The Institute has attempted to obtain the best origina! copy availat!e for silming. Features of this copy which may be bibliographically unique, which may alte: any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture entónmagéeCovers restored and/or laminated/
Converture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sunt peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
\square Pages damaged/Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

\square
Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

\square
Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

$10 x$	$14 x$

PROCEEDINGS

OF

THE CANADIAN INSTITUTE, TORONTO,

Being a Continuation of the "fanadian journal" of Science, fiterature and fistory.

APEUI, 1888.

Whole No. Vol. XXIII.]

[N o. 149

CONTENTS:

eighteenth meeting, 19th March, 1887.-1. Huron Mibsions. Fatier Labocreau, 148. 2. Di.hthbria. Dr. P. H. Brfcr. 149
Nineteenth meeting, 26th March, 1887. -Geology op Medicing Hat, J. H. Panton, M. A. 150
TWENTIETH MEETING, 2nd ApriJ, 1987.-1. Voluabtric Sybtby in Matbria Medica.
Dh. Nbsbitt, 163.-2. Study of Language. C. H. Tout. 163
TWENTY-FIRST MEETING, 9th April, 1887.-1. Diabase Dfhes op Ratne Lake. A. C. Lafbon, M.A., 173.-2. Iron and Otmbr Oges of Ontario. J. T. B. Ideb, F.G.S., 185.-3. Origin of Mabyoglobin. A. B. Macaliua. 192
TWENTY-SECOND MEETING, 16th April, 1887.-1. Photographino the Living Fundis Oculi. De. Rosbbrugh, 192.-2. Bragi or Stone Flour Mill. Sharifp McKbllar 193
TWENTY-TEIRD MEETING, 23rd April, 1887.--1. Canadian Woodpeckbrs. J. B. Williaks, 193.-2. Fortuitoles Evbits. D. C. Sullivan, LL.B. 173
TWENTY-FOURTH MEETING, 30th April, 1887.-1. Expbrimbits is Probabil tibs. A. B免kbr, M.A., 194.-2. Mavopacture op Pap.ir. John Nothaf. 197
THIRTY.EIGETH ANNUAL MEETING.-1. RE ORTB OP SECTIONB, 203.-2. ANNUAL RB- port.-3. Tartaric acid ik Avmixtures. A. McGill, B.A., 222.-Colroptrra op Kicking Horbe Pabs. Bruce Batlet, 213.-Indian Lakgoagrs ard Litbrature. Ref. John Mclban, m.a., 215. - Umbria Catta. Rev. Dr. MacNibn, 219.-Miniso Industames of Cahada. W. H. Hurritt, F.G.8., 210.-Snaks Poisoys. Dr. J. H. Garkibr. 055
TORONTO:THE COPP, CLARK COMPANY. LIMITED,

OFFICERS

OF THB

CANADIAN INSTITUTE

$$
1887-1888
$$

猚1とsident：

W．H．VANDERSMISSEN，M．A． C．CARPMAEL，M．A．，F．R．S．C．

Bice－期resident：
E．A．MEREDITH，LL．D．

Sitcmbers of Council：
W．H．ELLIS，M．A．，M．B ALEX．MARLING，LL，B． WM．BRODIE，Chairman of the Biological Section： W．E．MIDDLETON，Secretary of the Biological Stction． HENRY STEELE，Chaimnan of the Architectural Section． HUGH NEILSON，Chairman of the Photographic Sectiom． REV．F．F．McCURDY，Pis D．，Chairman of the Plitological Section． W．H．Merrixt，＇Chairman of the Mising Section．
 R．W．YOUNG，M．A．

EDiting Committer：

GEORGE KE＇NNEDY，M．A，LL．D．，Editor．	W．H．VANDERSMISSEN，M．A．
GEO．E．SHAW，B．A．	W．II．ELLIS，M．A．，M．B．

Wis THE CANADIAN INSTITUTE is not responsible for the views ex－ pressed in the Papers or abstracts of Papers published in its Proceedings．

PROCEEDINGS

$0 ;$

THE CANADIAN INSTITUTE,

TORONTO,

BEING A CONTINUATION OF "THE CANADIAN JOURNAL OF SCIENCE, LITERATURE AND HISTORY."

THIRD SERIES. VOLUME V., 1886-87.

TORONTO:
PRINTED FOR THE CANADIAN INSTITUTE by the copp, clark oompany, haited, culborne street.

OFFICERS

OF TII:

CANADIAN INSTITUTE

1857-1888.
jurcsident:
W. h. candersmissen, ma.

Secretary
Eratamer
Editor -
iCibrarian
camator .

ALAN MACDOUGALL, F.R.S.E.
JAMES BAIN, JUN.
GEORGE KENNEDY, M.A., LL D.
GEO. E SHAW, B.A.
DAMII BUYLE, PH.B.
fttrmbers of Clouncil:
W. II. ELLIS, M. A., M. ib

ALEN. MARilNG, LL, B.
WII BRODIE, Chairman of the Biological Section. W. E. MIDDLETON, Secretary of the Biological Section. HENRY STEELE, Chairman of the Architectural Section. HUGH NEILSON, Chairman of the Photomarnhic Section. REV. J. F. MeCURDY, Pa D., Chairman of the Philolofical Siection . W. If. MERRITT, Chairman of the Mining Section.

Basistant Sccretary and
R. W. YOUNG, M. A.

EDiting ©iommitter:
GEORGE LENNEDY, M.A , LL.D., Editor.
GEO. E SHAW, B.A.

NTHE CANADIAN INSTITUTE is not responsible for the views expressed In the Papers or abstracts of Papers published in its Proceedings.

PRESIDENTS

CFTHE

CANADIAS INS'LTUTE SINCE ITS FOUNDATION IN 1849.

Hon. H. H. Kilahis 154950
Charies Rankin, C.E. 1850(Royal Charter arrentel Nocember 4th, 18:31.)
Wililam (afterwards Sir Wilifam) E. Logais, C.E., F.R.S., \&e.... 1550-51, 18.51 50
Captain (afterwards General SirJ. Henry) Lemboy, R.A., E.R.S., \&c.. 185:-53
Hon. Chief Justice (afterwards Sir Joms Bevemamy Robins w. 1853-5t, 185t-55)
G. W. (afterwards Hon. (i. W.) Ald,s.s 1S55 $\mathbf{6 \%}$
Hon. Chief Justice Draper, C.B 1556-57, 18575S
Hon. G. W. Alhas $1855-5!)$
Prof. Daniel Winson, LL.D., F.R.S.E 1859-661, $1860 \cdot 61$
Hon. (afterwards Chief Justice) J. H. Hac:atity 1S61-6"
Rev. J. MeCaul, IL, D 186:-63, 186:3-64
Hon. Onver Mowar, Vice-Chancellor: 1564-65. 156.3-66
Prof. Henry Croft, D.C.L. 1866-67, 1867-65
Rev. Prof. Wilhiam Hincess, F.L.S. 1S6S-69, 1869-70
Rev. Hexhy Scamming, D.D 1870.71, 1871-72, 1872-73, 1873-74, 1574-75, 1575-76
Prof. James Locdon, M.A 1876-77, 1877-7S
Prof. Daniei Wilson, I.L.D., F.R.S.E. 187S-79, 1879-80, 1850-81
John Laveron, M.A 1SSI-S:
J. M. Buchan, M.A. 1882-83, 18S3-S4
Prof. W. H. Elifis, M.A., M.B. 1854-85, 1855-S6
W. H. VanderSmiseen, M.A 18S6-87

CONTENTS.

