Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

THE

UPPER CANADA IIEDICAL JOURNAL

wF
Medical, Surgical and Physical Science.

orgeinal communications.

ART. XXIII.-Pathological Jistology, iy Gotrurex Gluge, M.D.; translated from the German by Josemi Lemy, M.D., Philadelphia. SNYMDDCTORY HEMARKS.
Pathological Flistology comprises the description of abnor.mal tissues, their individual elements, ${ }^{*}$ and their development.

Tissues produced under the influence of disease are composed of physical elements, in which the inorganic or organic constituents predominate. The former consists of amorphous or granular matter, or erystals; the latter of fibrine and albumen, or fat.
As the first class of pathological deposits are mixed with inorganic elements, ordinarily with one, and frequently, also, in small quantity, these are necessarily combined with organic elements in various relations. Their existence appears essential, if the organic elements are to assume a definite form; and, if we knew exactly what quantity and quality of inorganie substance were requisite to the formation of each tissue, a new field would be open to therapentics. Thus, upon the supposed necessity of phosphate of lime in the formation of cells, a therapeutic treatment has already been established.

[^0]Among all organic substances, fibrine alone appears to me to be capable of immediate organization or conversion into tissues, and then only in combination with albumen and fat. Hence, it maty be placed doun as a principle, that organization never commences without the presence of fat, separated into the form of globules, which contributes with fibrine to the formation of the various tissues.

Albumen, to become organized, probably, must first be converted into fibrine. This vien, lowever, although resting upon the fact of the transformation of the latter into tissues in psendo-membranes, yet the mode is entirely unknown in which albumen becomes solid in the process of nutrition. Under these circumstances, I shall prefer employing the expression plastic or coagulable liquid, or proteine, in speaking of the formation of tissues, thus leaving the question open as to the participation of fibrine and albumen in the process. It is, nevertheless, remarkable, that in the strongly albuminous liquid of a blister, at first no molecules or nuclei are visible, nor when this liquid is removed do they form; but later, if the stasis continues, and fibrine exudes, they begin to appear.

In disease, as in the normal processes by matrition, the coagulable or plastic liquid convertible into tissues, is mostly derived from the blood.

This development of tissues occurs most frequently in the proteine substance which has exosmosed from the bloodressels, but it may also take place, though in a limited degree, in the entire mass of blood discharged when the latter are lacerated, or in the blood within the vessels themselves.

Chyle and lymph; 'the former the main source of the formation of the blood; the latter being the result of the imbibition of the effete elements of the tissues, are capable only of an inferior and rare metamorphosis into the clements of the tissues. The only instance which I , at present, can admit, is their conversion into muclei or mucleus-like structures in the form of tubercle and pus, which have been observed within the lactcals and lymphatics. Probably, also, the nuclei of medullary carcinoma (meduilary sancer globules), may be reckoned in this category.

Pathological formations are either perfect tissues homologous to those which are normal, or they are tissues arrested in some stage of their development. The former intimately associate themselves with the natural tissues and organs, determining hypertrophy, or they occur in these as isolated masses constituting tumors. These tissues undergo the same metamorphosis as in the normal development of the embryo.

The latter class of pathological formations are histological malformations, and resemble the malformations of organs, the history of which lost its marvelousness so soon as their normal course of deselopment became known.

To decide how far these patholorical productions exercise an injurious influence upon the orranism, or how far they are compatible with life, is no more the business of histology than it is for the chemist to consider the influence of different substances upon the living body, when engaged in their classifications. If we were more intimately acquanted with the chemical and urgauic relations of pathological tissues, such an independent, scientitic treatise would exert quite as great an influence upon pathology as does theoretical upon practical chemistry. Nevertheless, the practical utility of histology is sufficiently great at the present time, avoiding all disposition to over-estimate the subject, to command the close attention of the practical physician.

FIRST SECTION.

Devclopment of the clements of tissucs.
 naemyars on rissues.

The pathological formations are as follow:-

1. Perfect physiological tissues (homologous formations).
2. Imperfect tissue elements or heterologons formations, to which helong-
(a). Gramular or amorphous proteine substance, or cytoblastema.
(b). Fat globales.
(c). Nucleoli or elementary gramies, consisting of fat or proteine, or a combination of both, or of pigment, isolated or ma mulberry form (inflammation-globules), and anited into irregular groups.
(d) Nuclei.
(e). Cells.
(f). Fibres having a quadruple mode of origm, viz.: fibres more or less defined, formed by cleavare (eleavage fibres), as, for instance, such as occur in exaded coarubated fibrine; ; fibres formed through cougulation (fibres of coagulation) in a gelatinoid blastema, as, for instance, sometimes oceurs in colloid; fibres proceeding trom cells (cell fibres); and

[^1]fibres produced by the deposit of extended layers around nuclei, or by the prolongation of these (nuclear fibres).*
2. Development of cells in the exuded plasma of capillary vessels.

1st. mode of celli-formation.

The coagulable liquid which exudes from the blood-vessels is called cytoblastema, and in it are formed the above mentioned elements of the tissues in the following manner:

At first nuclei originate, which are spheroid, oval, or pointed at two extremities, sometimes clavate, from one of the latter being rounded. They are of very variable diameter, are soluble in caustic potassa, but ordinary not in acetic acid. The majority, but not all, contain several-usually two or four, rarely none-shining granules, resembling fat globules, from the $\frac{1}{50 \sigma}$ to the $\bar{\delta}_{\frac{1}{\delta} 0}$ of a millimetre in diameter. These latter are the nucleoli, and they probably precede the nuclei in their origin, for I have frequently observed them as the first visible form in exuded cytoblastema, but have not seen their relative course of origin directly.

In the formation of pus-corpuscles, the so-called nuclei of which I view as nucleoli, this appears most distinctly to be the case, for the latter appear in the plastic liquid shortly before the occurrence of the pus-corpuscles. A like instance is presented in the formation of epithelial-nuclei (mucuscorpuscles) in the mucus of catarrh. At a later period, the nucleoli become blended with the nucleus, and then are no longer visible; thus, this appears distinctly to be the case in formation of epithelial cells upon blistered surfaces.

At the next step of cell formation around the nucleus, a layer of matter accumulates, soluble in acetic acid, at least always in the beginning, the outer part of which is converted into a cell wall: while the inner portion constitutes the cell contents, inclosing the nucleus; the latter, not unfrequently several in number, generally lies eccentrically within the cell, but sometimes in the center.

Frequently, new nuclei form in cells, which previously have but one, and around them new cells. In many cases the cell-wall forms only a half circuit or partial layer, around the nucleus; or, as observed by Schleiden to be the case in plants, the cell-wall lies upon the nucleus in the relative position of a watch crystal to its dial.

Cells appear rarely to increase by division in the animal, as is so commonly the case in crytogamous plants; and an

[^2]undoubted instance I have not observed; buithave only sometimes seen the beginning of the process:*

The cells are spherical, oroid, flattened, or polyhedral from mutual pressure, or sometimes have filiform prolongations, which are frequently split up into delicate filaments. The cell-wall closely surrounds the nucleus, or is separated from it by a layer of softer granular, or amorphous semiliquid contents, which may be constantly increased by endosmosis. The latter is rendered evident when cells are treated with water, when they are observed to dilate and then burst.

The formation of a nucleus is not an essential condition to the production of cells, for there are instances in which the latter oceur without having been preceded by a nucleus. All non-mucleated cells, however, do not belong to this category, for frequently a muclens originally exists, but afterwards becomes indistinct, or disappears entirely, by solution in the cell contents. Cells may form even after the exuded plasma is separated from the body. This may be observed with certainty in the fluid of a blister. There is, however, nothing very remarkable in the fact, for we observe, under the influence of the warmth of incubation, entire organs formed from the orgamizable liquil of the germinal vesicle in the egg of birds.

2xd. some of cell-rormation.

Small bodies appear, ordinarily, spherical and resembling fat gramules, to which, in fact, they often correspond in their relation, but also frequently may consist of proteine, or sometimes of pigment. These average in size from the $3 d \overline{0}$ to the ato $^{\frac{1}{0}}$ of a millimetre in diameter, and become associated, in groups of from ten to forty or more, by means of a coarulated albuminous matter soluble in acetic acid The groups of graules are mulberry-like globules, measu ${ }^{1}$ ing on the average the $3^{\frac{3}{0}}$ of a millimetre, and in the condition are frequently observed. Only at a later pericd does a cell-membrane rise upon theis globules, occurring by the separation of an c erior soft layer resembling coagalated albumen, and, in the mean tine, the grasules within gradually disappear by lignefaction. This, however, only occurs when the contents consist of proteine or fat, and then, ordinarily, a nuclens, rarely more, becomes visible, which appears as if it had been previonsly formed. This is a peculiar mode of cell-formation, in which mucleoli are formed in large quantity (the first layer), from which a

[^3]simple or compound nucleus is produced. So long as this structure remains without a cell-membrane, I have given it the name of inflammation-corpuscle, which should be retained, because other adopted names-granular cells (originating in a false hypothesis), or granulated bodiesare inadequate; whereas the former appears most expressive, as the inflammation-corpuscle is the first characteristic form produced wherever blood stagnates and becomes organized, after or withou exudation, or in other words, wherever inflammation occurs. It has been very learnedly shown that similar bodies appear in the colostrum and in the egg; but I have in no case asserted that they are found only in inflammation; and, on the contrary, I have ever tried to harmonize the pathological alterations of organs as much as possible with physiological development, for I have always viewed disease as nothing more than a physiological process modified by accidental causes.

3. Parallelism existing between the pathological and physiological development of cells by the first mode.

If we examine the development of physiological tissues, we find, according to Schwann, they originated from cells, in the following manner:-

In the beginning, in an amorphous or finely granular cytoblastema, there originate non-nucleated cells or nuclei, or the commencement of these, around which, at a later period, the cell is formed. Non-nucleated cells occur in low plants, but, according to Schwann, rarely in animals. The young cells of the chorda dorsalis, of the yolk of the egg of the bird, of the mucous layer of the germinal membrane, and some of those of the crystalline lens, belong to this category.-(Schwann, p. 204.)

Non-nucleated cells, also, are rare, as we have seen above, in pathological tissues.

Most of the tissues of the body of mammalia originate in nucleated cells, and the nucleus is either solid or hollow. Such is also the case in pathological tissues.

The nucleus generally contains one or two small dark nucleoli, more rarely three or four. The same is the case in pathological nuclei, in which the nucleoli are also occasionally absent.

Most nuclei are not dissclved by acetic acid, at least not rapidly-(Schwann, p. 206). This is found likewise to be the relation of pathological nuclei. Pus-corpuscles, however, which I view as nuclei, quickly dissolve in acetic acid, leaving behind the nucleolus; but many other nuclei do
not dissolve at all, or do so only very slowly, as the so-called mucous-corpuscles, or nuclei of epithelial cells.

The nuclei of animal tissues appear to be developed from nucleoli, as, according to Schleiden, is the case in plants. I have not been able directly to observe such a development of pathological nuclei, but it often appears to be the most probable mode.

Cells exhibit a variable constitution. Thus, according to Schleiden, the cell-membrane of the youngest cells of plants dissolves in water, but not at a later period. The cellmembrane of cartilaye-cells is soluble in acetic acid, that of the blood-corpuscles is not; the young epithelial cell-wall is also soluble in the latter liquid, but no longer after it has become corneous, \&c. Whilst the wall of most cells is dissolved by a solution of caustic potassa, epidermal cells only become clearer, and swell out. Similar phenomena are presented by the cells of pathological structures. Ordinarily, these cells, at the commencement of their development, dissolve in acetic acid, but at a later period do so no longer, as in the case of abnormal epithelial cells.

Cells grow by endosmosis, and through deposition upon the inner surface of their membrane. In plants the deposits frequently occur in layers. Pathological cells also grow by endosmosis, and deposit upon their inner surface. Concentric deposits rarely take place in the latter, so that the layers remain distinct (as in cancer), and occasionally these deposits occur externally, and afterwards become transformed into fibres. Similar results of physiological development I have observed in the skin.

In some cases a fusion takes place between the cell-wall and an intercellular substance, or of the walls of neighbouring cells, as, for instance, in certain cartilages-(Schwann, p. 217). A similar occurrence I have observed, though rarely, in the epidermal formations of meliceris in which the walls of the sac and the cavity become indistinct; and only the outlines of the contained cells remained visible, in the form of a shaded network.

The endogenous reproduction of cells occurs rarely in animals, as in cartilage, and in the thyroid gland, but is common in plants, and is frequent in pathological products, as in cancer, and not rarely in abnormal epithelial formation (catarrh of the bladder). An extraordinary enlargement of parent and secondary cells is presented in the endogenous formation of cysts. It is a repetition of the process of endogenous cell-production on a grand scale. In these cases there is at first formed a scarcely visible semi-solid, rounded, gelatinoid mass, the nucleus, and around this a
lager becomes separated, which is the cell-membranc. The new ectl grows by endosmosis, and finally is supplied by blood-vessels, and through these material for a repetition of the same process. New cells produced within the former, originally are eccentric and attached to the wall of the parent cell, but afterwards separate and pass towards the centre of the latter, so as to give place to new formations In this mamer several generations of cysts, that is to say, cells within the parent cyst (cell) may be produced. The origin of cysts in organs, in which they do not exist normally, without doubt frequcntly oceurs through the enlargement of an ordinary cell.

Cells produced in diseases exhibit throughout a like relation to those, the result of physiological development. As we have seen, they grow by imbibition and deposit upon the inner surface of their membrame, and exchange or convert chemically their contents. The latter fact is particularly striking in the case of adipose cells of many fatty tumors, which, after having existed some time, are found to contain albumen or fibrine; also in the cells, inclosing blood corpuscles, which afterwards become coverted into pigment; and again, in the calcification of cells. On the other hand, cells containing albumen often become filled with fat globules, or with pigment.

