CIHM
 Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the kest original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /

Couvertura de couleur
Covers damaged/
Couverture endommagée
Covers restored end/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. eutre que bleue ou noire)
Coloured plates and/or illustrations /
Planches eVou illustrations en couleur
Bound with other matenial /
Relié avac d'autres documents
Only edition aveilable /
Seule édition disponible
Tight binding may cause shedows or distortion elong interior margin / Le rellure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ejoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur examplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplalre qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier una image reproduite, ou qui peuvent exiger une modifications dans la méthode normale de filmaga sont indiqués ci-dessous.Coloured pages / Pages de couleur
Pages damaged / Pages endommegées
Pages restored and/or laminated/
Pages restaurées eVou pelliculées
Pages discoloured, stained or foxed / Pages décolorées, tichetées ou piquèes

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentâre
Pages wholly or pertially obscured by errata slips, tissues, etc., heve been refilmed to ensure the best possible image / Les peges totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir le meilleure image possible.

Qpposing pages with verying colouration or discolourations are filmed twice to ensure the best possible imege / Les pages s'opposant ayant des coloratlons veriebles ou des décolorations sont filmées deux fois afin d'obtenir la meilleur imege possible.

Addilional comments / Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmod here hee been reproduced thenks to the generosity of:

National Library of Canada

The imeges eppeering here ere the beat quelity possible considering the condition end legibility of the orlginal copy end in keeping with the filming contrect specificetions.

Original copies in printed peper covers ere filmed beginning with the front cover end ending on the lost pege with e printed or illustreted impression, of the beck cover when eppropriete. All other original copies ere filmed beginning on the first pege with e printed or illustreted impres. sion, end ending on the lest pege with eprinted or illustreted impression.

The lest recorded freme on eech microflche shail contein the symbol \rightarrow Imeoning "CONTINUED"), or the symbol ∇ (meening "END"). whichever epplies.

Mops, pletes, cherts, etc., moy be filmed ot different reduction retios. Those too lerge to be entirely included in one exposure ere filmed beginning in the upper left hend corner, left to right end top to bottom, es meny fremes es required. The following diegrems illustrete the mothod:

L'exempleire filmb fut reproduit grtce to générocital da:

Bibliothèque nationale du Canada

Les imeges sulventes ont ot'́ reproduites svec ie plus grend soin, compte tenu de le condition ot de le nettet de l'exempleire filmb. ot en conformitd ovec les conditions du controt de filmege.

Les exempleires origineux dont te couverture en popier est Imprimbe sont fllmos en commencent per lo premler plot ot en terininent sois per le derniture pege qui comporte une empreinte d'Impression ou d'llfustretion, soit per io second plot, selon lo ces. Tous les eutres exempieires originoux sont fllmes en commengent per te premldre pege qul comporte une empreinte d'Impression ou d'illustretion ot on torminant per to dernib́re pege qui comporte une telle emprointe.

Un des symboles wivente sppereitre sur to dernibre imege de cheque microtichs. selon ie ces: lo symbole \rightarrow sign.fie "A SUIVRE". Io symbole V signifie "FIN".

Les certes, plenches, tobleeux, etc., peuvent òre filmds dos taux de raduction diffdrents. Lorsque to document est trop grend pour être reproduit on un seul ellchd, il est filme a pertir de l'ongle supdriour geuche. de gauche droite. ot do hour on bes, on prenent ie nombre d'Imegee ndeesseire. Les diegremmes suivents illustront to methode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1633 East Main \$treet
USA
(716) 482-0300-Phon
(716) 2 d - $5989-5 \mathrm{ax}$

EARTHQUAKES.

By OTTO KLOTZ, LL.D., F.R.A.S.

EARTHQUAKES.

Br Otto Klotz, LL.i., F.R.A.S.
[Read March 1, 1907.]
Destruetive and calamitous as has been the San Francisco earthquake, yet from the scientific standpoint it has given a decided impetus to the study of scismology, and it has hastened the day when our knowledge of the interior of the carth will be of a definite character, which it is not now, if we except the comparatively few feet that we have penetrated into the earth.