Pare.
Ofricers of the Canadtan lnstitute, 1886-7 iii
Prksidents since lS49 iv
List of Members 26:
Lint of Exchanges
PAPERS.
I.-Prmanents Admaess.
W. H. VanderSmissen, M.A 2
Il.-Relations between Pursiology asd Paychotoge.
W. F. W. Creeiman, B.A 14
III.-Monteary Customs of the Blackrefi Indmass.
Rev. John McLean, B.A. 20
IV. -Scemmetc and Pebamocic Chams of Suctodocit.
IV. Houston, M.A 25
V.-A New Phimmeter.
C. Fessenden, B.A 27
VI. - Casaman Apampe.
F. 'I. Shutt. M.A., F.('.S 311
 rificemos of Berter-Fat.
A. Me(iill, B.A., B. Sc 39
VIll.-Jurisprebence of Insantis.
1). A. O'sullivan, D.C.L 44
IX.-Conmaberions to Blow-pipe Analisi ;
H. R. Wool, B.A. 56
入.-Relatiosship of the Amertcas Langlages.
A. F. ('hamberlain, B.A. 5
XI.-Lascicage and Literatebe of Brithasy. Rev. Dr. MacNish 76
Xll.-The Etruscan Question.
Rev. Prof. Ferguson S4
XIII.-Corea.
Arthur Görgenyi 105
XIV.—Duplex Telmphony.
Dr. Rosebrugh 106
XV.-Barometric Pressures.
R. F.Stupart 111
XVI.-Mammats and Birds of Prince of Wales Sound, Hud- sos's Stratr.
F. F. Payne 111
XVIl.-Chemstry qf the Natural Waters of Ontario. Dr. Ellis. 123
X Vill.-Sume Stone Imphements from Lake St. John, Que. Dr. Daniel Wilson 124
XIX.-Theories of Herbdiry.
A. B. Macallum, B.A 124
XX.-Geolgeiy in the Public Schools.
James 'T. B. Ives, F.G.S. 125
XXI.-The Quchua Language.
Prof. Dunlop 130
XXII-The Alaskan Buundary.
T. B. Browning, M.A. 132
XXIII.-Canada in Sculpture.
Rev. Dr. Scadding. 132
גXIV.-Dextrine-Maltuse in Beer Wores.
C. (xordon lichardson 133
XXV.-Antagonism of Social Fonces.
W. A. Douglass, B. A 136
XXVI.-Necesisty of a Suciety for the Prevention of Cruelty 1s Toronto.
J. J. Kelso 142
d.JVII.-Pre-Historic Eminoligy.
A. F. Chamberlain, B.A. 144
XXVIII.-Gealugy of Mutar Greylock. Prof. T. Nelson Dale 145
AXiX.-Cextrifugal Fohces of the Planets. John Phillips 145
XXX.-Notes un Astronomy.
J. A. Livingston 145
XXXI.-Sume Pathological Growoths in Lower Animals. A. B. Macallum, B.A 146
XXXII.-Reminiscences of the Huron Missions. Rev. Father Laboureau 149
XXXIIL.-Diphtheria and Scarlatina in their Various Asprcts. Dr. P. H. Bryce 149
(See Report for $1 S S 6$ of Provincial Board of Health.)
XXXIV.-Places of Geolugical Interest Near Medicine Hat. Prof. J. Hoyes Panton, M.A. 150
XXXV.-Volumetric System in Materia Medica. Dr. W. B. Nesbitt. 163
XXXVI.-Study of Language. Charles Hill Tout. 165
XXXVII.-Dlabase Dykes of Rainy Lake.
A. C. Lawson, M.A. 173°
XXXVIII.-Iron and the Other Ores of Ontario. James T. B. Ives, F.G.S 185
XXXIX.-Origin of hamogrobin.
A. B. Macallum. 192
XL.-Puotogharhing the Living Fundis Ocela.
Dr. A. M. lasebrugh 192
XLI. - A Bracif or Stone Flocr Milit.
Sheriff McKellar. 193
Xhif.-Canablan Wompreckers.
J. B. Williams 193
XLIII.-Forturtous Events.
Dion C. Sullivan, LLL. B 193
XLIV. - Some Experiments in Consectos wrim the Doctrive of Probabilitifs.
Alfred Baker, M.A. 19.4
XLV.-Mancfacture of Paper.
John Notman. 197
XLVI.-Thirty-eigurh Annual Report.
IV. H. VanderSmissen, M.A. 206
SLVil.-Tartabic Acio in Abmixtures.
A. McGill, B.A 212
SLVIII.-Coheoptera Cohdecred in Niching Horse Pass.
Bruce Bailey. 213
XLiX. - Indin Languages and hiteratere.
Rev. John Mclean, M.A 21.5
L.-A New Menobranches.
Dr. Garnier: 218
Lh.-Umbra ('apta.
Rev. N. MacNish, B.D., LL.D. -19
Lif. -Mining Indestries of Casapa.
W. H. Merritt, F G.S 240
LIIf.-nnake Polsoss.
Dr. J. H. Gamier 25%

PROCEEDINGS

of

THE CANADIAN INSTITUTE,

 session 1886-S7.
EiGHTEENTH MEETING.

Fightennth Meeting, 19th March, 1887, the President in the chair.

Exchanges since last meeting, 33 -
The following were appointed auditors for the year:-D. B. Dick by the President, and T. B. Browning by the members.
The following were elected members:-Frank Rolph, Jos. Kilgour, R. T. Blatchford.
Rev. Father Laboureau, of Penetanguishenc, read a paper entitled "Reminiscences of the Huron Missions." He also presented to the Institute a photograph of a letter by Father Chaumonot, Missionary to the Hurons, written on birch bark, and dated "Ste Marie des Hurons, 1645 ," the original being in the possession of a gentleman of Dijon, France; a brass ring found near the supposed site of the Huron town of Ossossane; and a tomahawk taken from the ruins of the French Fort of Ste. Marie; for which a vote of thanks was passed.

Dr. P. H. Bryce read a paper on "Diphtheria and Scarlatina in their various aspects."

After some discussion,
On motion by Mr. Marling, seconded by Mr. Creelman, it was resolved, "That the Council of the Institute be requested to make sucl representations to the City Council on the subject under discussion as they may think fit."

NINETEENTH MEETING.

Nineteenth Meeting, 26th March, 1887, the President in the chair.

Exchanges since last meeting, 38 .
Charles Potter and M. O'Connor were elected members.
Prof. J. Hoyes Panton, M.A., read a paper on "Places of Geological Interest near Medicine Hat," illustrated by diagrams and Geological specimens.

Mr. President and Gentlemen:-To-night, I purpose taking you with me in imagination, to the banks of the majestic Saskatchewan, that wooer of many a stream in the North-west; there we shall examine some places of geological interest, and glean something from the fragmentary records, as we find them at that place and in some ravines of more than passing interest not far from that locality.

Before directing your attention to the places under consideration, allow me, in a few words, to outline the striking geological characters of that vast stretch of country extending from the Western Boundary of Ontario to the Rocky Mountains.

The geology of the great North-west, like its vast plains and immense rivers, is on a magnificent scale. To the eye of the geologist, a grand vision appears, as he contemplates the marvellous panorama, that rolls before him, portraying the geological features of the country lying between the Laurentian rocks to the east, and the lofty mountains' of the west; the former, representatives of the first rocks to triumph over the universal waters of primeval days, the latter belonging to a period comparatively near the summit of the geological series. Between these great natural boundaries we see stretching before us, the three rast prairic steppes of the Northwest, rising in succession above each other and distinguished by characteristic physical features.

FIRST PRAIRIE STEPIE.
This fertile region well known as the Red River Valley, is about fifty miles wide at the boundary line vhich separates Canada from the United States, but widens to the north. It has an elevation
of 800 feet above sea level and embraces an area of 6,900 square miles. Being the last of that country to emerge from water, it has received the drainage of the North-west for countless years and has thus become enriched by an alluvial deposit of almost inexhaustible fertility.

Some sixty feet beneath the surface solid rock is reached, but in some. places, Selkirk, Stony Mountain and Lake Winnipeg, the rock reaches the surface and is usually a magnesian limestone, rich in fossils belonging to the Silurian period.

SECOND PRAIRIE STEPPE.

