The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurèe et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'zutres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

dlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte. mass. Jorsque cela etait possible. ces pages n'ont pas èté filmées.

Additional comments:/

Commeniaıres supplementaires:

L'Institut a microfilré le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplarre qui sont peut-Etre uniques du point de vue bibliographique, qui peuvent nıodifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommageesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured. stained or foxed/
\square
Pages detached/
Pages dėtachées
Showthrough/
Quality of prınt varies/
Qualité inégale de l'impression
\square Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from: /
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Generique (periodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indıqué ci-dessous.

EMBRO OATMEAL MILLS Gnatham WIPed HOOD 60., Ltad.

ROLLED OA'S

沙 STANDARD and 浸

GRANULATED OATMEAL
... Made from Selected Whito Oata
srech ghem miee wiry Fcot muras ran meatio. yav witi cantons meve
D. R. ROSS, Embro, Ont.
_Owner of the Patents for the Dominion of Ganada
IS now issuing Licenses for the use of wooden barrel hoops with reinforcing metal band commonly called "the wired hoop." These hoops are specially serviceable for high grade cooperage, requiring strength and tightness, such as flour meal, cement, etc.

- ADDKESS COMMUNICATIONS TO -

d. L. Goodllue \& $\mathbf{C O}$.	Tork
LEATHER	
BELTING	
LACE LEATHER	

$\longrightarrow \square$

 the premisen of deowere. Whetserin is the propery of the atured on at at hers for which the asmoned would be liable in case of explosion.

EBTAELIBMED IRes
 The J. 6. Molareen Beiting Go.
 MONTREAL

 BEDTINGN
 mangpactureo pron
 IMPORTED OAK-TANNED LEATHER

EVERY BELT GUARANTEED
TORONTO: 76 YORE BrREIT

THE

OHARACTER SK.ETOH.

HAROLD BARRETT,

ALITERARY critic has said of the bogr aphy of Dr. J. G. Holland, founder, and until the time of his death, editor of Scribner's Mirgazine, as well as author of such commonsense and widely read works as "Timothy Titcomb's Letters," "Lessons f.um Life." etc., that it is lacking to some extent : a interest because Dr . Holland's career was, for the most part, one of uninterrupted success, which was steadily cumulative-his life wanted the necessity for battle with the world, which has given rest to the lives of so many successfi.' is en.
We may envy those who have been born, as the saying runs, with a silver spoon in therr mouth, and wro are permitted to spend their days on a bed of roses, but after all such lives are often weariness itself.
M- Harold Barrett, of Port Hope, Ont., whe at the last meeting of the Dominion Millers' Association, was unanimously chosen president for the new year, was early obliged to shoulder the responsibiliites of life, and with innate energy and pluck, he has steadily fought its battles ever since. Mr. Barrett was borm in Port Hope, Sept. 9, 1658 , of Eng'ish parents. His father wis the owner of the local four mill, ant iat the age of is the younger Burrett went to work in the mill. So that it can be said of him-as of miny otheis prominent in milling circles in Canada-that he was to the manner born. At the age of sixteen the death of his father occurred, and within the next year young Barrett took over the milling business from the executors of his father's estate. A result has been, as a friend has well stid: "Mr. Barrett has acquired a varied expetience of business vicissitudes from fire, flood and fluctuating markets, and had passed through these long belore many young men think of undertaking a business on their own account."

It is sometimes said that this is an old man's age, from the fact that Gladstone, Bismark, Caprivi, Crispi, Pope Leo XIll, Sir Oliver Mowat and others far advanced in years have continued in the lead of pubsic affairs. This from one point of view is true, and yet one cannot exercise their observation without being impressed with the fact that at the head of many of the greatest enterprises and most successful business undertakings of the day are men, who in every serise of the term may be known as young men. This has indeed been the case with men successful in many undertakinds. In literature the originators of the Edinburgh Revien-Sidney Smith, Jeffrey and Brougham - were young men. Burns and Hyron had accomplished their work before they were 37. Newiton's best work in science and Wau's in mechanics were placed on recurd while these men were young. And was not William Pitt Prime Minister of England at 24? Mr. Barrett has in his career, whether as a business man or in 2 more public way, furnished another illustration of the success that may come to a young man before he has reached 40 , for it is to be remarked that Mr. Barrett has little more than turned his 36 th yea.
In his own town perbaps no citizen is more highly respected than Mr. llarrett. That he holds a hish position in the confidence of his fellow-townsnien is shown by the fact that for several years he has held a seat on the courcil board and to-day occupies the ir. portant position there as chairman of the finance committee. He is also one of the lhoard of Harbor Commissioners who conttol the Port Hope harbor. The same diligence and business capacity that for 20 years be has brought to bear in the management of his own
besiness, he has thrown into the affurs of the town, "here he was born and has during his lifetime live 1 .
From the carly d.iss of the otganization Mr. Barrett has taken an active and intellgent interest in the affiairs of the Dominion Millers' Association. He has ever been kno $\because n$ for his unassuming and modest demeanor, and he has required just a little pushing by his friends sometimes to place hims in the positions of responsibility for whi.h his talents well fitted him. A year ago he was elected vice president of the Association and in this position he showed himself throughout the yeat to be a valued member of the executive. Axgresitive in his stand against any wrong bearing against the milling trades, he was able to give good service in fikhting extortionate freight rates and the furtherance of other retorms during his perird of office. At the meeting of the Association list month his fe!low members showed their

Mk. Hakoti Barrett.
appreciation of these services by at once electing him to the office of president. He will be known as the youngest president of the Association. Not at any time is he given to inuch talking, and yet when he discusses any question it has been shown that he has obtained a good mastery of the subject under consideration. His paper on "Doubtful Milling l'atents," read at the August meeting, showed very rlearly the thorough manner in which Mr. Barrell prepares himself for any particular undertakin. The paper was full of carefully collated information on the subject dealt with, while its suggestions show the practical and common-sense turn that Mr. Barrett gives to any subject that he touches. Following in the frotsteps of Thomas Coldie, E. Peplow, M. McLaughlin, and N. H. Maird, though a younger man than any of these, Mr. Barrett may be expected 10 represent in a creditable and able manner this Association, which is perhaps the best organized and business-like managed millers' organization on the continent.
De Maistre says that: " To know how to wait is the great secret of success," and an litalian provert has it: "Who gnes slowly, goes lonk and pres fer." Mr. Barrett has that strong element of hanging on, or to use a more modern phrase, sticktoitiveness, that it has well been said is the true spirt of genius, and that brings certain success wherever exercised. Mr. Barrelt from boyhnod days has always "got there," and as the executive head of the Dominion Millers' Association this year his record will no douit be one of equal success.

rosting of boilise shelle.

N: a paper read in Ciennany on the rusting of boilet shells, the author concludes that the most serious cause is the introduction of air with the feed wat. If the feed water enters the boiler near the low-water level he concludes that it will soon be expelled with the steam, unless it has a chance to acrumulate in pockets. Such pockets rust rapidly. The feeding, he advises, should be conopleted before stopuing for the day, so that the witter standing in the boiler over night shall be as free from ar as practicable. Faulty construstion, the author believes, is the frequent cause of internal rusting. For preventing rusting he recommends: First, while the boiler is working -(1) Removing the air from the feed watet brfore it enters the boiler. (2) Removing air from the water while in the boiler, and preventing its accumulation in pockets, etc. (3) Addition of chemicals to the feed water. (4) I'rotective atings applied to the inside of the shell. Second, while the boiler is standing ide-(1) Removing all moisture from the boiler, (a) by blowing it off while hot, (b) by producing an air current through it, (c) by placing hykroscopic loxlies inside. (2) Direct prutection of the shells, (a) by puinting with tar, varnish, etr., (b) by covering with protecting the shells from tarying temperatures by keeping the draft in the flues constant, and so as to prevent moisture alternately depositing and evaporating on the shell. (4) Irotecting the shell by completely filling the boiler with water from which all air has been expelled.

microbes in bread.

DOCTOH Trotzki, writing in the Russian medical periodical Vra:ch, states that he has found that new and uncut bread contans no micro-oryanisms, as the heat necessary to bake the bread is sufficient to kill them all. As soon as the bread is cut and is allowed on he about uncovered, not only harmless, but also pathogenic, incrobes find in it an excellent nutrient medium. White or wheatmeal bread is a better medium than black or rye bread, as the latter contains a greater percentage of acidity. Dr. Troitzki's -xperiments with pathokenic bacteria pave the following results: Streptococcus pyognes aureus r tains its vitality on the cruinb of wheatmeal bread for 28 to 31 days, on the crust for 2o to 23 days; the bacillus of anthrax (without spores) remains alive on the crumb for 30 to 37 days, and on the rrust for 31 to 33 days; the typhoid bacillus remains active 25 to 30 dass on to the crumb and 26 to 28 on the crust, while the bacillus of cholera lives 23 to 25 to 27 days on both.

EXPORTS AKD DIPORTS OF WHEAT.

THE following table exhibits the approximate expolts of wieat from the following countries for the twelve noonths ending July 31 :
 period was as fo'lous

United Kinidom
Bushels.
France

Cireece $10,000,000$
China, etc
Total.
=,000,000
20,000,000
87,200,000

TRANSPORTATION: OUR WATERWAYS.

FEW more importamt yuestions of a commercial char-
acter are before out people to day than a consideraacter are before out people to day than a consideraton of the best course to puisue in the development of our watlerways. It may be evpected that the coming international conventwon to consuler the subyect, and which is to meet in this atty very shortly, will throw some lixht on the question The fat that such a meet. ong has been called, and that leading citiens of Camada and the United States are interesting themselves ar tuely in the matter, may be taken as good evdence that the question is a live one.
The 'li.trk has alre.ily published sereral contribu tions on the yuestion, and this month further supplements these by an artucle specially written for these columns by Mr. J ames 13. Campbell, of Montreal, in which the Wellind Canal, as a fictor in proposed plans, is discussed. And following Mr. Campbell's paper are the views of Mr. Fisher, M.l'.1., of Winnipeg, who has been a close student of the sulyect for years.

What Mk. (AMphti, רt),

It is with pleasure I notice that the Canaimin Mitif.ek invites discussion on the imporiant problem of transportation in Canada. If by throwing your columns open to the question, you can lead Canadians on, etther to criticise or to suggest inprovements, the whole question of transportation is certain to be a painer thereby.
The problenif for us is, the transportation of the product of the great 'West to the consumers in Europe. There is no svstem of transporiation by land which can compete in cheapness with the trinsportation by water, represented by a carrier of say 100,000 bushels in bulk down through the great lakes. The watershed of the United States drifing to the (iulf of Mexico has been of little use to the Americans of the Northein States, and they have bent all their energies to something else ; a kreat development and a keen competition in their land carriage has led some people to unagire that the railuay and not the watercourse $w_{d s}$ the true vehicie of transportation. In our country a glance at the map will consince anyone that a great development of business along our watercourse should be the almof our business men and of our sta:esmen entrusted with power. Olur watershed, clear and distinct from that of the U'nited States, extends from the Kocky Mountains through our land to the Atlantic, and represents the artery of the for our cour $\cdot r$ y It is true that this preat artery is closed for $;$ months in the year, but so is the whole transportaton service of the sreat likes, and the more the Nouth West develops, the more evident abecomes that their future is dependent on this se...on of open water for its transportation far be it that 1 should deprectate in anv way our ra 'way system, mote especially that portion of it west of port Arthur, withous which we could not have opened up that sreat empite or. the west; however ir insportatuon by water cast of l'ort Arthur is the pottion of our watershed up iur dis-ussion at present.
These xeneral remarks are preparatory oo tiking up the question to, whil h thi letter is devoted the Welland Canal The propostion to 'ecpen the ranals has leerome - rystallized. Alinnst cuery witer and public spe.tike, seeking to arcount for the stagnation of trade on the st. tawrence mute, ,eeking to account for the fact toat Montreal tranships 25 millions tigainat Buff. 10 's 200 millinns, winds up with, "I cepen the canals." Competent engincers assert, I believe, that in deepen the Werland in a level of so feet, would mean an expenditure of is mbllions of dollars. it he question is, Would it pay? Why is it so easy fin grans in drift in the sea ina lluifalo, and oo difficult to bring it nur way: In the ansuer will We fround the answer to the yaestion, "Would it pay?" The seneral modern tonnage of the upper lakes is now represented lyy wewel, of 300 in 340 feet in length, and our Welland inks are only a;o fret : consequently for frecghts throush in kingstion or "Odensburg we are dependent on the maller freighter and sene rally speaking the older two.t1 It is the larger vessels that make the freta he rates, and an the odder and smalle bouts fall out, it in pr mable that it will become liore and more
difficutt to set a aptal to replate them. The season durink whirh these lake ir ift can earn a devidend is short : fiesht rates are low, it is difficult to see what is in addvance them, and their onls, valvation lies in the number of yunk trips at the low puce The time for a propellor fion Chicago to l'ort Collsorne or Buffith is about 4 's days. Our Well ind hav 3 , locks, anci a versel making the trip in and out of Lake (Intaro lose, from 30 to 40 hours in that canal. A vessel owner will not infuntarly surrender that tume, exept at a compensithong rate of fieight, and the monent higher iates are estabitished, the roule is bandicapped with the extra charge. This would apply with the same force were the locks 3 5o feet and their depth 20 feet. Towards the close of nanigatoon, when the pressure of fall :hipments is on, this loss of time in the Welland is a very serious consideration, and is a damper fot the Canadian route. As an illustratoon take the rates of freights today wheat is being carried fiom Duluth in Buffilo fon It a bushel and on to New York for 3 cents - th in all, while so light is the trade va the St. Lanrence, that it is difficult to get Well.and canal vessels under $2 \frac{1}{3}$ cents to kingston, tolls pard, and with the $2 t$ river fieright, say 5 cents io Montreal. The largest carrier is the cheapest fretghter: it will make the freight rates and take the trade with it. l'nul that far distint day arrives when Chicabo elevators move nut to the breakwater, captal iniesting in lake tonnake for general business will hinit the diaught of the vessel in the depth of water in the Chicago river; this niver is nariow, its banks are muddy, and not withstandm_{k} decrecs at Washington, 1 doubt if it will ever stand dredging to 20 feet. If my memory does not decenve me, the depth at present is 156 and to call the last six inches water is to. Insult tectotallers. I have frequently seen the ordinary Buffalo propellers stuck in the sedtment at the Clark street bridge. It is not the want of water in the Welland which sends the grain to Buffalo. for there is really very litile difference between the Welland and the Chicago rimer. The reasonsare, the shortness of the locks, the time lost in the canal, no return carko, the limited amount of ocean tonnage a the lort of Montreal, sundry charges which should be borne by the nar on, and the unlimited amount of ocean tonnage at the port of New lork. That is what is the mantel with our trade.

Untal we have a larger fieight market at the l'ort of Montreal, there is not the slightes. use in spending money on increasing the depth or lengthening the liocks of the Welland. The only way in which we can increase this freight market is to buy more stuff where we hope to sell. The true solution, 1 thin', for trade via the Welland is a transportation company, transhipping the kran at Port Collwirne, into woorten baries and freighting it straight to Montreal. The vessel ownerat Chicagn, Duluth and l'ort Arthur would carry the grain to l'on Colborne at lhuffalo rates in competison, he would not fixure on tume lost in the canal ; if we could not supply him with a return cargo, it would be no trick to run into Buffalo hight, get his return cargo there, and travel west as happy as his rates of ireisht could make him. Hy this means we could make use of the l'nited States west bound traffic to help our shipments via the St. I.awrence, uritul such time as we created a through trade of our own. Arranging our affairs to take advantage of the Buffalo coal tiade nould be a point gained for us, and western men equall, with ourselves would rcap whatreer ddvantage there was in it, but so long as we depend upon the Welland canat only, we can never hope to do the business which our favorable position on this contument would seem to justify. The canal is, however, quite suffic:ent for the Montreal freight market at present. If we could not barge krain from l'ort Colborne on Montreal in 50,000 bushel lots rheaper than from 13.:Talo in New York wa the litule Fine in 6,000 busnel lots, there is no use in patting ourseives on the back oner our natual nater route The demands of marine insurance, that suct ta'ie vessels carry saila, could easily be covered on 50,000 busliel barges, and the tow come on in Monireal. Io not let us hear ams thing dootit moie elevators at l'ort Collomene. l'ut the price of the elevatois into barges, we want the stuff to come through not stop theie. At liuffalo the litile foxajing elevaiors forced the bia land elevators to bay them out. Cheap floziting elevators will beat land elevators oxat of the transfer
trade. Such a trinsportation company would, however, have to be one of large capital. At Port Colborne the propeliers would come imo harbour from Cbicagu, Huluth and Port Arthur, with to0,000 bushel lots, and would base to be unlouded promptly, with the present depth of our river canals and channel, and at the rate they are giving this much talked of deepening of that important part of our ronte to 14 teet, will see two elections and ten years t.ane pass over our heads. The grain would have to be transferred into 4 or 5 barges, these barges would have to be camped out for at least a fortnisht, anil others ready to take their places. The season is short in which to make a dividend, and with our little bit of a freight market at Montreal, a Welland and Mon treal transportation company would not make expenses. To do the thing right it must be prepared to handle the westein trade on a western basis, and there is not the tonnage at the Port of Montreal to do it. With more freight room, and $i f$ feet of water in our river channel and canals, barges freixhting 50 to 60 thousand bushels, i'ort Colborne to Montreal, preserving the identity of the grain, especially the fine sping wheat of the north, would leave New York with its larger freightage and little 6,000 bushel boat loals high and dry at competing prices for the spring wheat trade, but a larger freight market at Montreal is an absolute necessity. As to what could be done in the way of increasing our ocean freight market, it is only necessary to quote a well known axiom : "Those who can reach the markets of the world cheapest, shall control the markets of the world "-and it applies with the same force to imports that it does to exports.

The geiseral conclusion is, that until there is trade enough to push a transportation company on the Wel-land-Montreal route, to the full capacity of that canal, it would be very little benefit to the country enlarging it. When that day comes it might pay better to build another, for there would not only be roon for twa, but for many other transportation routes through Ontario. :'r. Hill, P'resident of the Northern Pacific Railroad, s.id, Canada has advantages which are pecularly ber own, and that there was room for a far greater development of trade than inost people imagined.
At the moment of that earthquake last spring in this city. I was talking to the owner of these fine English turret freighters which are now doing such good work on the St. I_awrence for our coal companies. It is quite possible to build a "turret" sieighter for a 14 foot draught of water capable of rarrying 90,000 bushels of grain through from the lake ports to England-but all the c:anal locks would have to be lenythened.
Kegarding this business of loading at the lake ports ; cheap craft of say 3000 tons represented by those "turrets" misht possibly do it, but they would have to compete with the 12 or 14 thousand tonners of the ocean loading at an ocean port : the cheip craft of the lakes with a tow of barges would more than hold their own, while the turning of the grain once would be a decided advantage to the grain, and with regard to corn almost a necessity. The time lost in those numemus canal locks would prevent as expensive a ship as a 20 foot ocean freighter loading at a lake poit in compesition with cheaper tonnage. The "whaleback", suitable for the lakes is a failure on the ncean; the "turret" is still experimental for the sea and lakes, but it has established itself on our river to stay. I learn from an independent quatrer that the; are paying 10% on their cost-notwithstanding dull times. Let us have the 14 foot channel as quickly as possible.

a voice from manitora.

