IMAGE EYALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microraproductions / institut canadian de microreproductions hiatoriques

The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which moy be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usua! mothod of fllming, are checked below.

Coloured covers/
Couverture de coulaur

Covers damaged/
Couverture endommagde
Covers restored and/or laminated/
Couverture restaurde et/ou pelliculte
Cover titie missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en coubur
Coloured ink li.e. other then blue or blackl/
Encre de coulour fi.e. autre que blewe ou noire)
Coloured plates andior iliustrations/
Planches ot/ou illustrations en couleur
Bound with other material/
Rellb avec d'eutres documente
Tight binding may cause shadows or dibtortion along interior margin/
La re llure serrte peut causer de l'ombre ou de la ditatorsion lo long de la merge intitrieure

Blonk loaver added during reatoration may appeer within the toxt. Whenover poselble, these hove been omitted from filming/ II se pout que certaines pagee blanches ajouthes lore d'une rectauration apparaiseont dens le toxte. mais. Iorsque cela thatt peselble, ces pagee n'ont pes dte filmes.

L'Institut a microfilme to melleur exemplaire qu'll tul a dté possible de se procurer. Les d'trails de cot exemplaire qui sont peut-atre uniques du point de vue bibliographique. qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la móthode normale de filmagn sont indiquds ci-dessous.

Coloured pages/
Pages de coulaur
Pages damaged/
Pages endommaghes

Pages restored and/or laminated/
Pages restaurdes ot/ou pelliculdes

Pages discoloured, stained or foxed/
Pages décolortes, tachoties ou piqutes
Pages dotachid/
Pages dotachbes

Showthrough/
Traneparence
Quality of print varies/
Quallit' indgale de l'imprescion
Includes supplementery matorial/
Comprend du matériel supplómentaire
Only edition avallable/
Seule édition diaponible
Pages wholly or partially obecured by errata slips, tissues, ate., have been refilmed to encure the best possible image/ Lee pages totaiomont ou partiellement obecurcies par un feuillet d'errste. une pelure. etc., ont úté filmbes a nouveau de façon t obtenir le meilloure image poselble.

Additional commenta:/ Wrinkled pages may film sllishty out of focus.
Commentalres aupplómentaires:

This item is filmed at the reduction ratio checked bolow/
Ce document ent fllmo au taux de reduction indigut el-dessous.

The copy filmed here has been reproduced thanks to the generesity of:

D. B. Weldon Library
Universtity of Weatern Ontario
(Reglond History Room)

The images appearing here are the best qually posaible concidering the condition and legibility of the original copy and in keeping with the filming centract specifications.

Original coples in printed paper covers are filmed beginning wish the front cover and ending on the last page with a pinted or illustratad impreesion, or the back cover when appropriate. All other original copice are filmad beginning on the first page with a printed or illustrated Impreesion, and ending on the leat pace with a printed or Illustrated Imprecelon.

The lest recorded frame on ench mierofiche shall contain the symbel \rightarrow (meening "CONTINUED"), or the symbel ∇ (meening "END"). whichever appllies.

Mape, platee, charts, osc., moy be fillened at different reduction ratios. Thoee toe lerge to be entircly inclucted in one expoeure are filmed beginning in the upper lofe hand corner, left to right and top to bottom, es many frames to required. The following dilegrame illustrate the merhod:

L'oxempiaire films fut reproduit grace it gênérosité de:

2. B. Woldon Library University of Westarn Ontario (Regiond History Room)

Les Images sulvantee ont hte reprodultes avec io plus grand soin, compte temu de la condition or de io nettete de l'exemplaire filme, et en conformith avec les conditions du contrat de filmage.

Lee axemplaires originaux dont is couverture en papier cat imprimde sont filmis en commencant par lo premier plat et en terminant solt par la dernisvo page qui comporte une empretnte dilmprecsion ou d'illustration, soit par lo sacond plat, selon to ces. Tous les autres exemplaires originaux sont filmbe en commencant par la premidre page qui comporte une empreinte d'imprecion ou d'illustration ot en terminant par la dernitre page qul comporte une telle empreinte.

Un des symboles suivants apparaftre sur io dernitire image de chaque microfiche, selon le cas: Io symbolo signifie "A SUIVRE". it symbole ∇ signifie "FiN".

Lee cartes, planches, rableaux, ete., peuvent atre filmbe ides thux de riduction diffírents. Lorsque io decument eat trop grand pour stre reproduit on un soul ellicht. Il cot filmé a partir do l'angle supíreur gauche, de gauche à drolte. ot do hout en bee, en prenent to nombre d'images niceseaire. Les diagrammee suivents illustrent la mdthode.

曹

$$
\begin{aligned}
& e^{e} \\
& 8
\end{aligned}
$$

*

$$
5:
$$

N

$$
4
$$

$$
e^{2}+2+2+2+2
$$

[Haines' Withmetic.]THE
CANADIAN ARITHMETIC,
DESIGNED FOR
SCHOOLS AND ACADEMIESIN
BRITISH AMERICA,
IN FOUR PARTS.
COMPILED FROM THE BEST AUTHORS, BY A TEACHER.
PICTON, C. W. PRINTED BY JOHN DOUGLASS, 1845.

$$
\text { 2 } 2 \mathrm{ID}: 9
$$

[Gitnped, aecording to det Rorke, in the office of the Registra: \&urty tiva, by William ;- -

 PREFACE.

Among the many Arithmetics extant it is universally conceded that there is none that is in every respect adapted to the wants of Schools in this Province. There is scarcely a Sehool in which there are not several different works on Arithmetic in use. This is very perplexing to the Teacher, as well as a positive disadvantage to the pupil. It would not only be of great advantage to the pupil, but a great saving of money to parents to have a uniformity of books in our Common Schools-for it frequently occuns; that when a pupil is removed from one Schoo! to another, a new set of books must be purchased, and the old ones laid aside as nseless. Every school room should be furnished with a black board, about four by six feet in size, and all the pupils should be classed and exercised upon it daily, which cannot conveniently be done if each pupil uses a different author. Much time is wasted in many Schools by teaching individually instead of in classes.-While a class is recting and exercising on the black board it affords an excellent opportunity for the Teacher to ex. plain to the whole class at the same time any part that they do not understand. When a class is called up to recite, while one of them is solving the question given out by the Teacher, on the board, the rest of the class should solve the same question on their slates at the same time, and it should not be dismissed until each one of the class thoroughly understands it. When all the pupils in a School use the same author, and are classed and exercised in this way, it excites a spirit of emulation and interest, which is a powerful incentive to action. Many of the Arithmetics in use are American, and consequently are filled almost entirely with questions in Federal money, to the exclusion of the currency of this Province; othere again are better calculated for those who are considerably
advanced in the science, than to the capacities of the majority of pupils in our Common Schools. In many Arithmetics a mechanical method is presented of performing certain operations according to rule, without assigning any reason for such operations. Thus in Subtraction, the reason why one is carried, and ten borrowed; or in Multiplication, why the figures are placed in a certain method; or in Division, why Multiplication and Subtraction are performed, is never explained or illustrated. To the pupil they are a sort of cabalistical process, which he finds will bring the right answer, and this is all he can know from any thing he learns from the book.

Others again are too sparing of examples, especially in the simple rules, in consequence of which the pupil is hurried through them without understanding the first principles. Hence his ambition is fettered, and he can see no beauty in a science in which obscurity is behind him, and impenetrable darkness before him.

The compiler of the following work has enlarged upon and given numerous examples in the different rules, in proportion to their practical importance in the business transactions of life. At the commencement of each rule, one or more examples have been wrought at length, and the methed of operating has been clearly and fully explaineu. No term is used until it has been defined-and the examples under the various rules are mostly of a practical nature. The arrangement of the rules is that which appeared to the compiler the most easy and natural. After Reduction and the Compound Rules, those which are of the most practical importance are first introduced. It is believed that this arrangement will be found of great advantage, especially to those who have not an opportunity to go through all the rules of arithmetic.

The intercourse and trade between this Province and the United States is so extensive, it is important that every one ehould understand the currency of that countrytherefore a short article on Federal money has been introduoed immediately after the compound rules. In the arti-
cle on the subject of Proportion, the useless and perplexing distinction of direct and inverse proportion has been discarded, and a single rule, which is simple and general, has been adopted.

The solutions of some of the most difficult questions are intended to assist such as may study the science without the aid of a Teacher; and perhaps they may be of adyantage to some teachers who have had but little experience in their profession.

To a business man, a practical and correct knowledge of Arithmetic is of the first importance; hence the public should receive with indulgence every attempt to improve this interesting and important department of instruction.

In a popular treatise on a subject which has engaged the attention of many Authors endued with talents of the highest order, much originality cannot be expected. This work, compiled from the best authors, is respectfully submitted to the inspection of the public, with the simple request, that they will examine critically and impartially before they condemn it.

Prince Edward Sıminary, 7th mo. (July,) 1845.

ADDRESS TO PUPILS.

My Young Fbiends,

This book is compiled expressly for your benefit, and is intended to assist you in acquiring a knowledge of one of the most useful, and if properly pursued, most interesting branches of science. Arithmetic is not pronounced a dry and difficult study by any one who pursues it understandingly ; and that it may be perfectly understood by all who resolve to do so, there is no reason to doubt.

It is to be hoped that very few, if any of you, will be satisfied short of this; for it is not only a great waste of time and labor, but is also doubly perplexing to spend months, perhaps years in a dull monotonous drilling upon a subject, for want of a proper application, while the student who perseveringly removes each obstacle which he meets, will progress far more rapidly as well as pleasantly, and at the end will enjoy the gratification of having gained the object of his pursuit.

I trust, that in the following pages you will find no difficulty which may not by a little sober reflection be easily removed. An example in each case is worked out and explained, so that the most intricate may, by the application of your minds with a little assistance from a teacher, be render-
ed quite plain and easy, and you should make it a constant rule never to pass over any part without thoroughly understanding it. Although by this method, your progress may at first appear rather slow, your real advancement will be greally increased.

The questions at the bottom of each page are designed to point out the portions to be committed to memory. The answers should be thoroughly learned, as you proceed in the examples. Take your books home and study these parts during the long winter evenings.
The study of mathematics, of which arithmetic is a branch, is peculiarly calculated to discipline and improve the intellectual faculties, and to fit for future usefulness and activity. This volume is intended as an introduction to that important and extensive field of science. Haring gained a thoprepared to advance with case and alacrity and with invigorating powers in the path of mathematical knowledge. Be not discouraged then by ap. parent difficulties at the commencement. They may be, as they often have been, completely surstead of perplexing, prove sources of amusement to conquered, there will be difficulties both before and
lake it a without by this rather ally in-
behind with but a poor prospect of success.: I have read an anecdote of a lad who boasted that he had been through the arithmetic and could perform any sum in it. Some person gave him the following question: "How much will sixty pounds of beef amount to at three pence per pound, provided it is three fourths fat?" After pondering awhile, he gave it up in dispair saying, if it were not for the fat he thought he could do.it. So much for going through the arithmetic without thinking.

You must not be afraid of thinking. It is the very thing that will strengthen and improve your minds, while at the same time it will make you the conquerors of the field before you. The only thing wanting with most young persons, is a determination to obtain knowledge. There is time enoughwasted by nearly every one between the ages of fifteen and twenty, to acquire a good English education. Many of the most eminent men, whose names are justly honored, have attained the elevated stations which they occupy in society and in the world, by their own unaided and untiring exertions. Close application, joined with unconquerable perseverance, will overcome all obstacles; one after another will give way, until eventually, you will find yourselves standing upon the hill of science.

May you then my young friends, deeply possess your minds with an esteem for that which is truly worthy of your time and attention. Seek enjoy-

ADDRẸS TO PUPILS.
ment in the study of truth in all its branches, in the undeviating practice of virtue, and in promoting the happiness of all around you. Virtue and ing. telligence will make you honored, and true piety will render you happy in every situation in life, and that you may become deservedly honored and truly happy, is the desire of Your friend,

THE AUTHOR.
hes, in the romoting e and inrue piety n in life, ored and

NUMERATION AND NOTATION.

Numbers are expressed by certain characters called figures. There are ten of these characters, viz: $1,2,3,4,5,6,7,8,9,0$-the last of which is called a cipher, or naught. The nine others are called significant figures or digits.* They are also called Arabic eharacters, because they were first introduced into Europe by the Arabs.

A unit is a whole thing of any kind. Thus, if the number be eight feet, one foot is the unit; if it be four pounds, one pound is the unit, \&c.

If the figure 1 stands alone, it represents one unit ; figure 2, two units ; figure 3, three units, and so on.

[^0][^1]
NUMERATION AND NOTATION.

If we wish to express a higher number than nine, We must combine these characters. For instance, if we wish to express the number ten, we must Write a cipher on the right hand of 1 , thus, 10 ; if one hundred, we must write two ciphers, thus, 100 ; if one thousand, three ciphers, \&c. So we see that figures have a different value, dependine see the place they occupy. Talue, depending upon number 100; when the figure for example the presents but one unit- figure 1 stands alone it retowards the left by put remove it one place hand, and it becomes putting a cipher on the right units; remove it two places times as much, or ten ed ten times, and represents and it is again increasit appears that the rements one hurdred. Hence towards the left incremoval of a figure one place its value ten times. a unit of the second the first order; 10 is called is called a unit of the order, or order of tens; 100 dreds, \&c. Thus we third order, or order of hunfirst order make one perceive that ten units of the ten units of the second mak second order, and der, and ten units of the make one of the third orof the fourth order, or 1000 .

Writing numbers by figures is called Notation. figures.

Questiona
Give examplea. What we exprese a higher number than nine? pher is placed on the right hand? figure 1 represent when a cipherst• How is the value of a figure Two ciphera? Three ciplace towards thie lon hand? What affected by removing it one decmakerders Tlist order? How many unit of the first ordert make one of the third? second?. How many of unita of the firat orof the fourth? What? How many of the third esecond order of the fourth? What is Notationt What is Norder make one
er than nine, or instance, n, we must thus, 10 ; if s, thus, 100 ; So we see nding upon xample the alone it reone place on the right uch, or ten in increasd. Hence one place times.

0 is called tens ; 100 er of hunnits of the rder, and third ore one unit

Notation. down in
han ninel when aciThree ciing it one at order! first ore nd order pake one on!

HUMERATION AND HOTATIOR.
NUMERATION TABLE.

The words at the head of the above table, units, tens, hundreds, \&c. are applicable to all numbers, and must be committed to memory by the pupil.

[^2]In order to facilitate the reading of figures they are often separated into periods of three figores each, counting from the right hand towards the left. The first period is called the period of units -the second, thousands-the third, millions- the fourth, billions-the fifth, trillions-the sixth, quadrillions, \&c.

Quad.	Tril.	Bil.	Mil.	Thous.	Units.
457,	341,	623,	589,	891,	213.

EXERCISES IN NOTATION.

Write four in figures. Write twenty one. Write seventy five, Write one hundred and one. Write six hundred and seventy nine. Write four thousand and twenty eight. Write nine thousand nine hundred \& nine. Write ten thousand. Write one hundred thousand. Write one million. Write one hundred million. Write four billions.

Write two hundred and eighty five thousand seven hundred and nineteen.

Seven hundred and thirty six thousand one hundred and fifty six.

Seven million one hundred and sixty one thousand nine hundred and six.

Three million seven hundred thousand six hundred and seventy four.

Twenty seven million fifty four thousand three hundred and ninely six.

One hundred and eighty two million three hundred and seventy five thousand nine hundred and nine.

[^3]
ROMAN NIUMERATION.

Before the in troduction of the Arabic figures, a method of expressing numbers by Roman letters was employed. As this method is still in use, it is important that it should be learned. The letter I stands for one ; V, for five ; X, for ten ; L, fifty ; C, C, one hundred; D, five hundred; M, one thousand.

As often as a letter is repeated its value is repeated. When a less number is put before a greater, the less number is subtracted from the greater. But when the less number is put after the greater, it is added.

EXAMPLES.

In IV, the less number, I, is put before the greater number V, and is to be subtracted, making the number four.

In VI, the less number is put after the greater, and it is to be added, making the number six.

In XL, the ten is to be subiracted from fifty.
In LX, the ten is to be added to fifty. ROMAN TABLE.

	One	LX	Sixty
II	Two	LXX	Seventy
III	Three	LXXX	Eighty
IV	Four	XC	Ninety
V	Five	C	One hundred
VI	Six	CC	Two hundred
VII	Seven	CCC	Three hundred
VIII	Eight	CCCC	Four hundred
IX	Nine	D	Five hundred
X	Ten	DC	Six hundred
XX	Twenty	DCC	Seven hundred
XXX	Thirty	DCCC	Eight hundred
XL	Forty	DCCCC	Nine hundrod
L	Fifty	M	One thousand

A line drawn over a number increases it a thousand times, shas, $\overline{\mathbf{X}}$ expremses ten thousand, and $\overline{\mathbf{X X}}$ twenty thoumand.

SIMPLE ADDITION.

If four apples are added to 5 apples, how many in all 3 Every one will answer, 9.

Here a single apple is the unit; and the number 9 contains as many units as the two numbers 4 and 5 ; and the operation by which this result is obtained is called addition. Hence, addition is uniting several numbers in one. The number which is obtained by uniting several numbers into one is called the sum, or sum total. In the above example, 9 is the sum of 4 and 5 added together.

TIL EIGNS.

One straight line crossing another at right argles, thus + is called plus, which signifies more. When placed between two numbers, it denotes that they are to be added together, thus $2+4+3$ denotes that 2,4 and 3 are to bo added tegother.

Two short parallel lines are called the segn of equality. Thus $2+3+4=9$ and $4+5+6=15$. When placed between two numbers it denotes that they are equal to each other.

Note.-Before adding large numbers the pupils should be able 10 add small numbers inentally, and not by counting their fingers, or something else, as many do. By bing thorough at the commencemeat inuch time and labor will be saved.
The pupils should now be classed, and combinations like the following should be propounded until the nature of addition is well understood.

[^4]

Write the numbers to be added-units under units, tens under tens, hundreds under hundreds, \&c., and draw a line underneath.

Add each column separately, beginning with the right hand column. When the sum of any column is not more than nine, write it down under the column; but when it is more than nine, write only the right hand or unit figure under the column,

[^5]
18

GEMPLE ADDITION.
and carry the left hand figure or tens to the next column. Add each column in the same way and set down the entire sum of the last column.

1. What is the

'3.
 numbers under each other, units under units, tens under tens, \&c. as directed in 339 the rule. We then commence at the 1212 find thand column and add it un, and Sum 14302 tens and 5 units, we wite be 25, or 2 tens and 5 units, we write only the lefi hand figure or 5 units, and add the In adding the tens we find figure or 2 tens to the line of tens. fore write it down. Now the sum to be 9 , we thereIn adding the hundreds there is none to carry. write down 13, the 3 would sum is 13 . If we should hundreds, and the 1 under the stand under the column of fore we write the 3 only column of thousands; there. thousands.

In adding up the last coiumn we find it amounts to 14 , we now set down the entire sum according to the rule.
(2) 22345

67890
8752
340 350
78 Sum, 99755

Quertion.-How do we prove addiliont
sum is the same as the sum total first found
the work may be regarded as right

Draw a line under the upper numberadd the lower numbers together, and then add their sum to the uper, and then sum is the samo the upper. If the last . ${ }^{\text {geded as right. }}$

$$
\text { Proof, } \frac{77410}{99755}
$$

STMPLE ADDITIOR.

he next ay and d 1212. rite the s under ected in at the p, and 25 , or aly the add the of tens. there-
should amn of thereth the 10 14; le.

(11)	(12)
234561	1345601
123003	3413215
456784	1014494
341612	3742121
172310	34167
416789	841
432111	21

(3) 22321 41332 12123 13220
$\overline{88996}$
(7)

140670	23456
596704	54321
$860 \$ 42$	123455
104539	67990
210110	30102
121401	87549.

(4) 23432 42212 13124 21101
$\overline{99869}$
(8)

23456
54321
12345
67890
30102
87549.
(12)
134.5601
(13)

5430161
241678 34.124

9671 540 31 9
(5)

110331
224212 103123 220320

657986
(9)

456780
134108
120212
967342
710011
81216

practical exercises.

1. Find the sum of $4+8+6+10+12+16+18+20$ $+81+13$. Ans.
2. What is the sum of $100+101+141+106+91+$ $+10+4$. Ans.
3.- Five boys commenced playing marbles-Willet had 18, Levi 21, John 11, William 10, and Thomas 9 ; how many marbles had they all?
3. Charles bought apples as follows: at one time 5221, t another 7540; then 1368, then 5648, then 7300: hew many did be buy in all 3 . Ans. 27077.
4. A man had 241 sheep in one field, 104 in another, 91 in another, and 164 in another. How many injall ?
5. The population of Montreal is 45,000 , of Quebec 300,000, of Torónto 20,000, of Kingston 8,000 ; what is the entire population of the above named cities?

$$
\text { Ans, } 103000
$$

7. From the creation of the world to the Deluge was 1656 years; thence to the building of Solomon's temple 1344 years; thence to the birth of Christ 1004 years. How old is the world the present year?
8. A drover paid 300 dollars for 200 sheep, 525 dollars for 250 sheep, and 1000 dollars for 504 sheep; how many did he buy, and what did the whole cost?

Ans. 954 sheep, and they cost 1825 dollars.
9. St. Paul's Cathedral in London cost 800,000 pounds sterling, the Royal Exchange 80,000 pounds, the Mansion House 40,000 pounds, Blackfriars bridge 152,340 pounds, Westminster bridge 389,000 pounds, and the Monument 13,000 pounds; what is the amount of these sums?

Ans. 1,474,840 pounds.
10. The British dominions are estimated in square miles as follows: England and Wales 57,812, Scotland 32,167, Ireland 31,874, Islands in the P ritish Seas 332, Colonies and 'Dependencies in Europe 4, in Asia 1,201;664, in Africa 200,723, in North America 754,577, in the West Indies 77,552, in South America 52,400, and in Australasia 500,000; what is the whole amount ?

> Ans. 2,912,225.
11. The population of the British Empire and Colonies is as follows: England 14,995,000, Wales 911,000, Scotland 2,628,000, Ireland $3,466,000$, North America 1,580 , 000,West Indıes and South America 845,000, Africa 300,000 , Asiatic 124,54,1,000; Ceylon, Chin-India \&c, 1,400000; Odeahica 575,000; query, the entire population?

$$
\text { Ans } 15624,000 .
$$

12. The population of London is $1,500,000$, Manches(ter 182;000, Liver pool 165,000, Birmingham i46,900, Loeds 123,000, Bristol 117,000, Plymouth 75,000, Nor-
wich 61,000 , Sheffield 59,000 , Hu!l 54,000 , Nottingham 51,000, Portemouth 50,000, Cambric'ge 21,000, Oxford 21,000, and York 25,000; how many inhabitants in all? Ans. 2,650,000.
13. Accordirg to the census of 1842 , the population of Canada West was as fullows: Eastern District 27618, Ottawa Dist. 7386, Juhnstown Dist. 31839, Bathurst Dist. 21086, Dalhousic Dist. 15681, Prince Edward Dist. 14396, Midland Dist. 344.38, Victoria Dist. E214, Newcastle Dist. 30425, Coltorne Dist. 13265, Home and Simcoe Dists. 83294, Ningara Dist. 34348, Gore Dist. 44232, Wellington Dist. 11418, Brock Dist. 17315, Talbut Dist. 10193, London Dist. 29657, Huron Dist. 6515, Western Dist. 21493. What was the entire population of Canada West at that time? Ans. 4.59,818.

SIMPLE SUBTRACTION.

1. If 4 apples are taken from 6 apple; how many will remain?
2. If 3 pence are taken from 3 pence, what will romain?

In the first example two apples will remain, and the two is called the difference between 4 apples and 6 apples. Hence subtraction is taking a less number from a greater. The gicater of the two numbers is called the minuend, and the less the subtrahend, and the difference is called the remainder.

A short horizontal line (-), is the sign of subtraction ; it is called minus, which is a Latin word, signifying less; it shows that the number after it is to be taken from the one before it. Thus, $0-4=5$, and is read 9 minus 4 is cqual to 5 , or 9 less 4 equals 5.

[^6]
sIMPLE SUETRACTION.

Subtraction is the reverse of addition, and may be proved by it, as a few examples will show.
3. A man bought 75 sheep, and sold 32 of them ; how many had he left? 75-32=how many? Ans. 43.
4. A man sold 32 sheep and had 43 left; how many had he at first? $32+43=$ how many? left; how Nots. -The class should now $24=48=5,5 \div 4=9$. Tike the following, orally: thus 2 ferequired to answer questions
$1-0=$ how many? 2 fromi 6 leaves how many?
5-2 =how many?
8-4 = how many?
9-3=how many?
9-5 =how many ?
7-4 = how many ?
$10-4=$ how many?
12-7 =how many ?
14-8=how many?
$\cdot 16-10=$ how many?
18-12=how many?
$20-13=$ how many?
Write dule for subtraction. greater, placing the numbers, the less under the and draw a line beneath. . or unit figure, and subtract Begin at the right hand er line from the one abact each figure in the lowmainder directly below. above it, and write the reWhen the number. than the one under it, suppose uper line is smaller the upper figure but, suppose 10 to be added to the lower figure in the this case we must add 1 to ing. This is called borrowing 10 before subtract-Quebtions--Ot what borrowing 10. eet down the numbers for subtraction the reverse? How dowe sublract? How do we subtract? mainder? When the number in the upper we do with the relower figure? lower figute? What ig thise called? What do we add to the next

mXAMPLPS.

	(1)	(2)
From	4567	3436 subtrahend.
Subtract	1314	2187 minuend.
	3243	1249 remainder.

In the first example, we begin at the right hand and subtract each figure in the lower line from the one above it, thus, 4 from 7 and 3 remains, \&c. In the second example we meet with a difficulty, for we cannot take 7 units from 6, we obviate this difficulty by adding 10 to the minuead or 6 , which makes 16,7 from 16 and 9 remains. As 10 units have been added to the minuend, the same amount must be added to the subtrahend. The pupil will recollect that 10 units in the first place make one in the second place, we therefore add 1 to the 8 tens, making it 9 tens-we cannot subtract 9 tens from 3 tens, therefore we again add 10 to the minuend, which makes 13,9 from 13 leaves 4, and so on through all the orders.

The above reasoning is predicated upon this principle, that if an equal amount be added to the minuend and the subtrahend, the remainder is unaltered.

> EXAMPLE.
$9-4=5$. Now if we add 10 to 9 and also to 4 we will have $19-14=5$ as before.
(3)

From 423652
Take 132941
Rem. 290711

PROOF.
Add the remainder and subtrahend together; if the work is right, the sum will be equal to the minuend.

Pronf, 423652
Addition may be proved by subtracting continually from the amount the several numbers which were added to pro-

[^7]duce it, and if the work is right there will be no remainder. Illustration.-5, 4, 7=16: proof, $16-7=9$, and $0-4=5$, and $5-5=0$.
(4)

From 3621531
Take 1841675
1779856
(6)

(9) 74.56789 946340
(10)
104.3456 141897

From 9104.1234 Take 70134.165

20907069

841397 198745
(11)

10101010 1010101
12. From 41078912 take 19416781.
13. From 724.16714 take 13741010.
14. From 91012412 take 9179743.

SIMPLE MULTIPLICATION.

1. A boy gives 8 apples to each of 3 companions; how many does he give to them all?
2. If 1 bushel of apples cost 9 pence, how many pence must I pay for 4 bushels?
3. If one orange costs 3 pence, what will 4 orangea cost?

The answers to the above quastions may be obtained by addition ; but the operation may be much facilitated by a rule ralled Multiplication.

In the first example the numlier 8 apples is repeated 3 cimes, we may therefore add 8 three times to itself, this $8,8,8=24$; or we may say 3 times $8=24$, and no of the cocond and third examples.

10 remainder.
$-7=9$, and

041234
134165
907069
$\$ 1397$
3874.5

4 orangea
cy be ob. be much
epeated 3 self, this no of the

Multiplication is a short method of repeating one number as many times as there are units inanother.

The number to be repeated is called the multiplicand.

The number which shows how many times the multiplicand is to be repeated is called the multiplier.

The answer is called the product, because it is the sum produced by multiplication.

The multiplier and multiplicand taken together are called factors.

Sign.-Two short lines crossing each other in the form of the letter X are the sign of muiltiplication ; thus, 4×2 $=8$, which means that two times 4 are equal to 8 , or 4 times 2 are 8.

Note to Pupils.-I hope you will so far consult your own interest, as to commit the following table perfectly to memory before you attempt to proceed farther. No progress can be made without it. If you apply yourselves perseveringly to the task, you can soon accomplish it; and if you should proceed no farther, you will find it of great advantage to you through life.

[^8]SIMPLE MUL TIPLICATION.

${ }^{2}$

RULE FOR MULTIPLICATION.

1. Set down the multiplier under the multiplicand, so that units shall fall under units, tens under tens, hundreds under hundreds, \&c. and draw a line underneath.

When the multiplier does not exceed 12, begin at the right hand of the multiplicand, and multiply each figure contained in it by the multiplier, setting down and earrying as in addition.
2. When the multiplier exceeds 12 , multiply by each figure of the multiplier separately; first by the units, then by the tens, then by the hundreds, \&c., being careful always to place the first figure of each product directly under the figure by which you multiply.

Add up the several products, and their sum will be the product sought.

EXAMPLES.

1. Multiply 145 by 3 ; that is, find 3 times 145.

The answer to this example might be ohtained by adding 145 together 3 times; thus, $145+145+145=435$, or more readily by multiplying 145 by 3 .
operation.

Multiplicand 145
Multiplier 3
\qquad
Product 435

We first write the multiplier under the multiplicand, and then say 3 times 5 are 15, or 5 units and 1 tenwe write down the 5 units only, and reserve the ten to be added in the ten's place; we then say 3 times 4 are 12 , and 1 more makes 13, that is 3 tens and one hundred. We now write down

[^9]multiplication. the hundreds place, and the, and reserve the hundreds for 4 \&cc. which occupies then say 3 times 1 are 3 and 1 are that 3 times 145 are 435, place of hundreds; so we find It is plain from th, which is 145,3 times repeated. plicrtion is a short method example that Multiany product may be found of addition, and that multiplicand as many timd by setting down the the multiplier, and addimes as there are units in
2. Multiply 365 by 246 .

Multiplicand 365
Multiplier
operation.
246 sitn this example the multiplier consists of 3 figures; we first write it under the multiplicand, units under units,
2190 1460 730
Product 89790

agreeably to the we add the several multiply by; lastly In multiplying directions of the rule. In mulltiplying by 4 units the product is In multiplying by 4 tens, or 40 , the product is	In multiplying by 2 hundreds, or 200 , the prot is
2190	
4600	Consequently the sum of these products tiply the multe directs-we then multiply the multiplicand by the 6 units,

then by the 4 , dreds, and 4 tens, then by the 2 hununder the place the product directly we add the several products together,
the hundreds for are 3 and 1 are eds ; so we find times repeated. ? that Multion, and that ig down the are units in 1er.
ultiplier cont write it unsunder units, we then multhe 6 units, y the 2 hunluct directly y by ; lastly cts together,

2190
14600 ct is 73000

89790
246. nultiplier $\times 5$ is the
plier, and re alike, xamples.
simple multiplication.

$\begin{array}{r} (3) \\ 4372543 \\ 2 \end{array}$	$\begin{array}{r} (4) \\ 427365 \\ 3 \end{array}$		$\begin{array}{r} (5) \\ 5729385 \\ 4 \end{array}$
874.5086			
$\begin{gathered} (6) \\ 4567145 \\ 5 \end{gathered}$	$\begin{array}{r} (7) \\ 3541678 \\ 6 \end{array}$		(8) 13456789 7
$\begin{array}{r} (9) \\ 3451248 \\ 8 \end{array}$	$\begin{aligned} & (10) \\ & 2314.521 \\ & 9 \end{aligned}$	(11)	(12)
		314156	12134.51
		10	12

	Multiply	480 by		Product	17280
14.	'	1324 by	45	- "	59580
15.	6	3648 by	72	*	265248
16.	6	3725436 by	43	*	160193748
17.	6	12765235 by	275	"	3510439625
18.	4	537467 by	367	"	197250389
19.	*	673526 by	2674	*	1801008524
20.	6	346726 by	3426	6	1187883276

CONTRACTIONS in multiplication.
I. When the number is 1 , and any number of ciphers after it, as $10,100,1000$, \&c.

We have already learned that a cipher placed on the right of a number, changes the units place into tens, the tens into hundreds, \&c. Hence,

When the multiplier is 10,100 , or 1 with any number of ciphers annexed, place as many ciphers to the multiplicand as there are ciphers in the multiplier, and the multiplicand so increased will be the product required.

[^10]
EXAMPLES.

1. Multiply 3411 by 10
2. 66475 by 100 .
3. $\quad 3159$ by 1000.

Ans. 3410.
Ans. 47500.
4. $\quad 6 \quad 2346$ by 10000 .

Ans. 3159000.
Ans. 23460000.
II. When there are ciphers on the right hand of one or both of the factors.

RULE.
Neglect the ciphers and multiply by the significant figures only; then place as many ciphers to the right hand of the product, as there are in both of the factors.

EXAMPLES.

(1) 365 40	$\begin{aligned} & (2) \\ & 4567 \\ & 300 \end{aligned}$	$\begin{gathered} (3) \\ 46000 \\ 340 \end{gathered}$
Ans. 14600 Ans	Ans. 1370100	$\begin{gathered} 184 \\ 138 \end{gathered}$
		15640000
4. 76400×24	Ans. 1833600. Ans. 4368560000.	
5. 7532000×580		
6. 21200×70	Ans. 1484000.	
7. 4871000×27000	Ans. 1315170000000.	
8. 7496430×69500	Ans. 5210018850000.	

III. When there are ciphers standing between significant figures of the multiplier they may be disregarded.

EXAMPLE.

1. What is the product of 12318 multiplied by 7004 ?

Quebtions.-W.Wen there are ciphers ua ihe right hand of one or both the factors, what is the method of proceeding? How many ciphers should be placed at the right hand of the product? When there are ciphers standing between significant figures of the multiplier how should we treat them.

Ans. 3410. Ans. 47500. Ans. 3159000. ns. 23460000. hand of one or
y the significiphers to are in both
(3) 46000 340

184
138
15640000 J. 000. . 1000000. 850000 .
en signifi-
sregarded.
by 7004?
land of one ng? How e product? figures of

2. What is the product of 506 multiplied by 302 ? Ans. 152812. 3. Multiply 154326 by 3007 Ans. 464058282. IV. When the multiplier is a composite number.

A composite number is the product of two or more numbefs, which are called the components or factors. Thus, $4 \times 3=12$. Here 12 is a composite number, and 3 and 4 are the factors, $8 \times 5=40 ; 40$ is also a composite number.

nule.

When the multiplier is a composite number, multiply by each of the factors in succession, and the last product will be the entire product sought. examples.

1. Multiply 365 by 16.

The factors of 16 are 4 and 4 , or 2 and 8 , or they are. 2 and 2 and 4 ; for $4 \times 4=16$. and $2 \times 8=16$; also, $2 \times 2 \times 4=16$.

365	365	365
4	$\frac{8}{4}$	$\frac{2}{2}$
1460	2920	730
$\frac{4}{5840}$	$\frac{2}{5840}$	$\frac{2}{1460}$
		$\frac{4}{58}$

Questions. - What is a composite number? Give an example. What are the factors? When the multiplier is a composite number how do we multiply? What will the last product be?
2. Multiply 5709 by $6 \times 8=48$
3. Multiply 2573624 by $5 \times 3=15$
4. Multiply 8423675 by 64
5. Multiply 5246789 by 81
6. Multiply 4103413 by 100

Ans. 274032. Ans. 38604360 . Ans. 539115200. Ans. 424.989909. Ans. 410341300.

PRACTICAL EXERCISES.

1. What number is that, the factors of which are 9,5 , 4 and 2 ?
$9 \times 5 \times 4 \times 2$ are how many?
2. A certain orchard consists of 126 rows, 109 trees in a row, and suppose it to have 1007 apples on each tree, how many trees and apples does the orchard contain?
3. There are 24 Ans. 13734 trees, 13830138 apples. week, how many hours in a a day, and seven days in a
4. Suppose a man were toeek. Ans. 168 hours. far would he travel in 365 days? 32 miles a day, how 5. If 46 men can 365 days? Ans. 11680. many men will it take to do it in of work in 60 days, how
5. What is that number, of which Ans. 2760 men. are factors?
6. There are 320 rods in a mile Ans. 31752. 340 miles ?
7. What will 194 chests of Ans. 172800 rods.

Ans. 172800 rods.
t, at 75 dollars a chest ? Ans. 14550. lars an acre ; wharm containing 495 acres, for 19 dol9. A man sold a farm containing 495 act
10. Suppose a book to contain Ans. 9405 dollars. each page, and 50 letters contain 470 pages, 45 lines on in the book?
11. The earth is computed to move Ans. 1057500. miles per hour; how far does it move at the rate of 58000 of 8766 hours? 12. Two men depart from Ans. 508428000 miles. in opposite directions- from the same place and travel ane at the rate of 31 miles a day,

Ans. 274032. s. 38604360 . 539115200. 424989909. 410341300.
lich are 9,5 ,

109 trees in on each tree, contain?
138 apples. n days in a 8 hours. a day, how 0 .
0 days, how
60 men.
14 , and 21
31752.
ny rods in 00 rods. ars a chest ? 14550. for 19 dol-
dollars. 5 lines on ny letters 57500. of 58000 consisting miles. pd travel es a day,
the other 45 miles a day; how far will they be apart at the end of 12 days? : . . 1 ns. 912 miles..
13. The component parts or factors of a certain number are $4,6,8,9,12$, and 14 ; what is the number?

Ans. 290304.
14. A dollar contains 5 shillings; how many shillings in 299 dollars? Ans. 1495 shillings.
15. One pound contains 4 dollars; how many dollars in 1540 pounds?

Ans. 6160 dollars.

SIMPLE DIVISION.

John has 25 apples, and wishes to divide them equally among 8 boys.

Operation.

1st remainder 17

2nd remainder
9
8
In this example, giving each boy 1 would take 8 and leave 17; giving each 1 a second time would take 8 and leave 9 , and giving each 1 would again take 8 and leave 1. 8 has been subtracted from 253 times; hence 8 , is contained 3 times in 25 and there is 1 over.

3rd remainder 1
By continued subtraction we can always find how many times one number is contained in another, and likewise what remains when it is not contained an exact number of times.

We can however arrive at the same result by a much shorter and more expeditious method called Division.

[^11]
SIMPLE DIVISION.
 Division teaches

ny times a less number manner of finding how maIt is also a short method is contained in a greater. tractions of the same num of performing many subThe number same number: Divisor: number by which we called the Dividend. The numbe divide is called the vidend contains the dispres how many times the dior answer. There are thire stgins. short horizontal line betwsed to denote division. 1st. A that the number preceding it two dots, thus - it shows following it, thus $24 \div 4=6$. 2 is divided $\dot{b}_{\text {b }}$ the one ten over the line, and the divisor 2nd:. The dividend is writTwo curved lines drawn to th under i t, thus $\frac{24}{4}=6$. 3rd. dend, with the divisor at the left right and left of the divi.-
Note.-Thi rut left, thus 4)24(. tion, and to beginners involves subtraction and multiplicatherefore be exercised is some the what difficult; they should mentally, until the process beco division of small numbers 2 in 2 how ,

2 how many times? 3 in 6 familiar and easy.						
$\begin{aligned} & 2 \text { in } \\ & 2{ }^{2} 4 \end{aligned}$						
2 in 8	"	"	$?$? 4 in 12	"		
2 in 10		"	? 4 in 16			
2 in 12	"	"	$?$? 4 in 8	"	"	
2 in 14,	"	"	$?$	"	"	
2 in 16		"	$?{ }^{3} 5$ in 15			
2 in 18		"	$? 6$ in 12			
	。		?/ 6 in 18		\%	?

Questions. - What does division teach? ber to be divided called? What is the whai is the nam. called? What is the answer calledt the number to divide is: there in division? Make them, How many signs are
rding how main a greater. ng many subthe Dividend: is called the times the dithe Quotient
sion. 1st. A \div it shows d by the one ridend is writ$\frac{24}{4}=6$. 3 rd . t of the divi-
multiplicathey should lll numbers d easy.
y times?

he nums. ivide 6 igns arf

SLMPLE DIVISIONT.

-7 in 14	how many	times?	11 in 22	how many	tim
7 in 21	*	${ }^{6}$	11 in 33	6	*
8 in 16	*	6	12 in 24	${ }_{6}$	${ }_{6}$
8 in 24	… 6	86	12 in 86	6	6
9 in 18	*	6 ?	12 in 60	6	'6
9 in 27	6	0 ?	12 in 96	*	*
10 in 20	*	*	12 in 108	6	6
10 in 30	*	*	12 in 144	${ }^{6}$	6
10 in 40	*	*	9 in 81	${ }^{6}$	*
9 in 63	6	6	8 in 72	${ }^{6}$	${ }^{6}$

$28 \div 7=$ how many? $1 \frac{49}{7}=$ how many?
42 " 6 =how many? $\frac{80}{11}=$ how many ?
54 " $9=$ how many ? $\frac{\frac{81}{12}=\text { how many ? }}{12}$
32 " $4=$ how many? $\frac{108}{12}=$ how many?
33 " $11=$ how many $? \frac{7_{2}}{6}=$ how many?
64, "8=how many? $\frac{110}{10}=$ how 'many?
$81 " 9=$ how many? $\frac{144}{12}=$ how many?
RULE FOR DIVISION.
I. When the divisor does not exceed 12, set it down on the left of the dividend, draw a curved line between them, and a straight line under the dividend. Find how many times the divisor is contained in the left hand figure, or figures of the dividend, and write the figure expressing the number of times underneath. If there be a remainder over, conceive it to be prefixed to the next figure of the dividend, and divide the next figures as before, and so on through the dividend
II. When the divisor does exceed 12, set down the divisor and dividend as above directed; draw a curved line to the right and also to the left hand of the dividend; then find how many times the divisor is contained in the fewest figures of the

[^12] figure. Then multiplyidend for the first quotient figure-write thultiply the divisor by this quotient dividend-see how many down the next figure of the visor-place the result in the thes it contains the diply and subtract as before quotient ; then multifigures of the dividend shand so on until all the down and divided.

1. Divide 468 by 2 ExAMPLEs.

> Operation. Divisor $_{2}$)468 Dividend. 234 Quotient. which being tens, is writhen we under the 4 hundreds. hundreds, 6 tens and 8 units to 4 be divided. We and 8 units to times, which being 2 , 2 in 4, 2 we write it undeing 2 hundreds, Then we say 2 in 6,3 hundreds. 2 in 8 , 4 times, which are 4 under the 6 tens; then we say, the 8 units. 4 units, and are written under 2. Divide 568 by 4. Operation. 4) 568

Here we say 4 in 5 , once and 1 over-we the 6 , making 16 ; then say 4 in 16,4 times, and 4 in 8,2 times, \&c. Operation. 5) 1547.

309-2

I

142

 8,2 times, \&cc. 4 in 16,4 times,then say 5 in contains 5, 3 times; we the quotient ; 4,0 times, and set the 0 in nexusurions.-W Where do we place the 5 in 47,9 times, with it? Whare do we write the producsult? What is the proceed to the end do wo with the premuinden and what do we do what order will the If the divisor is cemainder, and how do wio quotient be? If in tena $?$ If in undreds, of
and a remainder of 2 , this 2 being a part of the dividend, should be divided by 5 , but it cannot be, we therefore write the divisor 5 under the remainder 2 , thus, $\frac{2}{5}$, which expresses that the 2 is to be divided by 5 , and the quotient of 1547 divided by 5 is $309{ }_{5}^{2}$.

Hence when there is a remainder after division, it may be written after the quotient, with the divisor placcd under it.

The foregoing method of performing division, when the divisor does not exceed 12, is called Short Division.

PRoof.

Multiply the quotient by the divisor, and to the product add the remainder, if any, and the sum will be equal to the dividend.
(4)
4) 3695672
Quot. $\begin{array}{r}923918 \\ 4 \\ \text { Proof } \\ \\ \hline 36956 \% 2\end{array}, ~$
(5)
5) 145678

$$
\begin{gathered}
29135-3 \\
\frac{5}{145678}
\end{gathered}
$$

It appears from the above examples that division is proved by multiplication, and as the one is the opposite of the other, multiplication may be proved by division. When two numbers are multiplied together, the multiplicand and multiplier are both factors of the product. Hence it follows that, if the product be divided by one of the factors, the quotient will be the other factor. Wherefore, if the product of two numbers be divided by the multiplicand, the quotient will be the multiplier ; or if it be divided by the multiplier, the quotient will be the multiplicand.

Illustration, $12 \times 8=96 \div 12=8$ and $96 \div 8=12$.

$$
11 \times 9=99 \div 9=11 \text { and } 99 \div 11=9
$$

[^13]SIMPLE DIVISION.
(6) 3) 846208 $282069{ }_{3}^{2}$ (9)
9)1434567
(12)
10) 3415670
(7)
5)620482
$124096 \frac{2}{5}$
(10)
7)7841034
(13)
11)3891416
(8)
6)131519

21919:
(11)
8) 13456789
(14) 12)27483416
15. Divide 640 pounds among 4 men.
$640 \div 4$, or $\frac{64+2}{4}=160$ pounds. Ans.
16. $\quad 510421=$ how many?
17. $\frac{8041071}{8}=$ how many?
18. $14 \frac{130.41 a}{9}=$ how many?

When the divisor exceeds 12, as in the examples that follow, the operation is called long division.

1. Divide 840 by 24.

Operation.
Dividend
Divisor 24) $840(35 Q$ 72 120 120
 gures of the divid. We concludidend that will contain the The fewest fithe 3 in the quotient, and multiply the divisor We place the divisor by it, the the operation called? How is division not exceed 12 what in liplication be proved? In multiplication, proved? How may mulrided by the multiplicand what will the guif the product be di-
duct be divided Wuct be divided by the multiplier what will the ge? If the pro-- When the divisor exceede 12, what will the quotient bef divisor this example we set the divisor on the left hand of the and draw a curved division, right of the curved line to the rule directe W adend as the to find how We now wish contains 24. The fewest fi-
.

pration called.

product is 72 , which is placed under 84 and subtracted from it and 12 remains. We now bring down the next figure of the dividend, and conclude that 120 will contain 245 times; we therefore place 5 in the quotient and multiply as before. Thus we find 840 contains 2435 times.
2. Divide 2756 by 26 .

Operation.
Dividend.
Divisor 26)2756(106 Quotient. 26

156 156

In this example we say 26 in 27 once, and place the 1 in the quotient, multiply 26 by 1 , subtract and bring down the 5 ; we then say 26 in 15,0 times and place the 0 in the quotient, we then bring down the 6, and find that the divisor is contained in 156,6 times.

Note 1. If the remainder at any time be greater than the divisor, the quotient figure must be incrocised.

Note 2. If the product of the divisor and quotient figure exceed that part of the dividend directly above it, the quotient figure must be diminished.
3. Divide 30660 by 84.

Operation.	Proof.	
84)30660(365	365	Quotient.
252	84	Divisor.
546	14.60	
504	2920	
420	30660	the divide

Quertions.- If the remainder at any time be greater than the divisur, what must be donet' If the product of the divisur and quotient ligure exceed that part of the dividend directly above ii, what muat be donet
4. Divide 25648 by 21 .

Operation.
21)25648(1221

21
$\overline{46}$
$\frac{42}{44}$
$\frac{42}{28}$
$\frac{21}{7} \mathrm{rem}$.

Proof.
1221 Quotient.
21 Divisor.
1221
2442
7 remainder.
$25648=$ the dividend .
5. Divide 9420674 by 13. Ans. 724667- 3 rem.
6. Divide 3271916 by 17. Ans. 192465-11 rem.
7. Divide 9643007 by 23. Ans. $419261^{-1} 5$.
8. Divide 6318 by $27 . \quad$ Ans. 234.
9. Divide 96414 by 34. Ans. $2835 \frac{9}{34}$.
10. Divide 037387 by 54. Ans. 17359-1 rem.
11. Divide 147735 by $45 . \quad$ Anş. 3283.
12. Divide 145260 by 103. Ans. 1345.
13. Divide 24167 by 125 , and prove the operation.
14. Divide 34108 by 87,
15. Divide 10416 by 140 ,
16. Divide 541678 by 341,
17. Divide 674.160 by 410 , 6
18. Dîide 940161 by 365, " ${ }^{6}$
19. Divide 14.1041 by 1341, " 6
20. Divide 8416759 by 2140. ". "

CONTRACTIONS in division.
I When the divisor is a composite number.
RULE.
When the divisor is a composite number, divide the dividend by one of the component parts, and
the quotient arising from that division, by the other ; the last quotient will be the answer.

EXAMPLES.

1. Divide 5430 apples equally among 15 boys.

Operation.
5) 5430
3)1086 1st quo.

In this example 5 and 3 are the component parts or factors of 15.First divide the apples among 5 boys, and we find they will have 1086 apples a piece. Then let each one of 362 quo. sought. these boys divide 1086 among 3 boys, and they will have 362 , and the whole number of parts will be 15 .
2. Divide 18576 by $48=4 \times 12$. Ans. 387 .
3. Divide 9576 by $72=9 \times$ 8. Ans. 133.
4. Divide 19296 by $96=12 \times 8$. Ans. 201.

To obtain the true remainder, when factors have been used as divisors, multiply the last remainder by the first divisor, and to the product add the first remainder.

1. Divide 4967 by $32=4 \times 8$, Ans. $155_{3 \text { \%in }}$, Opcration,
4) 4967
5) $1241-3,1$ st remainder.
$155-1 \times 4+3=7$ the true remainder.
2. Divide 956789 by $7 \times 8=56$. Ans. 170858?
3. Divide 4870029 by $8 \times 9=72$. Ans. $67639 \frac{21}{7}$.
4. Divide 674201 by $10 \times 11=110$. Ans. $61299_{1}^{1}{ }_{10}$.
5. Divide 445767 by $12 \times 12=144$. Ans. $3095_{1}^{184}{ }^{87}$.

Qucstiona. - When the divisor is a composite number, how is the division performed? What will be the answer? How moy the true remainder be obtained when factors have been used as divisorn?
II. When the divisor is $10,100,1000$, \&c.

Rule.
Cut off as many figures from the right hand of the dividend, as there are ciphers in the divisor ; the other figures of the diviuend will be the quotient, and the figures cut off will be the remainder.

EXAMPLES.

1. Divide 14364 by 100.

Ans. $143 \frac{64}{100}$
Operation. In this example there are two $0 s$ in the $1 \mid 00) 143 \mid 64$. divisor ; therefore we cut off two figures from the right hand of the dividend, and the quotient is 143 , and the remainder 64 .
2. Divide 24367 by 10 .

Ans. 2436- $\frac{7}{10}$.
3. Divide 52164 by 100.

Ans. 521-64.
4. Divide $104024 i 1$ by 1000 .

Ans. 1040-2 $\frac{1}{1000}$.
III. When there are ciphers on the right hand of the divisor.

RULE.

Cut off the ciphers and omit them in the operation, likewise cut off and omit the same number of figures from the right hand of the dividend. Annex to the remainder, if there be one, the figures cut off from the dividend: this will form the true remainder.

examples.

1. How many times 900 are there in 741725 .

Operation. We divide 7417 by $9:$ there re9;00)7417|25 mains 1 , to which annex the 25 , making the true remainder 125.
$824 . .125 \mathrm{rem}$.
2. How many times are 700 contained in 67389 ?

$$
\text { A. 3. } 96 \frac{18}{70} 9
$$

Questions.-When the divisor is $10,100,1000$, \& c. what is the method of dividing? When there are ciphers on the right hand of the divisor, what is to be done? What, if there be a remainder?
3. How many times are 37000 contained in 8749632 ?

Ans. $236 \frac{17832}{3700}$.
4. How many times are 6000 contained in 876000 ?

Ans. 146.
5. H~v many times are 400700 contained in 36599503 ?

Ans. $91 \frac{135803}{400700}$.
practical exercises.

1. There are 7 days in a week: how many weeks in a year of 365 days? Ans. 52 weeks and 1 day over.
2. Divide 3125 pounds equally among 25 men.

Ans. 125.
3. Lake Ontario is 190 miles long: how many hours will it require for a boat to sail from one end to the other, if she sail 9 miles per hour?

Ans. 211 hours.
4. How many days will a ship be in sailing from Quebec to Liverpool, allowing the distance to be 3000 miles, and the ship to sail 100 miles per day? Ans. 30 days.
5. If 6 bushels of apples make 1 barrel of cider, how many barrels will 1000 bushels make?

Ans. $166 \frac{4}{6}$ barrels.
6. How many bags will it require to hold 1000 bushels of wheat, allowing each bag to hold 3 bushels?

Ans. 333 bags and 1 bushel over.
7. What number must be multiplied by 250 that the product may be 18750?

Ans. 75.
8. If the divisor be 49 and the dividend 42581 : what is the quotient?

Ans. 869.
9. A man bought 241 acres of land, for which he pair: 9468 dollars. Query, the price per acre?

Ans. $39-\frac{60}{4} \frac{1}{i}$ dollars.
10. A farmer raised 1500 bushels of wheat from 60 acres: what was that per acre. Ans. 25 bushels.
11. The number of letters in a volume being 2344125, of which 4605 were contained in a page. Required the number of pages.

Ans. 525.
12. What will be the quotient of 974932 , divided by 365 ?

Ans. $2671 \frac{17}{815}$:
13. Twenty persors dined together, their bill was 100 dollars. Query, the amount paid by each?

Ans. 5 dollars.
14. A gentleman has a garden walled in, containing 9625 yards; the breadth was 35 yards, what was the length?

Ans. 275 yards.
15. What number added to the 43 rd part of 4429 will raise it to 240 ?

Ans. 137.
16. The quotient of a certain number is 1083 , the divisor 28604, and the remainder 1788: what was the dividend?

Ans. 30979920.
17. If the French army which invaded Russia in 1812, consumed 17534 barrele uf flour, and 11698 barrels of meat in a week ; what number of waggons, each carrying 16 barrels, would be required to carry the provisions consumed in a day?

Ans. 261.
18. A square mile contains 640 acres of land, and a bushel of wheat is supposed to contain 491520 ,grains: how many grains of wheat would a square mile produce, each acre yielding 25 bushels? also, how many loaves of bread would this wheat make, allowing 30720 grains to a loaf? Ans. 7864320000 grains, and 256000 loaves.

FRACTIONS.

The unit 1 represents a whole or entire thing; as 1 orange, 1 yard of cloth, 1 pound of sugar.

When any unit, as an orange, or a pound, is divided into 2 equal parts, each part is called one half of the thing.

When divided into 3 equal parts, each part is called one third.

[^14]If divided into 4 .equal parts, each part'is called one fourth.

If divided into 10 equal parts, each part is called one tenth.

If into 15, each part is called one fifteenth, \&c.
These parts, or broken numders are called fractions, and are written thus:

When we wish to express more than one of the equal parts of a thing, as two thirds, three fourths, \&c. we write it thus:
$\frac{2}{3}$ is read two thirds. $\quad \frac{7}{8}$ is read seven eighths. $\frac{3}{4} 6$ three fourths. $\frac{9}{2} \frac{9}{0} 66$ nine twentieths.
The number below the line is called the denominator because, it gives the fraction its denomination or name, and it shows into how many equal parts the unit is divided.

The number above the line is called the numerator, because it numbers the parts, or shows how many of the parts are expressed by the fraction.

In the fraction $\frac{4}{6}$, the denominator shows that a unit is divided into 6 equal parts, and the numerator shows that 4 of these parts are expressed in the fraction.

In the fraction $\frac{8}{10}$, the denominator shows that a unit is divided into 10 equal parts, and the numerator, that 8 of these parts are expressed, \&c.

[^15]The numerator and denominator taken together are called the terms of the fraction.

If a melon be divided into 8 equal parts and 4 of the parts be given to Charles and the other 4 parts be given to Henry, it is plain that each boy's share will be $\frac{4}{9}$, it is also plain that each boy has one half the melon. $\frac{4}{8}$ then is equal to $\frac{1}{2}$.

It will be seen that changing $\frac{4}{8}$ to $\frac{1}{2}$ does not alter its value. This operation is called reducing a fraction to its lowest terms.

A fraction is reduced to lower terms by dividing its numerator and denominator by any number. which will divide them both without a remainder.

