds of wine, the one costs 36 pence a quart, the other 20 pence. How much of each must he purt in a mixture of 50 quarts, so that the cost price of it may be 30 pence a quart?
47. A grocer mixes tea which cost him 1s. 2d. per lb. with tea that cost him ls. $6 d$. per lb. He has 30 lbs . of the mixture, and by selling it at the rate of 1 s .8 d . per 1 b . he gained as much as 10 lbs . of the cheaper tea cost him. How many lbs. of each did he put in the mixture?

Note V. If a man can row at the rate of x miles an hour in still water, and if he be rowing on a stream that runs at the rate of y miles an hour, then

$$
\begin{aligned}
& x+y \text { will represent his rate down the stream, } \\
& x-y \text {.. }
\end{aligned}
$$

48. A crew which can pull at the rate of twelve miles an hour down the stream, findsthat it takes twice as long to come up a river as to go down. At what rate does the stream flow?
49. A man sculls down a stream, which runs at the race of 4 miles an hour, for a certain distance in 1 hour and 40 minutes. In returning it takes him 4 hours and 15 minutes to arrive at a point 3 miles short of his starting-place. Find the distance he pulled down the stream, and the rate of his pulling.
50. A dog pursues a hare. The hare gecs a start of 50 of her own lears. The hare makes six leaps while the dog makes 5 , and 7 of the dog's leaps are equal to 9 of the hare's. How many leaps will the hare take before she is caught?
51. A greyhound starts in pursuit of a hare, at the distance of 50 of his own leaps from her. He makes 3 leaps while the hare makes 4 , and he covers as much ground in two leaps as the lare does in three. How many leaps does each make before the lare is caught?
52. I lay out half-a-crown in apples and pears, buying the apples at 4 a penny and the pears at 5 a penny. I then sell half the apples and a third of the pears for thirteen pence, which was the price at which I bought them. How many of each did I buy?
53. A company at a tavern found, when they came to pay their reckoning, that if there had been 3 more persons, each wonld have paid a shilling less, but had there been 2 less, each would have paid a shilling more. Find the number of the company, and each man's share of the reckoning.
54. At a contested election there are two members to he returned and three candidates, A, B, and C. A obtains 1056 votes, $B, 987, C, 933$. Now 85 voted for B and $C, 744$ for B only, 98 for C only. How many voted for A and C, for A and B, and for A only ?
55. A man walks a certain distance: had his rate been half a mile an hour faster, he would have been $1 \frac{1}{2}$ hours lesis on the road; and had it been half a mile an hour slower, he would have been $2 \frac{1}{2}$ hours more on the road. Find the distance and rate.
56. A certain crew pull 9 strokes to 8 of a certain other crew, but 79 of the latter are equal to 90 of the former. Which is the faster crew?

Also, if the faster crew start at a distance equivalent to four of their own strokes behind the other, how many strokes will they take before they bump them?
57. A person, sculling in a thick fog, meets one barge and orertakes amother which is groing at the same rate as the former ; shew that if a le the greatest distance to which he can see, and b, b^{\prime} the distances that he seulls between the times of his first secing ant passing the barges,

$$
\frac{2}{4}=\frac{1}{b}+\frac{1}{u^{\prime}}
$$

In the sq
te distance while the co leaps as each make
ouying the I then sell een pence, w many of
ame to pry rsons, each een 2 less, number of
bers to he tains 1056 $C, 744$ for and C, for
rate been hours less slower, he he distance
rtain other er. Which
aivalent to any strokes
barge and ate as the o which he etween the
58. Two trains, 92 feet long and 84 fect long respectively, are moving with uniform velocities on parallel rails in opposite directions, and are observed to pass each other in one second and a half; but when they are moving in the same direction, their velocities being the same as before, the faster train is observed to pass the other in six seconds; find the rate in miles per hour at which each train moves.
59. The fore-wheel of a carriage makes six revolntions more than the hind-wheel in 120 yards; but only four revolttions more when the circumference of the fore-wheel is increaser! one-fourth, and that of the hind-wheel one-fifth. Find the circumference of each wheel.
60. A person rows from Cambrifge to Ely (a distance of 20 miles) and back again in 10 hours, and finds he can row 2 miles against the stream in the same time that he rows 3 miles with it. Find the rate of the stream, and the time of his going ind returning.

6r. A number consists or 6 digits, of which the last to the left hand is 1 . If this number is altered by removing the 1 and putting it in the unit's place, the new number is three times as great as the original one. Find the number.

XVII. ON SQUARE ROOT.

220. In Art. 97 we defined the Square Root, and explained the method of taking the square root of expressions consisting of a single term.

The square root of a positive quantity may be, as we explained in Art. 97, either positive or neyative.

Thus the square root of $4 a^{2}$ is $2 a$ or $-2 a$, and this ambiguity is expressed thus,

$$
\sqrt{4 a^{2}}= \pm 2 a
$$

In our examples in this chapter we shall in all cases regara the square root of a single term as a positive quantity.
221. The square root of a product may be found by taking the square root of each factor, and multiplying the roots, so tuicen, together.

Thus

$$
\begin{aligned}
\sqrt{a^{2} b^{3}} & =a b, \\
\sqrt{81 x^{4} y^{2} \tilde{n}^{4}} & =9 x^{2} y z^{3} .
\end{aligned}
$$

222. The square root of a fraction may be found by taking the square root of the numerator and the square root of the denotifirator, and making them the numerator and denominator of a new fraction, thus

$$
\begin{aligned}
& \sqrt{\frac{4 \iota^{2}}{81 b^{2}}}=\frac{2 a}{9 b} \\
& \sqrt{\frac{25 x^{2} y^{4}}{49 z^{6}}}=\frac{5 x y^{2}}{7 z^{3}}
\end{aligned}
$$

EXAMPLES.-lXXIX.

Find the Square Root of each of the following expressions:
I. $4 x^{2} y^{2}$.
2. $81 a^{n} l^{8}$.
4. $64 a^{4} b^{10} c^{2}$.
5. $71289 a^{4} b^{2} x^{6}$.
6. $169 a^{10} b^{8} c^{12}$.
7. $\frac{9 a^{2}}{16 b^{2}}$.
8. $\frac{1}{4 a^{2} c^{4}}$.
9. $\frac{25 a^{4} b^{6}}{121 x^{8} y^{10}}$
11. $\frac{625 a^{2}}{324 b^{2}}$.
223. We may now proceed to investigate a Rule for the extraction of the square root of a compound algebraical expression.

We know that the square of $a+b$ is $a^{2}+2 a b+b^{2}$, and therefore $a+b$ is the square root of $a^{2}+2 a b+b^{2}$.

If we can devise an operation by which we can derive $a+b$ from $a^{2}+2 a b+b^{2}$, we shall be able to give a rule for the extraction of the square root.
Now the first term of the root is the square root of the first term of the square, i.e. a is the square root of a^{2}.

Hence our rule begins:
"Atrange the terms in the order of magmitude of the indices of one of the quantities involved, then take the square root of the
d by taking the roots, so
ly taking root of the denominator
expressions: $21 m^{10} n^{12} r^{14}$. $69 a^{10} b^{8} c^{12}$. $25 a^{4} b^{6}$ $21 x^{8} y^{10^{0}}$

Rule for the 1 algebraical b^{2}, and there1 derive $a+b$ rule for the ot of the first of the inulices ure root of the
first term and set down the result as the first term of the root: subtract its square from the given expression, and bring down the remainder:" thus

$$
\frac{a^{2}+2 a b+b^{2}(a}{a^{2}} \frac{2 a b+b^{2}}{}
$$

Now this remainder may be represented thus $b(2 a+b)$: hence if we divide $2 a b+b^{2}$ by $2 a+b$ we shall obtain $+b$, the second term of the root.
Hence our rule proceede :
"Double the first term of the root and set down the result as the first term of a divisor:" thus our process up to this point will stand thus ; ,:

$$
\begin{gathered}
a^{2}+2 a b+b^{2}(a \\
a^{2} \\
2 a b+b^{2}
\end{gathered}
$$

Now if we divide $2 a b$ by $2 a$ the result is b, and hence we obtain the second term of the root, and if we add this ta $2 a$ we obtain the full divisor $2 a+b$.
Hence our rule proceeds thus:
"Divide the first term of the remainder by this first term of the divisor, and add the result to the first term of the root and also to. the first term of the divisor:" thus our process up to this pointe will stand thus :

$$
\begin{gathered}
\\
\\
2 a + b \longdiv { 2 a b + b ^ { 2 } }
\end{gathered}
$$

If now we multiply $2 a+b$ by b we obtain $2 a b+b^{2}$, which we subtract from the first remainder.
Hence our rule proceeds thus:
"Multiply the divisor by the second term of the root and subtract the result from the first remainder:" thus our process will stand thus :

$$
\begin{gathered}
a^{2}+2 a b+b^{2}(a+b \\
2 a+b \sqrt{a^{2}} \begin{array}{l}
2 a b+b^{2} \\
2 a b+b^{2}
\end{array}
\end{gathered}
$$

If there is now no remainder, the root has been found.
If there be a remainler, consider the two terms of the root already found as ope, and proceed as before.

2อ4. The following examples worked out will make the process more cluar.
(1)

$$
\begin{gathered}
a^{2}-2 a b+b^{2}(a-b \\
2 a-b \begin{array}{l}
a^{2} \\
-2 a b+b^{2} \\
-2 a b+b^{2}
\end{array}
\end{gathered}
$$

IIere the second term of the root, and consequently the scoond term of the divisor, will have a negative sign prefixed, because $\frac{-2 a b}{2 a}=-b$.
(2)

$$
\begin{gathered}
9 p^{2}+24 p q+16 q^{3}(3 p+4 q \\
6 p+4 q \underset{\begin{array}{l}
9 p^{2}
\end{array}}{\begin{array}{l}
24 p q+16 q^{2} \\
24 p q+16 q^{3}
\end{array}} .
\end{gathered}
$$

(3)

$$
\begin{gathered}
\frac{25 x^{3}-60 x+36(5 x-6}{25 x^{2}} \\
\hline \begin{array}{l}
-60 x+36 \\
-60 x+36 \\
\hline
\end{array}
\end{gathered}
$$

Next take a case in which the root contains three terms.

$$
\begin{gathered}
a^{2}+2 a b+b^{2}-2 a c-2 b c+c^{2}(a+b-c \\
2 a+b \left\lvert\, \begin{array}{c}
a^{2} \\
\frac{2 a b+b^{2}-2 a c-2 b c+c^{2}}{2 a b+b^{2}}-\frac{2 a c-2 b c+c^{2}}{-2 a c-2 b c+c^{2}}
\end{array}\right.
\end{gathered}
$$

ound.
of the root make the

When we olitained the second remainder, we took the doulle of $a+b$, mimidired as a siugle term, and set down the result ans the fuat per of the sccond divisor. We then divided the first term divisur, $c=$ ad set down the resnlt, $-c$, attached to the part of the roor atready found and also to the new divisor, and then mulun?: the completed divisor by -c.
Similarly we may proceed when the root contains 4,5 or* more terms.

EXAMPLES.-lXXX.

Extract the Square Root of the following expressions :
I. $4 a^{2}+12 a b+9 b^{2}$.
2. $16 k^{10}-24 k^{5 / 3}+9 k^{6}$.
3. $a^{2} b^{2}+162 a b+6561$.
4. $y^{6}-38 y^{3}+361$.
5. $9 a^{2} b^{2} c^{2}-102 a b c+289$. 1 . $1-6 x+13 x^{2}-12 x^{3}+4 x^{4}$.
6. $x^{4}-6 x^{3}+19 x^{2}-30 x+25$.
7. $9 x^{4}+12 x^{3}+10 x^{2}+4 x+1$.
8. $4 r^{4}-12 r^{3}+13 r^{2}-6 r+1$.
9. $4 n^{4}+4 n^{3}-7 n^{2}-4 n+4$.
11. $x^{6}-4 x^{5}+10 x^{4}-12 x^{3}+9 x^{3}$.
12. $4 y^{4}-12 y^{3} z+25 y^{2} z^{3}-24 y z^{3}+16 z^{4}$.
13. $a^{3}+4 a b+4 b^{2}+9 c^{2}+6 a c+12 b c$.
14. $a^{3}+2 a^{5} b+3 a^{4} b^{2}+4 a^{3} b^{3}+3 a^{2} b^{4}+2 a b^{3}+b^{0}$.
15. $x^{6}-4 x^{5}+6 x^{3}+8 x^{2}+4 x+1$.
16. $4 x^{4}+8 a x^{3}+4 a^{2} x^{3}+16 b^{2} x^{2}+16 a b^{2} x+16 b^{4}$.
17. $9-24 x+58 x^{2}-116 x^{3}+129 x^{4}-140 x^{5}+100 x^{6}$.
18. $16 a^{4}-40 a^{3} b+25 a^{2} b^{2}-80 a b^{2} x+64 b^{2} x^{2}+64 a^{2} b x$.
19. $9 a^{4}-24 a^{3} p^{3}-30 a^{2} t+16 a^{20} p^{6}+40 a p^{3} t+25 t^{2}$.
20. $4 y^{4} x^{2}-12 y^{3} x^{3}+17 y^{2} x^{4}-12 y x^{5}+4 x^{6}$.
21. $25 x^{4} y^{2}-30 x^{3} y^{3}+29 x^{2} y^{4}-12 x y^{5}+4 y^{3}$.
22. $16 x^{4}-24 x^{3} y+25 x^{2} y^{2}-12 x y^{3}+4 y^{4}$.
23. $9 a^{2}-12 a b+24 a c-16 b c+4 b^{2}+16 c^{2}$.
24. $x^{4}+9 x^{2}+25-6 x^{3}+10 x^{2}-30 x$.
25. $25 x^{2}-20 x y+4 y^{2}+8 z^{2}-12 y z+30 x \%$.
26. $4 x^{2}\left(x^{2}-y\right)+y^{3}(y-2)+y^{2}\left(4 x^{2}+1\right)$.
225. When any fractional terms are in the expression of which we have to find the Square Root, we may proceed as in the Examples just given, taking care to treat the fractional terms in accordance with the rules relating to fractions.

Thus to find the square root of $x^{2}-\frac{8}{9} x+\frac{16}{81}$

$$
2 x-\frac{4}{9}-\frac{8}{9} x+\frac{16}{81}
$$

Since

$$
\begin{aligned}
& x^{2}-\frac{8}{9} x+\frac{16}{81}\left(x-\frac{4}{9}\right. \\
& x^{2} \\
& -\frac{8}{9} x+\frac{16}{81} \\
& -\frac{8}{9} x+\frac{16}{81}
\end{aligned}
$$

$$
\frac{8}{9} \div 2=\frac{8}{9} \div \frac{2}{1}=\frac{8}{9} \times \frac{1}{2}=\frac{4}{9}
$$

Or we might reluce $x^{2}-\frac{8}{9} x \mp \frac{16}{81}$ to a single fraction. which would be $\frac{81 x^{2}-72 x+16}{81}$,
and then take the square roet of each of the terms of the fraction, with the following result :

$$
\frac{9 x-4}{9}, \text { which is the same as } x-\overline{9}
$$

EXAMPLES.-1XXXi.
f. $4 a^{6}+\frac{a^{2} b^{4}}{16}-a^{4} b^{2}$.
2. $\frac{9}{a^{2}}-2+\frac{a^{2}}{9}$.
3. $a^{4}-2+\frac{1}{a^{4}}$.
4. $\frac{a^{2}}{b^{2}}+2+\frac{h^{2}}{a^{2}}$.
5. $x^{2}-2 x^{3}+2 x^{2}-x+\frac{1}{4}$.
6. $x^{4}+2 x^{3}-x+\frac{1}{4}$.
7. $4 a^{2}-12 a b+a b^{2}+9 b^{2}-\frac{3 b^{3}}{2}+\frac{b^{4}}{16}$.
226. whose c

Thus

The since
the cube
8. $x^{4}+8 x^{2}+24+\frac{16}{x^{4}}+\frac{32}{x^{2}}$
9. $\frac{9}{16}+4 a^{4}+\frac{16}{9} a^{6} x^{2}-3 a^{2}-2 a^{3} x+\frac{16}{3} \alpha^{5} x$
10. $\frac{1}{x^{2}}+\frac{4}{y^{2}}+\frac{9}{z^{2}}-\frac{4}{x y}+\frac{6}{x z}-\frac{12}{y z}$.
11. $36 m^{2}-\frac{48 m}{n}+\frac{12 m p}{5}+\frac{16}{n^{2}}+\frac{p^{2}}{25}-\frac{8 p}{5 n}$.
12. $a^{2} b^{2}-6 a h c d+\frac{2 a b p f^{\prime}}{7}+9 c^{3} d^{2}+\frac{e^{2} f^{2}}{49}-\frac{6 c d e f}{7}$.
13. $\frac{4 x^{2}}{z^{2}}+\frac{z^{2}}{x^{2}}+\frac{9 y^{2}}{z^{2}}+4-\frac{6 y}{x}-\frac{12 x y}{z^{2}}$.
14. $\frac{4 m^{2}}{n^{2}}+\frac{9 n^{2}}{m^{2}}+4-\frac{16 m}{n}+\frac{24 n}{m}$.
15. $\frac{a^{2}}{9}+\frac{b^{2}}{16}+\frac{c^{2}}{25}+\frac{d^{2}}{4}-\frac{a b}{6}+\frac{2 a c}{15}-\frac{a d}{3}-\frac{b c}{10}+\frac{b d}{4}-\frac{c a l}{5}$.
16. $49 x^{4}-28 x^{3}-17 x^{2}+6 x+\frac{9}{4}$.
17. $\quad 9 x^{4}-3 a x^{3}+6 b x^{3}+\frac{a^{2} x^{2}}{4}-a b x^{2}+b^{2} x^{3}$.
18. $9 x^{4}-2 x^{3}-\frac{161}{9} x^{2}+2 x+9$.

XVIII. ON CUBE ROOT.

226. The Cobe Root of any expression is that expression whose cube or third power gives the proposed expression.
Thus a is the cube root of a^{3},

$$
3 b \text { is the cube root of } 27 b^{3} \text {. }
$$

The cube root of a negative expression wili be negative, for since

$$
(-a)^{3}=-a \times-a \times-a=-a^{3}
$$

the cube root of $-a^{3}$ is $-a_{0}$

So also
$-3 x$ is the cube root of $-27 x^{3}$,
aurl $-4 a^{2} b$ is the cube root of $-64 u^{6} b^{3}$.
The symbol $\sqrt[3]{ }$ is used to denote the operation of extracting the cube root.

EXAMPLES.-1XXXii.

Find the Cube Roots of the following expressions:

1. $8 a^{3}$.
2. $27 x^{6} y^{3}$.
3. $-125 m^{3} n^{3}$.
4. $-216 a^{12} b^{3}$.
5. $3+3 b^{25} c^{18}$.
6. $-1000 a^{3} b^{6} \mathrm{c}^{12}$.
7. $-1728 m^{21} n^{24}$.
8. $\quad 1331 c^{2} b^{18}$.
9. We now procced to investigate a Rule for finding the cube root of a compound algebraical expression.

We know that the cube of $a+b$ is $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$, and therefore $a+b$ is the cube root of $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.

We observe that the first term of the root is the cube root of the first term of the cube.

Hence our rule berrins:
"Arrange the terms in the order of magnitude of the indices of one of the quantities involved, then take the cube root of the first term and set down the result as the first term of the root: subtract its cube from the given expression, and bring dow: the remainder:" thus

$$
\begin{aligned}
& \frac{a^{3}+3 a^{2} b+3 a b^{2}+b^{3}(a)}{a^{3}} \\
& 3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Now this remainder may be represented thus,

$$
b\left(3 a^{2}+3 a b+b^{2}\right)
$$

kence if we divile $3 a^{2} b+3 a b^{2}+b^{3}$ by $3 a^{2}+3 a b+b^{2}$, we shall obtain $+b$, the second term of the roct.

Hence our rule proceeds :
"Multiply the square of the first term of the root by 3, and set down the result as the first term of a divisor:" thus our process up to this puint will stame thus :

If we now multiply the divisor by b, we obtain

$$
3 a^{2} b+3 a b^{2}+b^{3}
$$

Which we subtract from the first remainder.
Hence our rule proceeds thus:
"Multiply the divisor by the second term of the root, and subtract the result from the first remainder:" thans our mocess will stand the:s:

$$
3 a^{2}+3 a b+b^{2} \left\lvert\, \begin{aligned}
& a^{3}+3 a^{2} b+3 a b^{2}+b^{3}(a+b \\
& \begin{array}{l}
3 a^{2} b+3 a b^{2}+b^{3} \\
3 a^{2} b+3 a b^{2}+b^{3}
\end{array}
\end{aligned}\right.
$$

If there is now no remainder, the root has been found.
If there ne a remainder, consider the two terms of the root alresely found as one, and proceed as before.

[^1]Ex. 1.

$$
\begin{aligned}
& a^{3}-12 a^{2}+48 a-64(a-4 \\
& a^{3}
\end{aligned}
$$

$$
3 a^{5}-12 a+16 \begin{aligned}
& -12 a^{2}+48 a-64 \\
& -12 a^{3}+48 a-64
\end{aligned}
$$

Here observe that the second term of the divisor is formed thus:
3 times the product of a and $-4=3 \times a \times-4=-12 a$.
EX. 2. $x^{6}-6 x^{5}+15 x^{4}-20 x^{3}+15 x^{3}-6 x+1\left(x^{2}-2 x+1\right.$
x^{6}

$$
\begin{array}{l|l}
3 x^{4}-6 x^{3}+4 x^{2} & \begin{array}{l}
-6 x^{3}+15 x^{4}-20 x^{3}+15 x^{3}-6 x+1 \\
-6 x^{5}+12 x^{4}-8 x^{3}
\end{array} \\
3 x^{4}-12 x^{3} & 3 x^{4}-12 x^{3}+15 x^{2}-6 x+1 \\
+15 x^{2}-6 x+1 & 3 x^{4}-12 x^{3}+15 x^{2}-6 x+1 \\
\hline
\end{array}
$$

EXAMPLES.-lXXXiii.
Find the Cube Root of each of the following expreasions: 1

1. $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$.
2. $8 a^{3}+12 a^{2}+6 a+1$.
3. $a^{3}+24 a^{2} b+192 a b^{2}+512 b^{3}$.
4. $a^{3}+3 u^{2} b+3 a b^{2}+b^{3}+3 a^{2} c+6 a b c+3 b^{2} c+3 a c^{2}+3 b c^{2}+c^{3}$.
5. $x^{3}-3 x^{2} y+3 x y^{2}-y^{3}+3 x^{2} z-6 x y z+3 y^{2} z+3 x z^{2}-3 y z^{2}+z^{3}$,
6. $27 x^{8}-54 x^{5}+63 x^{4}-44 x^{3}+21 x^{2}-6 x+1$.
7. $1-3 a+6 a^{2}-7 a^{3}+6 x^{4}-3 a^{5}+a^{6}$.
8. $x^{3}-3 x^{2} y+3 x y^{2}-y^{3}+8 z^{3}+6 x^{2} z-12 x y z+6 y^{2} z+12 x z^{2}-12 y z^{2}$.
9. $a^{6}-12 a^{5}+54 a^{4}-112 a^{3}+108 a^{2}-48 a+8$.
10. $8 m^{6}-36 m^{5}+66 m^{4}-63 m^{3}+33 m^{2}-9 m+1$.

1 I. $x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}-3 x^{2} z-12 x y z-12 y^{2} z+3 x z^{2}+6 y z^{2}-z^{3}$.
12. $8 m^{3}-36 m^{2} n+54 m n^{2}-27 n^{3}-12 m^{2} r+36 m n r-27 n^{2} r$

$$
+6 m r^{2}-9 n r^{2}-r^{3}
$$

13. $m^{3}+3 m^{2}-5+\frac{3}{m^{2}}-\frac{1}{m^{3}}$.
14. The fourth root of an expression is found by taking the square root of the square root of the expression.

Thus

$$
\sqrt[4]{ } 16 a^{8} b^{4}=-\sqrt{4} a^{4} b^{2}=2 a^{2} b
$$

The sixth root of an expression is found by taking the cube root of the square root of the expression.

Thus

$$
\sqrt[8]{64 a^{12} b^{6}}=\sqrt[8]{8 a^{6} b^{3}=2 a^{2} b .}
$$

EXAMPLESn-lXXXIV.

Find the fourth roots α

1. $16 a^{4}-96 a^{3} x+216 a^{2} x^{2}-216 a x^{3}+81 x^{4}$.
2. $1+24 a^{2}+16 a^{4}-8 a-32 a^{3}$.
3. $625+2000 x+24 C 9 x^{2}+1280 x^{3}+25 C x^{4}$.

Finct the sixth roots of
$4 a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{6}$.
5. $x^{6}+6 x^{5}+15 x^{4}+20 x^{3}+15 x^{2}+6 x+1$.
6. $n^{6}-12 m+20 m m^{4}-100 m^{3}+240 m^{2}-192 m+3 A^{2}$

XIX. QUADRATIC EQUATIONS.

230. A Quadratic Equation, or an equation of two dimensions, is one into which the square of an unknown symbol enters, without or with the first power of the symbol.
Thus

$$
x^{2}=16
$$

and

$$
x^{2}+6 x=27
$$

are Quadratic Equations.
231. A Pcre Quadratic Equation is one into which the square of an unknown symbol enters, the first power of the symbol not appearing. an

Thus, $x^{2}=16$ is a pure Quadratic Equation.
232. An Adfected Quadratic Equation is one into which the square of an unknown symbol enters, and also the first power of the symbol.

Thus, $x^{2}+6 x=27$ is an adfected Quadratic Equation.

Pure Quadratic Equations.

2:33. When the terms of an equation involve the square of the unknown symbol only, the value of this square is cither given or can be found by the processes described in Chapter XVII. If we then extract the square root of each side of the equation, the value of the unknown symbol will be determined.
:234. The following are examples of the solution of Pure Quadratic Equations.

Ex. 1. $x^{2}=16$.
Taking the square root of each side

$$
x= \pm 4
$$

We prefix the sign \pm to the number on the right-hant side of the equation, for the reason given in Art. 220 .

Every pure quadratic equation will therefore have two roots, equal in magnitude, but with different signs.

Ex. 2. $4 x^{2}+6=22$.
Here

$$
\begin{aligned}
4 x^{2} & =22-6, \\
\text { or } \quad 4 x^{2} & =16, \\
\text { or } \quad x^{2} & =4 ; \\
\therefore x & = \pm 2 .
\end{aligned}
$$

That is, the values of x which satisfy the equation are 2 and -2 .

Ex. 3. $\frac{128}{3 x^{2}-4}=\frac{216}{5 x^{2}-6}$.
Here

$$
\begin{aligned}
128\left(5 x^{2}-6\right) & =216\left(3 x^{2}-4\right) \\
\text { or } 640 x^{2}-768 & =648 x^{2}-864 \\
\text { or } x^{2} & =12 ; \\
\therefore x & = \pm \sqrt{ } 12 .
\end{aligned}
$$

EXAMPLES.-lXXXV.
I. $x^{2}=64$.
2. $x^{2}=a^{2} b^{2}$.
3. $x^{2}-10000=0$.
4. $x^{2}-3=4 \mathrm{C}$.
5. $5 x^{2}-9=2 x^{2}+24$.
6. $3 a x^{2}=192 a^{5} c^{6}$.
7. $\frac{x^{2}-12}{3}=\frac{x^{2}-4}{4}$.
11. $m x^{2}+n=q$.
8. $(500+x)(300-x)=232359$.
12. $x^{2}-a x+b=a x(x-1)$.
9. $\frac{8112}{3}=3 x$
10. $5 \frac{1}{2} x^{2}-18 x+65=(3 x-3)^{2}$.
13. $\frac{45}{2 x x^{2}+3}=\frac{57}{4 x^{2}-5}$.

Pure

Adfected Quadrr.tic E'quations.

235. Adfected Quadratic Equations are solved by adding a certain term to both sides of the equation so as to make the loft-hand side a perfect square.
${ }^{n}$ Having arranged the equation so that the first term on the left-hand side is the square of the unknown symbol, and the second term the one containing the first power of the unknown quantity (the known symbols being on the right of the equation), we add to both sides of the equation the square of half the coefficient of the second term. The left-hand side of the equation then becomes a perfect square. If we then take the square root of both sides of the equation, we shall obtain two simple equations, from which the values of the unknown symbol may be determined.
$-$

- 236. The process in the solution of Adfected Quadratic Equations will be learnt loy the examples which we shall give in this chapter, but before we proceed to them, it is desirable that the student should be satisfied as to the way in which an expression of the form

$$
x^{2}+a x
$$

is made a perfect square.
Our rule, as given in the preceding Article, is this : add the square of half the aefficient of the second term, that is, the square of $\frac{a}{2}$, that is, $\frac{u^{2}}{4}$. We have to shew then that

$$
x^{2} \pm a x+\frac{a^{2}}{4}
$$

is a perfect square, whatever a may be.
This we may do by actually performing the operation of extracting the square root of $x^{2}+a x+\frac{a^{2}}{4}$, and obtaining the result $x+\frac{a}{2}$ with no remainder.
237. Let us examine this process by the aid of numerical coefficients.

Take one or two examples from the perfect aquares given in page 48.

We there have

$$
\begin{aligned}
& x^{2}+18 x+81 \text { which is the square of } x+9, \\
& x^{2}+34 x+289 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

In all these cases the third term is the square of half the coefficient of x.

For

$$
\begin{aligned}
81 & =(9)^{2}
\end{aligned}=\left(\frac{18}{2}\right)^{2}, ~ \begin{aligned}
& 2=(17)^{2} \\
&=\left(\frac{34}{2}\right)^{2}, \\
& 16=(4)^{2}=\left(\frac{8}{2}\right)^{2}, \\
& 324=(18)^{2}=\left(\frac{36}{2}\right)^{2}
\end{aligned}
$$

238. Now put the question in this shape. What must wo add to $x^{2}+a x$ to make it a perfect square?

Suppose b to represent the quantity to be added.
Then $x^{2}+a x+b$ is a perfect square.
Now if we perform the operation of extracting the square root of $x^{2}+a x+b$, our process is

$$
\frac{x^{2}+a x+b\left(x+\frac{a}{2}\right.}{2 x+\frac{a}{2} \sqrt{a x+b}} \frac{x^{2}}{a x+\frac{a^{2}}{4}} \sqrt{b-\frac{a^{2}}{4}}
$$

[8.A.]

Hence in order that $x^{2}+a x+b$ may be a perfect square wa must have
or

$$
\begin{aligned}
& b-\frac{a^{2}}{4}=0, \\
& b=\frac{a^{2}}{4}, \\
& b=\left(\frac{a}{2}\right)^{2} .
\end{aligned}
$$

That is, b is equivalent to the square of half the coefficient of x.
239. Before completing the square we must be careful
(1) That the square of the unknown symbol has no ooeffcient but unity,
(2) That the square of the unknown symbol has a positive sign.

These points will be more fully considered in Arts. 245 and 246.
240. We shall first take the case in which the coefficient of the second term is an even number and its sign positive.

Ex.

$$
x^{2}+6 x=40 .
$$

Here we make the left-hand side of the equation a perfect square by the following process.
Take the coefficient of the second term, that is, 6.
1 Take the half of this coefficient, that is, 3.
Square the result, which gives 9.
Add 9 to both sides of the equation, and we get

$$
x^{2}+6 x+9=49 .
$$

Now taking the square root of both sides, we get

$$
\tilde{\#}+3= \pm 7
$$

Hence we have two simple equations,
and

$$
\begin{aligned}
& x+3=+7 \\
& \text { (1), } \\
& x+3=-7 \\
& \text { (2) }
\end{aligned}
$$

From these we find the values of x, thus:
from (1)
from (2)

$$
x=7-3, \text { that is, } x=4
$$

Thus the roots of the equation are 4 and -10 .

EXAMPLES.-IXXXV1.

r. $x^{2}+6 x=72 . \quad$ 2. $x^{2}+12 x=64$. 3. $x^{2}+14 x=15$.
4. $x^{2}+46 x=96$.
5. $x^{2}+128 x=393$.
6. $x^{2}+8 x-65=0$
7. $x^{2}+18 x-243=0$.
8. $x^{2}+16 x-420=0$.
241. We next take the case in which the cocflicient of the, second term is an even number and its sign negative.

Ex.

$$
x^{2}-8 x=9
$$

The term to be addod to both sides is $(8 \div 2)^{2}$, that is, $(4)^{2}$, that is, 16.

Completing the square

$$
x^{2}-8 x+16=25
$$

Taking the square root of both sides

$$
x-4= \pm 5
$$

This gives two simple equations,

$$
\begin{align*}
& x-4=+5 \ldots \ldots \ldots \ldots \ldots \ldots . .(1), \tag{1}\\
& x-4=-5 \ldots \ldots \ldots \ldots \ldots(2)
\end{align*}
$$

From (1)
from (2)

$$
\begin{gathered}
x=5+4, \quad \therefore x=0 ; \\
x=-5+4, \quad \therefore x=-1 .
\end{gathered}
$$

Thus the roots of the equation are 9 and -1 。

IMAGE EVALUATION TEST TARGET (MT-른)

Photographic Sciences
Corporation

EXAMPLES.-lXXXVii.

1. $x^{2}-6 x=7$.
2. $x^{2}-4 x=5$.
3. $x^{2}-20 x=21$.
4. $x^{2}-2 x=63$.
5. $x^{2}-12 x+32=0$.
6. $x^{2}-14 x+45=0$.
7. $x^{2}-234 x+13688=0$.
8. $(x-3)(x-2)=3(5 x+14)$.
9. $x(3 x-17)-x(2 x+5)+120=0$.
10. $(x-5)^{2}+(x-7)^{2}=x(x-8)+46$.
11. We now take the case in which the coeflicient of the second term is an odd number.

Ex. 1.

$$
x^{2}-7 x=8
$$

The term to be added to both sides is

$$
(7 \div 2)^{2}=\left(\frac{7}{2}\right)^{2}=\frac{49}{4}
$$

Completing the equare

$$
\begin{aligned}
x^{2}-7 x+\frac{49}{4} & =8+\frac{49}{4} \\
\text { or, } \quad x^{2}-7 x+\frac{49}{4} & =\frac{81}{4}
\end{aligned}
$$

Taking the square root of botll sides

$$
x-\frac{7}{2}= \pm \frac{9}{2}
$$

This gives two simple equations,

$$
\begin{align*}
x-\frac{7}{2} & =+\frac{3}{2} \tag{1}\\
x-\frac{7}{2} & =-\frac{9}{2} \tag{2}
\end{align*}
$$

From (1) $\quad x=\frac{9}{2}+\frac{7}{2}$, or, $x=\frac{16}{2}, \therefore x=8$;
from (2) $\quad x=-\frac{9}{2}+\frac{7}{2}$, or, $x=\frac{-2}{2}, \therefore x=-1$.
Thus the roots of the equation are 8 and -1.

Ex. 2.

$$
x^{2}-x=42
$$

The coefficient of the second term is 1. The term to be added to both sides is

$$
\begin{array}{r}
\quad(1 \div 2)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} ; \\
\therefore x^{2}-x+\frac{1}{4}=42+\frac{1}{4} \\
\text { or, } \varkappa^{2}-x+\frac{1}{4}=\frac{169}{4} ; \\
\therefore x-\frac{1}{2}= \pm \frac{13}{2} .
\end{array}
$$

Hence the roots of the equation are 7 and -6

EXAMPLES.--lXXXViii.

I. $x^{2}+7 x=30$.
2. $x^{2}-11 x=12$.
3. $x^{2}+9 x=43 \frac{3}{4}$
4. $x^{2}-13 x=140$.
5. $x^{2}+x=\frac{5}{16}$.
6. $x^{2}-x=72$.
7. $x^{2}+37 x=3690$.
8. $x^{2}=5 €+x$
9. $x(5-x)+2 x(x-7)-10(x-6)=0$.
10. $(5 x-21)(7 x-33)-(17 x+15)(2 x-3)=448$.
243. Our next case is that in which the coefficient of the second term is a fraction of which the numerator is an even number.

Ex.

$$
x^{2}-\frac{4}{\overline{5}} x=21
$$

The term to be added to both siles is

$$
\begin{gathered}
\left(\frac{4}{5} \div 2\right)^{2}=\left(\frac{4}{5} \times \frac{1}{2}\right)^{2}=\left(\frac{2}{5}\right)^{2}=\left(\frac{4}{25}\right) \\
\therefore x^{2}-\frac{4}{5} x+\frac{4}{25}=21+\frac{4}{25} \\
\text { or, } x_{e}^{2}-\frac{4}{5} x+\frac{4}{25}=\frac{529}{25}
\end{gathered}
$$

$$
\therefore x-\frac{2}{5}= \pm \frac{23}{5} \text {. }
$$

Hence the values of x are 5 and $-\frac{21}{5}$.

EXAMPLES.-lXXXIX.

1. $x^{2}-\frac{2}{3} x=\frac{35}{9}$.
2. $x^{2}+\frac{4}{6} x=-\frac{3}{25}$.
3. $x^{2}-\frac{28 x}{9}+\frac{1}{3}=0$.
4. $x^{2}-\frac{8}{11} x-\frac{3}{11}=0$.
5. $x^{2}+\frac{4}{35} x=\frac{3}{7} \quad$ 6. $x^{2}-\frac{16}{5} x=\frac{16}{5}$.
6. $x^{2}-\frac{26}{3} x+\frac{16}{3}=0$.
7. $x^{2}-\frac{4}{7} x=45$.
8. We now take the case in which the coefficient of the second term is a fraction uhose numerator is an odd number.

Ex.

$$
x^{2}-\frac{7}{3} x=\frac{130}{3}
$$

The term to be added to both sides is

$$
\begin{gathered}
\left(\frac{7}{3} \div 2\right)=\left(\frac{7}{3} \times \frac{1}{2}\right)^{2}=\left(\frac{7}{6}\right)^{2}=\frac{49}{36} ; \\
\therefore x^{2}-\frac{7}{3} x+\frac{49}{36}=\frac{136}{3}+\frac{49}{36}, \\
\text { or } x^{2}-\frac{7}{3} x+\frac{49}{36}=\frac{1681}{36} ; \\
\therefore x-\frac{7}{6}= \pm \frac{41}{6} .
\end{gathered}
$$

Hence the valties of x are 8 and $-\frac{17}{3}$.

EXAMPLES.-XC.

1. $x^{2}-\frac{1}{3} x=8$.
2. $x^{2}-\frac{1}{5} x=98$.
3. $x^{2}+\frac{1}{2} x=50$.
4. $x^{2}+\frac{3}{2} x=76$.
5. $x^{2}-\frac{9}{5} x=16$.
б. $x^{2}-\frac{11}{2} x+6=0$.
6. $x^{2}-\frac{15}{4} x-34=0$.
7. $x^{2}-\frac{23}{7} x=\frac{3}{4}$.
8. The square of the unknown symbol must not be preceded by a negative sign.

Hence, if we have to solve the equation

$$
6 x-x^{2}=9
$$

we change the sign of every term, and we get

$$
x^{2}-6 x=-9
$$

Completing the square

$$
\text { or } \quad \begin{aligned}
& x^{2}-6 x+9=9-9 \\
& x^{2}-6 x+9
\end{aligned}
$$

Hence

$$
\begin{aligned}
x-3 & =0, \\
\text { or } \quad x & =3 .
\end{aligned}
$$

Note. We are not to be surprised at finding only one value for x. The interpretation to be placed on such a result is, that the two roots of the equation are equal in value and alike in sign.
246. The square of the unknown stribol must have no cocfficient but unity.

Hence, if we have to solve the equation

$$
5 x^{2}-3 x=2
$$

we must divide all the terms by 5 , and we get

$$
x^{2}-\frac{3 x}{5}=\frac{2}{5} .
$$

From which we get $x=1$ and $x=-\frac{2}{5}$.
247. In solving Quadratic Equations involving literal coefficients of the unknown symbol, the same rules will apply as in the cases of numerical coeflicients.

Thus, to solve the equation

$$
\frac{2 a}{x}-\frac{x}{a}-2=0
$$

Clearing the equation of fractions, we get
therefore

$$
\begin{aligned}
2 a^{2}-x^{2}-2 a x & =0 \\
-x^{2}-2 a x & =-2 a^{2} \\
\text { or } x^{2}+2 a x & =2 a^{2}
\end{aligned}
$$

Completing the square
whence

$$
\begin{array}{lc}
\text { whence } \quad & x^{2}+2 a x+a^{2}=3 a^{2} \\
\text { therefore } & x+a= \pm \sqrt{ } 3 . a ; \\
& x=-a+\sqrt{ } 3 . a, \text { or } x=-a-\sqrt{ } 3 . a .
\end{array}
$$

The following are Examples of Literal Quadratic Equations.

EXAMPLE:S_-XCi.

1. $x^{2}+2 a x=a^{2}$.
2. $x^{2}-4 a x=7 a^{2}$.
3. $x^{2}+3 m x=\frac{7 m^{2}}{4^{-}}$.
4. $x^{2}-\frac{5 n}{2} x=\frac{3 n^{2}}{2}$.
5. $\frac{a^{2}}{(x+a)^{2}}-\frac{b^{2}}{(x-a)^{2}}=0$.
6. $x^{2}+(a-1) x=a$.
7. $a d x-a c x^{2}=b c x-b d$.
8. $x^{2}+\{(a-b) x=a b$.
(9. $c x+\frac{a c}{a+b}=(a+b) x^{2}$.
9. $\frac{a^{2} x^{2}}{b^{2}}-\frac{2 a x}{c}+\frac{h^{3}}{c^{2}}=0$.
10. $a b x^{2}+\frac{3 a^{2} x}{c}=\frac{6 a^{2}+a b-2 b^{2}}{c^{2}}-\frac{b^{2} x}{c}$.
11. $\left(4 a^{2}-9 c d^{2}\right) x^{2}+\left(4 a^{2} c^{2}+4 a b d^{2}\right) x+\left(a c^{2}+b l^{2}\right)^{2}=0$.
12. If both sides of an equation can be divided by the unknown symbol, divide by it, and observe that 0 is in that case one root of the equation.
Thus in solving the equation

$$
x^{3}-2 x^{2}=3 x
$$

we may divide by x, and reduce the equation to the form

$$
x^{2}-2 x=3
$$

from which we get

$$
x=3 \quad \text { or } x=-1 .
$$

Then the three roots of the original equation are $0, \mathbf{3}$ and $\mathbf{- 1}$.
We shall now give some Miscellaneous Examples of Quadratic Equations.

EXAMPLES.-XCii.

. $x^{2}-7 x+2=10$.
2. $x^{2}-5 x+3=9$. 3. $x^{2}-11 x-7=5$.
4. $x^{2}-13 x-6=8$.
5. $x^{2}+7 x-18=0$.
6. $4 x-\frac{12-x}{x-3}=22$.
7. $x^{2}-9 x+20=0$.
8. $5 x-3 \frac{x-1}{x-3}=\frac{7 x-6}{2}$.
9. $x^{2}-6 x-14=2$.
10. $\frac{4 x}{x+3}-\frac{x-3}{2 x+5}=2$.
11. $\frac{4 x}{x+7}-\frac{x-7}{2 x+3}=2$. 12. $x^{2}-12=11 x$. \quad 13. $x^{2}-14=13 x$.
14. $\frac{1}{2} x^{2}-\frac{1}{3} x+7_{8}^{3}=8 . \quad 15.3 x-\frac{169}{x}=26 . \quad$ 16. $2 x^{2}=18 x-40$.
17. $\frac{4+3 x}{10}-\frac{15-x}{x-6}=\frac{7 x-14}{20}$.
18. $3 x^{2}=24 x-36$.
19. $\frac{3 x-5}{9 x}-\frac{6 x}{3 x-25}=\frac{1}{3}$.
20. $\frac{7}{4}-\frac{2 x-5}{x+5}=\frac{3 x-7}{2 x}$.
21. $\frac{4 x-10}{x+5}-\frac{7-3 x}{x}=\frac{7}{2}$.
22. $(x-3)^{3}+4 x=44$.
23. $\frac{x+11}{x}=7-\frac{9+4 x}{x^{2}}$.
24. $6 x^{2}+x=2$.
25. $x^{2}-\frac{1}{2} x=\frac{1}{9}$.
26. $x^{2}-x=210$.
27. $\frac{6}{x+1}+\frac{2}{x}=3$.
23. $\frac{4 x^{2}}{3}-11=\frac{x}{3}$.
29. $\frac{x}{x-1}=\frac{3}{2}+\frac{x-1}{x}$.
30. $15 x^{2}-7 x=46$.
31. $\frac{1}{x-2}-\frac{2}{x+2}={ }_{5}^{3}$.
32. $\frac{4 x}{5-x}-\frac{20-4 x}{x}=15$.
33. $\frac{10}{x}-\frac{14-2 x}{x^{2}}=\frac{22}{9}$.
34. $\frac{x}{x+60}=\frac{7}{3 x-5}$.
35. $\frac{12}{5-x}+\frac{8}{4-x}=\frac{32}{x+2}$.
36. $\frac{x}{7-x}+\frac{7-x}{x}=2 \frac{9}{10}$.
37. $x^{2}+(a+b) x+a b=0$.
35. $x^{2}-(b-a) x-a b=0$.
39. $x^{2}-2 a x+a^{2}-b^{2}=0$.
40. $x^{2}-\left(a^{3}-a^{3}\right) x-a^{5}=0$.
4. $2^{2}+\frac{a}{b} x-\frac{2 a^{2}}{b^{2}}=0$.
42. $2^{2}-\frac{a^{2}+b^{2}}{a b} x+1=0$.
249. For the solution of Simultaneous Equations of a degree higher than the first no fixed rules can be laid down. We shall point out the methods of solution which may be adopted with advantage in particular cases.
250. If the simple power of one of the unknown symbols INVOLVING QUADRATICS. can be expressed in terms of the other symbol by means of one of the given equations, the Method of Substitution, explained in Art. 217, may be employed, thus:

Ex. T φ solve the equations

$$
\begin{aligned}
x+y & =50 \\
x y & =600
\end{aligned}
$$

From the first equation

$$
x=50-y .
$$

Substitute this value for x in the second equation, and we get

$$
(50-y) \cdot y=600 .
$$

This gives

$$
50 y-y^{2}=600
$$

From which we find the values of y to be 30 and 20.
And we may then find the corresponding values of x to be 20 and 30.
251. But it is better that the student should accustom himself to work such equations symmetrically, thus:
To solve the equations

$$
\begin{align*}
x+y & =50 \ldots \ldots(1), ~ \\
x y & =600 \ldots \ldots(2), ~ \tag{2}
\end{align*}
$$

$$
\begin{array}{cc}
\text { From (1) } & x^{2}+2 x y+y^{2}=2500 . \\
\text { From (2) } & 4 x y=2400 .
\end{array}
$$

Subtracting, $\quad x^{2}-2 x y+y^{2}=100$,

$$
\therefore x-y= \pm 10
$$

Then from this equation and (1) we find

$$
x=30 \text { or } 20 \text { and } y=20 \text { or } 30
$$

EXAMPLES,-XCiil.

of a de n. We adopted
symbols s of one plained
ind we x to be custom
2. $x+y=13$
$x y=36$.
5. $x-y=45$
$x y=250$.
3. $x+y=29$

$$
x y=100 .
$$

6. $x-y=93$
$x y=100$.
7. To solve the equations

$$
\begin{array}{r}
x-y=12 \\
x^{2}+y^{2}=74 \tag{2}
\end{array}
$$

From (1) $\quad x^{2}-2 x y+y^{2}=144$
Subtract this from (2), then

$$
\begin{aligned}
2 x y & =-70 \\
\therefore 4 x y & =-140
\end{aligned}
$$

Add this to (3), then

$$
\begin{gathered}
x^{2}+2 x y+y^{2}=4 \\
\therefore x+y= \pm 2
\end{gathered}
$$

Then from this equation and (1) we get

$$
x=7 \text { or } 5 \text { and } y=-5 \text { or }-7
$$

EXAMPLES_-XCIV.

1. $x-y=4$
2. $x-y=10$
$x^{2}+y^{2}=178$.
3. $x-y=14$
$x^{2}+y^{2}=436$.
4. $x+y=8$
5. $x+y=12$
6. $x+y=49$
$x^{2}+y^{2}=104$.

$$
x^{2}+y^{2}=1681
$$

253. To solve the equations

$$
\begin{align*}
x^{3}+y^{3} & =35 \tag{1}\\
x+y & =5 \tag{2}
\end{align*}
$$

Divide (1) by (2), then we get

From (2)

$$
\begin{gather*}
x^{2}-x y+y^{2}=7 \tag{3}\\
x^{2}+2 x y+y^{2}=25
\end{gather*}
$$

Subtracting (3) from (4),

$$
\begin{aligned}
3 x y & =18 \\
\therefore 4 x y & =24 .
\end{aligned}
$$

Then from this equation and (4) we get

$$
\begin{gathered}
x^{2}-2 x y+y^{2}=1 \\
\therefore x-y= \pm 1
\end{gathered}
$$

and from this equation and (2) we find

$$
x=3 \text { or } 2 \text { and } y=2 \text { or } 3
$$

EXAMPLES.-XCV.

1. $\begin{aligned} x^{3}+y^{3} & =91 \\ x+y & =7 .\end{aligned}$
$x+y=7$.
2. $x^{3}+y^{3}=341$
$x+y=11$.
3. $x^{3}+y^{3}=1008$
$x+y=12$.
4. $\begin{aligned} x^{3}-y^{3} & =56 \\ x-y & =2 .\end{aligned}$
5. $x^{3}-y^{3}=98$
$x-y=2$.
6. $x^{3}-y^{3}=279$ $x-y=3$.
7. To solve the equations

$$
\begin{array}{r}
\frac{1}{x}+\frac{1}{y}=\frac{5}{6} \\
\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{13}{36}
\end{array}
$$

From (1), by squaring it, we get

$$
\begin{equation*}
\frac{1}{x^{2}}+\frac{2}{x y}+\frac{1}{y^{2}}=\frac{25}{36} \tag{3}
\end{equation*}
$$

From this subtract (2), and we have

$$
\begin{aligned}
\frac{2}{x y} & =\frac{12}{36} ; \\
\therefore \frac{4}{x y} & =\frac{24}{36}
\end{aligned}
$$

Now subtract this from (3), and we get

$$
\begin{aligned}
& \frac{1}{x^{2}}-\frac{2}{x y}+\frac{1}{y^{2}}=\frac{1}{36^{6}} \\
& \quad: \frac{1}{x}-\frac{1}{y}= \pm \frac{1}{6}
\end{aligned}
$$

and from this equation and (1) we find

$$
x=2 \text { or } 3 \text { and } y=3 \text { or } 2 .
$$

EXAMPLES.-XCVi.

1. $\frac{1}{x}+\frac{1}{y}=\frac{9}{20}$.
2. $\frac{1}{x}+\frac{1}{y}=\frac{3}{4}$.
3. $\frac{1}{x}+\frac{1}{y}=5$.
$\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{41}{400^{\circ}}$
$-\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{5}{16}$. $\frac{1}{x^{2}}+\frac{1}{y^{3}}=13$.
4. $\frac{1}{x}-\frac{1}{y}=\frac{1}{12}$
5. $\frac{1}{x}-\frac{1}{y}=2 \frac{1}{2}$
6. $\frac{1}{x}-\frac{1}{y}=3$.
$\frac{1}{x^{3}}-\frac{1}{y^{2}}=\frac{7}{144}$.
$\frac{1}{x^{2}}-\frac{1}{y^{2}}=8 \frac{3}{4}$
$\frac{1}{x^{2}}-\frac{1}{y^{2}}=21$.
7. To solve the equations

$$
\begin{align*}
& x^{2}+3 x y=7 \ldots \ldots \ldots \ldots \ldots . .(1), \\
& x y+4 y^{2}=18
\end{align*}
$$

If we $a d d$ the equations we get

$$
x^{2}+4 x y+4 y^{2}=25
$$

Taking the square root of each side, and taking only the positive root of the right-hand side into account,

$$
\begin{aligned}
& x+2 y=5 \\
\therefore & x=5-2 y
\end{aligned}
$$

Substituting this value for x in (2) we get

$$
(5-2 y) y+4 y^{2}=13
$$

an equation by which y may be determined.
Note. In some examples we must suitract the second equation from the first in order to get a perfect spure.
259. To solve the equations

$$
\begin{align*}
x^{3}-y^{3} & =26 . \tag{1}\\
x^{8}+x y+y^{2} & =13 . \tag{2}
\end{align*}
$$

Dividing (1) by (2) we get $x-y=2$......................(3), squaring, $\quad x^{2}-2 x y+y^{2}=4$

Subtract this from (2), and we have

$$
\begin{aligned}
3 x y & =9 ; \\
\therefore \quad 4 x y & =12 .
\end{aligned}
$$

Adding this to (4), we get $x^{2}+2 x y+y^{2}=16$;

$$
\therefore x+y= \pm 4 \text {. }
$$

Then from this equation and (3) we find

$$
x=3 \text { or }-1, \text { and } y=1 \text { or }-3 .
$$

257. To 'solve the equations

$$
\begin{align*}
x^{2}+y^{2} & =65 \ldots \ldots \ldots \ldots \ldots \ldots . ~
\end{align*},
$$

Multiplying (2) by 2, we have

$$
\left.\begin{array}{rl}
x^{2}+y^{2} & =65 \\
2 x y & =56
\end{array}\right\} ;
$$

The equations \mathbf{A} and \mathbf{B} furnish four pairs of simple equations,

$$
\begin{array}{lll}
x+y=11, & x+y=11, & x+y=-11, \\
x-y=3, & x-y=-3, & x-y=3,
\end{array}
$$

from which we find the values of x to be $7,4,-7$ and -4 , and the corresponding values of y to be $4,7,-4$ and -7 .
258. The artifice, by which the solution of the equations given in this article is effected, is applicable to cases in which

Suppose

$$
\begin{aligned}
& x^{2}+x y=15 \\
& x y-y^{2}=2 .
\end{aligned}
$$

Then $x^{2}+m x^{2}=15$, from the first equation, and $m x^{2}-m^{2} x^{2}=2$, from the second equation.

Dividing one of these equations by the other,
or

$$
\begin{aligned}
\frac{x^{2}+m x^{2}}{m x^{2}-m^{2} x^{2}} & =\frac{15}{2} \\
\frac{x^{2}(1+m)}{x^{2}\left(m-m^{2}\right)} & =\frac{15}{2} \\
\frac{1+m}{m-m^{2}} & =\frac{15}{2}
\end{aligned}
$$

From this equation we can determsine the values of m.
Ond of these values is $\frac{2}{3}$, and putting this for m in the equation $x^{2}+m x^{2}=15$, we get $x^{2}+\frac{2}{3} x^{2}=1$.

From which we find $x= \pm 3$, and then we can find y from one of the original equations.
259. The examples which we shall now give are intended as an exercise on the methods of solution explained in the four preceding articles.

EXAMPLES_-XCVil.

$$
\begin{aligned}
& \text { 1. } x^{3}-y^{3}=37 \\
& \text { 2. } x^{2}+6 x y=144 \\
& \text { 3. } x^{2}+x y=210 \\
& x^{2}+x y+y^{2}=37 \text {. } \\
& 6 x y+36 y^{2}=432 \text {. } \\
& \text { - } y^{2}+x y=231 \text {. } \\
& \text {.4. } x^{2}+y^{2}=68 \\
& x y=16 \text {. } \\
& \text { 5. } x^{3}+y^{3}=152 \\
& x^{2}-x y+y^{2}=10 \text {. } \\
& \text { 6. } 4 x^{2}+9 x y=100 \text {. } \\
& 4 x-5 y=10 \text {. } \\
& \text { 7. } x^{2}+x y+y^{2}=39 \\
& 3 y^{2}-5 x y=25 . \\
& \text { 8. } x^{2}+x y=66 \\
& x y-y^{2}=5 \text {. } \\
& \text { 9. } 3 x^{2}+4 x y=20 \text {. } \\
& 5 x y+2 y^{2}=12 . \\
& \text { 10. } x^{2}-x y+y^{2}=7 \text {.I I. } x^{2}-x y=35 \\
& 3 x^{2}+13 x y+8 y^{2}=162 . \quad x y+y^{2}=18 . \\
& \text { J3. } x^{3}+y^{3}=2723 \\
& \begin{array}{ll}
x^{2}-x y+y^{2}=124,
\end{array} \quad \begin{array}{l}
x^{2}+9 x y=340 \\
7 x y-y^{2}=171 .
\end{array} \\
& \text { 12. } 3 x^{2}+4 x y+5 y^{2}=71 \text {. } \\
& 0 x+7 y=29 \text {. } \\
& \text { 15. } x^{2}+y^{2}=225 \\
& x_{y} y=108 \text {. }
\end{aligned}
$$

XXI. ON PROBLEMS RESULTING IN QUADRATIC EQUATIONS.

200. The method of stating problems resulting in Quadratic Equations does not require any general explanation.
Some of the Examples which we shall give involve one unknown synbol, others involve two.

Ex. 1. That number is that whose square exceeds the number by $42 ?$

Let x represent the number.
Then

$$
\begin{aligned}
& x^{2}=x+42, \\
& x^{2}-x=42 ;
\end{aligned}
$$

or,
therefors

$$
x^{2}-x+\frac{1}{4}=\frac{169}{4} ;
$$

whence

$$
x-\frac{1}{2}= \pm \frac{13}{2} .
$$

And we find the values of x to be 7 or -6 .
Ex. 2. The sum of two numbers is 14 and the sum of their squares is 100 . Find the numbers.

Let x and y represent the numbers.
Then

$$
x+y=14,
$$

and

$$
x^{2}+y^{2}=100 .
$$

Proceeding as in Art. 252, we find

$$
x=8 \text { or } 6, \quad y=6 \text { or } 8
$$

Hence the numbers are 8 and 6.

EXAMPLES.-XCViii.

I. What mumber is that whose half multiplied by its this 1 part gives 864?
2. What is the number of which the severth and eighth parts being maltiplied together and the product divided by 3 the quotient is $298{ }_{3}^{2}$?
3. I take a certain number from 94. I then add the number to 94.
I multiply the two results torcther, and the result is 8512. What is the number?
4. What are the numbers whose proluct is 750 and the quotient of one by the other $3 \frac{1}{3}$?
5. The sum of the squares of two numbers is 13001 , and the difference of the same sifuares is 1449 . Find the numbers.
6. The proluct of two numbers, one of which is as much above 21 as the other is below 21 , is 377 . Find the numbers.
7. The half, the third, the fourth and the fifth parts of a certain number leing multiplied together the product is 6750 . Find the number.
8. By what number must 1 i 000 be divided, so that the quotient may be the same as the divisor, and the remaisder 51;
9. Find a number to which 20 being added, and from which 10 being sultracted, the square of the first result added to twice the square of the second result gives 17475.
10. The sum of two numbers is 26 , and the sum of their equares is 436 . Find the numbers.
11. The difference between two numbers is 17, and the sum of their squares is 325 . What are the numbers?
12. What two numbers are they whose product is 255 and the sum of whose squares is 514?
13. Divide 16 into two parts such that their product added to the sum of their squares may be 208.
[8.A.]
14. What number added to its square ront gives as a result 1332 ?
15. What number exceeds its square root by $48 \frac{3}{4}$?
16. What number exceeds its square root by 2550 ?
17. The product of two numbers is 24 , and their sum multiplied by their difference is 20 . Find the numbers.
18. What two numbers are those whose sum nultiplied by the greater is 201, and whose difference multiplied by the lesis is 35 ?
19. What two numbers are those whose difference is 5 aur their sum multiplied loy the greater 223 ?
20. Find three consecutive numbers whose product is edral to 3 times the midlle number.

2r. The difference between the squares of two consecutive numbers is 15 . Find the numbers.
22. The sum of the squares of two consecutive numbers is 481. Jind the numbers.
23. The sum of the squares of three consecutive numbers is 2(50. Find the numbers.

Note. If I buy x apples for y pence, $\frac{!!}{x}$ will represent the cost of an apple in pence.
If I buy x sheep for z pounds, $\frac{z}{a}$ will represent the cost of a shecp in pounds.
Ex. A boy bourght a mumber of oranges for 16d. Had he bought 4 more for the same money, he would have paid one-third of a penny less for each orimye. How many did he buy?

Let x represent the number of oriarges.
Then $\frac{16}{2}$ will represent tho cost of an orancre in pence.
IIence

$$
\begin{gathered}
\frac{16}{x}=\frac{16}{x+4}+\frac{1}{3} \\
\text { or } \quad 16(3 x+12)=45 x+x^{2}+4 x \\
\text { or } \quad x^{2}+4 x=192
\end{gathered}
$$

from wition we finit the valuses of x tu be 12 or $\mathbf{- 1 6}$.
'Luervere he bought 12 oranges.
24. I buy a number of handkerchiefs for $£ 3$. Had I hought 3 more for the same money, they would have cost one shilling each less. How many did I buy ?
25. A ilealer hought a number of calves for £so. Had he bringht 4 more for the same money, cach calf wouh have cost £l less. Llow many did he buy ?
26. A man bought some pieces of cloth for £33. 15s., which he sold again for $£ 2.8$ s. the piece and gained as math as one piece cost him. What did he give for each piece !
27. A merchant bought some pieces of silk for $£ 180$. Had he bought :3 pieces more, he would have paid $£ 3$ less for each piece. How many did he buy?
28. For a journey of 103 miles 6 hours less would have isufficed had one gone 3 miles an hour faster. How many miles an hour did one go ?
29. A grazier bought as many sheep as cost him $\mathfrak{£ 6 0}$. Out of these he kept 15, and selling the remainder for $£ 54$, gained 2 shillings a hata, by them. How many sheep did he buy $\frac{2}{y} \frac{2}{13}=60=\frac{1}{10}$
30. A cistern can be filter oy tivo pipes running together in 2 hours, 55 minutes. The larger pije by itself will fill it sooner than the smaller by 2 hours. What time will each pipe take separately to fill it?
31. The length of a rectangular field exceeds its breadth by one yarl, and the area contains ten thousand and one hundred square yards. Find the length of the sides.
32. A certain number consists of two digits. The lefthand digit is double of the right-hand digit, and if the digits be inverted the product of the number thus formed and the original number is 2268 . Find the number.
33. A ladder, whose foot rests in a given position, just reaches a window on one side of a strect, and when turned about its foot, just reaclies a window on the other side. If the two positions of the latder le at right angles to each other, and the heights of the windows be 36 and 27 feet respectively, find the width of the street and the length of the ladder.
34. Clath, being wetted, shrinks up $\frac{1}{8}$ in its length and $\frac{1}{10}$ in its wilth. If the surface of a piece of cloth is diminished by 5_{4}^{3} square yaris, and the length of the 4 side by $4 \frac{1}{4}$ yrards, what was the length and width of the cloth $?$
35. A certain number, less than 50, consists of two digits whose difference is 4 . If the disits be inverted, the difference between the squares of the number thus formed and of the original number is 3960 . Find the number.
36. A plantation in rows consists of 10000 trees. If there had been 20 less rows, there would have been 25 more trees in a row. How many rows are there?
37. A eolonel wished to form a solid square of his men. The first time he had 39 men over: the second time he increased the side of the square by one man, and then he found that he wanted so men to complete it. How many men were there in the regiment ?

XXIY. INDETERMINATE EQUATIONS.

261. Whr s the number of unknown symbols exceeds that of the independent equations, the number of simultaneous values of the symbols will be indefinite. We propose to explain in this Chapter how a certain number of these values may be found in the case of Simultancous Equations involving two unknown quentities.

Ex. To find tha integral valies of x and y which will satisfy the equation

Hero

$$
\begin{gathered}
3 x+7 y=10 . \\
3 x=10-7 y ; \\
\therefore x=3-2 y+\frac{1-y}{3} .
\end{gathered}
$$

Now if x aud y are intecfers, $\frac{i-y}{3}$ must also be an integer.
gth and is di4 side th ?
o digits ifference d of the

If there trees in
his men. e he inhe foumd nen were

ONS.

ceds that altaneous se to exse values nvolving
hich will
nteger.

Let $\frac{1-y}{3}=m$, then $\quad 1-y=3 m$;
and

$$
\therefore y=1-3 m
$$ or the general solution of the equation in whole numbers is

$$
x=1+7 m \text { and } y=1-3 m
$$

where m may be $0,1,2 \ldots .$. or any integer, positive or negrative.

If
if
if

$$
\begin{aligned}
& m=0, x=1, y=1 ; \\
& m=1, x=8, y=-2 ; \\
& m=2, x=15, y=-5 ;
\end{aligned}
$$

and so on, from which it appears that the only positive integral valucs of x and y which sutisfy the equation are 1 and 1 .
262. It is next to lee olserved that it is desirable to divide both sides of the equation by the smaller of the two coefficients of the unknown symbols.

Ex. To find integral solutions of the equation

$$
7 x+5 y=31
$$

Hero

$$
\begin{aligned}
5 y & =31-7 x \\
\therefore y & =6-x+\frac{1-2 x}{5}
\end{aligned}
$$

Let $\frac{1-2 x}{5}=m$, an integer.
Then $1-2 x=5 m$, whence $2 x=1-5 m$;

$$
: x=\frac{1-m}{2}-2 m
$$

Let $\frac{1-m}{2}=n$, an integer.
Then $1-m=2 n$, whence $m=1-2 n$.
IIence

$$
\begin{aligned}
& x=n-2 m=n-2+4 n=5 n-2 ; \\
& y=6-x+m=6-5 n+2+1-2 n=9-7{ }_{n}
\end{aligned}
$$

Now if
if

$$
\begin{aligned}
& n=0, x=-2, y=9 \\
& n=1, x=3, y=2 \\
& \pi=2, x=8, y=-\bar{u}
\end{aligned}
$$

and so on.
263. In how many ways can a person pay a bill of £13 with crowns and guincas?
Let x and y denote the number of crowns and guineas.
Tben

$$
\begin{array}{r}
5 x+21 y=260 ; \\
\therefore \quad 5 x=260-21 y ; \\
x=52-4 y-\frac{y}{5} .
\end{array}
$$

Let ${ }_{5}^{y}=m$, an integer.
Then

$$
\begin{aligned}
& y=5 m, \\
& x=52-4 y-m=52-21 m
\end{aligned}
$$

and
If

$$
\begin{aligned}
& m=0, x=52, y=0 ; \\
& m=1, x=31, y=5 ; \\
& m=2, x=10, y=10 ;
\end{aligned}
$$

and highervalues of n will give negative values of x Thus the mumber of ways is three.
204. Trs find a number which when divided by: 7 and as will give remainders 2 and 2 respectively.

Let x be the number.
14. 12 and
15. fiorins
16. and hal
17. by 9 a
18. guineas
19. with ha
20. integral

Hence if
$q=0, x=-12$;
if
$q=1, x=23$;
$y=£, x=58$; and so on.

EXAMPLES.-XCLK

Find positive integral solutions of

1. $5 x+7 y=29$.
2. $7 x+19 y=08$
3. $13 x+19 y=1170$.
4. $3 x+5 y=26$.
5. $14 x-5 y=7$.
6. $11 x+15 y=1031$.
7. $11 x+7 y=308$.
8. $4 x-19 y=23$.
9. $20 x-9 y=683$.
10. $3 x+7 y=383$.
11. $2 i x+4 y=54$.
12. $7 x+9 y=053$.
13. Find two fractions with denominators 7 and 9 and their sum $\frac{57}{63}$.
14. Find two proper fractions with denominators 11 and 12 and their difference $\frac{82}{143}$.
15. In how many ways can a debt of $£ 1.9$ s. be paid in fiorins and hall-crowns?
16. In how many ways can $£ 20$ bo paid in half-guineas and half-crowns ?
17. What number divided by 5 gives a remainder 2 and by 9 a remainder 31
18. In how many different ways may $£ 11.15$. be paid in guineas and crowns?
19. In how many different ways may $£ 4$. 11 s . C d. be paid with half-guineas and half-crowns ;
20. Shew that $323 x-527 y=1000$ cannot bo satisficd by integral values of x and y.
21. A farmer buys oxen, sleep, and hens. The whole number bought was 100 , and the whole price $£ 100$. If the oxen cost $£ 5$, the sheep $£ 1$, and the hens 1 s. each, how many of each had he? Of how many solutions does this Problem adnit $?$
22. A owes $B 4$. 10d.; if A has only sixpences in his pocket and B only fourpenny pieces, how can they best settle the matter $\}$
23. A person has $£ 12.48$. in half-crowns, florins, and shillings ; the number of hall-crowns and florins together is four times the number of shillings, and the number of coins is the greatest possible. Find the number of coins of each kind.
24. In how many ways can the sum of $£ 5$ bo paid in exactly 50 coins, cousisting of half-crowns, florins. and fourpemy pieces?
25. A óves B a shilling. A has ouly sovereigns, and B has

XXIII. THE THEORY OF INDICES.

in his st settle
nd shilis four is is the nd.
paid in d four-
ad B has y pay L ? them is
98. with
multiple
rided by by 7 the mainder
265. Tire number placed over a symbol to express the power of the symbol is called the Index.

Up to this point our indices have in all cases been Positive Winole Numbers.

