The Institute has attempted to obtain the besi original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture rêsiauitêe êícoù pêtliculée

Cover title missing/
Le titre de couverture manquaColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui pe_vent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square| Coloured pages/ |
| :--- |
| Pages de couleur |Pages damaged/

Pages endommagéesPages restored and/or iaminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

AGACULTURAL JOURNAL， AND

TRANSACTIOMS

OF TIIE

Cawer fanada Anvicultural saciety．

T゙心Ga かa
โొ，
EPT：${ }^{3}$

Irish Manufacture－Clonbrocis Ti－ lery Gaif Harbour－Knockroghert－ Athlone．－At this place，drain pipes are ma－ nufactured at a cheap rate，and we do not see why we might not have drain pipes manufac－ tured in Cauada at an equally cheap rate． They are soldat the tiln at the following rates for cash ：－

The latter sized are well adapted for sewers and drains in public streets．There is another sort ofdrain tiles made at this place，which we believe would answer extremely well for drain－ itidg．The improved scarf－jointed，square－bot－ tomed，circular arch tile．This tile is supe－ foro to the circular tile in the following res－ pects：－As the shoulders of the arch preserve be form and curve，while drying，it requires ofrolling－it beds more firmiy into the bottom of the drain．The circular opening is always trept exactly fair with the draining pipe by the Egarf－joint．It has no hollow part under the joining of the pipe，as in the case of the collar （de；and it is perfectly easy to distinguishat a giance，when walking along the drain，whether oin not the pipes are laid fair，which cannot be weasily ascertained under the collar system at the point of junction．It packs more solid in boats or carts from its square botlom and sides．

The extra clay to make the botton square does not weigh so heavy as the collars；and， besides being cheaper，it is far more solid and durable．

The following are the prices of those impro－ ved pipes，－their weights，and diamoters：－ Inches．Length in all．Weight in ewt．Price per 1000

For an English acre－or perhaps it would be more proper to calculate for a French ar－ pent－it would require about 2000 tiles，to drain at eigh＇een feet apart．In England，tah cost of cutting a drain three feet deep，laying in tiles，and filling in the drain again，costs very little over one－penny a yard，or six－pence the rood．In an arpent there would be about 100 roods of draining，at eighteen French feet apart， requiring about 2000 pipe－tiles，or square bot－ tomed tiles．At twenty－four feet apart，about a fourth less tiles．At thirty feet apart，two fifths less tiles，and at thirty－six feet apart，only one half the number．The size of drains three feet deep，should be twenty inches at top，and five at bottom ；and out of a drain of this di－ mensions，there is $56 \frac{1}{4}$ solid feet of cutting in a pole or rood．A drain $3 \frac{1}{2}$ feet deep，would have 72 solid feet of cutting－4 feet deep， 90 solid feet， $4 \frac{1}{2}$ feet deep， 110 solid feet， 5 feet deep， 132 solid feet of cutting．Draining at the latter depth would cost in ordinary soil for cut
ting, laying down the tiles and covering, about $1 \mathrm{~s}, 4 \mathrm{~d}$. the rood or perch. Where small stones are to he had conveniently, they will drain as well or better than tiles of any make, though perhaps, there may not be any great saving of expense. Even when tiles are put down, covering them over with small stones is an excellent plan. We give insertion in this number to an article on draining, with the branches of the Scotch fir, which has been found to answer extremely well. In this country, where there is such abundance of trees of the fir tribe, draining might be accomplistied very cheaplyfilling the drains with the branches of hemlock, and other fir trees. We have no doubt, whatsnever, that this mode of draining would answer well, if carefully executed, and the branches laid in and covered, while in a perfectly green state, and cut at the proper season, when they have all the sap in them. The drains should be cut something larger than those for tiles, and the branches should be packed closely into, them, and covered over with earth. It is difficult to obtain tiles in Canada, but these branches are readily obtained in almost every situation. There can be no doubt that draining should precede any attempt at improving our agriculture by manuring or better cultivation. Draining suficiently produces more improvement in arable lands, than any other means in sur power to employ. We forgot to mention that the machine made use of at the manufactory at Knockroghery, is "Scraggs' Improved Machine." Deep draining is considered much the most effectual, and would answer best in this country. Good farmers in England consider that indiffierently drained clay land is ruinous to cultiyate, that if drained would pay a fair rent and profit, and we believe it is the same case here. Some persons imagine if we drain our lands here as in England, they will become too dry to produce good crops; but this is a great mistake. When land retains water, the surface becomes very hard and baked by the sun, and renders it impossible for plants to thrive in it. The same land, if drained, would never
hecome so hard, the showers of rain would pass freely through it, and the dew would also have a most beneficial influence upon the crop; showers of rain upon hard, undrained land, to not produce much benefit; it escapes in the cracks in the soil, or remains upon the surface until again dried up by a few hours' hot sun. We have abundant opportunity of seeing the effects of want of draining on crops; some of the most fertile spots in a field are often rendered usc.ess by retaining water. Even where no water appears near the surface, the crop is poor and stunted from the roots of the plants coming in contact with too much moisture in the soil.

We give insertion to a speech of Mr. Mechi of Triptree IIall, Essex, that is entitled to attention. This gentleman has realized an ample fortune by business, and can afford both money and time to test the merits of any plan or experiment he may think desirable. It is to such men as Mr. Mechi, England is indebted for her great improvements in Agriculture, and we may also benefit from reading of his successful praction of this excellent system. This is one of the advantages of " book-farming," for if we were deprised of it, we could know nothing of Mr. Mechi's practice or the results obtained from it. Gentlemen who visited this farm lately, report :--" In a ficld of wheat, which was drained lit feet apart, though drained four years since, the whent over the drains, to the width of about four feet, looks stronger and better than on the intermediate spaces between that and the next drain. This is so decisive, that a person standing half a mile distant could, by the fine appearance of the wheat orer each drain, point out any drain in the field." Such are the effects of draining, and smilar effects would result from sufficient draining in this country, if the experiment was made, and the work properly executed.

FARMERS' CLUBS.

ESTRACT FROM THE SPEECH OF MR. MECHI.
With regard to draining, your land here is particularly situated. Much of it does not appear to require drainage; but I think I saw a considerable portion in which the water, though not apparent on the surface, was rather too near to the surface to be comfortable to the crops. We are sometimes apt to be deceived, and we ought always $t o$ ascertain how near the water is to the surface, by digging holes. If you dig a post-hole in land-I do not know whether it is so in this neighbourhood, but if you do so in many lands, where water is not apparent on the surface,-rou will find it soon flow, especially 3,4 , or 5 feet deep. Therefore, by digging such holes, if the level of the water is found within 3 or four feet of the surface, I should decidedly recommend such land to be drained to the depth of 5 feet because it is for want of depth of soil that the wheat turns off yellow, especially after a wet season. I have observed a crop of wheat go on flourshing up to the beginning of May, and then it assumed a yellow and pallid appearance, and what is commonly called, goes off; and that results, in fact, from the roots having a desire to go deeper into the soil, and meeting with stagnant warer. It is much the same as stopping the drainage in a flower-pot, and giving it water, or keeping the pan of the flower-pot full of water. You will invariably find that the result of that is to turn the plant yellow, as I have no doubt you have observed. As to the mode of drainage, I am quite convinced that it ought to be up and down the hill, and not across it. A very amosing instance of that occurred on my farm the other day. A piece of land on the slope had been drained across the hill at only two leet deep. I had occasion to put in some posts of rails on the incline below the drains, and I found that the holes were full of water, exactly level with the drain, which, although two feet deep, being two feet higher in the rive, of course did not take the water from this post-hole. Now, if that drain, instead of being cut across the hill, had been cut down the hill, it would have met the water, and have been an equal distance from each portion of earth down the hill ; or if cut four feet instend of two, the water would have found its way down to the drain ; but by cutting shallow drains on a hill, and carrying them across a hill, it is clear that the water below the drain has
no power to go into it, but has a long way to go to find the way into the next drain, whereas, if the drains were cut up and down the hill, every portion of soil, as it declined, would gradually find its way to the drain from both sides. I am afraid I am getting rather tedious. (No, no, and applause.) Well, there is another point. I heve been feeding sheep on Mr. Huxtable's plan-what is called board wages. (Laughter.) I find that it is a very successful practice; and I do not see that you have it in operation in this immediate neighbourhood. I have had eighty sheep on boards for several months, and they thrive admirably well; and when I tell you, that, at one year old, several of them weigh 12 stones, which is 24 llbs . a quarter for half-bred sheep, you will naturally agree with me that it is a profitable way of feeding them. I sold some of them the other day at $£ 3$ a piece. I find in practice, that no disease attack's sheep so situaled. Occasionally one or two, from being apoplectic and fat, were immediately consigned to the butcher. There is no foot-rot, and they generally present a mos healthy and comfortable appearance. On our cold and erposed land, they certainly thrive infinitely better than some I have ried on the o'd system of folding. They consume less food, in proportion to the fat they put on. There is no expense for straw, and their manure falls through on some dust and burnt earth. By using about halfa pound ofgypsum perday, and sweeping it down between the cracks, we have an excellent crop of manure to grow the turnips for next year. It is neither too wet nor tod dry, but just in that state in which, in a hot summer's day, the turnip ronts will find a very comfortable meal. I think we are bound to look at all these operations, not as advocates-no man should advocate a principle in agriculture. We should state the facts, and the result, as a matter of profit. (Applause.) And then those who had the opportunity of seeing the fact can draw their own conclusions. I know practically, that, where there is capital, there is generally an ample desire on the part of the farmers to do everything that is profitable. I do not agree in the vulgar prejudice that agriculturists are slow to observe things conducive to their own interests. There are some few old prejudices, but I do not accuse agriculturists of being slow in adopting what is profitable. The question of thin sowing is now rather a ticklish one; and judging from what I have seen in your neighbourhood, it has net made much progress here.

But still a change is coming over the Norfolk mind, in that respect, slowly and gradually. One of Lord Leicester's best farmers told me, the other day, that he had 150 acres of wheat growing from 5 pecks per acre, on light soil, and thatit was very much thicker than it ought to be. He wished that he only had put in half the quantity of seed, considering the season; although his neighbours were putting in 4 , bushels, he feels quite sure, that he should never put in more than 5 pecks, that is diblled, but most likely 4 , according to the slate of the land. My own experience has invariably been in favor of 4 pecks of seed. I make it a rule, every year, and in almost every field, to leave a portion of my land drilled with 2 bushets, as well as one bushel, in order that I may, every year, arrive at certain results. Those results, as I said before, have been invariable in favour of thin sowing ; the difference, last year, being equal to the rent of the land. I should be very happy to hear from "hose gentlemen present, who have tried the different quantitics, the result of their experiments, and I do hope, and I do thinks, that you are all in justice bound to alter your drills on one acre or half-an-acre in each field, and when we meet again, to collate your evidence, and tell me which you have found the most advantageous. I recoilect that, in Suffolk, a very able and careful nld farmer, after what I said at a Suffolk meeting, altered his drill on an acre of land in the middle of a 15 -acre field. He told me, two months ago, that on that acre drilled with a bushel, he had 7 bushels more corn than he had on the rest of the field which had been drilled with 2 bu-hels; so that, in fact, thin sowing in that instance, without any difference in the soil, gave him an advantage of a quarter of wheat per acre. I shall be happy to give any gentlemen his name. He is a man well known. In another field he tried the same operation, a month later, which was in November. There he had no increase from thin sowing; but he saved the bushel of seed, which is an object, being worth 7s.; and he also weighed the straw from the same field, and found what I have found, that thin sowing, as it is called, produces more weight of straw per acre than thick sowing. Now, gentlemen, your wheats are looking brilliant at present, and quite thick enough. I hope that we may not find, that, in a month, or the beginning of June, excessive lusuriance causes that crop to fall. We have known such a thing; but I am sure you must feel, as I do, that it would be attend-
ed with enormons loss. Were we to have a continuance of wet growing weather, and thoee wheats get heavy in the month of June, the loss to yon, as farmers, and to the community, must be very considerable. At all events, I hope you will not think that I am askii.g too much, that each of you should try the experiment, and form your own conclusions. I shall be extremely gratified, and I think you are bound to do it. In the practice of farming, the great diflieulty is to get a profit ont of the lant. We know that there are so many contingencies that farming is comparatively a slow business. The great losses arising from di-eases in stock, from diseases in horses, and other casualties, render farming at all times rather a precarious affair. It becomes, then, of great importance, that the details of the expenditure should be very closely watched. So far as my own experience goes, I have found considerable alvantage in certain operations from the use of an implement which I do not see, I am sorry to say, in your neighbourhood. I speak of Garrett's horse-hoe. Now, hocing is an uperation which requires to be done very cuickly, at a particular time, and, if possible, very cheaply. I assure you, that during the last five weeks, with a pair of horses and one man, in a week of seven days, I perfectily horse-hoed 24 acres of wheat, at the happy moment when there was a little dry weather to destroy or cripple such weeds as there were between the rows. Now that operation was effected at a cost of 14 d per acre: and I have no hesitation in saying, that even supposing that I could have got hands to do it in the time, which I could not, that to do it as effectually with a hand-hoe, would hove cost at least 12s per acre, to have done it as deeply and perfecily. Therefore, I consider that that implement is a most important one for agriculture. It is not the weeds in the inmediate rows of the wheat that do so much injury; because the wheat has the power to take care of itself generally in the rows; but it is the weeds in the intervals that do the damage. The mere cultivation of that space between the rows I consider exceedingly advantageous, and I should be better pleased to see a little more hoeing amongst your wheat, instend of seeing them so thic k, because if you put less seed in, you will have to hoe more than you do at present. I shall be very happy to shew any of you, at all times, all the opperations going on, on my poor farm. We have no secrets there. Wc are open at all times to public in-
"pection, and, if necessary, to public censure. I do it on public grounds. I am always happy to receivo a castigation for anything that I do not farmer-like and consistently ; and ;robably, I deserve it more than any other man, because I lay myself open to public observation. Therefore all that I do in agricallure, is done carefully from the theory and practice of other practical and able men, and bere is very little merit due to me in the mater ; but I do think we are all hound to look round and see what others are doing, as is lone in trade. If we see one man more sucressful than ourselves, then it is our duty to inquire into the cause of that success, and adopt his measures. I have a very strung opinion on the importance of deep draingge, and deep cultivation in general. You perhaps, are less affected by it than any other neighbourhood I know ; but it is lamentable to sce, a travelling over this rich kingdom, the thousands and hundreds of thousands of acres that are rendered comparatively sterile for want of :he remoral of the s'agnant water. And my ipinions are so strong on that point that, if I were offered 100 arres of very tenacious land, to be farmed without paying rent, and to keep a undrained, I would decline to accept the offer. 1 consider the difference between drainage on very heavy tenacio s clay and un-drainage, is the difference in a succession of wet seasons, uetween a profit and ruin.

Overgrown Barley; Salt Superphosrhate of Lime.-One of the chief uses of salt may, perhaps, be put to the test (af not too late) ny the present condition of the barley, which an hardly fail of overgrowing under the unseasomable continuance of rain, and salt appears specifically to restrain overgrowth and stiffen the straw and leaf. Acids have somewhat the same tendency, perhaps by neutralizing the aminonia in the soil; and phosphates certainly promate seeding. Probably, therefore, the addition of superphosphate of lime to the salt may remedy :n some degrie the damage of the season, say, 2 cwt. salt and 1 cwt. superphosphate per acre, mixed with dry earth (not ashes), and strewed upon alternate ridges to show their effect by comwarison. But farmers must take care what they buy as superphosphate, a sample having been recently brought me that was quite insipid, and conseguenty no superphosphate at all.-J. Prideaux.
remarks on the agmicultural. JOURNAL.

july number.