Thus $\frac{3}{8}$ may be divided by 3 without a remainder and $=\frac{1}{8}, \frac{-5}{10}=\frac{1}{2},-\frac{3}{12}=\frac{1}{4},-\frac{2}{12}=\frac{1}{6}, \frac{2}{6}=\frac{1}{3},-\frac{8}{12}=\frac{2}{3},-\frac{2}{14}=\frac{1}{7},-\frac{6}{15}=\frac{1}{3}$.

It should be constantly borne in mind, that if the numerator and denominator be divided by the same number, the value of the fraction remains the same.

[^16]
SUPPLEMENT TO MULTIPLICATION.

You have learned how to multiply by integers, or whole nnmbers. It : in .ecessary that you now learn how to multiply by - mixed number, which is made up of a whole number and a fraction: thus, $2 \frac{1}{\frac{1}{2}}, 4_{3}^{\frac{1}{3}}, 6 \frac{3}{4}, 9_{3}^{\prime}$, \&c.

Multiplication has been defined to be the repeating of one number as many times as there are units in another. Hence multiplying by 1 is taking the multiplicand once, multiplying by 2 is taking it tuice, multiplying by 3 is taking it three times, \&c.

Multiplying by a broken number is taking a part of the multiplicand as many times as there are like parts of a unit in the multiplier.

Multiplying by $\frac{1}{2}$ is taking one half of the multiplicand.
Multiplying by $\frac{1}{4}$ is taking one fourth of it.
Multiplying by $\frac{3}{4}$ is taking three fourths of it, \&c.
To multiply a whole number by a mixed number observe the following

RULE.

First multiply the multiplicand by the whole number of the multiplier ; then multiply it by the numerator of the fraction, and divide that product by the denominator; add the two products together, and their sum will be the entire product of the mixed number.

[^17]
EXAMPLES:

1. Multiply 48 by $\frac{1}{2}$.

Operation. 48
1
When the numerator is 1 , as in this example, there is no necessity of multiplying by it, for it simply repeats the multiplicand.
2)48

24 Product.
2. Multiply 36 by $4 \frac{3}{4}$.

Operation.
36
4

36
3
$\overline{144}$
27
4) 108

27 Product of $36 \times \frac{3}{4}$

171 Product.
In this example we first multiply 36 by 4 , and the product is 144 ; we then set 36 down in another place, and multiply it by $\frac{3}{4}$, and find the product to be 27 ; the sum of these products are the entire product of 36 multiplied by $4 \frac{3}{4}$.

3.	Multiply 39 by $\frac{1}{3}$	Ans. 13.
4.	- 96 by $\frac{1}{4}$	Ans. 24.
5.	150 by $\frac{1}{5}$	Ans. 30.
6.	69 by $2 \frac{1}{3}$	Ans. 161.
7.	100 by $4 \frac{1}{4}$	Ans, 425.
8.	48 by $2 \frac{3}{4}$	Ans. 132.
9.	55 by $5 \frac{1}{6}$	Ans. 286.
10.	346 by $2 \frac{5}{7}$	Ans. 9391.
11.	100 by $6 \frac{8}{8}$	Ans. $666 \frac{2}{3}$.
12.	240 by 185	Ans. 44533

PRACTICAL EXERCISES.

1. There are $16 \frac{1}{2}$ feet in a rod, and 320 rods in a mile : how many feet are there in a mile ?

Ans. 5280.
2. What is the cost of $8 \frac{3}{4}$ tons of hay at 10 dollars per ton?

Ans. $87 \frac{1}{2}$ dollars.
3. If $4 \frac{4}{5}$ bushels of wheat make 1 barrel of flour: how many bushels will it require to 250 barrels?

Ans. 1200 bushels.
4. There are $69 \frac{1}{2}$ miles in one degree : how many miles in 360 degrees? Ans. 25028 miles.
5. What is the cost of 25 horses at $15 \frac{1}{2}$ pounds each ?

Ans. $387 \frac{1}{2}$ pounds.
Note to Pupils-You have now been through the fundamental or foundation rules of Arithmetic, and I hope are able to solve all the questions thus far understandingly, and can also answer all the questions at the bottom of each page. A thorough knowledge of the foregoing rules will greatly facilitate your future progress. I will now present you with a few

PRACTICAL EXERCISES.
Involving the principles of the preceding rules.

1. $240+670+81+14+9+2=$ how many?

Ans. 1016.
2. $\mathbf{1 0 4 6 0 1 4 8}-1341009=$ how many ?

Ans. 3119139.
3. $340084 \times 4005=$ how many? Ans. 1362036420 .
4. $2674236 \div 634=$ how many? Ans. $4218 \frac{24}{6} \frac{4}{84}$.
5. $\frac{14 . \frac{890}{30} 4}{411}=$ how many? Ans. 49.
6. $25+18+10-13 \times 9 \div 3=$ how many? Ans. 120 .
7. $100+75 \times 4-2 \div 4=$ how many? Ans. 174 4.
3. $12 \times 11+141-13 \div 10 \times 2=\quad$ Ans. 52 .

Note.-A line, or vinculum, drawn over several numbers, signifies, that the numbers under it, are to be taken as one whole number; thus $\overline{4+3} \times \overline{8-2}=42$.
9. $\overline{10-6+4} \times \overline{7-3} \overline{+1}=$ how many? Ans. 40.
10. $\overline{5+6-4} \times \overline{9-6}=$ how many? Ans. 5t.

Question. - What dues a line, or vinculum, drawn over several numbers signify?
11. From the sum of $100,84,75,18$ and 31 subtract the sum of $10,9,8$ and 2 . Ans. 279.
12. The sum of two numbers is 1045 , one of the numbers is 109 , what is the other? Ans: "936.
13. If the minuend be 1460 and the subtrahend 1390 ; what is the remainder?
14. If the minuend be 1460 and the remainder 70 ; what is the subtrahend?
15. If the subtrahend be 1390 and the remainder 70 ; what is the minuend?
16. What is the product of 537467 and 367 ?

Ans. 197250389.
17. If the divisor be 84 and the dividend 30660 ; what is the quotient?

Ans. 365.
18. If the quotient be 365 and the divisor 84 ; what is the dividend?
19. The factors of a certain number are 86972 and 1208; what is the number?

Ans. 105062176.
20. A farmer sells a horse for 18 pounds, 5 cows for 4 pounds a piece, 6 oxen for 5 pounds each, and 100 sheep at $1 \frac{1}{2}$ pounds a head: How much did he receive for them all?

Ans. 218 pounds.
21. A gentleman sells 150 bushels of wheat at $\frac{1}{4}$ (one fourth) of a pound per bushel, 25 tons of hay at 3 pounds per ton; and takes in part payment a wagon at 10 pounds, arid a yoke of oxen worth 20 pounds, and the rest in cash: How much money did he receive? Ans. 821 pounds.
22. Sold a ship for 11516 pounds, and I owned $\frac{3}{4}$ (three fourths) of her; what was my part of the money?

Ans. 8637 pounds.
23. A gentleman left his son, sixteen thousand sixteen hundred and sixteen pounds, and his daughter one half as much : Query, the daughter's portion. Ars. 8808 pounds.
24. The circumference of the earth is 25000 miles: how long would it take a man to travel around it, supposing him to travel 42 miles a day? Ans. $595 \frac{10}{42}$ days.
25. What will $12 \frac{3}{4}$ yards of cloth come to at 6 dollars a yard?

Ans. 76 $\frac{2}{4}$ dollars.
subtract ns. 279. the numIns. 936. nd 1390 ;
inder 70 ; inder 70 ;
7250389. 60 ; what Ans. 365. 4 ; what is 36972 and 5062176. cows for 4 100 sheep e for them 18 pounds. t at $\frac{1}{4}$ (one 13 pounds 10 pounds, st in cash : $2 \frac{1}{2}$ pounds. I owned $\frac{3}{4}$ money? 37 pounds. and sixteen one half as 08 pounds. 5000 miles: t, supposing $95 \frac{10}{42}$ days. at 6 dollars $76 \frac{2}{4}$ dollars.
26. The Bible contains 31173 verses ; how many verses must be read in a day, that it may be read through in 365 days ?
27. What is one-eighth of 59876 ?
28. What is four fifths of 64870 ? Ans. $85 \frac{1}{3} \frac{18}{6}$. Ans. 7484.. Ans. 51896.
29. Write down four thousand six hundred and seventeen ; multiply it by 12 , divide the product by 9 , and add 365 to the quotient, then from that sum subtract five the $1-$ sand five hundred and twenty-one, and the remairder will be 1000. Try it and see.
30. If a man's wages amount to 625 dollars in $5:$ weeks, how much may he spend a week and save 261 dollars? Ans. 7 dollars a week.
31. How many times can' 24 be subtracted from 1416 ? Ans. 59.
32. Sold 5505 pounds of butter at 12 pence per pound, and took my pay in molasses at 36 pence a gallon ; how many gallons did I receive? Ans. 1835 gallons.
33. How many barrels of flour, at 8 dollars per barrel will it take to buy 62 horses at 95 dollars each ?

$$
\text { Ans. } 736
$$

34. How many men must be employed to do a piece of work in 1 day, that 11 men can perform in 18 days?

Ans. 198 deys.
35. Thomas and Joseph are studying arithmetic. Thomas is 322 examples in advance of Joseph, but Joseph performs 55 examplesin a day, and Thomas 4 L . In how many days will Joseph overtake Thomas? Ans. 23 days.
36. A. B. and C. made up a purse of 500 pounds. A. put in 75 pounds, B. put in three times as mueh: How much did C. put in? Ans. 210 pounds.
37. What number must be subtracted from 294106 in order that the remainder shall be 14230? Ans. 279876.
38. In 30416 dollars; how many pounds. Ans. 7604.
39. In 8940 shillings; how many dollars. Ans. 1788.
40. A farmer purchased a farm, for which he paid 1850 dollars. He sold 50 acres for 60 dollars per acre,
and the remainder stood him in 50 dollars an acre: how much land did he purchase. Ans. 351 acres.
41. The mariner's compass was discovered in England in the year 1302: how long since that time?
42. A gentleman wishes to distribute 1200 apples among 5 boys: he gave the first boy one third of the whole: the second one fourth, the third one fifth the fourth one sixth ; and the fifth the remainder: how many apples did each boy receive,

	1st boy	40
	2nd "	300
Ans.	2d "	240
	4th "	200
	(5th	

43. A speculator bought 536 acres of land at $10 \frac{1}{2}$ dollars per acre: he sold A. 100 acres at 12 dollars an acre, B. 150 at 11 dollars per acre, C. 145 at 13 dollars per acre; he was obliged to sell the balance at 8 dollars per acre : did he gain or loss by the purchase, and how much ? also, what was the average price that he obtained per acre.

Ans. he gained 235 dols. Average price $105-\frac{3}{5}-3$. dollars.

Note by the Printer.-The following exercises weie inadvertently omitted by the compositor, and should have been inserted immediately after the examples in subtraction.

PRACTICAL EXERCISES IN SUBTRACTION.

1. From fifteen million take fifty six thousand, and what will remain. Ans. 14, 944,000.
2. A man paid 150 dollans for a good horse and sold him for 175 dollars; how much did he gain? Ans. 25 dol.
3. What number is that which, taken from 5487, leaves 999 ? Ans. 4488.
4. Columbus discovered America in the year 1492, how many years since?
5. Queen Victoria was born in the year 1819 succeeded to the throne of England in 1837; what was her age a: the latter period?
how acres. Engples awhole : th one les did 400, 300, 240 , 200, 60. $.0 \frac{1}{2}$ dolan acre, per alars per much? ser acre. 35 dols. dollars.
ses wero ild have traction.
nd, and 44,000 . and sold
. 25 dol.
a 5487,
6. 4488.

r 1492,
succeeder age a :
practical exercises.
6. Subtract one from one million.

Ans. 999999.
7. From one hundred million two hundred and forty seven thousand, take one million four hundred and nine.

Ans. 99246591.
8. The number of inhabitants in the U. States, in 1830, was $12,840,540$, in 1840 they amounted to $17,069,957$. What was the increase in 10 years? Ans. 4,229,417.
9. The author of this book was born in the year 1814, What is his age the present year, 1845.
10. Canada was ceded to Britain, by the French, in 1763, how long since that time?
11. What number, together with these three, viz. 1301, 2561. and 3120, will make ten thousand. Ans. 3018.
12. What number must be added to $\mathbf{1 7 5}$ to make 1101 . Ans. 926.
13. There are two numbers, whose difference is 10 , 101; the greater number is 100,000: Query the less.

Ans. 89,899.
14. A man dies worth 10,104 pounds, he leaves to his daughter 4,115 pounds, and the remainder to his son: what was the son's portion?

Ans. 5989.
15. The sun is ninety five millions of miles from the carth, and the moon is two hundred and forty thousand miles, how much farther in the sun from us than the moon?

> Ans. 94,760,000.
16. The minuend being 135 and the subtrahend 100 : what is the remainder?

Ans. 35.
17. The subtrahend being 100 and the remainder 35 ; what is the minuend?

Ans. 135.
18. The minuend is 135 , and the remainder 35 ; what is the subtrahend.

Ahis. 100.
19. The sum of two numbers is 100 , and one of the numbers is 35 : what is the other? Ans. 65.

[^18]20. The greater of two numbers is $\mathbf{1 0 0}$ and their difference 35 ; what is the less number?

Ans. 65.
21. The less of two numhers is 65 , and their difference 35 ; what is the greater?

Ans. 100.
Quegrions. - When we have the greater of two numbers and their difference, how do we find the less nuuber? When we have the lesm of two numbers and their difference given, how do we find the greater?

PART II.

COMPOUND NUMBERS.

A number expressing things of the same kind is called a simple number. For example, 20 horses, 4 pounds, 8 bushels, are each of them simple nümbers.

A compound number, expresses things of different kinds; thus 5 pounds, 8 shillings and 10 pence is a compound number, also, 1 year 2 months 2 weeks and 3 days, 2 bushels 3 pecks 4 quarts, are compound numbers. When numbers have different names as above they are mostly called defferent denominations.

TABLES OF COMPOUND NUMBERS. pence table.

d.	s.	d.
$20=1$	8	$s . \quad d$.
$30=2$	6	$2=24$
$40=3$	4	$3=36$
$50=4$	2	$4=48$
$60=5$	0	$5=60$
$70=5$	10	$6=72$
$80=6$	8	$7=84$
$90=7$	6	$8=96$
$100=8$	4	$3=108$
$110=9$	2	$10=120$
$120=10$	0	$11=132$
$12=144$		

[^19]
ENGLISH MONEY.

The denominations of English Money, guineas, pounds, shillings, pence, and farthings.

4 farthings marked far. make 1 penny marked d.
12 pence make 1 shilling \qquad
20 shillings
make 1 pound s.

21 shillings
Note.-Farthings are generally expressed in fractions of a penny. Thus, for 1 farthing we write $\frac{1}{4} \mathrm{~d}$. for 2 farthings $\frac{1}{2} \mathrm{~d}$. and for 3 farthings $\frac{3}{4} \mathrm{~d}$.

troy weight.

Gold, silver, jewels and liquors, are weighed by this weight. Its denominations are pounds, ounces, penny weights, and grains.

24 grains, (gr.) make 1 pennyweight marked pwt.
20 pennyweights " 1 ounce, - oz. 12 ounces
" 1 pound,
lb.

apothecaries' weight.

This weight is used by apothecaries and physicians in mixing their medicines. Its denominations are pounds, ounces, drachms, scruples, and grains.

20 grains, (grs.) make 1 scruple.	
3 scruples	" 1 drachm.
8 drachms	"6 1 ounce.
12 ounces	" 1 pound.

Quecrions. - What are the denominatione of Engliah Money! Repeat the table. How are farthinge generully expresuedt How many pence in 6 farthings? In 87 In 107 . In 121 How many shillings in 14 pence? In 161 In 18? In 23 ? In 271 In 829 In 44 ? How many pounds in 24 shillinga? In 30 ahillingat In 361 In 401 What articles are weighed by Troy Weight? What are its denominations? Repeat the table. What is the use nf Apothecarien' Weighti What are itg dpag. minationst Recite the table.

avoirdupois weight.

By this weight are weighed all things of a coarse drossy nature, as tea, sugar, grain, hay, tallow, leather, medicines, (in buying and selling) and all kinds of metals except gold and silver. The denominations are tons, hundreds, quarters, pounds, ounces, and drachms.

16 drachms (drs.) make 1 ounce, marked oz,

16 ounces	"	1 pound	"	lb .
28 pounds	$"$	1 quarter	6	qr.

4) quarters make 1 hundred weight, marked cwt.

20 hundred weight make 1 ton, "T.
Note.-In this weight the words gross and nett are used. Gross is the weight of the goods, together with the box, cask, bag, bale, \&cc., which contains them. Nett is the weight of the goods only, or what remains after deducting from the gross weight, the weight of the box, bag, cask, \&c. A hundred weight is $112 \mathrm{lbs} .$, as appears from the table.

Long measure.

Long measure is used in measuring distances, or other things, where length is considered without regard to breadth. Its denominations are degrees, leagues, miles, furlongs, rods, yards, feet, inches, and barley corns.
3 barley corns, (bar.) make 1 inch, marked in.
12 inches $\quad 1$ foot, 66 ft.
3 feet \quad " 1 yard, $6 \quad \mathrm{yd}$. $5 \frac{1}{2}$ yards or $16 \frac{1}{2}$ feet \quad. 1 rod, perch or pole, " rd. 40 rods ${ }^{6} 1$ furlong, ${ }^{6}$ fur. 8 furlongs or 320 rods ${ }^{6} 1$ mile, \quad mi. 3 miles " 1 league, \quad L. $\left.\begin{array}{l}60 \text { geographical or } \\ 692 \text { statute miles, }\end{array}\right\}$ " 1 degree, \quad deg. or 9

[^20]360 degrees make a great circle, or circumference of the earth.

Note.-A hand is a measure of 4 inches, and is used to measure the height of horses. A fathom is 6 feet, and is mostly used to measure the depth of water.

Cloth measure.
By this measure all kinds of cloth, tapes, \&c., are measured. Its denominations are ells French, ells English, ells Flemish, yards, quarters, nails and inches.

214 inches (in.) make	1 nail,	rked ná.
4 nails	1 quarter of a yard	* qr .
4 quarters	1 yard,	", yd.
3 quarters	1 Ell Flemish,	' E. Fl
5 quarters	1 Ell English,	E. E
6 quarters	1 Ell French,	E. Fr

land or square measure.
This measure is used in measuring land, or any thing in which length and breadth are both considered. The denominations are miles, acres, roods, perches, yards, feet and inches. 144. square inches (sq. in.) make 1 square foot, Sq. It.

9 square feet \quad " 1 square yard, Sq. yd. $30 \frac{1}{4}$ square yards 40 square poles " 1 square pole, P.

4 roods, or $I 60$ sq. rods 640 acres " 1 rood, R.
". 1 acre, A. " 1 square mile, M.
Note.-The Surveyor's or Gunter's chain is used in measuring land. It is 4 rods, or 66 feet in length, and is divided into 100 links.

[^21]
SOLID OR CUBIC MEASURE.

Solid or cubic measure is used in measuring timber, stone, wood, earth, and such other things as have length, breudth and thickness. Its denominations are tons, cords, yards, feet and inches.

1728 colid inches (S. in.) make 1 solid foot, S. ft. 27 solid feet ${ }^{6} 1$ solid yard, S. yd. 4 et of round timb ${ }^{n}$ " 1 ton, T. 50 . . t of hewn timbe: .6 1 ton, T. 128 solid feet " 1 cord of wood, \mathbf{C}.
Note.-A pile of wood 8 feet long, 4 feet wide, and 4 feet high makes a cord. And what is called a cord foot of wood is 16 solid feet: that is 4 feet in length, 4 feet in width, and 1 foot in height, and 8 such feet, that is 8 cord feet make 1 cord.

WINE MEASURE.

Wine measure is used in measuring all liquors excepting beer and ale. Its denominations are tuns, pipes, hogsheads, barrels, gallons, quarts, pints, and gills.

4 gills (gi.)	make	1 pint,	marked	
2 pints	"	1 quart,	*	qt.
4. quarts	6	1 gallon,	${ }^{6}$	gal.
$31 \frac{1}{2}$ gallons	"	1 barrel,	66	bar.
63 galions	6	1 hogshead:	${ }^{6} 6$	hhd.
2 hogsheads	"	1 pipe,	6	pi.
2 pipes or 4 hhds.	"	1 tun,	6	tun.

Note.-A gallon wine measure, contains 231 cubic inches.
ir it

ALE OR BEER MEASURE.

This measure is used in measuring ale, beer and milk. Its denominations are hogsheads, barrels, gallons, quarts and pints.

Note.-A gallon, beer measure, contains 282 cubic inches.

dry measure.

Dry measure is used in measuring all dry artícles, such as grain, fruits, roots, salt, coal, \&c. Its denominations are chaldrons, quarters, bushels, pecks, quarts and pints.

2 pints (pt.) make 1 quart, marked qt.
8 quarts " 1 peck, \quad pk.
4 pecks "s 1 bushel, sc bu.

8 bushels "6 1 quarter, " qr. 36 bushels " 1 chaldron, " ch.
Note.-A gallon dry measure contains $268 \frac{4}{5}$ cubie inches. A Winchester bushel is $18 \frac{1}{2}$ inches in diameter, 8 inches deep, and contains 2150_{5}^{2} cubic inches.

> TIME.

Time is naturally divided into days, by the revolution of the earth upon its axis, once in 24 hours ; and into years, by the revolution of the earth round the sun once in 365 days, 5 hours, 48 minutes, and 48 seconds; this period is called a Solar

[^22]CIRCULAR MEASURE OR MOTION.
This measure is used in estimating latitude and longitude, and also in measuring the motions of the heavenly bodies. Every circle is supposed to be divided into 360 equal parts, called degrees.

60 seconds (1')	make 1 minute,	marked
60 minutes	611 degree,	66
30 degrees	611 sign,	66 S.
12 signs, or $360{ }^{\circ}$	661 circle	${ }_{6} 6$ c.

TABLE OF PARTICULARS.

12 units	make	1 dozen.
12 dozen	6	1 gross.
12 gross or 144 dozen	n	1 great gross.
20 units	6	1 score.
24 sheets of paper	6	1 quire.
20 quires	${ }^{6}$	1 ream.

A sheet folded in two leaves is called a folio.

"	four		, or 4 to
"	eight	"	a quarto, or 4 to. an octavo, or 8 vo.
"	twelve	"	$\left\{\begin{array}{c} \text { a duodecimo, or } 12 \\ \text { mo. } \end{array}\right.$
"	eighteen	"	$\{$ an octodecimo, or 18 mo.

REDUCTION.

Reduction is changing the denomination, or name of a number without altering its value. The reducing of a denomination of greater value into a

[^23]denomination of less value, is called reduction descending, and is performed by multiplication.The reducing of a denomination of léss value intoone of greater value is called reduction ascending, and is performed by division.

It is evident, if we wish to change 8 feet to inches, we must multiply by 12 because 12 inches make 1 foot thus, $8 \times 12=96$. If we wish to change 96 inches to feet it is also plain that we must divide by 12 , thus $96 \div 12=8$ feet. Hence it follows that, reduction descending and ascending resiprocally prove each other.

RULE FOR REDUCTION.

I. To reduce from a higher to a lower denomination

Mulliply the greater denomination by that number which is required of the less, to make one of the greater, adding to the product, as many of the less denomination, as are expressed in the given sum. And so on through all the denominations.
II. To reduce from a lower to a higher denomination. Divide the less denomination by that number which is required of the less to make one of the next greater ; the quotient will be of the same name as the greater denomination, and the remainders will be of the same denomination with the dividend, and are to be put as a part of the answer.

Questions.-What is reduction? What is rediction descend. ing? How is it performed? What is reduction ascending? How is it performed? How do we change feet to inches? It this reduction ascending, or descending? How do we change inches to feet? Is this descending or ascending? How is reduction proved? How do we reduce from a higher to a lower denomination.-

EXAMPLES IN ENGLISH MONEY.

1. In £2 9s. 6d. 3far. how many farthings?

$\boldsymbol{4}$	s.	d.	far.
2	9	6	3
20			

49 shillings. 12

594 pence. 4

Ans. 2379 farthings.

In this example we first reduce the pounds to shillings by multiplying by 20 , and add 9 shillings to the product -making 49 shillings. We then reduce the 49 shillinga to pence, by multiplying by 12 , and add the 6 pence to the product-making 549 pence ; we then reduce theso pence to farthings, by multiplying by 4 , and add the 3 farthings to the product, making 2379 farthings. This is called reduction descending, because we have changed a higher denomination to a lower.
2. Reduce 2379 farthing to pounds.
4) 2379
12)594.. 3 far.
20)49.. 6 pence.
£2.. 9 shillings. E s. d. far. Ans. 2963

This example is the roverse of the first example.We first roduce the farthings to pence by dividing by 4 , and the quatient is 54.9 penco and 3 far. (or quarters marked qr.) over. We then reduce the pence to shillings by dividing by 12 , and the quotient is 49 shillings and 6 pence over. We next reduce the 49 shillings to pounds, by dividing by 20 , and find there is 2 pounds and 9 shillings over..
3. In 35 pounds how many shillings? Ans. 700s.

[^24]4. In $£ 145$ how many shillings? Ans. 2900s.
5. In £376 how many shillings and pence?

Ans. 7520s. 90240d.
6. Reduce $£ 56$ 14s. 6d. to pence. Ans. 13614d. 7. In 165 pounds 13 shillings, how many farthings? Ans. 159024qrs.
8. In 128s. how many pounds? Ans. $£ 6$ 8s.
9. Reduce 1046 pence to pounds. Ans. £4 7s. 2d. 10. In 6169 pence, how many pounds?

Ans. $£ 25$ 14s. 1d.
11. In 180960d. how many pounds. Ans. £754.
12. Reduce £ 967 14s. 7d. to pence. Rosult 232255d.
13. In 135764 yrs. how many pounds?

Ans. £14.1 8s. 5 d.
14. In 48 guineas how many pence! An: 12096d.
15. How many pence, shillings, and pourds, are there in 17280 farthings?

Ans. 4320d. 350s. £i8. .
16. Reduce 369936 farthings to guineas.

Ans. 367 guineas.
17. Reduce 878 guineas to pence and these pence to pounds. Fact. 221256d. and £921 18s.
18. In 525 dollars at 5 s. each how many pence?

Ans. 31500d.
19. In 126000 farthings how many dollars?

Ans. 525 dollars.
EXAMPLES IN TROY WEIGHT.

1. In 27 lb .10 oz .13 dwts . of gold, how many grains? Ans. 160632.
2. In 8lb. Ooz. 7dwt. 2gr:. how many grains?

Ans. 46250.
3. Reduce 158262 gris. to pounds.

Ans. 27lb. 5oz. 14divt. 6grs.
4. Reduce 376457 grs , to pounds.

Fact. 56!b. 4oz. 5dwt. $\mathbf{1 7 g r s}^{17}$ Weight? Ounces to pennyweights? Pennyweights to grainst Grains to pennyweights? Pennyweights to ounces? Ouncte to pounds?
5. In 3751 b .10 oz .16 grs . how many grains?

Ans. 2164816grs.
6. In 16759% dwts. how many pounds?

Ans. 698lb. 3oz. 17dwts.
7. In $25 \mathrm{lb} .9 \mathrm{oz} .10 \mathrm{~d} w$. how many grains?

Ans. 148560 grs .
8. Reduce 97645745 grs . to pounds.

Result 16952 lb . 4oz. 12dwt. 17 grs.
EXAMPLES IN APOTHECARIES WEIGHT.

1. In 17 lb . how many ounces, drachms, and scruples? Ans. 204ioz. 1632drs. 4886scru.
2. In 1332005 grains, how many pounds?

Ans. 231lb. 3oz. 5grs.
3. In 5 lb . of drugs, how many parcels, each 16 drachmis.

Ans. 30 parcels. 4. Reduce 271b. 3oz. 2drs. to grains.

Result 157080grs.
5. In 245 parcels of drugs each 10 oz . 3 drs . 2 scru. how many pounds? Ans. 2131b.6oz. 2drs. 1scru. examples in avoirdupois weight.

1. In 15 tons, how many hundred weight, quarters and pounds? Ans. 300cwt. 1200qrs. 33600lbs.
2. In 67200 lbs. how many tons? Ans. 30 tons.
3. In 9cwt. 5lbs. how many ounces?

Ans. 16208oz.
4. Reduce 20571005 drachms to tons.

Ans. 35T. 17cwt. 1qr. 23lbs. 7oz, 13dr.
5. One of the stones in the walls of Balbeck is said to have weighed 683T. 8cwt. Query, its weight in pounds? Ans. 1530816lbs.
6. In 57T. 10cwt. 3qrs. 14ilbs. how many drachms? Ans. 32997888 drs.
7. Reduce $4 ; 768768$ drachms to tons.

Ans. 8T. 6cwt. 1qr. 8 lbm.

[^25]8. A merchant would put 109 cwt . Oqrs. 12lbs. of raisins irito boxes, containing 26lbs. each; how many boxes will it require? . Ans. 470 boxes.

EXAMPLES IN LONG MEASURE.

1. How many barley-corns will reach round the globe, it being 360 degrees ? Ans. 4755801600 bar. Operation.
2) 360°

691
180
3240
2160
25020 miles. 3020

500400
75060
8006400 rods. $16 \frac{1}{2}$

4003200
48038400 8006400

132105600 feet. 12

1585267200 inches. 3

In this example, we first multiply $360{ }^{\circ}$ by $69 \frac{1}{2}$, the number of miles in a degree ; then by 320 , the number of rods in a mile : then by $16 \frac{1}{2}$, the number of feet in a rod; then by 12 the number of inches in a foot, lastly by 3 , the number of barleycorns in an inch,-which produce the answer,

4755801600 barleycornm,
2. Reduce 4755801600 barleycorns to degrees.

Ans. 360 degrees.

Operation. 3) 4755801600
12) 1585267200 in.

132105600 feet. 2
33) $264211200 \frac{1}{2}$ feet.
320)S006400 rods.

25020 miles. 2
139) $50040 \frac{1}{2}$ miles.

360 degrecs.

This example is the reverse of the first example. We first divide by 3 , the no. of bar. in an inch ; then by 12 the number of in. in a foot-and find the quotient to be 132105600 feet, which are to be reduced to rods. We cannot easily divide by the mised number $16 \frac{1}{2}$ on account of the fraction $\frac{1}{2}$. We overcome this difficulty, thus, $16 \frac{1}{2}$ feet $=33$ half feet, and 132105600 feet $=264-$ 211200 half fect, which divided by 33 gives 8006400 rods; we reduce these rods to miles by dividing by 320 , the number of rods in a mile, and to degrees by dividing ly 691 miles $=\mathbf{1 3 9}$ half miles, and 25020 miles $=50010$ half miles, which divided by 139 gives 360 degrees for the quotient.

Note.-When the divisor is a mixed number we may reduce it to halves, thirds, fourths, \&c. and the dividend to the same; then divide, and the quotient will be the answer.
3. How many inches are in 273 miles?

Ans. 17297280in.
4. In 34594560 in . how many miles? Ans. 546 m .
5. Reduce 2 m . 1 fur. Sp. 3 yds .2 in . to inches. Ans. 136334 in.
6. Reduce 2280060 barley-corns to miles. Ans. 11m. 7fur. 38p. 2yds. 2 A.

[^26]7. Required the number of revolutions a wheel 18 A sin. circumference will make in running 150 miles.

Ans. 43200.
EXAMPLES IN CLOTE MEASURE.

1. In $15 y d s .3 \mathrm{qr}$. 1na. how many nails? Ans. 253na.
2. In 1012 nails of cloth, how many yards?

Ans. $63 y d s .1 q r$.
3. Reduce 73 ells Flemish to quarters. Ans. 219qrs.
4. In 1752 nails, how many ells Flemish?

Ans. 146 clls.
5. How many ells English are in 1408 nails?

Ans. 70 E. E. 2 qrs.
6. In 47656 nails how many ells English ?

Ans. 2382 E. E. 4 qrs.
7. Reduce 475 ells English to nails and these again to yards.

Result 9500 na. and 593yds. 3qrs.
8. In 4 bales of cloth, each 12 pieces, and each piece 24 ells English, how many yards and ells Flemish?

Ans. 1440yds. 1920 E. F1.
mxamples in land on square measure.
By the table of long measure we learn that 3 feet in length make 1 yard, also by the table of square measure, that 9 square feet make 1 square yard, that is 3 feet in length and 3 feet in breadth. To make this plain let the sunall square represent 1 square foot. It will be perceived that the large square contains 9 such squares, or 1 mquare yard.

A square is the space included between 4 equal lines, drawn perpendicular to ench other. Each line is called a side of the square. If each side be 1 foot, it is called a square foot, if 1 yard it is called a square yard : if 1 rod a square rod, \&ec.

Qumetions.-In clotil measure how do we reduce yds to inches? Ells English to inches? Ello Flemish to inches? Ells French to inches? Inches to yards,de.?

Note.-When the length and breadth are given, we find its square contents, by multiplying the length by the breadth.

1: Required, the contents of a board 14 feet long and 2 feet wide.

Ans. 28 feet
2. In-24 ac. 2 r. 26 p. how many perches?

Ans. 3946 perches.
3. Reduce 365 ac. 3 r. 13 p . to perches.

Ans. 58533 perches.
4. In 267464 perches, how many acres?

Ans. 1671ac. 2r. 24p.
5. If 2599200 p. be divided into 25 equal tracts, how many acres will be in each? Ans. 649ac. 3r. 8p.
6. In 37456 square inches, how many square feet ? Ans. 260 sq. ft. 16 sq. in.
7. In 14972 square rods, how many acres? Ans. 93a. 2r. 12p.
8. In 3674139 p. how many square miles?

Ans. 35 m . 563 a . 1r. 19 p .
EXAMPIES IN CUBIC MEASURE.
In long measure we consider length only: in: square measure, length and breadth are both considered: cubic or solid measure has regard to length, breadth and thickness. A cube may be represented by a solid block having 6 equal sides. Suppose we have a number of blocks, containing a cubic foot each, if we lay 9 of these upon the floor, thoy will cover a square yard, and as each block contains a cubic foot, the solid contents of the square yard will be θ cubic fect. Then if we

[^27]cover this layer with another of blocks, containing also 9 solid feet, the pile will contain 18 solid feet; if we pile on yet another layer the pile will contain 27 solid feet, or one cubic yard, and as the pile is $\mathbf{3}$ feet in length, $\mathbf{3}$ feet in breadth, and 3 feet in depth, its solid contents are found by multiplying its length and breadth, and depth together.

1. How many cubic inches are there in a brick, that is 8 inches long, 4 inches wide, and 2 inches thick?

Ans. 64.
2. How many solid feet in a pile of wood 25 feet long, 4 feet wide, and 6 feet high? How many cords?

Ans. 600 feet and 4 cords and 88 feet.
3. In 14 tons of hewn timber, how many solid inches?

Ans. 1209600.
4. In 12 cords of wood, how many solid feet and inches? Ans. 1536 feet and 2654208in.
5. In 4608 solid feet of wood, how many cords?

Aus. 36.
EXAMPLES IN WINE MEASURE.

1. In 5 tuns 1 hogshead of wine, how many gallons? Ans. 1323.
2. In 10584 quarts of wine, how many tuns? Ans. 10 tuns, 2 hhds.
3. In 24hhds. 18gals. 2qts. how many pints ? Ans. 12244.
4. In 1789 quarts of cider, how many barrels?

Ans. 14bbls. 25qte.
5. In 58 barrels of wine, how many gallons, quarts and pints? Ans. 1827 gals . 7308 qts . 14616 pts.

[^28]
examples in ale or beer measure.

1. Reduce 47 bar. 16 gals. 4 qts to pints.

$$
\text { Ans. } 13672 \text { pta. }
$$

2. In 64972 quarts of beer, how many barrels? Ans. 451bar. 7gals.
3. In 27 hh ds. of beer, how many pints?

Ans. 11664.
4. Reduce 12528 pints to hogsheads. Ans. 29hhds.
examples in dry measure.

1. In 372 bushels, how many pints? Ans. 23808.
2. In 17408 pints, how many bushels? Ans. 272.
3. In 1597 quarts, how many bushels?

Ans. 49bush. 3pks. 5qts.
4. In 46321 pecks, how many chaldrons?

Ans. 321ch. 24bush. 1pk.
examples in time.

1. In 49 weeks, how many minutes? Ans. 493920.
2. In 24796800 seconds, how many weeks?

Ans. 41.
3. In 184009 minutes, how many days?

Ans. 127d. 18h. 49 min .
4. In 214 days, 15 hours, 31 minutes and 25 seconds, how many seconds?

Ans. 18545485.
5. In 126230400 seconds, how many years of 365 days? Ans. 4 years and 1 day.
6. How many hours in 4 years, allowing 365 days and 6 hours to the year?

Ans. 35064.
7. In 12 years of 365 days, 23 hours, 57 minutes, 39 seconds cach, how many seconds?

Ans. 379467108 see.
examples in circular measure or motion.

1. In $4 \mathrm{~s} \cdot 20^{\circ} 15^{\prime} 34^{\prime \prime}$ how many seconds?

Ans. 504.934' ${ }^{\prime}$.

[^29]2. In 167573 seconds how many degrees ?

Ans. $46^{\circ} 32^{\prime} 53^{\prime \prime}$.
3. In 32295 minutes how many circles ?

Ans. 1c. 5s. $28^{\circ} 15$.
4. How many minutes and seconds in one complete revolution of a planet? Ans. 21600' 1296000'.

practical exercises.

1. In $£ 2514 \mathrm{~s} .1 \mathrm{~d}$. how many pence? Ans. 6169.
2. In 11520 d . how many pounds? Ans. $\mathbf{E 4 8}$.
3. In 59lbs. 13pwt. 5grs. of gold, how many grains ?

Ans. 340157.
4. In $£ 85$ 8s. how many guineas?

Ans. 81 guineas, 7s.
5. How many cords are there in a pile of wood that is 36 feet long, 6 feet high and 4 feet wide ?

Ans. 6 cords and 6 feet.
6. How many yards of carpeting, which is one yard wide, will be required to carpet a room 18 feet wide and 20 feet long?

Ans. 40yds.
7. Reduce 346 ells Flemish to ells English.

Ans. 207\% ells Englishl.
8. A man would ship 720 bushels of corn in barrels which hold 3 bushels 3 pecks each; how many barrela must he get?

Ans. 192.
9. How long will it take to count a million, at the rate of 50 a minute?

Ans. 13d. 21 h .20 m .
10. In 10 bales of cloth, each bale 12 pieces, and each piece 25 Flemish ells, how many yards?

Ans. 2250.
11. How many strokes does a regular clock strike in a year, stiking once at one, twice at two, \&c.

Ans. 56940.
12. In a cube, or square piece of wood 24 , inches each way, how many small cubes of one inch each way can be sawed from it, allowing no waste in sawing ?

Ans. 13824.

[^30]13. What number of bottles, containing a pint and a half each, can be filled from a barrel of cider?

Ans. 168.
14. In 3562 American dollars how many pounds sterling? the dollar being worth 4s. 7d. sterling.

Ans. £816 5s. 10d.
15. How many pints, quarts, and two quarts, each an equal number, may be filled from a pipe of wine?

Ans. 144.
16. In 4lb. 1oz. 1 pwt . of silver, how many tablespoons, weighing 23pwt. each, and tea-spoons, weighing 4 piwt. 6 grs. each, can be made, and an equal number of each sort?

Ans. 36.
17. How many steps of 2 ft . 9 in . each would a person take in walking from Kingston to Cobourg, allowing the distance to be 97 miles?

Ans. 186240.
18. The sun is $95,000,000$ of miles from the earth, and a cannon ball at its first discharge flies about a mile in $7 \frac{1}{2}$ seconds; how long would it be at that rate in flying from here to the sun? Ans. 22 yrs .216 d .12 h .40 m .
19. How often will a chariot wheel, 18 feet 4 inches in circumference, turn round in running 22 miles ?

Ans. 6336.
20. How many bricks will it take to lay a floor 20 feet long and 18 feet wide, each brick being 8 inches square? \quad Ans. 810 bricks.
21. If a field is 60 rods long, and 48 rods wide, how many acres does it contain?

Ans. 18.
22. The forward wheels of a wagon are $14 \frac{1}{2}$ feet in circumference, and the hind wheels 15 feet and 9 inches; how many more times will the forward wheels turn round than the hind wheels, in running from Boston to New York, it being 248 miles ?

Ans. 7167 times, omitting remainders.

COMPOUND ADDITION.

Addition of compound numbers is collecting together two or more numbers of different denominations into one sum.

RUIE.

Write the numbers so that those of the same denomination may stand directly under each other. Add the first column or denomination together as in simple numbers; then divide the sum by as many of the same denomination as make one of the next higher ; set down the remainder under the column added, and carry the quotient to the next higher denomination, continuing the same to the last, which add, as in simple numbers.

Proof, the same as in aldition of simple numbers.

> EXAMPLES IN STERLING MONEY.

1. How many pounds, shillings, pence and farthings in £41 13s. 6d. 3qr. £48 11s. 4d. 3qr. £96 16s. 10d. 3qr. Operation. In the above example we first $\boldsymbol{£}$ s. d. qr. write the numbers of the same de$41 \quad 13 \quad 6 \quad 3$ nomination under each other, as 4811 4. 3 the rule directs. We then add up $961610 \quad 3$ the column of farthings, and find it amounts to 9 , but 9 farthings are Sum $187 \quad 1 \quad 10 \quad 1$ equal to 2 pence and 1 farthing; we therefore write down the one farthing and carry the 2 pence to the column of pence.In adding the column of pence we find the amount to be 22 pence, which is equal to 1 shilling, and 10 pence over ; we write the 10 under the column of pence and carry the one to the column of shillings. We then find the sum of the shillings to be 41 ; that is 2 pounds, and 1 shilling over; carrying the 2 to the column of pounds we find the sum to be 187 pounds, 1s. 10d. 1qr.
[^31]Note.-In simple numbers we carry 1 for every 10 ; but in compound numbers we carry 1 for so many units of the lower denomination as make one of the next higher. For example, in passing from pence to shillings we carry 1 for every 12, and 1 for every 20 in passing from shillings to pounds, \&ce.
2. What is the sum of $£ 1618 \mathrm{~s}$. 9d. £14 13s. 8 d . and $\boldsymbol{£ 1 5} 17 \mathrm{~s} .6 \mathrm{~d}$.?

Questions. - In simple numbers when do we carry 11 In compround numbers when do we carry 1 ? In passing from pence $t 0$ shillings what do we carry? In passing from shillingg to pounds?

TROY WEIGHT.
Operation.
(1)
lb. oz. pwt. gr. $11 \cdot 8 \quad 18 \cdot 19$ the 23 and carry the 1 pwt. to 114. 9616 the column of pennyweights ; $\begin{array}{llll}223 & 10 & 17 & 18\end{array}$ we find their sum to be 42 pwt . Sum, $350 \quad 5 \quad 2 \quad=20 z .2 p w t$. Carrying 2 to the ounces, we find their sum to be $29 \mathrm{oz} .=2 \mathrm{lb} .5 \mathrm{oz}$. We then carry the 2 to the column of pounds, and find their sum to be 350 .
(2)

lb.	oz.	pwt.	gr.
16	10	14	16
23	8	7	20
52	10	18	15
$\mathbf{3 3}$	1	5	7
76	3	12	3
252	10	18	13

(3)

lb.	oz.	pwt.	gr.
273	1	15	14
342	9	3	5
657	10	13	21
724	9	10	17
652	7	18	23

A POTHECARIES WEIGHT.
(1)
ib. oz. dr. scru. gr.
$\begin{array}{lllll}24 & 7 & 2 & 1 & 16\end{array}$
$\begin{array}{lllll}17 & 11 & 7 & 2 & 19\end{array}$ $\begin{array}{lllll}36 & 6 & 5 & 0 & 7\end{array}$ $\begin{array}{lllll}15 & 9 & 7 & 1 & 13\end{array}$ $\begin{array}{lllll}0 & 3 & 4 & 1 & 9\end{array}$ $\begin{array}{lllll}16 & 10 & 3 & 2 & 17\end{array}$
(2)

Jh.	oz.	dr.	scru.	
12	11	6	1	15
4	9	7	0	12
9	10	1	2	16
4	8	1	2	19
9	0	0	1	10
4	9	2	1	6
46	1	4	1	18

(1)

cwit.	qr.	lb.
2	3	27
1	1	17
4	2	26
6	1	13
3	3	15
6	2	16
26	0	2

COMPOUND ADDITION.

AVORDUPOIS WEIGHF.
(2)
h. oz. dr.
24. 1314

171211
261215
$16 \quad 8 \quad 7$
241012
111212

| $122 \quad 7 \quad 7$ |
| :--- | :--- |

4. A farmer sold 4 loads of hay, weighing as follows, viz: $12 \mathrm{cwt} .3 \mathrm{qrs} .16 \mathrm{lbs} ., 13 \mathrm{cwt} .2 \mathrm{qrs} .12 \mathrm{lbs} .13 \mathrm{oz} ., 15 \mathrm{cwt}$. 1 qr. $21 \mathrm{lbs} .11 \mathrm{oz} ., 16 \mathrm{cw}$. 1 qr . 24 lbs .8 goz ; what was the weight of the whole in tons?

Ans. 2T. 18cwt. 1qr. 19lbs. LONG MEASURE.
(1)

L.	mi.		
16	2	7	39
327	1	2	20
87	0	1	15
1	1	1	1
432	2	4	35

(2)
yd. ft. in. bar. $90 \quad 211 \quad 2$ $\begin{array}{llll}155 & 1 & 9 & 1\end{array}$ $\begin{array}{llll}327 & 0 & 7 & 0\end{array}$
$\begin{array}{llll}50 & 2 & 1 & 2\end{array}$

624	1	5	2

CLOTH MEASURE.
(1)
yds. qrs. na.
7131
$\begin{array}{lll}13 & 2 & 1\end{array}$

16	0	1
42	3	3
57	2	2
49	2	2
251	3	0

(2)
E.E. qr. na.

4432
49

6	2	3
84	4	1
7	0	0
61	2	1
254	2	2

(3)
E.F. qrs. na,

8412

84	2	1
7	1	3
76	0	2
52	2	3
53	2	2
9	2	3
285	0	2

LAND OR SQUARE MEASURE.

WINE MEASURE.
(1)

	qt. pt.		hhd.	d	qt.					
39	31	3	42	61	3	1	34	2	34	2
17	21	2	27	39.	2	0	19	1	59	
24	30	1	9	14	0	1	28	2	2	1
19	1. 1	2	0	9	2	1	19	0	32	2
8	00	3	16	24	1	1	37	3	11	1
40	21	1	4	0	3	0	0	1	9	0
150	21	0	100	24	1	0	139	3	22	3

COMPOUND ADDITION.

DRY MEASURE.

(1)

ch.	bu. pk.	qt.	pt.	
27	25	3	7	1
59	21	2	6	3
2	1	2	7	1
3	9	1	8	2
94	22	3	7	1

(2)
ch. bu. pk. qt. pt.
$141 \quad 36$
$\begin{array}{lllll}21 & 32 & 2 & 4 & 1\end{array}$
$\begin{array}{lllll}85 & 9 & 1 & 0 & 3 \\ 10 & 4 & 4 & 1 & 3\end{array}$
$\begin{array}{lllll}259 & 12 & 0 & 0 & 1\end{array}$

TIME.
(1)

yr. mo.	wk. da.	hr.		
4	11	3	6	20
3	10	2	5	21
5	8	1	4	19
101	9	3	7	23
55	8	4	6	17
172	2	1	4	4

(2)
wk. da. hr. m. sec.
$8 \quad 8 \quad 14 \quad 55 \quad 57$
$\begin{array}{lllll}10 & 7 & 23 & 57 & 49\end{array}$
$\begin{array}{lllll}20 & 6 & 14 & 42 & 10\end{array}$
$\begin{array}{lllll}6 & 5 & 23 & 19 & 59\end{array}$
$\begin{array}{lllll}2 & 2 & 20 & 45 & 48\end{array}$
$\begin{array}{lllll}50 & 4 & 1 & 41 & 34\end{array}$
circular motion.

(1)				(2)			
S.	0	1	11	S.	\bigcirc	1	11
3	29	17	14	11	29	59	19
1	6	10	17	0	0	40	10
4	18	17	11	9	4	10	44
6	14	18	10	4	11	6	10
16	8	2	52	25	15	57	8

PRACTICAL EXERCISES.

1. A man bought a wagon for $£ 1816 \mathrm{~s}$. 8d., a plough for $£ 210$ s., a span of horses for $£ 5510 \mathrm{~s}$. 6d. ; what must he pay for the whole? Ans. $\boldsymbol{£} 76$ 17s. 2d.
2. What is the sum of one hundred and five pounds, fourteen shillinge, six pence, one farthing; eughty-four pounds, ten shillings, four pence, three farthings; and five hundred pounds, fifteen shillings, ten pence and three farthings?

Ans. £691 0s. 9d. 3qr.
3. Bought a set of silver spoons weighing 11 b . 1 loz . 9 pwt. $17 \mathrm{gr} .$, a silver cup weighing $50 z .10$ pwt. 14 gr . and a silver tankard weighing 1 lb .11 oz . 7gr.: what was the weight of the whole? Ans. 3 lb . Coz. Opwt. 14gr.
4. The great bell at Moscow, the largest in the world ${ }_{3}$ weighs 198tons, 2cwt. 1qr.: the bell at Oxforl, the largest in England, weighs 7tons, 11cwt. 3qr. 4 4 h .; St. Paul's hell at London, 5tons, 2cwt. $1 \mathrm{gr} .221 \mathrm{~s}:$; and the Tom of Lincoln, 4 tons, 16 cwt . 3 qus .18 lbs : what is the sum of their weights? Anc. 215 tons, 13 cwt 1gr. 16 lbs.
5. A merchant bought 5 bales of cloth; the first contained $35 y \mathrm{ds}$. 2qp. ; the second $42 \mathrm{yds}$. . 3 pr . ; the third 39 yd . 3 qr. ; the fourth $45 y \mathrm{ds} .3 \mathrm{qr}$., and the fith 27 yd . $2 \mathrm{qrs}$. ; how many yards did he buy?

Mns. 191yds. 1gr.
6. If 1 cisten contains 25 hhd. 27 grl . 3 gt ; a second $37 \mathrm{~h} h \mathrm{~d} .26 \mathrm{gal} .2 \mathrm{gt}$; a third $35 h \mathrm{hd} .54 \mathrm{gat} .1 \mathrm{ct}$. ; and a 4 h 45hhd. 15 gal .3 qt : : what cuantity will the jointy contain? Ans. 143 hh d. 61 gal . 1gt.
7. A man bought 3 piles of wood, which contain an follows, viz. 37 cords, 51 feet; 14 cords, 120 feet; 19 cords, 95 ; how many cords did he purchase?

Ans. 72 cords 10 feot.

COMPOUND SUBTRACTION.

Compound subtraction like that of simple numbers, is taking a less number from a greater, but of different denominations. The principles involved are the same as those already explained in simple subtraction, except that it takes different numbers to make a unit in the next higher denomination as explained in compound addition.
rule.
Write the less numbers under the greater, placing those of the same denomination directly under each other. Begin with the lowest denomination, and take successively the lower number in each denomination from the upper, and write the remainder underneath as in subtraction of simple numbers.

If the lower number be greater than the one above it, add as many units to the upper number, as make one of the next higher denomination, subtract the lower number therefrom, and add 1 to the next higher denomination in the subtratiend, and so on through all the denominations.
Proof-as in simple , ubtraction.

EXAMPLES.

1. Subtract £29 19s. 8d. from £36 15s. 7d. Placing them according to the rule, they stand thus:

Operation.		
£	s.	d.
36	15	7
29	19	8
6	15	11

In the above example 8d. cannot be taken from 7; we therefore add as many units of this denomination to 7, as are required to make a unit of the next higher, that is 12 , whicli added to 7 make 19,

[^32]subtract 8 from 19 , and 11 remains. As 12 pence have been added to the minuend, an equal quantity must be added to the subtrahend, we therefore carry 1 shilling to the 19 , which makes 20 . As this cannot be subtracted from 15, we add to the 15 as many of this denomination as make one of the next higher; that is 20 , which added to 15 makes 35 . Subtract 20 from 35 and 15 remain. As 20s. have been added to the minuend, 1 pound must be added to the subtrahend of the next higher denomination, making it 30, which subtracted from 36 leaves 6 .
(1)

(1)					(2)				
		s.	d.			\pm	s.		qr.
From	346	16	5	3	From	476	10	9	
Take	128	17	4	2	Take	277	17	7	1
Rem.	217	19	19	1	Rem.	198	13		0

(2)
3. Borrowed £29 16s. and paid $£ 16$ 11s. 9d. : how much remains due?

Ans. £13 4s. 3 d.
4. From $£ 397$ 16s. 6d. ; take $£ 144$. 11s. 4 d . 3 qr . Ans. 5 : 3 s. 1d. 1qr.
5. How much does $2: 3 \% 6$ s. exced $£ 178$ 18s. $5 \frac{1}{4}$ d.? Ans. £138 7s. $\mathbf{6}_{4}^{2} \mathrm{~d}$.
6. From eleven pounds take eleven pence.
\ns. $£ 10$ 19s. 1d.
7. From one humited pounds, take four pence halfpenny.

Ans. £99 19 71 2 d.

(8)			(9)				
	lb.	oz. pivt.gr.					
From	273	000	40	7	3	2	7
Take	98	101821	24	4	5	2	8
Rem.	147	131	16	2	5	2	

Proof, $\overline{273} 0000$
(10)

(13)

(35)

88	3	55			
48	0	62	2	0	
	2				

(17)

wk. da. hr. mi. sec						
250	4	3	6	22	55	
220	8	0	5	23		

ch. bu. pk. gt.

$4734 \quad 3 \quad 6$ | $20 \quad 35 \quad 0 \quad 7$ |
| :--- |
| 20352 |

(18)
S. $0^{1} 11$

9234554
$\begin{array}{lll}3 & 74056\end{array}$
6154458

PRACTICAL EXRRCISES

fy compound addition and subtraction.

1. From one pound take one farthing.

Ans. 193. 11 d 3far.
2. What sum addel to $\mathcal{L} 1711 \mathrm{~s}$. 8_{t}^{1} d. will make $\mathcal{E} 100$?
3. Lent a friend at one time $£ 1316 \mathrm{~s} .8 \mathrm{~d}$. ; at : nother £35 10s. 6d. ; he paid me at one time, $£ 1010 \mathrm{~s} . \dot{1 d}$. ; at another, $\mathfrak{f} 93 \mathrm{~s} .6 \mathrm{~d}$. ; how much whans due?

Ans. ©29 12s. 9.
4. From 11 years, 6 months, 11 daya, tako 10 years, 6 months 29 days. Ans. 11 mo. 12da.
5. A gentleman paid his $\mathbf{3}$ laborers as follows: to \mathbf{A}. he gave £11 13s. 6d. ; to B. 13s. 6d. more than to A. ; and to C. he gave as much as A. and B. both ; how much did the gentleman pay out?

Ans. £48 1s.
6. A merchant bought 17 cwt . 2qr. 14lb. of sugar, of which he sells 9 cwt. 3 gr , 25 lb . how much of it remains unsold?

Ans. 7cwt. 2qr. 17lb.
7. From a piece of cloth which contained 52 yds . 2na. a tailor was ordered to take 3 suits, each 6 yds. 2 na. ; how much remains of the piece? Ans. 3\%yds, 2q5. 2na.
8. The revolutionary war broke out between Great Britain and the Uunited States, April 19th, 1775, and a general peace took place January 20th, 1783 ; how long did the war continue? Ans. 7yr. 9mo. 1d.
9. A merchant buys two hogsheads of sugar, one weighing 8 cwt .3 qr .21 lb ., the other $9 \mathrm{cwt}$.2 qr .6 lb .; he sells two barrels, one weighing $3 \mathrm{c} w \mathrm{t}$. 1 q . 21 lb . $14 \mathrm{oz} .$, the other, 2cwt. 3qr. 15lb. 6oz.; how much remains on hand? Ans. 12 cwt . 26 lb .12 oz.
10. A boy sets out upon a journey, and has 200 miles to travel ; the first day he travels 9 leagues, 2 miles, 7 furlongs, 30 rods; the second day 12 leagues, 1 mile, 1 furlong; the third day 14 leagues; the fourth day 15 leagues, 2 miles, 5 furlongs, 35 rods; how far had he then to travel? Ans. 14l. 1mi. 1 fur. 15 rd .

COMPOUND MULTIPLICATION.

To multiply a compound number by a simple one, is to repeat the compound number as many times as there are units in the multiplier.
I. When the multiplier does not exceed 12.