We have now to treat of Fractional and Negative indices ; and to put this part of the subject in a clearer light, we shall combuence from the elementary principles laid down in Arts. 15, 46.
260. First, we must carefully observe the following results:

$$
\begin{aligned}
a^{3} \times a^{2} & =a^{8} \\
\left(a^{3}\right)^{2} & =a^{0} .
\end{aligned}
$$

For

$$
\begin{aligned}
& a^{3} \times a^{2}=a \cdot a \cdot a \cdot a \cdot a=a^{6}, \\
& \quad\left(a^{3}\right)^{2}=a^{3} \cdot a^{3}=a \cdot a \cdot a \cdot a \cdot a \cdot a=a^{6} .
\end{aligned}
$$

anl
These are examples of the Two Rules which govern all combinations of Indices. The general proof of these Rules wo shall now proceed to give.
267. Def. When m is a positive integer, a^{*} means $a, a, a, \ldots .$. with a written m times as a factor.
268. There are two rules for the combination of indices

Rule I. $a^{m} \times a^{n}=a^{m+n}$.
Rule II. $\quad\left(a^{m}\right)^{n}=a^{m n}$.
eq2. To prove Rule I.

$$
\begin{aligned}
& a^{m}=a \cdot a \cdot a \ldots \ldots . \text { to } m \text { factors, } \\
& F^{-}=a \cdot a, a \ldots . . \text { to } n \text { factors }
\end{aligned}
$$

Thercfore

$$
\begin{aligned}
a^{m} \times a^{n} & =((a, a, a \ldots \ldots \text { to } m \text { factors }) \times(u, a, a \ldots \ldots . \text { to } n \text { factors }) \\
& =a \cdot a \cdot a \ldots \ldots \text { to }(n+n) \text { finctors, } \\
& =a^{m+n}, b y \text { the Definition. }
\end{aligned}
$$

To prove Role II.

$$
\begin{aligned}
\left(a^{m}\right)^{\prime \prime} & =a^{m} \cdot a^{m} \cdot a^{m} \ldots \ldots \text { to } n \text { factors, } \\
& =(a \cdot a \cdot a \ldots \ldots \text { to } m \text { factors })(a \cdot a \cdot a \ldots \text { to } m \text { factors }) \\
& \quad \text { repeated } n \text { times, } \\
& =a \cdot a \cdot a \ldots \ldots \text { to } m n \text { factors, } \\
& =a^{m n}, \text { by the Definition. }
\end{aligned}
$$

270. We have deduced immediately from the Definition that when m and n are positive intergers $a^{m} \times a^{n}=a^{m+n}$. When m and n are ant positive interers, the Definition has no meaning. We thercfore extend the Definition by saying that a^{m} and a^{n}, whatever m and n may be, shall be such that $a^{m} \times c^{n}=a^{m+n}$, and we shall now proceed to shew what meanings we assign to a^{m}, in conserpence of this definition, in the following cases.
271. Case I. To find the meaning of a^{f}, p and q being positive intcgers.

$$
\begin{gathered}
a^{q} \times a^{\frac{q}{q}}=a^{q}+\frac{p}{q} \\
a^{\frac{p}{q}} \times a^{\frac{p}{q}} \times a^{\frac{p}{q}}=a^{\frac{q}{q}}+\frac{p}{q} \times a^{\frac{p}{q}}=a^{q}+\frac{q}{q}+\frac{\varphi}{q} ;
\end{gathered}
$$

and by continuing this process,

$$
\begin{aligned}
a^{\frac{q}{q}} \times a^{\frac{p}{q}} \times \ldots . . \text { to } q \text { factors } & =a^{\frac{p}{q}+\frac{p}{8}+\frac{p}{4}+\ldots \text { tog cerco }} \\
& =a^{p} .
\end{aligned}
$$

Bai by the nature of the symbol $\sqrt[9]{ }$

$$
\sqrt[q]{a^{p}} \times \sqrt[q]{\sqrt{a^{p}}} \times \ldots . . \text { to } q \text { factors }=a^{p} ;
$$

$\therefore a^{\frac{p}{q}} \times a^{q} \times \ldots$. to q factors $=\sqrt\left[\{]{a^{p}} \times \sqrt[q]{a^{p}} \times \ldots \text { to } q \text { factors; }\right.$

$$
\therefore a^{\frac{p}{f}}=\sqrt[1]{a^{p}}
$$

272. Case II. T'o find the meaning of a^{-1}, seing a positive number, whole or fractional.

We must first find the meaving of a^{0}.
We have

$$
\begin{aligned}
a^{m} \times a^{0} & =a^{m+0} \\
& =u^{m} ; \\
\therefore a^{0} & =1 . \\
a^{\prime} \times a^{-s} & =a^{m} \\
& =a^{0} \\
& =1 ;
\end{aligned}
$$

ition Vhen neanand a^{m+n}, gn to

Now

$$
\therefore a^{-\theta}=\frac{1}{u^{\prime}} .
$$

273. Thus the interpretation of a^{m} has neen deduced from Finle I. It remains to be proved that this interpretation agrees with Rule II. This we shall do by shewing that Tiule II. follows from Rule I., whaterer n and n may be.
274. To shew that $\left(a^{m}\right)^{n}=a^{m n}$ for all values of m and n.
(1) Let n be a positive integer : then, whatever m may be,

$$
\begin{aligned}
\left(a^{m}\right)^{n} & =a^{m} \cdot a^{m} \cdot a^{m} \ldots . . \text { to } n \text { factors } \\
& =a^{m+m+m+\cdots \text { on umms }} \\
& =a^{m n} .
\end{aligned}
$$

(2) Let n be a positive fraction, and equal to $\frac{p}{q}, p$ and 2 being positive integers; then, whaterer be the value of m,

$$
\begin{aligned}
\left(a^{m}\right)^{\frac{p}{i}} \times\left(a^{m}\right)^{\frac{p}{1}} \times \ldots \text { to } q \text { factors } & =\left(a^{m}\right)^{\frac{p}{i^{p}}+\frac{p}{i}+\cdots \operatorname{cog} \text { terman }} \\
& =\left(u^{m}\right)^{p} \\
& =a^{m p}, \text { by }(1) .
\end{aligned}
$$

But $a^{\frac{m p}{q}} \times a^{\frac{m p}{q}} \times \ldots .$. to q factors $=a^{\frac{m p}{q}+\frac{m p}{q}+\ldots \text { it iniso }}$

$$
\begin{aligned}
\quad & =a^{m p} ; \\
\therefore\left(a^{m}\right)^{p} & =a^{m p} ; \\
\left(a^{m}\right)^{n}= & a^{m m}
\end{aligned}
$$

that in,
(3) Let $n=-8, s$ leeing a positive number, whole or frace tioual : then, whatever may bo,

$$
\begin{aligned}
\left(a^{\prime \prime}\right)^{-} & =\frac{1}{\left(a^{n}\right)^{2}}, \text { by Art. 272, } \\
& =\frac{1}{a^{n+1}}, \text { by }(1) \text { and (2) of this Article : }
\end{aligned}
$$

that is,

$$
\begin{aligned}
\left.a^{n}\right)^{*} & =\frac{1}{a^{-m m}} \\
& =a^{m " .}
\end{aligned}
$$

275. We shall now give some examples of the mode in which the Theorems established in the preceding articles aro applied to particular cases. We shall commence with examples of the combination of the indices of two single terms.

2ic. Sinçe $x^{m} \times x^{n}=x^{m+n}$,
(1) $x^{0} \times x^{0-\theta}=x^{1+0-\theta}=x^{0}$.
(2) $x^{2} \times x=x^{+1}$.

(4) $a^{m-n} \cdot b^{n-p} \times a^{n-m} . b^{p-n} \cdot c$

$$
\begin{aligned}
& =a^{m-n+n-m} \cdot b^{n-p+n-m} . c \\
& =a^{0} . b^{0} . c \\
& =1.1 . c \\
& =c .
\end{aligned}
$$

277. Since $\left(x^{m}\right)^{n}=x^{m m}$,
(l) $\left(x^{(4)}\right)^{3}=x^{6 \times 3}=x^{13}$.
(2) $\left(x^{4}\right)^{\frac{1}{2}}=x^{4 \times \frac{1}{2}}=x^{3}$.
(3) $\left(a^{(x)}\right)^{\frac{1}{3}}=a^{G x>\frac{1}{3}}=c_{6} b_{0}$
278. \quad Since $x^{2}=\sqrt[2]{x^{p}}$,
(1) $x^{\frac{3}{2}}=\sqrt{x^{3}}$
((2) $x^{\frac{73}{3}}=\sqrt[3]{x^{3}}$
we the $\mathrm{p}^{\mathrm{osi}}$

Nete. When Examples are given of actual numbers ralm 1 to fractional powers, they may often be put in a form more is for easy solution, thus:
(1) $144^{\frac{3}{3}}=\left(144^{\frac{2}{3}}\right)^{3}=(\sqrt{ } 144)^{3}=12^{3}=1728$ 。
(2) $125^{\frac{2}{3}}=\left(125^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{125})^{2}=5^{2}=25$.
270. Since $\left(x^{m}\right)^{n}=x^{m n}$,
(1) $\left\{\left(x^{m}\right)^{n}\right\}^{p}=\left(x^{m n}\right)^{p}=x^{m p}$.

- (2) $\left\{\left(a^{-m}\right)^{-n}\right\}^{p}=\left(a^{m n}\right)^{p}=u^{m}$
(3) $\left\{\left(x^{-m}\right)^{n}\right\}^{p}=\left(x^{-m n}\right)^{p}=x^{-m m}$.

280. Since $x^{-n}=\frac{1}{x^{n}}$,
we may replace an expression raised to a negative power by the reciprccal (Art. 199) of the expression raised to the same rositive power: thus
(1) $a^{-1}=\frac{1}{a}$
(2) $a^{-2}=\frac{1}{a^{2}}$.
(3) $a^{-\frac{2}{3}}=\frac{1}{a^{\frac{1}{3}}}$

EXAMPLES.-c.

(1) Express with fractional indices:

1. $\sqrt{ } x^{5}+\sqrt[8]{x^{2}}+(\sqrt{ })^{7}$.
2. $\sqrt[n]{x^{2} y^{3}}+\sqrt[n]{x^{11} y^{2}}+\sqrt[7]{x^{2} y^{3}}$.
3. $\sqrt[8]{u^{i}}+(\sqrt[1]{a})^{8}+a \sqrt{a^{3}}$.
4. $\sqrt[3]{x y^{3} z^{2}}+\sqrt[4]{a^{2} y^{3} z^{4}}+\sqrt[8]{a y^{3} z^{2}}$.
(2) Express with negative indices so as to remove all powers from the denominators:
5. $\frac{1}{x}+\frac{a}{x^{2}}+\frac{b^{2}}{x^{3}}+\frac{3}{x^{4}}$.
6. $\frac{x^{8}}{y^{2}}+\frac{3 x}{y^{3}}+\frac{4}{y^{4}}$.
7. $\frac{x^{3}}{4 y^{2} z^{2}}+\frac{5 x^{2}}{7 y z^{3}}+\frac{x}{y z}$.
8. $\frac{x y}{3 z^{2}}+\frac{1}{5 x^{2} y^{2}}+\frac{z}{x^{3} y^{4}}$.
((3) Express with negative indices so as to remove all powes from the numerators:
9. $\frac{1}{a}+\frac{x}{a^{2}}+\frac{x^{3}}{b^{3}}+\frac{x^{4}}{3}-$
10. $\frac{y^{2}}{x^{2}}+\frac{y^{3}}{3 x}+\frac{y^{5}}{5}$.
11. $\frac{4 a^{2} b^{2}}{c^{3}}+\frac{3 a}{\sqrt{2} b}+\frac{\sqrt[8]{x}}{y}$.
12. $\frac{\sqrt[4]{x y}}{3 z}+\frac{\sqrt[3]{c^{3} / 2^{2}}}{c^{2}}+\frac{\sqrt[3]{c^{107 \%}}}{c}$.
(4) Express with root-symbols and nositive indices:
13. $2 x^{\frac{2}{3}}+3 x^{\frac{3}{3}} y^{\frac{2}{3}}+x^{-1} y^{-2}$. 3. $\frac{x^{-\frac{1}{3}}}{y^{-\frac{2}{3}}+\frac{3 x^{-2}}{y^{-\frac{3}{4}}}+\frac{x^{-\frac{2}{3}}}{3 y^{-\frac{1}{5}}} \text {. }}$
14. $x^{-\frac{1}{3}}+y^{-\frac{2}{3}}+z^{-3}$.
15. $\frac{x^{-2}}{y^{\frac{1}{3}}}+\frac{x^{-\frac{1}{3}}}{y^{-1}}+\frac{x^{-\frac{1}{3}}}{y^{-\frac{1}{3}}}$
16. Since $x^{m} \div x^{n}=\frac{2^{n n}}{x^{n}}=x^{m} \cdot x^{-n}=x^{m-n}$,
(1) $x^{8} \div x^{3}=x^{8-3}=x^{5}$.
(9.) $x^{3} \div x^{8}=x^{3-8}=x^{-5}=\frac{1}{x^{5}}$.
(e, $\quad x^{m} \div x^{m-n}=x^{m-(m-n)}=x^{m-m+n}=x^{n}$.
(4) $a^{b} \div a^{b+c}=a^{b-(b+c)}=c^{b-b-c}=a^{-c}=\frac{1}{a^{a}}$.
(5) $x^{\frac{2}{3}} \div x^{\frac{1}{3}}=x^{\frac{2}{3}-\frac{1}{3}}=x^{\frac{1}{3}}$.
(6) $x^{\frac{1}{2}} \div x^{8}=x^{\frac{1}{2}-\frac{5}{6}}=x^{\frac{3}{6}-\frac{5}{8}}=x^{-\frac{2}{6}}=x^{-\frac{1}{3}}=\frac{1}{x^{\frac{1}{4}}}$
17. Ex. Mulliply $a^{9 r}-a^{2 r}+a^{r}-1$ by $a^{r}+2$.

$$
\begin{aligned}
& a^{3^{2 r}}-a^{3 p}+u^{r}-1 \\
& a^{r}+1 \\
& \frac{a^{4 r}-a^{3 r}+a^{2 r}-a^{p}}{\quad+a^{3 r}-a^{2 r}+a^{p}-1} \\
& \frac{a^{4 r}-1}{}
\end{aligned}
$$

EXAMPLES.-Cl.

Multiply

Div
1.
2.
5.
6.
7.
8.

9

Ia

1. $x^{2 p}+x^{p} y^{p}+y^{2 p}$ by $x^{8 p}-x^{p} y^{p}+y^{2 p}$.
2. $a^{5 m}+3 a^{9 m} y^{\pi}+9 a^{m} y^{n^{m}}+2 \overline{2} y^{y^{m}}$ by $u^{m}-\bar{\delta} y^{n}$.
3. $x^{44}-2 a x^{2 d}+4 a^{2}$ by $x^{4 t}+2 a x^{2 d}+4 a^{4}$.
4. $\quad a^{m}+b^{n}+c^{p}$ by $a^{m}-b^{n}+c^{n}$.
5. $a^{m}+b^{n}-2 c^{n}$ by $2 a^{m}-b+c^{n}$.
6. $x^{m n-n} y^{m}$ by $x^{n}+y^{m n-n}$.
7. $x^{2 n}-x^{n} y^{n}+y^{2 n}$ by $x^{2 n}+x^{n} y^{n}+y^{n n}$.
8. $\quad a^{p^{2}+p}-b^{p^{2}}+c^{p}$ by $a^{p^{2}-p}+b^{1-p^{2}}+c^{1 \rightarrow}$.
9. Form the square of $x^{2 p}+x^{p}+1$.
10. Form the square of $x^{2 p}-x^{6}+1$.
11. EXa Divide $x^{4 p}-1$ by $x^{p}-1$.

$$
\begin{gathered}
\left.x^{p}-1\right) x^{4 p}-1\left(x^{3 p}+x^{2 p}+x^{p}+1\right. \\
\frac{x^{4 p}-x^{3 p}}{x^{3 p}-1} \\
\frac{x^{3 p}-x^{3 p}}{x^{2 p}-1} \\
\frac{x^{2 p}-x^{p}}{x^{p}-1} \\
x^{p}-1
\end{gathered}
$$

EXAMPLES.-cii.

Divide

1. $x^{4 m}-y^{4 m}$ by $x^{m}-y^{m}$.
2. $x^{4 n}-y^{6 r}$ by $x^{n}-y^{2}$.
3. $x^{5 n}+y^{8 n}$ by $x^{n}+y^{n}$.
4. $\quad a^{15 p}+b^{109}$ by $a^{3 p}+b^{p}$.
5. $x^{s d}-243$ by $x^{d}-3$.
6. $a^{4 m}+4 a^{2 m} x^{2 n}+16 x^{4 n}$ by $a^{n m}+2 a^{m} x^{n}+4 x^{2 n}$.
7. $9 x^{p}+3 x^{4 p}+14 x^{3 p}+2$ by $1+5 x^{p}+x^{8 p}$.
8. $14 b^{4 m} c^{m}-13 b^{3 m} c^{2 m}-5 b^{3 m}+4 b^{2 m} c^{3 m}$ by $b^{3 m}+b^{m} c^{2 m}-2 b^{2 m} c^{\infty}$.

9 Find the square root of

$$
a^{6 m}+6 a^{3 m}+15 a^{4 m}+20 a^{3 m}+15 a^{2 m}+6 a^{m}+1
$$

1a. Find the square root of

$$
a^{2 m}+b^{2 n}+c^{2 r}+2 a^{m} l^{n}+2 a^{m} c^{n}+2 b^{n} c_{0}^{\prime}
$$

Fractional Indices.

28\& Ex. Multiply $a^{\frac{2}{3}}-a^{\frac{3}{5}} b^{\frac{1}{3}}+b^{\frac{2}{3}}$ by $a^{\frac{1}{3}}+b^{\frac{1}{3}}$.

$$
\begin{aligned}
& a^{\frac{2}{3}}-a^{\frac{1}{3}} b^{\frac{1}{3}}+b^{\frac{7}{3}} \\
& a^{\frac{1}{3}}+b^{\frac{1}{3}} \\
& a-a^{\frac{3}{3}} b^{\frac{1}{3}}+a^{\frac{1}{3}} b^{\frac{2}{3}} \\
& +a^{\frac{2}{3}} b^{\frac{1}{3}}-a^{\frac{1}{3}} b^{\frac{2}{3}}+b \\
& a+b
\end{aligned}
$$

EXAMPLES.-Ciliz

Multiply

1. $x^{\frac{2}{3}}-2 x^{\frac{1}{3}}+1$ by $x^{\frac{1}{3}}-1$.
2. $y^{\frac{3}{4}}+y^{\frac{1}{2}}+y^{\frac{1}{4}}+1$ by $y^{\frac{1}{4}}-1$.
3. $a^{\frac{2}{3}}-x^{\frac{2}{3}}$ by $a^{\frac{4}{3}}+a^{\frac{2}{3}} x^{\frac{2}{3}}+x^{4.3}$.
4. $a^{\frac{9}{3}}+b^{\frac{2}{3}}+c^{\frac{9}{3}}-a^{\frac{1}{3}} b^{\frac{1}{3}}-a^{\frac{1}{3}} c^{\frac{1}{3}}-b^{\frac{1}{3}} c^{\frac{1}{3}}$ by $a^{\frac{1}{3}}+b^{\frac{1}{3}}+c^{\frac{1}{2}}$.
5. $5 x^{\frac{3}{4}}+2 x^{\frac{1}{2}} y^{\frac{1}{4}}+3 x^{\frac{1}{4}} y^{\frac{1}{2}}+7 y^{\frac{3}{2}}$ by $2 x^{\frac{1}{4}}-3 y^{\frac{1}{4}}$.
6. $m^{\frac{4}{3}}+m^{\frac{3}{3}} n^{\frac{2}{3}}+m^{\frac{9}{3}} n^{\frac{2}{5}}+m^{\frac{1}{3}} n^{\frac{3}{5}}+n^{\frac{4}{3}}$ by $m^{\frac{1}{3}}-n^{\frac{1}{5}}$.
\%. $m^{\frac{2}{3}}-2 l^{\frac{1}{4}} m^{\frac{1}{3}}+4 d^{\frac{1}{2}}$ by $m m^{\frac{2}{3}}+2 l^{\frac{1}{4}} m^{\frac{1}{3}}+4 l^{\frac{3}{2}}$.
7. $8 a^{3}+4 a^{\frac{2}{4}} b^{\frac{3}{4}}+5 a^{\frac{1}{4}} b^{\frac{2}{4}}+9 b^{\frac{3}{2}}$ by $2 a^{\frac{4}{2}}-3 b^{\frac{4}{2}}$.

Form the sfitare of each of the following expressions:
9. $x^{\frac{3}{3}}+a^{\frac{3}{3}}$.
1a. $x^{\frac{2}{3}}-a^{\frac{1}{3}}$.
11. $x^{\frac{2}{3}}+y^{\frac{2}{3}}$.
12. $a+b^{\frac{1}{2}}$.
13. $x^{\frac{1}{2}}-2 x^{\frac{2}{4}}+3$.
14. $2 x^{\frac{2}{7}}+3 x^{\frac{7}{4}}+4$.
15. $x^{\frac{1}{3}}-y^{\frac{1}{3}}+z^{\frac{1}{3}}$.
16. $x^{\frac{4}{4}}+2 y^{\frac{4}{4}}-z^{4}$

Divic

1. $x-$
2. $a-$
3. $x-$
4. $a+$
5. $x+$
6. $m-$
7. $b^{\frac{1}{3}}$
8. $x+$
9. $x-$
10. $m+$
11. $p-$
12. $2 x$.
13. $x+$
14. Ex. Divide $a-b$ by $\sqrt[4]{ } a-\sqrt[4]{ } b$.

Putting $a^{\frac{1}{2}}$ for $\sqrt[4]{ } a$, and $b^{\frac{1}{4}}$ for $\sqrt[4]{b}$, we proceed thuse.

$$
\begin{aligned}
& \left.a^{\frac{1}{4}}-b^{\frac{1}{4}}\right) a-b\left(a^{\frac{3}{4}}+a^{\frac{1}{2}} b^{\frac{1}{4}}+a^{\frac{1}{4}} b^{\frac{1}{2}}+b^{\frac{3}{2}}\right. \\
& \frac{a-a^{\frac{3}{4}} b^{\frac{1}{2}}}{a^{\frac{3}{4}} b^{\frac{1}{4}}-b} \\
& \frac{a^{\frac{3}{4}} b^{\frac{1}{4}}-a^{\frac{1}{2}} b^{\frac{1}{2}}}{a^{\frac{1}{2}} b^{\frac{1}{2}}-b} \\
& \frac{a^{\frac{1}{2}} b^{\frac{1}{2}}-a^{\frac{1}{4}} b^{\frac{a}{2}}}{a^{\frac{1}{4}} b^{\frac{3}{2}}-b} \\
& a^{\frac{1}{4}} b^{\frac{3}{2}}-b
\end{aligned}
$$

EXAMPLES.-CiV.

Divide

1. $x-y$ by $x^{\frac{1}{2}}-y^{\frac{1}{2}}$.
2. $x-81 y$ by $x^{\frac{1}{4}}-3 y^{t}$.
3. $a-b$ by $a^{\frac{1}{2}}+b^{\frac{1}{2}}$.
4. $81 a-16 b$ by $3 a^{\frac{1}{4}}-2 b^{\frac{3}{3}}$.
5. $x-y$ by $x^{\frac{1}{3}}-y^{\frac{1}{3}}$.
6. $a-x$ by $x^{\frac{1}{2}}+a^{\frac{2}{2}}$.
7. $a+b$ by $a^{\frac{1}{3}}+b^{\frac{1}{3}}$.
8. $m-243$ by $m^{\frac{1}{5}}-3$.
9. $x+$? by $x^{\frac{1}{3}}+y^{\frac{1}{5}}$.
II. $x+17 x^{\frac{1}{2}}+70$ by $x^{\frac{1}{2}}+7$.
10. $m-n$ by $n^{\frac{1}{6}}-n^{\frac{1}{b}}$.
11. $x^{\frac{2}{3}}+x^{\frac{1}{3}}-12$ by $x^{\frac{1}{3}}+3$
12. $b^{\frac{1}{3}}-3 b^{\frac{2}{6}}+3 b-b^{\frac{4}{3}}$ by $b^{\frac{1}{3}}-1$.
13. $x+y+z-3 x^{\frac{1}{3}} y^{\frac{1}{3}} z^{\frac{1}{3}}$ by $\tilde{a}^{2}+y^{\frac{1}{3}}+z^{\frac{1}{3}}$.
14. $x-5 x^{\frac{2}{3}}-46 x^{\frac{1}{3}}-40$ by $x^{\frac{1}{3}}+4$.
15. $m+m^{\frac{1}{2}} n^{\frac{1}{2}}+n$ by $m^{\frac{1}{2}}-m^{\frac{1}{4}} n^{\frac{1}{4}}+n^{\frac{1}{2}}$.
16. $p-4 p^{\frac{3}{4}}+6 p^{\frac{1}{2}}-4 p^{\frac{1}{4}}+1$ by $p^{\frac{1}{2}}-2 p^{\frac{1}{4}}+1$.
17. $2 x+x^{\frac{1}{2}} y^{\frac{1}{2}}-3 y-4 y^{\frac{1}{2}} z^{\frac{1}{2}}-x^{\frac{1}{2}} z^{\frac{1}{2}}-z$ by $9 x^{\frac{1}{2}}+3 y^{\frac{1}{2}}+z^{\frac{1}{2}}$.
18. $x+y$ by $x^{\frac{4}{3}}-x^{\frac{3}{5}} y^{\frac{1}{5}}+x^{\frac{2}{5}} y^{\frac{2}{5}}-x^{\frac{1}{5}} y^{\frac{3}{5}}+y^{\frac{4}{5}}$.
[s.A.]

Negative Indices.

280. Ex. Multiply $x^{-3}+x^{-2} y^{-1}+x^{-1} y^{-2}+y^{-3}$ by $x^{-1}-f^{-1}$.

$$
\begin{aligned}
& x^{-3}+x^{-9} y^{-1}+x^{-1} y^{-2}+y^{-3} \\
& x^{-1}-y^{-1} \\
& \frac{x^{-4}+x^{-3} y^{-1}+x^{-2} y^{-2}+x^{-1} y^{-3}}{} \\
& \frac{-x^{-3} y^{-1}-x^{-2} y^{-2}-x^{-1} y^{-3}-y^{-4}}{x^{-4}-y^{-4}}
\end{aligned}
$$

Di
1.
3.
5.
6.
7.
8.
9.
10.
288.
9. $4 x^{-3}+3 x^{-2}+2 x^{-1}+1$ by $x^{-2}-x^{-1}+1$.
10. $\frac{5}{2} x^{-2}+3 x^{-1}-\frac{7}{3}$ by $2 x^{-2}-x^{-1}-\frac{1}{2}$.
287. Ex. Divile $x^{2}+1+x^{-2}$ by $x-1+x^{-1}$.

$$
\begin{gathered}
\left.x-1+x^{-1}\right) \begin{array}{l}
x^{2}+1+x^{-2}\left(x+1+x^{-1}\right) \\
\frac{x^{2}-x+1}{x+x^{-2}} \\
\frac{x-1+x^{-1}}{1-x^{-1}+x^{-2}} \\
\\
\end{array},
\end{gathered}
$$

Note. - The order of the powers of a is

$$
=\ldots \ldots a^{3}, a^{2}, a^{1}, a^{0}, a^{-1}, a^{-2}, a^{-3} \ldots . a^{\top}
$$

a series which may be written thus

$$
\ldots \ldots a^{5}, a^{2}, a, 1, \frac{1}{a}, \frac{1}{a^{2}}, \frac{1}{a^{3}} \ldots \ldots
$$

EXAMPLES.-CVi.

Divide

1. $x^{2}-x^{-2}$ by $x+x^{-1}$.
2. $a^{2}-b^{-2}$ by $a-b^{-1}$.
3. $n^{3}+n^{-3}$ by $m+n^{-1}$.
4. $c^{5}-d^{-5}$ by $c-d^{-1}$.
5. $x^{2} y^{-2}+2+x^{-2} y^{2}$ by $x y^{-1}+x^{-1} y$.
6. $a^{-4}+a^{-2} b^{-2}+b^{-2}$ by $a^{-2}-a^{-1} b^{-1}+b^{-2}$.
7. $x^{3} y^{-3}-x^{-3} y^{3}-3 x y^{-1}+3 x^{-1} y$ by $x y^{-1}-x^{-1} y$.
8. $\frac{3 x^{-6}}{4}-4 x^{-4}+\frac{77 x^{-3}}{8}-\frac{43 x^{-2}}{4}-\frac{33 x^{-1}}{4}+27$

$$
\text { by } \frac{x^{-2}}{2}-x^{-1}+3
$$

9. $a^{3} b^{-3}+a^{-3} b^{3}$ by $a b^{-1}+a^{-1} b$.
10. $a^{-3}+b^{-3}+c^{-3}-3 a^{-1} b^{-1} c^{-1}$ by $a^{-1}+b^{-1}+\sigma^{-2}$.
11. To shew that $(a b)^{n}=a^{n} . b^{n}$.

$$
\begin{aligned}
(a b)^{n} & =a b \cdot a b \cdot a b \ldots \text { to } n \text { factors } \\
& =(a \cdot a \cdot a \ldots \text { to } n \text { factors }) \times(b \cdot b \cdot b \ldots \text { to } n \text { factors }) \\
& =a^{n} \cdot b^{n} .
\end{aligned}
$$

W: shall now give a scries of Examples to introduce the various forms of combination of indices explained in this Chapter.

EXAMPLES.-CVil.

1. Dividc $x^{\frac{4}{3}}-4 x y+4 x^{\frac{2}{3}} y+4 y^{2}$ by $x^{\frac{2}{3}}+2 x^{\frac{1}{2}} y^{\frac{1}{2}}+2 y$.
2. Simplify $\left\{\left(x^{5 a b}\right)^{3} \cdot\left(x^{6}\right)^{2}\right\}^{\frac{7}{3 a}=2}$. 3. Simplify $\left(x^{108} \cdot x^{18 a}\right)^{\frac{1}{3 a-2}}$.

4 Simplify $\left\{\frac{1}{x^{2}-a^{2}}-\frac{1}{x^{2}+a^{2}}-\frac{\frac{1}{x+a}-\frac{1}{x-a}}{\frac{x^{2}+a^{2}}{a}}\right\}^{\frac{1}{2}}$,
5. Multipl $\frac{7}{3} x^{-2}+4 x^{-1}-\frac{2}{7}$ by $3 x^{-2}-2 x^{-1}-\frac{1}{9}$.
6. Simplify $\frac{x^{a+b} \cdot x^{a-b} \cdot x^{-2 a}}{x^{a-a}}$. D. Divide $x^{2 n}-y^{2 n} b y x^{n}+y^{4 n}$,
8. Multiply $\left(a^{\frac{1}{2}}+b^{\frac{3}{5}}\right)^{3}$ by $a^{\frac{1}{2}}-b^{\frac{3}{3}}$.
9. Divide $a-b$ by $\sqrt[3]{a} a-\sqrt[8]{ } b$. \quad o. Prove that $\left(u^{2}\right)^{m}=(\cdots)$
11. If $\boldsymbol{a}^{\boldsymbol{m}^{n}}=\left(a^{m}\right)^{n}$, find m in terms of n.
12. Simplify $x^{a+b+c} \cdot x^{a+b-b} \cdot x^{a-b+c} \cdot x^{b+a-a}$.
13. Simplify $\left(\frac{x^{p+q}}{x^{q}}\right)^{p} \div\left(\frac{x^{q}}{x^{q}-p}\right)^{p-q}$.
14. Divide $4 a^{x}$ by $\frac{10}{6}$
15. Simplify $\left[\left\{\left(a^{-m}\right)^{-n} \mid n\right] \div\left[!\left(a^{m}\right)^{n}\right\}^{-r}\right]$.
16. Multiply $a^{m}+b^{p}-2 c^{n}$ by $2 l^{m}-3 b$.
17. Multiply $a^{m-n} b^{n-p}$ by $u^{n-m} b^{p-n} c$.
18. Shew that $\frac{a+\left(l 1^{n} \cdot(t)^{\frac{1}{3}}-\left(c^{2}-l\right)^{\frac{1}{3}}\right.}{a+b}=\frac{a^{\frac{1}{3}}}{a^{\frac{1}{3}}+b^{\frac{1}{3}}}$.
19. Multiply $x^{\frac{1}{3}}+x^{\frac{1}{6}}+1$ by $x^{\frac{1}{3}}-x^{\frac{1}{6}}+1$ and their product by $x^{\frac{2}{3}}-x^{2}+1$.
20. Multiply $a^{m}-b a^{m-1} x+c a^{m-2} x^{2}$ by $u^{n}+b c^{n-1} x-\cdots+x^{-2}$,
21. Divide $\left.x^{2(p(q-1)}-y^{7(p-1)}\right) \sqrt{x} x^{p(q-1)}+y^{q^{\prime} p-11}$.
22. Simplify $\left\{\left(a^{m}\right)^{m-n_{m}^{1}}\right\}^{\frac{1}{m}+1}$.
23. Multiply $x^{3 r}+x^{2 r} y^{p}+x^{r} y^{2 p}+y^{3 p}$ by $x^{p}-?^{n}$
24. Write down the values of $625^{\frac{1}{4}}$ and : : c ,
25. Multi्1ly $x^{(n-1) n}-y^{(n-1) m}$ by $x^{n}-y^{m m}$.
26. Multiply $x^{3}+2 x^{\frac{1}{2}}-1$ by $x^{\frac{1}{4}}-2 x^{-\frac{7}{2}}$.

wine Gid SURES.

289. All numbers which we cannot exacuy determino, because they are not multiples of a Prinary or Subordinate Unit, are called Surds.
290. We slatil confine our attention to those Surds which miginate in the Extraction of roots where the results camot beexhibited as whole or firational mumbers.

For example, if we perform the operation of extracting the s fate root of 2 , we obtain $1 \cdot 4142$..., and though we may carry on the process to any recquired extent, we shall never be able to stop at any particular point and to say that we have found the exact number which is equivalent to the Square lioot of 2 .
291. We can approximate to the real value of a surd by finding two numbers between waich it lies, diflering from each other by a fraction as small as we please.

Thus, since $\sqrt{ } 2=1 \cdot 4142 \ldots \ldots$
$\sqrt{ } 2$ lies between $\frac{14}{10}$ and $\frac{15}{10}$, which diffe by $\frac{1}{10}$;
also between $\frac{141}{100}$ and $\frac{142}{100}$, which d fier by $\frac{1}{100}$;
also between $\frac{1414}{1000}$ and $\frac{1415}{1000}$, which difier by $\frac{1}{1000}$.
And, generally, if we find the square : ont of 2 to n places of decimals, we shall find two numbers botween which $\sqrt{ } 2$ lies. differing from cach other by the fraction $\frac{1}{0^{*}}$.
292. Next, we can nlways find a fraction differing from the reai value of a surd by less than any assigned quantity.

For example, suppose it required to find a fraction differing from $\sqrt{ } 2$ by less than $\frac{1}{12}$.

Now 2(12)2, that is 288 , lies between (16$)^{2}$ and (17) ${ }^{3}$,
$\therefore 2$ lies between $\left(\frac{16}{12}\right)^{2}$ and $\left(\frac{17}{12}\right)^{2}$;
$\therefore \sqrt{2}$ lies between $\frac{16}{12}$ and $\frac{17}{12}$;
$\therefore \sqrt{2}$ differs from $\frac{16}{12}$ by less than $\frac{1}{12}$.
203. Şurds, though they cannot be expressed by whole or fractional numbers, are nevertheless numbers of which we may form an approximate idea, and we may make three assertions respecting them.
(1) Surds nay be compared so far as asserting that one is greater or less then mother. Thus $\sqrt{ } 3$ is clearly greater than $\sqrt{2}$, and $\sqrt[8]{9}$ is greater than $\sqrt[8]{8}$.
(2) Surds may be multiples of other surls: thus $2 \sqrt{ } 2$ is the double of $\sqrt{2}$.
(3) Surds, when multiplied together, may produce as a result a whe's or fractional number: thus
and

$$
\begin{gathered}
\sqrt{2} \times \sqrt{2}=2 \\
\sqrt[8]{\frac{3}{4}} \times \sqrt[8]{\frac{3}{4}} \times \sqrt[8]{\frac{3}{4}}=\frac{3}{4}
\end{gathered}
$$

204. The symbols $\sqrt{ } a, \sqrt{3}^{3} a, \sqrt{1}^{4} a, \sqrt{n}^{n}(a$, in casce where the accond, third, fourth, and $n^{\text {th }}$ roots respectively of a camot be exhibited as whole or fractional numbers, will represent surda of the second, third, fourth, and $n^{\text {th }}$ order.

These symbols we may, in accolduce with the pincipies laid down in Chapter XXIII., replace by $a^{\frac{1}{2}}, a^{\frac{1}{3}}, a^{\frac{1}{2}}, a^{\frac{1}{1}}$.
rom the 1 differ-
hole or we may sertion
ane is ter than
295. Suris of the same order are those for which the rootsymbol or surd-index is the same.

Thus $\sqrt{ } a, 3 \sqrt{ }(3 b), 4 \sqrt{ }(m n), r^{\frac{1}{2}}$ are surds of the same order.
Lifie surls are those in which the same root-symbol or surdindex appears over the same quantity.

Thus $2 \sqrt{ } a, 3 \sqrt{ } a, 4 a^{\frac{1}{2}}$ are like surds.
296. A whole or fractional mumber may be expressed in the form of a surn, by mising the number to the powerdenoted by the order of the surd, and phacing the result mader the symbol of evolution that corrusponds to the surd-index.

Thus

$$
\begin{aligned}
& a=\sqrt{a^{2}} \\
& \frac{b}{c}=\sqrt[3]{b^{3}}
\end{aligned}
$$

207. Surds of different orders may be transformed into surds of the same order by reducing the surd-indices to fractions with the same denominator.

Thus we may transform $\sqrt[8]{x}$ and $\sqrt[4]{y}$ into surds of the same orler, for
and

$$
\begin{aligned}
& \sqrt[2]{x}=x^{\frac{1}{3}}=x^{\frac{4}{1_{2}^{2}}}=\sqrt[12]{\sqrt{4}}, \\
& \sqrt[1]{ } y=y^{\frac{1}{4}}=y^{\frac{3}{12}}=\sqrt[19]{\sqrt[10]{3}},
\end{aligned}
$$

and thus both surds are transformed into surds of the twelith order.

EXAMPLES.-cviil.

Transform into Surds of the same order:

1. $\sqrt{ } x$ and $\sqrt[8]{1 / y}$. 2. $\sqrt[3]{4}$ and $\sqrt[8 / 2]{2}$. 3. $\sqrt{ }(18)$ and $\sqrt[8]{ } /(50)$.
2. $\sqrt[m]{2}$ and $\sqrt[n]{2}$.
3. $\sqrt[m]{ } / a$ and $\sqrt[n]{ } b$.
4. $\sqrt[3]{\sqrt{2}}(a+b)$ and $\sqrt{ }(a-b)$.
5. If a whole or fractional number be multiplied into a surd, the product will be represented by phacing the multiphivi and the multiplicand side by side with no sign, or with ad.
(.) between thein.

Thus the product of 3 and $\sqrt{ } / 2$ is representer by $3 \sqrt{2} / 3$,
....................... of 4 and $5 \sqrt{ } 2$.................. ly $20 \sqrt{ } 2$, of a and $\sqrt{ } c \ldots$. by $a N^{\prime} c$.
290. Like surls may be combined by the ordinary processes of addition and subtraction, that is, by adding the coefficients of the surd and placing the result as a coeflicient of the surd.

Thus

$$
\begin{gathered}
\sqrt{ } a+\sqrt{ } a=2 \sqrt{ } a, \\
5 \sqrt{ } b-3 \sqrt{ } b=2 \sqrt{ } b, \\
x \sqrt{ } c-\sqrt{ } c=(x-1) \sqrt{ } a
\end{gathered}
$$

A
300. We now proceed to prove a Theorem of great importance, which may be thus stated.

The root of any expression is the same as the product of the 'roots of the separate fuciors of the expression, that is

$$
\begin{aligned}
& { }^{\prime} V^{\prime}(a l)=\sqrt{ } a \cdot \sqrt{ } b, \\
& \sqrt[8]{2}(x y / z)=\sqrt[3]{x} \cdot \dot{j} y \cdot \sqrt[8]{n} \\
& N^{n}(p q r)=N^{n} p \cdot N^{\prime} q \cdot \sqrt[n]{ }
\end{aligned}
$$

We hare in fact to shew from the Theory of Indices that

$$
(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} \cdot b^{\frac{1}{n}} .
$$

Now

$$
\left\{(a b)^{\frac{1}{n}}\right\}^{n}=(a b)^{\frac{n}{n}}=a b,
$$

and

$$
\begin{gathered}
\left\{a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}\right\}^{n}=\left(a^{\frac{1}{n}}\right)^{n} \cdot\left(b^{\frac{1}{n}}\right)^{n}=a^{\frac{n}{n}} \cdot b^{\frac{n}{n}}=a \cdot b ; \\
\therefore\left\{(a l)^{\frac{1}{n}}\right\}^{n}=\left\{a ^ { \frac { 1 } { n } } \cdot b ^ { \frac { 1 } { n } } \left\{^{n} ;\right.\right. \\
\therefore(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} \cdot b^{\frac{1}{n}} .
\end{gathered}
$$

301. We can sometimes reluce an expression in the form of a surd to an equivalent expression with a whole or fractional number as one factor.

Thus

$$
\begin{aligned}
& \lambda^{\prime}(72)=\lambda^{\prime}(36 \times 2)=\sqrt{ }(36) \cdot \sqrt{2}=6 \sqrt{2}, \\
& \sqrt[3]{ }(12 S)=\sqrt[N]{N}(04 \times 2)=\sqrt[2]{2}(64) \cdot N_{1 / 2}^{2}=4 \frac{3 / 2}{2} \text {, } \\
& \sqrt[n]{ }\left(a^{n} x\right)=\sqrt[n]{a^{n}} \cdot \sqrt[n]{x}=a \cdot \sqrt[n]{x_{0}}
\end{aligned}
$$

EXAMPLES.-ciX.

Reduce to equivalent expressions with a whole or fractional number as one factor:

1. $\sqrt{ }(24)$.
2. $\sqrt{ }(50)$.
3. $\sqrt{ }\left(4 a^{3}\right)$.
4. $\sqrt{ }\left(125 a^{4} d^{3}\right)$.
5. $\sqrt{ }\left(32 y z^{3}\right)$.
6. $\sqrt{ }(1000 a)$.
7. $\sqrt{ }\left(720 c^{2}\right)$.
8. 7. $\sqrt{ }(39 C x)$
1. $\quad 18 \cdot \sqrt{\left(\frac{5}{27} x^{3}\right) .}$
ㅇ. $a \cdot \sqrt{\frac{a^{3}}{b}}$.
2. $\sqrt{ }\left(x^{3}-2 x^{2} y+x y^{2}\right)$.
3. $\wedge^{\prime}\left(c^{3}+2 c^{2} x+a x^{2}\right)$.
4. $\quad ~\left(63 c^{4} y-42 c^{2} y^{2}+7 y^{2}\right)$.
5. $\sqrt{ }\left(50 a^{2}-100 a b+50 b^{2}\right)$.
6. $\quad 8 /\left(160 x^{4} y^{\prime}\right)$.
7. $\left.\sqrt[3]{(5)} 44^{6} b^{2}\right)$.
8. $\lambda^{3}\left(1372 a^{15} b^{16}\right)$.
9. $\quad \sqrt[\pi]{ }\left(108 m^{0} u^{10}\right)$.
10. $\sqrt[3]{ }\left(a^{4}-3 a^{3} b+3 c^{2} b^{2}-a b^{3}\right)$
11. An expression containing two factors, one a sard, the other Ω whole or fractional mumber, as $3 \sqrt{2}, a \sqrt[3]{x}$, may be transformed into a complete surd.

Thus

$$
\begin{aligned}
& 3 \sqrt{3}=\left(3^{3}\right)^{\frac{1}{2}} \cdot \sqrt{2}=\sqrt{\prime} 9 \cdot \sqrt{ } 3=\sqrt{\prime}(13) \\
& n^{8 \cdot} x=\left(a^{3}\right)^{\frac{1}{3}} \cdot \sqrt[8]{2} x=\sqrt[8]{ } u^{3} \cdot \sqrt[3]{ } x=\sqrt[3]{ }\left(a^{3} x\right) .
\end{aligned}
$$

ExAmples.-cx.

Reduce to romplete Surls :

1. $4 \sqrt{ } 3$.
2. $3 \sqrt{ } 7$.
3. $5 \sqrt{2}$
4. $2 \sqrt[4]{6}$.
5. $3 \sqrt[18]{\frac{13}{7}}$.
6. $3 \wedge^{\prime}$ is
7. $4 a \sqrt{ }(3 x)$.
8. $(m+n) \cdot \sqrt{\left(\frac{m-n}{m+n}\right)}$. 10. $\quad(a+b)\left(\frac{1}{a^{2}-b^{2}}\right)^{\frac{1}{2}}$.
9. $\left(\frac{x-y}{x+y}\right) \cdot\left(\frac{x^{2}+x y}{x^{2}-2 x y+y^{2}}\right)^{\frac{1}{2}}$.
10. Surls may be compared by transforming them inte surds of the same order. Thus if it be required to determine whether $\sqrt{2}$ be greater or less than $\sqrt[3]{ } 3$, we proceed thus:

$$
\begin{aligned}
& \sqrt{ } 2=2^{\frac{3}{3}}=2^{8}=\sqrt[8]{2} 2^{3}=\sqrt[4]{8} \text {, } \\
& \sqrt[8]{3}=3^{\frac{1}{3}}=3^{2}=\sqrt[4]{3^{2}}=\sqrt[2]{9} .
\end{aligned}
$$

And since $\sqrt[j]{ } 9$ is grenter than $\sqrt[18]{ } 8$, $\sqrt[3]{3}$ is greater than $\sqrt{ } 2$.

EXAMPLES.-cXI.

Arrange in orice of magnitude the following Surds:

1. $\sqrt{3}$ and $\sqrt[3]{ }$.
2. $\sqrt{10^{\prime}} \mathrm{mml} \sqrt[8]{15}$.
3. $2 \sqrt{ } 3$ and $3 \sqrt{\prime} 2$.
4. $\sqrt{\frac{3}{5}}$ and $\sqrt[3]{\left(\frac{14}{15}\right) \text {. }}$
5. $3 \sqrt{7}$ and 4×2.8
6. $2 \sqrt{ } 87$ and $3 \sqrt{ } 33$.
7. $2 \sqrt[3]{22}, 3 \sqrt[3]{7}$ and $4 \sqrt{ } / 2$.
8. $3 \sqrt{ } 19,5 \sqrt[8]{ } 18$ and $3 \sqrt[8]{3} 82$
9. $2 \sqrt[3]{3} 14,5 \sqrt[3]{2}$ and $3 \sqrt[3]{3}$.
10. $\frac{1}{2} \sqrt{2}, \frac{1}{3} \sqrt{3}$ and $\frac{1}{4} \sqrt{\prime} 4$.
11. The following are examples in the application of the rules of Adlition, Sultraction, Mlultiplication, and Division to Surds of the same order.
12. Find the sum of $\sqrt{ } 18, \sqrt{ } 188$, and $\sqrt{ } 32$.

$$
\begin{aligned}
\sqrt{ }(1 S)+\sqrt{\prime}^{\prime}(12 S)+\sqrt{ }(32) & =\sqrt{\prime}^{\prime}(9 \times 2)+\sqrt{ }(64 \times 2)+\downarrow^{\prime}(16 \times 2) \\
& =3 \sqrt{ } 2+8 \sqrt{ } 2+4 \sqrt{ } 2 \\
& =15 \sqrt{ } 2 .
\end{aligned}
$$

2. Trom $3 \sqrt{ }(75)$ take $4 \sqrt{ }(12)$.

$$
\begin{aligned}
3 \sqrt{ }((5)-4 \sqrt{\prime}(19) & =3 \sqrt{ }(25 \times 3)-4 \sqrt{ }(4 \times 3) \\
& =3.5 \cdot \sqrt{3}-4.2 \cdot \sqrt{ } 3 \\
& =15 \sqrt{ } 3-3 \sqrt{ } 3 \\
& =7 \sqrt{ } 3 .
\end{aligned}
$$

3. Multiply $\sqrt{ } 8$ by $\sqrt{ }(12)$.

$$
\begin{aligned}
\sqrt{ } 8 \times \sqrt{ }(12) & =\sqrt{ }(8 \times 12) \\
& =\sqrt{ }(96) \\
& =\sqrt{ }(16 \times 6) \\
& =4 \sqrt{ } 6 .
\end{aligned}
$$

4. Divide $\sqrt{ } 32$ by $\sqrt{ } 18$.

$$
\frac{\sqrt{2}^{\prime}(32)}{\sqrt{(18)}}=\frac{\sqrt{ }^{\prime}(10 \times 2)}{\sqrt{ }(9 \times 2)}=\frac{4 \sqrt{ } 2}{3 \sqrt{ } 2}=\frac{1}{2} .
$$

EXAMPLES.-cxil.

Simplify

1. $\sqrt{ }(27)+2 \sqrt{ }(48)+3 \sqrt{ }(108)$ II. $\sqrt{ } 6 \times \sqrt{ } 8$.
2. $3 \sqrt{ }(1000)+4 \sqrt{ }(50)+12 \sqrt{ }(2 S 8)$. 12. $\sqrt{\prime}(14) \times \sqrt{\prime}(20)$.
3. $\left.a \sqrt{ }\left(a^{0} x\right)+b \sqrt{ }\left(b^{2} x\right)+c \sqrt{ }{ }^{\prime} c^{2} x\right)$. 13. $\sqrt{ }(50) \times J^{\prime}(200)$.
4. $\sqrt[\exists]{ }(128)+\sqrt[8]{\prime}(686)+\sqrt[3]{\sqrt{2}}(16)$.

1+. $\left.\sqrt[3]{ }\left(3 a^{2} l\right) \times \sqrt[3]{(9 a b}\right)$.
5. $7 \sqrt[3]{(5-1)}+3 \sqrt[3]{(16)}+\sqrt[3]{(432)}$.
15. $\quad \sqrt[2]{ }(12 a b) \times \sqrt{3}^{3}\left(8 a^{2} b^{3}\right)$.
6. $\sqrt{ }(90)-\sqrt{(54)}$.
16. $\sqrt{ }(12) \div \sqrt{ } 3$.
7. $\sqrt{ }(243)-\sqrt{ }(48)$.
17. $\sqrt{ }(18) \div \lambda^{\prime}(50)$.
8. $12 \sqrt{ }(72)-3 \sqrt{ }(128)$.
18. $\sqrt[2]{1}\left(a^{2} b\right) \div \sqrt{2}^{8 /\left(a b^{2}\right)}$.
9. $5 \sqrt[3]{ }(16)-2 \sqrt[2]{\sqrt{2}(54)}$.
19. $\boldsymbol{1}^{1}\left(a^{3} b\right) \div i^{1}\left(a b^{3}\right)$.
10. $7 \sqrt[2]{ }(81)-3 \sqrt[3]{(1020) . \quad 20 .} \sqrt{ }\left(x^{2}+x^{3} y\right) \div \sqrt{ }\left(x+2 x^{2} y+x^{3} y^{\prime \prime}\right)$.
305. We now proceel to treat of the Multiplication of Compound Surds, an ojecration which will be frequently required in a later part of the subject.

The Student must bear in mind the two following Rules:
Rule I. $\sqrt{\prime}^{\prime}\left(a \times \sqrt{ } b=\boldsymbol{V}^{\prime}(a b)\right.$,
Rule II. $\stackrel{N}{ } / a \times \sqrt{\prime} a=a$,
which will be true for all values of a and 3

EXAMPLES.-CXiii.

Multiply

1. $\sqrt{ } x$ by $\sqrt{ } y$.
2. \sqrt{x} by $-\sqrt{x}$.
3. $\sqrt{ }(x-y)$ by $\sqrt{ } y$.
4. $\sqrt{ }(x-1)$ by $-\sqrt{\prime}^{\prime}(x-1)$.
5. $\sqrt{ }(x+y)$ by $\sqrt{\prime}(x+y)$.
6. $3 \sqrt{\prime} x$ hy $-4 \sqrt{ } x$.
7. $\sqrt{ }(x-y)$ by $\sqrt{ }(x+y)$.
8. $-2 \sqrt{ } / a$ by $-3 \sqrt{ }$.
9. $6 \sqrt{ } x b_{y j} 3 \sqrt{ } x$.
10. $\sqrt{ }(x-7)$ by $-\sqrt{ } x$.
11. $7 \sqrt{ }(x+1)$ by $8 \sqrt{ }(x+1)$.
12. $-2 \sqrt{ }(x+7)$ by $-2 \sqrt{ }$ d.
13. $10 \sqrt{ } x$ by $9 \sqrt{ }(x-1)$.
14. $-4 \sqrt{ }\left(u^{2}-1\right)$ by $-2 \sqrt{ }\left(u^{2}-1\right)$.
15. $\sqrt{ }(3 x) b y \sqrt{ }(4 x)$. 16. $2 \sqrt{ }\left(a^{2}-2 a+3\right)$ by $-3 \sqrt{ }\left(a^{2}-2 a+3\right)$.
16. The following Examples will illustrate the way of proceeding in forming the products of Compound Surds.

Ex. 1. To multiply $\sqrt{ } x+3$ by $\sqrt{ } x+2$.

$$
\begin{aligned}
& \begin{array}{l}
\sqrt{x}+3 \\
\sqrt{x+2} \\
x+3 \sqrt{ } x \\
+2 \sqrt{x+6} \\
x+5 \sqrt{x+6}
\end{array}
\end{aligned}
$$

Ex. 2. To multiply $4 \sqrt{ } x+3 \sqrt{ } y$ by $\pm \sqrt{ } x-3 \sqrt{y}$

$$
\begin{aligned}
& 4 \sqrt{ } x+3 \sqrt{ } y \\
& 4 \sqrt{ } x-3 \sqrt{ } y \\
& \hline 16 x+12 \sqrt{ }(x y) \\
& \frac{-12 \sqrt{ }(x y)-9 y}{16 x-9 y} \\
& \hline
\end{aligned}
$$

Ex. 3. To form the square of $\sqrt{ }(x-7)-\sqrt{\text { dit }}$

$$
\begin{aligned}
& \sqrt{ }(x-7)-\sqrt{ } x \\
& \frac{\lambda^{\prime}(x-7)-\sqrt{ } x}{2 x-7-\sqrt{\left(x^{2}-7 x\right)}} \\
& \frac{-\sqrt{ }\left(x^{2}-7 x\right)+8}{2 x-7-2 \sqrt{ }\left(x^{2}-7 x\right)}
\end{aligned}
$$

EXAMPLES.-CXIV.

Multiply

I. $\sqrt{x+7}$ by $\sqrt{x+2}$.
2. $\sqrt{x}-5$ by $\sqrt{ } x+2$
3. $\sqrt{ }(a+9)+3$ by $\sqrt{ }(a+9)-3$.
4. $\sqrt{ }(a-4)-7$ by $\sqrt{ }(a-4)+7$.
5. $3 \sqrt{ } x-7$ by $\sqrt{ } x+4$.
6. $2 \sqrt{ }(x-5)+4$ by $3 \sqrt{ }(x-5)-6$.
7. $\sqrt{ }(6+x)+\sqrt{ } x$ by $\sqrt{ }(6+x)-\sqrt{ } x$.
8. $\sqrt{ }(3 x+1)+\sqrt{ }(2 x-1)$ by $\sqrt{ } 3 x-\sqrt{ }(2 x-1)$.
9. $\sqrt{ } a+\sqrt{ }(a-x)$ by $\sqrt{ } x-\sqrt{ }(a-x)$.
10. $\sqrt{ }(3+x)+\sqrt{ } x$ by $\sqrt{ }(3+x)$.
II. $\sqrt{ } x+\sqrt{ } y+\sqrt{ } z$ by $\sqrt{ } x-\sqrt{ } y+\sqrt{ }$.
12. $\sqrt{ } a+\sqrt{ }(a-x)+\sqrt{ } x$ by $\sqrt{ } a-\sqrt{ }(a-x)+\sqrt{ }$ so

Form the squares of the following expressions:
13. $21+\sqrt{ }\left(x^{2}-9\right)$.
17. $2 \sqrt{ } x-3$.

I4. $\sqrt{ }(x+3)+\sqrt{ }(x+8)$.
18. $\sqrt{ }(x+y)-\sqrt{ }(x-y)$.
15. $\sqrt{ } x+\sqrt{ }(x-4)$.
19. $\sqrt{ } x \cdot \sqrt{ }(x+1)-\sqrt{ }(x-1)$.
16. $\sqrt{ }(x-6)+\sqrt{ } x$.
307. We may now extend the Theorem explained in Art. 101. We there shewed how to resolve expressions of the form

$$
a^{3}-b^{2}
$$

into factors, restricting our observations to the case of perfect squares.

The Theorem extends to the difference between any two quantities.

Thus

$$
\begin{aligned}
a-b & =(\sqrt{ } a+\sqrt{ } b)(\sqrt{ } a-\sqrt{ } b) \\
=3 & =(x+\sqrt{\prime} y)(x-\sqrt{y}) \\
1 & -x
\end{aligned}=(1+\sqrt{x})(1-\sqrt{x}) .
$$

303. Hence we can always find a multiplier which will free from surds an expression of any of the four forms

$$
\begin{array}{llll}
\text { 1. } a+\sqrt{ } b & \text { or } & 2 . & \sqrt{ } a+\sqrt{ } b, \\
\text { 3. } & a-\sqrt{ } b & \text { or } & 4 \\
\sqrt{ } a-\sqrt{ } b .
\end{array}
$$

For since the first and thirel of these expressions give as a product $a^{2}-b$, which is free from surds, and since the sccond and fourth give as a product $a-b$, which is free from purds, it follows that the required multiplier may be in all cases found.

Ex. 1. To find the multiplier which will free from surds each of the following expressious:
I. $5+\sqrt{ } 3$.
2. $\sqrt{6}+\sqrt{5}$.
3. $2-\sqrt{ } 5$.
4. $\sqrt{7}-\sqrt{2}^{2}$

The multipliers will be
J. $5-\sqrt{ } 3$.
2. $\sqrt{ } 6-\sqrt{5}$.
3. $2+\sqrt{ } 5$.
$4 \sqrt{7}+\sqrt{2}$
the products will be

1. $25-3$.
2. 6-5.
3. 4-5.
4. 7-2.

That is, 22, 1, -1 , and 5 .
Ex. 2. To reduce the fraction $\frac{a}{b-\sqrt{ } c}$ to an equivalent fraction with a denominator free from surds.

Multiply both terms of the fraction by $b+\sqrt{ } c$, and it becomes

$$
\frac{a b+a \sqrt{ } c}{b^{2}-c}
$$

which is in the required form.

EXAMPLES.-CXV.

Express in factors:
I. $c-d$.
2. $c^{2}-d$.
3. $c-d^{2}$.
4. $1-y$.
5. $1-3 x^{2}$.
6. $5 m^{2}-1$.
7. $4 \bar{x}^{2}-3 \vec{x}$
8. $9-8 ヶ$
9. $11 n^{2}-19$
10. $p^{2}-4 r$.
11. $p-3 q^{2}$.
12. $a^{2 m}-b^{n}$.

Reduce the following fractions to equivalent fractions with denominators frec from surds.
13. $\frac{1}{a-\sqrt{ } b^{\prime}}$
14. $\frac{\sqrt{\prime a}}{\sqrt{ } a-\sqrt{b}}$.
15. $\frac{4+3 \sqrt{ } 8}{3-2 \sqrt{8}}$
16. $\frac{2}{2-\sqrt{2}}$.
17. $\frac{\sqrt{ } 3}{2-\sqrt{3}}$.
18. $\frac{2-\sqrt{2}}{2+\sqrt{2}}$.
19. $\frac{\sqrt{ } a+\sqrt{ } x}{\sqrt{a-\sqrt{x}}}$
20. $\frac{1+\sqrt{x}}{1-\sqrt{x}}$.
21. $\frac{\sqrt{ }(a+x)+\sqrt{ }(a-x)}{\sqrt{ }(a+x)-\sqrt{ }(a-x)}$.
22. $\begin{aligned} & \sqrt{ }\left(m^{2}+1\right)-\sqrt{ }\left(m^{2}-1\right) \\ & \sqrt{ }\left(m^{2}+1\right)+\sqrt{ }\left(m^{2}-1\right)\end{aligned}$
23. $\frac{a+\sqrt{ }\left(a^{2}-1\right)}{a-\sqrt{\left(a^{2}-1\right)}}$.
24. $\frac{a+\sqrt{ }\left(a^{2}-x^{2}\right)}{a-\sqrt{ }\left(a^{2}-x^{2}\right)^{.}}$
309. The squares of all numbers, negative as well as positive, are positive.

Since there is no assignable number the square of which would be a negative quantity, we conclude that an expression which appears under the form $\sqrt{ }\left(-a^{2}\right)$ represents an impossible quantity.
310. All impossible square roots may be reduced to ono common form, thus

$$
\begin{aligned}
& \sqrt{ }\left(-a^{2}\right)=\sqrt{ }\left\{a^{2} \times(-1)\right\}=\sqrt{ } a^{2} \cdot \sqrt{ }(-1)=a \cdot \sqrt{ }(-1) \\
& \sqrt{ }(-x)=\sqrt{ }\{x \times(-1)\}=\sqrt{ } x \cdot \sqrt{ }(-1)
\end{aligned}
$$

Where, since a and $\sqrt{ } x$ are possible numbers, the whole impossibility of the expressions is reduced to the appearance of $\sqrt{ }(-1)$ as a factor.
311. Def. By $\sqrt{ }(-1)$ we understand an expression which when multiplied by itself produces -1 .

Therefore
$\{\sqrt{ }(-1)\}^{2}=-1$,
$\{\sqrt{ }(-1)\}^{3}=\{\sqrt{ }(-1)\}^{2} \cdot \sqrt{ }(-1)=(-1) \cdot N(-1)=-\sqrt{ }(-1)$,
$\{\sqrt{ }(-1)\}^{4}=\{\sqrt{ }(-1)\}^{2} \cdot\{\sqrt{ }(-1)\}^{2}=(-1) \cdot(-1)=1$,
and 80 on .

EXAMPLES.-CXV1.

Multiply

1. $4+\sqrt{ }(-3)$ by $4-\sqrt{ }(-3)$.
2. $\sqrt{ } 3-2 \sqrt{ }(-2)$ by $\sqrt{ } 3+2 \sqrt{ }(-2)$.
3. $4 \sqrt{ }(-2)-2 \sqrt{ } 2$ by $\frac{1}{2} \sqrt{ }(-2)-3 \sqrt{ } 2$.
4. $\sqrt{ }(-2)+\sqrt{ }(-3)+\sqrt{ }(-4)$ by $\sqrt{ }(-2)-\sqrt{ }(-3)-\sqrt{ }(-4)$.
5. $3 \sqrt{ }(-a)+\sqrt{ }(-b)$ by $4 \sqrt{ }(-a) \cdots 2 \sqrt{ }(-b)$.
6. $a+\sqrt{ }(-a)$ by $a-\sqrt{ }(-a)$.
7. $a \sqrt{ }(-a)+b \sqrt{ }(-b)$ by $a \sqrt{ }(-a)-b \sqrt{ }(-b)$.
8. $a+\beta \sqrt{ }(-1)$ by $a-\beta \sqrt{ }(-1)$.
9. $1-\sqrt{ }\left(1-e^{2}\right)$ by $1+\sqrt{ }\left(1-e^{2}\right)$.
10. $N(-1)+e^{-p V(-1)}$ by $e^{p V(-1)}-e^{-p V(-1)}$.
11. We shall now give a few Miscellancous Examples to illustrate the principles explained in this Chapter.

EXAMPLES.-CXVIL.

1. Simplify $\frac{\sqrt{ } x+\sqrt{ } y}{3 \sqrt{y}}-\frac{\sqrt{ } x-\sqrt{ } y}{3 \sqrt{x}}$.
2. Prove that $\{1+\sqrt{ }(-1)\}^{2}+\{1-\sqrt{ }(-1)\}^{2}=0$.
3. Simplify $\frac{\sqrt{ } x+\sqrt{ } y}{2 \sqrt{ } x}+\frac{\sqrt{x-\sqrt{ } y}}{2 \sqrt{y}}$.

4 Prove that $\{1+\sqrt{ }(-1)\}^{2}-\{1-\sqrt{ }(-1)\}^{2}=\sqrt{ }(-16)$.
5. Divide $x^{4}+a^{4}$ by $x^{2}+\sqrt{ } 2 a x+a^{2}$.
6. Divide $m^{4}+n^{4}$ by $m^{2}-\sqrt{2} m n+n^{2}$.
7. Simplify $\sqrt{ }\left(x^{3}+2 x^{2} y+x y^{2}\right)+\sqrt{ }\left(x^{3}-2 x^{2} y+x y^{2}\right)$.
8. Simplify $\frac{a-b}{\sqrt{a-\sqrt{b}}}-\frac{a+b}{\sqrt{a+\sqrt{b}}}$, and verify by putting $a=9$ and $b=4$.
9. Find the square of $a \sqrt{\frac{c}{b}}-\sqrt{ }(c d)$.
10. Find the square of $a \sqrt{2}^{2}-\frac{1}{a \sqrt{2}}$
11. Simplify
12. Simplify $\frac{\sqrt{ }(1-x)+\frac{1}{\sqrt{(1+x})}}{1+\frac{1}{\sqrt{\left(1-x^{2}\right)}}}$.
13. Simplify $\frac{x-1}{x+1}\left\{\frac{x-1}{\sqrt{x-1}}+\frac{1-x}{x+\sqrt{x}}\right\}$.

15. Form the square of $\sqrt{ }(x+a)-\sqrt{ }(x-a)$.
16. Multiply $\sqrt[m]{ }\left(a^{2 n-n} b^{s m+1} c^{3 p}\right)$ by $\left.\sqrt[m]{(} a^{n} b^{m-1} c^{m-3 p}\right)$.
17. Raise to the $5^{\text {th }}$ power $-1-a \sqrt{ }(-1)$.
18. Simplify $\sqrt[8]{(81)}-\sqrt[8]{(}-512)+\sqrt[3]{(192)}$.

21. Simplify $\left.2(n-1) \sqrt[8]{\left(-\frac{1}{2 n^{4}-6 n^{3}+6 n^{2}-2 n}\right.}\right)$.
22. Simplify $2(n-1) \sqrt{ }(63)+\frac{1}{3} \sqrt{ }(112)-\frac{\sqrt{ }\left(28 n^{4}\right)}{n^{2}}$

$$
+N^{\prime}\left\{175(n-1)^{2} c^{2}\right\} \times \frac{2}{3 c}-2 \sqrt{\left(\frac{7 n^{2}}{36}\right)}
$$

23. What is the difference between

$$
\begin{gathered}
\sqrt{ }\{17-\sqrt{ }(33)\} \times \sqrt{ }\{17+\sqrt{ }(33)\} \\
\sqrt[3]{\{65}+\sqrt{ }(129)\} \times \sqrt[3]{ }\{65-\sqrt{ }(129)\} ?
\end{gathered}
$$

and

Co. A

313. We have now to treat of the method of finding the Square Ront of a Dinomial Surd; that is, of an expression of one of the following forms:

$$
m+\sqrt{ } n, m-\sqrt{ } n
$$

where m stands for a whole or fractional number, and $\sqrt{ } n$ for a surd of the second orter.
314. We have first to prove inio Theorems.

Theorem I. If $\sqrt{ } a=m+\sqrt{ } n, m$ must be zero.
Squaring both sides,

$$
\begin{aligned}
a & =m^{2}+2 m \sqrt{ } n+n ; \\
\therefore 2 m \sqrt{ } n & =a-m^{2}-n ; \\
\therefore \sqrt{ } n & =\frac{a-m^{2}-n}{2 m} ;
\end{aligned}
$$

that is, $\sqrt{ } n, \Omega$ surd, is cqual to a whole or feacional number, which is impossible.

Hence the assumed equality can never hold unless $m=0$, in which case $\sqrt{ } a=\sqrt{ } n$.

Theorem II. If $b+\sqrt{ } a=m+\sqrt{ } n$, then must $b=m$, and $\checkmark \quad a=\sqrt{ } \cdot n$.
For, if not, let $\quad b=n+x$.
Then
or

$$
\begin{gathered}
m+x+\sqrt{ } a=m+\sqrt{ } n \\
x+\sqrt{ } a=\sqrt{ } n ;
\end{gathered}
$$

which, by Theorem I., is impossible unless $x=0$, in whish case $b=m$ and $\sqrt{ } a=\sqrt{ } n$.
315. To find the Square Noot of $a+\sqrt{b}$.

Assume

$$
\begin{array}{r}
\sqrt{ }(a+\sqrt{ } b)=\sqrt{ } x+\sqrt{ } y \\
a+\sqrt{ } b=x+2 \sqrt{ }(x y)+y
\end{array}
$$

Shen

$$
\therefore x+y=a \text {. }
$$

inom which we have to fud x and y.

$$
\begin{equation*}
2 \sqrt{\prime}(x y)=\sqrt{ } b \tag{2}
\end{equation*}
$$

ng the ion of

Also,
Now from (1) $\quad x^{2}+2 x y+y^{2}=a^{2}$,

and from (2)

$$
4 x y=b ;
$$

$$
\begin{aligned}
\therefore x^{2}-2 x y+y^{2} & =a^{2}-b ; \\
\therefore x-y & =\sqrt{ }\left(a^{2}-b\right) .
\end{aligned}
$$

From these equitions we find

$$
\begin{gathered}
x=\frac{a+\sqrt{\prime\left(a^{2}-b\right)}}{2} \text { and } y=\frac{a-\sqrt{\prime\left(a^{2}-b\right)}}{2} ; \\
\therefore \sqrt{ }(a+\sqrt{ } b)=\sqrt{\left\{\left\{\frac{a+\sqrt{\prime}\left(a^{2}-b\right)}{2}\right\}+\sqrt{ }\left\{\frac{a-\sqrt{ }\left(i a^{2}-b\right)}{2}\right\} .\right.}
\end{gathered}
$$

Similarly we may show that

$$
\sqrt{ }(a-\sqrt{ } b)=\sqrt{ }\left\{\frac{a+\sqrt{ }\left(a^{2}-b\right)}{2}\right\}-\sqrt{ }\left\{\frac{a-\sqrt{ }\left(a^{2}-b\right)}{2}\right\}
$$

316. The practical use of this method will be more clearly seen from the following example.

Find the Square Root of $18+2 \sqrt{ }(77)$.
Assume $\quad \sqrt{ }\{18+2 \sqrt{ }(77)\}=\sqrt{ } x+\sqrt{ } y$.
Then

$$
18+2 \sqrt{ }(77)=x+2 \sqrt{ }(x y)+y
$$

$$
\left.\begin{array}{l}
\therefore x+y=18 \\
2 \sqrt{ }(x y)=2 \sqrt{ }(77)
\end{array}\right\} .
$$

Hence

$$
\left.\begin{array}{rl}
x^{2}+2 x y+y^{2} & =324 \\
4 x y & =308
\end{array}\right\} ;
$$

$$
\therefore x^{2}-2 x y+y^{2}=16 ;
$$

$$
\therefore x-y= \pm 4
$$

also,

$$
x+y=18
$$

$$
\text { Hence } \quad \dot{x}=11 \text { or } 7, \text { ants } y=5 \text { or } 11 \text {. }
$$

That is, the square root required is $\sqrt{ }(11)+\wedge^{\prime \prime}$.

EXAMPLES.-cXViii.

Find the square roots of the following Linomial Surds:

1. $10+2 \sqrt{ }(21)$.
2. $16+2 \sqrt{ }(55)$.
3. $9-2 \sqrt{ }(1.1)$.
4. $94-42 \sqrt{ } 5$.
5. $13-2 \sqrt{ }(30)$.
6. $38-12 \mathfrak{v}(10)$
7. $14-4 \sqrt{ } 6$.
8. $103-12 \sqrt{ }(? 1)$.
9. $75-12 \wedge^{\prime}(21)$.
10. $87-12 \sqrt{ }(42)$.
1 I. $3_{2}^{1}-\sqrt{ }(10)$.
11. $57-12 \sqrt{ }(15)$.
12. It is often easy to determine the square roots of expressions such as those given in the preceding set of Examples by inspection.

Take for instance the expression $18+2 \sqrt{ }(77)$.
What we want is to find two numbers whose sum is 18 and whose product is 77 : these are evidently 11 and 7 .

Then

$$
\begin{aligned}
18+2 \sqrt{ }(77) & =11+7+2 \sqrt{ }(11 \times 7) \\
& =\{\sqrt{ }(11)+\sqrt{ } 7\}^{2} .
\end{aligned}
$$

That is $\sqrt{ }(11)+\sqrt{ } 7$ is the square root of $18+2 \sqrt{ }(77)$.
To effect this resolution by inspection it is necessary that the coefficient of the surd should be 2 , and this we can always ensure.