Besides the faculty of imbibition and growth possessed by cells, which, according to the ingenious comparison of Schwam, might be considered as crystals formed of organic materials endowed with the eapacity of imbibition, they have no other vital property. Movement or contraction in cells is observed quite as little in those produced pathologically, as in such as are physiological. On the contrary, nuclei, as well as cells, have a marked degree of inflaence upon the production of new cells in the plastic liquid which contains them, as in the case of pus-corpuscles and the cells in cancer.*

4. Artificial forntation of Cells.

The artificial production of cells from the contact of oil with albumet, as discovered by Ascherson, has often been compared with that which takes place in the living body. Such cells, however, although composed upon the principles

[^4]of formation by layers (a layer of albumen surrounding a globule of fat), are as different from those produced through the vital agency as a corpse is from a living body. This difference is strikingly observed in cases in which such a mode of cell-formation as the former occurs in the living body. In the tubuli urincferi, for instance, precipitates are sometimes produced consisting of fat globules surrounded by albumen. These artificial cells are non-nucleated, and undergo no kind of transformation.
A not uninteresting modification of the fact, discovered by Ascherson, I have observed when nitric acid is added to bile containing albumen. A precipitate of resinous molecules takes place, around which a layer of albumen is deposited. This phenomenon 1 have noticed most satisfactorily in the albuminous bile of cholera cases.

5. Parallclism existing between the Pheysiological and Pathologzal development of cells by the sccond mode.

Inflammation-corpuseles belong to the second mode of cell-development; and, however frequently they are asserted to result from the tramsformation of cells, the contents of which at first were not gramular, are to be viewed as the remains of cells,* no unbiased observer will deny they find their analogy in the originally noncellular development of the cleaving globules of the fecundated ovam, or even in the development of the egg itself, which is at first observed in the ovary of the bird as a mulberry-formed agglomeration of globules, in which, only at a later period, a central spot and hollow nucleus, or the future serminal vesicle, becomes visible. Even in the fully developed germinal vesicle, as in that ot the frog, masses of clobules, recembling inflamma-tion-corpuscles are observed, which, only at a later moment become enveloped by a cell-membrane (compare the observations of Nageli, Kolliker, and Vogt, and those in opposition by Reichert).

6. Development of Fibres.

In the enumeration of the tissue elements, the different forms of fibres which occur in morbid tissues have already been mentioned. Nuclear fibres originate by the elongation of nuclei at one or both ends, and the deposit of layers upon these, so that the nucleus is the central point around which, to the greatest extent in the direction of the long axis, a new layer, the fibre, is doposited. Cell fibres, in the sauze

[^5]manner, originate from cells. Whether fibres ever form by the conjunction with one another of muclei, I have never distinctly observed; and such a mode of origin is in my mind doubtful. By far the greatest part of fibres in pathological structures orisinate from cleavare of a coagulated plasma, as is frequently the case in psendo-membrane and fibrous polypi of the interns, or throngh coagulation in a hiquid plasma. Generally in these cases, and always in young fibres, minute fat-molecules are observed upon their surface. Many fibres of pathological formations remain in the embryonic condition, with further development, they continue as cell, nucleus, or cleavage-fibres, without ever constructing a regular tissue.

7. Conclusion.

If we adhere to the general conception of the cell theory, and particularly the beautiful parallel drawn by Schwann between crystallization and the formation of fibres-the similarities and dissimilarities of which he has explainedand remember the opinion frequently expressed by him that the formation by layers, ordinarily of two different substances, is the most important character. it must be acknowledged that the physiological formation of cells by the first mode, as conceived by sciwam,* is the same as that which is pathological. It is, however, to be regretted that Schwam, perhaps for the purpose of drawing the parallel between vegetable and animal tissuec, was sometimes obliged to employ the term cell for structures which are not such; for a solid body, or one having no eavity, is no cell. \dagger

As regards patiological tissues not consisting of cells, their immediate development from the latter, as we have

[^6]seen in the case of solid fibres, is still more to be restricted timan has been done by schwam (page 22). So far as my observations extend, and they are numerous in the development of abnormal tissues, I ain not prepared to assert, with schwam, that, to form a muscular fibre, a nerve-tubule, or a blood-corpuscle, cells must first originate, out of which they are immediately developed. Several tissues in pathological structure, such as the striated muscular fibres, or even the nerve-fibres, are observed with very great difficulty in their course of development; but others, as bloodvessels and the haversian canals of the bone, I am satisfied are not necessarily and in all cases developed from cells.

Cells appear to assume the part of a chemical apparatus, in which the materials of the tissues are propared; and they either become immediately converted into the latter, as cartilage cells into bone-corpuscles and bone-lamine, or fibres, epidermal cells into corneous structures, \&c.; or, when their function is to be a permanent one, remain in theis original enndition, as in glandular structures.
As the result of the above remarks, the following law of the development of morbid tissues may be proposed. Many pathological structures originate through previous cell-formation in a double form. The production of the cells, in such cases, occurs aceording to the first mode, as discovered by Schwam. All tissues, however, camot be proved to originate necessarily and immediately from cells, and several, we know, certainly are not formed from them.
(To be continued.)

> Ary. XXXIY.-The Hip-joint-Considerationson its anjurres and diseases, deducel from the . ${ }^{2}$ natomy, by S. J. Stratrord, M.R.C.S., Eng., Toront", "mtinued from the ". March" number of the Journal.

treatmext of nfobmation of thes sraonine membrafe.
 (C'mimmed.)

In discussing the reatment of :y novial milammation of the tapjoint, we have endeavoured to point out the methods most appropriate to each sta e of the disease and variety of the complaint; we have especially advocated the section of the reck of the femur at that stage of the disease when the formation of pus has been clearly indicated, and we have tad full proofs that the consequences of this state of things -nlecration and removal of the textures of tire joint, and "eamoun of constitutional irritation-clearly demonstrates that the presence of the disease will continue until a "paration of the aricular extremities of the joint has been accomphished. Following up the subject, we presume to
offer the method by which this operation, in our opinion, can be most effectually and readily accomplished.

The removal of the diseased head of the femur may be accomplishet in the following manner:-A crecular incision must be made wer the hip-joint, with its convexity looking downwards, and passing at leaat two mehes above the trochanter major, the flap must be raised by careful dissection, and any vessels that may be cut, tied as we proceed, until we expose the capsular ligament; if this appears strong and not grratly diseased, by rotating the thigh outward and abdurting it from the body we shall expose the weahest point in the capsular ligamen, and having made a considerable opening into it, we may pass the finger down into the joint. Having fully explored the amount of disease, and become quite convmed from the amount of ulcerative absorption that the disease must progress, we may introduce a small saw, and cut through the neck of the bone within the capalar ligaments. The diseased bone is now easily removed from the cotyloid cavity, the proportions between the parts being now greatly changed-the head and neck of the femur being diminished by ulceration, and the cotyloid cavity enlarged by the distention of the contained matter-the bone casily escapes from its cavity, and, after cutting the ligamentum teres, is removed with facility from the joint. The round hgament si most commonly implicated in the ulcerative action that aliects the hip-joint, so that the diseased bone may most commonly be remuved without any impediment from the already divided ligaments. Were the eapsular ligaments already destroyed, and the neighbouring areola tissue not largely implicated in the disease, the operation migit evidently be considerable facilitaled, although the positive result might not be so satisfactory. After the removal of the head of the bone, the parts are to be brought together and supported with three or four smures, aided by sticling plaster and bandage. The limb most now be placed upon a well padded splini, so as to preserve the limb perfectly free from any movement, and keep it cxtended in its proper position.

After the head of the thigh-bone has been removed from the cotyloid cavity, the constitutional irritation generally subsides, the ulceratior action is arrested, the purulent discharge by degrees ceases, and a new and bealthy action pervades the diseased parte; the disease of the hip-jont terminates in the formation of a new joint, or a complete anchylosis of the parts which remain of the old one. Our hopes of the formation of a new joint must rest apon the
presumed powers of the patien's constitution, if it is strong and healthy, and has not been undernined by the long continuance, or the excessive irritation of the disease. It things progress favorably, after ten days, or a fortnight, we may sarefully try pascise motion, and if this can be continued during the remainins progress of the cure, we may have hopes of sucees?; but if pain and irritation are excited upon the least movement, we nust not persevere in our irritating attempts, but rest contented to save the patient's life with a stifl and anchylused joim.

Before having recourse to this uperation, we should endeavour accurately to define the nature of the disease "hich has attacked the hip-juint. If from its history and symptoms we are consinced that it has originated in inflammation of the synovial membrane, or is the sequence of disease, commencing in the carlilage, or in the cancellated structure of the bune; we shall have far greater hopes of ultimate success than when we suspect the disease of the joint to be dependent upun tubercular deposit. In all such cases we cannot venture to define the limis of the strumous deposit ; nur can we reasonably hope that a disease dependent upon such depusit, in the cotyloid canty, can be arrested by removing the head of the thigh-bone. In mbercular deposit is present in this structure, the natural changes consequent upon the discase "ill still progress, and we cannot expect to cute the disease unless we can remove all the deposit, which, in certain cases, must be neat in impossible; so that, when the disease of the hipjoint is caused by tubenculusis, we should hesitate to perform the operation, fearing that the simple separation of the bones would not ise sulficient to arrest the discase; or even, if it was winclined, that from the condition of the ronstitution might se not have a farther disposition of mbercular matter, which uccurrmg, must render all our endeavour 10 oblain a cure abortise. This want of due discrimination is the eabe of the bad success in many of our operations in thi- discase, and I thath it readily explains the variable opiniots of Surgeons in respect to the advantages of this uperatiun; which, if based upon the principles which I have laid down, will, I think, be more reasonably expected to succeed.

The disease of the synurial membane of the hy-jome having advanced to suppuration, the pus havang by ulceration of the capsular higament effected its eseape thto the surrounding areola tissue, it has burrowed duwn among the muscles, may appear as a large fluctuaning swelling pervading the upper parts of the thigh, advancing to the
surface the abscess may point in the groin, at the back of the hip, or descend far down into the thigh. The discharge of matter may be great and persistent, while it may escape from many sinuses at the same time ; it may be so profuse as vastly to debihitate the patient, that death itself is not minfequently the result. Should the patient's constitution be able to withstand the stock of the formation of matter, by degrees ulceration of the capsular and ronad ligaments of the articular cartilages of the head and neck of the femur. and even of the bony margins of the cotyloid cavity, take place to a considerable extent; so that the bone becomes loosened in its socket, and, afor a time, what remanas of the head and neek of the femm- will be casily removed from the cotyloid cavity, and will be retracted upwards by glutei muscles, and fairly lodged upon the dorsum of the ilium. This postion of the head of the bone upon the dorsum of the ilium is not its mvariable position, although by far the most frequent, in consecutive dislocation of the hip-joint. The bune may be placed in the thyroid hole, "ir in the sciatic notch, where it may become anchylosed, or we may have a new joint formed in either of these situations with considerable latitude of motion. The reason of these differences in the position of the bone seems to depend upon the posture of the patient at the moment of dislocation-if he has reclined upon his back in the bed with his knee bent at this time, the action. of the glatei museles will have a powerful effect upon the shaft of the bone and draw it upwards; but if the patient has laid upon his side, with the limb greatly flexed upon the pelvis abducated from the central line, say by the patient rolling somewhat upon his back, the pectinalis and obturator externus muscles will in all probability assist to locate the head of the bone in the thyroid hole. If, upon the recovery of the patient, we find that the dislocation has been upwards and backwards, the limb will be found to be considerably shortened and slighty flexed; he will have a limpiug gait, louching the ground only with the toe of the diseased leg; but if the bone has been placed in the thyroid hole, the patient will have a stradling unvieldy mode of progression; the limb standing out from the body and rotated outwards, greatly abducted from the central hae, and moving in a circle in advance of the body.
Soon after the completion of the dislocation, and the perfect separation of the diseased parts, if the patient has strength of constitution sufficient, the parts will take on a more healthy action, the ulcerative action will cease, the discharge by degrees subside, and the disease is cured by the formation of
a new joint, or the complete anchyloss of the bones in their new position.

In cases of this diseave of the hif goint in which thes favourable stage has been shown to have been already accomplished, excession of the head of the bone has been recommended and practised; hut under such circumstances, we think, it can seldom or never be required. Although we would advise the removal of the head of the femur at an early stage in this complaint, before luxation of the head of the bone had been accomplished, it by no means follows that we should think it advisable, nay even unwarramable, after that change had taken place. Nature has already done all that we could accomplish by the operation; she has separated the diseased parts, that kept up a contmual irritation the one upon the other; and now, if the constitution has streugth, in all probability nature will finish the cure she has already commenced.-Why now add the forminable pain and inereased injury of an operation to the diseased structures, by making a large wound, and otherwise injuring the parks A section of the neek of the thighbone will not cure a disease of the acetabulum, if it still persiste after a reparation of the parts. The same healhy action that shall fill up and whiterate the rolyloid ravity whll cure the deseased process going on in the thighbone; therefore the removal of the head of the thigh-bone at this period of the diseace must obvionsly be umecessary, msurgical, and ingurnous; by the operation we can only add fuel to fire, and eompletely dewroy the feeble powers of the constitution, and thereby prevent the very object we have in view,-a healthy action in the diseased structures.

Iutlanmation of thr Ligoments of the Jipp-joint.

The powerful ligamen- of the hip-goint are hable 10 m flammatory action, whichmayenther commence in the fibrous structure, or spread to it from the neighboring textures of the joim. So close is the comection between the capsular hgaments and the serons membrane whel lines it; so completely smrounded in the round ligameni by this yonovial membrane, hat milammatory action oecurring in nne or other of these tissues, will most commonly, and, in the generality of cases, quackly spread to the other, soon become confounded with it in symptoms and in results; nevertheles- there are to be found clear indications terived from the nature of the structure affected, and the character of the disease, wheh, in the earliest stages of the complaint, wil! aftord us prefty clear diagnostic marks of uflammation of this fibrons tissue.

