NOTES

HABITS OF C0LE0PTEROUS INSECTS

Br G. P. GIRDWOOD, M.D.,
M.R.C.S.E., L.C.G. \& S.L.C.

READ BEFORE THE NATURAL HISTORY SOCIETY MONTREAL.

MONTREAL :
Printed by M. LoNGMOORE \& Co., 1867.

NOTES

Mr. President, Ladies and Gentlemen - As we are in the babit of judging of a man by his works, so may we judge of the Oreator of the Universe by bis worke, not that I mean we should sit in judgment upon the being, who was the author of all things and in whom we live and move and have our being, but that in examing and seratinizing his works we may judge of the majesty and power, and wiadom of him who fashioned man in his own image. The study of natural history is but the study of the book of nature, nind in trutb the study of the Oreator himself. The book of nature is divided, if I may use the expression, into three volumes, namely, the animaf, v getable, and mineral kingdoms, in all of which we find evidences of the vast reources, and forethought and wisdom of God.
We find these three divisions of this world mutually dependent upon one another and forming a harmonious whole.
We find a lite in each, that life in each commencing in an individual unit so to speak, and pasking by gradations, almost imperceptible, to more and more complex forms
In the animal kingdom, which is the volume which we have to open to-night, we find all animal dife commencing in a siogle cell, a spherical bladder of organized matter, yet matter, possessed of the same characters as we find in the mineral kingdom, and indeed borrowed for a time from that kingdom, and which, afier passing througb the various stages and transformations, developements and decay, constituting the phenomens to which we have given the term life, is again returned to the mineral kingdom from which it was borrowed. there to pass throngh other changes until it is again borrowed for some future individual.
All members of this animal kinedom pass through successive stages of progressive existence trom this simple form of a sphere till they attain their full development as adult iodividuals of their species; ; perform their duties in the economy of nature, and pass-away to make room for succeeding generations.

The whole animal kingdom itself exhibits a successive progressive development from this simple form to man. The racese in our classification put at tbe top of the tree.
Previous enquirers into this volume of the book of nature divided and classified this volume into leaves; these leaves are the different races of animals,-one of which forms the subject of the few remarks I am about to address to you tonight.
The classification of animals is according to the amount of their development. The articulated branch of the animal kinguom er ntains animals composed of simple rings more or less similar to one another, which contain and support the organs necessary to animal life.

According to the method in which this plan of structure is exemplified, articulated animala are divided into three classes. Those whose
Body is permeated by air vessels. Insecta,
Body without air vessels.
Thoracie region distinct from abdominal. Crustacea.
Th racic region not distinct. Vermes.
The class Insecta are again divided, by subordinate modifications in the plan of structure, into three sub-clagets :
Head, thoraz, and abdomen; distinct legs, 6 Insecta.

Head, thorax usually agglutinated; legs, 8.Arachnida.

Head distinct; legs numerous. Myriopoda.
The first sub class Insecta alone occupy our attention at present.
The word insect, which denominates this subclass, is derived from the Latin language, and means cut into or notehed And is designed to express one of the chief characteristics of this group of animals, whose bodies are marked by geveral cross lines, or incisions.
The parts between these lines are called segments or rings, and consist of a number of jointed picces more or less moveable on each other.
Insects bave a very rudimentary brain. And instead of the spinal marrow of the higher orders
of animals, have a knotted cord extending from the rudimenta y brain to the hinder extremity of the body, and numerous white filaments pass from this cord and from the brain, forming a nervous system.

Witnin their bodies they bave numerous tubes for the passage of air, which supply the want of lungs and carry the air through their bodies They do not breathe through their mouth, but through small holes placed along the sides of the body, called piracles, usually nine in number.

They have a beart, which, from the fact of their pairing off, seems to be susceptible of the influence of the mischievous little god, Cupid.

However, this heact is a long tube lying under the skin of the bafk, and having holes on the sides for the admission of the juices of the body, which are prev nted from escaping again by valves, which close over them. Moreover, this tubular heart is divided intoseveral chambers by transverse partitions, in each of which there is a bole, shut by a valve, which only allows the blood to flow in one direction-from bebind forwards. The blood of ingects is a colourless or yellow fluid. There is no complets system of citculation, but the blood is forced by the heart forward into the head and escapes in'o the body, where it mixes with the putritive juices which filter through the intestines, and, penetrating through the crevices of the flesh, finds its way to the sides of the air passages and returns azain to the heart, fitted to nourish and maintain life. In all this we find an analogous process, to the circulation in all other animals.