For example, if the proposed expression be $4+\sqrt{ }(15)$, we proceed thus:

$$
\left.\begin{array}{rl}
4+\sqrt{ }(15) & =\frac{8+2 \sqrt{ }(15)}{2} \quad \frac{5+3+2 \sqrt{\prime}(5 \times 3)}{2} \\
& =\left(\frac{\sqrt{ } 5+\sqrt{ } 3}{\sqrt{ } 2}\right)^{2} ;
\end{array}\right\}
$$

Again, to find the Square Root of $28-10 \sqrt{ } 3$.

$$
\begin{aligned}
28-10 \sqrt{ } 3 & =28-2 \sqrt{ }(75) \\
& =25+3-2 \sqrt{ }(25 \times 3) \\
& =(5-\sqrt{ } 3)^{2} ;
\end{aligned}
$$

$\sqrt{\therefore} \therefore 8-\sqrt{ } 3$ is the square root required:

XXV. ON EQUATIONS INVOLVING SURDS.

318. Ans equation may be cleared of a single surd, by transposing all the other terms to the contrary side of the equation, and then raising each side to the power corresponding to the order of the surd.

The process will be explained by the following Examples.
Ex. 1. $\sqrt{ } x=4$.
Raising both sides to the second power,

$$
x=16
$$

Ex. 2. $\sqrt[8]{x}=3$.
Raising both sides to the third power,

$$
x=27
$$

Ex. 3. $\quad \sqrt{ }\left(x^{2}+7\right)-x=1$.
Transposing the second term,

$$
\sqrt{ }\left(x^{2}+7\right)=1+x_{0}
$$

Raising both sides to the second power,

$$
\begin{aligned}
x^{2}+7 & =1+2 x+x^{2}, \\
\therefore x & =3 .
\end{aligned}
$$

EXAMPLES.--cxix.
I. $\sqrt{ } x=7$.
2. $\sqrt{ } x=9$.
3. $x^{\frac{1}{2}}=5$.
4. $\sqrt[8]{ } x=2$.
5. $x^{\frac{1}{3}}=3$.
6. $\sqrt[4]{ } x=4$.
7. $\sqrt{ }(x+9)=6$.
8. $\boldsymbol{s}^{\prime}(x-7)=7$.
9. $\sqrt{ }(x-15)=8$.
10. $(x-9)^{\frac{1}{2}}=12$.
II. $\sqrt[3]{(4 x-16)}=2$.
12. $20-3 \sqrt{ } x=2$.
13. $\quad N(2 x+3)+4=7$.
14. $b+c \sqrt{ } x=a_{0}$
15. $\quad \sqrt{ }\left(x^{2}-9\right)+x=9$.
16. $\sqrt{ }\left(x^{2}-11\right)=x-1$.
17. $\sqrt{ }\left(4 x^{2}+5 x-2\right)=2 x+1$.
18. $\sqrt{ }\left(9 x^{2}-12 x-51\right)+3=3 x$
19. $\quad \sqrt{ }\left(x^{2}-a x+b\right)-a=x$.
20. $\boldsymbol{V}^{\prime}\left(25 x^{2}-3 m x+n\right)-5 x=m$.
319. When two surls are involved in an equation, one at least may be made to disappear by disposing the terms in much a way, that one of the surts stands by itself on one side of the equation, and then raising each side to the power corresponding to the order of the surd. If a surd be still left, it can be made to stand by itself, and removed by raising each side to a certain power.

Ex. 1. $\sqrt{ }(x-16)+\sqrt{ } x=8$.
Transposing the second term, we get

$$
\sqrt{ }(x-16)=8-\sqrt{ } x_{0}
$$

Then, squaring both sides (Art. 306),
therefore

$$
\begin{aligned}
x-16 & =64-16 \sqrt{ } x+x ; \\
16 \sqrt{ } x & =64+16, \\
\text { or } \quad 16 \sqrt{ } x & =80, \\
\text { or } \quad \sqrt{ } x & =5 ; \\
\therefore \quad x & =25 .
\end{aligned}
$$

Ex. 2. $\quad V(x-5)+\sqrt{ }(x+7)=0$.
Transposing the second term,

$$
\sqrt{\prime}(x-5)=6-\sqrt{ }(x+7) .
$$

Squaring both sides, $x-5=36-12 \sqrt{ }(x+7)+x+7$ I
therefore

$$
12 \sqrt{ }(x+7)=36+x+7-x+5
$$

or

$$
12 \sqrt{ }(x+7)=48
$$

or
Squaring both sides, therefore

$$
\sqrt{ }(x+7)=4
$$

$$
x+7=10
$$

$x=9$.

EXAMPLES.-cxx.

I. $\sqrt{ }(16+x)+\sqrt{ } x=8$.
2. $\sqrt{\prime}(x-16)=8-\sqrt{ } x$.
3. $\sqrt{ }(x+15)+\sqrt{ } x=15$.
4. $\sqrt{ }(x-21)=\sqrt{ } x-1$.
5. $\sqrt{ }(x-1)=3-\sqrt{ }(x+4)$.
6. $1+\sqrt{ }(3 x+1)=\sqrt{ }(4 x+4)$.
7. $1-\sqrt{\prime}(1-3 x)=2 \sqrt{\prime}(1-x)$.
8. $a-\sqrt{ }(x-a)=\sqrt{ }$.
9. $\sqrt{ } x+\sqrt{ }(x-m)=\frac{m}{2}$.
10. $\sqrt{ }(x-1)+\sqrt{ }(x-4)-3=0$.
320. When surds appear in the denominators of fractions in equations, the equations may be cleared of fractional terms by the process described in Art. 186, care being taken to follow the Laws of Combination of Surd Factors given is Art. 305.

EXNMPLES.-cxxi.

I. $\sqrt{ } x+\sqrt{ }(x-9)=\frac{36}{\sqrt{(x-9)}}$.
3. $\sqrt{ }(x+7)+\sqrt{ } x=\frac{28}{\sqrt{ }(x+7)}$.
2. $\sqrt{ } x+\sqrt{ }(x-21)=\frac{85}{\sqrt{x}}$.
4. $\sqrt{ }(x-15)+\sqrt{ } x=\frac{105}{\sqrt{ }(x-15)^{\circ}}$.
5. $\sqrt{ } x+\sqrt{ }(x-4)=\frac{8}{\sqrt{ }(x-4)}$.
6. $\sqrt{ } x+\sqrt{ }(3 a+x)-\frac{9 a}{\sqrt{ }(3 a+x)}=0$.
7. $\frac{\sqrt{ }(a x)+b}{x+b}=\frac{b-a}{b-\sqrt{\prime}(a x)}$.
9. $\frac{\sqrt{x+i} 6}{\sqrt{x+4}}=\frac{\sqrt{x+32}}{\sqrt{x+12}}$
8. $(1+\sqrt{ } x)(2-\sqrt{ } x)=\frac{4+\sqrt{ } x}{2}$.
10. $\frac{\sqrt[1]{x-8}}{\sqrt{x-6}}=\frac{\sqrt{x-4}}{\sqrt{x+2}}$.
321. The following are examples of Surl Equations resultlog in quadratics.

Ex. 1.

$$
2 \sqrt{x}+\frac{2}{\sqrt{x}}=5 .
$$

Clearing the equation of fracti.ns, $2 x+2=5 \sqrt{x}$

Squaring both sides, we get $4 x^{2}+8 x+4=25 x$; whence we find $x=4$ or $\frac{1}{4}$.

Ex. 2.

$$
\sqrt{ }(x+9)=2 \sqrt{ } x-3 .
$$

Squaring both sides, $\quad x+9=4 x-12 \wedge x+9$;
therefore

$$
12 \sqrt{ } x=3 x
$$

or

$$
4 \sqrt{x}=x
$$

Sfuaring both sides, $\quad 16 x=x^{2}$.
Divide by x, and we get $16=x$.
Hence the values of x which satisfy the equation are 16 and 0 (Art. 24S).

Ex. $3.1 \quad \sqrt{ }(2 x+1)+0 \quad=\frac{21}{\sqrt{ }(2 x+1)^{\circ}}$
Clearing the equation of fractions,

$$
2 x+1+2 \sqrt{ }\left(2 x^{2}+x\right)=21 ;
$$

therefore

$$
2 \sqrt{\prime}^{\prime}\left(2 x^{2}+x\right)=20-2 x
$$

or

$$
i^{\prime}\left(2 x^{2}+x\right)=10-x
$$

Squaring both sides, $\quad 2 x^{2}+x=100-20 x+x^{2}$, whence

$$
x=4 \text { or }-25
$$

322. We shall now give a set of examples of Surd Equations some of which are reducible to Simple and others to Quadratic Equations.

EXAMPLES.-CXXii.

1. $4 x-12,^{\prime} x=16$.
2. $\quad \wedge^{\prime}(6 x-11)=\sqrt{\prime}^{\prime}\left(-49-2 x^{2}\right)$.
3. $45-1 \frac{1}{1} \mathrm{~N}^{\prime} x=-x$.
4. $\wedge^{\prime}(6-x)=2-\lambda^{\prime}(2 x-1)$.
5. $3 \boldsymbol{N}^{\prime}\left(7+2 x^{2}\right)=5 \quad \boldsymbol{V}^{\prime}(4 x-3)$.
6. $x-2 \sqrt{\prime}^{\prime}(4-3 x)+12=0$.
7. $\quad \sqrt{ }(2 x+7)+\sqrt{ }(3 x-1 S)=\sqrt{ }(7 x+1)$.
8. $2 \sqrt{ }(204-5 x)=20-\sqrt{ }(3 x-6 S)$.
9. $\sqrt{ } x-4=\frac{33}{\sqrt{x+4}}$. 14. $\quad(x+4)+\sqrt{\prime}^{\prime}(2 x-1)=6$.
10. $\sqrt{ } x+11=\frac{608}{\sqrt{2}-11}$.
11. $\sqrt{ }(13 x-1)-\sqrt{ }(2 x-1)=5$.
12. $\sqrt{ }(x+5) \cdot \sqrt{ }(x+12)=12$.
13. $\sqrt{ }(7 x+1)-\sqrt{ }(3 x+1)=2$.
14. $\sqrt{ }(x+3)+\sqrt{ }(x+8)=5 \sqrt{ } x$. 17. $\sqrt{ }(4+x)+\sqrt{ } x=3$.
15. $\sqrt{ }(25+x)+\sqrt{ }(25-x)=8$.
16. $\sqrt{ } x+\sqrt{ }(x+9975)=\frac{525}{\sqrt{x}}$

19: $\sqrt{ }\left(\frac{x}{4}+3\right)+\sqrt{\left(\frac{x}{4}-3\right)}=\sqrt{ }\left(\frac{2 x}{3}\right)$.
20. $\sqrt{ }\left(x^{2}-1\right)+6=\frac{16}{\sqrt{ }\left(x^{2}-1\right)}$.
21. $\sqrt{ }\left\{(x-a)^{2}+2 a b+b^{2}\right\}=x-a+b$.
22. $\sqrt{ }\left\{(x+a)^{2}+2 a b+b^{2}\right\}=b-a-x_{0}$
23. $\sqrt{ }(x+4)-\sqrt{ } x=\sqrt{ }\left(x+\frac{3}{2}\right)$.
24. $\frac{x-1}{\sqrt{x}-1}=x+\frac{5}{4}$.
26. $\sqrt{ }(x+4)+\sqrt{ }(x+5)=9$.
25. $\sqrt{ }(4+x)-\sqrt{3}=\sqrt{ } x$.
27. $\sqrt{ } x+\sqrt{ }(x-4)=\frac{8}{\sqrt{(i-4}-4)^{\circ}}$
28. $x^{2}=21+\sqrt{ }\left(x^{2}-9\right)$.
29. $\sqrt{ }(50+x)-\sqrt{ }(50-x)=2$.
30. $\sqrt{ }(2 x+4)-\sqrt{ }\left(\left(\frac{x}{2}+6\right)=1\right.$.
31. $\sqrt{ }(3+x)+\sqrt{ } x=\frac{6}{\sqrt{ }(3+x)}$.
32. $-\frac{1}{\sqrt{(x+1)}}+\frac{1}{\sqrt{(x-1)}}=\frac{1}{\sqrt{\left(x^{2}-1\right)}}$.
\{3. $\frac{3 x+2^{\prime \prime}\left(4 x-x^{2}\right)}{3 x-\sqrt{ }\left(4 x-x^{2}\right)}=2 . \quad$ 34. $\quad \sqrt{x}-\sqrt{ }\left\{a-\sqrt{ }\left(a x+x^{2}\right)\right\}=\sqrt{a}$
XXVI. ON THE ROOTS OF EQUATIONS.
323. We have already proved that a Simple Equation can have only one root (Art. 193): we have now to prove that a Quad itic Equation can have only two roots.
324. 'We must first call attention to the following fact:

If $m n=0$, either $m=0$, or $n=0$.
Thus there is an ambiguity: but if we know that m annot be equal to 0 , then we know for certain that $n=0$, and if we know that n cannot be equal to 0 , then we know for certain that $m=0$.

Further, if $l m n=0$, then either $l=0$, or $m=0$, or $n=0$, and so on for any number of factors.

Ex. 1. Solve the equation $(x-3)(x+4)=0$.
Here we must have

$$
x-3=0, \text { or } x+4=0,
$$

that is,

$$
x=3, \text { or } x=-4
$$

Ex. 2. $(x-3 a)(5 x-2 b)=0$.
Here we must have

$$
x-3 a=0, \text { or } 5 x-2 b=0
$$

that is,

$$
x=3 a, \text { or } x=\frac{2 b}{5}
$$

EXAMPLES.—CXXiil.

1. $(x-2)(x-5)=0 . \quad$ 2. $(x-3)(x+7)=0$. 3. $(x+9)(x+2)=0$ 。
2. $(x-5 a)(x-6 b)=0$.
3. $(19 x-227)(14 x+83)=0$.
4. $(2 x+7)(3 x-5)=0$.
5. $(5 x-4 m)(6 x-11 n)=0$.
6. $\left(x^{2}+5 a x+6 a^{2}\right)\left(x^{3}-7 a x+12 a^{2}\right)=0$.
7. $\left(x^{2}-4\right)\left(x^{2}-2 a x+a^{2}\right)=0$.
io. $x\left(x^{2}-5 x\right)=0$.
8. $(a c x-2 a+b)(b c x+3 a-b)=0$.
9. $(c x-d)(c x-e)=0$.
10. The general form of a quadratic equation is

$$
a x^{2}+b x+c=0
$$

Hence

$$
a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)=0 .
$$

Now a cannot $=0$,

$$
\therefore x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \text {. }
$$

Writing p for $\frac{b}{a}$ and q for $\frac{\varepsilon}{a}$, we may take the following as the type of a quadratic equation of which the coefficient of the first term is unity,

$$
x^{3}+p x+q=0 .
$$

326. To show that a quadratic equation has only two roots

Let $x^{2}+p x+q=0$ be the equation.
Suppose it to have three different roots, a, b, c.
Then

$$
\begin{aligned}
& a^{2}+a p+q=0(1), \\
& b^{2}+b p+q=0 . \ldots \ldots \ldots \ldots \text { (2), } \\
& c^{2}+c p+q=0 \text {. } \\
& \text { (3). }
\end{aligned}
$$

Subtracting (2) from (1),
or,

$$
\begin{aligned}
& a^{2}-b^{2}+(a-b) p=0, \\
& (a-b)(a+b+p)=a
\end{aligned}
$$

Now $a-b$ does not equal 0 , since a and b are not alike, $\therefore a+b+p=0$

Again, subtracting (3) from (1),
or,

$$
\begin{aligned}
& a^{2}-c^{2}+(a-c) p=0, \\
& (a-c)(a+c+p)=0 .
\end{aligned}
$$

Now $a-c$ does not equal 0 , since a and c are not alike,

$$
\begin{equation*}
\therefore a+c+p=0 \text {. } \tag{5}
\end{equation*}
$$

Then sulteracting (5) from (4), we get

$$
b-c=0 \text {, and therefore } b=c \text {. }
$$

Hence there are not more than two distinct roots.
327. We now proceed to show the relations existing between the Roots of a quadratic equation and the Coefficients of the terms of the equation.
328.

$$
x^{2}+p x+q=0
$$

is the general form of a quadratic equation, in which the coefficient of the first term is unity.

Hence

$$
\begin{array}{r}
x^{2}+p x=-q \\
x^{2}+p x+\frac{p^{2}}{4}=\frac{p^{2}}{4}-q, \\
x+\frac{p}{2}= \pm \sqrt{(}\left(\frac{p^{2}}{4}-q\right), \\
x=-\frac{p}{2} \pm \sqrt{ }\left(\frac{p^{2}}{4}-q\right) .
\end{array}
$$

Now if α and β be the roots of the equation,

$$
\begin{align*}
& a=-\frac{p}{2}+\sqrt{\left(\frac{p^{2}}{4}-q\right) .} \tag{1}\\
& \beta=-\frac{p}{2}-\sqrt{ }\binom{p^{2}, q}{\frac{1}{2}, q} .
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{equation*}
a+\beta=-p . \tag{3}
\end{equation*}
$$

ike,
... (4).
Multiplying (1) and (2), we get
or $\alpha \beta=\frac{p^{2}}{4}-\frac{p^{2}}{4}+q$.
or $\quad \alpha \beta=q$.
From (3) we learn that the sum of the roots is equal to the coefficient of the second term with its sign changed.

From (4) we learn that the product of the roots is equab to the last term.
329. The equation $x^{2}+p x+q=0$ has its roots real and different, real and equal, or impossible according as p^{2} is $>=$ or $<4 q$.

For the roots are
and

$$
\begin{aligned}
& -\frac{p}{2}+\sqrt{ }\left(\frac{p^{2}}{4}-q\right), \text { or } \frac{-p+\sqrt{\prime}\left(p^{2}-4 q\right)}{2} \\
& -\frac{p}{2}-\sqrt{ }\left(\frac{p^{2}}{4}-q\right), \text { or } \frac{-p-\sqrt{ }\left(p^{2}-4 q\right)}{2}
\end{aligned}
$$

First, let p^{2} be greater than $4 q$, then $\sqrt{ }\left(p^{2}-4 q\right)$ is a possible quantity, and the roots are different in value and both real.

Next, let $p^{2}=4 q$, then each of the roots is equal to the real quantity $\frac{-p}{2}$.

Lastly, let p^{2} be less than $4 q$, then $\sqrt{ }\left(p^{2}-4 q\right)$ is an impossible quantity and the roots are different and both impossible.

EXAMPLES.-cixiv.

1. If the equations

$$
a x^{2}+b x+c=0, \text { and } a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0
$$

have respectively two roots, one of which is the reciprocal of the other, prove that

$$
\left(a a^{\prime}-c c^{\prime}\right)^{2}=\left(a b^{\prime}-b c^{\prime}\right)\left(a^{\prime} b-b^{\prime} c\right)
$$

2. If α, β be the roots of the equation $a x^{2}+b x+c=0$, prove that

$$
a^{2}+\beta^{2}=\frac{b^{2}-2 a c}{a^{2}}
$$

3. If α, β be thu roots of the equation $a x^{2}+b x+c=0$, prove that

Fo
I. 5

$$
a c x^{2}+\left(2 a c-b^{2}\right) x+a c=a c\left(x-\frac{a}{\beta}\right)\left(x-\frac{\beta}{u}\right)
$$

4. Prove that, if the mots of the equation $a x^{2}+b x+c=0$ be equal, $a x^{2}+b x+o$ is a perfect square with respect to x.
5. If α, β represent the two roots of the equation

$$
\begin{gathered}
x^{2}-(1+a) x+\frac{1}{2}\left(1+a+a^{2}\right)=0 \\
a^{2}+\beta^{2}=a
\end{gathered}
$$

show that
230. If α and β be the roots of the equati $n x^{2}+p x+q=0$, then

$$
x^{2}+p x+q=(x-a)(x-\beta) .
$$

For since $p=-(\alpha+\beta)$ and $q=a \beta$,

$$
\begin{aligned}
x^{2}+p x+q & =x^{2}-\left(\alpha+\beta^{\prime}\right) x+\alpha \beta \\
& =(x-\alpha)(x-6)
\end{aligned}
$$

Hence we may form a quadratic equatish of which the roots are given.

Ex. 1. Form the equation whose rocta ase 4 and 5.
Here $x-\alpha=x-4$ and $x-\beta=x-5$;
\therefore the equation is $(x-4)(x-5)=\cdot 0$:
$x^{2}-9 x+20=0$.
or,
EX. 2. Form the equation whose roots are $\frac{1}{4}$ and - 2
Here $x-\alpha=x-\frac{1}{2}$ and $x-\beta=x+3$;
\therefore the equation is $\left(x-\frac{1}{2}\right)(x+3)=0$;

08,
 or,

$$
\begin{array}{r}
(2 x-1)(x+3)=0 \\
2 x^{2}+5 x-3=0
\end{array}
$$

sion c latter
333.
of the expres princi We ha equati at whi will ill

EXAMPLES.-cXXV.

Form the equations whose roots are

1. 5 and 6.
2. $\frac{1}{2}$ and $\frac{2}{3}$.
3. $m+n$ and $m-n$.
4. 4 and -5 .
5. - 2 and -7.
6. 7 and $-\frac{5}{9}$.
7. $\sqrt{ } 3$ and $-\sqrt{ } 3$.
$+c=C \quad b_{\mathrm{A}}$
$x+q=0$,
he root

Ex. 1. Resolve $2 x^{2}-5 x+3$ into factors.
If we solve the equation $2 x^{2}-5 x+3=0$, we shall find that its roots are 1 ard $\frac{3}{2}$.

Now divide $2 x^{2}-5 x+3$ by $x-1$; the quotient is $2 x-3$ that is $2\left(x-\frac{3}{2}\right)$;
\therefore the given expression $=2(x-1)\left(x-\frac{3}{2}\right)$.
Ex. 2. Resolve $2 x^{3}+x^{2}-11 x-10$ into factors.
By trial we find that this expression vanishes if we. put $\boldsymbol{x}=-1$; that is, -1 is a root of the equation

$$
2 x^{3}+x^{2}-11 x-10=0
$$

Divide the expression by $x+1$: the quotient is $2 x^{2}-x-10$;
\therefore the expression $=\left(2 x^{2}-x-10\right)(x+1)$

$$
=2\left(x^{2}-\frac{x}{2}-5\right)(x+1)
$$

We mist now resolve $x^{2}-\frac{x}{2}-5$ into factors, by solving the corresponding equatiun $x^{2}-\frac{x}{2}-5=0$.

The roots of this equation are -2 and $\frac{5}{2}$;

$$
\begin{aligned}
\therefore 2 x^{3}+x^{2}-11 x-10 & =2(x+2)\left(x-\frac{5}{2}\right)(x+1) \\
& =(x+2)(2 x-5)(x+1)
\end{aligned}
$$

EXAMPLES.-cXXVi.

Resolve into simple factors the following expressions :

1. $x^{3}-11 x^{2}+36 x-36$.
2. $x^{3}-7 x^{2}+14 x-8$.
3. $x^{3}-5 x^{2}-46 x-40$.
4. $4 x^{3}+6 x^{2}+x-1$.
5. $\quad 6 x^{3}+11 x^{2}-9 x-14$.
6. $x^{3}+y^{3}+z^{3}-3 x y z$.
7. $a^{3}-b^{3}-c^{3}-3 a b c$.
8. $3 x^{3}-x^{2}-23 x+21$.
g. $2 x^{3}-5 x^{2}-17 x+20$.
9. $15 x^{3}+41 x^{2}+5 x-21$.
the the root two

- 3 pres the quad

R of t
there theric

H
and
33
sides
solut
add 2
Th
or,
Th know
squar
334. If we can find one root of such an equation as

$$
2 x^{3}+x^{2}-11 x-10=0,
$$

we ran find all the roots.
One root of the equation is $-1 ;$;

$$
\begin{aligned}
& \therefore(x+1)\left(2 x^{2}-x-10\right)=0 ; \\
& \therefore x+1=0 \text { or } 2 x^{2}-x-10=0 ; \\
& \quad \therefore x=-1, \text { or }-2, \text { or } \frac{5}{2} .
\end{aligned}
$$

Similarly, if we can find one root of an equation involving the $4^{\text {th }}$ power of x, we can derive from it an equation involving the $3^{\text {rd }}$ and lower powers of x, from which we may find the other roots. And if again we can find one root of this, the other two roots can be found from a quadratic equation.
335. Any equation into which an unknown symbol or expression enters in two terms only, having its index in one of the terms double of its index in the other, may be solved as a quadratic equation.

Ex. Solve the equation $x^{6}-6 x^{3}=7$.

Regarding x^{3} as the quantity to be obtained by the solution of the equation, we get
therefore

$$
x^{6}-6 x^{3}+9=16 ;
$$

therefore
Hence and one value of $\sqrt[8]{-1}$ is -1 .
336. In some cases by adding a certain quantity to both sides of an equation we can bring it into a form capable of solution, thus, to solve the equation

$$
x^{2}+5 x+4=5 \sqrt{ }\left(x^{2}+5 x+28\right),
$$

add 24 to each side.
Then or,

$$
\begin{aligned}
& x^{2}+5 x+28=5 \sqrt{ }\left(x^{2}+5 x+28\right)+24 ; \\
& x^{2}+5 x+28-5 \sqrt{ }\left(x^{2}+5 x+28\right)=24 .
\end{aligned}
$$

This is now in the form of a quadratic equation, the unknown quantity being $\sqrt{ }\left(x^{2}+5 x+28\right)$, and completing the square we have [s.A.]

$$
\begin{gathered}
x^{2}+5 x+28-5 \sqrt{ }\left(x^{2}+5 x+28\right)+\frac{25}{4}=\frac{121}{4} ; \\
\therefore \sqrt{ }\left(x^{2}+5 x+28\right)-\frac{5}{2}= \pm \frac{11}{2} ; \\
\sqrt{ }\left(x^{2}+5 x+28\right)=8 \text { or }-3 ; \\
\therefore x^{2}+5 x+28=64 \text { or } 9 ;
\end{gathered}
$$

from which we may find four values of x, viz. $4,-9$, and $-\frac{5}{2} \pm \frac{\sqrt{ }(-51)}{2}$.

EXAMPLES.-CXXVii.

Find roots of the following equations:

1. $x^{4}-12 x^{2}=13$.
2. $x^{3}+14 x^{3}+24=0$.
3. $x^{8}+22 x^{4}+21=0$.
4. $x^{2 m}+3 x^{m}=4$.
5. $x^{4 n}-\frac{5}{3} x^{2_{n}}=\frac{25}{12}$.
6. $x-\frac{9}{2} x^{\frac{1}{2}}=\frac{5}{2}$.
7. $x^{-2}+3 x^{-1}=\frac{4}{9}$.
8. $x^{-2 n}-x^{-n}=20$.
9. $x^{2}-2 x+6\left(x^{2}-2 x+5\right)^{\frac{1}{2}}=11$.
10. $x^{2}-x+5 \sqrt{ }\left(2 x^{2}-5 x+6\right)=\frac{3 x+33}{2}$.
II. $x^{3}-2 \sqrt{ }\left(3 x^{2}-2 a x+4\right)+4=\frac{2 a}{3}\left(x+\frac{a}{2}+1\right)$.
11. $a x+2 \sqrt{ }\left(x^{2}-a x+a^{2}\right)=x^{2}+2 a$.
12. Every equation has as many roots as it has dimensions, and no more. This we have proved in the case of simple and quadratic equations (Arts. 193, 32:3). The general proof is not suited to this work, but we may illustrate it by the following Examples.

Ex. 1. To solve the equation $x^{3}-1=0$.
One root is clearly 1.
Dividing by $x-1$, we obtain $x^{2}-x+\bar{I}=0$, of which the roots are $\frac{-1+\sqrt{ }-3}{2}$ and $=1-\frac{N-3}{2}$.

Hence the three roots are $1, \frac{-1+\sqrt{ }-3}{2}$ and $\frac{-1-\sqrt{ }-3}{2}$.
Ex. 2. To solve the equation $x^{4}-1=0$.
Two of the roots are evidently +1 and -1 .
Hence, dividing by $(x-1)(x+1)$, that is by $x^{2}-1$, we obtrin $x^{2}+1=0$, of which the roots are $\sqrt{ }-1$ and $-\sqrt{ }-1$.
Hence the four roots are $1,-1, \sqrt{ }-1$, and $-\sqrt{ }-1$.
The equation $x^{0}-6 x^{3}=7$ will in like manner have six roots, for it may be reduced, as in Art. 335, to two cubic equations, $\quad x^{3}-7=0$ and $x^{3}+1=0$, each of which has three roots, which may be found as in Ex. 1.

XXVII. ON RATIO.

338. Ir A and B stand for two unequal quantities of the same kind, we may consider their inequality in two ways. We may ask

* (1) By what quantity one is greater than the other?

The answer to this is made by stating the difference between the two quantities. Now since quantities are represented in Algebra by their measures (Art. 33), if a and b be the measures of A and B, the difference between A and B is represented algebraically by $a-b$.
(2) By how many times one is greater than the other?

The answer to this question is made by stating the number of times the one contains the other.
Note. The quantities must be of the same lind. We cannot compare inches with hours, nor lines with surfaces.
339. The second method of comparing A and B is called finding the Ratio of A to B, and we give the following definition.
Def. Ratio is the relation which one quantity bears to another of the same kind with respect to the number of times the one contains the other.
340. The ratio of A to B is expressed thus, $A: B$.
A and B are called the Tenms of the ratio.
A is called the Antecedent and B the Consequent.
341. Now since quantities are represented in Algebra by their measures, we must represent the ratio between two (fuintities by the ratic between their measures. Our next step, then must be to show how to estimate the ratio between two numbers. This ratio is determined by finding how many times one contains the other, that is, by obtaining the quotient ressltin's from the division of one by the other. If a and b, then, be any two numbers, the fraction $\frac{a}{b}$ will express the ratio of a to b. (Art. 136.) 1
i. 342. Thus if a and b be the measures of A and B respectively, the ratio of A to B is represented aldebraically by the fraction $\frac{a}{b}$
342. If a or b or both are sume numbers, the fraction $\frac{a}{b}$ may also be a surd, and its approximate value can be found by Art. 291. Suppose this value to be $\frac{m}{n}$, where m and n are whole numbers: then we shonk say that the ratio $A: B$ is approximately represented by $\frac{m}{n}$.
344. Ratios may be compared with each other, by comparing the factions by which they are denoted.

- Thus the ratios $3: 4$ and $4: 5$ may be compared by comparing the fractions $\frac{3}{4}$ and $\frac{4}{5}$.

These are equivalent to $\frac{15}{20}$ and $\frac{16}{20}$ respectively; and since $\frac{16}{20}$ is greater than $\frac{15}{20}$, the ratio $4: 5$ is greater than the ratio 3:4

ExAMPLES.-cxxviii.

1. Place in order of magnitude the ratios $2: 3,6: 7,7: 0$.
2. Compare the ratios $x+3 y: x+2 y$ and $x+2 y: x+y$.
3. Compare the ratios $x-5 y: x-4 y$ and $x-3 y: x-2 y$.
4. What number must be added to each of the terms of the ratio $a: b$, that it may become the ratio $c: d\}$
5. The sum of the squares of the Antecedent and Consequent of a Ratio is 181, and the product of the Antecedent and Consequent is 90 . What is the ratiol
6. A ratio of greater inequality is one whose antecedent is greater than its consequent.

A ratio of less inequality is one whose anteceaent is less than its consequent.

This is the same as saying a ratio of greater inequality is represented by an Improper Fraction, and a ratio of less inequality by a Proper Fraction.
346. A Ratio of greater inequality is diminished by adding the same number to both its terms.
Thus if 1 be added to both terms of the ratio $5: 2$ it becomes 6:3. which is less than the former ratio, since $\frac{6}{3}$, that is, 2 , is less than $\frac{5}{2}$.
And, in geaieral, if x be sdded to both terms of the ratio $a: b$, where a is greater than b, we may compare the two ratios thus,
ratio $a+x: b+x$ is less than ratio $a: b$,
if

$$
\begin{aligned}
& \frac{a+x}{b+x} \text { be less than } \frac{a}{b^{y}} \\
& \frac{a b+b x}{b^{2}+b x} \text { be.less than } \frac{a b+a x}{b^{2}+1 / x^{3}} \\
& a b+b x \text { be less than } a b+a x, \\
& \text { i } b x \text { be less than } a x, \\
& b \text { be less than } a .
\end{aligned}
$$

Now \dot{b} is less than a;

$$
\therefore a+x: b+x \text { is less than } a: b .
$$

847. We may observe that Art. 346 in merely a repetition of that which we proposed as an Example at the end of the chapter on Miscellancous Fractions. 'There is not indeed my neeessity for us to weary the reader with examples on Ratio: for since we express a ratio by a fraction, nearly all that we might have had to say about Ratios has been anticipated in our remarks on Fractions.
848. The student may, however, work the following Theorems as Examples.
(1) If $a: b$ he a ratio of greater inequality, and x a posilive quantity, the ratio $a-x: b-x$ is greater than the ratio $a: b$.
(2) If $a: b$ he a ratio of less ineruality, and x a positive quantity, the ratio $a+x: b+x$ is greater than the ratio $a: b$.
(3) If $a: b$ be a ratio of less inequality, and x a pesitive q.antity, the ratio $a-x: b-x$ is less than the ratio $a: b$.
849. In some cases we may from a single equation involving two unknown symbols determine the ratio between the two symbols. In other words we may le able to determine the relative valnes of the two symbols, thourh we camot determine their absulute values.

Thus from the equation $4 x=: 3 y$,
we geu

$$
\frac{x}{y}=\frac{3}{4} .
$$

Again, from the equation $3 x^{2}=2 y^{2}$,
we get $\frac{x^{2}}{y^{2}}=\frac{2}{3}$; and therefore $\frac{x}{y}=\frac{\sqrt{2}}{\sqrt{3}}$.

EXAMPLES.—CXXIX.

Find the ratio of x to y from the following erfuations:

1. $3 x=6 y$.
2. $a x=b y$.
3. $a x-b y=c x+d y$.
4. $x^{2}+2 x y=5 y^{2}$.
5. $x^{2}-12 x y=1: 3 y^{2}$.
6. $x^{2}+m x y=n^{2} y^{2}$.
7. Find two numbers in the satio of $3: 4$, of which the sum is to the sum of their spuares $: 7: 50$.
8. Two numbers are in the ratio of $6: 7$, and when 12 is added to arch the resulting numbers are in the ratio of $12: 13$. Find the nombers.
9. The sum of two numbers is 100 , and the numbers are in the ratio of $7: 13$. Find them.
10. The difference of the squares of two numbers is 48 , and the sum of the numbers is to the diflerence of the numbers in the ratio $12: 1$. Find the uumbers.
11. If 5 gold coins and 4 silver ones are worth as much as 3 gold coins and 12 silver ones, find the ratio of the vulue of a gold coin to that of a silver one.
12. If 8 gold coins and 9 silver ones are worth as much as 6 gold coins and 19 silver ones, find the ratio of the value of a silver coin to that of a gold one.
13. Ratios are compounded by multiplying together the fractions by which they are denoted.

Thus the ratio compounded of $a: b$ and $c: d$ is $a c: b d_{0}$

EXAMPLES.-CXXX.

Write the ratios compounded of the ratios ${ }^{\text {© }}$

1. 2:3 and 4:5.
2. $3: 7,14: 9$ and $4: 3$.
3. $x^{2}-y^{2}: x^{3}+y^{3}$ and $x^{2}-x y+y^{2}: x+y$.
4. $a^{2}-b^{2}+2 b c-c^{2}: a^{2}-b^{2}-2 b c-c^{2}$ and $a+b+c: a+b=a$
5. $m^{3}+n^{3}: m^{3}-n^{3}$ and $m-n: m+n$.
6. $x^{2}+5 x+6: y^{2}-7 y+12$, and $y^{2}-3 y: x^{2}+3 x$.
7. The ratio $a^{2}: l^{2}$ is called the Duplicate Ratio of $a: b$.

Thus $100: 64$ is the duplicate ratio of $10: 8$, and $\quad 36 x^{2}: 25 y^{2}$ is the dunlicate ratio of $6 x: 5 y$.
The ratio $a^{3}: b^{3}$ is called the Triplicate Ratio of $a: b$.
Thus $64: 27$ is the triplicate ratio of $4: 3$,
nnd $343 x^{3}: 1331 y^{3}$ is the triplicate ratio of $7 x: 11 y$.
352. The definition of Patio given in Euclid is the same as in Algelra, and so also is the expression for the ratio that one quantity bears to another, that is, $A: B$. But Euclid cannot employ fractions, and hence he cannot represent the value of a ratio as we du in Algebra.

XXVIII ON PROPORTIOM.

353. Proportion consists in the cquality of twi ratios.'
(The algeloraic test of Proportion is that the iur fractinns representing the ratios must be equal.

Thus the ratio $a: b$ will be equal to the ratio $c: \delta$,

$$
\text { if } \frac{a}{b}=\frac{c}{d}
$$

and the four numbers a, b, c, d are in such a case sadu to be in proportion.
354. If the ratios $a: b$ and $c: d$ form a promation, we express the fact thus:

$$
\left.a: b=c: d_{0}\right)
$$

This is the clearest manner of expressing the equality of the ratios $a: b$ and $c: d$, but there is another way of expemeng the same fact, thus.

$$
\text { ' } a: b:: c: d, \quad \therefore
$$

which is read thus,

$$
\bar{a} \text { is to } b \text { as } e \text { is to } d \text {. }
$$

7. The two terms a and d are called the Extremes,
. b and c............ the Means
8. When four numbers are in proportion, product of extremes=product of means:
Let a, b, c, d he in proportion. ${ }^{\text {. }}$
Then

$$
\frac{a}{b}=\frac{\hat{d}}{d}
$$

Multiplying both sides of the equation by bd, we get

$$
a d=b c
$$

Conversely, if $a d=b c$ we can show that $a: b=c: d_{0}$
For since ' $\quad a d=b c$, dividing both sides by $b d$, we get ,

$$
\text { that is, } \quad \frac{a}{b}=\frac{c}{d} \text {, i.c. } a: b=c: d
$$

$$
\frac{a d}{b d}=\frac{b c}{b d}
$$

356. If $a d=b c$,

Dividing by $c d$, we get $\frac{a}{c}=\frac{b}{d}$, i.c. $a: c=b: d$;
Dividing by $a b$, we get $\frac{d}{b}=\frac{c}{c}$, i.e. $d: b=c: a$;
Dividing by $a c$, we get $\frac{d}{c}=\frac{b}{a}$, i.e. $d: c=b: a$.
357. From this it follows that if any 4 numbers be so rolated that the product of two is equal to the product of the other two, we can express the 4 numbers in the form of a proportion.
.The factors of one of the products must form the extremes.
The factors of the other product must form the means.
358. Three quantitics are said to be in Continded Proponrion when the ratio of the first to the second is equal to the ratio of the second to the third.

Thus a, b, c are in continued proportion if

$$
a: b=b: c
$$

The quantity \dot{b} is calleù a Mean Propontional between ${ }^{\prime} a$ and c_{0}

Four quantities are said to be in Continued Proportion when the ratios of the first to the second, of the second to the third, and of the third to the fourth are all equal.

Thus a, b, c, d are in continued proportion when

$$
a: b=b: c=c: d .
$$

359. We showed in Art. 205 the process by which when two or more fractions are known to be equal, other relations between the numbers involved in them may be determined. That process is of course applicable to Examples in Ratio and Proportion, as we shall now show by particular instances.

Ex. 1. If $a: b=c: d$, prove that

$$
a^{2}+b^{2}: a^{2}-b^{2}=c^{2}+d^{2}: c^{-}-d^{2} .
$$

Since

$$
a: b=c: d, \frac{a}{b}=\frac{c}{\bar{d}}
$$

Let $\frac{a}{\bar{b}}=\lambda$. Then $\frac{c}{d}=\lambda$;

$$
\therefore a=\lambda b \text {, and } c=\lambda d \text {. }
$$

Now $\quad \frac{a^{2}+b^{2}}{a^{2}-b^{2}}=\frac{\lambda^{2} b^{2}+b^{2}}{\lambda^{2} b^{2}-b^{2}}=\frac{b^{2}\left(\lambda^{2}+1\right)}{b^{2}\left(\lambda^{2}-1\right)}=\frac{\lambda^{2}+1}{\lambda^{2}-1}$,
and

$$
\frac{c^{2}+d^{2}}{c^{2}-d^{3}}=\frac{\lambda^{2} d^{2}+d^{2}}{\lambda^{2} d^{2}-d^{2}}=\frac{d^{2}\left(\lambda^{2}+1\right)}{d^{2}\left(\lambda^{2}-1\right)}=\frac{\lambda^{2}+1}{\lambda^{2}-1}
$$

Hence

$$
\frac{a^{2}+b^{2}}{a^{2}-b^{2}}=\frac{c^{2}+d^{2}}{c^{2}-d^{2}}
$$

that is,

$$
a^{2}+b^{2}: a^{2}-b^{2}=c^{2}+d^{2}: c^{2}-d^{2} .
$$

Ex. 2. If $a: b:: c: d$, prove that

$$
a: c:: \mathfrak{V}^{\prime}\left(a^{4}+b^{4}\right): \sqrt[1]{\sqrt{1}\left(c^{4}+d^{4}\right)}
$$

Let $\frac{a}{b}=\lambda$. Then $\frac{c}{d}=\lambda$;

$$
\therefore a=\lambda b_{0} \text { and } c=\lambda d_{0}
$$

Now

$$
\frac{a}{c}=\frac{\lambda b}{\lambda d}=\frac{b}{d},
$$

and

$$
\frac{\sqrt[4]{\left(a^{4}+b^{4}\right)}}{\sqrt[4]{\left(c^{4}+d^{4}\right)}}=\frac{\sqrt[4]{\left(\lambda^{4} b^{4}+b^{4}\right)}}{\sqrt[4]{\left(\lambda^{4} l^{4}+d^{4}\right)}}=\frac{\sqrt[4]{b^{4}} \cdot \sqrt[4]{ }\left(\lambda^{4}+1\right)}{\sqrt[4]{d^{4}} \cdot \sqrt[4]{\left(\lambda^{4}+1\right)}}=\frac{\sqrt[4]{b^{4}}}{\sqrt[4]{d^{4}}}=\frac{b}{d}
$$

Hence

$$
\frac{a}{c}=\frac{\sqrt[4]{\left(a^{4}+b^{4}\right)}}{\sqrt[4]{\left(c^{4}+d^{4}\right)}}
$$

that is,

$$
a: c::: \sqrt[4]{ }\left(a^{4}+b^{4}\right): \sqrt[4]{(}\left(c^{4}+d^{4}\right) .
$$

Ex. 3. If $a: b=c: d=e: f$, prove that each of these ratios is equal to the ra:io $t+c+e: b+d+f$.

Let
$\frac{a}{b}=\lambda$,
$\frac{c}{d}=\lambda$, $\frac{e}{f}=\lambda$.

Then

$$
a=\lambda b, \quad c=\lambda l, \quad e=\lambda f
$$

Now

$$
\begin{aligned}
& a+c+e \\
& b+d+f
\end{aligned}=\frac{\lambda b+\lambda l+\lambda f}{b+d+f}=\frac{\lambda(b+d+f)}{b+d+f}=\boldsymbol{\lambda}_{0}
$$

Hence

$$
\frac{a+c+e}{b+d+f}=\frac{a}{b}=\frac{c}{d}=\stackrel{e}{f}
$$

that is, $\quad a+c+c: b+d+f=a: b=c: d=e: f$.
Ex. 4. If a, b, c are in continued proportion, show that

$$
a^{2}+b^{2}: b^{2}+c^{2}=a: c_{0}
$$

Let $\frac{a}{b}=\lambda$. Then $\frac{b}{c}=\lambda$.
Hence $a=\lambda l$ and $b=\lambda c$.
Now $\frac{a^{2}+l^{2}}{b^{2}+c^{2}}=\frac{\lambda^{2} \cdot b^{2}+l^{2}}{l^{2}+c^{2}}=\frac{l^{2}\left(\lambda^{2}+1\right)}{\lambda^{2} c^{2}+c^{2}}=\frac{b^{2}\left(\lambda^{2}+1\right)}{c^{2}\left(\lambda^{3}+1\right)}=\frac{l^{2}}{c^{2}}=\frac{a c}{c^{2}}=\frac{a}{c}$.
Ex. 5. If $15 a+b: 15 c+d=12 a+b: 12 c+d$, prove that

$$
a: b=c: d .
$$

Since

$$
15 a+b: 15 c+d=12 a+b: 12 c+d
$$

and since product of extremes $=$ product of means.

$$
\begin{aligned}
(15 a+b)(12 c+d) & =(15 c+d)(12 a+b), \\
\text { or, } \quad 180 a c+12 b c+15 a d+b d & =180 a c+12 a d+15 b c+b d, \\
\text { or, } \quad 12 b c+15 a d & =12 a d+15 b c, \\
\text { or, } \quad 3 a d & =3 b c \\
\text { or, } \quad a d & =b c \\
\text { Whence, by Art. 355, } \quad a: b & =c: d .
\end{aligned}
$$

Additional Examples will be found in pare 127, to which we may add the following.

EXAMPLES.-CXXXi.

1. If $\hat{a}: b=\stackrel{\rightharpoonup}{c}: d$, show that $a+b: a=c+d \cdot c$
2. If $a: b=c: d$. show that $a^{2}-b^{2}: b^{2}=c^{2}-d^{2}: d^{2}$.
3. If $a_{1}: b_{1}=a_{2}: b_{2}$, show that $\frac{m_{1} a_{1}+m_{2} r_{2}}{m_{1} b_{1}+m_{2} b_{2}}=\frac{a_{1}}{b_{1}}$
4. If $a: b:: c: d$, show that

$$
3 a^{2}+a b+2 b^{2}: 3 a^{2}-2 b^{2}:: 3 c^{2}+c d+2 l^{2}: 3 c^{2}-2 d^{2}
$$

5. If $a: b=c: d$, show that

$$
a^{2}+3 a b+b^{2}: c^{2}+3 c d+d^{2}=2 a b+3 b^{2}: 2 c d+3 d^{2}
$$

6. If $a: b=c: d=e: f$ then $a: b=m c-n e: m d-n f$.
${ }^{7} \cdot$ If $\frac{m}{n} a, \frac{m}{n} b$, any parts of a, b, be taken from a ana b respectively, show that a, b, and the remainders form a proportion.
7. If $a: b=c \overline{:} d=e: f$, show that

$$
a c: b d=l a^{2}+m c^{2}+n e^{2}: l b^{2}+m u^{2}+n f^{2}
$$

9. If $a_{1}: b_{1}=a_{2}: b_{2}=a_{3}: b_{3}$, show that

$$
a_{1}^{2}+a_{2}^{2}+a_{8}^{2}: b_{1}^{2}+b_{2}^{2}+b_{8}^{2}:: a_{1}^{2}: b_{1}^{8}
$$

ratios
Def.
Bu quite

Tl
repre
Et thus
$1 \quad " r$
$\omega \mathrm{tl}$ equi and 1 "
the or,
"" the
Or_{3}
10. If $a_{1}: b_{1}=a_{2}: b_{3}=a_{3}: b_{3}$, show that

$$
a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}: b_{1} b_{2}+b_{2} b_{3}+b_{3} l_{1}=a_{1}^{2}: b_{1}^{2} .
$$

11. If $\frac{a^{2}-a b+b^{2}}{a^{2}+a^{2}+b^{2}}=\frac{c^{2}-c d+d^{2}}{c^{2}+c d+d^{2}}$, show that $\frac{a}{b}=\frac{c}{d}$.
12. If $a^{2}+b^{2}: a^{2}-b^{2}=c^{2}+d^{2}: c^{2}-d^{2}$, show that

$$
a: b=c: d .
$$

13. If $u: b=c: d$, show that

$$
\frac{(a+c)\left(a^{2}+c^{2}\right)}{(a-c)\left(a^{2}-c^{2}\right)}=\frac{(b+d)\left(b^{2}+d^{2}\right)}{(b-d)\left(b^{2}-d^{2}\right)}
$$

14. If $a_{1}: b_{1}=a_{2}: b_{2}$, show that

$$
a_{1}: b_{1}=\sqrt{ }\left(a_{1}{ }^{2}+a_{2}{ }^{2}\right): \sqrt{ }\left(b_{1}{ }^{2}+b_{2}^{2}\right) .
$$

On the Ceometrical Treatment of Proportion.

360. The definition of Proportion (viz. the equality of ratios) is the same in Euclid as in Algebra. (Eucl. Book v. Def. 6 and 8.)
But the ways of testing whether two ratios are equal are quite different in Euclid and in Algebra.

The algebraic test is, as we have said, that the two fractions representing the ratios must he equal.
Euclid's test is given in Book v. Def. 5, where it stands thus:
" The first of four magnitudes is said to have the same ratio to the second which the third has to the fourth, when any equimultiples whatsoever of the first and third being taken and any equimultiples whatsoever of the second and fourth :
| "If the multiple of the first be less than that of the second, the multiple of the third is also less than that of the fourth: or,
"If the multiple of the first be equal to that of the second, the multiple of the third is also equal to that of the fourth : $\mathrm{Or}_{4} /{ }^{\circ}$
"If the multiple of the first be greater than that of the second, the multiple of the third is also greater than that of the fourth."

We shall now show, first, how to dc luce Euclid's test of the equality of ratios from the algebraic test, and secondly, how to deduce the algebraic test from that employed by Euclid.
361. I. To show that if quantities be proportional according to the algebraical test they will also ve proportional according to the geometrical test.
If a, b, c, d be proportional according to the algebraical test,

$$
\frac{a}{b}=\frac{c}{d}
$$

Multiply each side by $\frac{m}{n}$, and we get

$$
\cdot \frac{m a}{n b}=\frac{m c}{n d}
$$

Now, from the nature of fractions,
if $m a$ be less than $n b, m c$ will also be less than $n d$, and if $m a$ be equal to $n b, m c$ will also be equal to $n d$, and if $m a$ be greater than $n b, m c$ will also be greater than $n d$.
Since then of the four quantities a, b, c, d equimultiples have been taken of the first and third, and equimultiples of the second and fourth, and it appears that when the multiple of the first is greater than, equal to, or less than the multiple of the second, the multiple of the third is also greater than, equal to, or less than the multiple of the fourth, it follows that a, b, c, d are proportionals according to the geometrical test.
भ. 362. II. To deduce the algebraic test of proportionality from that given by Euclid.
Let a, b, c, d be proportional according to Euclid.
Then if
$\frac{a}{b}$ is not equal to $\frac{c}{d}$,
let

$$
\frac{a}{b+x} \text { be equal to } \frac{c}{a}
$$ that of

Take m and n such that
$m a$ is greater than $n b$,
but less than $n(b+x)$.
Then, by Euclid's definition, $m c$ is greater than $n d$.(3).
But since, by (1), $\frac{m, a}{n(b+x)}=\frac{m c}{n c}$,
and, by (2), $\quad m a$ is less than $n(b+x)$, it follows that
$m c$ is less than $n d(4)$.
The results (3) and (4) therefore contradict each other.
Hence (1) cannot be true.
Therefore

$$
\frac{a}{b} \text { is equal to } \frac{c}{d} \text {. }
$$

We shail conclude this chapter with a mixed collection of Examples on Ratio and Proportion.

EXAMPLES.-cxxxii.

1. If $a-b: b-c:: b: c$, show that b is a mean proportional between a and c.
2. If $a: b:: c: d$, show that

$$
a^{2}+b^{2}: \frac{a^{3}}{a+b}=c^{2}+d^{2}: \frac{c^{3}}{c+d} .
$$

and

$$
\boldsymbol{a}: b:: \sqrt[{\sqrt[1]{ }\left(m a^{4}+n c^{4}\right): \sqrt[4]{ }\left(m z^{4}+i d^{4}\right)} .]{ }
$$

3. If $a: b:: c: d$, prove that

$$
\frac{m a-n b}{m a+n b}=\frac{m c-n d}{m c+n d} .
$$

4. If $5 a+3 b: 7 a+3 b:: 5 b+3 c: 7 b+3 c$, b is a mean proportional between a and c.
5. If 4 quantitics be proportional, and the first be the greatest, the fourth is the least.
" If $a+b, m+n, m-n, a-b$ be four such quantities, show that b is greater than n_{0}.
6. Solve the equation

$$
x-1: x-2=2 x+1: x+2 .
$$

7. If $\frac{a+b}{b}=\frac{c+d}{d}$, slow that the ratios $a: b$ and $c: d$ are also equal.
8. In a mile race between a bicycle and a tricycle, their rates were proportional to 5 and 4 . The tricycle had half-aminute start, but was beaten by 176 yards. Find the rates of each.
9. If $a: b:: c: d$ and a is the greatest of the four quantities, show that $a^{2}+l^{2}$ is gruater than $b^{2}+c^{2}$.
10. Show that if $\frac{10 a+b}{10 c+d}=\frac{12 a+b}{12 c+d}$, then $a: b:: c: d$.
11. If $x: y: 3: 2$ and $x: 25:: 24: y$, find x and y.
12. If a, b, c be in continued proportion, then
(1) $a: a+b:: a-b: a-c$;
(2) $\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)=(a b+b c)^{2}$.
13. If $a: b:: c: d$, show that $\frac{a+b}{b}=\frac{c+d}{d}$; and hence solve the equation

$$
\frac{a b-b c-d x}{b c+d i c}=\frac{a-b-c}{b+c}
$$

14. If a, b, c are :r continued proportion, show that

$$
a+m b: a-m b:: b+m c: b-m c .
$$

15. If $a: b:: 5: 4$, find the value of the ratio

$$
a^{2}-\overline{b^{2}}: a^{2}+b^{2}
$$

16. The sides of a triangle are as $2 \frac{1}{2}: 3 \frac{3}{4}: 4$, and the perimeter is 205 yards: find the sides.
17. The sides of a triangle are as $3: 4: 5$, and the perimeter is 480 yarls: find the siles.
18. Assuming $a+b: p+q:: p-q: a-b$, prove that the sum of the greatest and least terms of any proprortion is greater than the sum of the other two.
19. A waterman rows 30 miles and back in 12 hours, and he finds that he can row 5 miles with the stream in the same time as 3 against it. Find the rate of the stream.
20. There are three equal vessels A, B, C; the first contains water, the second brandy, the third brandy and water. If the contents of B and C be put togethes, it is found that the mixture is nine times as strong as if the contents of A and C hat been put together. Find the ratio of the brandy to the water in the vessel C.

2I. A factor buys a certain quantity of wheat which he sells again so as to gain 5 per cent. on his outlay, and thus clears $£ 16$. Had he sold it at a grim of 5 s. a quirter he would have cleared os many pomols as each quarter cost shillings. How many quarters did he buy, and what did each quarter cost lim?
22. A man hiys a horse and sells it for $£ 144$, gaining as much per cent. as the horse cost him. What was the price of the horse?
23. I buy grods and seil them again for $£ 96$, gaining as much per cent. as the goods cost. What is the cost price?
24. A man bought some sheep anl sold them again for $£ 24$, graining as much per cent. as the sheep cost him. What did he give for them?
25. A certain crew, who row 40 strokes per minute, start at a distance equivalent to four of their own strokes behind another crew, who row 45 strokes to the minute. In 8 minutes the former succeed in bumping the latter. Find the ratio between the lengths of the strokes of the two boats.
26. The time which an express train takes to travel a journey of 180 miles is to that taken by an ordinary train as y : 14. The ordinary truin loses as much time from stoppages as it would take to trawel so miles without stopping. Tlle express train only loses half as much time as the other in thio [8.A.]
maner, and it also travels 15 miles an hour cuicker. Supposing the rates of travelling unifin, what are they in miles pers hander
27. An article is bold at a loss of as much per cent. as it is worth in pounds. Siow that it cannot be sold for mure th: $\mathfrak{\infty} 25$.

XXIX. ON VARIATION.

363. If a sum of money is put out at interest at 5 per cent., the principal is 20 times as great as the amnual interest, whatever the stim may be.

Hence if x be the principal, and y the interest,

$$
x=20 y .
$$

Nuw if we change x we must change y in the same proportion, for so long as the "rate of interest remains the same, x will always be 20 times as great as y, and hence if x be doubled or trebled, y will also be doubled or trebled.
This is an instance of what is called Direct Variation, of which we may give the following definition.
Def. One quantity y is said to vary directly as another quantity x, when y depends on x in such a manner that any increase or decrease made in the value of x produces a proportional increase or decrease in the value of y.
364. If $x=m y$, where m is a constant quantity, that is, a quantity which is not altered by any change in the values of x and y,
y will vary directly as x.
For any increase made in the value of x must proluce a proportional increase in the value of y. Thus if x be doubled,

Tl prod
Tl the I D y anc chan

368
inver y must also te doubled, to preserve the equality of x anu $m y$, since m zannot be changed.
nt. as it or mure cst, what-
ne propore same, x e if x be ariation,
as another that any sa proput-
', that is, a values of x
proluce a be doubled, ' x and m y,
365. Suppose a man can reap an acre ol corn in a diy.

Then 10 men can reap 60 acres in 6 days, and 20 men can reap 60 acres in 3 days.
So that to do the same amoment of work if we double the number of men we must halve the number of days.

This is an instance of what is called Inverse Variation, of which we may give the following definition.

Def. One quantity y is said to vary inversely as anothce quantity x, when y depends on x in such a manner that any increase or decrease matle in the value of x produces a proportional decrease or increase in the value of y.
366. If $x=\frac{m n}{y}$, where m is constant,

$$
y \text { will vary inversely as } x \text {. }
$$

For any increase made in the value of x must produce a propertional decrease in the value of y. Thus if x be doubled, y must be halvel, to preserve the equality of x and $\frac{m}{y}$.
For

$$
2 x=\frac{2 m}{y}=\frac{m}{\frac{y}{2}} .
$$

367. If 1 man can reap 1 acre in 1 day,

5 men can reap 20 acres in 4 days, and. 10 men can reap 80 acres in 8 days.!

That is, the number of acres reaped will depend on the product of the number of men into the number of days.
This is an example of joint variation, of which we may give the following definition. .
Def. One quantity x is said to vary jointly as two others y and z, when any change made in x produces a proportional change in the product of y and z.
308. One quantity x is" sail to vary directly as y and inversely as z when x varics as $\frac{y}{z}$.
369. Theorem. If x raries as y when z is constant, and as z when y is constant, then when y amd z are both variable, x varies as $y z$.

Let

$$
x=m . y z .
$$

Then we have to show that m is constant.
Now when z is constant,
x varies as y;
$\therefore m z$ is constant.
Now z cannot involve y, since z is constant when y changes, and therefore m camot involve y.
Similarly it may be shown that m cannot involve a;

$$
\begin{aligned}
& \therefore u \text { is constant, } \\
& \text { and } x \text { varics as } y z \text {. }
\end{aligned}
$$

370. The symbol $\circ<$ is used to express variation; thus $x \propto y$ stands for the words x varics as y.
371. Variation is only an abbreviated form of expressing proportion.
Thus when we say that x varies as y, we mean that x bears to y the same ratio that any given value of x bears to the corresponding value of y, or $x: y=a$ given value of x : the corresponding value of y.
And similarly for the other kinds of variation, as will be scen from our examples.

Ex. 1. If $x \propto y$ and $y \propto z$, to show that $x \propto z$.
Let

$$
x=m y \text {, and } y=n z .
$$

Then substituting this value of y in the first equation.

$$
x=m n z ;
$$

and therefore, since $m n$ is constant,

Ex. 2. If $x \propto y$ and $x \propto z$, then will $x \propto \sqrt{ }(y z)$.
Let

$$
x=m y \text {, and } x=n z .
$$

Then

$$
x^{2}=m n y z ;
$$

$$
\therefore x=\sqrt{ }(m n) \cdot \sqrt{ }(y z) .
$$

Now $\sqrt{ }(m i n)$ is constant;

$$
\therefore x \propto \sqrt{ }(y z) .
$$

Ex. 3. If y vary as x, and when $x=1, y=2$, what will bo the value of y when $x=2$,

Here $y: x=$ a given value of y : corresponding value of x;

$$
\begin{aligned}
\therefore y: x & =2: 1 ; \\
\therefore y & =2 x .
\end{aligned}
$$

Hence, when $x=2, y=4$.
Ex. 4. If A vary inversely กs B, and when $A=2, B=12$, what will B become when $A=9$?
${ }^{-}$Here $A: \frac{1}{B}=$ a given value of $A: \frac{1}{\text { corresponding value of } \bar{B}}$;

$$
\begin{aligned}
& \therefore A: \frac{1}{B}=2: \frac{1}{12} \\
& \therefore \frac{A}{12}=\frac{2}{B}
\end{aligned}
$$

Hence, when $A=9$,

$$
\frac{9}{12}=\frac{2}{B},
$$

whence

$$
B=\frac{24}{9}=\frac{8}{3}=2 \frac{2}{3}
$$

Ex. 5. If A vary jointly as B and C, and when $A=6, B=6$, and $C=15$, find the value of A when $B=10$ and $C=3$.

Here
A: $B C=$ a given value of $A:$ corresponding value of $B C$;

$$
\begin{aligned}
\therefore A: B C & =6: 6 \times 15 ; \\
\quad \therefore 00 A & =6 B C .
\end{aligned}
$$

Hence, when $B=10$ and $C=3$,

$$
\begin{aligned}
& 90 A=6 \times 10 \times 3 ; \\
& \because A=\frac{180}{90}=2 .
\end{aligned}
$$

1. Ex. 6. If z vary as x directly and y inversely, and of whos $z=2, x=3$ and $y=4$, what is the value of z when $x=15$ and $y=88$

Here $z: \frac{x}{v}=$ a given value of $z: \frac{\text { corresponding value of } x}{\text { corresponding value of } y}$;

$$
\begin{aligned}
& \therefore z: \frac{x}{y}=2: \frac{3}{4} ; \\
& \therefore \frac{3 z}{4}=\frac{2 x}{y} .
\end{aligned}
$$

Eence, when $x=15$ and $y=8$,

$$
\frac{3 z}{4}=\frac{30}{8} ;
$$

$$
\therefore z=\frac{120}{24}=5
$$

EXAMPLES.-cXXXiil.

1. If $A \propto \frac{1}{\bar{B}}$ and $B \propto \frac{1}{C}$ then will $A \propto C$.
2. If $A \propto B$ then will $\frac{A}{\bar{P}} \propto \frac{B}{\bar{P}}$.
3. If $A \propto B$ and $C \propto D$ thon will $A C \propto B D$.
4. If $x \propto y$, and when $x=7, y=5$, find the value of x when $y=12$.
5. If $x-\frac{1}{y}$, and when $x=10, y=2$, find the value of y when $x=4$.
6. If $x \propto y z$, and when $x=1, y=2, z=3$, find the value of y when $x=4$ and $z=2$.
7. If $x \propto \frac{y}{z}$, and when $x=6, y=4$, and $z=3$, find the value of x when $y=5$ and $z=7$.
8. If $3 x+5 y \propto 5 x+3 y$, and when $x=2, y=5$, find the value of $\frac{x}{y}$.
9. If $A \propto B$ and $B^{3} \propto C^{2}$, express how A varies in respect of C.
10. If z vary eonjointly as x and y, and $z=4$ when $x=1$ and $y=2$, what will be the value of x when $z=30$ and $y=33$
11. If $A \propto B$, and when A is $8, B$ is 12 ; express A in terms of B.
12. If the square of x vary as the cube of y, and $x=3$ when $y=4$, find the equation between x and y.
13. If the square of x vary inversely as the cube of y, and $x=2$ when $y=3$, find the equation between x and y.
14. If the cube of x vary as the square of y and $x=3$ when $y=2$, find the equation leetween x and y.
15. If $x \propto z$ and $y \propto \frac{1}{z}$, show that $x \propto \frac{1}{y}$.
16. Show that in trimugles of equal area the altitudes vary inverscly as the bases.
17. Show that in parallelograns of equal area the altitudes vary inverely as the bases.
18. If $y=p+q+r$, where p is invarial ie, q varies as x, and
r varies as x^{2}, find the relation between y and x, supposing that when $x=1, y=6$; when $x=2, y=11$; and when $x=3$, $y=18$.
19. The volume of a prymin? varies jointly as the area of its base and its altitude. Λ pyramid, the base of which is 9
feet square and the height of which is 10 feet, is found to cont:in 10 culbic yards. What must be the height of a pyramid upon a base 3 fect square in order that it may contain 2 cubic yarls?
20. The amount of glass in a window, the panes of which are in every respect equal, varies as the number, length, and breadho of the panes jointly. Show that if their number varies as the square of their breadth inversely, and their length varies as their breath inversely, the whole area of glass varies as the square of the length of the prons.

KXXi ON ARITHMETICAL PROGRESSION.

372. An Arithmetical Progression is a series of numbers which increase or decrease by a constant difference.

Thus, the following scries are Amitimetical Progressions:

$$
\begin{array}{llllll}
2, & 4, & 6, & 8, & 10 ; \\
9, & 7 & 5, & 3, & 1 .
\end{array}
$$

The Constant Difference being 2 in the first series and -2 in the second.
373. In Algehna we express an Arithnctical Progression thus: taking a to represent the first term and d to represent the constant difference, we shall have as a series of numbers in Anithmetical Progression

$$
a, a+d, a+2 d, a+3 d
$$

and so on.
We observe that the terms of the series differ only in the co:fficient of c, and that ciall coeflicient of d is always less by 1 than the number of the tern in which that particular coefficient stands. Thhus
the coeflicient of l in the 3 rd term is 2,
....................... in the 4 th 8 ,
in the bill 4.
and
2111
the
which th, and r varies I varies s as the

Consequently the coefficient of d in the $n^{\text {th }}$ term will be $n-1$.

Therefore the $n^{\text {th }}$ term of the scries will be $a+(n-1) d$.
3i4. If the scries be

$$
=\quad a, a+d, a+2 d,
$$

\qquad
and z the last term, the term next before z will clearly be $z-d$, and the term next belore it will be $\approx-2 d$, and so on.

Hence, the scries written backwards will be

$$
z, z-d, z-2 d, \ldots \ldots \ldots a+2 l, a+d, a .
$$

375. To find the sum of a series of numbers in Arilhmetical Progression.

Let a denote the first term.
... \vec{a}......... the constant difference
... \approx......... the last term.
... n......... the mmber of terms.
... s......... the sum of the u terms.
Then $s=a+(a+l)+(a+2 l)+\ldots \ldots+(z-2 d)+(z-d)+z_{0}$
Also $s=z+(z-d)+(z-2 l)+\ldots \ldots+(a+2 d)+(a+d)+a$,
the series in the second case being the same as in the firsit, but whiten in the reverse onder.

Therefore, ly adding the two series together, we get
$2 s=(a+z)+(a+z)+(a+z)+\ldots \ldots+(a+z)+(a+z)+(c+z) ;$ and since on tee right-hand side of this equation we haves series of n numbers each equal to $a+z$, we get

$$
\begin{aligned}
2 s & =u(u+z) ; \\
\therefore s & ={ }_{2}^{n}(16+z) .
\end{aligned}
$$

'Hn: resuli, may be put in anotite form, because in tus plone of án ac may put $a+(n-1) d$, by Article s'ive

IIcuce

$$
s=\frac{n}{2}\{a+a+(n-1) u\},
$$

that ing,

$$
=\frac{n}{2}\{2 a+(n-1) d\} .
$$

376. We have now obtained the following results:

From one or more of these equations we have ir, Examples to determine the values of a, d, n, s or z. We shail now proceed to give instances of such Examples.

Ex. 1. Find the Las't terse of the series

$$
7,10,13, \ldots \ldots \text { to } 20 \text { terms. }
$$

Taking the equation $z=a+(n-1) d$, for pat 7 and for n put 20, and we get

$$
z=7+(20-1) d,
$$

$$
\text { or, } \quad z=7+10 d .
$$

Now d is always found by taking the joret term fivion the second, and in this case,

$$
\begin{gathered}
d=10-7=3 ; \\
\therefore z=7+10 \times 3=7+57=64 .
\end{gathered}
$$

Ex. 2. Find the last term of the scries

$$
12,8,4, \ldots \ldots \text { to } 11 \text { terms. }
$$

In the equation
put

$$
\begin{aligned}
& z=a+(n-1) d \\
& a=12 \text { and } n=11 \\
& z=12+10 d . \\
& d=8-12=-4 \\
& z=12-40=-28
\end{aligned}
$$

Then
Now
Hence

EXAMPLES.-cXXXIV.
Find the last term of each of the following series:
3. $2,5,8 \ldots \ldots$ to 17 terms.
2. $4,8,12$ \qquad to 50 terms.

$$
\begin{aligned}
& \approx=a+(n-1) d \ldots \ldots \ldots \ldots(A),
\end{aligned}
$$

$$
\begin{align*}
& s={ }_{2}^{n}\{2 a+(n-1) d\} \tag{C}
\end{align*}
$$

$7, \frac{29}{4}, \frac{15}{2} \ldots \ldots$ to 16 terms.
4. $\frac{1}{2},-1,-\frac{5}{2}, \ldots .$. to 23 terms
5. $\frac{5}{6}, \frac{1}{2}, \frac{1}{6} \ldots .$. to 12 terms.
6. $-12,-8,-4$..... to 14 terma
7. $-3,5,13 \ldots$..... to 16 terms.
8. $\frac{n-1}{n}, \frac{n-2}{n}, \frac{n-3}{n} \ldots \ldots$ to n terms.
9. $(x+y)^{2}, x^{2}+y^{2},(x-y)^{2}$...... to n terma。
10. $\frac{a-b}{a+b}, \frac{4 a-3 b}{a+b}, \frac{7 a-5 b}{a+b} \cdots .$. to n terne:
377. Ex. 1. Find the seat of the series

$$
2,5,7 \ldots \ldots \text { to } 12 \text { terme. }
$$

In the equation $s=\frac{n}{2}\{2 a+(n-1) d\}$
put 3 for a and 12 for n, and we get

$$
s=\frac{12}{2}\{6+11 d\}
$$

Now $d=5-3=2$, and so

$$
s=\frac{12}{2}\{6+22\}=6 \times 28 \times 160,
$$

Ex. 2. Find the sum of the series

$$
\begin{aligned}
& 10,7,4 \ldots \ldots \text { to } 10 \text { terms } \\
& 8=\frac{n}{2}\{2 a+(n-1) d\} ;
\end{aligned}
$$

put 1.0 for a and 10 for n, then

$$
=\frac{i \hat{0}}{2}\{20+9 d\}
$$

Now $d=7-10=-3$, and therefore

$$
s=\frac{10}{2}\{20-27\}=5 \times(-7)=-35
$$

EXAMPLES.-CXXXV.

