The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture andommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture mangue

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrés peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves sdded during restoration may appear within the text. Whenever possible, these have been omitted from filming/
il se peut que certaines pages blancines ajoutérs lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filméss.

L'Instituî a microfilné le mailleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-反̌tre uniques du point de vue bibliographigue, qui peuven* modifier une image reproduite, ou qui peuvent exiger une modification dans la meithode normale de filmage sont indiqués ci-dessaus.Coloured pages/Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décoloréas, tachetées ou piquéesPages detached/
Pages détachéas

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueInclucies index(es)/
Comprend un (des) index

Title on hearer taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Capsion of issue/
Titre de déeart de la liuraisonMasthead/
Génériqua (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

This Institution aims to awaken and foster a mure general interest in Scientificknowledge, to induce ywis men and sung women to eth age ia systematic study at home, and to afford its members the means for mutual assistance in the pleasing and ennubius study of Nature's works. All efforts used to make the connection of students within this Asouriation pleasant and profitable.

A Course of Study has been arian red extending; over three years, and including the following subjects: Physiology, Geviesy, Botany, Natural Philosophy, Astronomy, Chemistry, Zoology and Mineralogy.

The Officers of the College are a President. Secretary, an la Board of Directors, consisting 1 of thirteen active Naturalists. Instruction is riven members by means of private curespundence and by publications in the Suffice Monthly The members report at the end of each ten; yearly examinations are held at, the Students homes, and at the end of the course diplomas are given showing standing, etc. Anvual fee, 30 . Course of Study and full information sent upon application to the Secretary.
A. J. Pinto, Woifville, N. S.

CONTENTS OF THIS NUMBER:
Editorial Notes. $\left.49\right|^{* C h e m i s t r i . ~ . ~} 59$
Botanical Department-
*Fertilization of Flowers, Payer I ... 49 *Table of Geological Formations in Nova

Entomological Department-
*Practical Entomology, Paper IV.. is
MIneralogy. 53 Astronomical Department-
*The Stars. 54 Ornithologic-
*Canadian birds, Paper T....55 5
*Winter Notes on Ornithology, Paper
III.57
*Written for the Monthis.

Hambolid Libpary of Science.

Irice 16 Conts Each Number.

I. Light Science for Leisure Hours. A Series of familiar essays on astronomical and other natural phenomena. By Rich. A. Proctor, F. R. A.S.
2. The Forms of Water in Clouds and Rivers, Ice and Glaciers. (19 illustrations). By Jolin Tyndail, F. R.S.
3. Physics and Politics. An application of the principles of Natural Science to Political Society. By Walter Bagehot, Author of "The English Constitution."
4. Man's Place in Nature, (with namerous illustrations). By Thomas H. Huxley, F. R.S.
5. Education, Intellectual. Moral and Physical. By Herbert Spencer.
6. Town Geology, with Appendix, on Coral Reefs. By Rev. Chas. Kingsley.
7. The Conservation of Energy, (with numerous illustrations). By Balfour Stewart, L. L. D.
8. The Study of Languages, brought back to its true principles. By C. Marcel
9. The Data of Ethics. By H. Spencer.

Io. The Theory of Sound in its Relation to Music, (with numerons illustrations). By Prof. Pietro Blaserna.
II. The Naturalist on the River Amazon;
12. $\left\{\begin{array}{l}\text { a record of in years of travel. By } \\ \text { Henry Walter Bates, }\end{array}\right.$
13. Mind and Body. The theories of their relations. By Alex. Baine, L. L. D.
14. The Wonders of the Heavens $(32$ illustrations. By Camille Flammarion.
15. Longevity. The means of prolong. ing life after middle age. By John Gardner, M. D.
16. The Origin of Species. By Thos. H. Huxley, F. R. S.
17. Progress: Its Law and Cause (with other discuisitions. By H. Spencer.
18. Lesson in Electricity. (60 illustratrations). By Johin Tyndall, F. R. S.
19. Familiar Essays on Scientific Sub. jects. By Richard Proctor.
20. The Romance of Astronomy. By R. Kalley Miller, M. A.
21. The Physical Basis of Life, with other essays. By Thos. H. Huxley, F. R. S.
22. Seeing and Thinking. By William Kingdon Cliford, F. F. S.
23. Scientific Sophisms. A review of current theories concerning Atoms, A'pes and Men. By Samuel Wainwright, D.J.
24. Popular Scientific Lectures, (illustrated). By Prof. H. Helmholtz.

George The Origin of Nations. By Prof. George Rawlings, Cxford Univ.
26. The Evolutionist at Large. By Grant Allen.
27. The History of Landholding in England. By Joseph Fisher, F. R. H. S.
28. Fashion in Deformity, as illustrated in the customs of barbarous and civilised races. (Numerous illustrations). By William Henry Flower, F. R. S.
29. Facts and Fictions of Zoology, (numeious illustrations). B. Andrew Wilson, Ph. D.
30. The Study of Word. By Rich.

3I. Chenevix Trench.
32. Hereditary Traits, and other essays. By Richand A Procter.
33. Vignettes from Nature. By Grant Atlen.
34. The Philosophy of Style. By Herbert Spencer.
35. Oriental Religions. By John Cairds, Fres. Univ. Glasgow, and others.
36. Lectures on Evolution, (illustrated). By Prof. T. H. Huxley.
37. Six Lectures on Light, (illustrated.) By Prof. John Tyndall.
38 \&5 39. Geological Sketches. By Archibald Geikie, F. R. S.
40. Scientific Evidences of OrganicEvo-
lution. By Geo. J. Romanes, F. R. S.
41. Discussions in current Science. By w. Mathew Williams, F. R. A. S., F.C. S.
42. History of the Science of Politics. By Frederic Pollock.
43. Darwin and Humbeldt. By Prof. Huxley, Prof. Agassiz, and others.
44. The Dawn of History. Edited by.C. 45. F. Keary, M. A.
46. The Diseases of Memory. By Th. Ribor.
47. The Childhood of Religions. By Edward Clodd, F. R. A. S.
48. Life in Nature, (illustrated). By Jas. Hinton.
49. The Sun: Its Constitution, its Phenomena, etc. By W. T. Carr.
50. Money and the Mechanism of Ex-
51. 亿change. By W. Stanley Jevons, F.
R. S.
52. The Diseases of the Will. By Th. Ribot.
53. Animal Automatism, and other Essays. b, Prof. T. H. Huxley, F. R. S,
Edward Clodd, F, and Growth of Myth. By Edward Clodd, F. R. A. S.
55. The Scientitic Basis of Morals, and other Essays. By William Kingdon Cliford, F. R.S.
56.
57. Jemes Sully. Ile .