Nature is an aggregation of facts, and it is the sphere of the investigator to correlate these faets and to explain their existence. In the effort to solve the latter advancement is generall! gained by the method of elimination.

As facts do not generally admit of mathematical analysis, theories and hypotheses arc advanced for their cxplanation. These temporary fortresses must then be able oo resist the relentless cannon of observations and of critieism. for the enemy gives absolutely no quarter. Error suecumbs to the first broadside; plausibility turns away many a shot and can stand a long siege. It serves a good purpose in permitting the enemy to reinforce its resouiecs to kcep up the attaek until either the fortress is razed or a new one has been built within, built with the impregnable niekel-steel armor of truth.

Perhaps a brief review of some of the rcasons assigned as the eause of earthquakes, leaving out those of supernatural origin, may not be unprofitable.

We know that there are many sedimentary deposits or formations constituting part of the crust of the earth. We know that they are more or less soluble. We know that the immediate crust of the earth is interseeted and traversed by subtcrranean water-eourses. Wc know that these waters when bronght to the surface are more or less eharged with salts-such as lime or so-dium-dissolved from the formations through which the water passed. Now let us put two and two together. If a subtcrrancan stream diseharges so many eubic feet of water par day, and each eubic foot eontains so many grains of lime, how long will it take
to carry away so many toms or ot one miles of limestone rock? The result of our investigation is a lowe in the gromud, or rather a hole in the earth, mad if wo muke thut hole big enough, something is going to happen-the roof is going to eollapose-mad we huve an marthguake. 'This in brief is the binuturz or downthrow theory' Now some eartlquakes have happened whi h might be explained by the alowe, but, for, by far the larger momber, other rensons must be se, ght. Before dismising the ubowe, it may le suggested, that, although subterranean waters must and do hollow out the carth's crust, the formations slowly aljust themselves to the minute changes eontinuonsly wrought by the aet ion of water, so that excensively large cavities are improbuble if not impossille.

One of the oldest beliefs about earthouakes is their intimate associations with voleanoes. This opinion died a harr' death, in faet, I an not sure that it is quite deld yet, hownere l'rofessor Hilue nas shown, espeeially for Japa. -the prineipal earthquake eountry-"that the many quakes of that arehipelago scemed to show an avoidanee of the voleanie centres whieh are numerous in the interior, and to indieate that volcmine eneryy was seldom eoneerned a generating them."

Volcanues are as a rule shallow-seated, while the movements ot earthquakes are teetonie, that is, affeeting large areas of the curth's erust and miles in depth.

Another theory that was advaneed some forty yars ago was the tidal theory. Assuming the earth to be a molten mass eovered by only a thin shell, it seemed plausible to have tidal effeets by the attraetion of the moon and of the sun. Spring and neap tides in the oeean would he manifested by carthquakes of greater and less intensity ; similarly for perigee and apogee. However, facts don't fit in right, and the foricess has been abandoned.

When we say that earthquakes are the result of the adjustment of strains and stresses within tue earth, the statement is one praetieally aceepted by all seismologists, at the same time, it is far from explaining the eause. What sets up these strains and stresses, and if there are various ageneies at work, what is their relative effeet?

It is almost axiomatie to assume the earth as a cooling body. Now on this assumption a very pretty seientifie theory was advanced some thirty years ago by Lowthian Green, it was the tetrahedral theory of the figare of the earth. Let us follow it for
a motment. Starting with the entlo as a molten mass, we have a hore as the result of the aretion of grasity If we revolio the wo ohtain an ohate spheroid, with flattomed pallesor" "e-shaperl. the shorter axis being the one of reverhtios..
sho angolar velocity of rotation being thiform and cotstant the whole horly would be in stable equilibe :to, If now any 'orere or foreres arr brought into phay to disturl, this "rguilibrimm strains
 stains i.: called forth to restore menilibrimm. It is at this jumeture that the projerty of the tetrahedron comes into phay. Thing as our principal disturhing forre of our supposed liguid or moltor spleroid of revolution, that of dissipation of heat or cooling proress, we find that the crust or shell of the earth tries toadjust itself to the stresses set up by the eontrarting lowly, and does so low the line of least resistance, that is, by whembing the stresses ower the greatest surface, with the rest: ${ }^{\prime}$, that the tendeney of the surfacer of the earth is to assime the tetrahedral form, i.e., of an equilateral paramid. Or one nay say that the rontricting eurth changes into that form whereby the origiond superficinl area is maintaned. For equal surfaces the volumes of the sphero and ietrahedron arr to each other as $1:$. Dis $^{\text {a }}$ and for equal volumes the surfaes are as 1 :. 1.45.