Moder. Farms --Itis certainlymuch to be desired that Model Farms were established throughout the country. There are hundreds of parishes in Lower Canada where they might be established with grent profit ; there is unfortunately wanting among us a spirit of truc patriotism. A patriotism which will make iteclf known by its works; and there is also wanting a love for Agriculture and its objects. Take for instance, the parish in which I am now writing these lines. The village formerly exported large quantities of whent and all other varietics of grain ; now, the export is too small to be noticed; the return is very low, and the farmers generally are poor. The merchants in the village feel the hard times, they speak of the days of yore as days of prosperity; many of them are large landhoiders, but though more intelligent than the peasantry, they farm no better, and consider him to be the best farmer who has now the largest quantity of wheat, and who has the greatest number of acres of land. That lamentable ignorance! Suppose now, that three or four of these merchants would join in the management of a Farm, procure approved instruments of agriculture, get an intelligent manager whose cbject ought to be to produce the greatest yield with the greatest profit; would not such a farm have the greatest iufluence upon the farmers throughout the neighbourhood. In a model farm in a country parish, I would have no expensive experiments tried, but merely such as are within the reach of the great body of the French Cumadian farmers. Nore anon.
Weeat. - I do not thank that the culivation of wheat ought to be encouraged -there will always be too much wheat sown in comprarison to other produce. One has to walk a long way befire he can see a field of bearis or an acre of turnips, carrots or other root crops-except potatoes.
Vetmanaray Connege-This subject must uot be allowed todrop. "Syllabus" must agitate. The remarks of Sylabus on the premiums offered by Agricultural Societies deserve consideration-bat they are too short ; he ought to treat the subject in detail. It is very casy to find fault, but it is not so very casy to offier a better plan than that which we condemn.
"Deodorised Manures."--How long will it be before Mr. Ellerman's discovery will be turned to practical use among us? What a large quantity of most valuable manure is amually carricd away; polluting the St. Lawrence! This valuable manure from its portability and strength, would be of the greatest advantage to the farmers about Montreal, where carriage must be an expeusive itcm.

Whens.-'Too much camot be said of the importance of cradicatiog weeds. 'Too many fields produce crops of weeds rather than of cultivated crops.
"Short Ilonn Cattie."-Could not the Agricultural Society of the County of Montreal import some of t.eese? The Massachusetts Society some years ago imported a variety of dyrshire and Devon Cattic, which bave been the means of greatly improving the breed of eattle throughout the State. Which breed is the more valuable to us: the Short Hora or the Ayrshire? In those parts remote from towns I should give the Devon the preference to either of them.

Manure for Turnips.-I have tried wood ashes in unlimited quantitics for turnips; I have found guano preferable. I must confess that I have the greatest objection to planting the turnips in any quantity. If there be any successful grower of turnips about us, I wish he would favor your numerous readers with his system oî cultivation.
"Wooz."-The two articles on this subject deserve attention. I shall recur to them again in connection with some remarks which I hope to subnit you cre leng on the too much neglected animal-the shepp. .ay the way, could not Montreal have a woollen factory established on such a footing as would induce farmers in the District to raise the best of wool. Would such a Factory not pay? In Upper Canada, woollen factories are being erected every day.
"Potato Disease."-Articles on this subject are amusing-nothing mise. All that has been written on the subject shows that the writers know nothing of the disease or it causes.

august numben.

Having written so lengthily on the July number, I will dismiss the number for the present month with few observations.

The first article, suggested by the letter of Rusticus, treats on a subject which the sooner it be-
comes a matter of legislation the better. But the forests are destroyed, and no coal mine has ye: been discovered in any part of Canada. The fict stares us in the face!

The theory of the rotation of crops, p. 237 , show* the importance of a proper rotation. The remarh that change of crop, not only checks the deposit of the eggs (of the wire-worm) but by removing the material food of the young vermin, it materially prevents increase, or even their continuance. which other wise, as is the case, for instance, witls the wire-worm, might for four or five years be a pest to the soil, deserves serious attention from those who are so liable to be troubled with the Hessian fly.

The importance of Agricultural Improvement was never better shown than in the article, p. 245 , treating of Mr. Neilson's farming. When will the truth be established that the prosperity of the country depends upon Agricultural Improvement:
"Turnirs."-Will no Canadian farmer gire us some remarks on raising Turnips? I am or opinion that in this country they are a most ut: satisfactory crop.
"Strawberries."-"This is not the season" to transplant. Pray, what scason? When may this article have been published in the Gardener's Chronicle?

Mr. Moody, of Terreboune, tells us in his advertisement that he has on hand three Reaping Machines of the latest and most improved construction, capable of cutting twenty-two acres per day; and that these have been manufactured by himself. A description of the work performed by these rachines, and the expense of labor,-with i comparison of the expense by manual labor alone, would be interesting to the readers of the Juurnal. Will Mr. Moody see to this? I observe that the price of these machines is said to be " moderate"--why not at once affix the price?

Agricola.
Chinise Sayings.-Some of the extraordinary expressions of the Chinese are sarcastic enough. A blustering harmless fellow they call a "paper tiger." When a man values himself overnuch, they compare him to "a rat falling into a scale, and weighing itself." Overdoing a thing they call "a hunchback making a bow." A spendthrift they compare to a rocket which goes off at once. Those who expend their charity on remote objects, but neglect their family, are said "to hang a lantern on a pole, which is seen afar, but sives no light below."

MANAGEMENT OF CALVES.

TO THE BDITOL OH TIN sUSSIX AGRICUBTURAF, 1\%XPRESS.

Sm,-In reply to yours, wishing to know my method in rearing calves, I beg to say that when I rear calves with gruel, I first lreak the ground osats that I mukc the gruel from, and give a calf from two and a kalf to three quarts at a meal, made talerably thick; teach them to eat bran and wil-cake as carly as possible by putting your finger into their mouths, and introducing some. Some calves at a fortnight old will eat it greedily; when that is the case, calves may be raised with little trouble, for when they cat bran and oil-cake well there is no occasion to give them gruel, they will drisk water; and I have proved from experience that when calves take to eating bran and oil-cake at an early age, they may be raised without liquids; of course place water that they may drink if they choose. When I was at Ranscombe, I was told by Mr. Colgate that some North Devon heifers that General Trevor purchased from the late Earl of Leicester were raised without liquids: they were taken from the cows at a fortnight old, and had nothing but bran; there was moisture enough in the bran that they did not require it; I thought this marvellous; but I have since found from experience, when I have had a calf that would not take gracl or skim milk, they have to take bran and oil-cake; they have done better than those that have had the gruel. I should prefer, if I had milk, to give a little with the gruel. This winter I have raised two calves differently from what I ever did before, and never had any do better. When they were aboat three weeks old I boiled turnips, and gave then the water and the turnips mashed together, with a little skim milk; a calf at a month old ate a gallon of turmips per day; mine were the white round ; Swedish turnip, cartot, parsnip or mangel wortzel, would be preferable. I freyuently read in ycur paper of the improved methods of ferding ceittle. Thirty years ago I fed all my brothers fatting steck with boiled linsecd and corn, and cut hay, and was quite certain it was the best plan. Mr. Howis, at that time, steamed all the food for his cattle, and on a large seale it is the most cconomica! plan; but as I once said in a letter I pubblished in your paper, it is a great difficulty in getting persons to atteud properly to feeding catlle on steam or other cut food. By over-feeding you may clog the appetite, and the animals will not then feed so well, and then perhaps you may be told they have tried the above plan, but that it did not answer, when, in fact, it was from mismamagement they did not suceecd. I have heard my late father say it was no easy matter to persuade a person that had always been in the habit of getting over a chest every uight to get into bed to remove it; so you will find it not an casy matter to get people to fall into what they may think is quite a new plan, and in their narrow ideas can
never answer. I feel quite certain, upon a large scale, it would be right to secam, uot only your straw and hay, linseed, corn, \&c., but also young roots, and mash them up together, as it now frequently occurs that when you are feeding on roots in the winter, we have frost, and the ronts do but little good in consequence of being raw and cold when they are most required to be warm; and on farms, where there is no meadow hand, you might fat your stock on turnips and straw feed after steaming on the above plan. Perhaps many farmers would laugh at my plan as mere theory, but I could assure them that my little knowledge is founded on practice.

Your's truly,

1. Turner.

Westerham, May 10.
How much water to be put to the pound or Linseed Meal Grueb for Feeding Calves. -Steep one pound of linseed meal in two guarts oi cold water, from 12 to 24 hours; pour four quarts of boiling water over it, and keep stirring, and give it a boil for about ten minutes: let it stand till blood warm: mix three pints of the gruel with three quarts of milk. This gives a meal for a calf about a week old; increase the quantity as the calf gets older, and is able to take it. A good calf of six weeks old will require twelve quarts at least daily, and you can mis the proportions of linseed gruel and milk to your pleasure; the usual way is, when to save the milk is an object, to l:eep increasing the linsecd gruel, and diminishing the milk till at the end the calf can be fed on the gruel alone. You must not negiect to adid a icaspoonfui of suit io cath feed.

Bog-mould is certainly worth th. per cart, for the purpose of making compost, and the richer the other ingredients to be mixed with it, the better for grass, or any other land; but there is very little virtue in it alone, for that purpose, although on dry and harsh lands it gives good potatocs alone, but this is more from its mechanical action. Lime mixed with any compost (headlands, bog-stuff, \&c.,) is much better allowed to lie for some time, and the oftener it is turned over the better, before usiug it-say from a month to six months.

The odour of turpentine is a deadly poison to moths and their grubs. A few pieces of paper, smeared very lightly with turpentine, and placed in drawers where furs and woollens are kept, will completely prevent the ravages of the abovemamed destructive insects.

Newspapers.-A newspaper in a family is equal to three months' time in a school each year. Go into a family where a newspaper is taken, and into those who "camot afford it," mark the difference in the children, and be convinced.

SAVIMUS'I CIIARRING \& CLAY BURNING.

to tue hidtol of the mark dane bexpress.

Sir,-Having been repeatedly applied to for instructions for charring sawdust, and also for burning clay subsoils, containing little or no organic matter, to act as ful, I take the ocension of Mr. Whitmore's paper, at the Royal Agricultural Socicty, reported in your last, to bring the two questions together and let them answer each other.

Charred sawdust is a form of charcoal particularly adapted for manare, but the difficulty is, to keep so light and loose a substance from falling into the fire and burning away, if put on sparingly; or, if heaped up to prevent this, from filling and choking the air way, aid thus extinguishing the fire.

The clay subsoil of stiff soils, turned up and burnt, not ouly manures, by yielding its alcaline and other fertilizing ingredients, but, at the same time, both deepens and loosens the soil-three bencfits of great importance. But such subsoil ring in heary clods, which contain very little combustibe matter, requires fuel to keep it burning, which is not always at hand, nor to be had cheap.

When sawdust is within reach it is just the thing ; the clay will supply the knobs to build up with and support the sawdust, with air ways between the skill of the burner being exercised in so proportioning and arranging thel.. that the sawdust shall fall in fast enough to ${ }^{2}$ eep up the fire and moderate the air way, to the charring point, without filling in so as to extinguish it. And this may be dom: by varying the arraugement aceording to the following proportions. Where clay burning is the object one ton of saswdust would probably suffice for 100 of clay; and where the object is to char the sawdust, I think, with skilful management, two tons of clay would do for one of sawdust; considering that the clay does not consume, and will shrink but little, whilst much sawdust falls through the hollows as it becomes charred. Where clay is not at hand weeds or peat may serve the purpose.
ioth are insproved by the charcoal being disseminated throngh the substance of the clay, which may be canily done with the shovel before burning and while the clay is soft; but this may hamely pay for the labour unless in garden culturc.

There is yet another meth 1 of charring sawdest for manure, on a different principle, i. e., by the heat produced in slacking lime.

If wet sawdust be heaped up with fresh burnt li:es the wet will be drawn out by the lime for slacking, and the hat produced may fire the leap and burn the sawdust to ashes. But if the proportion of sawdust to lime is vcry great, licepfug the stoncs of lime far apart, the heat of slacking will be too much weakened by dispersion to produce fire.

By keeping a medium then, and covering well in from the air, we may attain a poin: at which fire will be produced in the heart of the heap, but prevented from breaking out to destroy the charcoal.

This medium must depend more or less, on the quality and dampness of the sawdust ; but for that of fir, in its ordinary damp state, in the saw-pit, by changes of weather, we might try 20 bushelg to one of lime, lajing one-fourth an a bed, mixing one-fourth of the wettest with the lime, and covering in with the remaining half. If the fire break through, more sawlust might be beaped on, and so much more charred; or if no more the holes may be stopped with earth in the usual manner.
J. Prideaux.

A Cune for the Distemper in Cattie. (By the Earl of Essex). - I cannot resist giving a recipt for the treatment of beasts that may take the prevalent distemper. It sleewed itself, last Winter, in one of my yard stock, by its discharging abundant saliva from the mouth, with sore and inflamed tongue and gums, very dull, no appetite, confined bowels, and very hot horns. I desird the bailiff to give him one-half pint of the spirit of turpentine, with one pint linseed oil ; repeating the oil in twenty-fom hours, and again repeating it according to the state of the evacuations, At the end of tw enty-four hours more, the bowels not having been well moved, I repeated both turpentine and oil. In two days the beast shewed symptoms of amendment, and in three or four took to his food again, and did perfectly vell. All the jard beasts, and two of the fattening beasts, have had it, (five others I had sent to London before the discase appeared), and all have been treated in the same manner with perfect suceess. Halfpint of turpentine is the smallest, and one pint the largest dose, during three or four days. Litthe food, besides oatmenl gruel, was given.

Diseasr in Surer.-A disease has attacked both lambs and sheep in this neighbourhood; the symptoms are, sore nose, nostrils, lips, and outside of mouth. There are blisters, from which there is a ruming, which. as the animal recovers, dries up, a scab forms, falls off, and new skin and hair come; but if it increases, it prevents the animal feeding, it gets foul, increases in size, swelling, and soreness, and the animal dies; when it is light, it does nht seem to affect the appetite, they graze well, keep their condition, the on!s evil being that they are liable to be tormented by the flies. If you can say what course ought to be pursucd, you will oblige me. It comes on all sorts of pastures.-Give a dose of Epsom salts to your sheep and lambs, 1 oz . to $1 \frac{1}{2} \mathrm{oz}$. is a dose for a full grown sheep; and $\frac{1}{4}$ to $\frac{1}{2}$ an ounce a dose for a lamb already to size. Take away a little blood, and wash the parts affected with a solution of chloride of lime in the proportion of 1 oz . of the powder to 2 quarts of water.

MILKING.