The capsular ligament of the hip-join, which is pecuharly thick and strong, consists of white fibrous tissue, this is formed imo a net-worh of minute bands and fibres; these freely intertace with each other, and appear to have a continuity of substance : the amount and character of these fibres evidently vary at cifferent poins; in some parts they take a wayy durection, while in other places simall bands evidenty predominate. This fibrons structure has but littic power of extension-seems to possess a very low degree of vitality, and needs but litte merstutial change to mantain it in a normal condition. In a state of invalis n has a white ghstening appeazance, and is apparemly destitute of blood-vessels; monder disease, however, it assumes an intensely pinh colow, showng that the red corpuseles of the blood now traverse the fibrons element and are seen through the semi-transparent structure. It has been shewn by Arnold that minute transparent vessels permeate briween these Gibrous elements, which, in a healithy condition of the part, carry but a thin serous fluid, some of which exuding from the coats of these vessels, serves to maintain in the fibrous elements a degree of moisture that supporis their elasucity and preserves their normal tone. Verses doubless traverse this fibrous ussue to arrive at heir poims of destination, but are not directly stpplied to the structure There is no doubt but that the fibrous elements are originaily produced from the consolidation of a phastic thuid that has been claborative by cells; for on the application of acetic acid, moder the inacroscope, there appears more or less numerous groups of oval, or somelimes pointed, oatshaped mucles, preseniag occasionally a curved appearance. Nay not tie anclen which are so hiberally supplied to the fibrous clement. by consoldation and arrangementproduce the transparent blood-vessels above mentioned: It all events, it is clear that the fiorous element has little sensubility, and its low vascular condution distinetly mark: the cause of the tardy progress of its inflammatory actionwhy in some eases days elapse before that condition of deranged matrition is fuily developed, alter the application of any exciting cause; and why at first almost perfect in sensibility of the texture is followed by a dull wearying sense of distention in the part often mo-i tidhening and painful to bear.

The capsular ligament of the hip-jom is, on ths ourr surface, liberally supplied wath ressels carrying reddblond; these take their course through the arecha tiscue, which surrounds the joint and is mumately connected with the fibrous structures; these afford fluid \mathfrak{t}, the transparent
vessels of the part, occasionally after minute injection we may observe a vessel carrying red blood to permeate the fibrous texture ; but this, in a state of health, is rare, while in injection after disease the very colour of the ligament is chauged, plainly showing its vascular condition-a point of tast importance in the consideration of the changes which happen during the progress of inllammatory action. On its inner surface the ligament is intimately connected with the synovial membrane. By means of subserous tissue, the blond-vessels of this structure also assist in supply find for the traasparent vessels of the ligaments.

From this description of the anatomical structure of the ligaments of the hip-joint we may dednce the different symptoms which indeate the disease of this structure, and e slatl be able to comprehend the changes which oceur as the result of inflammatory action. It has been shown that a transparent fluid circulates in and permeates the delicate ressels of the fibrous thsue; but that, when irritative action is set up in the parte, these vessels cary the red corpuseles of the blood. As a necessary consequence of this increased supply of blood, the whote texture of the ligament is greatly swollen, and the whole structure now puts on a pink colour, from the amoum of the red globules now passing intu it; a change precisely similar to that which is plainly seen whon the fibrous structure of the selerotic coat of the eye is under disease. From the character of the vessels of the fibrous usstie, we apprehend that but comparatively few red globules get admission into them, and that none of the white corpuseles of the blood circulate in the inflamed part; although the consistency of the now circulating fluid may be more dense than natural, earrying considerable fibrine, we seldom or never find a deposition of this substance, as plasma, or a formation of pas, resulti g in this texture from the inflammatory process; we believe it is a law that seems particularly to mark the presence of this disease, in fibrous textures, dependent upon their unyielding character, and which we do not remember to have seen noticed by authors. We may boldly assert that pus never forms within the texture of ligament; it may be seen upon its surface, but it is formed from plasma, deposited not by its own vessels, but from those of some neighbouring structure. The patient now complains of a dull henvy pain in the hip-joint, a sensation and stiftiness is present in the part, which is senerally most extreme about midnight, while sometimes a remission is experiented in the morning-the patient oflen complaining of a sense of weariness and distress
down the whole thigh, in probability consequent upon the participation in the disease of some of the nerves which take their course through the neighibuting arcola tissue. The dull heavy pain complained of by the patient is doubtlessly dependent upon the distention, which the fibrous tissue experiences from the increased supply of fluid, it serves to irritate the fibrillar of nerves supplied to the synoviai membrane; hence, too, we mark the difference in the character of the pain, now dull and wearying, and, when the synovial membrane is primarly afficted, or even after the inlammatory affection of the ligamem has extended to that structure, we find it is acute, and often severely lancinating. If, upon mnnual examination of the joint we find the pain somewha. increased by pressure behind the trochamer major; or, should the pain be also increased, if the patient, resting upon one leg, allows the limb to swing relaxed from the body; now the chief strain and weight of the limb coming upon the eapsular ligamen, so that the increased amount of pain will make the disease of the ligament sufficiently manifest; sometimes by pressing upon the trochanter major the sensation of pain is apparently relieved rather than increased, because we relax the same structure ; this may thereby be a means of deceplion to the unweary. In acute discase of the ligaments the inflammation soon extends to the vascular structure of the synovial membranc, when a speedy effiusion of serum into the cavity of the joint is the result, and a complication of the sympioms, which quekly obscures the distinctive marks of ligamentous inflammation.
(To be continucd.)
int. XXXV.-Punctuere of the Blashler above the Pubers, for obstruction of uerine, and Cure ijy Jomin Wanless, Esqr., of Lonton, C. W., formerly Iluess Suggeon to the Dundee Roynl Infirmary, N. 13.

Losdos, C. W., October 3, ISE5.
Sin,
If you consider the following case of puncture of the bladder, with a successful issue, worthy of a plare in your valuable Journal, it is at your service.

On the 22nd of Augusi last I was called upon to visit James Aird, weat 33 years, in the Township of Westminster. He had been employed in a brick-yard to dig under an embankment of clay, while doing so the embanhment gave
sigus of falling, and he ran to save himself, but unfortu nately fell on his abdomen, over an old heap of rough boulders of clay, with his right thigh extremely liexed upon his body, and his perineum upwardly exposed. The embankment of clay fell upon him in this position; covered him to about four feet in depth; and when taken out of this perilous entombment by his fellow labourers he was apparently dead; but on exposure to the atmospheric "pia mater" he soon showed signs of life. An hour after the accident he complained to me of a severe pain across his pelvis and pelvic joints, and along the course of the urethra. His pulse was weak, and beating 100 per mmute; he was breathing laboriously, with a sense of stricture of the interenstal mascles un botin sides; skin raber cold and clammy; countenance pale and anxions. The scrotum and perincum very extensively ecchymosed. The lower extremities nòrmal, as to length and position, but completely powerless. A dose of castor oil was administered, and fomentations applied to the bruised paris and chest. On the 23 rd, the bowels were opened freely by the oil. Skin warmer, tongue moist and clean; pulse 95, fuller ind soft : foided no urine ; complained very much of pain over the region of bladder. That viscus conld be distinetly defined, but considerably distended. He stated that be had been aflected occasionally with dificuly of passiug his urine, from enlarged prostate. I endeavoured to pass the catheter as genly as possible without effeet ; called on my esteemed friend Dr. MeNogie, who likewise endeavoured to pass the catheter withou beneficial results; and after being both foiled in our attempsat relicf in this way, we gave it up as impracticable, and left him with warm fomentations apilied over the hypogastric region.
On the 250 his bowel were again opened ; pulse 110, soft and full; violent pam in the hypogastric region; had voided no urine; bladder very much distended; hisenp; countenance hagrard and ansious. He thought that it was impossible for him to live, bat wished relicf from pain. Again nselessly tried the catheter; proposed puncturing the bladder. Ine was anxious that is should be done, alhough te knew of its danger. The perinemm being so much buised, precluded its adoption as a site for puncture. The wat of a curved trocar prevented the adoption of the rectum method. The only other methon was ahove the pubes. I made an incision about an inch and a half lons, from the Smplysis upwards, exactly in the mesial line, and then eparated the edges of the pyranidal muscles and pushed
the trocar into the distended bladder, which could be now distinctly fele, withdrew the trocar, introduced an elastic gam cathete: through the canula into the bladder (the urine flowing through both); I then removed the canula, leaving the catheter in the bladder, and tied it, to prevent escape, by tapes passed round the hips and thighs. On the 2nd of September he made urine by the natural chanmel, mixed with pus, and continued to do so more and more freely until the 10th Sept., when the catheter was removed. On the 11th Sept. he passed a small piece of bone per urethra about half an inch long, and a quarter of an inch broad, and a sixteenth thick, encrusted on the one side with calcareous deposit, which I here enclose for your anspection ; and I have been much puzaled as to its source. Although 1 strongly suspected fracture of the pelvis across the zamus of the ischium, I camot fancy how a broken portion of that bone would find its passage into the urethra, in order to obstruct it in the above mamer, from the nature of the injury he received.

However, he has continued to do well; is in good spirits, and gradually regains strength.

EDITORTAL DEPARTNENY.

TORONTO GENERAL HOSPITAL.

In one of the previnus numbers of the Upper Canada Medical Journal, we promised to return to the consideration of the Toronto General Hospital; and we now propose to pass in review the recent movements of the newly appointed Ilospital Trustees; to consider their effeets upon the Institution, and their influence upon the medical profession generally.
In the first place, we have been informed that several plans and specifieations have been laid before the Board of Trustees, and that the plan drawn by Mr. Hay, Architect, of Church street, has been selected, and will be acted upon as soon as proper arrangements can be made. If we can rely on the taste and opinion of our informant, there is every reason to believe that the new Toronto General Hospital to be erected in this city, will be a noble edifice, and not unvorthy of the Queen City of the West.
The land on King street, where the old Hospital Buildings now stand, has been laid out in lots, to be leased for building purposes. A few days since the leases were offered for public competition, when the whole of the property was readily taken up, and it is said that the rents to be derived from it will amount to upwards of eight hundred pounds per aumum.
In the second place, with regard to the intended site of tine new hospital, the 'Trustees have declared that it will be located at the castern part of the city near the River Don. Now, we conseientiously believe that there are cogent reasons against this situation being selected; one, and the most strenuous, is its disadvantages to the public. If the hospital is placed at the eastern extrernity of the city, only picture to yourself the necessity of conveying in the middle of winter, perhaps upon a shatter, any poor man who may chance to meet with a serious accident at
the western end, a distance of lour or five miles, before be could be received into hospital; the state of depression which always attends the more severe kinds of accidents, and which demand immediate attention, wilh rest, warmth, and cordials-these conld not obviously be used in many cases, until all hopes of saving life were at an end. Again, there is an objection with regard to the situation. It is said that the situation is comparatively a high one, and that the bulding will be considerably elevated in itself, and being thoroughly ventilated, and properly heated, there is no fear of the baneful influences of malaria. That the proper heating and effectual ventilation of the now building will doubtless go very far to obviate the engendering of the poisonous miasm, which is the curse of the present hospital, we are ready to hope; but that the imtended site of the new hospital is completely. removed from all the influences of marsh miasmata, engendered by the alluvium drifted down the River Don, and located at the eastern part of the harbour, we are not so perfectly sure. When we consider that during the past summer ague has prevailed very extensively throughont the east part of the city, so that scarcely a house has been free from its visitation, how shall we expect the new General Hospital to escape its influence? certainly the only chance for it to escape is to select the most elevated situation, and to raise the hospital building as high as possible. The hown laws of marsh miasma, in this tem perate region of ours, leads us to believe that as the amos phere which holds the poison, as at were, in solution is submitted to the influence of the sun's rays, it becomes specifically lighter and more attemated, and by a matural law ascends far: above us; at this time we take into the lungs, during the aet of breathing, a less dose of the poison, not sufficient to contaminate the bloud, or to prodace any very marked effects upon the constitution. When the sua is high and its influence greatest, then dues the decomposition of the dead animal and vegetable matier lucated in the marsh proceed with the sreatest rapidity, then is the
poison rapidly generated and as quickly elevated into the upper regions of the air; but as soon as night retarns, the cold consequent upon the cessation of the influence of the beating rays of the sun causes the heavier matter of the atmospliere to descend, and vastly augments the quantity of poison in the air we breathe, and will be sure to produce its eflects, be they ague or be they remittent fever, according to the amount of the poison received, and the state of the constitution. Doubtless, a situation immediately on a level with the marsh would experience the most intense influence of the poison, and that a more elevated and distant position would not be so likely to suffer; but it must be remembered, that the atmosphere which contains the poison is submitted to the action of the wind, and whenever a moderate south wind should blow, at particular seasons of the year, it would convey, especially during the night season, a very powerful dose of malaria to locations placed within its range; and that the selected site of the new hospital is one of them, we believe. These reasons, we are inclined to think, should form an objection to the Toronto General Hospital being located at the eastern extremity of the city. It must be confessed that, in all probability, the influence of this malaria would be confined particularly to the season of autumn; but, however slight or temporary this morbid influence may be, it is certain that the patients in hospital should not be submitted to it, if it could by any possibility be avoided; it is certain that there are plenty of places in the city of Toronto that are not sabject to this influence.
Lastly, and not least in importance, the location of the Toronto General Hospital in the extreme castem portion of the city will be a great inconvenience to the medical students, who are obliged to resort to it in searchof practical knowledge. It would uselessly occupy a great portion of their valuable time in walling from one place to anoher; and to the students of the Medical School of Trinity College, it would be a great injustice and almost prevent the possibility of the pupil attendiug the medical classes and the llospital at the same time,-the distance between
the one and the other would not be far short of four miles, and in our opinion will be almost sufficient to break up the school. For these reasons, we would certainly suggest that it would be well for the Buard of Trustees of the Toronto General Hospital to recousider their resolution, and, if it be possible, to locate the building in a more central and fitting situation.

It has been used as an argument dgainst the retaining of the Hospita! in its presemt situation, that it woold be an obstruction to any improvement in its immediate neighbourhood: nothing could be more srroncons in iden, with regard to a properly bult and well-regulated Hospital, such as the necessities of the city of Toromo demand at the present time. Let any person onty view the bramiful and elaborate plans submitted to the Hospital Trustees, and we are convinced that he will be easily satisfied that tilu magnificent buildng about to be crected will be an ornament and improvement to any neighbourhond in which it may be located. The fears expressed against a well-regulated Hosputal of which we speak, are as absurd as they are unfounded. Only look at the city of London, for example; some of its most noble edifices are dedicated to the cure of disease. Strangers would take the hospitals to be palaces, in that city of magnificent and lordiy buildings; then, again, their vast exten, for they contain beds and conveniences for the tratment of 100,000 patients. The magnificence of their exterior is not considered derogatory to the palaces which surround them-lake, for example, St. George's Iospital, which is lucated in immediate proximity to Apsley Ilouse, the palace or town-house of the late Duke of Wellington. Again, the Borough and St. Bartholeme w's Hospitals are situated in the most densely populated and most business parts of the city of London-and at once stand out in bold relief as the most magnifieent buildings in their inmediate neighburhwod. If we view the interior of these buldings, we sball find them roomy and well ventilated, and of the mosi scrupuluis cleanliness, furnistied with all the appliances of comfunt and convenience compatible with the purposes for which they are intended

These magnificent piles of buildings have been for the most part erected as the result of public charity, having been built by subscription and private endowment. We liope to see the Toronto General Haspital about to Ee built bear, a least, a humble comparison with those noble edifices, and trust it will be located in a conspicuous and heallhy situation,- then shall we feel an honest pride, that in our day and generation we have at least done one good thing; and by fearlessly expressing our opinion with regard to the disadvantages and abominations of the present hospital building, we have been indirectly the means of erecting the new one.