RULE.
Write down the compound number and set the multiplier under the lowest denomination. . Multi-

[^33]ply the several denominations in succession by the multiplier ; reduce the results to the next higher denomination, and set down the excess as in addition; proceed in the same way through all the denominations, and set down the entire product when you come to the last,

EXAMPLES.

1. Multiply $£ 39$ s. 10 d . by 4 .

Operation. Place the numbers as the rule \dot{E} s. d. directs, and then say 4 times 10 d . $3 \quad 910$ are $40 \mathrm{~d} .=3 \mathrm{~s}$. 4d. ; we set down 4 the 4 d . in the lower line; then 4 times 9 s . are 36 s . and 3 shillings to

- Product, 13194 carry make $39 \mathrm{~s}=\boldsymbol{£} 1$, and 19 s . over-set down the 19 s . ; then 4 times $£ 3$ are $£ 12$, and $£ 1$ to carry make $£ 13$, and the product of $£ 39 \mathrm{~s} .10 \mathrm{~d}$. by $4=£ 1319 \mathrm{~s}$. 4 d .
\boldsymbol{x} s. d. qr.

2. Multiply $\begin{array}{lllll}11 & 6 & 2 & \text { by } 5 & \text { T. cwt. qr. Ib. oz. }\end{array}$ $\begin{array}{llll}0 & 9 & 3712\end{array}$

Product, $\boldsymbol{f 7} 17 \quad 8 \quad 2$

$$
\begin{array}{lllll}
3 & 9 & 3 & 26 & 4
\end{array}
$$

4. What will be the cost of 5 yards of calico, at 3 s . 9d. per yard?

Ans. 18s. 9d.
5. A man bought 7 sheep at 9s. 6 d . a head; what did they cost him?

Anm. $\mathbf{E 3}$ 6s. 6d.
6. What will be the cost of 9 hats at 9 s .9 d . each ?

Ans. £4 7s. 9d.
7. Bought 9 pieces of shirting, each containing $28 y$ yds. 2qrs. 2na. : how many yards in all?

Ans. 257 yds. 2qrs. 2na.
8. What is the cost of 12 bushels of wheat at 9 s. 6 d . per bushel ?

Ans. £5 14s.
9. What will 12 horses come to, at £29 16s. 8 d. each? Ans. EBSO^{2}.

Ans. 34120
$\begin{array}{llll}\text { £2 } & 3 & 3 \\ & & 4\end{array}$ In this example 4 and 4 are the fac-

813
8
3412

RULE.

Multiply the compound number by one of the component parts or factors, and then that product by the other factor, and the last product will be the answer.

EXAMPLES.

1. What will 16 yards of broadeloth come to at $£ 2$ 3s. 3d. per yard?

Operation. tors of 16 , because $4 \times 4=16$.
2. What will 20 barrels of flour come to, at $£ 16 \mathrm{~s} .3 \mathrm{~d}$. each?

Ans. £26 5s.
3. What must a man pay for 36 sheep, at 9 s . 4 d . each ? Ans. £16 16:.
4. What is the weight of 48 pipes of wine, each weighing 18 cwt . 2 qrs . 14 llbs . Ans. 894 cwt . or 44 T .14 cwt .
5. In 21 pieces of cloth, each containing 24 yds. 2 qrs. 3na.; how many yards? Ans. 513 yds. 1 qr. 3na.
6. How much water will be contained in 96hhds. each containing 62 gal .1 qt .1 pt .1 gi . Ans. 55991 gal .
7. What is the cost of 120 dozen of candles at 5 s .9 d . per dozen?

Ans, $£ 3410$ s.
III. When the multiplier exceeds 12 , and is not a composite number.

Qusetion. - When the multiplier exceeds 12 and is a composite number what is the rule?

RULE.

Multiply the simple number by each of the denominations separately, and reduce each product to the highest denomination named. Then add the several products together, and their sum will be the answer sought.

EXAMPLES.

1. Multiply $£ 53 \mathrm{~s} .8 \mathrm{~d}$. by 13.

Cperation.

13 3 s.	13
$39 \mathrm{~s} .=£ 119 \mathrm{~s}$.	8 d.
${.=8 \mathrm{~s} .8 \mathrm{~d} .} }$	

In this example we

13
$\frac{3 \mathrm{~s} .}{39 \mathrm{~s} .}=£ 119 \mathrm{~s}$.
first multiply the 13 by 8 d. , and the product is $104 \mathrm{~d} .=8 \mathrm{~s} .8 \mathrm{~d}$. then the 13 by 3 s . and the product is $39 \mathrm{~s} .=£ 119 \mathrm{~s}$. ; then the 13 by $£ 5$, and the product is $£ 65$. We then add the several products together for the answer, as the rule directs.
2. What is the cost of 139 oxen at $£ 68$ s. 9 d . each.

Operation.

$$
\begin{aligned}
139 \times 9 \mathrm{~d} . & =1251 \mathrm{~d} .
\end{aligned}= \pm \cdot 5 \quad 4 \mathrm{~s} .3 \mathrm{~d} .
$$

3. What is the worth of 47 pounds of butter at $9 \frac{1}{2} d$. per pound?

Ans. $\mathscr{E}_{117 \mathrm{~s} .21 \mathrm{~d} \text {. }}$
4. What will 19 yards of cambric come to, at 11 s .6 d . per yard?

Ans. :i:10 18s. 6d. 5. What is the cost of 52 pounds of tea, at 5 s .9 d . per pound?

Ans. £14 19s.

[^34]6. What is the weight of 17 hogsheads of sugar, each weighing 8cwt. 3 qrs. 14lbs. Ans. 150 cwt . 3qrs. 14lbs.

7: If one yard of cloth cost 7 shillings and 10 pence, what will 65 yards cost?

Ans. £25 9s. 2 d.
8. What is the cost of 46 bushels of wheat at 4 s . $7 \frac{1}{4} \mathrm{~d}$. per bushel?

Ans. $£ 10$ 11s. $9 \frac{1}{2} \mathrm{~d}$.
9. What is the cost of 117 cwt . of raisins, at $£ 12 \mathrm{~s} .3 \mathrm{~d}$. per crwt.

Ans. $\boldsymbol{E} 130$ 3s. 3d.
10. In 357 hogsheads of sugar, each $15 \mathrm{c} w \mathrm{w}$. 3 qrs. 17 lbs . how many cwt.? Ans. 5676cwt. 3qrs. 21lbs.
11. If a steamboat in crossing the Atlantic goes 211 mi . 4fur. 32rd. a day; how far will she go in 15 days?

Ans. 3174 miles.

COMPOUND DIVISION.

Compound Division is finding how often one number is contained in another of different denominations, and is the reverse of compound multiplication. When the price of one yard, one pound, \&c. is given to find the price of a quantity, it is done by multiplication; but when the price of a quantity is given to obtain the price of one article, we must divide the price by the quantity, and the quotient will be the price of one pound, one yard, \&c. \&c.

RULE.

Place the divisor at the left hand of the dividend, and divide the left hand denomination, the same as a sum in simple division, and if any thing remains,

[^35]reduce it by reduction, to the next lower denomination, and to the product add the next lower denomination of the dividend; then divide as before, and so continue to do, till the whole dividend be divided. The quotient figures will then be the answer in the same denominations as the dividend that produced them.

Proof.-To prove multiplication we divide the product by one of the factors, and if the work be right the quotient will be the other factor. As division is the reverse of multiplication, to prove it we must multiply the quotient by the divisor, and if the product is equal to the dividend, the work is right.

EXAMPLES.

1. If 6 yards of cloth cost $£ 714 \times 4 \frac{1}{2} \mathrm{~d}$, what is the price per yard?

714 4 2 Proof.

In this example we say 6 is contained in $£ 7$ once. and $£ 1$ over; we write down the quotient, and reduce the remaining $£ 1$ to shillinge, which with the 14 s . added, make 34 s . ; we then say 6 in 34s. goes 5 times, and 4 s . over ; this 4 s . reduced to pence $=48 \mathrm{~d}$.; which with the given pence, 4 d . in the dividend, make 52d. 66 in 52d. goes 8 times, and 4 d . over; $4 \mathrm{~d} .=16$ qrs., which with the given quarters make 18 , and 18 contains 6 three times, and it is evident that the several quotients $£ 15$ s. 8 d. 3 qrs. are the true quotient arising from the division of the compound number by 6 :
2. Bought 139 yards of cloth, for $£ 461$ 11s. 11d.; what was that per yard?

Operation.

£. s. d.
139) $4611111(3$

417
4.4

20
891(6s. 834

57
12
695(5)
695

Here we say $£ 461$ contains the divisor 3 times, and $\boldsymbol{£ 4 4}$ remain, which we reduce to shillings and add in the 11s., making 891s., in which the divisor is contained 6 times, and 57s. remain, which must be reduced to pence, and 11d. added, moking 995 d ., which contains the divisor 6 .mes and no remainder.

Note.-When the divisor does not exceed 12 the work may be performed by short division-and if the divisor be a composite number, it may be performed as already explained in simple numbers.
3. Divide £28 2s. 4d. equally among 21 men.

Operation.
7) £28 2s. 4d.
3)4 $0 \quad 4$

We divide by 7 and 3 because $7 \times 3=21$; hence each man receives $£ 16$ s. $9 \frac{1}{3} \mathrm{~d}$.

Ans. $£ 1 \quad 6 \quad 91$
4. If $£ 129 \mathrm{~s} .8 \mathrm{~d}$. be equally divided among 4 men, how much will each receive? . Ans. £3 2s. 5d.
5. Three cows cost $£ 223 \mathrm{~s} .9 \mathrm{~d}$. j . what was the cost of each? Ans. $£ 7$ 7s. 11 d .
6. If 8 horses cost $£ 18517$ s. 6 d ., what was the cost of one horse?

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

7. A man paid $£ 2$ 10s. for 15 bushels of corn ; what did he pay per bushel? Ans. 3s. 4d.
8d Bought 36 bushels of apples for $\mathbf{5 2} 14 \mathrm{~s}$. ; what was that per bushel?

Ans. 1s. 6d.
 much was that per barrel? Ans. $£ 1$ 16s. 6d.
10. Bought 64 gallons of oil for $£ 308 \mathrm{si}$; what did it cost per gallon?

Ans. 9s. 6d.
11. Bought 144 reams of paper for $\boldsymbol{£} 96$; what did it cost per ream?

Ans. 13s. 4d.
12. 176 men consumed in a week 13 cwt 3 qrs . 1 lb . 6oz. of bread; how much did each man consume?
13. If 232 bushels 3 pecks 7 quarts of wheat be put into 105 bags, how much will each bag contain?

> Ans. 2bu. 7qt.
14. Divide 18 gallons equaily among 144 soldiers. Ans. 1 pint each.

PRACTICAL EXERCISES

in COMPOUND MUltiplication and division.

1. In 15 loads of hay, each weighing 1 ton 3 cwt. 2 qrs. how many tons?

Ans. 17T. 12cwt. 2qrs.
2. What will 24 barrels of flour cost at $£ 2$ 12s. 4 d . per barrel ?

Ans. \boldsymbol{E}^{62} 16s.
3. The Prince of Wales receives a salary of $£ 150,000$ a year; how much is that per day?

Ans. $£ 410$ 19s. 2d.
4. Bought a dozen silver spoons, which together weighed 3 lb . 2oz. 13 pwt. $12 \mathrm{gr} .^{\circ}$; how much silver did each apoon contain?

Ans. 3oz. 4pwt. 11gr.
5. Bought 17 owt. 3qrs. 191bs, of sugar, and sold out ano third of it; how much remains unsold?

Ans. 11 cwt . 3 qrs. 22 lbs.
6. If 168 bushels 1 peck 6 quarts of wheat be put into $\$ 5$ bags how many bushels in each ?

Ans. 4bu. 3pke. 2qtw.
7. In 35 pieces of cloth, each measuring 27 y yards, how many yards? Ans. 971 yds. 1 qr.
8. If a man's wages amount to $\mathbf{£ 2 5 7} \mathbf{2 s}$. 5 d . in 12 months, what is that per month ? Ans. E21 8s. 64d.
9. A privateer iook a prize of $£ 30,000$, of which the owner took one third, and the officers one fourth; the remainder to be equally divided among 125 seamen; how much must each seaman receive? Ans. £100.
10. A certain gentleman lays up every year £294 12 s . 6 d. , and spends daily $£ 1$ 12s. 6 d. ; what is his income?

Ans. $£ 887$ 15s.
11. If 1cwt. of sugar cost $£ 310$ s. what is it per pound? Ans. 7hd:

practical exercises

IN THE FOUR COMPOUND RULES.

1. Find the amount of forty pounds nino shillings, six-ty-four pounds and nine pence, ninety-five pounds nineteen shillings, and seventeen shillings fourpence half-peuny. Ans. £2016s. 13d.
2. Received of 4 men the following sums of money, viz: the first paid me £37 11s. 4d. ; the second £25 16s. 7 d. ; the third, $£ 19$ 14s. 6d., and the fourth as much as all the other three, lacking 19s. 6d. I demand the whole sum received.

Ans. £165 5s. 4d.
3. Borrowed $£ 100$, and paid in part as follows: at one time $£ 21$ 11s. vd. ; at another time $£ 19$ 17s. 4 . d . ; at another time 10 dollars, at 6 s . each, and at another time two guincas, at 28 s . each, and two pistareens, at 14 hd . each; how much remखins due, or unpaid?

Ans. $£ 52$ 12s. 8 da.
4. How many days are there in 15 years of 365 days Shrs. 48 m . 51 sec . each ?

Ans. 5478 da . 15hr. 12m. 45sec.
5. A club in Quebec, consisting of 25 men, joined for a lotery ticket of $£ 10$ value, which came up a prize of

94 - phactioni exemcises.
24000. I wish to know what each man contributed, and what each man's share came to.

Ans. Each contributed 8s. ; each share $£ 160$.
6. Three Merchants A. B. \& C. have a ship in company. A. has $\frac{5}{8}$, B. $\frac{2}{8}$, and C. $\frac{7}{8}$, and they receive for freight $£ 228.16 \mathrm{~s} .8 \mathrm{~d}$. It is required to divide it among the owners, according to their respective shares.

Ans." A's share £1430. 5d. B's £57 4s. 2d. and C's £28 12s. 1d.
7. A man paid $£ 674 \mathrm{~s}$. for a pile of wood containing 64 cords; he sold 30 cords for $£ 29$ 16s. $\frac{5}{}$ for how much must he sell the remainder per cord, so as not to lose?

Ans. £1 2 s .
8. A gentleman purchased of a silversmith, 2 dozen silver spoons, each weighing 30 z . 4 pwt. 1gr. ; 2 dozen of tea spoons, each weighing $15 \mathrm{pwt}$.16 gr ; ; 3 tankards, each weighing 22 oz . 14 pwt . He sold him old silver to the amount of 6 lb .10 oz . 3pwt. ; how much remained to be paid for?
9. A farmer has 6 T .8 cwt . 2qris. 141bs. of hay to be removed in 6 equal loads; how much must be carried at each load?

Ans. 1T. 1čwt. 1qr. 21 hss.
10. A merchant had $£ 19118$ to begin trade with ; for 5 years together, he cleared $£ 1086$ a year ; the. next 4 years he cleared $£ 2715$ 10s. 6d. a year; but the last 3 years he was in trade he had the misfortune to lose one year with another, $\mathbf{x} 475$ 4s. 6d. a year ; what was his real fortune at the end of 12 years? Ans. £33984 8s. 6 d.
11. What will 1 c wt. of cheese come to at 21 d . ; at $2 \frac{1}{2} \mathrm{~d}$. ; at $3 \mathrm{~d} . ;$ at 2 d . ; at 3 z d . per pound?

Answers in course : $\boldsymbol{E 1}$ 3s. 4d. ; $\boldsymbol{E 1} 5 \mathrm{~s} .8 \mathrm{~d}$. ; $\boldsymbol{£ 1} \mathbf{8 s}$. ; 18s. 8d. ; E1 12s. 8d.
12. Out of a pipe of wine a merchant draws 12 bottles, each containing 1 pint 3 gilla ; he then fills six 5 gallon demijohns : then he draws off 3 dozen bottles, each containing 1 quart 2 gills ; how much remained in the cask? Ans. 82gal. 1pt.
13. A privateer takes a prize worth £12465, of which the owner takes one half, the officers one fourth, and the remainder is equally divided among the sailors, who are 125 in number; how much is each sailor's part?

Ans. £24 18s. 7 g d.
14. A printer uses one sheet of paper for every 16 pages of an octavo book; how much paper will be necessary to print 500 copies of a book containing 336 pages, allowing 2 quires of waste paper in each ream.

Ans. 24 reams, 5 quires, 12 sheets.

BILLS OF PARCELS.

Note.-In keeping accounts, making out bills of parcels, we draw an oblique line and place the shillings on the left hand of it and the pence on the right, to designate the price of one article: thus, $2 / 6,4 / 9$,"which are read 2 s . 6d. and 4s. 9d.

Picton, October 14th, 1845.

1. Joseph Faithful,

Bought of James Trust,
8 yards of Calico at $1 / 3$

Total Cost, $\boldsymbol{E 6}^{6}$ Os. 11 d d.
Kingston, Sept. 19th, 1845.
2. Otis Smith,

Bought of Richard Good,
15 yards of Satin, at $9 / 6$
18 " of Silk, " $17 / 4$
12 " of Fine Cloth, " 19/8,
16 " of Cambric, * $3 / 2$;
13 " of Velvet, " $27 / 6$,
23 ." of Sheep's grey, at 6/3
Total Cost, $£ 62$ 20. 5d.

Queber, June 18th, 184.5.

3. Caivin Hawley,

Bought oî John Punctual;

Montreal, July 24th, 1845.*
4. Samuel Edwards,

Bought of Andrew White,
90 yards of Broad Cloth, at 8/4,

100	6	"	${ }^{6}$ 10/6,
112	${ }^{6}$	Satinet,	6 6/71
126	6**	6	(6 12/113,
144	${ }^{6}$	6	' 19/11,
162	6	6	${ }_{6} 69 / 3$,
70	*	of Bombazine,	($19 / 7{ }^{1} \frac{1}{2}$,
198	${ }^{6}$	of Italian Silk,	${ }^{6} 16 / \frac{1}{2}$
132	${ }^{6}$	6	" 8/11,
66	${ }^{6}$	${ }_{6}$	${ }_{6} 16 / 11 \frac{1}{2}$,

Ans. $\mathbf{E 7 5 2}$ 14s. 1 2a.

Toronto, Nov. 19th, 1845.

5. William Clark,

Bought of John Black, \& Co.
92 yards of Satinet, at $3 / 5 \frac{1}{4}$,
94 " of 6 6 6/91 102 6 of Durant, 104 Silk Vests, $1 / 8$, 106 Leghom Hats, $\quad 6$ 11/91, 114 pieces Nankin, : $668 / 3$ 3, 116 pounds of Thread, " - $9 / 11$,

Ans. $£ 257$ 17s. 8d.

FEDERAL MONEY.

Federal Money is the national currency of the United States. Its denominations are,-ihe mill, the cent, the dollar and eagle.

TABLE OF FEDERAL MONEY.
10 mills arc equal in value to 1 cent. 10 cents are equal to 1 dime. 10 dimes, or 100 cents, are equal to 1 dollar. 10 dollars are equal to one eagle.
In this table, 10 units of either denomination, make one unit of the next higher denomination, and this is the same way that simple numbers increase from the right to the left. Therefore, the denominations of federal money may be added, subtracted, multiplied and divided by the same rules that have already been given for simple numbers.
From the table it appears-First, that cents may be changed into mills by multiplying by 10 , or by annexing a cipher. Thus, 5 cents $=50$ mills. Second, that dollars may be changed into cents by multiplying by 100 , or annexing two ciphers, and into mills by annexing three. Thus, 8 dollars $=800$ cents, or 8000 mills.

This character, $\$$, placed before a number shows the number to express dollars, thus $\$ 14$, is 14 dollars. When . dollars and cents are written in one sum, they are separated by a point, thus, $\$ 10.45$: to be read 10 dollars and 45 cents. Take notice, there must be two places of figures for cents: therefore if the cents eless than 10 , a cipher

[^36]must be placed on the left hand of the cents, thus, 84 dollars and 4 cents is written, $\$ 84.04$.

Federal money is generally read in dollars and cents.Cents are reduced to dollars by dividing by 100 , or, which is the same thing, by cutting off the two right hand figures, mills to dollars by cutting off three right hand figures.

extamples.

1. How many cents in 89 dollars? Ans. 8900 cents.
2. How many cents in 468 dollars? Ans. 46800 cents.
3. How many cents in 48 and 19 cents?

Ans. 4819 cents.
4. How many dollars in 8643 cents? Ans. $\$ 86.43$.
5. How many dollars in 1903 cents? Ans. $\$ 19.03$.
6. How many dollars in 6489 mills? Ans. $\$ 6.48 .9$.
7. What is the sum of $\$ 34.25, \$ 18.04, \$ 142, \$ 176$. 81 and \$0.58.

Operation.
34.25
18.04
142.00
176.81
.58
$\$ 371.68$
8. Add together 36 dollars, 7 dollars and 45 cents, 86 cents, 130 dollars and 6 cents, and 340 dollars 1 cent.

Ans. 514 dollars 38 cents.
9. Add together 46 dollars 9 cents, 100 dollars 7 cents, 99 dollars 75 cents, 451 dollars 99 cents, and 1 dollar 1 ct. Ans. 693 dollars 91 cents.
10. What is the expense of one quarter's schooling, allowing ${ }^{\$} 19$ for board, ${ }^{*} 9$ for tuition, $\$ 3.75$ for books, and 92 cents for stationary?

Ans. \$32.67.
Questions. - When the cents are iess than 10 what is to be done? How is federal moncy generally read? How are cents reduced to dollars? How are mills reduced to dollars? How do we set down federal money for addition? How do we add tederal money?
11. A man paid $\$ 75.41$ for a horse, $\$ 54.04$ for a yoke of oxen, $\$ 21$ for a cow, $\$ 7.41$ for 4 sheep, $\$ 1.50$ each for two pigs, and $\$ 64$ for a wagon ; how much money did he pay out?
12. From 319 dollars take 47 dollars and 56 cents.

Operation. 319,00
47,56
$\$ 271,44$

When either of the sums in Federal money presented for subtraction has no cents expressed, the places of cents may be stuplied by two ciphers; then proceed as in simple numbers.
13. Subtract 654 dollars from 783 dollars and 48 cents. Ans. $\$$
14. Subtract $\$ 31,12$ from $\$ 5390$. Ans. $\$$
15. Subtract 42 cents from ${ }^{\circ}$ p51. Ans. $\$$
16. Subtract 7 cents from \$1.
17. Subtract 5 cents from ${ }^{\mathbf{\phi}} 75 \%$
18. Subtract 4 cents from Ans. Ans. ${ }^{\text {S }}$
19. A man's income is $\$ 3000$ a year; he spends $\$ 187,50$; how much does he save? Ans. $\$ 2812,50$.
20. How much must be aulded to $\$ 40,17$ to make $\$ 100$.

Ans. ${ }^{\text {\$5 }} 59,83$.
21. How much is 18 times 4 dollars 72 cents?

Operation.
4,72
$\$ 4,72$ is the same as 472 cents; we there-
18 is 8496 cents. To change these cents to dollars we divide them by 100 ; this is done
3776 by pointing off two figures for a remainder.-
472 The quotient, 84, is dollars, and the remainder, 96 , is cents.
$\$ 84,96$
Note.-If we wish to obtain the value of several articles in Federal money, the articles may be multiplied by the price of one, or the price by the articles, and the pro-

Quastions.-When either of the sums presented for subtraction has no cents expressed, what do we do?. How do we then proceed? How do we obtain the value of several articlen in federal money? In what denomination will the answer be?
duct will be the answer in the lowest denomination mentioned in the price.
22. What must be paid for 6 pounds of tea, at $\$ 1,20$ per pound?

Ans. $\$ 7,20$.
23. At $\$ 1,05$ per pound, what is the value of 5 chests of tea, each chest containing 64 pounds? Ans. \$336.
24. What will 55 yards of cloth come to at 37 cents per yard?

Ans. \$20,35.
25. What will 300 bushels of wheat come to at $\$ 1,25$ per bushel?

Ans. ${ }^{\$ 375}$.
26. What is the value of 9704 oranges, at $3 \frac{1}{2}$ cents each ?

Ans. $\$ 339,64$.
27. What will be the eost of 47 barrels of apples at $1 \frac{3}{4}$ dollars per barrel ?

Ans. \$82,25.
23. If 637 dollars be divided equally among 24 men, what will each man receive?

Operation. 24)637(26 dollars. 48
$\overline{157}$
144

After dividing the dollars by the number of men, it appears from the quotient and remainder, that each man can have $\$ 26$, and still 13 dollars will remain undivided. We change $\$ 13$ to cents, by annexing two ciphers, and then divide the cents
1300(54 cts. 120
$\overline{100}$
96
Rem... 4 cents.
29. A man bought a piece of cloth containing 72 yds . for $\$ 252$: what did he pay per yard ? Ans. $\$ 3,50$.
30. A farmer purchased a farm containing 725 acres, for which he paid $\$ 18306.25$: what did it cost him per acre?

Ans. \$25.25,

[^37]-31. A farmer receives $\$ 840$ for the wool of $\mathbf{1 4 0 0}$ sheep: how much does each sheep produce him?
7. A person on settling with his butcher finds that ho is charged with 126 pounds of beef at 9 cents per pound; 85 pounds of veal at 6 cents per pound: 6 pairs of fowls at 37 cents a pair: and three hams at $\$ 1.50$ each: how much does he owe him? Ans. \$23,16.
8. A farmer bargains with his tailor for a new coat every six months, a new vest every three months, and three pairs of pantaloons a year : the coats to cost $\$ 29.50$ each, the vests $\$ 3$ a piece, and the pantaloons $\$ 12$ a pair: at tho end of two years how much did he owe him. Ans. $\$ 214$.
9. A farmer has six ten acre lots, in each of which he pastures 6 cows : each cow produces 112 pounds of but-
ter, for which he receives $18 \frac{1}{2}$ cents per pound: the expences of each cow are 5 dollars and a half: how much doés he make by his dairy?

Ans. \$547.92.
10. A man lets out 2000 sheep with the condition that he is to have three fourths of what they produce after deducting the expenses of shearing: they yield 4 pounds of wool a head, which is sold at $47 \frac{1}{2}$ cents per lb. The expense of shearing is one tenth of the whole: what does the owner of the sheep receive? Ans. \$25.65:

END OF PART II.

PART III.

SIMPLE INTEREST.

Interest is money paid for the use of money that has been borrowed. The sum of money lent is called the principal. The sum paid for the use of money is called interest. Amount is the principal and interest added together. Per annum signifies by the year. It is customary to pay a certain sum for every hundred pounds, dollars \&c.In this Province six pounds a year is paid for the use of every hundred, and in England five pounds for every hundred that is borrowed. These rates are established by law and are called legal interest.

Usury is taking more interest than the law al, lows.

The expressions six per cent, seven per cent, \&c., signify that six or seven pounds or dollars are paid for every hundred borrowed. Per signifies for, and cent. is the abbreviation of centum, the Latin word for hundred. Rate per cent., then signifies rate by the hundred:

In all notes on interest if no particular rate per cent. is mentioned, it is always understood to be legal interest that is promised. In this work 6 per cent. will be understood when no rate per cent. is mentioned.

[^38]
CASE I.

To find the interest of any given sum for one or more years.

RULE.
I. Multiply the principal by the rate per cent, and divide the product by 100 and the quotient will be the interest for one year.

1I. When the number of years exceeds one, multiply the interest for one year by the number of years: the product will be the interest for that number of years.

EXAMPLES.

1. What is the interest of $£ 15010$ s. 6 d . for one year, at 6 per cent?

2. Required the interest of $\boldsymbol{£ 2 0 0} \mathbf{1 0 s .} 4 \mathrm{~d}$. for 3 years at 7 per cent.

Ans. $£ 42$ 2s. 2d.
6. What is the interest of $£ 1508 \mathrm{~s}$. 3 d . for 5 years at 6 per cent?
7. Required the amount of $\boldsymbol{£} 547$ 15s. at 5 per cent. per annum for 3 years. Ans. $£ 629$ 18s. 3 d .

8. What is the amount of $£ 500$ for 5 years at 5 per cent? Ans.	625
9. What is the interest of $£ 32512 \mathrm{~s}$. 3 d . for five years at 6 per cent? Ans. £97 13s. 8d.
10. Required the interest of $£ 85517 \mathrm{~s}$. 6 d . for one year at ${ }_{5}^{3}$ per cent per annum. Ans. $£ 494 \mathrm{~s}$. 3d. 11. What is the interest of $£ 24618 \mathrm{~s}$. for five years at $4 \frac{1}{4}$ por cent per annum? Ans. $£ 529 \mathrm{~s} .3 \frac{1}{4} \mathrm{~d}$.

CASE II.

To find the simple interest of any sum of money, for any number of years, and parts of a year.
I. Find the interest on the given sum for 1 year.
II. Multiply the interest of one year by the given number of years, and the product will be the answer for that time.
III. If there be parts of a year, as months and days, work for the months by the aliquot or even parts of a year, and for the days by the aliquot parts of a month, or for the days multiply the interest of one year by the number of days and divide the product by 365 .

Note.-An exact or even part of a quantity is called an aliquot part, as $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$, \&e. If we wish to find the interest of any sum for any part of a year it may be done by dividing the interest for a year by that past. For example, for six months, which is half a year, we divide the yearly interest by 2 , for 1 month by 12, \&c. and the same in regard to parts of a month. By a little exercise of the mind it is plain that one month is in of a year; 2 months the $\frac{1}{d}$ of a year ; 3 months the $\{$ of a year; 4 months the $\}$, and 6 months the $\&$ of a year, \&ec. And so of the daya, al-
lowing 30 days to the month; 1 day is $3^{1} \frac{1}{5}$ of a month, 2 days $\frac{1}{15}, 3$ days $\frac{1}{10}, 5$ days $\frac{1}{6}, 6$ days $\frac{1}{5}, 10$ days $\frac{1}{3}$, and 15 days $\frac{1}{2}$ of a month, \&c. It is sometimes more convenient to take parts of parts.

EXAMPLES.

1. What is the interest of $£ 150 \mathbf{1 6 s}$. 8d. for 4 years, 7 months and 20 days at 6 per cent?

Operation. First find the interest for 1 year and then $\boldsymbol{E}^{\text {s }}$ s. d. for the number of years. Then because 6 $150 \quad 16 \quad 8$ mo. are the one-half of a year, we divide 6 the interest of one year by 2, and the quo-

$9 \mid 05 \quad 0 \quad 0$
20
$1 \mid 00$

6 mo. $=\frac{1}{2}$ year. $\quad £ 9 \quad 1 \mathrm{~s} .=$ Interest for 1 year.

1 mo . is $\frac{1}{6}$ of 6 mo . 15 da . is $\frac{1}{2}$ of 1 mo . 5 da. is $\frac{1}{3}$ of 15 da .

36	$4=$		do. for 4 do.
-4	10	$6=$	do. for 6 months.
0	15	$1=$	do. for 1 month.
0	7	6	$2=$ do. for 15 days.
0	2	6	$0 \frac{2}{3}=$ do. for 5 do.

$411972 \frac{2}{3}$ Ans.
2. What is the interest of $£ 100 \mathbf{1 0 s}$. for 11 months?

[^39]We find the interest for 6 mo. by dividing the interest for 1 year by 2 , then for 4 6 mo . 2 2 60300 Int.for 1 yr mo. by dividing the interest for 1 year by 3 , and for 1 mo. 4 mo .1331010 do. 6 mo . by dividing the interest for 4 20100 do. 4 mo. mo. by 4 , then add the sever. 5005 do. 1 mo. al sums together; 6 mo .4 mo. and $1 \mathrm{mo} .=11$ months.

We may if we please add the several sums together before dividing by 100 , as in the above example, which is frequently the better way.

Ans. $\mathbf{£ 5} \mathbf{1 0}$ s. 6d. 2qrs.
3. What is the interest of $£ 25016 \mathrm{~s}$. 8 d . for 28 days? \boldsymbol{f} s.

$$
151 \text { Int. for } 1 \text { yr.' }
$$ 28 numb. of d'ys

$\underset{365}{365)} 8(£ 1$
$\underset{365}{365)} \mathrm{S}(£ 1$
56
20

First, find the interest for 1 year, multiply it by the no. of days, and divide the product by 365 as the rule di rects.

Questione. - What part of a year is 1 month? 2 monthes 3 monthor 4 montha? 6 months What part of a month is a day? 2 daya? 3 daya? 5 daya? 6 daya? 10 daya? 15 dayo?

```
1128(3s.
1095
    33
    12
    396(1d.
    365
    31
        Ans. &1. 3s. 1d.
```

4. What is the interest of $\boldsymbol{£ 5 7} 17 \mathrm{~s} .8 \mathrm{~d}$. for three months? Ans. 17s. 41d.
5. Required the interest of $£ 174 \mathrm{~L} 10$ s. 6 d . for $\mathbf{3}$ years and 6 months?

Ans. £36 13s.
6. Of $£ 15016 \mathrm{~s} .8 \mathrm{~d}$. for 4 years and 7 months?

Ans. £41 9s. 7d.
7. Of $£ 758$ s. 4 d . for 5 years and 2 months ?

Ans. $\boldsymbol{E} 23$ 7s. 7d.
8. What will $£ 3000$ amount to in 12 years and 10 months?

Ans. $£ 5310$.
9. What is the interest of $£ 2575 \mathrm{~s} .1 \mathrm{~d}$. for 1 year and three quarters, at 4 per cent? Ans. $\boldsymbol{x} 180 \mathrm{~s} .1 \frac{3}{4} d$.
10. What will $£ 279$ 13s. 8d. amount to in 3 years and a half at $5 \frac{1}{4}$ per cent. per annum? Ans. $\boldsymbol{£ 3} \mathbf{3 1} 1 \mathrm{~s} .6 \mathrm{~d}$.
11. What is the interest of $£ \boldsymbol{£ 1} \mathbf{3 s} .11 \frac{1}{2}$ d. for 1 year, 5 months and 25 days? Ans. $\boldsymbol{E}_{6} 6 \mathrm{ss} .11$.
12. What is the interest of $£ 3979 \mathrm{~s} .5 \mathrm{~d}$. for 2 years 3 months, at $3 \frac{1}{2}$ per cent?

Ans. $\mathbf{E x 1}^{\mathbf{3}}$ 6s.
13. Required the interest of $\mathbf{£ 3 0 0}$ for 2 years, 7 mo. and 20 days?

Ans. £47 10s.
14. What is the interest of $\boldsymbol{£ 8 0} 19 \mathrm{~s} .11 \mathrm{~d}$. for $\mathbf{3}$ years, 10 months and 10 days?

Ans. £18. 15s. 3
15. What is the interest of $\mathbf{£ 3 2 0} 10 \mathrm{~s} .8$ d. for 2 years, 10 months and 20 days? Ans. $\mathbf{E 5 5} 11 \mathrm{~s}$. 2d.
16. Required the interest of $£ 500$ for 3 years, 11 ma . and 11 days, at $3 \frac{1}{1}$ per cent.? Ans. $£ 69$ 1s. $6 \frac{1}{4} d$.
17. What is the interest of $£ 100$ for for 45 days?

Ans. 14s. 9d. 2qr.
18. What is the interest of $£ 25$ 18s. 9 d . for 9 years 9 months and 9 days at 5 per cent?

Ans. $£ 12$ 13s. 6d. 1qr.

RATIO.

The word ratio means relation; and when it is asked what ratio one number has to another, it means in what relation does one number stand to another?

Thus, when we say the ratio of 1 to 2 is $\frac{1}{2}$, we mean that the relation in which 1 stands to 2 is that of one-lhalf to a whole . *

Again, the ratio of 3 to 4 is $\frac{3}{4}$, that is, 3 is $\frac{3}{4}$ of 4, or stands in the relation of $\frac{3}{4}$ to the 4 . So also the ratio of 4 to 8 is $\frac{4}{3}$; for the 4 is 4 thirds of 3 , and stards to it therefore in the relation of $\frac{4}{3}$.

The relation of 12 to 24 is $\frac{1}{2}$, and the relation of 24 to 12 is 2.

When therefore we find the ratio of one number to another, we find what part of one number another is. . Then the ratio of 4 to 6 is $\frac{4}{6}$; that is, 4 is 4 sixth of 6 . The ratio of one number to another

[^40]then may always be expressed by a fraction, in which the first number is put for numerator, and is called the antecedent, and the second number is put for denominator, and is called the consequent. Thus the ratio of 8 to 4 is $\frac{8}{4}$ or 2. That is, 8 is twice 4 , or stands to 4 in the relation of a duplicate or double.

RULE OF THREE, OR PROPORTION.

When quantitics have the same ratio, they are said to be proportional to earh other. Thus the ratio of 2 to 4 is $\frac{1}{2}$, and the ratio of 4 to 8 is $\frac{1}{2}$; that is, 1 has the same relation to 2 that 4 has to 8 ; therefore these numbers are called proportionals. Again, 4 is the same portion or part of 8 that 10 is of 20 ; wherefore these numbers are called proportionals. A proportion then is a combination of equal ratios.

Points are used to indicate that there is a proportion between numbers. Thus, 4:8::9:18 is read thus, 4 has the same ratio or relation to 8 that 9 has to 18. Or more briefly, 4 is to 8 , as 9 to 18 .

The fourth term of every proportion may be found by multiplying the second and third terms logether and dividing their product by the first term. For example, if the first three terms of a proportion are $3,9,12$, the fourth is 36 , for $9 \times 12 \div 3=36$.

[^41] iber is equent. is, 8 is

The first and fourth terms of a proportion are called the two extremes, and the second and third terms are called the two means.

In every proportion the product of the two ex* tremes is equal to the product of the two means.

Eor example, in the proportion $4: 12:: 8: 24$ $4 \times 24=8 \times 12=96$.

The Rule of Three takes its name from the circumstance that three numbers are always given to find a fourth, which shall bear the same proportion to one of the given numbers as exists between the other two.

To find the fourth term when three are given we have the following general

RULE.
I. Write that number for the third term which is of the same kind with the answer or number sought.
II. Then consider from the nature of the question, whether the answer required must be greater or less than this third ter:n; if greater, write the greater of the other given numbers for the second term, and the less for the first ; but if the required answer must be less than the third term, set down the less of the other two numbers for the second term, and the greater for the first,
III. If the first and second terms contain differ. ent denominations they must be reduced to the

[^42]same denomination, and the third to the lowest denomination mentioned in it.

Then multiply the second and third terms together, and divide the product by the first term, and the quotient will be the fourth term or answer sought of the same denomination as that to which the third term was reduced.
Note.-The same rule is applicable, whether the given quantities be integral, fractional or decimal.
Proof.-Divide the product of the extremes by one of the mean terms, and if the work is right the quotient will be the other mean term.

EXAMPLES.

1. If 5 pounds of butter cost 75 pence; how much will 13 pounds cost?

Operation. As 51b.: 131b. : : 751.

In this example it is plain that the answer must be money; we therefore write the 75 pence as the third term. It is also plain that the price of 13 pounds is greater than the price of 5 pounds, that is, the required answer is greater than the third term; we therefore set down the 131 lbs . for the second term, and the 5 lbs . for the first term; we then tultipiy the second and third terms together, and divide by the first, as the rule directs, and the quotient is the answer in the same denomination as the third term.
2. If a footman perform a journey in 21 days, when

[^43]
RULE OF THREE.

the days are 15 hours long, in how many days of 9 hours can he perform the same journey?

Operation.
Here the term similar to the required hrs. hrs. days. answer is 21 days, which is conse$9: 15:: 21$ quently the third term. Then, sinco 15 the footman will not travel so far in a day of 9 hours as in one of 15 hours,
9)315 the :equircd answer must be greater than the third term ; the 15 hrs . must thereAns. 35 d . fore be the second term and 9 hrs. the first.
Operation of Proof. $9 \times 35 \div 15=21$ or $9 \times 35=315 \div 21=15$

In this example the terms 9, 15 and 21 are given, and the last term 35 is found. Then the
product of the extremes 9,35 , is 315 ; this being divided by either of the means gives the other.
3. If 3cwt. of sugar cost $£ 9$ 2s. Od. what will 4 cwt . 3 qra. 26 lbs . cost at the same rate?

Operation.

336)1218672(3627,1.
12)3627
20)302 3 3 .
£15 ~s. 3d. Ans.

First state the question as the rule directs. We then reduce the first and second terms to pounds, then the third to pence, which is the lowest denomination named in it. We then multiply the second and third terms together and divide by the first, and the quotient is pence, which we reduce to pounds, \&c.
4. If a man's wages be $£ 7510 \mathrm{~s}$. for 12 months, what is that a month ?

Ans. $\mathbf{£} 6$ 5s. 10d.
5. If one pair of gloves cost 4 s . 6 d . what will 19 dozen pairs cost?

Ans. $\boldsymbol{5} 51$ 6s.
6. At $10 \frac{1}{2} \mathrm{~d}$. per pound, what is the value of a firkin of butter weighing 56lbs.?

Ans. £2 9s; 2
7. If a man spends 3 s .4 d . per day, how much is that a year?

Ans. $£ 60$ 16s. 8 d .
8. What is the value of 2 cw t. of sugar at 5 d . a pound? Ans. $£ 4$ 13s. 4 d.
9. If 240 sheep yield 660 lbs . of wool, how many pounds will be obtained from 1200 sheep? Ans. 3300 lbs .
10. If $4, \frac{1}{2}$ tons of hay will keep 3 cattle over the winter, how many tons will it take to keep 25 cattle th... same time?

Ans. $37 \frac{1}{2}$ tons.
11. Bought 8 chests of sugar, each 9 cwt. 2 qrs. ; what do they come to at $£ 25$ s. per cwt. ? Ans. £171.
12. How much butter can you buy for $£ 232 \mathrm{~s}$., at 9 d . per pound?

Ans, 5cwt. 2qrs.
13. If 30 barrels of flour will support 100 men for 40 lays, how long would it subsist 25 men? Ans. 160 days.
14. A owes B $\mathbf{x} 6796$ s., hut compounds with him by paying 3s. $4 d$. on the pound; how much does B receive for his debt?

Ans. £113 4s. 4d.
15. A goldsmith sold a tankard for $£ 812 \mathrm{si}$ at 5 s . 4 d . per oz. ; what was the weight of the tankard?

Ans. 2lbs. 80z. 5pwt.
16. If 2 cwt . 3qrs. 21 lbs . of sugar cost $£ 6$ 1s. 8d, what cost $35 \frac{1}{4} \mathrm{cwt}$?

Ans. $\mathbf{E 7 3 .}$
17. If a man spend 7d. per day for bitters, how much is that in a year?
18. If 90 bushels of oats will feed 40 horses for 6 days, how long will 450 bushels last them? Ans. 30 days.
19. If 5 cwt. 3 qrs. 14lbs. of sugar cost $\boldsymbol{£ 6} \mathbf{1 s} .8 \mathrm{~d}$., what will 35cwt. 28ibs. cost? Ans. $\mathbf{E 3 6} \mathbf{1 0 s}$.
20. What is the cost of 3 cw . of coffee at 15 d . per pound? Ans. £21.
21. If 3 quarters of a yard of velvet cost 7 s . 3 d . how many yards can be bought for $\boldsymbol{£} 1315 \mathrm{~s} .6 \mathrm{~d}$.

Ans. 28yds. 2qrs.
22. Sold a ship for $£ 537$, and I owned $\frac{3}{8}$ of her ; what was my part of the money? Ans. £201 7s, 6d.
23. If a staff 5 feet long cast a shade on level ground 8 feet, what is the height of that stceple whose shade at the eame time measures 181 feet?

Ans. $113 \frac{1}{8}$ feet.
24. Bought 50 pieces of kerseys, each 34 , ells Flemish, at 8 s .4 d , per ell English; what did the whole cost?

Ans. $£ 425$.
25. Bought 200 yards of cambric for $£ 90$, but being damaged, I am willing to lose $£ 7$ 10s. by the sale of it; what must I demand per ell English ? \quad ns. 10s. $3 \frac{3}{4} \mathrm{~d}$.
26. If an ingot of gold weighing 9lb. 9oz. 12 pivt. bo worth $£ 4,708 \mathrm{~s}$. what is that per grain? Ans. 2 d .
27. Bought 4 bales of cloth, each containing 6 pieces, and each piece 27 yards at $£ 164$ s. per piece ; what is the value of the whole and the cost per yard?

Ans. $£ 388$ 16s. at 12s. per yd.
28. What will be the cost of 72 yards of cloth at the rate of $£ 512 \mathrm{~s}$. for 9 yards?

Ans. £44 16s.
29. A person's annual income is $£ 146$; how much is that per day?

Ans. 8s.
30. If 3 paces or common steps of a person be equal to 2 yards, how many yards will 160 paces make?

Ans. 106 yards 2 ft .
31. How many yards of carpeting that is 3 feet wide, will cover a floor that is 27 feet long and 20 feet broad? Ans. 60 yards.
32. What is the cost of 6 bushels of coal at the rate of $£_{1} 14 \mathrm{~s}$. Od the chaldron?

Ans. 5s. 9d.
33. When hens are 9 shillings a dozen, what will be the price of 6 dozens of eggs at 2 pence for 3 eggs?

Ans. 4s.
34. If 6352 stones 3 feet long will complete a certain quantity of wall, how many stones of 2 feet long will raise the like quantity?

Ans. 9528.
35. If a person can count 300 in two minutes, how many can he count in a day? Ans. 216000.
36. A garrison of 536 men have previsions for 365 days; how long will those provisions last if thè garrison be increased to 1142 men? Ans. 174 days and $\frac{104}{014} \overline{2}$.
37. What will be the tax upon $£ 76315$ s. at the rate of 3 s .6 d . per pound sterling? Ans. $£ 13313 \mathrm{~s}$. $1 \frac{1}{2} \mathrm{~d}$.
38. A certain work can be raised in 12 days by working 4 hours each day ; how long would it require to raise the work by working 6 hours per day ?

Ans. 8 days.
39. When oats are 2s. a bushel, and Indian corn 4s. a bushel, what will be the price of 37 bushels of provender at 3 s . a bushel?

Ans. $£ 5$ 11s.
40. What quantity of corn can I buy for 90 guineas, at the rate of 6 shillings a bushel? Ans. 315 bushels.
41. What is the cost of 30 pieces of lead, each weighing 1cwt. 121bs., at the rate of 16 s .4 d . the cwat.

Ans. £27 2s. 6d.
42. What length must be cut off from a board that is 9 inches wide to make a square foot? Ans. 16 inches.
43. A and B depart from the same place and travel the same road; but A goes 5 days before B, at the rate of 15 miles a day; B follows at the rate of 20 miles a day; what distance must he travel to overtake A ?

Ans. 300 miles.
44. A factor bought a certain quantity of broadcloth and drugget which together cost $\mathbf{£ 8 1}$; the quantity of broadcloth was 50 yards, at 18 s . per yd., and for every 5 yards of broadeloth he had 9 yards of drugget. I demand how many yards of drugget he had, and what it cost him per yard?
45. Suppose a gentleman's income to be 600 guineas
a year, and that he spends 25s. 6d. per day, one day with another, how much will he have at the end of the year? Ans. £164 12s. $6 d$.
46. The flash of a gun was observed 38 seconds befors hearing the report ; required the distance, cound being supposed to move at the rate of 1142 feet per second.

> Ans. 43396f.
47. What is the weight of a pea to a steelyand which being suspended 39 inches from the centre of motion will equipoise 208 lbs , suspended at the draught end 3 quarters of an inch ?

Ans. 4lbs.
48. There was a certain building raised in 9 months by 120 workmen ; but the same being demolished, it is required to be re-built in 2 months; I demand how many men must be employed about it.

Ans. 480 men.
49. A cistern containing 200 gallons is filled by a pipe which discharges 3 gallons in 5 minutes; but the cistern has a leak which empties 1 gallon in 5 minutes. Now if the water begins to run in when the cistern is empty how long will it be in filling?

Ans. 8hrs. 20m.
50. A, leaves the city of New York, to go to Montreal, and travels at the rate of 35 miles a day; B, at the same time leaves Montreal to go to New York, and travels the same road, at the rate of 30 miles a day; how far from the city of New York will they meet, allowing the distance to be 390 miles?

Ans. 210 miles.
51. As I was hunting on the forest grounds,

Up starts a hare, before my two grey-hounds;
The dogs, being light of foot, did fairly run,
Unto her fifteen rods, just twenty-one.
The distance that she started up before
Was fourscore and sixteen rods, just, and no more ;
Now this I'd have you unto me declare,
How far they ran before they caught the hare?
Ans. 336 rods.

PRACTICE.

PRACTICE.

Practice is a short method of finding the answers to questions in the Rule of Three, when the first term is a unit or one.

It has acquired its name from its daily use among merchants and business men, it being an easy method of working, where the price of a unit is given to find the price of a quantity.

For example, if ne yard of cloth cost ten shillings, what will 40 cost? This question may be easily solved by the rule called Practice.

If the cloth had been $£ 1$ per yard, the cost of 40 yards would have been $£ 40$; but since it is only a part of a pound per yard, the whole cost will be the same part of $£ 40$ that the cost of one yard is of one pound, that is $\frac{1}{2}$ of 40. Hence the cost is \ddagger of $£ 40$, or $£ 20$.

One number is said to be an aliquot part of another when it forms an exact or even part of it. For example, 4d. is an aliquet or even part of a shilling. So is 5 s. of one pound ; it is one fourth part, being contained in 20s. 4 times.

TABLE OF ALIQUOT PARTS.

Parts of $£ 1.1$	Parts of 1s.	Parts of 1 Ton.\|	Parts of a cwt.
-		lewt.	qr. lb.
10s. $\quad=\frac{1}{2}$		$10=1$	2 or $56=\frac{1}{2}$
$6 \mathrm{~s} .8 \mathrm{~d} .=1$	4d. $\quad=\frac{1}{3}$	$5 \quad=1$	1 or $28=1$
5s. $=\frac{1}{4}$	3d. $\quad=\frac{1}{4}$	$4 . \quad=\frac{1}{6}$	14.
4 s . $=\frac{1}{5}$	$2 \mathrm{~d} . \quad=\frac{1}{8}$	21	Parts of a qr.
3s. 4 d . $=\frac{1}{6}$	$11 \mathrm{~d} . \quad=\frac{1}{8}$	$2=-\frac{1}{10}$	141bs. $=1$
29. $6 \mathrm{~d} .=\frac{1}{8}$	1d. $=\frac{1}{12}$		$7 \quad=\frac{1}{4}$
$1 \mathrm{~s} .8 \mathrm{~d} .=\frac{1}{18}$	-		$4 . \quad=\frac{1}{7}$
			31×1

[^44]When the price of one yard, pound, \&c. is less than a

Operation. |3|3|4528
$\left.\left|\frac{1}{4}\right| \frac{1}{2} \right\rvert\, 2264$ value at $\frac{1}{2}$ d. 1132 value at $\frac{1}{4} \mathrm{~d}$.
$\overline{3396}$ value at ${ }^{4} d$.
\longrightarrow Ans, £14. 3 s.
3. What is the value of 5704 lemons at $\frac{1}{4}$ d.?
Ans. £5 18s. 10d.
4. What is the value of 6813 do. at 2 d .?

$$
\text { Ans. £14. 3s. } \frac{1}{2} \mathrm{~d} .
$$

Quebtions. - When the price of a yd. Ib. \&c. is an even part of a penny what is first to be donel What will the quotient be? If it be not an even part of 1 d .1 What part of t is $\frac{1}{}$? When the price of a unit is $\frac{1}{\text { of ld. liow do we divide? }}$
5. What is the value of 9424 do. at $\frac{3}{4}$ d?

Ans. £29 9s.
6. What is the value of 1487 do. at $\frac{3}{4}$ d. ?
CASE II.

Ans. £4 12s. $11 \frac{3}{4} \mathrm{~d}$.
When the price of one yard, pound, \&c. is less than 1s.

RULE.

Find the value of the quantity at 1 s. a $\mathrm{yd} . \& \mathrm{c}$., then take such part or parts as the price is of 1s.; add the quotients together, and their sum will be the answer in shillings.

EXAMPLES.

1. What is the value of 3711 lbs . of butter at $7 \frac{1}{4} \mathrm{~d}$. per pound? Operation.

6	$\frac{1}{2}$	3711		
1		$\frac{1}{6}$	1855	6
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{4}$	$\frac{1}{2}$	159	3	
		154	7	2
		77	3	3

2396s. 8d. 1qr.

It is plain that the price of 3711 lbs. at 1 s . is $\mathbf{3 7 1 1} \mathrm{s}$. then because 6 d . is $\frac{1}{2}$ of 1 s . we divide by 2 for the price at 6 d. , then by 6 , because 1 is $\frac{1}{6}$ of 6 d ., then hy 2 again, because 2 qrs . is $\frac{1}{2}$ of 1 d .; again by 2 , because 1 qr . is $\frac{1}{2}$ of 2 qrs . ; we then
$£ 119$ 16s. 8d. 1qr.
2. What is the cost of 862 yards at 2 d ?

Ans. $\boldsymbol{E}^{\prime \prime}$ 3s. 8d.

3.	66	\%	74.9	66	4 d .1
					Ans. $£ 12 \mathrm{9s} .8 \mathrm{~d}$
4.	6	"	113	*	6d.?
					Ans. £2 16s. 6d.
5.	6	*	899	6	8d.?
					Ans. $\mathrm{ERO}^{\text {19s. 4d. }}$

Quxutions.- When the price of a yard, pound, \&ec. is less than 1 shilling what is the firat thing to be donct What part or parte of this do we takef What will the sum of the quotients be?
ns. £29 9s. (12s. $11 \frac{3}{4} \mathrm{~d}$.
less than 1s.
a yd. \&c., e is of 1 s .; um will be at $7 \frac{3}{4} \mathrm{~d}$. per rice of $\mathbf{3 7 1 1}$ ien because by 2 for the 3, because 1 ain, because n by 2, be1. ; we then the rule di-
£7 3s. 8d. $£ 129 \mathrm{~s} .8 \mathrm{~d}$. £2 16s. 6d. E29 19s. 4d.
6. What is the cost of 2147 yards at $3 \frac{1}{2}$ d. ?

CASE III.

When the price is any number of shillings under 20, or an even part of 1 pound.

RULE.

Multiply the quantity by the price for the answer in shillings, or

Find the value at $£ 1$ per yard, \&cc. and then take parts, or parts of parts as the case may require, and the quotient or sum of the quotients will be the answer in pounds.

> EXAMPLES.

1. What will $129 \frac{1}{2}$ bushels of oats cost at 2 s .6 d . per bushel?
\pm s.

Ans. $£ 16$ 3s. 9d. value at 2 s .6 d .
Because 2s. 6d. is 1 of a pound we divide the price at $\boldsymbol{£ 1}$ by 8 , aud it is evident that the quotient will be the price at 2s. 6d.

Qunurions. - When the price is any part of a pound how may the answer be found How is it done otherwise? In what denomination will the quotient or quotienta be?
2. What is the value of 527 yards at 4 s .?

CASE IV.

When the price is pounds, or pounds, shillings, pence, and quarters.

RULE.

Multiply the given quantity by the pounds, then work for the shillings by case 3d. for the pence by case 2nd, and for the quarters by case 1st, add the several quotients together and the sum will be the answer.

EXAMPLES.

1. What is the cost of 680 acres of land at $£ 39 \mathrm{~s} .7 \underset{2}{ } \mathrm{~d}$. per acre?

Qugortone. - Repeat the rula for performing the operation when the prioe is in pounds, or pounde, ohillinge, pence, and quarters.

£105. 8N.

 £817 15s. s. $£ 813$ Os. 76 ss.ngs, pence,
ands, then pence by t, add the vill be the

E3 9s. 7xd.

Ans. £406 7s. 2 d .

3.	*	6	47		$\begin{gathered} £ 3 \text { 3s. } 4 \mathrm{~d} \text { ? } \\ \text { Ans. } £ 14816 \mathrm{r} .8 \mathrm{~d} . \end{gathered}$
4.	${ }^{6}$	*	201		£ $413 \mathrm{~s} .4 \mathrm{~d} . ?$ Ans. £93 6s. 8d.
5.	6	6	71		$\begin{gathered} \text { £6 13s. 4d. ? } \\ \text { Ans. モ473 6s. 8d. } \end{gathered}$
6.	${ }^{6}$	*	37		£1 19s. 5 3 ${ }_{4} \mathrm{~d}$? Ans. $\boldsymbol{E} 73$ 0s. 8 d.
7.	*	\%	2715		
S.	${ }^{6}$	"	3210		$\begin{aligned} & £ 1 \text { 18s. } 6 \frac{3}{3} \mathrm{~d} . ? \\ & \text { Ans. } £ 61895 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d} . \end{aligned}$

CASE V.