The Cimaxian since 逪lontbly．

Devoted to the interests of Canadian Naturalists，and disignca to awaken a more general interest in the study．of the words of Nature：

A．J．PINEO，EAton and Phormitor．
Single Subscription，per annam（ 10 months）． 5 ．）cis．
Half Year．
In Clubs of Five or more．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 50 ＂،
To Europe，postpaid．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2 s ，fd In Clubs of Five or more．．．．．．．．．．．．．．．．．．．．．．． 25 ．
－ 80 The Post Office order constitutes a convement form of remittance

Ness We can use U．S．Postal Notes drawn pay－ able at New York．

$=-$

Ir is a disappointment to us that we are unable to make，this month，the enlargement mentioned in cur last number．We hoped to have arrange－ ments completed in time，but circum－ stances have prevented the consumma－ ton of our wishes in this particular．We shall be settled，however，in time to issue the July Monterey from our own office，and our readers may look for the enlargement in that number．

We hope that our readers will detect， as a result of the change of printers，no depreciation in the neatness and correct－ ness of the mech anical execution of the Monthly－qualities for which our present printer deserves much credit．

The increase in the size of the Monthly to double present mum－ ber of pages will add largely to the cost of publishing．Henceforth twelve numbers instead of ten will comprise a volume．The cost will also be increased by the frequent use of expensive illus－ trations prepared expressly for the Monthly．It will，therefore，he neces－ wary to increase the subscription price．
instructive and are more wonderful. The bee and other insects visit plants to gather nectar. The bee could have here taught the poet a lesson, that the juices that wre extracted from the plant had aitorwards by skilful labor and patience to be manufactured into honey. Again accurate observation teaches us that there is a reciprocity be. tween the animal and vegetable king doms, that for what the one receives fro s the other an equivalent is returned. No better illustration of this truth can be obtained than by closely watching the results of the visits of insects to plants. What seems to be selfish and wholesale plundering on the part of insects of juices necessary th the plant, is not really so. The fact is the plant gets even a greater return from the insect. The greator equivalent lies in this, that the insect bears away from the stamens of the plant on which it has just alighted innumerable particles of pollen dust to fertilize the pistils of a plant of the same species which it may next visit. Plants are even rivals among themselves as to which shall bid highest to secure the greatest number of insect visitors. These bids for favor may be seen in their brilliant colors or in the even more seductive charm of their fragrant juices. Plants therefore do not object to the visits of insects, but rather encourage them. On the other hand they are endowed with the means of protecting themselves from the attacks of a rabble of small or useless insects which are contented to circle around the flower and purloin its juices. These loafers are debarred from entering some plants by a close fitting calyx envelope, by a net work of hairs, by prickles, or other contrivances. To some plants these little insects are invited by alluring juices, and find when too late that they have crossed a bourno from which no insect traveller returns. Such plants
are our common Drosera or Sundew, the Pitcher plant, and others whose insectivorous habits are now pretty well known.

After this somewhat discursive introduction, let me endeavor to show why plants should require the aid of insects in order to fertilize them. Assuming that even th more general readers of the Monthly have a clear idea of the structure of the flower, I shall barsly refer to the process of fertilization. This is accomplished when the pollen grain, alighting on the stigma of the pistil, penetrates to and fructifies the ovules or rudimentary seedlings. It would at first sight appear that in most phanerogams the design is that they should be self fertilizing, that is, that the pollen of the stamens should fertilize the ovules in the pistil of the same plant. This appears evident from the fact that in most flowering plants the stamens are in close proximity to the stigma, and sometimes bent towards it in such a way as to suggest the impossibility of the interference of any outside agency to prevent its accomplishment. The blossom of the pea is an instance where self fertilization seems evidently intonded. -Ten stamens closely surround the pistil the whole being nearly enclosed by a pair of tine petals. Here it would seem that the design is not only for the flower to fertllize itself but to shut out any interference on the part of inseets. Take also the flower of Kalmia glanca, in which the anthers of ten stamens are hold close prisoners in chambers of the corolla until their pollen is ripened whon a smart blow on the flower will set free the imprisoned anthers, causing them to strike the upright style with such fores as to break the anther case, scattering the pollen dust. This seems to waft apward and surround the stigna like a little cluud. B1. ${ }^{+}$it has been proved both in the case of the pea and of the

Kalmin that if they are secured from the visits of insects they will not ma+ure their seeds. Numerous other instnnc.: might be brought forward to show that the pistil is very rarely fertilized by the stamens of the same flower; and that where such hermaphrodite flowers do exist, the plants reproduced from them are fow and insignificant.

It is not desirable therefore, and we may add that generally it is impossible that flowers should be fertilized by pollen from their own stamens. When the pistil is fuctified by polien from a neighboring blossom it sends forth stronger and hardier seedlings. There are two ways by which this distribution of pollen is effected, first, by the agency of the wind, second, by means of insects. In the first named, the flowers as may naturally be supposed, produce little or no nectar, have abundanee of pollen and are inconspicuous and without showy colors. These ancmophilous Iowers as they are called, shed their pollen sometimes in such masses as to cover the surface of the water in the adjacent pools or streams. The flowers of the coniferae are examples; and the inconspicuous flowers of grasses and the common plantago belong to this class. By far the larger number of flowers bolong, however, to the second division, Entomuphitous flowers, or those fertilized by the agency of insects. They have more or less showy and conspicuous carollas, which secrete nectar. This nectar is in many instances so difficult of access that none but the most highly organized insects, as butterfies and bees, can reach it, and in doing so their bodies are placed in such a variety of postures that they go from the flower as well laden with pollen as with nectar. The insect with its body covered with: pollen dust comes in tho course of his flight to another flower of the same species and repeats the same process. Rubbing
against the stigma, some of the pollen from its body adheres to the stigma and fertilization ensles. Of courso such pollen can only fertilize pistils of the same species, but the pollen which the insect has carried away is so abundant and adhesive that it may be carried about by the bee for some time before it be brought in contact with a pistil which it can fertilize. But the fact is insects in quest of nectar visit successively plants of the same species, not to deposit the pollen, but for the nore selfish purpose of abstracting juices from similar flowers, to which it is led by an unerring instinct.

(2ntoutological zepurturent.

Conducted by Dr. J. E. White.

PRACTICAL ENTOMOLOGY

v.

The interruption in the issue of this Journal consequent upon the changes required in its enlarged sphere of $133-$ fulness, has not left this department the opportunity of giving one or two papers intended for the instruction of those who, this spring, wish to enter into the pleasure of making a collection. We will, haring to omit these, now proceed to give the gtatus of Insects in the animal kingdom as briefly as possible, merely to guide the student on to the right paith towards a proper comprehonsion of their position, and of their near relations above and below.
in the first place the animal kingdom is divided into two great series:

First-Those having no true egg, and no celiular tissues-Protozoa.

Second-Those which are reproduced by true eggs, and which have collular tissue-Metazoa.

Of the Protozoa, it is not the pro-
vince of this department to speak, but as Insects belong to one of the seven sub-kingdoms of the Meiazoa, it will bo necessary to work briefly up to thom. First, there are the Spongida, accoeding to the classification of recent authorities, these have been separated from the Protuzoa. Then come the Colenterata, radiate animals which have a distinct cavity with organized tissue in its walls. These are aquatic, have tentacles around the moath, and have also minute barbed filaments which may be thrown out for stinging purpuses; the Hydra and Sea Anemone belong to this. The Echinodermate are familiar to many, through their representatives, the Star Fish and Sea Trehin. They have a distinct nervous system, oral and anal openings, and alimentary canal. Crinoids, Asteroids, Sea Slugs, etc., are examples.

Next come the Vermes, where first the bilaterally symmetrical bodies appear; also the characteristic annular segments, indefinite in number; no legs. Examples are :-Flat-worm:, Round-worms, Trichina Spirates, Thread-worms, Polyzoa, Brachionoda (bivalves) and Annelides, such as Leeches, Earth-wurms and Sea-worms, having bristles on each segment, and horny jaws which can he extended or retracted at will.

Then the Mollusea,with soft body.no juints, sometimes with shell. To this class belong the Lamellibranchsmussels and oysters; GasteropolsSnails and Whelks; Cophalopods-Nautilus, Squid, Cuttle Fish, etc.

Then the Arthropoda, a very large sub-kingdom, including animals with jointed legs,as Crabs and Insects. They have budies of mauy segments, dcfiuite in number, the skeleton is outside, and compused of articulated rings, linbs hullow and juinted, jaws move from side to sido, nervous system double, one chain on each side ; the skele-
ton is composed of a dense horny substance known as chitine. Crustacea are water breathing, usually have two pairs of antemnæ; Crab, Garnacle, and Lobster are examples.