Insects are never spontañeously gentrated, but are produced from egge, except in a few cases where the eggs are retained within the body until the young are ready to escape

Most insects are suhject to very great changes of form during their lives Taking a moth or butterfly as the type, we find the insect lat in the condition of an egg; 20 d in the condition of a caterpillar; 3rd in the condition of the puppa, or grab; 4thly in the condition of the fully developed irsect.
These changes of form, or metamorphoses as th y are called, might cause the same insect to be mistaken for as many different animals.

After the egg has been hatched, we observe three distinet periods in the life of an insect, more or less distinctly marked by contesponding changes in form, power and habits.

In the first period of infancy an insect is technically called a larva, a word signifying a mask, because therein its future form is more or less masked or concealed.

In this first period, which is much the longest, the insects are always without wings, pass most ot their time in eating, grow rapidly, and usually shed their skins repeatedly.
In the second period they entirely lose their previons form, take no food, and remain at rest bidden away somewhere in a death-like sleepin this condition called the pupa, from a slight resemblance that some of them present to an infant trusted in bandages, as was the custom among the Romans.

At the end of this socond period insects again shed their skins, and come forth fully grown and with few exceptions provided with wings. Thus they enter upon their last or adult state, wherein they do not increase in size, and during which they provide for a continuation of their kind This period is usually but short, most insects dying immediately after their eggs are laid. In winged or adult insects, two of the transverse incisions with which they are marked, are deeper than the reat, so that the body seems to consist
ff three principal portions. The 1st the head; the 2nd or middle por ion Thorax-or chest; the 3rd or hindmost portion the abdomen. The head supports the eyes, the mouth, and the antence or organs of hearing. The eyes of adult insects, though apparently two in number, are compound, each consisting of a great number of single eyes, closely united together and incapable of rolling in their sockets.
Near to the eyes are two jointed members, the autenuce corresponding in situation with ears in other animals, supposed to be connected with the sense of bearing or of touch, or of both combined.
The mouth in different insects varies according to the frod they live on, some being provided wi h a biting or chewig apparatus, whilst others are provided only with a suction apparatus. The parts of the mouth are an upper and under lip, two nippers or jaws on either side moving sideways, and four or six little jointed members called palpi or feelers, whereof two belong to the lower lip, and one or two to each of the lower Jaws.
These parts are altered and modified in different insecte, and form a mode of distinguishing one class from another. In some, these parts are agglutinated to form a tube for sucking up food; in others, for piercing, and then sucking. The parts belonsing to the thorax or chest are the wings and the legs. The former are two or four in number, and vary greatly in form and coneistence, in the situation of the wing, bones or veins, as they are generally called, and in their position or the manner in which they are closed or folded when at rest. The under side of the thorax is the breast, and to this are fixed the legs, which are sixin number. The parts of the legs are the bip joint. by which the the leg is fastened to the body; the thigh (or femur), the shank (or tibia), and the foot; the latter, consisting sometimes of one joint only, more often of two, three or 5 pieces called tarsi, connected end to end, like the joints of a finger, and armed at the ex: tremity with one or two claws.
The abdomen, or hindermosf part of the body, and, as to size, the principal part, contains tbe organs of digestion and other internal parts; and to it belong the piercer and sting, where thay exist
An English enotomologist has stated that, on an average, there are six diatinct insecte to one plant. This proportion is probably too large for this country. There are about 1200 flowering plants in this country, and we may es'imate the number of species of insects at nagrly 5000 , or in proportion of to a plant. To tacilitate the study of such an immense number, some kind of classification is necessary. The basis of this classification is founded upon the structure of the mouth; in the adult state, the number and structure of the wings, and the transformation. The first great divisions are called orders, of which the following seven are generally adopted by naturalists:-
1st. Coleoptera : Beetlés, insects with jaws and two thick wing covers, whence they derive their name; two membranous wings.
2nd. Orthoptera: Orickets, Grasshoppers,de., with jaws, and parchent wing covers ; two membranous wings,
3rd. Hemiptera: Bugs, Locusts, de., with a horney beak for suction, 4 wings, the upper one being small and membranous.
4th. Neuroptera: Dragon Flies, \&c., with jaws, and four netted wings.
5. Lepidoptera : Butterflies and Moths, month with a spiral sucking tube, and 4 winga, covered with branny scales.