Then, again, these immence medical establisiments m London bave the advantage of one of the most enlightened and scientific corps of medical officers in the world, some 8,000 of whom give gratuitoncly their services to the poor. In many cases the honour and privilege of officiating as house-surgeon only, and that but for a limited period, has to be purchased by heavy fees, and requires immense interest to obtain the appointment; when successful, it gives the fortunate applicant a standing and position in the medical profession, that serves him during after life. What a noble field for observation in medical and surgical science do such institutions presen, and what safe and comfortable refuge for the poor during sickness and disease? Such establishments at onee place the poor during sickness on a level with the rich; for here the poor have granted 10 them, without money and without price, the aid and assistance of the most exalted medical talent, the most scientifie surgical skill, the world can produce-serviees which are not yielded to the rich without the payment of the most magnificent fees : here exists a kind of compact between poverty and science, that beneficially aids and assists one another. Here, the truly industrious medical officer has a field in which to improve his mind, to augment his knowledge and teat his observation, in a mamer incompatible with private practice. The book of nature is lairly laid open before him; his observations and deducdions are submitted to the severest tests; his practical skill,
at the same time that it is fostered and encouraged, is placed under the severest trials of public observation and approval. Under such training, a medical inan's progress most be onvard; if he will fill the office, be must unhesitatingly do its duties or be exposed to the ridienle and animadversion of his compeers. Here, there is no monopoly, no skulking; the medieal officer must do his duties with regularity and effeet, or he justly receives the denunciations of the medical press; if he is shown to be unworthy of the confidence repused in him, he has to resign his offiee, and to make way for a better and more industrious individual -a wholesome state of affairs, conducive to the public good and the advancement of science.

These insitutions also present a mole selool for the teaching and training of youth in the practice of the medical profession - for, after all, a praclical knowledge of our profession is only to be obtained at the bedside of the patients - it is the only basis on which to rest our hopes of successful practice during after life. Withont such a foundation, a school of medicine is comparatively valueless; it certainly affords an opportunity to teach the principles and lay the ground-works of science, all very necessary in their way; theory alone is apt to be vague and indefinite, but with nature before us, the natural aberrations of mental conclusions are councracted, and the truth more powerfully and permanently fived in our minds. It is a certain fact, now a-days, that no s.hool of medicine cau prosper, can be really beneficial to, or do its duty eflectually to the medical student, unless it has ?n hospital for its basis. Look at the celebrated schools of Mr. Carpew, of Sir Joshua Brooks, of Sir Charles Bell; these, for example, with such splendid talent, such worldwade fame, especially that of the Windmill-street Schoolyes, and with all the fame of the Innters to back it - have died and passed atway before the utilitarian spirit of the age. These schools could not stand, because they were not immediately commeted with some great hospital-they had no basis un, which to rest for practical dnowledge; and such must be thefate of eve y medical school that is not
attached to a public hospital. 'That such a scheol of medicine must ultimately be attached to the new Toromo Hospital we have reason for believing, and that at no distant time it will absorb the prevent schools. We candidly believe that if such a union could amicably be accomplished, it would be for the public good. In saying thas much, we disclaim any desire to injure any of the present medical schools, such would obviously be contrary to our individual interest ; but as impartial jommalists, we despise the idea that selfish views should constrain our eliorts for the public good. There are reasons, to us apparently of paramount importance to the medical profession gencrally, that would lead us to these emolusions; it is an amelioration of that dreadfully antagonistic and violently selfish feeling that appears so rampant at the present moment ; which is a sure means of preventing the improvement of the profession, and a chief cause of its degradation, which must continue to retrogade and sink in public estimation, unless some means be found to obviate or lessen it. A proper incorpmration of the profession would doubtless be a means of accomplishing this desideratum to a considerable extent; but unless we can have more unity of action, and better agreement among the members of the profession here, that camot be accom. plished. In these political and private squabbles, scienee is entirely disregarded, and the mind languisher under its. withering influence; and was it not for ascistance which it receives from other sourece, would speedily evaporate from among us. Let it be remembered that mion is streugth, and that at the present moment some mighty effort is necessary to place the medical profescion on some bettet basis, and in a fairer light before the public. It may be said that as a Churchman, we are, by a recommendation of a union of all the medical schools in Tormon, and their incorporation with the hospital, likely in injure Trinity College. We are convineed that, from the reasons we have shown above, such mion is necessary to the profession generally and also to the well-being of the hospital itself. If the medical school of Trinity College is continued
independent of such union, it must either absolutely absorb the hospital as the sehool to teach the practical departments of a professional education, or Churehmen will have to build an hospital in connection with that institution. Already have the professors of Trinity College absorbed the sole altendance upon the Poor House and the 'Toronto Dispensary, and if the spirit of illiberality and exclusiveness lately witnessed at the furmer of these institutions, with respect to the poor man Kane, is to be an example, the profession will have everything to fear when they get full possession of the hospital. Already the clements of amtagonism and strife are rife in the hospital; how, in the name of common seuse, could it be otherwise, with such various interests continually operating - some medical practitioners being anxious to absorb the others' patients and as many of the medical students as chance may throw in his way? Such a state of affairs, we fear, will lead to lamentable results, will have the effect of degrading the profession still deeper, and will. end in the greatest tyrant driving out of the hospital all practitioners but his own favourites; such will ce:tainly destroy all hopes that science shall be advanced or the interest of the poor altended to. Take away these elements of strife; unite their interests, by incorporatingt he medical school with the hospital; and we may hope that, after a time, this miscrable state of affairs may somewhat subside, and the interests of scsence receive a due attention and grant a fair reward. As a Churchman, we conscientiously believe that science is comparatively valueless, without the previsus direction and teaching of the trulis of Holy Writ, and hail the advent and fervently pray for the success of the Theological department of Trinity College; doubt!ess, the truths of religion should guide and direct the professors of medicine, but its ministers should not command it. Religion and medicine should twine around each other, and should support one another - they were both ordained for a !oly mission upon earth, for the grod of man - the one to relieve the body, the other to save the soul; both have independent duties to perform, and must stand free and
unshackled, or their iufluence will be cramped and their energies paralyzed. We trust that we have given many and powerful proofs of our allachment to the Church of our Fathers; and what is more, we are neither afraid nor ashamed in these days of expediency and deceit, openly to deelare our readiness to spend and be spent in her cause. Still, as public journalists, we owe a duty to the medical profession, which compels us to recommend the union as the only means of advancing the good of the public, and the advantages of the medica! profession generally. If the medical profession sink, the public must suffer, and the science of medicme be degraded. It shall be our endeavor to use our humble efforts to establish a more desirable state of things.

A point whicin we must not forget to notice in connection with the Toronto General Hospital, and which we have observed with great satisfaction, is, that the Trustees have revised the hospital rules, and while they have required the daily attendance to be most strietly enforced, fur the benefit of the medical students and the hospital patients, they have most liberally thrown open the attendance upon the hospital free, to all the licentiates of the Province who may choose to accept it.

to time readers of the medical journal

Our readers may observe that we have presumed to offer to them, as an original article, Dr. Gluge's celebrated work on Pathological Histology, translated from the German by Dr. Leidy, of Philadelphia. We thereby hope, as far as in us lies, to spread the fame of the nuthor, and to make our readers acquainted with his opinions on the most important branch of our science.
We have to acknowledge the return of the Medical Journal from certain medical professors of Trinity College. We confess we feel ourselves humbled and abased, that an upright and independent course should call down the undisguised opposition of such liberal ind enlightened personages. When the Journal was the organ of Trinity

College, it was freely supported and largely extolled by them; but as soon as it has ceased to be under the control of the professors of the medical department of that institution, it is discarded and opposed. We doubt not but this opposition proceeds from the same spirit of "envy, hatred, and all uncharitableness" that caused the attack upon Drs. King, Herrick, and Beaumont, before the Board of IIospital Trustees during the past year, and will meet with similar public reprobation. While such selfish and illiberal fectings guide any part of the nedical profession in Toronto, how is it to be expected that a union of parties, so necessary to the well-being and advancement of the medical profession, can possibly take place? We flatter ourselves that the bare expression of so illiberal a spirit from these gentlemen will raise the Journalin the estimation of all who can fairly estimate such conduct. We have independently expressed our mind on all subjects connected with the well-being of the profession, and are resolved to continue to do so, let the consequances be what they may. Notwithstanding the spirit of opposition we have evolsed from the parties above alluded to, in this city, we are truly happy to find that the country generally appreciate our endeavors, and that the Medical Journul is likely to meet with cordiai encouragement and a very extended circulation.

To the Eititor of the "Mcilical Fournal."

Dear Sir,
It is a mere mater of fact that the expenses of living in Toronto have increased most enormously within afew years, and the remuncration of almost every description of labour, whether mental or bodily, has increased also. The practitioners of our profession, however, are among the exceptions to this last improvement; and, although their expenses are increased at least from twenty-five to thirly-three per cent. over what they were eight or ten years ago, their fees remain the same. What is of more consequence is, that while there are the most decided reasons to expect a further rapid and great rise in rents and prices, there is not the slightest probability of their fall at any future period. 'Thus the medical practitioner is heing reduced, in fact, 10 a
lower state in society. Very few of us expect to carn more than a moderate and deeent subsistence by our profession; and while we all know that more is not to be made by it, we also know that even that moderate expectation is waly to be attained by constant and wearing hard work both of body and mind. Mechanics can afford to waste whole days on "excursions," or to remain idle for days together if a particular "bose" does not please them-they are, as a body, lhriving, making and aceumulating land and propertyNone can wish to interfere with their honest gains; but, Sir, should not that class on whom so much dependswhose usefulness depends so much on their education, and whose education is not only expensive but unfits them for manual labour-be permitted to share in the general prosperity?

Our fees are too low. Compare them with Montreal and New York, and with the actual state of society here, and you will admut that they ought to be augmented in proportion to the remuncration of other classes. If we will steadily unite, we may do much ourselves; and I am very certain we shall be supported by a large portion of those classes of society who consider that a medical gemteman should be not only meducation but also in outward appearance above the ordinary workman.

> 1 remain, Sir $^{\text {Your obedient servant, }}$ A l’nactiononer.

There is much truh in the statements of our Corresponden with regard to the depressed state of the medical profession in Canada West; we however fear, with the presem feeling of the profession in Toronto, we camot hope for sufficient umanimity to make any eflective move in the matter. Perbaps it would be well to call a public meeting of the medical profession, and to take their sentiments upon the subyect. If a Practilioner wonld make a movement in that direction, we should be ready to give it every publicity in our power.
Since the above was mprint, a public meeting of the medical profession of Toromo has been held at the Turonto General Hospital, when Dr. Widmer was called to the chair. Speeches were made by several gentemen, and a resolution was passed appoming a committee to prepare the draft of a tariff of fees. It was argued by some of the
gentlemen present that a scale of fees was necessary to enable the judge to form a proper opinion in cases in which a medical man's fees were disputed; while by others a tariff was ridicuied as worse than useless, as it was a standard that all could not possibly maintain. The worst point, however, that strikes us in this matter, arising from the promulgation of a high tatiff is, that persons able and inclined to pay a moderate charge will make it an excuse for not paying anything at all, unless they shall be obliged to do so by law. This is a proceeding that always places a medical man in a most umpleasant position, and is certainly derogatory to the honor and character of the profession. With regard to the tariff to be adopted by the profession in Toronto, do the gentlemen who advocate it mean it shall be a law or regulation for the profession generally? If they expeet that the cominty practitioner is to be bourd by it, why should he not be consulted? It surely camot be just to make laws or regulations that shall have a partial effect. If a tariff is desirable, let the Parliament fix just and Liberal charges. We are convinced that such a step would do more to restore the confidence of the public in the medical profession than any party movement that can be made. The patient would know what he has to pay, and the practitioner what he has a right to expect; besides, this would remove all objections to the incorporation of the profession, permit the adoption of the penal clause, and be advantageous to the profession and the public.

SEIECTED MATHER

a COURSE OF LECTURES ON ORGANIC CIEAISTRY.

Delivercd in the Laboratory of the Rayal Instuturn of Great Britan, by Dr A. 11: Mofman, II A. S. I'rofasor at the Roynl College of Chemstry.

Lectere: II.

Gentlamen:

If we glance at the vast number of compume wheh the cienent carhos forms with hydroged or with hydrogen and axyren, or with the latter two clements and nitrogen-a number which ba- been raginhy multiphed during the last twenty years by the united efforte of oomany cultivators of tha branch of science-if we consider, moreover, that, of fir as we can foresee. this number is capable of being increased-1 might ahoset say of anfmian -the mind secks anxiousty for zome thread which mey serve as a guide through the intricacies of this latynuth. The first thing that strikes us in the necessity of a simple classifeation of the en numerous compound-
When we treat of inorganic chemitry, divisum and subthivion. of the subject preseut themselves very maturely in the diverity of the conspments of the ordinary mineral compound . This mode of chasification is, bowever. amplicable in organic chemistry, 1 may henceforth be allowed to use the tera "organic" for repreemine that clas- of compums which I have codcavoured to delineate m my las leriure.) inasmucha- in the comporition of organic substances int a very lmated number of elements a involred Serem attempts have been made to ciasify urganie substance aceming to wher principles, varging with the postion of this science at dfferent pernod. It ane time chemists were sathed to sroup the suhtanes acending to their origin, and hence the niwhicion, very freguenty alopted cren at present of organic chemistry into vegetable and ammal chemistry. You wberse that thin claseificatiou rest- upu the arrangenment of natumb history The compounds derived from the vegetable or animel bingdon weye again roughy grouped according to them mot sament chemeal characten ; for example, as acids, hases, and indifferent sulutaces. This mutie of clasent cation posesesed undoubted advantagesat the time it tras popored: it forme? a necessary step in the upwand progreve of chenacal seience; but it become more and more inamiseinde in proportion to the increace of the sources rif orgair compounds and to the number of subtances deritable alike from the animal and vegetable kingeras. Moreover, in the same measure as greanic compomes increased, acils, indifferent substances, and bases begen 10 graluate so imperceptibly intu cach ctiocr, that in a great many cases it teame doubtrul uniter which of these threo heads a given compound ough $t 5$ be placed.
oll nttempts at claseification which are at present heing nate (I say sitempts, because the time for a definite and lasing system hes scarcely ome) are based upon another principle, which again serve to contradistingish organic from inorganic comprund. While in inorganic chenistry it is, as wes stated, the quahty of the elenents which assists us in sunpticaliy amagiar the mincral sabstances belonging to this departuent of theseience. it is in erganie eltemistry the quentity of the fer elements preducing so vast 3 manber of compounds which forms the basis of clasitication. It is not $m y$ intention to enter more fully into the subiect of clasiatication at present; in anter to do this suecessulily, it is necessary that a certain anount of matefal should be at our dieposal, that we should te alreaiy acquinted with a retain muber of organic compomds. The olyect of these brief remarks is Ldirect your atteation, even at this carly period, to the interest belonging

To the quantatative relations of organic budies and to the importance of the methods of ascertaining these relations with facility and precision.