This is well marked off from the preceding by the Pembina, Riding and Duck Mountains, along its castern side; it has an elevation of 1,600 feet above the sea, is about 260 miles wide at its southern limit and narrows slightly towards the north. Within this large area, arc 10,500 square miles of land more rolling in character than that of the former district, but also containing extensive stretches of prairie land.

The underlying deposits here differ from those of the Red River Valley, both in character and age. In this area you find Cretaceous clays, some bearing very interesting fossils, while in the preceding, Silurian limestones characterize the deposits.

THIRD PRAIME STEPPE.

The so called Dirt Hills indicate the eastern limit of a vast region, some 465 miles wide on the forty-ninth parallel, with an elevation of 3,000 feet above sea level and embracing some 134,000 square miles. In this immense area are locaied the vast coal fields of the Northwest; here too, we find the localities, that are to occupy our attention tonight. The underlying deposits of this region are also Cretaceons. the surface is more rolling than in the other steppes referred to, and in many places lakes and ponds occur with waters strongly alkaline, As this great scene swceps before us showing in succession these marked natura! steps, each full of interest, we can readily perceive what an attractive country the North-west is to a student of geology.

The rich ores of the Laurentian rocks to the east, the level lands of almost exhaustless fertility in the Red River Valley, the rolling districts of the second platean, with a drier and wamer soil and the
third region more vast than the preceding, bearing an inexhaustible store of fuel, all offer attractions to those, who are interested in the development of our great Dominion.

MEDICINE HAT.
This somewhat progressive town is situated 660 miles west of Winnipeg on the banks of the Saskatchewan River over which the Canadian Pacific Railway passes at this place. This is about halfway across the third prairie steppe. Proceeding westward by rail, after a short run of seven miles the station Stair is reached, about one and a half miles from the Coal Mines of that district. As you walk from the station across the prairie, in the direction of the mines, you see no indications of the great ravine, through which the river passes, and from which you are but a short distance. It is only when you come directly upon it, that you see the work nature cim perform through the agency of water. As you stand upon the bank of that majestic river, 290 feet above the level of the water and observe, not only the channel worn out by the river, but also the immense lateral excavations made by streams no longer seen, and spring freshets of modern times, you are astounded at the impressive examples of denudation before you.

There being but little solid rock in this region, ruming water very soon wears immense cuttings through the clays. The coal mine in this vicinity is not located directly on the banks of the river, but on the sides of one of these great ravines leading to it.

The following section of the deposits at this place was prepared by J. P. Lawson, Esq., Manager of the Company mining coal in that district. On the occasion of my two visits to this place I had the pleasure of meeting Mr. Lawson who was very ready to give any information sought.

Section of deposits near Medicine Hat, showing the seam of coal worked by the Saskatchewan Coal Mining Co.

A mine could scarcely be more favorably situated for access than this; the coal comes to the edge of the ravine and las a slight dip to the southeast.

It can either be rolled down to the river's edge, and transported by boat to Medicine Hat, or drawn up an incline to the prairie level and taken by train to points east and west; the latter plan has been followed. During the past year active work in the mines at Lethbridge has affected operations at this place. It is not likely after this that Medicine Hat coal will be used much beyond that locality ; for it is found that coal from localities nearer the mountains is superior to that obtained farther east.

Before the opening up of other mines the coal from Medicine Hat was used in considerable. quantities in Wimnipeg. It is easily kindled, bums with an intense heat and leaves no clinkers. Consumers considered that 13 tons were equivalent to 1 ton of anthracite.

The following analysis taken from the report of the Geological Survey gives the composition of this coal.

Slow coking Fast coking

Hygroscopic water	16.82	16.82
Volatile combustible matter	29.54	31.90
Fixed carbon	46.34	43.98
Ash	$\frac{7.30}{100.00}$	$\frac{7.30}{100.00}$
	$\boxed{50}$	53.64
Coke per cent	51.28	

Ultimate analysis
Oxygen and nitrogen 17.52
Carbon .. 54.35
Hydrogen 3.34
Sulphur . 67
Ash 7.30
Hygroscopic water $\frac{16.82}{100.00}$
Calorific power-determined by experiment.
Indicated power of fuel in * calorics 51.44
Indicated evaporative power of water (at $100^{\circ} \mathrm{C}$) per pound of fuel.
9.57 pounds

[^0]Specific gravity-1.3972. the weight of a solid cubic foot being 87.32 pounds

The composition of this coal indicates that it is a lignite, showing a considerable proportion of water and ash and a tendency to disintegrate when exposed to the air. A comparison of this coal with that derived from seams nearer, and in the Rocky Mountains, shows the latter to be freer from water, gives less ash and a much higher percentage of carbon, in other words the quality of the coal improves as you approach the mountains. In the iron-stone band near the river several interesting fossil plants were found in the fragments of stone. These are well defined and in many respects can be readily observed to be closely related to the genus Brosenia and the species has been given the name Brosenia antiqua by Sir William Dawson to whom some specimens were shown. These before you were obtained near the river's elge. On account of the graduai slope from the prarie level down the ravine to the river's edge, it is an easy matter to examine the difierent layers of deposits indicated in the section already referred to. The fossils from the bed almost two hundred feet below the level of the prairie can be readily identified as allied to the oyster family. They are not imbedded in solid rock, but form a layer of lonse shells lying between beds of clay; they are exceedingly fracile, usually small and require to be handled very carefully, or they crumble to pieces on examination.

From m-my gathered, the specimens before you are the only ones, which have remained at all complete.

The presence of oyster shells so far below the prairie level, in a region now removed 2,000 miles from the sea is very suggestive of the wonderful changes which that country has undergone in the ages long receded into the past. At several places along the banks of the river, the remains of petrified trees are very common; some of these belong to types entirely different from those which now grow on the banks of the Saskatchewan.

The clay band 110 feet above the river in some places presents a very attractive appearance, being almost as red as vermilion; a con dition which has likely resulted from the burning of coal in the seam below.

This clay seems to have little or no lime or magnesia in it, possesses a fine compact texture and may yet be of economic value as a supply for the manufacture of pottery.

Leaving the mine and passing down the river, the banks do not present the appearance of an escarpment, but immense piles of gravel ; these great heaps or hills are covered with grass and the deposits seem to have assumed this condition, long after those seen in the vicinity of the mine. These large mounds of gravel are no doubt comparatively recent in their origin, glacial or post-glacial, while those of the mine are decidedly Cretaceons, belonging to the Belly River series of that system.

IRVINE RAVINE.

Proceeding by rail eastward from Medicine Hat for a distance of 20 miles you reach Irvine station, on the Canadian Pacific Railway. There is very little at this point calculated to prove of interest to a geologist, but on looking to the south, about two miles, in the distance a comparatively high hill appears, with a pecular flat-like summit. This indicates the entrance to a ravine or "Coulee". of more than ordinary attraction. At almost any point it teems with interest to a student of palacontology; if he desires, and time permits, it can be followed up until the Cypress Hills are reached; a place where during the past few years members of the Geological Survey have made some startling discoveries regarding the extinct fauna of the North-west.

In the Spring of '83, Mr. Lawson, Manager of the Medicine Hat Coal Mine, while prospecting for coal in the region of Irvine, discovered the remains of what appeared to be an animal allied to reptiles

On his return to Winnipeg, he was interviewed by a reporter, and a short notice in the daily papers appeared, describing the pecular remains, fornd among those lonely hills. In July of the same year, Sir William Dawson, while visiting the North-west heard of this discovery, and set out to find the remains after having obtained directions as to their location from Mr. Lawson ; but his efforts were in vain. On his return to Wimnipeg, having learned that the writer was preparing to search the same locality in August, he kindly gave the sketch of the locality that he had used, and
advised, if possible, to see Mr. Lawson, for he (Sir William Dawson) was under the impression that there was a mistake in the directions given him.

On reaching the Coal Mine in August, I at once communicated to Mr. Lawson the results of Sir William Dawson and asked him to examine carefully the sketch and make any corrections he saw necessary.