Arachuida - Spilers. Body in two parts, head and thorax joined in se, and the abdomen ; they have eight legs of seven joints each, and have two six or eight nyes. They are airbreathers, with air sacs and spiracles opening into them. The Acarina or Mites, Pedipalpa, or Scorpions, and Arancina or apiders, belong to this sub-class. Myriaroda have the thorax and abdomen joined in one, as the Thousand-legged worm and centipede. Then come the Insects. They have head, thomax and abdomen distinct, six legs, juinted, two antenne, an 1 generally, two pairs of wings; the segments of the body are twenty or less, viz.: head four, thora: three, each having a pair of legs, the wings being attached to the middle and last one, abdomen ten, which move on one another more or less freely; the skeleton is of chitine, and upon the outside of the insect. To the internal surface of the skeleton the muscles are attached. The head holds the organs of sense, the thorax those of locomotion, and the abdomen those of digestion. All the appendages are hollow. The antennae arn between the eyes or in front, and \quad. rosed to have the senses of tc: 1 . \quad nearing. The oyes are usually com μ_{2} "und, one on each side of the head, and three simple ones or ocelli. The mouth is either for eating or sucking, and is composed of four jaws, mandibles and maxillo ; there is an upper and an under lip, labrum and labium; sensitive pralpi are developed on the lower lip, and the lip is prolonged into a tong': or ligula. The wings are of a thin delicate tissue, stretched over a network of tubes; the arrangement of these tubes, or venation, is used
to distinguish one genus from another The abdumen in many insects ends in a tube which holds either a sting, as in the Bee, or an ovipositor, as in the Ichneumons. The sexes ars distinct, and the havee are hatcherl from eggs. In those of social habits, as Ants and Bees, the workers are neutral, neither -sex characteristics boing developed.

The classification of Urtun is as fol-lows:-
Lower Series - Body urtally flattened; prothorax larse and spuarish: mouth parts usually adapted for biting; metamorphosis often incumplete; pupa often active; larva flattened, often resembling the adult-Neuroptera, Orthoptera, Hemiptiru, Colerptera.
Higher Sertes-Budy usualiy cylindrical; prothorax small : mouth parts formed for sacking: laruat usually cylindrical, very unlike the

紋れaxalog.

By Prof. S. K. Hitcunges.
No. III.

BERYL.
This mineral occurs in six-sided prisms, usually without regularly formed ends ; color, green, sometimes shading into blue or yellow. Cleavage, across the end, but not distinct. Lustre vitreous, streak white. Hardness 7-5 to 8 . Transparent to subtrinslucent. Infusible before the blowpipe, and unacted upon by acids Occurs in granite, gneiss, dolomite, ete.

Binerald is the bright green transparent variety.

Ayuamarine is of a clear sea-green color. Both of these are highly valued as gems. The finest emeralds come from New Grenada, aquamarines from Siberia and Brazil. The largest beryls are found in the United States. One measuring four feet in length and thir-ty-two inches in diameter was found at Grafton, N. H.

This mineral occurs in erystals, with 12 or 24 facess, but sometimes massive ; color, dark red to brown, or cinnamon; transparent to opaque ; lustre vitreous ; hardness, 6.5 to 7.5 ; before the blowpipa, most varieties fuse easily to a dark glass; not alfected by acids. In composition it is a silicate of various oxides, the most common being alumina and calcium. Clear varieties are used much in jewelry. The opaque and brittle garnets are quite common in mica schist and gneiss. They are usually quite small, but are sometimes found from one to two inches in diamater. Precious garnets are rarely found half-an-inch in diameter. The first garnets discovered, of much value were found on the Syrian River, in the country called Pegu, in Asia, from whence some are brought now. Ceylon, Brazil, New Hampshire, and several other places, produce fine stones. The carbuncle and the hyacinth of the ancients are supposed to have been the garnet. Pulverized garnet is sometimes used instead of emery for polishing purposes.

TOURMALINE.

Tourmaline occurs primarily in threesided prisms, terminating in a low pyramid, but is usually found with the edres bevelled or truncited, thus giving 6,9 , or 12 sides to the erystal. The lateral faces are often cylindrically convex. It rarely occurs massive, and is alwsys found imbedded usu:lly in gr.nite, gneiss, schists, or limestone; slor comnanly black or dark brown, but frequently green, red, yellow, or white, ssmatimes found rel within and green without, or of one color at one end, and another at the other; sumetimes transparent, but usually translucent to opsque; lustre vitreous, inclined to resinous; very brittle, fracturing across easily;
hardness 7 Eto $7-5$. In composition tourmaline is a boro-silicate of alumina and magnesia, with a small and varying amount of other metals. Most \checkmark rieties fuse to a blebby glass before the blowpipe ; not decomposed by acids; becomes elecirified by leating. Thin transparent plates are used for polarizing light. The transparent varieties, free from cracks, are valued as gems; the finest ones in the world have been found in Paris, Maine; within a few years, $\$ 60,000$ worth have been found in that place. iiubellite is a name given to the red tournalise; and Inliculit, to the blue.

Astroumical ${ }^{2}$ epartment.

Conducted by Professor A. E. Coldwall.

THE STARS.

No. I
It has been thought advisable, now that the Postal College and its exponent, the Canailan Science Monthly. are entering upon an enlarged field of usefulness, to give in this department a series of papers on the stars, with a special reference to their grouping into constellations

The number of stars visible to the unassisted vision on a clear night is about 3,000 . The opposite hemisphere containing as many more makes the number that can be seen without a glass about 6,000 . These are divided according to tieir apparent brightness into six classes, called respectively, 1st, $2 \mathrm{~d}, 3 \mathrm{rd}, 4 \mathrm{th}, 5 \mathrm{th}$, and 6th, magni tudes. Stars so remote as to beinvisible to the naked eye are called telescopic stars. These are classified as far as the fourteenth or higher magnitudes There being, of course, no abrupt
transition between these magnitudes, an arbitrary division has been agreed upon for the convenience of astronomers. Twenty (20) are classed as first magnitude star:, 65 as second magnitude, 200 as third, 450 as fourth, 1100 as fifth, and about 4,000 as sixth. The nember of telescopic stars is much larger being reckoued by some authorities as high as $20,000,000$.

CONSTELLATIONS.

As many of the stars appear in groups more or less symmetrical, these groups from remote antiquity have received such names as their fancied resemblance to some personcge or animal would most readily suggest. The term comstollation is of comparatively modern origin, from con together and stella a star. These groups now number 109, 50 of which were outlined and named by the ancients. The whole expanse of the heavens is now mapped out into these 109 divisions, and every star is included in one or other of them. For convenience of reference, the individual stars of a constcllation are desiguated by letters or numerals, the stars being lettered in the order of their brightness. For this purpose the Greek alphabet is used ; after that is exhausted, the Roman, after that, numbers. Each of the constellations has a Latin as woll as an English name, and to designate a particular star, the genitive of the Latin name is used after the letter. Thus the two brightest stars in the constellation Orion are called alpha orionis and beta orionis. In addition to this mode of designation, many of the stars, especially the brighter ones, have names which have been given to them as individuals, and not as members of constellations. Thus Alpha Lyrae is called Vega, Alpha Leonis, Regulus, Alpha Canis Majoris, Sirius, Beta Orionis, Rigel, Gamma Orionis, Bellutrix.

Oruitholagy.

CANADIAN BIRIS.

By Ernest E.T. Seton.

PAPER I,

In this, the first of a series of Ornithological papers for the benefit of the members of the Canadian Postal College, as well as for the general reader, it would be well to begin by definitely settling the question, "What is a bird ?"

In the root idea of a word there will often be foand its best definition, and " bird" (formerly "brid") means " tho being which broods over its young." That is very near the mark, especially when we understand "brooding" as "sitting," not merely "pursing."