This is a subject of too mach importance to be passed over; and I fear that I must add that it is a subject fir to much neglected. The milking of cows resolves itself naturally into two heads-viz, how to milk, and when to milk. 1. Ifono to milk. -It is astonishing what difference there is in good and bad milking. 1. If every drop of milk in the cow's udder be not carcfully removed at eath milking, the secretion will gradually diminish in proportion to the quantity each day left behind. This fact is well established, and is to be well accomated for on philosophic principles, as well as borne out in practice, Nature creates nothing in vain, and the secretion of miki in the cow only suffices to supply that daily lost-the milk left behind in the udder is re-absorded into the system, and consequently the next milking will be so much the less in quantity. But another reason why every drop of milk should be taken away, is to brefound in the well-known fuet, that the last milk is double as good as the first milk; hence, if not removed, there is not morely equal, but double loss. 2. Mikking should be conducted with skill and tenderness-all chucking or plucking at the teats should be avoided. A gentle and expert milker will not only clear the udder with greater ease than a rougn and inexperienced person, but will do so with far more comfort to the cow, who will stand well pleased and guiet, placidly chewing the cud, and testitying by ber manner and attitude that she experiences pleasure rather than annoyance from the operation. Cows will not yield their milk to a person they dislike or slead. I have taken some tronble to acquire the art of milking, in order that I might be able to describe. You take the teat in your palm, cnslosing it in your fugers, tighter below than above. but not absolately tight anywhere-a portion of the upper part of the hand, the thumb is upper-most-embraces a portion of the udder, and the whole hand is drawn gently downwards, towards the extremity of the teat between the thumb and the forefinger; very little practice cnables the miller to do this with ease, rapidity, and temiderness. I need not say let the hand be carefully washed before each milking; but I dare say it is seldom thought necessary to wash the cow's teats. This, nevertheless, should be done, and it will be found that the milk will flow more freely with any teats, than if you wet them with the milk; at least; I find it so, and think myself an expert milkman. 3. We now require to consider when the cows are to be milked-a question again resolving itself into two minor ones-viz., at what hours, and how often? The ordinary practice is 10 milk cows twice daily-at about five oclock in the morning, or, in the winter, as soon after day;ight as possible, and again at the same hour in the afternoon, thus learing twelve hours interval between each milkiug. Some recommend milkang three times daily during the summer months,
stating as their reason, that cows are then after calving, and flush of milk, and that the three milkings are calculated to increase the quantity of the secretion. Some even recommend four milkings during that season. There can be no question but that, when fed in proporthon, such a constant demand would necessarily increase the quantity of milk secreted; but then it is lisely that the same canses might produce such a depression in the secretory sysicm-matural consequent upon unusual exitement-as would cause $\%$ decrease of milk in antumn and winter, in s.cut equal ratio - Farmer's Journal.

Ilowever, the festivals of the saints may point out when changes of the weather usually take place, and we leara from the lines of Gay, that the remark on Panl and Swithin's day, was as current in his time in England, as it is at the present day in Ireland. In July a continuance of rainy weather generally commences about the middle of the month; the vapours which have been raised and accumulated by the heat prior to that period, especially if June be dry and warm, usually fall about that time, and rain continues in proportion to the antecedent drought: this has given rise to the popular tradition of Saint Swithin -of co:mse there are exceptions to this tendency, but the remark should not be contemned. A sensible writer on this subject says, "in this as in most cases, the popular erior has some foundation in truth." Farmers should look to it and "attend also to the passing and local signs of winds and clouds, and tints of the sky, and other omens, not to be despised;" they should be like Wordsworth's shepherd:-
> "Learned in the meaning of all winds, Of blasts of every tone; who oftentimes, When others heeded not, he heard the sough, Make subterraneous music, like the noise Of bagpipes on distant Highland hills."

The most learned men have studied this subject; Aristotle, Aratus, and Virgil were well versed in it; and so were Bacon, Bartholine, Dereham, Newton, Locke, Ozanam, \&c. Dr. IBcatty, and our countryman, Kirwan, were also great wenther philosophers. This year there are farourable indications of good harvest weather. Peter and Paul's day, June 29th, was remarkably fine. The oak-tree, also, was clothed before the ash; the hawthorn had a profusion of blossoms, all which presage a good and favourable harvest. The month of May was wet, this foreshows a dry September. The harvest moon I know will not be beneficial until 1853, but this respects its rising and not the weather. See Ferguson's Astronomy, Lyuch \& Do., pages 33, 34, 181 ; Keill's Globes, Prob. 56. This year, also, is the first of the weather cyclc which begins always favourable to the farmers, and I wish it to be so.-Yours, Ec., Jacon Thompson Dunne, Cullenagh, Maryborough.

RUYAL AGRICURTURAL COLLEGE,

 CIRENCESTER.Folnded, 1845, br Roval Charter.
Patron.-II. R. H. Prisce Alblitr.
President.-Eam Bathunst.
Vice-President.-Eabi. Ducie.
I'incipal.—Mn. Wnson, F.R.S.E., T:G.S., EE., \&ec.
Ioth In and Out Students are admitted on the bumination of Proprietors. The College fee is $£ 50$ per year for Resident, and $£ 30$ per year for Non-resident Students. The College is situate in the middle of a farm of 460 aeres, where an improved system of illage, consistent with the purposes of the College, is carried out. In addition to Practical Agriculture, the various sciences comected with it-Chemistry, Botany, Geology, Natural History Natural Philosophy, Surveying, \&c.-are taught by resident Professors. A well appointed Laboratory, conducted upon the Gleeson system, gives every facility for chemical manipulation.

Objects.-The object of this Institution is to provide such a course of instruction as will be most uscful to the practical farmer. The benefits to ve derived by the agriculturist from a judicious application of scientific information are becoming daily more and more extensively acknowledged; while the means of obtaining that information, if indeed it can be obtained at all without for the time sacraficing a due attention to the practical operations of husbandry, are so scattered and costly as to be within the reach of very ferr. The College instruction in each department is conducted in strict subordination to the object proposed; every subject is treated in such a manner and to such an extent as its bearing upon agriculture demands. The theoretical and practical teaching go hand in hand: and the whole is combined with the advantages of Collegiate discipline.

Farm.-The farm is held on lease from Earl Bathurst, for a term of 47 years, determinable at the option of the Council, at certain periods; and imposing no restriction as to the mode of cultiration. It is situated a mile from Cirencester, and contains 450 acres (420 of which are arable) of a varied character and soil. The best established system of tillage will be adopted; and the brecding and feeding of the stock will be combined with a dairy. Every description of trial and experiment will be made in such a manner, however, as not to risk gencral results, it being the determination of the Council that the system pursued on the Farm shall be the one most profitable, and such as the pupils may adopt with confidence in their future occupations; still a portion of land will be set apart for experiments. New farm buildings are in process of erection.

The College.-The College which adjoins the park and woods of Earl Mathurst, is situated on the farm, about a mile and a half from the town; the principal front, 190 fect loug, has a south aspect, and commands an cextensive view orer

North Wiltshire. The ground slopes in every direction, and a more healthy or beautiful site could searcely be pointed out. The buildings include a large Dining Hall, Library, Museum, and Laboratory, besides the offices and ranges of sleeping apartments on two floors. The best mode of heating and ventilation has been adopted. separate rooms are provided in case of illness, and a detached house for cases of infectious disorder.

Munaremeut. - The management of the College is committed to the Principal, who is reponsible: to the Councii for the general well-being of evers department. He has oll matters of discipline under his immediate control, and vigilantly stuperintends the industry, progress, and moral habits of each student, reports of which will be sent, at least, half-yearly, to the parents or guardians. A regular attendance at the daily Morning and Evening Prayers of the Church of England, and at the Parish Church on Sundays, is required: but the sons of dissenters may respectively attend such places of worship as their parents shall, by letter to the Principal, request.

Coursc of Instruction.-The College Courst extends over two years, commencing from Midsummer, and this is the shortest time in which any student can proceed to the final examination.

The theorctical department comprises-1. Oral instruction in practical agricalture. 2. Elementan Geometry applied to surveying, levelling, cubage of solids, \&c. 3. Mechanics applied to agricultural implements, to the erection of sheds, and construction of roofs, \&c. 4. Ilydraulics applied to draining and irrigating. Designing and drawing of plans for implements and buildings. 6. Chemistry and General Physics, in their various important relations to agriculture. 7. Gcology and Mincralogy, do., do. 8. Botany, Vegetable Physiology, and Natural Mistory, do., do. 9. Principles of the Veterinary Art. 10 Methods of Farm Accounts.

Practical Instruction.-The students spend the half of each day on the Farm, and take part in all the manual operations of husbandry. The have the advantage of becoming acquainted with the construction and woiking of the best implements. They are charged in succession with the superintendence of the various routine-works on the farm, such as the labour, the teams, the stables, the cattle sheds, \&c.

Allmission of Students.-Students are admiss--ble only upon the nomination of a Proprictor, or Donor of $\mathcal{E 3 0}$: they are not allowed to cuter the College under the age of fourtecn years, and must, at the least, be thoroughly well versed in the routione of a good English Education. Before admission, they will be required to pass a strict examination in the following subjects:-The Construction of an English Sentence, Geography, the first four rules of Arithmetic simpie and compound, Reduction, Proportion, Interest, Vulgar and Decimal Fractions.

Charges.-The charge for pupils in the Col-
lege is $£ 50$ per annum, to be paid by half-yearly instalments in advance, together with such charges as the Council may fix for the maintenance of the Library, Muscum, and Laboratory. These amount to $£ 2$ per annum. The above terms do not include laundress, medical attendance, books, or class materials.

Vacations.-There are two Vacations in the year, one of a month commencing about the last week in June; and the other of six weeks, connmencing shortly before Christmas. Students cannot ive allowed to remai: in College during the vacatinus.

Out-Student.-Non-resident Students of any age will be allowed, upon the recommendation of a Proprictor, to attend the Lectures and avail themselves of the practical instruction of the institution. The annual charge is $£ 30$, to be paid in advance for the year. During their presence at the College and on the Farm, they are amenable to the College authorities for their conduct, under penalty of forfeiting the fee. Those under the age of twenty-one are required to reside in boarding-houses licensed by the Council.
Cirencester is a station on the Great Western Railway, and has a direct railway communication with every part of the kingdom.
Any person having a pupil for admission must apply by letter to the Principal, who will supply him with the necessary printed forms, which he is required to fill up and recturn.

Donations of Books to the Library, or of Specimens to the Museum by any Proprictor or friend of the lastitution will be thankfully acknowledged by the Council; as also will any Collection deprosited in the Muscum, of which the greatest care will be taken by the respective Professors.

All payments should be made through the Bankers.

Cirencester, January, 1847.
The following is added for the information of those who may be desirous of becoming propri-tors:-

Constitution.-The Charter orders that General Courts of the Proprietors shall be held annually, at which all questions shall be decided by the majority of votes present or by proxy; and that each Proprietor shail have nne vote and each Governor two votes at such Courts. Provision is also made for the appointment of a Council of Administration, consisting of a President, VicePresident, and twenty-four Subseribers; who have ample powers to carry into effect the objects of the Institution, and to enact and enforce Regulations and Byc-laws. On the day on which the Annual General Court is holden, onc-ihird of the members of the Council, not being the President or Vice- President, go cut of office but are re-eligible. The Charterlimits the responsibility of each Propric: or to the amount of shares entered in the deed of settlement opposite his sig-
nature, and provides that any balance accruing after tile payment of expenses, and interest atter the rate of $£ 4$ per cent. on the capital subscribed, shall be applied solely to the adeancement of the Institution.

Capital.-The Capitalhas been raised by transferable shares of $£ 30$ each.

Nomination.-(One share (or donation to the amount of $£ 30$) confers a right of nomination. This right is not interfered with by the recommendation of Out-Students.

Governors.-Five shares constitute a Governor, and entitle him to two votes at every General Court.

Applications for shares, \&c., must be addressed to the Secretary of the Royal Agricultural College, at the London Office, 15 Duke strect, Adelphi.

All the varictics of mangel-wurzel, and also Swedish turnip transplant well, but much care and attention are requisite in the operation, and also in the preparation of the ground. Prepare the land well, by digging or ploughing, harrowing and rolling, so as to have it well pulverised, and manure well with short, well-decomposed farmyard manure. The proper time to transplant the mangels will be when they are about the size of a good goose-quill-the size of the little-finger is rather large-they should be taken up carefully, and if possible, do not break the tap-root. Mave ready a bucket or tubfull of rich puddle, made of rich earth and soft or manure water, mixed to the consistence of cream, into which plunge the roots of the young plants as you take them up, just so deep, and no decper, than they have been in the ground; the roots and small fibies will get coated with this purdle, aud you can transplant them at your leisure; for this purpose use a nice, wellpointed planting-stick; those made of ash will be the best, as the grain of the timber does not roughen up so soon as that of the softer kinds of timber; open the holes with this stick, and insert the plant, just a thought decper than it grew originally in the ground; if you plant it so as to bury the heart, the plant wiil not make a good root; take particular care that the small end of the taproot is not doubled up, and close the earth smoothly and tightly on the plant by the settingstick. The process of transplanting the Swedish turnip is exactly similar, but you may, with safety, wait till the plants grows larger, although the smaller the size of cither, the less they will miss their moving. We and sereral other of our acquaintance have had just as fine crops of Swedes and mangels by trausplanting as by sowing, and some persons who have practised transplanting prefer it, inasmuch as it gives a better season and larger time to clean and pulverize the ground than can be done carly in the spring; and we are of opinion, that a crop of mangels and Swedes, transplanted carefully, as we have descrioted above,
will be found much superior and vastly more profitable than a crop of the softer and more perishable turnips sown now. In our practice we found transplanted Swedes less liable to root than those sown. They are more liable to grow deformed; but this, as we take it, is attributable to want of care in transplanting-they are cither planted too deep, the tap-root donble up, or the gromen has been made too hard around them.

Mangels should be thinned out from 12 to 15 inches plant from plant, aceording to the natural fertility of the soil-poor land at the former distance, and rich land at the latter or a grcater distance. Carrots from 6 to 8 inches plant from plant, and they should be hoed between in the same manner as turnipsare.

COOLING THROUGII THE NIGIIT-DEW゙-RAIN.

When the sky is clear and caln during the night, vegetable: cool down and very soon show a temperature inferior to that of the air which surround them. This property of cooling in such circumstances belongs to all bodies, but all do not possess it to the same degree.

In a might which combines all the conditions favourable to radiation, a thermometer of small size laid upon the grass will be found to mark from 10° to 14° or 25° of Fahr. below the temperature of the surrounding atmosphere. Thus in the temperate one of Europe, as Mr. Daniell has observed, the temperature of meadows and heath is liable to fall during ten months of the year, by the mere effect of nocturnal radiation, to a temperature below the freezing point of water; this is particularly apt to happea in spring and autumn, when the destructive effects of radiation are most to be apprehended, the nocturnal radiation of these seasons frequently lowering the temperature several degrees below the freczing point. It has been observed that when the sky is clouded, the destructive effects of frost are not apparent, although the same temperature of the atmosphere be indicated by the thermometer. If the freczing of the soft and delicate parts of vegetables, in circumstances when the air is several degrees above the frecsing point, be really due to the escape of caloric into planctory space, it must happen that a screen placed above a raciating body, so as to mask a pertion of the Ilezvens, will either prevent or at least diminish the amoust of the cooling, and that this takes place, in fact, appears from the beautiful experiments of Dr. Wells. A thermomeier, placed upon a plank of a certain thickness, and raised about a yard from the ground, oceasionally indicated in calm and clear weather from 6° to 7° and 5° Fahr., less than a second thermometer attached to the lower surface of the plank. It is in this way that we explain the use of mats or of layers of straw; in a word, of all
those light coverings which gardeners are so careful to supply during the night to delicate plauts at certain seasons. Before men were aware that bodies on the surface of the earth become colder than the air which surrounded them during a clear night, the rationale of this practice was not apparent.

In severe winter, the frost, by penetrating the ground, would frequently destroy the fields sown in autumn, were it not that in high latitudes thesnow which covers the surface becomes a powerfia obstacle to excessive cocling, by acting at, one and the same time as a covering, and as a sereen preventing radiation. As a covering, because show is one of the worst of conductors, one of those substances which for a given thichness oppose the passage of heat most effectually; it is, therefore an obstacle almost insurmountable to the earth bencath it getting into equilibrium in point e: temperature with the atmosphere. As a screen. because in sheltering the ground it prevents it from undergoing the cooling which it would not fail to experience in clear nights by radiation into the: open firmament. It is on the surface of the snow that the great depression of temperature tahes place, and the substance beins a very bad conductor, the soil cools in a much less degree. It the month of February, 1841, I made some experiments which show that the snow which couct. the ground acts in the manmer of a screen. The thermometer, in every casc, indicated a higher temperature under the snow than when placeu upon the snow.
Ilambolet says that forests cxert a great influence in lowering the temperature of a country. By reason of the vast multitude of leaves, a trec. the crown of which dees not present a horizonta: section of more than about 120 or 130 square feet, actually influences the cooling of the atmosphere by an extent of surface several thousand times more extensive than this section.