Neither the theory qor its alvocater gives as a fomeromered earth, its orginal eondition and axial rotation womd prevent that.

* the theory does detim that the teuden, י bowower slight or great in effect. mist be towards shaping the surface into that of a tetrabedron. or tetrahedroid, the latter having eurved surfares or edges. If a complete transformation from the sphere to the tetrahedron took plaee, which is of conse impossible, we would have, takiner the axis of the earth en-incident with an axis of the tetrahedron through one of its apices, a north polar sea, which is the casc; thee great equatorial oeeuns: a sonth poiar land cap, which too is the ease; and there would be six grand meduntain ranges, three diverging from the sonth pole, eorresponiling to three edges of the etrahedron, and t^{i}, other three encircling the northern hemisphere, being along the remaining thres edges of the pyramid.

In the tetralindron every corner has a surface opposite to it, so that for the eart nis would mean that land and water are antipodal, which is fairly well represented in the actual corditions. Another result would be that land masses would be broad in the
northern hemivalure and taper towneds the south, whieh too
 tracl towneds the marth, w condition fuirly well borne out.
furthermore, the north polar area being pepremented bey surfiter mul the somth [kilar olle hẹ 11 rormer, it wombl follow fint the flattrougk of the earth in the sumthern hemixplerere would t_{n}
 rapuilly towards the soluth, polle tham towurls the morth prole.

If the womberat theory was efocetion at the farty stage of

 its effert mast be vaishingly small and merecornizahle ns due to that theorys.

We may refor to mother theory of the figure of the eurth, contuined in a in 1:02. This theory shows, mader vertuin ussimptions, that the renth was pernr-shuped at at certnin stage of its existence, and contructing assumbed the spherical form. I camot in bis place pursue this subject of the figure of the enrth mey furt her; it was only ultuctel to to show one of the fuetors-the contracting foreses, reer active, wherely strains und stressis ure set-up, and without which no eurt hquakes ure passible.

Pisher iu his "Physies of the Dorth's Crust " 18so, combats the theory of monntain buiding as being due to the sercular ecolis " of the earth and the accompanying cont ructions, but this atorel not profhde smaller motions to which earthquakes numb be releguted. Arrhenius considers the crust of the eurth comparaively thin; ut in depth of about 40 miles to merge into a hot fluid muse, the magna, due to the incremsing temperuture. From the deepest boring on the earth the increase of ten:pernture is about $1^{\circ} \mathrm{F}$. for 51 feet, or say $100^{\circ} \mathrm{F}$. per mile. Ibeyond a deptlo of about 200 miles the magma assmmes the gaseons form. He writes "the eurth as well as the sun contracts, wherehy heat is envolved and the cont raction partly arrested or decreased. Nevertheless the carth slowly shrints. This pertains especially to the interior of the earth, for the temperature of the surface is almost wholly. dile to radiation from the sun, and in a small degree upon the tharacter of the atmosplere. It may be assmmed that, broally speaking, the radiation of the sun and the nature of the atmos-
phere are conatatit. It fillows therefore that ther arias of the rarth will not follow the shrinking of the interior. Fintinge atil

 tain chains."

 the st resedes, thore ix far from unanimit! of ophinion.
 ones to voleanie reriptions. Vet for the great maj ity abother

 by able invertigators, without howes being ablio whilly or sat isfactorily to dispose of it completely.