When the price and quantity are of soveral denominations.

RULE.

Multiply the price by the integers, or whole numbers in the given quantity, and take parts for the rest from the price of an integer; which added together will be the answer.

EXAMPLES.

1. What cost 5 cwt. 3 qr. 14lbs of raisins at $£ 211 \mathrm{~s} .8 \mathrm{~d}$.?
 Ans. $£ 15 \quad 3 \quad 6 \frac{1}{2}$ whole cost. qr. we take $\frac{1}{2}$ the price of one quarter, and the quotient is the price of 14 lbs.
2. What is the cost of 5 cw . 1 qr . of sugar at $£ 217 \mathrm{~s}$. per cwt. ? Ans. £14 19s. 3d.
3. What is the cost of 14 cwt . 3 qr. 7 lb . of beef at 13 s . 8d. per cwt.?
$\boldsymbol{£}^{10} 2 \mathrm{~s} .5 \frac{1}{4} \mathrm{~d}$.
4. At $£ 14 \mathrm{~s}$. 9d. per cwt. what is the value of 17 cwt . 1 qr. 17 llbs . cheese ?

Ans. $\mathbf{E 2 1} 10 \mathrm{~s} .8 \mathrm{~d}$.
5. At $£ 3$ 17s. 6 d . per cwt. what is the value of 25 ewt. 2qr. 14lb. tobacco! Ans. $£ 99$ 5s. $11 \frac{1}{4} \mathrm{~d}$.
6. Bought 78cwt. 3qr. 12lb. of currants at $£ 2$ 17s. 9 d . per cwt.; what did I give for the whole? Ans. $£^{2} \mathbf{C} 7: 4 \mathrm{~s}$.

[^45]PRACTICAL EXERCISES.

1. What is the cost of 650 pigeons at $\frac{1}{4}$ d. each.?

Ans. 13s. $6 \frac{1}{2}$ d.
2. What is the value of 245 ducks at $\frac{1}{2}$ d. each. ?

Ans. 10s. $2 \frac{1}{2} \mathrm{~d}$.
3. Bought. a box of oranges containing 525 , at $\frac{3}{4} \mathrm{~d}$. each; what did they cost me.? Ans. £1 12s. 934 d .
4. What is the value of 120 lb . of rice at 3 d . per lb. ?

Ans. $\boldsymbol{x 1}^{10}$ s.
5. Bought 8012 lb . chalk at $2 \frac{3}{4} \mathrm{~d}$. per lb.

Ans. $£ 91$ 16s. 1d.
6. How much will 3906 lb . of beef come to at $7 \frac{1}{2} \mathrm{~d}$. per lb, ?

Ans. £122 1s. 3d.
7. What will 1847 yards of cloth come te at 5 s .8 d . per yard?

Ans. $\mathbf{E 5 2 3} 6 \mathrm{~s} .4 \mathrm{~d}$.
8. If an ell of Holland cost 4 s .6 d . what is the value of 5 pieces each 12 ells?

Ans. $£ 13$ 10s.
9. What is the value of 1234 yards of muslin at 1 s . $11 \frac{3}{4} d$. per yard? Ans. $£ 122$ 2s. 31 $\frac{1}{2} d$.
10. What cost 287 bushels of wheat at 17 s . 6 d . per bushel?

Ans. £251 2s. 6d.
11. How much will $\mathbf{4 7}$ tons of hay amount to at $\mathbf{£ 6}$ 6 s .8 d . per ton.

Ans. $£ 297$ 13s. 4d.
12. Sold 26 acres of land for $£ 1114$ s. per acre ; what is the amount?

Ans. £304 4s.
13. If 1 yard of cloth cost $£ 119 \mathrm{~s} .4 \mathrm{~d}$. how much will 1677 yards come to.

Ans. $£ 3298$ 2s.
14. Sold 16 cwt . 2qr. 17 ib . of sugar at $£ 215 \mathrm{~s} .11 \mathrm{~d}$. per cwt. what was its value? Ans. $£ 4611 \mathrm{~s} .1 \mathrm{~d}$.
15. Sold 56 cwt . 1 qr. 17 lb . of sugar at $£ 215 \mathrm{~s} .9 \mathrm{~d}$. the cwt.; what does it come to ?

Ans. $£ 1574 \mathrm{~s} .44 \mathrm{~d}$.
16. What will 51 acres of land be worth at $£ 32 \mathrm{~s} .2 \mathrm{~d}$. per acre.

Ans. £158 10s. 6d:
17. What will 4 E. E. 3qr. 2na. of broadcloth cost at £2 3s. 8d. per yard?

Ans. £12 16s. 61 d d.

COMMISSION AND BROKERAGE.

Commission is an allowance made to a Factor or person engaged in buying and selling goods for another. A Factor is an agent who transacts business for his employer.

Brokerage is an allowance made to dealers in money or stocks.

The allowance made is generally a certain per cent. or rate per hundred on the monies paid out or received, and the work is the same as casting the interest on the same sum for one year.

EXAMPLES.

1. If I employ a factor to sell goods for me to the value of $\boldsymbol{£ 2 5 7 5} 17 \mathrm{~s} .6 \mathrm{~d}$.; what must I pay him at 4 per cent.? Operation.
£ s. d. Here the work is the same as sim$2575 \quad 17.6$ ple interest, we multiply by the rate 4 per cent, and divide by 100.
```
103,03 10 0
    20
    0,70
        12
    8,40
        4
            1,60 Ans. £103 0:. 8i4d.
```

2. My correspondent sends me word that he has bought goods to the amount of $£ 1286$ on my account ; what will his commission come to at $2 \frac{1}{2}$ per cent. ? Ans. $£ 32$ 3s.

[^46]3. A factor sells land to the amount of $\mathbf{£ 2 5 , 5 0 0}$ and is to receive $2 \frac{1}{2}$ per cent. commission; how much must ! pay over to his principal? Ans. £24862 10s.
4. What is the commission on $\mathbf{£ 3 4 9 6}$ at 6 per cent.? Ans. $\mathbf{2} 263$ 15s. $2 \frac{1}{4} \mathrm{~d}$.
5. A gentleman sent a broker $£ 3825$ to be invested in stock, the broker is to receive 2 per cent. on the amount paid for the stock; what was the value of the stock purchased?

Operation.
100
$\frac{2}{2,00}$
100

102: 100::3825 3825
102)382500(3750 Ans.

Proof.-Commission on 3750
at 2 per cent. is $\boldsymbol{£} 75$ and $\mathbf{3 7 5 0}$ $+75=3825$.
6. A factor receives $£ 70815$ s. and is directed to purchase steel at $\$ 45$ per ton: he is to receive 5 per cent. on the money paid: how much steel can he purchase?

Ans. 15 tons.
7. A broker bought 200 shares of bank stock for A. He paid $£ 197$ per share, and he is to receive one fourth per cent. on the money he received; how much must A. pay for the stock?

Ans. $£ 39498$ 10s.
8. A bank fails, and has in circulation bills to the amount of $\boldsymbol{£ 2 6 7 5 8 1}$. It can pay only $9 \frac{1}{3}$ per cent. : how much money is there on hand? Ans. £25420 3s. 10 ${ }_{4}^{3} \mathrm{~d}$.
9. A merchant shipped to his agent in Montreal 1000 barrels of flour, which was sold at 20s. per barrel: what

As the broker is to receive 2 per cent., it follows that $£ 102$ of the money received by him, will purchase $£ 100$ of stock : therefore 100 l.added to the commission is to 100 , as the given sum to the stock which it will purchase.
a factor? What ally made? To a
the has bought int ; what will Ans. £32 3s.

same as sim-

 y by the rate 100.did he obtain for the flour, and what commission did he pay at $1 \frac{3}{4}$ per cent?

Ans. $\left\{\begin{array}{l}\text { He received } £ 982.10 \text { s. for the flour. } \\ \text { And paid } £ 17,10 \text { s. commission. }\end{array}\right.$

INSURANCE.

An Insurance Contl/ "聝 a hody of men who in return for a certain compensation, promise to pay for the loss of property insured. The written engagement they give is called a Policy.

The sum paid by those who own the property, to the Company who insure it, is called Prenium. It is reckoned at so much per cent. on the value of the property insured.

EXAMPLES.

1. What will be the premium for insuring a ship and cargo from Quebec to Amsterdam, viued at £37800, at $4 \frac{1}{2}$ per cent. ?

Ans. £1701.
2. What would be the premium for the insurance of a house valued at $£ 5500$, against loss by fire for 1 year at $\frac{1}{2}$ per cent. ? Ans. $\mathbf{E 2 7}$ 10s.
3. What would be the premium for insuring a ship and cargo, valued at $£ 37500$ from Montreal to Liverpool, at 31 per cent. ?

Ans. £1312 10s.
4. What would be the insurance of a steamboat from Kingston to Toronto, valued at $£ 14000$, at $1 \frac{1}{2}$ per cent ? Also, at $\frac{3}{4}$ per cent? At $\frac{1}{2}$ per cent? At $\frac{1}{3}$ per cent? At $\&$ per cent.?

Answers in course, $£ 210, \mathfrak{£} 105, £^{\prime} 70, £^{4} 6$ 13s. $3 \frac{1}{4} d$. $£ 35$.

[^47]5. What is the insurance on a store and goods, valued at $£ 27000$, at $2 \frac{1}{4}$ per cent? At 2 , at $1 \frac{1}{2}$, at $\frac{3}{4}$, at $\frac{1}{2}$, at $\frac{1}{4}$, at $\frac{1}{5}$, and at $\frac{1}{6}$ per cent.?

Answers in course, $£ 607$ 10s., $£ 540, \ldots 405, £ 202$

DISCOUNT.

Discount is a deduction made from a debt, for paying it before it is due.

If, for example, I owe a man $£ 300$ two years hence, and am willing to pay him now, I ought to pay only that sum which, with its interest, would in two years amount to $£ 300$.

The sum which, in the time mentioned, would by the addition of its interest, amount to the sum which is due, is called the present worth.

The question then is in the above example, what sum together with its interest at a certain per cent. would in two years amount to $£ 300$? This is found by the following

RULE.

Find the amount of $£ 100$ or dollars, for the time and rate proposed in the question. Then, as the amount found is to the amount given, so is $£ 100$ or dollars to the principal or present worth roquired. The present worth, subtracted from the whole debt will leave the discount.

EXAMPLES.

1. A debt of $£ 372$ is due 4 years hence; what money paid down will discharge it, allowing 6 per cent. per annum discount?

Queations. - What is Discount? What is called the present worth of a note, or debt? Repeat the rule? When the present worth in found, how do we find the discount?

124 amount of $\boldsymbol{£ 1 0 0}$ for the time. Then as 124: 372: : 100 100

$$
124) 37200(300 \text { present worth. }
$$ $372-300=72$ discount.

It is evident that $£ 100$ is the present worth of $£ 124$ due 4 years hence, because $£ 100$ amounts to $£ 124$ for the time and rate given ; hence $L 124$ bears the same relation to $L 372$ as $L 100$ to the discount on $L 372$.

Note.-This method of computing discount is the correct one, but the mode generally adopted at the banks is to compute the interest on the whole note to be discounted in a manner which produces a small excess, and, deducting this interest, advance the remainder to the holders-thus virtually charging interest not only on the sum advanced, but on the part withheld. This when the sum is small is a trivial error, but in a large one the error is sometimes considerable. For example, the interest of $L 500$ at 5 per cent. for 12 years, exceeds the discount of the same sum for the same time and at the same rate-by $L 112$ 10s., a sum too great to lose.
2. What sum in ready moncy will discharge a debt of $L 925$ due one year and 8 months hence at 6 per cent. ? Ans. L840 18s. 2d.
3. What is the present worth of $L 600$ due 4 years hence, at 5 per cent.?
4. What is the discount of L275 10s. for 10 months, at 6 per cent. per annum ? Ans. L13 2s. 4hd.
5. What is the present worth and discount of L550 10s. for 9 months, at 5 per cent. per annum ?
Ans. L530 12s. $0 \frac{1}{2 d}$. the present worth, and $L 19$ 17s. 11 d. discount.
6. Bought to the value of $L 358 \mathrm{~s}$. to be paid 8 months hence ; what ready money will pay for them, at 6 per cent discount? Ans.
Note.-When payments are to be made at different times, find the present value of the several sums separate$l y$, and their sum will be the present value of the note.
7. What is the discount of $L 1500$, one half payable in 6 months, and the other half at the expiration of a year, at 7 per cent. per annum? Ans. L74 8s. $6 \frac{31}{} \mathrm{~d}$.
8. What will be the present worth of $L 150$, one third payable at 4 months, one third at 8 months, and one third at 12 months, at 5 per cent. discount?

Ans. C145 3s. $8 \frac{1}{2} \mathrm{~d}$.
9. A merchant owes L110, payable in 20 months, and L224 payable in 24 months; the first he pays in 5 months, and the other in 1 month after that, discounting at 8 per cent. per annum. Idemand the sum he paid.

Ans. 1300.

LOSS AND GAIN.

Loss and gain is a rule by which merchants and traders discover their profit or loss in buying and selling their goods. It also instructs them how much to increase or diminish the price of their goods so as to make or lose so much per cent.

Questions in this rule are worked by the Rule of Three.

[^48]
EXAMPLES.

1. Bought a piece of cloth containing 75 yds , at LI $_{1} 5$ s per yard, and sold it at $L 115 \mathrm{~s}$. per yard; how much was gained in the whole ?
Operation.
$L 1$ 15s. price of 1 yd .
1 5s. cost of 1 yd .
We first find the profit on a single $y d$., and then on the 75 yards.
10s. profit on 1 yd .

$$
\begin{array}{ccc}
\text { yd. } & \text { yd. } \\
1: & 75: & 10 \\
\text { s. } \\
\text { L37 10s. Ans. }
\end{array}
$$

2. Bought a piece of cloth containing 50 yards at 2 s . 6d. per yard, what must it be sold for per yard to gain L1 0s. 10d. ? 50 yards at 2s. 6d. $=L 65 \mathrm{~s}$. Profit, $=$ L1 0s. 10 d .

It must sell for L7 5s. 10d.

$$
\text { 50). } 75 \text { 10(2s. 11d. Ans. }
$$

3. Bought 11 cwt. of sugar at $6 \frac{1}{2}$ d. per pound but could not sell it again for any more than L2 16s. per cwt. : did I gain or lose by my bargain? Ans. Lost, L2 11s. 4d.
4. Bought 441/b. at L6 12s. and sold it again for $L 8$ 10s. 6d.: what was the profit on each pound? Ans. 10 d. .
5. Bought a hogshead of wine at $L 15$ s. per gallon, and sold it for L78: was there a loss or gain?

Ans. Loss of 15s.
II. To know what is gained or lost per cent.

RULE.

First find what the gain or loss is by subtraction, then, as the price it cost : is to the gain or loss :: so is $£ 100$ to the gain or loss per cent.

[^49]EXAMPLES.

1. A boy bought a knife for 2s. and sold it again for 2s. 8 d. ; what did he gain per cent. or in laying out $L 100$?

It is plain that the boy

Operation.
2s. 8 d .
20 d .
8d. gain.
s. d. \boldsymbol{f}
$2: 8:$: 100 : £33 6s. 8d. Ans. gains 8 d . in selling his knife; that is 2s. gained 8 d . We then say, if 2 s . gain 8d. what will $£ 100$ gain? because the gain on $£ 100$ must be in the same proportion as the gain on 2 shillings.
2. Bought sugar at $8 \frac{1}{4} \mathrm{~d}$. per lb . and sold it again at $\boldsymbol{£ 4}_{4}$ 17 s . per cwt. ; what did I gain per cent.?

Ans. £25 19s. 54 ${ }_{4}^{2}$ d.
3. At $1 \frac{1}{2} \mathrm{~d}$. profit on a shilling, how much per cent. ? Ans. £12 10s.
4. If I buy $12 h h d s$ of wine for $£ 204$ and sell the same again at $£ 14,17$ s. 6 d. per hhd. do I gain or lose, and what per cent. ?

Ans. I lose $12 \frac{1}{2}$ per cent.
5. At 5 s. profit on a pound, how much per cent ?

Ans. 25 per cent.
6. If by selling pepper at $10 \frac{1}{2} \mathrm{~d}$. per pound there are 2 d . lost on each : required the loss per cent.

Ans. 16.
III. To know how a commodity must be sold to gain or lose so much per cent.

RULE.

As $£ 100$: is to the price it cost : : so is $£ 100$ with the profit added, or loss subtracted, to the gaining or losing price.

EXAMPLES.

1. If I buy Irish linen at 2 s .3 d . per yard, how must I sell it per yard to gain 25 per cent.?

As $£ 100$: 2s. $3 \mathrm{~d} .:$: : £125 to 2s. 9d. 3qrs. Ans.

[^50]2. Bought cloth at 17 s .6 d . per yard, which not proving so good as I expected, I am obliged to lose 15 per cent. by it ; how must I sell it per yard ? Ans. 14s. $10 \frac{1}{2} d$.
3. Bought a cow for $£ 5$; what must I sell her for, in order to gain 25 per cent. ?

Ans. £6. 5 s.
IV. When there is gain or loss per cent., to know what the commodity cost.

RULE.

As £100, with the gain per cent. added, or the loss per cent. subtracted, is to the price, so is $£ 100$ to the first cost.

examples.

1. If a yard of cloth be sold at 14 s .7 d . and there is gained $£ 1613 \mathrm{~s} .4 \mathrm{~d}$. per cent. ; what did it cost per yard ? Ans. 12s. 6d.
$£ 100+£ 16$ 13s. $4 \mathrm{~d} .=£ 116$ 13s. 4 d . : 14s. $7 \mathrm{~d} .:$: £100 to 12s. 6d.
2. A farmer sold a horse for 25 pounds, and lost 15 per cent. ; what did the horse cost him?
£100-15=£85:25::100 to £29 8s. $2 \frac{14}{14} \mathrm{~d}$. Ans. or cost.
3. If a parcel of cloth be sold for $£ 560$, and at 12 per cent. gain, what was the prime cost? Ans. $£ 500$.
4. If by selling cloth at 9 s . per yard I gain 121 per cent, what was the prime cost of a yard? Ans. Ss.
V. If by wares sold at a given rate, there is so much gained or lost per cent., to know what would be gained or lost per cent. if sold at another rate.
RULE.

As the first price is to $£ 100$ with the piofit per cont. added, or the loss per cent. subtracted, so is the other price, to the gain or loss per cent. at the other price.

[^51]N. B.-If the answer exceed 100, the excess is gain per cent., but if it be less than 100, the deficiency is loss per cent.

EXAMPLES.

1. If I sell cloth at 5 s. per yard, and thereby gain 15 per cent. what shall I gain per cent. if I sell it at 6 s. per yd. ^s 5s. : £115: : 6s.: £138.

Ans. gained 38 per cent.
2. If I sell a barrel of sugar for $£ 8$, and thercby lose 12 per cent., what shall I gain or lose per cent. if I sell 4 barrels of the same sugar for $\mathfrak{E} 36$?

Ans. I lose-1 per cent.
3. A gentleman sole a silver wateh for $£ 171 \mathrm{~s} .5 \mathrm{~d}$. and by so doing lost 15 per eent. whereas he ought in trading to have cleared 20 per cent. ; how much was it sold under its real value?

First as $85: 1715:: 100: 8018$ the prime cost. Second as 100:2018::120:24 20 the real value. Then £24 2s.- $£ 17$ 1s. 5 d . the answer.

EQUATION OF PAYMENTS.

Equation of payments is a method of finding the mean time of payment of several sums, due at different times, and at such a time that neilher shall lose interest.

In how many months will $£ 1$ gain as much at interest as $\boldsymbol{£} 8$ will gain in 4 months. Now as the $\boldsymbol{£ 1}$ is 8 times less than 8 , it will require 8 times more time, or $8 \times 4=32$ months.

A man owes me $\boldsymbol{£} 12$ payable in $\mathbf{3}$ mo., $\boldsymbol{£} 18$ in 4 mo. and $£ 20$ in 9 mo . He wishes to pay the whole at once; in what time ought he to pay?

[^52]The interest of $£ 12$ for $3 \mathrm{mo}=$ =int. of $£ 1$ for 36 mo . do of $£ 18$ for 4 mo. =int. of $£ 1$ for 72 do do of $£ 20$ for $\mathbf{9} \mathbf{m o}$. =int. of $\boldsymbol{£ 1}$ for 180 do

$$
£ 50
$$

Now it appears that it will be the same to him to have $£ 1$ for 36 , for 72 , and for 180 months, as it would to have the 12 , the 18 , and the 20 pounds for the number of months specified.

He might therefore keep $£ 1$ just 288 months, and it would be the same as keeping the $£ 50$ for the number of months specified. But as the whole sum of money lent was $£ 50$, he may keep this only one fiftieth of the time he might keep £1. Therefore if 288 months be divided hy 50 , the quotient will be the equated time of payment, which is $5 \frac{8}{5}$ months.

RULE.

Multiply each payment by the time before it becomes due, and divide the sum of the products by the sum of the payments; the quotients will be the mean time.

EXAMPLES.

\therefore. A owes $13 £ 600: £_{200}$ is to be paid in 2 months, £200 in 4 months, and $£ 200$ in 6 months ; what is the mean time for the payment of the whole?
Operation. $200 \times 2=400$
$200 \times 4=800$
$200 \times 6=1200$
$2400 \div 600=4 \mathrm{mo}$. Ans.
We here multiply each sum liy the time at which it becomes due, and divide the sum of the products by the sum of the payments.
3. A man owes me $£ 300$, to be paid as follows ; $\frac{1}{3}$ in 3 montlis; $\frac{1}{4}$ in 4 months, and the rest in 6 months; what is the mean time for payment? Ans. $4 \frac{1}{2}$ months.
4. A merchant has due him $£ 300$ to be paid in 60 day\%, $£ 500$ to be paid in 120 days, and 750 to be paid in ould to have er of months
onths, and it number of money lent 2 of the time s be divided of payment,
efore it beroducts by will be the
in 2 months, what is the
ly each sum which it bevide the sum the sum of
dlows ; $\frac{1}{3}$ in onths; what . 412 monthe. paid in 60 o be paid in

180 days ; what is the equated time for the payment of the whole?

Ans. $137 \frac{1}{3} \frac{3}{1}$ days.
5. A owes B $£ 1200, \frac{1}{2}$ is to be paid in 6 months, $\frac{1}{8}$ in 8 months, and the remיinder in 10 months; what is the equated time for the payment of the whole?

Ans. $7 \frac{1}{3}$ months.

FELLOWSHIP.

The Rule of Fellowship is a method of ascertaining the respective gains or losses of individuals engaged in joint trade.

The money, or value of the articles employed in trade is called the Capital or Stock. The gain or loss to be shared is called the Dividend.

It is plain that each man's gain or loss should be in proportion to his share of the Stock. Hence the following

> RULE.

As the whole stock is to the whole gain or loss, so is each man's share to his share of the gain or loss.

PROOF.

Add all the separate profits or shares together ; their sum should be equal to the whole profit or stock.

EXAMPLES.

1. A and B buy certain merchandise amounting to $\mathbf{£ 1 6 0}$, of which A pays $£ 90$, and B $\mathbf{£ 7 0}$; they gain by the purchase $£ 32$; what is each one's share of the profits? $£ 90+£ 70=£ 160$, then $£ 160: 32\left\{\begin{array}{l}90: £ 18 \text { A's share. } \\ 70: \boldsymbol{£ 1 4} \text { B's share. }\end{array}\right.$
2. Three merchants make a joint stock of $£ 1200$, of

[^53]which A put in $£ 240$, B $\mathbf{£ 3 6 0}$, and $\mathbf{C} \boldsymbol{£ 6 0 0}$; and by trading they gain $£ 325$; what is each one's part of the gain ? Ans. A's part £65, B's £97 10s., C's £162 10s.
3. A bankrupt is indebted to $\mathrm{A} £ 211$, to $\mathrm{B} £ 300$, and o C $£ 390$, and his whole estate amounts only to $£ 675$ 10 s . which he gives up to those creditors; how much must each have in proportion to his debt ?

Ans. A must have $£ 158$ 0s. $3 \frac{3}{4} \mathrm{~d}$., B $£ 22 \mathrm{~S}_{\mathrm{H}} 13 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. and C $\mathscr{L} 29216 \mathrm{~s} .3_{4}^{2} \mathrm{~d}$.

DOUBLE FELLOWSHIP.

When several persons who are joined together in trade employ their capital for different periods o. time, the partnership is cailed Double.Fellowship.

For example, suppose A puts £200 in trade for 4 years, $\mathrm{B} £ 300$ for 3 years, and $\mathrm{C} £ 100$ for 1 year; this would make a case of double Fellowship.

Now it is evident that there are two circumstances which should determine each one's share of the profit ; first, the amount of capital he puts in ; and secondly, the time which it is continued in the business. Wherefore each one's share should be proportional to the capital he puts in, multiplied by the time it is continued in trade. Hence the following

RULE.
Multiply each man's stock or share by the time it was continued in trade ; then,

As the sum of the several products is to the whole gain or loss, so is each man's particular product to his particular share of the gain or loss.

[^54]0 ; and by tradrt of the gain? C's £162 10s. o B £300, and only to $£ 675$; how much
22^{4} 13s. $4 \frac{1}{2} \mathrm{~d}$.
ned together erent periods le.Fellowship. in trade for £ 100 for 1 e Fellowship. two circumpe's share of l he puts in ; continued in share should n, multiplied

Hence the
by the time ets is to the rticular pron or loss.
hat two circum. e profils? Re.

TARE AND TRET'.

Tare and Tret are allowances made in selling goods by weight.

Draft is an allowance on the gross weight in favour of the buver or importer. It is always deducted before the Tare.

Tare is an allowance made to the buyer for the weight of the hogshead, barrel or bag, \&c., containing the commodity sold.

[^55]Gross weight is the whole weight of the goods, together with that of the hogshead, barrel, bag, \&c., which contains them.

Suttle is what remains after a part of the allowances have been deducted from the gross weight.

Nett weight is what remains after all the deductions are made.

All the questions in this rule may be worked by the Rule of Three.

EXAMPLES.

1. What is the rett weight of 112 cwt . 3 qrs. 12lbs. of tobacco ; tare on the whole, 6 cwt . 3qrs. 20 lbs . cwt. qrs. lbs.

$$
\begin{array}{rlll}
112 & 3 & 12 & \text { gross weight, } \\
6 & 3 & 20 & \text { tarc. }
\end{array}
$$

Ans. $105 \quad 3 \quad 20$ nett weight.

2. If the tare be 4 llbs . per cwt. what will the tare be on 6 T . 2 cwt . 3 qr . 14 lbs .

Ans. 4cwt. 1qr. $15{ }_{2}^{2}$ ilbs
3. What is the nett weight of 3 casks of indigo, each weighing 4 ewt . 2 qrs. 14 lbs . gross ; tare on each cask 1 cwt . 0 qr. 121 bs. ? Ans. 10 cwt . 2qrs. 6 lbs .
4. What is the nett weight of 20 hogsheads of sugar, weighing in all 246 cwt . 3 qris. 7 llbs . gross, tare 16 lbs . per cwt.?

Ans. 211cwt. 2qrs. 6 lbs .
5. What is the nett weight of 132 cwt . 1qr. 201bs. gross, tare 141 lbs, per cwt.?

Ans. 108cwt.
6. At $£ 75 \mathrm{~s}$. per cwt . nett, how much will 16 hhds . of sugar come to, each weighing gross Scwt. 3qrs. 71bs., tare 12 l bs . per covt.?

Ans. £912 14s. $5 \frac{1}{2} d$.
7. What is the nett weight of 18 hhds. of tobacco, each weighing gross 8 cwt . 3 qra. 14 lbs ., tare 16 lbs . per cwt ?

Ans. 6T. 16owt. 3qrs. 201bs.
8. At $£_{1} 5_{3}$. per cwt. nett, tare 4llbs. per cwt., what

Questrown. - What in Grons weight? What is Suttle? What is Nett weight? How may questions in this rule be worked?
f the goods, barrel, bag, of the allowross weight. all the deduc-
c worked by

3qrs. 12lbs. of lbs.
will the tare be vt. 1qr. $15 \frac{1}{2} \mathrm{lbs}$ of indigo, each ach cask 1 cw . wt. 2qrs. 6 lbs . heads of sugar, tare 16lbs. per cwt. 2 qrs . 6 lbs . vt. 1qr. 201bs. Ans. 108cwt. will 16 hhds of qres. 7lbs., tare 912 14s. $5 \frac{1}{2}$ d. ftobacco, each s. per cwt.?
vt. 3 grs . 201bs. per cwt., what

Sutule? What rule be worked?
will be the cost of 4 hogsheads of sugar weighing in all 49 cwt . Oqrs. 141lbs. gross?

Ans. $£ 594 \mathrm{~s} .3 \mathrm{~d}$.
9. What is the nett weight of 495 cwt . 1 gr . 2 lbs . gross, tare 28 lbs . per cwt., and tret 4 llbs . for every 104 lbs .?

Ans. 357cwnt. 0qr. 181 $\frac{1}{2} \mathrm{lbs}$.

VULGAR FRACTIONS.

1. If a unit be divided into two equal parts, what is each part called? How do we express one of the parts? How many halves are there in one thing?
2. If a unit be divided into three equal parts, what is each part called? How do we express one of the parts? How do we express two of them? Three of them? How many thirds in one thing?
3. If a unit be divided into four equal parts, what is each part called? How do we express one of the parts? Two of them? Three of them? Foun of them? How many fourths or quarters in one thing? How much greater: is a half than a quarter? What is the sum of one fourth and two fourths?
4. If a unit be divided into six equal parts, what is each part called? How do we express one sixth? How do we express two of the parts? Three of them? Six of them? How many sixths are there in a unit? How much greater is a third than a sixth?
5. If a unit be divided into ten equal parts, what is cach part called? How many tenths in a whole thing? How many fifths in one thing? How much greater is a fifth than a tenth ?
6. If a unit be divided into twelve equal parts, what is each part called? How is it expressed? How are five of the parts expressed? Six of them? Eight of them? Eleven of them? How many sixths in a unit? How many twelfths? How much greater is a sixth than a twelfth?
7. How many halves in two units? How many thirds in three units? How many fourths in three units? In four? In five? In six? How many tenths in two? In three? In four?
8. How many sevenths in a unit? How many fourteenths? How many fourteenths are equal to one seventh ? How many are equal to three sevenths? To five sevenths? To seven sevenths?
9. What is one half of one half? One half of one third? What is the half of one fourth? Of one fifth? Of one sixth? Of one seventh ?
10. What is the sum of one half and one half? Of one third and two thirds? Of one fourth and one fourth? Of one fourth and two fourths? Of one fourth and three fourths? Two fourths and two fourths?
11. What is the sum of one fifth and two fifths? What is their difference? What is the sum of two fifths and three fifths? What is their difference?
12. What is the difference between six cighths and three eighths? What is their sum? W!at is the sum of five eighths and tivo eighths? What is their difference? What is the sum of four eighths and four eighths? What is their difference?
13. What is the sum of four twelfths and eight twelfths? What is their difference? What is the difference between five tivelfths and seven twelfths? What is their sum?
14. How many halves in one? How many thirds? Fourths? Fifths? Sixths? Sevenths? Eighths? Ninths? Tenths? Elevenths? Twelfths?
15. How many halves in two? How many fourths? How many eighths? How many elevenths? How many twelfths?
16. How many fourths in four? In five? In six? In seven? How many fifths in four? How many sevenths? How many tenths?
17. How many elevenths in three? In six how many? In nine? In ten?
s? How many hs in three units? ny tenths in two?

How many foural to one seventh? To five sevenths?

One half of one ? Of one fifth? id one half? Of and one fourth? fourth and three
and two fifths? um of two fifths e?
six cighths and hat is the sum of their difference? eighths? What

3lfths and cight hat is the differelfths? What is
w many thirds? ighths? Ninths?
v many fourths?
s? How many
five? In six? How many sesix how many?
18. How many whole units in two halves? In three halves? In four halves? In five halves? In six halves? In eight halves? In nine halves?
19. How many units in three thirds? In four thirds? In five thirds? In seven thirds? In nine thirds? In eleven thirds?
20. How many units in four fourths? In five fourths? In eight fourths? In nine fourths? In eleven fourths? In sixteen fourths?
21. How many units in ten tenths? In fifteen tenths? In twenty tenths? In iwenty four tenths? In thirty three tenths?
22. How many eights is one fourth equal to? What is the sum of one fourth and one eighth? Two fourths and two eighths? One fourth and five eighths? Three fourths and two eighths?
23. How many tenths are two fifths equal to? What is the sum of one fifth and eight tenths? What is the sum of one sixth and one twelfth? Of one sixth and ten $t^{\text {welfths? }}$

Before proceeding farther the pupil is requested to review carefully what is said of Fractions on the 44th, 45 th and 46 th pages.

A fraction is the expression of one or more parts of a unit.

There are five kinds of Vulgar Fractions, viz: Proper, Improper, Simple, Compound and Mixed.

A Proper Fraction is one in which the numerator is less than the denominator. The value of every proper fraction is less than 1, as the following:

$$
\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{3}{4}, \frac{5}{6}, \frac{7_{1}^{8}}{1}:
$$

An Improper Fraction is one in which the numerator equals or exceeds the denominator. They are called improper fractions because they are equal to or exceed unity. When the numerator is equal to the denominator, as $\frac{4}{4}$, the value of the fraction is equal to 1. If the numerator
exceed the denominator as $\frac{5}{4}$, the value of the fraction is greater than 1 , as the following:

$$
\frac{3}{2}, \frac{4}{3}, \frac{6}{5}, \frac{8}{7}, \frac{3}{3}, \frac{10}{3}, \frac{12}{2}, \frac{14}{7} .
$$

A Simple Fraction is a single expression, as $\frac{3}{8}$. It may be either proper or improper. The following are simple fractions:

$$
\frac{1}{4}, \frac{2}{3}, \frac{4}{5}, \frac{3}{6}, \frac{5}{3}, \frac{7}{4}, \frac{8}{6}, \frac{9}{7} .
$$

A Compound Fraction is a fraction of a fraction, or several fractions connected by the word of, as the following:

$$
\frac{1}{2} \text { of } \frac{1}{3}, \frac{1}{4} \text { of } \frac{1}{6}, \frac{1}{3} \text { of } \frac{1}{5} \text { of } 10, \frac{1}{4} \text { of } \frac{1}{3} \text { of } 12 .
$$

A Mixed $\mathcal{N} u m b e r$ is composed of a whole number and a fraction, as the following:

$$
2 \frac{1}{2}, 4 \frac{1}{4}, 6 \frac{3}{3}, 9 \frac{1}{7}
$$

A Mixed Fraction is one whose numerator or denominator is a mixed number, as $4 \frac{1}{2}$

$$
\overline{10}
$$

A whole number may be expressed fractionally by writing 1 below it for a denominator.

Thus, 2 may be written $\stackrel{\circ}{1}$, and is read 2 ones. $\begin{array}{lllllll}4 & 66 & 6 & 4 & 46 & 6 & 4 \\ \text { ones. } \\ 7 & 66 & 66 & 7 & 6 & 66 & 66 \\ 7 & \text { ones. }\end{array}$
But 2 ones are cqual to 2,4 ones are equal to 4,7 ones to 7, \&c. Therefore the value of a number is not altered by placing 1 under it for a denominator.

[^56]the fraction is
n, as $\frac{3}{8}$. It may ving are simple
fraction, or ses the following : of 12 .
ole number and
tor or denomi-
tionally by writ-
2 ones.
4 ones.
\% ones.
ral to 4,7 ones or is not altered
kinds of Vulgar is a Proper Frac. ve an example of tion? Why is it 1? When is it proper fraction? ble. What is a hat is a Mixed proper or impro. fourtis? What eighths? What alf' of one-third? fourths? 7 one.

You have learned (page 4.5) that the denominator shows into how many equal parts a unit is divided, and the numerator shows how many of the parts ars expressed by the fraction.

You have also learned that the numerator and denominator taken together are called the terms of the fraction, and that dividing both terms by the same number does not change the value of the fraction.

REDUCTION OF VULGAR FRACTIONS.

CASE I.

To reduce a fraction to its lowest terms.
RULE.
Divide the numerator and denominator by any number which will divide them both without a remainder, and those quotients again in the same way until there is no number greater than 1 that will divide them both without a remainder.

EXAMPLES.

1. Reduce $-\frac{6}{18}$ to its lowest terms.

Operation.
6) $6 \quad 1$ Ans.
6) $\overline{12}=-$

Here it will be seen that the fraetion is in the lowest terms, as no number greater than 1 will divide the numerator and dennminator. It will also be seen that its terms only are altered, not its value.

Questions. - How may a whole number be expressed fractionally? Does this alter its value? Give an example. What does the denominator of a fraction show? What does the numerator thow 1. What are the numerator and denominator taken together called? If both terms be divided by the same number does it change the value of a fraction? Repeat tlie rule for reducing a fraction to its lowest terms.

Operation.
5),, 55

Yod wiol
5) $10=\frac{1}{20}$. Ans.
3. Reduce $\frac{104}{12}$ to its lowest terms. Operation. 2) 204 2) $52=2) 26$
13) $13 \quad 1$
2) $\overline{312}=$ 2) $\overline{156} \quad$ 2) $\overline{78}=13) \overline{39}=\frac{1}{3}$ Ans.
4. Reduce $\frac{2 \pi 88}{410}$ to its lowest terms.
5. Reduce $\frac{134}{15 \frac{4}{6}} \frac{4}{6}^{\circ}$ to ${ }^{\prime}$ ts lowest terms.
6. Reduce $\frac{1049}{8} \frac{4}{9} \frac{1}{2}$ to its lowest terms.

Ans. $5 \frac{5}{8}$.
Ans. $\frac{7}{8}$.
Ans. $\frac{1}{8}$.

GREATEST COMMON DIVISOR.

There is another method of reducing a fraction to its lowest terms, which is often preferable to the above, viz: dividing the terms by their greatest common divisor. In the first example above, 6 is a common divisor of both terms of the fraction $i^{\frac{n}{2}}$: 'it is also their greatest common divisor.

Any number greater than 1 that will divide two or more numbers without a remainder is called their common divisor; and the greatest number that will so divide them is called their greatest common divisor.

The greatest common divisor of two numbers is found by the following
rele.
Divide the greater number by the less, then the divisor by the remainder, and continue to divide the last divisor by the last remainder until nothing remains.

The last divisor will be the common divisor wought.

[^57]ExAmplas.

1. Find the greatent common divisor of the two numbers 135 and 165 .
3) $\frac{13}{39}=\frac{1}{3}$ Ans. Ans. 85. Ais. $\frac{7}{8}$. Ans. $\frac{1}{8}$.

VISOR.

ing a fraction preferable to y their greatample above, 3 of the fracnmon divisor. ill divide two nder is called natest number their greatest two numbers
less, then the nue to divide until nothing
nmon divisor
r moducing a fracdivisort What orat Repeat the fiwo numberv.

Operation.
185) $\mathbf{1 6 5 (1}$

135
$30) 135(4$
120

Proof. 15)135(9 135
15) $165(11$ 165

Greatest common div. 15)30(2 30
Let us try if the less number $\mathbf{1 3 5}$ is the greatest common divisor. It will exactly divide itself, but will not divide 165 without a remainder; we divide it therefore, by this remainder, and find still a vemainder of 15 . We divide the last divisor by this remainder, and nothing is left. Therefore 15 is the greatest common divisor of 135 and 165.
2. What is the greatest common divisor of 323 and 475?

Ans. 17.
3. Required the greatest common divisor of 2310 and 46261 Ans. 6.
4. What is the greatest common divisor of 1092 and 1428 ?

Ans. 84.
5. What is the greatest common divisor of 1197 and 805 ?

Ans. 7.
Note.-To find the greatest common divisor of more than two numbers; find the common measure of two of them as above, then find the greatest divisor of this common measure and a third given number; and so proceed to the last.

The pupil may now reduce the following fractions to their lowest terma by dividing both terms by their greatent common divisor.

EXAMPLES.

1. Reduce ${ }_{-170}^{70}$ to its loivest terms.

Operation.
70)175(2

140
35) $70(2$

70
35) $70^{\circ}=2$
35) $\overline{175}=\overline{5}$; Ans.

- We first find the greatest common divisor of 70 and 175 to be 35 ; then reduce ${ }_{-170}^{275}$ to its lowest terms by dividing at once by this number.

2. Reduce $\frac{6.3}{81}$ to its lowest terms by the last method. Ans. $\frac{7}{9}$.
3. Reduce $\frac{315}{405}$ to its lowest terms by the last method. Ans. $\frac{7}{9}$.
4. Reduce ${ }_{-1}^{-7}{ }^{7}{ }^{\frac{92}{8}}$ to its lowest terms by both methods. Ans. $\frac{4}{7}$.
5. Reduce $-\frac{384}{15} \cdot$ to its lowest terms by both methods. Ans. $\frac{1}{3}$.
6. Reduce $\frac{1}{2} \frac{12}{8} \frac{2}{5}$ to its lowest terms by both methods. Ans. $\frac{1}{2}$.

CASE II.

'To reduce a mixed number to its equivalent improper fraction.

RUL.E.

Multiply the whole number by the denominator of the fraction, to this product add the numerator, and place their sum over the givea denominator.

EXAMPLES.

1. Reduce 123 to its equivalent improper fraction. $12 \times 9=96+3=99$. Aus: $9_{8}^{9 .}$. It is plain that multiplying 12 by the de1 whole thing is equal to 8 eighths -hence, 12 whole things equal 96 eighthe.
2. Reduce $45 \frac{4}{6}$ to an improper fraction? Ans. $27^{2 / 4}$.
3. How many 24ths in 3655_{i-6}^{6} ? Ans. $\frac{8789}{24}$.
4. . Reduce $192 \frac{45}{6}$ to to equivalnt improper fraction ?

Ans. 11506.
5. Reduce $\Omega .40{ }_{i 3^{7}}^{7}$ to its equivalent improper fraction. Ans. $\frac{33187}{13} \frac{87}{3}$.
6. Reduce 876950 to Ans. 2530060 .

CASE III.

To reduce an improper fraction to its equivalent whole or mixed number.

RULE.

Divide the numerator by the denominator, the quotient will be the whole number ; and if there be a renai. ider place it over the given denominator.

EXAMPLES.

Operation.

1. Reduce $\frac{48}{7}$ to its equivalent whole 7) 18 or mixed number.
$6 \frac{3}{7}$ Ans.
2. Reduce $\frac{8,4}{7}$ to a whole number. Ans. $84 \div 7=12$.

From the above examples we may perceive the truth of the fullowing principle, viz:-The value of every fraction is equal to the quotient arising from dividing the numerator by the denominaior.
3. Reduce $\frac{14.8}{18}$ to a whole or mixed number.

Ans. 12- ${ }^{3}$.
4. In $\frac{01}{y}$ of bushels, how many bushels? Ans. 5 .
5. If I give $\frac{1}{4}$ of an orange to each of 12 children, how many oranges do I give?

Quadtons. - How nany eightis in 12 whole numbera? How many eightio in 12 and three-eighthe? Repent the rule for rerucing a mixed number to ite equivalent improper fraction? How many whole numbera in 48 seventha? and liow many seventhe ovelt Repeat the rule for reducing an improper fraction to its equivalent whole or mized number.
6. Reduce $\frac{3.27}{125}$ to its whole or mixed number?

$$
\text { Ans } 2-\frac{27}{25}
$$

7. Reduce $\frac{367}{153}$ and $\frac{50287}{6041}$ to their equivalent whole or mixed numbers.
8. Reduce $\frac{30}{20}, \frac{780}{40}, \frac{875}{150}$ and $\frac{3185}{450}$ to whole or mixed numbers. Ans. 14, 19, 55 and $7_{1}^{7}{ }^{7}$.

CASE IV.

To reduce a whole number to an equivalent fraction having a given denominator.

RULE,
Multiply the whole number by the given denominator, and set the product over the said denominator.

EXAMPLES.

1. Reduce 8 to a fraction whose denominator shall be 5. Here $8 \times 5=40$; therefore $\frac{4.0}{5}$ is the required fraction, for $40 \div 5=8$, according to case III.
2. Reduce 18 to a fraction whose denominator shall be 8. Ans. 144.
3. Reduce 125 to a fraction whose denominator shall be 15 .

Ans. $\frac{1875}{15}$.
4. Reduce 135 to a fraction whose denominatur shall bo 175 .

Ans. $2 \frac{4325}{176}$.

CASE V.

To reduce a compound fraction to its equivalent simple one.

RULE.

I. Reduce all mixed numbers to their equivalent improper fractions by case II.

[^58]mber?
Ans. $2 \frac{77}{25}$. ivalent whole 4 and $8 \frac{1}{6} \frac{95}{4}$? hole or mixed ; $5 \frac{5}{6}$ and 77_{1}^{7}.
valent fraction
iven denomid denomin-
rator shall be 5 . ed fraction, for
inator shall be Ans. $\frac{144}{8}$. ominator shall Ans. $\frac{1875}{15}$. ominatue shall Ans. $2 \frac{4323}{178}$. nivalent simple
their equiva-
action equal?-to an equivalent any whole num. bthat How ma. ow many 9 the in - form of 99 Of
II. Then multiply all the numerators together for a numerator, and all the denominators together for a denominator; their products will form the fraction required.

EXAMPLES.

1. Reduce $\frac{1}{4}$ of $\frac{1}{2}$ to a simple fraction. Ans. $\frac{1}{8}$. $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$. If $\frac{1}{4}$ of 1 is $\frac{1}{4}$, then $\frac{1}{4}$ of $\frac{1}{2}$ must be half as much, or $\frac{1}{8}$ of 1 .
2. Reduce $\frac{1}{2}$ of $\frac{1}{3}$ of $\frac{5}{7}$ to a simple fraction. Ans. $-\frac{5}{4}-6$
3. Reduce $\frac{5}{3}$ of $\frac{3}{6}$ of $\frac{6}{7}$ to a simple fraction.

Here $\frac{5}{3} \times \frac{3}{6} \times \frac{6}{7}=\frac{-90}{126}=\frac{10}{14}=\frac{5}{7}$ by reducing the fraction to its lowest terms, as shewn in case J.

Or, by cancelling or drawing a perpendicular line after the 3 's and 6's in the numerator and denominator, thus, ${ }_{3}^{5}\left|\times \frac{3}{8}\right| \times \frac{6}{7}=\frac{5}{7}$.

By cancelling the 3's we only divide both terms by 3; and in cancelling the 6 's we divide by 6 . Hence the value of the fraction is not affected by thus cancelling like figures, which should always be done when the numerator of one is like the denominator of another.
4. Reduce $\frac{8}{8}$ of $\frac{8}{9}$ of $\frac{9}{10}$ to a simple fraction.

$$
\begin{aligned}
& \text { Here } \frac{8}{8} \times \frac{8}{9} \times-\frac{9}{9}=\frac{432}{7} \frac{12}{20}=\frac{48}{50}={ }_{10}^{6}=\frac{3}{5} \text {. Ans. }
\end{aligned}
$$

5. Reduce $\frac{3}{4}$ of $\frac{-9}{10}$ of $\frac{15}{18}$ to a simple fraction. Ans. $\frac{81}{124} \frac{1}{5}$.
6. Reduce $\frac{-3}{12}$ of $\frac{13}{15}$ of $7_{7}^{8} ;$ of 20 to a single fraction.

Ans. ${ }_{3}^{2} \frac{4}{6}=2-2{ }^{2}$ -
7. Reduce $\frac{9}{3}$ of $\frac{3}{4}$ of $\frac{19}{13}$ of $\frac{8}{1 \%}$ of $\frac{4}{5}$ to a single fraction. Ans. $\frac{16}{75}$.
8. Required the value of $\frac{1}{2} \cdot \frac{19}{1}$ of $33 \frac{1}{1}$ in a single fraction. Ans. 15- ${ }^{-1} 5$.
9. How many apples are $\frac{0}{7}$ of $\frac{5}{6}$ of $\frac{8}{9}$ of 7_{10}^{9} of $\frac{7}{8}$ of 40 apples 3

Ans. 20.
Questione.--How do we reduce a compound fraction 10 a simple onet When there are like figures in the numerator and denominator, what do we do with them? Does this alter the value of the fractiont What is half of one.third? What is onethird of one-finht What is one.third of three-twefihst two. thirds of cix.ninthe? three-fourthe of eight-eleventhe? four-fiths of five.twelinhl?

CASE VI.

To reduce fractions of different denominators to equivalent fractions having a common denominator.

RULE.

I. Reduce compound fractions to simple ones, and whole or mixed numbers to improper fractions.
II. Then multiply each numerator by all the denominators except its own, for the new numerators, and all the denominators together for a common denominator; the common denominator placed under each of the new numerators will form the several fractions sought.

EXAMPLES.

1. Reduce $\frac{1}{4}, \frac{1}{8}$ and $\frac{4}{7}$ to a common denominator.
$1 \times 3 \times 7=21$ the new numerator of the 1st. $\begin{array}{llll}1 \times 4 \times 7=28 & 6 & 6 & -. .-2 n d \\ 4 \times 4 \times 3=49 & 6 & 6 & \text { 3d. }\end{array}$ $4 \times 3 \times 7=84$ the cominon denominator.
Therefore $\frac{21}{8}, \frac{28}{4}$ and $\frac{48}{8} \frac{8}{4}$ are the equivalent fractions.
It is plain that this reduction does not alter the value of the fractions, for the numerator and denominator of each are muitiplied by the same number, and by reducing each to its lowest terms, we should have again the original fractons. For $\frac{21}{84}=\frac{1}{4}, \frac{78}{81}=\frac{1}{3}$, and $\frac{48}{34}=\frac{4}{7}$.

Hence we have the following general principle:
If the numerator and denominator be both multiplied by the same number the value of the fraction will remain unchanged.
2. Reduce $\frac{1}{2}, \frac{3}{4}$, and $\frac{7}{5}$ to a common denominator.

$$
\text { Ans. } \frac{3.2}{4} \text {, } \frac{48}{4} 4 \text { and } \frac{8}{6} \frac{1}{4} \text {. }
$$

[^59]3. Reduce $\frac{5}{6}, 2 \frac{3}{5}$ and 4 to a common denominator. Ans. $\frac{.75}{3} \frac{78}{38}$ and $\frac{120}{30}$.
4. Reduce $\frac{7}{8}, \frac{2}{8}, \frac{\pi}{7}$ and $\frac{1}{5}$ to a common denominator

Ans. $\frac{7355}{810}, \frac{560}{810}, \frac{720}{840}$ and $\frac{1688}{810}$.
5. Reduce $\frac{1}{5}, \frac{5}{7},-\frac{9}{15}$ and $\frac{1}{2}$ to a common denominator.

6. Reduce $7 \frac{1}{2}, \frac{31}{18}, 5 \frac{1}{4}$ tr :ommon denominator.

$$
\text { Ans. } \frac{1089}{144}, \frac{24}{14} \ldots!\frac{209}{144}
$$

Note.-To reduce fractions to their least common denominator, it is necessary first to learn the method of finding the

LEAST COMMON MULTIFLE

Of two or more numbers. A number is said to be a common mulliple of other numbers, when it can be divided by each of them without a remainder.

Thus 8 is a common multiple of 2 and 4 , because it may be exactly divided by each of them. Also 12 is a common multiple of $2,3,4$ and 6 . The least common multiple of two or more numbers is the least number which they will scparately divide without a remainder.

For example, 16 is a common multiple of 2 and 4, but it is not the least common multiple, because 8 is also exactly divisible by 2 and 4 ; and as it is the least number that may be so divided by those numbers, it is their least common multiple.

The least common multiple of several numbers may be found by the following
rule.
I. Place the numbers in a line, and divide by

[^60]any number that will divide two or more of them without a remainder, and place the quotients and undivided numbers in a line below.
II. Divide these numbers in the same way, and so continue, until no number greater than 1 will exactly divide any two of them. The numbers in the lower line and the divisors multiplied together, will produce the least common multiple.

examples.

1. Find the least common multiple of 4,6 and 12 . Operation. 2)4... 6 . . . 12
3)2 . . $3 \ldots 6$
2)2 . . $1 \ldots 2$
1...1... 1

Ans. $2 \times 3 \times 2=12$
We first divide by 2 , which we find will divide 4,6 and 12 without a remainder. We then divide this line by 3 , which is a common divisor of 3 and 6 ; and as 2 cannot be divided by it, we bring it down to the lower line. We then find the numbers in this line divisible by 2 , except the 1 , which we place below, and find this last line to consist of 1 's. As multiplying by the 1's would not alter the result, we leave them and multiply the divisors together, $2 \times 3 \times 2=12$, the least common multiple of 4,6 and 12.
2. Find the least common multiple of 3,7 and 9 .

Operation.
3) $3 \ldots 7 \ldots 9$

Ans. $3 \times 7 \times 3=63$
Here, as there is no common divisor between any two numbers.in the last line, we multiply them together, and also by the divisor 3, and find the least common multiple to be 63 .
3. Find the least common multiple of $12,16,20$ and 30 ? Ans. 240.
4. Required the least common multiple of 21 and 49 ? Ans. 149.
5. Required the least common multiple of $4,14,28$ and 98 ?

Ans.
ore of them uotients and
ne way, and than 1 will numbers in ied together, le.
, 6 and 12.
2 , which we nd 12 without ren divide this a common did as 2 cannot bring it down We then finl ne divisible by ich we place ast line to coniplying by the and multiply common mul-

7 and 9. 6 common dio numbers in iply them tohe divisor 3, mon multiple
b, 16, 20 and Ans. 240. f 21 and 49 ? Ans. 149. of $4,14,28$ Ans.
6. Find the least common multiple of $25,35,60$ and 72 ? Ans. 12600.
7. What is the least common multiple of $11,17,19$, 21 and 7 ?

Ans. 74613.
8. What is the least number that can be divided by the nine digits separately, without a remainder? Ans. 2520.

To reduce fractions to their lenst common denominator, observe the following

RULE.

I. Find the least common multiple of the several denominators as shown above, and it will be the least common denominàtor.
II. Divide the common multiple by the denominator of each fraction, and by each of these quotients multiply its respective numerator ; the products will be the numerators of the required fractions, ander which write the least common denominator.

EXAMPLES.

1. Reduce $\frac{1}{2}, \frac{3}{8}$ and $\frac{5}{6}$ to their least common denominator.

$$
\text { 2)2 . . } 8 \ldots 6
$$

$1 \ldots 4$. . . 3 and $3 \times 4 \times 2=24$, the least common denominator.
$24 \div-2=12 \times 1=12,1$ st numerator.
$34: 8=3 \times 3=9$, 2nd numerator.
$24 \div 6=4 \times 5=20$, 3rd numerator.
Ans. $\frac{12}{24}, \frac{-9}{24}$ and $\frac{20}{4}$.
These fractions may be reduced back to their former terms, thus: $\frac{12}{24}=\frac{1}{2}, z_{2}^{9}=\frac{3}{8}$, and $\frac{20}{4}=\frac{5}{6}$.
2. Reduce $\frac{1}{2}, \frac{2}{3}, \frac{8}{4}$ and $\frac{5}{6}$ to fractions having the least common denominator. Ans. $\frac{16}{12}, \frac{-8}{12},-\frac{9}{12}$ and $\frac{1}{12}$.

[^61]3. Reduce $\frac{4}{5}, \frac{1}{9}$ and $\frac{3}{15}$ to their least common denominator.

Ans. $\frac{39}{45}, \frac{40}{45}$ and $-\frac{9}{45}$
4. What is the least common denominator of $\frac{2}{5}, \frac{4}{6}, \frac{5}{8}$ and $-T^{2} 0$. $\quad \therefore$ ns. $\frac{36}{80}, \frac{50}{90} ; \frac{50}{90}$ and $\frac{63}{90}$.
5. Find the least common denominator of $\frac{7^{3} 5}{5}, \frac{4}{4_{4}^{4}}$ and $\frac{8}{3}$. Ans. $\frac{72}{365}, \frac{480}{860}$ and $\frac{3200}{860}$.
6. Reduce $\frac{5}{7},-\frac{9}{19}, \frac{-5}{2} \frac{5}{1}$ and $\frac{-8}{3}$ - to their least common denominator.

Ans. $\frac{30}{42}, \frac{27}{42}, \frac{10}{42}$ and $\frac{9}{42}$.
7. Reduce $\frac{1}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{11}{16}$ and $\frac{12}{24}$ to equivalent fractions having the least common denominator.