Mr. james Fisher, M. P. P., of Winnipeg, Man., when in Totonto a fortnight aga, gave expression at sone leagth to his views on the subject of transportation and the benefits that he believes wu.ld accrue to Canada, ani' particularly the Northwest, by an extcnsion of our *aterways.
"Tie people of Manitobh" ssid Mr Fisher, "are becoming nore and more alive to the great importance of the deepening the channels. I believe the opinion is every day gaining sround that the surest means of deliverance from the present ruinous freight rates is to be found in the deepening of these waterways. ${ }^{n}$
"What we are specially anxious for at present is to
see a speedy completion of the work now on hand, namely, the deepening of the channels to 14 ieet. That once accomplished will, 1 am convinced, bring about of itself a very considerable reduction in the cost of transportat.on.
"With even at 14 -foot channel the great cost ant delity in transportation by barges through the St. Lawrence will be avoided. Capt. Macdoukall's whalebacks will bring down to Montreal immense loads of giain without breaking bulk.
"Indeed one steamer with two barges in tow will bring a quarter of a millon bushels in one load, thus cheapening very materially the cost of carriage.
"We are hoping, however, that the idea of a further deepening of the channels until we have a uniform depth of 20 feet all the way to the sea will be agitated on both sides of the line, and that finally the two nations will undertake it as a joint enterprise.
"When I say that the lakes and rivers are the heritage of both nations equally, 1 mean that is so in respert of all the water, right through to the ocean. It is manifestly so from the head of the lakes to the point on the St. Lawrence where the line of the international boundry leaves the river, and it is only in respect of the short distance between Cornwall and Montieal that the St. Lawrence can in any sense be called a Canadian stream, and then it must be remembered that for even that portion of it the nught of American citizens to use it on equal terms with Canadians has long since been conceded brtreaty, and that treaty is not by any means an ordinary one, in so far as it deals with the use of the St. Lawrence.
"Usually such a concessinn is made by one country to another as an equivalent for an advantage conceded by the other side, and for a limited time. In this case on the contrary, the American people always clamed that they had a right in use the St. Lawrence, irrespective of treaty, because it was a passay - between two bodies of water that were comnmon to both nations, viz., the great lakes and the Atlantic ocean."
Speaking of the difference in cost of transportation by water and by rail, Mr. Fisher said :
"There is no doubt whatever, upon this subject," answered Mr. Fisher. "The difference, indeel, is most remarkable, and possibly few recognize the extent of the reduction made where water transportation is available. As illustrating this difference in respect of transportation from the Northwest, I may give you a few eximples. Our great staple in Manitoba is, of course, wheat, and it is most disheartening to feel that half the value of the grain in the English market is expended in paying the cost of transport to that market from our province.
" The greater part of our grain is taken by rail to Fort William and is thence carried by water either to Buffalo or to Montreal.
"The rate from Brandon to Fort William, a distance of 560 miles, is 11.40 cents per bushel ; this, of course, is by anil. From Chicago to Buffalo, 900 miles, the rate by lake is from two to three cents per bushel. In 1891 it was less than two cents on the route (from Chic ago to Buffalo by water) and it has been as low as one cent per bushel.
"From Duluth to Buffalo (by watir), a distance of 1,000 miles, I understand, the usual rate is between three and four cents per bushel, the average for some seasons having been as low as three cents. From Duluth to. Montreal (by water), nearly 1,400 miles, when compettion is keen, I understand the rate is from six to seven cents per bushel.
"From Winnipeg to Montreal (by rail) the distance being only a few miles greater than from Duluth to Montreal, the rate is about 27 cen!s. The average all rail-route from Chicapo to New York in 1891 was 15 cents per bushel, while the average rate by lake and canal between the same points was less than 6 cents, and this although at Buffalo it had to be transferred to the canal barges on the Erie. Again as against the rate of 11.40 cents per bushel from Brandon to Foit William, I refer to the rate of from 2 Xc to 3 C per bushel from Buffalo to New York $1 \times$ the Erie canal and Hudson river, nearly as long a distance.
The average yield of wheat in Michigan this year is slightly under 15% busiets per acre.

causes of flour mill fires.

ACONTEMIPORAKY has, tecently, published a mum. ber of dagams showing the camses of tite be classes of property The di,krimin gisen herewith hown the causes of fires in flowr, grist and oameal mill. It requires no explamation furlier th.in to nil) that the periphery of the circle is divided into toc paits lanl pant between the latle marks on the moside of the a wile represents i per cent. To ascertan the percimage of fires due to any cause, coumt the number of per cent. marks in the arc of the seginent pinen to that ciulse. In preparing the diagram no attentoon was paid to ea. posure fires, incendiary, nor to those of unknown oigin.

Fiction seems to be the miller's kreatest enem, nearly one-third of the fires beling caused therets, while the much feared dust explusions are reported to h.we

caused but 2 per cent. of the fires. Among the catues of fires which could easil) be perented with orthang: care are friction, spontaneois combustom, defortwe flues, boiler explosions, furnices, stove pires and defective kilns.
Ginxi oil of the proper wisconty properly appleded to correctly arranged machiners will perent fires bem. started by friction. Spontaneous combustion dors not occur in mills where olly rags, dirt and refuse matter is not permitted to remain in corners and cut of the way places, and the fluor is not thooded with oul drippuss from bearings. The coal pule which is a prolitic source of spontaneous fires stould be kept in an adjacent butding by itself. Defective kilns, hues and furnaces and weak boilers and poorly gonted stove pipes are mercus.able sources of many fires.
The diagram clearly shows that the majority of mull fires are due to carelessness on the part of the milier. If you do not wish to lose your mill take care to pre. vent fics being started, and provide fachitites for evringuishing them in their incipiency.

ITAM ITPECTIVE PRESSURE.

0F course the astual mean effective pressure in the cylinder c̣an only be had from the indicator card, but we can approximate it closely enough for c.lculating the power of the enkine commercially, thounth perhaps not exactly accurately.
This will vary with the different enkines, the clearance, the back pressure and the release of the evhaust will affect it somewhat, but a few figures for difierent cut-offs will be useful for the engineer.
The inean effective pressure in the cylinder when :he cut-off at
1.4 stroke equals. 577 of boiler pressure.
1.3 stroke equals .670 of boiler pressure.
3.8 stoke
3.8 stroke equals. 743 of boiler pressure.

1-2 stroke equals. 847 of woiler pressure.
5.8 stroke equals. 919 of bouler pressure.
$2 \cdot 3$ stroke equals .437 of boiler piessure.
3-4 stroke equals. 966 of boiler pressure.
7.8 stroke equals. 992 ot boiler pressure.

For net effertive power deduct alout one-fourth for friction of engine in engines of fair size, and fot simitl eryines as high as 50 per cent. is often lost, making a far less efficient motor than the electric motor, provided the cost of power supplied to them was both the same.
 dur tom, as a the Trade Bulletm, of Mantse.s, lias been one of the a hat mantion to per bhiture mest

 the prese of wheat dhuped "fome the serentues mathe
 for the fimeswion of whe.t, and wheat they kon, on matam of omese, at it was then considered that at 5 c . margin e ould not pouble be wiped out, it remge cobsuleted as safe in has mix the wheat +1.1 bith ont. and
 cetcal bemg below ast of porduthon it fell ind fell, antul mestur commen ad to lowe fath in the theory, and mom; had we ehonush the deab when sephember optum dppet belon 5%. at anouler,ble lo... The "helow eont of productoon theory his been shern to
 futum atues Fon insture, when poit in (lin aso nold
 production and wald not po lower, .and in in a few

 thaned to bang in then supplec, and the remilt 1 as
 thene cirtumstames to shew th. the tont of prodating ans uth le is no grutatece of whe fathor betow that
 depresum in whers... ".小 nus followed by a deation

 total cont of anh whent at tume of wrombe so thit when the ee intum dives set in fonsomet, there would appear ample room for a a wise.

a close call.

ANOTHER narow eraje by menner : lie was in-pecting one of a prat of bomber. I he whe had been blown out of one, and he entered it thougha small manhole in the head. Af er timblutif hin work be called out th his a-sistame toturn on the chit watel, thanking to make his way out menchately. Bie monake the fellow turned on the scald ng. stic uming vilution from the other boller, the hosong and poinm; of wheh made a doubly dense a oar in the revoundmon whader, and comink at the entrance of the manhole effecturlls burred the coti. and made estape fome a terible drath alurost mus. possible. Creeping as a lowe as be datce, to the secthang steam he shouted to ha, oded turn otithe water He rould hear the fellow wown: forind among the ppes, but wated in sam for ham tome. The man had not heard hum. His wowe was stopped the the hasing, bantmg, mocking water. It wis tismg tmomit the popes, at his fee'. A few moments more, he thourgh, and he nould have been cosked alise. There wis but one chanre left opened to force himelt thoukh the widiting water and nut the manhole. Welas .ins homger would be fata, and he plunged f.uce and hands through the cooking stream imto the all besond. Junt then the steam stopped. I: hatd heen tumed off it last.

 Init the hare revere of oht wheat from tact gatio cring will en
 quarters. - Beerlohm.
though perhaps in a lesser degree, in the construction of factories generally. An exhanstive article by Mr. Edward Atkinson is published in the August number of the Engineering Magazine on the annual fire waste. Mr. Atkinson is able to speak on this question from many years of study and observation and his conclusion is that architects and builders, property owners and occupants, are to blame in nearly all cases for the destruction by fire of their properties. This phase of the subject is one worthy of careful thought by millers. As to the charge of carelessness as the cause of many fires, there can only be words of disapproval from the candid friend. It has long since been established that nearly all accidents that occur to workmen in factories are due to their own carelessness and it seems to be none the less so as regards the destruction of property by fires. He who hath ears to hear, tet him hear.
The paper in our july number on flour mill insurance was an out-spoken declaration against the hardships to be endured by the miller, when fire has overtaken him, and he is called upon to adjust his fire losses with the irsurance companics The complaint is not a new one against those whose business it is to adjust fire losses. We do not know why there should be any difficulty on this score. Whatever may be the reading of a fire insurance policy when it is read outside of the blackened walls of the nill there can be no doubt that when the policy was given, the application signed by the miller, and the premium received by the company or its agent, that one purpose only was supposed to have been atained, namely, that when- the time came, if it should come, when fire had destroyed the property insured, the insurer would receive the amount named in his policy and for which he had been paying a premium for either a shorter or greater length of time. Legislation ought to make it so plain that it would not require the services of the law courts to decide how much, or how little rather, too often, the insurer is to receive when loss has been suffered. Millers sinould agitate in this direction and in the meantime they cannot be too careful when placing insurance to read with care and critical mind the wording of the policy that is supposed to give them protection in the time of need and for which they are paying.
The three papers to which allusion has been made in these comments are deserving of careful reading by all millers and one purpose in touching on the matter here is to secure for them the deserved study.

THE SMALL MILLER

Is the small mill to become befere long simply a mat ter of tradition? This question is suggested by not a few changes in the milling situation, that have taken place of late years. The growth in the number of large mills gives an impression in this direction. An interview in last month's Mitleer with Mr. Jas. Stark, of Paisley, Ont., was an expression of opinion along this line. The big miller holds a place in the milling industry now of almost every country. The changes that have taken place in methods of milling have doubtless had a good deal to do with strengthening the position of the big miller, while at the same time, these have to some extent operated against the small miller. It is the men who are in business in a more limited way in any calling, who experience the greater difficulty in conformink to changes in methods and adapting their properties to these changes as they come along. A british agricultural journal remarks on this point: "It is only too well known that in this country the great improvements in milling machinery made in recent years, and the exreme severity of competition resulting, parily from economy in the proluction of flour upon a large scale, have crowded out of the industry a great number of small millers. Thousands of the wind mills which form picturesque features in our landscape and some of the water mills have been allowel to fall into decay, and to be closed down, or to be closed, remaining as pictures of ruin, which all disinterested witnesses regret to see."
This, however, is just one side of the question. We have to admit that viewed alone the case looks somewhat discouraging for the sinall miller. Hut 2 writer in the Milling Worid has pointed out that not only is the small mill a success in the United States, despite the
large growth of the big mills of late years, but that in other countries the same history is to be recorded France does the bulk of her flour making in small mills and her largest mills are the ones that suffer first and most in times of stagnation. The same is true in Germany and in Austria-Hungary. Even in Great Britain, affirys this writer, the small mill has come to the front and is successful in the wain, when the lorge mills are runnning at a loss or on a discouragingly small margin of profit. Viator, a frepuient contributor to the London, Eng., Miller, said on this subject recently: "Scattered all over the land are rolier millers of $21 / 2$ to 5 sacks capacity who will tell, and what is more, show you, that they are holding their own against native and foreign competition. In almost every case the milier tias the same tale of a nonce fourishing business, threatened or broken into by roller flour, being saved by a timely adoption of the roller system. The natural inference is that those who adopted a sound roller system early in the eighties must have quickly recouped their ontlay. Of course, it is always presumed that these bold pioneers werr also good millers, sound judges of wheat and clever market men. Given these three qualifications, with a sood plant and with fair facilties for receiving wheat and forwarding four, it is hard to conceive of a miller failing to prosper."

The position of the man who is engaged in fleur milling in a sinall way is hardly parallel with, nor is the same conclusion to be drawn from the situation, as in the case of the man who may be engaged in other lines of manufacture in a restricted degree. In a sural country, at least, and how much better would be the position of some of our older countries if the rural sec tions wete not sacrificed at the altar of the large cities the small flour miller holds an unique position. His existence is necessary to the success of the country around about him and the anxiety displuyed by farmers in all newly settled countries to have placed in their midst a flour mill is evidence on this point. So far as Canada is concerned our millers, whethergreat or small, are holding their position, we believe, even in these depressed times, with any other branch of manufacture. We are inclined to stand in with the Milling World and say that a careful review of the situation should not cause any alarm to the small miller.

indigation.

At a time when those interested are at a loss to decide what is the most profitable way to work the land so as to hold to the farming community those who are already ocated there it seems a work of supererobation to discuss any project which means the improving of waste lands so that they may be populated. But as studies in political economy seem to show we set back to the land as the original source of wealth in evety case and though difficulties tnay beset the question just for the moment, we may make sure that those who seek the farm as a source of livelihood will in the end hold an advantageous position. So it is that we cannot look upon the Irrigation Congress at Denver, as a gathering discussing a question that is of no particular import. In what is known as the terntories west of the $98 t h$ merndian there is to be found an immense arid district in the United States. Seventeen states and territories alike wholly or in part are within its confines, which embraces two-fifth of the national domain. The work of the Denver convention will be to discuss the possibilities of transforming this vast desert into a fruitful garden by means of irrugation. Already practical work has been done in this direction in the United States, and the census of 1890 shows that a total of $3,630,000$ acres was under irrigation in the States composing the arid rexions. In view of the fact that the regular farming lands of the country in the States are well taken up it means much for that country if its land resources can be adided to by the utilization of this immense arid territory. What has been done shows that lands no: worth $\$ 1.25$ an acre a yeir ano now command $\$ 30$ and $\$ 70$ an acre for improved farins and from $\$ 300$ to $\$ 300$ an acre when covered by bearing orchids. Our own Northwest is interested in a large degree in the success of irrigation methods and the Hon. Mr. Daly, it is expected, will be in attendance at the Denver convention and no doubt will beable to secure valuable information on the question.

AIPTAIN Mebougall, the bunder of the whatebucks, \mathcal{T} writes fiom Duluth, to the Deep Waterways Com mittee: "I am in faver of iso font channel from l. ike Superior to the sea, vat the st. Lawrence route. I have given the matter a greas deal of consder.ation, hatimg travelled by the route many tmes. From what 1 know of the route and the kind of vessel best emted for cheap river and lake tiansportation, also of orean tiade, port charges, cost of transfer, the reyuirements of cargo stowage for an orean voyage, the diffeimen class of men to manage ships on the sea and the lakes, I feel confident that the most protitable plan would be to transfer at Montreal and Quebec. I have just visted the Sault Ste. Marie Canal and think every Canad an has reason to be proud of that work, for doubiless it is the greatest canal constiuction ever known in so short a time."

Mr. Thompson, manager of the Oxilvie Milling Co., Winnipes, who recently returned fromi an extended trip throughout the grain district of Manitola, gives a very gratifying account of the crops, which he says will yield far better than has been generally counted upon. The quality is decidedly good, being nearly all No 1 hard. Mr. Thompson has made a study of the smut question and has not found a great deal of smutty wheat in his travels. He is a firm believer in the value of blue stone as a preventative of smut and wherever this has been freely used the evil has kenerally bren eraduated. Mr. Mrfian, of the Lake of the Woods Milling Co., h is also spent a considerable period diving through Mantoba examining the crops. Considering the dry weather that has prevalled this season, Mr. McCiaw finds the prospects almost better than could the hoped for. The crop has rather improved since July ist. There are some fields that make a heavy stand of straw, but light straw is the rule. There is more smut than last year in some parts, but the weather has been fine for hariesting. The general condition of the ciop, Mr. Mcliaw believes to be, if any:hing, rather better than last year in point of yield, and in quality will also approximate that of last year.

The Hon. John B. Manning, of lBuffalo, who is considered a high authority on the subject said of the effect of the chinge on barley schedule as amenderl by the Wilson tariff : "Under the Mckinle, bill a duty of 30 cents a bushel specific was imposed on barley. The present law makes it 30 per cent advalorem. The present price of Canadian barley in Canada is 40 to 45 cents a bushel. The duty, therefore, will amount from $1=$ to 1 3t cents a bushel, a difference in favor of the lower duty of $16 \frac{1}{1}$ cents a bushel. Stranke as it may seen, the rate under the McKinley bill was a detrument to the growers of barley in this state. The high duty prevented the importation of Canadian barley to any extent. The result was that the brewers and malsters of this Stute declined to buy State bariey unless thev could buy it on the basis of the value of western barley. Previous to the passage of the McKinley tariff bill, when the imporsation of Canadian barley amounted to to,000,000 bushels a year, instead of it being an injury to the interests of growers of barley in this state it had the opposite effect. State barley grown in the counties of Fiie, Niagara and Orleans on the averige is nearly as good in quality as Canadian barley, ard sold within three to five cents as much per bushel, but when the prohibitory duty was placed on the barley and little or no Canadian barley imported, the biewers of this state said there was not sufficient good barley grown in this state to supply their wants, and decided to use substitutes for the better grades of barley malt, and confined their purchases to malt made from western barley. The result was that the price of barley was forced down to the basis of the better grades of westera barley, and the interests of
growers of larley in this state were correspomingly injured. We may therefore reasonably lowk with it lower tate of duty for incieased mpotiation from Cinad., and this will benefit not only the brewing and mading in terests, but also the asricultural interests for the state.

Mr. W. I. Matthew, the laige barley buyer of tins city, says of the United States tariff bill in relation to the birley trade of Cimada. "While Canalla will recover a portuon of the trade she lost under the McKinley bil, it will be difficult to rex:un mur lost posioion entirely. I refer pattoulaty to the batiey tade. The Americ. ns have gisen more attention to the cultuation of thas gram ance the passage of that bill, and have very mush improved the quality of their barley. In addition to this the mproved system of growing and the use of substo. tutes does not neressitate the use of higli-class grades as fomerly, and therefore they will not pay as great a premum as formerly to obtain high Canadian grades. One thong out farmers must not forget. Thes are at a disadimtage in the Ameriran market even though there was no duty at all. In addation to the 30 per cent. duty there is to be considered th: cost of reachings their market to tompete with their 'ome-grown kran. This will a erage about 10 cents pet bushel. It will be difficult for us for these and other reasons the refore to entirely regain our balley trade except in years where the Americans may fall short in th.eir supply."

* * *

A Chicagodespatch of a few days ann says: "Minneapolis mills, which were using $4 / 2$ bushels of wheat for a barrel of flour, are saw using 5 bushels and 45 pounds, so as to throw as much as possible wito the bran for feed, for which there is an actue demand. This will made a difference of 100,000 bushels of wheat a day at that point alone. Mr. M. McLaughlin spoken to about this matter sand that the above statemert was likely an exaggeration of the real facts. He was using more wheat to the barrel of foun for the same purpose but found that about 7 lbs. was all that could be added profitably. He was now using four bushels ana 37 libs. as akanst \& Lushels and 30 lbs previously.