 state of perfect equilibrinm, there being un st resmes on its surfare nor in the erust. Iat he note the physiral features. t " heighte of the mountuins, the faulting and fohling of the roek : mations. the depths of the oeran and the distribution of land ond water. Now let the atmospluerie influeneser rome into play-rain and snow, heat and cold-together with the varying atmosplurir pressure. The pre-existing cophilibrimn will lo immediately disturbed; the water, as ripples, arefes, rivers and strants will begin its work of eroston and demulation; leat and frost will assist in the disintegration of monntain maseres, and the weren beds adjoining the continents will be loaded by enormons amounts of detritus carried from the land. Linless there is a continuous and simultaneons adjustment of the change of pressure the st resses set up will be emmalative and eontimue so until they exceed the limit of elasticity, when rupture nust take place to restore equilibrium for the time leing. Rupture would neeressarily le aremo panied byy earthquakes.

It is obvious therefore that meteoric or atmospherie influences are capable of setting up stressips on the rarth's surface. It is safe to say that the whole surface of the earth is in a constant tremor due to stresses. But besides the general contition, there are other factors that come into play, and localize in a measure the seismif disturbance. These are mountain masses and ocean depths, especially if they are contiguons.

Speaking generally, mountains are not masies resting upon the surface of the earth, but must be considered as masses immersed in the earth, just as an iecherg is immersed in the water. The greater the part that projects above the water, the groater must be the part beneath the surface for the amount of water displaced inust be equal to the floating mass. otherwise there would not be effuilibrium. Somewhat sinilar it is with the mountains. Were they resting on the surface, the stresses set up by the superimposed mass would not only be enormons, but would be greater than the erust could support. Furthermore as a superimposed mass it would materially affeet the force of gravity in the adjoining region. The most noted investigations of this question was with " ference to the attraction of the Himalayas in connertion with the Great Trigonometrieal survey of Indiat. Pendulum observations have shown eonclusive! both in Intia and in America that this is not the case. However complete equilibrium or isostasy does not obtain, and heuce the residual strains and stresses.

It is obvious how through meteoric agencies creles of changes are produced. The mountains by deerements are wandering seaward, the continents are lightening, and the ocean bed is being loaded, producing a deep-seated inflow from the sea towards the land. These chunges are continually taking place, the earth's crust and surface are undergoing constant transformation, however minute; the strains and stresses are continually responding to one another; vast roek formations that seem rigid are by the slow process of time bent and eontorted as if made of wire. But when these responses are not synchronous, when there is a lag, equilibrium can only be restored by rupture. This rupture will be along the line of least resistance, and this is generally found in a geological fault, an old rent in the crust, so well illustrated in the California earthquake of last April.

If the earth were a homogeneous body or if at least it were composed of concentric shells each of homogeneous matter, then the geodetie surveyor when carrying on large trigonometrie surveys would not be troubled with closing errors, other than those arising from observations. There would be no error due to deflection of the plumb line. As complete isostasy does not however exist, these observed discordances, due to the unsymmetrical distribution of matter, are a measure oi isostasy.

Dr. J. F. Hayford has examined the data furmished by the
triangulation of the linted States, and las fomm 71 miles ats the most probable value for the depth of compensation, thatt is, the depth at which the compensation of the cexess of matter at the surface (continents) by defect of density below, and of surface defect of matter (occans) by excess of matter below is complete. At and below this depth the condition as to stress of any element of mass is isostatic, that is, any clement of mats is subject to equal pressure from all directions ats if it were a portion of a perfect fluid. From this it appeas that the behaviour of the magma, situate beyond 71 miles, is that of a liquid.

As earthruakes are so intimately bound up with stresees, we quote Hayford: "In terms of stresses it is safe to say that these geodetic observations prove that the actual stresses in and about the Luited States have been so reduced by isostatic adjastment that they are less than one-tenth as great as they would be if the continent were maintained in its elevated position. and the ocean floor maintained in its depressed position, Hoy $^{\prime \prime}$ the rigidity of the earth. It is certain that for the Cnited states and adjacent regions, including occans, the isostatic eompensation is more than two-thirds complete, perhaps much more." Hayford's result is one of the most brilliant mathematical deductions in geodesy and geophysics in recent years.