In thas and in the next lecture I intent to describe to you briefly the methods whith are at present used for deternining the composition of organic substances. It is by no means my intention ta instruct you in organic aua-tysis,-to acemplish thi-, hapratury practice is inhlispeneable;-my object is to put you in possessmon of prineiples. I will therefure avoid entering mo detalb as fir as possible, condaing myself to an account of the more important processes whichareactaally in use Enahlet an I am to illustrate theso procesees by actual experiment, I hupe they will be sufficiently interesting. But, after I have shown you the mutheds wi aualy, ing, I shall hare to claim your attention to a few chioulation, which, simple chough they be, may to many be not acceptable; I have tu explan to you how from stech experiments we proceed to establish it chenaial furmula. Nor I cousider this a most important point, the very basts of all our future discussions; and I carnestly entreat jou to give me a patient hearing. I hope to convines you that the apprehension of these formula, which are dreaded hy some, as much as they are cherished by others, reguires no mathematical attainments whatever.

In estimating the quantities of the cobstituent elenents of organic compounds, it might appear to be the simplest method to separate the severai clements, and to weigh them in thr isolated state. In fact, such attempts have been made, but they were confined to the carliest stages of organic analysis. An isolation of the elements is generally attended with very considerable, if not insurmountable diffentics. In one case only, riz., in that of nitrogen, the separation as such is casy ; but even nitrogen is not usuaily estimated in the isolated state.

The principle universally adopted in onganic analysis consists in the conversion of the elements meo compounds of salient properties, the composition of which is accurately established, and which may be readily produccd, collected, and weighed. For thes purpose, hoth the carbon and hydrogen are oxidized; the former being couverted into carbonic acid, the Latter ints wnter ; while thenitrogen, provided it is not determined in the free state, is made to wite witi hylrogen, and estimated in the form of ammonia. The oxygen is never directly determined; but, the yuantities of carbon, hydrogen, and nitrogen being ascertaned, the remainder of the substance is inferred to be oxygen.

In order to proceed from the simpler tu the mure complicated case, let as assume that we have io analyse a sibstance containing carbon, hydrogen, and oxygen, but no mitrogen. Such a substance rould yield, when heated in atmospheric air, or, better still, in pure onggen, carbonic acid and wates The formation of these products presents no dificulty, but how are tre to collect them? The method whichoriginally suggested itself, viz., to perform this combustion in ressels contaming free oxygen, has heen aliogethersuperseded by using untead of (or at oll events tigether witil) free oxygen, an oxygen-compound as the agent of combitstion, which is capable of giving up its oxygen with case at a comparatively low temperature. Such a substance is the comm in black oxile of copper To convince you of the facility with which this compound yields it-oxygen, I vill introduce thas Florence fissk (the outer surface of which has been covered with a thin layer of this oxide) into the Game of an ordinary gas-burner the very moment the oxidecomes in contact with the combustible suistances iu the interior portion of the flame, it is deprived of its oxygen, it is relticed (as we call it); nd you now observe the brilliant lustre of metallic copper If I remove it from the flame, the hot eapper, coming in contart with the orygen of the air, is oxdised agam; showing that copper absorb* oxygen with the sime iacility with which it loses it.

But the following experiment may allustrate this foint even in a mard zonspicuous manner in this murtar I mix a suall quantity of sugar, rith finely-dirided black oxide of copper The intimete maxture se now introduced into a little retort, which is fitted into a tubnater receiver provided niths
gas-lelivery tube. On the application of heat to the retort, you observe that an active combustion goes on at a comparatively low temperature. The reduction of the copper becomes apparent from the red colour which the mixture assumes: am? water collects in tho receiver; while from the de-livery-tube a considerable quantity of gas eseajes, which, producing as it does a dense white precipitate in Laryta-water, is at once recopnised to be anbonic acid. Now, a perfectly amalogons apparatus is acel in orgame aualysis, with this difference only, that, while the contrivance hefore yon ras calculated to exhatut the products of emmbsthon, the apparatus actualiy employed admits of collechng these products and weighng them.
The arrangement before you presents this appatio in the cimplest form The retort, you obserre, is replaced by a leng pites tuhe. Incteal of the receiver, me have a tube cantaning chitorile of calcium.- a sult-tance which you probably know, absorbs moisture with the greatest ar iy: while. lastly, for the delivery-tube dipping into haryta-water, there is a 1 demed a piece of apparatus to which I must call your particular attention It is filled with a concentrated solation of putases. an I serves to arrest the carbonic acid generated during the combustion. This bitte instrument, known hy the title of Lielig's bub apparatus, was inrented by the celehated chemist whosename at bars. The construction of this apparatus, anmicas it hay apper to you, has been most signally conducne the theveloment of the chemistry of carbon; it may be troly said, that this branch of acience, as such, dates fron the invention of the potash buthe but let us examme at ittle more closely the advautageg of this mathuncht, which 1 an euabled, as you observe, to exhibit to you in rather magaifed dimensians. You observe the gas enters at one end of the tube; it passeg into one of the lateral bulbs, where it first meets with the potassia, it is uest finced throgeg the liquid colum standing hetwen the first and secom hath. han the ceomd huib, it remans for a moment untal the bithe has hen aufteceaty entarget to pasa though the layer separating the second and thrd: this thind larger than the others, retaine it somewhat longer hefore it passes into the fourth. In thas the abs rption is generally complete; hat, to secure the last traces of erbonic acid, the sas is washed one mor by a vertion equmm filling the seond limb and part of the fifth buht. lhe 1 will simew jout experimenshy hor well this instrument fulfily its opyect. It consists of a common apparatus for generating earbonic acid. consiructed, as you sec, upon the well-known principle of meheriner's hydruga damp. This genematur a connected with a T piece, provited with twi tapcochs, which enable est will to di.eet the current of entonir tom, ehher thragh this lateral debrery-tube, which discharges into bargta-mater, the wh te prepiptate th sbich shows you that we have actu.dty cartome acth. wr themeth the potash sparatus. Now, you riberve, we hatichacr a mond curtrit of this eas; tatsearcely a bubble pases through fir hulbs. The ear wheh passes trough is nothing but the air origini - antamed in the appantue In ender to prove this, we will pase it int. barg tavater, anll, you observe, not 1 tace of a precipitate is proluced.

 fol But how is the cumbution actually gerried nut" For this parposo te combustion tuhe (this is the term ueplin the iabiratury to ciespuate the thest is carefully filled mithe 1 mixture of frebly -gated oside of copper, bisn accurately-weighed quantity of the subtance wheh th is intended to mifse. This quantity is generally wry small; frou five to sax grains are Eally sufficient. We emplay, of romer, a for 'arger quantity of oxile of fore than is actually necessery for cuplete combustion. The mixturo isg introduced, the tube is hid horizontally on the table, and gently \$"\%d, so as to keep its uppre part clear and to allow a free pasce to the xes gencratel during the eninhuction It is nuw placel ma furnace of
 te tabe is supported at sa all distonees by a series or sron pillars, which freat it from collapsing, if it shonh become soft on the application of too
great a heat. The tube is next comected by means of a perforated cork with the chloride of calcinm tube, and then by means of a little caoutchous connector with the potash hulbs; the weight of the chloride of calcium tube and that of the potask bulbs havag been prevously determmel in an aceurate balance.

The combustion might now commence, if we were surn of all the joinss feing perfectly arr-tight, this 14 reathly ascertamed by experiment For this purpore we remove, hy meane of a suction-tabe, a small yunatity of ar trum the apparatu*, and thas raise a short column of putassa in one of the lateral bullis, the soiution having ormmatly stood level an buth. If this columin is sustained for about tea minater, we monader the joints somen, and the combustion may commence.

The fael employed hy hehig. and, in fact, ahmot miversally used, is charwal. The tuibe is lovily and gradually covered with igated charcoal, commencing at the uutlet end To arnid ton mpid a propagation of the heat by radiation, the posterior portron of tho tube is protected by ascrcen, which is gradually remosed fartier and firther from the outlet emb. Water and carbonic acid soon make the ir appearance, the former beug absorbed by the chloride of calcium tube, while the latter, uaffected by this salt, passes into the bulb apparatus

In howr or sa hour and a half is sufficient to fimsh the combustion; the termiantion is recognize ' hy no more gas-bubbles passing through the potash bulbs. Dut, although the combustor is complete, the products of the combustion are by no means entrely lodged in their respective receptacles; the whole tube is still filled with the vapour of water and carbonic acid gas. In order to cullect the last purtions of these compoumds, we break the posterior point of the tube, aml sucte a slow current of ar through the apparatus, which, dioplacing both the water-vapour and the carbonic acid, concludes the operation It remains now only to detach hoth the chloride of calcium tube and the potash appanatus, and to separately determane ther acrease in weight. We hare then all the data necessary to calculate the percentage composition of the substaurs we have hurned.

The methul which I have deseribed to you is that originaily proposed by Liebig, and still rmpluyed by hime it is the method by which the grest majurity of organic compounds at present tnown hare been analysed. The great merit of this yriress is the simpheity both of the apparatus and of the entapulatinn; it was in conserpuence of this simphety that the apparatus became acesesible to ctery one, and that so great a number of chemsta were emabled to mip ige on the amalysis of organic substances.
There are if wounts to which, before leaving this subject, I have still to call your attentom. The hydrogen of the organac compound to be analjsed beng almays dete miam in the form of watce, it is obvious that every soure of accidental maisture has to be carefully excluded. For thes purpose, the substance is submitted to aualysis in a state of perfect dryness. The desicataion is generally accomplished in a watet-oven, most sulstances losing their hygroscopic moisture at the temperature of bohng wate:. Should this te ansuficient, they are introduced into a hent ghes tuhe, open atboth ends, Which may be immersed into a vessel with bohmy water, the temperature of when has been rai-ut by the addition of common salt, cislorude of calcium. etc., while a carrent of perfectly dry atmosphenc ar is suched through the apparatus by means of the apparatus calied an aspirator. The desication of urganic substances is generaily sufficiently casy, but it is extremely dificult to introiluec them into the combustuon-tube whout monsture being absorbed from the atm, where during this operatoon 13 we have seen, they hare to be mixcil with blarh owde of copper, whieh is itself an excecdiagls hygroscopic substanes: morener, the surcess of the analysis depends so cutirely upon the care bestowed m making the maxture, that the operation anvariably requrew a certain longth of time lt may happen, that the com-unstion-tube, when filled, already contains a cortan quatity of water; this unting, as it must, with the water formed thring thic combustion itself, will of necessity mise the percentage of hydregen found in the analysis. In
many eases, especially when substances contain but a trifling quantity of hydrogen, (frequently compounds contain less than 1 per cent.,) a very semious errur would be thas minoduced into the determination of the hydrogen. To aroud thas error, Leebeg described a method for remoring all accidental water before the combustion was commenced. It consists in surroundug the hilled combustion-tube vith hot sand, and renoring the moist air by means of an ordmary hand-syringe; by opening the stop-cock of the syringe, ar is nuw acum admitted; but this air has previously to pass through chlorkle of calcim, and is thus entirely deprived of moisture before at reaches the combustom-tube. By repeating this operation four or fire tumes, it is pussible to replace the most air of the tube with dry air; in other words, to remove the adventitions water.
These who are in the habit of making organic analyses are of opinion, that the exhaustion of the combu-tion-tabe is by mo means the most agreeable part of the operation; it n, in feet, frequently omitted, it being, in that case, understued that the amomnt of hydrogen foum is somemhat in excess.
On the other hand, a trifling lefiriency is sometimes observed in the amount of carbon as fumbsted by this process; this aises often from tho misture of the substance wath the oxide of copper not having been made with sufficient cac; sometimes, hoverer, it is owing to the peculiar character of the bodies whoh are analysed. Many substances, such as fibrin, albumen, etc., when heated, give ofi a large amount of combustible gases, while a dufficulty-combustute carbon remams behind; thus it happens, that the uside of copper having been reduced very completely in sume places by the gasce at first evolved, particles of cabon may remain unburnt among the metallic copper. In such cases, it is necessary to complete the combustion in a current of oxygen, which may be readily attained by placing a few fragments of chorate, or better still, of perchlorate cf potassa, in the posterior part of the tube; the oxygen diengaged from these salts in the last stage of the operaton cousumes any trace of carbon which may have remained in the tube.
The fuel originally, and still most extensitely, emplogedinorganic analysis is, as I have stated, common wood charcoal. In some parts of Germany, bowever, especally in the uorth, the chareoal has frequently been replaced by spimt of wine, and withm the lat year some attempte have been made in Enghad to accomphsh the combtstion by means of coal g.ts. The change an the fued uecessarily mrolves somemodifications in the process of the analysiy, the apparatus certanly loves somewhat in simplicity, but several advantages are gained, whech appear to compensate for the complication. An arrangement for eftectug the combustion of urganic substances by means of coal gas, splaced hefore you on the tabie. Yon recugnize at unce the onginal
 tube filled wath blach oxide of copper, a chlon ite of calcuma tube. slightly molificd an fom, athd laelor's potase bulbs but yun see several appendages which 1 have to exphan so you. Fivt, let us lowh at the combustion furnace. whuse construetion whill be at once obvous
If consist: of a long hore of isell phate, with a fertorated buttom, and a top

 firme division a persurated gas-ppe is is ed, parallil with the lungest anis.