Find the sum of the following series:

1. $1,2,3$...... to 100 terms.
2. $2,4,6 \ldots .$. to 50 terms.
3. 3, 7, 11 to 20 terms.
4. $\frac{1}{4}, \frac{1}{2}, \frac{3}{4} \ldots \ldots$ to 15 terms.
5. $-9,-7,-5$...... to 12 terms.
6. $\frac{5}{6}, \frac{1}{2}, \frac{1}{6}, \ldots .$. to 17 terms. ${ }^{\text {. }}$
7. $1,9,3$...... to n terms.
8. $1,4,7 \ldots$..... to n terms.
9. $1,8,15 \ldots .$. to n terms.
o. $\frac{n-1}{n}, \frac{n-2}{n}, \frac{n-3}{n} \ldots .$. to n terms.
10. Ex. What is the Constant Difference whea the first term is 24 and the tenth term is $\mathbf{- 1 2}\}$

Taking the equation (A),

$$
z=a+(n-1) d,
$$

and regarding the tenth as the last term, we get
or $\quad-36=9 d$,
whence we ultain $d=-4$

EXAMPLES.-CXXXVi.

What is the Constant Difference in the following cases 9

I. When the first term is 100 and the twentieth is $\mathbf{- 1 4}$.
2. x.......... fifty-first is $-x$.
3.
$-\frac{1}{2} \ldots \ldots \ldots$ forty-ninth is $5 \frac{1}{2}$.
4. $\ldots \ldots \ldots \ldots \ldots-\frac{3}{4} \ldots \ldots . .$. twenty-fifth is $-21 \frac{3}{4}$
5.
-10. sixth is -20 .
6.

150 ninely-first is 0 .
379. Ex, What is the Finst Term when
the 40 th term is 28 and the 43 rl term is $82 ?$
Taking equation (A),

$$
z=a+(n-1) d,
$$

and regimling the last term to be the 40 lh , we get

$$
\begin{equation*}
28=a+39 d . \tag{I}
\end{equation*}
$$

Again, regarling the last term to be the 43 r , we get

$$
\begin{equation*}
32=i t+42 l . \tag{i}
\end{equation*}
$$

From equations (1) and (2) we n:ay find the value of a to be -24 .

EXAMELES:-CエXXVil,

I. What is the first term when
(1) The 59th term is 70 and the CGth term is 84 ;
(2) The 20th term is $93-356$ and the 21st is $98-270$;
(3) The second term is $\frac{1}{2}$ and the 55th is 5.8 ;
(4) The second term is 4 and the 87 th is - 20 \%
2. The sum of the Brot and 8th terms of a series is 31 , and the sum of the 5th and 10 th terms is 43 . Find the sum of l) terms.
3. The sum of the 1st and 3rd terms of a scries is 0 , and the sum of the 2 nd and 7 th terms is 40 . Find the sum of 7 terms.
4. If 24 and 33 be the fourth and fifth terms of a series, what is the 100 th term?
5. Of how many terms does an Arithmetical Progression consist, whose difference is 3 , first term 5, and last term 302 \}.
6. Supposing that a body falls through a space of $16 \frac{1}{12}$ feet in the first second of its fall, and in each succeeding second $32 \frac{1}{6}$ feet more than in the next preceding one, how far will a body fall in 20 seconds?
7. What debt can be discharged in a year by weekly payments in arithmetical progression ; the first payment being 1 shilling and the last £5. 3s. ?
8. "Find the 41st term and the sum of 41 terms in each of the following series:
(I) $-5,4,13 \ldots \ldots$
(2) $4 a^{2}, 0,-4 a^{2} \ldots \ldots$
(3) $1+x, 5+3 x, 9+5 x \ldots \ldots$
(4) $-4 \frac{1}{2},-1 \cdot 4 \ldots \ldots$
(5) $\frac{1}{4}, \frac{9}{20} \ldots \ldots$
9. To how many terms do the fullowing series extend, and what is the sum of all the terms? . 'd

$$
\begin{aligned}
& \text { (1) } 1002=\ldots . .10,2 \\
& \text { (2) }-6,2 \ldots \ldots, 186 .
\end{aligned}
$$

is 31 , and ce stum of
is 0 , and e sum of
a series,
ogression rim 302$\}$ $16 \frac{1}{12}$ fect g second ar will a
kly payt being 1
(3) $2 \frac{1}{2} x, 8 x \ldots \ldots,-72 \cdot 3 x$
(4) $\frac{1}{2}, \frac{1}{4} \ldots \ldots-24$.
(5) $m-1 \ldots \ldots .137(1-m), 139(1-m)$.
(6) $x+254, \ldots \ldots x+2, x-2$.
380. To insent 3 arithmetic means betuecn 2 and 10.

The number of terms will be 5.
Taking the equation $z=a+(n-1) d$,
Ne have $\quad 10=2+(5-1) d$.
Whence

$$
8=4 d ; \quad \therefore d=2 .
$$

Hence the scrirs will be

$$
2,4,6,8,10
$$

EXAMPLES.-CXXXViil,

1. Insert 4 arithmetic means between 3 and 18.
2. Insert 5 arithmetic means between 2 and - 2 .
3. Insert 3 arithnetic means letween 3 and $\frac{2}{3}$.
4. Insert 4 arit!metic means between $\frac{1}{2}$ and $\frac{1}{3}$.
5. To insert 3 arithmetic means between a and b.

The number of terms in the series will be 5 , since there sre to be 3 terms in aldition to the first term a and the last term b.

Taking the equation $z=a+(n-1) d$,
We have to find d, having given

$$
a, z=b \text { and } n=
$$

Hence

$$
b=a+(5-1) d,
$$

$$
4 d=b-a, \therefore d=\frac{b-a}{4}
$$

Hence the series will be

$$
a, a+\frac{b-a}{4}, a+\frac{b-a}{2}, a+\frac{3(b-a)}{4}, b,
$$

$$
a, \frac{3 a+b}{4}, \frac{a+b}{2}, \frac{a+3 b}{4}, b .
$$

ExAMPLES:-cxxxix.

1. Inserf 3 arithmetic means between n and n.
2. 'Insert 4 arithmetic means between $m+1$ and $m-$).
3. Insert 4 anithmetic means between n^{2} and $n^{2}+1$.
4. Insert 3 withmetic means between $x^{2}+y^{2}$ and $x^{2}-y^{2}$.
5. We shall now give the gencral form of the propostrive "To insert marithnetic means between a and b."

The number of terms in the scries will be $m+2$.
Then taking the equation $z=a+(n-1) d$, we have in this case $b=a+(m+2-1) d$,
cr,

$$
b=a+(m+1) d .
$$

Hence

$$
d=\frac{b-a}{m+1},
$$

and the form of the scries will be

$$
a, a+\frac{b-a}{m+1}, a+\frac{2 b-2 a}{m+1}, \ldots \ldots ., b-\frac{2 b-2 a}{m+1}, b-\frac{b-a}{m+1}, b
$$

that is,

$$
a, \frac{a m+b}{m+1}, \frac{a m-a+2 b}{m+1}, \ldots \ldots, \frac{b m-b+2 a}{n+1}, \frac{b m+a}{m+1} ; b_{0}
$$

XXXI. ON GEOMETRICAL PROGRESSION.

383. A Geometrical Progression is a series of numbers which increase or decrease by a constant fuctor.

Thus the following series are Geomethical Progressions,

$$
\begin{gathered}
2,4,8,16,32,64 ; \\
12,3, \frac{3}{4}, \frac{3}{16}, \frac{3}{64} ; \\
4,-\frac{1}{2}, \frac{1}{16},-\frac{1}{128}, \frac{1}{1024} .
\end{gathered}
$$

The Constant Factors being 2 in the first series, $\frac{1}{4}$ in the second, and $-\frac{1}{8}$ in the third.

Note. That which we shall call the Constant Factor is usually called the Common Ratio.
384. In Algebra we express a Geometrical Progression thus: taking a to represent the first term and f to represent the Constant Factor, we shall have as a series of numbers in Geometrical Progression

$$
a, a f, a f^{2}, a f^{3} \text {, and so on. }
$$

We observe that the terms of the series differ only in the index of f, and that each index of f is always less by 1 than the vumber of the term in which that particular index stands.
Thus the index of f in the 3 rd term is 2 ,
in the 4th 3,
in the 5th 4.
Consequently the index of f in the nth term will be $n-1$.
Therefore the u th term of the series will be $a f^{n-1}$.
[s.d.]

IMAGE EVALUATION

Photographic Sciences
Corporation

Hence if z be the last tcrm,

$$
\approx=a f^{n-1} .
$$

385. If the series contain n teims, a being the first term and f the Constant Factor,
the last term will be $a f^{n-1}$,
the list term but one will be af ${ }^{n-2}$,
the last term but two will be afme.
Now "f $f^{n-1} \times f=a f^{n-1} \times f^{1}=a f^{n-1+1}=a f^{n}$,

$$
a f^{n-2} \times f=a f^{n-2} \times f^{1}=a f^{n-2+1}=a f^{n-1}
$$

$$
a f^{n-9} \times f=a f^{n-3} \times f^{1}=a f^{n-3+1}=a f^{n-2}
$$

386. We may now proccel to find the sum of a series of rumbers in Gcometrical Progrcssion.

Let a denote the first term,
$f \quad$ the constant factor,
$n \quad$ the number of terms,
$s \quad$ the sum of the n terms.
Then $s=a+a f+a f^{2}+\ldots+a f^{n-3}+a f^{n-2}+a f^{n-1}$.
Now multiply both sides of this equation by f, then

$$
f_{s}=a f+a f^{2}+a f^{3}+\ldots+a f^{n-2}+a f^{n-1}+a f^{n} .
$$

Hence, subtracting the first equation from the second,

$$
\begin{aligned}
f s-s & =a f^{n}-a . \\
\therefore-s(f-1) & =a\left(f^{n}-1\right) ; \\
\therefore s & =\frac{a\left(f^{n}-1\right)}{f-1} .
\end{aligned}
$$

Note. The proposition just proved presents a difficulty to a begimer, which we shall endeavour to explain. When wo wultiply the series of n terms

$$
a+a f+a f^{2}+\ldots \ldots+a a^{n-3} \frac{a f^{n-2}+a f^{n-1}}{}
$$

by f, we shall obtain another scrics

$$
a f+a f^{2}+a f^{3}+\ldots \ldots+a f^{n-2}+a f^{n-1}+a f^{n}
$$

which also contans n terms.
Though we cannot fill up the gap in each series completely; we see that the terms in the two series must be the same, except the first term in the former series, and the last tcrm in the latter. Hence, when we subtract, all the terms will disappear except these two.
387. From the formulo:

$$
\begin{align*}
& z=a f^{n-1} \ldots \ldots .(A), ~ \\
& s=\frac{a\left(f^{n}-1\right)}{f-1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \ldots(\mathrm{B},
\end{align*}
$$

prove the following:

$$
\begin{aligned}
& \text { (a) } s=\frac{f z-a}{f-1} \text {. } \\
& \text { (} \gamma \text {) } a=f z-(f-1) \& \\
& \text { (} \beta \text {) } . a=\frac{z}{f^{n-1}} \text {. } \\
& \text { ((ס) } f=\frac{s-a}{s-a} \text {. }
\end{aligned}
$$

388. Ex. Find the Last terse of the series

$$
\text { 3, 6, } 12 \ldots . . . \text { to } 9 \text { terms. }
$$

The Constant Factor is $\frac{6}{3}$, that is, 2.
In the formula

$$
z=a f^{n-1},
$$

putting 3 for a, 2 for f, and 9 for n, we get

$$
z=3 \times 2^{8}=3 \times 256=768
$$

EXAMPLES.-cXl.
Find the last term of the following series
I. $1,2,4$...... to 7 terms.
2. $4,12,30 \ldots .$. to 10 terms.
3. 5, 20,80 to 0 terms.
$48,4,2 \ldots .$. to 15 terms.
5. 2, 6, 18 to 9 terms.
6. $\frac{1}{64}, \frac{1}{16}, \frac{1}{4} \ldots \ldots$ to 11 terms.
7. $-\frac{2}{3}, \frac{1}{3},-\frac{1}{6} \ldots \ldots$ to 7 terms
389. Ex. Find the suar of the series

$$
6,3, \frac{3}{2} \ldots \ldots \text { to } 8 \text { terms. }
$$

Generally, $\quad s=\frac{x\left(f^{\mu}-1\right)}{f-1}$
and here

$$
a=6, f=\frac{1}{2}, n=8
$$

$$
\therefore=\frac{6\left(\frac{1^{8}}{2^{8}}-1\right)}{\frac{1}{8}-1}=\frac{6\left(\frac{1}{256}-1\right)}{-\frac{1}{2}}-\frac{\frac{6}{256}-6}{-\frac{1}{2}}=\frac{6-\frac{6}{256}}{\frac{1}{2}}=\frac{763}{64} .
$$

EXAMPLES.-cXli.
Find the sum of the following scries:
I. $2,4,8 \ldots \ldots$ to 15 terms.
2. $1,3,9 \ldots .$. to 6 terms.
3. $a, a x^{2}, a x^{4} \ldots \ldots$ to 13 terms.
4. $a, \frac{a}{x}, \frac{a}{x^{2}}, \ldots$. to 9 terms.
5. $a^{2}-x^{2}, a-x, \frac{a-x}{a+x} \ldots \ldots$ to 7 terms.
6. 2, 6, $18 \ldots .$. to n tcims.
7. 7, 14, $28 \ldots \ldots$ to n terms.
8. 5, $-10,20 \ldots .$. to 8 terms.
9. $-\frac{2}{3}, \frac{1}{3},-\frac{1}{6} \ldots .$. to 7 terms.
390. To find the sum of an Infinite Series in Geometrical Progression, when the Constaut Factor is a proper fraction:

If f be a proper fraction and n very large, f^{n} is a very small number.
Hence if the number of terms be infuite, f^{n} is so small that we may neglect it in the expression

$$
s=\frac{a\left(f^{n}-1\right)}{f-1},
$$

and we get

$$
\begin{aligned}
s & =\frac{-a}{f-1} \\
& =\frac{a}{1-f}
\end{aligned}
$$

391. Ex. 1. Find the sum of the series $\frac{4}{3}+1+\frac{3}{4}+\ldots \ldots$ to infinity.

Here

$$
\begin{gathered}
f=1 \div \frac{4}{3}=\frac{3}{4} ; \\
\therefore 8=\frac{a}{1-f}=\frac{\frac{4}{3}}{1-\frac{3}{4}}=\frac{16}{3}=5 \frac{1}{3} .
\end{gathered}
$$

Ex. 2. Sum to infinity the series $\frac{3}{2}-\frac{2}{3}+\frac{8}{27}-\ldots .$.
Here

$$
\begin{gathered}
f=-\frac{2}{3} \div \frac{3}{2}=-\frac{4}{9} ; \\
\therefore s=\frac{a}{1-f}=\frac{\frac{3}{2}}{1-\left(-\frac{4}{9}\right)}=\frac{\frac{3}{2}}{1+\frac{4}{9}}=\frac{27}{26}
\end{gathered}
$$

EXAMPLES:-cxlii.

Find the sum of the following infuite series:
I. $1, \frac{1}{2}, \frac{1}{4}, \ldots \ldots$
9. $4^{3}, 2^{4}, \ldots \ldots$
2. $1, \frac{1}{4}, \frac{1}{16}, \ldots \ldots$
10. $2 x^{3},-\cdot 25 x$,
3. $3, \frac{1}{3}, \frac{1}{27}, \ldots \ldots$
4. $\frac{2}{3}, \frac{1}{3}, \frac{1}{6}, \ldots \ldots$.
5. $\frac{3}{4}, \frac{3}{4}, \ldots \ldots$
6. $\frac{1}{2},-\frac{1}{3}, \ldots \ldots$
7. $8, \frac{9}{3}, \ldots \ldots$
8. $1 \frac{1}{2}, 5, \ldots \ldots$
II. $a, b, \ldots \ldots$
12. $\frac{1}{10}, \frac{1}{10^{2}}$,
13. $x,-y, \ldots \ldots$
14. $\frac{86}{100}, \frac{86}{10000}$,
15. $51444, \ldots$.
16. $83636,$.
392. To insert 3 geomúr. ic means between 10 and 160.

Taking the equation $\quad z=a f^{n-1}$, we put 10 for $a, 160$ for a, and 5 for n; and we obtain

$$
\begin{gathered}
160=10 \cdot f^{5-1} \\
\therefore 16=f^{4}
\end{gathered}
$$

Now

$$
\begin{gathered}
16=2 \times 2 \times 2 \times 2=2^{4} ; \\
\therefore \Xi^{4}=f^{4} .
\end{gathered}
$$

Hence $f=2$, and the series will be

$$
10,20,40,50,160
$$

EXAMPLES.-CNlii.

1. Insert 3 geometric means between 3 and 243.
2. Insert 4 geometric means between 1 and 1024.
3. Insert 3 geometric means between 1 and 16.
4. Insert 4 geometric means between $\frac{1}{2}$ and $\frac{243}{64}$.
5. To insert m gcometric means letween \mathbf{a} and b .

The number of terms in the series will be $m+2$.
In the formula

$$
z=a f^{n-1} ;
$$

putting b for z, and $m+2$ for n, we get,
or,

$$
l=a f^{m+2-1},
$$

$$
b=a f^{m+1} ;
$$

$$
\therefore f^{m+1}=\frac{b}{a},
$$

or,

$$
f=\frac{b^{\frac{1}{m+1}}}{a^{\frac{1}{m+1}}}
$$

Hence the series will be,

$$
a, a \times \frac{b^{\frac{1}{m+1}}}{a^{\frac{1}{m+1}}}, a \times \frac{b^{\frac{2}{m+1}}}{\frac{2}{a^{m+1}}}, \ldots . ., b \div \frac{b^{\frac{2}{m+1}}}{a^{\frac{2}{+1}}}, b \div \frac{b^{\frac{1}{m+1}}}{a^{\frac{1}{m+1}}}, b
$$

that is,
$\left.a,\left(a^{m} \cdot b\right)^{\frac{1}{m+1}}, \cdot a^{m-1} \cdot b^{2}\right)^{\frac{1}{m} m_{r}-1}, \ldots \ldots,\left(a^{2} \cdot b^{m-1}\right)^{\frac{1}{m+1}},\left(a \cdot b^{m}\right)^{\frac{1}{m_{i}+1}}, b_{1}$
394. We shali now give some mixel Cxamples on Arithmetical and Geometrical Progression.

EXAMPLES.-cXliv.

1. Sum the following scries:
(1) $8+15+22+$ \qquad to 12 terms.
(2) $116+108+100+$ \qquad to 10 :crms
(3) $3+\frac{1}{2}+\frac{1}{12}+\ldots \ldots$ to infinity.
(4) $2-\frac{1}{4}+\frac{1}{32}-\ldots .$. to infinity.
(5) $\frac{1}{2}-\frac{2}{3}-\frac{11}{6}-\ldots \ldots$ to 13 terms.
(6) $\frac{1}{2}-\frac{1}{3}+\frac{2}{9}-\ldots \ldots$ to 6 terms.
(7) $\frac{1}{2}-1-\frac{5}{2}-\ldots \ldots$ to 20 termis.
(S) $\frac{5}{7}+1+1_{7}^{2}+\ldots .$. to 8 ternis.
(9) $\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots \ldots$ to infinity.
(Io) $\frac{3}{5}-\frac{14}{10}-\frac{51}{15}-\ldots .$. to 10 terms.
(II) $\sqrt{\frac{3}{5}}-\wedge^{\prime} 6+2 \sqrt{ }(15)-\ldots .$. to 8 terms.
(12) $-\frac{7}{5}+\frac{7}{2}-\frac{35}{4}+\ldots .$. to 5 terms.
2. If the continued product of 5 terms in Geometrical Progression be 32 , show that the midule term is 2 .
3. If a, b, c are in arithmetic progression, and a, b^{\prime}, c are in geometrical progression, slow that $\frac{b}{V^{\prime}}=\frac{a+c}{2 \sqrt{(c c c)}}$.
4. Show that the arithmetical mean between a and l is greater than the geometrical mean.
5. The sum of the first three terms of an arithmetic scrics is 12 , and the sixth tern is 12 also. Find the sum of the first 6 terms.
6. What is necessary that a, b, c may be in geometric pro gression?
7. If $2 n, x$ and $\frac{1}{2 n}$ are in geometric progression, what is x ?
8. If $2 n, y$ and $\frac{1}{2 n}$ are in aritlmetic progression, what is y ?
9. The sum of a geometric procression whose first term is 1 , constant factor 3 , and number of terms 4 , is equal to the sum of an arithnetic progression, whose first term is 4 and constant difference 4: how many terms are there in the arithmetic progression?
10. The first $(7+n)$ natural numbers when added together make 153. Find n.

1I. Prove that the sum of any number of terms of the series $1,3,5, \ldots \ldots$ is the square of the number of terms.
12. If the sum of a series of 5 terms in arithmetic progression be 95 , show that the midule term is 19 .
13. There is an arithmetical prorrcosion whose first term is $3 \frac{1}{3}$, the constant difference is $1 \frac{4}{9}$, and the sum of the terms is 22. Requirel the number of terins.
14. The 3 digits of a certain number are in arithmetical progression; if the number be divided by the sum of the digits in the units' and tens' place, the quotient is 107 . If 396 be subtracted from the number, its digits will be inverted. Required the number.
15. If the $(p+q)^{\text {th }}$ term of a geometric progression be m, and the $(p-q)^{\text {ma }}$ term be n, show that the $p^{\text {th }}$ term is $\sqrt{ }(m n)$.
16. The difference between two numbers is 48 , and the arithmetic mean exceeds the geometric by 18. Find the numbers.
17. Place three arithmetic means between 1 and 11.
18. The first tern of an increasing aritlmetic serius is 034 , the constant difference $000-1$, and the sum $2 \cdot 748$. Find the aumber of terms.
19. Place nine aritlumetic means between 1 and -1
20. Prove that every term of the series $1,2,4, \ldots \ldots$ ia greater lyy mity than the sum of all that precede it.
21. Siow that if a series of $m p$ terms forming a geometrical prorression whose constant fictor is r be divided into sets of p consecntive terms, the sums of the sets will form a geometrical progression whose constant factor is r^{p}.
22. Find five numbers in arithmetical progression, such that their sum is 55 , and the sum of their squares 765 .
23. In a geometrical progression of 5 terms the difference of the extremes is to the difference of the 2nd and 4th terma as 10 to 3 , and the sum of the 2 und and 4th terms equals twice the product of the lst and $2 n d$. Find the series.
24. Show that the amounts of a sum of money put out at Compound Interest form a suries in geometrical progression.
25. A certain number consists of three digits in geometrical progression. The sum of the dirgits is 13 , and if 792 be added to the number, the digits will be inverted. Find the number.
26. The population of a county increases in 4 years from 10000 to 14641 ; what is the rate of increase?

XXXIY. ON HARMONICAL PROGRESSION.

305. A Harmonical Progression is a scries of numbers of which the reciprocals form an Arithmetical Progression.

Thus the series of numbers $a, b, c, d, \ldots \ldots$ is a Harmonical Proaression, if the series $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$, is an Arithmetical Progression.

If a, b, c be in Harmonical Progression, b is called the Harmonical Mean between a and c.

Note. There is no way of finding a general expression for the sum of a Harmonital Series, but many problems with
reference to such a series may be solved by inverting the terms and treating the reciprocals as an Arithmetical Serics.
396. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be in Harmonical Progrcssion, to show that

$$
a: c:: a-b: b-c
$$

Since $\frac{1}{a^{s}} \frac{1}{b}, \frac{1}{c}$ are in Arthenctical Progression.
ifference th terma uls twice
it out at ssion.
metrical e added number.
or

$$
\begin{aligned}
\frac{1}{c}-\frac{1}{b} & =\frac{1}{b}-\frac{1}{a} \\
\frac{b-c}{b c} & =\frac{a-b}{a b} \\
\frac{a b}{b c} & =\frac{a-b}{b-\frac{b}{c}} \\
\frac{a}{c} & =\frac{a-b}{b-c}
\end{aligned}
$$

02
397. To insert in harnonic means betucen a and b.

First to insert m arithmetic means $\frac{\pi}{}$ tween $\frac{1}{a}$ and $\frac{1}{b}$
Proceeding as in art. 357, we live

K

$$
\begin{aligned}
& \frac{1}{b}=\frac{1}{a}+(m+1) d, \\
& a=b+(m+1) \cdot a b d \\
& \therefore d=\frac{a-b}{a b(m+1)}
\end{aligned}
$$

Hence the arithnctic serics will be

$$
\begin{aligned}
& \frac{1}{a}, \frac{1}{a}+\frac{a-b}{a b(m+1)}, \frac{1}{a}+\frac{2(a-b)}{a b(m+1)}, \cdots \cdots \frac{1}{a}+\frac{m(a-b)}{a b(m+1)}, \frac{1}{b}, \\
& \text { or, } \quad \frac{1}{a}, \frac{b m+a}{a b(m+1)}, \frac{b m+2 a-b}{a b(m+1)}, \cdots \cdots \frac{a m+b}{a b} \frac{1}{(m+1)}, \frac{1}{b}
\end{aligned}
$$

Therefore the IIarmonic Series is

$$
a, \frac{a b(m+1)}{b m+a}, \frac{a b(m+1)}{b m+2 c-b}, \ldots \ldots \frac{a b(m+1)}{a m+b},
$$

398. Given a and b the first two terms of a series in Harmonical Progression, to find the $u^{\text {th }}$ term.
$\frac{1}{a}, \frac{1}{b}$ ore the first two terms of an Arithmetical Scrics of which the common difference is $\frac{1}{b}-\frac{1}{u}$.

The $n^{\text {at }}$ term of this Arithmetical Serics is

$$
\begin{gathered}
\quad \frac{1}{a}+(n-1)\left(\frac{1}{b}-\frac{1}{a}\right) \\
=\frac{1}{a}+\frac{(n-1)(a-b)}{a b}=\frac{b+n a-a-n b+b}{a b} \\
=\frac{\left(n a-a^{\prime}\right)-(n b-\underline{2})}{a b}=\frac{\left(n-{ }^{`}\right) a-(n-2) b}{a b},
\end{gathered}
$$

\therefore the $n^{\text {ts }}$ term of the Harmonical Scries is

$$
\frac{a b}{(n-1) a-(n-2) b} .
$$

309. Let a and c be any two numbers, b the Harmonical Mean between them.

Then

$$
\frac{1}{b}-\frac{1}{a}=\frac{1}{c}-\frac{1}{b},
$$

or

$$
\begin{aligned}
& \frac{2}{3}=\frac{a+c}{a c} ; \\
& \therefore b=\frac{2 a c}{a+c} .
\end{aligned}
$$

400. The fellowing results shoull be remembered.

Arithmetical Mean between x and $c=\frac{+c}{2}$.
Geometrical Mcán between a and $c=\sqrt{a c}$.
Harmonical Mcan between a and $c=\frac{2 a c}{\omega+\dot{c}}$.

es in Har-

Scrics of

Hence if we denote the Means by the letters A, G, I respectively,

$$
\begin{aligned}
A \times H & =\frac{a+c}{2} \times \frac{2 a c}{\omega+c} \\
& =a c \\
& =G^{2}
\end{aligned}
$$

that is, G is a mean proportional between A and H.
401. To show that $A, G, I I$ are in descending order of magnitude.

Since $(\sqrt{ } a-\sqrt{ } c)^{2}$ must be a positive q_{1} uantity. $\left(\sqrt{ }(a-\sqrt{ } c)^{n}\right.$ is greater than 0 ,
or $a-2 \sqrt{a c}+c$ greater chan 0 ,
or $a+c$ greater than $2 \sqrt{a c}$,
or $\frac{a+c}{2}$ greater than $\sqrt{a c} ;$
that is, A is oreater than G.
Also, since $a+c$ is greater than $2 \sqrt{a c}$,
$\sqrt{a c}(a+c)$ is greater than $2 a c$;
$\therefore \sqrt{a c}$ is greater than $\frac{2 a c}{a+c}$;
© e. G is greater than H.

EXAMPLES.-exlv.
x. Insert two harmonic means between 6 and $\mathbf{2 4}$.
2. four.................................. 2 and 3.
3. three $\frac{1}{3}$ and $\frac{2}{2}$.

4 four................................ $\frac{1}{3}$ and $\frac{1}{18}$.
5. Insert five harmonic means between -1 and 2^{-1}.
6. five $\frac{1}{2}$ and $\frac{1}{2}$.
7. six 3 and $\frac{6}{23}$.
8. n $2 x$ and $3 y$.
9. The sum of three termes of a harmonical series is $\frac{11}{12}$, and the first term is $\frac{1}{2}$: find the series, and continue it both ways.
10. The arithmetical mean between two numbers exceeds the geometrical by 13, and the geometrical exceeds the harmonical by 12 . What are the numbers?
it. There are four numbers a, b, c, d, the first three in aritimetical, the last three in harmonical progression; show that $a: b=c ; d$.
12. If x is the harmonic mean between m and n, show that

$$
\frac{1}{x-m}+\frac{1}{x-n}=\frac{1}{m}+\frac{1}{n}
$$

13. The sum of three terms of a harmonic series is 11 , and the sum of their squares is 49 ; find the numbers.
14. If x, y, z be the $r^{\text {th }}, q^{\text {th }}$, and $r^{\text {th }}$ terms of a -.p., show that

$$
(r-q) y z+(p-r) x z+(q-p) x y=0
$$

15. If the n.m. between each pair of the numbers, a, b, c be in A.P., then b^{2}, a^{2}, c^{2} will be in h.P.: and if the н.m. be in п.P., b, a, c will be in H.P.
16. Show that $\frac{c+2 a}{c-b}+\frac{c+2 b}{c-a}=4,>7$, or >10, according as c is the A., a. or H. mean between a and b.

XXXIII. PERMUTATIONS.

402. Tinf different arrangements iar respect of order of succession which can be male of a given number of things are called Permutations.

Thus if from a lox of letters I sciect ten, P and Q, I can make two permutations of them, placing P furst on the left and then on the right of Q, thens:

$$
P, Q \text { and } Q, P \text {. }
$$

If I now take three letters, P, Q and R, I can make six per. mutations of them, thus:

$$
\begin{aligned}
& P, Q, R ; P, R, Q \text {, two in which } P \text { stimds first. } \\
& Q, P, R ; Q, R, P, \ldots \ldots \ldots \ldots \ldots \ldots Q \\
& R, P, Q ; R, Q, I^{\prime}, \ldots \ldots \ldots \ldots \ldots \ldots . .
\end{aligned}
$$

403. In the Examples just given all the things in each case are taken together; but we may le repuired to find how many permutations can be made out of a mumber of things, when a certain number only of then are taken at a time.

Thus the permutations that can be formed out of the letters P, Q, and R taken two at a time are six in number, thas.

$$
P, Q ; P, I ; Q, P ; Q, \dot{R} ; R, P ; R, Q .
$$

404. To find the number of permutations of n different things talicn r at a time.

Let $a, b, c, d \ldots$ stand for n different things.
First to find the number of permutations of the n things taken two at a time.

If a be placed before each of the other things $b, c, d \ldots$ of which the number is $n-1$, we shall have $n-1$ permutations in which a stands first, thus

$$
a b, t i c, a d, \ldots . .
$$

If b be placed before each of the other things, a, c, d... we shall have $n-1$ permutations in which b stands first, thus:

$$
\dot{v} a, b c, b d, \ldots \ldots
$$

Similarly there will be $n-1$ permutations in which c stands first: and so of the rest. In this way we get every possible permutation of the n things taken two at a time.

Hence there will be $n .(n-1)$ permutations of n things taken two at a time.

Next to find the number of permutations of the n things taken three at a time.

Leaving a out, we can form $(n-1)$. ($n-2$) permutations of the remaining $(n-1)$ things tiken two at a time, and il ne place a before each of these permutations we shall have ($n-1$). $(n-2)$ permutations of the n things taken three at a time in which a stands first.

Similarly there will be $(n-1) \cdot(n-2)$ permutations of the n things taken three at a time in which b stands first: and so for the rest.

Hence the whole number of permutations of the n things taken thrce at a time will be $n \cdot(n-1) \cdot(n-2)$, the factors of the formula decreasing each by 1 , and the figure in the last fuctor being 1 less than the number taken at a time.

Wre now assume that the formula holds good for the number of permutations of n things taken $r-1$ at a time, and we shall proceed to show that it will hold good for the number of permutations of n things taken r at a time.

The number of permutations of the n things taken $r-1$ at a time will be
that is

$$
\begin{gathered}
n \cdot(n-1) \cdot(n-2) \ldots \ldots \cdot[n-\{(r-1)-1\}] \\
n \cdot(n-1) \cdot(n-2) \ldots \ldots \cdot(n-r+2)
\end{gathered}
$$

Learing a out we can form $(n-1) \cdot(n-2) \ldots \ldots(n-1-r+2)$ permutations of the $(n-1)$ remaining things taken $r-1$ at a time.

Putting a before each of these, we shall have

$$
(n-1) \cdot(n-2) \ldots \ldots \cdot(n-r+1)
$$

permutations of the n things taken r at a time in which a mands first.
$x, c, d \ldots$ we st, thus:
ich c stands ery possible
hings taken
he n things
nutations of , and il ne shall have a three at a
cions of the rist : and so
he n things e factors of ic last fuctor
the number nd we shall ilver of perken $r-1$ at
$-1-r+2)$ n $r-1$ at a in which

So again we shall have $(n-1) \cdot(n-2) \ldots \ldots(n-r+1)$ permutations of the n things taken r at a time in which b stands first; and so on.

Hence the whole number of permutations of the n thinge taken r at a time will be

$$
n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+1)
$$

If then the formula holils good when the n things are taken $r-1$ at a time, it will hold good when they are taken r at a time.

But we have shown it to bold when they are taken 3 at a time; hence it will hold when they are taken 4 at a time, and so on : therefure it is true for all integral values of $r_{\text {. }}$ *
405. If the n things be taken all together, $r=n$, and the formula gives
that is,

$$
n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-n+1) \text {; }
$$

as the number of permutations that can be formed of n dif. ferent things taken all together.

For brevity the formula $;$
which is the same as $1.2 .3 \ldots \ldots n$, is written $\mid n$. This symbol is called factorial n.

Similarly $\quad \underline{r}$ is put for 1.2.3......r r;

406. To find the number of permutations of \mathbf{n} things taken all together when certain of the thinys are alike.

Let the n things be represented by the letters $a, b, c, d \ldots \ldots$. and suppose that
and so on.

$$
\begin{array}{lll}
a & \text { recurs } & p \text { times, } \\
b & \ldots . . . & q \text { times, } \\
\boldsymbol{c} & \ldots . . . & r \text { times, }
\end{array}
$$

[^2]Let P represent the whole number of permutations.
Then if all the p letters a were changed into p other letters, different from each other and from all the rest of the n lette s, the places of these p letters in any one permutation could now be interchanged, each interchange giving rise to a new permutation, and thus from each single permutation we could form 1. $2 \ldots \ldots$ p permutations in all, and the whole number of permutations would be ($1.2 \ldots p$) P, that is $\underline{p} . P$.

Similarly if in addition the q letters b were changed into q letters different from each other and from all the rest of the n letters, the whole number of permutations would be

$$
\underline{\underline{q} \cdot \underline{p} \cdot P ;-}
$$

and if the r letters c were also similarly changed, the whole number of permutations would be

$$
\underline{\underline{r}} \mid \underline{q} \cdot \underline{p} \cdot P
$$

and so on, if more were alike.
But when the p, q, and r, \&c.,]etters have thus been changed, we shall have n letters all different, and the number of permutations that can be formed of them is n (Art. 405).

Hence

$$
\begin{aligned}
& P \cdot|\underline{p}| \underline{q} \cdot \mid \underline{r} \ldots \ldots=\underline{n} ; \\
& \therefore P=\frac{\underline{n}}{\underline{p} \cdot \underline{\mid r} \cdot \cdots}
\end{aligned}
$$

EXAMPLES.-cXlvi.

1. How many permutations can be formed out of 12 things taken 2 at a time ?
2. How many permutations can be formed out of 16 things taken 3 at a time?
3. How many permutations can be formed out of 20 things taken 4 at a time?
4. How many changes can be rung with 5 bells out of 8 ?
5. IIow many permutations can be made of the letters in the word Exumination taken ali together ?
6. in how many ways can 8 men be placed side by side?

ns.

 her letters, ue n lette s, could now tew permucould form aber of per-nged into q est of the n l, the whole en changed, r of permu-

of 12 things

of 16 things
of 20 things
8 out of $8 ?$
he letters in
e by side?
7. In how many ways can 10 men be piaced side by side?
8. Three flags are reciuired to make a signal. How many kignals can be given by 20 flags of 5 different colours, there being 4 of each colour?
9. How many different permutations can be formed out of the letters in Algebra taken all together ?
ic. The number of things: number of permutations of the things token 3 at a time $=1: 20$. How many things are there?
11. The number of permutations of m things taken 3 at a time : the number of permutations of $m+2$ things taken 3 at a time $=1: 5$. Find m.
12. In the permutations of a, b, c, d, e, f, g taken all together, find how many begin with cd.
13. Find the number of permutations of the letters of the product $a^{2} b^{3} c^{4}$ written at full length.
14. Find? the number of permutations that can be formed out of the letters in each of the following words: Conceit, Taluverr, C'Ilcuttu, Proposition, Mississippi.

XXXIV. COMBINATIONS.

407. The Combinations of a number of things are the different collections that can be formed out of them by taking a certain number at a time, without regard to the orde: in which the things stand in each collection.
Thus the combinations of a, b, c, d taken two at a time are $a b, a c, a d, b c, b d, c d$.
Here from each combination we could make two permutations: thus $a b, b a ; a c, c a$; and so on: for $a b, b a$ are the same combination, and so are $a c$, $c a$.
Similarly the combinations of a, b, c, d taken three at a time are abc, abd, acd, bcd.
Here from each combination we could make six permuta. tions; thus $a b c, a c b, b a c, b c a, c a b, c b a$: and so on.

And, generally, in accordance with Art. 405, any combination of n things may be made into $1.2 .3 \ldots n$ permutations.
408. To find the number of combinations of n different things taken r at a time.

Let C_{r} denote the number of combinations required.
Since each combination contains r things it rpm be made into \underline{r} permutations (Art. 405);
\therefore the whole number of permutations $=\mid r . C_{r}$.
But also (from Art. 404) the whole number of permutations of n things taken r at a time

$$
\begin{aligned}
& =n(n-1) \ldots \ldots(n-r+1) ; \\
\therefore r_{0} C_{r} & =n(n-1) \ldots \ldots(n-r+1) ; \\
\therefore C_{r} & =\frac{n(n-1) \ldots \ldots(n-r+1)}{r}
\end{aligned}
$$

409. To show that the number of enmbinations of n things taken \mathbf{r} at a time is the same as ihe number taken $\mathbf{n - r}$ at a time.

$$
C_{r}=\frac{n \cdot(n-1) \ldots \ldots(n-r+1)}{1.2 .3 \ldots \ldots r} ;
$$

and

$$
\begin{aligned}
O_{m} & =\frac{n \cdot(n-1) \ldots \ldots\{n-(n-r)+1\}}{1 \cdot 2 \cdot 3 \ldots \ldots(n-r)} \\
& =\frac{n \cdot(n-1) \ldots \ldots(r+1)}{1 \cdot 2 \cdot 3 \ldots \ldots(n-r)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{C_{r}}{C_{n \rightarrow}} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+1)}{1 \cdot 2 \cdot 3 \ldots \ldots r} \times \frac{1 \cdot 2 \cdot 3 \ldots \ldots(n-r)}{n \cdot(n-1) \ldots \ldots(r+1)} \\
& =\frac{n \cdot(n-1) \ldots \ldots(n-r+1) \cdot(n-r) \ldots \ldots 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \ldots \ldots r \cdot(r+1) \ldots \ldots(n-1) \cdot n} \\
& =\frac{\frac{n}{n}}{1} \\
& =1 .
\end{aligned}
$$

That is,

$$
O_{r}=\sigma_{n-\infty}
$$

combina tations. ent things

d.

be made
mutation
410. Making $r=1,2,3 \ldots \ldots r-1, r, r+1$ in order,

$$
\begin{aligned}
C_{1} & =n, C_{2}=\frac{n}{1} \cdot \frac{n-1}{2}, C_{3}=\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \\
& \ldots \\
C_{r-1} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \\
C_{r} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2) \cdot(n-r+1)}{1 \cdot 2 \ldots \ldots(r-1) \cdot r} \\
\boldsymbol{C}_{r+1} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+1) \cdot(n-r)}{1 \cdot 2 \ldots \ldots r \cdot(r+1)}
\end{aligned}
$$

$$
C_{n}=1
$$

Hence the general expression for the factor connecting \boldsymbol{O}_{r}; one of the set of numbers $C_{1}, C_{2} \ldots \ldots C_{r+1} \ldots \ldots C_{n}$, with C_{r-1}, that which stands next before it, is $\frac{n-r+1}{r}$, that is,

$$
C_{r}=\frac{n-r+1}{r} \cdot C_{r-1}
$$

With regard to this faccor $\frac{n-r+1}{r}$, we olsecre
(1) It is always positive, because $n+1$ is grcater than
(2) Its value continually decreases, for

$$
\frac{n-r+1}{r}=\frac{n+1}{r}=
$$

which decreases as r increases,
(3) Though $\frac{n-r+1}{r}$ continually decreases, yet for several successive values of r it is greater than unity, and therefore each of the corresponcli..g terms is greater than the preceding.
(4) When r is such that $\frac{n-r+1}{r}$ is less than unity the correspondıng term is less than the preceding.
(5) If n and r be such that $\frac{n-r+1}{r}=1, C_{p}$ and C_{n-1} are a pair of equal terms, each greater than any preceding or subsequent term.

Hence up to a certain term (or pair of terms) the terms increase, and after that decrease: this term (or pair of terms) is the greatest of the series, and it is the object of the next Article to determine what value of r gives this greatest term (or pair of terms).
411. To find the value of r for which the number of combinations of n things taken r together is the greatest.

$$
\begin{aligned}
& C_{r-1}=\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \\
& C_{r}=\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \cdot \frac{(n-r+1)}{r} \\
& C_{r+1}=\frac{n \cdot(n-1) \ldots \ldots(n-r+1)}{1 \cdot 2 \ldots \ldots r} \cdot n-r \\
& r+1
\end{aligned}
$$

Hence, if C_{r} denote the number of combinations required, $\frac{C_{r}}{C_{r-1}^{\prime}}$ and $\frac{C_{r}}{C_{r+1}^{\prime}}$ wast neither of them be less than 1.

But

$$
\frac{C_{r}}{C_{r-1}}=\frac{n-r+1}{r},
$$

and

$$
\frac{C_{n}}{U_{r+1}^{\prime}}=\frac{r+1}{n-r^{2}}
$$

Hence $\frac{n-r+1}{r}$ is not less than 1 and $\frac{r+1}{n-r}$ is not less than 1 , or, $\quad n-r+1$ is not less than r and $r+1$ not less than $n-r$, or, $\quad n+1$ is not less than $2 r$ and $2 r$ not less than $n-1$;
$\therefore 9 r$ is not greater than $n+1$ and not less than $n-1$.
Hence $2 r$ can have only three values, $n-1, n, n+1$.
Now $2 r$ must be an even number, and therefore
(1) If n be odd, $n-1$ and $n+1$ being both even numbers, 2t may be equal to $n-1$ or $n+1$;
$1 C_{n-1}$ are a g or subsee terms in. of terms) is ext Article cm (or pair of comlina3 required,
ess than 1 , than $n-r$, han $n-1$; $n-1$.

$$
\therefore r=\frac{n-1}{2} \text { or } r=\frac{n+1}{2} \text {. }
$$

(2) If n be even, $n-1$ and $n+1$ being both odd numbers, $2 r$ can only be equal to n;

$$
\therefore r=\frac{n}{2}
$$

EX. 1. Of eight things how many must be taken together that the number of combinations, maty be the greatest possible?
Here $n=8$, an even number, therefore the number to be taken is 4 , which will give $\frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4}$ or 70 combinations.

Ex. 2. If the number of things be 9 , then the number to be taken is $\frac{9-1}{2}$ or $\frac{9+1}{2}$, that is 4 or 5 , which will give respectively

$$
\begin{aligned}
& \frac{9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4}, \text { or } 126 \text { combinations, and } \\
& \frac{9 \times 8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4 \times 5}, \text { or } 126 \text { combinations. }
\end{aligned}
$$

EXAMPLES.-cxlvii.

1. Out of 100 soldiers how many different partics of 4 can be chosen?
2. How many combinations can be made of 6 things taken 5 at a time?
3. Of the combinations of the first 10 letters of the alphabet taken 5 together, in how many will a occur?
4. How many words can be formed, consisting of 3 consomunts and one vowel, in a language containing 19 consonants and 5 vowels?
5. The number of combinations of n things taken 4 at a time : the number taken 2 at a time $=15: 2$. Find n.
6. The number of sombinations of n things, taken 5 at
a time, is 3_{5}^{3} times the namber of combinations taken 3 at a time. Find n.
7. Gut of 17 consonants and 5 vowels, how many words can be formed, each containing 2 vowels and 3 consonants?
8. Out of 12 consonants and 5 vowels how many words can be formed, each containing 6 consomants and 3 vowels?
9. The number of permutations of n things, 3 at a time, is 6 times the number of combinations, 4 at a time. Find n.
10. How many different sums may be formed with a guinea, a half-guinea, a crown, a half-crown, a shilling, and a sixpence ।
11. At a game of cards, 1 being dealt to each person, any one can have 425 times as many hands as there are cards in the pack. How many cards are there?
12. There are 12 soldiers and 16 sailors. How many different parties of 6 can be made, each party consisting of 3 soldiers and 3 sailors?
13. On how many nights can a different patrol of 5 men be draughted from a corps of 361 On how many of these would any one man be taken?

XXXV. THE BINOMIAL THEOREM. POSITIVE INTEGRAL INDEX.

412. The Binomial Theorem, first explained by Newton, is a method of raising a binomial expression to any power without going through the process of actual multiphication.
413. To investigate ths Binomial Theorem for a Posilive sintegral Index.
zen 3 at \bar{a}
any words onants?
words can cls ?
a time, is ind n.
h a guinea, sixpence ?
erson, any e cards in
many difsting of 3

By actual multiplication we can show that

$$
\begin{aligned}
\left(x+a_{1}\right)\left(x+a_{9}\right)= & x^{2}+\left(a_{1}+a_{2}\right) x+a_{1} a_{9} \\
\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right)= & x^{3}+\left(a_{1}+a_{2}+a_{3}\right) x^{2} \\
& +\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) x+a_{1} a_{9} a_{3} \\
\left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right)\left(x+a_{4}\right)= & x^{4}+\left(a_{1}+a_{2}+a_{3}+a_{4}\right) x^{3} \\
& +\left(a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) x^{2} \\
& +\left(a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+a_{1} a_{3} a_{4}+a_{2} a_{3} a_{4}\right) x+a_{1} a_{9} a_{3} a_{4}
\end{aligned}
$$

In these results we observe the following laws :
I. Eich product is composed of a descenting series of powers of x. The inc?ex of x in the first term is the same as the number of factors, and the indices of x decrease by unity in each succeeding term.
II. The number of terms is greater by 1 than the number of factors.
III. The cocfficient of the first term is unity.
of the second the sum of $a_{1}, a_{2}, a_{3} \ldots$
of the third the sum of the products of $a_{1}, a_{2}, a_{3} \ldots$ taken two at a time.
of the fourth the sum of the products of $a_{1}, a_{2}, n_{3} \ldots$ taken three at a time.
and the last term is the product of all the quantities

$$
a_{1}, a_{2}, a_{3} \ldots \ldots
$$

Suppose now this law to hold for $n-1$ factors, so that

$$
\begin{aligned}
& \left(x+a_{1}\right)\left(x+a_{2}\right)\left(x+a_{3}\right) \ldots \ldots\left(x+a_{n-1}\right) \\
& \quad=x^{n-1}+S_{1} \cdot x^{n-2}+S_{2} \cdot x^{n-3}+S_{3} \cdot x^{n-1}+\ldots \ldots+S_{n-1}
\end{aligned}
$$

where $S_{1}=a_{1}+a_{3}+a_{3}+\ldots+a_{n-1}$,
that is, the sum of $a_{1}, a_{2}, a_{3} \ldots a_{n-1}$,

$$
S_{2}=a_{1} a_{2}+a_{1} \sigma_{3}+a_{2} a_{3}+\ldots+a_{1} \sigma_{n-1}+a_{2} \tau_{n-1}+\ldots
$$

that is, the sum of the products of $a_{1}, a_{2}, a_{3} \ldots a_{0-k}$ taken two at a time,

$$
S_{3}=a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+\ldots+a_{1} a_{2} a_{n-1}+u_{1} a_{3} a_{n-1}+\ldots
$$

that is, the sum of the products of $a_{1}, a_{2} \ldots a_{n-1}$ taken three at a time,

$$
S_{n-1}=a_{1} a_{2} a_{3} \ldots a_{n-1},
$$

that is, the product of $a_{1}, a_{2}, a_{3} \ldots a_{n-1}$
Now multiply both sides by $x+a_{\text {w }}$.
Then

$$
\begin{aligned}
& \left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{n-1}\right)\left(x+a_{n}\right) \\
& =x^{n}+S_{1} x^{n} \cdot+S_{2} x^{n-2}+S_{3} x^{n-3}+\ldots \\
& \quad+a_{n} x^{n-1}+a_{n} S_{1} x^{n-2}+a_{n} S_{2} x^{n-3}+\ldots+a_{n} S_{n-2} \\
& =x^{n}+\left(S_{1}+a_{n}\right) x^{n-1}+\left(S_{2}+a_{n} S_{1}\right) x_{n}^{n-2} \\
& \quad+\left(S_{3}+a_{n} S_{2}\right) x^{n-3}+\ldots+a_{n} S_{n-10}
\end{aligned}
$$

Now $S_{1}+a_{n}=a_{1}+a_{3}+a_{3}+\ldots+a_{n-1}+a_{n}$,
that is, the sum of $a_{1}, a_{2}, a_{3} \ldots a_{n}$,

$$
\Sigma_{3}+a_{n} S_{1}=S_{2}+a_{n}\left(a_{1}+a_{2}+\ldots+a_{n-1}\right),
$$

that is, the sum of the products of $a_{1}, a_{2} \ldots a_{0}$ taken two at a time,

$$
S_{3}+a_{n} S_{2}=S_{3}+a_{n}\left(a_{1} a_{2}+a_{1} a_{3}+\ldots\right),
$$

that is, the sum of the products of $a_{1}, a_{2} \ldots a_{0}$ taken turee at a time,

$$
a_{n} S_{n-1}=a_{1} a_{2} a_{3} \ldots a_{n-1} a_{n}
$$

that is, the product of $a_{1}, a_{2}, a_{3} \ldots a_{n}$.
If then the law holds good for $n-1$ factors, it will hold good for n factors: and as we have sh.. wn that it holds good up to 4 factors it will hold for 5 factors: and hence for 6 factors: and 80 on fo: any number.

Now let eall of the n quantities $a_{1}, a_{2}, a_{3} \ldots a_{n}$ be equal to a, and let us write virr result thus:

$$
\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+u_{n}\right)=x^{n}+\Lambda_{1} \cdot x^{n-1}+A_{2} \cdot x^{n-1}+\ldots+A_{n} .
$$

The left-hand sicle becomes

$$
(x+a)(x+a) \ldots(x+a) \text { to } n \text { factors, that is, }(x+a)^{n} \text {. }
$$

And on the right-hand side
$A_{1}=a+a+a+\ldots$ to n terms $=n a$,
$A_{3}=a^{2}+a^{2}+a^{2}+\ldots$ to as many terms as are equal to the number of combinations of n things taken two at a time, thit is $\frac{n \cdot(n-1)}{1.2}$;

$$
\therefore A_{2}=\frac{n}{1 \cdot \frac{(n-1)}{2}} \cdot a^{2}
$$

$A_{3}=a^{3}+a^{3}+a^{3}+\ldots$ to as many terms as are equal to the cmaber of combinations of n things taken three at a time, that is $\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3}$;

$$
\therefore A_{3}=\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} \cdot a^{3},
$$

$A_{n}=a . a \cdot a . .$. to n factors $=a^{n}$.
Hence we obtain as our final result

$$
\begin{aligned}
(x+a)^{n}=x^{n}+n a x^{n-1} & +\frac{n \cdot(n-1)}{1 \cdot 2} a^{2} x^{n-2} \\
& +\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} \cdot a^{3} x^{n-3}+\ldots+a^{n}
\end{aligned}
$$

414. Ex. Expand $(x+a)^{n}$.

Here the number of terms will be seven, and we have

$$
\begin{aligned}
(x+a)^{n}= & x^{6}+6 a x^{3}+\frac{6 \cdot 5}{1 \cdot 2} u^{2} x^{4}+\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} a^{3} x^{3} \\
& +\frac{6 \cdot 5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3 \cdot 4} a^{4} x^{2}+\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} a^{3} x+a^{3} \\
= & x^{6}+6 a x^{5}+75 a^{2} x^{4}+20 a^{3} x^{3}+15 a^{4} x^{2}+6 u^{3} x+a^{0}
\end{aligned}
$$

Note. The cocfficients of terms equidistant from the end and from the begimning are the same. The general proof of this will be given in Art. 420.

Hence in the Example just given when the coefficients of four terms had been found those of the other three might have been written down at once.

EXAMPLES.--cxlvili.

Expand the following expressions :

1. $(a+x)^{4}$.
2. $(b+c)^{6}$.
3. $(a+b)^{7}$.
4. $(x+y)^{8}$.
5. $(5+4 a)^{4}$.
6. $\left(a^{2}+b c\right)^{5}$.
7. Sirce

$$
(x+a)^{n}=x^{n}+n a x^{n-1} \cdot \frac{n}{1 \cdot 2} \cdot \frac{(n-1)}{a^{2} x^{n-2}+\ldots+a^{n},}
$$

if we put $x=1$, we shall have

$$
(1+a)^{n}=1+n a+\frac{n \cdot(n-1)}{1 \cdot 2} \cdot a^{2}+\ldots+a^{n}
$$

416. Every linomial may be reduced to such a fueta: that the part to be expanded may have 1 for its first terne.

Thus since

$$
\begin{aligned}
x+a & =x\left(1+\frac{a}{x}\right), \\
(x+a)^{n} & =x^{n}\left(1+\frac{a}{x}\right)^{n} ;
\end{aligned}
$$

and we may then expand $\left(1+\frac{a}{x}\right)^{n}$ and multiply each term of the result by x^{n}.
1.:. Expand $(2 x+3 y)^{5}$.
$(2 c+3 y)^{5}=(2 x)^{6} \cdot\left(1+\frac{3 y}{2 x}\right)^{5}$

$$
\begin{array}{r}
=32 x^{5} \cdot\left\{\begin{array}{r}
1+5 \cdot \frac{3 y}{2 x}+\frac{5.5}{1.2} \cdot\left(\frac{3 y}{2 x}\right)^{2}+\frac{5.4 .3}{1.2 .3} \cdot\left(\frac{3 y}{2 x}\right)^{5} \\
\\
\left.+\frac{5.4 .3 .2}{1.2 .3 .4} \cdot\left(\frac{3 y}{2 x}\right)^{4}+\left(\frac{3 y}{2 x}\right)^{6}\right\}
\end{array}, \$\right. \text {. }
\end{array}
$$

from the end neral proof of coefficients of ee might have
$(a+b)^{\gamma}$.
$\left(a^{2}+b c\right)^{5}$.
$\ldots+a^{n}$,
a^{n}.
in fuen: that emb.
cach term of
$\frac{3}{3} \cdot\left(\frac{3 y}{2 x}\right)^{5}$
$\left.{ }^{4}+\left(\frac{3 y}{2 x}\right)^{6}\right)$

$$
\begin{aligned}
& =32 x^{5}\left\{1+\frac{15 y}{2 x}+\frac{90 y^{2}}{4 x^{2}}+\frac{270 y^{3}}{8 x^{3}}+\frac{405 y^{4}}{16 x^{4}}+\frac{243 y^{5}}{32 x^{5}}\right\} \\
& =32 x^{5}+240 x^{4} y+720 x^{3} y^{2}+1080 x^{2} y^{3}+810 x y^{4}+243 y^{5} .
\end{aligned}
$$

417. The expansion of $(x-a)^{n}$ will be precisely the same as that of $(x+a)^{n}$, except that the sign of terms in which the odd bowers of a enter, that is the second, fourth, sixth, and other cven terms, will be negative.
Thus $(x-a)^{n}=x^{n}-n a x^{n-1}+\frac{n \cdot(n-1)}{1.2} \cdot a^{2} x^{n-8}$

$$
-\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} \cdot a^{3} x^{n-3}+\ldots . .
$$

for $\quad(x-a)^{n}=\{x+(-a)\}^{n}$

$$
\begin{aligned}
& =x^{n}+n(-a) x^{n-1}+\frac{n \cdot(n-1)}{1 \cdot 2}(-a)^{2} x^{n-1}+\& c . \\
& =x^{n}-n a x^{n-1}+\frac{n \cdot(n-1)}{1 \cdot 2} a^{2} x^{n-2}+\& c .
\end{aligned}
$$

Ex. Expand $(a-c)^{5}$.

$$
\begin{aligned}
(a-c)^{5} & =a^{5}-5 a^{4} c+\frac{5 \cdot 4}{1 \cdot 2} a^{3} c^{2}-\frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} a^{2} c^{3}+\frac{5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4} a c^{4}-c^{6} \\
& =a^{6}-5 a^{4} c+10 a^{3} c^{2}-10 a^{2} c^{3}+5 a c^{4}-c^{5} .
\end{aligned}
$$

EXAMPLES.-cxlix.

Expand the following expressions:
I. $(a-x)^{6}$.
2. $(b-c)^{7}$.
3. $(2 x-3 y)^{6}$.
4. $(1-2 x)^{5}$.
5. $(1-x)^{10}$.
6. $\left(a^{3}-b^{2}\right)^{8}$.
418. A trinomial, as $a+b+c$, may be raised to any power loy the Binomial Theorem, if we regard two terms as one, thus:
$(a+b+c)^{n}=(a+b)^{n}+n \cdot(a+b)^{n-1} \cdot c$

$$
+\frac{n \cdot(n-1)}{1.2} \cdot(a+b)^{n-2} \cdot c^{2}+
$$

EX. Exmani $\left(1+x+x^{2}\right)^{3}$.

$$
\begin{aligned}
\left(1+x+x^{2}\right)^{3}= & (1+x)^{3}+3(1+x)^{2} \cdot x^{2}+\frac{3.2}{1 \cdot 2}(1+x) \cdot x^{4}+x^{0} \\
= & \left(1+3 x+3 x^{2}+x^{3}\right)+3\left(1+2 x+x^{2}\right) x^{2} \\
& \quad+3(1+x) x^{4}+x^{6} \\
= & 1+3 x+3 x^{2}+x^{3}+3 x^{2}+6 x^{3}+3 x^{4}+3 x^{4} \\
& +3 x^{5}+x^{6} \\
= & 1+3 x+6 x^{2}+7 x^{3}+6 x^{4}+3 x^{5}+x^{6} .
\end{aligned}
$$

EXAMPLES.-cl.

Expand the following expressions:
I. $(a+2 b-c)^{3}$.
2. $\left(1-2 x+3 x^{2}\right)^{3}$.
3. $\left(x^{3}-x^{2}+x\right)^{3}$.
4. $\left(3 x^{\frac{1}{3}}+2 x^{\frac{1}{6}}+1\right)^{3}$.
5. $\left(x+1-\frac{1}{x}\right)^{3}$.
6. $\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}-c^{\frac{1}{4}}\right)^{?}$.
419. To finl the $\mathrm{r}^{\text {th }}$ or general term of the expansion of $(x+a)^{n}$.

We lave to determine three things to enable us to wite down the $r^{\text {th }}$ term of the expansion of $(\because+a)^{n}$.

1. The index of x in that term.
2. The index of a in that term.
3. The coefficient of that term.

Now the index of x, decreasing by 1 in each term, is in thes $r^{\text {th }}$ term $n-r+1$; and the index of a, increasing by 1 in each term, is in the $r^{\text {th }}$ term $r-1$.

For example, in the third term
the index of x is $n-3+1$, that is, $n-2$;
the inder of a is 3-1, that is, 2.
In assigning its proper coefficient to the $r^{\text {th }}$ term we have to determine the last fictor in the denominator and also in the numerator of the fraction

$$
\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3) \ldots \ldots}{1 \cdot 2 \cdot 3 \cdot 1+\ldots}
$$

Now the last factor of the denominator is less by 1 than the number of the term to which it belongs. Thus in the $3^{\text {rd }}$ term the last factor of the denominator is $2_{\text {, }}$, and in the $r^{\text {th }}$ term the last factor of the denominator is $r-1$.

The last factor of the numerator is formed by subtracting from n the number of the term to which it belongs and alding 2 to the result.

Thus in the $3^{\text {rd }}$ term the last factor of the numerator is

$$
n-3+2, \text { that is } n-1 \text {; }
$$

in the $4^{\text {th }}$ $n-4+2$, that is $n-2$;
and so in the $r^{\text {th }}$ $n-r+2$.

Observe also that the factors of the mumerator decrease by unity, and the factors of the denominator increase by mity, so that the coefficient of the $\gamma^{\text {th }}$ term is

$$
\frac{n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+2)}{1 \cdot 2 \cdot 3 \ldots \ldots \cdot(r-1)}
$$

Collecting our results, we write the $r^{\text {th }}$ term of the expansion of $(x+a)^{n}$ thus :

$$
\frac{n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+2)}{1 \cdot 2 \cdot 3 \ldots \ldots(r-1)} \cdot a^{r-1} \cdot x^{n-r+1}
$$

Obs. The index of a is the same as the last factor in the denominator. The sum of the indices of a and x is n.

EXAMPLES.-cli.

Find

1. The $8^{\text {th }}$ term of $(1+x)^{11}$.
2. The $5^{\text {th }}$ term of $\left(a^{12}-b^{2}\right)^{12}$.
3. The $4^{\text {th }}$ term of $\mathbf{f}^{\prime}(a-b)^{100}$.
4. The $9^{\text {th }}$ term of $(2 a b-c d)^{14}$.
5. The midulle term of $(a-b)^{10}$.
6. The middle term of $\left(a^{\frac{1}{8}}+b^{\frac{1}{8}}\right)^{8}$.
7. The two middle terms of $(a-3)^{19}$.
8. The two middle terms of $(a+x)^{13}$.
9. Show that the coeflicient of the middle term of

$$
(a+x)^{4 n} \text { is } 2^{2 n} \times \frac{1.3 .5 \ldots \ldots(4 n-1)}{1.2 .3 \ldots \ldots .2 n} .
$$

10. Show that the coofficient of the midule term of $(a+x)^{4 n+2}$ is $2^{n+1} \times \frac{(2 n+3)(2 n+5) \ldots \ldots(4 n-1)(4 n+1)}{1.2 \ldots \ldots n}$.
11. To show that the coefficient of the $\mathrm{r}^{\text {ih }}$ term from the beginning of the expansion of $(x+a)^{n}$ is identical with the coefficient of the $\mathrm{I}^{\text {th }}$ term from the end.

Since the number of terms in the expansion is $n+1$, there are $n+1-r$ terms before the $r^{\text {th }}$ term from the end, and therefore the $r^{\text {th }}$ term from the end is the $(n-r+2)^{\text {ta }}$ term from the beginning.

Thus in the expansion of $(x+a)^{5}$, that is,

$$
x^{5}+5 a x^{4}+10 a^{2} x^{3}+10 a^{3} x^{2}+5 a^{4} x+a^{5}
$$

the 3 rl term from the end is the $(5-3+2)^{\text {th }}$, that is tne 4^{m} term trua the begiming.

Nuw if we denote the coefficient of the $r^{\text {th }}$ term by C_{n}, and the coefficient of the $(n-r+2)^{\text {th }}$ term by C_{n-r+2} we have

$$
\begin{aligned}
C_{r} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)}, \\
C_{n-r+2} & =\frac{n \cdot(n-1) \ldots \ldots \cdot\{n-(n-r+2)+2\}}{1 \cdot 2 \ldots \ldots(n-r+2-1)} \\
& =\frac{n \cdot(n-1) \ldots \ldots r}{1 \cdot 2 \ldots \ldots(n-r+1)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{C_{r}}{C_{n-r+2}} & =\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \times \frac{1 \cdot 2 \ldots \ldots(n-r+1)}{n \cdot(n-1) \ldots \ldots . r} \\
& =\frac{n \cdot(n-1) \ldots \ldots(n-r+2) \cdot(n-r+1) \ldots \ldots 2 \cdot 1}{1 \cdot 2 \ldots \ldots(r-1) \cdot r \ldots \ldots(n-1) \cdot n} \\
& =\frac{n}{n}=1, \text { which proves the proposition. }
\end{aligned}
$$

421. To find the greatest term in the expansion of $(x+a)^{n}, n$ being a positive integer.

The $r^{\text {th }}$ term of the expansion $(x+a)^{n}$ is

$$
\frac{n \cdot(n-1) \ldots \ldots(n-r+2)}{1 \cdot 2 \ldots \ldots(r-1)} \cdot a^{r-1} \cdot x^{n \rightarrow+1}
$$

The $(r+1)^{\text {th }}$ term of the expansion $(x+a)^{n}$ is

$$
\frac{n \cdot(n-1) \ldots \ldots(n-r+2) \cdot(n-r+1)}{1 \cdot 2 \ldots \ldots(r-1) \cdot r} \cdot a^{r} \cdot x^{n \rightarrow}
$$

Hence it follows that we obtain the $(r+1)^{\text {th }}$ term by multiplying the $r^{\text {th }}$ term by

$$
\frac{n-r+1}{r} \cdot \frac{a}{x}
$$

When this multiplier is first less than 1 , the $r^{\text {th }}$ term is the greatest in the expansion.

Now

$$
\frac{n-r+1}{r} \cdot \frac{a}{x} \text { is first less than } 1
$$

when $\quad n a-r a+a$ is first less than $r x$,
or

$$
n a+a \text { first less than } r x+r a
$$

$$
\text { or } \quad r(x+a) \text { first greater than } a(n+1)
$$

or $\quad r$ first greater than $\frac{a(n+1)}{x+a}$.
If r be equal to $\frac{a(n+1)}{x+a}$, then $\frac{n-r+1}{r} \cdot \frac{a}{x}=1$, and the $(r+1)^{\text {th }}$ term is equal to the $r^{\text {th }}$, and each is greater than any other term.

Ex. Find the greatest term in the expansion of $(4+a)^{7}$, when $a=\frac{3}{2}$.

Hero

$$
\frac{a(n+1)}{x+a}=\frac{\frac{3}{2}(7+1)}{4+\frac{3}{2}}=\frac{12}{\frac{11}{2}}=\frac{24}{11}=21_{1}^{2}
$$

The first whole number greater than 2_{1}^{2} is 3 , therefore the greatest term of the expansion is the 3rd.
429. To find the sum of all the cocfficients in the cxpansion of $(1+x)$.

$$
\begin{aligned}
\text { Since }(1+x)^{n}=1+n x+ & \frac{n \cdot(n-1)}{1 \cdot 2} x^{2}+\ldots \\
& +\frac{n \cdot(n-1)}{1 \cdot 2} x^{n-2}+n x^{n-1}+x^{n}
\end{aligned}
$$

putting $\quad x=1$, we get

$$
2^{n}=1+n+\frac{n \cdot(n-1)}{1 \cdot 2}+\ldots \ldots+\frac{n \cdot(n-1)}{1 \cdot 2}+n+1
$$

or, $\quad 2^{n}=$ the sum of all the coefficients.
423. To show that the sum of the corfficients of the ord terms in the expansion of $(1+x)^{n}$ is cqual to the sum of the cocficionts of the cuen terms.

Since

$$
(1+x)^{n}=1+n x+\frac{n \cdot(n-1)}{1 \cdot 2} x^{2}+\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \ldots
$$

putting $\quad x=-1$, we get

$$
\begin{aligned}
(1-1)^{n} & =1-n+\frac{n \cdot(n-1)}{1 \cdot 2}-\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3}+\ldots \cdot \\
0 & =\left\{1+\frac{n \cdot(n-1)}{1 \cdot 2}+\ldots \cdots\right\} \\
& \quad-\left\{n+\frac{n \cdot(n-1) \cdot(n-2)}{1 \cdot 2 \cdot 3}+\ldots \cdots\right\}
\end{aligned}
$$

=sum of coofficients of odd terms - sum of co efficients of even terms;
\therefore sum of cocfficients of odd terms $=$ sum of cocfficients of deen terms.

Hence, by the preceding Article,
sum of cocfficients of odd terms $=\frac{2^{n}}{2}=2^{n-1}$;
sum of cocffcients of eren terms $=\frac{2^{n}}{2}=2^{n-1}$
the expansion
XXXVI. THE BINOMIAL THEOREM. TRACTIONAL AND NEGATIVE INDICES.
12. We have shown that when m is a positive integer,

$$
(1+x)^{m}=1+m x+\frac{m \cdot(m-1)}{1.2} x^{2}+\ldots \ldots
$$

We have now to show that this equation hulds good when in is a positire fraction, as $\frac{3}{2}$, a negative integer, as -3 , or a nergtive fraction, as $-\frac{3}{4}$.

We shall give the proof devised by Euler.
425. If n be a positive integer we know that
$(1+x)^{m}=1+m x+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\frac{m \cdot(m-1) \cdot(m-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \ldots$
Let us agree to represent a scries of the form

$$
1+m x+\frac{m \cdot(m-1)}{1.2} x^{2}+\ldots \ldots
$$

by the symbol $f(m)$, whatever the value of m may be.
Then we know that when m is a positive integer

$$
(1+x)^{m}=f(n) \text {; }
$$

Hive have to fiow that, also, when m is fractional or tive

$$
(1+x)^{m}=f(m)
$$

Since

$$
\begin{aligned}
& f(m)=1+m x+\frac{m \cdot(n-1)}{1.2} x^{2}+\ldots \ldots \\
& f(n)=1+n x+\frac{n \cdot(n-1)}{1.2} x^{2}+\ldots \ldots
\end{aligned}
$$

If we multiply together the two series, we shall obtain an expression of the form

$$
1+a x+b x^{3}+c x^{3}+d x^{4}+
$$

\qquad
that is, a series of ascending powers of x in which the coeffcients $a, b, c \ldots \ldots$ are formed by various combinations of m and n.