A fog, as a cele brated naturalist said, is a cloua in which one is, and a cloud is a fog in which one is not. The iesicles of clouds tend towards the earth, like all heary bodies, but by reason of thear specific lightuess, the resistance of the air whicl: they displace lesens the rapidity of their descent When they are of larger size, they coalesce allu form drops of water which fall with greater celerity. When these drops fall through strata of very dry air, they wadergo partial evaporation, and this is the reason, wherefore, there is sometimes less rain upon plains than upon mountains. It is beliened that in Eurupe, it ruins more heavily amed more fiequents in the das than in the night. In the equinocii:1 regions it nould seem that the opposite rule holds good. Nicar the equator, where the tuipurature remains ticarly constant throughout the year, the raing season commences precisely at the jeriod when the sun approaches the zentiti; and wherever the latitude of a place in the torrid zona, where its rains, is of the same denomination, and gual to the declination of the
sun, storms occur. In such circumstances, the sky, in the morning, is of remarkable purity, the air is calm, the heat of the sun insupportable. Towards noon clouds begin to show themselves upon the horizon, the hydrometer does not advance towards dryoess as it usually does, it remains stationary, or even falls towards extreme humidity. It is always after the sun has passed the meridian that the thunder is heard, which, being preceded by a light wind, is soon followed by a deluge of rain. In the torrid zone thunder-storms happen in one place or another, not only every day but every hour, and even every minute of every hour throughout the year, so that an observer placed at the equator, were he endowed with organs of sufficient delicacy, would never lose the roll of the thunder. In very warm climates the dews are se copious as to assist vege tation essentially, supplying the place of rain during a great part of the year. Forests, or a luxuriant vegetation, are said to increase the dew in their locality. In Australia, drought is the grand enemy to settlers and agricuiture, and this drought is attributed to the absence of trees and furests.-Bioussinguanlt.

FATTENING OF CATTLE.

Practice doos much in enabling us to select the animals that will fatten reauily: In a general way it is well to choose young animals that have a large chest, the boidy bulky and rounded, the ribs fincly arched, the bones small, the lems short, the neck thick for its length, the skin soit, pliant, yielding to the touch, and moveable over the body, particularly over the ribs; the tall should be scanty, the buttocks not decply cleft but fleshy, well oreeched, as the precise term rans in some distriets. The look of the amimal should be sharp and bold, the horus slender, white, and rather transparent. The animal must have been cut quite young and while feeding on milk.

The celebrated Englisha breeder, Robert Maknwell, succeeded afier a long and troublesome course of experimems, in creating a race of neat catile and shrep, which show themselves particularly disposed to take on fat. The fundamental principles established by luakewell, after all his cxperience, are these, smalluess of bone, faneness of shin, and cy lindrical shape of body, are the surest indications in cattle of the disposition to isy on fat readily, and upon the smallest quantity of provender. The most striking features in the breed obsained by lakowell, commonly known as the Dishby brecd, may be sumned up in the following terms:-

1. The animal short on his legs.
2. The back-bone straight.
3. The carcass rounded and almost eylindrical.
4. The chest deep and large.

The disposition to faten young is also a precious guality in the beast, it is intended to bring up for the butcher; the feeder comes the sonner to his return. Sinclair thinks that independent
of good constitution, which is indispensable, this quality is derived especially from meekness of disposition, from good temper ; and as docility is generally the result of good treatment in carly life, young animals ought always be treated with the greatest gentleness, and made perfectly familiar.

The different races do not all yield meat of the same quality, and this quite independent of age. The best meat has a very decided and characterestic flavor atter it is dressed, which indifferent ineat wants, or which is replaced by a savor that is disgusting rather than agreeable. The fat in the best meat, as well as being laid on superficially, is distributed through the substance of the muscles, so as to give the flesh a marbled appearance.

In fattening cattle, it is perhaps of more importance than in general feeding, that the provender should be distributed regularly; plenty of soft litter, and the greatest attention to cleanliness, aid materially in fattening. The cattle-house should be dark and quier, well ventilated; in :3 word, all the conditions ought to be combined which conduce to sleep, and secure freedom from disturbance of every description, and from bad air. According to Mr. Low and Mr. Stephenson, an ox weighing about 900 lbs., and consuming about 45 lbs. of hay, or the equivalent of quantity daily, should increase 2 lbs . in weight of flesh daily. The equivalent for thisportion of hay should be given in roots, oil-cake, or grain, which can be ascertained by reference to the tables. Breederz have discovered that it is by no means advantageous to feed animals bejond a certain point of fatness. The excess of weight which is obtained, with the assistance of quantities of food, exaggerated as it were, no longer compensate for the additional expense incurred.-Ib.

Soming-machines.-Mr. Hornsby; of Grantham, received the premiums on this occasion. His prize drill is thus described :-A turnip-seed, mangold wurtzel, and manure drill, two rows upon ridges, and three on the flat. This drill is fitted on wheels, and is capable of depositing compost, bones, guano, or any other pulyerised manure, in a moist or dry state, fitted with stirrers in the manure part, with rotary motion and lever to put ditto in or out of action as the drill travels. By the use of the stirrers, and the front of the box moving inward by a lever, the whole of the manure can be deposited without the assistance of a person pottering. Also with double-actioned iron levers the manure coulter and seed coulter act independently of each other, so that a large quantity of coarse, badly prepared, moist compost can be deposited deep and covered up, and the seed put in immediately after, or the manure and seed tingether if required. A pair of concave rollers are also attached to this drill, to roll the ridges; the rollers made to shift on the axle to suit different widths, and can be easily taken off wheu not re-guircd.-Farmer's ILerald.

DEEP AND SHALLOW DRAINING.

It was well observed by Stcrne, "that circumstances govern everything in this world, for no man can govern them;" and in like manner, the opinions of men are almost invariably formed by the circumstances in which they are placed, and by the appearance of the objects which they are accustomed to behold. Few minds ever take a discursive range; indolence rests within a narrow confined circle, and is contented with the agrecable thought that the outer world is exactly formed according to their miniature comprehension. And experience has yet been unable to remove this universal disease of the human mind.

Deep and shallow draining is wholly a case of circumstances. On purely clay soils, the opinion of the Duke of Portland is inost strictly true, "that the drains cannot be too shallow, provided they are not disturbed." In strict adherence to this maxim, he has drained and continues to drain with great success the tilly and soapy clays of Ayrshire, at the distance of 14 feet apart and the depth of 2 fect. The drains are placed in the furrows, and the ridges are carefully kept in the position. I lived in Ayrshire for several years, and witnessed the success of the system. The tiles are 3 inches in span, are placed on soles, and covered with straw, furze, fen, or brushrood, on which the grassy turf is reversed. This system is founded on the truth, that the soil is a pure clay to the depth of many feet, that it is not traversed by any permeable strata, that no water springs upwards to damage the surface soil, and the rains of heaven are the only damage to be guarded against.

Moving from the pure unmixed clays, we come to the soils that are formed of different substances, but of which clay is the chief ingredient. Sands and gravels convey water freely; the strata are often very thin and scarcely perceptible, and the clay itself is often so mixed as to be rendered permeable. In such cases, a distance of 5 or 6 yards will be sufficient. These soils are the most common all over the British Isles.

The third class contains the poachy alluvial clays, sands and gravels, which are inferted with springs, and which do not frecly absurb the water that falls in the shape of rain Thesclands may de dried by a width of 6 to 8 yards, which lase figure may be called the utmost distance that can be used with any advantage. A greater width will leave the middle space of ground undrained.

An average depth of drains may be stated at ${ }_{21}$ fect, which I have always used very sucesssfully. Mr. Smith, of Deanston, lately stated to me in private conversation that he had yet seen no reason to depart from this depth, which he had so long used. We also joined in the opinion that stones are better filling for drains than tiles, and I always used them in Wales; viz., 15 inches of broken quarried stones, and 15 inches of earth over them, which frecly admitted the action of
the subsoil plough. If lands be damaged by springs of water rising upwards, a depth of $2 \frac{1}{2}$ feet will intercept it, and convey it away as harmlessly as a depth of 10 feet; for water 2 feet below the surface can inflict no damage upon it. Ilence a greater depth is useless.

Stones broken to the size of large road metal are prcferable to tiles for the purpose of drains; they afford a greater number of intersticial cavities, and consequently facilitate the reception of water. From 6 to i2 inches of broken stones laid over the tiles, or a quantity of clean gravel, will form the ne plus ultra of draining. But many situations do not afford cither of these materials, A single tile forms too small an orifice.

Moorish soils may be mentioned; the upper stratum is usually a black or hazel heathy loam, incumbent on a bottom of very compact gravel, sand, and clay. This subsoil denies the downward progress of the water, and it percolates or runs between the "hard and the soft," gathers into a superfluity, and converts the upper soil into a puddle. Such lands compreheid many vancties, which camot be drained ceven at a distance so close as three yards. Personal experience fully satisfied me on this point. In this case, the drain has only to carry away the oozings of water that percolate between the subsoil and the upper soil, and this alone damages the latter; and for this purpose, a depth of drain of 10 feet would be wholly useless.

Mr. Mechi's idea of the permeability of clay is completely refuted by science and experience. The alluminous base absorbs fifteen times its own weight of water, and retains it with great obstinacy. Clay is never found in a pure state, but I have seen it sufficiently pure to deny the passage of water at the distance of one yard from the edge of the drain, and a foot of it, when relaid on the top of a drain five feet deep, has refused any passage to the water, and rendered the drain underneath to be wholly useless. The foot of clay became equally wet as the adjoining land, and rendered the drains in effect to be wholly invisible. There is no arguing against experience.

Deep draining is wholly overturned by the single fact of the impermeability of clay; and original and enlightened as the ideas of Mr. Parkes and Mr. Mechi appear to be, they have yet much to learn from practice. They bave got some permeable clays to deal with, and they have drawn the most fallacious inference of success in all other cases. Mr. Elkington thought his boring system would drain all lands till the clay undeceived him; and Mr. Brown, of Markle, a most excellent farmer and writer, asserted that no soils could be found that two horses could not plough. He farmed the friable clays of East Lothina, and had never seen the clays of Kent and Surrey and Sussex, which defy all the ploughs in Scotland; and at this day many Scotch writers are of the
same opinion. Nothing can be more absurd. And so fares it with derp and shallow draining.

Draining of land is intended for two purposesto carry away the surface water, and to intercept the springs of water that ooze from the permeable strata, rise upwards and damage the upper cultivable stratum. Now the drain must be sufficiently near to the surface to receive and convey away the surface-rater before it gathers into a superfluity and inficts damage, and to intereept the springs at such a depth below the surface where it can do no harm to the upper soil. Water flowing two feet and a-half below the surface is equally innocuous to cultivation as if rumning at a depth of twenty feet. True economy consists not in getting things cheaply done, but in getting them well done; and on some of the soils I have mentioned, a thin distance of drains would only show the necessity of having a oreater number placed between them. In my former and present practice I steadily adhere to Mr. Smith's opinion above quoted. Joins Dosimpson, An Assistant Drainage Commissioner. April, 6, 1848.

Spade Husbanamx,-Saxmundham, April 18, 1847.-Sir,-I feel great pleasure in forwarding you the promised statement from Mr. John Sitlett, of Kelsall, showing the method he pursues in cultivating his two acres of land. It is necessary, for the guidance of those who adopt his method, to state that he keeps his cows (which are very productive) housed all the year, and bedded on sand, with a drain to carry the moisture away into a tank which is outside the cow-house. The moisture from the hogs is also conveyed by a drain into the same reservoir. The liquid thus obtained is used for manure, which he has found of intinite service in producing unprecedented crops. I might further state that the land is manured cvery crop, and dug with a three-pronged fork thirteen inches in length.

Mr. Sillett has divided his land into four por-tions-three of 60 rods, and one of 120 , which is grass, reserving 20 rods for beds for raising plants for transplanting, and has given a statement of each, which is as follows:-

No. 1. Was planted in October with spring cabbages in rows two fect apart, and one foot three inches from each other; between each row of cabbages he dibbled a double row of wheat. In February be planted between each cabbage early potatoes. The cabbages came off about the middle of May, and the potatues in June. He then prepared the land for Swede turnips, which he had raised upon beds; he trausplanted the turnips the latter end of June the same distance from each other as the cabbages stood, which gave them a sufficient quantity of air to grow until the wheat came off; which was the beginning of August. The turnips had then all the air that was necessary to bring them to maturity, and in the October fol-
lowing they were as large as the turnips grown in the ordinary way. The following is the produce:19 bushels wheat, 7,900 cabbages, 7,900 turnips: and 90 bushels potatocs.

No. 2. Was appropriated to the growth of beet. In April the seed was dibbled in ridges two feet apart, and a foot from each other; by this method the beet became very fine, and were admired by all who saw them for their size and quality; the quantity thus grown amounted to 720 bushels, which was followed by a crop of spring tares, which are now growing for food for the cows.

No. 3. Was planted with drumhead cabbages in rows three feet apart, and two feet from each other, and between each row of cabbages was dibbled a double row of beans and peas. The cabbages amounted to 3000 , and weighed on an average 18 lbs . The beans and peas produced 12 bushels.

No. 4. Grass manured with liquid manure; 40 rods were cut green for cattle, and the residue produced two tons of hay, which is at the rate of four tons per acre.

If we take the produce at a low calculation, supposing all to have been sold (which was not the case), it would have realized the following sums:-

No.1. £ s. d.
19 bush. of wheat at 9s. per bush....... 8 ll 0
7900 cabbages at $0 \frac{1}{2}$ cach................... 1692
7900 turnips, allowing 50 to the bush.
which would make 10.8 bush. at $6 d$.
per bush
3190
90 bush of potatoes at 4s. per bush..... 1800
No. 2.
720 bush. of beet at 6 d . per bush....... 1800
No. 3.
3000 cabbages at 1d. cach................. 12100
12 bush. beans and peis at 43. per
bush
280
No. 4.
3 tons of hay (allowing the grass cut
to produce the same on average as
that cut for hay), at £5 per ton......
1500
£95 $17 \quad 2$
I am supposing everything to have been sold, excepting the spring tares, but as they are not produced within the year, I have omitted to give an idem of their valuc. In this calculation I have not set the produce at its real value, as it is not my wish to over-rate the advantages to be derivei by the spade over the plough.

The statements here given are simply facts as to the produce, and their value if sold at the price stated; and as I have shown in my former letter the profit realised by Mr. Sillett from two cows, I shall leave others to make their calculation as to the propable advantages to be derived by the system of cow-keeping over the one I have stated ; suffice it to say that the statements here given can be borne out by Mr. Sillett, who states that before:
he commenced he did not know even the various seeds, and now that he has made himself acquainted with the system, and has thus far been successful, he feels fully confident he shall be able to make bis land produce by spade enltivation double what it has done. This, therefore, is further evidence, tending materially to prove that the land is car: able of maintaining in comfort all that are willing to bestow that labour and attention that is required for the proper development of the capabilities of the soil.-Thos. Newmun.