Ans. $\frac{16}{4} \frac{3}{5} \frac{36}{88} 9 \frac{40}{40} ; \frac{42}{4}, \frac{33}{48}$ and $\frac{34}{45}$.

CASE VII.

To reduce a mixed fraction to a simple one.
rule.
Multiply the numerator and denominator of the given fraction by the denominator of the fraction annexed, to the product of the numerator adding the numerator of the annexed fraction, and the products will be the terms of the fraction required.

Note.-In the application of this rule it should be considered that a fraction multiplied by a whole number equal to its denominator, produces a whole number equal to its numerator.

> EXAMPLES.

1. Reduce $\frac{42 \mathrm{z}}{49}$ to a simple fraction.

$$
\left.\begin{array}{ll}
\frac{422}{8} \times 8+7 & =343 \text { numerator. } \\
\frac{39}{3} \times 8 & =\frac{7}{8} \text { Ans. } \\
\text { denominator. }
\end{array}\right\}=\frac{1}{8}
$$

2. Reduce $\frac{34 \frac{1}{46}}{}$ to a simple fraction.

Ans. 3.

[^62]mmon denomi$\frac{30}{45}, \frac{40}{45}$ and $-\frac{2}{45}$ rator of $\frac{2}{5}, \frac{4}{6}, \frac{5}{8}$ $\frac{60}{90} ; \frac{50}{96}$ and $\frac{63}{90}$. of $-\frac{3}{15}, \frac{4}{44}$ and , $\frac{-80}{360}$ and $\frac{320}{60}$ ist common de, $\frac{10}{42}$ and $\frac{8}{42}$ quivalent fractor.
$\frac{4}{4} \frac{1}{8}, \frac{3}{4} \frac{3}{8}$ and $\frac{34}{98}$.

one.

ninator of the f the fraction rator adding tion, and the tion required. should be con*hole number e number equal
$=\frac{7}{8}$ Ans.
Ans. ${ }^{2}$
bumerator or desimple fraction ! number equa! to
3. Reduce $\frac{34}{45 \frac{1}{3}}$ to a simple fraction.

Ans, ${ }^{\mathbf{3}}$.
4. Reduce $\frac{73}{131 \frac{2}{5}}$ to a simple fraction. Ans. $\frac{!}{8}$.

The following cases relate to fractions of different denominations. The next two cases are the reverse of each other.

CASE VIII.

To reduce a fraction from a lower to a higher denomination.

RULE.

I. Consider how many units of the given denomination make one of the next higher, and place 1 over that number forming a second fraction.
II. Proceed in the same manner from the second denomination to the third, and so on to the denomination desired.
III. Connect the several fractions thus formed by the word of, making a compound fraction, then reduce the compound fraction to a si.nple one by Case V.

EXAMPLES.

1. Reduce $\frac{5}{6}$ of a penny to the fraction of $£ 1$.

$$
\frac{5}{6} \text { of } \frac{1}{12} \text { of } \frac{1}{20}=\frac{5}{1440}=\frac{1}{84} \text { of } £ 1 \text {, Ans. }
$$

Here the given fraction is $\frac{5}{6}$ of a penny; but one penny is $\frac{1}{12}$ of a shilling, and one shilling is $\frac{1}{20}$ of a pound ; hence $\frac{5}{6}$ of a penny is equal to $\frac{5}{6}$ of $-\frac{1}{12}$ of $\frac{1}{20}$ of $a x=\frac{1}{2} \frac{1}{8}$. Therefore the reason of the rule is evident.
2. Reduce $\frac{3}{8}$ of a barleycom to the fraction of a yard. Ans. $\frac{3}{86}$ of a yd.
Operation. $\frac{3}{8}$ of $\frac{1}{3}$ of $\frac{1}{12}$ of $\frac{1}{8}=\frac{3}{8} \frac{3}{64}$.
Quesrions.-To reduce a fraction from a lower to a higher denomination, what is the first step? What is the second? The third? Are \ddagger of a $£$ and of t of a $£$ the zame, or different denominations ${ }^{9}$ One-finh of a \dot{E} and $\frac{\xi}{}$ of a shilling? $\frac{f}{}$ of a day and \ddagger of an hour? One-seventh of a week and \ddagger of a monsh? f of a toot and $\}$ of a rod? $\{$ of an inch and two-fifihe a yard?

Three barleycorns make an inch, we therefore first place 1 over 3; as 12 inches make a foot, we next place 1 over 12, and as 3 feet make a yard, we place 1 over 3.
3. Reduce $\frac{1}{2}$ of a farthing to the fraction of a shilling. Ans. ${ }_{9}^{\frac{1}{6}}$.
4. Reduce $\frac{8}{9}$ of an ounce Troy, to the fraction of a pound.
5. Reduce $\frac{\pi}{7}$ of a pound Avoirdupois, to the fraction of a cwt.

Ans. ${ }^{3} \frac{3}{9}$.
6. Reduce $\frac{1}{3}$ of a farthing to the fraction of a $\boldsymbol{£}$.

Ans. $\frac{\bar{x}^{-1}}{880}$.
7. Reduce $\frac{1}{2}$ of an ounce to the fraction of a ton. Ans. $7^{16} \overline{16} \mathrm{~T}$.
8. Reduce $\frac{187}{127}$ of a minute to the fraction of a day.

Ans. ${ }^{1828} 780$ day.

CASE IX.

To reduce a fraction from a higher to a lowe denomination.

RULE.

I. Consider how many units of the next lower denomination make one unit of the given denomination, and place 1 under the number forming a second fraction.
II. Proceed in the same manner with the denomination still lower, and so on to the denomination desired.
III. Connect the several fractions thus formed, making a compound fraction, which reduce to a simple one by Case V.
examples.

1. Reduce $\frac{1}{7}$ of a $£$ to the fraction of a penny.

Ans. $2 \frac{20}{7}$ d.
Operation. $\frac{1}{7}$ of $\frac{20}{1}$ of $\frac{12}{1}=\frac{240}{7} \mathrm{~d}$.

[^63] jer 3.
of a shilling. Ans. $\frac{1}{96}$. fraction of a
 to the fraction

Ans. ${ }^{3} \frac{3}{9}$. of a $£$.
Ans. $\frac{-1}{2880} \mathfrak{f}$. of a ton. ns. ${ }_{71}^{16} \overline{80} \mathrm{~T}$. on of a day.
$T_{1828}^{18} 7$.
lower deno-
e next lower ven denomi1 forming a
with the dete denomina-
thus formed, reduce to a
penny.
Ans. $\frac{240}{7}$ d. second? Third?

Here $\frac{1}{7}$ of a \boldsymbol{x} is $\frac{1}{7}$ of 20 shillings; but 1 shilling is equal to 12 pence, hence $\frac{1}{7}$ of a $\boldsymbol{x}=\frac{1}{7}$ of $\frac{20}{1}$ of $\frac{1}{1}=2=2 \frac{4}{7} 0$. The reason of the rule is therefore apparent.
2. Reduce $\frac{4}{7}$ cwt. to the fraction of a pound.

Ans. 4.4 lb .
3. Reduce $\bar{z}_{i}^{2} ;$ of a pound Troy, to the fraction of an ounce.

An's. $\frac{8}{8}$ oz.
4. Reduce $-{ }_{-5}^{-7}$ of a week to the fraction of a da

Ans. $\frac{4}{4}$. day.
5. Reduce $\bar{\sigma}_{0}^{3} \frac{3}{4}$ of a hogshead to the fraction of a ga!lon. . Ans. $\frac{3}{8}$ gal.
6. Reduce $\frac{5}{8}$ of a tun to the fraction of a gill.

$$
\text { Ans. } 403820 \text { gill. }
$$

7. Reduce T_{1584}^{1} of a day to the fraction of a minute.

Ans. $\frac{10}{11} \mathrm{~min}$.
8. Reduce $\overline{5760}$ of a furlong to the fraction of a foot. Ans. $\frac{7}{9} \mathrm{ft}$.

CASE X.

To find the value of a fraction in whole numbers of a lower denomination.

> rule.
I. Reduce the numerator to the next lower denomination and divide the result by the denominator.
II. Reduce the remainder, if there be one, to the denomination still less, and divido again by the denominator, and so proceed to the lowest denomination. The several quotients placed in order, will be the value of the fraction in the different denominations.

[^64]EXAMPLES.

1. What is the value of $\frac{2}{8}$ of a Operation.

We first reduce the numerator from 2
20
3) 40
the denomination of pounds to that of shillings. Dividing by the denominator gives 13s. and 1 over. Reducing this to pence and dividing as before gives 4 d .
13s . . 1 Remainder.
12
3)12

4d.
Ans. 13s. 4d.
2. What is the value of ${ }_{1}^{3}$ - of a day? Ans. 7 h .12 m .
3. Find the value of $\frac{7}{8}$ of an acre. Ans. 3R. 20P.
4. Find the value of 5_{5}^{-5} of a civt. Ans. 1 yr. 7 lbs .
5. What is the value of $\frac{5}{6}$ of a hogshead?

Ans. 52gals. 2qts.
6. What is the distance of ${ }_{10}^{0}$ of a mile ?

Ans. 7fur. 8 p.
7. Reduce $\frac{18}{2} \frac{8}{0}$ of an ell English to its proper value.

Ans. 1yd. Oqr. 3na.
8. Reduce $\frac{4}{7}$ of a mile to its proper quantity.

Ans. 4fur. 22rds. 4 yds. 2ft. 1in. $2 \frac{1}{7} \mathrm{bc}$.

CASE XI.

To reduce an integer to a fraction of a given denomination.

RULE.

Reduce the number to the lowest denomination mentioned in it; then if the reduction is to be

[^65]made still lower, picceed as in Case IX, but if to a higher denomination, proceed as in Case VIII.

EXAMPLES.

1. Reduce 4 ll . 2 qr s. to the fraction of a shilling.

$$
\text { Ans. } \frac{3}{8} .
$$ Operation. . . . We first reduce the given

$4 \mathrm{~d} .2 \mathrm{qrs}=18 \mathrm{qrs}$. \quad number to the lowest deThen 18 of $\frac{1}{4}$ of $-\frac{1}{1}=\frac{1}{18}=\frac{3}{8}$ (fle nomination mentioned in it, viz: qra. Then as the reduction is to be made to a higher denomination, we reduce as in Case VIII.
2. Reduce 2 feet 2 inches to the fraction of a yard. Ans. 13 yd .
3. What part of a hogshead is $3 \mathrm{c}_{\mathrm{i} t}$ s. 1 p t. ?

Ans. ${ }^{-\frac{1}{2} 2}$ hhid.
4. Reduce 13 hours 30 min. to the fraction of a day. Ans. $-\frac{9}{5}$ day.
5. Reduce 3ewt. 2qre. 141 bs , to the fiaction of a ton. Ans. $1_{18}^{2}=$ ton.
6. What part of a mile is 6 ft .7 in ? Ans. न3 ${ }^{7} 3^{\prime \prime}$ -
7. What part of a mile is 1 inch ?

Ans. 65% 合

ADDITION OF VULGAR FRACTIONS.

Addition of fractions teaches how to express the value of several fractions by a single fraction.

It is plain that fractions cannot be added so long as they have different units; for, $\frac{1}{2}$ of $\mathfrak{e} £$ and $\frac{1}{2}$ of a shilling neither make £1 nor 1 shilling.

Neither can we add parts of the same unit unless they are like parts, for $\frac{1}{8}$ of a $£$ and 4 of a $£$ neither make $\frac{3}{}$ of a $£$ nor $\frac{5}{4}$ of $\mathfrak{£} £$. But $\frac{1}{f}$ of a $£$ and \ddagger of a $£$ may be added, and make $\frac{3}{3}$ of a $£$.

[^66]We see therefore that before fractions can be added they must be first reduced to the same denomination ; and secondly, to a common denominator.

CASE I.

When the fractions are of the same denomination and have a common denominator.

RULE.

Add the numerators together, and place their sum over the common denominator; then reduce the fraction to its lowest terms, or to its equivalent mixed number.

EXAMPLES.

1. Add $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}$, and $\frac{5}{4}$ together. Ans. $\frac{11}{4}=2 \frac{3}{4}$. Operation. $1+2+3+5=11$. Hence $11=$ their sum.

It is plain that as all the parts are fourths their true sum will be expressed by the number of fourths; that is 11 fourths, which equal $2 \frac{3}{4}$.
2. Add $\frac{1}{5}, \frac{2}{5}$, and $\frac{4}{5}$ of a \boldsymbol{x} together. Ans. $\boldsymbol{x}_{\frac{7}{5}}=1 \frac{2}{5}$.
3. What is the sum of $\frac{1}{8}, \frac{3}{8}, \frac{5}{8}$ and $\frac{7}{8}$? Ans. $\frac{16}{8}=2$.
4. What is the sum of $\frac{10}{15},-\frac{1}{15},-\frac{7}{2}$ and $1 \frac{1}{5}$? Ans. $1 \frac{1}{15}$.
5. Add together, $-\frac{8}{7}, \frac{1}{1},-\frac{9}{7}, 1 \frac{1}{7}, \frac{21}{17}$ and $\frac{35}{17}$.

$$
\text { Result, } \frac{9}{1} \frac{8}{7}=51 \frac{2}{7}
$$

CASE II.

When the fractions are of the same denomination, but have different denominators.

RULE.
Reduce mixed numbers to improper fractions, by Case II, page 148 ; compound fractions to simple ones by Case V, page 150 ; and all the frac-

[^67]tions to a common denominator, by Case VI, page 152. Then add them as in the last article.
examples.

1. Add $\frac{2}{8}, \frac{4}{8}$, and $\frac{2}{5}$ together. Operation.
$6 \times 3 \times 5=90$, 1st numerator.
$4 \times 2 \times 5=40$, 2nd numerator.
$2 \times 3 \times 2=12$, 3rd numerator.
$2 \times 3 \times 5=30$, the denominator.

Ans. $\frac{142}{30}=4 \frac{11}{15}$. After reducing to a common denominator, the new fractions are $\frac{90}{8}, \frac{4}{8} \frac{0}{0}$, $\frac{12}{30}=\frac{142}{30}$, which, reduced to its lowest terms, becomes $4 \frac{1}{1}$.
2. Add $\frac{5}{8}$, $\frac{6}{8}$ and $\frac{8}{4}$ together.

Ans. 2-2 ${ }^{2}$.
3. Add $4 \frac{3}{8}$ and 96 together.

Ans. 14.
4. Find the lowest common denominator, and add i_{1}^{-6}, $\frac{3}{5}, \frac{4}{8}$ and $3^{6}{ }^{6}$.

Ans. $1-\frac{26}{29} 0^{-}$
Note.-When there are mixed numbers, instead of reducing them to improper fractions; it is better to add the whole numbers and fractional parts separately, and then add their sums.
5. Add $19 \frac{1}{7}, 6 \frac{2}{8}$, and $4 \frac{4}{5}$ together. Ans. $30-\frac{4}{1} \frac{4}{15}$. Operation. Operat'n. fract'l p^{\prime} ts. $19+6+4=29$ whole numbers. $\frac{1}{7}+2+\frac{4}{8}=\frac{109}{10} \frac{9}{5}=1 \frac{64}{106}$.

6. Add $12 \frac{1}{2}, 3 \frac{2}{3}$, and $4 \frac{3}{4}$ together.

Ans. $201 \frac{1}{2}$.
7. Add $-9{ }^{-9}, \frac{5}{7}, 4 \frac{3}{4}$, and $\frac{3}{4}$ of $\frac{\pi}{9}$ together.
8. Add together $\frac{1}{8}$ of 95 , and 7 of 14. Ans. $6 \frac{32}{48 \frac{2}{2}}$.
9. Add $3 \frac{1}{4}, 6 \frac{5}{7}, 8-\frac{9}{5}$, and $65 \frac{9}{8}$.

Ans. $43 \frac{1}{12}$.
10. Add $\frac{3}{8}$ of $\frac{5}{6}$ of $\frac{3}{5}$ apples, $\frac{2}{7}$ of $\frac{1}{2}$ of $2 \frac{1}{2}$ apples, $\frac{5}{8}$ of $\frac{8}{3}$ of $7 \frac{1}{2}$ apples, and $\frac{2}{3}$ of $\frac{1}{1}$ of $3 \frac{3}{5}$ apples together.

Result, $5 \frac{3}{7}$:

CASE III.

When fractions are of different denominations.

[^68]
RULE.

Reduce the fractions to the same denomination.
Then reduce them to a common denominator and add as in Case I.

Examples.

1. Add of a pound Troy, to $\frac{5}{6}$ of an ounce.

Ans. $5{ }_{6}^{2} \mathrm{oz}$.

Operation.

$$
\frac{3}{8} \text { of } \frac{12}{12}=\frac{38}{8}
$$

Then $\frac{20}{8}+\frac{5}{8}=\frac{210}{18}+\frac{4}{4} \frac{8}{8}=\frac{250}{18}$ ${ }_{256}^{28}=5 \frac{5}{6}$ ounces.

In this example we first reduce $\frac{3}{3}$ of a pound to the fraction of an ounce, and find it is $\frac{36}{8}$ of an oz. Then $\frac{3{ }^{8}}{8}$ and $\frac{5}{6}$ reduced to a common denominator are $\frac{218}{48}$ and $\frac{40}{48}$, which added together, make $\frac{2559}{49}$, and reduced to a mixed number equal 5% ounces.

Or the $\frac{1}{8}$ of an ounce might have been reduced to the fraction of a pound, thus, $\frac{5}{6}$ of $\frac{1}{1}=-\frac{5}{7}+\frac{3}{8}=\frac{28}{72}=\frac{32}{72}$ of a pound, which being reduced by Case \mathbf{X}, equals $5_{6}^{\circ}{ }_{6}^{\circ}$ oz.
2. Add $\frac{2}{5}$ of a day to $\frac{5}{6}$ of an hour.

Result, 10 hrs .26 min.
3. Add $\frac{7}{9}$ of a ton, to $\frac{-9}{10}$ of a cwt.

Result, 16 cwt . 1 qr . $23-\frac{1}{4} 5 \mathrm{lbs}$.
4. Add $\frac{5}{9}$ of a week, $\frac{7_{7}^{7}}{-1}$ of a day, and $\frac{0}{7}$ of an hour together.

Result, 4 days, 14 hrs . $59 \frac{3}{7} \mathrm{~min}$.
5. What is the sum of $\frac{2}{7}$ of $£ 15, £^{\frac{3}{7}} \frac{3}{3} \frac{3}{3}$ of $\frac{\pi}{7}$ of $\frac{3}{5}$ of a $£$, and $\frac{2}{8}$ of $\frac{3}{7}$ of a shilling? Ans. $£ 7$ 17s. $5 \frac{1}{}$ d.
6. Required the sum of $\frac{9}{4}$ of $\frac{5}{8}$ of $3 \frac{1}{2}$ tons, $\frac{2}{3}$ of $-9,9$ of $2 \frac{1}{2}$ tons, and $\frac{8}{8}$ of $\mathrm{T}_{10}^{7}-$ of $5 \frac{3}{4} \mathrm{cwt}$. Ans. 3 T. 17 cwt. $11{ }_{5}^{2} \mathrm{lb}$.

Noтe.-The value of each fraction may be found separately, and their severnl values then added.
7. Add $\frac{3}{5}$ of a year, $\frac{1}{2}$ of a week, and $\frac{1}{2}$ of a day; $\frac{3}{8}$ of a year $=\frac{3}{8}$ of ${ }^{3 a}{ }^{6}$ days $=219$ daye,
$\begin{array}{r}\text { of a week }=t \text { of } 7 \text { days }= \\ 1 \text { of a day }= \\ \text { Ans. days, } 8 \text { hrs. } \\ \text { Shrs. }\end{array}$
8. Add $\frac{3}{4}$ of a cwt., $\frac{42}{2}$ of a lb. 13 oz . and $\frac{1}{2}$ of a cwt. 6 lbs . together. Ans. 1 cw . 1 qr . 27 lbs .13 zz.
9. Add $\frac{1}{4}$ of a week, $\frac{1}{3}$ of a day, $\frac{1}{2}$ of an hour, and ${ }^{13}$ of a minute together. Ans. 2 days, $2 \mathrm{hrs} .30^{\prime} 45^{\prime \prime}$.
10. Add $\frac{2}{3}$ of a yard, $\frac{3}{4}$ of a foot, and $\frac{7}{8}$ of a mile together.

Ans. 1540yds. 2ft. 9 in .

SUBTRACTION OF VULGAR FRACTIONS.

We have seen that fractions cannot be added until they are reduced to the same denomination and to a common denominator. The same is necessary before they can be subtracted.

Subtraction of Vulgar Fractions teaches how to take a less fraction from a greater.

CASE I.

When the fractions are of the same denomination, and have a common denominator.

RULE.

Subtract the less numerator from the greater and place their difference over the common denominator.

EXAMPLES.

1. What is the difference between $\frac{7}{9}$ and $\frac{4}{9}$?

Here $7-4=3$, hence, $\frac{3}{9}=$ the difference.
Ans. $\frac{3}{9}$.
2. Subtract $\frac{15}{28}$ from $\frac{24}{28}$. Ans. $\frac{7}{39}$.
3. From $\frac{23}{3} \frac{30}{78}$ take $\frac{1}{3} \frac{48}{78}$.
4. From $\frac{4}{8} \frac{9}{7} 78 \frac{8}{8}$ take $\frac{10}{9} \frac{0}{7} \frac{9}{6 B}$.

5. From $\frac{183}{4 \frac{1}{2} 8} 5$ take $\frac{1}{4} \frac{2}{2} \frac{3}{5} 4$.

Questions --Can one-third of an hour be subtracted from two. thirds of a day without reduction? Can one. fourth of a day be subtracted from one-sixth of a day? Before aubtracting fractions what reductions are necessary? What does subtraction of frnctions teach?

CASE II.

When fractions are of the same denomination, but have different denominators.

RULE.

Reduce mixed numbers to improper fractions, compound fractions to simple ones, and all the fractions to a common denominator; then subtract as in case I.

EXAMPLES.

1. What is the difference between $\frac{4}{5}$ and $\frac{3}{4}$? Ans. $\bar{z}_{6}^{-1} \cdot$ $\frac{4}{2}=\frac{10}{2} \frac{0}{20}$ and $\frac{3}{4}=\frac{1}{2} 5$; therefore $\frac{16}{20}-\frac{15}{20}=\frac{1}{2}$. difference.
2. What is the difference between ${ }^{-9} \frac{9}{4}$ and $\frac{17}{87}$?

Ans. 3 \% ${ }^{5}$.
3. From $14 \frac{1}{4}$ take $\frac{2}{3}$ of 19

Ans. 1-2.
4. From $\frac{37}{80}$ take $\frac{111}{2+1}$.
5. From 14 take $\frac{13}{1}$. Remainder 0. Rem. 13-9.-. Ans. $\frac{1}{6}$.
6. From $\frac{3}{4}$ take $\frac{2}{3}$ of $\frac{7}{8}$.
7. What is the difference between $\frac{2}{3}$ of $\frac{4}{5}$ of 20 , and $\frac{1}{4}$ of $\frac{2}{8}$ of $12 \frac{1}{2}$? Ans. $8 \frac{1}{6}$.
8. What is the difference between $£ 2 \frac{1}{2}$ and $£_{-\frac{3}{5}}^{5}$?

Ans. £2 6s.
9. From $\frac{1}{7}$ of $\frac{3}{8}$ of 7 , take $\frac{3}{5}$ of $\frac{5}{4}$. Ans. 3^{1}-. 10. From $37 \frac{1}{15}$, take $3 \frac{1}{7}$ of $\frac{1}{3}$.

Ans. 367-5:

CASE III.

When the fractions are of different denominations.
RULE.
Reduce the fractions to the same denomination; then to a common denominator, and add as in case I.

[^69]
EXAMPLES.

1. What is the difference between $\frac{1}{2}$ of a \boldsymbol{E} and $\frac{1}{3}$ of a shilling?

Ans. 9s. 8d.
$\frac{1}{3}$ of a shilling $=\frac{1}{8}$ of $-\frac{1}{2}=\frac{1}{60}$ of a $£$.
$\frac{1}{2}$ of a $\boldsymbol{E}=\frac{30}{60}-\frac{1}{60}=\frac{29}{6.0}$ of a $\boldsymbol{£}=9 \mathrm{~s}$. 8 d . difference.
2. From $\frac{3}{5}$ of an oz , take $\frac{7}{8}$ of a pwt.

Ans. 11 pwt. 3grs.
3. Subtract. $-{ }_{-1}^{7}-$ of a lb. from $\frac{1}{2}$ of a cwt.

Ans. 1qr. 27lbs. 6oz. 10- ${ }_{-1 \%}^{2}$ dr.
4. From $3 \frac{2}{3}$ weeks take $\frac{1}{7}$ of a day, and $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{3}{4}$ of an hour. Ans. 3w. 4da. 12hr. 19m. $17{ }_{7}$ sec.
5. From $1 \frac{3}{4}$ of a lb. troy wt. take $\frac{1}{6}$ of an ounce.

Ans. 1lb. 8nz. 16pwt. 16gr.
6. What is the difference between $-_{15}^{4}$ of a hogshead and $\frac{T_{1}^{6}}{}$ of a quart? Ans. 16 gals ? 2 qts. 1 pt. $\frac{3}{9} 5_{5}^{7}$ gills.
7. What is the difference between $\frac{5}{3}$ of 7_{18}^{8} of $3 \frac{1}{4} \mathrm{lbs}$. Troy wt. and ${ }_{1}^{-7}{ }_{6}^{7}$ of $\frac{4}{9}$ of $3 \frac{31}{3} 1 \mathrm{lbs}$? Ans. 3oz. 13 pwt. 14_{3}^{7} grs.
8. From the sum of $\frac{5}{9}$ of 7 miles, $\frac{2}{3}$ of $\frac{7}{8}$ of $2 \frac{1}{4}$ miles, and $\frac{5}{6}$ of $-\frac{3}{1}$ - of $3 \frac{1}{2}$ miles, take the sum of $\frac{5}{7}$ of $\frac{3}{5}$ of $1 \frac{3}{4}$ miles, $\frac{8}{9}$ of $-_{1}^{2}-$ of $2 \frac{1}{5}$ miles, and \prod_{1}^{7} of $\frac{5}{7}$ of $2 \frac{3}{4}$ miles.

Result, 2m. 2fur. $21{ }_{4}^{1}{ }_{5}^{1}$ rods.

MULTIPLICATION OF VULGAR FRAC. TIONS.

If 1 apple cost $\frac{1}{3}$ of a penny what will 2 apples cost ? 3 apples? 5 apples? 7 apples ? 8 apples? 9 apples?

Multiply the fraction T_{i}^{4} by 4.

$$
-\frac{4}{12} \times 4=\frac{16}{2}=\frac{4}{3}=1 \frac{1}{3} \text { Ans. }
$$

Or by dividing the denominator by 4 we have $i \frac{4}{2} \times 4=$ 4) $\overline{12}=\frac{4}{3}=1 \frac{1}{1}$ Ans.

Multiplying a fraction by a whole number is increusing the value of the fraction as many times as there are units in the multiplier. This we bave seen in the above
example, may be done, by either multiplying the numerator, or dividing the denominator.

$$
\begin{aligned}
& \text { Thus } \frac{3}{8} \times 8=\frac{24}{8}=3 . \\
& \text { Or } 8, \overline{8}=\frac{3}{1}=3 .
\end{aligned}
$$

Hence the following general principle:
If the denominator remains unchanged, multiplying the numerator of a fraction by any number is multiplying the fraction by that number.

Or, If the numerator remains unchanged, dividing the denominator by any number, is multiplying the fraction by that number.

For, the less the denominator the greater is the size of the parts into which a unit is divided, as $\frac{1}{2}$ is more than $\frac{1}{4}$; and the greater the numerator, the greater the number of parts expressed by the fraction, as $\frac{3}{4}$ is greater than $\frac{1}{4}$.

Hence,

CASE I.

To multiply a fraction by a whole number, we have the following

RULE.

Multiply the numerator, or divide the denominator by the whole number.
examples.

1. Multiply $\frac{-37}{14}{ }^{7}$ by 12. Ans. $3-\frac{1}{1 \%}$.
Here,

$$
\text { 12) } \frac{37}{144}=\frac{37}{12}=3_{12}^{\prime}
$$

$$
\text { Or } \frac{37}{144} \times 12=\frac{444}{144}=3-\frac{1}{2}
$$

2. Multiply $\frac{47}{48}$ by 7 .

Ans. $6 \frac{5}{7}$.

[^70]3. Multiply $\frac{176}{47}$ by 9 .
4. Multiply ${ }_{102}^{15}$ by 5 .
5. Multiply $\frac{359}{145}$ by 49 .

Ans. ${ }^{1 \frac{5}{49}} \frac{19}{49}$.
Ans. $42 \frac{1}{3}$.
Ans. $124 \frac{101}{14} \frac{1}{5}$.

CASE II.

To multiply one fraction by another.
You have already learned that multiplying by a fraction is taking a part of the multiplicand as many times as there are like parts of a unit in the multiplier.

For example to multiply 8 by $\frac{3}{4}$ is to take $\frac{3}{4}$ of 8 which is 6 . Hence, when the multiplier is less than 1 , we do not take the whole of the multiplicand, but only such a part of it as the fraction is of unity. Thus, if the multiplier is one half of unity, the product will be one half of the multiplicand; if the multiplier be $\frac{1}{4}$ of unity, the product will be $\frac{1}{4}$ of the multiplicand.

Hence, to multiply by a proper fraction does not imply increase, as in multiplication of whole numbers.

For example. Muitiply $\frac{3}{4}$ by $\frac{2}{3}$.
Here $\frac{3}{4}$ is to be taken $\frac{2}{3}$ times, that is $\frac{3}{4}$ is to be multiplied by 2 and the product divided by 3. This result is obtained by multiplying the numerator by the numerator and the denominator by the denominator.

For the numerator $3 \times 2=6$, and the denominator 4×3 $=12$, thus, $-\frac{6}{-6}$, and as twelfths are three times less than fourths, it follows that the fraction has been divided by 3 as well as multiplied by 2 .

Hence we have the following
Quastions,-Why does dividing the denominator increase the value of a fraction? Why does multiplying the numerator increase the fraction? How do we multiply a fraction by a whole number? What is multiplying by a fraction? When the multiplier is less than 1 what part of the multiplicand do we take?

If the multiplier is $\frac{1}{3}$ what part of the multiplisand will the product be? If it is \ddagger ? Does multiplying by a proper fraction imply increase? Does multiplying the denominator increase or diminish the value of the fraction? Why?

RULE.

Reduce mixed numbers to improper fractions, and compound fractions to simple ones; then multiply the numerators together for a numerator. and the denominators together for a denominator.

EXAMPLES.

1. Multiply $\frac{1}{6}$ by $\frac{3}{7}$. Ans. ${ }^{-3}{ }^{3}$.
Here $\frac{1}{5} \times 3=3$ It will be seen that $\frac{1}{35}$ is $\overline{5} \times 7=\overline{35} \quad \overline{35}$. only $\frac{1}{7}$ of $\frac{1}{5}$, and $\frac{1}{5}$ multiplied by $\frac{3}{7}$ is not the whole of one fifth, but only 37 ths of it. Ans. $\frac{21}{24}=\frac{7}{8}$.
2. Multiply $5 \frac{1}{4}$ by $\frac{1}{6}$. Ans. ${ }^{\frac{5}{3}}$.
3. Multiply $\frac{1}{2}$ of $\frac{2}{3}$, by $\frac{2}{3}$ of $\frac{8}{4}$ of $\frac{5}{1}$.

This may be somewhat shortened by cancelling; thus, $\frac{1}{21}$ of $\frac{21}{3}=\frac{1}{3} \times \frac{14}{31}$ of $\frac{3^{1}}{4}=\frac{2}{4}$ of $\frac{5}{6}=\frac{1}{7} \frac{n}{2}=5^{5}-$. Ans.
4. Multiry $\frac{1}{3}$ of $\frac{7}{8}$ of $\frac{1}{12}$, by $\frac{6}{7}$ of $5 \frac{3}{3}$. Result, $\frac{2009}{510}$.
5. Required the product of 6 by $\frac{2}{3}$ of 5 . Ans. 20.
6. What is the product of $\frac{2}{3}$ of $\frac{3}{5}$ by $\frac{5}{8}$ of $3 \frac{2}{7}$?

Ans. $\frac{23}{8}$.
7. Required the product of $7 \frac{5}{9}, 2 \frac{1}{4}, 3 \frac{1}{2}$, and $\frac{6}{7}$ of $\frac{13}{17}$?

Ans. 39.
S. What is the product of $5, \frac{2}{3}, \frac{7}{7}$ of $\frac{3}{5}$ and $4 \frac{1}{6}$?

Ans. 2-8.
9. Required the product of $4 \frac{1}{2}, \frac{3}{4}$ of $\frac{1}{7}$ and $18 \frac{4}{5}$?

Ans. 9-9 ${ }^{\frac{9}{40}}$.
10. Required the product of $14, \frac{5}{6}, \frac{4}{5}$ of 9 and $6 \frac{3}{7}$?

Ans. 540.
11. What is the continued product of $6 \frac{1}{8}, 2 \frac{2}{3}, \frac{4}{7}$ of $\frac{31}{24}$ and $\frac{3}{9 \frac{4}{5}}$

Ans. ${ }_{2}^{5} \frac{5}{2}$.

DIVISION OF VULGAR FRACTIONS.

Suppose there are $\frac{10}{4}$ of apples which we wish to divide equally among 4 children; we should take the parts ex-

[^71]pressed by the numerator 16 , and divide them again into. the fraction would be $\frac{8}{4}$.

Again,
If we have $\frac{3}{4}$ of an apple and wish to divide it among 4 children, we must divide the parts again, in older to share it equally; let each fourth be divided into 3 equal part:, each part will be $-\frac{1}{12}$ of an apple and each one's share of the whole will be $-\frac{3}{1-2}$ of an apple.

From these examples it appears that there are two ways of dividing a fraction by a whole number, viz. To divide the numerator, or, if this cannot conveniently be done, To multiply the denominator.
$\frac{3)}{6}=\frac{1}{6}$. Or $\frac{3}{6 \times 3}=\frac{3}{18}=\frac{1}{6}$ Here it is plain that divided by 3 , or the denominator muliplied by 3 , the result is the same.

From what has been shown we have the following general principle; viz.

If the denominator remain unchanged, dividing the numerator by any number, is dividing the fraction by thai number.

Or, If the numerator remain unchanged, multiplying the denominator by any number, is dividing the fraction by that number.

C.ASE I.

To divide a fraction by a whole number. RUle.
Divide the numerator, or multiply the denominator, by the whole number.

[^72]EXAMPLES.

1. Divide $\frac{3}{4}$ by 2.

Ans. ${ }^{3}$.
2. Divide $\frac{4}{3}$ by 2.
3. Divide $\frac{28}{15}$ by 2, by 7 and by 14. Ans. $\frac{4}{15}, \frac{-1}{15}, \frac{-2}{15}$.
4. Divide $\frac{15}{37}$ by 9 .
5. Divide $\frac{405}{19}$ by 15 .
6. Divide $\frac{27}{3755} 5$ by 19.
7. Divide $\frac{-379}{1267}$ by 15.

Ans. $3_{3}^{13^{8}}{ }_{5}={ }_{3}^{2}{ }^{2}$. Ans. $\frac{4}{2} 8 \frac{5}{8}=\frac{27}{19}$. Ans ${ }_{3}{ }^{14555}$. Ans. $\frac{3795}{1905}$.

CASE II.
To divide one fraction by another.
EXAMPLES.

1. Divide $\frac{8}{26}$ by $\frac{4}{5}$.

1st Operation. If the divisor were 4 the quotient $4=4 \times 1 \quad$ would be $\frac{-8}{810}$. But since the divisor $\overline{5} \quad \overline{5}$ $-{ }^{2}-4=4=-8$ $\frac{8}{80} \times 5=\frac{40}{80}=\frac{1}{2}$ is only $\frac{1}{5}$ of 4 , the true quotient must be 5 times $\frac{8}{8}$, for the fifth of a num. ber will be contained in the dividend 5 times more than the number itself. In this operation we have actually multiplied the numerator of the dividend by 5 and the denominator by 4 ; that is, we have inverted the terms of the divisor and multiplied the fractions together. 2nd Operation. $\frac{8}{20} \div \frac{4}{5}=\frac{4) 8}{5)} 20=\frac{2}{4}=\frac{1}{2}$ Since multiplying the denominator by 4 is the same as dividing the numerator, and multiplying the numerator by 5 the same as dividing the denominator, we may, if we please, divide 8 by 4 . and 20 by 5 .

Questions.-How do we divide one fraction by another? Is multiplying the denominator the same as dividing the numeras tor? 1s multiplying the numerator the same as dividing the denominator? If then we divide the numerator by the numerator and the denominator by the denonunator, or if $w \in$ invert the divisor and multiply the fractions together, will the result be the same?

Hence for division of one fraction by another, we have the following

rule.

Prepare the fractions as in multiplication; then divide the numerater by the numerator, and the denominator by the denominator, if they will exactly divide. If they will not, then invert the terms of the divisor and proceed as in multiplication.

examples.

1. Divide $\frac{15}{4} \frac{5}{8}$ by $\frac{5}{6}$. 1st Operation.

Here we divide the numerator by the 5) $15=3$ Ans. numerator, and the denominator by the $\overline{6) 48}=\frac{8}{8}$ Ans.
2nd Operation. $\frac{15}{48} \div \frac{5}{6}$ is equal to $\frac{15}{18} \times \frac{6}{6}=\frac{-90}{410}=\frac{3}{3}$ Ans.
2. Divide $\frac{1}{2}$ by $\frac{1}{2}$.
3. Divide $\frac{1}{2}$ by $\frac{1}{4}$.
4. Divide $\frac{3}{4}$ by $\frac{1}{4}$.
b. Divide $2 \frac{1}{4}$ by $1 \frac{1}{2}$.
6. Divide $10 \frac{3}{8}$ by $2 \frac{1}{8}$.
7. Divide $16 \frac{1}{2}$ of $\frac{1}{8}$ by $4 \frac{1}{7}$.
8. Divide $\frac{1}{2}$ of $\frac{2}{3}$ by $\frac{2}{3}$ of $\frac{3}{4}$.
9. Divide 5 by - 7_{0}^{7}.
10. Divide $371 \frac{1}{2}$ by $1-\frac{1}{4}$.
11. Divide $\frac{5}{6}$ of 50 by $4 \frac{1}{3}$.
12. Divide $\frac{1}{5}$ of 19 by $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{4}{5}$.
13. Divide 28_{4}^{3} by $2 \stackrel{4}{3}$.
14. Divide $£ 259$ equally among 15 persons, and what is the share of each ?
15. Divide $\frac{8}{6}$ of $\frac{5}{7}$ of $4 \frac{3}{4}$, by $\frac{2}{3}$ of $\frac{4}{5}$ of $2 \frac{5}{7}$. Ans. $2 \frac{1}{6}$.

GENERAL REVIEW.

1. A fraction is the expression of one or mo; parts of a unit.
2. The denominator of a fraction shows into how many equal parts a unit is divided, and the numerator shows how many of the parts are taken in the fraction.
3. The value of every fraction is equal to the quotient of the numerutor divided by the denominator.
4. When the numerator is less than the denominator, the value of the fraction is less than 1.
5. When the numerator is equal to the denominator, the value of the fraction is equa! to 1.
6. When the numerator is greater than the denominaior, the value of the fraction is greater than 1.
7. If the denominator romains unchanged, multiplying the numerator by any number is nuitiplying the fraction by that number, and dividing the numerator is dividing the fraction.
8. If the nuinerator remains unchanged, multiplying the denominator by any number is dividing the fraction by that number, and diciding the denominator is multiplying the fraction.
9. Hence it follows, that dividing the numerator by any number, has the came effect on the value of the fraction, as multiplying the dencminutor, and multiplying the numerator: has the same ellect as dividing the denominator.
10. It is also evident that if the numerator and denominator be both multiplied, or both divided by the same number, the value of the fraction will ramin the same.

EXERCISES IN THE FOUR JRECEDIMG RULES.

1. What is the sum of $26 \frac{2}{3}, 18 \frac{7}{3}, 19 \frac{3}{5}, 13 \frac{1}{4}$ and 112 ? Ans. $93_{8}^{\frac{1}{0} v}$.
2. Bought $\frac{1}{2}$ of $3 \frac{1}{2}$ of 5 cwt. of sugar at one time; at

[^73]another，$\frac{1}{3}$ of $5 \frac{1}{8}$ of $6 \mathrm{c} w \mathrm{v}$ ．；at another，$\frac{1}{5}$ of $\frac{6}{7}$ of 8 cwt ； how much did I buy？．．Ans． $20 \frac{331}{421}$ ．

3．What is the value of $\frac{4}{7}$ of a ton，and $-\frac{9}{8}$ of a cwt．？ Ans．12cwt．1qr． $81 \mathrm{lbs} .12_{12}^{8}{ }^{8} \mathrm{oz}$ ．
4．Bought 3 pieces of cloth ；the first contained $\frac{1}{2}$ of 3 of $\frac{8}{2}$ of $\frac{2}{6}$ yards；the second $\frac{1}{4}$ of $\frac{4}{5}$ of 5 ；and the third $\frac{1}{6}$ of $\frac{3}{3}$ of $\frac{1}{2}$ ；what did they all contain？

Ans．2yds． $2 \mathrm{qrs} .1 \frac{1}{\mathrm{~s}}$ na．
1．From $\frac{2}{8}$ of an ounce take $\frac{7}{8}$ of a pwt．
Ans．6pwt．15gr．
2．Take $\frac{1}{7}$ of a day and $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{3}{4}$ of an hour from 3^{3} weeks．Ans．3wk．4da．12hr．19m．171 $\frac{1}{7} \mathrm{sec}$ ．

3．From $1 \frac{1}{2}$ of a $£$ ，take $\frac{3}{4}$ of a shilling．
Ans．£1．9s．3d．
4．One man bought 1 of $4 \frac{1}{2}$ cwt．of iron，another 1 of

$$
9 \quad \overline{4!}
$$

1．Multiply $\frac{4}{5}$ of a bushel by $\frac{2}{3}$ of 7．Ans． $3 \frac{1}{15}$ bu．
2．If I own $\frac{6}{7}$ of a ship，and sell $\frac{1}{3}$ of $\frac{1}{5}$ of my share， what part is it of the whole？Ans．$\frac{2}{6}$ ．

3．How many miles are $-{ }^{-9}$ of 7 miles，multiplied by $\frac{1}{1}$ of $87-3$ ？

Aus． $4.03 \frac{1}{5}$ miles．
4．What will be the cost of $17 \frac{1}{2}$ yards of cambric at $2 \frac{1}{2}$ shillings per yard？

Ans．£2 3s．9d．
1．If $\frac{4}{8}$ of a yard of cloth cost 3s．what is the price per yard？

Ans． $5 \frac{1}{4} \mathrm{~s}$ ．
2．Paid 666_{3}^{2} ןence for marbles at 6d．a piece ；how many did I buy？

Ans．1111．
3．In 81 weeks a family consumes 165 Ibs，of butter；

4．If 50 bushels of wheat cost 517^{3} ，what is it per bushel？

Ans．7s．Od． $1 \frac{23}{23}$ qras．
Repeat the 8 th．The 9 hh．The 10 th ．

DECIMAL FRACTIONS.

The division of the unit into tenths, hundredths, thousandths, \&c. forms a system of numbers called Decimal Fractions, (from the Latin word decem, which signifies ten,) because they increase and decrease in a tenfold proportion, in the same manner as whole numbers.

The denominator of a decimal fraction is never written; the numerator is written with a point prefixed to it, and the denominator is understood to be 1 , with as many ciphers annexed as there are figures in the numerator.Thus: , 5 tenths is the same as $-\frac{5}{1-5}$, and , 75 hundredths is the same as $-\frac{25}{10}$, and , 316 thousandths is the same an $\frac{318}{10} 5$, \&c.

When a whole number and a decimal are written toge ther, the decimal point is placed between them. Thus:

Decimals decrease in a tenfold proportion, counting from the left to the right. Thus: 5 is only one tenth the value it would express in the place of units, b_{j} taking away the decimal point ; and , 05 is only one tenth as much as, 5 . So it is plain that they diminish in a tenfold proportion an they recede from the place of unit:

Ciphers placed on the right hand of deci zal figures do. not alter the value of the decimal, because th, figures still remain unchanged in their distance from the unit's place. For instance ; ,5, ,50, and ,500 are of equal value-they are each equal to fiec-fonths. But every cipher that is placed on the left of a decimal renders its value ten time smaller, by removing the figures one place further from the units place. Thus: if we prefix one eipher to, 5 it boeomes, 05 hundredths; if we prefix two ciphers, it bocomes, 005 thousandils, \&e.

[^74]DECIMAL FRACTIONS.
DECIMAL NUMERATION TABLE.

Decimal fractions are numerated from the left hand to the right, 'eginning with the tenths, hundredths, \&c., as in the above table.

EXERCISES.

Write upon the black board or slate, fifteen, and threetenths. Eighteen, and seventy-five hundreilis. Five, and five thousandths. One, and one millionit. Five, and five tenths. Seventy-five, and nine-tentis.

ADDITION OF DECIMALS.

RULE.

Write the numbers under each other, tenths under tenths, hundredths under hundredths, \&.c., then add as in whole numbers, setting the decimals in the sum directly under those in the numbers te be added.

[^75]
EXAMPLES.

1. What is the sum of $37,04,704,3$ and, 0376 ! Operation.

37,04
704,3
,0376

In this example we place those of the same value under each other, tenths under tenths, \&c., then add as in whole numbers.

Ans. 741,3776
2. Add $4,035,763,196,445,3741$ and 91,3754 together. Ans. 1303,9805.
3. Add $72,5+32,071+2,1574+371,4+2,75$.

> Ans. 480,8784.
4. Add ,7509+, $0074+, 69+, 8408+, 6109$. Ans. 2,9.
5. To 9,9999999 add one millionth part of a unit, and the sum will be 10 .
6. What is the sum of one tenth, one hundredth, and one thousandth.

Ans. , 111 .
7. What is the sum of 4 , and 6 ten thousandths?

Ans. 4,0006.
8. Find the sum of T'iventy-five hundredths. Three huncred and sixty-five thousandths. Six-tenths and nine millionths. Ans. 1,215009.

SUBTRACTION OF DECIMALS.

RULE.
Place the numbers according to their value, then subtract as in whole numbers, and point off the decimals as in Addition.

EXAMPLES.

1. From $837,64!2$ take 579,358 .

Ans. 25४,284.

[^76](2)

From 27,15
Take 1,51679
Differ. 25,63321
Proof, 27,15000
5. From 480 take 245,0075.
6. From 236 take, 549 .
7. From , 145 take, 09684 .
8. From one take one millionth.
9. From one hundred take one tenth.

Ans. 234,9925.
Ans. 235,451. Ans. ,04816. Ans. ,999999.
0. t. Ans. 99,9.
10. From ninc-tenths take 75 hundredths. Ans: , 15.

MULTIPLICATION OF DECIMALS.

RULE.

Multiply as in simple numbers, and point off in the product from the right hand as many figures for decimals as are cqual to the number of decimals in the multiplicand and multiplier ; and if there be not so many in the product, supply the deficiency by prefixing ciphers.

EXAMPrES.

1. Muikiply 3,024 by 2,23 .

Operation. 3,024 2,23

6,74352 Product. (2)

Multiply 365,491
by ,001
Ans. ,365491

In this example there are three decimal figures in the multiplicand, and tivo in the multiplier, making five in both; we therefore point off five in the product, as the rule directs.
(3)

Multiply 496,0135
by 1,496
Ans. 742,0361960

Quantuns. - How do we muitiply decimals? How many fgures should be pointed off in the product? If there be not at many what must be done?
4. Multiply 25,238 by 12,17 .
5. Multiply 2461 by ,0529.
6. Multiply 7853 by $\mathbf{3 ; 5}$.
7. Muitiply ,007853 by ,035.
8. INultiply ,004 by ,004.
9. What is the product of five-tenths by five-tenths? Ans. ,25.
10. What is the product of five-tenths by five thousandths?

Ans. ,0025.
11. MIultiply one hundred and forty-seven millionths, by one millionth.

Ans. ,000000000147.
To multiply by $10,100,1000, \& c$. , remove the separating point so many places to the right hand as the nultipior has siphers. For example ; , 425 multiplied by 10 maics 4.25 , and $, 425 \times 100=42,5$, and, $425 \times 1000=425$.

DIVISION OF DECIMALS.

RULE.

Divide as in simple numbers; and in the quotient point off from the right hand so many places for decimals as the decimal places in the dividend exceed those in the divisor. That is, make the decimal places in the divisor and quotient counted together, equal to the decimal places in the dividend; and if there are not s many, supply the deficiency by prefixing ciphers.

EXAMPLES.

1. Divide 1,38483 by 6021 .
[^77]Operation. 60,21) 1,38483(23 12042

18063 18063

There are 5 decimal places in the dividend, and 2 in the divisor; there must therefore be 3 places in the quotient. Hence, one 0 must be prefixed to the 23 , and the decimal point placed before it.

Ans. ,023.
2. Divide 2,3421 by 2,11 .
3. Divide 12,82561 by 3,01 .
4. Divide 77,4114 by 9,51 .
5. Divide 206,79 by 2,46 .
6. Divide 5,8674 by 127 .
7. Divide 2033,100 by ,324.
8. Divide $8,24,70$ by , i © 2 .

Ans. 1,11.
Ans. 4,261.
Ans. 8,14.
Ans. 84,06.
Ans. ,0462.
Ans. 6275.
Ans. 4123.5.

To divide a decimal number by $10,100,1000$, Scc. remove the decimal point as many places to the left as there are ciphers in the divisor; and if there be not so many, supply the deficiency by prefixing ciphers.

EXAMPLES.

1. Divide 687 by 10.
2. Divide 489 by 100 .
3. Divide 1678 by 1000 .
4. Divide 1895 by 1000 .

Ans. 68,7. Ans. 4,89. Ans. 1,678. Ans. ,1895.

When there are more decimal places in the divisor than in the dividend, annex as many ciphers to the dividend as are necessary to make its decimal places equal to those of the divisor; all the figures of the quotient uill then be whole numbers.

[^78]
EXAMPLES.

1. Divide 4397,4 by 3,49 .

Ans. 1260.
2. Divide 2194,02194 by ,100001. Ans. 21940.
3. Divide 9811,0047 by, 325947 . Ans. 30100.
4. Divide ,1 by ,0001.

Ans. 1000.
5. Divide 10 by ,1. Ans. 100.
After bringing down all the figures in the dividend, if there be a remainder, we may annex ciphers, and carry on the quotient to any degree of exactness.

EXAMPLES.

1. Divide 37,4 by 4,5 .
2. Divide 4,18 by ,1812.
3. Divide 586,4 by 375.
4. Divide 94,0369 by 81,032 .

Ans. 8,3111.+ Ans. ,23068. + Ans. 1,563. +
Ans. 1,160. +

REDUCTION OF DECIMALS. CASE I.

To reduce a vulgar fraction to its equivalent decimal. RUle.
J. Annex one or more ciphers to the numerator, and then divide by the denominator.
II. If there is a remainder, annex a cipher or ciphers, and divide again, and so continuc until the quotient is sufficiently exact, and there must be as many places pointed off in the quotient for decimals as there were ciphers used ; if there be not so many supply the deficiency with ciphers.

> EXAMPLES.

1. Reduce -7 - to a decimal.

Operation. By annexing four ciphers, we obtain 12)70000 four decimal figures. We might if we choose, annex more ciphers and carry the Ans. ,5833+ decimal lower.

Questions. - If there be a remainder after hringing diown all the figures in the dividend, how do we proceed? How is a valgar fraction reduced to its equivalent decimall If there be a remainder what muat he done with it? How many decimal places must be pointed off in the quotien!?
2. Reduce $\frac{8}{4}$ and $\frac{5}{4}$ to decimals. Ans. ,75 \& ,25.
3. Reduce $\frac{1}{5}$ to a decimal.
4. Reduce $\frac{1}{2}$ to a decimal.
5. Reduce $\frac{5}{8}$ to a decimal.
6. Reduce $\frac{1}{8}$ to a decimal.
7. Reduce $\frac{11}{16}$ to a decimal.
8. Reduce $-\frac{3}{3}$, to a decimal.
9. Reduce $\frac{1}{8}$ to a decimal.
10. Reduce $\frac{1}{2}^{\frac{1}{7}}$ to a decimal.

Ans. ,2.
Ans. ,5.
Ans., 625.
Ans. , 125. Ans. ,6875.
Ans. ,09375.
Ans.,333333+.
Ans., 037037+

CASE II.
To reduce quantities of several denominations to a decimal.

RULE.
Write down the given numbers, from the least to the greatest, in a perpendicular column, then divide each denomination by such a number as will reduce it to the next higher denomination ; in each place annexing the quotient to the right hand of the next superior denomination, and the last quotient will be the decimal required. EXAMPLES.

1. Reduce 12s. 6 d .3 qr . to the decimal of a pound. Operation. 4)3, 12)6,75 20)12,5625

We first place the numbers as the rule directs, and reduce 3 farthings to the decimal of a penny by dividing by 4 , and place the quotient, 75 to the right of 6 d . We next divide by 12 , giving ,5625, which is the decimal of a shilling, , 628125 Ans. this we annex to the pounds, and then divide by 20 and the work is done.
2. Reduce 15 s .7 d . 2 qr . to the decimal of a pound.

Ans., $78125=15 \mathrm{~s} .7 \mathrm{~d} .2 q \mathrm{r}$.

[^79]3. Reduce 9 d . 3qr. to the decimal of a shilling. Ans. ,8125.
4. Reduce 10 s .6 d . to the decimal of a pound.

Ans. ,525.
5. Reduce $£ 19$ 17s. 3 3 d . to the decimal of a pound. Ans. £19,863+
6. Reduce $7 \frac{1}{2} \mathrm{~d}$. to the denomination of shillings.

Anis. ,625s.
7. Reduce 12s. to the decimal of a pound.

Ans. ,6.
8. What is the decimal expression of $£ 419 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$?

Ans. £4, $97708+$

Ans. £34,8322916†
10. Reduce 3 qr . 2 na. to the decimal of a yard.

Ans. , 875.
11. Reduce 1 gallon to the decimal of a hogshead.

Ans. 015873.
12. Reduce ' 7 oz .19 pwt . to the decimal of a lb. Troy. Ans. ,6625.
13. Reduce 3 qris. 21 lbs . Avordupois, to the decimal of a cwt.

Ans: ,9375.
14. Reduce 2 roods 16 perches to the decimal of an acre. Ans. ,6.
15. Reduce 2 feet 6 inches to the decimal of a yard.

Ans., $833333+$
16. Reduce 5 fur: 16 p . to the decimal of a mile.

Ans. ,675.
17. Reduce $4 \frac{1}{2}$ calendar months to the decimal of a year. Ans. ,375.
18. Reduce 109 days 12 hours to the decimal of a year. Ans. 3.
19. Reduce 3qr. 12lbs. 50 z . $1,92 \mathrm{dr}$. to the decimal of a cwt.
20. Reduce 3 pecks 6 quarts 1 pint to decimals of a bushel.

Ans. ,953125 bu.
21. Reduce 5 cwt . $3 \mathrm{qr}, 16 \mathrm{lb}$. to decimals of a ton. Ans., 2946428+ton.

CASE III.

To reduce a decimal fraction to its value.

RULE.

I. Multiply the decimal by that number which it takes of the next lower denomination to make one of this higher, and point off so many places for a remainder, to the right hand, as there are places in the given decimal.
II. Multiply the remainder \mid the next inferior denomination, and cut off a re....merder as before, and so on through all the parts of the integer, and the several denominations standing on the left hand make the answer.

EXAMPLES.

1. What is the value of , 832296 of a pound Sterling? Operation.
,832296
d.7,751040

4
far.3,004160

We first multipiy the decimal by 20 , which brings it to shillings, and after cutting off from the right as many places for decimals as in the given number, we have 16 s . and the decimal , 645020 over. This wo reduce to pence by multiplying by 12 , and then reduce to farthings by multiplying by 4 .

Ans. 16s. 7d. 3far.
2. What is the value of, 5724 of a $\boldsymbol{£}$?

Ans. 11s. 5d. 1,5 qr.
3. What is the value of, 85251 of a $£$?

Ans. 17s. 0d. 2,4qr.
4. What is the value of, 040625 of a pound Sterling?

Ans. ${ }_{4}^{9} \mathrm{~d}$.