To determine the mode in which a and b are formed, lit us commence the multiplication of the two series and continne it as far as terms involving x^{2}, thus

$$
\begin{aligned}
& f(m)=1+m x+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\ldots \ldots \\
& f(n)=1+n x+\frac{n \cdot(n-1)}{1.2} x^{2}+\ldots \ldots
\end{aligned}
$$

$$
f(m) \times f(n)=1+m x+\frac{m \cdot(m-1)}{1 \cdot z} x^{2}+\ldots \ldots
$$

$$
+n x+m m x^{2}+\ldots \ldots
$$

$$
+\frac{n \cdot(n-1)}{1 \cdot 2} x^{2}+\ldots \ldots
$$

$$
=1+(m+n) \cdot x+\left\{\frac{m \cdot(m-1)}{1.2}\right.
$$

$$
\left.+m n+\frac{n \cdot(n-1)}{1 \cdot 2}\right\} x^{2}+\ldots \ldots
$$

Comparing this product, with the assumed expresi in

$$
1+a x+b x^{2}+c x^{3}+d x^{4}+\ldots \ldots
$$

- we see that
and

$$
\begin{aligned}
a & =m+n, \\
b & =\frac{m \cdot(m-1)}{1 \cdot 2}+m n+\frac{n \cdot(n-1)}{1 \cdot 2} \\
& =\frac{m^{2}-m+\frac{m n \cdot L}{} n^{2}-n}{1 \cdot 2} \\
& =\frac{(m+n) \cdot(m+n-1)}{1 \cdot 2}
\end{aligned}
$$

Similarly we could show by actual multiplication that

$$
\begin{gathered}
c=\frac{(m+n) \cdot(m+n-1) \cdot(m+n-2)}{1 \cdot 2 \cdot 3} \\
d=\frac{(m+n) \cdot(m+n-1) \cdot(m+n-2) \cdot(m+n-3)}{1 \cdot 2 \cdot 3 \cdot 4}
\end{gathered}
$$

Thus we might determine the successive coefficients to any extent, but we may ascertain the law of their formation by the following considerations.

The forms of the coefficients, that is, the way in which m and n are involved in them, do not depend in any way on the values of m and n, but will be precisely the same whether m and n be positive integers or any numbers whatsoever.

If then we can determine the law of their formation when m and n are positive integers, we shall know the law of their formation for all values of m and n.

Now when m and n are positive integers,

$$
\begin{aligned}
& f(m)=(1+x)^{m}, \\
& f(n)=(1+x)^{n} ; \\
& \therefore f(m) \times f(n)=(1+x)^{m} \times(1+x)^{n} \\
&=(1+x)^{m+n} \\
&=1+(m+n) x+\frac{(m+n) \cdot(m+n-1)}{1 \cdot 2} x^{2}+\cdots \\
&=f(m+n) .
\end{aligned}
$$

Hence we conclude that whatever be the values of m and n

$$
f(m) \times f(n)=f(m+n)
$$

Hence

$$
\begin{aligned}
f(m+n+p) & =f(m) \cdot f(n+p) \\
& =f(m) \cdot f(n) \cdot f(p)
\end{aligned}
$$

and so generally

$$
f(m+n+p+\ldots)=f(m) \cdot f(n) \cdot f(p) \ldots
$$

Now let $m=n=p=\ldots=\frac{h}{k}, h$ and k being positive integers, then

$$
\begin{aligned}
& f\left(\frac{h}{k}+\frac{h}{k}+\frac{h}{k}+\ldots \text { to } k \text { terms }\right) \\
&=f\binom{\frac{h}{k}}{\frac{k}{k}} \cdot f\binom{h}{\frac{k}{k}} \cdot f\left(\frac{h}{k}\right) \ldots \text { to } k \text { factors, }
\end{aligned}
$$

or,

$$
f(h)=\left\{f\binom{h}{k_{i}}\right\}^{*},
$$

or,

$$
\begin{aligned}
(1+x)^{h} & =\left\{f\binom{h}{\grave{k}}\right\}^{n} ; \\
\therefore(1+x)^{\frac{n}{k}} & =f\left(\frac{h}{k}\right) \\
& =1+\frac{h}{k_{k}} x+\frac{h}{n} \cdot\left(\frac{h}{k}-1\right) \\
1.2 & x^{2}+\ldots
\end{aligned}
$$

which proves the theorem for a positive fractional index.
Again, since $f(n) \cdot f(n)=f(n+n)$ for all values of n and n, let $n=-m$, then

$$
\begin{aligned}
f(m) \cdot f(-m) & =f(m-m) \\
& =f(0) .
\end{aligned}
$$

Now the series

$$
1+m x+\frac{m \cdot(m-1)}{1 \cdot 2} x^{2}+\ldots
$$

becomes 1 when $m=0$, that is, $f(n)=1$;

$$
\begin{aligned}
\therefore f(m) \cdot f(-m) & =1 ; \\
\therefore f(-m) & =\frac{1}{f(m)}=\frac{1}{(1+x)^{m}}=(1+x)^{-m} ; \\
\therefore(1+x)^{-m} & =f(-m) \\
& =1+(-m) x+\frac{-m(-m-1)}{1.2} x^{2}+\ldots
\end{aligned}
$$

which proves the theorem for a negative index, integral or fractional.
tive integers,
ok factors,
index.
s of m and n,
426. Ex. Expand $(a+x)^{\frac{1}{2}}$ to four tormb.

$$
\begin{aligned}
&(a+x)^{\frac{1}{2}}=a^{\frac{1}{2}}+\frac{1}{2} \cdot a^{\frac{1}{2}-3} \cdot x+\frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right)}{1 \cdot 2} \cdot a^{\frac{1}{2}-2} \cdot x^{2}+ \\
& \frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3} \cdot a^{\frac{1}{2}-3} \cdot x^{3} \cdot \cdots \\
&=a^{\frac{1}{2}}+\frac{1}{2} \cdot a^{-\frac{1}{2}} \cdot x+\frac{-\frac{1}{4}}{2} \cdot a^{-\frac{3}{2}} \cdot a^{2}+\frac{\frac{3}{8}}{6} \cdot a^{-\frac{5}{2}} \cdot x^{3} \cdot \ldots \ldots \\
&=a^{\frac{1}{2}}+\frac{x}{2 u^{\frac{1}{2}}}-\frac{x^{2}}{8 u^{\frac{3}{2}}}+\frac{x^{3}}{16 u^{\frac{3}{3}}} \cdots \cdots
\end{aligned}
$$

Or we might proceed thus, as is explained in Art. 416.

$$
\begin{aligned}
(a+x)^{\frac{1}{2}} & =a^{\frac{1}{2}}\left(1+\frac{x}{a}\right)^{\frac{1}{2}} \\
& =a^{\frac{1}{2}}\left\{1+\frac{1}{2} \cdot \frac{x}{a}+\frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right)}{1 \cdot 2} \cdot \frac{x^{2}}{a^{2}}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3} \cdot \frac{x^{3}}{a^{3}} \cdots\right\} \\
& =a^{\frac{1}{2}}\left\{1+\frac{x}{2 a}-\frac{x^{2}}{8 \iota^{2}}+\frac{x^{3}}{16 u^{3}} \cdots\right\} \\
& =a^{\frac{1}{2}}+\frac{x}{2 a^{\frac{1}{2}}}-\frac{x^{2}}{8 a^{\frac{3}{2}}}+\frac{x^{2}}{16 u^{\frac{3}{2}}} \ldots
\end{aligned}
$$

EXAMPLES.-clil.

Expand the following expressicus:
I. $(1+x)^{\frac{1}{2}}$ to five terms. 7. $\left(1-x^{2}\right)^{\frac{1}{2}}$ to five terms.
2. $(1+a)^{\frac{2}{3}}$ to four terms.
8. $\left(1-a^{2}\right)^{?}$ to four terms.
3. $(a+x)^{\frac{1}{3}}$ to five terms.
9. $(1-3 x)^{\frac{3}{4}}$ to four terms.
4. $(1+2 x)^{\frac{1}{2}}$ to five terms.
10. $\left(x^{2}-\frac{2 y}{3}\right)^{2}$ to four term?
5. $\left(a+\frac{4 x}{3}\right)^{\frac{3}{4}}$ to four terms.
II. $(1-x)^{\frac{5}{6}}$ to four terms.
6. $\left(a^{\frac{1}{4}}+x^{\frac{1}{4}}\right)^{\frac{4}{3}}$ to four terms.
12. $\left(\frac{2 x}{3}-\frac{3 y y}{2}\right)^{\frac{2}{3}}$ to three terms.
427. T'u cxpand $(1+x)^{-a}$.

$$
\begin{aligned}
(1+x)^{-n} & =1+(-n) \cdot x+\frac{-n \cdot(-n-1)}{1 \cdot 2} x^{2} \\
+ & \frac{-n \cdot(-n-1) \cdot(-n-2)}{1 \cdot 2 \cdot 3} x^{3}+ \\
& =1-n x+\frac{n(n+1)}{1 \cdot 2} x^{2}-\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3} \cdot x^{3}+\ldots \ldots
\end{aligned}
$$

the terms being alternately positive and negative.
Ex. Expand $(1+x)^{-3}$ to five terms.

$$
\begin{aligned}
(1+x)^{-3} & =1-3 x+\frac{3.4}{1 \cdot 2} x^{3}-\frac{3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3} x^{3}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} \cdot x^{4}-\ldots \\
& =1-3 x+6 x^{2}-10 x^{3}+15 x^{4}-\ldots
\end{aligned}
$$

428. To expand $(1-x) \cdots$.

$$
\begin{aligned}
(1-x)^{-n} & =1-(-n) \cdot x+\frac{-n \cdot(-n-1)}{1 \cdot 2} \cdot x^{2} \\
& -\frac{n(-n-1)(-n-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \\
& =1+n x+\frac{n \cdot(n+1)}{1 \cdot 2} \cdot x^{2}+\frac{n \cdot(n+1)(n+2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots
\end{aligned}
$$

the terms being all positive.
Ex. Expand $(1-x)^{-3}$ to five terms.

$$
\begin{aligned}
(1-x)^{-3} & =1+3 x+\frac{3 \cdot 4}{1 \cdot 2} x^{2}+\frac{3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3} x^{3}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} x^{4}+\ldots \\
& =1+3 x+6 x^{2}+10 x^{3}+1 x^{4}+\ldots
\end{aligned}
$$

EXAMPLES.-cliii.

Expand

1. $(1+a)^{-2}$ to five terms
2. $\left(1-\frac{x}{2}\right)^{-2}$ to five terms.
3. $(1-3 x)^{-1}$ to five terms.
4. $\left(a^{2}-2 x\right)^{-6}$ to five terms.
5. $\left(1-\frac{x}{4}\right)^{-4}$ to four terms.
6. $\left(a^{\frac{1}{3}}-x^{\frac{1}{3}}\right)^{-0}$ to four terms.
7. To expand $(1+x)^{-\frac{1}{n}}$.

$$
\begin{aligned}
(1+x)^{-\frac{1}{n}}=1+\left(-\frac{1}{n}\right) x & +\frac{-\frac{1}{n} \cdot\left(-\frac{1}{n}-1\right)}{1 \cdot 2} x^{2} \\
& +\frac{-\frac{1}{n}\left(-\frac{1}{n}-1\right)\left(-\frac{1}{n}-2\right)}{1.2 \cdot 3} \cdot n^{3}+\ldots \\
& =1-\frac{1}{n} x+\frac{n+1}{2 n^{2}} x^{2}-\frac{(n+1)(2 n+1)}{6 n^{3}} x^{3}+\ldots
\end{aligned}
$$

EXAMPLES.-cliv.

Expand
I. $\left(1+x^{2}\right)^{-\frac{1}{2}}$ to five terms. 4. $(1+2 x)^{-\frac{1}{2}}$ to five terms.
2. $\left(1-x^{2}\right)^{-\frac{3}{2}}$ to five terms. 5. $\left(a^{2}+x^{2}\right)^{-\frac{1}{2}}$ to four terms.
3. $\left(x^{5}+x^{5}\right)^{-\frac{2}{5}}$ to four termas 3. $\left(a^{3}+x^{3}\right)^{-\frac{1}{3}}$ to four terms.
430. Observations on the general expression for the term involving $x^{\prime \prime}$ in the expansions $(1+x)^{n}$ and $(1-x)^{n}$.

The general expression for the term involving x°, that is the $(r+1)^{\text {an }}$ term, in the expansion of $(1+x)^{n}$ is

$$
\begin{gathered}
n \cdot(n-1) \ldots(n-r+1) \\
1.2 \ldots \ldots \ldots r
\end{gathered}
$$

From this we must deduce the form in all cases.
Thus the $(r+1)^{\text {th }}$ term of the expansion of $(1-x)^{n}$ is found by changing x into $(-x)$, and therelore it is

$$
\begin{aligned}
& \frac{n \cdot(n-1) \ldots(n-r+1)}{1 \cdot 2 \ldots \ldots \ldots r} \cdot(-x)^{p} \\
& (-1)^{r} \frac{n \cdot(n-1) \ldots(n-r+1)}{1.2 \ldots \ldots \ldots r} \cdot x^{r}
\end{aligned}
$$

If n be nergative and $=-m$, the $(r+1)^{\text {tb }}$ term of the expan sion of $(1+x)^{n}$ is

7 or,

$$
\begin{aligned}
& \frac{(-m)(-m-1) \ldots(-m-r+1)}{1 \cdot 2 \ldots \ldots \ldots \ldots \cdot r} x^{\prime \prime} \\
& \frac{(-1)^{r} \cdot\{m \cdot(m+1) \ldots(m+r-1)\}}{1.2 \ldots \ldots \ldots \ldots r}
\end{aligned}
$$

If n be negative and $=-m$, the $(r+1)^{\text {de }}$ term of the expansion of $(1+x)^{n}$ is
or,

$$
\begin{aligned}
(-1)^{r} & \{m \cdot(m+1) \ldots(m+r-1)\} \\
& 1 \cdot 2 \ldots \ldots \ldots \ldots \ldots r \\
& \frac{m \cdot(m+1) \ldots(m+r-1)}{1 \cdot 2 \ldots \ldots \ldots r} \cdot x
\end{aligned}
$$

EXAMPLES.-clv.

Find the $r^{\text {th }}$ terms of the following expansions:

1. $(1+x)^{7}$.
2. $(1-x)^{12}$.
3. $(a-x)^{8}$.
4. $(5 x+2 y)^{9}$.
5. $(1+x)^{-3}$.
6. $(1-3 x)^{-4}$.
7. $(1-x)^{-\frac{1}{2}}$.
8. $(a+x)^{\frac{1}{3}}$.
9. $(1-2 x)^{-\frac{7}{2}}$.
10. $\left(a^{2}-x^{2}\right)^{-\frac{8}{4}}$.
11. Find the $(r+1)^{\text {th }}$ term of $(1-x)^{-3}$.
12. Find the $(r+1)^{\text {th }}$ term of $(1-4 x)^{-\frac{1}{2}}$.
13. Find the $(r+1)^{\text {th }}$ term of $(1+x)^{2 r}$.
14. Show that the coefficient of x^{n+1} in $(1+x)^{n+1}$ is the sum of the coefficients of x^{r} and x^{r+1} in $(1+x)^{n}$.
15. What is the fourth term of $\left(a-\frac{1}{x}\right)^{-\frac{1}{2}}$?
16. What is the fifth term of $\left(a^{2}-b^{2}\right)^{\frac{3}{2}}$?
17. What is the ninth term of $\left(a^{2}+2 x^{2}\right)^{\frac{1}{2}}$?
18. What is the tenth term of $(a+b)^{-m}$?
19. What is the seventh term of $(x+b)^{\frac{1}{m}}$?
m of the expan
m of the expan.
$-x)^{\prime}$,
20. $(5 x+2 y)^{9}$.
21. $(a+x)^{\frac{1}{3}}$.

Approaimate to the following roots:

1. $i^{8 / 31}$.
2. $\sqrt[7]{108}$.
3. $\sqrt[8]{2}$ CO.
4. $\sqrt[3]{31}$.

XXXVII. SCALES OF NOTATION.

432. Tho symbols employed in our common system of Arithmetical Notation are the nine digits and zero. These digits when written consecutively acpuire local values from their positions with respect to the place of units, the value of every digit increasing ten-foll as we advance towards the left hand, and hence the number ton is called the Radis of the Scale.

If we agree to represent the number ten by the letter t, a number, expressed according to the conventions of Arithnetical Notation by 3245 , would assume the form

$$
3 t^{3}+2 t^{2}+4 t+5
$$

if expressed accorling to the conventions of Alsebra.
433. Let us now suppose that some other number, as five. is the radix of a scale of notation, then a mmber expressed in this scale arithmetically by $23-41$ will, if five be represented by f, assume the form

$$
2 f^{3}+3 f^{2}+4 f+1
$$

if expressed alyebraically.
And, generally, if r be the radix of a scale of notation, a number expressed arithmetically in that scale by 6780 will, when expressed alsebraically, since the value of each digit increases r-fold as we advance towards the luft hand, be reptesented by

$$
6 r^{3}+7 r^{2}+8 r+9
$$

434. The number which denotes the radix of any scale will be represented in that scale by 10 .

Thus in the seale whose ralix is five, the number five will be represented by 10 .

In the same scale seven, being equal to five + two, will therefore be represented by 12.

Hence the series of natural numbers as far as tuenty-five will be represented in the seale whose radix is five thus:

$$
\begin{array}{r}
1,2,3,4,10,11,12,13,14,20,21,22,23,24,30,31, \\
32,33,34,40,41,42,43,44,100 .
\end{array}
$$

43,. In the scale whose radix is eleven we shall require a new symbol to express the number ien, for in that seale the number eleven is represented by 10 . It we agree to express ten in this scale by the symbol t, the series of matural mumbers 2s far as twenty-three will be represented in this scale thas:

$$
\begin{array}{r}
1,2,3,4,5,6,7,8,9, t, 10,11,12,13,14,15,16,17, \\
18,10,1 t, 20,21 .
\end{array}
$$

436. In the scale whose radix is twelve we slatl require another new symbol to express the munber eleven. If we arre to express this number by the symbol e, the natmal numbers from nine to thirteen will be repremented in the scale whose radix is twelve thus:

$$
9, t, e, 10,11
$$

Again, the natural numbers from twenty to twenty-five will be represented thus:

$$
18,19,1 t, 1 e, 20,21
$$

487. The scile of notation of which the radix is two, is cilled the Biuary Scale.

The names given to the scales, up to that of which the rulix us twelve, are Temary, Quaternary, Quinary, Senary, Septenary, Octonary, Nonary, Denary, Undenary and Disodenary.
438. To perform the operations of Addition, Subtraction, Multiplication, and Division in a scale of notation whose index is r, we proceed in the same way as we do for numbers expressed in the common scale, with this difference only, that r must be used where ten would be used in the common scale : which will be understood better by the following examples.

Ex. 1. Find the sum of 4325 and 5234 in the senary scale. 4325
52:3.4
the sum

$$
=14003
$$

Which is obtained by adding the numbers in rertical lines, carring I for every six contained in the several results, and setting down the excesses above it.

Thus 4 units and 5 units make nine units, that is, six units together with 3 units, so we set down 3 and carry 1 to the next colum.

Ex. 2. Find the difference between 62345 and 53466 in the septenary scalle.

the difference $\quad=\frac{$| 62345 |
| :--- |
| $5: 3+66$ |}{5546}

which is oltained by the following process. We cannot take six mits from live units, we therefore add seven units to the five units, making 12 units, and take six units from twelve units, and then we add 1 to the lower figure in the second columm, and so on.

Ex. 3. Multiply $24 i 1$ by 35 s in the duodenary scale.

2471
358
7688
$e t e 5$
7193
833318

Ex. 4. Divide 36 T2S6 by 8 in the nonary scale. 8) $\frac{367296}{42033}$

The following is the process. We ask how often 8 is contained in 36 , which in the nonary seale represents thirty-three mits: the answer is 4 and 1 over. We then ask how often 8 is contained in 17, which in the nonary scale represents sioteen wits; the answer is 2 and no remainder. And so for the other digits.

e senary scale.

rertical lines, results, and is, six units ury 1 to the
and 53466 in
cannot take units to the from twelve the secoml ry scale. three mits: en 8 is colldeten thits; other digits.

Ex. 5. Divide 1184323 by $5 S 9$ in the duodenary scale. 559) 1184323 (2483

$$
\begin{aligned}
& \frac{e 56}{2 \because t 3} \\
& \frac{1 t e 0}{3 e: 32} \\
& \frac{39 t 0}{1523} \\
& 1523
\end{aligned}
$$

Ex. 6. Extract the square root of 10534521 in the senary scale.

EXAMPLES.-clvil.

1. Add $23561,42513,645325$ in the septenary scale.
2. Add $3074852,4635628,1247653$ in the nonary scale.
3. Subtract 267862 from 358423 in the nonary seale.
4. Subtract 124321 from 211010 in the quinary seale.
5. Multiply 57264 by 675 in the octonary scale.
6. Multiply 1456 by 6541 in the septenary scale.
7. Divide 243012 by 5 in the senary scale.
8. Divide 3756025 by 6 in the octonary seale.
9. Extract the square root of 25400544 in the senary scale.
10. Extmat the square root of 50.508 if in the duotemary sbils.
11. To transform a given integral number from one scule to nother.

Let N be the given intereer expressed in the first scale, r the radix of the new scale in which the number is to be exprossed,
$\boldsymbol{a}, b, c \ldots \ldots m, p, q$ the digits, $n+1$ in number, expressing the momber in the new scale ; so thes whember in the new suale will be expressed thus: $a r^{n}+b r^{n-1}+c r^{n-2}+\ldots \ldots+m r^{2}+p r+q$.
We have now from the equation

$$
N=a r^{n}+b r^{n-1}+c r^{n-2}+\ldots \ldots+m r^{2}+p r+q
$$

to determine the values of $a, b, c \ldots \ldots m, p, q$.
Divide N by r, the remainder is q. Let A be the quotient: then

$$
A=a r^{n-1}+b r^{n-2}+c r^{n-3}+\ldots \ldots+m r+p
$$

Divide A by r, the remainder is p. Let B be the quatient: then

$$
B=a r^{n-2}+b r^{n-3}+c r^{n-4}+\ldots \ldots+m .
$$

Hence the
first digit to the right of the number expressed in the new scale is q, the first remainder ; second p, the second remainder ; third .m, the third remainder ; and thus all the digits may be determined.

Ex. 1. Transform 235791 from the conmon scale to the scale whose radix is 6 .

6	235791	
6	39298	remainder 3
6	65.19	remainder 4
6	1091	remainder 3
6	181	remainder 5
6	30	remainder 1
6	5	remainder 0
	0	remainder 5

The number required is therefore 5015343 .
m one scale to t scale, number is to r, expressing sed thus:
re quotient:
equationt:

he

nainder :
remainder ; mainder ;
scale to the

The digits by which a number can be expressed in a scale whose radix is r will be $1,2,3 \ldots \ldots . r-1$, because these, with 0 , are the only remainders which can arise from a division in which the divisor is r.

Ex. 2. Express 3598 in the seale whose radix is 12.

12	3598	
12	290	
12	remainder t	
12	$\frac{24}{2}$	remainder e
remainder 0		

\therefore the number required is $20 e t$.
440. The metlod of transforming a given integer from nate scale to another is of course applicable to cases in which both scales are other than the common scale. We must, however, be careful to perform the operation of division in accordance with the principles explained in Art. 43S, Ex. 4.

Ex. Transform 142532 from the scale whose radix is 6 to the scale whose radix is 5 .

5	142532	remainder 2remainder 3
5	20330	
5	2303	
5	300	remainder 3
5	33	remainder 3
. 5	4	r_{i} inder 1
	0	remainder 4

The required number is thesefore 413332.

EXAMPLES.-clviil.

Express
I. 1828 in the septenary scale.
2. 1820 in the senary scale.
3. 43751 in the duodenary scale. [s.A.]
4. 3700 in the quinary scale.
5. 7031 in the binary scale.
6. 215855 in the duodenary scale.
7. 790158 in the septenary scale.

Traneform
8. 34002 from the quinary to the quaternary scale.
9. 8078 from the undenary to the duodenary scale.
10. 3256 from the septenary to the duodenary scale.
II. 3604 from the nonary to the octonary scale.
12. 5050 from the septenary to the quatemary scale.
13. 654321 from the duodenary to the septenary scale.
14. 2301 from the quinary to the undenary scale.
441. In any scale the positive integral powers of the number which denotes the radix of the scale are expressed by 10, 100, 1000

Thus twenty-five, which is the square of five, is expressed in the scale whose radix is five by 100: one hundred and twentyfive will be expressed by 1000 , and so on.

Generally, the $n^{\text {a }}$ power of the number denoting the radix in any seale is expressed by 1 followed by n eyphers.

The highest nmuber that can be expressed by p digits in a seale whase rallix is r is expressed by $r^{p}-1$.

Thus the highest number that an be expressed by 4 digits in the scale whose radix is five is

$$
10^{4}-1, \text { or } 10000-1, \text { that is } 4444
$$

The lenst number that can be expressed by p digits in a scale whose radix is r is expressed by r^{p-1}.

Thus the last number that can be expressed by 4 digits in the sethe whose ratix is five is

$$
10^{4-1} \text { or } 10^{3} \text { that is } 1000
$$

442. In a scale whose radix is r, the sum of the digits of an interger divided by $(r-1)$ will leave the same remainder as the integer leaves when divided by $r-1$.

Let N be the number, and suppose

$$
N=a r^{n}+b r^{n-1}+c r^{n-2}+\ldots \ldots+m r^{2}+p r+q
$$

Then

$$
\begin{gathered}
\Lambda="\left(r^{n}-1\right)+l\left(r^{n-1}-1\right)+c\left(r^{n-2}-1\right)+\ldots+m\left(r^{2}-1\right)+p(r-1) \\
+\{a+b+c+\ldots \ldots+m+p+q\}
\end{gathered}
$$

Now all the expressions $r^{n}-1, r^{n-1}-1 \ldots \ldots r^{2}-1, r-1$ are divisible by r-1;

$$
\therefore \frac{N}{r-1}=\text { an integer }+\frac{a+b+c+\ldots \ldots m+p+q}{r-1} \text {; }
$$

Which proves the proposition, for since the quotients differ by an integer, their fractional parts must be the same, that is, the remainders alter division are the same.

Note. From this proposition is derived the test of the accuracy of the result of Multiplication in Arithmetic by casting out the nines.

$$
\begin{aligned}
\text { For let } & A=9 m+a, \\
\text { and } & B=9 n+b ;
\end{aligned}
$$

$$
\text { then } \quad A B=9(9 m n+a n+b m)+a b \text {; }
$$

that is, $A B$ and ab when divided by 9 will leave the same remainder.

Radical Fractions.

443. As the local value of ench digit in a scale whose radix is r increases r-fold as we advance from right to left, so does the local value of each decrease in the same proportion as we - advance from left to right.

If then we affix a line of digits to the right of the unita' place, each one of these having from its position a value one-rit part of the value it would have if it were one place further to the left, we shall have on the right hand of the units' place a series of Fractions of which the denominators
are successively $r, r^{2}, r^{3}, \ldots \ldots$, while the numerators may be any numbers between $r-1$ and zero. These are called Radical Fractions.

In our common system of notation thie word Radical is replaced by Decimal, because ten is the radix of the scale.

Now adopting the orlinary system of notation, and marking the place of units by putting a dut to the right of it, we have the following results :
In the denary scale

$$
246 \cdot 4789=2 \times 10^{2}+4 \times 10+6+\frac{4}{10}+\frac{7}{100^{3}}+\frac{8}{10^{3}}+\frac{9}{10^{4}} ;
$$

in the quinary scale

$$
324 \cdot 4213=3 \times 10^{2}+2 \times 10+4+\frac{4}{10}+\frac{2}{10^{2}}+\frac{1}{10^{3}}+\frac{3}{10^{4}}
$$

remembering that in this scale 10 stands for five aml not for ten (Art. 434).
444. To show the tin any scale a radical fraction is a proper fraction.

Suppose the fraction to contain n digits, $a, b, c \ldots .$.
Then, since $r-1$ is the lighest value that each of the digits can have,

$$
\frac{a}{r}+\frac{b}{r^{2}}+\ldots \text { is not grenter than }(r-1)\left(\frac{1}{r}+\frac{1}{r^{2}}+\ldots \text { to } n \text { terms }\right)
$$

not greater than $(r-1)\left\{\frac{1}{r} \cdot \frac{\left(\frac{1}{r}\right)^{n}-1}{\frac{1}{r}-1}\right\}$;
not grenter than $(r-1)\left\{\frac{r^{n}-1}{r^{n}(r-1)}\right\}$;
not greater than $\frac{r^{n}-1}{r^{-n}}$;
not b a thani $i-\frac{1}{r^{2}}$.
adical is cale.
marking we have

9
$\overline{1} 0^{4}$
$-\frac{3}{10^{4}}$,
ot for ten
a proper
the digits

Hence the given fraction is less than 1 , and is therefore a proper fraction.
445. To-transform a fraction expressed in a given scale into a radical fraction in any other scale.
J.at be the given fraction expressed in the first scale,
r the radix of the new scale in which the fraction is to be expressed,
$a, b, c \ldots$ the digits expressing the fraction in the new scale, so that

$$
F=\frac{a}{r}+\frac{b}{r^{2}}+\frac{c}{r^{3}}+\ldots
$$

from which equation the values of $a, b, c \ldots$ are to be determined.

Multiplying both sides of the equation by \boldsymbol{r},

$$
F r=a+\frac{b}{r}+\frac{c}{r^{2}}+\ldots
$$

Now $\frac{b}{r}+\frac{c}{r^{2}}+\ldots$ is a proper fraction by n rt. 444.
Hence the integral part of $F r$ will $=a$, the first digit of the new fraction, and the fractional part of $F r$ will

$$
=\frac{b}{r}+\frac{c}{r^{2}}+\ldots
$$

Giving to this fractional part of Fr the symbol F_{1} we have

$$
F_{1}^{\prime}=\frac{b}{r}+\frac{c}{r^{2}}+\ldots
$$

Multiplying both sides of the equation by r,

$$
\Gamma_{1} r=b+\frac{c}{r}+\ldots
$$

Hence the integral part of $F_{1} r=b$, the second digit of the new fraction, ard thus, by a similar process, all the digits of the new fruction mas be found.

Ex. 1. Express $\frac{3}{7}$ as a radical fraction in the quinary scale :

$$
\begin{aligned}
& \frac{3}{7} \times 5=\frac{15}{7}=5+\frac{1}{7}, \\
& \frac{1}{7} \times 5=\frac{5}{7}=0+\frac{5}{7}, \\
& \frac{5}{7} \times 5=\frac{25}{7}=3+\frac{4}{7}, \\
& \frac{4}{7} \times 5=\frac{20}{7}=2+\frac{6}{7}, \\
& \frac{6}{7} \times 5=\frac{30}{7}=4+\frac{2}{7}, \\
& \frac{2}{7} \times 5=\frac{10}{7}=1+\frac{3}{7} ;
\end{aligned}
$$

therefqre fraction is $2032+1$ recurring.
Ex.2. Express 84375 in the octenary scale:

$$
84: 5
$$

$\frac{8}{6.75000}$

$$
6 \cdot 00000
$$

The fraction required is 66 .
Ex. 3. Transform 42765 from the nonary to the senary scale.

$$
\begin{array}{r}
42765 \\
\hline 2 \cdot 78133 \\
\hline 5 \cdot 25820 \\
\hline 6 \\
\hline 1 \cdot 55430 \\
\hline 3 \cdot 65800 \\
\hline
\end{array}
$$

The fraction required is 2513 ...

Ex. 4. Transform e124.t275 from the duodenary to the quiternary scale:

4	e124
4	2937 - remainder 0
4	$83 t$ - remainder 3
4	$20 e$-remainder 2
4	62 - remainder 3
4	16 - remainder 2
4	4 -remainder
4	1 -remainder
	0 - remainder 1

Number required is $10223200: 2121 \ldots$

EXAMPLES.-clix.

1. Express $\frac{25}{36}$ in the senary scale.
2. Express $\frac{3}{11}$ in the septenary scale.
3. Express $23 \cdot 125$ in the nonary scalc.

4 Express 1820.3375 in the senary scale.
5. In what scale is 17486 written 212542 ?
6. In what scale is 511173 written 1746305 ?
7. Show that a number in the Common scale is divisible :
(I) by 3 if the sum of its digits is uivisible by 3.
(2) by 4 if the last two digits be divisible by 4.
(3) by 8 if the last three digits be divisible by 8.
(4) by 5 if the number ends with 5 or 0 .
(5) by 11 if the difference between the sum of the digits in the odd places and the sum of those in the even places be divisible by 11 .
8. If N be a number in the scale whose radix is r, and n lee the number resulting when the digits of N are reversed, show that $N-n$ is divisible by $r-1$.

XXXVIII. ON LOGARITHMS.

446. Def. The Logarithm of a number to a given base is the index of the power to which the base must be raised to give the number.
Thus if $m=a^{n}, x$ is called the logarithm of m to the base a.
For instance, if the base of a system of Logarithms be 2,
3 is the logarithm of the number 8 , because $8=2^{3}$:
and if the base be 5 , then
3 is the logarithm of the number 125 ,
because $125=5^{3}$.
447. The logarithm of a number m to the base a is written thus, $\log _{a} m$; and so, if $m=a^{x}$,

$$
x=\log _{a} m
$$

Hence it follows that $m=a^{1 \mathrm{iog}_{a} m}$.
448. Since $1=a^{0}$, the logarithm of unity to any base is zero.
Since $a=a^{1}$, the logarithm of the base of any system is unity.
449. The now proceed to describe that which is called the Common System of logarithms.
The base of the system is 10 .
of the digits ic in the even
x is r, and n are reversed,
(S.
agiven base be raised to the base a. ms be $\mathbf{2}$,

By a system of logarithms to the base 10 , we mean a succession of values of x which satisfy the equation

$$
m=10^{x}
$$

for all positive values of m, integral or fractional.
Such a system is formed by the series of logarithins of the natural numbers from 1 to 100000 , which constitute the logarithms registered in our ordinary tables, and which are therefore called tabular logarithms.
450. Now

$$
\begin{aligned}
1 & =10^{0} \\
10 & =10^{1} \\
100 & =10^{2} \\
1000 & =10^{3}
\end{aligned}
$$

and so on.
Hener the logarithm of 1 is 0 ,
of 10 is 1 ,
of 100 is 2 ,
of 1000 is 3 ,
and so on.
IIence for all numbers between 1 and 10 the logarithm is a decimal less than 1 ,
between 10 and 100 the logarithm is a decimal between 1 and 2,
between 100 and 1000 a decimal between 2 and 3 , and so on.
451. The logarithms of the natural numbers from 1 to 12 stand thus in the tables:

No.	Log	No.	Log
$\mathbf{1}$	0.0000000		7
2	0.3010300	0.8450980	
3	0.4771213	8	0.9030900
4	0.6020600	9	0.0542425
5	0.6989700	10	1.0000000
6	0.7781513	11	1.0413927
		12	1.0501812

The iverarithms are calculated to seven places of decimala.
452. The integral parts of the logarithms of numbers higher than 10 are called the characteristics of those logitithns, and the decimal parts of the logarithms are called the muntisste.

> 1 is the characteristic, 0791812 the mantissa, of the logarithm of 12 .
453. The logarithns for 100 and the numbers that succed it (and in some tables those that precede 100) have no characteristic prefixed, because it can be supplied by the reader, being 2 for all numbers between 100 and 1000,3 for all between 1000 and 10000, and so on. Thus in the Tables we shahl find

No.	Log
100	0000000
101	0043214
102	0086002
103	0128372
104	0170333
105	0211893

which we read thus:

> the logarithm of 100 is 2 , $$
\begin{array}{l}\text { of } 101 \text { is } 2 \cdot 0043214 . \\ \text { of } 102 \text { is } 2 \cdot 0086002 \text {; and so on. }\end{array}
$$

454. Logarithms are of great use in making aritlmetical computations more easy, for by means of a Table of Logarithms the operation
of Multiplication is clanged into that of Addition,
... Division Subtraction,
... Involution Multiplication,
... EvolutionDivision, as we shall show in the next four Articles.
455. The logarithm of a moduct is equal to the sum of like logarithms of its factors.
of numbers logirithms, he muntisse.
that succeed no characeader, being all between es we shall
on.
ritlımetical Logarithms
ion, action, plication, on,

Iet
and
Then

$$
\begin{aligned}
m & =a^{z}, \\
n & =a^{y} . \\
m n & =a^{x+y} ; \\
\therefore \log _{\alpha} m n & =x+y \\
& =\log _{a_{a}} m+\log _{\sigma_{a}^{a}} n .
\end{aligned}
$$

Hence it fullows that

$$
\log _{\sigma_{a}} m n p=\log _{a} m+\log _{a} n+\log _{a} p
$$

and similarly it may be shown that the Theorem holds gool for any number of factors.
Thus the operation of Multiplication is changed into that of Ahlition.
Suppose, for instance, we want to find the product of 246 ani 357, we add the lonarithms of the factors, and the sum is the loginitim of the product: thas

$$
\begin{aligned}
\operatorname{lng} 246 & =2 \cdot 3909351 \\
\log 357 & =2 \cdot 5526682 \\
\text { their sum } & =4 \cdot 9436033
\end{aligned}
$$

which is the logarithm of 87822 , the product required.
Note. We do not write $\log _{10} 246$, for so long as we are trating of lograthms to the particular base 10 , we may omit the sultix.
456. The logarithm of a quotient is equal to the loqarithm of the divilend diminished by the logarithm of the divisor.

Jet

$$
\begin{aligned}
m & =a^{x}, \\
n & =a^{y} .
\end{aligned}
$$

ancl
Then

$$
\begin{aligned}
\frac{m}{n} & =a^{x-y} ; \\
\therefore \log _{a} \frac{m}{n} & =x-y \\
& =\log _{a} n-\log _{a} n .
\end{aligned}
$$

Thus the operation of Division is changed into that of Subtraction.

If, for example, we are required to divide $371 \cdot 49$ by $52 \cdot 376$, we proceed thus,

$$
\begin{aligned}
\log 371 \cdot 49 & =2 \cdot 5699471 \\
\log 52 \cdot 376 & =1 \cdot 7191323 \\
\text { their difference } & =\cdot 8508148
\end{aligned}
$$

which is the logarithm of 7.092752 , the quotient required.
457. The logarithm of any power of a number is cqual to the over product of the logarithm of the number and the index denoting the power.

Let

$$
\begin{aligned}
m & =a^{\prime} . \\
m^{r} & =a^{n} ; \\
\therefore \log _{a} m^{r} & =r x \\
& =r . \log _{a} m_{0}
\end{aligned}
$$

Then

Thus the operation of Involution is changed into Multiplication.

Suppose, for instance, we have to find the fourth power of 13, we may proceed thus,

$$
\log 13=1 \cdot 1139434
$$

$$
\frac{4}{4 \cdot 4557736}
$$

which is the logarithm of 28561 , the number required.
458. The logarithm of any root of a number is equal to the quotient arising from the division of the logarithm of the number by the number denoting the root.

Let
Then

$$
\begin{aligned}
m & =a^{\sharp} . \\
m^{\frac{1}{r}} & =a^{\frac{2}{r}} ; \\
\therefore \log _{a} m^{\frac{1}{r}} & =\frac{x}{r} \\
& =\frac{1}{r} \cdot \log _{a} m_{0}
\end{aligned}
$$

Thas the operation of Evolution is changed into Division.

If, for example, we have to find the fifth root of 16807 , we proceed thus,

Б $4 \cdot 2254902$, the \log of 16807

-8450980
which is the logarithm of 7 , the root required.
nt required.
ber is cqual to the index denoting the

dinto Multipli-

fourth power of
equired.
r is equal to the m of the number
459. The common system of Logaritlims has this advantage over all others for mumerical calculations, that its base is the same as the radix of the common scale of notation.

Hence it is that the same mantissa serves for all numbers which have the same significant dicits and differ only in the position of the place of units relatively to those digits.

For, since $\log 60=\log 10+\log _{g} 6=1+\log 6$,
$\log 600=\log 100+\log , 6=2+\log 6$,
$\log 6000=\log 1000+\log 6=3+\log 6$,
it is clear that if we know the logarithm of any number, as \mathbf{C}, we also know the logarithms of the numbers resulting from multiplying that number by we powers of 10 .

So again, if we know that
$\log 1 \cdot 7692$ is $\cdot \mathbf{2 4 7 7 8 3}$,
we also know that
$\log 17 \cdot 692$ is $1 \cdot 247783$,
$\log 176.92$ is $2 \cdot 247783$,
$\log 1760 \cdot 2$ is $3 \cdot 247783$,
$\log 17692$ is $4 \cdot 247783$,
$\log 176920$ is $5 \cdot 247783$.
460. We must now treat of the logarithms of numhers lciss than unity.

Since

$$
\begin{aligned}
& 1=10^{0} \\
& 1=\frac{1}{10}=10^{-1} \\
& 01=\frac{1}{100}=10^{-3}
\end{aligned}
$$

the logarithm of a number
:.............. between 1 and $\cdot 1$ lies between 0 and -1 ,
................... between $\cdot 1$ and $01 \ldots{ }^{-1} 1$ and -2 ,
................... between 01 and 001 -2 and -3 , and so on.

Hence the logarithms of all numbers less than unity are negative.

We do not require a separate table for these logarithms, for we can deduce them from the logarithms of num'ers greater than unity by the following process:

$$
\begin{aligned}
& \log \cdot 6=\log \frac{6}{10}=\log 6-\log 10=\log 6-1, \\
& \log \cdot 06=\log \frac{6}{100}=\log 6-\log 100=\log 6-2, \\
& \log \cdot 006=\log \frac{6}{1000}=\log 6-\log 1000=\log 6-3 .
\end{aligned}
$$

Now the logarithm of 6 is 7781513.

Hence

$\log \cdot 6=-1+7781513$, which is written $\overline{\mathrm{I}} \cdot 72815 \mathrm{i} .3$,
$\log \cdot 00=-2+\cdot 7781513$, which is written $\overline{2} \cdot 7751513$,
$\log \cdot 006=-3+\cdot 7781513$, which is written $\overline{3} \cdot 7781513$, the characteristics only being negative and the mantisso positive.
461. 'Ihus the same mantisse serve for the logarithms of all numbers, whether greater or less than unity, which have the same significant digits, and differ only in the position of the place of units relatively to those digits.

It is best to regard the Table as a register of the logarithma of numbers which have one significant digit before the decimal point.

Fo inter

W be at
I. place
the
the
cha

0 and -1,

- -1 and -2 ,
-2 and -3 , an unity are
grarithms, for n'Jers gicater
$6-1$
$6-2$,

6-3. ch have the ition of the
logarithma the decimal

For instance, when we read in the tables $144 \mid 1583625$, we interpret the entry thus

$$
\log 1 \cdot 44 \text { is } \cdot 1583625
$$

We then oltain the following rules for the characteristic to be attached in each case.
I. If the decimal point be shifted one, two, three ... n places to the right, prefix as a characteristic $1,2,3 \ldots n$.
II. If the decimal point be shifted one, two, three... n places to the left, prefix as a characteristic $\overline{1}, \overline{2}, \overline{3} \ldots \bar{n}$.

Thus $\quad \log _{0} 1 \cdot 44$ is 1583625 ,

$$
\therefore \log _{6} \quad 14 \cdot 4 \text { is } 1 \cdot 15 S 3625
$$

$$
\log \quad 144 \text { is } 2 \cdot 1583625 \text {, }
$$

$$
\log 1440 \text { is } 3 \cdot 1583625
$$

$$
\log \cdot 144 \text { is } \overline{\mathrm{l}} \cdot 1583625
$$

$$
\log \cdot 0144 \text { is } \overline{2} \cdot 1583625
$$

$$
\log \cdot 00144 \text { is } \overline{3} \cdot 15 S 3625
$$

462. In calculations with negative cha' ..cteristics we follow the rules of algebra. Thus,
(1) If we have to add the logarithms $\overline{3} \cdot 64628$ and $2 \cdot 42367$, we first add the mantissx, and the result is $1 \cdot 06995$, and then add the characteristics, and this result is $\overline{1}$.

The final result is $\overline{1}+1 \cdot 06905$, that is, $\cdot 06005$.
(2) To sulutract $\overline{5} \cdot 6249372$ from $\overline{3} \cdot 246973$, we may arrange the numbers thus,

$$
\begin{array}{r}
-3+.2456973 \\
-5+6249372 \\
\hline 1+6207601
\end{array}
$$

the 1 carried on from the last subtraction in the decimal places changing -5 into -4 , and then -4 subtracted from -3 giving 1 as a result.

Hence the resulting logarithm is $1 \cdot 6207601$.
(3) To multiply $\overline{3} \cdot 7482569$ by 5 .

$$
\begin{array}{r}
\overline{3} \cdot 742569 \\
\hline \overline{12} 7412845
\end{array}
$$

the 3 carried on from the last multiplication of the decimal places being added to -15 , aud thus giving -12 as a result.
(4) To divide $\overline{14} \cdot 2456736$ by 4 .

Increase the negative characteristic so that it may be exactly divisible by 4 , making a proper compensation, thus,

$$
\overline{14} \cdot 2456736=\overline{16}+2 \cdot 2456736 .
$$

Then $\frac{\overline{1} \cdot 2456: 26}{4}=\frac{\overline{1} \overline{6}+2 \cdot 2456736}{4}=\overline{4}+5614184 ;$
and iso the result is $\overline{4} \cdot 5614184$.

EXAMPLES.-clX.

1. Add $\overline{3} \cdot 1651553, \overline{4} \cdot 7505855,0 \cdot 6879740, \overline{2} \cdot 6150026$.
2. Add $\overline{4} \cdot 6843785, \overline{5} \cdot 6650657,3 \cdot 8905196, \overline{3} \cdot 4675284$.
3. Add $2 \cdot 5324716,3 \cdot 6650657, \overline{5} \cdot 8905195, \cdot 3156215$.
4. From $2 \cdot 483269$ take $\overline{3} \cdot 742891$.
5. From $\overline{2} \cdot 352678$ take $\overline{5} \cdot 428619$.
6. From $\overline{5} \cdot 349162$ take $\overline{3} \cdot 62432 a$
7. Multiply $\overline{2}-4596721$ by 3.
8. Multiply $\overline{7} \cdot 420683$ by 6 .
9. Multiply $\overline{9} \cdot 2843617$ by 7 .
10. Divide $\overline{6} \cdot 3725409$ by 3 .
II. Divide $\overline{1} 4 \cdot 432962$ by 6 .
11. Dịvide $\overline{4} \cdot 53627188$ by 9 .
12. We shall now explain how a system of logarithms calculated to a hase a may be transformed into another system of which the base is b.

Iet m be a number of which the logarthm in the first system is x and in the second y.

Then
and

$$
\begin{aligned}
m & =a^{n} \\
m & =b^{y} \\
b^{y} & =a^{*} \\
\therefore b & =u^{\bar{y}} ; \\
\therefore \frac{x}{y} & =\log _{a} b ; \\
\therefore \frac{y}{x} & =\frac{1}{\log _{a} b} ; \\
y & =\frac{1}{\log _{5} b} x .
\end{aligned}
$$

Hence if we multiply the logarithm of any number in the system of which the base is a by $\frac{1}{\log _{6} b}$, we shall olbtain the logarithm of the same number in the system of which the base is b.

This constant motiplier $\frac{1}{\log _{3} b}$ is called The Monulus of the system of which the base is b with reference to the system of which the base is a_{0}.
464. The common system of logarithms is used in all numerical calculations, but there is another system, wheh we must notice, employed by the discoverer of logrithms, Napier, and hence called The Napierian Systrif.

The base of this system, denoted by the symbol e, is the number which is the sum of the series

$$
2+\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots a d i n f .
$$

of which sum the first eight dirits are 2.7182818.
465. Oiur common logarithms are formed from tlec Loga rithms of the Napicrian System ny multiplying cach of the [ड..a.]
latter by a common multiplier called The Modulus of the Common System

This molulus is, in accordance with the conclusion of Art. 463, $\frac{1}{\log _{6} 10}$.

That is, if l and N be the logarithms of the same number in tha common and Napierian systems respectively,

$$
l=\frac{1}{\log _{e} l \hat{v}} \cdot N
$$

Now $\log _{6} 10$ is $2 \cdot 30258509$;

$$
\therefore \frac{1}{\log _{8 \epsilon} 10} \text { is } \frac{1}{2 \cdot 30258509} \text { or } 43420448,
$$

and so the modulus of the common system is 43420448 .
460. To prove that $\log _{d} b \times \log _{b} a=1$.

Let

$$
\begin{aligned}
x & =\log _{a} b . \\
b & =a^{\prime \prime} ; \\
\therefore b^{\frac{1}{x}} & =a ; \\
\therefore \frac{1}{x} & =\log _{b} a . \\
\hdashline \log _{a} a \times \log _{b} a & =x \times \frac{1}{x} \\
& =1 .
\end{aligned}
$$

Then

Thus
467. The following are simple examples of the method of applying the principles explained in this Chapter.

Ex. 1. Given $\log 2=3010300, \log 3=\cdot 4771213$ and

$$
\log 7=8450980, \text { find } \log 42
$$

Sinco

$$
\begin{aligned}
42 & =2 \times 3 \times 7 \\
\log 42 & =\log 2+\log 3+\log 7 \\
& =3010300+4771213+8400950 \\
& =1 \cdot 6232493
\end{aligned}
$$

Ex. 2. Given $\log 2=\cdot 3010300$ and $\log 3=4771213$, find the logarithms of 64,81 and 96 .

$$
\begin{aligned}
\log 64= & \log _{0} 2^{6}=6 \log _{g}^{2} 2 \\
& \log 2=3010300 \\
\therefore \log 64 & =\frac{6}{1 \cdot 8061800}
\end{aligned}
$$

$$
\log 81=\log 3^{4}=4 \log 3
$$

$$
\log 3=4771213
$$

$$
4
$$

$$
\therefore \log 81=\overline{1.9084852}
$$

$$
\log 90=\log (32 \times 3)=\log 32+\log 3
$$

and

$$
\log 32=\log 2^{5}=5 \log 2 ;
$$

$\therefore \log _{0} 96=5 \log 2+\log 3=1.5051500+4771213=1.9322713$.
Ex. 3. Given $\log 5=6989700$, find the logarithm of $\sqrt[7]{(6 \cdot 25)}$.

$$
\begin{aligned}
\log (6 \cdot 25)^{\frac{1}{2}} & =\frac{1}{7} \log 0 \cdot 25=\frac{1}{7} \log \frac{625}{100}=\frac{1}{7}(\log 625-\log 100) \\
& =\frac{1}{7}\left(\log 5^{4}-2\right)=\frac{1}{7}(4 \log 5-2) \\
& =\frac{1}{7}(2 \cdot 7958800-2)=\cdot 1136657
\end{aligned}
$$

EXAMPLES.-clXi.

1. Given $\log 2=\cdot 3010300$, find $\log 123, \log _{0} 125$ and $\log 2500$.
2. Given $\log 2=3010300$ and $\log _{0} 7=3450980$, find the logarithms of $50, \cdot 005$ and 196.
3. Given $\log 2=\cdot 3010300$, and $\log 3=.4761213$, find the logarithms of $6,27,54$ and 576 .
4. Given $\log 2=3010300, \log 3=\cdot 4771213, \log _{0} 7=8450080$, find $\log 60, \log _{0} \cdot 03, \log 1 \cdot 05$, and $\log \cdot 0000432$.
5. Given $\log 2=: 3010300, \log 18=1 \cdot 2553795$ nud $\log 21=1 \cdot 3222193$, find $\log _{0} \cdot 00075$ and $\log 31 \cdot 5$.
6. Given $\log _{5} 5=6989 \% 00$, find the logarithms of 2 , 064 , and $\binom{2^{n 0}}{5^{20}}^{\frac{1}{14}}$.
7. Given $\log _{9} 2=3010300$, find the logarithms of $5, \cdot 125$, and $\left(\frac{5^{20}}{2^{10}}\right)^{\frac{1}{18}}$.
8. What are the logarithms of 01,1 and 100 to the base 10? What to the base 01 ?
9. What is the characteristic of $\log _{0} 1503$, (1) to base 10 , (2) to base 12?
10. Given $\frac{4^{x}}{2^{x+2}}=8$, and $x=3 y$, fimd x and y.
11. Given $\left.\log 4=\cdot 6020(600,]_{0} \cdot r 1 \cdot 0\right) \cdot 1=0.0170333:$
(a) Find the lograthms of $2,25,83 \cdot 2,(\cdot 625)^{\frac{1}{i v e}}$.
(b) How many digits are there in the integrai part of $(1 \cdot 04)^{6000}$?
12. Given $\log _{0} 25^{\circ}=1 \cdot 296400, \log 1 \cdot 03=0125372$:
(a) Find the lograrithms of $5,4,51 \cdot 5,(\cdot 064)^{\frac{1}{100}}$.
(b) How many digits are there in the integral part of ($1 \cdot 03)^{600}$?
13. Having given $\log 3=\cdot 4771213, \log 7=-8450950$, $\log 11=1 \cdot 0413927$:
: find the logarithms of $7623, \frac{77}{300}$ and $\frac{3}{5330}$.
14. Solve the equations:
(I) $4090^{x}=\frac{8}{64^{5}}$.
(fi) $a^{m x} b^{2 x}=a_{0}$
(2) $\left(\frac{1}{4}\right)^{x}=625$
(5) $a^{3 x} \cdot b^{4-x}=c^{50-4}$
(3) $a^{z} \cdot \dot{b}^{x}=m$.
(6) $a^{x} b^{m}=c^{1-2}$.
15. We have explained in Arta. 459-461 the advantoges of the Common System of Lorarithms, which may be stated in a more gencral form thins:

Let A be any serpuence of figntes (such as 2.05016), having me digit in the integral part.

Then any nmbler N laving the same sequence of fignres (such as 235:916 or 00230916) is of the form $A \times 10^{n}$, where n is an integer, posilive or negative.

Therefore $\log _{10} N=\log _{610}\left(\Lambda \times 10^{n}\right)=\log _{10} \Lambda+n$.
Now A lies between 10° and 10^{1}, and therefore $\log A$ lies between 0 and 1 , and is therefore a proper fraction.

But $\log _{10} N$ and $\log _{10} A$ differ only by the integer n;
$\therefore \log _{10} A$ is the fractional part of $\log _{10} N$.
Hence the. loftrithms of all numbers having the same sequence of rigures have the same mantissa.

Therefore one register seves for the mantissa of logarithms of all such numbers. This remers the tables more comprehensite.

Again, considering all numbers which lave the same sefuence of figures, the number contaning two digits in the intergal part $=10 . A$, and therefore the characteristic of its logarithm is 1.

Similarly the number containing m digits in the integral part $=10^{n}$. A, and therefore the characteristic of its logarithm is m.

Also numbers which have no digit in the integral part and one cypher after the decimal point are equal to $A \cdot 10^{-1}$ and A. 10^{-2} respectively, and therefore the characteristics of their logarithms are -1 and -2 respectively.

Similarly the number having m cyphers following the decimal point $=A .10^{-(m+1)}$;
\therefore the characteristic of its logarithm is $-(m+1)$.
Hence we see that the characteristics of the logatithms of all numbers can be determined by inspection and therefore need not be registered. This renders the tables less bully.
469. The method of using Tables of Logarithms does not fill within the scope of this treatise, but an account of it may be found in the Author's work on Elemestany Trigunometry.
470. We proceed to give a short explanation of the way in which Logarithms are applicd to the solution of questions relating to Compound Interest.
471. Suppose r to represent the interest on $£ 1$ for a year, then the interest on P pounds for a year is represented by $P r$, and the amount of P pounds for a year is represented by $P+P r$.
472. To find the amount of a given sum for any time at compounil interest.

Let P be the original principal,
$r \quad$ the interest on $£ 1$ for a yenew
n the number of years.
Then if $P_{1}, P_{2}, P_{3} \ldots P_{n}$ be the amounts at the end of $1,2,3 \ldots n$ years,

$$
\begin{aligned}
& P_{1}=P+P r=P(1+r) \\
& P_{2}=P_{1}+P_{1} r=P_{1}(1+r)=P(1+r)^{2}, \\
& P_{3}=P_{2}+P_{2} r=P_{2}(1+r)=P(1+r)^{3},
\end{aligned}
$$

$$
P_{n}=P(1+r)^{n} .
$$

473. Now suppose P_{n}, P and r to be given: then by the aid of Lorarithms we can find n, for

$$
\begin{aligned}
\log _{0} P_{n} & =\log \left\{P(1+r)^{n}\right\} \\
& =\log P+n \log (1+r) ; \\
\therefore n & =\frac{\log P_{n}-\log P}{\log _{0}(1+r)} .
\end{aligned}
$$

rithins does account of Leitentary
of the way of questions
for a year, resented ly represented
tny time at
ne end of
by the aid
474. If the interest be payable at intervals other than a year, the formula $P_{n}=P(1+r)^{n}$ is applicable to the solution of the question, it being observed that r represents the interest on $£ 1$ for the period on which the interest is calculated, halfyeariy, quarterly, or for any other period, and n represents the number of such periods.

For example, to find the interest on P pounds for 4 years at compound interest, reckoned quarterly, at 5 per cent. per annum.

Here

$$
\begin{aligned}
r & =\frac{1}{4} \text { of } \frac{5}{100}=\frac{1 \cdot 25}{100}=\cdot 0125 \\
n & =4 \times 4=16 \\
\therefore P_{n} & =P(1+\cdot 0125)^{16} .
\end{aligned}
$$

EXAMPLES.-clX:i.

N.B.-The Togarithms required may be found from the extracts from the Tables given in pages 329, 330.

1. In how many years will a sum of money double itself at 4 per cent. compound interest ?
2. In how many years will a sum of money double itself at 3 per cent. compound interest?
3. In low many years will a sum of money double itself at 10 per cent. compound interest?
4. In how many years will a sum of moncy treble itself at 5 per cent. compound interest?
5. If $£ P$ at compound interest, rate r, double itself in n years, and at rate $2 r$ in m years: show that $m: n$ is greater than 1:2.
6. In how many years will $£ 1000$ amount to $£ 1800$ at 5 per cent. compound interest?
7. In how many years will $£ P$ double itself at C per cent. per ann. compound interest payable half-yearly?

APPENDIX.

475. The following is another method of proving the principal theorem in Permutations, to which reference is made in the note on page 280.
-To prove that the number of permutations of n things taken r at a time is $n \cdot(n-1) \ldots \ldots(n-r+1)$.

Let there be n things $a, b, c, d \ldots .$.
If n things be taken 1 at a time, the number of permutations is of course n.

Now take any one of them, as a, then $n-1$ are left, and any one of these may be put after a to form a permutation, 2 at a time, in which a stands first: and bence since there are n things which may begin and each of these n may have $n-1$ put after it, there are altogether $n(n-1)$ permutations of n things taken 2 at a time.

Take any one of these, as $a b$, then there are $n-2$ left, and any one of these may be put after $a b$, to form a permutation, 3 at a time, in which $a b$ stands first: and hence since there are $n(n-1)$ things which may begin, and each of these $n(n-1)$ may have $n-2$ put after it, there are altogether $n(n-1)(n-2)$ permutations of n things taken 3 at a time.

If we take any one of these as abc, there are $n-3$ left, and so the number of permutations of n things taken 4 at a time is $n \cdot(n-1)(n-2)(n-3)$.

Sn we see that to find the number of permutations, taken rat a tinie, we must multiply the number of permutations, taken $r-1$ at a time, by the number formed by subtracting $r-1$ from n, since this will be the number of endings any one of these permutations may have.
Hence the number of permutations of n things taken 5 at a time is
$n(n-1)(n-2)(n-3) \times(n-4)$, or $n(n-1)(n-2)(n-3)(n-4)$; and since ench time we multiply by an additional factor the number of factors is equal to the number of things taken at a time, it follows that the number of permutations of n things taken r at a time is the product of the factors

$$
n \cdot(n-1)(n-2)=\ldots \ldots(n-\hat{r}+\hat{i} j
$$

ing the prinis made in

ANSWERS.

1. (Page 10.)
2. $5 a+7 b+12 c$.
3. $a+3 b+2 c$.
4. $8 a+2 b+2 c$.
5. $2 x-7 a+3 b-2$.
6. $2 a+2 b+2 a$
7. $12 b+3 c$.
ii. (Page 10.)
8. $2 a$.
9. $2 a+5 x$. 3. $3 a-3 x$
10. $4 a+b+2 c$.
11. $2 a$.
12. 4.
1. $13 x-y-6 \%$.
2. $10 a-7 b-x$.
lii. (Page 10.)
3. $2 b$.
4. $x+2 y$.
5. $a+5 c+d$.
6. $2 y+2 z$.
7. $2 r$.
8. $2 b+2 c$.
9. $a-3 b-c$.
10. $3 y+z$.
iv. (Page 11.)
I. $4 a-b$.
11. $4 b$.
12. $a+b-4 c$.
13. $2 b$.
14. $14 x+2$.
15. $2 x+a$.
16. $6 x-a$.
17. a
18. $2 a-b$.
19. $2 a$.
II. .
20. $x+3 a$.
21. $20 a-2 \pi b+6 c$.
v. (Page 1G.)

Aldition.

1. 7a-2).
2. $-10 b+6 c$.
3. $-11 x-8 y-6 z$.
4. $-6 b-5 c+3 c l$.
5. $2 a$.
6. $-2 x-2 a+b+4 y$.
7. $7 a+4 b-4 c$.
8. $7 a-\bar{b}+\bar{i} c$.
9. $-6 y+2 z$.

Subtraction.
f. $2 a+2 b$
4. $8 x-17 y+5$.
7. $-3 a+3 b-4 c$.
10. $. ~ c a-b+5 c$.

1. $3 x y$.
2. $12 x y$.
3. a^{7}.
4. a^{3}.
5. $180 a^{4} b^{5} c^{4}$.
6. $28 a^{7} b^{10}$.
7. $76 x^{4} y^{4} z^{3}$.
8. $12 u^{2} b c x y$.
9. ' $a b x^{2} y^{2} z^{4}$.
10. $a-c$.
11. $7 a-16 b+20 c$.
12. $2 a-2 b+2 c$.
13. $2 b+2 c-15$.
14. $5 a-3 b-8 x$.
II. $12 p-9 q+2 r$.
vi. (Page 20.)
15. $12 x^{2} y^{2}$.
16. $3 a^{2} b c^{2}$:
17. $12 a^{5} b^{3}$.
18. $35 a^{6} b c^{4}$.
19. $3 a^{11}$.
20. $20 a^{4} b^{3} x y$.
21. $51 u b^{4} c^{2} y z$.
22. $48 x^{8} y^{10} z^{6}$.
23. $8 a^{14} b^{5} c^{2}$.
24. $9 m^{5} n^{3} p^{3}$.
25.
26.
27.
28. $11 x-7 y+4 z$.
29. $33 a^{20} b^{10} m^{2} x$.
vii. (Page 22.)
30. $a^{2}+a b-a c . \quad$ 2. $2 a^{2}+6 a b-8 a c . \quad$ 3. $a^{4}+3 a^{3}+4 a^{4}$
31. $9 a^{5}-15 a^{4}-18 a^{3}+21 a^{2}$. 5. $\quad a^{3} b-2 a^{2} b^{2}+a b^{3}$.
32. $3 a^{5} b-9 a^{4} b^{3}+3 \iota^{2} b^{4}$.
33. $8 m^{3} n+9 m^{2} n^{2}+10 n 2 n^{3}$.
S. $\quad 18 a^{6} b+8 a^{5} b^{2}-6 a^{4} b^{3}+8 a^{3} b^{4}$.
34. $x^{4} y^{4}-x^{3} y^{3}+x^{2} y^{2}-7 x y$.
35. $\quad m^{3} n-3 m^{2} n^{2}+3 m n^{3}-n^{4}$.

I I. $144 a^{5} b^{4}-7 a a^{4} b^{5}+60 a^{3} b^{6}$.
12. $\quad 104 x^{4} y-136 x^{3} y^{2}+40 x^{2} y^{3}-8 x y^{4}$.
viii. (Page 27.)
I. $x^{2}+12 x+27$.
2. $x^{2}+8 x-105$.
3. $x^{2}-2 x-120$.
4. $x^{2}-15 x+50$.
5. $\quad a^{2}-8 a+15$.
6. $y^{2}+7 y-78$.
7. $x^{4}+x^{2}-20$.
8. $x^{4}-12 x^{3}+50 x^{2}-84 x+45$.
9. $x^{4}-31 x^{2}+9$.
10. $u^{4}-3 u^{5}-3 u^{4}+13 u^{3}-6 a^{2}-6 a+4$.
IJ. $x^{4}-x^{2}+2 x-1$.
12. $x^{4}+x^{2} y^{2}+y^{4}$.
13. $x^{3}-y^{3}$.
14. $a^{6}-x^{6}$.
16. $x^{4}-S 1 y^{4}$.
15. $x^{5}-5 x^{3}+5 x^{2}-1$.
17. $a^{4}-16 b^{4}$.
18. $16 a^{4}-b^{4}$.
19. $a^{5}-4 a^{4} b+4 a^{3} b^{2}+4 a^{2} b^{3}-17 a b^{4}-12 b^{5}$.
20. $a^{5}+5 a^{4} b+a^{3} b^{2}-10 a^{2} b^{5}+12 a b^{4}-9 b^{5}$.
21. $\boldsymbol{a}^{4}+4 a^{2} x^{2}+16 x^{4}$.
23. $x^{8}+4 a^{2} x^{4}+16 a^{4}$.
22. $81 a^{4}+9 a^{2} x^{2}+x^{4}$.

2j. $\quad x^{5}+x^{4} y-9 x^{3} y^{2}-20 x^{2} y^{3}+2 x y^{4}+15 y^{5}$.
26. $a^{2} b^{2}+c^{2} d^{2}-a^{2} c^{2}-b^{2} d^{2}$.
27. $x^{8}-a^{8}$.
28. $x^{3}-a x^{2}+b x^{2}-c x^{2}-a b x+a c x-b c x+a b c$.
4. $3 a^{2} b c^{2}$.
8. $35 a^{6} b c^{4}$.
2. $20 a^{4} b^{3} x y$.
29. $1-x^{8} . \quad$ 30. $x^{0}-y^{6} . \quad 3$ I. $\quad a^{16}-x^{10} . \quad 32 . \quad 47$.
33. 2. 34. -14. 35. $a b+a c+b c . \quad 36 .-60$.
$+3 a^{3}+4=9$ $a b^{3}$.
${ }^{2}+10 \mathrm{~min}^{3}$. $x^{2} y^{2}-7 x y$. $c^{4} b^{5}+60 a^{3} b^{0}$.
$-2 x-120$ $+7 y-78$
5.
${ }^{2}-6 a+4$
$-y^{3}$.

1. $x^{2}+2 a x+a^{2}$.
2. $x^{2}-2 a x+a^{2}$.
3. $x^{2}+4 x+4$
4. $x^{2}-6 x+9$.
5. $x^{4}+2 x^{2} y^{2}+y^{4}$.
6. $a^{6}+2 a^{3} b^{3}+b^{6}$.
7. $a^{6}-2 a^{3} b^{3}+b^{6}$.
8. $x^{2}+y^{2}+z^{2}+2 x y+2 x y+2 y z$.
9. $x^{2}+y^{2}+z^{2}-2 x y+2 x z-2 y z$.
10. $m^{2}+n^{2}+p^{2}+r^{2}+2 m n-2 m p-2 m r-2 n p-2 n r+2 p r$.
11. $x^{4}+4 x^{3}-2 x^{2}-12 x+9$. 13. $\quad x^{4}-12 x^{3}+5 n x^{2}-84 x+49$
12. $4 x^{4}-28 x^{3}+85 x^{2}-126 x+31$.
13. $x^{4}+y^{4}+z^{4}+2 x^{2} y^{2}-2 x^{2} z^{2}-2 y^{2} z^{2}$.
14. $x^{9}-8 x^{\natural} y^{2}+18 x^{4} y^{4}-8 x^{2} y^{3}+y^{9}$.
15. $a^{6}+b^{3}+c^{3}+2 a^{3} b^{3}+2 a^{3} c^{3}+2 b^{3} c^{3}$ 。
16. $\quad x^{3}+y^{3}+z^{3}-2 x^{3} y^{3}-2 x^{2} z^{3}+2 y^{7} z^{3}$.

19 $x^{2}+4 y^{2}+9 z^{2}+4 x y-6 x z-12 y z$.
20. $x^{4}+4 y^{4}+25 z^{4}-4 x^{2} y^{2}+10 x^{2} z^{2}-20 y^{2} z^{2}$.
21. $x^{3}+3 a x^{2}+3 a^{2} x+a^{3}$.
22. $x^{3}-3 a x^{2}+3 a^{2} x-a^{3}$.
23. $x^{3}+3 x^{2}+3 x+1$.
24. $\quad x^{3}-3 x^{2}+3 x-1$.
$25 . \quad x^{3}+6 x^{2}+12 x+8$.
26. $a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{8}$.
27. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}+c^{3}+3 a^{2} c+6 a^{3} u c+3 b^{9} c+3 a c^{2}+3 b c^{2}$.

2S. $\quad a^{3}-3 a^{2} b+3 a b^{2}-b^{3}-c^{3}-3 a^{2} c+6 a l i c-3 b^{2} c+3 a c^{2}-3 b c^{3}$.
29. $m^{4}-2 m^{2} n^{2}+n^{4}$.
30. $m^{4}+2 m^{3} n-2 m n^{3}-n^{4}$.

xi. (Page 34.)

7. $10 a^{n} b^{n} c^{3}$.
8. $121 m^{6} u^{8} p^{8}$.
9. $12 a^{3} x^{2} y^{4}$ 。
10. $8 a^{4} b c^{2}$.
xii. (Farge 35.)

1. $x^{2}+2 x+1$. 2. $y^{3}-y^{2}+y-1$. 3. $\quad a^{2}+2 a b+2 b^{2}$.
2. $x^{4}+m p x^{2}+m^{2} n^{2}$. 5. $4 a y-7 x+x^{2}$. 6. $8 x^{3} y^{5}-4 x^{2} y^{2}-9 y$.
3. $27 m^{6} n^{5}-18 n_{i}^{2} n^{4}+9 m p$.
4. $3 x^{2} y^{2}-2 x y^{3}-y^{4}$.
5. $13 a^{2} b-9 a b^{2}+7 b$.
6. $10 b^{3} c^{2}+12 b^{2} c^{3}-7 b c^{4}$.
Xiii. (Targe 36.)
7. $15 a^{5}$.
8. $-21 x^{n} y^{\beta}$.
9. $-6 m^{2} n$.
10. -8 .
11. $16 a^{2} \mathrm{~b}$.
12. $a^{2} x^{2}+a x+1$.
13. $-2 a^{2}+3 a-x^{2}$.
14. $2+6 a^{2} b-8 a^{4} b^{6}$.
15. $-12 x^{2}+9 x y-S j^{2}$.
16. $-x^{3}+b^{3} x^{7} z^{2}+b y^{4}$.
xive (Page 38.)
ㄹ. $\bar{x}+5$.
17. $x-10$.
18. $x+4$.
19. $x+12$.
20. $x^{2}+7 x+12$.
21. $x^{2}-1$.
22. $x^{2}+x+1$
$3 a^{2} x-a^{3}$ $x-1$
$3 a^{2} b^{4}-l^{6}$.
${ }^{2}+3 b c^{2}$.
${ }^{2}-3 b c^{2}$.
$-2 m n^{3}-n^{4}$.
23. $8 c^{2}$.