Agricultural $\mathfrak{J o u r r n a l}^{2}$
 AND

TRANSACTIONS
OF THE
LOWER CANADA AGRICULTURAL SOCIETY.
MONTREAL, SEPTEMTBER, 1848.
We consider it necessary in every number of this Journal to remind the members and friends of this Society, how essential their cooperation and active support is to its useful and prosperous working. If there is a lively interest clearly manifested by members and friends to promote the objects for which the Society were organized and incorporated, it will cause others to think the matter of some importance, and induce them also to unite in the good work of improving the country and augmenting its prolucts. There never was a period in the history of Canada, when the united exertions of the community was more urgently called for than the present, to devise every means in their power to prevent the country retrograding, after the rapid advances it has made the last few years. Some millions of pounds currency have been expended within a very few years upon our cities, towns, canals, rail-roads, \&c. and we are now called upon to adopt measures that this vast expenditure shall not be capital unprofitablyinvested for the country, as it must he, if it does'not find full employment. Fortunately for us, we possess a beauiful country, a fertile soil, and not unfavourable climate, that places the means in our own power to give the required employment to all the vast capital
now expeaded, and which cannot be again realized, or converted into available capital for expenditure in any other way. The improvement of our agriculture, and the augmentation of is products are the only resources in our power that will not disappoint us. This being a fact that cannot be disputed, it necessarily follows, that no subject should receive so much attention from the whole Canadian people. It is not sufficient that there exists no law to check individual enterprize in agriculture. In other countries as well as in this, direct instruction and encouragement is required to call forth this enterprize into activity. How can we expect to recominend agriculture as of so vast importance, when we have not provided in any of our schools or colleges for the instruction of our youth in the science and art of agriculture. The people will not readily be persuaded that there is much real importance attached to agriculture, when there is no regular education or practical instruction provided for those who engage in the business, as there is for other professions and trades. Model-farms, Schools, and Colleges, are as necessary for the regular it...cuction of the rural population of this country as education and instruction are for the learned professions, or any other business or trade. Agriculture is of the first importance to the human race, and it is entitled to the first and principal care and attention of all governments and states. We should not presume to write so confidenily on any other subject, but on this there cannot he any mistake. We suppose few will question, that if this country produced twenty million pounds worth in a year, it would be more advantageous for the whole Canadian people, than if it only producer half that amount. We would think it a very great advantage were we to receive a grant of one or ten million pounds annually, and yet we neglect our own resources that might readily be augmented by that amount. What honour or reward would the eountry be disposed to give to the minister of agriculture (if we had one) who would be the means of aug-
menting the productions of our country to the extent of one or ten miilion of pounds annually! A stranger might fancy that no honour or reward that could be conferred would be too great. By whatever means the requied im.provement can be effected in our agriculture we are bound in duty to our country to adopt them without hesitation or delay, so far as they are in our power. However, past experience may be calculated to damp our expectations, we would wish to hope the time has arrived that our agriculture shall receive all necessary attention, and that as all are interested (as we have endeavoured to prove) in its full prosperity, all will unite to ensure its improving and grosperous condition. It is this source almost exclusively that must supply all the wants of the Canadian people, as well as the Revenue for the support of our Government, and all charges we may be subject to the payment of. Convinced as we must be, that the only resource of this country is her Agriculture, to furnsh her people with all they may require, can anything be of greater importance to us than providing those engaged in husbandry, with the best instruction in the science and art of agricalture. Not only all this, but a complete suprintendence over the agriculure of the country, would, we conceive, be necessary, to sea that all was going on prosperously, that Farmers had suitaile varieties of seed that woild be most likely to yicld good crops, or that such varieties should be procured and sold at a fair price. We have constantly heard, particularly within a few days, of the great losses sustained in various parts of the Province by sowing the old four months wheat of Canada, instead of the three months Black-Sea wheat and also by sowing at unsuitable periods. Such bsses are a great drawback, and a serious general evil to the country, that might be prevented. It is particularly so, when the potatoe crop is now, in all probabibility, lost to us. We may fairly estimate that the loss of every acre of potatoes is equal to the loss of from four to six acrs of grain, in the way of food. The
waste and misapplication of so much labour, manure, seed, and soil, that might have produced good crops of some other kind, is a serious evil, and will diminish considerably our general produce. The result of this years experiment leaves no longer any doubt as to the uncertainty of potatoes as a general crop, and it will necessarily produce a great change in our Agriculture. In most other countries, potatues constituted, directly, and indirectly as food of animals, a large portion of the food of man, which they can no longer depend upon. To make up this deficiency, much more of other crops will have to be cultivated as a substitute for the heretofure immense produce of potatoes. These matters are of very serious consequence, as the subsistence of the people of most countries will be influenced by the want of potatoes, that have always been a great resource, particularly in times of failure of other crops. This resource we are likely to be deprived of for some time, and it becomes our duty, therefore, and our first duty, that our lands should be cultivated well, and with such varieties of crops, as will gives is abunlance, and a surplus, that if a part should fail or be lost, we should still have sufficient food. There should not be any difficulty to do this in such a fine couutry as we are blessed with. We should be able to produce two or three times as much food as would supply our own population. In any case, the food of man is a matter of such importance, seeing how soon we may lose a large portion of it that was nearly ready for our use, that our Agriculture is a matter well entitled to the most careful sunerintendence, and the attention of our talented men, to secure to it every support and encouragement, that would place it in a constantly improving and prosperous condition.

We have heard much of the unprofitableness of farming, but we believe there are many causes for it besides those usually assigned, Where many labourers are emplojed, if their labour is not properly directed and faithfully executed,
no profits can be realized. The unskilfulness of farmers is another cause. There is still one more cause, that farmer's may have expenditures in no way connected with their business; and if capital is lost in this manner, it is often unjustly attributed to unprofitable farming. But all these objections out of the question, what would become of the human family were all to give up farming because it is said to be unprofitable? The objections have no weight, or should not have any. Our business is to endeavour to make farming profitable, as we cannot live without it. We take upon us to say, that with sufficient capital, and skill to employ it, farming may be very profitable, but we admit the want of either of these essentials, is fatal to its success. We should never recommend farming were we not convinced of these facts-and were we not further convinced that there is no hope for this country except from the prosperity of her agriculture.

This is the time when araining has to be done to prepare the soil for producing good crops the next year, and if it is neglected we need not expect to have our lands in a state to yield us large crops next season. Draining and manuring should be as much as possible done in the fall, and where manure is applied to grain crops it will prove much more advantageous to have it ploughed in in the fall than in the spring. Covering the soil with straw or other substances that would shade it from the light during summer, and prevent any great vegetation, is a certain means of producing and increasing fertility. We have many substances here that might be so employed and taken off again when the land was to be ploughed in the fall. It is a species of summer fallow suitable for light soils that may not require many ploughings. Straw, small branches of trees, or any thing of that kind, that could easily be obtained, might be spread upon the ground as an experiment, to see the amount of fertility that could be produced by this mode. We do not say it would be judicious to try it
on a large scale, but where manure is difficult to procure in country places convenient to the forests where small branches could be had in abundance, we believe farmers might make use of them for the improvement of their land by a covering of small branches wilh the leaves on as soon as the leaves appear in spring. There are many of these small branches, young shoots, \&c. which could be had when the forest is convenient. The leaves have much manure in them, and when the branches would be gathered off in the fall, the leaves would remain to be ploughed in. This may appear a strange mole of manuring land or augmenting its fer. tility, but we believe it would have that effeci to a considerable degree, and the small brush gathered off might be burned to spread on the land. If straw was employed it could be ga. thered off to the dung yard, to make manure io: other land. We propose this plan as one that could be adopted under particular circumstances, for light land when the material for covering could be easily obtained from the forest, if the farmer had no straw. In many places, exhausted lands lie close to the forest, where the means are to be had for their improvement even though the farmer should have no straw. By increasing the fertility of his land in this way, he will soor increase the quantity of his straw, hay and grain. However incredible it maybe that lands may be manured by the method we propose, we are convinced that the thing is quite possithle, and might be a great source of manure to farmers who find it difficult to procure any other besides the little they nake themselves. There are manyweeds and much grass to be had in woodsbesidessmall branches: of trees, that might be collected to spread over land in the commencement of summer, to manure and fertilize it for fall ploughing and future crops. The forest may thus contribute to the manuring of arable land convenient to it, and we trust the experiment will be firly tricd before our plan is rejected for its novelty. For heavy lands summer fallowing by mony ploughjngs is necessary.

For many years, when the crops were nearly at maturity, we have made a visit to the farm of Charles Penner, Esq., of Lachine, and never rithout experiencing much gratification, and encouragement to recommend an improved rsitem of Agriculture, by seeing the results bbtained on that gentleman's farm from such asystem. At our last visit, it was not one or wo particular crops we observed to be excelant, but every crop cultivated unon the farm ras excellent, and appeared to have all that was possible done for each to ensure good returns. Mr. Penner, perhaps, cultivates a greater variety of crops than any other farmer, snd of hops, particularly, we believe, he has the largest quantity of any person in North Imerica. This is a crop requiring large quanwies of manure, and most expensive and contant labour during the whole time of their growth and gathering. Nevertheless, all is Wone in perfection, and there is no apparent neglect to any crop grown upon the farm. The implements are of every variety reģuired upon alarge farm, and of the best description, suitable to their various uses. Without such implements it certainly would not be possible for Mr. Penner to have his variety of crops so periectiy culivated. We are not surprised that he has been awarded the first prize for the best managed farm in the County of Montreal, and liave no doubt he would be awarded the same prize if he had to compete with the whole Province of Canada. He has several beautiful thorn-hedges, all of which have been planted to our knowledge within a few years. How desirable it would be that thorn-hedges should be substituted for those long straight lines of dead-rail-fences, than which there cannot be a greate; disfigurement of Canadian landscapes. We would recommend to any of our subscribers who may douist our report, to satisfy themsulves on the subject, as we have always understood that Mr. Penner is most kindly disposed to allow any farmer who may desire it, to tee his establishment, and we can tell them they may profit by the visit if they are disposed to receive instruction.

At the Northampton Meeting of the Royal English Agricultural Socie!y last year, the first prize was a warded to a wheel plough, the old Y. L. invented by Ransom of Ipswich. It is thus described:-A two wheel plough, invented, improved (with Ransom'struss-beam), and manufactured by exhibitor, for strong land. This implement is capable of working 12 inches deep if required ; and with a lighter mouldboard will not be found too heavy to be used as a two horse plough. The ploughs that were awarded the 2nd and 3rd prizes for strong land, had wheels also. For the trial of ploughs for light land there were 22 selected, and those awarded the 1st and 3rd prize were wheel ploughs. The 1st is thus described;-A patent iron plough with two wheels, marked S. A. (No. 2. maker's list) invented and manufactured by the exhibitors, Messrs. Howard \& Son, of Bedford, with a new methed of fixing the wheels, by which means the width of the furrow-wheels may be altered more readily than upon the old plan. It is also superior to the original method for deep ploughing, and upon dirty land, where the soil accumulates upon the old sliding axle. The third prize awarded in this class was also for a wheelplough of Mr. Busby's, invented, improved, and manufactured by himself, adapted for all descriptions of soil, with a moveable nose-piece, upon which the shares are placed, which can be set more or less, to land with more or less pitch; this has been found an advantage where cast iron shares are used, for, as they wear down, the plough will still retain the same hold or inclination towards the soil." We know that the plough of Ransom, first described, is an excellent plough, having imported one of them. At the York Meeting in July, wheel ploughs obtained first prizes for heavy and light land.

Farmers who have summer fallow in progress should give them all the necessary working, cleaning and manuring. There should not be a weed or soot of any plant to be seen
upon them ; they should be all gathered, and carted off to rot in the compost heap, or be burned'on the ground. We have long recommended summer fallows as a means of improvement, in the power of every farmer, but we regret that very litte land has been regularly fallowed. Half the arable land of Canada which is composed of strong clay requires to be summer fallowed, and would be infinitely improved by the process, well executed.

agricultural report for august.

The beginning of the month was very favorable for finishing the hay and barley harvest, although we had occasional falls of rain. The hay cut after the 1st of August was generally got in very well, but had become a little overripe. Timothy grass requires to be cut when at maturity, (which it is always considered to be when the head flowers,) as exactly as a crop of grain, and it deteriorates considerably when not cut at the proper time, and loses much of the seed. The crop of hay on the whole is not a large one, and some has been materially injured in curing. The barley crop has been generally got in well, but the grain is not so plump as we have ofien seen it, in consequence, we suppose, of the straw being very much broken down by heavy rains before it was quite ripe. The breaking down of any crop previous to its becoming ripe never fails to produce injury to some extent. The wheat, peas and oats have also suffered from the same cause, but we cannot say to what extent. Indian corn on dry soil never had a more promising appearance in this country, than at present. We have been told by a friend who has made the experiment that pig manure is much the best for the production of Indian corn, and farmers should reserve it for this purpose. The potatoe crop, we regret to say, is reported to be a complete failure. This is the more to be regretted as a large quantity was planted this year, in consequence of the crop having generally succeeded last year, and paid the farmers
well. Potatoes are most expensive to cultivate, and the seed, his year, was very high priced. Their failure, is, consequently, a great loss to those who planted large quantities in the hope of realizing large profits. There is another cause to lament this loss-that a great quantily of manure has been applied to the lam, and much labour expended and lost, without scarcely any return, when all this might have been appropriated to other crops that would have succeeded. It is a dangerous speculation. under the circumstances of our total ignorance os the cause of this disease, to cultivate potatoes extensively, until we are certain we can do so safely. If the disease had been satisfactorily accounted for, by any one of the numerous writers on the subject, we might hope to apply some remedy, but in all the volumes publishod, no reasonable or satisfactory explanation of the disease has yet appeared, and while we remaln in this ignorance respecting its cause, we cannot hope to apply any remedy. We believe that by careful cultivation and storing, that polatoes may still be grown to a certain extent, but not in great fields, as heretofore. Manurigg moderately the iand the previous fall, and ap. piying a reasonable quantity of salt and lime, when planting, and subsequently before they are earthed up, would, we have no doubt, tend to preserve them, and when taking them up, drying them thoroughly, and storiug, mixing them with some dry substance, such as sawdust, chaff, or charcoal, they might be preserved from decay. We may have subsitutes for the potatoe, though not equally relisied as that favourite root. Windsor beans would grow here in great luxuiance, and they could be made use of both in a green, and ripe state, by proper cooking, and they are much more nutritive than the potatue. Carrots parsnips and some other roots, may also be produced here in large crops. It is better for us to resort to these than cultivate large fields of potatoes, to rot before our eyes. We perceive by late accounts from Ireland that the people of that country had, this year, returned to the cultiva-
:on of the potatoc, and nearly given up the cultivation of other roots, which they had been muluced to commence growing the two previous years; and should the potatoes fail them now, as it is generally feared they will, from present appearances, the most fearful destitution sid suffering are anticipated. After the exanple we had in that country it should be a warning to us not to attempt to grow potatoes ${ }_{3 s}$ a chief part of our food, when we are not iored by scarcity of land, or poverty, to do so. We have heard many reports respocting the rsults of early sowing of wheat; some early suwn is said to be a total failure by the fly, an! other early sown said to be a good crop, and very little damaged. We have heard further, that farmers who have sown the old inur months wheat of Canada, have it spoiled by rust ; should we be able to give any positive information before the Journal goes to press, we shall publish it. If the late sown Blark Sea wheat was safe from rust this year, we might confidently expect it will continue to be so, as his season was well calculated to produce the disease ; we fear, however, that it has rusted ti many instances. Much will depend upon a fine harvest for securing the wheat crop. The oat crop was exceedingly good this year, teing generally sown early. We have seen grass-hoppers ilnost cover the crop, and they must have done it considerable damage in many places, they are of such large size, and manifestly devour the grain, and cut off others that fall to the ground. Oats where lolged have been damaged. Carrots and parsnips are good where due attention was given to their cultivation and weeding. Turnips have cuffered much by the fly, but there are good rrops nevertheless, and some late sown, where the previous sown were destroyed by the fly, may yet succeed. The hoe:ng and weeding of these rrops by inexperienced hands, is a most expensive business, and makes the crop of little talue to the farmer. The great point is to prevent the necessity of much weeding by proper cultivation and clcaning the soil previ-
ous to sowing the seed, which may be done.
It is essential to prepare land for these crop;, ard for beans, in the fall, as they require early sowing, an.l if any part of the preparation of the swil that could be executed in the fall is allowed to remain over to the spring it will greatly retard the work of sowing, and lessen the chance of a good crop. Farmers have not all in their power, certainly, to produce good crops, but they have much, and their neglect to cultivate properly is sure to produce the conse-quence-bad crops. The month has been favorable for the production of grass, and the cut meadows are covered with verdure, ${ }_{8}$ which is not often the case in Canada. Cattle will have abundant food this fall to put them in good condition before the winter. Butchers' meat, and butter are a full supply, and prices moderate. We have no regular cheese market, and we regret that most of the samples brough: for sale here, are not the best quality. We have, however, some that is good, and this proves we might have more, if not all gool, as there is nothing in the soil or climate to prevent it. The appearance of the orchards gives promise of a fair crop, where they have been preserved from the ravages of the caterpillar. We wish it was possible to offer any accurate estimate of the value of the whole crup of Lower Canada, as it might give us some confidence in the future. That an abundant crop has been produced, there can be no doubt, but as to the extent of the drawback by the loss in potatoes and danage to wher crops, we cannot be quite certain at this moment.