Some changes were made and in a few days in company with a gentleman from Medicine Hat, I started with considerable enthusiasm to seek this fossil, around which so much of interest was gathering. It was a very blcak day, when we reached Irvine station and began to wend our way across the flats to the entrance of the ravine. We followed the directions and gradually ascended the hill on the trail, which leads to the Cypress Hills. As soon as the summit was reacherd, and we beheld the complicated nature of the place, an immense central ravine, and.innumerable lateral ones, we began to feel that we had undertaken an almost forlorn hope, in seting out to find a particular spot among such hills. The sketch was frequently consultel, but all was obscure in this wild spot. Among the rugged ravines, we climbed hour after hour, seeking in vain the reptile, that had lain so long among these peculiar hills. Though apparently unsuccessful at first, still much was seen that was exceedingly interesting and instructive. The effect of "weathering" upon the rocks of this place is astonishing. So striking is the result, that my companion frequently observed, "It looks as if some of these hills had been pounded to pieces." Among the debris, we observed numerous crystals of Selenite, which appeared to have been in the upper layers of the clay. Some of these were very perfect and of all sizes and in some parts very numerous indeed. From their occurrence in these argillaceous strata, this mineral seems to have resulted from the decomposition of some iron compound and its reaction on the carbonate of lime in the clays.

Sulphide of iron may have been present and oxidized into the sulphate of the protoxide of iron, which becoming decomposed by the bicarbonate of lime, would give rise to sulphate of lime and carbonate of iron, the former separating out in the form of the crystals already referred to, and the latter remaining as ironstone.

We 'also found many fragments of large shells resembling the
genus Corbula but they all seemed exceedingly fragile and no complete forms were observed. In several parts of the ravine, layers of ironstone intercalcated among the strata of grey sandstone, are of common occurrence and at some points exposures of coal appear, but the seams are comparatively thin, and experience has shown that they are of too irregular a nature to pay to work.

When the hope of finding reptilian remains was beginning to lessen, and my companion becoming disheartened ; (for he had come expressly to see the interesting relics of past life,, our energies were revived by finding four fragments of thoroughly petrified bones: these lay on the side of the hill, and appeared as if they had fallen from layers higher up the exposure. Our fallen hopes much revived by this discove' y, with renewed vigor we climbed the hill-side, where we expected to find more remains in their original rosition. Though this seemed on consulting our sketch, to be near the spot we sought, still, we were forced to abandon further search for the reptile, cross over to another part of the ravine and confine our attention to the lofty sides of the escarpment there.

Here a magnificent expcsure appeared, largely made up of beautiful sandstone comparatively soft interspersed with bands of stone more or less ferruginons and in some places seams of inferior coal.

The effect of the weather upon this soft sandstone was very marked much of it appeared to have crumbled away leaving shelves of the ironstone, along which we could walk.

In some places the crumbling sand had fallen down the sides and covered over cave-like spaces, into which we sometimes fell, as we walked along the sides of the ravine, the sandy covering, which appearel to bridge over these holes, proving too thin to sustain our weight.

Along the face of this escarpment, and usually near the layers of coal, we saw several bones protruding from the rock, but as often as we attempted to dig them out, all crumbled away except the porition we saw, and which seemed to have hardened by weathering. A visit to the same place the next year and many attempts made to secure fossils from this sandstone, have convinced me that we can obtain only fragmentary fossils at best from this rock; its porous nature allows the water to percolate readily through, and thus affect
any bones imbedded in the sandstone. This is a striking contrast to the condition of fossils found in some of the Cretaceous clays of the North-west, where they possess all the lustre and beauty, which characterize some shells of modern seas. On some of the elevated shelves, excellent fragments were found, which the weather, through long periods had prepared. Almost anywhere in this vicinity upon the ironstone bands, fragments of bone could be secured. There was no longer doubt in our minds, that the remains of extinct animals would be found among the deposits of this wild and dreary place, that the bones belonged to creatures of immense size and that they thronged the Cretaccous seas in which these deposits had been formed. We felt amply repaid for all our exertions in this wild, rough and lonely spot, although we found no skull bones or teeth. Some of the bones were very large, apparently portions of thigh boncs and vertebrae; all of which wert presented to the Historical and Scientific Society of Wimnipeg, with the exception of the specimens placed before you, for examination at the close of the evening's proceedings.

At one place, in particular, where the escarpment was very marked, large quantities of petrified wood lay about at the base and bore a marked resemblance to a pile of ordinary wood, so much so that at first sight, an ordinary observer wonld naturally consider it such; portions of the trees from which these had been derived could be seen in the sandstone. As this place the stratia were so well defined, that a sketch was taken, a vertical section of which may be represe..ted as follows; but it must be remembered, that this is not a uniform condition in the ravine, for the strata vary much in different parts : while a general arrangement may be observed, such as sandstone, ironstone, clay and seams of coal, yet a wonderfnl difference occurs, when you compare one series of deposits with those in other parts.

On the occasion of a second visit to this place the following year 'S4, better results followed my investigations. Many fragments of fossil bone were secured but all of little use in identifying the animals to which these remains belonged. However I had the good fortune to discorer some teeth. These with some fragments of peculiar bones were forwarded to Prof. Cope, of Philadelphia, who identified the teeth as belonging to a large deinosaur of the genus Lelaps allied to the Megalosaurus, and the peculiar bones as fragments of the carapace of a Cretaceous land turtle of the genus Trionyx.

Portions of other teeth were obtained ; but not comple' e enough for identification; in addition to these, a vertebra was found which in all probability belonged to a fish.

The specimens, some of which are on the table for your examination, would seem to indicate that these deposits among the "weathered " hills of this locality are of absording interest to a student of Science. The district is extensive and days could be spent in examining it. Further south beautiful ammonites are readily found, while in the Cypress Hills deposits of a most interesting character occur.

Regarding the geological horizon of the deposits in Irvine Ravine, the subject has received considerable attention by some members of the Geological Survey, who place them in the Cretaceous of which the Belly River series and Pierve Shales are represented in the escarpment near Irvine Station, the Pierre Shales being uppermost and represented by clay banks of a more or less dark color, below follows the Belly River series composed of sindy clays and layers of ironstone nodules among them. The beds are readily acted upon by the weather producing the striking appearance alrealy referred to. Seams of coal appar in these deposits at some places; that mined at Medicine Hat being at the base of the upper division of this series of deposits, while the seam at Irvine Ravine lies at the base of the Pierre Shales. Irvine Ravine thus becomes of more interest than Medicine Hat, the former affording an excellent section in which the Pierre Shales and Belly River series are well illustrated, the latter being largely made up of the Belly River deposits; both groups belong to the Cretaceous system in the geological system.

Having thas directed your attentiou to these attractive geological hunting grounds in the vicinity of Medicine Hat, I shall close this paper with the following diagram which will enable the reader to compare the Cretaceous deposits of the North-west with those of the same system in some parts of the United States and England.

TWENTIETH MEETING.

Twentieth Meeting, April 2nd, 1SS7, the President in the chair.

Exchanges since last meeting, \$2.
The Council announced the admission of Ernest iv'Craken as an Associate.

A communication was received from the Council recommending the formation of a House Committee, a Museum Committce, and an Archaeological Committee.

The following were elected members:-W. J. Cooper, Geo.

Graham, Robert F. Scott, P. K. Stern, Thomas Pinkney and Thomas McCraken.

Dr. W. B. Nesbitt read a paper on "The Volumetric Sy:stem in Materia Medica."

In bringing the following paper before you I am conscious of its many imperfections, and that it is not as yet a perfect system, yet I hope you will bear with me, and that in the discussion which I hope it will be its merit to engender, I may receive such hints and criticisms as will enable me to place my system on a still more practicable basis.