Yet there are scme reptiles that hatch their own eggs, and some birds which do not. Thus several birds leave their eggs to be hatched by the sun, while the mound-making megapode of Austalia hatches its eggs artificially, burying them in a mass of leaves, which, by decomposition, generate heat enough for incubation.

A fuller scientific definition would be-a bird is a back-boned, air-breath ing, feather-covered, warm-blooded animal with wings, lungs and a complete double circulation; reprodused by shell-covered eggs, fertilized within and hatched without the body.

Besides these there are many other minor characteristics, but many oven of these main ones are exhibited by animals of other classes. But a short and sure definition is, a bird is a feathered being; for all birds, and none but birds, have feathers.

Now let the reader consider a proposition: Supposing that two kinds of animals have buen left on a desert island, do you believe that the kind best fitted to withstand the climate and
live on the food there found will be the one that will live and in time possess the whole island, while the waakly kind that cannot bear the climate or get sufficient slitable food will,in time, die out? I can hardly imagine any one saying "No" to this almost selfevident proposition. Then I reply: You believe in Darwinism entirely, for in this liea the whole Theory of Evolation.

Now that we undersaand each other I may proceed to state that birds are descended from a form of roptiles, and stand in their anatomy between reptiles and mammals. The largest living bird, the ostrich, is closely related to the extinct archeopteryx-a bird which had a long, lizard-iike tail, with one pair of feathers at each joint, its wings armed with two free claws, and its bill set with teeth. This shews a near approach to the roptiles, and, in time, fresh geological discoveries may restore many connecting links.

On the other hand, we find in Australia a mammal, the ornithorynchus or water mole, whose young are hatched, the covering, corresponding to a shell, breaking at the time of exclusion. In its beak, its lack of teeth, its claws, spurs, monotrematores, construction, and many points of internal anatomy, it resembles birds. Though it is a mammal its mammæ or udders are of the most rudimentary lescription, merely a number of glands of the skin which pour out a sort of milk. Then when we remember that young pigeons are partly fed by a milky secretion from the glands in the old one's crop, we begin to see that the line of demarcation between birds and beasts is not so very strong after all.
Now that we know what a bird is we will proceed to examine the different linds, and to this end at seems inovitable that the ardent student first be wrapped in the wet blanket of
scientificism. The pilgrim to the "Palace Beautiful" of birds must at the gates face the "loud-mouthed lions' of classification, and maybe here he will, as in the old story, find little more than terrible sounds.

Though a lover of Nature and her order, I have little partiality for classification of her musty remains, and almost feel tempted to say, "Do not mind such things, but go out into the woods and lears and love." Yet all study, to be successful, must be systematic, so we will begin with the outlines of Dr. Cuues' Classification of Birds :

Class Aves or Brrds.

1. Sull class-Insessores (sedeo-I sit) - Aerial Iirds or Perchers.

Order-Passeres-Sparrow-like birds.
" -Picarie-Outcasts from other orders, as wood-peckers, ete.
" -Psittaci-Parrots.
" - Raptores-Birds of Prey.
"-Columbre-Pigeons.
2. Sul class-Cursores (curro [curs] I run)-Ground Birds or Liunners Order-Galline-Barn fowl, etc. " -Grallatores-Wading Birds.
3. Sul class-Natatores (natator-a swimmer)-Water Birds or Swimmers.
Order-Lamellirostres-Du?ks, etc.
" - Steganopodes - Cormorants, etc.
" -Longepennes-Gulls.
" -Pygopodes-Divers.
First you decide to which sub-class your specimen belongs. If the first, it will most likely be a bird with short legs and neck, loose plumage and the hind toe set on a level with the front ones (unless it be a pigeon or a vulture). If of the second, it will most likely have long neck and legs, with the hind toe absent or set higher on the leg than the front ones, and either some bare skin abeut the head or the \log bare for a space abuve what is
known as the knee joint (railly the heel). If your bird belongs to the third it will have webbed feet.*

Having settled the question of subclass, the roader will go further and decide tho order from the following descriptions :

Order 1 - Passeres. - (Passer, a sparrow)-Three toes in front and one behind; no signs of a web; hind toe on a level with the others, and longer than the shortest front toe; hind claw at least as big as middle claw; bill without a cere. i.e., a soft skin round the nostrils and covering the basal half of the bill. This order contains fu'! y one-half of our birds. It includes those which shew the highest organization and all our fine songsters. Most of them are sparrow-like birds, lut the order also includes the crows. The raven is its largest member.

Order 2-Picariu- (picus, a wood-pecker).-Agree mainly in disagreeing with the members of all other orders. They have either a long bill or scarcely any bill at all. In this we find the wood-peckers, cuckoos, swifts, nighthawle, kingfishers and humming-birds, the last being the smallest known birds.

Order 3-Psittaci-(Psittacus, a parrot)-Large hooked bill ; toes, two before and two behind; the only North American species being the Carolina parroquet, which never comes to Canada.

Order 4-Raptores-(Latin for rob-bers)-Strong, sharp, hooked bill and claws; nostrils in a cere ; great power of flight; mostly large birds; many have slightly webbed tocs. Includas the owls, hawks, eagles and vultures. The largest bird that fies is a vulture, the condor of the Andes. The vultures have the hind toe slightly raised

[^0]Order 5-Cohumber - (Columba. a dovel-Rather straight weak beak, thinnest in the middle ; mostrils in a soft, fleshy membrane ; strong, pointed wings. This includes the pigeons, which, like the vultures, differ from the rest of the Insessores in having the hind toe raised.

Order 6-Gallinu-(Gallus, a cock) -Short bent beak ; nostril long opening under a membrane, wnich is bare in some and feathered in others, like barn fowl; head with more or less bare skin (except the quails) ; stout legs; hind toe small and high up; short, round wings. Includes barn fowl. turkeys, grouse, partridges and quails.

Order 7-Grallatores - (Gralla, a stilt)-Nearly all are long-legged, long. necked birds, with the leg bare above the middle joint. This order includes the plovers, herons and cranes-three groups so different that Prof. Jordan has, with good shew of reason, made threa separate orders of them. The herons, unlike the rest of this sub-class, have hind toe large and on a level wi.ia the front ones. Though so various, you may refer to this order any bird which has the tibia bare, yet is not fully wreb-footed.

Order 8-Lamellerostres-(Lamella, a thin plate; rostrum, a bill)-Webfooted birds which have the bill set with plates that look like teeth. This includes flamingoes, swans, geese and ducks.

Order 9-Steyanumerdes-(Steganos, webbed; pous, foot) - Birds having webs not only between the front tocs. but between the inner toe and the back one-the most webbed of all. Largo birds with long bills ended in a hook, as pelicans and cormorants.

Order 10-Longipennes: (Longus, loug; penna, wing)-Web footed birds having the leg; about the centre of the body ; hind toe very small and raised; long bill; very long and pointed
wings. Nearly all are white or lighthued birds. Includes gulls and terns.

Order 11-Pygrpoulds-(Puge, rump; pous, foot)-Feet at the very end of the body; either webbed or with great lobed membranes to each too; when lobed the leg is like a knife blade; very short wings; generally long neck and bill. Includes the divers and grebes.

It is not expected that the student will set to work to commit this to memory, but will refer to this number as occasion shall require, and so be able to determine for himself the order to which his specimen belongs.

WINTER NOTES ON ORNITHOLOGY.

Py Prof. C. B. Wilson.

II.

The second group of Passerine birds is known as the (i) "Clamatores," or Clamorers, whose consaguinity is chiefly indicated by a harsh voice. This group ombraces but a single family, the Tyrannidæ, or Tyrant Flycatcher, such as the Canadian Flycatchers.the Phebe-bird and the Kingbird. Though but a single family yet the group is strictly a New World one, and the bird fauna of America has one of its chief features in the number and variety of its Tyrannidæ. Their distinguishing characteristics are ten long feathers (primaries) in each wing, and the fact that the shanks of the legs (tarsi) are completely covered by a serics of large scales. Other species are just as traly "fly catching", and resenble the Tyrannida in many other respects, but they have only mine primaries, and lack the scalos on the front of the tirsus.