6th．Hymenoptera：Wasps，bees，\＆c，insects with jaws， 4 wings veined．
7．Diptera：Musquitop；Gnats，Flies，\＆e，with a horny or fleshy proboscis，two wings only．
With this first order（Oolenptera）we have to deal．They have two membranous winge，con－ cealed by a pair of buroey cases or ahella，meet－ ing in a straight line on the top of the back and usually having a triangular or semi circular price，called the scutel，wedged in between their bares．Hence the name，signifying wings in a sbeath．The horney covering is called elytron The order Ooleoptera is divided again．according to differences of formation，into 45 families， which ale again anbdifided into genera and ape， cies．These are distinguished From one another by various forms of the antenns，the mouth，the tarei，\＆c but，independently of these，the differ－ ent families have peculiar shapes，some of which I have bad drawn so as to point out the charac－ eristic shapes of these tribes of beetles．The food of beetles bas been one means of classifying them；thus we have：

Geodephaga，earth eating beetles．
Hydrophillidæ，water beetles．
Necrophaga，death eaters．
Brachelytra，do do．
Lamellicornes，dead wood，\＆c．
S ernoxi，plant eaters．
Malacodermata，fire－flies，also plant－eaters．
Heteromera，living on fungi and decayed wood． Longicórnes，borers．
Phytophaga，living on live animals．
In this sort of classification we find the most brilliant coloured insects living upon flesh，either dead or living．In the nourisbment of beetles something more than the mere preservation of the individual seems to have been designed，and in many instances it would appear as if some were created for the express purpose of consum－ ing unhealthy organized material．Thus we fiod the carrion beetles beneficial to man by devour－ ing noxions insects，and even carrion，deetroy－ ing decayed animal substances which would otherwise prove a fertile source of uubealthy ex halations．In Egypt these beetles are very large and powerful，and numerous，and one was in ancient titnes of so much use that these people deified hirf．One of the dunz beetles，which still goes by the name of Scarabæus Sacer，whrse conformation is beau ifully adapted to the duties he has to pertorm in life；bis strong limbs，and his great shovel on the front of bis bead enable him，and they sat to work in numbers，alight on some piece of offal，to dig away the sand around and under $i t$ ，and when they have made a hole deep enough the mass falls down into it，and then they shovel up the sand and cover it up and lay their eggs，and bave stored up．a cellar full of food adapted for their young when they are hatched．Beetles which feed on leaves，wood， fruits and grain，are herbiferous，and are geve－ rally noxious to man ；but bere we find Nathre＇s great doctrine of compensation fully carried out． If there be many genera of insects，principally the case among noxious butterfliea，so prolific that if allowed to increase they would devour all the vegetables，and so bring about a famine，we at the same time observe that the Great Ruler of the Universe has prevented their increase by making them the propar food for otbers．But besides the enemies these insects have amongts their own order，they are the food of other orders， such as birds；and if we destroyed all the cater－ pillars，and the vegetable－eating Ooleoptera，we should have our woode destitute of birds，and
wculd welcome again these insects if they would bring back the hirds with them．
The first division named，the Geodephaga，and represented＇by this cicindela bexaguttata，are a rapacious，hungry set of fellows，very quick in their movements，lying in ambush under stones， and pouncipg on their prey，which they grasp with ther powerfal claws in front of their mouth：others run over the sands，and are on the look－out for the larve of other insects， which，lping in concalment until their sleep－life or pups state 18 over，become an easy prey to their enemies；others again may be seen running up and down leaves and branches in search of a fine fat caterpillar to eatisfy bis or ving appet tite．They are splendid in colour；they fly very fast，but not far；they are difficult to catch，but well repay the trouble of taking．The elytra，or wing covers，may be made use of to adorn ladies＇ dresses，or the whole beetle may be used for the same purpose No work of art can comyare in béaoty with the creations of Nature
The next order，the Hydrophillidm，represent－ ed by Ditiscus，are most useful to man；they in－ habit for the most part the water but frcquently fly about at night．I have taken many of them at ni⿻h一冂人丨又力，when sitting with my window open with a lamp watching on a summer evening for moths and any nocturnal visitor．They live on decay－ ing vegetable matter and the larvas of other in－ sects whose young inhabit the water ；they thus act as parifiers of that element，and at the same time prevent the too rapid increase of other in－ sects．
The next tribe，the Necrophaga，represented by the Sylpha Marginalis，are carrion beetles，are useful to man in removing all sorts of refuse， may be found in the carcases of dead animals， and when disturbed run out in all directions． Some of these are also remarkable for the bril－ liancy of their colouring；and although they live under sucb disadvantageous circumstances，they manage to keep themselves clean in a ppearance， and rever seem to allow any of their food to stick to them，from which we may learn a good lesson，that in the midst of dirt we may keep ourselves clean．
The Brachelytra，or fourth tribe，and the fifth tribe，Lamelli Cornes，or flat－horned beetles，of which Staphylinus Villosus and Scaraboens Sacer may be taken as examples，may fairly be considered with necropbaga，for their habits are much the same，and may be called seavenger beetles．Thay are armed with strong jaws for separating the food．Among the se we find come of the largest specimens of beetles；the larvio of these live underground，and feed upou such food as their progenitors have been kind enough to lay up for them．Amongst the members of this class are to be found a family of beetles called Dermestidæ；they live on decaying mat－ ter，but not always on decaying matter，for the grocers find great enemies in these little fallows； they are very ravenous，and eat a great deal； they bave a peculiar taste for bam，in which I think a good many others will agree with them： but jf the grocer fiads an enemy，the a natomist finds a friend，and $m v$ friend Mr．Buckland used to keep a select staff of Dermestes for the pur－ pose of cleaning his skeletons；they eat away all the flesh，and leave nothing but the bones． Some of these larger kinds of larva were considered by the ancient Romans a great delicacy；and to this day in the West Indies，the inhabitants eat the palm worm，and I was assured by a friend who had been in the West Indies that they are a great delicacy．It is a diagusting looking，tat，white worm，with a