Tho first thing that the student of Materia Medica is struck with, is the almost illimitable number of drugs and preparations, whose number is only comparable with the likewise illimitable and varied doses. It is this heterogenous system of dosage that I would try to place on a more satisfactory basis. We will just glance at a few of the preparations and their doses. We will commence with the inorganic salts. This is what we find :-
Potassic Carbonate $10-30$ grs. Potassic Bromide $5-30$ grs.
" Biararbonate 10-40 " 6 Citras 20-60 "
Liquor Potasse 15-60" " Acetas 10-60 "
Potassic Permanganate 1-2 " " Chloras 10-30 "

I have chosen the salts of Potash simply because they come first in the book most used by students, i. e. Mitchell Brown's Materia Medica. All these preparations when prescribed by the Physician, are first triturated in the mortar for such as are in the form of xtals, and then dissolved in water, water being almost invariably ..ee medium for holding the different drugs in solution, sometimes as in the case of Quinine, a little sulphuric acid is added to assist the dissolving.

Now if these drugs were kept in solution by physicians and pharmacies, and the strength of each so graduated that the dose of all would be the same, you have the principle of the system. For instance, we will take two or three of the abore mentioned salts,

Potassic Carbonas	$10-30 \mathrm{grss}$	
$"$	Permang	$1-2$
$"$	$"$	
$"$	Iodide	$2-10$

We will keep, these on our shelves already dissolve:l, and we will have the dose for all 1 drm. Th order to do this we will make up say one quart, 40 ozs, of cach solution. In 40 ozs. there are 320 drms. therefore to have the maximum dose of

Putassic Carbonas in one drm. we must have 320×30 or 9600 grs.

Now we see by the above, that in 320 drms. of the Pot. Carb. solution we have 9600 gris, or in 1 drm. of solution we have $\frac{\sin m}{2 \cdot 2}=30 \mathrm{grss}$: in the Put. Permang., in 3 ± 0 ozs. we have 640 gres. i.e. in 1 drm , we have $\frac{\sin }{3 \times 1}$ or 2 grs. which is the requisite dose.

Lating the inorganic we next come to the organic portion of Materia Mrdica, this like organic chemistry, has a little more system in it, for we find here the mijority of the tinctures have a dose of from 1-2 drms. Still we have such discrepancies as .
Tinct. opii $5-40 \mathrm{~m}$. Tincture opia ammoniata $\underset{2}{1}-1 \mathrm{drm} . \mathrm{m}$.
" Camp. Co. 15 - 90 m . Liquor morphine Hydro-
chloratis 10 - 60 m .
Fluid Ext Pilocarpine $10-60 \mathrm{~m}$. Finct. Pilocarpine $\overline{5}-20 \mathrm{~m}$. Tinct Tolutana $15-30 \mathrm{~m}$. Tinct. Lobelia $10-30 \mathrm{~m}$.

Also there are the vatious infusions, decoctions, wines, elixirs and every mamer of fluid preparation, with doses raried for each class and the doses for any class varying among themselves.

What possessel the originators of our Pharmacopia to have the doses s) varied, when they might just as well and as easily have had them the same, is to me incomprehensible. The same system and principle will serve here as in the previous instance, by adjusting the amount of the principles taken it, would be vey easy to have the close for all $\frac{1}{2}-1 \mathrm{drm}$.

In this plan there would also be much less liability to poisoning. The Modus op raudi of poison cases is as follows : A druggist receives a prescription which calls for Quina Sulph. xix grs.; now Sulphate of Quinine, as well as the salts of many other alkaloids, have a great resemblatice to cach other in external apparance, so much so,
that the Druggist just looking at the contents, can easily mistake Morphine for Quinine. He gives xax grs. of Morphine by mistake for Quinine, the man dies; the stomach is sent to Dr. Ellis, and the Druggist appears at the next assizes to answer to the charge of manslanghter. Now, had these been in volumetric solution, with dose for each 1 dr ., the Physician would have written Quinine Sulph. 6 drs. and then, as the dose for morphine would been exactly the same, a poisonous quantity would not have been administered.

The above are the principal features of the system, bn, what would I think still further improve it, would be the introduction of the metric system of measures. The dose for all being the same, there would not be the danger of misplacing decimal points as in the metric system as now applied. Taking for the standard dose 1 to 2 cub.c centimetres and having our bottles in sizes of 100 and 200 C . C.'s, theie would be much greater facility of reckoning than at present.

By having a uniform dosage system, not only would much unnecessary work for the student be abolished and enable him to devote more of his time to the much more essential study of therapentics, but for thempentic purposes we would have a most complete scientific 5 , stem, as the standard dose $\frac{1}{4}-1 \mathrm{~d}$. or $1-2$ C.C.'s as the case may be the therapeutic unit, as 1 dr . of tinct. aconite would produce maximum therapeutic effect of the drug, and so likewise the 1 dr . of tinct. opii. the 1 dr , of tinct digitalis, etc., ad infinite n.

Mr. Charles Hill Tout, read a paper on "The Study of Language."

In the Nay Volume of the Yopular Science Monthly of last year, is an article from the pen of Mons. Havelocque in which he puts forth the astounding statement that language is an organism. Now, as this tonches upon an extremely important point in linguistics, and is propounded, presumably, in support of the views held by the school Mons. Havelocque represents, it will be well worth while to consider the grounds on which he makes this assertion.

He begins his paper by teiling us that the faculty of language stands in close relation with a cert in one of the firuntal convolutions of the bain which the inferior monkeys do not possess, and which is found in a rudimencary state in the anthropoids, but the full acquisition and most complete development of which has made man
what he is-the master of articulate speech-and from this physiological fact alone, be claims a place for that purely conventional medium of thought-language, among the Natural Sciences.

But seemingly conscious of the weakness of this argument, he brings in another by way of strengthening it, viz., in the fact, to use his own words, that no man or group of men is competentarbitrarily to change the structure of its language. The morphological evolution of language defies all convention, all encroachment; it goes on by virtue of its own force, more or less slowly or speedily, but withont the fancy or the pleasure of men having any power to divers it from its course. On these two facts, the former at best true only of the faculty or power of speech, and the latter less than half true, he sweepingly puts aside all objections to his theory and declares that the study of language mist be classed among the Natural Scierces. Hazing got so far he now finds no difficulty in asserting langrage to be an organism. What (he asks in effect) are the characteristics of an organism Formation, growth, development, decay, these are just the characteristics of language; ergo language is an organism. Frivolous as this kind of reasoning may appear it is just what Mons. Havelocque used. Languages, he says arise, are developed, pass on to decadence and perish like other organised beings, and there can be no doubt that language behaves in reality like an organism, and that it is in a constant state of evolution, that is to say, because language has a birth, grozuth, development, decadence and because these are the identical terms used in speaking of the evolution of an organism, terms borrowed indeed from the nomenclature of Physiology, language forsooth must be an organism.

This I contend is the only fair deduction that one can make from his statement. Following on this, he gres on to show the successive evolutions of this new organism, rumning somewhat superficially through the principal phases of linguistic development. Basing his remarks on the theory proposed oy Wm. Schlegel in 1818, viz., that all languages first pass through a monosyllabic period, which the result of later research and stucly has confirmed and strengthened and which although we are not acquainted with any language in its embryonic or even strictly speaking monosyllabic stage, notwithstanding is undoubtedly the first phase of linguistic life, he tells us that existing monosylladic languages have greatly improved upon
their primitive processes, all of which is incontestably true. The only remark we would offer here is that the term monosyllabic when applied as above to existing languages should be qualified in some way; as we have no example on record of a purely monosyllabic language and that to bring forward the Chinese, as he does, as an example of this class is to talk about a matter we are ignorant of and to put ourselves in conflict with the authority of those whose scholarship in that tongue is beyond dispute. I refer here, in particular, to such men as Prof. Douglas, of British Museum, and Professor of Chinese, at King's College, London, the author of an exceedingly interesting History of the Chinese people, who in this comection states that the Chinese language like most others has suffered loss through phonetic decay. Even at the present day it is as I have shown, he says, less purely a monosyllabic language than has generally been supposed, but in bygone ages there are evidences that it was poly-syllubic. We find for instance many words with aspirates in them which point to the loss of a syllable, for example, such a word as K'an leads us to the conclusion that in all probability it was originally Kahan. But there are other combinations of characters which are unmistakably representations of polysyllabic words, and a close examination of any of the dialects shows that these words bear no inconsiderable proportion to the entire number of words. In Pekingese these polysyllabic words are very numerous, partly owing no doubt to the introduction of Manchu and Mongolian words into the vocabulary. But there are also quite enough native polysyllabic words to redeem the spoken language at least from the charge of monosyllabism. A study of a few pages also of Sir Thos. Wade's Tau Erh Chi is instructive reading on this head. But to return. From this point Mons. Havelocque goes on to show how the agglutinative stage is evolved out of the monosyllabic, but confesses to a difficulty in the evolution of the agglutinative into the flexional or synthetic, and as this has long been felt to b, a difficulty we would beg to call attention here to the numerous tongues of the A merican group or family of languages as offering and affording the very evidence we need to show how the monosyllabic or agglutinative or incorporative may pass into the flexional or synthetic.