 passes through the wre graze, where it may be highted, thus furnithug that is called in chemealiaboratorie- the ain-flame of coal gas, the coolug effect of the ware sauze prevents the thane from rushing back into the chamber. The bach dwion of the opparatu- hav a rather more comphented tonstruction. La the wrot phace, you oberve that th agam subdiviled, by
 nied with two gas pipe, instead of one; each of these pipes is furnished xith a nopeable piston. To the arrangement and working of these pistons sllow me to call your attention for a moment, for on their proper ndjust-
ment depends the success of the operation. The tover one is simply a perforated tube hike that of the front aivision, it is supplied vith gas in front, at its left-hand extromity. As the piston stands at present, the gas passes ouly into the first compartment; and on lighting it vyer the wire-gauze at tho top, we obtam a narrow sheet of flame, correspunding in width with the compartment; but un pushing the piston further along the tube, we allow gas gradually to enter into all the compartinents, ant increase the fame over the wire-gauze m the same measure as we pruceed. is soon as the piston reaches the other extremity of the tube, we proture on the whole extent of the wire-gauze cosering the back division of the apparatus, the same had of ar-fane wheh we ongmally sav lughted on the "irngane iop of the front dirssuti. The arrangenent of the upper pipe is different This ppo is suppheal wath gus at the opposite, the right-hand extremity. It is prorided. moreover, with two rows of straght thbes, of very smali bore, similar to those used in Lesles's burner; the upen ends of theso tubes pass through the meshes of the wreganze. As the pisten is represented, the gas is supplied only to the tro first tabe-, wat whel sule of the axis of the combustion-tube, and may be hisuted at the ends, formiug, aceording to the quantity admutted, two larrer of smaller jets of gas, which may be reduced to mere points of thane. lis drawing wat the piston I may light one pair after another, untal the whole series is in combustion. The upper and lower tubes are perfectly independent of one another.

Now, complicated though thus machmery may appear, it woma with the greatest facility and precision. Of this I hope to convince you by expment. Let us periorm an actual analysis together. In this case wo use a tube, open at both extremitues. This tube contains a layer of perfectly pure and unmaxel black oxide of copper, corresponding in leugth to the front division. By exposing this oxide to the ar-tlame in the latter, while a current of perfectly dry arr is forced through it from one of the gas-holders, which, as you observe, may be comnected with our apparatus, we expel every trace of moisture which the oxde of copper, may have absorbed during tho process of filling. We next introduce the substance rhich we desire to analyze (I have taken sugar), and which, as you observe, having been put into a little bont of platinum foil, is placed in the combustion-tube : the boat occupies that portion of the tube winch is situated over the back dirision of the combustoon furnace. This being accomphished, the combustion-tube is connected in front with the chioride of calcium tube and the potash bulbs; at the back with the system of U-sbaped tubes, containing sticks of potassa, and pumice-stone, moistened with sulphuric acd, and ultimately with the two small gas-holders I have already mentioned, and which aro filled respectively with common ar and uxygen. We now light the air-flame of the whole front division : so soon as the oxide of copper is in a state of full igntion, we open thestop-cuck of the ar gas-holder, and again force through the apparatus a slow current of air, perfectly dried, and deprived of any trace of carbonic acd it mught contan by th system of tubes through which it has to pass. The rate of the current may ise atcertained and regulated by the number of bubbles passugg thrught at small buth filled with sulphuric acid inserted tor the purpose. We next begin to worh with the back division of our apparatus; we push forward the piston of the lomer tube, so as to adnit gas to the first compartment, which enables us to expose the very extremity of the tube to an air-flame smilar to that to which the oxide of copper is exposed all the while. We now slowly pull the piston of the upper tube, supplied at the time with a very moderate quantity of gas; the several paira of jets bemg lighted successfully, we succeed in grabually cxposing the boat contamug the sulstance to a slowly increasing temperature. The substanco begins to be decomposed, and a portion of its carbon and hydrogen is evolved in the iorm of volutile products. These vapours are carried by the formard current of atmospheric air towards the red-hot oxide of copper, where they are rapidly converted into water and carbonic acid, which are collected as usual in the chloride of calcium tube and the potash bulbs. Theso bulbs are in our case connected with an additional hittle tohe, con-
taining sticks of potassa. The nbject of this tube is supplemental to the action of the buibs af the operatom shouh proceed too rapidly, but chichy to arrest any aqueous vapour whol might be carred off from the potash bubs by the current of air. The expulsion of all volathe matter from the substanie to tee analysed the wi-tilhation of the subetance. an it may be called), rcyuises generally from ten in fiftem numutes; sometimes the whole substance is thus votathized: an some cates, hewever, a portion of carbon remains beland. In order to lom this, the gas is tumed off from the jets, and the vhule phatmum boat exposell t.0 the actun of the full air flame, which (by pushug forwarl the piston of the lower tube) is made to play over the whule wure game top of the hack division. After a few seconds, the carbou das assumed the highest temperature it is capable of reaching in this apparatus. The current of air is replaced by a slow-stream of oxygen from the second ga-holder. As som :" the ouggen meets with the carbon, you observe a brilhant phenomenon of incumbescence; the carbon is rapidy converted ate carbome acil, and iftor it few minuten, the platimum buat is porfectly clean and empty. The current of oxygen ss still continued for some time, in order to re-axidise the enger which has been reduced by the combustivn of the volatile products the operation is fimshed so soon as tho presence of free oxygen hecomes perceptible in from of the potash tube, which may be recogmsed by a glowing match being held before the orifice of this tube. The current of orygen is imm mterrupted, the appratus detached, and the chloride of calemm tube, nad potash bulbs are veighed, after the oxygen, which, as you recollect, is is hatte beaver than nir, and morcover more soluble, has heen replaced hy euchinga curent of air through them. The tube, still red bint at this time, in ahowed slowly to cool, by gradually turning off the gas.
This mode of burniug has muny inhantages, some of whet 1 may he allowed to point out to you. Tho amount of chath ant alds af hydrogen. especially the latter, is aseertained by this fucese to a degree sif nearl! absolute accuracy, suce every trace of actidental moture is espluded, the operation of mixing bemg altogether armidelt The absence of neribental moisture enables as to use rery minafe rquantities of substance, from wo th three grains being on many casen quite sufficient, -2 cucumstance whid materially accelcrates the operation. The first puttur together of the apparatis of course takes some :ame. but, once fitted uf, an amalysis is madi with great dispateh, insmuct as the tuhe atter the termananin of the first combustion, is quite ready to recmis enother subtance, the us ide hemge ignited and 1 c-oxdedsed in the previous operation. Nureover, the same combustion tibe may be used six or cight time, whilst in the ordmary mode, a tube has to he aserficed almost for every operation The arrancement I have described to you is particulariv usefil when a considerable mamber of analyses are tu ife made.
The experiment whech I have hown of yin has. 1 hope, made you famblizr with the prine pal features of the intermitation of arton and bydrogen 1 might hase added a great mam dirtaile,-1 might have pomed out to you the adlitiota! precautions requrmi when suhatarcs comam, becordes carbon, bydrogen, and oxygen, utrogen nomberime, wr salphur,-1 might have explained the combution of hoginde the that of ganes; but 1 have excluded these iletails monder not tu arcmumate the number of operatsons which I bad to describe. It remans now to geve :hay acoumi of the method of estimating the mitrogen; but, sequainted in you are aireadv weth the gen-
 dificulty in understanding these inge enoce fern thinagh the thated tome at i: disposal will compel me to be mother href in them descripton.-From the Ifdical Thmes if Giazene.
 By Dr 5 G. Athensm, I'uystetan to the Wakefidd Ditpensary
[Dr. Attinson has had tho opportuaty of making extensive observations apon the subject of tuberculosis; every man who has died of this disease
during the last five yeary at the Wakefield convict prison, having been narrowly watched by him during life, and the post-morten examination witnessed by him when dead. II aays,?

From the osperiments instituted by timm, it appeam that during respiration the oxygen of the atmosphere combines with the hool-corpuseles, and that the consumption of axyen and fomation of carbonic acid stand in a direct ratio with the mount of theye bhot-worpuseles, and with the number of respirations in agiven periol, hener it is , ohvious that the oxysen of the atmonghere is consumed in the metimuphest, of the corpuscles. And at would further appear that the amout of forme alway varies inversely with the mass of the blood-curpuseles, or, in other wurde, that the more corpuseles there are, the less in puantity is the tihrin-and vier corsin,

It appears moat probable that a* the howdenpuseleq principally consume oxygen duriug their changr, it io hy tha process that the fitme is proluced. and that wherever an extrumblany consumption of corpuciny tat es phan, the quantity of fibrine in the plaximals, anc masos If by ony means the circulation be quickened, or in other words, the mutual acthon between the blood and oxygen be increased, mure bluod corpuscles will be consumed ins giren time.

Although the temperature of the hots is nearly the same in all parts, in consequence of the metammphasis of the tissucs constantly gring on, yet the temperature of the lung is slightly higher than that of any wether part of the system, which may be accountel for by the more energetic action of the osygen on the mass of buodin the-e organs, than in any other parte of the iv'
Now, Andml and Gavavet obserre, that in all stages of phthisis nalysis of the blood shows that the fibrine is always on the berease, and the corpuscles on the decrease, but that this increase and decrease vary proportionally with the progress of the disease. Licbig statos that it must te recoired as an undemable truth, thatall the organic nitrogenized constituents of the body are alerived from protein, when we reflect on the levelopment of the young aumal in the eqg of a fowl, where, out of the albumen, feathers claws, globules of blood. fibrime, menbranes and cellular tissue, arteries and reins, are produced. Sher, this allumen contains, for the quantity of nitrogen present, exacly the pronortion of carbon reguired fir the formation of thesg tissues :

Let us, for one monent, Inok into the nature of tuluercle. Chemistry has thrown little ligit on atx mole uf formation. Nomon states that it may be regarded as protein frow which a portion of carbon and oxygen hare heen remored; of to peak peecisely, it may he supposed to be derived from protein, which substance has lost, durner the transformation, three atoms of carbon, and one of uxgeat. The fomaula is-