None of the F.y-catchers are winter residents, but one, the Pewee or

Pherebebird (Sayornis fuscus) is a well known harbinger of early spring, and comes North so early in the season as to be fairly reckoned a winter bird.

Its livery is one of dull olive green above and along the sides aud breast. fading slightly towards the tail; top and sides of the head, dark brown; below, dull yellowish-white mixed with hrown on the chin, which latter color sometimes extends across the breast; a few dull white feathers on the eyelid:: tail broad and slightly forked.

As soon as the birds have paired, usually by the first of May, they commence building. The nest is placed in a sheltered situation, most often, per haps, undor a bridge, sometimes under a ledge of rock, in a barn, or even in the interstices of an well-wall, six or eight feet down. It is constructed of fine hairs, grasses, roots, moss and like material, plastered together with pellets of mud. It is lined with soft grasses and feathers, on which are laid the delicate eggs. These are usually five in number, of a soft, creamy-white tint, sometimes sparingly covered with reddish-brown spots. Two broods are raised each season, sometimes three, always in the same nest, but the old nest is not used a second year.

As a class the Fly-catchers are the best architects we have. The Kingbird (Tyrannus carolinensis), the most widely distributed of them all, builds a nest altogether admirable, using soft cotton and woollen substances, lichens, moss and shreds of birch bark, sparing neither time nor material to render it substantial and warm. The greencrested Pewee (Empidonax Acadicus) sometimes builds its nest wholly of the blossoms of the hickory tree. The Wood Dewee (Contopus virens) always chooses a branch covered with small lichens, and saddles its nest upon its upper surface, so closely assimilated by its own external coating of lichens as
not to be distinguishable from a natural protuberance on the limb. It is cupshaped, a perfect segment of a snhere, and rivals even the artistic nests of the humming lirds. There is never a loose end or shred to hang in the wind and catch one's attention. Those nests made in the vicinity of dwellings indicate their neighboriood by a variety of miscellaneous and convenient material, bits of paper, rags, cotton, wool, poultry feathers, yarn, string, etc., but are usually, from this very heterogeneity, cuarser and rougher than those farther removed from civilization, which, in this instance at least, has exerted a deteriorating influence.

The food of the Pewee, like that of all the fly catchers, consists principally of insects captured ou the wing. From this probably results its wellknown partiality to the vicinity of water and to the neighborhood of dwellings, as either of these localitios breeds an abundance of insect food. And here, perched on some favorite spot, Phobe will sit all the morning watching for insects, and continually repeating its simple song. There seems to be a special provision in the wise economy of Nature that theso flycatchers shall seize only those insects that are actually on the wing most of the time, passing froin tree to tree or hovering among the shrubbery. They thus leave to the warblers and vireos their appropriate food in those forms of vermin that remain cancealed under the foliage and twirs, and to the thrushes those which haunt the grasses and the ground. Though there is such a multiplicity of bird life there is in this wity room enough for all. Nay, even more, each family has its own appropriate place, and is actually needed there, because none other can fill it.

It is a vain and mistaken hope that any species of our birds can bo exter-
minated because of some harmful habit, and their place adequately filled by another species which popular opinion pronounces less injurious; for, though multiplied to infinity, this latter species can never perform other than those offices assigned to it by Nature. A thrush can no more supplant the fly-catcher and destroy the winged vermin than a humming-bird can turn wood-pecker and bore for its insect food in the bark and rotten wood of trees. No, they are every one essential, and not even the universally maligned crow could be altootether spared. There are certain limits, of course, to these needs, but, within the limits, the extermination of any bird would make itself manifest in some pernicious manner, and that, too, in a very short time.

Chemistry.

By J. F. Godfrey.
OXYGEN.

No. IV.
atomic weiget, 16. stmbol, 0 . specific gravity, 1. 1.
Oxygen is the most widely diffused of all the elements, forming one-fifth part of the air by volume, eight-ninths of water by weight, and is a constituent of nearly all the substances that go to form the crust of the earth. It forms about one-half of our planet, and nearly three-fourths of animalis and plants.

The name "oxygen" signifies acidproducer from the opinion formerly entertained that oxygen was the essential principle of all acids. It is now known that several of the acids contain
no oxygen, and hence we conclude that those acids which contain oxygen do not owe their acidity to that substance.

Oxygen is generally prepared from some oxide or salt containing it. If a little mercuric oxide be heated in a test tube, it will be ơbserved to gradually lessen in bulk, and finally to disappear altogether, while on the cooler portions of the tube a coating of pure mercury will be formed, which, when touched, will roll down the sides of the tube in liquid globules. If a red coal be now placed in the tube it will be seen to blaze quite brightly, showing the presence of oxygen in the tube. But the more common way of preparing oxygen for experiments is by heating potassic chlorate and black oxide of manganese in a flask or retort, and catching the oxygen evolved over the pneumatic trough. Fotassic chlorate is represented by the formula KClO_{3}. When heat is applied to this substance the action may be represented by the following equation :-

$$
2 \mathrm{KClO}_{3}=2 \mathrm{KCl}+3 \mathrm{O}_{2} .
$$

For all practicai purposes a common Florence flask will answer for generating oxygen from potassic chlorate. A cheap pneumatic trough can be obtained from any tinsmith. I have used one for some time, made of zinc, about eighteen inches long and twelve wide, and six deep; two cleats should be soldered on to the side of the trough, u pon which a shelf is placed, pierced with one or more holes, for the purpose of allowing the gas to pass into the jars. Glass jars of any kind may be used tocollect the gas.

Place about two ounces of potassic chlorate, and one-third as much manganic dioxide together in the flask; fasten lightly in the neck of the flask, a cork, which has been pierced. so as to allow the end of a bent tube to pass through it. Place the other
end of the tube under one of the holes of the pneumatic trough which has been previously filled with water, so as to completely cover the shelf. Now apply heat to the flask, and in a short time bubbles will be seen to rise through the water. The first of these are air, and should be allowed to escape. If a jar be filled with water, and placed month downward over the tube, the oxygen will soon expel the water, and remain in the jar.

Oxygen is an odorless, tasteless, colorless fluid; it is heavier than air, in the proportion of about 11 to 10 ; it is the sustaining principle of animal life and of all the ordinary phenomena of combustion. Jodies which burn in the air burn with greatly increased splendor in oxygen gas. If a taper be blown out, and then iutroduced into the gas while the wick remains red hot, it is instantly rekindled. If a bit of charcoal be affixed to a wire, and plunged with a single point red hot into a jar of oxogen, it burns with great brilliancy. If a piece of roll sulphur be set on fire, and placed in a jar of this gas, it will burn with a beautiful purple-blue tlame, and evolve a much more intense heat than when burned in common air. Phosphorus burns with such an intense light that the eye can scarcely bear to look at it. But perhaps the most beautiful experiment of combustion in oxygen is made by means of an iron wire, or better, a watch spring; dip one end of the watch spring into some sulphur, and attach the other to a cork which will fit the neck of the $\mathrm{j}: \mathrm{r}$ containing the oxygen, light the sulphur, and place the wire in tho jar, the sulphur bursts into full flame and kindles the iron which burns with great brilliancy, sending forth a shower of white stars, while the melted iron, known as the black oxide of iron, sinks to the plate below.

NOVA SCOTIAN GEOLOGY.

Blomidon Amygdaloids, in sita and riomspurted.

Paper I.

By Rer. D. Honbyman, D. C. L., F. R.S.C.

> In Situ.