[^80]

IMAGE EVALUATION TEST TARGET (MT-3)

5. What is the value of $£ 1,88$? Ans. $£ 1$ 17s. 7d. +
6. What is the value of $£, 3375$? Ans. 6s. 9d.
7. What is the value of, 875 cw .? Ans. 3 qrs . 14 l lbs .
8. Reduce, 67457 lbs . Avoirdupuis to its proper value. Ans. 10oz. 12,68992dr.
9. What is the value of, 617 of a cwt.?

Ans. 2qr. 131 bs. 1oz. 10,6dr.
10. Find the value of , 76442 of a pound Troy.

Ans. 9ız. 3pwt. 11 grs .
11. What is the value of, 875 of a yd.? Ans. 3qr. 2 na.
12. What is the value of 875 of a hhd. of wine?
13. Find the proper quantity of, 089 ot a mile.

Ans. 28po. 2yd. $1 \mathrm{ft} .11,04 \mathrm{in}$.
14. Find the proper quantity of, 9075 of an acre.

Ans. 3roods. 25,2po.
15. What is the vaiue of ,569 of a year of 365 days?

Ans. 207da. 16h. 26 m .24 sec.
16. What is the value of , 712 of a furlong?

Ans. 28po. 2yds. 1ft. 11,04in.
17. What is the proper quantity of 142465 of a year? Ans. 51,9998725 days.
18. What is the difference between, 82 of a day and ,32 of an hour? Ans. 19h. 21m. 36sec.

RULE OF THREE, OR PROPORTION.

A correct knowledge of the Rule of Three is of the utmost importance, it being applicable in almost all arithmetical operations. I will now show you how the work may, in particular cases, be considerably shortened.
I. When the second or third term is a multiple or an aliquot part of the first; divide the second or third term by the first.

[^81]1. If 6 yards of cloth cost $£ 23 \mathrm{~s} .4 \mathrm{~d}$. what will 36 yards cost?

Opeartion. jd. yd. \boldsymbol{E} s.d. $6|: 3| 6 \mid:: 234$

We state the question as in page 111, then because the first term is an aliquot part of the second, we divide the second by the first, and multi1300 Ans. ply the third term by the quotient 6, and the result is the same as thorgh the second and third term had been multiplied, and the product divided hy the first term.
2. If $£ 6$ buy 24 yards of cloth, how many yards may be bought for $\boldsymbol{£}^{11}$?

$$
\begin{aligned}
& \boldsymbol{E} \boldsymbol{x} \quad \mathrm{yds} . \\
& 6|: 11:: 2| 4 \mid \\
& 4 \times 11=44 \text { yds. Ans. }
\end{aligned}
$$

II. When the first is a multiple of either the second or third, divide the first by the second or third.

1. If 12 yards of cloth cost $\mathfrak{L} 18$ what will 4 yards cost?

$$
\begin{array}{cc}
\text { yd. } & \text { yd. } \\
1|2| & f \\
3
\end{array}:=\frac{18}{}
$$

Then $18 \div 3=6$ Ans
2. If 36 yards cost $£ 23 \mathrm{~s} .4 \mathrm{~d}$. what will 6 yards cosin
£0 7 2й Ans.
III. When the first and either of the other given terms have a common measure, divide them by it and use the quotients instead of the given numbers.

[^82]1. If 36 yards cost $£ 32 \mathrm{~s}, 6 \mathrm{~d}$, what will 24 yards cost?

	$\begin{array}{rl} \text { yds. } & \text { yds. } \\ \text { 12) } 36: & 24 \\ 3 & 2 \end{array}:$	$\begin{aligned} & \Varangle \\ & 3 \end{aligned}$	2	d 6 2
Operation. $\{$) 6		0
		¢2	1	8

2. If 3 barrels of flour cost 12 dollars what will 16 barrels cost? hbl. bbl. \$

$$
\text { 3) } 3: 16:: 12 \quad \underset{4}{ } \quad \underset{4}{\$}=16=64 \text { Ans. }
$$

3. If 25 yards of cloth cost $£ 2$ 3s. 4d. what will 5 yards cost ? Ans. 8s. 8d.
4. If 12 hats cost 60 dollars, how much will 40 cost ?

Ans. 200 dollars.
5. If $\mathbf{3 0}$ barrels of flour will subsist 100 men for 40 days, how long will it subsist 95 ?

Ans. 160.
6. If 120 sheep yield 360 lbs . of wool, how many pounds will be obtained from 600? Ans. 1800.
7. If a man travel 210 miles in 6 days, how far will he travel in 40 days?

Ans, 1400 miles.

RULE OF THREE BY ANALYSIS.

The solution of questions by analysis consists in finding the ratio of two of the given terms, and multiplying this ratio by the other term.

The ratio of two of the terms will generally express the value or cost of a single thing.

EXAMPLES.

1. If 3 barrels of flour cost 24 collars, what will seven barrels cost.

Queations. - In what does the solution of questions by analy. sis consiat? What will the ratio of two of the terme generally expremi?

By dividing the 24 dollars by 3 we get the cost of 1 bbl . For, if 24 dollars will buy 3 barrels, it is plain that $\frac{1}{s}$ of it will buy 1 barrel. This, multiplied by '7, gives 56 collars, the cost of 7 barrels.
2. If a family of ten persons spend 3 bushels of malt in a month, how many bushels will serve them when there are 30 in the family?

If 10 persons spend 3 bushels, it is plain that 1 person in the same time, would spend $-\frac{1}{10}$ of 3 bushels, that is $\frac{3}{10}$ of a bushel : and 30 persons would spend 30 times as much, that is, $\frac{90}{10}=9$ bushels, Ans.

All the questions in Proportion may be solved on general principles as above, without the formality of a statement.
3. If a field will feed 6 cows 91 days, how long will it feed 21 cows. Ans. 26 days.
4. If I walk 84 miles in three days, how far should I walk at the same rate in 9 ?

Ans. 252'.
5. If 2 lbs. of sugar cost 25 cents, what will 100 lbs . of coffee cost, if 8 lhs . of sugar are worth 5 lbs of coffee.

Ans. 20 dollara.

QUESTIONS INVOLVING FRACTIONS. RULE.

State the question according to the directions given in page 111. Then having reduced when necessary, the similar terms to the same denomination, and mixed numbers to improper fractions, invert the first term, and multiply this term thus inverted and the other two continually together, for the answer sought, which will be of the same denomination as the third term.
examples.

1. If $\frac{8}{8}$ of a yard cost $\frac{3}{7}$ of a pound, what will $7^{2} \frac{2}{5}$ of an ell English cost? $\quad \frac{5}{8} y d .=\frac{5}{8}$ of $\frac{4}{1}$ of $\frac{1}{6}=\frac{2}{4} \frac{0}{4}=\frac{1}{2}$ ell Eng.
[^83]Ell．Ell． \boldsymbol{x}
As $\frac{1}{2}:-\frac{9}{15}:: \frac{3}{7} \quad$ First term inverted $\frac{2}{1} \times \frac{9}{15} \times \frac{3}{7}=-\frac{10}{10} 50=$ 10s．3d．15 ${ }^{2}$ qr．Ans．＇

2．If $\frac{3}{5}$ of a yard cost $\frac{7}{5}$ of a pound，what will $40 \frac{3}{4} \mathrm{yds}$ ． come to ？

3．If $\frac{5}{7} \mathrm{oz}$ ．cost \boldsymbol{E}_{11}^{12} ，what will 1 loz ，cost ？
Ans．£15s． 8.
4．A person having $\frac{3}{5}$ of a vessel，sells 告 of his share for $\mathbf{£ 3 1 2 ;}$ what is the whole vessel worth ？Ans． $\boldsymbol{£} 780$.

5．A merchant bought $5 \frac{1}{2}$ pieces of cloth，each con－ taining $24, \frac{1}{8}$ yards at 9 s．$\frac{1}{2}$ d．per yard；what did the whole amount to？Ans．$£ 60$ 10s．0d． $3 \frac{3}{8} q$ r．

6．What is the value of $\frac{2}{8}$ of $\frac{3}{4}$ of $\frac{5}{6}$ of a pound，at the rate of $\frac{9}{10}$ of a \boldsymbol{x} for $\frac{8}{9}$ of a pound？

Ans．£巽年．
7．If $\frac{7}{s}$ of a ship be worth $\frac{2}{9}$ ©f her cargo，vaiueù ai $£ 8000$ ；what is the whole ship and cargo worth ？

Ans． $\boldsymbol{£ 1 0 0 3 1} 14 \mathrm{~s}, 11_{-\frac{1}{2}} \frac{1}{1} \mathrm{~d}$ ．
8．If $\frac{1}{1}$ lbs．of sugar cost $-\frac{7}{15}$ of a shilling，what will $\frac{3}{3}$ of a pound cost？

Let us solve this by analysis．First，divide $-\mathbf{1}_{5}$－of a shil－ ling by $\frac{11}{13}$ of a lb．and the quotient is $-\frac{91}{165} 5$ which is the price of one pound ；then，$\frac{3}{4} \frac{2}{3}$ of $\frac{91}{165}$ 正．$=\frac{2 y}{7} \frac{91}{9} \frac{1}{9}$ s．，the cost of

9．If 7 pounds of sugar $\operatorname{cost} \frac{8}{4}$ of a dollar，what will 12 pounds cost？

It is plain that if 7lb．cost $\frac{3}{4}$ of a dollar，1lh．will cost $\frac{1}{7}$ of $\frac{3}{4}=\frac{5}{3}^{3}$－of a dollar，it is also evident，that 12 pounds will cost 12 times $\frac{2}{2}_{3}^{3}$ of a dollar $={ }_{2}^{2}{ }_{8}^{3} \times 12=\frac{36}{8}=1 \frac{2}{7}$ dul．Ans．

10．How many pieces of merchandise，at $20 \frac{1}{5} \mathrm{~s}$ ．a pc． must be given for 240 pieces，at 12s．a piece？

11．If 16 men finish a piece of work in $28 \frac{1}{3}$ days，how long will it take 12 men to do the same work？

Ans． $37 \frac{7}{9}$ days．
12．If $\frac{1}{8} \mathrm{lb}$ ．less by $\frac{1}{6}$ ，costs $13 \frac{1}{5} \mathrm{~d}$ ．，what costs 14 l bs． less by $\frac{1}{8}$ of 2 lbs．？

Ans．244 9s． $9_{-2}^{3}{ }^{3} \mathrm{~d}$ ．
13．A merchant bought a number of bales of velvet， each containing $129 \frac{17}{7}$ yards，at the rate of 7 dollars for 5
yanls, and sold them out at the rate of 11 dollars for 7 yds . and gained 200 dollars by the bargain ; how many bales were there?

Ans. 9: bales.
First find what he gained in selling 1 yard; then it will be easily ascertained how many yards he must sell to gain $\$ 200$.

COMPOUND PROPORTION.

Compound Proportion, is a method of performing such operations as require two or more statings. It is commonly called Double Rule of Three, because its operations can be performed by two statings in the Rule of Three.

RULE.

Make that number which is of the same kind with the required answer the third term. Then with this third term and each pair of similar terms complete a stating in the single rule as already taught; then, having reduced the similar terms to like denominations, and the third to its lowest given denomination, multiply the numbers in the second and third places continually together for a dividend, and those in the first for a divisor ; divide the former by the latter, and the quotient will be the required answer, of the same denomination as the third term.

Note.-The principles of contraction given in single proportion, are equally applicable in this rule.

EXAMPLES.

1. If 225 bushels of oats be eaten in 30 days, by 20 horses, how many bushels will suffice for 50 horses 16 days?
[^84]Operation.
horses.
$20: 50)$ bushels. days. $:=225$
30: 16
$\overline{6 \mid 00} \overline{800}$
6) 1800100

Ans. 300

In this example it is plain that the term similar to the number sought is 225 bushels; which is therefore set in the third place. Then putting the question on the number of horses, the fourth term must be more than the third, for it is evident that 50 horses will require more in a given time than 20 horses, hence 50 must be the second, and 20 the first term. Again, putting the question on the number of days, since a given number of horses will eat less in 16 days than in 30 ; the fourth term here is less than the third; whence 16 is the second term and 30 the first.
2. If 20 horses in $\mathbf{3 0}$ days eat 225 bushels of oat:, in how many days will 50 horses eat 300 bushels? Operation.

We first state this question as the rule directs. Then because 10 is an aliquot part of 50 and 20 , we divide them by 10 and cancel them. For the same reason we divide 225 and 300 by 75 , and cancel these numbers. We then divide the third term, 30 by 5 , 8 and cancel it, and the 6 by 3, 2 and cancel the 6 and 3. Then

- as the numbers are all cancelAns. 16da. led in the first term, we multiply those in the second and third together, and the product is the answer.

3. If a family of 8 persons expend 360 dollars in 9 months, how much will serve a family of 18 persons 12 months?

Ans. \$1080.
4. If 3 men in 4 days eat 15 lbs . of bread, how much will suffice 5 men for 12 days?

Ans. 75lhs.
5. If 20 cw t. be carried 50 miles for $\$ 15$, how much will 45 cwt . cost to be conveyed 80 miles? Ans. $\$ 54$.
6. If 12 men in 6 days mow 80 acres, in how many days will 25 men mow 250 acres? Ans. 9 days.
7. If 5 men make 300 pairs of shoes in 40 days, how many men will make 900 pairs in 60 days?

Ans. 10 men.
8. If 144 men can build a wall 32 feet high in 8 days, in how many days can 63 men build a wall 28 feet high, of the same length ?

Ans. 16 days.
9. If a footman, when the days are 14 hours long, can travel 276 miles in 16 days; in how many days can he travel 828 miles, when the days are but 12 hours long?

Ans. 56 days.
10. If the wages of 6 men for 14 days be 84 dollars, whai will be the wages of 9 men for 11 days?

Let us work this question by analysis. First, $\mathbf{\$ 8 4} \div 14$ $=6$ dollars, what 6 men earn in 1 day ; then $\$ 6 \div 6$ men $=1$ dollar, what 1 man earns in 1 day. Then $\$ 1 \times 9 \times 11$ $=99$ dollars, what 9 men will carn in 11 days.

Ans. \$99.
11. If 56 lbs of bread be sufficient for 7 men 14 days. how much bread will serve 21 men 3 days?

If 7 men consume 56 lbs of bread, one man ial the same time would consume $\frac{1}{7}$ of $56 \mathrm{ibs} .={ }^{5}{ }_{7}^{6} \mathrm{lbs}$; ; and if he con-
 lls. in 1 day. 21 men would consume 21 times as much as one man; that is 21 times $\frac{60}{9}:=1 \frac{17}{8} \mathrm{l}$ lbs. in 1 day, and in 3 days they would consume 3 times as much; that is, $35.28=36 \mathrm{lbs}$. Ans.

Or place the numbers that occupy the third and second places above a line, and the first terms below it, and cancel them, thus,

4.3
$5\|6\| \times 2\|1\| \times 3$
$1\|4\| \times 7 \mid$

12. If 9 students spend $£ 10$ zi in 18 days, how much will 20 students spend in 30 days?

 day, and $E \frac{1940}{458} \times 30=$ what 20 students spend in 30 days $=E 39$ 18s. $4 \frac{2 n}{31}$. Ans.
13. If 3 men receive $£ 88_{-2}-{ }^{-}$for $19 \frac{1}{2}$ days' work, how much must 20 men receive for $100 \frac{1}{4}$ days?

21

$$
\frac{89 \times 2|\times 2| 0 \mid \times 401}{1|0| \times 3 \times}=\frac{4 \mid}{\frac{2 \mid}{2 \mid}}=\frac{35689}{117}=£ 3050 \mathrm{~s} .88_{3}^{2} \text { Ans }
$$

14. If a barrel of beer last 7 persons 12 days, how much will be drank by 42 persons in a year?

Ans. 182 bar. 18gal.
15. If 32 men build a wall 36 feet long, 8 feet high, and 4 feet wide, in 4 days, in what time will 48 men build a wall 864 feet long, 6 feet high and 3 feet wide ?

Ans. 36 days.
16. Supposing 3 compositors to set $15 \frac{1}{2}$ pages in 27 hours, how many will be required to set $69 \frac{3}{4}$ pages in $6 \frac{1}{4}$ hours?

Ans. 6.
17. If 12 oxen eat $7 \frac{3}{5}$ acres of pasture in $5 \frac{1}{2}$ weeks, how many oxen will be required to eat $13 \frac{2}{3}$ acres in $10 \frac{15}{19}$ weeks?

Ans. 11 oxen.
18. If 16 compositors set 150 pages of types, each page containing 48 lines, and each line 50 letters, in 3 days of 10 hours each; how many compositors will be required to set 500 pages of 72 lines each, and 45 letters in a line, in 6 days of 8 hours each ?

Ans. 45.

SIMPLE INTEREST BY DECIMALS.

In calculating interest, the rate per cent. is a certain number of hundredths of the sum lent. Thus, if 1 per cent. is paid for $£ 100$, it is $\frac{11}{10}=, 01$ part of the sum lent. If 6 per cent. is paid, it is the $\frac{60}{10}=, 06$ part of the sum lent.

[^85]- For this reason all caiculations in interest are properly sums in decimal multiplication.

The rate per cent. may always be written as a decimal fraction of the order of hundredths. Thus, 1 per cent. may be written ,01; 2 per cent. , $02 ; 3$ per cent. 0,3 ; 4 per cent., 04 ; 5 per cent., $05 ; 6$ per cent., 06 , and so on. rule.
Reduce the shillings and pence to the decimal of a pound-see page 183. Then find the interestby the rule on page 104: after which reduce the decimal part of the answer to shillings and pence, -see page 185.

> EXAMPLES.

1. What is the interest at 6 per cent. of $\boldsymbol{E} 27$ 15s. 9 d . for 2 years?

Operation. £27 15s. 9d. $=£ 27,7857$

1,667250
2
$\longdiv { £ 3 , 3 3 4 , 5 0 0 }$
8.6,690000

12
d.8,280000

4

We first find the interest for one year; then multiply by 2 , which gives the interest for two years. We then reduce to pounds, shillings and pence.
qr.1,120000
Ans. $£ 36 \mathrm{~s} .8 \frac{1}{4} \mathrm{~d} .+$

[^86]2. What is the interest of $£ 1218 \mathrm{~s}$. 6d. for $4 \frac{1}{2}$ years, at 6 per cent. per annum? Ans. £32 15s. 8d. 1,36qr.
3. What is the interest on $£ 67$ 19s. 6d. at 6 per cent. for 3 years, 8 months, 16 days? Ans. $£ 15$ 2s. $8 \frac{1}{2} \mathrm{~d}$.
4. What is the interest on $£ 12715 \mathrm{~s} .4 \mathrm{~d}$. at 6 per cent. for 3 years and 3 months ? Ans. £24 18s. $3 \frac{1}{4} \mathrm{~d}$. +
5. What is the interest of $£ 10716 \mathrm{~s}$. 10 d . at 6 per cent, for 3 years, 6 months and 6 days? Ans.
6. What will £279 13s. 8d. amount to in 3 years and a half, at $5 \frac{1}{4}$ per cent. per annum? Ans. $£ 3311 \mathrm{~s} .6 \mathrm{~d} .+$
7. What is the interest of $£ 51410 \mathrm{~s}$. 2d. for 3 years and a half, at 4 per cent.?

Ans. 572 0s. $7 \frac{1}{4} d .+$
8. What is the interest on $£ 255$ 10s. 8d. at 6 per cent. per annum, for 6 years and 6 months?

Ans. $£ 99$ 13s. ${ }_{4}^{13} \mathrm{~d}$.
9. What is the interest on $£ 5318 \mathrm{~s} .5 \mathrm{~d}$. at 6 per cent. for 7 years and 12 days?

Ans. £22 15s. 1d.+
Find the interest on the following note. C127 10s. Toronto, Jan. 1st, 1845.
For value reccived, I promise to pay on the 10 th day of June next, to T'. Lawrence or order, the sum of one hundred and tiventy-seven pounds and ten shillings, with interest from date, at 7 per cent.
S. S. SMITH.

Ans. £3 19s. $2 \frac{1}{4} \mathrm{~d}$.
To find what remains due at the end of a given time, on notes, bonds, mortgages, \&c. when payments are made at different times.

There are various methods of casting interest when several payments are made, no two of which produce exactly the same result. The following is as simple and comprehensive as any with which I am acquainted.

RULE.

Multiply the principal by the time it bears interest, before any part of the debt is discharged,

[^87]and from the given principal deduct the first payment; multiplying the remainder by the time between the first and second paymenis; from the remainder deduct the second payment, and multiply the remainder by the time between the second and third payments, and so proceed through all the payments. Then add all the products logether, and find the interest on thic sum for 1 year. 1 month, or 1 day, according as the times of payment are, years, months, or days, and this interest added to the last remainder will be the sum due at the end of the given time.

EXAMPLES.

$\mathbf{x} 600$ Kingston, May 13th, 1845.
One year from date, for value received, I promise to pay Wm. Howland or bearer six hundred pounds currency, with interest at 5 per cent. per annum. H. Good,

Now the maker of this note, H. Good, pays the 9th of July $£ 200$, and the 17t.. of September $£ 150$; how much principal and interest is he to pay at the end of the year?
Operation.
$5600 \times 57=34200$
200
$400 \times 70=28000$
150
$250 \times 238=59500$
121700
5
365 $\widehat{6085,00}$
£16 13s. $5_{-7}^{7} \mathrm{f}$ d.
£250

$16 \quad 13$	$5_{7}^{7} 5$

266135_{-7}^{78} Ans.

In this example we first multiply the principal by the time that expires before the first payment is made, which is 57 days; then deduct the payment $£ 200$ from the principal, and multiply the remainder by the time between the first and second payment, which is 70 days, then deduct the second payment $£ 150$ and multiply the remainder by the time between the second payment and the time of settlement, which is 238 days.Then add the several products together and find the intereat.
on the sum for 1 day at 5 per cent., by the rules previously given. The interest is $£ 1613 \mathrm{~s} .5_{-7}^{7}{ }_{3} \mathrm{~d}$., which being added to $\boldsymbol{E} 250$, the part of the principal remaining unpaid, will give the sum yet due, which is $£ 266$ 13s. $5_{-7}^{-7} \mathrm{~d}$. Ans.

By a little reflection this method is evident, because the several principals multiplied by their respective times, will produce sums which will bring in as much interest in 1 month or 1 day as the several principals would in their respective times.
£300.
Toronto, June 14th, 1845.
Due J. Robson or bearer, for value received, three luandred pounds currency.

Three months after date $\boldsymbol{£ 6 0}$ was paid and endorsed on this note ; four months after that $£ 100$, and five months ufter that $£ 75$; how much is due on the note at the end of 18 months?

Ans. £79 15.
A merchant borrows $\boldsymbol{£ 2 5 0}$ for 2 years at 8 per cent. and agrees to pay as fast as he can ; now at the expiration of 9 months he paid $£ 80$, and 6 months after that $£^{\prime} 70$, leaving the remainder the full term of two years. How much prineipal and interest has the merchant then to pay?

$$
\text { Aus. } £ 127 \text { 16s. }
$$

A gives to B. on interest on first of November, 1844, $\mathbf{X} 6000$ at 42 per cent. B. is to pay him at the expiration of 2 years, having liberty to pay before that time as much of the primeipal as he pleases.

Now B. pays, The 16th Dec. 1844, $£ 900$ The 11th of March, 1845, 1260
The 30th ditto, 600
The 17th August, 800
The 12th of February, 1846, 1048
How much principal and interest is B. to pay on tho 1st November, 1846. Ans. $£ 1642$ 9s. 212d.-

VARIOUS EXERCISES IN INTEREST.

I. To find the principal, when the time, rate and amount are known.
usly dded will s. e the will in 1 : 1 esthree As. ed on onths e end 915. t. and n of 9 aving much

If in 1 yr .4 . mo. the interest and principal on a sum at 6 per cent. amount to $£ 61,02$, what is the principal?

We first find what will be the amount of a \boldsymbol{E}, with its interest, for the given time. This amounts to $£ 1,08$ now, as every $\boldsymbol{£}$ in the original sum gained , 08 of a $£$ interest, there were as many pounds as there are $£ 1,08$ in $£ 61,02$.

Ans. £56 10s.
RULE.
Find the amount of $£ 1$ for the given time, and divide the sum given by this amount.

EXAMPLES.

What principal at 8 per cent. will amount to $\mathbf{£ 8 5 , 1 2}$ in 1 year 6 months?

Ans. $£ 76$.
II. To find the principal, when the time, rate and interest are known.

What sum at interest at 6 per cent. will gain $\boldsymbol{£ 1 0 , 5}$ in 1 yr .4 mo ?

One pound put at interest for that time, would gain $\boldsymbol{£}, 08$, and therefore it requires as many pounds as there are $\boldsymbol{E}, 0 \boldsymbol{S}$ in $£ 10,5$.

Ans. £131 5s.

rule.

Find interest of $£ 1$ for the given rate and time. Divide the given interest by this and the quotient is the principal.

> Examples.

1. A inan paid $£ 4,52$ interest at the rate of 6 per cent. at the end of 1 ycar 4 months; what was the principal. Ans. $\boldsymbol{x 5 6}$ I0s.
2. A man received $\boldsymbol{X} 20$ for interest on a certain noto at the end of 1 year at the rate of 6 per cent. ; what was the principal?

Ans. $\mathbf{X} 333,3333$.

[^88]III. To find the rate when the principal, interest and time are known.

If $£ 3,78$ is paid for the use of $£ 54,1$ year and $6 \mathbf{m o}$. what is the rate per cent.?

If this sum were at interest at 1 per cent. it is plain that it would produce $£, 54$.

As many times, therefore, as $\mathbf{E , 5 4}$ is contained in $£ 3,78$, so much more than one per cent. is the rate. nule.
Find the interest on the given sum at 1 per cent. for the given time, by which divide the given interest : the quotient will be the rate at which interest was paid.

> EXAMPLES.

1. If $£ 2,34$ is paid for the use of $£ 4,68$ for 1 month, what is the rate per ecnt.? Ans. 6 percent.
2. At $£ 4616$ s. for the use of $£ 520$ for 2 years, what is it per cent?

Ans. 43 per cent.
IV. The principal, rato per cent. and interest being given to find the time.

What is the timo required to gain $£ 3,78$ on $\mathbf{£ 3 6}$, at 7 per cent.?

The interest on $£ 36,1$ year at 7 per cent. is $£ 2,52$; hence $£ 3,78 \div £ 2,52=1,5$ ycars, the time required. nule.
Find the interest for 1 year on the principal given, at the given rate, by which divide the given interest; the quotient will be the time required in years and decimal pirts of a year.
rexamples.

1. Paid $£ 20$ for the use of $£ 600$ at 8 per cent. ; what was the time? Ans. 5 mo. nearly.
2. Paid $£ 28,242$ for the use of $\mathbf{2} 2175$ 5s. at 4 per cent. what was the time. Ans. 3 yrs. 3 mo.
[^89]
EXCHANGE.

Exchange is a rule by which the money of one state or country is reduced to that of another.

Par is equality in value; but the course of exchange is frequently above or below par.

Agrio, is a term used to signify the difierence, in some countries, between bank and current money.

- Whenever, in the commercial transactions between distant places, the debts and credits are neatly equal, bills of crehange may be considered as negotiable according to the intrinsic value of the nominal amount ; exchanges are then said to be at par. But when the debts become greater in amount than the credits, exchanges must rise or sell above par.

CURRENCY TABLE.

Qukations. - What is Exchange? What is Pary What in Agio?

CANADIAN CURRENCY.

To change Canadian Currency to Federal Money, of Federal Nioney to Canadian Currency.

1 dollar in this curreney is $5 \mathrm{~s} .=60 \mathrm{~d}$., and $60 \mathrm{~d} .=100$ cents Federal money, or $3 \mathrm{~d} .=5$ cents ; hence cents may be changed to pence, or pence to cents by the Rule of Three.

EXAMPLES.

1. In 40 cents how many pence?

As 5 cents : $3 \mathrm{~d} .:: 40$ cents : 24 d . Ans.
2. In 95 cents how many pence? Ans. 57 d .
3. In 18d. how many cents?
4. In 54 d . how many cents?
5. Reduce 9s. 3d. to Federal money. Ans. 30 cents. Ans. 90 cents. Ans. \$1,85.
6. Reduce $\$ 2,50$ to currency. Ans. 12s. 6d.
7. Reduce $£ 25$ 10ㄴ. 6d. to Federal money.

1 pound $=4$ dollars; a dollar therefore is $\frac{1}{4}$ of a pound; hence there will be as many dollars as there are quarters in the sum. Therefore,
$\overline{R e d u c e}$ the sum to the decimal of a pound and multiply it by 4.

$$
\text { Operation. }\left\{\begin{array}{l}
£ 2510 \mathrm{s.} 6 \mathrm{~d}=£ 25,525 . \\
25,525 \times 4=\$ 102,10 \text { Ans. }
\end{array}\right.
$$

8. Change $\dot{E} 6915 \mathrm{~s} .5 \mathrm{~d}$. to Federal money.

Ans. $\$ 297,083+$
9. Reduce $\mathscr{E} 611 \mathrm{~s}$. $6 \frac{1}{4}$ d. to Federal money.

Ans. \$27,304.
10. Reduce $£ 95$ 19s. 111 d . to Federal money.

Ans. \$383,9875.
11. Reduce 范102,85 to pounds.

Operation. 4) 102,85

Ans. £25 14ss. 3d.

[^90]12. Reduce $\$ 500,80$ to Currency. Ans. $£ 125$ 4s 13. Change $\$ 118,25$ to Currency. Ans. $\mathbf{£} 2911 \mathrm{~s} .3 \mathrm{~d}$. 14. Change $\$ 250$ to Currency: Ans. $\mathbf{x} 62$ 10s.

To change Sterling money to Currency, or Currency money to Sterling - work by the Rule of Three.

EXAMPLES.

1. Reduce. $£ 150$ 10s. English money, to Canadian Currency.

2. Reduce £183 2s. 2d. Currency to Sterling money. As $£ 144: £ 1:: £ 18322$ to $£ 150$ 10s. Ans.
The pupil will perceive that these two examples reciprocally prove each other, and as $£ 1$ Sterling is equal to $£ 1$ 4 s .4 d . Currency, the operation is evident.
3. Reduce £500 Sterling to Currency.

Ans. £603 6s. 8d.
4. Reduce £ 125 Currency to Sterling money.

Ans. £ 102 14s. $9 \frac{1}{2}$
5. Reduce $£^{£} 250$ 10s. Sterling money to Canadian Currency. Ans. $£ 304$ 15s. 6d.
6. A person in England deposits the sum of $£ 50$ Sterling in the Bank of British North America, London, and receives a draft on the branch of the Bank at Toronto, Canada, for the amount, which he sends to his correspondent in Canada. How much must the latter receive in Canadian Currency, exchange being at par-how much, if at 5 pr cent. premium?

$$
\text { Ans. }\left\{\begin{array}{l}
\\
\equiv 60 \text { 16s. 8d. at par. }
\end{array}\right.
$$

Ans. $\left\{\begin{array}{l}\text { £ } 6317 \mathrm{~s} .6 \mathrm{~d} \text {. at } 5 \text { per cent. }\end{array}\right.$
7. A person in Kingston being desirous to remit to London $£ 60$ Canadian Currency-for what amount British must the bill be, exchange being at par.

$$
\text { Ans. £49 6s. } 3 \frac{1}{2} \mathrm{~d} \text {. }
$$

[^91]
END OF PART III.

PARTIV.

INVOLUTION.

When a number is multiplied into itself, it is said to be involved, and the process is called invalution.

Hence, Involution teaches the method of finding the powers of numbers.

The product which is obtained by multiplying a number into itself, is called a Power.

Thus, when 2 is multiplied into itself once, it is 4 , and this is called the second power of 2 . If it is multiplied into itself twice, $(2 \times 2 \times 2=8)$ the answer is 8 , and this is called the third power.

The number which is involved is called the root, or first power. Thus, 2 is the root of its second power 4 , and also the root of its third power 8 .

A power is named or numbered according to the number of times its root is used as ? factor.

Thus the number 4 is called the second power of its root 2 , because the root is twice used as a factor; thus 2×2 $=4$. The number 8 is called the third power of its root 2 , because the root is used three times as a factor, thus 2×2 $\times 2=8$.

The method of expressing a power is by writing its root and then placing a small figure above it, to show the number of times that the root is used as a factor. Thus the second power of 2 is 4 , but instead of writing the product 4 , we write it thus 2^{2}.

Questinne. - What is Involution? What does Involution teach? What is a power? What is the second power of 2 ? The third? What is the root or first power? Give an example? llow is a power named or numbered? Give examples? What is the methnd of expressing a powert Exprese the seoond power of 21 The third? The fourth? What is the Index or Ex. fo:entl For what in it used? Repeat an example.

The third power of 2 is written thus 2^{3}. The fourt/ power of 2 is 16 , and is written thus 2^{4}.

The small figure that indicates the number of times that the root is used as a factor is called the Index, or exponent.

The index is used to denote the power to which the root is to be raised, thus 5^{4} denotes that 5 is to be involved to the fourth power.

The second power is called the square. The third power is called the cube, -the fourth power is called the Bi-quadrate,-the fifth power is called the sursolid, and the sixth power is called the square-cubed.

RULE OF INVOLUTION.

Multiply the number continually by itself as many times less 1 as there are units in the exponent : the last product will be the power sought.

EXAMPLES.

1. What is the cube of 5 ? Ans. $5 \times 5 \times 5=12.5$,
2. What is the cube of 7 ? Ans. 34.3.
3. What is the fourth power of 4 ? Ans. 256.
4. What is the square of 14 ? Ans. 196.
5. What is the 5th power of 2 ? Ans. 32.
6. What is the 7th power of 2?

Ans. 128.
A fraction is involved by involving both numerator and denominator.
7. What is the square of $\frac{1}{2}$? Ans. ${ }^{\frac{1}{2}}$.
8. What is the cube of $\frac{2}{3}$? Ans. $\mathrm{B}_{2}^{\mathrm{s}} \mathrm{i}$ -
9. What is the fourth power of $\frac{3}{5}$?
10. What is the square of $5 \frac{1}{2}$?
11. What is the square of $30 \frac{1}{4}$? Ans. 88.25.
12. Perform the involution of 8 : Ans. $30 \frac{1}{4}$.
13. Ans. 32768.
13. Involve $-\frac{4}{3}-\frac{1}{1} \frac{1}{1}$, and $\frac{8}{8}$ to the third power each.

14. Involve 211^{3}.

 Ans. 9393931.15. Raise 25 to the fourth power. Ans. 390625.
16. Find the sixth power of 1,2 .

Ans. 2,985984.

[^92] xponent. I the root volved to
iird pow1 the $B i$ 1, and the
tself as e exposought:
$<5=125$,
Ans. 343.
Ans. 256.
Ans. 196.
Ans. 32. Ans. 128. $r a t o r$ and

Ans. $\frac{1}{4}$. Ans. $\bar{z}_{2}^{5}=$ Ans. $78 . \frac{81}{5}$. Ans. $30 \frac{1}{4}$. s. $915-\frac{1}{1}$. s. 32768 . cach.
31 ; $\frac{512}{729}$. 9393931 . 390625. ,985984.

EVOLUTION.

Evolution is the process of finding the root of any number; that is of finding that number which multiplied into itself, will produce the given number.

The Square Root is a number which being squared will produce the given number.

It is expressed either by this sign \vee placed before a number, thus $\sqrt{ } 4$, or by a fraction $\frac{1}{2}$ placed above a number, thus, $\mathrm{i}^{\frac{1}{3}}$.

The Cube Root or Third Root is a number which being cubed, or multiplied by itself twice, will produce the given number. It is expressed thus, $\sqrt[3]{ }$; or thus $27^{\frac{1}{3}}$.

All the other roots are expressed in the same manner. The Fourth Root has this sign $\sqrt[4]{ }$ put before a number, or else $\frac{1}{4}$ placed above it. There are some numbers whose roots cannot be precisely obtained, but by means of decimuls, we can approximate to the number which is the root.

Numbers whose roots can be exactly obtained are calle: ralionul numbers.

Numbers whose precise roots cannot be obtianed are called surd numbers.

When the root of several numbers united by the sign + $\mathrm{or}^{\text {• - is indicated, a vinculum, or line is drawn from the }}$ sign of the root over the numbers. Thus, the square root of $59-10$ is written $\sqrt{59-10}$.

The root of a rational number, is a rational root, and the root of a surd number, is a surd root.

[^93]
EXTRACTION OF THE SQUARE ROOT.

Extracting the square root is finding a number, which multiplied into itself, will produce the given number; or it is finding the length of one side of a certain quantity, when that quantity is placed in an exact square. Thus, $\sqrt{4 \times 4}=\sqrt{ } 16=4$, and $\sqrt{49}=7$ for $7 \times 7=49$.

RULE FOR EXTRACTING THE SQUARE ROOT.
I. Point off the given number, into periods of two figures each, beginning at the right hand.
II. Find the greatest square in the first left hand period, and subtract it from that period. Place the root of this square in the quotient. To the remainder bring down the next period for a dividend.
III. Double the root already found and place it on the left for a divisor: Seek how many times the divisor is contained in the divident, exclusive of the right hand figure, and place ti nigure in the root and also at the right hand of the divisor.
IV. Multiply the divisor, thus increased, by the last figure of the root, and subtract the product from the dividend. To the remainder bring down the next period, for a new dividend. But if the product should exceed the dividend, diminish the last figure of the root.
V. Double the root already found for a new divisor, and proceed as before, until all the periods are brought down.

> EXAMPLES.

1. What is one side of a square room, which contains 784 square feet?
[^94]
200T.

r; which ser ; or it ity, when
ot.
riods of and.
eft hand
Place o the relividend. place it ny times xclusive re in the sor.
d, by the product ng down it if the inish the
new diperiods

1 contains
e Rool?f numbers? The fifh?

Operation,
7’84(2
4
384
Fig. 1.

A
20
$\frac{20}{400}$
20 feet:

We first point off the number as the rule directs, and find the root will consist of two figures, a ten and a unit. We then take the highest period 7 (hundreds) and find how many feet there will be in the largest square that can be made of this quantity, the sides of 20 feet. which must be of the order of tens. No square larger than 4 (hundreds) can be obtained in 7 (hundreds), the sides of which will be each 20 feet, because $20 \times 20=400$. These 20 feet or 2 tens being sides of the square are placed in the quotient as the first figure of tho root.

This Square may be represented by Fig. 1.
We now take out the 400 from 700 , and 300 square feet remain. . These are added to the next period 84, making 384 , which are to be arranged around the square A in such a way as not to destroy its square form ; consequently the additions must be made on two sides.

To ascertain the breadth of these additions, the 384 must be divided by the length of the two sides $20 \times 20=$ 40 , and as the root already found is one side, we double this root for a divisor, making 4 tens or 40 , for as 40 feet is the length of these sides, there will be as many feet in breadth as there are forties in 384. The quotient arising from the division is 8 , which is the breadth of the addition to be made, and which is placed in the quotient, after the 4 tens.
210. EXTRACTION OF THE SQUARE ROOT.

Fig. 2.

7784(28 root. 4
48) 384

It will be seen by Fig. 2, that to com. plete the square, the ∞ corner C. must be $\overrightarrow{\overparen{®}}^{\circ}$ filled by a small square, the sides of which are each equal to the width of B and $\mathrm{O}_{0} \mathrm{C}$, that is 8 feet.

Adding this to the 4 tens, or 40 , we find that the whole length of the addition to be made around the sqr. A, is 48 feet, instead of 40 . This multiplied by its breadth, 8 feet, the quotient figure, gives the contents of the whole addition, 384 feet.As there is no remainder, the work is done, and 28 feet is the side of the given square. It may be proved by involution, thus, 28 $\times 28=784$, or by adding together the several parts of the
figure this,

A contains
B
6

D	6	160	6	6
C	66	64	6	6

784
If in any case, there is a remainder, after the last period is brought down, it may be reduced to a decimal fraction by annexing two ciphers for a new period, and the same

Questions. - If there is a remainder after the last period is brought down how may we proceed? If the dividend be too Enill to contain the divisor what must be done? How many figures will there always be in the root? process continued. If at any time the dividend be to, small to contain the divisor a cipher must be placed in the root, and another period brought down.

The pupil-will find by trial, that the root always contains just half as many, or one figure more than half as many figures as are in the given quantity. Hence, the propriety of pointing off into periods of two figures each, and there will always be as many figures in the roots as there are periods.
2. What is the square root of 998001 ?
$\left\{\begin{array}{l}\left.99{ }^{\prime} 80^{\prime} 01\right) 999 \text { root. } \\ 81\end{array}\right.$ lition to be ind the sqr. et, instead his multits breadth, re quotient es the conthe whole 384 feet. is no refide of the , thus, 28 parts of the al fraction the same

[^95]PRACTICAL EXERCISES.

1. If a square field contains 2025 square rods, how many rods does it measure on each side? Ans. 45 rods.
2. How many trees in each row of a square orchard containıng 5625 trees?

Ans. 75.
3. A square pavement contains 20736 square stones, all of the same size, what number is contained in one of its sides?

Ans. 144.
Note.-The square of the hypothenuse, or longest side of a right angled triangle, is equal to the sum of the squares of the other two sides: and consequently the difference of the square of the longest, and either of the other sides, is the square of the remaining one. This is made plain by the following figure, thus,

If A B C be a right angled triangle, right angle at B,then will the square D described on AC be equal to the sum of the squares E\&F on the sides A B and BC. And the difference between the square D and the square \mathbf{E} is equal to the square F, also the difference between the squares D and F is equal to the square E. The truth of which mar be seen by counting the small squares contained in ED and F.

This is called the carpenter's theorem, and is used for finding the length of braces, rafters, \&cc.
Questions. - I'o what is the square of the longest side of a right angled triangle equalt Whist is the difference of the equare of the longent and either of the other sides?
4. A ladder being placed at the distance of 12 feet
rods, how ns. 45 rods. re orchard Ans. 75. uare stones, d in one of Ans. 144. longest side the squares ifference of her sides, is de plain by

C be a right iangle, right B,then will cD describC be equal um of the i\&F on the β and BC. difference the square square \mathbf{E} the square difference he squares is equal to E. The hich may counting
s used for from the bottom of an upright wall, is, found to reach a window 16 feet from the ground: what is its length ? Ans. 20 feet.
5. A line of 36 yards long will exactly reach frem the top of a fort to the opposite bank of a river, known to be 24. yards broad ; the height of the wall is required?

$$
\text { Ans. } 26,24+\text { feet. }
$$

6. A ladder 50 feet long, being placed in the street, will reach a window 40 feet high, on one side and, without moving the foot, will reach one 30 feet high on the other: how wide was the street?

Ans. 70 feet.
7. The side of a square meadow is 325 yards, what is the length of the diagonal or line drawn from corner to corner?

Ans. 459,61942.
8. If a house is 50 feet wide, and the upright which supports the ridge poll is 12 feet high, what will be the length of the rafters? Ans. 27,7 feet+.
9. There is a square ficld containing 90 acres; how many rods in length is each side of the field? and how many rods apart are the opposite coners?

Answers, 120 rods ; and 169,7+rods.

EXTRACTION OF THE CUBE ROOT.

A Cubc is a solid body, having six equal sider, each of which is an exact square. Thus a solid which is $\mathbf{1}$ foot long, 1 foot high, and 1 foot wide, is a culic foot : and a solid whose length, breadth and thickness are each one yard, is called a culic yard.

The root of a cube is always the length of one of its sides; for as the length, breadth and thickness of such a body are the same, the length of one side, raised to the third power, will show the contents of the whole.

Extracting the Cube Root of any quantity, therefore is finding a number, which multiplied into itself twice will produce that quantity; or it is finding the length of one side of a given quantity, when that quantity is placed in an exact cube.

RULE FOR EXTACTING THE CUBE ROOT.
I. Point off the given number into periods of three figures each, beginning at the right hand.
II. Find the greatest cube in the left hand period, and put its root in the quotient.
III. Subtract the cube thus found from the said period, and to the remainder bring down the next period, and call this the dividend.
IV. Square the root already found, and multiply it by 300 for a divisor.
V. Find how many times the dividend contains the divisor, and place the result in the root; then multiply the divisor by this quotient figure, and place the product under the dividend.
VI. Multiply the square of this quotient figure by the former figure or figures of the ront, and this product by 30 , and place the product under the last. Finally, cube this quotient figure, and place its cube under the other products, and add these three results together for a subtrahend.
VII. Subtract the subtrahend from the dividend, and to the remainder bring down the next period for a new dividend, with which proceed as before; and so on until the whole is finished.

Note.-If the divisor is not contained in the dividend, a cipher must be placed in the root, and the next period brought down for a dividend.

The same rule must be observed for continuing the operation, and pointing off for decimals, as in the square root.

[^96]periods of hand. hand pen the said the next and multid contains oot ; then rure, and
ent figure t , and this or the last. ce its cube three re-
he divide next peoceed as ted.
e dividend, ext period
g the openare root.
ott What What is ie firat step 'The third? Whydo elit How

The pupil will perceive that the number which we call the divisor, when multiplied by the last quotient figure, does not produce so large a number as the real subtrahend; hence, the figure in the root must frequently be less than the quotient figure.

1. What is the cube root of 13824 ?

We first ascertain the number of figures of which the root will consist, by pointing off the number into periods of three figures each. We do this because the cube of a unit figure will not give a higher order: than hundreds, for the cube of 9 is 729 , and as 9 is the greatest unit figure, the cube of a unit will rot consist of more than three figures. Also the cube of 10 is 1,000 and the cube of 9 tens for 90 is 729,000 , hence the cube of tens will not give a lower order than thousands, nor a higher order than hundreds of thousands, which consists of six figures; therefore we point off into periods of three figures each, and the root always contains as many figures as there are periods.

Operation.
$1 \dot{3} 824(2$

$$
8
$$

$$
\overline{5824}
$$

We find the root will consist of two figures, a ten and a unit. We now seek for the first figure, or tens of the root, which must be extracted from the left hand period, 13 thousands. The greatest cube in 13 thousands we find by trial, to be 8 thousands, the root of which is 2 tens; we therefore place 2 tens in the root. The root it will be \mathbf{E} recollected, is one side of a cube. Let us then form a cube, (Fig. I.) each side of which shall be supposed 20 feet, expressed by the root now obtained. The contents of this cube are $20 \times 20 \times 20$ $=8000$ solid feet which aro
now disposed of, and which consequently are to be deducted from the wh le number of feet, 13824. 8000 taken from 13824 leave 5824 feet. This deduction is most readily performed by subtracting the cubic number 8 , or the cube of 2 , (the figure of the root already found,) from the period 13 thousands, and bringing down the next period by the side of the remainder, making 5824, as before.

The cube $\mathrm{A} D$ is now to be enlarged by the addition of 5824 solid feet, and in order to preserve the cubic form of the block, the addition must be made on one half of its sides, that is on 3 sides, $a, b \& c$. Now, if the 5824 solid feet be divided by the square contents of these 3 equal sides, that is, by 3 times $(20 \times 20=400)=1200$, the quotient will be the thickness of the addition made to each of the sides a, b, c. But the root, 2 tens, already found, is the length of one of these sides; we therefore square the root, 2 tens, $=20 \times 20=400$, for the square contents of one side, and multiply the product by 3 , the number on sides, $400 \times 3=1200$; or, which is the same in effect, and more convenient in practice, we may square the 2 tens, and multiply the product by 300 , thus, $2 \times 2=4$, and 4×300 $=1200$, for the divisor, as before.

Operation continued. $13 \dot{8} 24(24$ root. 8
divisor, 1200)5824 dividend.
4800
960
64
5824 subtrahend.
0000

The divisor 1200, is contained in the dividend 4 times: consequently, 4 feet is the thickness of the addition made to each of the three sides, a, b, c, and $4 \times 1200=4800$ is the solid feet containel in these additions; but, if we examine F g. II. we shall perceive that this addition to the 3 sides does not complete the cube; for
to be de24. 8000 leduction is c number 8 , ady found, wn the next 5824, as be-
e addition of ubic form of e half of its e 5824 solid 3 equal sides, the quotient each of the found, is the are the root, tents of one nber or sides, ect, and more 2 tens, and and 4×300

1200 , is conc dividend 4 quently,4 feet ess of the adto each of the a, b, c, and 800 is the sohined in these ut, if we exII. we shall this addition les does not e cube; for

20
there are deficiencies in the 3 corners, n, n, n. Now the length of each of these deficiencies is the same as the length of each side, that is 2 tens $=20$, and their width and thick20 ness are each equal to the last quotient figure 4 ; their contents, therefore, or the number of feet required to fill these deficiencies, will be found by multiplying the square of the last quotient figure $4^{2}=16$, by the length of all the deficiencies, that is, by 3 times the length of each side, which is expressed by the former quotient figure, 2 tens. 3 times 2 tens are 6 tens $=60$; or, what is the same in effect, and more convenient in practice, we may multiply the quotient figure 2 tens, by 30 , thus, $2 \times 30=60$, as before; then 60×16 $=960$, contents of the three deficiencies n, n, n.

Fig. III.
20×4

20×4
By examining Fig. III. we perceive there is still a 4. deficiency in the corner where the last blocks meet -this deficiency is a cube, each side of which is e20 qual to the last quotient figure, 4. The cube of 4, therefore, $(4 \times 4 \times 4=64)$ will be the solid contents of this corner, which in Fig. IV. is seen filled.- Now the sum of thesc several additions, viz. 4800×960 $X 64=5824$, will make the subtrahend, which, subtracted from the dividend, leaves no remainder, and the work in done.

Fig. IV.
24 feet.

24 feet.

Fig. IV. shows the pile which 13824 solid blocks of one foot each would make, when laid together, and the root 24 , shows the length of 24 one side of the pile.

The correctness of the work may be ascertained by cubing the side now found, 24^{3}, thus, $24 \times 24 \times 24=$ 13824, the given number ; or it may be proved by adding together the contents of all the several parts, thus, Feet.
$8000=$ contents of Fig. I.
$4800=$ addition of the sides a, b, and c, Fig. I.
$960=$ addition to fill the deficiencies n, n, n, Fig. II. $64:=$ addition to fill the corner e, e, e, Fig IV.

13842 = contents of the whole pile, Fig. IV. 24 feet on each side.

Note.-The best method of illustrating the extraction of the cube root, is by means of small wooden blocks, one in the form of a cube, to represent Fig. I. and 7 smaller ones to represent the deficiencies. The form and explanation of the figures will suggest the method of making them.
2. What is the cube root of 34645976 ?

Operation. 34645976(326 Root. 27 $\left.3^{2} \times 300=2700\right) \frac{7645}{54,00}$ first dividend.
$2^{3} \times 3 \times 30=360$
$2^{3}=8$

Curried up.

5768 first subtrahend.
$\left.32^{2} \times 300=307200\right) 1877976$ second dividend.
\(\left.6^{2} \times 32 \times 30=\begin{array}{r}\overline{1843200}

34560

216\end{array}\right]\)| $\overline{1877976}$ second subtrahend. |
| :--- |
| $\frac{0000000}{}$ |

3. What is the cube root of 729 ?
4. What is the cube root of 12167 ?
5. What is the cube root of 4826809 ?
6. What is the cube root of 9129329 ?
7. What is the cube root of 15625000 ?
8. What is the cube root of 997002999 ?
9. What is the cube root of 469097433 ?
10. What is the cube root of 445943744 ?
11. What is the cube root of 41421,736 ? Ans. 34,6 .
12. What is the cube root of 84,604519 ? Ans. 4,39 .
13. What is the cube root of 49 ?
14. What is the cube root of ,981? Ans. 9,936+

The cube root of a fraction is obtained by extracting the root of the numerator and denominator, but if this cannot be done, it may be changed to a decimal, and the root extracted.
15. What is the cube root of $\frac{-8}{2}$? Ans. $\frac{2}{3}$. Of $\frac{1}{3} \frac{25}{4}$?

application.

1. The content of a cubical piece of timber 103823 solid inches ; how many inches is it each way? Ans. 47.
2. What is the side of a cubical mound, equal to one 288 feet long, 216 feet broad, and 48 feet high ?

Ans. 144 feet.

[^97]3. The statute bushel contains 2150,4252 cubic or solid inches; what must be the side of a cubic box that will contain the same quantity? Ans. 12,907 inches.
4. A stone of a cubic form contains 474552 solid inches ; what is the superficial content of one of its sides?

Ans. 6084.

MENSURATION.

Mensuration signifies to measure, hence measuring surfaces is called mensuration of superfices; and measuring of solids is called mensuration of solids.

To find the area of a square or of a rectangle. RULE.
Multiply the length by the breadth, and the product will be the area, or superficial content.

EXAMPLES.

1. How many acres are contained in a piece of land 160 rods long, and 80 rods wide?

A rectangle is a four sided figure like a square, in which the sides are perpendicular to each other, but the adjacent sides are not equal.

$$
160 \times 80=12800 \div 160=80 \text { acres }
$$

2. How many acres are there in a lot of land 320 rods long, and 160 rods wide?

Ans. 320 acres.
3. What is the area of a square field of which the sides are each 33,08 chains? Ans. 109A. 1R. 28P. +
4. What is the content of a square piece of land of which the sides are 25 rods each? Ans. 3A. 3R. 25P.

To find the area of a triangle. rule.
Multiply the bose by the perpendicular height and one half of the product will be the area.
Quesirioni- What is Mensuration? How do we find the area of a square or rectangle? How do we find the area of a triangle?

4252 cubic or cubic hox that 12,907 inches. 552 solid inch-「its sides? Ans. 6084.
measuring surand measuring ngle. and the prointent.
piece of land ur sided figure the sides are other, but the qual.
res.
land 320 rods ns. 320 acres. of which the A. 1R. 28P. + ce of land of 3A. 3R. 25P.
cular height area.
e find the area a of a triangle?

A triangle is a figure bounded by three straight lines. Thus, $A B C$ is a triangle. AB is the B base, B C the perpendicular, and A C the hypothenuse. EXAMPLES.

1. The base of a triangle is 40 yards and the perpendicular 20 yards; what is the area? Ans. 400 square yards.
2. In a triangular field the base is 40 chains and the perpendicular 15 chains: how much does it contain?

Ans. 30 acres.
3. How many acres are contained in a trangle whose base is $\mathbf{3 2 0}$ rods, and perpendicular 40 rods? Ans, 40 acres.

To find the area of a triangle having the three sides given. RULE.
I. From half the sum of the three sides subtract each side severally.
II. Multiply the half sum and the three remainders continually together, and the square root of the product will be the area required.

EXAMPLES.

1. Required the area of an oblique triangle, the three sides of which are 13,14 , and 15 rods.

$V^{70.56(84 \text { rods. }}$
Qurarion. - What is the rule for finding the area of a triangle
aving the three sides given? having the three sides given?
2. Required the area of an oblique triangle, the three sides of which are 80,120 , and 160 rods.

Ans. 29 aeres 7 poles.
To find the circumference of a circle when the diameter is given.

Multiply the diameter by 3,1416 and the product will be the circumference.

A circle is the portion
 of a plane bounded by a curved line every part of which is equally distant from a certan point within, called the centre. The curved line AEBD is called the circumference; the point C the centre ; the line AB passing through the centre a diameter, and CB the radius. The circumference AEBD is 3,1416 times greater than the diameter AB. Hence, if the diameter is 1 , the circumference will be 3,1416 . Wherefore if the diameter is known, the circumference is found by multiplying 3,1416 by the diameter. EXAMPLES.

1. The diameter of a circle is 93 feet; what is the circumference? Ans. 292,1685 feet.
2. The dianeter of a cirele is 20 rods, what is the circumference?

Ane. 62,832 rods.
To find the diameter of a circle when the circumference is given RULE.
Divide the circumference by 3,1416 and the quotient will be the diameter,

EXAMPLES.

1. What is the diameter of a circle whose circumference is 78,54 feet?

Ans. 25 feet.

[^98]gle, the three ceres 7 poles.
the diameter
the product
the portion anded by a part of which rom a certain d the centre. EBD is callrce; the point line AB passntre a diameradius. The ter than the he circumferter is known, , 1416 by the
what is the 92,1688 feet. hat is the cir62,832 rods.
ircumference
nd the quo-
se circumferAns. 25 feet.
2. What is the diameter of a circle whose circumference is 11752,1944 rods?

Ans. 37,09 rods.
To find the area of a circle when the diameter is known. rule.
Square the diameter, and then multiply by the decimal ,7854.

EXAMPLES.

1. What is the area of a circle whose diameter is 5 feet? * Ans, 19,6350.
2. What is the area of a circle whose diameter is 8,75 feet? Ans. 60,1322 sq. feet.
3. How many acres are there in a circle of one mile diameter?