Humboldt who first called attention to this family believed that we could clearly discover in them the origin of the tense and
mood signs, that is to say, the process by which the higher phase is evolved or developed out of the lower; and he cites several good examples in successive stages of transition, for instance, he says that the actual process of transition from the incorporated, the distinguishing feature of the American family, to the inflexional is presented to us in the Mbaya tongue where we find such verbal forms as " dulur i " which means, thon wilt throw ; " nilabuite" which means, he has spun, where the d is the sign of the future and $\% o^{f}$ the perfect. At first sight they look like true infl xions, but on closer examination we find that d is in fact simply a relic of the word "quide" meaning, hereafter or later, and n stands in the same relation to the word "quine" which means, "and clso" and both have their independent signification at the present time. But it is quite conceivably and highly probable that at no distant date, the independent signitication of these abbreviated words will gradually slip, as has actually been the case in the Mexican aud Tamanaca tongues, from the mind of the speaker and be lost and the letters will then become purely formal elements denoting the tense of the verb and nothing more. Indeed some of the American tongues may be said to have already reached the inflexional stage, their primary tenses ending in different letters, for example in the Mexican language there are the terminals " $y a$ " or " a " in the imperfect and the augment " o " in the preterite and others in the future. In the Tamanaca also the present ends in α, the preterite in e, the future in c, and in speaking of these Humboldt says " the:e is nothing in either of these tongues to show that these tense sigati have independent meanings as they once undoubtly had; and there is no reason why they should not be classed with those of the Greek and Sanskrit as true inflexional elements." It is clear then from this that a study of the American tongues is absolutely necessary in order to a right understanding of the process by which the inflexionai is developed from a preceding stage and if there were any doubt ahout this the labors of Dr. Brinton in this field would soon remove it. But as it was not the intention of my paper to demonstrate the processes by which the several phases cf language pass into one another although the subject is a most enticing and attractive one, we will return to the point from which this digression on the sythetic process has led us. What most astonishes us then in reading through Mons. Havelocque's paper is
the extraordinary confusion of terms he is guilty of in trying to put the study of language upon the foremost pedestal in the Temple of the Natural Sciences. He distinctly in the earlier part of his paper draws attention to the common habit which confuses the art of speech with that of the faculty and yet in the same breath uses the two terms interchangeably. We are altogether at a loss to see, muless this is so, why one who speaks at one moment of speech as an art-a thing to be acquired-can at the next cull it an organism, and this is even more striking when we remember that Mons. Havelocque claims to be treating language exclusively from the scientific point of view. That the faculty of speech is in close relation with a certain convolution of the brain no one will dispute I suppose; nay we will go farther and say with him that this same faculty is hereditarily transmitted and goes down with the structure, nature and qualities of the brain, but by what process of reasoning I am to arrive at the conclusion that the art of speech, a man made thing, is an organism I.im at a loss to conceive. One might as well say that the conventional signs of our methods of recording knowledge, or that the art of painting or sculpture are organisms, all are equally the products of human effort, preseverance and labor. Language is to put it driefly and clearly, simply and purely an instrument for the conveyance of thought, the use of which depends entirely on the skill of him who handles it, in exactly the same manner as the jencil, brush and chisel depend upon the still of their severai users. This seems to me to be so demonstrably obvious and the error and confusion of terms Mons. Havelocque has fallen in to be so plain that it is not worth while to spend more time over it, but go on at once and examine his second argument which because it contains a partial trath may seem for the moment slightly more convincing. Here he says that his reason for including the study of language among the Natural Sciences lies in the fact that no man or group of men is competent arbitrarily to change its structure, etc. Here we perceive in a brief glance that the fallacy of his socond argument lies in the peculiar and unscientific notion, which he in common with his school holds, concerning the origin of language. Though he does not say so in so m my words it is abundantly clear from his argument that he pre-supposes man to have started on his career fully equipped with a ready-made and to a certain extent perfect medium for the
communication of his wants and thoughts, whereas a study of the phenomena of language on sound inductive principles proves beyond doubt, to use Prof. Whitney's language, that there was a time when man was as destitute of language-i.e., articulate speech as a medium for the communication of his wants and thoughts-as the dog, that is to say, that man, as man, had to acquire by patient and labored effort, a medium of expression in precisely the same way as every child has since, with this important difference, that primitive man had to do it wholly unaided while the chirdreceives the assistance of those around it. The closer one examines the phenomena of speech the more irresistibly is one drawn to this conclusion, a conclusion I may add now held by the majority of the most eminent of modern philologists, and hence in accordance with this supposition Mons. Havelocque most unhesitatingly asserts that language is altogether beyond the control of man or groups of men, whereas experience even within the historical period goes to show that this statement is only partially true, and if we can show the reason why the growth and development of language is, in a measure, outside of the control of man on a meve scientitic basis than Mons. Havelocque has attempted to do, we shall have taken away the only argument he uses that carries any force with it and this with the light modern research has thrown upon the subject we shall have no difficulty in doing.

In examining the phenomena of language then, one of the most obvious features always confroating us is the different families or groups as we term them into which language is divided, a method of division rapidly growing less fixed and clear, and assuredly pointing to a time when the science shall be a little older and our knowledge of the subject a little more extensive, when we shall be able to trace with comparative clearness all the various existing families or groups to one primitive source. The whole tendency of modern research leading in that direction; and this being so it will then become a comparatively easy task to put one's finger upon the law or force which differentiates the offspring one from another and all from the common prent, and if we turn to the older science of physiology we shall there discover a law or tendency at work which if we borrow and set in motion within the province of language will clearly demonstrate the processes that developed all existing groups of language from one
primitive and common source. In citing an example of this law or tendency, to be seen in its operations in physiology it will suffice for us to take the human face. Now it is an incontestable fact that the facial features are greatly influenced by a force at work upon them from the moment of their embryonic existence down to their full development and decay, known as the Law of Conformity to Type. To take the nose for an example we know that in certain families and even peoples this is invariably the most marked and striking feature of the face, and which has been known to persistently run in that family or people for many generations, and when we ask the reason of this phenomenon we are told and we have proved the force of this tendency in many of our domestic animals, of which the pug-dog is a noted instance, that some remote ancestor of this particular family or people possessed a remarkably developed nasal organ, which by the unique force and strength of his characte", he conferred in perpetuity so to speak on his favored descendants.