At Blomidon, between Perean and Scot's Bay, a rock called Amygdaloid was observed in great mass. It is so named as it contains amyydules of minerals, having something of the appearance of lernels of alinonds. This rock was once a larc, which, on cooling, assumed a vesicular texture. The cavities were subsequently filled with minerals of various kinds, r.g., Zeolites, Calcites, Chalcedonies. etc.

TRANSPORTED.

Boulders of this rock are to be seen in abundance about Wolfville and the side of the Estuary of the Avon. Upwaris of twenty years ago my attention was attracted to the latter lying beside the Lower Carboniferous limestones above the old Avon Bridge. Prof. How told me that they came from Blomidon.

On the Queen's Birthday, 1S73, whon walking with a friend on the beach of Cow Bay, East of Halifax, I noticed boulders on the shore which I at once recognized as Amygdaluids: from Blomidon. This circumstance was for some time perplexing. At length in our wandering we reached a head on the East side of the Bay. Here I observed a blutt' of clay and stones about 50 feet high, out of which were falling in abundance Amygdaloid boulders of all sizes, replete with amygdules of Stilbite, Heulandite, and other minerals. I also found a boulder of mossagate. Here, then, was the secondary source of the supply of the shore boulders.

GLACIATION.

At the same timo, I saw large masses of Cambrian quarzites, rutterl, scratchech, and gruover in a striking manner. I at once associated these with exposures of the underlying rocks, Cambrian argillites, which were also scrutcherl and grooverl, and I saw in this associaciation action and reaction.

At Pleasant Park, Halifax Harbor, are exposures of these rocks, scratched and grooved to perfection; some of these show that the agent was moving southerly, taking the course of these lines, which is S. 20 E., N. 20 W . I defined it on the Admiralty chart, and found that the lines produced pointed directly to Blomidon, touching its brow. A problem was thus prosented for solution, and solvel, after 9 years observation, in 188. Every bank of drift intervening on the harbor in Halifan, Citadel Hill, Observatory Hill, in H. M. Dockyard, Fort Needham, Navy Island, Belford Basin, Railway Cuttings, Bedford, Windsor Jusction, Beaver Bank, sides of Railway towards Mount Uniacke, contain amygdaloids from Blomidon, the number increasing by nearness of approach to their source. On the line of Railway, East of the Junction, they abound near Fletcher's, and are mot found beyond the Enfield Pottery. In Halifax harbor they are found on George's Island, Point Pleasant, at entrance to North. West Arm, McNab's Island and Thrurn Cap. On the Atlantic shore--Devil's Island, entrance to Eastern Passige, East side Cow Bay, Lawrencetown, and cml at Three Fathom Harhour.
[Erratta-No. 3, page 44, lines 30 and 45 , for "microscopically" read macrascopicall!.. Page 45, hines $\because 3$ and 36 , for "microscopic" read macroscopic. For "olivenite" read olivine throughout.]

Table of Geoluyical Formations in Nova Serotia und Cape Breton, accordiny to Dr. Honnyman's Rescarches.

Cene. Plenrocere.

Aquenus, : Post Glacial. Glacial. Subarial.
\qquad
.............
......
.............
.............
.................

5 Igneous.
Mesozoic Triassic. Permins?

Upper
Midelle
4 Igneous.
Low,
Cabboniferocs.
............ : Inıeous
Devosian?
$\zeta^{\prime} p p e r$
Metamorphic 3
Middle
2 Igneous.
Lover
Metamoryhic 2
Palenzoic
Silchins
1 Igneous.

Lower

Chmban
Eozoic.
2
or
Azoic $\quad 1$ Archeas. Metamoryhic 1
[Our un-scientific readers who wish to follow intelligently Dr. Honeyman's interesting series on the Geology of Nova Scotia should possess a copy of Dana's Text-book of Geology.-En.]

Good works of Nature, beautiful, symmetrical, harmonious, and withal perfectly adapted to their uses, are strewn arounc? our daily paths, and are as accessible to the poorest country child as to the millionaire. - Durson.

INSTITUTE OF NATURAL

 M'IENCE.The Institute of Natural Science met last night, in the Provincial Museum. Although the weather was unfavorable, there was a somewhat larger attendance than usual. A paper on Fresh Water Sponges, A. H. McKay, B. A., B. Sc., of Pictou, was read before the Society. The Searetary stated that Mr. Mchay had done much for the Natural History of our Province. The paper described rarious species of spongilla, taken from McIntosh's and other lakes, in Earltown. There were exhibited also, under a powerful microscope, exquisitely sculptured specimens of diatoms, silicious spicules of S. lacustroider, My!enia Leidii, M. cruteriforma and Mi. Errortti, all neatly got up on slides prepared by Mr. MoKay himself. The diatomaceons deposits of these lakes are often several feet thick, and may yet be found to be of some industrial value. An interesting discussion followed, in which Dr. Somers, Messrs. Keating, Denton, and others took part. Prof. Lawson not being present, the meeting ad-journed.-Malifar Mrruiu! Chromielr, 13th May.

NOTES.
botany.
T. J. W. Burgess, M. D., of London, Ontario, has published a very readable account of a "Botanical Holiday in Nova Scotia," in the Botanical Gazette. He has noticed a large number of species not before published.

Dr Purgess is preparing a monograph of the Violace:e of Canada, and we recommend our Botanists to send him as many species from Nova scotia in flowers and fruit as can be found. He will be glad to exchange Western plants for such specimens.

Professor John Macoun, F.R.S.C., Ottawa, is about to prepare a monograph of the Canadian Willows. He wants for this purpose specimens of all our willows taken at different seasons to show the flowers, leayes and fruit. This is a most protoan and difficult genus of plants, and we are glad to know that a man of the energy and experience of the Professor has at length undertaken it.

Principal McKay, of Pictou, Nova Scotia, is working up the Diatomacere of Nova Scotia, and hopes that every reader near a lake may send him a sample of the slime or mud deposits in it. He will give the sender an account of the microscopic organisms determined in it.

Recent discoveries in Botany seem to indicate the continuity of protoplasm from ceil to ceil by means of delicate threads which traverse chan. nels through the cell wall.
Tischirch regards it as probable that chlorophyll plays "not merely a physical, but also a chemical, part in the process of assimilation," in opposition to Pringsheim, who supposes it to act merely as a light screen or shade to the protoplasmic contents of the cell.

The examinations in the medical courses in England have been much advanced under the new rules, which took effect in January last. These examinations "will have reference to the fundamental facts and laws of the morphology, histology, physiology and life history of plants as illustrated by the following types: Saccharomyces, Protococcus, Mucor, Spirogyna, Chara or Nitella, a Fern, Pinus and an ang:uspermous Howering plant." This must be the next movement in Nova Scotia.

Botany is required to be taught in
the common schools of Nova Scotia, according to the Previncial course of study, and not a teacher from Grade D to Grade A need have a knowledge of it to take his diploma.
mineralogy.
Some perfect garnet crystals from schitose rock on the Stikine River, Alaska, have been received for the museum of the Pictou Academy. The largest is over an inch. .4 diameter, and weighs over an ounce.

In the Mineralogical Magazine W. H. Hudleston advances the theory that diamonds are formed in eruptive rock, and that super-heated steam was the eruptive agent. The carbon is supposed to have been derived from certain carbonaceous shales, which were distilled under great pressure, when the carbon would have "no choice but to assume the crystalline form." He points to the soft earthy beccia made up of fragments of many kinds of rocks in South Africa in which the diamonds have been found in support of his theory.

Mr. W. Cross thinks the topaz may be a sublimation product, especially in certain igneous rocks from Colorado.

A new locality for emeralds has been found in North Carolina. The crystals are pale green, and occur in decomposed black mica associated with quartz, rutile and hiddenite.

During 1883 sirty millions of pounds of copper were extracted from the Lake Superior mines.