Several causes have been adduced whicl contribute or may contribute to the production of earthquakes. In investigations: one is sometimes led to the discovery of widely different phenomena, which, however, synchronize with each other, thereby raising the question whether one is dependent upon the other, or whether both phenomena depend upon a common cause. Such a case is the possibility of a connection between latitude variations and earthquakes. On this puint l'rofessor Omori, one of the foremost of seismologists, says: "From an examination of the mean monthly values of the latitude of Tokio, I lave found that all the destructive earthquakes of recent years in Japan oceurred exactly or very nearly when the latitude was at a maximum or minimum."

Verily our solid earth is only so in a l'ickwickian sense. The surface slides bodily over the figure of revolution, our excursions in latitude being about 26 feet. On solid rock we make marks as reference points, unalterable as we think, for levels and ot her measures.-the earth heaves but a sigh and our hasal points lose their value. In despair almost we exclaim "Is their nothing stable on this earth?"

I shall now refer to three notable carthquake-the one in Canada in 1663, the one of Jamaica in 1692 and the one of Lima in 1746, and shall give a few extracts from original sources. The extracts are perhaps more adapted for at study in ethies than of science.

In the Jesuit relations the great earthguake of 1663 is frequently referred too, but unfortunately the descriptions are so wild and exaggerated that very little scientifie value attaches thereto, outside of the statement of its extent, and inferentially, 1 think, one can locate the fault or rift where the main displacement or adjustinent took place.

Lalemant writes under date Sept. 4, 1663: "An earthquake extending over a region more than 200 leagues in length and 100 leagues in width, making 20,000 leagues in all, has shaken this: whole country, and cansed us to withess some prodigions transformations. Momntains were swallowed up; forests were changer. into great lake"; rivers disappeared, rocks were split and their frugments hurled to the very tops of the tallest trees; thunders rumbled beneath our feet in the womb of the earth, which belched forth flames; doleful and terror-inspiring voices were heard; while whales and porpoises bellowed in the waters; in short, all the elements seemed aroused against us, and threatened us with the direst disaster............... It made itself felt from Isle Pereée and Gaspée, which are at the mouth of our river, up to Montreal and beyond, as also in New England, Acadia and other far-distant regions." The earthquake happening on the Monday eve, Feb. 5, preceding Shrove Tuesday; had a salutary effect in preventing debauches commonly occurring on that day, "thus Shrove Tuesday was fortunately changed into a Good Friday and also into an Easter."
"They saw very lofty hills striking together with brows opposed, like headstrong rams, then suddenly and instantaneously swallowed up in the yawning of the earth."

Father Charles Simon relates "that a man so shuddered at the sudden earthquake, although at other times he was brave, that his hair, bristling up with horror and standing upright, shook off his fur cap."

The following extract appears to furnish some proof that the adjustmenic and principal movement took place along the bed of the St. Lawrence where our geologists of to-day have placed "The Great St. Lawrence and Champlain Fault," extending from
beyond Antieosti along the channel of the sit. Lawrence to the vicinity of Quebee and thence be a gentle enrve to Lake Champlain: "It may be very easily inferred how great was the upheaval of the earth, from the fact that such and so great a river changed its color, not for a brief space of time, but for eight entire days, put on a sulphuroms one, and kept it constantly; for, from the bowels of the earth, agitated in their nethermost depth and ponred into it, and from sulphurous mines, its waters were diluterd with an abundanee of liguid sulphur." The earthouake lasted with ever increasing intervals until the following september.