\qquad

black bead, from three to five inches long. He usually lives in the cabbage palm (areca oleracea) and afterwards changes into a black weavil rwo inchea long, of which tribe I have yet to speat
In New Zealand the larva of a species of cock chaffer is eaten after dinner as a delicact, cooked like marrew and eaten on toast. I dare say they may be very good, and we have bible authority for the eating of beetles, for 1 find in the 11th chapter of Leviticus and the 22nd verse, the fullowing words :-.." Even these of them ye may eat, the locust afier his kind. and the bald locust after bis kind, and the beetle after his kind, and the arasshopper after his kind."
The sternnxi or buprestrans come next. They are of beautiful metallic lustre, often with brilliant colours, intermixed there are many apecies of them, they live on leaves of plants, and the larvae penetrate the wood of trees, upon which they live, and when this stage of lifs is nearly completed they place themeelves with the head outwards, and when the transform tion is complete they bave only a thin layer of bark to eat tbrough, and ont they go, fully dressed, into the sun They are sly fellows, these buprestians, for when you approseh them to take them. they let go their bold and fold up their feet and fall to the ground, as if dead, and often you are disappointed of sour prize. They fly about by day and secrete themselves in old stumps, \&c. by night, the different species inhabit different trees, the cherry, the poplar, the butter nut, \&c.
Tbe 8th division, the malacodermata are a class of beetles, of great interest, and great beanty. thev are the fire flys, their plytra and skin generally is much cofter than that of other beetles, they are vegetabled eatere, but amongst them are several genert of use to man ald used in medicine, as the v rious forms of blistering flys as they are called, the Spanish fly as it is called, blongs to a genus of this division, they do some mischief in the way of destroying the plants they feed on, but are so useful that I think we will forgive them this little injury they do us.

Heteromera, the eighth division I bave given, are useful in removing decaying wood, and one peculiar family are specially neeful, called the Bolitophagi or fungus eaters. They live entirely upon fungi, and among them are some very strange shapes. With these we may take a nearly allied class, the Elateridæ, or spring beetle, called by our neighbonrs the lightning spring bog, represented by the Elater occulatus; so eolled from two lange black spots on the thorax rfsembling eyes. These beetles when beld give a peculiar aprirg, accomparie d by a sharp snap, and readily slip ont of your firgers. Their habitat is the bark of trees, or betueen the bark and the wook. They do mischief to the trees bv separating the bark from the wood.