Io. $8 a^{4} b c^{2}$.
$2 a b+a b^{2}$.
$4 x^{9} y^{2}-2 y$.
y^{4}.
$c^{3}-7 b c^{4}$.
$+1$.
$c+12$.
$x^{2}+x+1$
8. $x^{3}-3 x^{2}+3 x+1$. 9. $x^{2}-2 x-1$. 10. $x^{2}-2 x+1$.
11. $x^{2}-x+1$.
12. $x^{3}-2 x^{2}+8$.
13. $x^{2}+3 y^{2}$.
14. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.
15. $\quad u^{4}-4 u^{3} l+6 a^{2} b^{2}-4 a b^{3}+b^{4}$.
16. $x^{2}-6 x+5$
18. $2 a x^{2}-3 a^{2} x+a^{3}$.
19. $x^{2}-x+1$.
22. $x^{4}-{ }^{3} y+x^{2} y^{2}-x y^{3}+y^{4}$.
21. $x+2 y$.
23. $x^{5}+x^{4} y+x^{3} y^{2}+x^{2} y^{3}+x y^{4}+y^{5}$. 24. $a+b-c$.
25. $-b+2 b^{2}-b^{3}$.
27. $\quad x^{3}-x y-x z+y^{2}-y z+z^{2}$.
28. $x^{12}-x^{0} y^{2}+x^{6} y^{4}-x^{3} y^{6}+y^{8}$.
29. $p+2(\underline{q}-r$.
31. $x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}$.
30. $a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4}$.
32. $2 x^{3}-3 x^{2}+2 x$.
33. $u^{4}+3 u^{3}+9 u^{2}+27 u+81$.
34. $k^{7}+k^{4}+k$.
35. $x^{2}-9 x-10$.
36. $2+4 x^{2}-2 u x-35 u^{2}$.
37. $6 \cdot x^{2}-7 x+8$

3S. $8 x^{3}+12 a x^{2}-15 \operatorname{lo}^{2} x-27 a^{3}$.
39. $27 x^{3}-3 C a x^{2}+18 a^{2} x-\mathbf{C}+a^{3}$.
41. $x+2 a$.
42. $a^{2}-4 b^{2}$.
40. $2 a+3 b$.
44. $x^{2}-3 x y-2 y^{2}$.
45. $\quad x^{3}+3 x^{2} y+9 x y^{2}+27 y^{3}$.
46. $\quad a^{3}+2 a^{2} b+4 a b^{2}+8 b^{3}$.
48. $8 x^{3}-12 x^{2} y+18 x y^{2}-27 y^{3}$.
47. $27 a^{3}-18 a^{2} b+12 a b^{2}-8 b^{3}$.
50. $a^{2}-2 a x+4 x^{2}$.
53. $x^{2}+x y-y^{2}$.

5 1. $\quad x^{2}+x y+y^{2} . \quad$ 52. $\quad 16 x^{2}-4 x y+y^{3}$.
56. $x-y-z . \quad$ 57. $3 x^{2}-x+2$. 58. $4-6 x+8 x^{2}-10 x^{3}$.
59. $x+y$. 60. $a x+b y-a b-x y$.
XV: (Tage 40.)

1. $x^{2}+a x+b$.
2. $y^{2}-(l+m) y+l m$.
3. $x^{2}+c x+d$.
4. $x^{2}+a x-b$.
5. $x^{2}-(b+d) x+b d$.
XVi. (Parge 42.)
i. $m-\pi, m^{2}-m n+\hat{m}^{2}, m^{4}-m i^{3} n+m^{2} n^{2}-m n^{3}+n^{4} ;$ $m^{5} \ldots m^{4} n+\delta c ., m^{8}-m^{7} n+\& C$
6. $m+n, m^{2}+m n+n^{2}, m^{3}+m^{2} n+\& c ., m^{5}+m^{4} n+\& c$. ,

$$
m^{6}+n \nu^{5} n+\& \mathrm{c} .
$$

3. $\quad a-1, a^{2}-a+1, a^{4}-a^{3}+\mathbb{S}$ c., $a^{0}-a^{5}+$ Sc.,$a^{7}-a^{0}+\& c$.
4. $y+1, y^{2}+y+1, y^{4}+y^{3}+\& \cdot c ., y^{6}+y^{5}+\& c ., y^{8}+y^{7}+\& c$.

xvii. (Page 43.)

1. $5 x(x-3)$ 2. $3 x\left(x^{2}+6 x-2\right)$. 3. $\quad 7\left(7 y^{2}-2 y+1\right)$.
2. $4 x y\left(x^{2}-3 x y+2 y^{2}\right)$.
3. $x\left(x^{3}-a x^{2}+b x+c\right)$.
4. $3 x^{3} y^{2}\left(x^{2} y-7 x+9 y^{2}\right)$.
5. $27 a^{3} l^{6}\left(2+4 a^{3} b^{2}-9 a^{5} b^{3}\right)$.
6. $45 x^{4} y^{7}\left(x^{3} y^{3}-2 x-8 y\right)$.

xviii. (Page 44.)

1. $(x-a)(x-b)$.
2. $(a-x)(b+x)$.
3. $(b-y)(c+y)$.
4. $(a+m)(b+n)$. 5. $\quad(a x+y)(b x-y)$. 6. $\quad(a b+c d)(x-y)$.
5. $(c x+m y)(d x-n y$.
6. $(a c-b d)(b x-d y)$.
xix. (Page 45.)
I. $(x+5)(x+6)$.
7. $(x+5)(x+12)$.
8. $(y+12)(y+1)$.
9. $(y+11)(y+10)$.
10. $(m+20)(m+15)$.
11. $(m+6)(m+17)$.
12. $(a+8 b)(a+b)$.
13. $(n+4 m)(x+9 m)$. 9. $(y+3 n)(y+16 n)$.
14. $(z+4 p)(z+25 p)$.
II. $\left(x^{2}+2\right)\left(x^{2}+3\right)$.
15. $\left(x^{3}+1\right)\left(x^{3}+3\right)$.
16. $(x y+2)(x y+16)$.
17. $\left(x^{4} y^{2}+3\right)\left(x^{4} y^{2}+4\right)$.
18. $\left(m^{5}+8\right)\left(m^{5}+2\right)$.
19. $(i \iota+20 q)(n+7 q)$.

XX. (Page 45.)

I. $(x-5)(x-2)$.
2. $(x-19)(x-10)$.
3. $(y-11)(y-12)$.
4. $(y-20)(y-10)$.
5. $(n-23)(n-20)$.
6. $(n-56)(n-1)$.
7. . $\left(x^{3}-4\right)\left(x^{3}-3\right)$.
8. $(a b-26)(a b-1)$.
9. $\left(b^{5} c^{3}-5\right)\left(b^{2} c^{3}-6\right)$.
10. $(x y z-11)(x y z-2)$.
1.
4.
7.
9.
1.
\&c., $+m^{5} n+\& c$. $a^{0}+\& c$.
$i^{7}+\& c$.
$\left.y^{2}-2 y+1\right)$

+ + c)
$\left.b^{2}-9 a^{3} l^{3}\right)$

1) $(c+y)$
$c d)(x-y)$.
$-d y)$
2) $(y+1)$.
;) $(m+17)$
$(y+16 n)$
3).
+16).

+ 8).
xxiv. (Page 48.)

1. $(x+9)^{2}$. 2. $(x+13)^{2}$. 3. $(x+17)^{2}$. 4. $(y+1)^{2}$.
2. $(z+100)^{2}$.
3. $\left(x^{2}+7\right)^{2}$.
4. $(x+5 y)^{2}$.
5. $\left(m^{2}+8 u^{2}\right)^{2}$
6. $\left(x^{3}+12\right)^{2}$.
7. $(x y+81)^{2}$.
XXV. (Page 4S.)
8. $(x-4)^{2}$.
9. $(x-14)^{2} . \quad$ 3. $(x-18)^{2}$.
10. $(y-20)^{2}$
11. $(z-50)^{2} \cdot$
12. $\left(x^{2}-11\right)^{2}$.
13. $(x-15 y)^{2}$
$\therefore\left(m^{2}-16 n^{2}\right)^{2}$
14. $\left(x^{3}-19\right)^{2}$.
XXi. (Page 46.)
15. $(x+12)(x-5)$ 2. $(x+15)(x-3) . \quad$ 3. $(a+12)(a-1)$.
16. $(a+20)(a-7)$.
17. $(b+25)(b-12)$.
18. $(b+30)(b-5)$.
19. $\left(x^{4}+4\right)\left(x^{4}-1\right)$.
20. $(x y+14)(x y-11)$.
21. $\left(m^{5}+20\right)\left(m^{5}-5\right)$.
22. $(n+30)(n-13)$.

Xxil. (Page 46.)

1. $(x-11)(x+6)$.
2. $(x-9)(x+2)$. 3. $(m-12)(m+3)$.
3. $(n-15)(n+4)$.
4. $(y-14)(y+1)$.
5. $(z-20)(z+5)$
6. $\left(x^{5}-10\right)\left(x^{5}+1\right)$.
7. $(c d-30)(c d+6)$.
8. $\left(m^{3} n-2\right)\left(m^{3} n+1\right)$.
9. $\left(p^{4} q^{2}-12\right)\left(p^{4} q^{2}+7\right)$.
xxiil. (Page 47.)
10. $(x-3)(x-12)$.
11. $(x+9)(x-5)$.
12. $(a b-18)(a b+2)$.
13. $\left(x^{4}-5 m\right)\left(x^{4}+2 m\right)$.
14. $\left(y^{3}+10\right)\left(y^{3}-9\right)$.
15. $\left(x^{2}+10\right)\left(x^{2}-11\right)$.
16. $x\left(x^{2}+3 a x+4 a^{2}\right)$.
17. $(x+m)(x+n)$.
18. $\left(y^{3}-3\right)\left(y^{3}-1\right)$.
19. $(x y-a b)(x-c)$.
20. $(x+a)(x-b)$.
21. $(x-c)(x+d)$.
22. $(a b-d)(b-c)$.
23. 4. $(x-4 y)(x-3 y)$.
xxvi. (Pago 50.)
1. $(x+y)(x-y)$.
2. $(x+3)(x-3)$.
3. $(2 x+5)(2 x-5)$.
4. $\left(a^{2}+x^{2}\right)\left(a^{9}-x^{2}\right)$.
5. $(x+1)(x-1)$.
6. $\left(x^{3}+1\right)\left(x^{3}-1\right)$.
7. $\left(x^{4}+1\right)\left(x^{4}-1\right)$.
8. $\left(n^{2}+4\right)\left(n^{2}-4\right)$.
9. $(6 y+7 z)(6 y-7 z)$.
10. $(9 x y+11 u b)(9 x y-11 a b)$.
11. $(a-b+c)(a-b-c)$.
12. $(x+n-n)(x-m+n)$.
13. $(a+b+c+d)(a+b-c-d)$.
14. $2 x \times 2 y$.
15. $(x-y+z)(x-y-z)$.
16. $(a-b+n+n)(a-b-m-n)$.
17. $(a-c+b+d)(a-c-b-d)$. 18. $(a+b-c)(a-b+c)$.
18. $(x+y+z)(x+y-z)$ 20. $(a-b+n-n)(a-b-m+n)$.
19. $(a x+b y+1)(a x+b y-1)$.
20. $2 a x \times 2 l y$.
21. $(1+a-b)(1-a+b)$.
22. $(1+x-y)(1-x+y)$.
23. $(x+y+z)(x-y-z)$.
24. $(a+2 b-3 c)(a-2 b+3 c)$.
25. $\left(a^{2}+4 b\right)\left(a^{2}-4 b\right)$.
26. $(1+7 c)(1-7 c)$.
27. $(a-b+c+d)(a-b-c-d)$. 30. $(c+b-c-d)(a-b-c+d)$.
28. $3 a x(a x+3)(a x-3)$.
29. $\left(a^{2} b^{3}+c^{4}\right)\left(a^{2} b^{3}-c^{4}\right)$.
30. $12(x-1)(2 x+1)$.
31. $(3 x+7 y)(5 x+y)$.
32. 1000×506.

xxvii. (Page 51.)

1. $(a+b)\left(a^{2}-a b+b^{2}\right)$.
2. $(a-b)\left(a^{2}+a b+b^{2}\right)$.
3. $(a-2)\left(a^{2}+2 a+4\right)$.
4. $(x+7)\left(x^{2}-7 x+49\right)$.
5. $(b-5)\left(b^{2}+5 b+25\right)$.
6. $(x+4 y)\left(x^{2}-4 x y+16 y^{2}\right)$.
7. $(a-6)\left(a^{2}+6 a+36\right)$.
8. $(2 x+3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$.
9. $(4 a-10 b)\left(16 a^{2}+40 a b+100 b^{2}\right)$.
:5. $(9 x+8 y)\left(81 x^{3}-72 x y+64 y y^{2}\right)$.
10. $(x+y)\left(x^{2}-x y+y^{2}\right)(x-y)\left(x^{2}+x y+y^{2}\right)$.
11. $(x+1)\left(x^{2}-x+1\right)(x-1)\left(x^{2}+x+1\right)$.
12. $(a+2)\left(a^{2}-2 a+4\right)(a-2)\left(u^{2}+2 a+4\right)$.
13. $(3+y)\left(9-3 y+y^{2}\right)(3-y)\left(0+3 y+y^{2}\right)$.
xxviii. (Page 51.)
14. $a+b$.
15. Take b from a nal ade i to the result.
16. $2 x$. 4. $a-5 . \quad$ 5. $x+1 . \quad$ 6. $x-2, x-1, x, x+1, x+2$.
17. 0.
1. 0.
1. da.
2. c. 11. $x-y$.
3. $x-\eta$
4. $365-6 x$.
5. $x-10$.
6. $x+5 t$.
7. A has $x+5$ shillings, D has $y-5$ shiilinurs.
8. $x-8$. 18. $x y$ 19. 12-x-y. 20. M. 21. $25-x$.
9. $y-25 . \quad 23.250 m^{8} . \quad 24.46 . \quad 2 j . x-5 . \quad 26 . y+7$.
10. $x^{2}-y^{2}$.
11. $(x+y)(x-y) . \quad$ 29. 2. 30. 2.
12. 28.
1. 7. 33.23. 34. $5 . \quad 35$.
1.

xxix. (Page 53.)

1. To a add b.

2. From the square of a take the square of b
3. To four times the square of a add the cube of b.
4. Take four times the sum of the squares of a and b.
5. From the square of a take twice b, and add to the result three times c.
6. To a add the product of m and b, and take c from the result.
7. To a ald m. From b take c. Sultiply the results together.
8. Take the square root of the cube of x.
9. Take the square root of the sum of the squares of x and y.
10. Add to a twice the excess of 3 above c.
11. Multiply the sum of a and 2 by the excess of 3 above c. [8.A.]
12. Divide the sum of the squares of a and b by four times the product of a and b.
13. From the square of x subtract the square of y, and take the square root of the result. Then divide this result by the excess of x above y.
14. To the square of x add the square of y, and take the square root of the result. Then divide this result by the square root of the sum of x and y.
XXX. (Page 53.)
15. 2.
1. 0 .
2. 17.
1. 31.
1. 20.
1. 33.
1. 105.

S. 27.
9. 14.
10. 120.
11. 210.
12. 1458.
13. 30.
14. 5.
15.3.
16. 4.
17. 49.
18. 10.
19. 12.
20. 4.
21. 43. 22. 20. 23. 29.
24. 41536. 25. 52.

XXXi. (Page 54.)

1. 0.
1. 0.
1. $2 a c$.
2. $2 x y$.
3. $a^{2}+b^{2}$.
4. $4 x^{4}+(6 m-6 n) x^{3}-\left(4 m^{2}+9 m n+4 n^{2}\right) x^{2}$

$$
+\left(6 m^{2} n-6 m n^{2}\right) x+4 m^{2} n^{2}
$$

7. $c r^{2}+d r+e$.
8. $-a^{4}-b^{4}-c^{4}+2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}$.

1
18.
19.
20.
22.
22.
27.
27.
22.
27.
27.
F

When $c=0$, this becomes $-a^{4}-b^{4}+2 a^{2} b^{9}$. When $b+c=a$, the product becomes 0 . When $a=b=c$, it becomes $3 a^{4}$.
9. 0.
10. 34.
12. (a) $(a+b) x^{2}+(c+d) x$.
(β) $(a-b) x^{3}-(c+d-2) x^{2}$.
(γ) $(4-a) x^{3}-(3+b) x^{2}-(5+c) x . \quad$ ($) a^{2}-b^{2}+(2 a+2 b) x$.
(є) $\left(m^{2}-n^{2}\right) x^{4}+(2 m q-2 n q) x^{3}+(2 m-2 n) x^{2}$.
13. $x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c$.
14. $x^{3}+(a+b+c) x^{2}+(a b+a c+b c) x+a b c$.
15. $(a+b+c)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}+c^{3}+3 a^{9} c$
$+6 a b c+3 b^{2} c+3 a c^{2}+3 b c^{2}$.
$(a+\bar{b}-c)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}-c^{3}-3 a^{2} c$
$-6 a b c-3 b^{2} c+3 a c^{2}+3 b c^{2}$.
oy four times
f y, and take le this result
and take the ais result by
6. 33.
12. 1458.
18. 10.
336. 25.52.
5. $a^{2}+b^{2}$.
$\left.n^{2}\right) x+4 m^{2} n^{2}$ $2 a^{2} c^{2}+2 b^{2} c^{2}$. $\imath^{2} b^{2}$. When $a=b=c$, it 10. 34.
$(c+d-2) x^{2}$. $+(2 a+2 b) x$.
$+3 a c^{2}+3 b c^{2}$. $+3 a c^{2}+3 b c^{2}$.

$$
\begin{array}{r}
(b+c-a)^{3}=-a^{3}+3 a^{2} b-3 a b^{2}+b^{3}+c^{3}+3 a^{2} c \\
-6 a b c+3 b^{2} c-3 a c^{2}+3 b c^{2} . \\
(c-c-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}+c^{3}+3 a^{2} c \\
-6 a b c+3 b^{2} c+3 a c^{2}-
\end{array}
$$

1 c m of the last three subtracted from the first gives sitauc.
1). 3$)^{2}+6 a c-3 a b+4 b c-6 b^{2}$. 17. $a^{10}-x^{18}$.
18. $2 a c-2 b c-2 a d+2 b d$. The value of the result is $-20 c$.
19. $a b+x y+(b+1+2 a) x+(2 a-b-1) y$.
20. 9 2I. $a b+x^{2}+(a-b+1) x-(a+b+1) y$.
22. 2. 23. $(7 m+4 n+1) x+(1-6 n-4 m) y$.

2弓. $4 a^{2}+6 a c+2 a b+9 b c-6 b^{2}$.
26. 3 ; 128 ; 3; 118.
27. 9.
28. 44.
29. 20.
30. 35 . $\quad 31.18$.
Xxxii. (Page 60.)
I. 3.
2. 2.
3. 1.
4. 7.
5. 2.
6. $2 . \quad 7.3$.
8. 4.
9. 9.
10. Ans. 54.
$\begin{array}{llllll}\text { 11. 2. } & 12.9 . & 13.9 . & 14 .-7 . & 15.3 . & 16.7 . \\ \text { 17. 2. } & 18.8 . & 19.10 . & 20.6 . & 21.4 . & 22.10 . \\ \text { 23. 3. } & 24.15 . & 25.1 . & 26.2 . & 27.3 . & 28.4 .\end{array}$ 29. 6. 30. -1.
Xxxiii. (Page 62.)

1. 70. 2. $43 . \quad$ 3. $23 . \quad 4.7,21 . \quad$ 5. $36,26,18,12$.
1. 12,8 . 7. 50,30 . 8. $10,14,18,22,26,30$. 9. $£ 68$.
2. 12 shillings, 24 shillings. 11. 52.
3. A has $£ 130, B £ 150, C £ 130, D £ 90$.
4. 152 men, 76 women, 38 children. 14. $£ 350, £ 450, £ 720$.
5. $21,13$.
6. £8. 15 s.
7. 84, 26.
8. $62,28$.

9. 49 gallons.
10. $£ 14, £ 24, £ 38$.
11. 31, 17.
12. $£ 21$.
13. 60, 24.
14. 57, 19.
15. 200,100 .
16. 48, 36.
17. 50, 40.
18. $42,18$. 29. 88. 30. 18. 31. 40. 34. $80,128$.
19. 53, 318.
20. 19, 22.
21. 5, 10, 15.
xxxiv. (Page 68.)
22. $a^{2} b$.
23. $x^{2} y^{2}$.
24. $2 x^{2} y$.
25. $15 m^{2} n p$.
26. 18alcd.
27. $a^{2} b^{2}$.
28. 2.
1. $17 p q$.
2. $4 x^{2} y^{2} z^{2}$.
3. $30 x^{2} y^{3}$.
XXXV. (Page 69.)
4. $a-b$.
5. $a^{2}-b^{2}$.
6. $a-x$.
7. $a+x$.
8. $3 x+1$.
9. $1-5 a$.
10. $x+y$.
11. $x-y$.
12. $x-1$.
13. $1+a$.
XXXVi. (Page 70.)
14. 3453. 2. $36 . \quad$ 3. 936 . 4. 355. 5. . 33. 6. 2345.

xxxvil. (Page 74.)

I. $x+4$.
2. $x+10$.
3. $x-7$.
4. $x+12$.
5. $x-3$.
6. $x+3 y$.
7. $x-4 y$.
S. $x-15 y$.
9. $x-y$.
10. $x+y$.
11. $x-y$.
12. $x+y$.
13. $x+y$.
14. $a+b-c$.
15. $4 x+y$.
16. $3 x-y$.
17. $5 x-y$.
IS.. $x^{4}+x^{3}-4 x^{2}+x+1$. 19. $x^{2}-2 x+4$.
20. $x^{2}+x y+y^{3}$.
21. $x^{3}+x^{2}-x-1$.
22. $3 a^{2}+2 a b-b$
23. $3 x-y$.
24. $3 x-11 y$.
25. $3 a-b$.
26. $3(a-x)$.
27. $3 x-2$.
28. $3 x^{2}+a^{2}$.
29. $x^{2}+y^{2}$.
30. $x+3$.
31. $3 a+2 x$.
xxxviii. (Page 76.)

1. $x+2$.
2. $x-1$.
3. $x+1$.
4. $y-1$.
5. $x^{2}-2 x+5$
6. $x-2$.
7. $y^{2}-2 y+5$.
8. $42,18$.
9. 31.40 .
10. 19, 22.
11. $5,10,15$.
12. 18alcd.
13. $30 x^{2} y^{3}$.
x. 5. $3 x+1$.
14. 10. $\mathbf{1}+a$.

③.
6. 2345.
4. $x+12$
8. $x-15 y$.
12. $x+y$.
16. $2 x-y$.
$x^{2}-2 x+4$
2. $3 a^{2}+2 a b-b^{2}$
5. $3 a-b$.
3. $3 x^{2}+a^{2}$
I. $3 a+2 x$.
4. $y-1$.

XxXix. (Page 81.)

1. $\frac{1}{3 i t}$.
2. $\frac{2 x}{9}$.
3. $\frac{5 b}{12 a}$.
4. $\frac{2 x^{2}}{5 z}$.
5. $\frac{a^{2} b^{2} c^{3}}{3}$.
6. $\frac{4 x y}{3 t c}$.
7. $\frac{3 y}{2 a z}$.
8. $\frac{5 b^{2} c}{4 a^{2}}$
9. $\frac{4}{3 x^{2} y^{6}}$
10. $\frac{5 m}{p}$.
II. $\frac{a}{a+b}{ }^{\text {. }}$
11. $\frac{2 m x}{3 m^{2} p-x}$.
12. $\frac{1}{3 y-5 x z}$.
13. $\frac{2 a b}{2 i c+c}$.
14. $\frac{2 a+y}{4 a x^{2}-x} \quad 15 \cdot \frac{y}{b c}$. 16. $\frac{a^{2}}{2 x-3 y}$. 18. $\frac{c-2 a}{c+2 i}$.
15. $\frac{3}{5}$.
16. $\frac{5}{2 x-2 y}$.
17. $\stackrel{x!}{2 a z}$
18. $\frac{b^{3}}{2 a^{2} \cdot \dot{c}}$
19. $\frac{1}{2 c^{\circ}}$
20. $\frac{2}{9 a b x-12 c d x}$.
21. $\frac{2 a+2 b}{a^{2}}$
22. $\frac{x}{y}$.
Xl. (Page S2.)
23. $\frac{a+5}{a+i}$
24. $\frac{x-5}{x-3}$.
25. $\frac{x+1}{x-7}$.
26. $\frac{x-3 y}{x+7!}$.
27. $x^{2}-x+1$
28. $\frac{x^{3}+y^{3}}{x^{3}-y^{3}}$
29. $\frac{x-2}{x+4}$.
30. $\frac{x-3}{x+1}$.
31. $\frac{x^{2}-5 x+6}{3 x^{2}-7 x}$.
32. $\frac{x^{2}-5 x+6}{3 x^{2}-5 x}$.
33. $\frac{x^{2}+x y-y^{3}}{x^{2}-x y-y^{2}}$
34. $\frac{a^{2}+5 u+5}{u^{2}+a-2}$.
35. $\frac{b^{2}+5 b}{b^{2}+b-5}$.
36. $\frac{m^{2}+4 m}{m^{2}+m-6}$
37. $\frac{a^{2}-a+1}{a^{2}+a+1}$.
38. $\frac{10 a-14 a^{2}}{15-9 a-6 a^{2}}$
39. $\frac{3 a x-7 a}{7 x^{2}-3 x}$
40. $\frac{14 x-6}{9 a x-21 a}$.
41. $\frac{a^{2}-a+1}{a^{2}-2 a+2}$.
42. $\frac{3 x-1}{x^{2}-1}$
43. $\frac{a-5}{a-3}$.
44. $\frac{x^{2}-2 x+2}{x^{2}-2}$
45. 3.
1. $\frac{2 x^{2}+3 x-5}{7 x-5}$.
2. $\frac{4 x^{2}+9 x+1}{2 x^{2}-3 x-2}$.
3. $\frac{2 x-3 a}{4 x^{2}+6 a x+9 a^{2}}$. 28. $\frac{x-3}{x-2}$.
4. $\frac{x-3}{x+1}$.
5. $\frac{m-1}{m+1}$.
6. $\frac{x^{2}+5 x}{x+3}$.
7. $\frac{a-b-c}{a+b-c}$.
8. $\frac{5 a+2 b}{3 a+2 b}$.
9. $\frac{x-5}{2 x+3}$.
10. $\frac{x^{2}+4}{x^{2}+2+i}$.
11. $\frac{x^{3}+x^{2}-2}{2 x^{2}+2 x+1}$.
12. $\frac{x^{2}+x-12}{3 x+5}$.
13. $\frac{x^{2}-2 x+3}{2 x^{2}+5 x-3}$.
14. $\frac{x^{3}-2 x^{2}-2 x+1}{4 x^{2}-7 x-1}$.
15. $\frac{a^{2}-5 a+6}{3 a^{2}-8 a}$.
xli. (Page 86.)
16. $\frac{7 x^{2}}{12 y^{2}}$.
17. $\frac{1}{2}$.
18. $\begin{aligned} & 2 x^{3} \\ & 3 y^{3}\end{aligned}$
19. $\frac{b y}{9} a x \cdot$
20. $a x$.
21. $\frac{4}{9}$.
22. $\frac{3}{8}$.
23. $\frac{8 a^{2} c^{2}}{9 d^{2}}$.
24. $\frac{3 m n x y}{4 p q^{2}}$.
25. $\frac{5 k m^{2}}{4 p q}$.
xlii. (Page 86.)
26. $\frac{a-b}{a^{2}}$.
27. $\frac{4}{3}$.
28. $\frac{(x+2)(x-4)}{x(x-2)}$
29. $\frac{(x-1)(x-6)}{x^{2}}$
30. $\frac{x-6}{x-3}$.
31. $(x-2)(x-5)$
32. 33.
1. b.
2. $\frac{y}{x-y}$.
3. $\frac{c-a+b}{c-a-b}$.
4. $\frac{x-m+n}{x+m-n}$.
5. 6.
1. $\frac{x-y-z}{x+y+z}$
$\frac{a-5}{a-3}$.
$\frac{2 x^{2}+3 x-5}{7 x-5}$
2. $\frac{x-3}{x-2}$.
3. $\frac{x^{2}+5 x}{x+3}$.
4. $\frac{x-5}{2 x+3}$.
5. $\frac{x^{2}+x-12}{3 x+5}$.
.o. $\frac{a^{2}-5 a+6}{3 a^{2}-8 a}$.
6. $\frac{b y}{9} a x \cdot$
7. $\frac{8 a^{2} c^{2}}{9 d^{2}}$.
$\frac{c+2)(x-4)}{x(x-2)}$
$c-2)(x-5)$ x^{2}
o. $\frac{c-a+b}{c-a-b}$.
$-y-z$
$+y+2$
$+y+2$
Xliii. (Page 87.)
8. $\frac{10 a c}{3 b c}$.
9. $\frac{3}{2 y}$.
10. $\frac{8 x y}{b}$.
11. $\frac{4}{3 \ln x}$.
12. $\frac{3}{4}$.
C. $\frac{5 x}{4 \pi}$.
13. 5 5:
14. $\frac{1}{x-2}$.
15. $\frac{1}{x-2}$.
xliv. (Page 89.)
I. $12 a^{3} x^{2}$.
16. $12 x^{2} y^{2}$.
17. $8 a^{3} b^{2}$.
18. $a^{2} x^{2}$.
19. $4 a x^{3}$.
20. $a^{2} b^{2} c^{3}$.
21. $a^{3} x^{2} y^{2}$.
22. $102 a^{2} x^{4}$.
23. $20 p^{2} q^{2} r$.
24. $72 a x^{2} y^{3}$.

xlv. (Page 91.)

I. $x^{2}(a+x)$.
2. $x^{3}-x$.
3. $a\left(a^{2}-b^{2}\right)$.
4. $4 x^{2}-1$.
5. $a^{3}+b^{3}$.
6. $x^{2}-1$.
7. $\left(x^{3}-1\right)(x+1)$.
8. $\left(x^{2}+1\right)\left(x^{3}+1\right)$.
9. $(x+1)\left(x^{3}-1\right)$.
10. $x^{4}-1$.
11. $x\left(x^{3}-1\right)\left(x^{3}+1\right)$.
12. $x(x+1)\left(x^{3}-1\right)$.
13. $(2 a-1)\left(8 a^{3}+1\right)$.
14. $2 x^{2}+2 x y$.
15. $(a+b)^{2}(a-b)$.
16. $a^{2}-b^{2}$.
17. $4\left(1-x^{2}\right)$.
18. $x^{3}-1$.
19. $(a-b)(a-c)(b-c)$.
20. $(x+1)(x+2)(x+3)$.
2:. $(x+y)^{2}(x-y)^{2}$.
22. $(a+3)\left(a^{2}-1\right)$.
23. $x^{2}\left(x^{2}-y^{2}\right)$.
24. $(x+1)(x+2)(x+3)(x+4)$.
25. $12(x-y)^{2}\left(x^{3}+y^{3}\right)$.
26. $120 x y\left(x^{2}-y^{2}\right)$
xlvi. (Page 93.)
T. $(x+2)(x+3)(x+4)$.
2. $(a-5)(a+4)(a-3)$.
3. $(x+1)(x+2)(x+3)$.
4. $(x+5)(x+6)(x+7)$.
5. $(x-11)(x+2)(x-2)$.
6. $(2 x+3)(x+1)(x-2)$.
7. $\left(x^{2}+y\right)(x+y)\left(x^{2}+y^{2}\right)(x-y)$.
8. $(x-5)(x-3)(x+5)$.
9. $(7 x-4)(3 x-2)\left(x^{2}-3\right)$.
10. $\left(x^{2}+y^{2}\right)(x+y)(x-y)$.
11. $\left(a^{2}-b^{2}\right)(a+2 b)(a-2 b)$.
xlvii. (Page 94.)
I. $(x-2)(x-1)(x-3)(x-4)$.
2. $(x+4)(x+1)(x+3)$.
3. $(x-4)(x-5)(x-7)$.
4. $(3 x-2)(2 x+1)(7 x-1)$.
5. $(x+1)(x-1)(x+3)(2 x-2)(2 x+1)$.
6. $(x-3)\left(x^{2}+3 x+9\right)(x-12)\left(x^{2}-2\right)$.
Xlviii. (Page 95.)
I. $\frac{15 x}{20}, \frac{16 x}{20}$.
2. $\frac{9 x-21}{18}, \frac{4 x-9}{18}$.
3. $\frac{4 x-8 y}{10 x^{2}}, \frac{3 x^{2}-8 x y}{10 x^{2}}$.
4. $\frac{20 a+25 b}{10 u^{2}}, \frac{6 a^{2}-8 a b}{10 a^{2}}$.
5. $\frac{48 a^{2}-60 a c}{60 a^{2} c}, \frac{15 a-10 c}{60 a^{-} c}$.
6. $\frac{a b-b^{3}}{a^{3} b^{2}},-\frac{-}{a^{3!}!} \cdot{ }^{2}$
7. $\frac{3-3 x}{1-x^{2}}, \frac{3+3 x}{1-x^{3}}$.
8. $\frac{2+9 y^{2}}{1-y^{4}}, \frac{2-2 y^{2}}{1-y^{4}}$.
9. $\frac{5+5 x}{1-x^{2}}, \quad \begin{gathered}-x^{2}\end{gathered}$
10. $\frac{a b+a x}{c(c+x)}, \frac{b}{c(b+x)}$.
11. $\frac{a-c}{(a-b)(b-c)(a-c)}, \frac{b-c}{(a-c)(b-c)(a-c)}$.
12. $\frac{c(b-c)}{u b c(a-b)(a-c)(b-c)}, \frac{b(a-b)}{u b c(a-b)(a-c)(b-c)}$.
xlix. (Page 98.)

1. $\frac{15 x+17}{10}$.
2. $\frac{71 a-20 b-50 c}{84}$.
3. $\frac{32 x+3 y}{42}$
4. $\frac{16 x^{2}+55 x+4 x y-55 y}{50}$.
5. $\frac{27 x^{2}-2 x^{2} y-10 x y-28 y^{2}}{12 x^{2}}$
6. $\frac{180 a^{2}+54 a b+331 b^{2}-20 a b^{2}}{90 b^{2}}$.
7. $\frac{80 x^{3}+64 x^{2}+84 x+45}{60 x^{2}}$
8. $\frac{35 a^{2}+23 a b+21 b c-42 c^{3}}{21 a c}$.
$9 \frac{4 a^{2} c-3 a c^{2}-3 a c+7 c^{3}}{a^{2}}$
9. $\frac{11 y^{2}-8 x^{2} y^{2}-4 x y-7 x^{2}}{x^{3} y^{3}}$.
1) $(x+3)$.
+1) $(7 x-1)$.
11. $\frac{3 a^{4}-7 a^{3} b+4 a^{2} b c-5 a b^{2} c+a b c^{2}-b^{2} c^{3}}{a^{3} b^{2} c^{2}}$.
12. (Page 90.)
13. $\frac{2 x-1}{(x-6)(x+5)}$
14. $\frac{4}{(x-7)(x-3)}$.
15. $\frac{2}{(1+x)(1-x)}$.
16. $\frac{4 x y}{(x+y)(x-y)}$.
17. $\frac{-1}{1+x}$
18. $\frac{a+b x}{c+d x}$.
19. $\frac{2 \cdot x^{2}}{(x+y)(x-y)}$.
20. $\frac{2 x-y}{(x-y)^{2}}$
21. $\frac{2 n+5 a}{(a+a)^{2}}$
22. $\frac{1}{(a+x)(a-x)}$.
li. (Tage 100.)
23. $\frac{2}{1-a}$.
24. $\frac{4 x}{1-x^{4}}$
25. $\frac{2 x}{1-x^{-}}$
26. $\frac{8 b^{7}}{a^{8}-b^{8}}$
27. $\frac{x+y}{y}$.
28. $\frac{3 x^{3}+20 x^{2}-32 x-235}{(x+4)(x-3)(x+7)}$.
29. $\frac{3 x^{3}-24 x^{2}+60 x-46}{(x-2)(x-3)(x-4)}$.
30. $\frac{3 x^{2}-2 a x-6 a^{2}}{(x-a)^{3}}$.
31. $\frac{6}{(x-1)(x+2)(x+1)}$.
32. $\frac{x}{(x+1)(x+2)(x+3)}$.
33. $\frac{3 x^{2}}{x^{2}-1}$.
34. $\frac{b-d}{(a+c)}(a+d)(a+c)$.
35. 0.

I4. 2.
15. $\frac{y}{x+20}$
16. 0 .
17. $\frac{x^{2}+x y}{x^{3}=\frac{y^{3}}{3}}$
18. 0
19. $\frac{b}{a+b}$.
20. 0.
21. 0.
lii. (Page 103.)

1. $\frac{y}{x-y}$.
2. $\frac{1}{2+x}$.
3. $\frac{3 x^{2}}{x^{2}-1}$.
$4 . \begin{gathered}y+6 \\ 3\left(1-y^{3}\right)\end{gathered}$
4. 0.
1. $\frac{1}{(x+a)(x+\square)}$.
2. $\frac{a^{6}-2 a b^{5}+2 a^{5} b+b^{6}}{a^{6}-b^{6}}$.
S. $\frac{1}{1-x^{4}}$
3. $\frac{2}{(x-z)(y-z)}$.
4. $\frac{1}{a b c}$.
liii. (Page 110.)
5. $\frac{2}{(x+4)(x+5)(x+5)^{0}}$.
6. $\frac{2(x-8)}{(x-6)(x-7)(x-9)}$.
7. $\frac{2 x-17}{(x-4)(x+11)(x-13)^{\circ}}$ 4. $\frac{2}{x+3}$.
8. $\frac{m^{3}+4 m^{2} n+m n^{3}}{n(m+n)^{2}}$.
9. 0 .
10. $\frac{11 x^{3}-x^{2}+25 x-1}{3\left(1-x^{4}\right)}$.
11. 0.
1. $\frac{1}{1+x}$.
liv. (Pare 107.)
2. 16.
1. 12.
1. 15.
1. 23.
1. 63.
1. 24.
1. 60.
1. 45.
1. 36 .
2. 120 .
3. 72.
1. 96.
1. 64.
1. 12.
1. 28.
1. 2.
1. 8.
1. 9.
1. 7.
1. 4.

21.5.
22. 1.
23. 1.
24. $\frac{3}{2}$.
25. 100.
26. 24.
27. $\frac{2}{3}$.
28. 6.
29. 24.
30. 4.
lv. (Page 108.)
I. 16.
2. 5 .
3. $\frac{1}{4}$
-
4. 1.
5. 8 .
6. $-\frac{1}{9} \quad$ 7. 9.
8. 2 .
9. 11.
10. 6.
11. 2.
12. 12.
13. 8.
14. 7.
15. 9.
$16 \quad 7$.
17. 7.
18. 9.
19. 9.
20. 9.
21. 1i.
$y+6$
$3\left(1-y^{2}\right)$
$+2 a^{5} b+b^{3}$ $-b^{0}$
10. $\frac{1}{a b b i}$
8)
7) $(x-9)$
${ }^{2} n+m n^{2}$
$+n)^{2}$.
$\frac{1}{1+x}$.
5. 63.
10. 120 .
15. 28.
20. 4.
25. 100 .
30. 4.
5. 8
lvi. (Tage 109.)

1. $\frac{c}{a+b}$
2. $\begin{array}{r}3 c-2 a \\ 5 \\ 5 \\ \hline\end{array}$
3. $\frac{a^{2} b-b c+d}{a+f}$.
4. $\frac{b c-d m}{a-5}$.
5. $\frac{b(a+c)}{1+a}$.
6. $\frac{6 d d+a i}{3(a-12 d}$
7. $\frac{3 a b-9 k-?}{4 a c-1}$
8. 1 .
9. $\frac{(a+l)^{2}}{b-a}$.
10. $-\frac{a}{2}$
II. 2 .
11. 0
12. $\frac{b}{a-1}$.
13. $\begin{aligned} & 3 v+1 \\ & 2 u+i\end{aligned}$.
14. $\frac{18 a+26}{4 a+3}$.
15. $\frac{a-1}{b}$.
16. $\frac{p}{q}$
17. $\frac{a h d+u c}{a d+}+$
18. $b-1$.
19. $\frac{b}{c}$
20. $\frac{2 a^{3}}{b-1}$
21. 1 .
22. lm.
23. $\begin{gathered}3 a^{3} b c+2 a^{2} b^{3}+a b^{4} \\ b^{3}+3 a^{3} c+3 a^{2} b c+2 a^{2} b^{3} .\end{gathered}$
24. $\frac{b e}{c^{2}-i}$
25. $\frac{d}{c}$.
26. $\frac{a b-1}{b c+d}$
27. $\frac{a(m-3 c+3 a)}{c-a+m}$.
28. $\frac{a c}{b}$.
29. $\frac{a^{2} c(c-d)}{\left(a^{2}+b^{2}\right) d}$

Ivii. (Pugc 111.)
J. 2.
2. 15
3. 1.
4. $\frac{6}{10}$.
ᄃ. $\frac{7}{10}$.
5. $\frac{1}{7}$
7. $\frac{3}{3}$
8. 6.
9. -7
10. 6.
11. 9 .
12. 19
13. 1.
14. 4.
15. $-\frac{35}{6}$
16. 12
17. 2.
18. $\frac{\div}{2}$
19. $\frac{1}{8}$.
20. 3.

lviii. (Page 113.)

I. 20.
2. 3.
3. 40.
4. $\frac{459}{16}$.
5. 60.
6. 10 .
7. 5.
8. 20 .
9. 3.
10. $-\frac{1}{9}$
II. 8 .
12. 100.
13. 0.
$14 \cdot 1$.
15. 5.
16. $\stackrel{5}{6}$
17. 5.
lix. (Page 114.)
I. 100 .
2. 240 .
3. 80.
4. $\quad 700$.
5 28, 32
6. $2_{\overrightarrow{7}}^{6}, 47_{7}^{1}$.
7. 24, 76.
8. 120.
q. 60 .
10. 960.
II. 36.
12. $12,4$.
13. 21897.
1.4. 540,36 .
15. 3456, 2304.
16. 50.
17. $35,15$.
18. $20340,1867$.
19. 21, 6.
20. $105 \frac{1}{3}, 131 \frac{2}{3}$.
21. A las $£ 1 \div 00, B$ has $£ 400$.
22. $28,18$.
23. $\frac{m(n b-a)}{n-m}, \frac{n(m b-a)}{m-n}$.

$$
24 . \frac{a+b}{2}, \frac{a-b}{2}
$$

25. 18.
1. £13ั, £297, £432.
2. £i200. 28. $47,23$.
3. 7, 22.
4. 112, 96.

3i. 78.
32. 75 gallons.
33. 40, 10 .
34. 20.
35. 42 years.
36. $1 \frac{1}{5}$ days.
37. 20 days. 33.10 hays. 39 6 haours. 40. $1 \frac{1}{29}$ days.

4r. $4_{i 1}^{6}$ (ays.
4. 1_{6}^{5} honers. 43. 48^{\prime}.
44. 2 han:
45. $\frac{a b c}{a b+a c+b c}$ ninates. 4a $43^{3^{\prime}}{ }^{\prime}$.

49. 14 miles.
50. $\frac{a c}{b}, \frac{b d}{a}$.
51. $11 \frac{13}{2}$
52. 42 hours.
53. $30 \frac{30}{31}$ nites.
54. 50 hours.
55.
(1) $38 \frac{2^{\prime}}{11}$ past 1 .
(2) $54 \frac{6}{11}^{\prime}$ past 4.
(3) $10 \frac{10^{\prime}}{11}$ past 8
56. (1) $27 \frac{3^{\prime}}{11}$ past 2 .
(2) $5 \frac{5^{\prime}}{11}$ and also $25 \frac{2^{\prime}}{11}$ past 4 .
(3) $21 \frac{9^{\prime}}{11}$ past 7 , aud also $5 \pm \frac{6^{\prime}}{11}$ past 7 .

28, 32
ง. 60.
$\mathcal{L} 189 \%$
35,15 . $31 \frac{2}{3}$
5. 18.

7, 23.
gallons.
days.
$\frac{1}{29}$ days.
48^{\prime}
$45^{3^{\prime}}$
Ely.
lxi. (Page 128.)

1. $\frac{8-13 x}{80}$.
2. $\frac{x^{3}+3 x^{2}+1}{2 x^{2}-x^{3}+1}$.
3. $\frac{x+y}{x y}$.
4. $x(1-x)$.
5. $\frac{x+y}{x-y}$
$6 \frac{x^{2}-x+1}{x}$.
6. $\frac{a^{2}+a+1}{a}$.
7. x.
8. $\frac{1}{x}$
$10 x$
9. $\frac{x^{2}+y^{2}}{-2 y^{2}}$
10. x^{2}.
11. $\frac{a\left(a^{2}+2 a b+2 b^{2}\right)}{(u+b)^{2}}$.
12. $m-1$.
13. $\frac{1}{c(c-b-c)}$.
14.
15.
16.

.xii. (Parre 129.)

1. $\frac{1}{2}+\frac{3}{2 a}+\frac{1}{a^{2}}+\frac{5}{2 a^{3}}$.
2. $\frac{a}{d}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$.
3. $\frac{x}{y^{2}}-\frac{3}{y}+\frac{3}{x}-\frac{y}{x^{2}}$.
4. $\frac{a^{3}}{12}-\frac{a^{2}}{9}+\frac{a}{18}-\frac{1}{36}$.
$5 \frac{6 p}{q r s}+\frac{4 q}{p r s}-\frac{12 r}{p q s}+\frac{24 s}{p q r}$.
5. $\frac{x^{3}}{100}-\frac{x^{2}}{40}+\frac{3 x}{40}-\frac{1}{8}$

lxiii. (Page 131.)

1. $2-2 a+2 a^{2}-2 u^{3}+2 a^{4} \ldots \ldots$.
2. $1-\frac{2}{m}+\frac{4}{m^{2}}-\frac{8}{m^{3}}+\frac{16}{m^{4}} \ldots \ldots$
3. $1-\frac{2 b}{a}+\frac{2 b^{2}}{a^{2}}-\frac{2 b^{3}}{a^{3}}+\frac{2 b^{4}}{a^{4}} \cdots \cdots$
4. $1+\frac{2 x^{2}}{a^{2}}+\frac{2 x^{4}}{a^{4}}+\frac{2 x^{6}}{a^{6}}+\frac{2 x^{8}}{c_{0}^{8}} \ldots \ldots$
5. $x+\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}+\frac{x^{4}}{a^{3}}+\frac{x^{5}}{a^{4}} \ldots \ldots$
6. $\frac{b}{a}-\frac{b x}{a^{2}}+\frac{b x^{2}}{a^{3}}-\frac{b x^{3}}{a^{4}}+\frac{b x^{4}}{a^{5}} \ldots \ldots$
7. $1-2 x+6 x^{2}-16 x^{3}+44 x^{4} \ldots \ldots$
8. $1+2 x+x^{2}-x^{3}-2 x^{4} \ldots \ldots$.
9. $1+3 b+6 b^{2}+12 b^{3}+24 b^{4}$
10. $x^{2}-b x+b^{2}-\frac{2 b^{3}}{\mu}+\frac{2 b^{4}}{m^{2}} \ldots \ldots$
11. $\frac{a^{2}}{x}+\frac{a^{2} b}{x^{2}}+\frac{a^{2} b^{2}}{x^{3}}+\frac{a^{2} b^{3}}{x^{4}}+\frac{a^{2} b^{4}}{x^{6}} \cdots \cdots$
12. $1-\frac{2 x}{a}+\frac{3 x^{2}}{a^{2}}-\frac{4 x^{3}}{a^{3}}+\frac{5 x^{4}}{a^{4}} \cdots \ldots$
13. $x^{3}-3 a x^{2}+2 a^{2} x+4 a^{3}$.
14. $m^{4}-10 m^{2}-41 m-95$.
lxiv. (Pago 132.)
15. $\frac{x^{3}}{9}+\frac{x^{2}}{4}+\frac{23 x}{120}+\frac{1}{20}$
16. $\frac{a^{3}}{20}-\frac{49 a^{2}}{600}+\frac{7 a}{60}-\frac{1}{15}$.
17. $\frac{1}{a^{4}}-\frac{1}{b^{4}}$
18. $x^{4}-\frac{1}{x^{4}}$.
19. $x^{4}+1+\frac{1}{x^{4}}$.
20. $\frac{1}{a^{2}}+\frac{2}{a c}-\frac{1}{b^{2}}+\frac{1}{c^{2}}$.
21. $1+\frac{b^{2}}{a^{2}}+\frac{b^{4}}{a^{4}}$.
22. $1+\frac{x^{2}}{8}-\frac{x^{3}}{8}-\frac{x^{5}}{64}$.
23. $\frac{5}{x^{4}}+\frac{7}{2 x^{3}}-\frac{107}{12 x^{2}}+\frac{5}{6 x}+\frac{7}{6}$.
24. $\frac{a^{4}}{b^{4}}-\frac{b^{4}}{a^{4}}-\frac{4 b^{2}}{a^{2}}-4$.
lxv. (Page 13t.)
25. $x-\frac{1}{x}$.
26. $a+\frac{1}{b}$.
27. $m^{2}-\frac{m}{n}+\frac{1}{n^{2}}$
28. $c^{4}+\frac{c^{3}}{d}+\frac{c^{2}}{\bar{d}^{2}}+\frac{c}{d^{3}}+\frac{1}{d^{4}}$.
29. $\frac{x}{y}+\frac{y}{x}$.
30. $\frac{1}{a^{2}}+\frac{1}{a^{3}}+\frac{1}{b^{2}}$.
31. $\frac{x^{2}}{y^{2}}-2+\frac{y^{3}}{x^{2}}$
32. $\frac{3}{2} x^{3}-5 x^{2}+\frac{1}{4} x+9$.
33. $\frac{a^{2}}{b^{2}}-1+\frac{b^{2}}{a^{2}}$.
34. $\frac{1}{a^{2}}-\frac{1}{a b}-\frac{1}{a c}+\frac{1}{b^{2}}-\frac{1}{b c}+\frac{1}{c^{2}}$.
lxvi. (Page 135.)
35. $\cdot 05 x^{2}-\cdot 143 x-\cdot 021$.
36. $\cdot 01 x^{2}+1 \cdot 25 x-21$.
37. $\cdot 12 x^{2}+13 x y-14 y^{2}$.
38. $\cdot 172 x^{2}-05 x y-312 y^{2}$.
39. 0 .
40. 300763.

$$
\rightarrow
$$

IMAGE EVALUATION

Photographic Sciences Corporation

(716) 872.4503

lxvii. (Page 135.)

1. $a_{1} x\left(1+\frac{a_{2}}{a_{1}} x+\frac{a_{3}}{a_{1}} x^{2}+\frac{a_{4}}{a_{1}} x^{3}+\ldots\right)$.
2. $x y \sim\left(\frac{1}{z}-\frac{1}{y}+\frac{1}{x}\right)$.
3. $x^{2}\left(1+\frac{y}{x}+\frac{y^{2}}{x^{2}}\right)$.
-4. $(a+b)\left\{(a+b)^{2}-c(a+b)-a+\frac{e}{a+b}\right\}$.
lxix. (Page 138.)
4. 46.
1. $\frac{2 x^{2}+3 x-5}{7 x-5}$ and $\frac{a^{2}+5 a-14}{a+9}$.
2. $\frac{2 a p}{a^{2}+p^{2}}$
$4 \frac{37 x^{2}-7 y^{2}-19 z^{2}}{24}$.
3. $\frac{11}{3}$.
4. $\frac{60 x^{4}+42 a x^{3}-107 a^{2} x^{2}+10 a^{3} x+14 a^{3}}{12}$.
5. $\frac{x^{3}+x^{2} y+2 y^{3}}{x\left(x^{2}-y^{2}\right)}$.
6. $\frac{x-8}{x+8}$.
i1. $\frac{x^{8}}{1-x^{3}}$.
7. $\frac{a}{1-6}$
8. $l-\frac{1}{l^{2}}$
9. $\frac{a b+a c+b c+2 c+2 b+2 c+3}{a b c+a b+a c+b c+a+b+c+1}$.
10. $\frac{1}{a}-\frac{b}{a x}-\frac{b^{2}}{a^{2} x}-\frac{b^{2}}{a x^{2}}$
11. $\frac{8 a^{2} b^{3}}{a^{4}-b^{4}}$
12. $\frac{b\left(a^{2}+b^{2}\right)}{a\left(a^{2}-b^{2}\right)}$.
13. $\frac{a^{3}+b^{3}}{(a-b)^{2} \cdot\left(a^{2}+l^{2}\right)^{2}}$.
14. $\frac{1}{2(x+1)^{2}}$
15. $\frac{a+b-c}{a-b+c}$.
16. x
24.0.
17. 1°
18. $\frac{(x-4)(x+2)^{2}}{x}$.
19. $\frac{a^{4}+a^{2}+1}{a^{2}}$.
20. $\frac{(x-1)^{2}}{x^{3}\left(x^{2}+1\right)^{2}}$.
21. $\frac{x^{2}}{a^{2}}+\frac{a^{9}}{x^{4}}$
22. 23.
1. 3.
1. $\frac{-2+5 x+1 x^{2}-11 x^{3}-21 x^{4}}{\left(3-2 x-7 x^{2}\right)^{4}}$.
2. $\frac{x y}{z^{2}+y^{2}}$
3. 2
4. $\frac{2 a-b}{a+b}$.
5. 0.
1. $\frac{x^{2}-y^{2}}{2\left(x^{2}+y^{2}\right)}$.
4०. $\frac{x}{u}$.
2. $x^{2}+3 x+3-\frac{3}{x}+\frac{1}{x^{2}}$.
3. $\begin{aligned} & \left(x^{2}+y^{2}\right)^{2} \\ & x^{4}+y^{4}\end{aligned}$
4. 5.
1. $\frac{p+q}{p-q}$
2. $\frac{1}{\left(x^{2}+1\right)\left(x^{3}+1\right)}$.
3. 4.
1. $2 a^{2}-a x-a y$.
2. $\frac{a+b+c}{a+b-c}$.
3. $\left(a^{3}-b^{3}\right)^{3}$.
4. $\frac{2 a p}{a^{2}+p^{2}}$
5. $\frac{a}{1-b}$ $\frac{+3}{c+1}$
$\frac{b\left(a^{2}+b^{2}\right)}{a\left(a^{2}-b^{2}\right)}$
$\frac{a+b-c}{a-b+c}$
$(x+2)^{2}$
$\frac{2}{1)^{2}}$
6.
7. $x=12$
$y=4$.
8. $x=9$
9. $x=49$
$y=47$.
10. $x=13$
$y=3$.
11. $x=40$
$y=3$.
12. $x=5$
13. $x=6$
$y=1$.
14. $\begin{aligned} & x=7 \\ & y=17 .\end{aligned}$
15. $x=8$
$y=5$.
16. $x=19$
$y=2$.
17. $x=5$
$y=3$.
18. $\begin{array}{r}x=16 \\ y=35 .\end{array}$
19. $x=2$
$y=1$.
20. $x=4$ $y=\dot{3}$.

1xxi. (Page 145.)

1xxii. (Page 146.)
34. 2.
2. $x=8$
$y=4$.
3. $x=3$
$y=2$,
4. $x=5$
$y=3$.
6. $\begin{aligned} x & =7 \\ y & =9 .\end{aligned}$
7. $\begin{aligned} & x=12 \\ & y=9 .\end{aligned}$
8. $x=2$
$y=3$.
3. $x=2$
$y=2$.
ๆ. $x=3$
$y=20$.
[s.n.]

1xxiii. (Page 147.)

1. $x=7$
$y=-2$.
2. $x=9$
$y=-3$.
3. $x=12$
$y=-3$.
$4 \begin{aligned} x & =-2 \\ y & =19 .\end{aligned}$
4. $x=-3$
$y=-2$.
5. $x=7$
$y=-\delta$.
6. $\begin{aligned} x & =\frac{1}{2} \\ y & =-\frac{1}{3}\end{aligned}$
7. $x=-2$
$y=1$.
Ixxiv. (Page 148.)
8. $x=6$
$y=12$.
9. $\begin{aligned} x & =20 \\ y & =30 .\end{aligned}$
10. $x=42$
$y=35$.
$4 x=10$ $y=5$.
11. $x=9$
$y=140$.
12. $x=4$
$y=9$.
13. $x=5$
$y=2$.
14. $x=40$.
$y=60$.
15. $x=6$.
16. $\begin{aligned} x & =\frac{3201}{708} \\ y & =\frac{278}{63} .\end{aligned}$

1xxv. (Page 149.)

1. $x=\frac{e q-n f}{m q-n p}$
2. $x=\frac{c e+b f}{b d+a e}$
3. $x=\frac{e m+b n}{a e+b c}$
$y=\frac{m f-e p}{m q-n p}$.
$y=\frac{c d-a f}{b d+a e^{\circ}}$.
$y=\frac{a n-c m}{a e+b c}$.
4. $x=\frac{d e}{c+d}$
$y=\frac{c e}{c+d}$
5. $x=\frac{n^{\prime} r+n r}{m n^{\prime}+n^{\prime} n}$
6. $x=\frac{a+b}{2}$
$y=\frac{m r^{\prime}-m^{\prime} r}{m n^{\prime}+m^{\prime} n^{\prime}}$.
$y=\frac{a-b}{2}$.
7. $x=\frac{c(f-b c)}{a f-b d}$
8. $x=\frac{1}{a b}$
$y=\frac{c(a c-d)}{a f-b d}$
$y=\frac{1}{c d}$.
9. $x=\frac{2 b^{2}-6 a^{2}+d}{3 a}$ $y=\frac{3 a^{2}-b^{2}+a^{l}}{3 b}$
10.
11.
12. $x=\frac{a}{b_{c}}$
13. $x=\frac{a^{2}}{b+c}$
14. $x=\frac{b m}{b-m}$
$y=\frac{a+2 b}{c}$.
$y=\frac{b^{2}-c^{2}}{a}$.
$y=\frac{b m}{b+m}$.
15. $x=\frac{1}{2}$
$4 x=10$ $y=5$.
16. $x=40$.
$y=60$.
17. $x=\frac{3201}{708}$
$y=\frac{278}{53}$.
18. $x=\frac{1}{2}$
$y=\frac{1}{4}$.
19. $x=\frac{2 a}{m+n}$
$y=\frac{2 b}{m-n}$.
20. $x=\frac{1}{a}$
$y=\frac{1}{b}$.
lxxvi. (Page 151.)
21. $x=\frac{1}{b-2 a}$
22. $x=\frac{b^{2}-a^{2}}{b d-a c}$
$y=\frac{2}{3 a-b}$.
$y=\frac{\left[b^{2}-a^{2}\right.}{b c-a c}$.
23. $x=\frac{61}{92}$
$y=\frac{61}{103}$.
24. $x=\frac{1}{3}$
$y=\frac{1}{5}$.

1xxvii. (Page 153.)

1. $x=1$
$y=2$
$z=3$.
2. $x=2$
$y=2$
$z=2$.
3. $x=4$
$y=5$
4. $x=5$
$y=6$
5. $x=1$
$y=2$
$z=3$.
6. $x=1$
$y=4$
$z=6$.
7. $x=2$
$y=9$
$z=10$.
8. $x=20$
$y=10$
$z=5$.
9. $x=\frac{2}{3}$
$y=-7$
10. $x=5$
$z=36 \frac{1}{3}$.
$y=6$
$z=7$.
11. $x=\frac{1}{n}$
$y=\frac{1}{m}$.

lxxviii. (Page 155.)

1. 16,12 .
2. $133,123$.
3. $7 \cdot 25,6 \cdot 25$.
4. $31,23$.
5. 35,14 .
6. $30,40,50$.
7. $£ 60, £ 140, £ 200$.
8. 22., 2Gs. 9. £20n, $£ 300, £ 260$
9. $41,7 . \quad$ II. 47,11 12. $35,11,98$. $13.1 £ 90, £ 60$.
10. $60,36$.
11. $6,4$.
12. $40,10$.
13. 5.03, 1.072.
14. 10 barrels.
15. 3 s., 1s. 8 d .
16. $£ 20, £ 10$.
17. 15s. 10d., 12s. $6 d$.
18. $4 s . \mathrm{G} d ., 38$.
19. 35,65 .
20. 26.
1. 28.
1. 45.
1. 24.
1. 45.
1. 84.
1. 75.
1. 36.
1. 12.
1. 333.
1. 584.
1. 759.
1. $\frac{5}{6}$
2. $\frac{4}{15}$.
3. $\frac{3}{8}$.
4. $\frac{2}{3}$.
5. $\frac{7}{19}$.
6. $\frac{35}{41}$.
7. $\frac{19}{40^{\circ}}$
8. $£ 1000$ 44. $£ 5000,6$ per cent. $45 . £ 4000,5$ per cent. 46. $31 \frac{1}{4}, 18_{4}^{3} \quad$ 47. $20,10 . \quad 4$ S. 3 miles an hour. 49. 20 miles, s miles an bour. $50.700 .51 .450,600$. 52. 72, 60.
9. 12, 5 s .
10. $750,158,148$.
11. 15 and 2 miles. 56. The second, 320 strules. 5S. 50,30. 59. 4 yd . and 5 yd . 60. $\frac{5}{6}, 6,4$ miles an hour respectively. 6!. 142857.

1xxix. (Page 264.)

1. $2 x y$.
2. $9 a^{3} b^{4}$.
3. $11 m^{5} n^{6} r^{7}$.
4. $8 a^{2} b^{3} c$.
5. $26 a a^{2} d x^{3}$.
6. $12 a^{8} b^{4} c^{6}$.
7. $\frac{3 a}{4} \cdot$
8. $\frac{1}{2 a c^{2}}$.
9. $\frac{5 a^{2} b^{3}}{11 x^{4} y^{5}}$
10. $\frac{16 x^{6}}{17 y^{2}}$
11. $\frac{25 a}{15 b^{6}}$

1xxx. (Page 107.)

1. $2 a+3 b$.
2. $2 a b i-17$.
3. $4 l^{5}-3 l^{3}$. 3. $a b+81$.
4. $y^{3}-19$.
5. $x^{2}-3 x+5$
6. $3 x^{2}+2 x+1$.
$£ 300, £ 260$
7. $£ 90, £ 60$. 5.03, 1.072. £ 20, £ 10 .
8. $35,65$.
9. 45.
1. 333.
1. $\frac{3}{8}$.
2. $\frac{19}{40}$.

0,5 ner cent.
s an liour.
5. 450, 600.

58, 148.
58. 50, 30.
respectively.
4. $8 a^{2} b^{5} c$.
8. $\frac{1}{2 a^{2} c^{2}}$
4. $y^{3}-19$. $x^{2}+2 x+1$.
8. $2 r^{2}-3 r+1$.
9. $2 n^{2}+n-2$.
10. $1-3 x+2 x^{2}$.
11. $x^{3}-2 x^{2}+3 x$.
12. $z y^{2}-3 y z+4 z^{3}$.

1+. $a^{3}+a^{2} b+a b^{2}+b^{3}$.
16. $2 x^{2}+2 a x+4 b^{2}$.
13. $4 a^{2}-5 a b+8 b x$.
22. $2 y^{2} x-3 y x^{2}+2 x^{3}$.
15. $x^{3}-2 x^{2}-2 x-1$.
22. $4 x^{2}-3 x y+2 y^{2}$.
23. $3 a-2 b+4 c$.
24. $x^{2}-3 x+5$.

2 ј. $5 x-2 y+3 z$.

1xxxi. (Page 168.)

1. $2 a^{3}-\frac{u b^{2}}{4}$.
2. $\frac{3}{a}-\frac{6}{3}$
3. $a^{2}-\frac{1}{a^{2}}$.
4. $\frac{a}{b}+\frac{b}{a}$.
5. $x^{2}-x+\frac{1}{2}$.
6. $x^{2}+x-\frac{1}{2}$.
7. $2 a-3 b+\frac{b^{2}}{4}$.
8. $x^{2}+4+\frac{4}{x^{2}}$.
9. $\frac{4}{3} a^{3} x+2 a^{2}-\frac{3}{4}$
10. $\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$.
11. $a b-3 c d+\frac{e f}{7}$.
12. $\frac{2 m}{n}-\dot{4}-\frac{3 n}{m}$.
13. $7 x^{2}-2 x-\frac{3}{2}$.
14. $6 m-\frac{4}{n}+\frac{p}{5}$.
15. $\frac{2 x}{z}-\frac{3 y}{z}+\frac{z}{x}$.
16. $3 x^{2}-\frac{x}{3}-3$.
17. $\frac{a}{3}-\frac{b}{4}+\frac{c}{5}-\frac{d}{2}$.
18. $3 x^{2}-\frac{a x}{2}+b x$.

1xxxii. (Page 170.)

1. $2 a$.
2. $3 x^{2} y^{2}$.
3. $-5 m n$.
4. $-6 a^{4} b$.
5. $7 b^{5} c^{6}$.
6. $-10 a b^{2} c^{4}$.
7. $-12 m^{7} u^{8}$.
8. $11 a^{3} b^{n}$.
lxxxiii. (Page 172.)
9. $a-b$.
10. $x+2 y-z$.
11. $2 a+1$.
12. $a+8 b$.
13. $a+b+c$.
14. $x-y+z$.
15. $3 x^{2}-2 x+1$.
16. $1-a+a^{2}$.
17. $x-y+2 z$.
18. $a^{2}-4 a+2$.
19. $2 m^{2}-3 m+1$.
20. $2 m-3 n-r$.
21. $m+1-\frac{1}{m}$.
lxxxiv. (Page 173.)
22. $2 a-3 x$.
23. $1-2 a$.
24. $5+4 x$
25. $a-b$.
26. $x+1$.
27. $m-2$.
lxxxv. (Page 175.)
28. ± 8.
29. $\pm a b$.
30. ± 100.
31. ± 7.
32. $\pm \sqrt{ }(11)$.
33. $\pm 8 a^{2} c^{3}$.
34. ± 6.
35. ± 129.
36. ± 52.
37. ± 4.
38. $\pm \sqrt{\left(\frac{q-n}{m}\right)}$.

lxxxvi. (Page 179.)
39. $6,-12$.
40. $4,-16$.
3.11, -15.
41. $2,-48$.
42. 3, -131 .
43. $5,-13$.
44. $9,-27$.
45. $14,-30$.
lxxxvii. (Page 180.)
46. $7,-1$.
47. $5,-1$.
48. $21,-1$.
49. $9,-7$.
50. 8, 4.
51. 9,5 .
52. $118,116$.
53. $10 \pm 2 \sqrt{34}$
54. 12,10 .
55. 14,2 .
lxxxviii. (Page 181.)
I. $3,-10$.
56. $12,-1$. $\frac{7}{2},-\frac{25}{2}$.
57. 20-7.
58. $\frac{1}{4},-\frac{5}{4}$.
59. $9,-8$.
60. $45,-82$
61. $8,-7$.
62. 4,15 .
63. 290,1 .
64. $a+b+c$.
$-a+a^{2}$.
$m^{2}-3 m+1$.
$+1-\frac{1}{m}$
65. $5+4 x$
66. $m-2$.
67. ± 7.
68. ± 129.

$\stackrel{2}{-})$

$2,-48$.
$14,-30$
$9,-7$
$10 \pm 2 \sqrt{34}$
$+20-7$
$45,-82$
$290,1$.

1xxxix. (Page 182.)

1. $\frac{7}{3},-\frac{5}{3}$.
2. $-\frac{1}{B},-\frac{3}{b}$.
3. $3, \frac{1}{9}$.
4. $1,-\frac{3}{11}$.
5. $\frac{3}{5},-\frac{5}{7}$.
6. $4,-\frac{4}{5}$.
7. $8, \frac{2}{3}$.
8. $7,-\frac{45}{7}$.
xc. (Page 182.)
9. $3,-\frac{8}{3}$
10. $10,-\frac{49}{5}$.
11. $6,-\frac{13}{2}$.
12. $8,-\frac{19}{2}$.
13. $5,-\frac{16}{5}$.
14. $4, \frac{3}{2}$
15. $8,-\frac{17}{4}$
16. $\frac{7}{2},-\frac{3}{14}$.
xci. (Page 184.)
I. $-a \pm \sqrt{ } 2 . a$.
17. $2 a \pm \sqrt{ } 11 . a$.
18. $\frac{m}{2},-\frac{7 m}{2}$.
+. $3 n,-\frac{n}{2}$.
19. $1,-a$.
20. $b,-a$. 7. $\frac{a^{2}+a b}{a-b}, \frac{a^{2}-a b}{a+b}$
21. $\frac{d}{c},-\frac{b}{a}$.
22. $\frac{c+\sqrt{ }\left(c^{2}+4 a c\right)}{2(c+b)}, \frac{c-\frac{\sqrt{ }\left(c^{2}+4 a c\right)}{2(a+b)} .}{\text {. }}$
23. $\frac{2 a-b}{a c},-\frac{3 a+2 b}{b c}$.
24. $\frac{b^{2}}{a c}, \frac{b^{2}}{a c}$.
25. $-\frac{a c^{2}+b d^{2}}{2 a+3 d \sqrt{ } c^{\prime}}-\frac{a c^{2}+b d^{2}}{2 a-3 d \sqrt{ }{ }^{\circ}}$
xcii. (Page 185.)
26. $8,-1$.
27. $6,-1$.
28. $12,-1$.
29. 14, - 1 .
30. $2,-9$.
31. $6, \frac{9}{4} \quad 7.5,4$.
32. $4,-1$.
33. $8,-2$
34. $3,-\frac{7}{3}$
35. $7, \frac{1}{3}$
36. $12,-1$.
37. 14, -1 .
38. $\frac{3}{2},-\frac{5}{6}$
39. $13,-\frac{13}{3}$.
40. 5, 4 .
41. 3G, 12.
1 $\dot{S} .6,2$
42. $\frac{5}{18},-\frac{5}{3}$
43. $7,-\frac{10}{7}$
44. $7,-\frac{10}{7}$
45. $7,-5$.
46. $3,-\frac{1}{2}$.
47. $\frac{1}{2},-\frac{2}{3}$
48. $\frac{2}{3},-\frac{1}{6}$.
49. $15,-14$.
50. $2,-\frac{1}{3}$
51. $3,-\frac{11}{4}$.
52. $2, \frac{1}{3}$
$30.2-\frac{23}{15}$
53. $3,-\frac{14}{3}$
54. $4,-\frac{5}{3}$.
55. $3, \frac{21}{11}$.
56. 14, -10. 33. $2, \frac{58}{13}$ 36. 5, 2. 37. $-a,-b$. 3S. $-a, b$.
57. $\vec{a}+b, \bar{a}-b$
58. $a^{2},-a^{3}$.
59. $\frac{a}{b},-\frac{2}{b}$.
60. $\frac{a}{b}, \frac{b}{a}$
xciii. (Page 187.)

$$
\text { 1. } \begin{aligned}
x & =30 \text { or } 10 \\
y & =10 \text { or } 30 \\
\text { 4. } x & =22 \text { or }-3 . \\
y & =3 \text { or }-22 .
\end{aligned}
$$

2. $x=9$ or 4
$y=4$ or 9 .
3. $x=50$ or -5
4. $x=25$ or 4 $y=4$ or 25.
5. $\begin{aligned} & x=100 \text { or }-1 . \\ & y=1 \text { or }-100 .\end{aligned}$

Xeiv. (Parro 187.)