Coming to the eartloguake at lort Royal, near the present Kingston, Jamaiea, on June 7, 1692, the Anglican minister there writes the following week (15 Junc): "('aptain Ruden's honse upon the first concussion sunk into the earth, and then into tho sea, with his wife and family, and some who were come to dine with him. ! saw the earth open and swallow up a mult it ude of people, and the sea mounting in upon us over the fortifications: the earth working all the while with new motions and tremblings, like the rowlings of the sea... . . I found the sea had entirely swallowed up the wharf, with all the goodly brick houses upon it, most of them as fine as those in Cheapside, and two entire streets beyond that. In the space of three minutes, about half an hour after eleven in the morning, Port Royal. was shaken and shattered to pieces, sunk into and eovered, for the greater part by the sea. and will in a short time be wholly. eaten up by it.......... We guess that by the falling of the houses, opening of the earth and inundations of the waters, there are lost 1,500 persons. Our great and famous burial plare was destroyed by the earthquake. which dashing to pieces the tombs, whereof there were hundreds in that place, the sea washed the eareasses of those, who had been buried, out of their graves. From St. Ann's we hear of about 1,000 aeres of woodland changed into the sea, and carrying with it whole plantations. Whole streets (with inhabitants) were swallowed up by the opening earth, which then shutting upon them, sfueezed the people to death. And in that manner several are left buried with their heads above ground; only sone heads the dogs have eaten, others are covered with dust and earth by the people who yet remain in the place, to avoid the steneh........ The two great mountains at the entrance into 16 -mile walk fell and, meeting, stopt the river..............At lellows, a great mountain
split and, falling into the level land, covered several settlements, One persuln had his plantation removed half a mile from the place where it formerly stood, and now good provisions grow upon it." Of the same earthquake J)r. Morley "takes notice thit he had felt several lesser shakes, and hearl the noise often, whieh is very loud, and by those not used to hear it, may be casily taken for a rustling wind, or hollow rumbling thunder, but he says it hath some puffing blasts peculiar to itself, most like those of a brimstone match', when lighted, but in a much greater degree, and such as a large magazine of brimstone may be supposed to make when on fire. He adds, that in Jort Royal, and inany places all over the island, mueh sulphurous combustible matter hal been fountl, supposed to have been thrown out, upon the opening of the earth, which upon the first touch of fire would flame and burn like a candle." In this earthquake at l'ort Royal the shore line subsided 26 to 48 feet beneath the sea.

In the same year, 1692, possibly syuchronizing with the preceding Jamaican quake was the severe one at Riobamba in the province of Quito, South America.-"It shook the earth in such a manner that it bore off great pieces which were seen to min entire three or four leagues from the place where they had been before, and thus to remove whole fields, with the trees and houses standing. This event occasioned the most extraordinary lawsuits that were ever heard of, bronght to Lima, to decide to whom these estates belonged: the party on the one side alleging that they were within his jurisdiction or lordship, and the other pleading that he was upon his own land."

This is the most pointed reference to law-snits resulting from earthquakes that I have come across. I think we must take the sliding about of the country nine to twelve miles with a grain of salt.

Inagine Ottawa waking up some fine morning to find itself up at Aylmer or Chelsea!

Coming now to the great earthquake of Oct. 28, I746, in Lima, I shall quote a few sentences from the volume of the following year describing the catastrophe: "But it is most cert-. 1 that the two main principles of these dreadfnl mischiefs ire heat and moisture..........However, supposing such to be the case, it does not at all hinder but, that the Almighty-Power may employ these natural accidents as the instruments of punishment to a wicked people.