ORNITHOLOGY.

The Ornithological Club of the Pictou Academy has taken and mounted since its organization in March last over fifty Nova Scotian birds for the Natural History Museum.

The Academy is Station No. 420 of the American Ornithological Cnion.

ENTOMOLOGY.
Tho butterflies of Amherst, U.S.A., are being described in a popular style in the Bulletin of Massachusetts Natural History, Vol. I., No. 1, issued April 15th, 1884.

ZOOLOGY.

Bonnet beheaded an earth worn eight times, and regeneration followed each time. A worm was cut into fourteen pieces. One piece died, the others reproduced both head and tail.-Dr. C. Bulon.

POPULAR SCIENCE.
"The popularization oi science is now a leading theme of scientific men," says Mr. Lester F. Ward, of Washington, D.C. : Te accompiish this certaia branches of science must first become a part of liberal culture. The pursuit of fashion, which is usually regarded as a production solely of evil, may be made an agency of grood. If it could become as much of a disgrace to be found ignorant of the flora or fauna of one's native place as it now is to be found ignorant of the rules of etiquette or the contents of the latest new novel, devotees of botany and other branches of natural history would instantly become legion, and the woods and fislds would be incessan ly scoured for spacimens and objects of scientific interest. It should be the acknowledged work of educators to make scierce fashionable and call to their aid these powerful social sentiments in demanding the recogyition of its legitimate claims."

[^1]
2itcury dotirs.

The Printeton Revicw for May is quite up to its usual standard of excellence. Prof. Joseph LeConte, of California, in ap intensely interesting article, on "The Psychical Relation of Man to Animals," draws what seems to be the true line of distinction between the intellect of the former. which is able to cratc; and the lower intelligence of the latter, which is only capable of compreherding associations. "Mystical Theism," by the late Prof. M. Stuart Phelps, is a valuable contribution to philosophical literature. The author deprecates the presence of mysticism in philouophy, as appealing to feclirg and not to reason. The modern theistic argument to be succesfful must be scientific and logical.

Other live questions are discussed by emirent authors. No. 2 Nassau St., New York, Three Dullars a year. Fifty cents a number.

Canalia at the Great Fisheries Exhibition, Loncion, 1883. - This is a little volume con taininge extracts from papers real and discus. sions conducted at the Conference held in London during the Exhibition, and also letters from eminent men of England. expressing in very landatory terms their high appreciation of the part taken by Canada in the Exhilition, and their great admiration of the zealous and efficient management of this department by the chairman of the committee in charge, Samue! Wilmot, Esq. The superiority of the Camadian c.atibit viciall uthers, as was universally admitted, should be a matter of congratulation to all loyal Canadians, and speaks more loudly than words of the efficiency of those to whose enthusiastic labors the same was due. It must be very gratifying to Mr. Wilmut to have his efforts thisaspreciated abruad, but have he and his associates received at the hands of their couniry. men that recognition, official or otherwise, which the disinterested nature of their work would seem to demand?

Repore of the E'ntomological Societv of Ortario for 1883.-Owing to a stroke of economy, ill timed, perhaps, on the part of Legisture, the presen: Report comes to us in paper covers. This is to be regretted as the work is wortl:y of a place un the shelves, not unly of the Naturalist, but also of the general reader, and s^{\prime} great would be the convenience made by the exper diture of a few additional dollars in enclasing the volume in cloth binding, that sail expenditure wonld secm to be warrants:. The Report contairs many interest ing and well-illustrated contrabutions.

No. 3 of the Bulletins of the Natural History Sucicty (f New Brunswick recently came to hand. There is an interesting papel, by G. F. Mathew, M. A., reporting the discovery of a village of the Stone Age, at Bocabec, on Passamaquoddy Bay. Accompanying the description is a map, showing the sites of some thirty huts, with a section and ground plan of one of the most characteristic. The Botanical committee reports the discovery of over sixty species hitherto unrecorded, as occurring in New Brunswich. M. Chamberlain furnishes a list of Mammals of New Brunswick. including forty-three terrestrial and five marine species. The beaver is reported as returning to his old haunt, in a few sections abandoned by the lumbermen.

The American iiaturalist, one of the most va'uable Scientific journals published in the world, comes to us for May, loaded with its usual quota of Natural Science News. The leading articles are as follows:-"The Meriquit, I. Hozuard. "The Larval Theory of the Origin of Cellular Tissue," Aipheus IIy ${ }^{\prime}$ att. "The Natura ist Frazillian Expedition, No. 11I," Herbert H1. Smith. "The Exhalation of Ozone by Flowering Plants," Antiers. "The Creodonta," \angle. . D. Cope. ' A ll alk through the Natural History Museum of Florence," fames S. Lippincott. "Construction of Ancient Terra-Cotta Pitch Pipes and Flageolets." H. F. Cresson. Many of these aiticles are capitally illustrated. The fifty pages of Gelacrai' iotes form a moot admirable collection of the latest news pithily put.
The Bulletin ot Torrey Botanical Llub for A pril, opens with a plate of a new species of grass, followed by a neat liographical shetch of Dr. Engelman, with portrait. It also contains a list of New Fungi, by J. B. Ellis and B. II Ewhoti, and a collection of intere ting original notes on botanical subjects.
Hygienic Physiology', J. Dorman Steele, Ph. D. Nev lork: A. S. Barnes \& Co.This is a revised edition of the author's "Fourteen Weeks in Physiology." The chief improvement made upon that admirable work is the introduction of chapters, showing the deleterious effects of alcohol, tobacco. and other narcotics upon the several organs of the human system.

Paliciezoic Fosszls, Vol. III., Part I. By T. J. F. Whiteaves, F. G. S., F. R. S. C., etc. Palreuntulugist and Zoologist of the Canadian Geological Survey.

One of the Waintieat and Handaomest of the Strictly First Class Mllustrated Magazines published in the United states is

THE MANHATTAN.

Liberal in Spirit and Óritical in Taste.

It has already juhlished some of the Choicest Magazine Literature of the day. The Manhattan numbers among its contributors all the lea ding writers of the English lauguare, while its Illustrations are prepared by the best exponents of Modern Art in Drawing and Engraving.

SOUN TO APPEAR:

Among other important and entertaiaing matter, coming numbers will contain :
"The Future ot Egypt," an important paper, by Gen. Loring 'Pasha, who has just returned, after holding for ton years high command in the army of the Khedive; of special interest in the present unsetted condition of affairs in Egypt and the Soud_{an}. "Creation or Evolution," a series of papers by George 'licknor Curtis ; a Philosophical Inquiry : both theories judicially considered. "A Critica. Paper on Edwin Booth;', by Henry C. Yedder; beautifully illustrated with engravings of the actor in his princtpal characters. "Riverside Park, New York City"; a desuriptive, article richly illustrated. "Literature" and Sciene:," an important paper by Matthew Arnold. "Fingal's Cive,"' a popular scientifie article by Cope Whitehouse, whose researches at Loke Moeris, in Egypt, gave him such high reputation among European Savants. "Trajan," a brilliant and remarkable novel, the author of which, for reasons that will be apparent to the reader, desires to remain unknown. "Our Forest and Tree Lore;" an interesting paper by Afiss Laura C. Holloway. "The Yellowstone Park"; beautifully illustrated. "Dartmouth College, the Alma Mater ot Webster and Choate"; illustrated with partraits and numerous views of the, Collese and its neighborhoud. "Tinkling Cymbals," Edsgar Fawcett's charming serial of Society in Yewport and New York; will run through several numbers.
\$3.00 a year, postage paid: 25 cents a number.
Subscriptions received at the principal Bookstores or ar the Publication Office of THE MANHATTAN MAGAZINE CO., T $\pm M P L E$ COURT, NEW YORK CITY.