From the obscrrations previously made, viz, that the mure corpuseles there are, the less in quantity is the fibrine; and from the csperments of Ander and Gavarret, that the blood in phthisis contams more fibme and less corpuscles; and, moreover, recollecting that the temperature is somerhai greater in the chest than in other parts of the system, probably becauea more energetic action of oxygen takes place in these us gan--it weuld appeas fair to conclude from these facts, that in phthisis the combuation of oxymen and carbon, in the lungs especially, is more active time m :hc normal state Now we will say one word concerning the remedics employed and hund most beneficial in this disease. They, for the most purt, may be arranged under two heads, frist-general tunics; secundly, th. - compuunds which conthin large proportions of carbon, such as cod-liver oi, naptha, fe ae. It connot be donbted that the remedial efficacy of the ater clase manly conssts in their readily giving up the carbon, and we hare shown a great man of this clement in the tubercular deposit. We may l loo add, that in ths disease all the adpose tissues of the body are aly .ost hecome emptici.
In one case of phthisis, where the blood had been analysed in a patien: who had taken cod-liver oil, it was foumd that the fat, when isolated, smed
strongly of the volatile fatty acid of cod-liver oil; am, woreover, that the solid constituents of the blool were observed to be of a very large amount.
So far so gool-both theory and practice agrec, but at appears to me that no cure can be expected from such a class of agents. They, no doubt, preserse the body from being so rapidy burnt up, but this is all we can possibly expect them to do. We do not get at the root of the evil, or at That is the primary canse of the tubercular deposit. Now, if the tuberele be protein, with a deficiency of carhon, there topears to be some reason for supposing, that in this peculiar dathess the dements of utgamsm do not adhere together with that degree of tenacity which constutes nurmal health. Liebig says there is nothug to prevent us from considering the rital force as a peculiar property, which is pussessed of certain natural bodis, and that this force is contmually being opposed to the organism ly a chemical force; and by the action of this chemeal force, a separation of part of the body, in the form of lifeless compounts, begins; and if, from any cause whatever, the resistance of the utal foree dimmishes ma livisg part, the change of matter increases in menail degree. In the segetable kingdom, the resistance of the vital torce is sometimes shown very yowerfully, when we perceive leaves charged with turpentine or tamie acid resisting the affinity of oxyen for these compounds. On the other ham, when this force is lessenced in the orgamism, we need nut be suppried at great aboormal changes necessarily oceurring. lgam, the same author observes that the absorption of oxygen occurs only when the rital foree of hivig parts is reaker than the chemical action, and that ammallife may be vewed as determined by the mutual action of opposed furces, that the incrense of the body is effected by the vital force, and the waste of the budy by the chemical action of oxygen: and that the comditon of the boin which is called health, results from an equilibrium among all causes ot wast and ofsupply. Now, I think we have evidence that, in this pecuhar condition, the carbon of the boly is too easily acted upon by the atmospherec oxygen, and therefore, that the balaneng orerotwn wheh taks phace on the trausformation of protein into cabonic acid, uren, water, Se, whech consitutes bealth, is so far overtumed, that a larger guantity or enthon is removed in proportion to the amount of mtrogen and hydrogen, wheh, in the healthy iactions, are carricd away by the kidneys, liver, shin, de; heuce these hates elements, not being taken away by their proper emunctories, combuc in certain definite proportions, and constitute the depost known by the tem tubercle.
In seeking, therefore, to discover a remedy for this disease, our object ought to bo to ascertain whether there are any agents detetic or medical Thich could prevent this too quick transformation, Inmaking this inquiry, me must first observe, there can be no tuestion that the victims of this disease are chieny taken from amongst that class of individuals whose geseral tone of system is lowered, as ocens anong the paripered and overprotected chitdren of fortune, or in those hing in confined amb unheathy thospheres, Sc. \&c. A remarkable fart exists, atrange as it may appear,
 ed those who have habitually exposed themelves to many of the canses 5sble to engender this diathesis, hare yet frequently enjeyed longevty: whereas, in the same fambies, the most virtuous, and thuse who have cardel their lives with the greatest care and prudence, have failen early sctims. Hence, it is an interestmg matter to ascertan how far alcohohe diats in this disease preserve thuse ennstiutionally preds, wosed from these equal results. I think it is agreed that alenhel, like all wher highly cartonized substances, does supply a certann amount of pabulun of the blood.
Sor, does it act in any other way? Does it at all prevent that di-position bosidation on the part of the orgamsin of which we have spoken, and thus ty making the protem compounds less ready to chmbine with onyisen. render ten less ready to be broken up? That it has this property out of the ondy "iery cvilent, and may it not have an equal power when taken aternally? fere can be little doubt the aleohol is talien up and circulated in the system,
primarily, as alcohol, yet its elements ultimately become separated-its carbon and hydrogen aro given off as carbonic water and acid; for Liebig could not detect, either in the expired arr, or in the persparation, or in the urine, any trace of alcohol after indulgence in sprituons lisuors. By the use, therefore, of alcubol, a limit must be put to the change of matter in certam parts of the body: for the oxygen of the arterial blood becomes venous, without the substance of the museles, de, having taken any share in the transformation. Thus, we perceive, without the manfestation of a corresponding amount of mechanical fnrce, the heat of the body increases after the use of wine. Wo have here some explamation offered to account for the dark, venous, hoated countenance of the man who lives freely; and we may contrast it with the flom, arterial hue, so characteristic of the countenance of the phthisical patient. In the former case, we have the system surcharged with earbon-in the latter, the arterial blood becomes too highly oxidated. It is not then fase to conclude that alcolol acts in the first place, by preventurg quick oxilation of the tissucs, and then becoming decomposed, it supphes carbon? And if this be so, mould it be gttemptang to carry out a principle too far, supposing that the peculisr acuteness. if ant vigour of intellect, which is strongly obnervable in the phthsieal patient maght depend uron hy per-oxygenation of the blood circulating in the brain? just as we know of a temporary exhlaration of the spirits seems to be caused by the mbalation of oxygen gas. On the other hard, it is cqually sell known that a sluggishness both of mand anm body is a necessary attentant on the beer-drinker, wheh most probably may be aecounted for by the tno carhonized state of his hood. It has been found in prisons that men are admitted, apparently in, good health, aud remainso for some months - that they then become dyspentic, fill off in good health, and die of tubercular consumpton, runuing through all its stages in a fex months, and even, in sume cases, in a few weehs and I beliove I am sot wrong in statiug that four-fiths of the deaths in prisons are the result of tuhercular disease. *
It may be observed that, as regavis diet, cleanhess, regular habits, and an equalized temperature, the greater part of them were infinitely better of tham before conviction. The only cause lihely to be detrmental to leath, wind be the effect produced on the mmi by restricted liverty and prison dectphe. Now, I may state that, wath scarcely a sugle exception, these me:t hi:ro been more or less demkers. The prison fare. however, dues not pertut the smallest allovanee of alcoholio stumulas, unless specially orderad by the mednal nfincer Here at will be interesung to enyure, whether the loss of this agent has anything to do in producing the tutercalar diathesis! I might alsu state as a remarkable curcumstauce, that the post mortea examinations of the convicts during the last five years whech I have attended, every body canained, no matter how death hed ocenered, had tubencular deposits, on one or more organs, with the exception of yne man who ded of enilepsy. Agam no class of men, on th aver wer, take ruwe ctmulants than inn-keepers, or the old-fashioned but now difu-u-t bloolete coachmen. To this number I might add butchers, who, heoude, consuming large quantities of animal foold, trenerally also drink freely; as well as mea emploged at breweries. Whe ther statistucal evidence may prowe or heprove the fach I am strongly inclued to believe, from a recollection of caces, as well as from their general appearance, which is familiar to all people, that they are not linhle, but rather the reverse, to tuhercular diseases If tio inference be correct, from these and other similar illustrations which might be guted, is would appearthat alcohol, allhough most mjurious and destructive, by pros ducing nultitudinous discases, yet my it nut in this msineae act as a kidud - f preservative, by protecting the organism frem the arti,' of oxygen, which we believe we have known to be the inmednte cause of the disposition of tuhercle' If this he so, could unt some chemienl age it he discorersh which whald have protecting, but not otherwise iestructive, agency" Fo: instance-I merely propose it as a thdoretical sugqescion-would tenno acid, combined with some lighly carbonized sabotarec, and a moderate

[^7]supply of alcoholic beverage, or some such compound, have thas protecting influence? I thank it hkely that if any such agent be discorered it will be found among that class which have all a hee preserrative property when used extrinsically to the body.
In Hasse's Fork, edited by Dr. Swaine, it is stared, "Imr the most part this is traceable to a catarrh, which, after a first attark. leaves perhaps but a slight cough behnd, hut, mifrequent repatition, gratunly and irretrievably lapses into confirmed phihisis; or the disease, almost requally often, sets in with hemoptysis." If the author means by this the commencement of the disease, I cannot agree with him. I regerd these symptoms as quite of a secondary nature. Although I am well aware that tuhercular disease of the lungs has been considered the result of inflammation, yet I am disiosed to bolieve that this is erroneous, and thet tubercle is depoated in conse puence of a peculiar state of the system, in which he transformation of the tissues has not lemenried out in perfect equilabrium : and that when deposited, the taberclo may, and often does, remain for a longer or shorter period, without creating much local inconvenience or custurbance This will, howerer, greatly depend on the amount deposited, and on its rapudity, as wellas on other collateral circumstançes; and the catarrh, inflammation of the lung, pleurisy, hemoptysis, icc., are entirely dopendent on the mechanical irritation caused by the presence of the tuberele. I am strongly of opininn that the deposition of tubercle may be much more general than is believed, net necessarily shortening life, or perhane inducing ill-health : but I thul it both possible, and very probable, that shenever the vital tonicity s suffciently lowered, this deposit may take place in any orgam. Dr. carswell thinks it possible that tubercle may be absorbed; and if deposited on the mucous membrane of the air passage, or of the bowels, I cannot see why it may not be thrown off and ejected, as any other foreign matter.
Dr. Addison, having examined moth a lens many apparently lealthy lungs. alsolutely found tabercles deposited more or less abundantly in one-third. From a perusal in lacnnec's work, it seems evident that although ine had by no means satisfied himself as to the mechanism of the tubercle, yet there appears hittle doubt he regarded it as a deposit taking phace trom some abknown enuse, and he appeared strongly averse to the opmon that it was the result of irfommation. M. Lous alleges, that, with on ingic exception, he nerer found rubecles in any other organ without themr existing in the lungs at the same time, momuch that he seems postively to consider their presence in the lungs as essential to ther development in other parts. I am desposed to beliere that tubercle may be deposited in any other part shere metamorphosis of tissues occurs; yet 1 think it more hiely to happen is the lungs, in couscquence of a more full and energetic action of oxygen taking place there than in any other parts of the organism. liasse says that, in that acute form of tubercuar phithsis which often proves fatal in the third week, the rital symptoms are very pecular, hearng a clnse recemblance to those of typhus fever, as to lead to mistakes, and the diagnesis can ohly be ascertamed by tire atethoscopic sounds? In corroboration of these rieis, I examined a man at the comvet prison, who had been ill a fer days, and diagnosed the ease typhus He lived about a fortnight, and on a postmortem examination, the whole of both lungs were completely studded with tobereles which had not yet formed communerations with the bronchi, and taberrular deposits were fourd also in the fodmonen and hend. The It Ir. John Taylor of Eniversity College Hospital, mfurmel Mr Millner $t_{\text {- }}$ te had seen two smakr cases, and that in botb the dacase at its commenectent hat been comriered to be tsplus Now I regari thene casea as the result of a very matked defictery of the vital force. Hence, dumag a very stort period the protein componds were so raphly acted upna by the atnospheric oxygen, that the diseave begin and fimshed m the cmure of a far weeks-indeed, the rapidity of the tubercular deposit arc so great, that prients absolutely dir befre the discase hes extenderl further than sumple depostion As snme proof of the views I entertain, I whll relate one or tro instances which have occurred mmedntely under my osn eye; but as
many of the individuals spoken of are at present nom living, I cannot of course, furnish names.
lst.-A family consisting of five sons and me dnughter. all appeared to eajuy go a health $2, p$ to about cighteen. Uut of thas family, three sons dred betreen the ages of eighteen and twenty fire, of phthisio : the daughter is still living, althnugh in very precarnous heath, exdently phthisicat. All these were stewly, indutrious, and pecularly careful of their heath. The trou remaiang anns, burs between thirty and torty years of age, when last hear 1 of were quite healthy. Early mhen, these ims latter men were of disstpated habits, and lost manv shations an consequence of their propersity todrink. One of themat the carly age of nineteen, came over from India with an inflamed hver and hropsy. from spirt dinnkug : he was many months ill. but ultimately recovered. When last seen they rere in robust bealth, but had bloated countenances.

Ind-A family conssting of three sons end three daughters. They all had the chametere of the serofnlous dnathess atrongly marked-fair hain, clear complexion, blue cyes. tinick hys, se. The three diaghters died of phtaisis hefore the age of thirty: one son of tubercles of the brait. - the tro ofe maiming sons are ctill nliw, of arrecular lat its, but an apparenty good health.

3rd-A rotag man at the ago of cighten shorred every cymptom of approaching tuherculosis: he hai already lost one brother and sister by pithisis. Il:s medical man advised him to relinquish a profession of a sedentary nature, in cousequence of the ahove ficts. Iie did so, bat unfortunately became dissipatel. He is nows alive, about forty years of age, a confirmed drunkard, and has sufferel several times from delinum temens

We gather, therefore from the foregong obsersations, that tuheccular doposits are eminents dependent as the prumary if nos the sole cause, as a diminution of the sital force--Ludly, that in piathiss the body is rapidy consumed by the combination of ats elements with oxyene.--3rily, that the consmmption of the body may be retarded by the magestion of ceriain highly carbonized substances, as cod-liver onl. Ne.-ithly, that it is probable the mapid oxidation of the body may be checien, or eatirely prevented he the use of alcohol, or some agent actugy in the same way - Lancet Dec., 4,180

> OS TUBERCLLOSIS
 of Inabomy and Matcine alforning St Gen. Je's Horpical.
[First let us see what are the conclusions at which Mr. Aneell araves after a consideration of the bio id.]
Mr. Ancell inters, from considering the amalyse given by rarionz chemists, Drs. Fricke. Ardral and Gavarret, and Dr Glover, first, that the blood in tuberculosts is deficieat in the propor:mon of red globuies; secosd. that the albumen is augmented in quanity but imneriectly deveioped asd defective in quality: thurdy, that there is an meress of bibrinc, but that this minciple also is defective in its natare; fourthy, thet the satery part of the bleod is acreased in proportoon to the solid ennstiments: fifthy, thatit is not ascertaned whether the fatty principle is dminished: and in the sixth phace, that nothing tery satisfactory as aseertanied as to the inerose Gr dimmation of the saline principles. A generai riers of the changes in all these elements and prinerples in tuberculosis, the anthor attempts to gire in the following diagram.

> Her Cospasexs.

Detiricn: in number

Iagtor Saxactizs.

GGowalin descient.
\{ ixematin difieient. Iron difizaent. Water ín excoss.
 in quality.
Filerinc. rather helow then chex ble siundard, jof in gaxis
Fate- pmobaly deficent Colouring matters matesos Aikalino salts dfricien:Farthy Ealksulfcienty 1hme in exctas;

It thus appears that after great chemical research, much is doubtful and uncertain, if not positiveiy in a state of confusion. Mr. Ancell nevertheless thinks that the most genemal charncter of the blood an tuberculosis is diminished ritality, and that in referenee to the dumished amonat of the red globules, tuberculosis may be consdered a consumption of the blood. The bload, he thinks, pussesses, in the heathy state, a certan degree, and amount of vitality. This sunount of wiality is denoted hy its dignamic properties of endosmose and esusmuse an the corpuselec, by ats organic contractilits, hy its pe wer of assmilatigg old and new matier to the Sorm of the blood, by its porer of forming red corpuscles and ltudur senguma, the consumption of red corpuscles, ami tae baste of hyur sugutats in wutrition. When the sum of these physulugical actuons, says Mr. Ancell, 15 withan the phsiological range, and they are in barnony with each uther, a sufficient number of corpuscles being formed and wasted, and all the coustitnents of tive liguor sangums being complete and pupurtwiate, and renovated according to the require:nents of the difficent tissiles, the blood possesses the healthy degree of ritality. In tuberenlose, wa the uther hand. the sum of these actions is below the physiological range moreaver, the yroportons of the constituents of the blood are , ubverted, ind there quahtues are deranged. Thes denotes a low degree of sitality, whin is cunsistent with the phenomena of the tuberculous predingoiniun. amd with the sign of fulerculozes on ats various forms.

Tuberculosis is a peculiar state of the blood, if not in the first anstances. at least in a very early part of us history, and ihroughout, this condituon of the blood not only continur-, unt in certan reypects is ancreased, and
 chemists difier in their reyuits. and that at $\boldsymbol{1}^{*}$ su afficult to ourm results wiech are harmomots and consistent. The bond sin a constant state of change am finetuation, accorung to the varable state of those mactions on which the state of the bown cepents-the cumbuon of dugeston: of assimilatinn, primary and secumbary. of rembratom: of secrethot. probably as:Dr. Holhan! suggents, of tanctiation. It direstuon in the stomach and duodenum is imperfect and thsondered. assambaton ts mperfect and distarbed in consequence; sum the chyte which is transmitted tirough the bacteats and veins is either imperfectly claborated, and contains elements Thich it ought not to contain, or is desitate of eiements wheh it ought to possess. If regpiration he in fault, if the atar breathed be had from joisougne minsmata, we knon from ample and unduabted experance that thisactsin a most direct maner in deteriorating the yualitecs and condition of the cimpuating fluid. Iooking at the mhatisan's on masmate destrects, and beholding their pale sallow fares and dagy colcurch shan- affords sufficicnt jonof of the correctness of this anterence There masy furtier be zomething in the actions of the lunger ia the mole when whese urgans act upon the
 fauction.