And as it is with the nasal feature so is it with all the others. Now in precisely the same way in primitive times when men were spiitting up into families and clans and struggling hard with the difficulties that naturally then in the early stages of language, beset the expression of their wants and thoughts, certain of them stood out like Nimrods above their fellows in mental capacity and power, and so left the impress of their individuality upon their language, giving it just that tendency, setting it just on those lines within that certain groove that would start it on the plane of its development and chanacterise it through all the phases of its existence.
[n the operation of this law of Conformity of Type we maintain that we can discover why we have found it is necessary in the first place to group languages into families; and secondly, and here is our point of divergence from the notion held by Mons Havelocque and his school, that this and this alone, is the reason why language is in a limited sense beyond the direct control or power of man, not becallse it is an organism given to him in the same way as his nose or his eyes, but rather acquired in the way in which he gets his teeth, if the fi gure is allowable, by much vexation of spirit, multiplying and developing as do his teeth in corresponding ratio with his needs. Every growth, change and development in speech is due and indeed must be in the first place to an initiatory action of some one individual
sanctioned and accepted by his community. Man has absolute power and control over the changes and developments of language, so long as he lets it run on its own peculiar lines. He is powerless only when he would seek to turn the course of its growth and development into some channel other than that it started from and which is invariably laid down and marked out, more often unconsciously than not, while its speakers are uncultivated and in a primitive condition of being. And when it is asked why one language is is superior to another, why one is much better adapted to the uses to which we desire to put if we ask a counter question. Why is the nose of the Jew for instance in general a more striking feature in him than in most other people? And the answer to this question carries by inference the answer to the other, viz., becanse of some remote ancestor of this people whose individuality and personality of character was so remarkably strong as to leave one of its chief features on ali his descendants. Language may be said to resemble organisms in other ways than mere similarity of formation, growth, development, etc. As it is clominated by the law of its type so it is also in much the same way by the law of the Survival of the Fittest: That language which had the good fortune to be sent roling down the vistas of future ages by a superior master-hand, will by its intrinsic merit and force be best ahle to adapt itself to all the varying changes of its enviromment, and will undoubtedly live and flourish while others less favored either remain stunted and deformed, or else drop out of existence altogether.

But while language is dominated by laws identical with some of those rumning through the Organic Kingdom, and we are olliged for lack of better to fall back upon the nomenclature of physiology to mark its various changes and developments, it is only a warpel, prejudiced and unscientific mind that can possibly mistake a mere superficial resemblance for a deep-rooted living reality.

Mr. Chamberlatir referred to the different theories that had been advanced to account for the origin of language. Noire (whose theory has been partially endorsed by Max Mailler) ascribed the origin of roots to the sounds simultaneonsly used in social acts, as when people work together in digging, threshing, spinning, rowing, Sc. These sounds become signs of repeated acts, continuing in the memory as signs of such acts, and so became roots embodying a concept, and being uttered by persons engaged in a common work are understood by all. He (Mr. C.) was of the opinion that lauguage was
originally polysyllabic, and was developed according to man's wants. The Chinese was referred to in opposition to this opinion, but this was not a fair example to cite, besides there were indications in Chinese of a poiysyllabic structure.

Mr. Tour thought the mistake was in supposing any one theory contained the whole truth. There was no one individual way in which language was formed. He imagined that language was first formed partly dissyllabic and partly syllabic.

TWENTY-FIRST MEETING.

Twenty-First Meeting, April 9th, i887, the President in the chair.

Dr. Ellis was appointed representative of the Institute at the next meeting in Ottawa of the Royal Socicty of Canada.

A donation was announced of S_{3} species of plants, from Mr. G. Montaguc White.

Exchanges since last meeting, 44.
Mr . Goodwin Gibson was clected, a member.
Mr. H. R. Moore, on behalf of Mr. A. C. Lawson, M.A., Geologist to the Geological Survey of Canada, read a paper on

THE DIABASE DYKES OF RAINY LAKE.

The most recent of the crystalline rocks of the Rainy Lake region' are comprised in a series of strong dykes of comparatively fiesh diabase which are observed to cut, at different localities, the various members of the Archean complex of formations. These dykes are not infrequent thronghout the combtry lying between the eastern confines of the first prairie steppe, which forms the basin of the Red River of the north, and the western horder of the area of Animikie and later formations of the Lake Superior basin. Their occurrence and some of their characters are briefly referred to in my reprort on the Lake of the Woods region.* As there observed, the occurrence of these dykes cutting the older folded rocks, which in their eastward geographical continuation, pass under the flat-lying Animikie and Keweenawam formations, is suggestive of their

[^1]possible connection with the bedded traps that form so large a part of the two latter geological series. With the question of the possible identity of character and age of these dykes with the traps of the Animikie or Keweenawan, or of both, is associated the equally interesting one of the extent of the earth's surface, over which, in eanly geological times, were in simultaneous operation, those particular volcanic forces which appear to have had their focus in the Lake Superior basin.

The more notable field characters of these dykes are : their common strike throughout the region from N.W. and S.E. to N.N.W and S.S.E. ; the sharp, well defined nature of the gash or fissure which they fill, no matter what may be the character of the country rook; the absence of inclusions of the country rock, or of apophyses of the dyke rumning into it, except in very occasional instances; their generally uniform width under different conditions of occurrence in different localities, the limits being as a rule 60 and 150 feet; their continuity for one or several miles where exposures permit them to be traced; their passage from a very compact, aphanitic, black rock at the immediate contact with the dyke walls, by insensible gradations to a very coarse.grained, mottled, dark gray rock in the middle of the dyke; an occasionally observed peculiar pitting of the weathered surface, arranged in straight, more or less uniformly spaced l.nes transverse to the strike of the dyke; their prominent, steeply rounded, or domed, glaciated surfaces in contrast to the more gentiy inclined roches moulonnées of the schists and gneisses; their assumption of brownish tints on surfaces aerially weathered; (surfaces beneath high water mark of the lakes are generally quite fresh and black).

These dytes have as yet only received a preliminary study, and it will require a much more extended examination of the country in which they occur and a much more elaborate investigation of their petrographical characters before a comprehensive statement of their geological relations can be formulated. A few notes regarding the microscopic features of these dykes, taken together with what has been said of their field occurrence, may however, be of interest, and will serve as a report of progress of what is being done in this line of investigation in the field west of Lake Superior.*

[^2]One of the most characteristic of these dykes is one that travenses the coarse granitoid gneiss of the west arm of Jackfish Lake, which lies to the north-west of Rainy Lake. Its width is 133 feet and its cont:act with the country rock is well exposed as a sharp line. From a macroscopic examination the gneiss does not appear to have been altered perceptibly towards the contact. Spacimens for microscop.c examination were taken from different parts of the dyke, viz., at 60 feet, 20 feet, and 6 feet from the contact, and at the contact. At 60 feet from the contact, the rock is a coarse-grained mottled gray rock in which dirty white feldspar and black pyroxene are the prominent constituents. Under the microscope it presents the chamacters of a coarse-grained, comparatively fresh diabase. Augite of a pale maure tinted gray colour is abundant and often occurs in masses that fill the field of the microscope when low powers are used. Sometimes these plates of augite are individual crystals. For the most part however, they are not single individuals. When examined between crossed nicols the plate of augite is seen at once to be resolved into an intimately interlocking mosaic of irregularly shaped grains of diverse optical orientation. In ordinary light the boundaries between the different members of these "polysomatic"* masses of augite are traceable only with difficulty and uncertainty. There is no interstitial matter whatever, the different grains being as intimate y associated as in the case of interpenetration twins of feldspar. That they are not twins is shown by the fact that there are often as many as half-a-dozen grains all of different orientation thus combined in the same mass. The cleavage, by its lack of continuity over the field of course indicates a difference of orientation in different parts of it, but the clearage traces ar: not strongly marked, and attention is only directed to the discordance of the cleavage after the polysomatic character of the mass has been rendered prominent by the amalyser of the m:croscope. This polysomatic structure of sugite does not appear to be common. Rosenbusch does not mention it in his last comprehensive summary of the present state of petrographical knowledge. \dagger The nearest approich to this structure that is at all well known is the polysomatic character of some chondri of olivine in certain

[^3]meteorites such as are figured by Tschermak \ddagger and Wadsworth. $\$$ Olivine in a simila: condition in terrestrial rocks has recently been described and figured by Renard in specimens from Kerguelen Island in the Indian Occan.|| The polysomatic structure in augite is not so well known. Renard notes that the augites of the feldspathic basalt of Heard Island, Indian Ocean, are grouped together at certain points, ${ }^{* *}$ and again in the same rosks in Marion Island that the angite is characterize 1 by a tendency to form groups of individuals having their vertical axes parallel. $\dagger \dagger$ Teall mentions "Granular Aggregates" of angite in the Hett and the High Green dykes in the north of England. $\ddagger+$ Some of these appear from the figures given to be aggregates of grains of augite not in close juxtaposition with an interstitial base, although that figured in Plate xir, Fig. 5, would seem to be a polysomatic angite, and if so is the only strictly parallel instance that I can find of this structur a so common in this dyke and in others of the region.