The Kansas City Review of Scrence and Industry

Is a strictly popular magazize, better adapted to family reading than any other scientific journal in the country. It comprises orieinal articles by the best. writers, and selections from the best periodicais in this country and Europe upon Geolosy, Mining, Archreelozy, Medicine and Hygiene, Meteorolozy, Exploration and Travels, Mechanic Arts, Ristory and Biography, Book Revicws, ctc. It has played its full part among periodiclas of the Fest in calling. attention to the natural resources and advaneages of this region, and is deserving of the patronage of all intelligent and enterprising citizens.
Nonthly, 64 Piases nctavo, $\$ 2.50$ per annums.
N. E. CLUBS of FOUR PF MORE ARE

ALLOWED A DISCOUNT OF $2: 3$ PER CENT.
All subscribers are entited to discounts on maga: zines and books बrdered througb this office of from 10 to 25 per cent. from retail prices.
For advercising terms address
THEO. S. CASE,
Kansas City, Mo.

J. B. ROLLAND \& FILS, Booksellers and Stationers,

12 \& 14 St. Vincent Street, Montreal, P. Q.

Publishers of the new series of French Readers. "Nowvelle seric aic Liures de lecture graduce; par A. N. Montpitit," in five books, the only series authorized by the Council of Public Instruction for the Province of Quebec.

Proprietors of the Fournal de D Instructions Fublique (French, 32 pages, monthly. Yearly subscription Sr_{1}, in advance.)

Sikool Books and School Implements, French and Ens,lish Catholic Prayer Books, Importers of french, Belgian, German and American Coods.

Agents or the Rolland Paper Company (Mills at St. Jerome, P. Q.) News and Writing Papers of every description.

Catalogues and Price Lists sent on application.

ROCKWELL \& CO.

DEALERS IN

Piamos, Oryans, Seving Hachines,

School Books, Music Books, Sheet Music. and General School Stationery, Painting Cards, Inks, Pens, Pencils, etc., etc. MUSIO AND BOOKS
ordered proarpics. MAIN STREET, Wolfville.

Our New School Aids

Are used by practical teachers for conducting schools in good quiet order. Each ; contains 12 targe elegant chromo excelsior carui, 50 large beautitul gold and tinted chromo merit cards, and 750 prety chromo credit cards, price per set $\$ 1.25$, halt set 65 c, , samples 4c. Chromo and floral school reward cards, small sizes, No. x red ind white roses, prices per dozen 5 c. No. 2 birds, flowers and mottoes 8 C. No. 4, pinks a nd roses, ic. No. 14, hands, baskets and flowers, 1oc. No. 18, ocean shells 1oc. No. 34 , pinks, buds and roses, roc. No. 48, lap corner boquets, ūc., medium sizes. No. so, vases and flowers, IJc. No. 33 hands and boquets, 16 c . No. 17, red roses, 15c. No. 5r, kittens and parrons, zec. No. 70 , flowers, ckildren and rabbits, 18 c . No. 19, anchor floral, 25 c. No. 65 , yases of fowers, 20c. No. 8, blooming roses, $\mathbf{x} 6 \mathrm{c}$. No 9 , blooming roses on gold card, 20c. No. 22, baskets of flowers. $3 \approx$. No. 38, lidics and roses, 200 . No. 62, eggs and flowers, $25 \mathrm{C}^{\circ}$. No. 44, hands and boquets, 25 c . No. 56 , strawillowers, roses, etc., zac, large sizes. No. 40, children and birds, 3ec. No. 32, budding yoses, 35 c . No. 60 , slippers and fowers, 3×0. No. 52 , the four seasons, 300 . No. 64 , tumblers of flowers. 30 C . No. 54, children, rabbits and flowers, 4oc. Ne. 35 , moss roses on gold card, 4 ce. No. 53 , dipioma chromo cards, 37°. No. 37, happy birthday, ${ }^{22 \mathrm{C}}$. No. 50, birds and fowers, 244. No. xx, buquers of flowers, 24c. School reports on paper, ioc ; on card-
 zo, 65 c . Your name nealy printed on $x 2 \mathrm{cream}$ gold bevel cage lap corner visiting cards for 35 c .; on 27 chromo cards for 15c. Large set samules, $2 s e$.; small set, 8 c. Send for price list. All pestpaid by mail. Stamps tailen. Phicenix Pub. Co., Warren, Ha.

Ye OLDE BOOKE SHOPPE

 ANI）Natural Science Exchange，

353 YON（iE ST．，PORONTO．
Natural Science specimens，of all kinds， bought，sold and exchanged．

Suitable books for reference and study kept on hand or immediately procured，and mailed free on receipt of price．

DAVID BOYLE．
Odor of Forest！Sparkle of Stream I

FOREST AND STREAM．

Do you own a gun，or a＂fish pole，＂or ＂bird－dog，＂or rifle？Ever go angling or shooting，or tramping，or canoeing or yacht－ ing？Have you a taste for studying the habits of wild birds and animals？Do you know that for ten years we have been pub－ lishing a bright weekly paper devoted to these subjects？It will repay you to look at a copy of the Forest and Stream．There is no other paper in the world just like it． Address Forest and Stream Publishing C．o．， 39 Park Row，New York．

Specimen copy io cents．

MacGregor \＆Knight，

－IMPORTERS OF－

SCHOOL \＆COLLEGE BOOKS

125 GRANVILLE STREET，

HALIFAX，N．S．

WANTED．

A I Birds＇Shins and Eggs．Send iist and prices wanted to

W．P．MELVILLE，
Dealer in Stuffed Bitds，Eggs and Tasider－ mists＇Supplies， 3^{19} Yonge St．，Toronto－ Canada．
Catalogues sent on application

エ 卫IE
NATURALISTS＇WORLD．
A Popular Illustrateì Maga－ zine of Science．

YEARLY SUBSCRIPTION， 60 cts，POST FREE．

Pmincmpa．Centeats of Ehbiy Nimbers．－ Buttercups and Daisies；Microscopic Object Mounting ；Geological Evolution：The Lan－ guage of Amimals：The Lee of Beetles； Practical Snail Huntiur，Plant（ivesip；Notes and Queries：Editor＇s Gussil！：Practical Naturalists＇Society；Sale and Exchange，etc．

Sulscriptions may le sent to A．J．PINEO， Editor（＂anadin Suence Monthin，Wolf＇ ville， N s．
Offices Ilkley，Forkshire，Ehyland．

WANTEED．

Copies of the ACADTAN SCIENTIST for April，18s：3．＂ien cents each will be paid for copies in fair condition．

A．J．PINEO，
FOR SA工耳．
＂TH：PROBLEM OF HUWAN LIFL， HERE AND HEREAFTER．＂By Wilicord Hall．$\overline{5} 24 \mathrm{pp}$ ．；nesrly new ；oricinal cost $\$ 2.00$ ；will be sent post paid for $\$ 1.00$ ．

A J．PINEO，
Welfrille，N．S．
 tinue to act as Solicitors for Patents，Caveats frade Marks，Copyrights，for the Unlted States，Canads， England，France，Germany，ete．Hand Book about Patents sent free．Thirty－seven years＇experience． Patentsobtained throukh KUNN \＆CO．arenotice in the SCIENTIFIC AMERICAN the largest，best，and most widely circulated sclentific paper．is． 20 z year． Yeekir．Splendid engravings and interesting in－ formation．Specimen copy of the Scieutinc Amer． scan sent frce．Address MUNN \＆CO．SCIENTIFYO Amerioan Offee， $23 i 1$ Broadway，Ner York

[^0]: * These definitions are not universally applicable, but the Canalian will fitul them practical in almost every case.

[^1]: No life
 Can be pure in its purpose and
 strong in its strife,
 And all life not be purer
 and stronger thereby.

 - Ozuen Mcredith.