Sendtor W. D. Washburn, of Minneapolis, the wellknown and extensive four moller was in Montreal a week ago and interviewed on trade matters sairl: "I certainly expect prices for wheat in go up; but just what figure they will reach I would not like to say . in fact, I do not thempt to guess it. Of this, though, I an preity firmly coninced. Prices will never be as high as they have been, and I do not think we shall ever hear of the price exceeding the doliar, unless we have some great wars or famines, restricting agicultural operations in any of the great grain-producing countries." Do you expect prices to go any lower? "No, 1 do not see how it could, for wheat is really worth more, and at the present prices proves a profitable investment for hog rassers to feed to hogs, and their demand for the grain will prevent the prices from falling any lower, for they are buying mmense quantities of it." Will the present low price of wheat tend to reduce the acreage of this grain andet cultuation do you think? "Unquestionably it will, fo the farmer cannot clear himself, much less make a profit, at the present prices He cannot afford to raise a crop at a dead loss, and will vary his crop. There will be many thousinds of acres less under wheat in my oun State, Minnesoth, and in the Dakotas next year than ever before. The farmers find now it pays them better to raise live stock and root crops, and the sotl and climate in our part of the country are as favorable for those clops as for wheat. In Southern Minnesota there are large herds of cattle now, and many of the present great whe.t centers will be turned uto live stock districts in a year or two. This change is due, of course, largely to the prevaling low prices of wheat, but also to the knowledge that other great wheat districts are coming in. Take Maniuoba and your great North-West, for instance. Noboly likes to estumate the vast amount of wheat they can produce."

A flou: packer does not improve the quality of the fiour in anyway hut it is one of the handiest and most useful machines in a flour mill, and sives the price of a man, and in that way makes money for the mill.

F

A CHAPTER ON FRICTION

 Rle"llon is not a force in me hanirs, it is a rebint ance ; a passive iesutance to motw, whtes F. J . Moster, in the Wiod Winker. His the tembeny of force to produce monon, whereas the tendency of frution is to destroy monon. Nor is the increase of frimion between two suffices!in contart propety the amount of fonce necesary to produce motion, but the amount of pressure necessary to batance the fuetion and bung the body to a state of indifference to both ics and motion. Yet we use fiction to trinsmut force, and it is sometime: convenient to preak of it as the force itself.All surfaces, however highly podished, contan minute projections, hence when pessed together the appertis: of the two surfares become to some event merlocked with each other and produce ressistace to inotion - and this is ficicton. The whole amount of filtion stated in pounds of resistance, is the p.oduct of two factors. The first of these factors is called the onefficient of frittion. Co-efficient, as an adjective, means operating together; as a noun it mopliescooperatoon a factor in multopheation. The coefficten' of ficturn is a constan number which has been determined by expermenting with sulsstances of different kinds and wht suifaces in virrous condtions. Scienufic men bave made these experiments and taluilated the results of thers esperments, so that now, when the practucal mechanic has to solve a problem in friction, he refers to one of these tubles for the coefficient to mect the case. O.tk aganst oak has a roefficiert varying from 975 to orit, accordingt to exp mure of grain and quantity and quality of lubneation. Iton against iron has a variatoon in like manner fiom 3 'f to oft. Between these two evremes in the we of tion I find six other co-efficients, so th.it adding the elght together the average is $: 48$. This is for shoding surfaces; a revolving shaf' requires a difterent co-efitic ient.
I want :o be sure that I m.ike clear the ca,s! use of this co-efficient of friction. I said th was a const int number and so it is for the same condituous. In rasting the interest on $\$ 100$ at six per cent., we multuphy hy cob, and that multiplier is the co-efficent in the problem; it is a constant number for that rate of interes. But if we change the rate of interest to five per cent., then we change our multuplier to $\% 5$, and that becomes the constant number or co-efficient for all sums of mones at that rate of interest. So the co-efticient of froction might be called the rate or amom of friction that prevails with certain surfaces under given condtuons of smoothness and lubrication. Then mul:plying the total pressure by this rite of firction siles the amount of re: :stance in pounds--pressure being the same factor in computing the effert of friction.
Mill shaftung in these days does not often run on iron surfaces, the boves being lined with babbutt metal, but I have no table at hand that gives the co-efficent for at iron shaft running on babbitt metal: but oa bronze 1 have. The co-efficient is 251 , which will answer our purpose for illustration. Suppose a three imh countershalt with two belts eath in the same direction, $t, 2 \infty$ pounds each. This will sive 2,400 pounds belt tension. Let the welght of the shaft and pulleys be 200 pounds, making 2,000 pounds pressure on the bearings. Inertia and atmospheric influence have nothong to do with the case, 1 think. Now co-eficient of friction 251 , pressure 9,100 pounds, what is the resistance in pounds? 2,600 multiplied by 251 equals 652.6 pounds its the effect of friction. To reduce this to terms of horse power and determine its proportion to the whole of the driving force, we must make further calculation.
Suppose the drwen pulicy to be tho fret in diameter and making i 50 revolutions per minute. This will gise a belt velocity of 942 feet per minute. Then, 942 muln. plied by 1,200 (drning force) equal $1,130,400$ dividend by 33,000 equals 34 -horse power and an insignificant fraction as the amount of driving f.rse.
The shaft is only three inches diameter and therefore does not move with the velocits of the belt on the pulley. The surf. ce of the shafi moves only is feet per minute, hence we have $6 ; 2.6$ pressure multiphed by 118 feet equals $77,006.8$, divided by 33,000 equals 2333 -horse pouer as the effect of friction. This is the theory of friction with all things perfect, but it is quite likely that in practice (fair practice, too) the friction would amount to one-eig bth of the driving force.

GGEERAL MARKET SURV IY.

THF. cooperage market has umproned connde...')ls On the 2 sth of Alusust he ne: American Tlarr'، lull came into force on which vates po on the fee lis and the dity on homps and heading is redi aed to While, this still practicall! excludes hoops a'd heading trom the tinted states market, on price, whith are at present in force there, still at times it will enatio Canadian homps and headme to so mato the l'nited states. Owing to the dats nomg off states, tio prices have adanced a hitle here but the effect bas not get been felt to any great event on the othr. sule, as thete are very small stuiks of stases on hand in the ('mited States and manufactures consequently take the adran tase of rebate of duty here and do not give it to the American consumers.
The Cinadian producer will get the benefit this year of the rebate of duty, and it will pol in their porkets in. stead of the pookets of the American consumer.

The flour trade is very quet all owet canada, and with the exception of at fen of the largest mulls, most of the flour is going irto sacks dad baks. A sieat many of the largest mills are running strictly on barrels, both for flour and corn n ral, ano they all anticipate a goom run for the balance of this season.
The following are the present prices for four and apple barrel stock F.O.B. cars Tormo.

No. 1, $28.1 /$ or 30° jonted elm staves.				
M. ${ }^{\text {M. }}$ 2. 28.28 or or $30{ }^{\prime \prime}$				
No. 1.24 pmiet elm sta				
Nu. i. $5^{1} / 2 \mathrm{ft}$. patent cor				
No. 1.6 tt.	,	"	"	
No. 1,6\% fi		"		

. $1,6 \mathrm{x}$
No. $1171, "$ kiln dired bassmuol heading
No. 2.17!"
M.K. 17\%

ambeical martits.

THE probable effect of the new tariff on the price of staves is open to various interpretasons in I'nited States markets. The Northuestern Diller, of Minneapolis, says: "As far as is known. Canadian devlers are holding for $\$ 6.50$ per M. for No. 1, especially on future contracts. That the tariff question will make any material difference in prices his not f.lly deceloped. The opinion now seems to prevall that the new tanff law will be interpreted as mak'ng Canadian staves free. There a:e still inore or less elm staves reported offered from Michigan and other domestic manufactuiers, for promp: shipment, at prices all the way from $\$ 6.1$; to $\$ 6 . j 0$. These staves are regarded as of varying quility, ranking from very poor to furly poot. Heading is not chanked in position. While $3^{\text {ta }} \mathbf{z}$ per set is the recopnzed market price, $\mathfrak{t t}$ is stated that som: parttes are so teckless as to be willing to sell for less." The L.umberman of the same place, remarks: "The assoriation price for heading, has been forced down. At the last meeting of the as sociation, some month: ago, the association pice wis lowered from $\& f$ cents per set to f rent, and 11 was hoped that it could be held there untul thete was a sulfficiem demand to teturn it to the old figure. The stonks of manufacturers outside of the dssociation, were supposed to be small, and 11 was expected that they would be oxhausted in a short tume. so that the asocm iation could control the market. These stomk, houever, held out rikhtalonk and the ouner, were contunually cutting into the market with gexat, offered at a lower price. The association held on for a long tume, but finally it was decided that there w, t no further use to make the effort and continue losing trade, and on the assotiation price has been reduced wa minnmam libut of $3^{\prime} 2$ cents per set. At this firuse the healling is sold it brelon cont bun this lon lumt was phed in onder that the members shoult ive at liberty to conpete with thane cutsode of the assoriation. Minneapuoh, woper, are not very well pleared at this turn of off.oirv, at nust of them have in ready contacted for some tume ahead at $\&$ cents, and to
see the market drop a whole half cent below their contriut, pice them the ulea that they are not as well off as they mislt be. film staves ate still at the same figule. 'hough the change in the tariff is expected to be felt befoue lons, when there will very likely be a diop. The (inachion manulacturer who has heretofore had to comprete with the manufacturers on this side of the line, as well as the tantf of $43^{\text {ry }}$ cents per M, will be in a pontion to make a lower price than has been quoted, and the natwe mamulacturer, in otder to hold his trade will hine to make a like move. Plices are already weakening, and is is reporteal that Whio and Michignn staves can now be secured at prices varying from $\$ 6.25$ (10) $\$$, $; 0$ per 11

Ty mamupactote of mathan

1the seremal artul lis on comperake that have appeared in the es puthes for some months, the writer Mr. li.f. I'ruti, of the Wisat Worker, has been dealing largelv with the questum of stave making and the labor back of that in securime the tan material from the forests. He now brings 11 up to th.t pwint in the tlade where he deals more directly with the manufacture of the barrel Hself. Mr. I'ratt siass. I have tried to reach a poiat when I could introduce the reader to manulacturing bartels, but through the details of such a thing as stave making and other things rel titive thereto, we have only now reak hed it by the stt. les made in this direction.

Commencing in the wuods, originally this form of barret making was but little thought of, as skilled workmen could only be found in large cities ; but in order to woik up the waste of stave yards, coopers have been induced to go to the country for the class of work we use in packing houses only-which is made by the band cooper ; pickle work is made of the saine material, but usually the staves are shipped to market for pickle-barrel coopers. That, however, is done more extensively by machosery. We will first take the original way of making barrel; and come to the progressive way later on.

The hand couper in a good timber region can start a cooper shop if he has a suitable building for one or two men to woik in -- any kind of an old log house or wooden strurture, with windows for light and a large chimney for firing barrels-- providing he has tools, with an investment of $\$ 25$, by busing rough or sawed oil-barrel staves or heading t work. Of course, he depends on selling his barrels every week to a dealer. One man, who is a rapid workman, can usually make iwenty tierces, fien twenty-five, per neek, of stock like split staves, and make his oun heads. Coopers find it profitable, usually, when they can get headins ready made, to buy it; but in the woods our cnuntry cooper takes split headink, and with a broad axe hews off the surplus weight from , he smooth side of the he ad or the side he iniends for the oulside, then sits down to a shaving horse and with a heading knife a long drawing knife) he sn,noths his heading up for the jointer. With a hand-jointer with a concave face, he inakes a joint that is dished slightly; then with a hand-doweling mactine he bores holes for the dowelpins, which are also made by hand, with a form which is simpls a hoie in a piece of iron or steel, three-eights or five-sinternths in size, through which pieces of tough dry oak or hirkory are driven to make pins the rixht size and kind. Now the pirces of heading are doweled togeilier, first putting in strips of flag between each jombt, and the head is in shape to get the circumference so is to turn it doun to fit the barrel. Coopers make headin; for a day; work usually in the morning, leaving it square untul their barrel is set up. They use a "float" in mumth the rough, outside places, especially in worktha saw ed lieating, as this is by far the easiest to work.

Nom for the preparation of the staves and hoops: This must be done in order to make three or four barrels a day, which is a renel day's work. Split staves are treatel the same is heading : often the froe is used to hew and split off the surplus and defective wood; then with a backing knife the stave is backed perfectly. Then a knife the sloape of the hollow is used to hollow it out : each edje is histed and the stave is ready for the hand founter. This is a plane lonser than a heading jounter and faced convex, so if the bit is set correctl), when the stave fils the shape of the plane it is slighty convexed, so when the two.edyes are set together the stave will only be touc hing in one place, or, as coopers term it, rolling from the end of the stave to the center or
bilge. Huw much this is done depends on the width of staves. A man with a mechanical eye always knows by the run of the width of his staves how much joint to put on.
Staves from oil lsarrel culls usaally run eixhteen or nineteen to the barrel. If sound knots are in the stave that will rome under the hoops they often pult in wide stuves of this character and thus yet out a barrel of average appearance. If a good mechanic sets it up this is done by taking a lird tierce set of tress hooph with twenty-one inch bead hoop (the hoope are made to the bilke or largest of the set will slip over the head hoop), and the set of staves is held against the body and the head hoop is mare to take in the set of staves, which, after being jointed, the set can be fitted by takian out one that is too narrow and inserting a wider stave until the hoops are full, a bilge hoop being driven down to ths center or so near it the cooper finds his joint and everything is all righ. He leance the bigge hoop to bold the barrel in shape and knocks his hend toop off, putting on the quarter hoop. Now be puts on the head boop again, and driving lis hoops on tikht with an adze on hammer, sets bis barrel on a cresset, a slow mood fire being prepired of the chips and waste from atavea and heading, and barrel No. 1 is set on to fire. If he hat tress hoops to get anotber barrel ready to fire, be doen this white the first barrel is firing: if not, he splits his poles and shaves his hoops while the bantel is getting hot, after which he takes it off and, with a band windiass consistian of a rope sufficiently stout and long to yo 10 the end that is not in tress boops, his wooden windlass is set to work and this end is brought to a close and the end tress hoop driven on while it is in the wiodlase then the bige hoop goes on and the quarer hoop, and the barrel is pur on the fire for at least ten minutes and made perfectly bot. Care must be taken to not char or blacken the inside of the package. There muat be one level place in a cooper shop and now is the time to find it. The tress hoops are driven in their places and the bariel leveled up. A knife known as a chanfering knife is used to make the chamfer or bevel; a leveling plane to level it off; then a bowcl to bowel oat the surplus wood; then a crose is cut with a lance All of these tools are specially made for the business, and each set is made to suit the sise of the package they are to work on.
The only mechanical work now lef to do is putting in the head. This is done by the use of a compress. The barrel is stepped around for times with a compass, and if the point comes exactly or a littie scant of sticking the starting point, you have the center of the bead and the head is then circled and made to fit. The barrel has got cold and the head is made perfectly tiybt by flagking the stane joints all around the bead. Hoopa, baving been set up beside the chimney, are now bot Measuring from the center of the bead to the ourside of the barrel, we have the distance it requires hooping, or one-third is the space necessary to be covered on each end. The locks to each hoop are cut by mensuring around the barrel. The boop is tried. If too toon, the "dutchman," a small piece of wood cut triangularly, is fitted in and the hoop driven to its place. This is done until about eight hoops are made to cover each ead, and the barrel or tierce is fully two-thirds covered with boopa -"a standard puckage." This must be thirty-lhree inches look and twenty-one inches in the head.
Some packers want all hickory hoopa, some end and bilge hoops hickory and the balance oak, and orhers say all oak is good enough so they are not too high in price So it is. Oak is the best if exposed to 100 much water, but for all kinds of service one is about as pond as the other. "Olio" packages are made exactly like a tierre except the steel hoops used on them, which are the sanve as the beef tierces of 1860 and 1870 except the beet tierce was made free from sap.
Pork barrels and balf burrels are nade exactly as the tierce, only requiring special tools for the work. Lard kegs are a thing of the past. They were made in like manner, but are not likely to ever come into use apain lickle barrels are made, when wood-bound, free from objectionable sap, and quarter-bound only, having fourteen hoops, and are all, like the cider barreh, made in seventeen and me-halfinch tress-hoops. They are not likely to sooa be chanyed from the old style.

noen mill mise.

Bv J. C. Bowern, in "Milt.ince"

THE rapid increase in the number and maznitude of Gres in past years seems to many people who have given but littie attention to the subject to be a mystery. This subile clement, so useful to mankind when confined within the limits of sufety, now so often bursts those bounds that we may reasonably suppose there is never a moment when there is not somewhere, more or less destruction in its ravages. Ever somewhere inay be seen the cloud of smoke by day, or the crimsoning sky by night, telling o distress and disaster from this prolific source of evil.
A comparatively large portion of these fires may be eraced directly to fouring inills. In no building used for manufacturing purposes, is the danger of fire inore appertat than in that of the flouring mill. The rapid upread of fire from floor to floor, often directly from base. meat to attic, is many times due to faulty construction, especially of the interior, for where great pains and expence are expended on solid and comparatively indestructible outside walls, the interior construction is likely to be decidecily unsafe. Every milln as a matter of course, is compoeed of material which is of a bighly inPammable character. There is a network of spouts, elevatora, posts, floor beams, belting, etc., all of which are so closely interwoven that in many places the light is almout eptirelv shut out. The elevator legs form a large number of wooden Alues, which constutute excellent conceale1 pasages for smoke and flames. By nieans of these hidden fues a fire has a chance to spread unobserved with astounding celerity, at the same time, most difficult to reach the fames with water.
Brick or stone buildngas, as usually constructed, are no better porsafer than frame structures. It is true, stose and brick walls afford protection against flames from the outs de, but they form merely the outer shell. The walls are often so thoroughly piotected that there is bet littie chanse to set upon a fre from without and the buildiay forms a roaring furnace which no one dares to enter, in fact those who chance to be within often barely escape with their lives when the fire has made itself apparent to them.
Anotber great inducement for a fire to spread upward and in all directions is the open stairway. There is every opportuaity for fire to play "hide-and-ko-seek" from cellar to attic in spite of the shrieks of the watchman and neighbors, and the yells of the populace, or the earsest, hard wort of the fire department, when they arive too late to be of any service. When we read : "The elegant mill of \qquad took fire last night, and in spite of the most beroic effors of the firemen was totally destroyed. Every effort was made, by those who first saw the fire, to extinguish it, but it had burned its way into the stail way (or hatchway) where it coukd not be reached, and the smoke soon drove those who were so earnealy engaged out of the mill. The loss could sot be less than anywhere from $\$ 1,000$ to $\$ 100$ 000 We most sincerely sympathize, etc." But not one word of wisdom or caution as to the manner of building, or procuring means to prevent the destruction of another when by carelessaess or accident it once takes fire.
The secret of fireproof building is this: It must be ande impoevible for the flames to pass through the floors or up the staurway. This, of course, is rather difficult to sccomplish in the construction of a founng mill. An Che sbould te made, at least, to avoid the danger as much as ponithie. The following suggestions might be offered: Lay a flooring of the thinnest sheet iron over the joisth, and the wood flooring upon that, and sheathe the stains with the same material. A floor will not burn without a supply of air under it. Throw a dry board you upon a perfectly fiar pavement and kindle it as it lies if can. You may make a fire upon it and in time consume it, ben it will require a long time. By using thin iron it could be excily cut with cold chis.ls and shears for spout boles and the edges turned up. A short section of spout made of sheet iron could be made use of above floor. A drop valve made of sheet iron could be applied to guard agausa fire entering a spout from below. These sections of spouts would add very little to the cost. They could be made quite cheap by any tinner or sheet iron worker and cut to the proper bevel by the millwright.
A difficult tack would be to prevent fire from going up
the elevator legs. The doctught, however, could be checked, in a measure, by the application of brushes, the frame of which to be lined with iron. They would serve the purpose of dampers to check draught is well as to lie of service as a brush. They could be applied to each elecator at intervals of ten feet aport. The stairway should be enclosed with fire lorick walls or at least a wooden partition lined with iron. The main upright belts should be enclosed. As few belts as possible, however, should be used from one floor to another. Prevent draughts and, though theie will still be fires, the chances are that discovery is certain in time to prevent any great calamity.
An item which helps to fill the newspapers, therefore, is somewhat as follows: "Destructive fire. The mill of __ was found on fire last night by persons passing on the street. There seemed to be but little fire and that in the basement. It soon, however, reached from one floor on to the next and although the fire depaitment was on hand as usual, yet before they got to work the flames had found their way through the roof and contents were all ablaze. The department succeeded in confining the fire to the ——"." This would be varied, not exactly according to the weather, but of the wind. Why, then are not the mills provided with safety stairs or hatchways, which can never be open except when in use? Why are not stairways enclosed with fireproof material and the doors made fireproof and selfadjusting? Because it is not the law, with a severe penalt;, that they should be placed in every mill, warehouses., etc. That is the simplest reason. It cost something.
When fire catches at the bottom it rushes up the narrow space, roaring like a chimney on fire, and in a moment or two, often before an alarm can be sounded, the great bulding is on fire in every story. Before a fire extinguisher can be got to work the fire has enveloped the building and become so intense that even the extinguisher can be of little other use than to confine the fire to the inill itself. If the fire can be kept in one story the first engine would have made short work of it. For want of that it was in every story before it got to work at it.
A certain mill may be found to be on fire in the third or fourth story, having caught in the basement, and at first seen up there, though it was at work in all the lower stories. There is not the smallest chance to put out such a fire from destroying other buildings.
A great many such fires are seen when so small that with the same coolness and presence of mind with which we attend to other affairs, and with proper implements for extinguishing them, surh as are provided for our other work, would be put out in a few ninutes, and with so little loss as to hardly be worth telling of to the neighbors. It is indeed an exceptional fire that could not have been extinguished in its earlier stages, if the means at hand had been used with intelligence and energy. As in every other crisis of life, organization is superior to random effort. The thinking must be done beforehand. It is bad generalship to form the plan of battle in the presence of the enemy.
In the construction of a flouring mill the most effective means of retarding the spread of fire should be employed, the aim being that the limits of destruction shall be reduced to a minimum by making mills slow-burning rather than striving to make them fireproof. A fireproof factory buiding is considered a commerrial impossibility -hov then about a fireproof mill ?