Further, if the rarinus procococo of seretuen be feeble, inactive, and periefted; if articles which ougit to be emmated from the boni be retaned anit; as the ciernents of bile of ores, and probable other substaness; at is easy in we that the bluod so consta det a amot he in a heathay state. This sa frequent comblion of distiot th the blewi an gont. theamatic gout, chronic rhenmatism, and soveral, viher morhii states comected rith impairel and retarded digestion.
But, imicpeadent of ell these sources of contamimation and disease of tho bood, it would appear that thin finil, under certain crecmestances, loses of itceli, as is were, its proper muritious and reparative power. The blood eridenty poesesees a power of assimilatime certana foreign substances-all the organic prolucts employed as articles of iood. It is int ascertained zinther it owes flas pourr t. athe inharent property, of to the salne mattery with which it is mormally mpreguatel. All that is known in, that zhen the saline matters are deficicn:. disproportionate, excesere an one direction and defective in another, the blood luses ats porer of nurtition, of
rather becomes unfit for nutrition, and disence follors:-paleness, feebleness, loss of flesh and strength, in short, an anmions state. This condtion the late Dr. Prout seemed dizposed in "tribute to the deficiency of saline ingredient. which he beliered were refuiste to the normal healthy constutution of the blood; and. in consequence of wheir hemp deficient, those actons and processes, probably clectric, or electro-maguetic. for the sequasite appitcations of the nutntions parts, did nit take place. til ails must of necessity be matter of conjecture. and, thugh it is not desirable to admit unknown causes of murbid conditiou* withont sufficient proof, yet manocs facts seem to show, that of this there sas much probabinty as of many other morbid states.

One obserration more only un the - sthyet we make Thero is too great a disposition in all instances th wasdir misease as a positire sante:-as something laving en active ecistence for to so is quite natura; for a would bedificult to speals ur io reason ally at it with ut doing so. It tue same time it ought nerer tu be furgotion. then hariase ve, correctly speaking. a negative condition. The positive concition ${ }^{-}$chenth; the absence of thas condition, the negative of it, is disenge to woth regard to morbid states of the blood, and especially that called ninurentime, ther are merely the absence of the healthy state of this flud, whether the comst in the wresence of inombd matiers that ought to be rejected rir in the absence of healtbr dements, the presence of which is regusitr The blood ceaces. fiom carious caúses, to possess those principles and propertips which fit it to act as a uuthtious lifid it aterdingly does net noursha, and the orgems and bous ittlarge are wacted. from not heing suphed vith materiais to repar waste. It is true that the bloud, hesdes losing certnin prionples and propertos, pobsesses others thich are nut natural-mioh are in short morint. But it is to be remembered agan, that these onorbed principles are not really ner principles, but tegradrd forms of orm mal princoples. Even the analyteal researches quoted by Mr. medi thow how shight is the change. how stosil and insignificun. apprently, is the devatim. in the most mense mstances of taberculosis. So ecgnent or principle iv absolute!y rauting. Une is a little in excess, another is a lithe in deficiency: mad these are all the targible points on which the pathologieal inquirer can fix. Perverson, eren an the proper sense of the term, it is mpossible to deiect. The blond an an some manner without thuse principles and qualities which enable at to be employed

- as a rutritions duad; amd this sems to be all thet can be sam, efter much microscomeal examination, and not a for chemical experiments.
[Mr. Ancell considers the fyowing inferences are exinhisted from his investigations into the wtate of the bloml in tuberetionis-]
"The debility of the taherculosis inilicates a dirmet lase of power, and the Whole of the pheaonena of the predisposition and the symptoms of tha discase sher-
" 1 . That from the carliest invasion, the sum of the vital foree 15 ether belor the standard of health, or it is relatively lons as eespects the structure and arganization of ibe individual
"2. That this diminution in the sum of the vial fore depends especally upon diminished siahty of the hlool, and of the celiular. gelatimotas, azd muscular tissues produced anl nonrished from mompeiect blastema denred from the discased hloul.
"b. Thas as tuherculusio abranees, the sum of the vital fore for the whole system contimes to dimini-h, this loss of rital froce bemperlabited not only in the defective manifestation of voluntary amp monhatary muscalar poryer, but in cellular ard innseular tiesums to the change of mater in the animal body; hesec, in tuberculous suhigets. ther rapit thanuman of tue red corpuseles of the blood, the ateteriontion of the wial prahtues of the aquor sungums, and of the blastema, the diminished phaster morer of the cells, the low calorific purer, and the emaciation
"4. That frequently, bua by mo means univerally, the nututuve purers of the bloot, as respects the nervous tissues, rmmon mammusheil, has fiseuc not requiring for its natrition compound prinepples denteal with ato
be introduced into the blood with the food,'and having a nutrition peculiar to itself, thfering from that of the cellular and muscular structures. Hence, the diminution of vital fure be mit eshinted me the nerrous system, but as conductors of the torce zenerated by the ciange of matter in-the whole sritem, the nervous system remams untact. The particular condition of the sital force is nevertheless manifested through the nerves: hence activity and action without power, morbid arntablity, ae. It 13 the highest manifestations of the vital furce lepenleat uqua nertou structure, as Wensibility and mental phenomena, which su frequently remain unaffected during ge physical degeneration. These phenomente ke often mather augmerted than diminished, the nervons matter, although periect in structure, being more exposed from the waste of its cellular coverings; hence, frequently increased sensibility to impressions in tuberculous subjects; and this oecurring in the prodisposed from the earliest are, and throughout a series of kyears acateness of intellect is often cxhibuted.
"In mienatiug the sy mptums of tubereulusic a a practical point offieys. tipir ahsolute value, taken cingly, is cumparatuely little, since one batd all occur in other diseases It is ther riative ralan-the association of severali:or the barmony of many in one ase; the matare m which they arise-and their moie of surcession-which desingunhes them from the symptomstar other diseavec, and assist wh in the diferental dagnosis. Mrany of theseg symptoms are found associated in chloross, sumple anamic debilty fromirenereal excesses, mud other conditions of the econumy To those who inḡe Feil considered the details of the tuberculuns constituan, the dificultyiof the diagnosis is consiterably dimitushel. The symutums, riewed in come bination and relatirely, rarely misic.d, especialiy when they are decidedint their development, constant and progressire. Induficuit cases our iudges gent may be frequent'y determinel by a knowletgo of the antecedent existeace, or the absence of the predurosing and utucing cnuse:-asjor instance, oi the hereditary taint, or a long-continued ant-hygieme regimen:In reference so the general disease, it is to be kept stenciily in mind, that the diagnostic object is net to determme whether a local tuberculong derelopment exists - tubercalosis palmomalis or aedommais-but mother to determine whether the patient is traly affected ir. it the blood disease, and tifreìy threatand writh ats local manyfortations. The successful treaiment of the disease of the blood in this stage, base ion a knowledge of tis natuee and enses, is, in may iastauces, certain. The suce:ssfal treatment of the diease, aiter it has locilised itself, is frequenily impossible.
"While I refer all the symptom, deserilied to the taberculums state of the blood on the one land, there is frequently, as they precent themselves in rarious groups, a direct relation subsisting between them and the pathological effects of zulereulosis, to be deseribed in snother chapter. The defects of the usecous system ... siug from perverted organisation and netrition of the bones, are in direct relatin to the scrofutous affectionof the bones, which sn frequently occur. The matnutrinon of the lunge and thoracie parietes are in direct relation to the occurrence of the diseasefof the lege The weak orgatucith and depraved digestivo fluids of the aliwentary canal. then with bad diet aud other ata-inggienic anflucuces are is direct relation to mesenteric phtines, Again, is Bllustrating the melation of cause aud effect in the uttimate result, white tise subjects oftabrénlosis are fel with unrinicsome andinsuficient diet, thes preseatafter death, more tequently than other tuberculatis subjects, pathelugreal lessuas of the olimentary canal Fouract stoter that tubereulous sulyects who had been fed on sufticient and wholesome dict, scarcen ever ceperin need disturbances of digestion until tomards the close of lite, and atier death the did bot find a trace of intestinal taberculization. while in thuse who, wia the
 Fete very promment, and intestinal tubercuhzatonit wis simest constant. I betiere thi- -tatemme tu be somerhat too excluase. But at the satme time the romplir ited relatiuns subsisting betmeen-1, the effeets of the blood disease ont thn local disease; 2 , the offects of the exteraal agencics on the
animal economy modified by the blood disease are undoubted; and when we consider them it only enbances the necessity which exists of our improving the pathology of the general disease.
"e"The uniform association of structural and functional aberration in the tuberculous constitution is very striking. The remark made by Louis, that 'a functicn may be more or less seriously interrupted for a long time without the organ presenting any appreciable change of texture,' is undoubtedly true; but we must not look over the qualification-appreciable. This great pathologist evidently meant-without any of those well-marked pathological results which may usually enter into the post-mortem description. A change of function always implies a modification of structure, and most especially so in a tuberculous subject. In such a subject debility, defective digestion, and depraved secretion, for instance, never occur without implying a modification of structure in its nature tuberculous.
"Such, according to my view of tuberculous and scorfulous affections, is tuberculosis, as an essential disease of the blood, to which man, and the animals immediately beneath him in the zoological scale are subject more or less, at all periods of life, from early embryotic development to old age and decrepitude. Many will regard the disease thus described as an abstraction; and it must be admitted, that as it comes under the cognizance of the practitioner, it is rarely made the subject of his consideration and treatment until some local affection of a particular tissue or organ has proceeded so far as to complicate its symptoms, and still more rarely does it proceed to a fatal issue without some local affection having supervenct. Nevertheless, throughout the progress of all the local diseases constituting varieties of tuberculosis, the symptoms and characteristics of the general affection may be recognised; it occasionally happens that tuberculosis proceeds in the adult to the last stage of marasmus and a fatal issue without hæmoptysis, the aggregation of tubercle, or any obvious local affection. This is a more frequent occurrence in the early periods of life. It frequently appears also, that some local affection-as tubercles in the lungs-supervenes, but of so circumscribed an extent, that it interferes little with the functions of the organ, or the general symptoms of tuberculosis, or of the tuberculous predispositon, and from hygienic or other causes the general affection subsides, and nature renders inert the local mischief by a cretaceous formation of fibrinous deposit. Occasionally the local affection is too trival to compromise life, and yet the patient goes on dying of the general disease. This frequently happens in children, and sometimes in adults, as proved by symptoms before death, and the existence of too circumscribed an organic affection, detected post-mortem, to account for death; but the most frequent result is, that organic disease sets itself up, and complicates, and very materially modifies and precipitates the symptoms, progress and termination of the general affection.
"The essential condition of the blood, upon which the signs and symptoms of tuberculosis depend, is still a problem. In fatal cases one or more organs, as the lungs, the brain, the mesentery, and the intestines, have generally become so fir affected as to be incompatible with the continuarce of life. In a future chapter the special pathology will be fully considered, and to complete the history of the disease, the influence of the various organic affections over the orginal disease, and in the production of the usual fatal termination, ought to be estimated; but it may here be stated, that the diseased condition of the blood, the deterioration of the circulatory and more stationary fluids and solids, the emaciation, and the failure of vital force, are of themselves, in this general disease, totally apart from any special affection of an organ fully adequate to produce such a result; and there can be no doubt that, in many instances, death is as much the consequence and the natural termination of the general disease as of disease of any vital organ.-Edinburgh Med. and Surgical Journal, April, 1853, p. 416.

[^0]: *The elencuts of tho tissues, are their, individual parts; thus the cells are the clements of the epldermal tisenes, filmes of fbrous tissues. ac. The associntioll of severai tissuef coman angan.

[^1]: -Schatun bas mulicetnd exampine of fibou whoth he cand not trace as originating in

 ftases, which the organtc cell retuains the fundatacatal type.

[^2]: - Frequently, the simple nuclear fibres become fused together at their extremities, and form in this manner longer and knotted fibres.

[^3]: *That rella do itucease by division un the antmal bods. apparsertadent in the det or groups of cells ia aiticular cartitage-Trans.

[^4]: * Unfortunately the conithons of thiv influcace are unknown. but they appear to depeod upon acedental causes, and the nature of the cystoblestema. Thus, fermentstinn is indued in a solution ofemgar, by the addition of yent, but the firment corpuseles diespicar. If, however, the yeart wo mingled with a regctable jutco ocntaining ghuten, the former repros duces itself from the latter 1 galn, the products of termentation difer wien yeast of when ronnce s_{s} added to a solution of sugar These observations hat. no olher object than to show that what excresces an infucnce upon the prodirction of the tarions form of tisues, are causes certainly aceessible to the naturalist, and not hypothe tucal vital powert.

[^5]: wotserred they anpen in the subst healltifal ammals mithon the reins of the Jungs in tho coure of twents font hours, when quictstiret is injected.

[^6]: 2 "Tbe whole process of the construction of a cell, therefore, consests in the primaty origin of a minute corpuscle, the nucleolns, around rhich is deporited a flayer constitutifg the nueleus; and then, Inter, a scoond layer, the entl-rubstanoo or contente. The differe: lagers grow by the reception of ner moterules amone those already pyisting by intussusesp, tion, and a lav dictermines the deposition more etrongly in the catornal wan the interns part of cach layer, and more so in the moxt eterior layer han in thes witbin Inder the operation of thas law, frequently only the exi nal parimon of ract layer lyecomes condensed to a membrane (the membranc of the nuther und that of the rull woit the a xerme laver If more perfectly dereloped than that of the nurleus '-Schirann. p in: Hence, the rormation of the cell is a repetition of the produrtion of the nurlene

 + By the irrational application of the diemerey of Shwann, the wow has heen for some tume catertancel to reduer physinl, zy mifirls io a coll theory, and ω consder almost all tissues which hare heretofore been rerogmzed is werular to be eomprienl of oelle Thas

 examinations. It is almost arcrlankel that tiseure orereded in therr development by rull when fully formed, possess quite different propensitues from the latter When a chroust has
 oxyce, ho does not think of applyne the qualites of one whese to the former at application of this kird, howerer, certainly hiz hert unde in physulogs A nervetubuts, or a muscular diber, is no longer acell, nor dnes it thenswe the properties, react, or grove hize the latect, from which it was dovelnprod from the fatec riew which has been hrro oppoed our best roiks on semeral anatomy are frequentls vily bistolegtes, and not general anatoms. 28 originally conceived by the genfus of Bichat.

[^7]: a.Ms. IIfner, Eurgcon to the Wakedeld Conrict Frion, authoriked the aboreoberration.