There was not before the late great
ealamity a more licentions spot upor the earth. The charming serenity of the climate and fruitfuncess of the country, the plenter of all things, and the sedate tranquility which the spamards perpetirally enjoyed, these. together with the cxtreme beanty of the women, did not a little contribute to an amorous dispesition, which was the prevailing passion of the inlabitants." . . . "Lima, being subject with very littlo intermssions, to sucll drealdind calamities, one would imagine it was the habitation only of criminals sent thither for punishunent, or of the beople who wore weary of life, and not of such whome it their choice to live there. But so powerful are the ullurements of riches, so bewitching the hope of gain, as to make danger preferable to safety, and the continual fear of death reconcilable with the desire of living long and ont of harm's way.......... Of all julgments, proceeding from natural causes, which the Deity often inflicts on offerders, in order to satisfy divine jnstice and inanifest his almighty power, the unexpected stroke of sudden earthquake hath cver been the most tremendous, for as imuch as in one and the same moment they became hoth the warnings and exccutioners of its wrath....This fatal catastrophe befel the place thirty minutes after ten at right, when the sun was :u five degrees ten minutes of Scorpio, and the moon in not much less of Taurns, so that these planets wanted very little of being in opposition, as they actually. were in five hours and twent y-two minntes afterwards, an aspect which by constant observation hatli proved unfortunate in this climate; for under its influence these convulsive kinds of agitation in the earth do most usually happen..... . . . On this occasion the destruction did mot so much as give time for fright, for at one and the same instant almost, the noise, the shock, and the ruin were perceived together, so that in the space of only four minutes, during which the greatest force of the earthquake lasted, some found themselves buried under the ruins of the falling honses, and others erushed to death in the streets by the tumhling of the walls, which, as they ran here and there, fell upon them. The earth struck against the edifices with sueh violent percussions, that every shock beat down the greater part of them."
"Of a total of about 3,000 honses within the citywalls, scarce twenty were left standing, and of the estimated population of 60,000 only 1,141 were killed. The small loss of life is dure largely to the one-story buildings." The seaport of Lima, Callao, with a population of 5,000 was wholly destroyed by a tidal wave aecon-
panying the carthytake; onty about 200 escaped. Ships were thrown high and dry over Caitao.

In reading the descriptions of these old earthquakes one cannot but perceive a cortain mental attitude of the people towards the phenomenon, and that attitute may best perhaps be expressed by saying with shakespeare "Conseience does nake cowarls of us all."

The San Frincisco earthguake so fresh in your minds, and which has been so much described and illustrated, will be tealt with briefly. The great mountain masses in California rumning parallel to the const, and the adjoining ocean depths of the Pacific are conducive, as already indicated, to earthquakes. The break would naturalty oceur about midway between these deptlis and the mometains, and furthermore along the weakest line thereabouts, thut is, aloug an old geological fault, as was actually fonnd to be the case. The displacement of the surface adjoined this old fault or rift, which runs northwest-sontheast in an almost mathematical straight line for several hundred mites. The nearer to this line, the greater was the displacement or earth movement. Along the rift the greatest horizontsil shifting was $16 \frac{1}{2}$ feet, the western side moving northward, while the eastern side moved sonthward. The inaxinum vertical motion was abont 4 feet.

It may be mentioned that our Ottawa Observatory seismograph registered the arrival of the first tremor or shock seven and a third minuies after its occurrence, which is equivalent to a speed of transmission of 340 miles per minute.

The disturbing force varies probably inversely as the square of the distance from the rift, but as far as destruction to buildings is concerned it depends very materially too on the nature of the ground upon which the building stands. This was well illustrated at San Francisco, where the earthquake daaage was almost exclusively confined to made or alluvial ground, that part of the city that had been reclaimed from the tide flats. This is an important point and one that will not be forgotten in future construction in earthquake areas.

The Kingst on earthquake of last Jannary, although more destructive of life than the San Francisco one, yet as a worldshaking phenomenon was very much smaller than the C lifornia one of last Aprit, for the minimum amplitude or swing of the recording instrument at Ottawa was nearly twenty times greater for the latter than for the former. Earthquakes are generally
judged by their destructiveness to man und his works. This depends on how neur or close a city or habitations are to the rift, where the greatest shaking tukes place. Liurthuake instruments are, however, oblivious to man or histoy works, they record simply the working of mother earth; so that the great earthquakes of the seismologist are not necessarily co-incident with the great eart hyunkes of man.

In the calamitous eurthquake of Valparaiso lust $16 t h$ Augnst, it is reported that the barbor is now ten feet shallower than be fore that e: n, and that the motion was mostly vertical.

The most noted vertical movement of recent yours was the Alasku quake of Sept. 10 and 15,1809 , when the uplift along the lakutat coast for upwards of a 100 miles was many fect, reaching its maximmm in Disenchantment Bay where the land rose 47 feet.