MR. W. C. ANDERSON, manager of the Dundee Flour Mills, recently delivered a lecture in Dundee on "Wheat, Flour Manufacture, and Bread." After describing the methods of storing the grain, he passed on to explain the process of wheat cleaning. In Scotland what was lonked upon as a full and complete wheat cleaning system was not required, for the simple reason that only the best, and therefore the cleanest, wheat could be used to make that high quality of flour demanded by Scotch people. Most of the Indian, and many sorss of Russian and la I'tata wheats, nere so dinty that nothing shon of what their Yankee cousins called "the laundry system"-a thorough washing and drying - was absolutely pecessary to put them in
proper condtion for Hour makurg. Indion wheat especially was so dirty that in some years the import of dirt into the United Kingdom has been estimated at over 3,000,000 hundred weikht, the whole of which, with the exception, perbaps, of a very infinitesimal proportion, found its way into English porta. It was, however, surprising to uote the quantity of reiuse that came from even the finest, cieanest looking wheats. The removal of all impurities and foreign matter before sending the wheat into the mill to be pround, was one of the most important duties. If these impurities wele not entitely removed before milling, their presence fot evil was felt to a kreater or less extent throughout the whole inill. It might sappen 'hat an ordinary yuality of wheat well cleaned would yield a flour as kood as, if not superior to, that made from a finer quality carelessly cleaned.
The outstanding principle involved in the machines used in the cleaning house was separation. This was effected by the use of machines based on the principle of separation by difference in weight and size, by difference in structure or shape, by friction, and by mag. netism.

an mpicaton for water tanke.

ACORRESIONDENT of the Sawmill Gazi/fe gives the following description of an indicator he put on a water tank and found in work perfectly:
The ordinary indicators used on tanks have the figures reversed, that is to say, the indicator goes down as the water in the tank goes up. With this indicator, although simple in construction, the finger always remained precisely at the level of the water.
In Fig. I, which is a sectional view of the tank and indicator, the usual foat is represented at A. It can be made of tin or wood, as necessity or convenience dictates. Frem the float a stout cord or piece of pliable wire runs over the small pulleys $B B$ to the weight C. From the weight another smaller cord runs back up and over pulley D to the indicator E. It is plain that when

the float goes up the weight will descend, and when the weight goes down the indicator will ascend. When the three are properly adjusted the indicator will constantly remain at the level of the water. Care must be taken with regard to the weights of the float, indicator, etr. The weight of the float and indicator must be sufficient to overcome friction and fall readily and also sufficient to overbalance the weight C, so that when the water falls the combined weight of foat and indicator will lift it. On the other hand C must be heavier than E, so that when the water floats A the weight will inmediately pull the wires tight and maintain the correct position of the indicator.
In Fig. 2 the front of the indicator is shown. Two narrow boards are fastened so that a slot is left between them in which the indicator block may slide. The block should fit loosely in the slot and have the finger and a piece on the back, shown by do'ted lines, bolted to it. In constructing the indicator plenty of spare should be left between the tank and the boards $f:$ to permit the weight to rise freely. If the wind blows the weight about, the space which it occupies should be boxed in.

Office of the Canalian Milit.r.k.) September 10, 1894.1

TEE CEMERAL SURVET.

HOW will the present crop compare with that of a year ago is a question that is being actively discus sed at the present time. Harvesting is well enough ad vanced to enable one to look into the question with inore certainty of arriving at actu.d results than even a month apo
The Vienna report of the world's wheat cmp for 1894 has been issued. Whist in some quarters this report is viewed with authority, yet there has been good reason to discredit some statements made in former years. The method adopted in xiving the yield of European countries for 1894 is by percentages with 100 , as the standard for 1893 making comparisons as follow's

Ausicia	Wheat. 100	Rye. 95	Barkey: 98	$\begin{gathered} \text { Oale } \\ 96 \end{gathered}$
Ifingerary.	99	96	94	\%
liermany.	107	95	107	105
France	120	125	100	115
Great Britain.	17	110	110	105
Kuscia.	82	97	97	86
Moldavia.	87	90	90	90
Wallachia	07	40	40	40
Netherlands	87	97	92	112
Betgium.	102	107	100	102
Switzerland.	100	110		100
I Renmark	105	95	100	100
Sweden and Norway	95	92	108	102

The yield of the linited States is placed at $3: 0,000$, 000 busheis of wheat against $3^{3} 2,000,000$ last year. It is well known, boweret, that these figures, as givin, the crop in the States a year agn, are wide of the mark, and in this particular reflects unfavorably on the Vienna ieport.
Taking our information fron another source, namely, the calculations made by the L.ondion F.conomist, it is stated that the crop ta the United Kingdom will be bountifut, though the acreage will show I diminution over a year agn. The total yieid is pliced at $6,000,000$ busheis yreater than las: year. Spain, I'ortukal, Italy, Ciermany; Holland and lielsium all show an increase over a jear afo. Ausiria-Hungary and proluably Russia do not show up as favorably. The crop in the C'nited States is placed at somethng between 400,000000 and 47.000000 bushels, which is likely to be mearer the mark than the lienua report. The conclusions of the Iondon ficonomist are summed up in these words: * Iboth Europe and Ame.ica will probablv produce kess than the quabtitices arown in 1894 : but unless othepurts of the wrold fall off greatly the toxal production can hardly fall below a year' consumption. whice there are still remants of the kreat arcumulations of the lasp three years to cleat off. se that there is nothing at present to inlicate any substantial irrprovement in the perce of wheat."

In our country the prospects are favoralske. (Intario's crop has been placed at alonut the same fixure as last year. It may be, bowever, that the intensely dry spell of the pest two moaths will have afferted the yuality of the grain when it connes to be threshed. It looks as though Manititu would be favored with a crop averaging an increase mer swome other yeais. The yretd per arre in many quarters is turning ont better than was showa by reports of a moath agn, The goveramen: bul. kein for Aurust exinsales the greld as followes: Wheat, $17, \mathrm{O}_{11}, \mathrm{Ros}$ b bushels, and the averape for the procince 15.6 bushels per $2 \times r$. (1ats, $12,10,7,7 ; 2$ bushels: barkev, 2 , 182.j20 breshels: pras. 20,000 bushels: Max, 282.480 bustrels: rye, 53,$0 ; 4$ bushels. The gross toal is 30.497.. - 14 bushels

These figures are improved upon by coaditions since the August riport was isaued. The condition of the weather, with heal) dew and cold nights, has caused The atheat to fill out well in the face of the unusaally dry spell. In somve fants of the Assuaitonia dratrict it is met
supposed that the crops will fixure out as well as in Manitoba.
When we get away from a study of these fikures, and conclusions as to results in the future will vary according as the individual makes his calculations even from the same data, and faces the situation just is it meets us today, there is still very litile of a hopeful outlook for wheat.
Senator Wasturn, of Minneapolis, the great flour mil ler, when in Montreal a few days ago, reiterated the opinion that has been several times given on good authority, that it is hardly possible for prices to go any lower, beçause " n heat is really worth more," but as the Montreal Trade bulletin very plansly says in an article, which we reprint elsewhere, to rest on the supposition that wheat or any other commodity cannot get below what it cosis to produce it, is a broken reed to rest on. The fatis are that the pnce of wheat keeps down, and when we consider the size of the new crop, take whatever estinate one may, and remember that in public and private store bouses in Canada and the U'inited States there are still inmense quantities of old wheat, it does nor seem as though there were any crrcumstances shaping in cause wheat to go up permanently in price.

CUKKENT PKBES OF nKR. AJMTUFB
Wheat -. Toroato-New winter wheat has been offering at about ${ }^{2} \mathrm{c}$. west. The purchases by the millers at the pice are sunall. Manitoba No. I hard west, offers at 68c. and east at 7oc. Montreal: No. 2 Mani toba hard, the. to 68c. Chrago: No. 3 spring wheat, nominal : Na 2 red, 38 c . Duluth: No. I hard, 61 \% $\% \mathrm{c}$. for Sept.; Na. 1 northern, ijc. for Sepu.; No. I portbern, 56x. for IVer.: Na. I norhern, 6 ,'sc. for May. Tuledo: No. 2 cash aod Sept. 53ic.; Oct. 54ic; Ver. $56 \frac{1 \mathrm{c} . ;}{}$ May 61 ct.

Bari.e: -- Toruato - An unsettied matket. Feed sold outside at 38 c . 10 toc. In U'nited Sitates markets there is a fair enquiry for buley and prices are gradually creepnis up under the influence of a strong market in the West. No Western is offered at Buffalo betow 5 gr . and fron that up to for. Canada, although notbing has theen done, is being fiyured on to considerable evient. The ranke is placed at from 6oc. to $6 ; \mathrm{c}$. in Buffato.
Oats .-Toronto-White oals for milling have been sold wesp within the week $21291 / 3 \mathrm{c}$. Mixed ia demand at 25 c . White quoted at 26 r . to 27 c .
I-Ean - Toronto - No very large call, but feeling steady. Car lots of choice new peas are being taken for export : middle freights west, at 56.

the moen murct.

The four market remains practically where it stood a month aga. Millers are vet buyiag slowly of new wheat and the disposition is to wait a litile and see bow conditioas shape. Fxport markets do not improve to nive ar y new eacouragement in th uldirection. The demand for mill feed is firm and active. In the course of another month the liade will be able to speak in a move definine manner as to the prospects fix fall trade.

PRICES OF FIOTK AR1 MEATS

Torn:: To Anur : Tormpto freighte, Masinoba pateats, \$3.40 to \$3.10: Mantoba strong bakers. \$3.30 to \$3-00; Ontario patents, $\$ 2.90$ to $\$ 3.00$: straight rolkers $\$ \mathbf{\$ 2 . 5 0}$ 10 \$2.70 : evras, $\$ 2.50$ io $\$ 2.10$; low gixales per bag,
 Montrisal. Prueat minter. $\$ 3.30$ in $\$ 3-40$; pasem spring. $\$ 3.40$ to $\$_{3-50}$; straught rollers, $\$ 370$ to $\$ 3.90$: extra, $\$ 2.40$ to $\$ 2.50$: superfine, $\$ 2.30$ to $\$ 2$ to ; stroax bakers. $\$ 3.25$ to $\$ 3.40$: Ontario bagen $\$ 1.30$ to $\$ 1.4 a$

mana's freve teane.

SAYS the L.ondon, Einglawd, Alilliag and Markee News: There were in operation in 1893 aloong the busion of the Volga 189 hour milly, and the hour prodaced stinomated to $7,36 n 000$ sacks of 280 pounds. When consideriagy the rapud development of Anour-milling in Ruscia, it may surprise some of our readers to know that hax year ibe exponts of Kussian thour were represeared by 385,700 sacks. and of rue meal by 565,500 sackis of 250 pounda, in companisos with 332,600 sarks of the former and $\mathbf{3 x h}, 000$ saxks of the latier in ilge.

sELECTM Wheat pon the mul.

BEIN(; able to intellizently and properly select wheat for the mill is a matter of both knowledge and ex. perrence. The proper person to make the selection is the one who knows about what kind and what quantity of flour it will make, as different varieties of wheat difier very materially in this respect.
One kind of wheat has heavier and more bran in it than anotber, and hence dres nor vield so well. Then again some kinds will make whiter four than others, and all grow in the same neighborbood. Occasionally, too, the sume varieties valy some in this reapect just as the soil varies in ehemical combinatioa.
There are still other conditions of an artificial nature that have to be taken into consideration and are beat judyed by men of experience. Wheat that has been badly taken care of by the prodacers and allowed to net damp and musty, or if only tinted in that wey is not so valuable as sound and sweet wheat. Unkess quite damp and otherwise badly damaged it may not be detected by the inexperienced buyer aud the mill get a supply of iaferior wheat.
\therefore s a rule, in mills of ordinary sise the ouper or whoever may bave charge of the office has the wheat buying und very often such men have but litile kenowlenge of it, none, as a rule, bot what is acquired by i- lie, and that is all right provided the practice has oeen loma enough, bot the misfortume is that many of them jomap into the bayer's position without practice or experieace co any kind and no it blind, to the injury of the basiacess.
The miller, if be is a miller, is in realiuy the proper persou to select the wheat for the mill. Selecting in this case is scarcely the proper term, becamse mont mills, in the cousary especially, that depend on farmer's detiveries, are oblinged to take everythimg that is ofered if not too bedly damaged. But what is bere meam is that selections shoold be made ia refereace to relative value for flour unakiang purpowes and the differeat kiads of mbeat disaribated accondiagly into different bias, where they can readily be mude available for the kind of work they are best suited for, and of that the miller is the oaly jodne.
To save disputes with the farmers, the millers as a rule pay the same price for all kimds of sound whent that weixh aboot the same, notwithatastion there may be considerable differesce is real ralue. Ben even thonemb that is dose the miller should still do the selecting to the extent of asignaing each kind to its proper place in the warebouse.
Millers should always refose to accepp badly damaged and consound wheas, as in is not fix to make four winh and by mixing in with good stock they so damage four ast to cause them primary lons as well as loes of reporation.The Trade man.

a mamane what erterna.

TTHE wheat semoser, here ullasarmed, is a desiga farwismed by C. E. Lees for the Americal Miller, and can be made an a small con by say suiller of mintroubh and will rrove very satisfinctory. The slide at A is so regulate the amount of wheat going to the reel. At B is a

swinging doer whict prevents the srom from geing mo the whear apom, and an C is a perforand pipe surpived with newn bo the suem surply gipe.

In stenaing with tho appliance the riven caners a short reed abow four fact lomg, cheched winh coarse wive or performad mecal. Dirextly ander the reil is the pers
 ine clock, and as the reil revelves in steme every Eriom sa theronalily es temond.

VIEws AID INTERVIETS.

Fiour and ceats
Pricen

The average export price of wheat from the Urited States for the vear ending June 30, says Price Current, was 67.2 cents per bushel, compared with 79.9 for the preceding year, and an annual average of 90 cents for a period of ten years ending with 1893 . The averaye price of tour exported for the year was $\$ 4.11$ per barrel, com. pared with $\$ 4.54$ the preceding year, and an annual average of \$4.8 1 for ten years ending with 1893 . The decline in valuation of four being less than in wheat, is surgeative of the view that the exports embrace a higher average in quality counpared with the previous jears.

Tretas
 Tuet

Brer
Just what ground should be covered in testing flour is a moot question with millers and bakers. A writer in the Helper, bowever, says that for all practical purposes it is only necessury in testing fours to find color, waterstrength and gluten. Although the natural moisture in the samples under examination may vary from ten to fourteen per ceat., yet this makes no difference in the end, if the other points are known. For instance, take two Alours alike ia general retpects, but one having four. teen per cemt. of moisture and absorbing saxty-five per ceat of water to mnite a dough, and the other having ten per cent. of moisture and absorbing oaly fifty per cent. of water to malce a dough ; it follows that ci.e former is the cheaper tour notwithstanding the fact that it has more moisture. Heace, the determination of moisture in a sampie I lour is ealy valuable in an educative semse. If the purchase of grais for hovec feed were cader consideration then it would be profitable to weikb a hondred smins of ench sample olerred and dry them till they loct so moce weight, thea weigh again ; the difCerence is water evaporated; and the sample haviag the greaves weight when dried, is the cheapess so buy, other comditioas being equal. Remarks as to moisture abo appiy to the solebice exiract of thour. This is found by thixian a known meight of four and messure of water tonether in a bottle and allowing the four to settle then decastiog of \& certain mensure of the clear liquid and evaporation to drywess. As a geweral role, the find ing of the weight and character of the staten will fairty devermine whelber there is present a dingerows amount of the solembie extract.

To Trate The following from a British joural in the pristing trade, is well worth readiang bs tradesmen in all fines:© From beins a mere advertisiag sheet, represeatian coly special individual interests, the trade journal has become the great organ of compramication between manelacturers and denkers and their cuspomers, and has Inaped and is belpiens to bring them into clocer relations with ene somiver. It has become ane of the best odercheors, sad, since the geteral abroyation of trade smy. terieg-betaer lowown as secrets of the irale-it has dowe a goed merls in the spend of tectrinical krowiedie
 Se men has this becocive recegmued that a man is regard--A as belied live times who does mot talet and read ar
 There are many who maty say-and soave wion acturlly haliop-rhut they camer alord to tabe a tride paper.

 PIf ; il le is so wive in lis own copocis that te thiniss the livem it all, and that mesedy can suach him anylhien: if the is coment to rumain ta sedden igmorase because In crivere see that tive kowindet cifred bina is reink w trime live innmediate rawin in cash-iben, in all such canos, a man canoct ariod wo pay for a trode joonant Sut if le meold lutep sboust of the timest in bis ewn caring ; if he meald lowew whot actionemienes and cicopruies ave baine ande that divectly alfect his own inneress ; if the mula prexit by the experiance of cabers
 comectell with his own criving, on then the may be able so cenverse inceilipently, ont ealy winh his co-workers,

he who rejects its friendly aid will soon find himself at the rear end of the prociession. He cannot know too much of his own calling."

Moaling Fiver
 to Ateck.

Wherever we turn the question of eeding flour to stock is being widely discussed. Experimental stations are making the matter one of investixation. Mitlers are ta!king it; farmers are talking it; the grain man is thiaking about it. It is a live subject in Canada, as also in the country to the south of us. A millink firm in Wisona, Minn., write at some lensth on the sibject in a late issue of the Northwestern Miller. They say: " lt seems to us thi.. millers should join hands in circulating the results obtaned by state experimental stations, in the use of millieed and low grade flour for feeding stork. This is orie thing, at least, on which all millers c.on unite withous arousing the jealousies and antaronisins of the past, a.nd which will largely solve the problem of overproduction and lack of milling profit. If the miller could run intu one bin all beluw a patent (or a choire bakers') and have a demand at home for such a feed, his cares and lamentations would be greatly reduced. There would be no difficulty in grinding practically all the wheat grown in this country; if the tarmers would use such a feed for their stock, in place of corn, oats, etc. ${ }^{4}$ for we would bave only patent flour to export, which we could easily affori to sell in competition with the world. All millers should do their utnost to induce farmers to stop teeding wheat entire, as being an extravapant method of using wheat, and, instead, advocate their buying the less valuabie part of wheat, i. e., all below a patent Sour, as being fully as valuable for feeding as wheat eatire, or ground without the patent bein;s saved. The low prices now quoted abroad for bakers' and low grades are brougto about by our forcing on the markets far more than their requirements of such flour. Now is the time to work these prades off at home, relieving foreign markets, and opening, for years to come, a new outlet. and one that will consume vast quantities of the product of our mills. There is no reasoa why millers should noe see as profitable milling as in years gone by, but it will be when we export colly patent tuut, and all below tha: grade will be coasumed at home by our farmers in feed. ing it to castle and hozs. There will be no cry of overproduction, as our mills will be unable to grond up the rbeat grown and now going abrond for toreign millers to reap the profit we should have in grinding. May it come sooa-the sooper the better."