Ans. 502A. 2R. 24P. +
To find the surface of a sphere or ball. nULE.
Multiply the square of the diameter by the decimal 3,1416 . examples.

1. What is the surface or area of a sphere whose dianteter is 12 feet? Ans. 452,3904 sq. ft.
2. What is the surface of a globe whose diameter is 7 ? Ans. 153,9384.
3. Required the area of the surface of the carth, its mean diameter being 7918,7 miles?

Ans. 196996571,722104 sq. miles.
To find the solidity of a sphere or globe.

rule.

Multiply the cube of the diameter by the decimal ,5236 and the product will be the solidity. examples.

1. What is the solidity of a sphere whose diameter is 17 inches.
$17 \times 17 \times 17 \times, 5236=2572,4468$ solid inches. Ans.

[^99]2. What is the solidity of a glohe whose diameter is 12 inches? Ans. 904, 7808 solid inches.

To find the convex surface of a cylinder. RULE.
Multiply the circumference of its base by the altitude, and the product will be the answer.

EXAMPLES.

1. What is the convex surface of a cylinder, the diameter of whose base is 20 and altitude 50 ?

Operation.

3,1416 20

62,8320 50

We first multiply the diameter by by 3,1416 which gives the circumference of the base. Then multiplying by the altitude, we obtain the convex surface.

Ans. 3141,6000
2. Required the surface of a cylinder, the diameter of whose base is 20 and the altitude 20? Ans. 1256,64.

TIMBER MEASURE.

I. To find the solid contents of a square or four sided stick of timber of equal bigness from end to end.
RULE.

Multiply the breadth by the depth, and then multiply the product by the length, and the result will be the solid contents.

EXAMPLES.

1. A squared piece of timber 15 inches broad and 15 inches deep, and 18 feet long; how many solid feet does it contain?

Ans. 28,152.

[^100]se diameter is 3 solid inches.
base by the aswer.
ler, the diam-
diameter by ne circumfern multiplying n the convex
e diameter of ns. 1256,64.
or four sided d.
d then mulresult will
road and 15 d feet does it ns. 28,152.
a cylinder be tick of timber
2. What is the solid contents of a piece of timber whose breadth is 16 inches, depth 12 inches, and length 12 feet? Ans. 16 feet.
3. How many solid feet in a stick of ship timber, whose breadth is 3 feet, and depth $2 \frac{1}{2}$ feet, and length 45 feet?

Ans. 337,5 feet.
II. To find the solid contents of a round stick of timber of equal bigness from end to end.
RULE.

Multiply the area of one end by the length, and the product will be the solid contents.

EXAMPLES.

1. What is the solid contents of a round stick of timber of equal bigness from end, whose diameter is 28 inches and length 25 feet?

Ans. $1061 \frac{136}{4} 4$ feet.
2. Required the solid contents of a round stick of timber, whose diameter is 18 inches and length 50 feet?

Ans. 88,3575 solid feet.
III. To find the solid contents of a tapering stick of umber, whether square or round, when one end is a point.

RULE.
Multiply the area of the big end by one third of its length, and the product will be the answer. examples.

1. What is the contents of a tapering square stick of timber 24 feet 9 inches long, 16 inches square at one end, and a point at the other? Ans. 14-9 $\frac{9}{4}$? feet.
2. What is the contents of a tapering round stick of timber 30 feet long, 18 inches diameter at one end, and a point at the other?

Ans. $17+$ feet.

[^101]IV. To find the solidity of a square piece of timber which tapers regularly but does not come to a point.

RULE.

1st. Add together the breadths at the two ends and also the depths.

2nd. Multiply these sums together, and to the result add the products of the depth and breadth at each end.

3d. Multiply the last result by the length, and take one sixth of the product, which will be the solidity.

EXAMPLES.

1. How many cubic feet in a piece of timber, the breadth and depth of the large end being 14 inches and 12 inches: and of the smaller, 6 and 4 inches, and the length $30 \frac{1}{2}$ feet.

14	12	16×20	$=320$
6	4	14×12	$=168$
20	$\frac{16}{16}$		

But 512 sq . in. $=\frac{2}{9}$ sq. ft.
Then, $\frac{312}{3} \times 30_{2} \times \frac{1}{6}=18_{2}^{2}-$, solid fect.
2. What is the number of cubic feet in a stick of hewn timber, whose ends are 30 inches by 27 and 24 inches by 18, and the length 24 fect.

Ans. 102 solid feet.
3. How many cubic feet in a stick of timber whose larger end is 25 feet by 20 , the smaller 15 feet by 10 , and the length 12 feet?

Ans. 3700 solid feet.
V. To find the solid contents of a tapering round stick of timber, when the small end is not a point.

[^102]piece of timber to a point.
t the two ends
or, and to the nd breadth at
e length, and h will be the
of timber, the t inches and 12 and the length
e inches.

ct.

stick of hewn d 24 inches by 102 solid feet. timber whose et by 10, and 700 solid feet.
ground stick
tick of timber $n t$, what is the The third?

RULE.

Multiply each diameter by itself separately; muliply one diameter by the other : add these three products together, multiply their sum by the length, annex two ciphers to the product, and divide by 382 ; the quotient will be the solid contents.

examples.

1. What is the solid contents of a round stick of timber whose diameter at the big end is 12 inches, at the small end 9 inches, and length 30 feet? Ans. $18-{ }_{-1}{ }^{2.3}{ }_{4}^{3}$? feet.
2. What is the solid contents of a round block of marble, whose diameter at the big end is 23 inches, and small end 15 inches, and length 34 feet 8 inches?

Ans. 68 feet+.
VI. To find how many solid feet a round stick of timber ot equal thickness from end to end, will contain when hewn square.

rule.

Take one half of the diameter in inches and square it, this square being doubled and multiplied by the length gives the content in inches.

examples.

1. If the diameter of a round stick of timber be 18 inches, and its length 30 feet, how many solid feet will it contain when hewn square? Ans. $33+\frac{0.8}{4}$ feet.
2. If a round stick of timber 28 feet long and 22 inches diameter, was hewn square, how many solid feet will it contain.

Ans. 477 $\frac{8}{4} \frac{1}{4}$ feet.
VII. To find how many square edged boards of a given thickness can be sawn from a \log of a given diameter.

[^103]RULE.
1st. Find the solid contents of the log when made square by the last rule.

2nd. Then say, as the thickness of the board, including the saw carf, is to the solid feet, so is 12 inches to the number of feet of boards.

EXAMPLES.

1. How many feet of square edged boards, $1 \frac{1}{2}$ inchem thick, including the saw gap, can be sawn from a $\log 10^{\circ}$ feet long and 18 inches diameter?

Ans. 144.
2. How many square feet of boards, $1 \frac{3}{4}$ inclhes thick, including the saw gap, may be sawn from a $\log 28$ feet long and 24 inches diameter?

Ans. 384.

GAUGIN(.

Gauging is finding the contents of any box, tub, casix or other vessel.

EXAMPLE.

1. There is a cask whose head diameter is 25 inches, bung diameter 31 inches, and whose length is 36 inches; how many wine gallons does it contain? Also, how many beer gallons?

The mean diameter of a cask is found by adding to the head diameter two thirds of the difference between the bung and head diameters, or if the staves are not much curved, by adding three fifths. This reduces the cask to a cylinder.

Then, to find the solidity, we multiply the square of the mean diameter hy the decimal ,7S54 and the product by the length ; this will give the solid contents in cubic inches, which divided by 231 (the cubic inches in a gallon wine

[^104]measure) will give the content in wine gallons, and divided by 282 (the cubic inches in a gallon beer measure) will give the content in ale or beer gallons.

In this process we see that the square of the mean diameter will be multiplied ,7854, and divided for wine gal. by 231. Hence we may contract the operation by only multiplying their quotient ($7.33^{2}=, 0034$;) that is,, 0034 (or by ,34, pointing off 4 figures from the product for decimals.) For the same reason we may, for beer gallons, multiply by ($\frac{7854}{282}=, 0028$, nearly,, 0028 . Hence, the following

RULE.

Multiply the square of the mean diameter by the length ; then multiply this product by 34 for wine. or 28 for beer, and pointing off 4 decimals, the product will be the content in gallons and decimals of a gallon.

In the above example, the bung diameter is 31 n .- 25 inches the head diameter $=6 \mathrm{in}$. difference, and $\frac{2}{8}$ of $6=4$ inches ; 25in. $+4 \mathrm{in} .=29 \mathrm{in}$. mean diameter.

Then $29^{2}=481$, and $481 \times 36 \mathrm{in} .=30276$.
Then $\left\{\begin{array}{l}3276 \times 24=1029384 . \quad \text { Ans. 102,9384 wine gal. } \\ 3276 \times 28=347728 .\end{array}\right.$ Ans. 847728 beer gal.
2. How many wine gallons in a cask whose bung diameter is 36 inches, head diameter 30 inches, and length 50 inches.

Ans. 196,52gal.
3. How many wine gallons, and how many beer gallons, in a cask whose length is 36 inches, bung diameter 35 in ., and head diameter 30 in ?

$$
\text { Ans. }\left\{\begin{array}{l}
136 \text { wine gal. } \\
112 \text { beer gal. }
\end{array}\right.
$$

Qukstions. - How do we find the solidity of a cask 1 What will the product givel How are the cubic inches reduced to wine gallonst How to beer gallona? How may the operation be contractedt Repeat the rule.

DUODECIMALS.

Duodecimal is derived from the Latin word duodecim, signifying twelve.

They are fractions of a foot, which is supposed to be divided into twelve equal parts called primes, marked thus, ('). Each prime is supposed to be subdivided into 12 equal parts called seconds, marked thus, (1'). Each second is also supposed to be divided into 12 equal parts called thirds, marked thus, (${ }^{\prime \prime \prime}$), and so on to any extent.

It thus appears that $1!$ an inch or prime is $\frac{1}{1}$ - of a foot. $1^{\prime \prime}$ a second is $-\frac{1}{1-2}$ of $-\frac{1}{1}$, or $T^{\frac{1}{4}-\frac{1}{4}}$ of a foot. $1^{\prime \prime \prime}$ a third is $\frac{1}{1 \%}$ of $\frac{1}{1 \%}$ of $\frac{1}{1 \%}$, or $\frac{1}{17 \% \sigma}$ of a foot, \&c. Whenever therefore any number of seconds (as $4 \prime \prime$), are mentioned, it is to be understood as so many $T_{14}^{1} \frac{1}{4}$ of a foot, and so of the thirds, fourths, \&c.

Duodecimals are added and subtracted like other compound numbers, 12 of a less order making 1 of the next higher, thus,
$12^{\prime \prime \prime \prime \prime}$ fourths make 1 third $1^{\prime \prime \prime}$. $12^{\prime \prime \prime}$ thirds make 1 second $1^{\prime \prime}$. $12^{\prime \prime}$ seconds make 1 prime or inch 1^{\prime}. 12^{\prime} inches or primes make 1 foot.
These marks are called $" 川$ are called indices.
Duodecimals are chiefly used in measuring surfaces and solids.

MULTIPLICATJON OF DUODECIMALS.

RULE.

Set the multiplier in such order that the feet thereof may stand under the lowest denomination of the multiplicand. Then multiply and carrv one for every 12 from one denomination to another,

[^105]and set down the result, so that the lowest denomination in the product may stand directly under the number we multiply by. Then add as in compound addition.

EXAMPLES.

1. A load of bark measures 12 ft .3 in . long, 4 ft . 2 in . high, and 3 ft . 6 in . wide. Required the number of solid feet therein.

Operation.
123^{\prime} 42^{\prime}

490
$20^{\prime} 611$
$510^{\prime} 6^{\prime \prime}$
361
15316 256.30 of the load.
4. A board measures 28 ft . 10 in . long, and 3 ft .5 in . wide; required its contents. Ans. 98ft. 6 in. $2 \prime$ '.
5. In a pile of wood 176 ft . in length, $3 \mathrm{ft} .9^{\prime}$ wide, and $4 \mathrm{ft} .3^{\prime}$ high, how many cords?

Ans. 21 cords, and 7- $\frac{5}{16}$ cord ft. over.
6. How many square feet in a pavement $371 \mathrm{ft} .2^{\prime} 6^{\prime \prime}$ in length, and $181 \mathrm{ft} .1^{\prime} 9^{\prime \prime}$ in breadth ?

Ans. $67242 \mathrm{ft} .10^{\prime} 1^{\prime \prime} 4^{\prime \prime \prime \prime} 6^{\prime \prime \prime \prime \prime}$.
7. What is the price of a marble slab, whose length is - 5 ft .7 in . and the breadth 1 fous 10 in . at 6 s . per foot?

Ans. £3 1s. 5d.
8. What will the paving of a court yard come to at 3 s . 2 d . per yard, if the length be 27 feet 10 inches, and the breadth 14 feet 9 inches? Ans. £7 4s. 5d.

POSITION.

Position is a rule for finding, an unknown number, by means of supposed numbers. It is of two kinds, Single and Double.

These rules are generally given by writers on Arithmetic; yet most of the questions that are usually solved by them may be easily worked on general principles, and all of them admit of very simple solutions, by Algebra. \cdot

SINGLE POSITION.
Single Position includes the solution of questions by one supposed number.

RUle.

Suppose any number, and perform on it the operation indicated in the question; then

As the result of the operation,
Is to the number given;
So is the supposed number,
To the number sought.

[^106]Proof.-Perform, on the number found, the operation nd 3 ft . 5 in . $3 \mathrm{ft} .6 \mathrm{in} .2^{\prime \prime}$. ft. 9^{\prime} wide,
ord ft. over. $371 \mathrm{ft} .2^{\prime} 6^{\prime \prime}$

$4^{\prime \prime \prime} 6^{\prime \prime \prime \prime}$.

 ose length is foot? £ 3 1s. 5 d. me to at 3 s . es, and the £7 4s. 5d.number, by nds, Single on Arithmey solved by ples, and all ebra.
tions by ono
it the opoindicated in the question, if the work be right the result will be the same as the given number.

EXAMPLES.

1. A School Master being asked how many pupils he had, answered. If I had as many more as I now have, half as many, one-third, and one-fourth as many, I should then have 148. How many scholars had he?

Operation.
Suppose he had 12 pupile. Here the supposed number
as $\operatorname{many}=12$
$\frac{1}{2}$ as many $=6$
$\frac{1}{3}$ as many $=4$
$\frac{1}{4}$ as many $=3$
is 12 , then as many more, the $\frac{1}{2}$, the $\frac{1}{8}$, and the $\frac{1}{4}$ of 12 added together make 37 , then according to the rule we say. as $37: 148:$: 12 to 48 the answer.

As 37 : 148 : : $12: 48$ Ans.
2. What number is that, which being increased by 1 , $\frac{1}{3}$, and $\frac{1}{4}$ of itself, the sum shall be 125 ? Ans. 60 .
3. A. B. C. buy a quartity of cloth for $£ 340$; of which A. pays three times more than B. and B. four times more than C ; what did each pay?

Ans. A. paid $£ 240$, B. $£ 80$, and C. $£ 20$.
4. A person bought a chaise, horse and harness, for $\boldsymbol{£} 60$; the horse came to tivice the price of the harness, and the chaise to twice the price of the horse and harness. What did he give for each? Ans. harness, $\mathbf{£ 6} \mathbf{1 3}$. 4d. ; horse, £13 6s. Sd. ; chaise, ef40.
5. A gentleman being asised how much money he had on hand, said that $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{6}$ of his money amounted to £114. What amount of money had he? Ans. £120.
6. A Gentleman being asked his age, said, if $\frac{3}{5}$ of the years I have lived, be multiplied by 7, and $\frac{2}{8}$ of them be added to the product, the sum will be 219 ; what was his age ?

Ans. 45 years.
Question.-How is Pusition proved?

DOUBLE POSITION.

Double Position is used for solving such questions as require two supposed numbers.

IULE.
Suppose any two convenient numbers, and proceed with each of them separately according to the conditions of the question : then mark the errors with the signs + , or - according as the result of the operation, exceeds or fulls short of the given number in the question. Tihen multiply the first supposed number by the second error, and the second supposed number 8 y the first error, and divide the sum of the products by the sum of the errors, if they are diflerently marked; or the difference of the products by the difference of the errors, if they are marked alike, and the quotient will be the answer:-Proof, as in Single Position. examples.
Divide $\mathscr{L} 1000$, so that B. may have twice as much as A., wanting $£ 80$, and \mathbf{C}. three times as much, wanting fl50; what was the share of each?

Operation.
Nirst, suppose A. had £200
then B. had 320
and C. had 450
970
Supposed number 1000
too small, hence
the error is also. -30 error. 2nd, suppose A. had $£ 180$
then B. had 280 and C. had 390 $\overline{850}$
Supposed number) 1000 : too stall, hence the errons are alike. -150 error.

We now multiply the first supposed number 200 by the last error $150=30000$, also the last supposed number 180 by the first error $30=5400$. Then as the errors are marked alike, we divide the difference of the prcducts 30000- 54.00 $=2460$ by the difference of the errors 150 $-30=120$, and the quotient is £205 A's

[^107]share, then $205 \times 2-80=330$ B's share and $205 \times 3-$ $150=$ C's share.
2. A. B. and C. bui" a house which cost $£ 500$, of which A. paid a certan sum ; B. paid $£ 10$ more than A. and C. paid as much as A. and B. both; how much did each man pay?

Ans. A. paid $£ 120$, B. £130, and C. $£ 250$.
3. What number is that, which being multiplied by 3 , the prodnct increased by 4 , and the sum divided by 8 , the quotient will be 32 ?

Ans. 84.
4. If my horse eost six times as much as it did, more £4, the sum would be $£ 100$; what was the price of the horse?

Ans. £16.
5. Two men, A. and B. lay out equal sums of money in trade ; A. gains $£ 126$, and B. loses $£ 87$, and A's money is now double to B 's; what did each lay out?

$$
\text { Ans. } £ 300 \text {. }
$$

6. A laborer was hired for 60 days, upon this condition, that for every day he wrought he should receive 4 s . and for evers day he was idle should forfeit 2 s ; at the expiration of the time he received $£ 710 \mathrm{~s}$. ; how many days did he work, and how many was he idle?

Ans: He worked 45 days, was idle 15 days.
7. There was a fish caught below Kingston, whose head was 9 inches long; his tail was as long as his head and half his borly, and the length of his body was equal to that of his head and tail: what was his whole length?

Ans. 6 feet.
8. A person has two horses, and a saddle worth $\mathbf{£ 5 0}$; now, if the saddle be put on the back of the first horse, it will make his value double that of the second; but if it be put on the back of the second, it will make his value triple that of the first ; what is the value of each horse?

Ans. one $£ 30$, the other $£ 4.0$.
9. Two gentlemen, A. and B. have both the same income ; A. saves $\frac{1}{6}$ of his, but B. by expending $£ 50$ a year
more than A. at the end of 4 years finds himself $£ 100$ in debt; what does each receive and spend per annum?

Ans. Each receives $£ 125$ per annum. A. spend $\boldsymbol{£ 1 0 0}$, and B. $£ 150$ a year.

ANNUITIES.

An annuity is a sum of money, payable every year, for a certain length of time, or forever.

An annuity, in the proper sense of the word, is a sum paid annually; yet payments made at different periods are called annuities.

Pensions, rents, salaries \&c. belong to annuities. When annuities are not paid at the time they become due, they are said to be in arrears.

The sum of all the annuities in arrears, with the interest on each for the time they have remained due, is called the amount.

When an annuity is to continue forever, its present worth is a sum, whose yearly interest equals the annuity.
I. To find the amount of an annuity at simple interest.

> RULE.

First, find the interest of the given annuity for one year, and then for $2,3,4$, and so on, up to the given number of years, less 1 . Then multiply the annuity by the given number of years, and add the product to the whole interest, and the sum will be the amount sought.

EXAMPLES.

1. What is the amount of an annuity of $£ 100$ for four. years, computing interest at 7 per cent.?

Questions.--What is an annuity? When are annuities sald to be in arrears? What is the amount? When an annuity is to cuntinueforever, what is its present worth? How do we find the amount of an annuity at simple interest?
elf $\boldsymbol{£} 100$ in nnum?
A. spends
ry year, for d , is a sum periods are
es. When due, they
the interest ; called the
sent worth ty:
le interest.
nuity for ap to the tiply the and add sum will

0 for four.
annuities.
237
The interest of $£ 100$, at $\mathbf{7}$ per cent. for $\mathbf{1}$ year, is $\mathbf{£} 7$. for 2 years, 14. for 3 years, 21. Four year's annuity, at $£ 100$ per year is $£ 100 \times 4=400$. Ans. £4.42
2. If an annuity of $£ 70$ be forborne 5 years, what will be due for the principal and interest at the end of said term, simple interest being computed at 5 per cent. per annum?

Ans. $£ 385$ 0s.
3. A house being let upon a lease of 7 years, at $£ 400$ per annum, and the rent being in arrear for the whole term, I demand the sum due at the end of the term, simple interest being allowed at $£ 6$ per cent. per annum. Ans. $£ 3304$.
II. To find the present worth of an annuity at simple interest.

RULE.

First, find the present worth of each year by itself, discounting from the time it becomes due; then the sum of all these will be the present worth.

Note.-This rule depends on the principles of discount, ree page 129.

> EXAMPLES.

1. What is the present worth of $£ 400$ per annum, to continue 4 years, at 6 per cent. per annum? 106) $\quad 377,35849=$ pres't worth of 1 st. y'r. $\left.\begin{array}{l}112 \\ 118 \\ 124\end{array}\right\}: 100:: 400: \begin{array}{lll}357,14235= & 66 & 2 \mathrm{~d} . \mathrm{y}^{\prime} \mathrm{r} . \\ 338,98305= & 66 & 3 \mathrm{~d} . \mathrm{y}^{\prime} \mathrm{r} . \\ 322,58064= & 6 & 4 \mathrm{th} . \mathrm{y}^{\prime} \mathrm{r} .\end{array}$

$$
£ 1396,06503
$$

2. How much present money is equivalent to an annuity of $£ 100$, to continue $\mathbf{3}$ years; rebate being made at 6 per cent.? Ans. £268,37.

Questions.--How is the present worth of an annuity at sim. ple interest found? On what principles does this rule depend?
3. What is $£ 80$ yearly rent to continue 5 years worth in ready money at 6 per cent.? Ans. $£ 340$ 15s. 4d.

ALLIGATION.

The rule of Alligation teaches how to compound or mix together several simples of different qualities or prices, so that the composition may he of some intermediate quality or price.

It consists of two kinds, Alligation Medial, and Alligation Alternate.

ALLTGATION MEDIAL

Teaches how to obtain the value, or mean price of a mixturé, when the quantities and prices of the several arti-* cles are given.

RULE.

As the whole mixture is to the whole value, so is any part of the composition to its mean price.

EXAMPLES.

1. A merchant mixes 20 bushels of wheat at 10s. per bushel, with 36 bushels of corn at 6 s . per bushel, and 40 bushels of oats at 4 s . per bushel; what is a bushel of the mixture worth?
Operation.
$20 \times 10=200$ s. We first find the whole mixture to be $36 \times 6=216 \quad 96 \mathrm{bu} .$, and the whole value to be 576 s . $40 \times 4=160$ then according to the rule we say, as - \quad 96:576::1 bushel to the worth of one 96bu. $\quad 576 \mathrm{~s}$. bushel of the mixture.
As 96 : $576:$: $1: 6 \mathrm{~s}$. Ans.
2. A grocer mixes 60 lbs . of sugar at 8 d . per pound with 20lbs. worth 12 d . per pound; what is the value of one pound of the mixture?

Ans. 9d.

[^108]3. A tobacconist mixed 36 lbs of tobacco, at 1 s .6 d . per pound, 12 lbs . at 2 s . per pound, with 12 lbs . at 1 s .10 u . per pound; what is a pound of this mixture worth?

Ans. 1s. 8d.
4. A grocer mixed 2cwt. of sugar at 56s. per cwt. and 1 cowt . at 43 s . per cwt, and 2 at 50 s . per cwt. together; I demand the price of 3cwt. of this mixture? Ans. $\mathbf{£ 7} 13$ s.
5. A refiner melted together 80 z . of gold, of " 22 carats fine, 10 oz . of 20 carats fine, 12 oz . of 16 carats fine, 8 oz . of 18 carats fine; what was the value of the composition?

Ans. $18 \frac{L_{1}^{4}}{1: j}$ carats fine.

ALLIGATION ALTERNATE

Is the method of finding what quantity of each of the ingredients whose rates are given, will compose a mixture of a given rate ; so that it is the reverse of Alligation Medial, and may be proved by it. This is called Alligation Alternate, because the same question frequently admits of different answers.

CASE I.

When the prices of the several simples are given, to fird how much of each at their respective rates must be taken to make a compound or mixture, at any proposed price.

RULE.

I. Reduce the mean price and the prices of each separate article to the same denomination.
II. Connect with a line each price that is less than the mean price, with one or more that is greater ; and each price greater than the mean price, with one or more that is less.
III. Write the difference between the mean price and the price of each separate article opposite the price with which it is coraected; then the

[^109]sum of the differences standing against any price will express the relative quantity to be taken of that price.

EXAMPLES.

A merchant would mix wines worth 16s. 18s. and 22s. per gallon, in such a way that the mixture be worth 20 s. per gallon; how much must be taken of each sort?

Operation.

In this example 20s. is the mean price; then as 16 s . is less, and 22s.greater than the mean price, we connect 16 and 22; then as 18 s . is less than 20 s . it must also be connected with 22s.; then as the difference between 16s. and 20s. is $4 \mathrm{~s} .$, and between 18 s . and 20 s . is 2 s . the 4 and 2 must both be placed opposite 22, bccause 16 and 18 are both connected with that number, also because 22 is connected to 16 and 18 the difference between 20 and 22 must be placed opposite those two numbers. So that 2 gal. at 16 s . 2 at 183. and 6 at 22 s . will make a mixture worth 20 s . per gallon, or any other quantities bearing the proportion of 2,2 , and 6 .
2. What proportions of tea at 8 s . at 9 s . at 11 s . and at 12 s. must be taken to make a mixture worth 10 s. per pound. Ans. $2 l \mathrm{lhs}$. at $8 \& 12 \mathrm{~s}$. and 11 b . at 9 and 11 s .
3. A goldsmith has gold of 16 , of 18 , of 23 and of 24 earats fine ; what part must be taken of each, so th.at the mixture shall be 21 carats fine?

Ans. 3 of 16,2 of 18,3 of 23 , aud 5 of 24 .
4. What portions of wine at 14 s.s, at 24 ss., at $21 \mathrm{~s} .$, and at 10 s . per gallon, must be mixed together so that the mixture shall be worth 18s. per gallon? Ans. 6 gal. at 104., 3 at 14 s .4 at 21 s . and 8 gal . at 24 ss .

CASE II.

When one of the ingredients is limited to a certain quantity, to find the several quantitios of the rest, in proportion to the given quantity.

RULE.

I. Find the proportional quantities of the simples as in Case I.
II. Then say, as the number opposite the simple whose quantity is given, is to the given quantity, so is either proportional quantity to the part of its simple to be taken.

EXAMPLES.

1. How much wine at 5 s ., at 5 s .6 d ., and 6 s. per gal. must be mixed with 4 gallons at 4 s . per gallon, so that the mixture shall be worth 5 s .4 d . per gallon?

Operation.
\qquad 8). . Simple whose quantity is known. 16 s . and 20 s . t and 2 must 18 are both is connected 122 must be 2 gal . at 16 s . vorth 20s. per proportion of
t 11s. and at prth 10s. per at 9 and 11 s . 23 and of 24 h , so th.at the
and 5 of 24. , at $21 \mathrm{~s} .$, nnd that the mix. ; gal. at 10 s .,
8s. and 22s. worth 20s. sort?
mple 20s. is ice ; then as Id 22 s .greatmean price, 16 and 22 ; e connected wine at 6s. Bd. per gal. and some water: then I found it stood me in 6s. 4n. per gallon. I demand how much wine and how much water I took.

Ans. 95 gal. wine nt 6s. 8d. and 30 gal. water.

[^110]
CASE III.

When the whole composition is limited to a ceartain quantity.

RULE.

I. Find the proportional quantities as in Case I.
II. Then say, as the sum of the proportional quantities is to the given quantity, so is each proportional quantity to the part to be takeu of each.

EXAMPLES.

1. A grocer has four sorts of sugar worth $12 \mathrm{~d} ., 10 \mathrm{~d}$., 6 d ., and 4 d. , per pound; he would make a mixture of 144 lbs. worth 8 d . per lb. : what quantity must be taken of each sort?

Operation.

$12: 144:: 4: 48 \mathrm{lb}$ at 4 d .1
12:144:: $2: 24$ " " 6d.
12:1441: $2: 24$ " " 10d.
12:144::4:48 " " 12d. J ¢ $^{\text {a }}$

12 Sum of the proportional parts.
2. A grocer had four sorts of tea at 1 s., $3 \mathrm{~s} ., 6 \mathrm{~s} .$, and 10s. per Ib., the worst would not sell, and the best was ton dear; he therefore mixed 120 lbs . and so much of each sort as to sell it at 4 s . per lb . ; how much of each kind did he take? Ans. 60lbs. at 1s., 201bs. at 3s., 10 lbs . at 6 s . and 30 lhs at 10 s .
3. How much water at 0 per gallon, must be mixed with wine at 18 s . per gallon, so as to fill a vessel of 100 gallons, wbich may be afforded at 12 s . per gallon?

Ans. $33 \frac{1}{2}$ gal. water, and $66 \frac{2}{2}$ gal. wine.
4. A goldsmith has two sorts of silver bullion, one of 10 oz . and the other of 5 oz . fine, and has mind to mix a pound of it so that it shall be 8 oz . fine; how much of each sort must he take?

Ans. $4 \frac{1}{5}$ of 5 oz . fine, and $7 \frac{1}{5} \mathbf{1 0} \mathrm{oz}$. fine.
Quastinn. - When the whole composition is limited to a cere tain quantity, what is the rule?

ARITHMETICAL PROGRESSION, OR EQUI-DIFFERENT SERIES.

Any rank or series of numbers, consisting of more than two terms, which increases or decreases by a common difference, is called an Arithmetical Series or Progression.

When the series increases, that is, when it is formed by the constant addition of the common difference, it is called an ascending series, thus,

$$
1,3,5,7,9,11,13, \& c .
$$

Here it will be seen that the series is formed of a continual addition of 2 to each succeeding figure. When the series decreases, that is, when it is formed by the constant subtraction of the common difference, it is called a descending series, thus,

$$
14,12,10,8,6,4,2, \& \mathrm{c}
$$

IT a the series is formed by a continual subtraction of $2 \mathrm{f} \cdot \infty \times$, ach preceding figure.

The figures that make up the series are called the terms of the series. The first and last terms are called the cortremes, and the other terms the means.

From the above, it may be seen that any term in a series may be found by continued addition or subtraction, butin a long series this process would be tedious. $\mathbf{\Lambda}$ much more expeditious method may be found.

The ages of six persons are in arithmetical progression. The youngest is 8 years old, and the common difference is 3 ; what is the age of the eldest? In other words, what is the last term of an arithmetical series, whose first term is 8 , the number of terms 6 , and the common difference 3 ?

$$
8,11,14,17,20,23
$$

Examining this series, we find that the common difference, 3 , is added 5 times, that is, one less than the numbber of terms, and the last term 23, is larger than the first

10 oz . tine. ted to a cer.
term, by 5 times the addition of the common difference, three ; Hence,

The age of the elder person is $5 \times 3+8=23$ Ans.
Therefore, when the first term, the number of terms, and the common difference, are given, to find the last term we have the following

RULE.

Multiply the common difference into the number of terms, less '1, and add the product to the first term.

EXAMPLES.

1. The first term is 3 , the common difference 2 , and the number of terms 19: what is the last term?

Operation.
18 number of terms less 1.
2 common difference.
36
3 1st term.
Ans. 39 last term.
2. If the first term be 4 , the common difference 3 , and the number of terms 100, what is the last term? Ans. 301.
3. Johm owes Samuel a certain sum, to be paid in arithmetical progression ; the first payment is 6 d ., the number of payments 52 , and the common difference of the payments is 12 d . What is the last payment? Ans. £2 11s. 6d.
4. A man put out $£ 100$, at 7 per cent. simple interest, Which amounted to $£ 107$ in a year, $£ 114$ in 2 years, and so on in arithmetical progression, with the common difference of 57 : what was the amount due at the expiration of 50 years? Ans. $£ 450$.
5. A man bought 100 yards of cloth in arithmetical progression : for the first yard he gave 4 pence and for the last 301 pence, what was the common increase on the price of each yard?

[^111]As he bought 100 yards, and at an increased price upon every yard, it is evident that this increase was made 99 times, or once less, than the number of terms in the series. Hence the price of the last yard was greater than the first, by the addition of 99 times the regular increase. Therefore if the first price he subtracted from the last, and the remainder be divided by the number of additions 99 , the quotient will be the common increase ; $301-4=297 \div$ $99=3$, the common difference. Hence, when the extremes and number of terms are given, to find the common difference, we have the following

> RULE.

Subtract the less extreme from the greater, and divide the remainder by the number of terms less 1 , and the quotient will be the common difference.

lexamples.

1. The extremes are 4 and 104 , and the number of terms 26 ; what is the common difference?

$$
104-4 \div \overline{96-1}=4 \text { Ans. }
$$

2. A man has 8 sons, the youngest is 4 ycars old and the eldest 32, their ages increase in arithmetical progression: what is the common difference of their ages? Ans. 4 years.
3. A man is to travel from Kingston to a certain place in 12 days: to go three miles the first day, increasing every day by the same number of iniles, so that the last day's journey may be 58 miles: required the daily increase.

Ans. 5 miles.
Suppose we are required to find the sum of all the terms in a series whose first term is 2 , the number of terms 10 , and the common difference 2.

$$
\begin{array}{r}
2,4,6,8,10,12,14,16,18,20 . \\
20,18,16,14,12,10,8,6,44, \\
\hline 22,22,22,22,22,22,22,22, \\
\hline 22,
\end{array}
$$

The first row of figures above, represents the given se-
Querrion.- When the extremes and number of terms are given how do we find the common differetice?
ries. The second, the same series with the order inverted, and the third, the sums of the additions of the corresponding terms in the two series. By examining these series we shall find that the sums of the corresponding terms are the same, and that each of them is equal to the sum of the extremes, viz. 22. Now, as there are 10 of these pairs in the two series, the sum of the terms in both, must be $22 \times 10=220$.

But it is evident, that the sum of the terms in one series can be only half as great as the sum of both, therefore, if we divide 220 by two, we shall find the sum of the terms in one series, which was the thing required. $220 \div 2=$ 110, the sum of the series. Hence,

When the extremes and number of terms are given, to find the sum of the terms, we have the following

RULE.

Multiply the sum of the extremes by the number of terms, and divide the product by 2.

EXAMPIES.

1. The extremes are 2 and 100 , and the number of terms 22: what is the sum of the scrics?

Operation.
2 first term. 100 last term.

102 sum of extremes.
22 number of terms.

$$
\text { 2) } 224 \cdot 4=1122 \text { Ans. }
$$

2. How many strokes does the hammer of a clock strike in 12 hours?

Ans. 78.
3. A man bought 19 yards of linen in arithmetical progression ; for the first yard he gave 1s. and for the last yard $£ 117_{\mathrm{s} . ;}$ what did the whole come to? Ans. $£ 181 \mathrm{~s}$.
4. There are in a certain triangular field, 41 rows of corn; the first row, being in one corner, is a single hill,

[^112]inverted, rrespondseries we is are the of the expairs in must be
one series erefore, if the termi; $220 \div 2=$ given, to
number
rof terms tion.
n.
a.
extremes. of terms.

Ans.
a clock Ans. 78. thmetical r the last
£ 18 1s. 1 rows of ingle hill,
ne are giv.
and the last row, on the opposite side, contains 81 hills; how many hills of corn in the field? \& Ans. 1681.
5. Suppose 144 oranges were laid 2 yards distant from each other, in a right line, and a basket placed two yards distant from the first orange, what length of ground will that boy travel over, who gathers them up singly, returning with them one by one to the basket?

Ans. 23 miles 5 fir. 180 yards.

GEOMETRICAL PROGRESSION.

Any series of numbers, consisting of more than two terms, which increases by a common multiplier, or decreases by a common divisor, is called a Geometrical serics. Thus, the series $2,4,8,16,32, \& c \cdot$, cousists of terms, each of which is twice the preceding, and this is an increasing or ascenaing Geometrical series. The series 32, 16, 8, 4, 2, consists of numbers, each of which is one half the preceding, and this is a decreasing or descending Geometrical series. The common multiplier or divisor is called the Ratio, and the numbers which form the series are called Terms. In Arithmetical and in Geomeirical progression, if any tbree of the five following terms be given; the other two may be found.

1st. The first term. 2nd. The last term. 3d. The number of terms. 4th. The common difference. 5th. The sum of all the terms.

A man bought a piece of cloth containing 12 yards, the first yard cost 3 d ., the second 6 , the third 12 , and so on doubling the price to the last, what cost the last yard?
$3 \times 2 \times 2=3 \times 2^{\prime \prime}=$ 6144 Ans.

In examining the above prociss, it will be seen that the price of the second yard is found by multiplying the first

Questions.-What is a Geometrical series? Give an example of an ascending Geonetrical series? Deas:ribe a descending Geometrical series. What is the Ratio? What are the terms? What are the five terms, any three of which being given, the other two may be found.
payment into the ratio 2 once; the price of the third yard by multiplying by 2 twice, \&cc., and that the ratio 2 is used as a factor eleven times, or once less than the number of terms. The last term then, is the eleventh power of the ratio 2 , multiplied by the first term 3 . Hence, when the first term, ratio, and number of terms being given, to find the last term, we have the following

> RULE.

Raise the ratio to a power whose exponent is one less than the number of terms, and then multiply the power by the first term, the product will be the last term.

EXAMPLES.

1. The first term is 3 and the ratio 2 ; what is the 6 th term?
$2 \times 2 \times 2 \times 2 \times 2=2^{5}=32$
3 first term.

Ans. 96

2. A man purchased 12 pears: he was to pay 1 farthing for the first, 2 farthings for the second, and so on, doubling each time: what did he pay for the last?

Ans. £2 2s. 8d:
3. Λ gentleman dying, left 9 sons, and bequeathed his estate in the following manner: to his executors $£ 50$: his youngest son to have twice as much as the executors, and each son to have double the amount of the son next younger: what was the eldest son's portion? Ans. £25600.
4. Λ man plants 4 kernels of corn, which at harvest produce 32 kernels; these he plants the second year ; now suppposing the annual increase to continue 8 fold, what would be the produce of the 16 th year, allowing 1000 kernels to a pint?

Ans. 2199023255,552 bushels.
The most obvious method of obtaining the sum of the terms in a geometrical series, might be by addition, but ths is not the most expeditious, as will be seen.

[^113]A man bought 5 yards of cloth, giving 2 pence for the first, 6 pence for the second, and so on in a threefold ratio; what did the whole cost him?

$$
\begin{aligned}
& 2,6,18,54,162, \\
& 6,18,54,162,486 .
\end{aligned}
$$

The first of the above lines represents the original series. The second, that series, multiplied by the ratio 3.

By examining these series, it will be seen that their terms are all alike, excepting two : the first term of the first series, and the last of the second series. If now we subtract the first series from the last, we have for a remainder $486-2=484$ as all the intermediate terms vanish in the subtraction.

Now the last series is three times the first, (for it was made by multiplying. the first series by 3 ,) and as we have already subtracted once the first, the remainder must of course be twice the first.

Therefore if we divide 484 by 2 , we shall obtain the sum of the first series. $484 \div 2=242$ Ans.
As in the preceding process, all the preceding terms vanish in the subtraction, excepting the first and last, it will be seen, that the result would have been the same, if the last term only had been multiplied, and the first subtracted from the product.

Hence, when the extremes and ratio are given, the sum of all the terms may be found by the follouing

RULE.

Multiply the greater term by the ratio, from the product subtract the least term, and divide the remainder by the ratio less 1.

EXÂmples.

1. The first term is 3 , the ratio 2 , and last term 192 ; what is the sum of the serien?

$$
\text { Ans. } 192 \times 2-3=381 \div \overline{2-1}=381
$$

[^114]Note.-If the last term be not given in the question; frst find it by the rule in the last article, then proceed as above.
2. A gentleman whose daughter was married on New Year's day, gave her one shilling towards her portion, and was to double it on the first day of every month during the year; what was her portion? Ans. £204 15s.
3. What is the sum of the series $16,4,1, \frac{1}{4},-\frac{1}{16}, \frac{1}{6} 19$, and so on to an infinite extent? Ans. 211 .

Here it is evident the last term is 0 , or indefinitely near to nothing; the extremes therefore are 16 and 0 , and the ratio 4.
4. What debt can be discharged in a year, by paying 1 farthing the first month, 10 farthings the second, and so on, each month in a ten fold proportion?

$$
\text { Ans. £115740740 14s. } 94
$$

5. A man bought a horse, and by agreement was to give a farthing for the first nail, 2 for the second, 4 for the third, \&c. There were 4 shoes, and 8 nails in cach shoe ; what did the horse come to at that rate? Ans. $£ 44739245$ s. $\mathbf{3}_{4}^{3}$ d.

PERMUTATION.

Permutation is the method of fincling how many changes may be made in the order in which thingss succeed each other.

What number of permutations may be made on the letters A and B? They may be written A B. or B A.

What number on the letters ABC ?
Placing A first, A B C, or A C B,
Placing B first, BAC , or BCA ,
Placing C first, C A 1 , or C BA.
From these examples it will be seen, that of two things, there may be two changes, $1 \times 2=2$, and of 3 things there may he 6 changes, $1 \times 2 \times 3=6$.

Questions.-What is Permutation? How may we find what nufmber of changes or permutations may be made on any given number of things?

Hence, to find the number of different changes, or permutations of which any number of different things are capable,

Find the continued product of the natural series of numbers, from 1 to the given number.

EXAMPLES.

1. Four gentlemen agreed to remain together, as long as they could arrange themselves differently at dinner; how many days did they remain?

Ans. 24.
2. How many variations may there be in the position of the nine digits?

Ans. 362880.
3. Seven gentlemen met at an inn, and were so well pleased with their host, and with each other, that they agreed to tarry so long as they, together with their host, could sit every day in a different position at dinner; how long must they have staid at said inn to have fulfilled their agreement?

Ans. $110 \frac{1}{3} \frac{70}{35}$ years.

MISCELI」ANLOUS EXERCISES.

1. $7+4--2+3+40 \times 5=$ how many? Ans. 230.
2. $\overline{3+6-2} \times \overline{4 \times 2}=$ how many? Ans. $3 \frac{1}{2}$.
3. What number is that which being divided by 19 , the quotient will be 72? Ans. 1368.
4. What number is that which being multiplied by 15 the product will be $\frac{3}{4}$?

Ans. ${ }_{2}^{12}$.
5. What is the difference between six dozen dozen, and half a dozen dozen?

Ans. 792.
6. What is the difference between thrice five and thirty, and thrice thirty five ?

Ans. 60.
7. What fraction is that, to whicin if you add $\frac{2}{5}$, the sum will be $\frac{5}{6}$?

Ans. $\frac{1}{3} \frac{3}{2}$.
8. What number is that which being divided by $\frac{3}{4}$, the quotient will be 21 ?

Ans. 153.
9. What number taken from the square of 54 will leave 19 times 46 ? Ans. 2042.
10. If I buy 1000 Ells Flemish of linen for $£ 90$, what must it be sold for per Ell English, to make $£ 10$ by the purchase?

Ans. 3s. 4d.
1i. A snail in getting up a pole 20 feet high, was observed to climb up 8 feet cvery day, but to descend 4 feet every night ; in what time did he reach the top of the pole?

Ans. 4 days.
12. What number added to the 43 rd part of 4429 , will make the sum 240?

Ans. 137.
13. How many bushels of potatoes, at 1 s .6 d . per bushel, must be given for 32 bushels of barley, at 2 s .6 d . per bushel?

Ans. $53 \frac{1}{3}$ bu.
14. A boy bought a number of apples; he gave away 10 of them to his companions, and afterwards bought 34 more, and divided one half of what he then had among four companions, who received 8 apples each; how many apples did the boy first buy?

Ans. 40.
15. A man married at the age of 23 ; he lived with his wife 14 years; she then died, leaving him a daughter 12 years of age ; 8 years after, the daughter was married to a man 5 years older than herself, who was 40 years of age when the father died ; how old was the father at his death?

Ans. 60 ycars.
16. There is a room 18 feet in length, 16 feet in width, and 8 feet in height; how many rolls of paper, 2 feet wide, and containing 11 yards in each roll, will it take to cover the walls? Ans. $8 \frac{16}{60}$ rolls.
17. How many steps of 30 inches each must a man take in travelling $54 \frac{1}{2}$ miles?

Ans. 115104 steps.
18. How much time would a person redeem in 40 years, by rising each morning half an hour earlier than he now does?

Ans. 304, ${ }^{2}$ days.
19. There is a house, the roof of which is 444_{2} feet in length, and 20 feet in width on each of the two sides; if 3 shingles in width cover one foot in length, how many shirgles will it take to lay one course on this roof? if 3
courses make one foot, how many courses will there be on one side of the roof? how many shingles will it take to cover one side, also tu cover both sides? Ans. 16020 shingles.
20. Said John to Dick, my purse and money are worth $\mathscr{2} 2$ s., but the money is 25 times as much as the purse ; I demand how much money was in it? Ans. £8 15s.
21. The third part of an army was killed, the fourth part taken prisoners, and 1000 fled; how many were in this army, how many killed, and how many captives?

Ans. 2400 in the army, 800 killed, and 600 taken pri. soners.
22. If 3 men can do a piece of work in $4 \frac{1}{3}$ hours, in how many hours will 10 mon do the same work?

Ans. 1-7-hours.
23. Jacob, by contract was to serve Laban for"his trios daughters, 14 years; and when he had accomplished 11 years, 11 month:, 11 weeks, 11 days, 11 hours, 11 min utes, how long had he to serve?

Ans. 1 yr .11 mo .3 w .2 da .12 h .49 min .
24. A man had two silver cups of unequal weigit, having one cover to both, weighing 5oz, now if the cover is put on the less cup, it will be double the weight of the greater cup, and put on the greater cup it will be three times as heavy as the less cup; what is the weight of each cup? Ans. 3oz. less; 4oz. greater.
25. A man and his wife can drink out a cask of beer in 12 days, but when the man was from inme it lasted the woman 30 days; how many days wouid the man be in drinking it alone?

Ans. 20 days.
26. The great bell of Moscow, in Russia, the largest in the world, is 67 feet in circumference, 19 feet high, and weighs about 448000 pounds; how many teams would it require to move this bell, if each team draw 30cwt.?

Ans. 1331 $\frac{1}{3}$ teams.
27. From each of 16 pieces of gold a person filed the worth of 2 s .6 d , and then offered them in payment for their original value, and the fraud being detected, and the pieces weighed, they were found to be worth in the whole, no
more than 8 guineas; what was the original value of each piece?

Ans. 13s.
28. Two men carry a kettle weighing 200 pounds; the kettle is suspended on a pole, the bale being 2 ft . 6in. from the hands of one; and 3 ft . 4 in . from the hands of the other; how many pounds does each bear? Ans. $\left\{\begin{array}{r}1147_{7}^{2} \text { pounds. } \\ 85 \frac{5}{7} \text { pounds. }\end{array}\right.$
29. A person bought 160 oranges at 2 for a penny, and 180 more at 3 for a penny; after which he sold them out at the rate of 5 for 2 pence; did he make or lose, and how much ?

Ans. He lost 4 pence.
30. If a person step 70 paces per minute, and $28 i n$. each pace ; how fast is that per hour?

Ans. $1 \frac{1}{1} \frac{13}{2}$ miles.
31. A wall of 700 yards in length was to be built in 29 days. Twelve men were employed on it for 11 days, and only completed 220 yards; how many men must be added to complete the wall in the required time?

Ans. 4 men.
32. There is a stone which measures 4 feet 6 inches long, 2 feet 9 inches broad, and 5 feet 4 inches deep; how many solid feet does it contain?

Ans. 66ft.
33. What is the product of 2s. 6d. multiplied by 2 s . 6d. ?
34. I sim up half mankind,

> And add two thirds of the remaining half, And find the total of their hopes and fears, Dreams, empty dreams.
> Cowper.

What part of mankind are mere dreamers, according to this author?

Ans. $\frac{5}{6}$.
35. Whi. . time, between 4 and 5 o'clock, are the hour and minute hands of a watch exactly together?

Ans. $21_{1}{ }^{2} \mathrm{E}$ min. past 4.
36. A. can inow an acre of grass in $7 \frac{1}{3}$ hours, B. in $8 \frac{1}{5}$ hours, in what time will they jointly perform it?

Ans. 4. hours.
37. A captain, mate, and twenty seamen, took a prize worth $£ 3501$, of which the captain takes 11 shares, and the mate 5 shares; the remainder of the prize is equally divided among the sailors; how much did each man rcceive?

$$
\text { Ans. }\left\{\begin{array}{lr}
\text { The captain, } & £ 1069 \\
\text { The mate, } & 486 \\
\text { Each sailor, } & 97 \\
\text { E. } & 5:
\end{array}\right.
$$

38. Divide the number 360 into 3 parts, which shall be to each other as 2, 3 and 4. Ans. 80, 120 and 160.
39. Two merchants have gained $£ 450$, of which Λ is to have three times as much as B; how much is each to have?

Ans. A. £337 10s. and B. £112 10s.
40. A. and B. traded together, and gained $£ 100$; A. put in $\mathbf{£ 6 4 0}$.; B. put in so much that he must receivo $\boldsymbol{£ 6 0}$ of the gain ; I demand B's stock. Ans. $£ 960$.
41. The wall that separates China from Tartary was built 2000 years ago ; it erosses the largest rivers and mointains, and is 1200 miles in length, 30 teet high, and 24 ft . broad; how many cubic feet does it contain?

$$
\text { Ans. } 4.561920000
$$

42. The surface of a midille sized man is 16 squaro feet, and the skin is said to be perforated by a thousand holes in the space of a square inch. How many pores does the human body contain, according to this calculation? Ans. 2304000 pores.
43. Divide 97 deg . 55 mi . 7fur. 35 po. 4 ft . 2 in . 1 b . by 6. Ans. 16deg. 20 min . $7 \mathrm{fur} .12 \mathrm{po} .8 \mathrm{it} .11 \mathrm{in} .1 \frac{1}{6} \mathrm{~b} . \mathrm{c}$.
44. If a herring and a half cost a penny and a half, how many can be bought for eleven pence?
45. The entire amount of specie throughout the world is estimated at one billion nine hundred millions of dollars; how long would it take to count this sum at the rate of 50 a minute?

Ans. 72 years, 108 days, 21 hours and 20 min .
46. Onc end of a certain pile of wond is perpendicular to the horizon, the other is in the form of an inclined plane; the length of the pile at the bottom is 64 feet, length at the top 50 feet, height 12 feet, length of the wood 5 feet; ro-
quired the number of cords it contains?
Ans. $26 \frac{2}{3} \frac{3}{2}$.
47. A may-pole, whose top was broken off by a blast of wind, struck the ground at 15 feet distant from the bottom of the pole; what was the height of the whole maypole, supposing the length of the broken piece to be 39 ft .? Ans. 75 feet.
48. In the midsi of a meadow well stored with grass, I took just an acre to tether my ass;
How long must the cord te, that feeding all round, He may 'nt graze less or more than an acre of ground? Ans. 39,25+ yards. 49. If a quantity of prorisions serves 1500 men 12 weeks, at the rate of 20 ounces a day for cach man ; how many men will the same provisions maintain for 20 weeks, nt the rate of Soze a day for ench man? Ans. 2250 men.
50. A younger brother received $\$ 8400$, which was just ? of his elder brother's fortune; what was the father wort?

Ans. \$19200.
51. If 20 men ean perform a piece of work in 12 days, how niany men will accomplish three times as much in one-tifth of the time?

Ans. 300.
52. Suppose that I have - - of a ship worth ${ }^{2} 1200$; what pat have I left alter selling of of 4 of my share, and

53. What number is that which being mutiptied by $\frac{3}{3}$ of $\frac{1}{5}$ of $1 \frac{1}{11}$, the produet will he 1 ? Ans. 1_{4}^{1}.
54. My hore and adde wigether are worth en 132 , and my hore is wouth 10 thes as much as the sadille: what is the valne of the home?

55. A farmer heing nsked how many sheep he had, answered, that he had them in dive fieds; in the first he had $\frac{1}{4}$ of his flock, in the socond $\frac{1}{1}$, in the third $\frac{1}{3}$, in the fourth $-\frac{1}{-}$, and in the fifth 400 ; how many had he ?

Ans. 1200.
50. Sound travels about 1142 feet in a second. Now if the flash of a cannon be seen at the moment it is fired, and the report heard 45 seconds after, what distance would the observer be from the gun? Ans. 9 mi . 5 fur. 34 ird . +
57. In a certain orchard, $\frac{1}{2}$ of the trees bear apples, $\frac{1}{3}$ of them bear peaches, $\frac{1}{6}$ of them plums, 120 of them cherries, and 80 of them pears; how many trees are there in the orchard?

Ans. 240.
58. A circular fish-pond is 865 feet in diameter ; what is its circumference, and what is its area?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Circumference } 2717,484 \mathrm{ft} . \\
\text { Area } 587655,915 \mathrm{ft} \text { square. }
\end{array}\right.
$$

59. A well is to be stoned, of whichsthe diameter is $\mathbf{6}$ feet 6 inclies; the thickness of the wall is to be $\mathbf{1}$ foot 6 inches, leaving the diameter of the well within the stones 3 feet 6 inches. If the well is 40 feet deep how many feet of stone will be required? Ans. 942,48 feet.
60. A ship has a leak by which it would fill and simk in 15 houre, but by means of a pump it could be emptied, if full, in 16 hours. Now if the pump is worked firm the t:me the leak bg gins, how lorg before the ship will sink?

Ans. 240 hours.
61. How many planks 15 ft . long and 15 in . wide, will floor a barn which is $60 \frac{1}{2}$ feet long and $33 \frac{1}{3}$ wide?

Ans. 108-7 ${ }_{7}$.
62. A perenn dying worth $\$ 54.60$, left a wife and two children, a aon and davghter, absent in a fcreign country. He direeted that if his con returned, the mother thould have one third of the estate, and the son the remainder; but if the daughter returned, she should have one third, and the mother the renainder. Now, it to happened that they both returned ; how must the estate lie divided to fulfil tho father's intentions?

Ans. Datghter $\$ 780$, Son $\$ 3120$, Mother $\$ 1560$.
63. A cistern containirg 60 gallons of water has three unequal coeks for discharging it ; the largeet will empty it in 1 hour, the second in 2 , and the third in 3 hours ; in what time will the ci:tern be emptied if they all run together?

Ans. $32_{-1}^{\mathrm{P}} \mathrm{min}$.
64. A. can do a piece of work alone in 10 days, and B. in 13 days; in what time can they do it if they work together ?

Ane. $5 \frac{1}{2}$ daye.
65. The accounts of a certain school are as follows, viz: $\frac{1}{16}$ of the boys learn geometry, $\frac{3}{8}$ learn grammar, $\frac{3}{1_{0}}$ learn arithmetic, $\frac{-3}{2}-$ learn to write, and 9 learn to read; what is the number in each branch ?

$$
\text { Ans. }\left\{\begin{array}{c}
5 \text { learn geometry, } 30 \text { grammar, } 24 \text { arith- } \\
\text { metic, } 12 \text { writing, and } 9 \text { reading. }
\end{array}\right.
$$

66. A stationer sold quills at 11 s. a thousand, by which he cleared $\frac{5}{3}$ of his money; but they growing scarce he raiced the price to 13s. 6 d . a thousand ; what did he clear at the last price, on each $£ 100$ laid out?

Ans. $£ 967 \mathrm{~s} .3-\mathrm{i}_{1}^{3} \mathrm{~d}$.
67. A water tub holds 147 gallons; the pipe usually hrings in 14 gallons in 9 minutes; the tap discharges at a medium 40 gallons in 31 minutes. Now, supposing these to be left open, and the water to le tumed on at 2 o'elock in the mornirg; a scrvant at 5 shuts the tap, and wishes to know in what time the tub will be filled in case the wa ter continues to flow.

Aus. The tub will he full at $3 \mathrm{~min} .48 \frac{1}{21} \mathrm{sec}$. after 6 .
68. Take $\frac{1}{2}$ a square foot from $-\frac{1}{1}$ - of an acre.