The last quarter of a century stands out pre-miniuently as the most marked in seismie disturbances of which we bave uny historic record. It began with that catarlysmic explosion of Frakatao in 1883, noted for the red sunsets that followed for the next two years, due to the suspended dust in the upper regions of the atmosphere. Of the important disturbances we may mention those of Ischia near Naples; Tarawera, Dew Zealand; Charleston, South Carolina; Mino-Owari, the climax of the many thousands of sbocks in Japan; Alaskan coast alrearly referred to; Naint Pierre in the West Iadies; lormosa; Vesuvins: and the recent quakes at San Francisco, Valparaiso aud Kingston. It is estimated that the loss of life resulting from these disturbances is at least 150,000 .

The question naturally occurs, whether we in Canada have much to fear, or even anything to fear from destructive earthquakes. Speaking generally, I say no, and this especially for eastern Canada bordering the Atlantic: for we have there not that marked contrast of mountain masses and ocean depths, and our St. Lawrence with its long ehain of settling basins in the great lakes carries comparatively little suspended matter to load the ocean bed to proluce stresses. When, however, the question is asked, should a severe earthquake happen, where will it most likely oecur? Then we are pretty safe in predicting that it will oceur along our weakest part of the crust of the earth, and that is, along the Great St. Lawrence and Champlain fault, following the lower part of our ocean stream, already described as the line of the great quake in 1663. As a matter of fact we have more
trembling down there now, especially in the vieinity of Ebonllement, near Murray Bay, than elsewhere. As an earthouake risk for my of our large eities, Quebec would have to pay the highest premilun.

Should an earthquake visit Ottnwa, the chance is remote, the Observatory womld be more nffected than the Parliament Buildings, for the former is within stone's throw of a line of weakness in the earth-the so-called ciloucester fimlt.

Time does not permit me to speak of earthquake instriments. I will simply say that one can not but marvel at their sensitiveness. They tell us what is going on in the earth when our senses are wholly unable to detect the elightest disturbance or movement. Whet her the old enrth henves n sigh in its long struggle against the inevitable when rigor mortss will set in, be it in Japan or ltaly, in Chile or Alaska, these silr at observers, that literally have their ear to the ground, note the pulsations as they pass in their journey round the word. How gladly would the seismologist laumeh his little cance on the seismic wave at the hypocentre or stnrting place, and just see whither and how fast the wnve would carry $\mathrm{l}: \mathrm{im}$. There would be no harbor, no resting place, the course followed would be the one prescribed by nature,-following the ine of lenst resistance. The log of such a journey hns yet to be written, nnd when it is written we will know more about the crust of the earth, nnd of the interior thnn we do now.

1'S.-Since the above was written Professor T. J. J. See has sent me a copy of his paper "The Causes of Earthquakes, Mountnin Formation and kindred Phenomena, connected with the Physic's of the Earth, " read Oct. 19, 1906.

Professor See is an able investigator. He devotes 140 pages in the Proceedings American Philosophical Society to expounding his theory. He dismisses all other theories and hypotheses as inadequate for the explanation of the phenomena indicated by the title of his paper. His own theory is that we have to turn to the explosive force of stean for satisfactorily answering the questions suggested above. On the last page he writes: "The great layer of water covering the earth which gives life to animals and plants, and in the form of stenm is the greatest mechanical agent of mnn, when sunk into the crust becomes also one of his worst i ztroycrs, on account of the explosive vapor generated beneath by the internal heat of the globe."

On p. 324 we read: "We thus seem compelled to abandon
the construction theory entirely, and to explain both peaks and ranges with veir striking parallelism to the eoast by upheavals occurring near the sea, due to the explosive power of steam, which has heaved up the mountains from beneatin.... And lastly it shows that all mountains are alike inside, whother they burst open and become volcanoes or remain intact."

The same agency he advances for producing carthquakes and volcanoes.

This post-script is not the place to present and discuss the paper at length.

Wowever, one is safe in saying that geophysicists and seismologists will not taeitly say amen, when Professor See exclaims "Eu: :ka."

$$
\nabla
$$