Moen: a Edrticn Visw.

THE Miller, of Loadoa, Eng. on its forur trade review of the moash is concerned over the coodition of the wheat and flour market, as is everyone rise, and says: Wheat at 20s. per quarter is an event by the side of which other trade occurrences may be regarded as insig. nificast. That not ooe sort of wheat alone is down to that price, but that there are at least three competitive seliers thereat is in a difierent way an even more notable fact. Discussions as to the lowest price at which wheat can be profiably grown arefor the time beiag superseded. Neither by the La Plata or the Mississippi, mor on the brond steppes of Russia, or ia the rich allurial detza of the Puajab can wheat be proitably grown and sold from ships anctered in the Thames for 20s. per qr. Fireaghts may be low, trade charges may be cut down, insurance onices may bid against each other for custom, but pert all these charges at the lowest, ated still the thing is nut of the quention. Wheat at 20s., delivered in the port of Londea, is sot an article which has paid the producer wis "tivieg mage" or which, havinu paid that ware to the producer, has rempaterated the middleman, the iater. mediany between the foreiga wheat grower and the Eingfish miller. We arc, therefore, witnessiag a competition guch as in the old coaching days was not infrequent. It is wo jeet, but a veritable eccurrence, that the couch fare from Eneter to Plymouth having come down through competition 8058 , oeve of the rivals 1 an for mething. while the elvers rejoimed by takiag all recopnised cusnomers gratis, and Gindint them a free dinnct en route. The object, of cearse, was to rum rivals of the rood, and cemperary sucrivices becaute possibite good pobre arth a view to a permaneen ascored panion for the furure. The seemet it is recogrived then withert fermal revelution

Argentina, America, Kubala and Inila have none the less entered upon this last and destrustive phase of competiton, the betier it wail be for Finglish tarmers, who will scarcely venture to be a fifth in the field. The question of the hour for millers is as to how long the present tage of competition inn possibly endure. Is it "the accepted hour" for them to buy and store, sit as to profit by the situation, ot is the stiugkle destined to lits: for : long white, and are present prices rathes the beginning of a protracted end than the end itself?

MONTREAL GRIEVANCE.

THF: following letter is published in a late issue of the Montieal Trade liulletin over the sintiature of " A Vicum"
Vour last issue has a very fornl article on this subject, and your remarks as to why this traie is gomg pist Nontreal should be taken up in e.unest by our liaard of Tracle and Corn Fxchance, and a little of the energy wheh they give to Civic rimanies might very protitally be expended on this point.

The want of offictal inspection has soofien been ventiated in your columins, and the loes of trate is suffering has been so clearly proned that it is needless to \&o over It again.
But the following is a positive fact, and will serve to reiterate the need of inspection if Canadian flour is not to be taken as a word of condemnation.

Two cars of a choice Canadian l'atent were bought by; a firm here and shipped to the L.ower l'orts. Complaints were received that the flour in barrels was not uniform. and on a very careful examination it was fouml that choice patent flour was at the top and botom of the barrel and finw grade in the middle.
How it was done, it is hard to say. but there is no doube about it. that a Cazadian miller did it.
Are our shippers to be exposed to these fr.tuds without a chance of its being detec:ed until it is found ont by the consumer?
hre we to wait till we $\dot{\text { net }}$ a touch of thational humiliation before this matter is taken up:
Echo answers, our lhard of Trade and Corn Eivehange have got something else to think about.

THE MEW EETMOD OF MaKING TUCES.

THF: new Cierman methed, anneounced sonce time since, of making steel tubes by punchumg the pipes from bot metal, is said to promise success in the manu. facture of seambess tubes of moderate lenaths: the proceas conststing simply in placing a lat of steel of syuare cross section in a matrix of sufficient lenyth, then, without allowing time for the steel to cool, a mandrel having a rounded end is forced lenkthwise into the mass It is sated that in this way tubes nearly eight incties in diameter are produced, the pressure reyuired to oprerite the mandiel being 180 tons. The end of the heated bar furthest from the mandrel is first mule to abut against a strong and lieavy slide, and, when the rminded nose of the mandiel has nearly passed thoough the bar, this slide is moved transversely w, as in brin; a hole in line with the advancing mandrel, which, continuing to move, purches its way through, the protruling enal being then seized by tongs and entirely whilrawn. After the com. pletion of these first mperations, the lar, with is perforation, is subjected to a finishing iteztnient of drawing amil redrawing until the reyuired thikness of the shell is rearherf.

THE FATEUE OF mETALS

$T^{\prime \prime}$HF metallic parts of machines that tre in constant use if they are not fully surring enouph for the work required of them, undergo what is known groentitic .lly as fatigue. In metals there is a pmint in their resistame to palling, bending or crushing which is known as the elastic limit. Ikeynal this limat, if comsinuel in use, permanent strain begins. When machines are submitted to this limit of stratn if it is not kegr upton dong, they may be restomed in mornial comoditnom, just as a muscle is by resting. if the strenkth and juower of a machive is fully cyual in the task imposed upon it, it does mot undergn this fatigue and the use of it mave be kepe up continumasly undilimpairrol by frwinon. The resemblance in this paricula: to the muscles of man and ofler mimuls is very striking.

T 18: changes in the I'nted states tariff will not. $1 t$ is anticipated, help the millink and grain trades of this country to :ny remark ible extent, though we obseric that soine of our mulling contemporaries in the Sitate s in not like even the litile lowering of the duries that have been made on grain and flour. Wheat flour is simply reduced fom im to 20 . Watmeal stowered from tc. per thit 20 is ad sal.; oats and buckwheat froan isc. per bushel to 20 . a.l val., and barley from zoc. per bushel to 30° ad val. It is apprehended in some yuariers that even in four canadians will be able through this recluctuo of jo to place certain ar-sdes at jroints conveniently loc ated for shipping. We do not nurselies see where there is much developarent in be looked for in this direction. The oatmeal trades ought to be strengthened b) the change, just as they felt the pressure of the incre ised duties that cane with the McKinley act. The n'eater benefit will come possibly to barkey $\dot{\text { frowers. An effurn }}$ has been made hy certain commercial journals in the States to pooh pooh the necexsity for the imporiation of any quanity of Canadian barkey for maling puruoses, but the most significant reply to this criticism is the comment of the malste is themselies. who say that they most have Canadian bariey and who do not hesitate to affirm that their trade has suffered since the Mc Kinley bill cance into force. They now hope io be able in mm port larger quausities of C'anadian krown barkey.

PATEAT FLODR Fancume.

IS patent flour mak:ng the proper caper? is the quesIm asked by the mell-known writer on milhag tnpacs, Mr. K. James Abernethy; n a late issue of the Tradesman.

In brefly reviewink the subject, Mr. Abermethy says, n is mecessary to go baik a litile way to examine the rise and proniress of the custom in order to mure cleatiy understand the matter.

Midilings four making had is ongin in continental Europe. but then it has never been knov n as patent Acur making, but generally by numbers, according 10 prade, there being a sreat niany different krades. The true patent four was first applied in this cruantry atod still appleed in this country only. The reason why it was first cali: al patent flour has already been explained in these columns.
I.ooking: barkwand upno the sreme from the stand. point now occupred by the milling industry, it is a curnous Gact that the wheat of which some of the fines: and most repulatir thuirs ate mow mote was a quarter of a centu: y afo rrioncied with disirust by millet: in geretal and ithe Aout nasie of 11 rommandel on respect in any market and had no standing almove second grack. Nany of the arcive propulation of tho cowntiy, anl amons them millers, are not aware of this fact, butt it is irve mever. theless.
fard spting abeat was diffe ult to mill and no miller wapied it, aml when milled the forur was mont vir alite. To day it is redured with the greatest ease and the ficut is ammang the nomst valuabte maxte.
Time iemperary suc ress of the liungarian finar makers aknig with the imirodurimo of the purifier was what caused the chance.

The trouble with the old-time iniliers was they did not understand how to sucessully handle imiddings the att had no: then been tuoght ; and as haid wheat comba not then be kround without a large proaluction of modatinks they did not know what to do. Uf course
 sec ond grave fowar, more of th thion they hadany une for; mone of it than they, as a tule, could place nith profit. The miller, of that da: sround wheat to make flour ond not to make mudellings, and uhen they got hold of wheat that made hate Hour and much maldings: they were in trouble : and thit is the resuon why whit is now known as the great scosch fife wheat was then in disrepute. It hat is geond four making yualities then as now, but die millers ded not know how to handle it.

The introduction of the puifier solve' the probiem. The middlings were run throu;h the purnfier and cleaned before beinis re-ground, and lo what a chat..' Compaied witt: any that had ecer prevously been inado of the same wheat the thour wav really maznificent, and when taking into consideratuon its natural strensth and superior bread making; qualifications, it cook a position in adiance of :cll fours made in the United states and shon commanded a hi, hel puice. This in connection "ith the fact that tooth wheat ardit nur neretigh priced in thone days. made the basmers of ;atent foum makiak very profitalile, and it at once becanie the crate in all hard in heat sections and later in the winter wheat sechuns is well.

For a number of years the conditions remarned substantially the same. Profits continued to be good and the batsiness of flour making, very pmofitable, espectialiy in the northwest. Giradually the woft wheat millers dropped into line and in a litile while the practice of aidilhms milling and patent thour making becatne al. anost universal in the xreat four making districis, and all for a lime were making money. All this was then dome with burrs. A itile later the rolls, a', subpritutes for burrs, were intioducel and iniddling', makins received a nem improus. After that it con be fairly said the practice was puished in extremes and a desire in make all muddingis and no flour seized the millers of the country. But while this could not and cannot be done. the effort to do so has undoubsedly resulterl in inju'y to the induntry. Like all new things that are profitable and upon whith there is no heence or malty io pay, gatent flnur making became in tune such a large indus. try and so common as to wear out the novelhy of it and in proporison ieduce the profits on n. And to inade it still worse an era of descendin: values set in and the very hugh prices obsuned for all kinds of fiour when patent tour mak:ng was fret introduced has continued in fall until at last the fowest umint on rerord has been reached. Fkou is now solow in value tha: even a fair per rent. of peofit would require a magnifying gla:s to find it at the close of the year's busipess when all oxher expenses not menelally taken account of, when ordinarily figuring profits thmugh the yeat. are taken out of it. The aierage angresate profits are very small indeed.

The chef rause of the misfortune that has mertaken the buouness teaving out of the question the present senerally lad condtion of buoness affairs, is that the quanuty of paient hiour has bermace son ve'y latge in pornpontion in the atrole anmunt made clial it is now and for several years lieen the oasis upon which all flour values are mae!. It is the one leading staple commotite, inctead of as it firat was a luxury, win speal:, a sravce arivite for which ithe maker coull obsain his own prece. In that respert it asounted the pmolimp thit its name implied. It mosesesed the pretwratives of a patented artike. not beraise prosecied by belten patent. but rather leer aur the demand was lit in evess of the statply. Has it loen patenterl and contionkel as patented deiree genetally are it woult hare remarmed a profita:de business until very recently, at keant. As 11 was, how. ever, errery milker bad a nybl to make n, and every milket that croild arranae for it did and theses make n, and the ain of ail that make a lousimess of it was and is to make all that it is innubie in makr, watil, as abme staled, it has bermoce the fower of aminierce, upon abich all valise rationk is baserd.
It is ati inva white law of tirste and cominuetre that
 bans of the cost of production. Sometames, of coarse,
profits are hisker and then àgain lower, depending somewhat on the supply and demand, but in legitimate trade there is aluays a profit based on the cost of pro. duc cum.
The production of patent flour being so larke, it is necessarily expected by commerce as the staple upon which the prices of Aour are fixcd, in accondance with the above mentioned laws of trade.
If the entire output of the mill was patent or could be made sucl., or even if 80 per cent. of it was, this way on fixing values would be all rixht and the flour makers would at all times be assured of a living profit. Unfortunately, however, such is not the case, for white some of the best hard wheat mills are able to make 70 per cent. of patent floar the average, taking both winter and spring wheat, will probably not much exceed so per cent. lhit if we allow it to be to per cent., there is still a remainder of to per cent. that cotnmercial rexulations take no account of. It rexulates the price of the patent in accordance with the cost of the raw material of which the flour is made, without reference to the other ∞ per cent. which is thus obliged to tail on bebind, and have fixed upon it a price in relation to its qualiny as compared with the patent. And now when prices are very low and axgrenate profits are small on the pateat flour basis, it follows conclusively that the $t 0$ per cent. uncared for inust sell at a price all the wa) down from actual cost to a luss about equal the profits on the patent, which oftew leaves the mill with no actual profits and scarcely in1 rest.
This being the fact, and there is scarcely a doube of it, it requires no sage observer to see that there is something radically wrony with the practice and that snave other course ought to be parsued by the millers is order ti) sive themselves from the incubus imposed upoa them by the abrormal lengths in patent tour makiny.
ithore patent flour was made the aim of all good mitlers nas to make substantially a straight or as moch of a straight its it was possible to nuake, and on that product values were based. It is true that lower zrades of stock had, then as now, to be made into lower grades of flour: but the leading commercial four was in the order of a straight into wheb all thot was poxsible was werked and the remainins: products that could not be safely worked into the leater had to be worked inso lower crackes.
Now, then, the question comes up, would it not be better business practice, or a better busimess polocy, to turn backward: \boldsymbol{x} step and at heast consider whether or not the miliers of those days acted wisely? It may of course be said that they were uamble to do amy ouber way, as they did not kroow how to do differeatly, wor had they the facilities.
The probability of that will be granted, aed for the sake of the argument it will be admitred that they were oblived to mill in that way, would it net now be actien the pant of wisdon for rur millers in po back and inguire into the meriss of that way of doing in, as conppered with the preseat plan?
The writer believes that in that respect the old way was moch the best and moch the surest money matier, when the resuks of years are added together It is mot exclusively for fun that foor mills are rom, gor are they usually r in for the beneft of the heath of the owners, but for maliing mones, or at least thast is the aim, whetber any monney is made or wot.
The paseat Acour ceraiainly crusbes the tife and thereby all the profise out of the lower arades and ia so drimes leaves noxhing for the maller but his feed and noe slways that. If it does nox dos that is it seen a thinge to be thated raiter than loved and petter! as it now is?

steis evire.

T is the poompt attewtion to tintie things than makes the successful eagureer. The cuucless mana is dropped at a covenicat mooveor, and the has hard work to net anoninet "jobo." The a reater cisapers are seem in ant, and almox anyone ram make the proper povisions. The eng imeer who srewis denger, whirh may resch in two or three day's "shut down" or a prosible explotion, is the one who axims his employer's comidence and fanally lameds on inp - Sisfery. Vialve.

CORRESPONDENCE

teampal elevajon cmanoze

To the E: fitur of ithe Camailian Milikn
Sik, The interest that is taken by your journal in maters pertaining to Manitoba and tise Northwest ought to be pleasing to all interested in giain and mill. ing affairs in these territones. 1 am constrained to wrte to you to day on the natter of terminal elevator charges, sukgested by the fact that the lireat Northern Railway Compuny have recently redured their elevator rates at Duluth to one-half cent per bushel for receiving, elevating, and discharying, including storage for 15 days, which is only one-half their former rate. Why should this rate exist at all? As one of our local journals bere has pointed out, "railway elevators are sumply freight or storage warehousea, built by the railways for their own convenience in hapding their tratfic. They make no charge for h.andling ordinary freight through their storage bouses, and why should they charge for handling wheat, any more than for hand!ing cases of dry-goods and boxes of groceries ?" This may possibly be putting the matter just a little ton strmoly. Grain, as an item of storafe, holds a somewhat different position 10 goods that are packed and are more easily haatiod than wheat or any other cereal. But it has been apparent for a long time that the charces for this work have been altogether excessive. I should certainly oot object if the storage of grain could be placed upon juse the sance basis as ordinary freight, but it is not expecting $t 00$ much that our railways, and that speedily, should reduce their rates for the storage and handling of graia. These rates ought to be reduced, if for no otber reason, because of the reduction that has taken plare in the values of xrain during the lask year or two Expesses is ofber directroos are coming down as a re suth of these chapges, and why nor elevator charges?

Youns, etc.
mamitoban.

matise meatem.

To the Rdinor of ite Caxadan Miluek:
Sith,-lin this westero hemispbere we are apt to pride ourselves oa the perfect and propressive character of our basimess methods. We talk of cursetves as a no-ahend peuple, and it is rue that there is a good deal of goabenditiveness about us, if that measas sornetimes a lack of care and comservativisom. We are seldoen afraid to experiment ; at the sance time it is fair to say that this spirit has lead us to be in advance in many matters of the odder countries. We fond an illustration of this kind of thing if we look at ibe milhs of this country as comepared with those in certan pperts of Europe. We could at one time and that not very loane sibce apply this remark to Greas Britain, but lokn Buli has caught on all roght and his four mills ase about as perfect as you fied slour mills apywhere. What Joha bull bas doae other comaries are doing to-day. Yussia is developing ber milline syuem quite rapilly and we are now told thas mestera methods of the elevator system are beime adopped in the lanel of the Crar. The point I wast to get at is this, for I do nox believe in leagthy letters, is thate it is a difficult matter for any people in hroes hoid suppenacy of methods of manufactere in millize or any alier live of busimese. And thrs cradition makes it mecessary, when we diacuss the milliak and grain sinma. tiva, to rewember that there moss come into ath culculatrons the fact, that even a couptry, so far a bact momber in masy peiats of civiluation as Kussia, is in be coumed as a well equipped cormpetioor in millise and grain busimese so-day. And as with Russia so winh ofler coundries. Metionds of transi, the railrood, ithe relegripth, the teteprowe, ithe cableapram quick merbods of pertiong the people of every comory is touch with the rest of the wortd, are revelanieniaing basivess ro-day.
J. T. L.