There is little doubt that sufficient draining, a more careful cultivation, selection of suitable seed, and proper period of sowing would have a great influence upon the general produce of crops in such seasons as the present. Crops were produced in great luxuriance, but they have suffered damage from various causes, that might have been lessened to a considerable extent, under a more perfect system of husbandry, and by the application of lime and salt that are necessary to give strengh and firmness to
the straw on very fertile soil, to prevent straw becoming too long and lodging. Sowing in drills, and covering the seed evenly and sufficiently, would be another means of securing a good strong growth of grain crops, firm in the straw, and full in the head. In conclusion, although the heavy rains we had from the 15 th to the 20 th of the month, have, undoubtedly, done extensive injury to the crops, the fine weather, subsequently, has enabled farmers to secure a considerable portion of them in fair condition. It was impossible that such heavy rains, continued fourdays, should nothave injured crops that were beaten down or lodged, as many of them were, and particularly peas, ready for harvesting, sustained considerable damage. We have also seen wheat rusted, and some lying upon the ground, sprouted, but bope the sprouting is not to any great extent. We have been told that many of the crops have had water standing upon them, and it may be conceived the damage this would produce. A continuation of fine weather will have a great influence upon the result of our harvest. We regret that it is now impossible to realize the favourable anticipations we had from the beautiful appearance of the crops some lime back, but if we should have fine weather, we may be able to harvest a very ample general produce, notwithstanding the loss of potatoes and damage to other crops.

August 31, 1848.

The great "Exhibition" of the Agricultural Society of Canada West, is to take place at Cobourg, on the 3rd, 4th, 5th and 6 th of October next, and it is expected that the attendance will be very numerous, and the show of Cattle, Implements, \&c. \&c., worthy of the intelligence and enterprize of the Agriculturists of Western Canada. We hope the time is not far distant when the Agricultural Society of Lower Canada shall also have their great Exhibition of Agricultural Products, Implements, \&c.

We heard very many complaints, thes spring, of the excessive hardness of the soil, and the difficulty of working it to a fine tilth by the usual modes employed. We can fully credit these reports from the continued dry weather we have had, and the fact, that we have no clod-crushers here to break down these haru lumps, and few of our common rollers are capable of doing so, however heavy the; may be, as strong iron teeth are necessary in any roller employed for this purpose. The best means to prevent these hard lumps in clay soil would be sufficient drainage. If elay soil was properly drained, the rain would pas: down through the soil, and leave it moist and mellow, and not liable to form into these hard lumps or masses that cannot be worked effectually, or produce good cropshowever fertile the soll. Draining and summer fallowing is required to almost every acre of strong clay land in the country, to bring it into a proper state to produce good crops. During the process of fallowing, the roller, clod-crusher, and cultivator, are all implements that may be used most advantageously, and indeed are necessary to perfect exccution of the work.

We give insertion to a Summary of the Proceedings of the Royal English Agricultural Society at their late great Meeting at the City of York, and also to the speech of Prince Albert at the great dinner on that occasion. We wish we could copy more of the speeches to show in what estimation Agriculture is held in England, by the first in the country, in rank, wealth and education. In the speech of the Belgian Minister he observes that Agriculture was the making and the saving of his own country. It may do the same for Canada if it is not our own fault or neglect. At the York Meeting there was 724 entries of Stock and 1508 of Implements.

Total amount of Prizes of the York Meeting, $£ 1845$. Of this $£ 350$ was paid for Implements, and $\mathbf{£} 340$ for Reports and Essays.

Carnots.-In England they allow their larger carthorses 1 bushel of white carrots and 1 gallon of oats, or halfa gillon of ground beans, in the at huurs, and the horses are said to work and thrive upon this fool, with some hay. One acre, property cultivated, would produce 800 bushels carrots, and this would be sufficient, with from S0 to 100 bushels of oats, for four horses for seven months, with a certain portion of hay. This would be a considerable saving, and one acre of land would be producing as much food as five or six acres cultivated in oats. The carrot tops, if not fed to cattle when the crop is taken up, may be spread upon the land, and ploughed in, and bean excellent dressing of manure for the succeeding crop of grain. In this country we might certainly, by proper cultivation, hoeing, and weeding, raise as large crops of carrots as in any other on earth. The great point is to have the soil sufficiently fertile, deeply dug and well pulverized to sow in time, and keep down all weeds.

We find in the late number of the Farmer's Gazette, statistical returns from various sections throughout Ireland of the state of the growing crops, that must give a good idea of what the crops are likely to be. We have long endeavoured to recommend the adoption of this plan in Canada, and we believe it might be easily carried into effect, and could not fail to be advantageous to our agriculture and to its improvement. Such returns, made correctly upon a good plan, would show the true state of agriculture, and afford an opportunity of applying suitable remedies where any defect would be found to exist in our system of husbandry. This information would be useful in other respects also, and enable us to judge of the general produce of the year. Without such returns, we remain in total ignorance of the quantity and value of our annual productions, and what we really bave to deperd upon to meet the demands upon us.

The cost of burning clods on sulv mer fallow. in England is from S; to 10s. per icre, and about 30 rhaldrons of burnt clay a re obtained for the acre for this price. The cleds are gathered off with a kind of fork with several tines one inch wide, and half an inch interstices, and made into small heaps for burning. This fork gathers only the clods and allows the dust to pass through. The ashes are spread at 2 s . per acre. This dressing is considered equal to an ordinary one of farm yard manure. They burn the clods with stubble, bean stalks, and furze. A waggon load of either of the two first will burn $1 \frac{1}{2}$ acre, and of the latter $2 \frac{1}{2}$ acres. We have abundant fuel to burn clay, without burning stubble or bean stalks. The borders of fields, the scouring of ditches, and ciay dug from pits, are also burned for manures in large heaps. There is nothing to prevent us adopting the same plan for obtaining manure.

We would again urge those who have the means to provide in time for the importation of fresh samples of seeds for sowing next spring, wheat, oats, and barley, of suitable varieties. The wheat should be the Black-sea, three months wheat, and no other, unless varieties that would come to maturity in the same space of time, and not be liable to rust in the straw, or varieties that would be proof against the ravages of the fly, at whatever time sown. Of oats and barley, the best that could be had should be imported, and by the fall ships, so as to be able to sow early in spring,-the oass particularly. Changing the seed, even of the same varieties, has a most favourable effect on the crnp grown from it, and every farmer may convince himself of this fact that makes the experiment.

We must once more call upon subscribers to this Journal, and all who receive it, to pay their Subseriptions without delay. The Society is at considerable expense in publishing the Journals, and they possess no funds to
meet these charges extept the Subscriptions of Memiers and for the Juurnals. They have Agents in many parts of the Province wino are jreparel to rective subsriptions, and give receipis, and where there are not agents the money may be se:t through the Post Office to the Serectary, paying the potage. We hope our friends and subscrilers will not pat the Socieif to the expense of employing a travelling egent to cullect. The Journals have no connection with parties or politics, inu arr published sobely with the view of promoting the improvement of our agriculture, and we trust those whereceive and read them wial lindit fally worth the amount of the small subser.ption.

Mr. Binusingnasht says "that in those countries, the nature of where climate is favourab.e fir pasturage, the rearing of catte presents imm~nee ahtanloges, sat the animals can only he fattened in thase that are the most ferile. The meall wh that saffices for the growth and keep of a bulloch, will not always bring the animal inion enndition for the butcher." As, however, there may ise ronsiderable diference of opinion as to the profitabieness of rearing and fallening catle in Canala, we shall submit what he says on th: subject. We know that תn good stetem of Agriculture can be carried on withouta dur proponion of mradow, pasiurage, and catle. Mr. Bmussingnatt is of the sme opinim. "Wherver it has been pessible to lay down extensive and productive meadows it is brginning to he ctearis un:ersted that the indrehtertinn of ewon the best stsem dirolati n, wers to make a false appitcation of Aqticuitural stience. In my npuion, there is nonssom of mation, hnwever well concrived and carried ont, which will stand remparisan in pmint of problartiveness with a ratural mesahow, favorarsby situatiod and proproiy altendel in. The season of thas is obvious, and follows fom tire very priaceples we tare laid down in trating of rota:iens. The whole olject of the lest ssesem of hushardry
is to make the carth produce the largest pusible quantity of organic matter in a giver: time. But in such a system we are limites by the climate, inasmuch as we are oblige: so to arrange matters that cur crups sta always attain complete maturity, the consequence of which is, that with all our pains, the: soil remains unproductive during a certaes number of weeks and months towards the cr... of autump, in the early spring, and through the whole of the winter. But in sur meadow-lan s vegetation is incessant, (in Canda it is not :s in winter.-Ed. A. J.) in the spriag it proces when the main temperature is only a fe: degrees above the freczing point of water. i: is, therefore, easy to obtain conviction: that a given surfare of meadow-land musi necessari's produce a larger quantily offorage than land!a: out in any other vay. It is true that forar. thus obtained will ant, like the cereal grosse.: answer immedia:ely for the support of mar. but it nevertheless concurs powerfully in ti: by pruducing milk, butter and checes, and.n butcher's meat. The land is also ready at::times to be applied to other crops.

Storrington Farmers' Cieub-Afier:a interesting discussion unon the propriely o: froming a Farmers' Clul, the Chairman puth.: question for the establi-hment of the "Storring:ton Farmers' Club" to the vote, when the r-. solution was unammonists carried. The Chasman congratulated the mecting on the umanmous deesion at whech they had arrived. Ih: was decidedy favourable to the establislumer: of the Society brlieving that the intercmurse ar: cxcharge of ideas arising wu of uch sssociatic:were calcul.sed to lead to mach practical a: vantage. Iffarmers always fomaned at home: satisticd with thrir own phams and wiht thr: own sysem:, they maturally got conceite (laugher) and wric impressed with the noiniow that these plane and sytiems were the lime the: could be followed; whereas if they belorgedte an association l:he that whics it was the aimo: the present ineeting in estabinh, they intechanged ideas and commanicated to each othos facte which the esmerimene of earh suppitic.. Thus most valuabie information was ofie., acquired.

OYAL AGRICULTURAL SOCIETY OF ENGLAND.

(ABEIDGED FROM THE YORFSUIRE GAZETTE:)
filuce lee to fieils deseends, manures the suil; arate the ploughan, and rewards his toil ; ta ueful work, when prace and plenty reign, ish Art juins Nature ti, improve the plain."
Dearly eleren years have pasecd away since the :vriety of establishing a National Suc:sty for cimprovement of Agriculture was first broached s the late Ean Spencer, whose name will ever Aed in gratefui reacombrame by the scomanry Eagland. The Royal Agricultural Society of Eggland was founded in 1838, after many at:mpts had been made, and many suggestions Sown out by some of the leading farmers in Erghad, as to the probable value of such a soily to the advancement of practical agriculture.
he first person who systematically addressed Friself to the question was Wim Shaw, Esq., of iondon. From the year 1534 to the period of ze first pablie meeting of the Society, Mr. Shaw, oevery proper occasion, not only suggested the zblic adiantage likely to be derived from such iSociety, but he excited the Duke of Richmond, iord Spencer, Mr. Handley, and other great lead--g agriculturists, to propose its immediate forzion. The first public expression by these frat friends to agriculture of their willingness seo-operate in the promotion of a Na:ional Agrielturas Suciety, similar in its objects to the prosyrous Ilighland Socicty of Scotland, was made athe dinner of the members of the Sinithfield Cab, on the 1lth of December, 1837, when Earl iencer was the first to allude to the subject in a feech, in which he dwelt not only upon the adratages which would arise to agriculture from sexertions of a National Socisty, but alluded to \dot{x} great priuciples to which such an institution zast adhere, such as the careful avoidance of patical discussions, and all interference with Emes which might be likely to becone the subxat of legislative enaciments-principles which we been since ingrafted into the charter, rules, ad bye-laws. Tine fecling thus publicly exressed was immediately and warmly responded 3 by the Duke of Richniond, Mir IIEndley, Mr. E. Bilmot, and others; and so clearly expressed ors the desire of all the members of the Smithids Club then assembled in favour of the prowistion, whea Earl Speneer thus frist brictly alyided to the subject, that immediate siens were aken to cffect the formation of such a Society. Githe menth of March, 1838 , therefore, an ad ertisement appeared in the public papers, furshivis in its list of subscribers the names of -asc who must, in conjunction with Mr. Shat, xeregarled as the founders of the Society-
The project was well received, the mecting was sell attended by a great number of influential whemen and gentlemen connected with agricul-
ture, and the Agricultural Society of England commenced its career under auspices of the most satisfactory and encouraging character, no less than 250 noblemen and gentlemen conneted with agriculture at once enrolling their names as members. Earl Spencer was soon after elected the Society's first President, and Mr. Shaw its Seeretary, an onice which he resigned in 1839, when the present able Secretary, Jas. Hudson, Jiqq. was clected. We may truly say that the antic i pations of the originators of the Socicty have been more than realized. "The little one has becone a thousand." The Society held its first meeting in July, 1539, at Osford, when the Quadrangle of Queen's College was fitied up as a pavilion for the grand diner, which was attended by about 2,500 indinduals. At the subst gquent meeting, at Cambriders, in 1840, the number of members had increased to about 4,000; and in the same year the Society received a Royal Charter of incorporation. In 18.11 the Society held its amal meeting at Liverpool, when its members had increased to 5,352 ; and the following year the meeting was held at Bristol, whin the number was augmented to 5,500 . Derby was the next plase selected by the council for their annual gathering, which was held in that town in 18.43; and there she local advantages and peculiar situation of the town combined with many facilitics for the transmission of stock and implements to render it the largest meeting which had been held, and to increase the number to about 7,000. This number was augmented at Southampton in 184t; while at Shrewsbury, in 18.45, in spite of the total want of railway communication, and the consequent inconvenience and difficulty of transit, many new nembers were enrolled. The mecting at New-castle-upon-Tyne, in 1846, was the eighth which the Socicty had held, and was equal, as a whole, to any of its predecessois. At the mecting at Northampion last, car no change took place cither as regards the energy displayed by the members and ective supporters of the Sucicty, the numbers and caccllenee of the stock and implenents exhibited, the appreciation by influential bodies of the iniportance of its objects, or the desire of the piblic at large to benefit by the opportunity affo:ded then of examining and inguiring in:o the merits of tue animals of various breeds, and the application and utility of the machines and implements crlibited. Last, but not Ieast, is the splendid mecting at York, to have been present at whicl: will be one of the pleasantest reminiscences in the history of the thousands whom it has drawn together from every part of the country-a result which must be attributed to the eentral positien of the town, the peculiar local advantages, and the iasurpassable facilitics afforded for the transmission of stack, implements, and visiturs, to and from slunost every place in the kingdom.