1. $x=6$ or -2
$y=2$ or -6 .
2. $x=4$
$y=4$.

$$
\begin{array}{rlr}
\text { 2. } \begin{aligned}
x & =13 \text { or }-3 \\
y & =3 \text { or }-13 .
\end{aligned} & \text { 3. } x=20 \text { or }-6 \\
y & =6 \text { or }-20 . \\
\text { 5. } x=10 \text { or } 2 & \text { 6. } x=40 \text { or } 9 \\
y & =2 \text { or } 10 . & y=9 \text { or } 40 .
\end{array}
$$

xcv. (Tirge 188.)

1. $x=1$ or 3
$y=3$ or 4
2. $\begin{aligned} & x=4 \text { or }-2 \\ & y=2 \text { or }-4 .\end{aligned}$
3. $x=5$ or 6
$y=6$ or 5 .
4. $\begin{aligned} x & =5 \text { or }-3 . \\ y & =3 \text { or }-5,\end{aligned}$
5. $x=10$ or 2
$y=2$ or 10 .
6. $x=7$ or -4
$y=4$ or -7 .
7. $14,-1$. 17. $86,12$. 21. $7,-\frac{10}{7}$

25: $\frac{2}{3},-\frac{1}{6}$. 29. $2, \frac{1}{3}$.
33. $3, \frac{21}{11}$

3S. $-a, b$.
42. $\frac{a}{b}, \frac{b}{a}$

5 or 4
or 25.
00 or -1 .
or -100 .

0 or - 6 or -20 .
xcvi. (Page 189.)

1. $x=5$ or 4
$y=4$ or 5.
2. $x=4$ or 2
$y=2$ or 4 .
3. $x=\frac{1}{3}$ or $\frac{1}{2}$
$y=\frac{1}{2}$ or $\frac{1}{3}$.
4. $x=3$

$$
y=4
$$

5. $x=\frac{1}{3}$
6. $x=\frac{1}{5}$
$y=2$.

Xcvil. (Pagn 191.)

1. $x=4$
$y=3$.
2. $x= \pm 8$
$y= \pm 2$.
3. $x= \pm 2$
$y= \pm 5$.
4. $x= \pm 2$
$y= \pm 3$.
5. $x=10$ or 12 $y=12$ or 10 .
6. $\begin{aligned} x & = \pm 6 \\ y & = \pm 3 .\end{aligned}$
7. $x=5$ or 3
$y=3$ or 5 .

$$
\text { 3. } \begin{aligned}
x & = \pm 10 \\
y & =+11
\end{aligned}
$$

6. $x=5$ or $-\frac{95}{23}$

$$
y=2 \text { or }-\frac{33}{7}
$$

8. $\begin{array}{r}x=6 \\ y=5 .\end{array}$
9. $x= \pm 7$

$$
y= \pm .2
$$

9. $x= \pm 2$
$y= \pm 1$.
10. $x=3$ or $\frac{11}{6}$
$y=2$ or $\frac{17}{16}$.
11. $x= \pm 9$ or ± 12
$y= \pm 12$ or ± 9.
xcviii. (Page 193.)
12. 72.
1. 224.
1. 18.
1. $50,15$.
2. $85,76$.
3. 29.13.
4. 30
5. 107.
1. 75.
1. 20.6 .
II. 18, • 12. $17,15.13 .1 \sim 4$.
2. $1296 . \quad 15.56 \frac{1}{4}$.
3. 2601.
1. 6, 4.

IS. $12,5$.
19. 12, 7. $\frac{\text {-0. } 1,2,3 .}{}$
21. 7, 8. 22. $15,16 . \quad 23.10,11,12$. 24. $12 . \quad 25.16$. 26. £2, 5s. 27. $12 . \quad$ 28.6. 29. 75. $\quad 30.5$ and 7 hours. 31. 101 yds. and 100 Jds 32. 63. 33.63 ft ., 45 ft . 34.16 yds., 2 yds. 35. 37.
36. 100 .
37. 1975.
xcix. (Paģ 199.)

1. $x=3$
$y=2$.
2. $x=5$
$y=3$.
3. $x=7,2$
$y=1,4$.
4. $\because=3,8,13 \ldots$
$y=7,21,35 \ldots$
5. $x=90,71,52 \ldots$ down to 14 $y=0,13,26 \ldots \ldots$ up to 52 .
6. $x=91,76,61 \ldots$ down to 1 . $y=2,13,24$ up to 68.
7. $x=0,7,14,21,28$
$y=44,33,22,11,0$.
8. $x=20,39 \ldots$
$y=3,7 \ldots$
9. $x=40,49 \ldots$
$y=13,33$.
II. $\begin{aligned} x & =2 \\ y & =0 .\end{aligned}$
10. $x=92,83 \ldots .2$
$y=53,50 \ldots$ down to 2 .
$y=1,8 \ldots 71$.
11. $\frac{4}{7}$ and $\frac{3}{9} \quad$ 14. $\frac{8}{11}$ and $\frac{2}{13} \quad$ 15. 3 ways, viz. $12,7,2 ; 2,6,10$.
12. 7.
1. $12,57,102 \ldots$
2. 3.

!9. 2.
21. 19 oxen, 1 sheep ani 80 hens. There is but one other solution, that is, in the case where he bonght no oxen. and no hens, and 100 sheep.
22. A gives $B 11$ sixpences, and B gives $A 2$ fourpenny pieccs. 23. 2, 106, 27.
25. A gives 6 sovercigns and receives 28 dollars.
26. 22,3 ; 16,9 ; 10,15 ; 4, 21.
27. 5.
28. 56, 44.
29. 82,18 ; 47, 53 ; 12, 88.
30. 301.
c. (Page 205.)
(1) I. $x^{\frac{6}{2}}-x^{\frac{2}{3}}+x^{\frac{7}{2}}$.
3. $a^{\frac{4}{3}}+a^{\frac{5}{3}}+a^{\frac{5}{2}}$.
(2)

1. $x^{-1}+a x^{-2}+b^{-} x^{-3}+3 x^{-4}$.
2. $x^{\frac{2}{3}} y+x^{2} y^{\frac{2}{5}}+x^{\frac{2}{7}} y^{\frac{8}{7}}$.
3. $x^{\frac{1}{3}} y z^{\frac{2}{3}}+a^{\frac{1}{2}} y^{\frac{3}{4}} z+a^{\frac{1}{5}} y z \frac{2}{2}$.
4. $x^{2} y^{-2}+3 x y^{-8}+4 y^{-4}$.
5. $\frac{x^{3} y^{-2} z^{-2}}{4}+\frac{5 x^{2} y^{-1} z^{-3}}{7}+x y^{-1} z^{-1}$.
6. $\frac{x y z^{-2}}{3}+\frac{x^{-2} y^{-2}}{5}+x^{-8} y^{-4} z$
(3)
7. $\frac{1}{0}+\frac{1}{a^{2} x^{-1}}+\frac{1}{b^{2} x^{-3}}+\frac{1}{3 x^{-}}$
8. $\frac{1}{x^{2} y^{-2}}+\frac{1}{3 x y^{-3}}+\frac{1}{6 y^{-2}}$.
9. $\frac{4}{w^{-a} y^{-2} c^{3}}+\frac{3}{a^{-1} b^{\frac{1}{2}} c^{\frac{1}{2}}}+\frac{1}{x^{-\frac{1}{3}} y}$.
10. $\frac{1}{3 x^{-\frac{1}{4}} y^{-\frac{1}{4}} z}+\frac{1}{a^{-1} b^{-\frac{2}{3}} c^{5}}+\frac{1}{u^{-2} b^{-1} c^{5}}$.
(4)
11. $2 \cdot \sqrt[3]{x^{2}}+3 \sqrt[3]{\left(x y^{2}\right)}+\frac{1}{x y^{2}}$
12. $\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y^{2}}}+\frac{1}{z^{3}}$.
13. $\frac{\sqrt[8]{y^{2}}}{\sqrt[3]{x}}+\frac{3 \sqrt[4]{y^{3}}}{x^{2}}+\frac{\sqrt[8]{y}}{3 \sqrt[3]{x^{2}}}$
14. $\frac{1}{x^{2} \sqrt[3]{y}}+\frac{y}{\sqrt[8]{x}}+\frac{\sqrt[8]{y} y}{\sqrt[3]{x^{2}}}$
ci. (Parge 206.)
15. $x^{4 p}+x^{2 p} y^{2 p}+y^{4 p}$.
16. $a^{4 m}-81 y^{4 n}$.
17. $x^{84}+4 a^{2} x^{4 d}+16 c^{4}$.
18. $a^{2 m}+2 a^{\prime \prime \prime} c^{c}-b^{2 n} \div c^{c}$.
19. $2 a^{2 m}+2 a^{m} b^{n}-4 u^{m} c^{n}-a^{m} b-b^{n+1}+2 b c^{n}+a^{m} c^{2}+b^{n} c^{2}-2 c^{n+2}$.
20. $x^{m n}+x^{m n-n} \cdot y^{m n-n}-x^{n} y^{m}-y^{m n-n+m}$.
21. $x^{4 n}+x^{2 n} y^{2 n}+y^{4 n}$.
22. $a^{2 p^{2}}-a^{p^{3}-p} b^{p^{2}}+a^{p^{2}-p} c^{p}+a^{p^{2}+p} \cdot b^{1-p^{2}}-b+b^{1-p^{2}} c^{p}+a^{p^{2}+p} c^{1-p}$ $-b^{p^{2}} c^{1-p}+c$.
23. $x^{4 p}+2 x^{3 p}+3 x^{2 p}+2 x^{p}+1$.
24. $x^{4 p}-2 x^{3 p}+3 x^{2 p}-2 x^{p}+1$.
cii. (Parc 207.)
I. $x^{2 m}+x^{2 m} y^{m}+x^{m} y^{2 m}+y^{2 m}$.
25. $x^{4 n}-x^{9 n} y^{n}+x^{2 n} y_{0}^{2 n}-x^{n} y^{3 n}+y^{4 n}$.
26. $x^{4 r}+x^{4 r} y^{4}+x^{3 r} y^{2 r}+x^{2 r} y^{9 r}+x^{r} y^{4 r}+y^{5 \pi}$.
27. $a^{12 p}-a^{9 p} b^{2 q}+a^{6 p} l^{4 q}-a^{8 p} l^{6 q}+b^{8 q}$.
28. $x^{4 d}+3 x^{3 d}+9 x^{0 d}+27 x^{d}+81$.
29. $a^{2 m}-2 a^{m} x^{n}+4 x^{2 n}$.
30. $2-x^{p}+2 x^{2}$.
31. $4 b^{m} c^{m}-5 b^{2 m}$.
32. $a^{m m}+3 a^{2 m}+3 a^{m}+1$.
33. $a^{m}+b^{n}+c^{n}$.

ciii. (Pago 208.)

1. $x-3 x^{\frac{2}{3}}+3 x^{\frac{1}{3}}-1$.
2. $y-1$.
3. $a^{2}-x^{2}$.
4. $a+b+c-3 u^{\frac{1}{3}} b^{\frac{1}{3}} c^{\frac{1}{3}}$.
5. $10 x-11 x^{\frac{8}{1} y^{\frac{1}{4}}+5 x^{\frac{1}{2}} y^{\frac{3}{4}}-21 y}$
6. $m-n$.
7. $m^{\frac{1}{3}}+4 d^{\frac{1}{2}} m^{\frac{2}{3}}+16 d$.
8. $16 a+8 a^{\frac{6}{2}} b^{\frac{4}{4}}+10 a^{\frac{5}{6}} b^{\frac{7}{7}}+18 a^{\frac{4}{2}} b^{\frac{7}{3}}-24 a^{\frac{3}{4}} b^{4}-12 a^{\frac{2}{2}} b^{\frac{5}{4}}-15 a^{\frac{4}{4}}$
$-27 b$.
9. $x^{\frac{9}{3}}+2 a^{\frac{1}{3}} x^{\frac{1}{3}}+a^{\frac{2}{3}}$.
10. $x^{\frac{2}{3}}-2 a^{\frac{1}{3}} x^{\frac{1}{3}}+a^{\frac{2}{3}}$.
11. $x^{\frac{4}{3}}+2 x^{\frac{2}{2}} y^{\frac{2}{5}}+y^{\frac{4}{5}}$.
12. $a^{2}+2 a b^{\frac{1}{4}}+b^{\frac{1}{2}}$.
13. $x-4^{x^{\frac{3}{4}}}+10 x^{\frac{1}{2}}-12 x^{\frac{1}{4}}+9$.
14. $4 x^{\frac{4}{3}}+12 x^{\frac{3}{4}}+25 x^{x^{2}}+24 x^{\frac{3}{4}}+16$.
15. $x^{\frac{2}{3}}-2 x^{\frac{1}{3}} y^{\frac{1}{3}}+2 x^{\frac{1}{3} z^{\frac{1}{3}}}+y^{2}-2 y^{\frac{1}{3}} z^{\frac{1}{3}}+z^{\frac{2}{3}}$.
16. $x^{\frac{1}{2}}+4 x^{\frac{1}{4}} y^{\frac{1}{4}}-2 x^{\frac{1}{4}} z^{\frac{1}{4}}+4 y^{\frac{1}{2}}-4 y^{\frac{1}{4}} z^{\frac{1}{4}}+z^{\frac{1}{2}}$.

civ. (Page 209.)

1. $x^{\frac{1}{2}}+y^{\frac{1}{2}}$.
2. $a^{\frac{1}{2}}-b^{\frac{1}{2}}$.
3. $x^{\frac{2}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}}$.
4. $a^{\frac{2}{3}}-a^{\frac{1}{3}} b^{\frac{1}{3}}+b^{\frac{3}{3}}$.
5. $x^{\frac{4}{3}}-x^{\frac{3}{3}} y^{\frac{2}{3}}+x^{\frac{2}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}} y^{\frac{3}{5}}+y^{\frac{4}{3}}$.
6. $m^{\frac{6}{6}}+m^{\frac{2}{3}} n^{\frac{1}{6}}+m^{\frac{1}{2}} n^{\frac{1}{3}}+m^{\frac{1}{3}} n^{\frac{1}{2}}+m^{\frac{1}{n}} n^{\frac{4}{3}}+n^{\frac{6}{6}}$ 。
7. $x^{\frac{3}{4}}+3 x^{\frac{1}{2}} y^{\frac{2}{4}}+9 x^{\prime \frac{1}{4}} y^{\frac{1}{2}}+27 y^{\frac{3}{4}}$.
8. $27 a^{\frac{3}{4}}+18 a^{\frac{1}{2}} b^{\frac{1}{4}}+12 a^{\frac{1}{4}} b^{\frac{1}{2}}+8 b^{\frac{3}{4}}$.
9. $a^{\frac{1}{2}}-x^{\frac{1}{2}}$.
10. $m^{\frac{4}{3}}+3 m^{\frac{3}{3}}+9 m^{\frac{2}{3}}+27 m^{\frac{3}{3}}+81$.
11. $x^{\frac{1}{2}}+10$.
12. $x^{\frac{1}{3}}+4$.
13. $-b+2 b^{2}-b^{\frac{3}{3}}$.
14. $x^{\frac{2}{3}}-x^{\frac{1}{3}} y^{\frac{1}{3}}-x^{\frac{1}{3} z^{\frac{1}{3}}}+y^{\frac{2}{3}}+z^{\frac{2}{3}}-y^{\frac{1}{3}} \tilde{3}^{\frac{1}{3}}$.
15. $x^{\frac{2}{3}}-9 x^{\frac{1}{3}}-10$.
16. $m^{\frac{1}{2}}+m^{\frac{1}{4} n^{\frac{1}{4}}}+n^{\frac{1}{3}}$.
17. $p^{\frac{1}{2}}-2 p^{\frac{1}{4}}+1$.
18. $x^{\frac{1}{2}}-y^{\frac{1}{2}}-z^{\frac{1}{2}}$.
19. $x^{\frac{3}{3}}+y^{\frac{1}{3}}$.
cv. (Page 210.)
20. $a^{-2}-b^{-2}$.
21. $x^{-6}-b^{-4}$.
22. $x^{4}-x^{-4}$.
23. $x^{4}+1+x^{-4}$. 5. $a^{-4}-b^{-4}$. 6. $a^{-2}+2 a^{-1} c^{-1}-b^{-2}+c^{-3}$.
24. $1+a^{2} b^{-2}+a^{4} b^{-4}$. 8. $a^{4} b^{-4}-a^{-4} b^{4}-4 a^{-2} b^{2}-4$.
$t^{\frac{5}{1}}-15 a^{\frac{1}{i}}$
25. $4 x^{-6}-x^{-4}+3 x^{-3}+2 x^{-2}+x^{-1}+1$.
26. $5 x^{-4}+\frac{7 x^{-3}}{2} \cdot-\frac{107 x^{-2}}{12}+\frac{5 x^{-1}}{6}+\frac{7}{6}$.

cvi. (Page 211.)

I. $x-x^{-1}$.
2. $a+b^{-1}$.
3. $m^{2}-m n^{-1}+n^{-2}$.
4. $c^{4}+c^{3} d^{-1}+c^{2} d^{-2}+c d^{-3}+d^{-4}$.
5. $x y^{-1}+x^{-1} y$.
6. $a^{-2}+a^{-1} b^{-1}+b^{-2}$.
7. $x^{2} y^{-2}-2+x^{-2} y^{2}$.
8. $\frac{3}{2} x^{-3}-5 x^{-2}+\frac{1}{4} x^{-1}+9$.
9. $a^{2} b^{-2}-1+a^{-2} b^{2}$.
10. $a^{-2}-a^{-1} b^{-1}-a^{-1} c^{-1}+b^{-2}-b^{-1} c^{-1}+c^{-2}$.
cvil. (Page 211.)

1. $x^{\frac{2}{3}}-2 x^{\frac{1}{2}} y^{\frac{1}{2}}+2 y$.
2. $x^{\frac{30 b+18 a}{8 a-2}}$.
3. $7 x^{-4}+\frac{22}{3} x^{-3}-\frac{421}{42} x^{-2}-\frac{10}{7} x^{-1}+\frac{1}{7}$.
4. $x^{n}-y^{n}$.
5. $a^{2}+2 a^{\frac{3}{2}} b^{\frac{3}{5}}-2 a^{\frac{1}{2}} b^{\frac{2}{5}}-b^{12}$.
6. $a^{\frac{2}{3}}+a^{\frac{7}{3}} b^{\frac{1}{3}}+b^{\frac{2}{3}}$.
7. $m=n^{\frac{1}{n-1}}$.
8. $16 a^{2 n}$.
9. $x^{n 9}$.
10. $2 a^{2 m}+2 a^{m} b^{n}-4 u^{m} c^{n}-3 a^{m} b-3 b^{n+1}+6 b c^{n}$.
11. $x^{2 a+2 b+2 a}$.
12. $a^{\text {amaxp }}$.
13. a
14. $x^{\frac{4}{3}}+x^{\frac{2}{3}}+1$.
15. $a^{m+n}+2 a^{m+n-3} . b c x^{3}-a^{m+n-2} b^{2} x^{2}-a^{m+n-1} c^{2} x^{4}$.
16. $x^{p(q-1)}-y^{q(p-1)}$.
17. a^{m-1}.
18. $x^{4 p}-y^{4 p}$.
19. $5, \frac{1}{144}$
20. $x^{m n}-x^{n} y^{(n-1) m}-x^{(m-1) m} y^{m}+y^{m n}$.
21. $x+3 x^{\frac{3}{4}}-2 x^{\frac{1}{2}}-7 x^{\frac{1}{4}}+2 x^{-\frac{1}{4}}$.
cviii. (Page 215.)
22. $\sqrt[18]{ } /(1024), \sqrt[15]{15} 8$.
23. $\sqrt[6]{x^{3}}, \sqrt[1]{y^{2}}$.
24. $\sqrt[8]{\sqrt{\prime}(5832), ~} \dot{\operatorname{V}}(2500)$.
25. $\sqrt[m n]{2^{n}}, \sqrt[m n]{2^{m}}$. 5. $\sqrt[m n j]{a^{n}}, \sqrt[m n]{\sqrt{m}} b^{m}$.
26. $\sqrt[f]{ }\left(a^{2}+2 a b+b^{2}\right), \sqrt[6]{ }\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)$.
cix. (Page 217.)
27. $2 \sqrt{ } 6$.
28. $5 \sqrt{2}$.
29. $2 a \sqrt{ } a$.
30. $5 a^{2} d \sqrt{ }(5 d)$.
31. $4 z \sqrt{ }(2 y z)$.
32. $10 \sqrt{ }(10 a)$.
33. $12 c \sqrt{ } 5$.
34. $42 \sqrt{ }(11 x)$.
35. $6 x \sqrt{\frac{5 x}{3}}$.
36. $a^{2} \sqrt{a}$
II. $(a+x) \cdot \sqrt{ } a$.
37. $(x-y) \sqrt{ } x$.
38. $5(a-b) \cdot \sqrt{2}^{\prime}$.
39. $\left(3 c^{2}-y\right) \cdot \sqrt{ }(7 y)$.
40. $2 x y^{2} \cdot \sqrt[8]{(20 x y) \text {. }}$
41. $3 a^{2} \sqrt[3]{(}\left(2 b^{2}\right)$.
42. $\left.3 m^{3} n^{3} \sqrt[3]{(} 4 n\right)$.
43. $7 a^{5} b^{5} \sqrt[3]{(4 b)}$.
44. $(x+y) \cdot \sqrt[3]{x}$.
45. $(a-b) \cdot \sqrt[8]{a}$.

cx. (Page 217.)

I. $\sqrt{ }(48)$.
2. $\sqrt{ }(63)$.
3. $\sqrt[8]{ }(1125)$.
4. $\sqrt{\prime}^{(96)}$.
5. $\sqrt[8]{\frac{81}{7}}$
6. $\sqrt{ }(9 a)$.
7. $\sqrt{ }\left(48 a^{2} x\right)$.
8. $\sqrt{ }\left(3 a^{3} x\right)$.
9. $\sqrt{ }\left(m^{2}-n^{2}\right)$.
IO $\left(\frac{a+b}{a-b}\right)^{\frac{1}{2}}$.
11. $\left(\frac{x}{x+y}\right)^{\frac{1}{2}}$.
I. $29 \sqrt{ } 3$.
2. $30 \sqrt{ } 10+164 \sqrt{ } 2$.
3. $\left(a^{2}+b^{2}+c^{2}\right) \sqrt{x}^{\prime} x$.
4. $13 \sqrt[8]{2}$.
5. $33 \sqrt[3]{2}$.
6. $\sqrt{ } 6$.
7. $5 \sqrt{ } / 3$.
8. $48 \sqrt{ } 2$.
9. $4 \sqrt[3]{2}$.
10. 0.
II. $4 \sqrt{ } 3$.
2. $2 \sqrt{ }(70)$.
13. 100.
14. $3 a b$.
15. $2 a b \sqrt[8]{(12 b)}$.
6. 2.
17. $\frac{3}{5}$.
18. $\sqrt[8]{\frac{a}{b}}$.
19. $\sqrt{\frac{a}{b}}$:
o. $\sqrt{\frac{x}{1+x y}}$.
cxiii. (Page 220.)

1. $\sqrt{ }(x y)$ 2. $\sqrt{ }\left(x y-y^{3}\right)$. \quad 3. $x+y$. 4. $\sqrt{ }\left(x^{2}-y^{2}\right)$.
2. $18 x$.
3. $56(x+1)$. 7. $90 \sqrt{ }\left(x^{2}-x\right)$.
4. $2 x \sqrt{ } 3$.
5. $-x$.
6. $1-x$.
II. $-12 x$.
7. $6 a$.
8. $-\sqrt{ }\left(x^{2}-7 x\right)$. $146 \sqrt{ }\left(x^{2}+7 x\right)$.
9. $8\left(a^{2}-1\right)$.
10. $-6 a^{2}+12 a-18$.
cxiv. (Page 221.)
11. $x+9 \sqrt{ } x+14$.
12. $x-2 \sqrt{ } x-15$.
13. a.
14. $a-53$.
15. $3 x+5 \sqrt{ } x-28$.
16. $6 x-54$.
17. 6.
1. $\sqrt{ }\left(9 x^{2}+3 x\right)+\sqrt{ }\left(6 x^{2}-3 x\right)-\sqrt{ }\left(6 x^{2}-x-1\right)-2 x+i$.
2. $\sqrt{ }(a x)+\sqrt{\prime}^{\prime}\left(u x-x^{2}\right)-\sqrt{ }\left(a^{2}-a x\right)-a+x$.

10, $3+x+\sqrt{ }\left(3 x+x^{2}\right)$.
12. $2 x+2 \sqrt{ }(a x)$.
14. $2 x+11+2 \sqrt{ }\left(x^{2}+11 x+24\right)$.
16. $2 x-6+2 \sqrt{ }\left(x^{2}-6 x\right)$

I 8. $2 x-2 \sqrt{ }\left(x^{2}-y^{2}\right)$.
2०. $x^{2}+1+2 \sqrt{ }\left(x^{3}-x\right)$.
II. $x-y+i+2 \sqrt{ } x z$.
13. $432+42 \sqrt{ }\left(x^{2}-9\right)+x^{2}$.
15. $2 x-4+2 \sqrt{ }\left(x^{2}-4 x\right)$.
17. $4 x+9-12 \sqrt{ } x$.
19. $x^{2}+2 x-1-2 \sqrt{ }\left(x^{3}-x\right)$.
I.
6.
9.
11.
14.
16.
18.
21.
9. $\{\sqrt{ }(11) \cdot n+4\}\{\sqrt{ }(11) \cdot n-4\}$.
10. $(p+2 \sqrt{ } r)(p-2 \sqrt{ } r)$.
II. $(\sqrt{ } p+\sqrt{ } 3 . q)(\sqrt{ } p-\sqrt{ } 3 . q)$.
12. $\left\{a^{m}+b^{\frac{n}{2}}\right\}\left\{a^{m}-b^{\frac{n}{2}}\right\}$.
13. $\frac{a+\sqrt{ } b}{a^{2}-b}$.
14. $\frac{a+\sqrt{ }(a b)}{a-b}$.
15. $24+17 \sqrt{ } 2$.
16. $2+\sqrt{2}$.
17. $3+2 \sqrt{ } \sqrt{ }$.
18. $3-2 \sqrt{2}$.
19. $\frac{a+x+2 \sqrt{ }(a x)}{a-x}$.
20. $\frac{1+x+2 \sqrt{ } x}{1-x}$.
21. $\frac{a+\sqrt{ }\left(a^{2}-x^{2}\right)}{x}$.
22. $m^{2}-\sqrt{ }\left(m^{4}-1\right)$.
23. $2 a^{2}-1+2 a \sqrt{ }\left(a^{2}-1\right)$. cxvi. (Page 224.)
I. 19 .
2. 11.
3. $8-26 \sqrt{ }(-1)$.
4. $5-4 \boldsymbol{N}^{\prime} 3$.
5. $2 b-2 \sqrt{ }(a b)-12 a$.
6. $a^{2}+a$.
7. $b^{3}-a^{3}$.
8. $\alpha^{2}+\beta^{2}$.
9. e^{2}.
10. $e^{2 p V(-1)}-e^{-2 p V(-1)}$.

cxvii. (Page 294.)

1. $\frac{2+y}{3 \sqrt{(x y)}}$.
2. $\begin{gathered}c+y \\ 2 \cdot(x y)\end{gathered}$
3. $x^{2}-\wedge^{\prime 2} \cdot a x+t^{2}$
4. $m^{2}+\sqrt{2} \cdot m n+n^{3}$ 。
5. $2 x \sqrt{ } x$.
6. $\frac{2 a a^{\prime \prime}-2^{2 \prime} a^{\prime \prime 1}}{a-b}$.
7. $\frac{a^{2} c}{b}+c d-2 a c \sqrt{\frac{d}{b}}$
8. $a^{2} \sqrt{2}^{2}-2+\frac{1}{a^{2} \sqrt{2} 2}$.
9. $\frac{2: c^{2}}{a^{-\frac{1}{2}}}$.
10. $\sqrt{ }(1-x)$.
11. $\frac{x-1}{1 / 2}$.
:4. $\frac{x}{2}-2 \sqrt{\left(\frac{x^{2}}{16}-9\right) \text {. }}$
12. $2 x-2 \sqrt{\left(x^{2}-x^{2}-a^{2}\right) .}$
13. $a^{2} b^{6} c$.
14. $-1+5 a^{2}\left(2-a^{2}\right)+a\left(10 a^{2}-a^{4}-5\right) \checkmark^{\prime}(-1)$
15. $8+7 \sqrt[3]{3}$.
16. $4 \sqrt{ }(3 c x)$.
17. $\left.x \sqrt[3]{3}(3]^{3}\right)$.
18. $\frac{1}{n} \sqrt[8]{\left(-4 n^{2}\right) \text {. }}$
19. $(9 n-10) \cdot \sqrt{ } 7$.
-3. 0.
cxviii. (Pago 22.8.)
20. $\sqrt{7}+\sqrt{3}$. 2. $\sqrt{ } 11+\sqrt{5} . \quad 3 \cdot \sqrt{7}-\sqrt{2}$. 4. $7-3 \sqrt{5}$. $\sqrt{ } 10-\sqrt{ } 3 . \quad 6.2 \sqrt{ } 5-3 \sqrt{2} . \quad 7.2 \sqrt{ } 3-\sqrt{2}$. $8.3 \sqrt{11}-8$ $.3 \sqrt{7}-2 \sqrt{ } 3.10 .3 \sqrt{ } 7-2 \sqrt{ } 0.11 . \frac{1}{2}(\sqrt{ } 10-2) .12 .3 \sqrt{ } 5-2 \sqrt{3}$

cxix. (Page 229.)

1. 49.
1. 81 . 3.25.
2. 8.
1. 27.
1. $23 ?$
2. 27.
1. 56 . 9. 79 .
2. 153. 11. 6.
1. 36 .
2. 12.
1. $\frac{(a-b)^{2}}{c^{2}}$.
2. 5.
1. 6.
1. $3{ }^{-}$
.8. 10.
2. $\frac{\bar{b}-a^{2}}{3 a}$.
3. $\frac{n-m n^{2}}{1-2 m}$ [8.a.]
cxx. (Page 231.)
4. 9.
1. 25.
1. 49.
1.
2. $1 \frac{4}{9}$
3. 8,0
4. 0, -8.
5. $\left(\frac{a+1}{2}\right)^{2}$.
o. $\left(\frac{m+4}{4}\right)^{2}$
6. B,
cxxi. (Pigg 231.)
7. 25.
1. 25.
1. 9.
1. 64.
1. $\frac{36}{5}$.
2. $\frac{12 a}{5}$.
3. a.
4. $\frac{1}{4}$ or 0 .
5. 64 .
6. 100
cxxii. (Page 232.)
I. 16,1 .
7. 81,25 .
8. $3,2_{\overline{0}}^{5}$.
9. $10,-13$.
10. $5, \frac{5}{9}$.
11. $-4,-32$.
12. $9,-3_{\tilde{\tilde{b}}}^{3}$
13. $98, \frac{109}{5} \frac{9}{9}$
14. $49 . \quad$ т. $\div \geq 9$.
15. $\widehat{4},-21$.
16. 1 or $\frac{1}{21}$.
$\overline{3}$ 14. 5 or 221 . 15.5 or $\frac{145}{121} \quad 16.5$ or $0.17 . \frac{25}{315} \quad 13.25$.
17. $\pm 9 \sqrt{2}$.
18. $\pm \sqrt{ } 65$ or $\pm \sqrt{ } 5$.
19. $2 a$.
20. $-2 a$.
21. $\frac{1}{2}$ or $-4 \frac{1}{6}$.
22. $\frac{1}{4}$.
23. $\frac{1}{12}$
24. $\frac{1276}{81}$.
25. $\frac{36}{5}$.
26. ± 5 or $\pm 3 \sqrt{2}$.
27. ± 14.
 cxxiii. (Page 235.)
28. $2,5$.
29. $3,-7$.
30. $-9,-2$.
31. $5 a, 6 b$
32. $\cdot \frac{7}{2}, \frac{5}{3}$
33. $\frac{227}{19},-\frac{83}{14}$.
34. $\frac{4 m}{5}, \frac{11 n}{8}$
35. $\frac{2 a-b}{a c}, \frac{b-3 a}{b c}$.
36. $-2 a,-3 a$ and $3 a, 4 a$.
37. $\pm 2, a_{0}$
38. $\frac{d}{c}, \frac{6}{c}$.
ra. 0,5 .
39. ${ }^{5}$
cxxv. (Page 239.)
40. $\frac{36}{5}$
41. 100
42. $10,-13$.
$98, \frac{199^{-3}}{5} \frac{9}{9}$
43. $x^{2}-11 x+30=0$.
44. $x^{2}+x-20=0$.
45. $x^{2}+9 x+14=1$
46. $6 x^{2}-7 x+2=0$. 5. $9 x^{2}-58 x-35=0$.
47. $x^{2}-3=$ \&
48. $x^{3}-2 m x+m^{2}-n^{2}=0$.
49. $x^{2}-\frac{a+\beta}{u \beta} x+\frac{1}{a \beta}=0$.
50. $x^{2}+\frac{\alpha^{2}-\beta^{2}}{u \beta} x-1=0$.

cxxvi. (Page 240.)

1. $(x-2)(x-3)(x-6)$.
2. $(x-1)(x-2)(x-4)$.
3. $(x-10)(x+1)^{(x+4)}$. $4 \cdot f(x+1)\left(x+\frac{1-\sqrt{5}}{4}\right)\left(x+\frac{1+\sqrt[n]{2}}{4}\right.$!
4. $(x+2)(x+1)(6 x-7)$.
5. $(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right)$.
6. $(a-b-c)\left(a^{2}+b^{2}+c^{2}+a b+a c-b c\right)$.
7. $(x-1)(x+3)(3 x-7)$.
8. $(x-1)(x-4)(2 x+5)$.
9. $(x+1)(3 x+7)(5 x-3)$.

cxxvii. (Page 242.)

1. $\sqrt{ } 13$ or $\sqrt{ }-1$.
2. $\sqrt[3]{-2}$ or $\sqrt[8]{-12}$

41 or $n_{1}-4$.
3. $\sqrt[2 n]{ } \sqrt{\frac{5}{2}}$ or $\sqrt[2 n]{-\frac{5}{6}}$
4. 25 or $\frac{1}{4}$.
5. ± 14.
6. 0 or $\frac{83}{16}$.
7. $5 a, 6 b$
$\frac{4 m}{5}, \frac{11 n}{6}$
$25 \cdot \frac{1}{12}$
8. $a+2$, or $-\frac{a+6}{3}$, or $\frac{a \pm 2 \sqrt{ }\left(a a^{2}-2 a\right)}{3}$.
9. 0, or a, or $\frac{a \pm \sqrt{ }\left(a^{3}-1 G a+16\right)}{2}$.
cxxviii. (Pagg 245.)
10. 6:7,7:9,2•3.
11. The second is the greater.
12. The second is the greater.
13. $\frac{a d-b c}{c-d .} \quad$ 5. $10: 9$ or $9: 10$.
cxxix. (Page 246.)
'I. 2:3.
14. $b: a$.
15. $b+d: a-c$.
16. $\pm \sqrt{ } 6-1: 1$.
17. $13: 1$, or, $-1: 1$.
18. $\pm \sqrt{ }\left(m^{2}+4 n^{2}\right)-m: 2$.
19. 6, 8.
20. 12,14 .
21. $35,65$.
22. 13,11 .
23. 4:1.
24. $1: 5$.

cxxx. (Pige 247.)

1. $\frac{8}{15}$
2. $\frac{8}{9}:$
3. $\frac{x-y}{x+y}$
4. $\frac{a-b+c}{a-b-c}$
5. $\frac{m^{2}-m n+n^{2}}{m^{2}+m n+n^{2}}$
6. $\frac{(x+2) y}{(y-4) x}$

cxxxii. (Page 255.)

6. $x=4$ or 0 .
7. 440 yds and 352 yds . per minute.
II. $x=30, y=20$.
8. $\frac{b^{2}}{d}$,
9. $\frac{9}{41}$.
10. $120,160,200$ yards. 20. 1:7.
11. 50, 75 and 80 jards.
12. $3 \frac{1}{3}$ miles per hour.

22. £ 80.
 23. fîी.

21. 160 quarters, $£ 2$.
$24 .{ }_{2} 20$.
22. 90 : 70.
23. 45 miles and 30 miles.
I. 50
I.
24. 1
cxxxiii. (Page 262.)
$+16^{4}$.
25. 5.
1. 12.
1. $3 \frac{3}{14} .$.
2. $\frac{2}{5}$.
3. $A \propto C^{3}$.
4. 5.

II. $A=\frac{2}{3} B$.
12. $64 x^{2}=9 y^{3}$.
13. $x^{2}=\frac{108}{y^{3}} \quad$ 14. $4 x^{3}=27 y^{2} . \quad$ 18. $y=3+2 x+x^{2} . \quad$ 19. 18 fl.
cxxxiv. (Tage 206.)
the greater.
$\pm \sqrt{6-1: 1}$.
2. $7.6,8$,

1. 12. $1: 5$.
1. $\frac{a-b+c}{a-b-c}$
per minute. 15. $\frac{9}{41}$. , 200 yards.
2.
3. 260. s and 30 miles.
1. 200 .
2. $100_{4}^{3}{ }^{\prime}$
3. $-32 \frac{1}{2}$.
I. 50.
4. 40.
1. 117.
1. 0.

-

9. $x^{2}+y^{2}-2(n-2) x y$.
10. $\frac{3 a n-2 b n-2 a+b}{a+b}$.
cxxxv. (Page 268.)
11. 5050 .
12. 2550 .
13. 820.
1. 30.
1. 24.
1. $-31 \frac{1}{6}$.
2. $\frac{n \cdot(n+1)}{2}$.
3. $\frac{3 n^{2}-n}{8}$.
4. $\frac{7 n^{2}-5 n}{2}$.
5. $\frac{n-1}{2}$.
exxxvi. (Page 269.)
6. -6.
7. $-\frac{\pi}{25}$:
8. $\frac{1}{8}$.
9. $-\frac{7}{8}$
10. -2.
11. $-1 \frac{2}{3}$
cxxxvii. (Page 269.)
i. (1) $-4 f$.
(2) $3 b-2$
(3) $\frac{2}{5}$.
(4) $4 \cdot 4$
12. 155 .
13. 112.
1. 888.
1. 100 ,
2. $6433 \frac{1}{8}$
3. £185. 4 s .
4. (1) $355,7 i 75$.
(2) $-156 a^{3} ;-3116 a^{3}$.
(3) $161+81 x, 3321+1681 x$
(4) $119 \frac{1}{2}, 2357 \frac{1}{2}$.
(5) $8 \frac{1}{4}, 174 \frac{1}{4}$.
5. (I) 120,63252 .
(2) 25,2250 .
(3) $45,-1570 \cdot 5 x$
(4) $99,-1163 \frac{1}{4}$.
(5) $71,4809(1-m)$.
(6) $65,65 x+810$).
cxxxviii. (Pago 271.)
I. $6,9,12,15$.
6. $1 \frac{1}{3}, \frac{2}{3}, 0,-\frac{2}{3}, 1 \frac{1}{3}$.
7. $2 \frac{5}{12}, 1 \frac{5}{6}, 1 \frac{1}{4}$.
$4 \cdot \frac{7}{15}, \frac{13}{30}, \frac{2}{5}, \frac{11}{30}$
cxxxix. (Page 272.)
8. $\frac{3 m+n}{4}, \frac{m+n}{2}, \frac{m+3 n}{4}$.
9. $\frac{5 m+3}{5}, \frac{5 m+1}{5}, \frac{5 m-1}{5}, \frac{5 m-3}{5}$.
10. $\frac{: n^{2}+1}{5}, \frac{5 n^{2}+2}{5}, \frac{5 n^{2}+3}{5}, \frac{5 n^{2}+4}{5}$.
\& $\frac{2 x^{2}+y^{2}}{2}, x^{2}, \frac{2 x^{2}-y^{2}}{2}$.
cxl. (Page 275.)
11. 78732.
1. $32,680$.
2. $\frac{7}{20}$
3. 64.
1. 13129
2. 10384
3. $-\frac{1}{96}$
4. 65
5. $\frac{a}{x^{8}}$
6. 7
I. 2
7. 3
.I.

15

1. 9
$4 \frac{3}{4}$
I. (
(9) 1
(12)
2. 4

cxli. (Page 276.)

$-3116 a^{3}$ $357 \frac{1}{2}$

1. 65534.
1. 36 .
$3 \frac{a\left(\alpha^{26}-1\right)}{3 i^{2} \cdots 1}$.
2. $\frac{a\left(x^{3}-1\right)}{x^{8}(x-1)}$
3. $\frac{(a-x)\left\{1-(a+x)^{7}\right\}}{(a+x)^{3} \cdot(1-a-x)^{3}}$
4. $3^{\prime \prime}-1$
5. $7\left(2^{n}-1\right)$.
6. -425.
7. $-\frac{43}{46}$
cxlii. (Page 27S.)
8. 2
9. $\frac{4}{3}$
10. $\frac{27}{8}$
11. $\frac{4}{3}$
12. 1%
13. 3.
1. $8 \frac{8}{11}$.
2. $2 \frac{1}{4}$.
3. 85_{3}^{1}
4. $\frac{16 x^{5}}{8 x^{2}+1}$.
.1. $\frac{a^{2}}{a-b}$
5. $\frac{1}{9}$.
6. $\frac{x^{3}}{x+y}$.
7. $\frac{86}{90}$
8. $\frac{49}{90}$
9. $\frac{46}{55}$.
cxliii. (Paǧe 270 .)
10. $9,2 \overline{7}, 81$.
11. $4,10,64,256$.
$3.2,4,8$
4 $\frac{3}{4}, \frac{9}{8}, \frac{27}{16} \frac{81}{32}$.
cxliv. (Page 279.)
I. (1) 558.
(2) 800
(3) $\frac{18-}{5}$
(4) $\frac{16}{9}$.
(5) $-\frac{169}{2}$
(6) $\frac{133}{45}$
(7) $-\frac{1189}{2}$.
(8) 13^{5}.
(9) 1.
10) -84
-(II) $-\frac{9999 \sqrt{3}}{(\sqrt{10+1}) \cdot \sqrt{5}}$.
4. $\frac{7}{20} 3$ (12) $-\frac{3157}{80}$.
5. 42.
1. $a c=i^{3}$.
2. ± 1.
3. $n+\frac{1}{4 n}$.
4. 4.
1. 10.
1. 4.
1. 642
2. $40, i^{\prime}$.
3. $3 \frac{1}{2}, 6,8 \frac{1}{2}$.
4. 60.
1. $\frac{\frac{1}{5}}{5}, \frac{2}{5}, \frac{2}{5}, \frac{1}{5}, 0,-\frac{1}{5},-\frac{2}{5},-\frac{3}{5},-\frac{4}{5}$.
2. 3, 7, 11, $15,19$.
3. 5, 15, 45, 135, 405.
25.130.
4. 10 per cent.
cxlv. (Page 2S5.)
I. \&, 12.
5. $\frac{15}{7}, \frac{30}{13}, \frac{5}{2}, \frac{30}{11}$.
6. $\frac{12}{29}, \frac{6}{11}, \frac{4}{5}$.
7. $\frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \frac{1}{15}$.
8. $-2, \infty, 2,1, \frac{2}{3}$.
9. $\frac{3}{4}, \frac{3}{2}, \infty,-\frac{3}{2},-\frac{3}{4}$.
10. $\frac{6}{5}, \frac{3}{4}, \frac{6}{11}, \frac{3}{7}, \frac{6}{17}, \frac{3}{10}$.
11. $\frac{6 x y(n+1)}{3 n y+2 x}, \frac{6 x y(n+1)}{3 n y+4 x-3 y}, \ldots \ldots \ldots ., \frac{6 x y(n+1)}{2 n x+3 y}$.
12. $-\frac{1}{4},-\frac{1}{2}, \infty, \frac{1}{2}, \frac{1}{4}, \frac{1}{6}$, or $\frac{5}{31}, \frac{5}{24}, \frac{5}{17}, \frac{1}{2}, \frac{5}{3},-\frac{5}{4}$.

1a. 104, 234.
13. $2,3, \mathrm{c}$.
cxlvi. (Page 290.)
I. 132.
2. 3360 .
3. 116250.
46720.
5. $\frac{11}{8}$.
6. 40320 .
7. 36Essco.
8. 125.
9. 2520.
Io. 6.
II. 4.
12. 100 ,
23. 1260.
14. $2520,6720,5040,1662200,34650$.
cxlvii. (Pago 295.)

1. 3921225.
1. 6.
1. 120.
1. 116280.
1. 12.
1. 12.
1. 816060.
1. 3353011200 ,

2. 642
3. 00 .

135, 405.
4. 6720.
9. 2520.
23. 1260.
4. 116280. 353011200,

2 ; 52360

cxlviil. (Pago 300.)

I. $a^{4}+4 a^{3} x+6 a^{2} x^{3}+4 a x^{3}+x^{4}$.
2. $b^{6}+6 b^{5} c+15 b^{4} c^{3}+20 b^{3} c^{3}+15 b^{2} c^{4}+6 b c^{5}+c^{7}$.
3. $a^{7}+7 a^{0} b+21 a^{5} b^{2}+35 a^{4} b^{3}+3 \overline{5} c^{3} b^{4}+21 a^{2} b^{3}+7 b^{7} b^{6}+b^{7}$.
4. $x^{8}+8 x^{7} y+28 x^{n} y^{2}+56 x^{5} y^{3}+70 x^{4} y^{4}+56 x^{3} y^{5}+28 x^{2} y^{0}$ $+3 x y^{\circ}+y^{\circ}$.
5. $\quad 625+2000 a+2400 a^{2}+1280 a^{3}+256 a^{4}$.
6. $a^{10}+5 u^{8} b c+10 a^{6} b^{3} c^{3}+10 a^{4} b^{3} c^{3}+5 a^{2} b^{1} c^{4}+b^{5} c^{5}$.
cxlix. (Page 301.)

1. $a^{0}-6 a^{5} x+15 a^{4} x^{3}-20 a^{3} x^{3}+15 a^{2} x^{4}-6 a x^{5}+x^{4}$.
2. $b^{7}-7 b^{6} c+21 b^{5} c^{2}-35 b^{4} c^{3}+35 b^{3} c^{4}-21 b^{2} c^{5}+7 b c^{6}-c^{7}$.
3. $32 x^{5}-240 x^{4} y+720 x^{3} y^{2}-1080 x^{2} y^{3}+810 x y^{4}-243 y^{5}$.
$4 \quad 1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{3}$.
4. $1-10 x+45 x^{2}-120 x^{3}+210 x^{4}-252 x^{3}+210 x^{3}-120 x^{7}$

$$
+45 x^{8}-10 x^{0}+x^{10}
$$

6. $a^{24}-8 a^{21} b^{2}+28 a^{18} b^{4}-56 a^{15} b^{0}+70 a^{12} b^{8}-56 a^{8} b^{10}$

$$
+25 a^{7} 1^{12}-8 a^{3} b^{14}+b^{16}
$$

c]. (Page 302.)

1. $a^{3}+6 a^{2} b-2 a^{2 i} c+12 a b^{2}-12 a b c+3 a c^{2}+8 b^{3}-12 b^{2} c+6 b c^{2}-c^{3}$.
2. $1-6 x+21 x^{2}-44 x^{3}+63 x^{4}-54 x^{3}+27 x^{3}$.
3. $x^{9}-3 x^{3}+6 x^{7}-7 x^{6}+6 x^{5}-3 x^{4}+x^{3}$.
4. $27 x+54 x^{\frac{5}{6}}+63 x^{\frac{2}{3}}+44 x^{\frac{1}{2}}+21 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}+1$.
5. $x^{3}+3 x^{2}-5+\frac{3}{x^{2}}-\frac{1}{x^{3}}$
6. $a^{\frac{8}{4}}+b^{\frac{3}{4}}-c^{\frac{3}{4}}+3 a^{\frac{1}{2}} b^{\frac{1}{4}}+3 a^{\frac{1}{4}} b^{\frac{1}{2}}-3 a^{\frac{1}{2}} c^{\frac{1}{4}}-3 b^{\frac{1}{2}} c^{\frac{1}{4}}+33 i^{\frac{1}{4}} c^{\frac{1}{2}}$ $+3 v^{\frac{1}{2}} c^{\frac{1}{2}}-6 a^{\frac{1}{2}} u^{\frac{1}{4}} c^{\frac{1}{2}}$

cli. (Page 303.)

1. $330 x^{7}$.
2. $495 a^{12} b^{3}$.
3. $-161700 a^{37} 65$.
4. $192192 a^{3} b^{6} c^{8} d^{3}$.
5. $128 \div 0 a^{8} b^{8}$.
6. $70 a^{\frac{1}{2}} b^{\frac{1}{2}}$.
7. $-323 \div 8 a^{10} b^{0}$ and $92378 a^{0} b^{10}$
8. $1716 a^{7} x^{4}$ and $1716 a^{6} x^{7}$.

clil. (Page 311.)

1. $1+\frac{1}{9} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}$.
2. $1+\frac{2 a}{3}-\frac{a^{2}}{9}+\frac{4 \iota^{3}}{81}$.
3. $a^{\frac{1}{3}}+\frac{x}{3 u^{\frac{2}{3}}}-\frac{x^{2}}{9 a^{\frac{5}{3}}}+\frac{5 \cdot x^{3}}{81 a^{\frac{5}{3}}}-\frac{10 x^{4}}{243 a^{3}{ }^{3}}$.
4. $\quad 1+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}-\frac{5}{8} x^{4}$.
5. $a^{\frac{3}{2}}+a^{-\frac{1}{4}} x-\frac{1}{6} a^{-\frac{5}{4}} x^{2}+\frac{5}{54} a^{-\frac{9}{4}} \cdot x^{5}$.
6. $a^{\frac{1}{5}}+\frac{4}{5} \cdot a^{-\frac{1}{20}} x^{4}-\frac{2}{25} \cdot a^{-\frac{9}{10} x^{\frac{1}{2}}}+\frac{4}{125} \cdot a^{-\frac{12}{2 x} x^{2}}$.
7. $1-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{6}}{16}-\frac{5 x^{8}}{128}$.
8. $1-\frac{7}{3} a^{2}+\frac{14}{9} a^{4}-\frac{14}{81} a^{6}$.
9. $1-\frac{9 x}{4}-\frac{27 x^{2}}{32}-\frac{135}{123} \cdot x^{3}$.
10. $x^{3}-x y+\frac{y^{2}}{6 x}+\frac{y y^{3}}{54 x^{3}}$
I. 1
11. 1
12. a
13. $\frac{1}{a^{2}}$
I. 1
14. 1
15. x
4.1
16.
17.
18. $-\frac{5}{6} x-\frac{5}{72} x^{2}-\frac{35}{1296} x^{3}$
19. $\left(\frac{2}{3}\right)^{\frac{2}{3}} x \frac{2}{3}-\left(\frac{3}{2}\right)^{\frac{1}{3}} x^{-\frac{1}{3}} y-\frac{3}{5}\left(\frac{3}{2}\right)^{\frac{3}{2}} x^{\frac{4}{3}} y^{2}$.
cliii. (Page 312.)
20. $1-9 a+3 a^{2}-4 a^{3}+5 a^{4}$.
21. $1+3 x+9 x^{2}+27 x^{3}+81 x^{4}$.
22. $1+x+\frac{5}{8} x^{2}+\frac{5}{16} x^{3}$.
23. $1+x+\frac{3 x^{2}}{4}+\frac{r^{2}}{2}+\frac{5 x^{4}}{16}$.
24. $\quad a^{-10}+10 a^{-12} x+60 a^{-14} x^{2}+250 a^{-16} \mathcal{c}^{3}+1120 a^{-18} x^{4}$.
25. $\frac{1}{a^{2}}+\frac{6 x^{\frac{1}{3}}}{a^{3}}+\frac{21 x^{\frac{2}{3}}}{a^{\frac{5}{3}}}+\frac{56 x}{a^{3}}$.

cliv. (Page 313.)

I. $1-\frac{x^{2}}{2}+\frac{3 x^{4}}{8}-\frac{5 x^{n}}{16}+\frac{35 x^{8}}{128}$.
2. $1+\frac{3 x^{2}}{2}+\frac{15 x^{4}}{8}+\frac{35 x^{6}}{10}+\frac{315 x^{8}}{103}$.
3. $x^{-2}-\frac{2}{5} x^{-7} x^{5}+\frac{7}{25} x^{-12} x^{10}-\frac{28}{125} x^{-17} x^{15}$.
4. $1-x+\frac{3 x^{2}}{2}-\frac{5 x^{3}}{2}+\frac{35 x^{4}}{8}$.
5. $\frac{1}{a}-\frac{x^{2}}{2 v^{3}}+\frac{3 x^{4}}{3 c^{5}}-\frac{5 x^{8}}{16 a^{7}}$.
6. $\frac{1}{a}-\frac{x^{3}}{3 a^{4}}+\frac{2 x^{n}}{9 a^{7}}-\frac{14 x^{9}}{81 a^{10}}$

clv. (Pargo 314.)

I. $\frac{7.6 \ldots(9-r)}{1.2 \ldots(r-1)} \cdot x^{r-1} . \quad$ 2. $(-1)^{r-1} \cdot \frac{12.11 \ldots(14-9)}{1.2 \ldots(r-1)} \cdot 2^{-1}$.
3. $(-1)^{r-1} \cdot \frac{8 \cdot 7 \ldots(10-\eta)}{1 \cdot 2 \ldots(r-1)} \cdot a^{a \rightarrow} \cdot x^{n-1}$
$4 \frac{9.8 \ldots(11-r)}{1.2 \ldots(r-1)} \cdot(5 x)^{10-r} \cdot(2 y)^{r-1}$.
5. $(-1)^{r-1} \cdot r \cdot x^{r-1}$.
6. $\stackrel{r \cdot(r+1)}{0} \cdot(r+2) \cdot(3 x)^{r-1} \cdot \quad$ 7. $\frac{1.3 .5 \ldots(2 r-3)}{1.2 .3 \ldots(r-1)} \cdot\left(\frac{x}{2}\right)^{n-1}$
8. $\frac{1.2 .5 \ldots(3 r-7)}{1.2 .3 \ldots(r-1)} \cdot\left(-\frac{x}{3 a}\right)^{r-2} \cdot a^{\frac{1}{3}}$.
9. $\frac{7.9 .11 \ldots(2 r+3)}{1.2 .3 \ldots(r-1)} \cdot x^{-1}$.
10. $\frac{a^{-3}}{4^{r-1}} \cdot \frac{3 \cdot 7 \cdot 11 \ldots(4 r-5)}{1 \cdot 2 \cdot 3 \ldots(r-1)} \cdot\left(\frac{a}{a}\right)^{2(n-1)} \cdot$

I 1. $\frac{(r+1)}{2} \cdot \frac{(r+2)}{} \cdot x^{r}$
12. $\frac{1.3 .5 \ldots(2 r-1)}{1.2 .3 \ldots r^{2}}$ ($\left.2 x\right)^{p}$.
13. $\frac{1.3 .5 \ldots(2 r-1)}{1.2 .3 \ldots r} \cdot(2 x)$
15. $\frac{5}{16} \cdot \frac{1}{a^{\frac{7}{2}} x^{3}}$.
16. $\frac{3}{125} \cdot a^{-8} b^{8}$.
17. $-\frac{429}{128} \cdot \frac{x^{16}}{a^{15}}$
18. $-\frac{m \cdot(m+1) \ldots \ldots(m+8)}{1 \cdot 2 \ldots \ldots 9} \cdot a^{-(m+\theta)} \cdot b^{0}$.
$12 \frac{(1-5 m)(1-4 m) \ldots \ldots(1-m)}{1.2 \ldots \ldots .6 m^{6}} \cdot a^{\frac{1}{m}-6} 4$.
clvi. (Tage 315.)
E. 3. 4415%
2. $105204 . .$.
3. $3.04084 . .$.
4. 1.95731...
clvii. (Pago 319.)

1. $10\{0022$.
2. 10070344 .
3. 80481
4. 3113\%.
5. $5111: 344$.
6. 143222216
7. 21450 ant romainder 2. S. 522250 and remainder !.
8. 4112. 10. 2127.

clviii, (Page 321.)

1. 522 .
2. 12232
3. $2139 e$
4. 104300 .
5. 1110111001111.
6. t-tec.
7. 6500445 .
8. 211021.
1. 6t12.
2. 814.

II. 61415.
12. 123130.
13. 16430335.
$14.27 t$.
clix. (Page 327.)
I. 41.
2. - 162955043.
3. $25 \cdot \mathrm{i}$.
4. 12232:20052.
5. Senary.
6. Octonary.
clx. (Page 336.)
I. $\overline{1} \cdot 2187180$.
2. $\overline{7} \cdot 7074922$.
3. $2 \cdot 4036784$.
4. 4.740378.
5. 2:924059.
6. $\overline{3} \cdot 724833$.
7. $\overline{5} \cdot 3790163$.
8. $40 \cdot 578008$.
9. $\overline{62} 9905319$.
10. 2•1241803.
11. $\overline{3} \cdot 738527$.
12. 1̈ Glsis 4122.
clxl. (Page 335.)
I. $2 \cdot 1072100 ; 2 \cdot 0960100 ; 3 \cdot 3979400$.
2. $1 \cdot 6959700$; $\overline{3} \cdot 6959700$; 2'9292500.
3. 7781513 ; 1-4313639; 1.7333239; 2.7004226.

4 '7781513; $\overline{2} \cdot 4771213 ; ~ \cdot 0211393 ; ~ \overline{5} \cdot 6354839$.
5. $\overline{4} \cdot 8750613$; $1 \cdot 4983106$.
6. 3010300 ; $\overline{2} \cdot 5061800 ; \cdot 2916000$.
7. 6989700 ; $\overline{1} \cdot 0969100 ; 3 \cdot 3910723$.
8. $-2,0,2: 1,0,-1$.
9. (1) 3.
(2) 2.
10. $x=\frac{9}{2}, y=\frac{3}{8}$.
11. (a) $3010300 ; 1 \cdot 3979400 ; 1 \cdot 9201223 ; \overline{1} \cdot 9979588$. (b) 103.
12. (a) $6989700 ; \cdot 6020600 ; 1 \cdot 7118072 ; \overline{1} \cdot 288061 \varepsilon^{\prime}$.
(b) 8.
12. $3 \cdot 8821260 ; \overline{1} \cdot 4092694 ; \overline{3} \cdot 755326$.
14. (I) $x=\frac{1}{6}$.
(2) $x=2$
(3) $x=\frac{\log m}{\log a+\log b}$
(4) $x=\frac{\log c}{m \log _{5} a+2 \log b}$.
(5) $x=\frac{4 \log b+\log c}{2 \log c+\log b-3 \log a}$.
(6) $x=\frac{\log c}{\log a+m \log b+3 \log c}$.
clxii. (1'ago 3!3.)

1. $176 \ldots .$. years.
2. 234 years.
3. 7.2725 years nearly.
4.225 years nearly.
4. 12 years neally.
5. 11723 yeats،

$$
11 x=420
$$

$$
y: 3+\frac{2}{4} \text { ruin foost? }
$$

$$
\begin{aligned}
& \text { la, }_{1} 24 \cdot \overline{5 \cdot 6} \cdot(2)= \\
& \begin{array}{l}
y \neq 20+\frac{x}{12}-73 \\
12 y=240+y-180
\end{array} \\
& 11 y=60 \\
& y=5 \frac{-5}{I I} \mu_{a} t \alpha_{0}
\end{aligned}
$$

588. (b) 103
1ε
$\frac{\log m}{\log a+\log b}$
years.
years nearly.
21 Yesis.

APPENDIX.

THe following papers are from those set at the Matriculation Examinations of Toronto, Victoria, and MeGill Universities, and at the Examinations for Sucond Class Provincial Certificates for Ontario.

UNIVERSITY OF 'rORONTO.

Junior Matric., 1872. Pass.

1. Mu.!tiply $\frac{1}{3} x^{2}-\frac{1}{4} x y+y^{2}$ by $\frac{1}{3} x^{2}+\frac{1}{4} x y-y^{2}$.

Divide $a^{4}-81 b^{4}$ by $a \pm 3 b$ and $(x+a)^{3}-(y-b)^{2}$ by $x+a-y+b$.
2. What quantity subtracted from $x^{2}+p x+q$ will make the remainder exactly divisible by $x-a$?

Shew that

$$
(a+b+c)^{3}-(a+b+c)\left(c^{2}+b^{2}+c^{2}-a b-b c-c a\right)
$$

$-3 a b c=3(a+b)(b+c)(c+a)$.
3. Solve the following equations:
(a) $\frac{1}{3}(2 x-3)+\frac{1}{4}(6 x-7)=\frac{1}{6}\left(x-\frac{1}{2}\right)$.
(b) $\frac{4 x-7}{\frac{1}{2} x-1}+\frac{3 x-5}{\frac{1}{4} x-2}=.90$.
(c) $\frac{1}{x-3}-\frac{1}{x-4}=\frac{1}{x-5}-\frac{1}{x-6}$.
(d) $x+\frac{y+\frac{y}{3}}{2}=1, \frac{y}{3}+\frac{x+2}{5}=\frac{11}{18}$.
4. In a cortin constituency aro 1,300 voteres and two candidates, A and $B . A$ is elected by a
cerdain majority. Sut the election having heen de. claned voil, in the secend content (A and B being again tho candilates), B is cleeted by a majority of 10 more than A's inajority in the first election ; find the number of votes polled for each in the second election; having given that, the number of votes pollei for l in the first case: number polled in the seoond case : : 43:44.

Junior Letric., 1S72. Pass and Honor.

1. Nultipiy $x+y^{2}+z^{\frac{1}{2}}-2 y^{\frac{1}{2}} \approx t+2 z^{\frac{1}{1}} x^{\frac{2}{2}}-2 x^{\frac{1}{2}} y^{\frac{1}{2}}$ by $a: y+z^{\ddagger}+2 y^{\frac{1}{3}} z t-2 z^{\frac{1}{4}} x^{\ddagger}-2 x^{\frac{1}{2}} y^{\frac{1}{2}}$, and divide $a^{3}+8 b^{3}+27 c^{3}-18 a b c$ by $a^{2}+4 b^{2}+9 c^{2}-$ $2 a b-3 a c-6 b c$.
2. Turestigite a rule for finding the II. C. D. of two algelratical expressions.

If $x+c$ be the II. C. D. of $x^{2}+p x+q$, and $x^{2}+$ $p^{\prime} x+q^{\prime}$, show that

$$
\left(q-q^{\prime}\right)^{v}-p\left(q-q^{\prime}\right)^{\prime}\left(p-p^{\prime}\right)+q\left(p-p^{\prime}\right)^{2}=0 .
$$

3. Shew bow to find the square root of a binomial, one or whose terms is rational and the other a quadratic surd. What is the condition that the result may be more simple tham the indicated square root of the given binomial? Does the reasoning apply if one of the terms is imaginay? Show that ${ }^{4} \sqrt{ }-4 m^{2}=\sqrt{ } 1 n$ $+\sqrt{ }-m$.
4. Shew how to solve the quadratic equation $a x^{2}+$ $b x+c=0$, and lischiss the results of giving different values to the codficients.

If the roots of the above equation be as p to q
6. S
series. serics sumu?
and fil
$4 n^{\prime \prime} \frac{n^{n q}}{a-}$
7. I slow that $\frac{l^{2}}{u_{0}}=\frac{(p+q)^{2}}{p a_{i}}$
ng lieen de. and B being majority of ection ; find the secons er of votes olled in the

Tonor.
$-2 x^{\frac{1}{2}} y^{\frac{1}{2}} \mathrm{by}$ $-2 x^{\frac{1}{2}} y^{\frac{1}{k}}$, and $+4 b^{2}+9 c^{2}-$
II. C. D. of
q, and $x^{2}+$ $)^{2}=0$.
a binomial, ther a quade result may e root of the oly if one of $-4 m^{2}=\sqrt{ } 1 n$
vation $a x^{2}+$ ing different
bo as p to q
5. Solve the equations
(a) $\frac{x}{2}+\overline{\sqrt{x^{2}+3 x-3}}=14 \frac{1}{3}-\frac{2 x^{2}+3 x}{C}$.
(b) $x^{2}-3 x y+2 y^{2}+1=0$. $x y+y^{3}-10=0$.
(c) $\frac{x^{2}+6 x+2}{x^{2}+6 x+4}-\frac{x^{2}+6 x+6}{x^{2}+6 x+8}=\frac{x^{2}+6 x+4}{x^{2}+6 x+6}-$ $x^{2}+6 x+8$ $x^{2}+6 x+10$
(d) $6 x^{4}-5 x^{3}-38 x^{3}-5 x+6=0$.
G. Shew how to find the sum of n terms of a geometrio series. What is meant by tho sum of an infinito series? When can such a series be said to have a stur ?

Sum to infinity the series $1+2 r+3 r^{2}+\mathbb{*}$., and find the series of which the sum of n terms is $\operatorname{cn}^{\prime \prime} \frac{a^{n q}-1}{a-1}$.
7. Find the condition that the equations

$$
\begin{aligned}
& a x+b y-c z=0 . \\
& a_{1} x+b_{1} y-c_{1} z=0 . \\
& a_{2} x+b_{2} y-c_{2} z=0 .
\end{aligned}
$$

may be satisfied by the same valucs of x, y, z.
8. A number of persons were engrarod to do a pisce of work which wonld lawe occupial them m h:ours if they had commenced at the same time; instenl of Woing so, they commencel at or cal intervals, and then continued to work till the whole was finisherl, tho pryments being proportional to the work done by ouch; the first comer receivol r times as much as tho liust: Gual the time occupicel.

Junior Mutric., 1873. Monor.

1. There are three towns, A, B, and C; the road from B to A forming a right angle with that from B to C. A person travels a certain distance from B towards A, and then crosses by the nearest way to the road leading fiom C to A, and finds himself three miles from A and seven from C. Arriving at A, he finds ho las gone farther by one-fourth ot the distance from B to C than he would have done had he not left the direct road. Required the distimee of B from A and C.
2. If $\frac{a y+b x}{c}=\frac{c x+a z}{b}=\frac{b z+c y}{a}$, then will

$$
\frac{\frac{x}{a}}{l^{2}+c^{2}-a^{8}}=\overline{\frac{y}{b}}=\frac{\frac{z}{c}}{c^{2}+a^{2}-l^{3}}=\frac{\frac{z}{a^{2}+b^{2}-c^{2}}}{}
$$

3. Solve the cquations $x^{2}-y z=a^{2}, y^{2}-z x=b^{2}, z^{2}-$ $x y=c^{2}$.
4. If a, b, and c be positive quantities, shew that

$$
a a^{2}(\dot{o}+c)+b^{2}(c+a)+c^{2}(a+b)>6 a b c .
$$

5. Find the values of x and y from the equations

$$
\begin{aligned}
& 2 y+\frac{5 y+3}{x}=1 \\
& x^{2}+5 x+y(y-1)=24 .
\end{aligned}
$$

6. A steamer marle the trip from St. John to Boston via Y armouth in 33 hours; on her return she made two miles an hour less between Doston and Yarmouth, but resumed her former siped between the latter place and St. Jolm, thereby making the entire return pas. sage in $\frac{5}{5} \frac{3}{5}$ of the time she would have required hat

And f
2. I next g
3. I mon m to alge the Hi
4. fractio
(a) her diminished speed lastel throughout; had she made her usual time between Poston and Yarmonth, and two miles an hour less between Yarmouth and
; the road that fiom B ace from B t way to the mself three ing at A, he the distance the not left of B from A
will
c^{2}
$\approx x=b^{3}, \tilde{z}^{2}-$
shew that b) $>6 a b c$.
equations

In to Boston in she made d Yarmouth, e latter place return pas. required hat it ; had she a Yarmonth, armouth aud

St. John, her return trip would have been maile in t? of the time she would have taken had the whole of her return trip been mado at the diminished rate. Find the distance between St. John and Yarmouth and between the latter place and Boston.

$$
\left.\begin{array}{l}
\text { Junior Matric., IIonor. } \\
\text { Scnior Matric, Pass. }
\end{array}\right\} 1 \text { IS. }
$$

1. Solve the following equations:
(a) $\ldots\left\{\begin{aligned} x^{2}-2 x y+2 y^{2} & =x y . \\ x^{2}+2 y+y^{9} & =63 .\end{aligned}\right.$
(b) $\ldots\left\{\begin{array}{l}4 x-3 x y=171 . \\ 3 y-4 x y=150 .\end{array}\right.$
(c)

$$
\ldots\left\{\begin{array}{l}
\frac{1}{x^{2}}+\frac{1}{x \cdot y}+\frac{1}{y^{2}}=10 . \\
\frac{1}{x^{4}}+\frac{1}{x^{2} y^{3}}+\frac{1}{y^{4}}=133 .
\end{array}\right.
$$

And find one solution of the equations:

$$
\text { (d) } \ldots\left\{\begin{array}{l}
y^{2}-x^{4}=68 . \\
x^{2}+\sqrt{ } x=y .
\end{array}\right.
$$

2. Find a number whose cube exceods six timos the next greater mumiocr by three.
3. Explain the moaning of the terms Highest common measure and Lowest common multiple as applied to algebraical quantities, and prove the rule for finding the Highest common measure of two quantities.
4. Reduce to their lowest terms the following fractions:
(a) $\quad \ldots\left\{\begin{array}{l}99 x^{4}+117 x^{3}-257 x^{2}-325 x-50 \\ 3 x^{3}+4 x^{2}-9 x-10\end{array}\right.$.
(6) $\ldots\left\{\begin{array}{l}x^{4}+10 x^{3}+35 x^{2}+50 x+24 \\ x^{4}+18 x^{3}+115 x^{2}+312 x+360\end{array}\right.$,
5. Find the sum of n terms of the series - $\frac{1}{2}, \frac{1}{6},-$ $\frac{1}{8}$, sc., and the x th term of the series

$$
\frac{x+1}{x-1}, \quad \frac{2}{x-1}, \quad \frac{3-x}{x-1}, d<
$$

6. Find tho relations between the roots and coefficients of the equation $a x^{2}+p x+q=0$. Solve the equation

$$
x^{4}+6 x^{3}+10 x^{2}+3 x=110 .
$$

7. A cask contains 15 gallons of a mixture of wine and water, which is poured into a second cask contaiaing wine and water in the proportion of two of the former to one of the latter, aul in the resulting mixtu:e the wine and water are found to be equal. Had the quantity in the secoml cask originally been only onehalf of what it was, the resulting mixture would have been in the proportion of seven of wine to eight of water. Find the quantity in the second cisk.
8. What rate per cent. per ammm, payable half. yoarly, is equivalent to ten per cent. per amm, payable yearly.
9. A is engiged to do a piece of work and is to receive 33 for every day he works, lant is to forfeit one dollar for the first day he is alsent, two for the sreond, three for the thind, and so on. SSixteen dars elans: hefore he finishes the work and he reecives $\$ 20$. Find tho number of days he is atsent.