The Cliricago Boans' of Trade and ite eterater proprivers have compromised their recemp dispare. The
 days, and Xc. for anch andinieval ren days.
allume me pance CLLOWINL; is a summation of a "Traite lratique de ta Meunerie" published reccatly in France:
Among the ancient (Gauls the gr.tin was not ground, but was eaten in its nitural state. l.ator the underground was cooked and caten in "pat" i " or in ,nuldings. The first attempts to conve.t the krain into me.ll or four tollowed the system in use among the ancient (ireek;, who covered stones with a lixht layer of damp grann, which was then dried in the sun and afterwarls crushed with a heavy coller of stune or metal. The neat slage in it e evolu.ion of the nill was the pounding of the grain in mortars with wooden pest:is. Than came the fiat millstones, which were made to revolve, the one on the other, at first by hand and later by animal power. Windimilis, of which quite a number are still in operation in Brittany, and which are suid to have been in use in the Orient lonk before the Crusades, were at this epoch introduced into France and generally utilized until about the middie of the eleventh century ; then, because of their irregularity, they began to be supplanted by water-mills. These were, at first, operated on boats anchored in hodies of water, but later were fixed in permanent ronstructions on the banks of streums. It was not until 1780 the art of modern milling was invented, as is claimed by two Frenchmen, Col. Ducrest and the engineer Favre. Their attempts to introduce the new process into France were futik, and they therefore went in the United States, where, with the co-operation of the American engineer, Oliver Evans, they established the first mill in the norld using the mouture dasse. The first mill of this Lind in Engluad dates from 1789 , and the first in France only from 1816. Since that time three kinds of millis bave beea to use in this country, windmills, water mills, and steam mills. Except in Brittany, where windmills do the grinding for the small- farmers, these mills have practically fullen into desuctude in Fiance. A steam mill was, it is claimed, built in France as loag axo as 1742, but it was not until 1816 the development of these mills bexan. The griadiag was all done by millstones until 1873, when the sysuem of porcelain cylinders, supplanted later by unetal (steel or foate dur) (yliaders, was introduced. This system had brep is use in Swiserland since 1832 and ia Hungary and Italy for a number of years proor to 1873. A number of mills now use the cytiaders ; ia otbers the wheat is around by millstones and compressors with cylindens are used to convert the grits into thour. The record gives the following comparative resahs obeainerl per 100 kiloprams (220.46 pouads) of wheat by mill same and by cylinder grinding

The cylisder mills yield a greater porronion of superior thour thas other mills, and their product is in greater demand amoay bakers and pasiry cooks, e recially in Paris. It produces mon only a foner qual., of bread and pastry; but it yields from 3 to \& per crnt. mon bread that ofber four. There are in Fravce abou: 50, 000 mills occupied exclesively with the grinding of grain. The ammal cossemption of wheat ia France is aboun 340,534000 busbeth. This represents ithe respectable sum of S3skglopo. These 93,009000 quintals of whem when ground into tour produce :

The millens wor only grind thest, but alon the inferiow graina, rye, barky, maise, buck whear aad oats. Ily whding the value of these diberem groins for ithe quantily that pacses amamally throwed the milts we reach a fuxure above Suls, gacaco. There fipures are made upon ite basis of the emprecedemily fow proces of grain prevailing: his yamp. A the pricen previliong in a year of ecarcily they mould enceed S77?̣00pora. The Firmeth sailliag
industry is thorouxhly organized. In t886, the National Association of French Millers was founded. Its headquarters are in l'aris, and it numbers more than 3,000 metibers, including the ownery of all the gieat mills in the country. This powerful association holds an annual congress in I'aris in September, where the various questions of practical or commercial interest to the trade ate discussed. In comnection with the congress a splendad exposition is made of milling apparatus, tools atu! motterials. This organization is comstantly on the alest against foremn compettion in the french market and is a factor :always to le considered by those who ate interested in extending the demand for four in France.

omtario crope

-11E crop bulletin of the Ontario liovernment up to the middle of dugust is practically up to harvesting time. Fill wheat is reported a suciessful crop which was sot in favorably, but spring wheat owing to drouxhts in the west, and excessive rains eastward, is light in both $q u: a n t i t y$ and weight. Of barley, reports are that the averafe is low and only a limited yuantuty will be avail. able for export. Oats will not be at large crop, and tha: of peas will fall much under the averake. In regatd to hay it must be remenibered that the yield of 18 f): was over one million tons kreater than the avetage of the 11 years, 1882.92, and that the sield of 1883 was nearly 600,000 tons greater than that of 1892 . The yields per acre of the past three years were as follows: 1891,0.94; 1892, $1.74 ; 1893,1.79$ tons per acre. That of the present year is 1.39 tons per acre. The laiser portion of the present crop is timothy and native grasses. There is less clover than usual in the first cutting. On the Whole the quality is reportel very pood, as good harves. ing weather pretailed over all pans except in a few eastern sections. Since the day of the report a severe drousht has prevailed, which has done very serious injury.

Corn is a vely variable crop this season, but on the whole, not likely to be an averake one, the weather not having been favorable either in the earlier or hater stajes of growth and ripening. The sauke difference occurs in potatocs, western yiekls being very light, whi. others are excelient.
The averaxe yiehls for 1894 are based un reports daled August 15 . These are subject to revision after threshing. Kevised reporss will appear in the Noveniber bulletin. In 1893 and 1892 the Noveniber returns were less than those of August. (Ining in the extranodinary drought the yuelds of the sprink: grain here given may le reduced. The report of hay is fin il.

Crops.	Yield per acre.	
	Year.	liush.
	$(1844$	21.6
Fall wheat.	- 1843	19.2
	(1882-93	20.0
	${ }_{1}^{10 \times 44}$	16.1 11.7
Sprias wheat.		11.7 15.2
	1^{11904}	22.7
Marky	11893	21.0
	(1882-93	25.7
	$1{ }_{1}^{1829}$	304
Oar	${ }_{1}^{1893}$	30.3
	11804	15.7
Kye...	${ }_{-180} 18$	14.5
	$118882-1 / 3$	16.1
	11894	17.5
lreas ..	${ }_{1}^{1885} 180.95$	19.2
	11^{1804}	14.6
leans...	${ }_{1}^{18,53}$	13.6 17.1
		toms
	$f 18.804$	1.34)
May and Clover.	[$\begin{aligned} & 1898 \\ & 18882.43\end{aligned}$	1.79 .43

The total area under the athoie crops is $8,217,3,3$ acres, as compared with 8,054612 acres in ing)3. The area dewned to pasiure is 2.703 .241 acres in an increase of 91,561 acres over 3 in/3 Takin; the reppot of © Ontario crops as a whole they may be estimated as a how aver. are, the cariations in yield in different parts of the liroviace beipg unusmally great.

Subscribe for the Caxadian Millear. Si per year.

BY THE WAY.

AKCif: milling centers have usually been built up around valuable grain k rowing districts. Minneapolis is an instance before us A more recent illustration is found in the development of milling operations in the Du_{u}. luth and Superior sertions of country. With some of the best wheat krown in Anerica, and added to this excel lent opponunities for shipment by wree, we see to day the milling strength of Duluth growing apace. .Nong this line the sugkestion has frequently been made that ultimatelv Manitoba and the Sorthwest, because of their superior position as wheat xrowink countries, must also become a large mulling territory. 'T here is not a littie force in this contention, despite the fact that there would not seem to be at the present time any necessity for an expansion of imillinx operations in this or almost any country. But the whirligig of time brings about many changes, and who would venture to say thit changes helpful to milling on this contunent mav not appear in the horiann sh:rily? We are reminded of a possible outlook for Winnipeg as a larke milling center in the strength that is being piven to the water power of that district suggested by the fact that a company is building works to utilize the immense water of the Lake of the Woods at Keewatin, and that this power will be transmitted to Winnipes by electrictis: There would be here one strong adiantage held by Winnipeg were it to eater into milling.
Those interested in ayricultural callisis $=$ enntinue to kive thought to the question whether they must the the near future switch off from growing wheat as a leading product of the farm to utiluing the land in a more profitable way. The wide guls between the returns fon wheat and that trom other products is perthaps rather absurdly illustrated in the story of the Wisconsin farmer who received a return of over $\$ 600$ worth of fruit per acre from 10 grres on which were grown black berries. Contrast this with say 1 ; bastels of wheat to the acre at even boc, or 59 per acre, and the inducements to continue as wheat growers is not strons. We cannot, however. turn the large acreaxe that has all along been srown in wheat into black beries, but many farmers are already switching of into dairyink, ca'tle raising, and in disposing of a considerable percentage of their wheat feeding cattle.

On another pase we publish a valuable contribution from 21 r . lames B . Campbell, of Montreal, on the waterdays it Canada and along with this will be found the ulws of .Ir. James Fisher, M. IP. P., of Winniper, on the same sutject, giving the Mantoban opinion. It is hardly possible that something practical will not grow out of the amount of thougbr and consideration that is being given to this question at the present time. The subject has broadened, for not alone is it an uppermost question with the Canadian people, bus its overlapping chalacter is seen in the fact that it is a promipent subfert of discussion in the L'nited States. The fact is that the matter of canal buikding in the light of the scieatific and mectianical proyress that has been made is modern days, makes it reasonably certain that with the growth of rallways in the past half century or less there is also in conve an expansion of our waterways as a medium fot the catrying trade of the country, that must also reach large dumensions. Chicago at the present time is planming a new waterway from Chicago to the Ciulf of Mexico, which it is supposed will connect the liull of St. l.awrence with the Gulf of Mexico and give the windy cuty a supremacy as.a commercial centre that canmot be altained by any other city. Sulsested by this projected Chicapo canal and like works in progress in mber pans of the country Harper; Weekly of recent date devotes larse atiention to the yucstion priatiag out that the work of canal buutding to-day; may be greatly reduced ia cost as compared with the me:bods hitheriso employed. Were smoethm: practical in be serured in this direction it would telp to solve the canal quesumo in Canada, for with the statement of the Minister of Kailwars and Canals that it wroukt renst $S_{1} 30,000,000$, to make a 20 f. channel from Iake Firic to Montreal, at present what serms an unsurmountable difficulty, is the matter of come. Het ibe contention of Harper's Weekh; is that by means nd improved dyanante dredges the werk of encavation,
transporting and depositing is greatly simpiified and the cost reduced. The statement is made that this work rould be done at less than half the coat of similar woik on the Manchester canal. It our people can see their way out of the financial difficulties of canal building one kreat obstacie will have been removed.

A letter from a correspondent in Manitoba, published in another column, referring to the high elevator charges, was evidently written before he had received news of the reluction in the charges for handling grain on both interior and terminal points made by the Canadian Pacific Ralway. This railway has reduced terminal elevatot rates to about so, , and a reduction of,$\Varangle \mathrm{cc}$ a bushel has been announced in interior elevator rates. "This," says the Commercial, of Winnipes, " will amount to a savinx of about one-quarter million dollars in handling this crop and will be of great benefit to the farmers."

The Globe a few days ago made the following criticism on the changing of standards of grain every vear : The present method is to strike an average of weight, fulliness and otber qualities by examining many samples, and to establish that for the season as " Na ; hard"; wheat of better quality is graded "extra," and the Inwer grades is "Na. 2 lard." A porchaser in Europe buying wheat from many countries deals in Canadian "No. I hard," and naturally regards it as a fixed standard. A favorable year advances the quality of this standard, and the buyer is reluctant sbout advancing the price in comparison with fixed grades. An unfavorable year lowers the standard, and has a tendency to make buyers suspicious. They expect certain qualities in Canadian "No. i hard," and are disappointed. Another objection is the necessary delay in the earty fall before the standards are fixed. The isspectors will not leave for Manitoba until Saturday next, and until they make their seiections and fix the standards there can be practically no trade in wheat. There would be many advantages in the adoption of permanent stapdards, which could be learned and rerognised in European markets.

Frevert antis agtration.

The Commercial, of Winaipey, Man., suxgests that if the Doninion Gomerameat is seriously kroking aboun for a policy to gn to the counary with at the next election, it will find such in the question of freight rater, as fixed by our leading railways. Therc can be no doubt that this grievance of excessive, unfair, and discriminating rates is oors that is being shoved to :he froat as a question that the goverament cannot is sore. It may seem at firse thousbs that this is a matter which sumply interesss the commercial classes. They are indeed deep1) intereued, as in some shape or olber the mater is constandly before them. In a measure they are daily paying the mper. Hut the grievance is more wide spead than ihis. The pri es charged for every article of coasumption sold wer the ieraters of the smallest corser store are etiected by ibe chargen for carning made by our ralways. The millers of the country have been pushing the agnation against excessive freight rates with more vigoor, pertaps, than anv other branch of busiocess. Some of the evile of discrimination hive come home to them more closely, possibly, than to sther lines of manafacture, because of the condition of the: milling trades at this time. Profits in milling have got down to so fire a ficture that a sliykt difference in freight rates, when the miller is broasht iato coanpetinion with millers of mber coustries, is enough to easily wipe out the marnin of profit that he may have faxared oa. Duriak the perrod of a year or more, bowever, that the freight commitee of the Dominion Mirics' Associatioa has teen investigatiag this question illasinations have come before them more than oace showing that to a relative extent the evil in treigbs rates that ihey cumplain of has a lods. meat in ofber departments of trade besides inilliae.
In Maniscba and the Northwern, the aspitation for relief in this directica is arowing with eamistakable forre, and there caa be no doabe that, wbetber the governmena makes the question a plank in ibeir plafform whep they appeal to the country for public apporonal at asother tian, of quienty igace in, the queation will cerrainly, so
far as Manitoba is concerned, confront them with marked determination.
Writing simply from the millers' point of view the railways and the government may rest assured that there is no intentimp to ease off on this agtation until relief is secured, and more and more it becomes apparent that the question is one confined to no one class of the community patrons are devoting their share of attentinn to the matter from the standpoint of the consumer and when the subject comes to be one of popular agitation both on the part of the man who sells the goods and he who buys them, we may expect that there will be rather tnore than a "tempest in a tea pot "for all who have authority to make or regulate freight rates.
What is worth remarking here is that this agitation for lower freight rates is nor confined to Canada. United States shippers of wheat and flowr, especially those in the nothwert, southwest and the Pacific coast, are moving actively for a reform in this direction. The Chicago Elevator and Grain Trade of recent date has an article on the question where it is significantly said: "The carriers' old rule for fixiag rates-" what the traffic will stand "-could be applied to the re-entablishment of the rates on wheat with satisfactory effect."

DIFFERENTIAL spring governor for steam engines is among the recent mechanical inventions of note, the device possesaing the advantage of being applicable either to control a valve by which steam is admitted to the engine valve chambers, of to directly actuate the cut-of mechanism of any cuatomary type of valve. In its construction there is a fukerum lever, ose arm of which coasects the device with the valve or curof stem, and the otber with a collar sliding upon the governor spiadle. The governor balls, or weights, have short arms coanecting with a bar fixed to and rotating with the spindle, and otber amns exiendiax ourwardly on the opposite side connecting with the bar which is slidable upoo the spiodle and which actuates the movable collar. The angies formed by the fevers-which extend out from the opposite side of the balls or weights-are internal angles, so that, as the balls are ibmonn oen ward, these balls are brought more mearly into a straight line with each oether. A compression spring acts to return the parts when the centrifogal force is reduced.

menemo tre.

PYE millink methods, says the American Miller, are inger than corn and sborter than wheal. The loagest thing about rye milling is the clemaing of the grain in its preparation for reduction. While rye is af the same general form as wheat and looks a good deal like it, jee it is an entirely differens grain to mill, and more particulaty so in the matter of its cleaning. An analysis shows that the cells, germ, epidermin, in short the whole texture is of an entirely difiereas anture from that of wheal. Examiniag the epidermis, or outer layer of bull, or brap on the rye berry, it will be seen that is is much lighter, thicner and darker than on the whens berry, and is partially loose on the berry and can be easily removed by rabbiag. This coverion seems to be somewhat of a scaly :inature.
In cleaniag wheal we have been tanght io be wery careful wot to be too severe. In cleanim; ne we have to be carefoll to be serere esough and remove sll of this orter covering before attempting to nsduce the erain. Not being tough like bram, this covering will become detactied aad palverised ia a way to mabe rje flour specky and newerally of less value.

a tonaction man murs.

THF: editor of the Eariweeriag Magarime says thas the I fesch side of leaber is the bese to place againes the palky whea suct leativer is ared as a beth, wor withocanding this to be contrary to the mont usalal practice but this general practice is due to tive idens of bek makers rather than to those of beh users. Traction, be says, is greater than where the surfice is chanic aod hasa clion.inar cendeacy than where it is hard rad smooth. This in became this kied of surtace clunctues the palley more securely by being prosed inao all the peres and imersricut of the metel or varrial.

INVENTIONS in the line of milling machinery in the United Staten nowadays are few and far between. Over in Europe there is some activity, mostlv in unimportunt lines. Among recent inventions patented in Creat Britain is a cleaning and dreasing machine, the invention of F. Holtzhausen, of Nossen, Saxony, Germany. This invention relates to a machine suitable for treating grain or granular miterala. A drum carrying brushes or emery compostion is mounted on and driven by a central shat within a perforated casing. The casing is supported and driven by friction-wheels placed one at each end. The casing is further supported by wheels at each side, which may be adjusted to regulate the distance between the casing and the central drum. The method of adjustment for the wheels consists in mounting them oa the side, which is hinged or equivaLently secured at its lower eno and is provided with arms at its upper end, which mary be fixed in any position between nuts in the threaded rod.

Another is a middlings-purifier, invented by W. W. Willis, of Ipswich, England. This is a machine for sortiak or purifyugg middlings or the like by means of a current of air, which is caused to circulate continuously within the enclosed casing of the machine. The figure shows one modification, in which a sieve is introduced to assist salll further the purfication of the middlings. The middings are fed fr mo a hopper through the current of air as it passes the fan. The middlings fall, according to specific gravity, into three hoppers. The contents of the first bopper fall on the sieve formed in sections and carried irr a frame baving pieces of fexible cloth all round to prevent the entrance of air and operated by an eccentric. The material passing through the sieve falls into a bopper in the bottom of which are a number of valvea, by means of which any portion of the siftiogs may be discharged into either ose of two convegors placed side by side and arranyed to discharge the material through shoots. The overtails fall down the shoor into one of the conveyors, being subjected to aspiration by a current of air passing up a channel. The cootents of the second hopper pass down a trough to be mixed with the overtaila. The finished offal is discharged from the machine by a shoot and is collected in the abook from trays, which are placed over the sieve from a valve, throunh which all the material which falls into the third bopper is passed, and lastly from a valve, throuigh which all the material which collects in the bopper of the aspirator is passed. The dast is collected in and discharged from a bopper. The dust is separated from the air in a chamber, in which are a number of batllea, and in an expansion chamber, in the botion of which works a brush which sweeps the dust in:o the hopper. The air-curreat is produced by a fan. Suitable valves are provided for directing and repulating the strength of the current. A modification is described, in which ooce of the sieves are dispensed with.
Anotber inveatioa, by J. M. Rishorith and J. Vickers, of Leeds, Engiand, :elates to sifting or screening. In this machise, to preveat the four from adbering as 11 drope from the reel, the bopper sides are arranged to sliste in the frume and are provided with brackets in the puths of revolvias cases, and with spriags by means of which they ate moved upward and then retracted respectively. The sides are readily removable to obtain acceess to the worm.

Apolber is a middlings purifer, invented by L. H. Neive, of Fordingbridge, England. In this invention the object is to collect and remove the dust from above the sieves of middliang-porifiers. Above the sieve are tranverse bars wrth openings between them ; scrapers on and endess chain travel over the bars and opeaings, causiak the air to be drawn through the openiags by the faca intermittently, and thas allowing the dass to deposit oo the bars and scrapers. The scrapers are cleapeci by brambeseapported over a conveyor.-Milling World.

A new material inteoded to be voed as a subatitute for lember is covering bek palleys is made of wood pulp combieed with vaious ingrodienss for making it tough and pliable. It may be mocured to the face of the polley in suction way that the rivets will pot show througut the workiag ficce.

cove modmans.

WE. recently came across an engineer who was grumbling over the safety valve on his boilers. Formerly he had two lever valves, one on each boiler, but some one, he says, yot afraid of the lever valves and induced the owner to join the outlets from each boiler into one pipe and provide for this a lonk pop valve. There was no valve between the pop and boilers, which was right enough if that way of doing things was to be continued, but what the engineer objected to was having one value do service for two boilers. The boilers must be run together or not at all, and if anything should happen to one it would not be possible to citt the other out, but both must act together. This was wrong and it ought to be obvious to all who had anything to do with these boilers, and though the engineer recognized the defect he did not have spunk enough to make a vigorous "kick" for a value on each boiler. Such an arrangement is not safe. Each boiler should be provided with its own safety value, and should be so piped that it can be cut out from all connection with the rest of the battery when occasion ever demands.
All engineers, however, are not like this one, and there are those to be found who have the stamina in objert pretty forcibly when anything is wrong about the plant. We recently came across wo such cases, and in both cases the engineer came out ahead, and with enployers that had the reputation of being obdurate. Both cri.s were of brilers providing steam continuously, night and day and Sundays to, and in both instances there were two boilers. In one case the engineer could find no record that the boilers had ever been inspected or even shut down for cleaning out. Possibly they may have been, but not since he came there two years before. He stood it as long as be could, asking for an opportunity to inspect the boilers, but the owner would not allow the necessary shut down. Finally the engineer stated that he was prepared to leave his position unless he could inspect those l ilers. He had staved around them as long as he wa, going to without knowing what they looked bike inside, and if anything happened to the boilers be wanted the owners to understand he would be willing to say about how little care they got. The owner did not care to run any risk, but his disposition bad been simply to put off the inspection as long as he could. This challenge was tno much, however, and the engineer drew out the fires and cooind the boilers off for inspection, and the owner fumed and fretted for two days while the eagineer was fixing things up in a manner more to his satisfaction. No defects were found, but the boilers were very d.rty, and after it was all over the proprietor told us be was glad of it as he began to feel a little uncasy himself and rather wekomed his engineer's objection.