The Royal igricultural Socicty of Euglad co:sists of an indefinite number of governors and members, who have the free porier and privilege of
electing at each ammiversary menting a council, formed of one president, twelve trustes, twelve vice-presidents, and fifty othrer members, regulated in their proceedings by bye-laws from time to time enacted. and to whose care the entire management of the Society is entrusted; such President and Comeil reporting at two general meetings in cach year the state of :athirs and progress of the oujects of the Society. We find from the Report of the Council in Alay last that during the preceding hatr year 139 new members had been elected; 31 having died, and $8: 2$ having been struck off. The Society then consisted of 93 life governors, 186 governurs, 6.48 life members, 5,387 members, and 21 honorary members; making a total of 6,335 -which number has, we believe, been materially kugmented.
If it be asked how is it that this institution has nbtained such a position-such a rauk among the great socicties of the world, we refer to the principles upon which it was formed, to its constitution, and to its derotion to practical agricultural facts. Its constitution is based upon liberty of opinion to the fullest extent ; liberty, controlled by orderliberty, regulated by virtue. The next great polar star is the determination that its study shall be confined to pratical facts-a determination supported by and dependent upon patience and long contiuuance, without which inprovement is umattainable. Aud lastly, calling to its aid truthfulness, and guiding itself by the principle of submission to the will of God, it repudiates all humbug and clap-trap, and requires to know not only of the successes but also of the failures of its members. The seclusion from the discussions of the Society of all topics of a political tendency, or having reference to questions pending or about to be brought forward in cither Ilouse of Parliament, is another ingredient in its constitution, which has been undeviatingly recognised from its original establishmont ; and this political and legislative neutrality has been made a permanent condition by the terms of Her Majesty"s Royal Charter, granted in Mareh, 1840.

Tuesmax:-The Suciety commenced the business of the meeting by opening the implement yard for public inspection at 8 oclock on Tucsdiy muming. The yard was situated on the Bootham-road, a level phain, about one mile to the north of York, wear the point where the IIelmsey-road and the Scarborough Railway intersect. The department of the yard occupied by cattle was that ricarest to Xork, and that occupied by implements the farthest from it. The whole structure was in the form of a squarc, and covered 22 acres of ground. It was cnelosed within a substantial baarding about 10 feet high, above which were seen the white canvass roofs of the sheds, and rowning in parallel lines from east to west. The proximity of the railsay gave the Socicty great facilities for geting the catle and implements quietly and casily into the yard. To the west of the yard, and
on the opposite side of the road by which it was approached from the city, were the teuts of the horticultural and floricultural show, rising at the centre into a huse pavilion. The yard of the Socicty and the tents had the appearance of twe great encampments.

Tnursmax.-On this day the Cattle Show was visited by $2 \overline{0}, 732$ persous. In the early part of the day the tickets were cxhimsted: about $1,20,4$ were admitted by paying money at the doer. (On Tuesday 1,113 persons were admited; on Wcdnesday, 6,066 : and, on Thursday, 25,732 : mat. ing in all 32,912 , for the period spoken of. 13. far the greatest proportion cane in with the hali: crown tickets; whereas, formerly, from one-third to two-thirds only have been admitted, and th: remainder at one shilling each.
Tue Pahion Dinser, took place on Thurs day afternoon, at four oclock, in the Great Pa vilion erected in St. George's Field, and was attended by a company numbering 1200-a company as distinguished by rauk, and as importatut character, as it was imposing in number. Every seat was occupied, and the demand for tickets was far greater than could be supplied. The company beffan to arrive shortly atter three selock, and before the hour appointed (four), the parilion was full, and nearly all the company were seatect. The secme was a most magnificent alid imposing onc. The Earl of Yarborough, the President oi the Society, occupied the chair, and the Earl of Chichester, the President-Earl, the viec-clar. His Royal IIighess Prince Albert, and the other distinguished gucsts, were welcomed with applave on their entrance.

The Pavilion in which this great dimer took phace was erected in St. Georgec's Field, a spacious piece of land belonging to the Corporation on York, and situated between the high road to Selby and the very 'enatiful and fashionable promenade, called the Ňew Walk, "made," says Drake, under the date of 1730 , "a year or two ago, at the erpense of the city:"

The Pavilion, like the buildings at the sloosyard, was erected by Mr. Maming, of London. There were six entranees to the pavilion, one in the rear, adjoined the New Walk, reserved foi the chairman and his immediate supporicre, who occupied an elevated platform, crected alons the side, extending some yards both ways from the centre. Immediately opiosite was another devat ${ }^{\text {nd }}$ d platform of corresponding dimensions, for the vice-chariman and his supporters. There were three other entrances to the body of the paviliso, for the general coampany. Detween the clevate: phatforms cleven tables were placed in rows, with scats on cach side, mad :mple space betwecn for waiters, on cither side of these, and skirting the cuds of the phatiorm, were seren tables, risit: gradually towards cach cod of the pavilion, with seats on vae side only, so that the company looked towards the chairmain and the eentre of the pa-
tilion. The pavilion was 140 feet long 84 feet deep, aud was capable of accommodating 1,400 persons comfortably, though the contract for the dimere was only 1,200 . The floor was boarded throughout, and the whole of the tables and seats rere supported by wrought-iron tressels.
Mis Royal Highness Prince: Ambint pose to gcknowledge the toast, and was received with loud and reiterated cheers. He said: Gentlemen, Ihave been most deeply touched to witness the erpression of your loyalty to the Queen (renewed dhecring), and to the members of the Royal Fanily renerally (more checring). I beg to return you ay best thanks for having received the toast of my health with so much cordiality (cheers). It laas been a great satisfaction to me to have been tnabled this year to pay you an old debt (cheers) -in thus coming amongst you, and attending at this most useful and interesting meeting (loud and reiterated cheress. All I have seen to-day and resterday exhibits a bright picture of the progress of British agriculture; and for much of that progress the country is, I firmly belicere, indebted to this Socicty (cheers). Agriculture, which was ouce the main pursuit of this, like every other ration, holds, even now, notwithstanding the derelopment of commerce and of manufactures, a fandamental position in the realm (cheers.) And although time has changed the position which was once held by the landed proprietor with his feudal dependents, yet the comitry gentleman with his wife, and the country clergyman, the farmer, and the labourer, form still one great, and Ihope united amily (checrs)-one united family, in which we gladly recognize the foundation of our social state (checrs). Science and mechanical improvements have changed the mere practice of cultivatiog the soil, in these days, into an industrial pursuit, requiring capital, machiuery, skill, and pereeverance in the struggle of competition (cheers). We must consider this a great progress, as it demands higher energies and higher intelligence (cheers). Conscious of these changes, we agriculturists of England (tremendous checring) collect in these mectings-the meetings of the Royal Agricultural Socicty or England-in order to communicate to each other the result of our various esperience, and the progress that some may have made in the application of science, in the improvement and ingenuity of machinery, or in the breeding and rearing of cattle (cheers). Fecling, as I do, a high and lively interest in these noble pursoits (checrs), and having myself in a small way (renewed checring aud laughter), experienced all ithe pleasures and little pangs (cheers) and knowing its paramount importance to the country (checrs), I feel highly gratified that the President of the Society should have entrusted to me to propose to you the toast of the day, which is, "Successto the Royal isgricultural Socinty of England." I trust you will respond to it with enthusastic cheers. Gentlemen, "The Royal Agricultural Socicty of Eughad, and success to it !"
professor smmonds' necture.
At fuur o'clock Professor Simmonds of the Royal Veterinary College, London, delivered his lecture on calving and lambing, at the De Gray Ronms. Ile commenced by speaking of the importanee of the subject of breeding stock to all classes of the community, as all were dependent on the successful production of food; that the flocks and herds of England were the boast of her farmers, and the envy of the whole world; that success in breeding rested upon a knowledge of the principles and natural laws that govern the reproduction of animals; and that it is impossible to improve the character of stock without due attention to these principles.

IIc then went on to say, that the practice of breeding with a view to improvement depends upon the principle that "like produces like ;" that mamerous causes combined to prevent the eertainty of progressive improvement, such as food, domestication, Sc. Stlection of stock for breeding is also a subject of the highest importance; and all animals selected should be chosen with refercnce to furm, colour, freedom from disease, and should indeed be as perfect as possible in every way.

The learned Professor then remarked, that disease was often hereditary in animals; that this was also the case with colour, and in predisposition to particular forms of discase. Inc here gave the example of the rearers of Yorkshire, and stated that ©ien by crossing with other breeds, it was extremely difficult to eradicate this tendency; that it was also with regard to colour in cattle; that after frequent crossing a disposition to a peculiar colour would still remain, and as an cxample, he mentioned the cross between the Devon and the IIcrcford cattle. That change of character and external appearance is most peculiar to domesticated cattle, animals in a state of nature are less inclined to change; this arose partly from tac separation of herds at certain seasons, and partly because the most vigorous males obtained the largest proportion of the females. Degeneration thus taking place to a very light extent. The professor also mentioned that in breeding care should be taken to suit the males to the inclination of the females; and he here quoted some remarkable instances in which a strong preference appeared to be manifested by animals for sach other. That it was of the highest importance to secure a pure race for the purpose of brecding, and that for want of proper precaution both as to race and perfection of development, deformitics were often perpetuated; and he mentioned tinc instance of a mace of pigs with a perfectly united hoof. These principles applied equally to all animals After these introductory remarks, Professor Simmonds entered into a lengthened detail of the amatomy of the generative organs in the cow, alluding to the different periods of gestation in various ammals, and then fully described the process of parturition, with examples of natural and unmatural position of
the foetus and the methods of treatment, so as to overcome the dificultics.-Parmer's Merald.

1?RORJ:SSOR JUnASTON'S IA:CTURE.

The learned lrofessor addressed the mecting, which was held in the De Gray Rooms-the President of the Society in the chair-" On the Application of Scicuce to Agriceltire." Ile argued, from the great diversity observabie in the prosuctive qualities both of com and herbage, the evidence of design on the part of the Creator, that the soil should be cultivated and improved by the intellect andintelligenee of man; and to the want of scientific skill might be attributed many of the defects observable in the general cultivating of the land. He would principally direct their attention to the discrepancies frequently obscrvable on the same farm, oue yart of which might be a fine healihy green, another a pale sickly jellow. How comes it that the one should produce forty bushels. the other perhaps but twenty bushels an acre? It was too freguently owing to defective knowledge and to a neglect of the application of scientific skill to the cultivation of the soil. Truc, in our standard books there was a mass of knowledge; but that knowledge was uuknown to the mass of the farming commanity, and all he required was to see it diffused. These large mectings he regarded as peculiarly favourable to this purpose; they were a sort of Lancastrian schools by which the waters of knowledge were destined to be distributed, and would equalize the difference between good and bad crops both of corn and herbage. Where experiments were made, there were too often a vagueness and inattention to accuracy which materially injured and wholly defeated the ends for which such experiments were made. Nay, it was freguently a mere matter of guess-work. This was bad. IIe strongly maintained the necessity of strict attention to facts and all their minutix, however appirently unimportant, involving precision in number, weight, and measure. Me would not dwell on particular cases of the advantage of combining chemical with agricultural knowledge; but he might state generally a few leading principles, - such as that lime shortens and strengthens the straw of corn; salt ofen changes the guality both of straw and corn; lime and salt were better than salt alone. Such deductions were invaluable. The Professor at considerable length animadverted on the discordant statements frequently put forth by protended experimentalists, adduced them as so many additional proofs of the want of the attention to accuracy of which he had complained; concluding a very able and interesting lecture by explaining and enforcing the policy of farmers making themselves acquainted with the composition of artificial mamures, their ignoranec of the component parts of which often led to scrious loss and inconvenience, not to mention the imposition it might lead to on the part of the venders of such prepared manures.-Ib.

Draming Implements.-A model wagexhibi:cii of a very powerfiul machine, invented and mannfactured by Mr. J. Paul, of Tharpe Abbots. Mall, Norfolk, which is thus described:-"This machine may be worked with threc or more horses, and by a single operation will cut a drain from three to five feet in depilh at the rate of four feet per minate, leaving it in a linished state with a perfectly level bottom for the tiles to rest upor. It is also calculated for raisitg subsoil to the sti:face for the purpose of chaying lands, and, wher used with four horses, will raise from four to fire cwt of clay per minute, and on stony soils it may be made equally efficacious, although the operi:tion would be somewhat slower." Mr. Paul nas spplied the same principle to a separate machise for deep subsoiling and pulverising the land to thr depth of twenty or thirty inches, and at the samed time bringing up such portion of the subsoil, is be distributed ea the surfice, as may be deemed expedient.-Ib.

EXIMBITION OF Y.IVE STOCK.

In regard to numbers ard quality of the stois exibibited at this mecting, it was the most successful gathering the Socicty bad yet held. A. to the quality of the stock, we would state, tha: in horses, sbecp, short-horns, and pigs, for all of which Yorkshire ranks high as a breeding ecunti, we recognised many animats that have on previous occasions been known to fame-and amougs: them the names of the competitors are those of the best known brecders from the most distat: countics of Eagland.-Ib.

Vetcues-Mr. Bury, of IIanslope Park is Ruckingamshire, reported to the Council hied fatal effects of a single feed of meal from Vetches; purehased at Liverpool, on nine of his pigs. The meal was made into porridge and given to the pigs the same evening; they were all found cold and dead on the following morning. Prof. Dar remarked that this poisonous effect was produced cither from mineral poison mixed with the mea! or in consequence of some poisoinous quality chenically engendered in the meal itself. lif was inclined to think, from such a result in may vegetable substances, that the laticr was this case.-This view was corroborated by Alir. II. Wilson, of Stowlangtoft Mall, who infermed the Council that two of his fat porkers were both destroyed by having been fed fir a weck on meal ground from damarged rice purchased at a chean rate, and its fecding qualities tried as an experiment upon the pigs in question.-Mr. Hobbs has fomd Vetches unfavorable, unless given wih other food, and he conceived that no crop exhausted the land so much :s Tares.-Mr. Bennett reganded Tares as an injudicious food for any animal. IIe spole from his own experience, having used them extensively at onc time for his sheep. The Tares he had used were the cheap foreign Tares of the Market.

BEANS.