Change the emmeiation of this problem so as to apily to the negative sulntion.

Jurior Matric., 1876. Pass.

1. Explain the use of negative and fractional indices in Algebra.

$3-\frac{1}{2},-\cdots$

1, sc.
ots and co
ture of wine d cask conf. two of the ing mixtu: 1. IItul tho cu only one. woulil have to cight of is.sk.
ayable lalf. m11mm, pay-
k and is to is to forfeit two for the sixteon d:ys eccives $\$ 0$.
lem so as to
actional inact by $\sqrt[n]{a^{15}}$

Simplify $\frac{a^{m} i^{n} c d^{3}}{a^{n} b^{1} c^{2} d}$, writing the factors all in one line.
2. Multiply together $a^{2}+a x+x^{3}, a+x, a^{8}-a \dot{x}+x^{2}$, $a-x$, and divide tho product by $a^{3}-x^{3}$.
3. Divide 1 by $1-2 x+x^{2}$ to six terms, and give the remuinder. Also divide $27 x^{4}-6 x^{3}+\frac{1}{3}$ by $3 x^{2}+$ $2 x+\frac{1}{3}$.
4. Multiply $a^{m+n}+b^{m-n}$ by $a^{m-n}+b^{m+n}$.
5. Solve the equations:
(1). $\frac{3 x+4}{5}-\frac{7 x-3}{2}=\frac{x-16}{4}$.
(2$).\left\{\begin{array}{l}x(y+z)=24, \\ y(z+x)=45, \\ z(x+y)=49 .\end{array}\right.$

Junior Matric., 18i0. IIonor.

1. An oarsman finds that during the first half of the time of rowing over any course he rows at the rate of fire miles an hour, and during the second half, at the rate of four and a half miles. His course is up and down a stream which flows at the rate of three miles an hour, and ho finds that by going down the strean first, and up afterwards, it takes him one hour longer to go orer the course than by going first up and then down. Find the length of the conse.
2. Shew that if a^{3}, b^{3}, c^{2} be in A.P., then will $b+c$, $\mathbf{c}+a, a+b$ be in II.P.

Also, if a, b, c be in A.P., then will

$$
a+\frac{b c}{b+c}, b+\frac{c a}{c+a}, c+\frac{a b}{a+b}
$$

be in M.I'.
3. If $\varepsilon=a+b+c$, then

$$
\sqrt{(a s+b c)(b s+a c)(c s+a b)}=(s-a)(s-b)(s-c)
$$

4. If $a_{1}+a_{2}+\ldots \ldots \ldots+a_{n}=\frac{n s}{2}$, then

$$
\left(s-a_{1}\right)^{2}+\ldots \ldots+\left(s-a_{n}\right)^{2}=a_{1}{ }^{2}+a_{2}{ }^{2}+\ldots \ldots .+a_{n}^{2}
$$

5. If the fraction $\frac{1}{2 n+1}$, when reduced to a ropetend, contains $2 n$ figures, shew how to infer the last n digits after obtaining the first n.

Find the value of $\frac{1}{5}$ by dividing to S digits.
6. Solve the equations

Junior Matric., 1876. Honor.

1. Whew that the methol of finding the square root of a number is analagons to that of finding the square root of an algebraic quantity.

Fencing of given length is placed in the form of a rectangle, so as to incluble the greatest possible area, which is found to be 10 acres. The shape of the fied is then altered, but still remains a rectangle, amb it is found that with 162 yards more fencing, the same area as before may be enclused. Find the sides of the latter rectangle.
2. Prove the rule for finding the Lowest Common Multiple of two compound algebuac quantities.

Find the L.C.M. of $a^{3}-b^{3}+c^{3}+3 a b c$ and $a^{2}(b+c)$ $-b^{2}(c+a)+c^{2}(a+b)+a b c$.
3. If $a,\left(3\right.$ be the roots of the equation $x^{2}+p x+q=$ 0 , shew that the equation may be thrown into the iomn $(x-a)(x-\beta)=0$.
$(s-b)(s-c)$
. $+a_{\text {. }}^{\text {. }}$
ed to a ro nfer the last
o digits。
the square finding the
the form of ossible area, rape of the etangle, and encing, tho nd the sides
st Common tities.
and $a^{2}(b+c)$
$x^{2}+p x+q=$
n into tho
$3+\sqrt{5}$ is a ront of the equation $x^{4}-5 x^{3}+2 x^{2}+x$ $+\bar{i}=0$: find the other roots.
4. (1) Shew how to extmact the square root of a binomial, one of whe terms is rational, and the other a qualratic surd.
(2) Find a factor which will ratiomalize $x^{\frac{1}{2}}-y^{\frac{1}{3}}$.
5. a, b are the first two terms of an II. P., what is the weth term?

If a, b, c be in $I I . P$., shew that

$$
b^{2}(a-c)^{2}=2 c^{3}(b-a)^{2}+2 a^{2}(c-b)^{2} .
$$

6. A and B are to race from M to N and back. A moves at the rate of 10 miles an hour, and sets a start of 20 minates. On A's returning from N , he meets B moving towards it, and one mile from it ; bit A is vertaken by B when one mile from M. Find the ilistance from M to N .

7. Solve the equations

(1). $x^{3}+8=2 x^{3}+11 x+14$.
(2). $\left\{\begin{array}{l}\frac{x}{y}=\frac{51}{4}-x y, \\ \frac{y}{x}=\frac{17}{12}-\frac{1}{x y}\end{array}\right.$

Sccond Class Certificatcs, 18 S3.

1. Multiply $\frac{a}{b}+\frac{b}{a}+1$ by $\frac{a}{b}+\frac{b}{a}-1$.
2. Shew that $\frac{a^{2}-3 a b+2 b^{3}}{a-2 b}-\frac{a^{2}-7 a b+12 l^{2}}{a-3 b}$
an le rednced to the form $3 \hat{b}$.
3. Reduce to its lowest terms the fraction,

$$
\frac{x^{4}+\frac{5 x^{3}}{12}+\frac{1}{9}}{x^{4}-x^{3}+\frac{x^{3}}{4}-\frac{1}{9}}
$$

4. (a) Prove that $x^{m}-y^{m}$ is divisible by $x-y$ withuut remaincler, when m is any positive integer.
(b) Is thero a remainler when $x^{100}-100$ is livided by $x-1\}$ If so, write it down.
5. Given $a x+b y=1$,
and $\frac{x}{a}+\frac{y}{b}=\frac{1}{a b}$.
Find the difference between x and y.
6. Given $3-\frac{7\left\{3 x-2\left(m-\frac{1}{2}\right)\right\}}{8(x-1)}-\frac{\frac{9}{0}(x-4)}{3(x+1)}=0$.

Find x in terms of m.
7. $\operatorname{Given} \frac{\pi}{y}=\frac{2}{3}$. Find tho value of $\frac{7 x+16}{7 y+24}$.
8. Given $\frac{2}{x-y}-\frac{5}{x+y}=1$,
and $\frac{5}{x-y}-\frac{10}{x+y}=3$. Find x and y.
9. There is a number of two digits. By inverting the digits we obtain a number which is less by S than thee times the original numiser ; but if we incre:ise wach of the digits of the original number by ninity, and invert the digits thus augmented, a number is obtained which exceeds the original number by 29 . Find the number:
10. A studerit takes a certain number of minutes to walk from his residence to the Normal Schon! Were the distance $\frac{1}{8}$ th of a mile greater, he would need to increas, his paco (number ot miles per hour)

APFENDIX.

by $\frac{4}{7}$ of a mile in the hour, in order to reach the school in the same time. Find how much he would have to diminish his pace in order still to reach the school in exactly tho same time, if the distance were $\frac{3}{3 \pi}$ of a mile less than it is.

Second Class Certificates, 1875.

1. Find tho continued prorluct of the expressions, $a+b+c, c+a-b, b+c-a, a+b-c$.
2. Simplify $\frac{a^{3}+a^{2} b}{a^{2} b-b^{3}}-\frac{a(a-b)}{b(a+b)}-\frac{2 a b}{a^{3}-b^{2}}$.
3. Find the Lowest Common Multiple of $3 x^{2}-2 x-1$ and $4 x^{3}-2 x^{2}-3 x+1$.
4. Find the value of x from the equation, $a x-$ $\frac{a^{3}-3 b x}{a}-a l^{9}=l x+\frac{6 b x-5 a^{9}}{2 a}-\frac{b x+4 t}{4}$.
b. Solve the simultaneous equations,

$$
\begin{aligned}
& \frac{a}{x}+\frac{b}{y}=m, \\
& \frac{c}{x}+\frac{d}{y}=n .
\end{aligned}
$$

6. In tho inmoliately preceding question, if a pupil shouhd say that, when $n b=m d$, and $l c=a d$, the values of x and y obtained in the ordinary method, have the form $\frac{9}{9}$, and that he does not know how to interpret such a result, what would you reply?
7. Two travellers set out on a journey, one with 8100, the other with 843 ; they meet with roblers, who tike from the first twiro as much as they take from the seconl"; and what remains with the first is 3 times that which remains with the seconcl. How mur" money did each traveller lose?
8. A and D lahor together on a piece of work for two dirs ; and then 13 finishee the work by himself in S days; but A, with half of the assistance that B could remiler, wondd have finished the work in 6 days. In what tinc could each of them do the whole work alone?
9. P and Q are trarelling along the same road in the same direction. At noon P, who goes at the rate of m miles an hour, is at a point A; while \mathbf{Q}, who goes at the rate of n miles in the hour, is at a point B, two miles in alvance of A. When are they together?

Has the answer a meaning when m - n is negntive? Has it a meaning when $m=n$? If so, state what interpretation it must receive in these calses.
q, it of p)
5.

Second Class Certificates, 1876. by $x^{3}-x y+y^{2}$.

Shew that $\left(a+a^{\frac{1}{2}} b+b\right)^{3}-\left(a-a^{\frac{1}{2}} b^{\frac{1}{2}}+b\right)^{3}$ is ex . actly divisible by $2 a t b t$.
2. Resolve into facters $x^{4}+2 x y\left(x^{2}-y^{2}\right)-y^{4}$,

$$
\begin{aligned}
& a^{\prime \prime}(b-c)+b^{2}(c-a)+c^{0}(a-b) \text {, and } 25 x^{4}+ \\
& 5 x^{3}-x-1 .
\end{aligned}
$$

3. If $x^{3}+p x^{3}+q x+r$ is exactly divisible by $x^{3}+$
$c+n$, then $n y-i^{2}=r m$.
4. Prove that if m be a common measure of p and
f work for by himself nce that B in 6 days. rhole work

10 road in at the rate le Q, who at a point e they to-
n is negn? If so, e in these
g the left he digits, $11(x+y)$
q, it will also measuse tio difierence of any nultiples of p and q.

Find the G. C. M. of $x^{4}-p x^{2}+(q-1) x^{n}+n \approx-$ q and $x^{4}-q x^{3}+(p-1) x^{3}+c x-2$ and of $1+$ $x^{\frac{1}{2}}+x+x^{\frac{3}{2}}$ and $2 x+2 x^{\frac{3}{2}}+3 x^{2}+3 x^{\frac{5}{5}}$.
5. Prove the rule for multiplication of factions.

Simplify $\frac{x^{2}-(y-z)^{2}}{(y+z)^{2}-x^{3}} \times \frac{y^{2}-(z-x)^{2}}{(z+x)^{2}-y^{2}} \times \frac{z^{3}-\left(x-y^{\prime} 1^{3}\right.}{(x+y)^{2}-z^{3}}$
and $\frac{a}{a^{2}+b^{2}}-\frac{a}{a^{2}-b^{2}}+\frac{a^{2}}{(a-a)!\left(a^{2}+b^{2}\right)}-$

$$
\frac{a a^{3}-b^{3}-1 b^{2}}{a^{3}-b^{1}}
$$

6. What is the distinction lietween an infenfity and an equation? If $x-a=y+b$, move $x-b=y+a$.

Solve the equations $(2+x)(n-3)=-4-2 m x$,
and $\frac{16 x-13}{4 x-3}+\frac{40 x-43}{8 x-9}=\frac{32 x-30}{8 x-7}+\frac{20 x-24}{4 x-5}$.
7. What are simaltancous rquentiona? Eiplain why there must be riven as many independent equations as there are unknown quantities involvel. If there is a greater number of equaticas than unknown quartities, what is the interence ?

Eliminate x and y from tio enations $a x+b y$ $=c, a^{\prime} x+b y=c^{\prime}, a^{\prime \prime} x+b^{\prime \prime} y=c^{\prime \prime}$.
8. Solve the equations-
(1) $\sqrt{1+x}+\sqrt{12-x=i n}$
(2) $3 x+y+z=13$
$3 y+z+x=15$
$3 z+x+y=17$
9. A person has two kinds of foreing money; it talies "pieces of the first kind to make cne f, and b piecas of the second kime : he is oftered one $£$ fore c preces, how many pieces of ahch hind must he tale?
10. A person starts to malk to a malway station fonm and a-hali miles off, intonding to arrive at a cortain time; but after walking a mile and a-half he is detained twonty minutes, in conseguence of which lie is obliged to walk a mile and a-half an hour fassore i! order to reach the station at the appointed time. Fhai at what pace he staried.

11 (11) If $\frac{a}{b}=\frac{c}{c}$ then will $\frac{a^{4}+c^{4}}{b^{1}+d^{4}}=\frac{a^{2} c^{2}}{b^{2} l^{2}}$.
(l) Find by Morner's method of division the value of

$$
\begin{aligned}
& x^{5}+290 x^{4}+279 x^{3}-2392 x^{2}-5 S 6 x-312 \text { when } \\
& x=-259 .
\end{aligned}
$$

(c) Shew without actual multiplication that $(a+b+c)^{3}-(a+b+c)\left(a^{2}-a b+b^{2}-b c+c^{2}-a c\right)$ $-3 u b c=3(a+b)(b+c)(c+a)$.
y station ive at a a-lialf he of which our fasere ted time.
ision the 312 when
thiat $+c^{2}-(u c)$

MCGILL UNIVERSITY.

First Icar Exlibitions, 1873.

1. The difference between the first and second of four numbers in geometrical progression is 12, and the difference Letween tho 3rd and 4th is 300 ; find them.
2. Find two numbers whose difference is S, and the harmonical mean between them $1 \frac{1}{3}$.
3. Prove the general formula for finding the sum of an arithmetical series.
4. Tise differences between the hypotenuse and the two sides of a right-angled triangio are 3 and 6 respectively; find the sides.
5. Solvo the equations

$$
\begin{aligned}
& x^{2}+y^{2}=2 \dot{0} \quad, \quad x+y=1 ; \\
& \quad \frac{x}{x+1}+\frac{x+1}{2}=\frac{13}{6} ; \\
& x+y+z=5, x+y=z-7 ; x-3=y+z \\
& \frac{x+4}{3 x+5}+1 \frac{3}{6}=\frac{3 x+8}{2 x+3} .
\end{aligned}
$$

6. A cistern can be filled by two pipos in 24^{\prime} and 30' respectively, and emptied by a thicd in 20^{\prime}; in what time would it be filled, if all three were rumning together.
7. Shew that

$$
1+\frac{a^{9}+b^{3}-c^{a}}{2 a b}=\frac{(a+b+c)(a+b-c)}{2 a b}
$$

8. Prove the rule for finding the greatest common measure of two quantitics.

First Ycar Exkibitions, 18 T4.

1. The sum of 15 terms of an arithmetic series is 600 , and the common differenco is 5 ; find the first term.
2. Find i w last term and the sum to 7 terms of the series

$$
1-4+10-\sqrt[d c]{ }
$$

3. Find the arithmetical, grometric, and harmonio means between $3 \frac{3}{3}$ ant $1 \frac{1}{2}$.
4. The difference batween the liypotennse and each of the two sides of a right-angled triangle is 3 and 6 resjuccively ; find the sides.
5. The sum of the tivo digits of a certain number is six times their difference, and the number itself excceds six times their sum by 3 ; fiad it.
6. Solve the equations:-

$$
\begin{gathered}
x-y=1 ; x^{3}-y^{3}=10 \\
\frac{3 x-7}{x}+\frac{4 x-10}{x+5}=31, \\
x-\frac{1}{7}(y-2)=5 ; 4 y-\frac{1}{3}(x+10)=3 . \\
\frac{132 x+1}{3 x+1}+\frac{8 x+5}{x-1}=52 .
\end{gathered}
$$

7. A man conld reap a field by himself in 20 homs. but with his son's help for 6 l:ours, he could do it in 16 hons; ; how long.would the son be in reaphing the fich by himself?
8. Nind the value in its simplest form of

$$
\frac{x+y}{y}-\frac{2 x}{x+y}+\frac{x^{2} y-x^{3}}{x^{2} y-y^{3}} .
$$

9. Find the greatest common measure of

$$
3 x^{3}+3 x^{3}-15 x+9 \text { and } 3 x^{4}+3 x^{3}-21 x^{2}-9 x
$$

First Year Exhititions, 1 STG.

1. Solve the equations

$$
\begin{aligned}
& \sqrt{a+x}+\sqrt{a-x}=\frac{12 a}{5 \sqrt{a+x}}, \\
& x \\
& -+\frac{y}{a}=1-\frac{x}{c} ; \quad \frac{y}{a}+\frac{x}{b}=1+\frac{y}{c} .
\end{aligned}
$$

2. Reduce to its simplest form the expression :-

$$
7 \sqrt[3]{\sqrt{54}}+3 \sqrt[3]{16}+\sqrt[3]{2}-5 \sqrt[3]{128}
$$

3. Find the greatest common measure of

$$
2 x^{3}+x^{2}-8 x+5 \text { and } 7 x^{2}-12 x+5
$$

4. Simplify $\frac{\frac{m^{2}+n^{3}}{n}-m}{\frac{1}{n}-\frac{1}{n}}+\frac{m^{2}-n^{2}}{n^{3}+n^{3}}$
5. A number consists of two digits, of which the left is twice the right, and tho sum of the digits is one-seventh of the number itself. Find the number.
6. Solve the following.:-

$$
\begin{gathered}
\frac{x}{a}+\frac{y}{b}=+1, \frac{x}{a}+\frac{z}{c}=2, \frac{y}{b}+\frac{z}{c}=3 ; \\
\frac{1}{x}+\frac{1}{y}=2, x+y=2 .
\end{gathered}
$$

7. Find the sum of n terms of the sorica $1,3,5$, 7, de.
(a.) Shew that the reciprocals of the first four torms, and also of any consecutive four terns, ave is harmonical proportion.

UNIVERSITY OF VICTORIA COLLEGE.

Mratriculution, 1873.

1. What is the " dimersion" of a torm? When is an expression said to be "homogencous"?
2. Remore the backets from, and simplify the following expression:-

$$
\begin{gathered}
(2 u-3 c+4 d)-\{5 d-(m+3 a)\}+\{5 a-(-4) \\
-d)\}-\{3 a-(4 u-5 d-4)\} .
\end{gathered}
$$

3. P:ove the "Rule of Sirns" in Multiplication.
4. Multiply $a-\frac{a^{3}+x^{2}}{a}$ by $x+\frac{a^{2}-x^{3}}{x}$.
5. Divide $a x^{3}+b x^{3} \cdot x+d$ by $x-r$.
6. Livide 1 by $1+x$.
7. Find the Gicatest Cimmon Measure of $6 a^{4}-$ $a^{2} x-1 \%$ and $9 a^{5}+124^{4} x^{2}-6 a^{3} x^{4}-8 x^{5}$.
8. From $3 a-2 z-\frac{a x-x^{2}}{x^{3}-1}$ subtracs $2 a-x-$ $\frac{a}{x}+\frac{x}{1}$.
9. Civen $\left\{\begin{array}{l}\frac{x}{8}+\frac{y}{9}=4.2 \\ \frac{x}{9}+\frac{y}{8}=43\end{array}\right\}$ to find x and \hat{y}.
10. Divide the numere a into four such parts that tiee second shall эaceed the first by m, the thind siall execeri tixe second oy n, d :a the funth shall exceed the third by p.
11. As sum of moey pit oui at sionle inloras.
amounts in m montlis to a dollars, and in n montha to b dollais. Requi, ed the stm and rate per cent.
12. Given $x^{2}+a b=5 x^{2}$, te fiml t!e valnes of x.
13. Divide the number 49 into two such parts that the quutient of the greater divided hy the less nay

When is plify the $-(-4$ cation.

Matriculation, 1574.

1. Find the Geatest Common iLeasure of $2 b^{3}$ $10 a b^{2}+8 a^{2} b$, and $9 a^{4}-3 a b^{3}+3 a^{2} b^{2}-9 a^{3} b$, and d ω_{-} munstrate the rult.
2. Add tcsether $a-x+\frac{a^{2}+x^{3}}{a+x}, 3 a-\frac{a^{2}-a x}{a+x}$,

$$
2 x-\frac{3 a^{2}-2 x}{a-x}, \text { and }-4 a-\frac{a^{3}+x}{a-x^{2}}
$$

3. Divile $\frac{1}{1+x}+\frac{x}{1-x}$ by $\frac{1}{1-x}-\frac{x}{1+x}$ and reduce.
4. Givun $\frac{1}{3}(x-a)-15(2 x-3 b)-\frac{1}{2}(a-x)$ $=10 a+11 b$ to fina x.
5. A sum of moner was divided anomg tince per-

share of $\mathrm{B}, \frac{3}{8}$ of the shares of A and C by $\$ 120$; and the share of C , $\frac{z}{9}$ of the shares of A and B by \$120. What was each person's share?
6. Given $\left\{\begin{array}{l}x^{2}+y^{2}+x y(x+y)=68 \\ x^{3}+y^{3}-3 x^{3}-3 y^{2}=12\end{array}\right\}$ to find x and y.
7. Shew that a quadratic equation of one unknown quantity cannot have more than two roots.
8. Given $\frac{2 \sqrt{ } x+2}{4+\sqrt{x}}=\frac{4-\sqrt{ } x}{\sqrt{x}}$; to find the value of x.
9. The e is a stack of hay whose length is to its breadth as 5 to 4 , and whose height is to its breadth as 7 to 8 . It is wo th as mary cents per cubic foot as it is fect in b.racth; and the whole is worth at that rates 224 times as many cents as there are square feet on the bottom. Find the aimensious of the stack.
10. Given $\left\{\begin{aligned} \frac{x+y}{2} & =\sqrt{ } x y+5 \\ \frac{2 x y}{x+y} & =\sqrt{ } x y-4\end{aligned}\right\}$ to find x and $y .$.
11. In attempting to arranpe a number of counters in the form of a square it was found there were seven uver, and when the side of th, square was increased by one, there was a deficiency of 8 to complete the square. Find the number of counters.
12. Reduce to its simplest form

$$
\frac{a^{2}-\cdots(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(c-a)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}}
$$

13. A and B cin do a piece of work in 12 days; in hew many days could pach do it alone, if it would take A 10 days longer than B?
14. Given

$$
\left.\left\{\begin{array}{l}
\frac{x}{y}=\frac{z}{w} \\
x-y=4 \\
z-z=3 \\
x^{2}+y^{2}
\end{array}\right\} \begin{array}{l}
\text { to find } \\
x, y, z, w^{2}=62 \frac{1}{2}
\end{array}\right\} \text { and } 20,
$$

15. Find the last term, and the sum of 50 terms, of the suries $2,4,6,8$, dc.
16. Write down the expansion of $\left\{x-\frac{1}{x}\right\}^{\prime \prime}$
17. How natny diffurenc scrains maty be ritig on ten differont bells, supposing all the combinations to produce different notes?

ANSWEPC:

Junior Matris, 1872. Pass.

1. $\frac{1}{1} x^{4}-\left(\frac{1}{\sqrt{6}} x^{2} y^{2}-\frac{1}{2} x!y^{3}+y^{4}\right) ;\left(a^{2}+9 b^{2}\right)(a \overline{+} 3 b)$;
$(x+1,)^{2}+(x+a)(!y-b)+(y-l)^{3}$.
2. $a^{3}+a_{p}+q$
3. (a), $1 \frac{1}{3} ;(b), \frac{8}{3} ;(c), 4 \frac{1}{2} ;(d), \frac{1}{2}, \frac{1}{3}$.
4. 640,660 .

Juniur Matric, 1872. Pass and IIonor.

1. $\left\{z^{t}+\left(x^{2}-y^{2}\right)\right\}^{2}\left\{z^{z}-\left(x^{z}-y^{2}\right)\right\}^{2}=$
$\left\{z \frac{1}{2}-\left(x^{\left.\frac{1}{2}-0 .\right)^{2}}\right)^{2} ; a+2 z+3 c\right.$. 2. We have $c^{2}--p c+q=0$ aud $c^{2}-p^{\prime} c+q^{\prime}=0$, from which to eamenate c.
2. If β be one root, $-\frac{b}{a}-\beta\left(1+\frac{p}{q}\right),{ }_{a}{ }_{a}=\beta^{3} \frac{p}{q}$,

- and, eliminating $B, \frac{l^{2}}{a c}=\frac{(p+q)^{2}}{p q}$.
Б. $(a), 4,-7, \frac{1}{2}(-3 \pm \sqrt{2} \overline{7}) ;(b), 3,2, ;-3,-2$

$$
\frac{7}{\sqrt{6}},-\frac{5}{\sqrt{13}} ;-\frac{7}{\sqrt{6}},-\frac{5}{\sqrt{6}} \quad \text { (c),-3 }
$$

$\pm \sqrt{ }{ }^{2}$. (${ }^{\text {c }}$) , Divide through by x^{3} and put y for $x+\frac{1}{x}$, and $\therefore y^{2}-2$ for $x^{2}+\frac{1}{x^{2}}$, then $y=$

$$
\frac{10}{3} \text { or }-\frac{5}{2} \text { and } x=3, \frac{1}{3},-\frac{1}{2} \text { or }-2 \text {. }
$$

6. $\left.\left.\frac{1}{(1-r)^{2}} ; \frac{a^{q}-1}{a-1}\right\} a^{p}+a^{p+q}+a^{p+2 q}+\cdots \cdot\right\}$
7. $a\left(b_{1} c_{2}-b_{2} c_{1}\right)+a_{1}\left(b_{2} c-b c_{2}\right)+a_{2}\left(b c_{1}-b_{1} c\right)=0$.
8. $\frac{2 r m}{1+r}$

Junior Mitric., 18i2. Honor.

1. 8 and 6 miles.
2. Each of the first set of fiaetions may be shewn equal to
$2 a b c \frac{\frac{x}{a}}{b^{2}+c^{4}-a^{2}}$ or $2 a c \frac{\frac{y}{b}}{+a^{2}-b^{2}}$, or $2 a b c$ $\frac{\frac{z}{c}}{a^{2}+b^{2}-c^{2}}$, which are therefore equal.
3. Multiplying the equations successively by $y, z . a$ and z, x, y, we obtain $c^{3} x+a^{2} y+()^{2} z=0$, $b^{2} x+c^{8} y+a^{5} z=0$; thence $\frac{x}{a^{4}-b^{2} c^{9}}=\frac{y}{b^{4}-c^{5} a^{9}}=$ $\frac{z}{c^{4}-a^{2} b^{2}}$ and $x=\frac{ \pm a\left(a^{4}-b^{2} c^{2}\right)}{\sqrt{\left\{\left(a^{4}-\dot{b}^{2} c^{2}\right)^{2}-\left(b^{4}-c^{2} a^{2}\right)\left(c^{4}-a^{2} b^{2}\right)\right\}}}$
4. $a^{2}+b^{2}>2 a b, \therefore c\left(a^{2}+b^{2}\right)>2 a b c$, \&c.
5. 3,$0 ;-2,-5 ;-3,6 ;-8 ; 1$. 6. 90 and 240 ::1\%.

$\left.\begin{array}{l}\text { Junior Matric., IIonor. } \\ \text { Senior Matric., Pass. }\end{array}\right\} 18 \mathbf{7 4 .}$

1. (a), From first $x=2 y$ or y, and then solutions are
$3, \frac{3}{2} ;-3,-\frac{3}{2} ; \sqrt{21}, \sqrt{21} ; \cdots \sqrt{1},-\sqrt{21}$.
(b). $\frac{2}{18}(41 \pm \sqrt{\overline{6}} \overline{6}) . \frac{1}{3}\left(-3 \overline{3} \pm \sqrt{769)}\right.$. (c) $, \frac{1}{3}, \frac{1}{2}$; $-\frac{1}{3},-\frac{1}{2} ; \frac{1}{2}, \frac{1}{3} ;-\frac{1}{2},-\frac{1}{3}$. (i), 4, 18. 2. 3 .
2. (a), $\frac{33 x^{2}+61 x+10}{x+2}$; (0),$\frac{x^{2}+3 x+2}{x^{2}+11 x+30}$.
i. $\frac{1}{3}\left\{\left(-\frac{1}{2}\right)^{n}-1\right\} ; \frac{1}{x-1}\{x+1+(x-1)(1-x)\}$.

$$
=\frac{x(3-x)}{x-1}
$$

b. $x-2$ and $x+5$ are factors, and roots are, $2,-5$, $\frac{1}{2}(-3 \pm \sqrt{35})$.
7. $7 \frac{1}{2}$ gals.
8. 4.88 .per cent.
9. 1 days.

He receives $\$ 3$ every day the work continues; he returns nothing the first day he is idle, $\$ 1$ the second, and so on, and the number of days he works is 16 .

Junior Matric., 1876. Pazs.

1. $a^{2} ; a^{m-n} b^{n-2} c^{-1} d . \quad$ 2. $a^{6}-x^{6} ; a^{3}+x^{3}$.
2. $1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\ldots \ldots$; rem. $7 x^{5}-$ $6 x^{7} . \quad 9 x^{2}-6 x+1$.
3. $a^{2 m}+(a b)^{m} n+(a b)+b^{2 m}$.
4. (1), 2. (2), 2, 5, 7; or $-2,-5,-7$.

Junior Matric., 1876. Honor.

1. 35 mls . 2. (2), These quantities are in $H . P$. if $\frac{b+c}{a b+a c+b c}$, \&c., are in A.P., i.e., if a, b, c are in A.P.
2. It may be shewn that the remainder at the nth decimal place is $2 n$; hence if the $n t h$ digit be increased by unity, and the whole subtracted from 1 , the remainder is the remaining part of the period.
3. $z=4, x=2$ or $-3, y=3$ or $-2 ; z=-1, x=2 \pm \neq \overline{10}$, $y=-2 \pm \sqrt{10}$.

Sunior Mutric., 1876. IIonor.

1. 121 and 400 yards.
2. $(a-b+c)(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}+a b+b c-c a\right)$.
3. Irrational roots go in pairs. $3-\sqrt{2}$ is a root; and other roots a:e $\frac{1}{2}(-1 \pm \sqrt{ }=3)$.
4. $x^{\frac{5}{2}}+x^{2} y^{\frac{1}{3}}+x^{\frac{3}{2}} y^{\frac{2}{3}}+x y+x^{\frac{1}{4}} y^{\frac{4}{3}}+y^{\frac{5}{3}}$.
5. $\frac{a b}{b+(n-1)(a-b)}$.

ง. 3 mls .
7. (1), Plainly $x+2$ divides both sides, and roots are- $2,2 \pm \sqrt{7}$. (2), $x=3, y=4$ or $\frac{1}{4} ; x=$ $-3, y=-4$ or $-\frac{1}{4}$.

Second Class Certificates, 1873.

1. $\left(\frac{a}{b}+\frac{b}{a}\right)^{2}-1=\frac{a^{2}}{b^{2}}+1+\frac{b^{2}}{a^{2}}$.
2. $(a-b)-(a-4 b)=3 b$.
3. $=\frac{\left(x^{2}+\frac{1}{3}\right)^{2}-\left(\frac{x}{4}\right)^{2}}{\left(x^{2}-\frac{x}{2}\right)^{2}-\left(\frac{1}{3}\right)^{2}}=\frac{x^{2}+\frac{1}{2}+\frac{1}{3}}{x^{2}-\frac{x}{2}-\frac{1}{3}}$.
4. $(b),-99$.
5. $(11-b)(x-y)=0$; \therefore if a be not $=b, x-y=0$; if $a=b, x-y$ may have any value.
6. $\begin{aligned} & 43-14 m \\ & 14 m-13\end{aligned}$.
7. $\frac{2}{3}$, provided x be not $=-2 \frac{2}{7}$;
then fraction becomes $\frac{0}{0}$ and is indeterminate.
8. $\frac{1}{x-y}=1, \frac{1}{x+7}=\frac{1}{6} ; x=3, y=2$.
9. 13. 10. $\frac{3}{7}$ of a mile per hour.

Second Class Certificates, 1S75

1. $2\left(a^{2} b^{5}+b^{2} c^{2}+c^{2} a^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)$. 2. $\frac{3 a}{a+b^{2}}$.
2. $(3 x+1)\left(4 x^{3}-2 x^{2}-3 x+1\right)$.
3. $\frac{2 a\left(2 b^{2}-5\right)}{4 a-3 b}$
4. $x=\frac{b c-a d}{2 b-m d}, y=\frac{b c-a d}{m c-n a}$.
5. x and y are indeterminate: there is but one equation. 7. \$88, \$44. 8. 14 days, $11{ }_{3}^{2}$ days.
6. $\operatorname{In} \frac{2}{m-n}$ hrs. $m-n$ negative means that they were together $\frac{2}{n-n}$ his. before noon. $m=n$, they are never together.
7. Each side equals $99\left(x^{2}-y^{2}\right)$.

Secoma' Class Certificates, 1576.

1. $(1+m) x-(1-n) y . \quad$ 2. $(x+y)^{3}(x-y) ;(a-b)$ $(b-c)(c-a) ;\left(5 x^{2}-1\right)\left(5 x^{2}+x+1\right)$.
2. Let the other factor be $x+a$; multiply and equate co-efficients; climinating $a, n q-u^{2}=r m$; other condition is $m-m n=r . \quad 4 . x-1 ; 1+x \downarrow$.
3. $\frac{(x+y-z)(x-y+z)(y+z-x)}{(x+y+z)^{3}} ; \frac{1}{a-\bar{b}}$
4. $-\frac{2}{3} ; 1$.
5. $a^{\prime \prime}\left(b^{\prime} c-b c^{\prime}\right)+b^{\prime \prime}\left(a c^{\prime}-a^{\prime} c\right)+c^{\prime \prime}\left(a^{\prime} b-a b^{\prime}\right)=0$.
6. (1,) Cube, and $3(n+x)^{\frac{1}{3}}(n-x)^{\frac{1}{3}}(m)=n^{3}-2 n$, $\therefore x=\left\{n^{2}-\left(\frac{m^{3}-2 n}{3 m}\right)^{3}\right\}^{\frac{3}{2}} ; 2$, ©. 4
7. $\frac{a(c-b)}{a-b}, \frac{b(a-c)}{a-b}$.
8. 3 miles an hour.
9. (a), See $\S 359$. (b), 2,000. (c), Substitute successively $=b,-c,-a$ for a, b, c, in the left hand side, and it appears that $a+b, b+c$, $c+a$ are factors, and $: \therefore$ expression is of form $N(a+b)(b+c)(c+a) ;$ putting $a=b=c=1$, we get $N=3$.

First Year Exhihitions, 1873.

1. $3,15,75,375$. 2. 9 and 1 , or $\frac{9}{10}$ and $-\frac{73}{10}$. 4. 9, 12 .
2. (a) , 4, -3; -3,4. (b), 2, -3. (c), 4, -5, 6. (d), -豪.
3. 40^{\prime}. 7. $=\frac{(a+b)^{2}-c^{2}}{2 a b}=$.

First Year Exhibitions, 1874.

1. 5.
1. $(-4)^{5} ; 3277$.
2. $2 \frac{7}{16} ; 2 \frac{1}{4} ; 2 \frac{1}{13}$.
3. $9,12$.
4. 75.
1. (a), 3,2 ; $-2,-3$. (b), 7 or $-1 \frac{3}{7}$. (c), 5, 3. (d), 14 .
2. 30 hours.

$$
\text { 8. } \frac{y}{x+3} \quad \text { 9. } 3(x+3)
$$

First Year Exhibitions, 1876.

1. $\frac{4}{5} a, \frac{3}{5} a ; \frac{\frac{1}{a}-\frac{1}{b}-\frac{1}{c}}{\frac{1}{a^{2}}-\frac{1}{b^{3}}-\frac{1}{c^{2}}}, \frac{\frac{1}{a}-\frac{1}{b}+\frac{1}{c}}{\frac{1}{a^{3}}-\frac{1}{b^{3}}-\frac{1}{c^{8}}}$
2. $-12^{3} / \frac{2}{2}$.
3. $x-1$.
4. m.
5. $21,42,63$, or 84 .
6. $a, b, 2 c ; 1,1$.
7. n.

Matriculation, 1873.
2. $11 a-3 c-5 d+m . \quad$ 4. - $a x$.
5. $a x^{2}+(a r+b) x+\left(a r^{2}+b r+c\right)+$

$$
\frac{a r^{3}+b r^{2}+c r+d}{x-r}
$$

6. $1-x+x^{2}-x^{3}+\ldots .$.
7. $3 a^{2}+4 x^{3}$
8. $\frac{(a-x)\left(x^{2}-2\right)}{x^{2}-1}$.
9. $144,216$.
10. $\frac{1}{4}(a-3 m-2 n-p)$, \&c.
11. $\frac{m b-n a}{m-n}, \frac{1200(a-b)}{m b-n a}$.
$12!\pm \frac{1}{2} \sqrt{\overline{c b}} \quad$ 13. $28,21$.
12. $50(\sqrt{ } \overline{5}-1), 50(3-\sqrt{5})$.
13. $x= \pm 10, y=\mp 10 ; x= \pm 4 \sqrt{ } \overline{2}, y= \pm 3 \sqrt{ } \overline{2}$
14. 16.

An

EPC

R
$A d o p$

Cana
Serie
Matriculation, 1874.

1. $a-b$.
2. $\frac{4 a^{3}+a^{2} x-2 a x^{2}+x^{3}}{x^{2}-a^{2}}$.
3. 4.
1. $-5 a-3 b$.
2. $600,480,360$.
3. 2,$4 ; 4,2$.
4. 4 or $9 \frac{1}{9}$.
5. $20,16,14 \mathrm{ft}$.
6. 40,$10 ; 10,40$.
7. 56.
1. 2.
1. 30 and 20 days.
2. $6,2,4 \frac{1}{2}, 1 \frac{1}{2}$, or $-2,-6,-1 \frac{1}{2},-4 \frac{1}{2}$.
3. 100,2550 .
4. $x^{7}-7 x^{5}+21 x^{3}-35 x+35 x^{-1}-21 x^{-3}+7 x^{-6}$
" Epochs in History mark an Epoch in the Stiuiy of it." (i. W. Johnson, H.M.M.S., Ilamitron.

An Accoptable Text-Book on English Fistory AT LAST FOUND!

EPOCHS OF ENGLISH HISTORY,

BY
REV. M. CREIGHTON, M.A.

Authorized by the Education Department.

Adopted by the P'ublic Schools of Montrcal, and a mumber of the best Schoois in Ontario.
"Characterized by Brevity and Comprehensiveness."Canada Prishylerian.
"Amongst manuals in English History the Epoch Series is sure to take high rank."-Daily Clobe.
"Nothing was more needed than your excellent Primersot English History."-Fred. W.Kelly.M.A.,B.D., Lect. in English History, High School, Mont eal.

In Eight Volumes, 20 cents each,
-OR一
WHOLE SERIES in TWO VOLS. ONLY 50c. each.

Part I. Contain First Four of the Series. Part JI. Centains Last Four of the Series.

ADAIM MILLER \& CO.
toronto.

CREIGHTON'S EPOCHS OF ENGLISH HISTORY

Rev. Geo. Brair, M, A., I. P. S., Grenville County.
"This little work, published in ight miniature volvmes, at 200 each, is peculiarly adapted for tue in our Public and High Schoola. Presented in this simple find attractive form, each of the great epochs of English History can be cheaply, easily, and thoroughly mastered before proceeding to the next."

Thos. Carscadden, B.A., Head Mastcr, High School, Richmond Hill.
 "I can most cordially recommend them to all studente who are candidates for the Intermediate, or teachers' examinations."

J. Turnbrex, B A Principal High School, Clinton.
"I have examined the 'Ercchs of l:uglish History' and have formed a very high opinion of them. so much so, that I intend to introduce them into the High School here. As to tho size and expense they havc hit the happy mean, containing all that is really necessary and nothing more."
H. J. Gibson, B A., Head Master, Renfrew, H. School.
"I have carefully exanintd your 'Epochs of History,' and believe them to be adinirably adapted for preparing teachers for certificates. 'They are very neatly got up."

Join F. Bryant, B.A., Clinton.
"I have been anxinusly waiting for a ('anadian ed:tion of these delightful little books, and now that we have these, I sh:ll introduce them izto my classes as soon as possible."

A. Dingware Fondice, P. S. I., Fergus

"I think it is a great mistake, at a time whicn inagination is peculiarly vivid, to expect history to be studied from the bare bones laid down, and that the little work refelred to has been prepared in a simple, interesting way for those commencing the study of history, and fitted to carry them on by the grasp they can take of the subject as it is presented, and as one event is connected with another, I think some such introductory work was much needed."

J. M. Platt. M.J., P. S. I., Picton.

"Neatness of 'get un;' simplicity of language; faithfulness of record; perfection in arrangenent; intercst of narrative; concise ness and freedom from dryness; or recital of facts, are but a few of the recommendations of these beautiful little works."
F. IF. Micher, B. A.. H. M., H. S., Perth.
"It has been said that a book that would supply the place of 'Collier's British History' could not be obtained. This is more than answercd by the 'Epochs of English History.' I'hey procced on the basis on which history should be taught. Divisions are made according to the inception and crssation of those forces that brought about changes in the Einglisin Constitution, while principles are clearly communicatcd and systematized. Not beyond the capabilities of younger children, they are also adapttd for use in higher classes.'

Robr. Rongers, Inspector of Public Schools, Collingwood.
"As an aid to the teacher they are invaluable."
Guelif Mercury.
"Tree style is simple, and adapted to the capacity of children at

CREIGHTON'S EEOCHS OF ENGLISH HISTORI

2s, at 20 c . School. the great 10roughly
ichmond
who are " intend to and exis really
1001.
, and bofor certiatroduce
on is pere bones pared in history, subject other, I
liness of concise a fow of
place of is more rey proions are ces that inciples се сараhigher

od.

"Grand help these to the study of \because nglish History in ite only rajional way - by epochs in the lifc of the Linglish Nation and her inatitutious. "Epochs of History" mark an cpoch in the study of it,"

J. C. Morgan, M. A Barrie.

"I have been for many ycars, includin' my University course, an earnest student of History, and have certainly sever met with any sketch of the periods embraced by the two vuiumes of 'Epochs' you sent me, which united in so singularly excellent a manner, brevity, accuracy, and a elear comprchension of the logic of History. I can, and shall, cordially recominend them to evory teacher who wishes to make histo y yot an effort of memory nlone, but a study of the grand sequence of cause and effect by which the facts in the world's life have been created."

Wm. Mackintosh, P. S. Inspector, N. Hastings, Madoc.
"You have donc good service to Canadian students and teachers by issu'g a Canadiun (dition which, in binding, paper, and typographical execution is all that conld be disired.
"The series is admirably adaptd for the use of teachers, High School pupils, and the more advanced classes of our Public Schools, and will he perused with plensure and profit by many who are neither teachers nor pupils. It forms a valuable addicion to the valuable collection of school bouks you have issuca."

Clarke Moses, P. S. Inspector, Co. Haldimand, Caledonia.
"The 'Epochs of English History' will Le valuable aids in tho preparation of pupils for the 2nd class and intermediate examinations. 'The ste written in the most entertaining style. I should think their i:troduction into schools is much to be desired.'

Wm. Wilkrison, M.A.. Head Master Brantford Central School.
"I am quite conscientious in saying that it is one of the best digests of History that I have secn. It is remarkably clear and concise, and deserves cspecial commendation for giving just what the pupil ought to know without any extrancoas matter, and without any attempt at rhctorical flourishes, so much out of place in a textbook on this subject."
R. K. Orr, B.A , H. M. II. and P. Schools, Brighton, Ont.
"I have read them through carefully and consider them the best works on the subject for the use of schools that I have ever seen. I am particulurly pleased with their simplicity of style and fair method of stating occurrences. I shall intrrauce them in the schools here and encourage their use in those of the vicinity."

> G. D. Platt, B.A., I. P. S., ricton.
"Am led to express my admirati-n of the very concise and syetomatic method of arrangement adopted in them, rendering them particularly suitable for sludente, and tending in no small degree to promote a better system of pursuing this inportant stüdy."

Robt. Dougan, B A., Principal High Schonl, Lindsay.
"I am glad to see these bricf scrials authorizt by the Minister of Education. They are clear and succinct in statencent and convey a large arnount of information. They have the advantage of conGning the attention of the learner to defnite periods, and thus enalling him to master difficult historical subjects without attempting to digest and memorize too much at once. I shall le happy to see them in the hands of sll my pupils."

EXAMINATION PAPERS

ARITHMETIC,

By ,J. A. McLellan, LL.D., Inspector High Schools, and Thos. Khkland, M.A., Science Master, Normal School, 'Ioronto. Skcond Edition.

PRICE $\$ 1.00$.

From the GUELPH MERCURY.

The work is divided into six chapters. Tt: first is on the Caitary Methoni, und gives solutions showing its apt leation to a variety of problems, in Simple and Compound Proportion; Pereentage, Interest, Discomt, Profit and Loss; Proportional Parts, Partnership; Chaln Rolie. Exchange, Alifgation; Commission, Insuranee, \&c., Stocks; and Miscelianeous Problems. The seeond is on Elementary Rules, Measures and Multiples, Vilgar and Decimal Fractions. The third contains Examination Papers for entranee into High Sehools and Colleriate Institutcs, the fourth for eandidates for third-elass certifcates, the flifti for candidates for the Intermediate Examination and seeom-class eertificates, and the sixth for candidates for third-class eertithcates and Uilive risity Honours. It will be observed that the work berrins with the fundanental rules-thuse prineiples to be accuired hien a mpinil first enters upon the study of Arithmetle, and carries Honourn of the Uuiversity.

- help in supplyint questions to give their elass wiil find in it a neeessary be teachers cumnt have a better guide-indeed there is not anire to one-on the sulject with which it is occupied.

From the ADVERTISER.

\dot{x}. By all who are groping after some method better than they have at present, this volume wiil be eordially weleomed, and miny who have never suspected the possibility of acconplishing so mach by independint methods, will be, by a perusal of the introduotheir pupifis how to do to think for themselves, and enabled to teach their puinits how to do so.
kind ever introduced into it in far superior to anything of tho ap,pearance of the work is of a very high character- the typograjhical fact, to anything of the kind issued by the best publishite equal, in London or New York.

From the TELESCOPE.

The plan of the work is excellent, the exerelses beir.g arranged progressively, each series preparing the student for the next. The problems are all original, and so eonstrueted as to prevent the student nsing any purely meelanical methods of solution. . .b. We houses, when we consider of our Canadian Auchors and publishing it has made and is making in edneational matters, and particulargress the recently jubiished edueatlonal worka matters, and particularly in

SWINTON'S LANGUAGE LESSONS.

Adapted to Canadian Schools, By J. A. Macmillan, B.A., Ottawa,

 colleaiate institute.Specially arranjed as an'introductory Text Book to MASON'S GRAMMAR, the authorized text book for Public Schools. The Definitions, Classification of Pronouns, Verbs and General Treathent are now brought into complete harmony with Mason's Larger Grammar.

PRICE 25 CENTS,

FROM SOUTH HAS"INGS' BOARD GF EXAMINERS.

Miller's New "Swintun's Language Lessons," by Macmillan, is especiully adapted to the wants of elementary classes. The ussimilation of the rules and deflitions to those of the advanced text book, Mason's Grammar, is a decided improvement and makes it nuch preferub'e to uny of the othereditions. With this Edition of Language Lessons in hand, the most ine pperienc d teacher may zafely bo entrusted with a tran mar and composition class. R. DAWSON, B.A, Ph.D.H.M.H.S. Melleville.
H. M HCCK M. A. H.M. H. School, Trenton. JOHN JOHNSTON, P.S.L., South Hastings.

WM. WILKINSON, M. A., Head Master Model and Central School Bruntford.

Your"5th Edition of Swinton's Language Lessons"by Maemillan is the most complete Primary Granmar I lave seen. The elitor deserves every prosise for riaking his definitions agree with those of Mesons' Grainmar, thus preventing the loss of time and confusion, that always result frum learining two sets of definition. He has arcomplisito 1 this without rentering the work a whit more difficult, or in any why destroying its peculiar character. I observe that, the matier is so arranged that this edition can be usrod in the same class as your other editions without any inconvenience. I wish for it as much success as its predecessore have had, which since I speak from some months actual use of the bouk is, perhaps, the highest praise I can givo it.

C. CLARKSON, B.A., Head Master. Model School, Brockville.

I have examined careflilly your "New Swinton's Language Lessons," by Macmillan. The book is excllent. It was a decided improvement to bring it into entire harmony with Mason's. The only difficulty I experience is to REEP IT ouT of the Third class, for whilde no text book is authorized. Pupils use the book pipi. vately as uadidi to follow the oral teaching.

MILLER's BWINTON'S LANGUAGE LEBSONS.

N. GORDON, Head Mnster, Moilel Schnol, Picton.

After a careful perusal and commariann of the Filis Eaition of "Swinton's Langunce Lessons," by Machuillan, wi h previous orlitions, I find changes of an importmit and highly beneficial \cdot handerer, viz:-therdeflatione arg the anme us ilhose in Mason's Grimma, aisn the trentment of the Verl), etc., this is a step in the right direction, is the text-broks in all onr Pubio Schools should Le so arruggel as to muke those used in the junior classes an intronluction to thase (on the same suliject) used in the sentor divistons. I consider the plan highly commeniluble as then chnnges lo not wohibitits uso with your other odition of the same excellent little woris.

JAMES DUNCAN, Principal Essex Model School.

Inve carefully exnmineat the Fiftl Fdition of "Miller's New Swi tou's Langingo Lessons lig Macinll"n."-The matter is put in cloar, concise and hiteresting langingo, and tho subject is keptabenst of the ups. I cousider it an invalunblo ansiliary to the Public Sehool Tencher. It is na it professes to be "un introdnctory work on Giminmar," as well as a forerunnea of Mlusou's more advauced text-book.

W. J. SUNMERBY, Principal Kingston Model School.

To prevent tho loss of mich valunb!e time, the agreement of the rlementary und advanced text-hooks, in all ossential points, is in absolute necessity, and I am pland to flud that, in definitions and general treatiresit, the Fifth Eidition of "Swliton's Inn" gunge Lesscus," by Macmillan, is in harmony with Masous Text. book.

SAMUEL B. WESTERFFLT, HM.M.S. Mount Forest.

As the aim is to make it uniform in def nitions and clasif. ention with Mason's Grammar, and as it is such an excelledt Elennentarv text book, especially for the use of young teachers, I would heartily recommend its iutroduction.

W. F. RITTENHOUSE, Teacher, Central School, St. Catharines,

I consiler " Swintor's Lan'uage Lessons," by Macmillan, an the best text book for teaching grammar extant, and the revision, muking tla definitions corr spon! with those in the advauced text book; leaves nothing to be desired.

GFO. MILDEN, Head Master, M. S., Cornwall.
Milley's new "Swinton's Lnngunce Lessons," by Macmil'an, I $10 \cdot k$ unon ns an adruirnble littlo work, well and carefully got un, and will renfer valunble assistance to those teachers who are engaged in preparing puyils for the coming examinations.

REV. J. MAY, I. P. S., Co. Carlton.
J have exdmined "Swintou's Lnnguage Lessons, by Macmil. lan," and am of opinion that it will prove a very useful text-book in our schcols.

James McBRIEN, Ins. P. S., Co. Ont.

Miller's new " siminton's Language Leasons" nossess tou thFelua: lo characteristios, gradation and adaptutiou to youth. would like to see it in all my best schools.
1001.
eement ot al points. lefinitions on's Lan ons Text.

CANADA SCHOOL JOURNAL.

Recommended by the Minister of Education in Ontario. Recemmenderl by the Board of IElucution for Quebec.

 Recommended by the Supt. of Eilucation, New Drunswick"An excelleat publication."-Pacific School Journal, Sanfrancisco.
"The Canada School Journai, published by Adam Miller \& Co., Toronto, is a live educational journal, and should be in the hands of every teacher."

EDITORIAL COMMITTEE.
J. A. McLellan, M.A., LL.D., High School Inspector.

Thomas Kirkland, M.A., Science Master, Normul School.
James Hughes, Public School Insyector, Toronto.
Alifed Baker, B.A., Kath. Tutor. Uuiversity College, Toronto.

PROVINCIAL EDITORS.

Ontario-J. M. Buchan, M.A., High School Inspector.
G. W. Ross, N.P., Putic School Inspictor. J. C. Glashan, Public School Insplector.

Quebec-W. Dale, M.A., Rector High Schooi.
S. P. Robins, M.A , Supt. Protestant School, Montreai.

New Brunswick-J. Bennett, P'L.D., Sult. City School, Moutreal.
Nova Scotia-T. C. Summichrast, Registrar, University of Halifax.
Manitoba-John Caneron, B.A., Winuipeg.
British Columbin-John Jessop, Supt. of Fducation.

CONTRIBUTORS.

Rev. F. Ryerson, D.D., LL.D., Iate Chief Supt. of Education.
J. G. Hodgins, LIL.D., Depity Minister ot Elucation.
'iheodore Rund, A.M., D.C.I., Supt. Rulucation, New Brunswick.
W. Crocket, A.M., Principnl Normal School, Fredericton, N.B.
J. B. Calkin, M.A., Principal Normal School, Truro, N.S.

Dr, Bayue, Halifux High School.
Robert Potts, M.A., Cainbridge, Fng.
Daniel Wilson, LL.D., l'rof. of History and Fng. Jit., Univ. Coll., Toronto. Rev. S. S. Nelles, I.D., LL D., Pres. University Victoria College.
Rev. H. G. Madrock, M.A., F.G.S., Fellow of Clare College, Cambridge, Professor of Classics, Trinity College, Toronto.
M. McVicar, Pu.D., ILL.D., Principal State Normal and Training School, Potsdam, N. Y.
Rev. A. F. Kemp, LL. D., Principal Brantford Young Ladies' Callege.
Geo. Dickson, B.A., Colleginte Institate, Hamilton.
Prof. John A. Macoun, Albert Coilege, Belleville.
Rev. Prof. G. M. Meacham, M.A., Киmadza, Jngan.
Wm. Johnson, M.A., Principal Agricultural Collego, Guelph. John C. McCabe, M.A., Principai Normal School, Ottawa.
Dr. S. P. May, Secretary Centemial Education Committeo.
Prof. J. E. Wells, Canadian Litarary Institute, Wondstock.
Rev. J. J. Hare, 13.A., Outario Ladies' College, Whithy.
James Carlyle, M.D., Math. Master Normal Scliool, Toronto.
Geo. Buptie, M.D., Scicnce Master Nomnul School, Ottawa.
R. Lewis, Teacher of Flocution, Tcronto.

Prof. R. Bawson, Belleville.
J J. Tilley, Inspectur Public Schools, Durham.
CANADA SCHOOL JOURNAL
[s issued 1st of oach month from the Office of Publication, 11 Wellington Street West, Toronto.
ᄃ̈̈bscription $\geqslant 1$ per year, payable in atuance.

HOUV TO READ.

A Drill Book pur Corrzct and Expressive Readino, Adaptrd for the use of Schools.
By Richard Lewis, Teacher of Elocution, Author of "Dominion Elocutionist," \&c. 3rd Ed., Price 75 Cents.

Authorized by the Minister of Eduration ior Ontario.

 duthorized by the Chief Supt. of Liflucation, Manitoba.D. H. SMITH, A.M., Inspector of Schools, Colchester Co., N. S.
" Lewis' 'How to Reall,' comes in good time. In no branch of study is there more deficioncy displayed than in that of reading. Many of our teachers renlly appear to have no conception as to how reading should be taught, but by a carefol sthely of Lewis 'How to kead' they cin without any difliculty reuder themselven at to give instruction vith the utmost satisfaction."
L. S. MORSF, M.A., Inspector Schools, Annapolis Co., N. S.
"Lewis' 'How to leend' treats of a subject which cannot be too highly recommended. Such a work is much needed in our schools. The art of reading effectively has been acguired by few teachers, hence they should procure this work and thoroughly and practically master the rules and principles therein contained.

'J. D. McGillilvray, Inspecior of Schools, Co. Hants.

"Lewis' 'How to Read,' is the best drill book in elocution for school use that I have seen. I have read it over with a great deal of care."

C. T. ANDREWS, Inspector for Queen's Co., N. S.

"I havo examined 'How to Read,' and have no hesitation in pronouncing it the best little work on elocution for teachers that has yet come under my notice. A thorough drill in the exercises, with dne attention to the elementery sonnds of the language as illustrated by the author, and an intelligent conception of the priveiples and suggestions therein given will insure pleasing and exprossive reading. It cannot but be hailed with pleasure by every teacher as it supplies a waut long felt in our schools, and gives to the important subject of reading its due prominence, as both an art and a science."
A. C. A. DOANE, Inspector of Schools, Shelbarne Co., N. S.
" How to Read,' is just what is needed, both as a school class book and an aid to teachers in the proper training of pupils in the principles of effcctive reading.
Rэv. JOHN AMBROSE, M.A., Inspector P. Schools, Digby, N. S.
How to Read by Richand Lewis.-"This book, for the size of it, is the best by far that I have euer seen on the subject."
W. L. DANAGH, Inspector for Cumberland, N. S.
"How to Read is a sensonable publication. As a drill book for expressive rending it supplies a desideratum in our schools. It must be admitted that better teaching on this branch is greatly nesded. The work shows skill and is highly creditable to the author."

JOHN Y. GUTM, Broad Cove, Cape Breton, N. S.
"The plan pursued in the arrangements of the work, commenfing with elemente essentin to correct vocalization, and leading gradually on to principles and practice in some of the purest gems of the language, must commend itself to every admirer of clear, axpressive English reading. The typographical 'got up' of the wark is fighly creditable to the enterpriaing publisherm."

DR. MCLELLAN'S MENTAL ARITHMETXO.

P. C. McGIEGOR, M.A., Hoad Master High Nchool, Alnionte.
This littlo worle is an excellent compruion to ${ }^{\circ}$ slate work in Arithmetic. Ky its aid the tenchor will Lo enabled to lead his pipils step) by step to muster the principles of Arithanctic. The reason that so mmiy pujnis in our adyanced classes ore neither expert nor correct in written work may be attributerl o tho fict that their ancutal training in Arithmotic was neglected.

F. F. MACNAB, M A., Head Mnstor H. S. Arnprior.

 Dr. McLellan's Montril Arithinetic sepms to me to dighlay the will-known wracticnl knowledge and sound judgment of its anthor. It udmirubly supplies a long felt want, and cortninly ought, and no doubt will, receivo the pationage of the profession.C. A. B́AINES, P. S. Inspector, Div. No. 1, Lumbton, The Mental Arithnetic by Dr. McLellan is admi. rably udanted for our l'ublic Schools.

DAVID CLAPP, B.A., Inspcctor Division No. 2, County of Welliugton.
Supplies tho want of a purely Canadian text look on this subject long felt by onr tenchers. I have an doubt it will be extensively usca, and the name of its author is a guarantce of its excellence.

W. S. CLENDENING, Inspector East Brmen

 Dr. McLe!lnn's Mcntal Arithmetic is an admi, trentise on that inportant subject. Its generul it tion is a curtainty. I trust it will soon be iu t. hauds of all the teachers on this district.FV. R. SHORT, II. M. High School, Ingersell. I conslifer an excellent text book for schools.

SMITH CUILTIS, Heod Master M. S. Madoc.
I cun hortily rocommend it as being far superior to nny other work on the subject I have seen for this reason, and the fact that it is a Cunalian work, I here to see it t ke the placo of the american wor s which wo have hitherto becu obliged to use in our Echools.

JOHN RAINE, II. M. Porth Model School.
I think it will prove ar great bonn to onr Public Schnols fine it mast inerenso the intellectunlity of the tenching of the suhject of Arithmetic. It should be in the hands of every teacher.

NEW ELEMENTARY ARITHMETIC ON THE UNITARY METHOD.

By Thomas Kirmland, M.A., Science Master Normal School, and William Scott, B.A., Head Master Model School, Toronto.
Intended as an Introductory Text-Book to Hamblin Smith's
Arithmetic.
Cloth Extra, 176 Pages: : Price 25 Cents.
W. D. DIMOCK, A.B., Head Master Provincial Model Schools, Nova Scotia.
The Flementary Arithmetic by Kirkland and Scott I can heartily recommend to our teachers. As a preparatory Arithmetic I have not seen its equal. The young pupil, ty the arrangenent of the principles presented uni the exercises laid down, is led almost unconscionsly to the great field of the unknown, by a step, that makes his earlier urithmetical studies a pleasure and a profit
A. H. McKAY, Principal of Pictou Academy and Public Schools.

I have examined your Elementary Arithmetic on the unitary systenı by Kirkland and Scott, and have no hesitation in saying that I consider it the best Elementary Arithmetic which I have yet seen. It is algnirably adapted to the requirements of grades 1st, 2nd and 3rd of our schools, as it offers, in addition to our present text-book, a copious and well selected assortment of exercises, a good arrangemant and conciseness in definition and explanation.

W. E. SPRAGUE, Head Master, Model and Public Schools, Cobourg.

Since failures in Arithmetic are mainly due to a want of power in indeperdent analysis-to a lack of knowledge of the unitary method and of skill in its application-this volume which discusses the problems on independent methods will be cordially welcomed by trachers. As a discipline of the mind in tea hing the pupil to think and reason, Arithmetic is pre-eminent if taught by logical methods; and this work places it in the power of the younger classes to be benefitted by such methods. A very praiseworthy feature of the book is the large number of examples and problems peculiar to so small a work.

James duncan, Principal Essex Model and Windsor Central School.

After a thorough nerusal of the Flementary Arithmetic by Kirkland \& Scott, f have no hesitation in suying that it is better adapted to the schools of this country than any similar book that has come within the range of my twenty-seven years experience. The arrangement is natural and comprehensive. The questions are in clear, terse, attractive language.
W. R. RIDDELL, B.A.. LL.B., \&c., Math. Master Ottawa Normul school.
I consider it well adapted for the purpese for which it is incended.

[^3]
dr. mClellan's mental arithmetic.

THOS. O'HAGAN, Principal R. C. 8. S., Trenton.
I consider it an excellent little work, showing most clenrly that even Mental Arithmetic to beginners is the true logic of the times. The work should be in the hands of every teacher who would wigh to teach Arithmetic by a system of thought.

W. E. SPRIGUT, Head Master Model and Public Schools, Cobourg, Ont.

I have examined McT ollan's Mental Arithmetic, part I., and highly apm ve it. (1) The work is so divided us to be presented to the learner in its simplest form. (2) The operations are limited to small numbers. so as not to embirrass the rensoning powers. (3) The pupil is led gradually from the simplest to the more complicated reasonings. There as nothing superfluous in the book and yot there is nothing essentinl omitted. The work is perfectly adupted to the wants of r,ur schools.

T. O. STEELE, L’Orignal.

Dr. McLellat. s book would also be an excellont teacher's assistaut.
A. C. A. DOANE, I P.S., Barrington, Nova Scotia.

The Ment 1 Arithmotic is a work much needed, and will doubtless come into use as it becomes known.

JAS. BROWN, Principal Model Schoo', Whitby, Ont.
Dr. McLellan's Mental Aritometic supplies to teachers a requisite they have long required, and will materinlly aid in having that attention paid to the subject its importance demands.

BANDFIELD DAVIDSON, Principal Model School,

 Renfrew.I have carefully examined McLellan's Mental Arithmetic, and have no hesitation in saying that it is superior to any other in use.
W. W. TAMBLYN, M.A., H.M. High School, nshawa.

I think it is one of tha most valuable books of your valuable Fducational Series. I have long desired to seo a good Minntal Arithmetic in our schools. both High and Public. I think that Dr. Mel ellun's work is ndmirably adaptod to teach concentration, ingenuity, and rapidity of thought.

ALEXANDER M. RAE, Head Master Model Suhool, Port Perry.
 I corsider it much sruperiur to the works in common use in our schools. The exercises are piogressive und well arranged.

DR. MCLEIJJAN'S MENTAL ARITHMETIC.

From the CHATHAN. PLANET.
This book will prove un importat auxaiary in the study of arithmotie.

A. C. HERRICK, Head Master of Public Schools,

 Collingworl.MeLellan'a Mental Aritlimctic, Part I., is everything that chn be desired as such. It should be in the hands of all tenehers. Its rource is a sufficient guaruntee for its thoroughness. I would be pleased to see it introduced into all var schools.
R. KINNEY, M. D., Insp. Public Schools, District No. $\stackrel{\ddot{1}}{2}$, Leed?
Well adapted for uso in our publie sehools.
D. H. MUNTER, M.A., H. M., TT. S. Wnterdown.

It is an excellent little work. which will supply a want long felt by C'anudian teachers.
J. FRITH JEFFFRS, M.A. Coll. Inst., Peterborough.

The Mental Arithmetic by Dr. NeLellan supplies a want in our list of text-bools. Fiver since the introduction (f the unitary method of teaching written arithmetic there has been needed such, a guide in mental exercise. The mathods of oreration n nd the churacter of thoexample s make the littio bouk worthy of a prominent place in school work.
W. H. LAW, B.A., Prin. High School, Brockville.

It will supply a vory great defcet, aud I am sure the profersion will cordially weleome it. dupidity with neeuracy is not found in our schoo:s, und the Doctor's excellent publication will admiruiby uecomplish theso results.
J. H. ḾTEAUI, H. M. Model School, Lindsay. It is amost excellent drill munual, and should be in the hands of every seholar.
A. BOWMAN, M.A.,II.M. Hisll Schnol, Farmersville

The Mental Arithmetic, like its anthor. weeds no commendation. It was needed, and will bo much used.
M. McPmFinsoñ, M.A., IF. S. S., Prescott.

You eertainly deserve tho thanks of all who are interested in the edueation of our wouth, for vour efforts to suprly our tenohers and mupils with suitable text bo lis. I am pleased with Ne! ollun's Mental Arithmetic, and hope it will soon be in the hands of every teacher in this Provilice. Were mere attention given to mental arithmetio in the brimary clasios th our Publie Soncols, there would lo fowor falmes at our secund class and intermediate exa. minations.
 IN田WBOOKS
AUTHORIZEL EY THE MLNASTER OF EDUCATION.
HAMBLIN SMITH'S ARITHMETIC-By Thos. Kirkland, M.A., and W. Scott, B.A. 75 cel.ts.
HAMIBLIN SMIPH'S ALGEBRA-With Appendix is Alfred Baker, 13. A., Mathematical Tutor, University College, Toronto. 90 ets.
HAMBJIN SMIXII'S GFOMETRY-Schon Edition, with Examination Papers, from the Toronto and Magill Universities, and Normal school, Toronto. 90 eents. Books 1 and 2, with Examination lapers. Cloth, 30 cents. Books 2 and 3, with Examination Pavers, 30 cents.
POTL'S ELEMENMS OF EUCLID-With Examination Papers, 75 eents. Dooks 1 and 2, 30 cents. Books 2 and 3, 30 ets.
ELEIKENTARY SNATICS-By Thos. Kirkland, M. A., Seience Master, Normal Sehool, Toronto. \$1.00.
HAMBLIN SMITH'S STASICS- With Appendix by Thos. Kirkland, M.A. 90 cents.
HANBLIN SMITH'S FYDROSTAIICS—75 eents.
FLEMING'S ANATISIS-Witl Examination Papers, by W. IIouston, M.A. Second Canadian Edition. $\$ 1.00$.

MASON'S ENGLISH GRAMMAR-With Appendix by W. Houston, M.A. 75 cents.

SWINTON'S LANGUAGE LESSONS-Adapted to Junior Classes Canadian Schools, by J. MeMillan, B.A., Ottawa Collegiate Institute. 25 cents.
BEATTY \& CIARE'S BOOK-KEEPING-70 cents.
HEALTH IN NIIE HOUSE-By Catharine Buckton, co cents.
EPOCII SERIES OF HISTORY-By Rev. M. Creighton, M. A.

LTIWIS' HOW TO READ-rs eents.
SPALDING'S ENGIISII LITERATURE- 00 cents.
SIITTE'S PRIMATE DRAWING CARDS - Per serics, 15 cents.
SMITH'S DR A WING BOOKS—Nos. 1, 2 and 3-Primary and Intermediate Course, each 15 cents.
SMITH'S PRIMARY MANUAT OF DRAWING
SMITH'S INTERMEDIATE MANUAL OF DRAWING- $\mathbf{V} 1.9 \%$.

By J. A. MrcLELLLAN, M.A., LL.D , Inspector of High Schools, Ont.
PART 1.-FUNDAVENTAL RULES, FRACTIONS, ANALYSIS. PRICE, SOc. PART II.-PERCENTAGE, RAT'O, PROPORTION, \&e. PilCe, 45C.
W. D. DIMOCK, A.B., H.M. Provincial ILIodel School, Nova Scotia.
Dr. McLellan's Mental Arithmetic supplies a want that we should have had supplied in our Schools long ago. Same progress cannot be made in Mathematical work, unless what we call Mental Arithmetic is thoroughly and systematically pursued. A boy who is conversant with the principles of Mental Arithmetic, as given in this little text-book, is worth as a clerk or accountant 50 per cent more than the prodigy who can boast of having "gone" through his written arithmetic half a dozen times.
J. S. DEACON, Principal Ingersoll Model School. Dr. Mclellun's Mental ritumetre, Part I., is a credit to canadians, and it supplies a long-felt whint. It is just what is wanted for "waking up mind" in the school room. Atter two wceks use of the book with my class I am convinced that it is much superior to any of the Americun texts that have becn nised here both as to the grading of questions and the style of the problems.
J. A. CLARKE, M. A , H. M. H. S., Picton.

Dr. Mchellan's Meutal Arithmetic containg a great number of usefnl problems well adapted to develop by regular gradations the thinking powers of the pupil, und to suggest similar examples for the use of the teacher.
D. J. GOGGIN, Hend Master Model and Public Schools. Purt Hope.
fimple in its nrrangement, varied in its types of pructicnl guestions and suge;-estive in its methods, it is the bcst book of its kind that 1 have exemined.

From THE WFfleiyan, Halifax, Nova Sentia.
Th series bids fair to take a good place in scholastic work.

[^0]: $y^{5}-y^{4}$,
 and these expressions cannot be abridged.

[^1]: $\therefore 2^{\circ}$ The following Fxampies may render the nmoces more

[^2]: * Another proof of this Theorem may be seen in Art. 475. [s.A.]

[^3]: JOHN DEARNESS, Public Sohool Inspector, East Middlewex.
 I hovye examined this book with inerensing pleasure and can aneak of it in almost unqualiffed recommendation. It is, in my opinion, the best elomentary Axithmetio I have examined.