TbeLongicornes, $9^{\text {th }}$ h on my, list, are a very destructive set of gentlemen. They are for the most part handsome fellows with long antenro. It is difficult to know what they do with these long horns. It seems as if they must be very much in their way. Some of them are very large. They lay their egas in the bark of trees. and the aruhs or larrce traverse the wood of the tree in different directions, causing those large round or oval holes we so commonly see running through the timber. They may he represented bv Monobemmus confusor, of which Mr. Billings says he bas seen as many as a hundred on one single pine tree. Together with these the wesvils may be taken. These are a peculiar clasa of beetles called Rhincophers, from their carrying a peculiar trunk on their heads, which aids them
in boring through the bark to deposit their egge, It is the bsva of one of these that is eaten in the West Indies. They are very destructive to som_{8} of the fruit trees, and one has been denominated from his habitat the pes weavil (Bruchus Pisi). Mr. Harris, in spesking of this insect, says:-
Few persons, wbile indulging in the luxury of early green peas, are aware of how many insecta they unconsciously swallow. When the pods are carefully examined, small discoloured spots may be seen with them, each one corresponding to a similar spot on the opposite pes. If this spot on the pea be opened, a minute, whitish grub, destitute of feet, will be found there. It is the weavil in its larval form, which lives upon the marrow of the pea, and arrives at its fuli size at the tíme that the pea becomes dry. This larva or grub then bores a round hole from the hollow in the centre of the pea quite to the hull, but leaves the latter and geverally the germ of the future spiout untouched. Hence these buggy peas, as they are called by seedsmen and gardeners, will frequently sprout and grow when planted. The grub is changed to a pupa within its bole in the pea in the antumn, and before the spring casts its ekin again, and becomes a beetle, gnaws a bole through the thin hull, in order to make its escape into the air, which frequently does not happen before the peas are planted for an early crop. After the plants bave flowered, and while the pods are young and tender, the peas within them sare beginning to swell, the beetles gather upon them, and deposit their tiny egga, singly, in the panctures or wounds which they make in the surface of the pods. This is done mostly during the night or in cloudy weather. The grubs, as aoon as they are hatched, penetrtae the pod, and bury themselves in the opposite peas. and the boles through which they pass into the seeds are so fire as hardly to be perceived, and are soon closed. Sometimes every pea in a pod will be found to contain a weavil grub, and so great hes been the injury to the crop in some parts of the neig tbouring States that the inhabitants bave been obliged to give up the cultivation of this vegetable. These insects diminish the weight of the pess in which they lodge nearly one half and their leavings are fit only for the food of swine. This occasions a great loss where peas are raised for feeding stock or for family use, as they are in many places Those persons who eat whole peas in the winter after they are raised run the risk of eating the weavils alsn; but if the peas are kept till they are a year old the insects will entirely leave them. The nea weavil is supposed to be a native of the Uniter States. It geems to have been first noticed in Pennsylvania many years ago, and bas gradually spread from thence to New Jersey and other S ates, and is now common in the south of Europe and England. The insect is limited to a certain period for laying its eggs; late sown peas, therefore, escape its attack
The larve of these boring beetles, like the perweavil, which inhabit trees, come near the surfice of the tree, and, of colarse. l leave a hollow space under the bark. The woodpecker, tapping with bis beak, ficds ont these bollow spaces, and works away till be makes a hole through the bark and fetches out the larva be is in search of, affording us another example of the law of compensation in nature, and preventing the too great increase of these destructive insects.

The last of my list are the phytnphage, or beetles who live on living things. They are represented well by the crysococus aureatus, a most beantifu! green beetle, with a brilliant golden hue. They run up and down the plants,
and prey upon the aphide -small green insects that suck the juice of the plant. This class of beetle is very useful in this way. The lady birds belong to this order. They have been long held in eatimation, and are called in Germany "lady. beetles" of the virgin, by the French, cows of the lord, or anima a of the virgin, these have been recommended as a sovereign remedy for toothache. They are to be amashed up and put into the tooth, whether or no they are efficacions, I cannot tell; any one may readily try it for himself
L have given you a few remarks about the mode of determining and classify ing ingects, and upon some of their lives and habitats, those $w h_{0}$
wish to collect thesee beantiful little animals, can do so, readily. It is only necessary to supply yourself with a small wide-mouthed bottle of spirit of wine, a box of pins, a few pieces of cork and a cork-lined box to put your collection in. You will fiad the time spent is not wasted. It is a pleasant occupa n in long winter nights to arrange them, and induces rambling amonget the woods in summer, whereby you will ebtain a stock of health and strength. From, their habits we may learn many useful bints; and in watching their habits and instincts, we may learn. to appreciate the creations of an All-wise Providence.