> Ans. 1R. 18P. 5yd. 4ft.
69. Two men and a boy were engeged to do a piece of work; one of the men could do it in 5 days, the other in 8 days, and the boy in 10 days; how long would it tako the three tegether to do it? Ans. $2-\frac{5}{7}$ day:.
70. After laying out $\frac{1}{4}$ of my money, and $\frac{1}{5}$ of the remainder, I had 72 guincas left ; how nuch had I at firct? Ans. 120 guincas.
71. Two persons, A. and B., ire on the opposite sides of a wood which is 536 yards in circumference; they begin to travel in the came dircction at the same moment.A. goes at the rate of 11 yards per minute, and B. at the mite of 34 yards in 3 minutes. The question is, how many times the quicker one must go round the wood beforo he overtakes the slower?

Ans. 17 times.
72. If a person take snuff oncs in 10 minutes, and apend $\frac{8}{4}$ of a minute in the process of snufling, adjusting tho box, and blowing lie nose, how many hours will be thus
spent in 7 years, allowing 13: hours to a snuff-taking day, and $365 \frac{1}{4}$ days to the year?

Ans. $\left\{\begin{array}{l}264.6 \\ \text { hours of more than } 5 \text { months. }\end{array}\right.$
73. A father dying bequeaths to one of his sens $\frac{2}{7}$ of his estate, and to ancther $\frac{1}{3} \frac{2}{5}$ of the remainder; upon a division the latter beguest is found to be ${ }^{W} 200$ less than the former. Query, the legacy of each?

Ans. The former 费 1400 , the latter ${ }^{*} 1200$.
74. If A. can mow an acre of grass in $5 \cdot 2$ hours, and B. can mow $1^{\frac{1}{4}}$ acres in $9 \frac{1}{3}$ hours, in what time can they jointly cut $8_{\frac{1}{2}}$ acres? Ans. $22 \frac{2}{3}$ hours.
75. How many pounds of guick lime must be thrown into a well containing 64: cubic fect of cartonic acid gas, to render it respirable ; a culic foot of that gas containing ${ }^{-7}{ }^{5}$ of a pound of earbon, and 1bb. of lime being capable of absorbing $\frac{43}{5}$ of a pound of carbon? Ans. $9 \frac{31}{6}$ pounds.
76. If a horse can draw $6 \frac{1}{2}$ tone on a railicad which ascends 25^{7} fect in a mile, whit weight wond le drawnif the ascent was only $15 \frac{2}{3}$ ft in a mi. the force required to move a given wht. being as the ascent per mide? Ans. $100^{10 \%}$ tons.

7\%. A pereon in healh has aliout 75 pulsations, or beats of the artery in a minute. Now, a gun being fired on one side of a river, an observer directiy opposite counts nine pulations at his wrist between sceing tho flash and hearing the report; what was the bicadth of the river?

Ans. 1 m . 4 fur. 100 yds . 2 f.
78. Λ hare starts 40 yards be'ore a greyhound, and is not perceived by him till she has been up 40 :cconds; she runs at the rate of ten miles an hour, and the deg, on view, makes after her at the rate of 18 miles an hour ; how long will the course hold, and what space will be run over from the epot where the dog sta:ted?

Ans. 60-z. scc., and 530yds, epace.
79. If to my age there added be,

One-half, one-third, and three times three,
Six score and ten the sum will be;
What is my neis, pray show it me? Ans. 66yms.
80. A gentleman divided his fortune among his three sons, giving A. £9 as often as B. $£ 5$, and to C. but $£ 3$ as often as B $\mathbf{£} 7$, and yet C's dividend was $£ 2584$; what was the amount of the whole estate?

Ans. £194.66 2s. 8d.
81. The yearly interest of Mary's money, at 6 per cent. exceeds $\frac{\pi}{2}_{0}^{1}$ of the principal by $£ 100$, and she does not intend to marry any man who is not scholar enough to tell her fortune ; pray what is it?

Ans. $£ 10000$.
82. A. and B. can do a piece of work in 4 days, and B. and C. in 6 days, and A. and C. in 5 days; in what time can they all do it trgether?

Ans. $3_{3}{ }^{9}$; days.
83. A. and B. can do a piece of work in 5 days; A. ean do it in 7 days; in how many days can B. do it ?

Ans. $17 \frac{1}{1}$ days.
84. A man died, leaving $£ 1000$ between his two sons, one 14, and the other 18 years of age, in such proportion that the share of each, being put to interest at 6 per cent., should amount to the same sum when they should arrive at the age of 21 ; what did each receive?

Ans. The elder $£ 546,153+$; the younger $£ 453,84,6+$
85. A. B. and C. would divide $£ 100$ between them, so as that B. may have $£ 3$ more than A., and C. $£ 4$ more than B.; how much must each man have?

$$
\text { Ans. A. } £ 30, \text { B. } £ 33 \text {, and C. } £ 37 \text {. }
$$

86. A. and B. undentale a piece of work for $\$ 54$, on which A. employed 3 hands 5 days, and B. employed 7 hands 3 days; what part of the work was done by A., what part by B., and what was each one's share of the mo-
 \$31,50.
87. A. B. and C. traded in company ; A. put in $\$ 500$, B. $\$ 350$, and C. 120 yards of cloth; they gained $\$ 332,50$, of which C's share was $\$ 120$; what was the value of C's cloth per yard, and what was A. and B's share of the gain?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { C's cloth per yard, } \$ 4 . \\
\text { A's share of the gain, } \$ 125 . \\
B^{\prime} \text { 's do. do. } \$ 87,50 .
\end{array}\right.
$$

88. There are 3 horses, belonging to 3 men, employed to draw a load of goods from Kingston to Toronto, for £26,45. A. and B's horses together are supposed to do $\frac{8}{4}$ of the work; A. and C's. $-\frac{9}{1-}$; B. and C's $\frac{13}{20}$; they are to be paid proportionately ; what is each one's share of the money?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { A's } £ 11,5\left(=\frac{10}{2}\right) \\
\text { B's } £ 5,75\left(=-\frac{5}{3}\right) \\
\text { C's } £ 9,2\left(=\frac{8}{2}\right)
\end{array}\right.
$$

89. A gentleman left his son a fortune, $-_{16}^{5}$ of which he spent in 3 months; $\frac{3}{4}$ of $\frac{5}{6}$ of the remainder lasted him 9 months longer, when he had only $£ 537$ left ; what was the sum bequeathed him by his father?

Ans. £20S2 18s. $2_{1 i}^{2} \mathrm{~d}$.
90. . There is a equare field, each side of which is 50 rods; what is the distance between opposite corners?

Ans. 70,71+
91. What is the area of a square fich, of which the opposite comers are 70,71 rods apart? and what is the length of each side? Ans. to last, E0 rods, nearly.

92: A trader beirg embarrased, owes 53400 , which the creditor requires to be immediately paid. He has goods which he can sell at auction for cash at 15 per cent. below the just value; he camot borrow money without allowing a prominm of 9 per cent., and payirg interest at 6 per cent. per annum on the whole. Now, adnuitting he can sell his goods for their value withon a year, which will be more elligible, to send them to auction, or to borrow money on these conditions, to catisfy his creditor?

Ans. To botrow, by $\mathbf{\beta}_{3} 71,64$.
93. Two travellers, A. and B., at the distance of 59 miles from each other, set out in order to mect. A. begins his journcy 1 hour before B., and travels 7 miles in 2 hours; B. proceed! 8 miles in 3 hours; how far will they travel respectively before they meet? Ans. $\Lambda .35 \mathrm{mi}$. B. 24.
94. A hare starts up 50 of its own leaps before a grey hound, and takes 4 leaps while the hound takes 3 ; but the hound goes as far at 2 leaps as the hare does at 3 ; how
many leaps will the hound take to catch the hare?
Ans. 300.
95. A. B. and C. can complete a piece of work in 15 days; A. can do it in 30 days, and B. in 40 ; in what time can C. perform it?

Ans. 120 days.
96. A servant, having eloped from his master, travels 14. hours a day, at the rate of $3 \frac{1}{2}$ miles an hour; at the end of two days a courier is sent in pursuit, who travels 9 hours in the day, at the rate of 7 miles an hour ; in what time will be overtake him?

Ans. 7 a.ys.
97. A Greek epitaph, designed for the tomb of Diophantus, is said to have stated that he passed $\frac{1}{6}$ of his lifo in childhood, $\frac{-1}{1-2}$ in adolescence; that after $\frac{1}{2}$ and 5 years more had been passed in a married state, he had a son who lived to $\frac{1}{2}$ his own age, and whom he survived 4 years. What then was the age of Diophantus? Ans. 84yrs.
98. Three masons, A. B. and C. are to build a wall. Now A. and B. can build it in 12 days; A. and C. in 15; B. and C. in 20. In what time can they jointly effect it? and how long will they severally require?

Ans. Jointly, 10 days, A. 20, B. 30, C. 60.
99. A gentleman meeting, by accident, with a dangerous wound, sends for three physicians, promising to divide 100 dollars among them, in the ratio of the reciprocals of the number of minutes which shall elapse before they attend. The first arrives in 25 minutes, the second in 30, and the third in 35. Query, their respective shares?

Ans. The 1st, $\$ 39,25$; 2nd, $\$ 32,71$; 3rd, $\$ 28,04$.
100. A. B. and C. form a joint stock of $£ 4392$, by which they gain $£ 234 . \quad$'s money is in trade 4 months, B's 5 months, and C's 13 months; and their shares of the gain are as the numbers 2,3 , and 4 , respectively. Required the gain and stock of each?

Ans. $\left\{\begin{array}{l}\text { A's gain } £ 52, \text { stock } £ 1560 . \\ \text { B's gain } £ \text { '78, stock } £ 1872 . \\ \text { C's gain } £ 104, \text { stock } £ 960 .\end{array}\right.$

SOLUTIONS IN MISCELLANEOUS EXERCISES:

Ex. 14. Take the last number of apples, 8, and reverse the process, thus, $8 \times 4=32 \times 2=64-34=30+10$ $=40$. Ans.

Ex. 15. $23+14=37$, age of the father when bis wife died; $37-12=25$, his age when his daughter was born; and $25-5=20$, his age when his daughter's husband was born ; then, $20+40=60$ years old at his death, Ans.

Ex. 20. $1+25=26$; then $26: 25:: £ 92$ s. $: £ 8$ 15s. Ans.

Ex. 21. This and similar questions are usually worked by Position, but they may be casily solved on general principles. Thus, $\frac{1}{3}+\frac{1}{4}=-\frac{7}{13}$ of the army ; therefore, 1000 is $-\frac{5}{2}$ of the whole aumber of men; and if 5 twelfths be 1000,12 twelfths is $2400=$ the whole army ; and $\frac{1}{3}$ of $2400=800$ killed ; and $\frac{1}{4}$ of $2400=600$ taken prisoners.

Ex. 22. As $10 \mathrm{men}:: 3 \mathrm{men}: 4 \frac{1}{2}$ hours to $1_{-\frac{7}{0}}$ Ans.
Ex. 23. He was to serve yrs. 14 000000 of which he \} yrs.m. w. da.h. min.
accomplished $\int 111111111111=12 \quad 1041111$

$$
\text { Ans. } 111321249
$$

Ex. 24. Suppose the weight of the less cup $=1 \mathrm{oz}$, then $1+5=6 o z$. $=$ double of the greater cup ; and $\frac{0}{2}+5$ $=3+5=$ Soz., which should have been 3oz. (8oz.-3oz.) $=50 \mathrm{z} .=$ first error. Again, suppose the weight of the less cup $=2$ oz. then $2+5=7=$ double the greater; and $3 \frac{1}{2}+5$ $=8 \frac{1}{2} \mathrm{oz}$., which should have been 6 oz . Then the second error is $2 \frac{1}{2}$; here the crrors are alike; then by the rule $\left(5 \times 2-1 \times 2 \frac{1}{2}\right) \div 2 \frac{1}{2}=(20-5) \div 5=15 \div 5=3 \mathrm{oz}$. $=$ the weight of the less cup ; and $3+5 \div 2=8 \div 2=4 \mathrm{oz}$. $=$ the weight of the greater cup.

Ex. 25. $\frac{1}{12}-3^{1}=\frac{1}{2}=$ the part the man drank in a day. Therefore 20 days are the number required.

Ex. 27. Since the reduced value of the 16 pieces is $£ 88 \mathrm{~s}$. and the part taken from them is $16 \times 2 \mathrm{~s} .6 \mathrm{~d} .=£ 2$,
the original value was $£ 10 \mathrm{Ss} .=208 \mathrm{~s}$. Consequently, $208 \div 16=13$. the original value of each. .

Ex. 28. 3 feet 4 inches $=40$ inches, and 2 feet 6 in. $=30$ inches ; then as they would carry parts inversely as the distance, $40+30=70 \mathrm{in}$. : 30in. : : $2001 \mathrm{lbs} .: 85{ }_{7}^{5} \mathrm{lbs}$. Ans.; and 70in. : 40in. : : 2001bs. : $114_{;}$l lbs. Ans.

Ex. 31. $12 \times 11=132$ days' work built 22 yards, and 480 yards remain ; then $220: 450:: 132: 289$. But it is to be built in 18 days : hence $288 \div 1 \mathrm{~S}=16 \mathrm{men}$; that is it reguires 16 men, or 4 must be added.

Ex. 35. The minute hand passes the hour hand 11 times in 12 hours, the fourt's time betiveen 4 and 5 . Therefore as $11: 4:: 12$ hours $: 4$ hours $21-{ }_{-1}^{2}$ min.

Ex. 36. A. can mow an acre in 2_{3}^{4} hrs. or ${ }_{-}^{3}$ - acres in 1 hour ; B. can mow -5 acre in 1 hour. Therefore $-\frac{3}{z}+$ $\frac{-5}{4}=1 \frac{1}{4}=$ number mowed by both in 1 hour. Whence, $\frac{4}{1} \frac{4}{1}$ hrs. $=4$ hours, the time required.

Ex. 37. 11+5+20=36: $11:: £ 3501: £ 106915 s$. $=$ Captain's share ; and $36: 5:: £ 3501: £ 4865 \mathrm{~s}$. $=$ the mate's :hare. Then, £1069 15s. $+£ 4965: \therefore=£ 1556$ and $£ 3501-£ 1556=£ 1945 \div 20$ sailors $=£ 975$ s. each sailor's share.

Ex. 39. $1+3=4: 3:: £ 450: £ 337$ 10s. A's share ; then $4: 1:: \mathscr{E} 40: \mathscr{E} 11210:$. B's share.

Ex. 40. £100-60=40 gain; then A's $£ 40$: gain £60: : $£ 640$ stock : $£ 960$, Ans.

Ex. 48. To find the area of a circle when the diameter is given we square the diameter and multiply the product by the decimal ,7854; hence, when the area is given to find the diameter we must reversc the process; 160 rods $\times 30 \frac{1}{4}$ yards $=4840$ yrds ; $4840 \div 735{ }_{4}^{4}=6162,4649$;

Ex. 49. $7 \times 20=1400 \mathrm{oz}$. used by 1 man in a week, $140 \times 12 \times 1500=2520000$ total ounces used ; $7 \times 8=$ 56 , what 1 man would use in 1 week by the second allowance : $56 \times 20=1120$, what he would use in 20 weeks. Then, $2520000 \div 1120=2250$, Ans.

Ex. 50. As $\frac{7}{9}: 1:: \$ 8400: \$ 10800$, elder brother's part; then, $8400+10800=\$ 19200$, Ans.

Ex. 51. Three times as much in the same will require $20 \times 3=60$ men ; and in $\frac{1}{5}$ of the time $60 \times 5=300$ Ans.

Ex. 52. $\frac{2}{5}$ of $\frac{4}{9}$ of $\frac{3}{16}=\frac{1}{30}$, then $\frac{3}{16}-\frac{1}{30}=\frac{37}{24} 40$. As $\frac{3}{16}: \frac{-\frac{y}{2} 7}{240}: ~: \$ 1200: \$ 986,66$, Ans.

Ex. 54. The saddle is 1 part, and horse 10 parts; hence, $1+10=11$ parts ; then, $132 \div 11=12$, worth of the saddle; and $10 \times 12=120$ worth of the horse:

Ex. 55. $\quad \frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{12}=\frac{5}{8}$. Then $1-\frac{5}{8}=\frac{3}{8}$ the sheep in the fifth lot. Hence, $\frac{3}{8}=4.50$: or $\frac{1}{8}=150$ and the whole or $\frac{8}{8}=1200$ Ans.

Ex. 57. $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{1}{12}$, consequently $-\frac{1}{12}$ remains, which is equal to $120+80=200$. Hence, $200 \times 12=$ 24.00 Ans.

Ex. 59. $6 \mathrm{ft} .6 \mathrm{in} .=6,5 \times 6,5 \times, 7854=33,183150$ outer area. Then $3,5 \times 3,5 \times, 7854=9,621150$ inner area. Then $33,183150-9,621150=23,562 \times 40=942,480$.

Ex. 60. It will fill $-\frac{1}{15}$ in an hour ; they pump out $\frac{1}{16}$, hence the water gains $-\frac{1}{15}=-\frac{1}{16}=-\frac{1}{4} 0$ of the ship per hour; hence it will fill in 240 hours.

Ex. 62. The mother was to have twice as much as the daughter and half as much as the son. Hence, the daughter 1 part, the mother 2 , and son $4=7$ parts in all, then $5460 \div 7=\$ 780$ daughter's part, $780 \times 2=\$ 1560$ mether's, and $1560 \times 2=\$ 3120$ son's part.

Ex. 63. The first will empty in 1 min . $\frac{1}{60}$ of it ; second $T_{1}^{\frac{1}{2} 0}$ of it ; third ${ }_{1}^{\frac{1}{80}}$ of it, together ${ }_{6}^{-\frac{1}{60}}+\frac{1}{120}+\frac{1}{10}=\frac{11}{362}$ in 1 min . Then $-\frac{11}{360}: 1:: 1 \mathrm{~min}$. $: 32-\frac{8}{1} \mathrm{~min}$. Ans.

Ex. 64. A. does in 1day $\frac{1}{15}$ of the work; B. $\frac{1}{13}$; together $\frac{1}{10}+1_{1}^{1}=-1_{1}^{2} 3^{3} \pi$; then $-1_{1}^{2} 3_{5}^{2}: 1:: 1$ day : $5 \frac{1}{2} \frac{1}{3}$ days Ans.

Ex. 65. $\frac{-1}{15}+\frac{3}{8}++_{10}^{-3}-十^{-\frac{3}{2}}$ will be equal to all the school except the 9 who read. Of the denominators of these fractions 80 is the least common multiple; hence $-\frac{5}{30}+\frac{30}{811}$十 $\frac{24}{8}-1 \frac{12}{80}=\frac{71}{80}$; and $1 \frac{71}{80}=-\frac{9}{30}$ the residue of the school, which is $=9$; then if -9 of a school is equal to 9 , how many in the school? It is plain there are 80 ; then $\frac{1}{18}$ of $80=5 ; ~ \frac{3}{8}$ of $80=30 ;-\frac{2}{15}$ of $80=24 ;-2^{3}-$ of $80=12$.

Ex. 66. 11s. $\times \frac{3}{8}=$ what he first cleared on each thon. sand ; hence, they cost him $\frac{5}{8}$ of $11 \mathrm{~s} .=6 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$. He aiterwards sold for 13 s .6 d . ; then $13 \mathrm{~s} .6 \mathrm{~d} .-6 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}=6 \mathrm{~s}$. $7 \frac{1}{2} \mathrm{~d}$. what he cleared per thousand by the latter price.Then, as 6s. $10 \frac{1}{2} \mathrm{~d} .:: 6 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d} .: £ 100: £ 967 \mathrm{~s} .3-\frac{1}{1}$ - d . Ans.

Ex. 67. In 1 min . the pipe brings $\frac{14}{9}$ gal. The tap discharges in the same time $\frac{40}{31}$ gal. ; hence it fills in 1 min . $\frac{14}{9}-\frac{40}{3}{ }^{1}=-7_{2}^{7}-\mathrm{gal}$. It so runs for $3 \mathrm{hrs} .=180 \mathrm{~min}$. ; hence, it fills in that time $\frac{-74}{279} \times 180=\frac{14}{3} \frac{8}{11} 0$ gal. It has then 147
 $\min =63 \mathrm{~min} .48 \frac{1}{21} \frac{1}{7} \mathrm{sec}$., that is, after $5 \mathrm{o}^{\prime}$ clock it fills in 63 $\mathrm{min} .48 \frac{11}{1} \frac{4}{7} \mathrm{sec}$. ; that is at 6 o'clock 3 min . $48,4 \frac{1}{7} \mathrm{sec}$.

Ex. 69. All can do in 1 day, $\frac{1}{5}+\frac{1}{8}+\frac{1}{10}=\frac{17}{40}$. Then, $\frac{17}{40}: 1$: : 1da. : $2 \frac{6}{17}$ day, Ans.
 what was spent, and $1-\frac{8}{2}=\frac{12}{2}$, what was left ; then, as $\frac{12}{20}: \frac{20}{20}:$: $72: 120$ Ans.

Ex. 71. A. goes 11 yards per minute, or 33 yards in 3 min , while B. goes 34 yard \checkmark; hence B. gains 1 yd. in 3 min. ; and to gain $\frac{5 \cdot 36}{2}=268 \mathrm{yd}$. he must travel $268 \times 3=$ 804 minutes. Then, $3: 804:$: 34: 9112 distance travelled; then, $9112 \div 536=17$ times round.
 $1461 \times \frac{7}{1}=\frac{705663}{20}$ hours. As $\frac{1}{6}: \frac{705663}{20}: ~: \frac{3}{4} \mathrm{~min}$. : $6.350967=2646 \frac{18}{40} 0 \mathrm{O} \mathrm{hr}$.

Ex 73. $\frac{7}{7}-\frac{2}{7}=\frac{5}{7}$; then $\frac{1}{3} \frac{2}{5}$ of $\frac{5}{7}=\frac{12}{49}$; also, $\frac{2}{7}-\frac{12}{18}=$ ${ }_{4}^{2}$. Then, as ${ }_{4}^{2}: \frac{2}{7}:: 200: 1400-200=1200$.

Ex. 74. As $5 \frac{2}{3} \mathrm{hr} .: 9 \frac{1}{3} \mathrm{hr}$.: : 1A. $: \frac{28}{17} \mathrm{~A}$. quantity A. would mow in $9 \frac{1}{3} \mathrm{hr}$.: then $\frac{28}{17}+\frac{7}{4}=\frac{231}{68}$ acres, quantity A. and B. together would mow in $9 \frac{1}{8}$ hours. As $\frac{23}{68}{ }^{1}: \frac{3,}{4}$ $::_{3}{ }^{\mathrm{n}}: \frac{6}{}{ }^{8}=22 \frac{2}{3}$ hours Ans.
 Ex. 76. As $15 \frac{3}{8} \mathrm{ft}$. : $25 \frac{3}{4} \mathrm{ft}$: : : $6 \frac{1}{2}$ tons : $10 \frac{109}{123}$ Ans.
Ex. 77. The velocity of sound is 1142 ft . per second, the distance passed over in 1 min . would be $1142 \times 60=$ 68520 feet. But in this time the pulse beats 75 times. Hence, 75 puls. : 9 puls. : : 68520 ft . : $8222 \mathrm{ft} .=1 \mathrm{mi}$. 4 fur. 100 yds .2 ft .

Ex. 78. Because 40 secondsis just ${ }_{9}^{1} 0$ of an hour, and the hare runs 17600 yards per hour. She must run $17600 \div 90=1955_{9} y d s$. in 40 sec., and would be $195{ }_{9}^{5}+$ $40=235 \frac{5}{9} y d s$. before the dog at his starting; but as the dog gained 8 miles in 18, he would gain 8 yards in 18, or 4 in 9 ; hence, $4_{1}: 9:: 235{ }_{9}^{5}: 530 y d s$. run by the dog. And $1760 \times 18=31680: 530:: 60 \mathrm{~min} .: 1 \mathrm{~min}$. $0-5-\mathrm{sec}$.

Ex. 79. The meaning of this question is, that the number 9 added to once his age, together with $\frac{1}{2}$ and $\frac{1}{3}$ of his age, the sum shall be 130 ; or since the sum of the parts 1 and $\frac{1}{2}$ and $\frac{1}{3}$ is $\frac{11}{6}$, that of his age is $130-9=121$; then $11: 6:: 121: 66$, Ans. Or by Position.

Ex. 80. As 7:5:: $3: 2 \frac{1}{7}$, and $9+5+2:=16 \frac{1}{7}$; then, as $2 \frac{1}{7}: 16 \frac{1}{7}:: £ 2584: £ 19466$ 2s. 8d. Ans.

Ex. 81. Suppose 200 ; then $200 \times 6 \div 100=12$ interest ; then $\frac{200}{20}=10$, and $12-10=2$; then $100-2=98$, error. Again, suppose 300 ; then $300 \times 6 \div 100=18$ interest ; then $\frac{3 \Omega 0}{20}=15$, and $18-15=3$; then $100-3=$ 97 , error. Then $97 \times 200=19400$; and $98 \times 300=29400$; then $29400-19400=10000$ pounds, Ans.

Ex. 82. A. and B. can do $\frac{1}{4}$, B. and C. $\frac{1}{6}$, and A. and C. $\frac{1}{5}$ per day; then $\frac{1}{4}+\frac{1}{6}+\frac{1}{5}=\frac{37}{60}$, which $\div 2$ (because each man, by the conditions, is taken twice) $=-1_{1}^{3} 0_{0}$ what all would do in 1 day; then $1 \div \frac{37}{120}=33^{9} 7$ days, Ans.

Ex. 83. A. and B. together can do $\frac{1}{5}$, and A. can do $\frac{1}{7}$ alone ; then $\frac{1}{7}-\frac{1}{5}=3^{2}$ what B. can do in a day; then $1 \div{ }_{3}^{2}=17 \frac{1}{2}$ days, Ans.

Ex. 84. Amount of $£ 1$ for ($21-18$) 3yrs. $=£ 1,18$.) Amount of $£ 1$ for $(21-14) 7$ yrs. $=£ 1,42$.)
Then (as they will receive inversely as the time.) As $£ 2,60: \mathfrak{£ 1 , 4 2}:: \mathfrak{£ 1 0 0 0}: \boldsymbol{£ 5 4 6 , 1 5 3}$ Ans. As $£ 2,60: £ 1,18:: £ 1000: £ 453,846$, Ans.

Ex. 85. B. has 3, and C. 7 more than A. $; 7+3=10$, to be taken from $100=90 \div 3=30$ A's; then, $30+3=33$. B 's, and $30+7=37$ C's share, Ans.

Ex. 86. 3 men 5 days $=15$ men 1 day, and 7 men 3 days $=21$ men 1 day; $15+21=36$ days $; \frac{1}{3} \frac{5}{6}=\frac{-5}{1}$, A.;
$\frac{1}{2} \frac{1}{6}=-\frac{7}{1.2}, B$; then $\$ 54 \times{ }_{-1}^{5}=\$ 22,50, A$'s money, and $\$ 54 \times{ }_{1}^{-\frac{7}{2}}=\$ 31,50$, B's money, Ans.

Ex. 87. First, to find the gain of A. and B. ; C's gain being $\$ 120, \$ 332,50-12 C=212,50$, the gain of A . and B. together; then, $\$ 850: \$ 500:: \$ 212,50: \$ 125, A ' s ;$ and $\$ 850$: $\$ 350:: \$ 212,50: \$ 87,50, B ' s$. To find the price of C's cloth $500+350=850$; then as 212,50: 120 : : 850 to C's stock, $\$ 480 \div 120=-\$ 4$ per yard.

Ex. 88. $\frac{3}{4}+\frac{{ }^{2}}{10}+\frac{1}{2} \frac{3}{0}=\frac{40}{20} \div 2$, (as each man's horses are taken twice in the question) $=\frac{23}{20}$; then, $\frac{23}{20}-\frac{3}{4}$ (A.
 $\cdots \frac{3}{n}-\frac{13}{2}\left(B^{\prime} s\right.$ and $\left.C^{\prime} s\right)=\frac{10}{2}, A^{\prime} s$; then A. will have $\frac{10}{2}$ of $\$_{2} 26,45=\$ 11,50 ;$ B. will have $\frac{2}{2}^{6} 3=\$ 5,75$, and C. $\frac{-}{2}^{\frac{8}{3}}$ $=\$ 9,20$.

Ex. 89. $\frac{3}{4}$ of $\frac{5}{6}=\frac{7}{8}$; then, $\boldsymbol{x 5 3 7}$ is $\frac{8}{8}-\frac{5}{8}=\frac{3}{3}$, and $£ 537 \div \frac{3}{8}=£ 1432$, the sum he had after he had spent $\frac{5}{16}$ of his fortune, and consequently this must be $\frac{11}{18}$ of what he had at first; then, $£ 1432 \div \frac{11}{16}=£ 208218 \mathrm{~s} .2-\frac{2}{1} \mathrm{~d}$ d. Ans.

Ex. 92. As the goods, when sold at auction, sell at 15 per cent. below their just value, a quantity worth $\$ 100$ must be sold for $\$ 85$. Therefore, as $\$ 85$: $\$ 3400$: : $\$ 100$: $\$ 4000$, the value of the goods which must be solu at unction to pay the debt. Debt $\$ 3400$, premium at 9 per cent. $\$ 306$; amount of debt and premium $\$ 3706$. Interest on this sum for 1 year $\$ 222,36$; amount $\$ 3928,36$, which is less than $\$ 4000$ by $\$ 71,64$, Ans.

Ex. 93. A. travels $\frac{7}{3}$ miles, and B. $\frac{8}{1}$ miles in 1 hour ; $\frac{7}{8}+\frac{8}{3}=\frac{37}{6}$ miles distance travelled by both in 1 hour ; 59 $-\frac{7}{2}=1 \frac{1}{2} \mathrm{mi}$ = the distance they are apart when B. sets out. ${ }^{1}{ }^{1}{ }^{2} \times 3^{6}=9$, number of hours B. was travelling; then $\frac{7}{2} \times{ }^{1}{ }^{2}=35$ miles A. travelled; $\frac{8}{8} \times 9=24$ miles B. travelled.

Ex. 94. As $2: 3:: 3: 4 \frac{1}{2}=$ number of the hare's leaps, which are equal 3 of the hound. But the hare takes but 4 leaps while the hound takes 3. Therefore, the hound by taking 3 leaps gains $\frac{1}{2}$ leap on the hare; he must consequently take 300 to gain 50 .

Ex. 95. ${ }^{-1} x^{\frac{1}{3}}-\frac{1}{4}-\frac{1}{2}=$ part C. does in 1 day ; he will therefore do the whole in 120 days.
Ex. 97. ${ }_{6}^{1}+{ }_{1}^{1} \frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{75}{84} ; \frac{84}{84}-\frac{75}{85}=\frac{9}{84}=$ part of his life which the $5+4$ years composed; therefore, $\frac{-9}{8}$: 9:: $1: 84$ years, Ans.
Ex. 98. The part done in a day by A. and B. is $\frac{1}{12}$, by A. and C. $\frac{T_{1}^{1}}{5}$; and by B. and C. $\frac{-1}{2} 0$. The sum of these fractions, $\frac{1}{5}$, ineluding the part of each twice, is evidently twice the part performed in a day by A. B. and C. together. They therefore perform $\frac{1}{10}$ part of the work in a day, or the whole in 10 days. Again, $-\frac{1}{1}--^{-\frac{2}{1}}{ }^{1}==_{2}^{-1} \frac{1}{0}$ part A. can perform in a day; $1^{10}-1_{15}^{1}=3^{1} 0$ part B. does in a day ; $\frac{1}{1}-\frac{1}{10}=\frac{1}{60}$ part C. does in a day.

Ex. 99. The reciprocal of a number is the number in-
 :: \$100: \$39,25 and as $1 \frac{107}{1050}$: ${ }_{80}^{1}:$: $\$ 100: \$ 32,71$, also, 107^{27} : $-\frac{1}{3} 5: ~: ~ \$ 100: \$ 28,04$, Ans.

Ex. 100. $2+3+4=9$, $\frac{2}{9}$ of ${ }^{234}=£ 52$ A's gain ; $\frac{3}{9}$ of $\frac{234}{1}=£ 78 \mathrm{~B}$'s gain ; $\frac{4}{9}$ of $2 \frac{23}{}=£ 104 \mathrm{C}$'s gain. Now $5_{4}^{2}=13 ; \frac{78}{5}=15,6 ; \frac{1,04}{13}=8:$ and $13+15,6+8=36,6$.

$$
\text { As } 36,6:\left\{\begin{array}{l}
13 \\
15,6 \\
8
\end{array}\right\}:: 4392:\left\{\begin{array}{l}
\boldsymbol{£} 1560 \mathrm{~A}, \text { stock. } \\
\boldsymbol{1} 1872 \mathrm{~B} \text {,'s do. } \\
\boldsymbol{£} 960 \mathrm{C} \text { 's do. }
\end{array}\right.
$$

INDEX.

> PART I. Page

Numeration and Notation, - - - - 11
Roman Numeration, - - - - - 15
Simple Addition, - - - - - 16
Simple Subtraction, - - - - 21
Simple Multiplication, - . - - 24
Simple Division, - - - - - 33
Fractions, - - - - - 44
Supplement to Multiplication, - . . - 47
PART II.
Compound Numbers, - - - - 55
Tables of Compound Numbers, - . . 55
Reduction, - - - - - 62
Compound Addition, - - - - - 75
Compound Subtraction, - - - - 82
Compound Multiplication, - - - - 85
Compound Division, - - - - 89
Bilis of Parcels, - - - - 95
Federal Money, - - - - - 97
PART III.
Simple Interest, - - - . - 103
Ratio, - - - - . . - 109
Rule of Three, - - . - . 110
Practice, - - - - - . . 118
Commission and Brokerage, - - - 126
Insurance, - - - - - - 128
Discount, - - - - - - - 129
Loss and Gain, - - - - - 131
Equation of Payments, - - - . 135
Fellowship, - - - - - - 137
Double Fellowship, - . - - - 138
Tare and Tret, 139
Vulgar Fractions, 141
Reduction of Vulgar Fractions, 145
Addition of Vulgar Fractions, 161
Subtraction of. Vulgar Fractions, 165
Multiplication of Vulgar Fractions, 167
Division of Vulgar Fractions, 170
Review of Vulgar Fractions, 173
Decimal Fractions, 176
Addition of Decimals, - 177
Subtraction of Decimals, 178
Multiplication of Decimals, 179
Division of Decimals, 180
Reduction of Decimals, 189
Rule of Three, 186
Rule of Three by Analysis, 188
Rule of Three in Vulgar Fractions, 189
Simple Interest by Decimals, 194
Exciange, 201
PART IV.

$$
\nabla
$$

[^0]: - From the Inolin word dicilme, a finger-their number being equal to thut of the fingers on bolh our hands.

[^1]: Qukations - What is sirilimetic? How many principal rules doen it contalnt What are theyt lifow are nimbers exprens. eds How many of these characters are there? What is the laat of there characters calleds. Whint are the nine othere calleds From whill in the word digit derived, and why are lliene charace. tere an calledt. Why are iliey ralled Arubic characteral What Ian unitl Give exnrpples. Whint does life figure 1 reprecons When atanding alone? Figura 21 Figure 3141 ©i \&ec.

[^2]: - This table is formed according to the French method of numeration. The English method given six places to thoue sands, \&ec.

 Questions. - Repent the nunieration table. How may the meading of figures be facilitated?

[^3]: Qusertions. - What is the first period called? What is the secondealled? The thirdi The fourth? The finh The nisthe

[^4]: Queations. - What is addition? What is the number called which is obtained by uniting several numbers into one? What is the sunt of 4 and $5 \boldsymbol{f}$ What is the sign of addition? What is it calledt: What dnee it signify? When placed between two numbers, what does it denete? Give an example. What ia the sign of equality? When placed between two numbern what does it show?

[^5]: Queotions.-How do we write down the numbere for additiont. Where do we hegin to addl When the sum of any co. Jumn is not more thnn 9 what do we dot When it exceeda 9 what do we dot What do we ant down at the lact columnt

[^6]: Qukstions. - What is subtraction? What is tie greater num. ber called? What is the lens number called? Wliat in the dif. ference called? What is the sign of subtractinti? What is is gilledt What does lie termsignify? What does it show

[^7]: Questions.--It an equal amount be addod to the minuend and the subtrahend. is the remainder affected? How do we prove subtraction? How may addition be proved by subtraction 1

[^8]: Questions.- What is multiplication? What is the number called which is to be repeated? What is the multiplier? What is the anawer calledf Why? What are the multiplier and muttiplicand taken logether, called! In the firat example, which is the multiplicand? The multipliert The psoductiWhat is the sign of Multiplication?

[^9]: Qoestions.-How do we net down numbers for multiplying? Where do we begin to multiply? How do we multiply? When Where do we begin to multiply? How do we multiply? When
 the multiplier exceeds 12 how do we proceed? How do we place the producte? What do we do with the several products? What is their sum?

[^10]: Qoxitions.- How is a number affected by placing a cipher on the right of it? When the multiplier is $10,100,1000$, \&c. how do we proceed?

[^11]: Questions. - When John divides 25 apples equally among 8 boye, how many does he give to each? How many times does 25 contain 81 How many remain? By continued subtraction what can we find? By what other method may we arrive at the same result?

[^12]: Quebtione.-How do we set down the numbers for division 1 What do we do next? If there be a remainder what do we do with it ? When the divisor exceeds 12 how do we proceed?

[^13]: Questions. -If the divisor is contained in hundreds, of what order will the quotient be? If in tens? If in units? If there be a remainder after division what may be done with it?

[^14]: Questions. - What does the unit 1 represent? When it is divided into 2 equal parts, what is each part called into 3 equal partat into 41 into 101 into 15 ?

[^15]: Questions.-What are these broken numbers called? In a Written fraction what is the number below the line called? Why? What does it show? What is the number above the line called? Why? What does it showi In the fraction $4-6$ which is the denominaturt What does the denominator express? Which js the numerator? What does the numerator show?

[^16]: Questions.-What are the numerator and denominator taken together called? If a me!on be divided into 8 equal parts, and 4 of them be given to Charles and the remaining 4 to Henry, what is each boy's share of the melon? What are 4.8 equal tos What is the difference in value between 4.8 and $\frac{1}{3}$? What is this operation of changing fractions called? How may a fracsion be zeduced to lower terms? If the numerator and denos minator be divided by the same number what effect has it on the value of the fraction? If the numerator and denominator in the fraction $5-15$ be both divided by 5 , what will the expression bef Will its value be changed?

[^17]: Qubations.-What is a mixed number? Give an example? How has multiplication been defined? What is multiplying by 19 by 29 by 31 What is multiplying by a broken number? Multiplying by $\frac{1}{2}$ is the same as what? by $\frac{1}{4}$? by $\frac{7}{4}$? Repeat the rule for multiplying by a mixed number?

[^18]: Qusutions.- When the minuend and aubtraliend are given, how do we find the remainder? When the subtrahend and ro. mainder are given, how do we find the minuend? When the sum of two numbers and one of the numbers are given, how do we find the other?

[^19]: Quentions. What do simple numbera exprese? What do coinpound numbers expresst? Give an example of a aimple number, of a compound number. What in underatood by different denominations? Are 8 pounda and 4 pounda of the anme deviomlination? Are 6 pounde and 4 whillinga? Are abveral numbere of different depominatione ofien connuected tugethig? Give an example?

[^20]: Quxations. - What are weighed by Avoisdupois Weighti-What are its denominations? Repeat the table. What is ineant by groall weight? What by nett? What is a cwt.? When ia long measure used? What are ite denominations? Repeat the table!

[^21]: Quegtions.- What is a hand in measure, and for what is it used? What is a fathom, and for what is it used? What are mensured by Cloth Measure? What are its denominations? Efpent the table? For what is square measure used? What are the denominationa. Repeat the table. For what in the Surveyor's or Gunter's chain used? What is ite length? How is it divided?

[^22]: Qubetions. - What is the use of Ale or Beer Measure? What are its denominations? Repeat the table. How many cubic inches in a gallon, beer measure? For what is Dry Measure need! What are its denominations? Repeat the table. How many inches, solid, are contained in a gallon, dry ineasure? How many inches in diameter is a Winchester bushell How many inclien deep? How many cubic inches does it contain?

[^23]: Quegtions. - For what is Circular Measure used? How is every circle aupposed to be divided? Recite the table. How many unite make a dozen? How many dozens make a groses. A great grosis? How many units make a score? How many sheets at paper make a quire? How many quires a ream.

 When asheet is folded into two leaves what is it called? In four leavea? In eight? In twelve? In eighteen?

[^24]: Qumarions.--How are pounds reduced to shillings? Shillinge to pence? Pence to farthings?
 How are farthings reduced to pence? Pence to shillingot shillinge to pounds?

[^25]: Quesrions. - In Apothecaries Weight how are pounds reduced to graine? Grains to pounde? In Avorrdupoie woight, how are tons reduced so drachma? Drachma to tons?

[^26]: Qusations.-In long measure, how are degrees reduced to barleycornil Barleycorna to degreen?

[^27]: Questions. - How many feet in lenuth imake a yard? How many square feet make a square yard? What is a square ? What is ench line called? If ench side be Ifoot, what is it called? If each side be 1 yard what is it calledt When the length and breaditi are given haiv do we find the contenta of a square? How do we reduce miles to inches in Square Measure? Inches to miles?

[^28]: Qoeationa.-In long mearure what do we consider? What in equare messure? To what has cubic measure regard? How may a cube be represented? How many cubic feet in a cubic yard? What is its length? What is its breadtht What is ite deptht How are its solid enntents found? In cubic measure how are tons reduced to inches? How are cords reduced to inchea? Inches to cords? To tons? How are tuns reduced to gilla, in wine measure? Gills to tuna?

[^29]: Questions. - In bepr measure how are hogsheads reduced to pints? Pints to hogsheads? In dry measure how do we reduce chaldrons to pints? Pints to chaldrons? How are yeare redue sed to seconds? How are seconds reduced to years?

[^30]: Quesmions. - In circular measure how is a circle recuced to meconds? Seconds to circles?

[^31]: Questions.-What is Compound Addition? Repeat the rule How is Compound Addition proved?

[^32]: Questions. - What is Compound Subtraction? How doee it differ from Simple Subtraction? Repeat the rule. If the lower number be greater than the one above it what is to be done?How is Compound Subtraction proved?

[^33]: Questiong. -What is multiplying a compound number by a simple one? When the multiplier does not exceed 12 what is the rule?

[^34]: Question.-When the multiplier exceeds 12 , and is not a composite number, how do we proceed?

[^35]: Questions. - What is compound division? Of what is it the reverse?. When the price of one article is given to find the price of a quantity how ia it done? When the price of a quantity is given to obtain the price of one article how is it performedf Repeat the rule. What will the quotient be, and in what denominations? How is multiplication proved? How is division proved?

[^36]: Questions. - What is federal money? What are its denominations1 Repeat the table. How many unite of either denom. ination make one of the next higher? How may federal money be added? subtracted? multiplied? and divided? How may cents be changed to mills? Dollars into cents? How into mills? How many cents in 8 dollars? in 9 ? in $10 ?$ What character stands for dol! ara? When dollars and centa are written together, how are they separated? How many places must there be for cente?

[^37]: Quention.-In dividing dollars, if a remainder occur, what is to be done in order to divide the remainder?

[^38]: Questions, - What is intereat? What is the principal1What is the aum called which is paid for the use of the principals What in the amount? What is meant by per annum? What is legal interest? What is usury? What is the meaning of per cent.? When no rate per cent, is mentioned what inter gat is underatood?

[^39]: Quentionn. - How do we find the intereat for months? How for daya? By what other method may the interent for daye be found?

[^40]: Queatione. - What is the meaning of lie word ratio? When it is anked what ratio one number beare to another, what is meant? What is the ratio of one to 2 ? What is the relation of 12 to 24? Of 24 to 12 ? When we nbtain the ratlo of one number to another what do we find? What pait of 6 is 49

[^41]: Questions. - How may the ratio of one number to another be expressed? Which number is put for numerator? What is put for denominator? What is this called? When are quantities said to be proportional to each othert Give examples.
 What are used to indicate that there is a proportion between numbers? Give an example on the slate. How is it read? How may the fourth term of any proportion be found? If the first three terms are 2, 4and 6, what is the fourth?

[^42]: Questions. - What are the first and fourth terms of a proportion called? What are the second and third terms called? In every proportion what is the product of the two extremes equal tof Give an example. From what doen the Rule of Thiree take its name? In stating a question what is the first thing to be done? What is the next? If the required anawer muat be greater than the third term how must we place the other two numbera? How if the anawer is to be lens than the third term?

[^43]: Questions.-- If the first and second termacontain different denominations what nust be done? How must we reduce the third term? Which two do we multiply logether? By what do we divide the product? What will the guotient be? Of what denomination?

[^44]: Quentions. - What is Practice? From what has it derived its nanie? When ic one number said to be an aliquot part of anow other? Mention some of the aliquot parte of $£ 1$. Of a shilling. Of a ton. Of a owt. Of a quarler, de.

[^45]: Qurotions.-When the price and quantity are of several der nominations, what is the rule?

[^46]: Questions. - What is Commission? What is a factor? What is Brokerage? What is the allowance generally made? To what is the work similar?

[^47]: Quebtions.--What is an Insurance Company? What ie the written engagement which they give called? What is the Pren miunt How is it rectoned?

[^48]: Qucotions.- What is loss and gain? By what rule are gueations in lose and gein worked?

[^49]: Quemrion.-What is the Rule to find what ie gained or boet per cent.?

[^50]: Question... What is the rule for finding how a commodity must be sold, to galn or lose so inuch per cent. 1

[^51]: Questions. - When there is gain or loss per cent. how do we find the cuat? If there is no much gained or lost per cent. by wares sold at a given rate, how do we find what would be gain.. ed or lost if sold nt another rate?

[^52]: Querrions. - If the answer exceed 100, what is the exceas? If it be less than 100, what is the deficiency? What is Equation of Payments?

[^53]: Questions. - What ie Fellowship? What is the Capital or Stock What is the dividend? Repeat the rule. How is it proved?

[^54]: Questions.-What is Double Fellowship? What two circumstances should determine each one's share of the profits? Re. peat the rule.

[^55]: Quxotions.-What are Tare and Tretl What is Drall? What is Tare?

[^56]: Questions.-- What is a fraction? How many kinds of Vulgar Fractions are there? What are they? What is a Proper Frac. tion? Is its value greater or less than 1 ? Give an example of a proper fraction. What is an Inproper Fraction? Why is it called improper? When is its value equal to 1? When is it greater than 1? Give an example of an improper fraction? What is a Simple Fraction? Give an example. What is a Compound Fraction?. Give an example. What is a Mixed Number? Give an example. Is five eighths a proper or impro. per fraction? What kind of a fraction is eight-fourths? What is its value? What kind of a fraction is nine-eighths? What is its value? What kind of a fraction is one-half of one-third? What kind of a fraction or nutnber is 4 three fourths? 7 oneseventh? 9 two-thirds?

[^57]: Qumatiomb. - What other method have we for mducing a fraction to its lowent termat What is a common divicort. What is the gractest common divisor of any two numberat Ropeat the rule for finding the greateot common divisor of two numberv.

[^58]: Qurstions. - To what is the value of every fraction equal?--. Repeat the rule for reducing a whole number to an equivalent fraction having a given denominator. How many whole num. bers in 03 seventha? In 96 eighthe? In 100 tentha? How ma. ny 8 he in 7 unite? How many 11 the in $\mathbf{6 1}$. How many 9 the in 75 If the dessominator be 5 what fraction do we form of 9 ? Of 111 Of 121

[^59]: Qucations.--In reducing fractions to a cominon denominator, What is the first thing to be done?. What is the second? Does this reduction alter the value of the several fractions? Why not? How may we change them back to the nrigiual fractione? What general principle have we under this rulet

[^60]: Queations. - What is a common multiple: Give an exame ple. What is the least common multiple of neveral numbers 1 What is the lenst common multiple of 2 and 4 ? Wirat is the firat step in finding the least common inultiple of two or more numbers ? What is the second? What is the least common multiple of 4,6 and 12 ?

[^61]: Questions.- In reducing fiactions to their least common denominator, what is the first step 1 What in the second 9 Does this reduction alter their values? May they be reduced bsek to their original terms?

[^62]: Questions.--How may a fraction, whose numerator or de nominator is a mixed number, be reduced to a aimple fraction !

 What doee a fraction, multiplied by a whole number equal to fis denominator, produce 1

[^63]: Quegtions.--In reducing fractions from a higher to a lower denomination what is the first step? What the second? Third?

[^64]: Questions. -To find the value of a fraction in the lower dee nominations of a whole number what is the first thing to be done? What is the next? How do we reduce an integer to a fraction of a given denomination? To find the value of a fraction in the lower denominations of a whole number what is the first thing to be done?

[^65]: Qusetion. - How do we reduce an integer to a fraction of a given denomination?

[^66]: Questions. - What does addition of fractions teach? Before fractions can be added what two things must be done?

[^67]: Quections.- When fractions are of the same denomination and have a common denominator, how do we find their aum? What in the sum of 2 thirde, 4 thirda and 1 thirdi Of 1 fourth, 2 fourthe and 6 fourtha? When fractions have different denominatore how do we add them? How do we reduce fractione to a common denominator? How may 1 fourth and 1 half be added

[^68]: Qucitione. - When tiere are mixed numbers to be added, what is the beat method? When the fractions are of different denom. inations what is firat to be done? What is nextt What part of a pound is $\frac{1}{2}$ of an ounce Troy weight? Then what if tien cum of thres-twenty.fourthe of a pound and balf an ounce?

[^69]: Questions. - When fractions are of the same denomination. and have a common denominator, how do we subtract them? When they have different denominators what must be done? When the fractions are of different denominations what in the rule?

[^70]: Queations. - What is multiplying a fraction by a whole number? Repeat the principle stated above.

[^71]: Questions.- Repent the rule for multiplying one fraction by another. How many ways are there of dividing a fraction by a whole number? What are they? Is there any differense in the resultst

[^72]: Questions. - How does multiplying the denominator divide or diminish the value of the fraction' Which is the greater, three.forths or three twelfhs? What general principle in atated abovel Repeat the zule for dividing a fraction by a whole number.

[^73]: Questions. - What is a fraction? What does the denomina. tor show? What does the numerator show? 'ro what is the value of every fraction equal? When the numerator is less than the denominator what is the value of the fraction? When the numerator is equal to the denominator? When the numerator Is greater than tise denommator? Repeat the 7 th proposition.

[^74]: Qurgmons. - How wre decimal fractions formed? What in the meaning of decem? Why are they called decimals? How are decimal fractions expressed? Give an example. When a wholo number and a decimal are written togeiner, where is the decimal point placed? Give an exomple. What is the value of \bar{B}, -ritten as a decimal compared with its value in the unit's plaee? How do decimals decrease?

[^75]: Questions. - Do ciphers placed on the right hand of decimals affect their value? Why not? What is the value of 5 written as a decimal? Ot,501 Of,500? To what is cash one cqual?

[^76]: Quesrions. - How does every cipher placed on the left of a decimal affect its value? Why so? Give examples. How are decimal liactions numerated? Repeat the rule for addition of decimals. What is the rule for subtraction of decimala?

[^77]: Questions. - How do we multiply by 10, 100, 1000, \&cc.? Give examples. How are decimals divided? How many places should be pointed off for decimals?

[^78]: Questions. - How many decimal places should there be in the divisor and quotient counted together What must be done if lisera are not so many? If tiere are more decimals is the divi. sor than in the dividend what should be done? What will all the quotient figures then be?

[^79]: Question.-Huw are quantities of several denominations re. duced to a decimal?

[^80]: Questions. - To reduce a decimal fraction to its value, what is the first step? What is the second?

[^81]: Qunation. - What is the firat method proponed for shortoning operations in the Rule of Threet

[^82]: Quearione. - What is the second method mentioned? What b the third?

[^83]: Questions. - May all questions in propurtion be solved with. out a statement? Repeat the rule for operations in which there are fractions. Why is the first term to be inperted?

[^84]: Queations. - What is compound proportion? Why is it called double rule of three? Repeat the rule for compound proportion.

[^85]: Quxstions. - In calculating interest, how is the rate per cent. to the sum lentt If 1 per cent is paid, what part of $£ 100$ is itt

[^86]: Questions. - If 6 por cent. is paid, what part of $£ 100$ is it? What are all calculations in interest? How may the rate per cent. always be written? Repeat the rule.

[^87]: Repeat the rule for casting interest ou notes \&itc. when partial payments are made at different times.

[^88]: Queation.-How do we find the principal, when the time, rate, ald amount are known? How do we find the principal when the time, rate, and interest are known?

[^89]: Questions. - How des we tillil lite rate, whell the primeppat in. terest and time are knownt How in the time fuund, when the principal, rate per cent. and intercat are knuwn!

[^90]: How do we reduce pisnce to ceells? lients to pence? How do we change punnif, shillings and pence to Federal money? How Federal money to puunds, shillings, dec.

[^91]: Qukerions. - Huw do we reduce Sterling mouney to Currency? How Currency to Sterling?

[^92]: Questions.-What is the second power of a number called? The third? The fouth? The finh? The gixth? Repeat the rule of Involution. How is a fraction involved?

[^93]: Questions. - What is Evolution? What is the Square Rool? Show how the Square Roat is expressed. What is the Cube Rool? Express the fourthroit, \&c. Can the routs of all numbers be exactly obtained? How may we approximate to the number which is the root? What are rational numbers?

 When we express the root of several numbers united by the signs + or -, how do we indicate that the numbers are all affected by the sign of the root? Express the Square Root of $48+6-4$. What is a rational root - A surd root ?

[^94]: Questions. - What is the extraction of the Square RoolfWhat is the first step in extracting the Square Root of numbers? What is the second? What the third? The fourth? The fifth? Repeal the entire rule?

[^95]: Questions. - How may the root of a fraction be found If this cannot be done, low may we proceedi

[^96]: Questions. - What is a culte? What is a cubic foot? What is a cubic ynrd? What is the root of a cube? Why? What is extracting the cule root of any quantity? What is the firat step in extraction of the cube ront? What is the second? 'l'he third? the fourth? The fith? The sixth? The aeventh? Why do we point off the number into periuds of three figures each? How many figures will the root always contain?

[^97]: Question.-How is the cube root of a fraction obtainedt

[^98]: Questions.-How do we find the circumference of a circle. when the diameter is given? How do we find the diumeter of a oircle when the circumference is givent

[^99]: Quertions. - How is the area at a circte found, when the diameter is known? How do we find the gurface of apherefHow do we find the solidity of a spliere?

[^100]: Questions. - How may the convex surface of a cylinder be found? How is the solid contents of a four sided stick of timber found, the size being equal from end to end?

[^101]: Questions. - How do we find the solid contents of a round atick of timber of equal size from end to end?
 How do we find the contents of a tapering stick of timber when one end is a point?

[^102]: Questions.-To find the solidity of a square stick of timber which tapers regularly but does not come to a point, what is the first thing to be done? What is the second step? The third?

[^103]: Qurationa. - How do we find the solidity of a tapering round alick of timber, when the amall end is not a pointf How may we.And what will be the content of a round alick of timber of equal size from end to end, when hewn squart?

[^104]: Qusations.- IVhat is the rule for finding how many square edged boaruis of a given thickness may be sawn from a log of a given diameter? What is galging? How is the mean diameter of a cask foundl

[^105]: Quedtions. - From what is duodesimal derived? What are duodecimals? How are feet supposed to be divideds How are these parte again divided? How are duodecimala added and subtracted? How many of one order make nne of the next high. erf What are the distinguiabing marke called?

[^106]: Questocs. - What in Pusilion?. How many kinde nre there? Whit does single Position include? What is the Rule?

[^107]: Gunotion.- Kur what in double pusinun usear Kepeat hie rule,

[^108]: Questions.--What does Alligation teach? Of what kinds does it consist? What does Alligation Medial teach? Repeat the rule.

[^109]: Questions.-What is Alligation Alternate? How may it be proved? Why is it called Alligation Alternate? How do we find the proportional parts to be taken when the prices of the several simples are given?

[^110]: Qukstions. - When one of the ingredients is limited to a cers tain quantity, how do we find the proportional quantities of the rest?

[^111]: Qussmon. - When the first term, the number of terms, and the common difference are given, how do we find the last team?

[^112]: Queetion, - When the extremes and number of terms are giv. en, how do we find the sum of the terms?

[^113]: Quaution. - When the first term, ratio, and number of terms are given, how do we lind the last term?

[^114]: Questions.- When the exrremes and ratio are given, bow may the sum of all the terms be found? If the last term be not given in the question what must be done?