The word Bean, like all our monosyilabic fords, is of Saxun origin, and significs an edible die. The plant is a speries of the vetch tribe, fing the Vicia Faba of botanists. Latterly fobiu has been made to constitute a genus, with es species, or the Faba Vulgaris, or the comfon cultivated Bean. Generic Charucter.Valks, with several flowers, very short. Leymes, ascending tumid, coriaccous. Lenflets, Sptical, acute, entirc. Tendit, abortive. Stisla. half-arrow shaped, toothed at the base ; Emal, flowering in June and July. Stem, ree to five feet high. Leafets, smooth, larger, fue at each end and alternate. Flowers, an six to ten, and more, on a short racenose战, deliciously fragrant, white with a broad hack velvet-like spot on each wing. Calyx, fititsh, with ovate taper teeth. Legume, large, cch, oblong, pulpy withis while unripe, conning four or five seeds. Said to be a native. Egypt, but found also in Persia. The genus tha differs from Vicia in the greater size of legume, which is coriaceous, and rather thal, and in the seeds being oblong, and in the lum being terminal. There are now many did or varieties of Beans in use, all derived mone original. The pant likes a strong xist soil, a whole firm furrow, and never fires better than on a layer. The seed is farally committed to the earth on one furrow tithl, by hand in broad-cast, or in rows by diblling machiser. About three bushels allowed to an acre; and when drilled, the ap is horee and hand-hoed, according to the the of the intervals. Manure is often applied beams, laid on in Autumn, and ploughed in. ie quantity of seed sown on an acre varics: *m two to five bushels; and the average procie may be stated at thirty bushels. The quaTof the season has a very great influence on eproduction of beans-a wet Summer protirg the undue growth of leaves and stem, :la dry season stunts the growth in every peect. The horschocing of the intervals must samence so soon as any weeds appear, and or be continued till the height of the stems peles and stops the process; the hand-hoeing ata accompany the scufler, and be continued Eer the former is given up, in fulling the tall Feds that afterwards arise. Wide intervals fiventy-four to twenty-seven inches are prefable to narrow spaces, in admitting horsexing, and the later only the hand-hee, which (ivery litile avail on clay soils. A very good
way of sowing beans in wide intervals, consists in drilling the land with one furrow of the common plough, sowing the beans by hand, which fall into the hollows, and then reversing the drills, or harroiving the field across. In any way of Spring-sowing, the land must have an early Winter furrow. In the wide drilling system, two more furrows will be required in the Spring, as soon as the state of the weather will permit. When the seed is dibbled at narrow intervals, the Winter furrows must be well har. rowed. Beans may be sown from the beginning of January to the end of March, and later in some certain localities. The shrivelling oi the leaves of the haulm, and the black colour of the pod, or legume, with the hardened state of the seeds, give notice of the maturity of the ban crop. They are most generally cut by the sickle, low by the ground, tied into sheaves, and built into thatched ricks, or lodged in barns. The straw and the grain are easily separated by flail or by machine, and winnowed for use. The sheaves are tied by straw-ropes, or tarred ${ }^{\text {twine, }}$ which lasts for years on being preserved for use. Peas in misture are not unfrequently sown with baans, and then the pea-straw serves very conveniently for being made into ropes to tic the beans. The straw of beans when well harvested, is very particularly relished by horses, and the husks of the legume by sheep; and it forms, in any shape, a very useful short litter for swine in sties, and for sheep confined in cots. In a good state, it is reckoned equal to the best hay of any kind, or quality. The broadcast crops of beans are equaliy valuable with the drilled ; but the true object of cultivation being to yield crops in succession, that system must be adopted, which prepares the land by pulverisation and the admission of air. Hence, the drilling of beans at wide intervals is recommended. Biat when they are sown on clay lands after grass, and previous to a summer fallow, they must be sown broad-cast, for the quality of the land admits no preparation for the drill or the dibble. When drilled at wide intervals, cleancd, and the land pulverised, bean culture forms a most excellent preparative for wheat, which is sown on the bean grattans with one ploughing, in broadcast or in drill. The success of a culmiferous crop after a leguminous onc, as in the case of wheat following, beans, has affirded to scientific theorists a confirmatory example to the exudatory system, which supposes that plants of an entircly different kind live and thrive on the faces, or exudations of
another. Be this as it may, the practical fact was long known before the theory was dreamed of. The chief use of beans in this country is to feed horses, for which they are very usefully mixed with oats, as they contain the tanning principle, and tend to bind the muscular frame. They are also used in fattening hogs, bruised and unbruised: they moke the flesh very firms Bean meal is used in fattening oxen; mixed wilh water, and given to cows, it greatly increases the quantity of milk. Some beans are also mixed with new wheats in grinding. Millers generally contrive to use a due proportion, pretending that the clammy new wheats will not grind well without some such mixture. The medicinal qualities of beans are said to be nutritive, but flatulent; the pods yield a water held good against the gripes in children. The bean has been used as a succedancum to coffee, which in principle, it much resemblesonly that it contains but half the quantity of oil. Flatulency is occasioned by the great quantity of air they contain, and which is extricated, and cannot be again absorbed during their digestion in the stomach. The expansion of beans in growing is very great, one bean being sulficient to raise a weight of 1001 lbs .-Donaldson's Plants of the Farm.

Shoeing Horses.-Mr. George Turner, of Barton, near Exeter, having presented at the former meeting of the council, a set of Mr. Mile's model hoofs, illustrating the mode of shoeing horses advocated in that gentleman's work on the foot of the horse, a copy of which Mr. Turner also presented at the same time, an interesting discussion ensucd on this subject, in which Mr. Thomas Turner, Professor Sewell, Colonel Challoner, and Mr. Parkins took part. Mr. Turner stated that the system of shoeing advocated by Mr. Miles, was known in the profession as the "unilateral" (or side-nailing) mode, in which the shoe was nailed to the hoof with the most decided effects in preventing the navicular disease to which the horee's hoof was so frequently liable; a system, he added, which in common justice he might be allowed to say was founded upon the important principle discovered by his brother, Mr. James Turner, V. S., of Regent-street, and published by him many years ago in his work on the foot of the horse, of which at the next meeting of the Council a copy should he presented for the acceptance of the Society.

Prof. Sewell remarked that he had found old
horses shod with a layer of leather, forming a artificial sole, between the shoe and the hoo recover from the severe affections arising fro injury to the hoof; such, for instance, as sood tractions, brittleness, sand cracks, or diseas even of the foot itself, such as thrushes, cankef and corns, and perfectly regain their origing elasticity and firmness: he also strongly aldised that ail hurses for road or street work ghould shod in that manner, during the whole pernd of their being required for use. The plan question had been employed by Prof. Sered for the last 30 years. The leather sole pr vented that concussion from taking place agail the sensitive part of the foot, which resulteal inflammation; and by excluding all injurio substances from the hoof, those frequent acd dents were avoided which arnse from the fal resulting from the bruising and puncturing ore sioned by such hard and sharp substances the natural horny sole. The plan required hittle practice to carry it out successfully, ar it was not with an injudicious regard to econt my to be abandoned, when after its adoptid for some time it might seem, from the appare soundness and safety of the feet, that the hors no longer required it.
Colonel Challoner observed, that 17 yea? ago Mr. James Turner had explained to liit the principle of unilateral nailing, to which th attention of the Council was then called, an had practised it on Colonel Challoner's hers for the avowed purpose of promoting the c ? pansion of the hoof; but Colonel Challoner has since that time been led to adopt the plan felt-shoeing for sheil-footed horses, namely, tif of inserting, instead of leather, as practised bo Professor Sewell, nothing more than thick fef or thick gun-wadding, between the shoe at hoof of the horse. He had found this pla productive of the most beneficial results.

Rand-Gauge.-"The gauge selected wf the one now most approved of, and most corf monly used, consisting of a hollow cylinder copper or other metal, about seven or cig inches in diameter, and 36 or 40 inclies length, with a receiving fumnel of the same dif meter as the cylinder, and closely fitted to 1 top. Within the cylinder a float rises, as it 1 comes filled with water. It is just so muc smaller in diameter as to rise freely ; and the cenive is fixed an upright rod, marked inches and tenths of an inch, which, risit through a small hole at the bottom of the funn
exactly indicates the deplh of ruin falling in any given time. The surface of the water in the cylinder being completely covered with the float, except the mere angular space of about one-eighth of an inch, no evaporation takes place. The gauge must be occasionally emptied of the water it contains. It is sunk in the ground, within a strong box or case, to prevent injury, and to allow of its being easily taken out ; the top of the gange being left about ten or twelve inches above the ground."

Probangs ain Trocars for Cattle.Professor Sewell presented to the Society furher specimens of instruments of practical utility in cases of choking, or of the hove, in cattle, and fivoured the council with additional directions connected with the use of each apparatus. He also presented, for the inspection of members, the model of an ox, on which was marked the exact spot where, in the case of hove, the trocar ought to be inserted through the inflated bide into the rumen or paunch, namely, a full hand's oreadth below the loins, and behind the last rib, on the left side of the animal. The laterally perforated cylinder, after the stiletto had been withdrawn, might remain in its place of insertion eren until the following day, if gas continued to be evolved; and on its removal, an adhesive pich plaster might be applied over the punctured orifice. The elastic probangs presented by Professor Servell were very useful for unchoking horese, colts, calves, or other stock, by uilodging the impeding food from the gullet, and were much preferable to the hempen ropes ofien used instead of probangs for that purpose.

Remarkable Fidelity of a Dog.-The Following fact, evincing a most extraordinary instance of the attachment and fidelity of a dog, was related by a gentleman on whose veracity we could rely, and who had witnessed it. In the parishofSt. Olave,Tnoley-street, Borough, he church-yard is detached from the church, and surrounded by high building:, so as to be naccessible but by one large close gate. A poor tailor of this parish dying, left a small cur dog, evidently inconsolable for his loss, for he would not leave his dead master, not even for Cood; and whatever therefore he ate, was forced to be placed in the same room with the corpse. When the body was removed for burial bis fathful attendant followed the coffin, but afier the funcral, was humted out of the churchfard by the sexton. The next day, however,
he was again found there, having made his way by some unaccountable meansinto the enclosure, where be had dug himself a bed on the grave of his master. Once more he was driven out, and again he was found in the same situation the following day. The minister of the parish hearing of the circumstance, had him caught, taken home and fed, and he further endeavoured by every means to win the animal's affections; but they were wedded to his late master, and he took the first opportunity to escape and regain his lonely situation. With true benevolence the worthy clergyman permitted him to follow the bent of his inclinations, but to soften the rigour of his fate, he built him upon the grave a small keunel, which was replenished once a day with food and water. Two years did this example of fidelity pass in this manner, when death put an end to his griefs ; and the extended philanthropy of the kind clergyman allowed his remains an asylum with his beloved master.

REMEDY FOR THE POTATOE DISEASE.

A paper appcared in the Agricultural Bulletin, from which we learn that a chemist, named Eusebius Griss, had been paying great attention to the disease, and has found a direct and radical remedy. This gentleman, guided by analogy, has compared the discase of this vegetable to the chlorosis which attaeks the human frane; and the idea suggested itself to him whether the same remedies which improve the vitality of the blood, which restore its energy and its colour, might be adrantagcously resorted to in re-animating the languishing vitality and tone of the discoloured leaves. He accordingly had recourse to an application of salts and iron. He watered the plants with a solution of sulphate of iron, containing front 10 to 20 grains to a litre of water, and noistened the leaves with a lighter solution, containing only about threc grains to a litre of water. This last method proved much more immediately the efficacy of the remedy than when it is done matering the plants; for in the latter case it might be attributcd to chemical re-action produced in the interier of the soil. A committee was appointed by the Royal Society to test the result of Mr. Griss's remedy. Experiments were made in various parts, some on an extended, some on a smaller scale; they were very successful in regard to the disease itself, and the committee reported that although some further trials were rieeded to prove facts, yet it was thonght probable that this solution might likewise io found valuable in sandy soils. M. Gandry, of Paris, was induced to try the remedy on some young chlorotic peach trees; and a fortuight after, when the conmittec of the IIorticultural Socicty inspected them, they had entirely recovered.

How to mane Mushioom Spaws.-Get sume cow-dung and horse droppings of nearly equal quantities, and get some maiden carth, and mix them in the proportion of four ports of the cow and horse droppings, to one part of maiden earth, till the mass be thoroughly worked and incorporated, as you would lime and sand to make mortar; spread it on a lezcl surface about three or four inches thick, to let some of the moisture evaporate, and until it gets tough, and in such a state that it will cut readily in brick-shaped pieces with a spade, which will be in threc or fuur days; have ready some spawn, which is procured from an old pasture; it is also fuund in decayed, coll, dry hotbeds, horse tracks in mills, and in most old dungy compost heaps. Having renoved the bricks to a dry airy place, and when they are about half-dry, make a hole in the centre of each, and place a piece of spawn in it. Stove them away in a dry shed, and keep shifting them oceasionally till they are perfectly dry, keeping the side up that the spawn has been placed in. Pile up the bricks in an open manner as they build pigeon holes, bringing the bricks to a sharp point, having first placed under them alayer of well fermented stable dung, so that a gentle heat may be generated around and through the bricks; this will make the spawn run and spread through the bricks, and when this is observed let them cool gently, and store them in a cool, dark airy place for use, as it may be required-they will keep thus for several years.

NOTICE.

The QUARTERLY MEETLNG of the COUNCIL or DIRECTORS of the Lower Canada Agmeclitran. Sochety will take place, at their Rooms in this City, on FRIDAY, the end of September, at ELEVEN occluck, A. M.

By order,
WM. EVANS, Secretary, L. C. A.S.

COUNTY OF TERREBONNE.

N°OTICE is hereby given that the GENERAL exhibition of the Terrebonne Countr Agricultural Society will take place, on THURSDAY, the 21 st of September next, in the Village of Terrebonne, at TEN \%cclock, A. M.

Charles smali,wood, m.d.,
Sccretary.
St. Martin, Aug. 22, 1848.

REAPING MACHINES.

THE Subscriber has on hand three REAPING MACHINES of the latest and most improved construction, capable of cutting twenty-tivo acres per day. Being manufactured by himself, he is prepared to warrant both material and workmanslip as of the best order.

PRICE-MODERATE.
MATIHEW MOODY. Manufacturer.

NEW SEED STORE.

THE Subscriber begs to nequaint his Friends and Customers that he has, under the patronage of the Lower Canada Agricultural Suciety,

OPENED HIS SEED STORE,

At No. 25, Notre Dame Strect, Opposite the City Hall.

 Where he will keep an extensive nssortment of AgRICULTURAL and GARDEN SEELS nud pLaN't'S of the best quality, which he will dispose of on asfaviurable ternis as any persion in the Trale. From his obtaining a large purtion of his Seeds froni Iawsion \& Sons, of Edinburgh, who are Seedsmen to the Iighlanland Agricultural Suciety of Sectlanp, he expects to be able to give general satisfaction to his Putrons and Customers. He has also made arrangements for the exhibition of samples of Grain, \&e., for Members of the Society, on mucls the sime principle as the Curn Exchanges in the British Isles. He has a large variety of Cabbage Plants, raised from French seed, which he will dispose of to Members of the Society, at une furth less than to other customers.GEORGE SIIEPHERD.
Montrenl, May 30, 1845.

Agents for the Agricultural Journal.

	Mr. J. B. Bourque..............St. Damas.
	Dr. Conoquy....................St. Cesuire.
	Dr. De la Brucre................St. Hyacinthe.
	Mr. Cadeaux....................St. Simon.
	Mr. T. Divyer..................Sl. Pauls, Abbotsford.
	Mr. Gendreau, J.P..............St. Pie.
	Mr. Blanchet....................La Presentation.
	Paul Bertrand, Esq., N.P.......St. Mattlias.
	Charles Schaffer, Esq., N. P'...Chambly.
	M. Cordillier, Esq..............st. Hilaire.
	Thos. Cary, Esq., (Mercury)...Quebec.
	Dr. Smallwood..................St. Martin, Isle Jesu,
	Robt. Ritchie, Esq..............Bytown.
	Major Barron.Lathute.
	The Jditor of the Star..........Woodstock, C. W.
	L. Guillet, Esq..Three Rivers.
	D. Dubě..........................Islc Verte.
	Azaric Archambault, N.P.......Varemes.
	IIon. F. A. Malhiot.............Vercheres.
	A. C. Cartier, N. P...............St. Antoine.
	André VendendaiqueBeloeil.

All communisations comnectea with this Journal, to be addressed, post paid, to the Secretary of the Society-Wilinam Evass, Montreal.
Annual Subscripticns for the Journal, five shilling.s.
honrimeal:
PRINTED BY LOVELL \& GIBSON, saint micholas street.