In the other case the engineer had only been at work in the place a week when he found out the plant was in poor shape and had had no regular inspection though his predecessors (there were several; had asked for it. He went up stairs and told the owner be was going to shat down ove of the boilers the next day to inspect it. The storm broke over his bead, but he would bave nothing else and the owner gave way and the inspection revealed a pretty condition of affairs and the need of many repairs. Here again the result justified the engineer's firmoess. From a somewhat varred experience with steam users of this kind we are convinced that if engineers were more positive in asking for what they wanted, coupliag it with some intimation that they understood and could show exactly what the end in siew was, they would get their requests more readily granted. Steani users do not, as a rule, care to run many risks, but they often bate to spend a cent, and if the engineer is timorous in acking, and they can bluff him out of it, they feel that the thing asked for was not really important or the engineer woukc show more plainly that it was. These two cases clearly show where some seam users stand, and if the man with the single pop valve will raise a vigonous objection the will undoubredly get another pop so they can be separated.

The firs of the two engineers abuve mentinned also tested his boilers by hydimstatic pressure, as well as by looking them over, and in talking it over he said, "I ran it up 10250 pounds and it did not show a weep." Now thet was a good record for thas boiker, but it was
a very foolitsh thing to do just the same, to submit any boiler to such a tremendous strain. That was not a test alone, but an effort to burst the boiler in reality. The boiler carried a steam pressure of opounds, and to submit it to 250 pounds pressure was altogether out of reason and common sense, and submuting the boiler to a strain it should never be called upon to stand. The purposes of a hydrostatic test are anoply answered when the pressure is run up to 50 per cent. greater than the working pressure, and such proportion should never be exceeded because it unduly strans a boiler and a boiler once so strained is never as good as before. The engi. neer did a good thing in getting an inspection of his boiler, but he should have known more alout how to inspect that boiler.-- IBnston Journal of Commerce.

FOOLISM TRADE NAMES.

0NE gets sick and tired of trade names, such as victor, ideal, purakon, excelsior, and the like, also wonders how the makers of marhines thus named can afford to waste the effect produced by using the maker's name instead of these pseudonyms. The name of a firm or company applied to a machine such as a waterwheel, gas engine or a moving machine, is of real trade value, and comes cons:antly into use, but a nickname rarely ever does. Gas engines are thus afflicted, but not steam enxines, the latter beink accorded too much respectability for a nicknaine. We have, out of regard for the machines and believing it to be vastly to the advantage of the makers, never printer' nne of these names when it could reasonably be avoided.-Industry.

the humganlan crop aeport.

THE annual crop estimates issued by the Hungarian minister of akriculture were published on September t, the delay in their issuance having, been Jue, it is alleged, to the care bestowed upon the resision of the report. According to these estimates, the n heat crop of the world will be $2,476,000,000$ bushels for 1894 , ayainst 2,279,000,000 bushels for 1893 and 2,280,009,000 bushels, the official avera;e, for the past decade. The deficit requiring to be covered by importing countries is $\mathbf{3 6 4 , 5 2 6}$. 000 bushels for 1894 , against $37,000,000$ bushels in 893. The surplus from exporting countries is $44,1,245$. 000 bushels, ayainst $378,664,000$ bushels in 1893 . The detail figures representing the production and tieficit of the various imporing; countrics for the year 1894 are as follows:

	I'roduction Bushelk	Ineficit. Hushels.
Gireat tirilain.	60,495,000	170,280,000
France	354,625,700	19 859,000
Ciermany	102,132,000	32,625.000
lialy	120,218,000	29,788,000
Holland	6,241,000	11,915,000
Switertand	7,376,000	11,915,000
Helgium	21.277.000	25.533,000
1 lenmark	4,539,000	1,702,000
Smeden and Nornay	5.106,000	7,092,000
Spai	97,876,000	12,768,000
Prortuga	9,074,000	3.675,000
cirere	3.404,000	3.972,000
Austria	45.400,000	31,774,000

The fixures in detail of the production and surplus of exporting countries are these :

	Irmaluction. Hushel:	Surplus. Ifushels.
Kunsia	363,136,000	141,850,000
Itungary	151,095,000	45,393,000
Kurmania.	51,066,000	19.859,000
Turkey	29,793.000	5.675,000
Butparia	31,207,000	13,050,000
Seriva	9,929.000	1,485,000
C'siteri States.	40\$, 52\%,000	70,925,000
Canada	42,555.000	15,605,000
India	258,166,000	22,(60p),000
The res: of asta.	58,15\%,000	2, \$37,000
Africa	48.370,000	5.957,000
Australia	42,295,000	14,185,000
Chili.	24,114,000	0.999,000
Argentise Kejullic.	117,508,000	73.762,000

Just how far complete reliance is to be placed on these figures readers can judke in pari from the information in their possession of the size of the crops near lome.

Tht: tmiley car was put to a new use in a neat-by city one morning recenily. A thief was escaping in a hick, and a policeman boanded a trolley car, and the motorman tet her ont in chase. The horse gave out first, and the thief was captured. Smme good in the trolley car after all.

0BSERVATIONS extending over a period of a quarter of a century in a practical and professional way have presented uppoitunities to note, in the greater number of manufacturing extablishments, a continuous decline in the grade of service of those in positions of firemen and boiler rom manderes, this corps of operalives seeming at least, io have remained in sfotic gwo. The evil has become so plaring and the results so palpably fraught with disaster, destruction and waste, as to warrant an effort to call the attention of those who desire to proyress to the false and inconsistent position they occupy by permitting such a natrow policy in management, so widely at variance with true economy, ignoring directly thit the better intelligence renders the more valuable, and hence, more profitable service.

It goes without saying, that, during the past ten vears concentration of efforts by scientists and eminent mechanics looking to the more perfect development of the steam engine in its various iypes, tas produced results which challenge the admiration of the most critical in this line of thought.

Within the same periont, from every source, there has been a multitude of features in the form of designs and movel application of boilers, all convergiog to the unportant factors of increased economy, safety and efficiency. In the engine sphere, condensing, conipound and triple expansion enxines, with or without jackets; in brief, seemingly all the necessary refinements have received, and are receiving close atteation. In the boiler domain there has been, also the evolution from the plain cylinder type to subular, and from that through the multurarious forms of water tubes, each striving for a superior degree of exce!lence. Combining these forces, viz. the boiler and the engine, the amount of research ard practical application that have been, and are being at ulied for efficiency and economy, are such as to be almost incalculabie. A retrospect of the past, viewed in the light of present resulis, shows that these efforts have been of an exceedingly fruitful character.

The development has carried with it the imperative advancement of those in charge of engine management to such an extent as to create almost anew this body of men. Such an intellectual advancement in the department of mechanics, we believe, is without precedent, and in every sease challenges universal admiration from every quarter. Not withstanding these favorable features, we are constrained to say that all this is sotnewhat like the play of Humlet with Hamlet left out ; or in oxher words, we are radically defective at the very threshoid of this freld, by reason of relegrting the firing of boikers to the most ignorant of operatives; or, to put it in a plain way, there seems to be an almost unanimous idea that anyone who can shovel and throw foel is kood enough for a fireman. Close observation and contact for a period of years with numerous plants of valied character increases the conviction upx this point. Kecognizing, as we all do, that the furnace of the bniler is the prime feature and great initial point from which is the source of power. does it not follow that, if economy and efficiency are deserving of efforts in the advanced stages, as has already been poisted out, this is the very point that should be ireated with every consideration of intellizence? Should not the fuel, furnace and boiler receive the thoughtful attention that the engine receives from the careful engineer? I think this will be accepted by everv one interested in sdranced ideas. No one. I think, will question the fact of the importance of the initial point of the boiker and its fumare, and that, upon its mismanagement, the efforts of refincment are rendered, in many cases, completely void. It would seem so simple that asgument would be unneceasary, were it not hat, on every hand, the matter is entirely ignored, resulting in waste and destruction. We would ask: Are $n x x$ the efforts of the best fumace deainners compietely set at naught ofien by reason of the manser in which they are sperated? Is tt not a glaring fact that in all cities where smoke abatenient has been, and is beng altempted, the great sumbling block is the low grade of intelligence and difference of the operatives?

In tooking up this subject from a mechanacal and engineering standpoint, we are fully alive to all the Rr, Br 12, Ab
reyuirements to give coniplete combustion and thorough distsibution of heat units; proportion of grate area and openings, proper amount of air, conduction of the heated kases, are all carefully considered. When all is completed, we have had the wonderful spectacle of these conditions being turned over to the simple treatinent of rain jam shovelling and slice bar operations. I claim that the fireman should know, at least, the elements of combustion, the importance of the proper management of fires to produce the greatest results with the least expenditure of fuel. The intelligent engineer keeps this constantly in view as to steam economy; the valves, etc., receive his unremitiong attention, unleas he can properly be placed upon the same plane as the fireman that shovels without intelligence or judgment.
Now, it may be said that this is being areatly over. come by application of mechanical stokers, a point that is frequently (and I believe, without thinking) claimed by those interested in placing stokers. This is a great mistake, well known by those conducting tests, results always beink superior with the yreater intelligence of the operator of the machine.
This deplorable and absurd state of affairs is doubly aggravated by, not simply indiference, but actual encourazemen:, based upon the idea that anyone can shovel or throw in; or pethaps it is the idea of-they put it in the slot, and we do the rest. Does it ever occur to those proprietors, or the superintendents of manufacturing establishments, that while they are straining at gnats in the refinement of every application in the various departments looking to more econoanic results, ripht upoa the threshold, they are swallowing a camel with the greatest ease?
Within the past few years, in every community where cleanliness, taste and good beath are considened, there has cone fortha crying appeal to the authoritiea to lessen the dreat evil of smoke in the atmonpbere. In response to this, inveative genius has fiunpoly corne forwind. The multitude of devices that have been perfected and put in operation furnishes ample testimony to this fact. Many of these when properly operated, accomplish satisfactory resulis in snoke abatement, but no inventor has ever had the temerity to label his mat chine, "No skilled fireman tequired." Per coatra, it is well known that the most intelligent fireman produces the best results, and it is also an undeaiable fact that the best results are set at naught by incompetent operating. The writer has been brought in contact with large fields of boiler practice, and in many casen, aside from other disqualifications, the firemen were unable to speak or understand a word of the English langaige. It may be said, as I have heard it said, that these men are not paid to think, but to do. Well they do do. They will do up a coal pile, furnace and bonker with alarming rapidity. I say alarming to those whose views are broad enough to consider the initial and important points. On the other hasd, it is a lamentable fact that there are a great number of persons in official positions, ds superiatendents and proprietors of establishments, who seem to be utterly incapable, or uawilling, in note the importance of the pecessity for a higher grade of labor in the firing and managenveat of boiters.

One of the mont surprising features in coanection with this state of affairs is the teadency of those to place boikers, claiming anoag their numerous merits, that of less attention required than others, precisely on the old exploded idea applied to engines, " No skilled engjneer required." I have now before me a letter from a boiler representative who claims that his boiler will give the utmost setisfaction with noe half the attention that others receive.
What is arealy meeded at present is to lay aside the idea that anyoose is good enough to fire and manage boilers When you engage a man for your office, do vou not require that be shall possess some qualification for the position? And if aptness is shown, do you mot show appreciation by advascement to a higher plane, the interest being mutual? Why not apply this to the selection of firemen? As it now stands, we canoor but exclaim, "Strange, what a difference there sbould be 't wixt tweedle dum and tweedle dee!"

There are a sreat many plants in operation where, by iacompetency in this line, the rean caficiency is greally lesened, furanoes and boikers werking in ae-
glected conditions, and the community begrimed with voiumes of unnecessary smoke: and in addition to these evils, is that of jeopardizing lives and pmperty. Unless this matter is considered, and such action taken as will improve this corpe of operatives, it would seem absurd to be continually reaching and extending into the higher refinements of steam engineering, when : simple and important features ate ignored at the thre.. .Jd.
Under these conditions, does not the pertinent question present itself to the employer-ate we not occupying a false position by this seeming indifference? Do we not retard the development of a class of labor which by recosnition, by an appreciation that some skill and judyment are required, would be anmated by the smallest spark of ambition to qualify for advanced position? Is not this condition of affiairs a k ross inconsistency, nay, mockery, in the fare of the query put by those guiley of this indifference-why can we not get better men than this? In reply to that, would say, simply, it is not sought on your part. Just as long as this class of operatives are looked opon us mere shoveters, throwers of coal and carriers of water, ignorance, with all its attendant waste, destruction of property and general demoralization, will be prominent in the boiler department.

As a futing close to this, it would be proper to ask what degree of intelligence or knowledge would qualify one to fire boilers.
First. That the fires should be maintanned with unifornity, and that no openings, in the form of bare places, show upon the bars to permit the cold air to pass through.

Second. The judgment that will enable him, by a glance at the ash-pit, to know at once, to a great extent, the condition of the fires.

Third. He should know something of the vatious fittings of the boilers, such as valves, etc., and the details of the furnaces.

Fourth. But not least, an ambition to grasp the details, so as to qualify him for a still higber plane, which would certainly follow, provided there was judgment enough in the superior to note such details

Sufficient, we think, has been said to convince the most obtuse mind that the indiscriminate employment of labor for this putpese is a crying evil, and anone consideration given to the claims here made, that sumply because one can shovel and throw, it does not follow that be is qualified to fire and have charge of steam boilers.

CAN IT?

TT has been asserted that with the same wheat a pood roller mill having a sufficient number of machines can perform its work with the same amount of power as is required by a stone mill of the same capacity. Australian, Now Zealand, English and American red wintet wheats, when in good condition, can, it is claimed, be reduced to flour by a roller plant with an expenditure of about 6 to 8 -horse power per suck of thour. Next to thest varieties might be classed ordinary English, white Canadian, and Dantric wheats, which grind easily, but, as a rule, dress badly, and therefore could not be made into flour so rapidly as the first named. If ypring American, soft ladian, Saxonska, and Black Sea wheats, as well as some other European whears, being of a glutinous and seely character, be used, more power will be cousumped, and for these wheats 8 borse power as a minuman will be required. Next would come hard Indians, such as Calcutta, Kurrachee, etc., which, it is asserted, will talve not less than 10 thorse power. - The Miller, London.

swonal mores.

TOUKNAL boxes are now made which retain the ail and required repienishing onl; three or four timee a year. Their additional cost over the old afyle is ben trillivos and their usp will save a large expenditure. Ther should be adopred by every live anechanic. Poaring sil on heated journals is wasteful : water is nuch beater. Indeed, water is an excellent fubricant so loop as it remains is place betwcen the jouranas and bor. If, libe oil, it could be loept there, it would alford owe of the best meass of lubrication. Oil after having paseed beatod jonmal and box is comparatively worthleas for leos ricuting perppes-Tredearas.

expeancite wita woutze wisat.

CONFOKMING with the regular custom at the Ontario Agricultural College certain experiments were made during the past season in connection with the growing of winter wheat, and the results of these we now have in a bulletin prepared by Mr. C. A. Zavitr, B.S.A., of the College.

Tisere were 178 plots used for the winter wheat experiments in 1894, these beink divided off as follows : variety tests, 102 plots; dates of seeding, 36 ; methods of seeding, 12 ; selection of seed, 8 ; quantity of seed per acre, 6: sowing apting grain to act as a mulch for wheat, 4 ; and harvesting at different stakes of maturity, in. As the variety teats have been conducted for five years in succession and the rest of the experiments for only one or two years, this bulletin treats more particularly of the varieties grown than of the methods of cultivation.
The field upon which the grain was grown is a gool average clay loam, quite uniform in character, and has a gradual sinpe towards the northeast. The size of all the plots was $1-100$ of an acre, with the exception of those for different dates of seeding, in which case it was 1.160 of an acie. The yields per acre have been calculated from the nctual iesults of the plots. The land was prepared on the bare fallow system, and reccived a dressing of fifieen tons of farmyard manure per acre in the summer of 1893 . No other fertilizer was used. Four crops had been removeu irom the land since it had received farmyard manure previous to last year.
Seeding took place early in September, and during that month 1.3 inches of rain fell, which was slightly below the average of the four years previous. The anowth of the wheats in the autumn was good, and the amount killed out during the winter, and early spring was small. April proved to be a very dry month, and May one of exceptionally wet weather; the growth of wheal, however, was quite good throughour. The ripening of the grain took place between the 15 th and 23 rd of July, which was fully. three days earlier than in any of the four pievious years. The trouble from both rust and smut was not serious this season.
Soco after the gran headed out, a stonn caused the weak-strawed varietien to become considerably lendget, which interfered woth the proper filling of the heads. To determine the effect proluced by the lodking of the crop, an examination was mate of four varieties, which were parly lodged about five weeks before the ripening season. From each of these varieties 1,000 heads were collected out of the standing grain and also 1,000 heads from the lodged portion of the crop. The sheaves were threated separately and the results recorded, the following being the summary:

Comdution of crop.	Weight of grain from 4.000 beads	Weight of 4.050 kerpets of grain.
	cest	drs.
Senolin	1218	83
Lodred..	67	73

Providiag: the plants which lodged were equal in every reapect to those which did not lodge, thesc results go to show that the loss to the grain through lodging was about 4.5 per cent. in yield and 11 per cent. in quality.
So varieties of wiater wheat grown in 1894 upon plots exactly similar in size marl situated side by side. Paths three fest wide were lef between the plots. Seeding sook place on Sept. and with all the varieties excepting Nou. 56, 53, and 65, which were xown three days later, and No. st which was sown seven days later. The grain was sown by hund at the rate of 2 bushels per acre, and then the land was harmwed. The average yield in 1894 was superior to that of 1890,1892 or 1893 , bet was not equal to that of 1891 .

The followiag remarks are made upon the varieties which bave given the largest yields of grain per acre for the aumber of years they have been krown on the plots:
Earty Red Clawsen. This varietv gave the largest average yield of nraia per acre, and also the lowest average weikht of grain per measured bashel among fifieen varieties krown for five years. The crop is much in. clised to lodge ia unfavorable seasong, but when it stands
well, the bald $h \cdot a d$, red chaff, and white than gise this variets an attractive appearance when seen stamding in the field. It will be remembered that the Farly Red Ciawson stoxd third in avelage gield per are in the cooperative experiments over Ontario for 18,3 , at whin h tume elevell varientes were tested.

Americun Rranzi: The spucial feature of the American lironze is that the crop usin. Ily stands well, whine that of many other vatieties becomes badly lioklyed. It is also a gered yoelder, and the ascrage weight of grain per measured bushel for five years is nearly up to the standard. The chaff and straw are white, the heads bald, and the prains large, farly long, and of an amber color. Amons the etghty varieties of winter wheat grown on plots in 189, the American B-once was one of the finest looking at the time of harvest. I may add that this varnety is somenhat sulbject to rust in unfavorable seasons.
Dinuson's Golden Chuff. In yield of gran per acre, the D.anson's Ciolden Chiff takes the lead among all the varieties which have been tested at this station. In 1894 it gave 18.5 bushels per acre more than the average of the eighty varieties grown, and 5.6 bushels per acre more than the aretr which stood next below it in yield. This wheat h.is been grown on the plots for three years, and leads in yield of grain among the forty three varieties grown for that lenth of tume. In the co-operative experiments over Ontaro in $18 y 3$, when eleven varieties of winter wheat were tested, :he Dauson's Colden Chaff not only jave the langest acrage yreld of grain in the sixty experiments, but also headed the list in thirty-five out of sixty of the indinidual experiments. In three years trials, at the Eiperiment Station, the Dawson's (inden Chaff stands exartly cqual with the American Bronae in strensth of straw, these two being the stiffest strawed varieties. The average weisht of grain per measured bunhel for the Dawson's (iolden Chaff during three years is $; 9.3 \mathrm{lb}$., which is also exactly the s.ume as the average of the fifteel varicties of whate wheat krown lor the same length of time. This variety is apt to rast in some seasons. but it has been quite free from sinut at this place, although some trouble with smut in this variety is reported from one or two of of the lucalities where in is now grown. The Jawson'; Golden Chaff is quite distinct from any of the osher vaneties grown, and when ripe most closely resembles the Standard and the Clawson (whine) varieties. The straw is meduin in length, and the crop has a golden appearance. In IS94, it was grown on eleven plots in the F.aperimental Department, and on about four acres in the Farm Department ; and was unanimously pronounced the most attractive variety at this station by five judges who evalinined the standing gran.
Early White Leander. Although this variety gave the largest averaye yield of grain for two years, among eight varieties grown on the plots in 1893 for the first time, the weisht of grain per measu:ed bushel was the third lowest, amons eighty varieties grown this season. It possesses long straw ; long, bald heads; white chaff, and white grain of medium size.

Eurly licmesee Gianh. This voriety has been gmwn on the plots for two years, but, owing to the lateness of receiving the seed in 1892, the results were not reported the first year. It stood fourth in general appearance of standing grain, and seventh in yield of threshed grain, anong eighty varieties grown this year. The straw is tall and fairly strong, the heads bearded and quite conpact, the chaff red and the grain white.
Concise statenvelds reganding the experiments in wheat cultivation :

Diferewf Dates of Seeding. The average results for two years in sowing winter wheat on Septeniber 2nd, September 9 th and September 17th, are slightly in favor of the middle date: but, as the rrop from the first sown grain was the most hodyed in 1804 . future experiments unay give different result:

Mclkeds of Sceding. By sowing winter wheat from all the lubes of a grain drill, the average yield per acre was 44.6 bushels ; fiom every second tube of a groin drill, 42.2 bushels; and by broadcast with the hand, 43.6 bushels.
selection of Soced. Several experiments in the selection of seeal grain were conducted, but they were ion complicated to remat in this bulletin. It might be mentimped, how ver, that in 1894 plump seed produced
he:a ier ${ }^{n}$ ain than shouken seed; but the difference in the giehd per acre was very sm.111.
 of winter wheat were each inwn on small plets at the rate $1,1: 5$ and 2 bushels of seed per acre, and the average results show that the firgest jield was olnained from the thickest seeding, but the best yuality of grain was from the medium amomn of seed. The pooper quatitity of seed to sow can be best determined by the various wheat growers themselies, as muil depends upon the varrety of grain, fertility of the soil, etc.

Sou:ing Spoing Barliy in the Autume, to forme a Afulith far What in Winter. Two virieties of wheat were sown with and without spring barley on September $5 t h, 1: 93$, and the results go to slonw that stightly better jields were obtained when the barley wats not used.
 varicties of winter wheat which weie considered aboot rinht for cutting by the with of July, were cut on July sth, $11 \cdot h, 19 t h$, and 25 th, and August and. The heaviest gram was from the cutung on July igth, and the largest yield of grain on Alusust and. The lowest results, in looth these particulars, were from the first cut. ting.
The conc lusions reached as a result of the experiments are as follows
I. The average tesults of winter whea. grown on the experimental ploss for five gears in succession are as follows: Weight of grain per measured ln hel, (o. 06 lbs .; yreid of straw per acre, 2.74 tons : ald yield of grain der acre, 40.6 bushels.
2. Among eighty varietics of winter wheat tested, the following have made high records: (1) Dawson's (inlden Chaff ; (2) Ame ican Bronze ; (3) Early Cienesee Ciant ; (4) Surprise ; (5) Farly Ked Clawson: (6) Codlen Drop ; (7) Jones' Wintel Fife; (8) Bulgarian ; (9) F.arly Ripe: and (10) I'ride of (ienesee.
3. The Dawson's diolden Chaff has made the best record of all the varieties of winter wheat tested in the Experimental Department.
4. Within certan lumits, the ammunt of straw proluced by a winter wheat is a poor indication of the yield of srain.
5. For five years in surcession the bearded wheats wave a larger average weight per weasured bushel than the bald varieties.
6. The white wheats have fiven the best resul:s in favorable years, and the red wheats in unfavorable years.

otilizme diftait wathr powera.

THE utilixation of water power, says a writer in the Age of Steel, probably ante-lates written: history, the interval between crude and primitice methods and the latest triumph of engineering skill at the Niagara Falls covering the entire period of human progress and civilization. Here and there where the bones of extinct races have mouldered into dust and centuries of time have been sileat and blank, traces have been left of man's attempt to utilize the running stream a: the falling cataract. Down to our own unmediate umes and in sundry fashions and places the water wheel and the dam have been familiar oblects.
It has, however, been left till the advent of electricity for the real value and scope of this force to be sencially recognized. By this means the conveyance of power to great distances has been made possible, its :.rvice being no longer limited to immediate localities. It is in this sense that natural forces are multiplied by ex:ending their area of service, and each new science as developed becomes the handmaiden of the rest. In fact, none are complete until all are a unit, and till the last is added the rest are immature. Electricity promises to be one of the innat polential of modern forces in making this fusinn, and in the wide distribution of eneryy from waterfalls may practically revolutionıe in.lustrial conditions. In this country, where enterpuse is alert to any and every advantage, the revival of interest in water power is spontaneous and general. There can be no double that this revival of interest will continue and keep pare with out industrial progress wherever water power is ecommically available.

Subscribe for the Canailian Milif:k. Si per gear.

THE NEWS.

A. Moyes A Co., of Listowel, are rebuilding thetr elevath: recently burned.
-William (iibon is putting up and will operate a grist mill at Ruckiourn, Yue.

Joseph Kidd's new Hour mill at Prince Alliert, Ont., is nearins completion.
C. F.. Tugnell, forup and feed, Victoria, H.C., has wold out to Kintine A Co.
-- Walter Welsh, a grain dealer at Ntoney l'uint, Ont., has made an assignment.

- (ieorge llavkins has just completed the election of a new roller mill at Delta, Ont.
-The erection of a grain elevator at O,bow, Asca, has been leculed upon liy K. I). Mattin A Cor
-Orr lirus, of Winimi, have resently erected a large elevafor in comnection with therr flour mill.
-- The company recently formed to erect a flour mill at Virden, Man., have commenced operations.
-. Chas. II. Coould, sr., of the mulling firm of Ira ciosuld A suns, Mintreal, dred recently, at the age of 68 years
-The Muntreal Trampurtation Co. is building a barge at K usuen to liave a capacity of 55,000 inushels of grain.
sutherland, Innes A Co, have commenced to relsuild their conjerage: at Koxiney, Ont., recently destroyed ly fire.
-..E. 1). Tillson, the well-knomn miller of Tibouluurg, is filling an order from a firm on the Canary Islands for flowr and feed.
--Alex. Melaren, miliet and gencral unerchant, Cubden and Onceola, Ont., is adertinng general business at latter place for sale
-Over 150,000 tumbels of wheat have lieen gurchased from the farmers of the section by Mr. F.. I). Tilson, of Tilsonbuig, during the patt year.
-J. H. Dracans, proprution of the Sirectsvilie, Ont., woller mills, hav leen compelled to enlarge his elcvator capacty owing to incteased business.
- A dispuatch from Cuurtught, Ont., Mlates that Phi'yps' heading and stave mills, have lxen laurned to the ground. Iass, \$3,000: no insurance.
-The first car of nex wheat wa, shipped from Alexander, Man., by the Ggilvie Milling Cio, on Tuesiay, August $2 i x$. The grade was Nise i hard.

I'anto's fluur anel grist mill at Dexchester, (Mnt., was consumed ing fire on the $\boldsymbol{8}$ ih inst. The loss will tre heavy, and is only gartially covered h^{\prime} insurance.

- The bonus for the erection of a fiour mill at Elthom, Man., has lieen carried liy a sote of the ratepayers It is ex. pected the mill will te erected at once.
-Mr. Wurtele's saw and grist mill, at Kiver Ibavid, near intel, (lue., were burned recently. We learn that the work of reluilding will be commeticed at once.
-The fluer milhong plant it K H. Coalflet is Cu, of Wimpor, N.
, has licen ofletc? for sale by tender. The plant is fire a 200 larrel mill and is almost new.
-The John Alell Machine Wisks, of Tcronts, have recent. by supphed eomplete roller mil' outfits to the Virden Milling Co., Virden. Man., and the Viork Milling Cra, Vork, (ont.
-The wheat crop in the Northe est in turning out leiter than wascapected: the average yield will be alame twenty bushels fo the acre. Connderable new grain has alread) been marketed.

Manning', four mill at Ikalmoral, Man, was desuroyed ly fire the cally part of last munth. The liss is placed at $\$ 8,000$ and the insurance $\$ 5,000$. The fire had its origin in the engine sunom.

Ni.tice has lieen given of the incorporation of the l'emlotoke Milling Cio, fon the purpone of "perating the flour and catmeal milk of W. B. Nc. Vitster at J'emivesic, Ont. The cajutal ntrock is $\$ 75.000$
-- Bruce A Kutherfird are flacing alhitional machinery in their flour nill at Stontwall, Man. They exjerience a lrisk dematod fis Alour, oning wo the secent destruction ly fire of Manning v mill at latmural.

The chattels of the evtate of e, ex 11. Harice $\&$ Ca, of the A,hlunirne Milla, Dundas, Omt., Ere lecing offered for sale i.) tender ly the anypec, C . N . Scont, of Ilamilton. The date hinit is the $17 \mathrm{t}_{\mathrm{t}}$ inat.

Meque T. .S. Crane and James Carruther, of Momiteal, and C. 11. Watts and Ci. A. Chapman, of Tonomio, have leen appointal members of the wevern insad to weret grain vand. aris. The loatd is to meet in Winniger during the present momit.
-J. C. Grant's grist mill at Windsor, Ont., has been de. stroyed by fire, supponed to have been caused by overbealed learings. Iom \$6,600: insurance, \$4,000.
-A. I. White has sold out his interest in the frour mill at lilot Mund, Man., to Ciea. White, and intends engaging in businesh with Mr. Simmonda at Forest River.
--The Forest Flievator and Milling Company's elevator at Firest, Ont., containing 6,000 buchels of wheat and 2,700 sushels of nats, was destroyed by fire on the icoh ultima The loas in eatimated at $\$ 6,000$ and the inaulance $\$ 5,000$
-The am and grial mill at Londeshowoagh, Ont., receally purchased lny the J. Huber Eistate, was sold by public auction on the Gth inst., in R. Webb, of Auburn, for \$3.55a J. L. Fidh, who had the Londenborough mill reated for the lact five ycars has leased a mill at duburn for a term of years and will remove there stortly.
-The following examiners have been appointed by the (iovernment for the arading of grain enst of Iort Arthur:-D. W. Mathews, Toronto, chairman ; A. McFice, A. C. Thompwn, K. M. Fisdaile, Montreal ; W. Beodie. Quebec; R. R. Morgan, Hamilton ; James Carrick, J. L. Spink, H. N. Baird, Thomas Flynn, Toronta
-The large flourmill or Tew \&. Marahall, at Mattsville, Ont., was destroyed by fire on the 2and August. It was one of the finest mills in Ontario, leing provided with six stones and both steam and water power. The inss on the property is emimated at $\$ 30,000$, while an insurance of conly $\$ 6,000$ was carried. The fire is supposed to have criginated from a defective chumney:
-The large grain clevalor of the Northern Elevator Ca, at Winnipeg, Man., was conssumed by fire about the 1 gth of Aug. It contained about 40,000 bushets of grain belonging to N . Hawlf, and was the only grain elevator in Winaipreg. The lows is estimated at from fifteen to tweaty thoustand dollan, which is covered ly insurance. It is atated a new elcuator will ive crected at once.
-Alexander, Kelly \& Ca's extensive flour mill. at Brandon, Man., were lsurned on the ifth iost. The low is extimated as follows: Warchousc, \$3,000; four mill and machinery, \$50, 000 ; catincal mill and machinery, $\$ 10,000$; elevator and machinery, \$7,000; congine and knikers, \$12,000 The toma council have pased a ly-law to grant the proprietors a bones to enable them :o relouild, which will be voted on by the ratepayers on tive 14 th inst.
-Fohlowing the announcement of the Canadian Pacific Railway Conppany of a reduction in elevator ratex, the Lake of the Woods and the Ogilvic Milling compaaies and the Northern Elevator company, who have elevatons at the chief grain shipping points in Manitobe and the Territoriea, bave declared their intention of making a reduction of half a cent per beshel in their charget for handling grain at their interior clevatons from farmers' teams to cars. The preseat rate is two ceats per luahel, iscluding iseaty days sturage; the wew rate will be one cent and a half.

corse bact in ter ceme

S^{A}AYS the London, England, Millers' Gasette: A correspondent, who some years ago found himself stranded, owing to wet weather, in a Lincoln Hotel, beguiled the weary hours by reading what is called "The lincoln Year Book," which was leat him by the landlond of the ho:el, and from which book oar correspandent made the following extracts and memorande. Soase of the earliest dates in this book, which is very scarce, are A. 1. 45.75 and 125 , at which time Lincoln was probably on the sea coast : 272 Famine notifed. 310 Famine notified. 4,000 died. 550 Wheat first grown. 739 Famine notifed. 823 Famine notified. 864 Famine notified. 900 Kink Alfred divided England into counties. 954 Famine noted. 976 Famine noted. 1005 Famibe noted. The stress of famine was so great that pareats sold their children into slavery in order to obtann food. 1035 Frose on midsummer day. All the corn destroyed. 1973 A mutrain among tre people so κ reat that the living could scarce bury the dead. 1130 A sheep war, worth 4 d . 1135 Kent first paid in money. 11;2 Value of an ox 1s; sheep 4 d.; provender for 20 horses $40 . ;$ bread for 10 ; men 4d. 118 ; An earthquake. 1189 A Jew hunt in lincoln. I193 Famine and munain among the people. 1258 A terribly wet year, and wheat lose to 20s. per quarter. 1284 Cider first biewed. 1385 Wheat is. 4 d. per quarter. 1 joo Foreign wine first brought into England. Value of a lamb 8d., and 2 pulless $3,6 \mathrm{~d}$. 1308 Land first driven into acres. 1318 An earthquake. 1447 The king laid a tax on the city of Lincola too heavy
to be borne of C 180 per anaum. This was so burden. come, the mayor and corporation met Uff on horseback to London to petition the king for its mitigation. 1463 Foreign wheat Grst brought into England. 1493 Whent 4s. pet quarter. 1521 Wheat 20s. per quarter. 1551 Wheat 8s. per quarter. 1558 Wheat 14s. per quarter. 1579 Wheat 27 s. per quarter. 1614 The sea encroached 12 miles inland in Lincoln county. 1630 Plakue in Lin. coln. The sherifi died of it. 1667 Bishop of Lincola tined twice for libel. 1600 First horse races in Linculn "whereto was areat resurt of people." 1705 Wheat 26 . 8d. per quarter. 1722 Eleanor Elsom publicly burnt in Lincoln for the murder of her husband, being chasned to a post with an iron chain and faggots and tar barrels piled around her. 1772 Intense frost. Oil frose in the public lamps. 1785 Seven men sentenced to death for murdering three turnkeys. These men were kept in a pit like a bear-pit, and when the turnkeys went into the pit to fork up the stram, they were set upon and mundered. In this year the citisens for the first time made up their minds to set a watch in the city at night. $\mathbf{1 8 0 0}$ Quartern loaf 1 s .6 d ., wheat 100 s per quarter. 1801 A public fass because of the high price of tood. 1817 First fold sovereigo issued from the mint. Wheat 148 s . per querter. 1819 This year opened gloriously fine as to weather. A protracted and ruinous war, with its usual results, pro. stration of commerce and provisions very dear and scarce; wheat 108 s ; currency depreciated; scarcity of employment and great susering. March 25 whent rose to 142s. per quarter; August 155a. In September a good harvest. F".rst market day after harvest wheat fell 27s. per quarter, and next market day 31 s . per quarter. Total fall in 14 days 6os. per quarter. 1824 Three prisoners escaped from the castie. One of them cane beck and knocked at the door craving readinission, saying be bud been to see his wite and children. 1825 Inscription on un almshouse in Lincoln-"Sir W. Ellis left this for four poor widows, who shall be chaste and honest. One shall be the widow of a sunging man at the cathedral, and the otber three shall be the widows of freemen of this city of bonest fame and good report. They shall all attead service at the catbedral and shall be able to say the Lord's Prayer and the articles of belief withoot a book. They shall aot be brewers nor be keepers of any ale house, nor tipplers of ate or hieer. They shall not beg nor harbor bejgars."

Wrieat srvattom manmea.

T
 beginaing of the morements is new wheat has stirred up more interest in the sitention in Manitoba markets. At some country poists deliveries of mew wheat were q aite beavy this week, but the moat of the grain was going into store in country elevators, at the buyers were not an the market. Mon of the shippers will have buyers on the market on Monday. Prices ofered in Manitoba coontry markets to tiarmers raage about to to 43c per bushel, average freight rates. The whent now coming in is from thrashing direct from shock, for which the weather has been favorable. The sample $1 s$ good. Prices were easier this weck, in sympachy with lower markets elsewhere. We quove Na. i hand at 5le. 10 59C. per busbel, delivered athont Fort Willian and new whent about 57c. Stocks in shore at Fort William on August 25 were 789,761 bushets. Receipts for the welk were 107,786 and shipenents 248,238 bushats. A vear aso slocks were $1,231,000$ bushetin being a decrease of 118,889 for that week. The reduction in terminal elevator rates to K (c per bushel for handints, (inctedings storage for (wenty daysh) and ic for 30 days sabenquent storage, is a not usexpected featore of the week In the country stacki-g and thrashing has made geod progress, under excellent weather coaditions, and the marketings shows a spiendid sample of hard whent. The wetters board of grain examiners meet on September the ith io Wianipes. As the crop is very similitr in condition to last year, the wort: of fixing the standards for gradian the crop shoold be comparatively easy.

FRED. ROPER Trustee, Accountam, Auditor, elc.

sosenc mane charisist

2 romompo ermast
Phrese 1714

 City Mills, 2,100 bale. Olesera Mille, $x, 500$ whe. Goletick mille, 1,500 male. senforth mille, teo the.

-ع DAILY GAPACIY 7.100 BBLS
mart peote, miricun aso cote mana, Eiburtue. famen : : :
W. W. OGILVIE

PROPRIETOR

MEAD OPFIOE:
MONTREAL, QUB.

OF ETERY GUALITY ANI SHE KEQUIKEI).
Strict attention given to prompt shipment.
Original Designs for Brands Prepared Free . . . Printing In beautiful Bright Golors at Lowest Prices

 We carry the Largest
tock in the Dominion.

THE GANADA JUTE GOMPANY Limited

 "15.17. 19 AND 21 8T. MARTIN STREET. MONTREAL \equivToronto Agent : FRANK T. BARR. 48 Wellington Street East, Toronto

Flour, Bag and Barrel, Platform,
Dormant Hopper, Track Scales, \&cc.

Write for our Book of Testimonials on Large Scales. © Catalogue and Price List furnished on application.

the GURNEy SGALE GO., Hamliton Ont.

TIMILER, FIILIXI \& 60.

St. John's, Newfoundland
Commission Merchants

Millers' Agents

FLOUR, FEED, HAY fakm and mill prodice

Always buyers of Medum and lifigh Grade Flowr in carloed lots

CORRESPONDENCE SOLICITED
F. E. DIXON BELTING $\mathbf{G O}$.
manufacturers of

\section*{ctip Pivpt soding Boling | write mon |
| :---: |
| diecounte |
| 00 King St. East, Toionto |

}

Flour Barrels. Meal Barrels, Apple Barrels. Salt Barrels, Bean Barrels or any other kind of Barrels $\underset{\substack{\text { witi }}}{\substack{\text { to }}} \mathrm{SUTHERLAND} ,\mathrm{INNES} \mathrm{\&} \mathrm{CO.}$,

35 CENTS ๑~ huvs

FISHER'S GRFIN TABLES
--som racor-
The book comenims more valubble taformition and mefal cublea for Farmern, Millems, Traders and rethers than any similer book of iks kind ever publivited, be. ides tringe a complice Rendy Rockoens showings the alue of aricices or the from ome to gee: from a dmartore of a cure to Se.on Abo table for Cruin, May, Reme, Soard, Whyter, Imerrest, etc.
Wrive for momple copy.
THE CANADIAN MILLER,