The augite is gencrally altered to hornblende at its periphery and occasionally the latter mineral entirely replaces the former. The process of alteration does not app! : to proceed along the almost or guite imperceptible lines of demarkation between the different individuals of the polysomatic; augite, but extends from the periphery of the mass as a whole in towards its centre.

The plagioclase appears in two general forms, a rather stout o: tabular form which is the larger and usually the more cloudy with decomposition products, and a small long lath shaped ieldspar which appears quite fresh and in which the polysynthetic lamellae are much more distinct than in the former.

Magnetite occurs in irregularly bounded masses or is disseminated, often quite thickly, through the augite as inclusions of dusty or finely gramular aspect. Pyrite also occurs and is discernable macroscopically. Apatite is seen in occasionally colorless hexagonal sections and in slender prisms with rounded terminations. Waterclear quartz, with inclusions of apatite microlites and liquid inclusions

[^4]with dancing bubbles, forms a considerable proportion of the mineral constituents of the rock and. is characterised by having a common orientation for isolated sections over a wide area of the microscopic field. as in the micropegmatite structure. A few colorless garnets are also present. 'The rock, such being its characters, may be classed as a uralitic quartz diabase.

At 20 feet from the contact the rock is very similar to that at 60 feet but is much less coarse in texture. It differs from the latter in mineralogical composition in the fact that there is present an abundance of white or colorless garnets, all perfectly isotropic. They have a well defined border indicative of a high index of refraction and a perceptibly rough surface. Their shape is for the most part rounded, or, when rectilinear outlines are observable, they are hexagonal sections of the rhombic dodecahedron. The larger grains have a curved parting which may be demarkation lines between different i dividuals. Tho treatment of the slide with hydrochloric acid cold or hot, leaves them unafiected. The occurrence of garnets in basic dykes is by no means unique. They are however regarded as a product of contact metamorphism within the dyke. Speaking of the "Iron District of Lake Superior," Wadsworth says, "Most of the "diorites" (uralitic diabases) here (at Republic Mt.) contain garnets, this mineral being found principally along the edge of the intrusion while the centre was nearly if not entirely free from it. The schist in like manner near the "c diorite" frequently contains garnets both rocks appearing to have mutually reacted upon each other."* The garnets in the Jack Fish Lake dyke do not appear to be a product of contact metamorphism since they are found in the middle of the dyke and very much more abundantly at 20 feet from the contact than at 6 feet from it, or immediately at the contact, where their presence has not been detected. Beyond the abundance of gamets, the dyke at 20 feet has the same characters as at 60 fect. The polysomatic structure of the augite is promounced.

At 6 feet from the contact the rock is fine grained and the ophitic structure of typical diabase is much more characteristically developed than in the coarser grained parts of the dyke. In this part of the

[^5]dyke there is first observed a differentiation of the rock into constituents of different periods of crystalization, the order being first plagioclase in more or less idiomorphic* lath-shaped individuals lying in all positions, then angite generally allotriomorphic,* sometimes hypidiomorphic* and finally a base or matrix of both these minerals in a very much more finely crystalline state together with magnetite. The structure of the base is rather obscure, the chloritic substance usually present in diabase rocks being more prominent here than in the coarser grained part of the dyke when it is almost or perhaps entirely wanting. Quartz is present but in smaller quantities than in the coarser grained portions of the dyke. The augite occurs both in simple individuals and in polysomatic masses. The uralitization of the augite, which is generally observable, is much more pronounced in the irregularly bounded polysomatic masses than in the simple allotriomorphic development of the same mineral. A few garnets are present as inclusions in the feldspar but were not identified with certainty. In this respect this portion of the dyke differs markedly from the more central portions examined. The most interesting constituent of this portion of the dyke remains, however, to be mentioned. It is the non-pleochroic colorless rhombic pyroxene, enstatite; it occurs in idiomorphic development showing the characteristic obtuse domes in some of the sections. It shows regular cleavage parallel to $\approx P(110)$, upon which the angle of extinction is zero, and character:stic cross parting along which partial alteration of the mineral to bastite or serpentine is apparent. This enstatite is not abundant and plays the role of an accessory mineral. Its occurrence in a rook of well marked diabase structure is interesting. Rosenbusch remarks that it is present in only a few diabases which have a gabbro-like structure, t and Teall has recorded the occurrence of the allied rhombic pyroxene bronzite in the Whin-Sill of the north of England as an accessory. \uparrow Enstatite also occurs in a variety of the allied rock diabase porphyrite from Schaumkerge, which has been described by Laspeyres and Streng under the name Palatinite. This enstatite was not ohserved in the coarser parts of the dyke but occurs, as will be noted, in the still finer grained diabase at the contact.

[^6]At the immediate contact the dyke assumes microscopically the characters of a very compact grayish black aphanitic rock in which can be occasionally detected minute glistening facets of porphyritic crystals. With low powers of the microscope the matrix is not resolvable but appears as an uniformly yellowish to greenish gray ground thickly dotted with grains of magnetite. Under the higher powers this is seen to be made up, in addition to magnetite, of a fine felt-work of minute lath-shaped crystals of plagioclase imbedded in hazy, somewhat yellowish green flocculent chlorite substance derived presumably from the alteration of the augite, since that mineral cannot with certainty be identified in the base. The porphyritic character of this part of the dyke is well marked, though the imbedded crystals are small. These are augite in small irregular polysomatic masses, with a hazy margin or fringe of greenish decomposition product, and long lath-shaped plagioclase and occasionally stouter broken fragments. Besides these there are porphyritic crystals of enstalite much more altered and less plentiful than at 6 teet from the contact. Neither quartz nor garnets are observable in the contact rock.

Considering then the dyke with reference to its v riation in structure and mineral composition the points of interest to be noted are : The passage of the coarse grained central portions of the dyke to the compact aphanitic rock at the contact ; the absence of porphyritic structure in the middle of the dyke as contrasted with the well marked development of the same as the rock becomes finer grained towards the dyke walls; the absence of the characteristic chloritic substance of diabase in the centre of the dyke and its abundance towards the contact; the presence of quartz in greater quantity in the coarse. grained middle portions than at the sides; the presence of garnets in the coarsest parts of the dyke, their abundance in the medium grained parts and their rarity or total absence in the neighborhood of the contact; the presence of the rhombic pyroxene enstatite in typical idiomorphic porphyritic crystals in the fine grained parts near the contact and its absence in the coarser central parts; the diminution in size of the porphyritic crystals near the contact in coextension with the increasing fineness of the ground mass; and finally the "polysomatic" structure common to the augite throughout the dyke.

Three quarters of a mile from the exposure where the specimens whose characters have just been given were collected, there occurs, on the opposite side of the bay in the line of che strike of the dyke, another exposure of the same dyke. On the islands of the bay which lie intermediate between these two localities the vutcrop of the dyke is observable, so that there is no doubt of their both being exposures of the same dyke. The rock here was not studicd in so great detail as at the last eaposure. The specimens taken were of the same grade of courseness as those taken at 20 feet from the contact on the north side of the bay. The feldspars are more decomposed and the twinning lamellae often obscure, and the sma.l quintity of quartz which is associated with them appears to be of secondary origin; whereas the origin of the quartz noted in the same dyke on the north side of the bay seemed much more problematic. In the latter case the common micropegmatitic character of the quartz and the occurrence in it of needles of apatite, which in no way differ from those in the fellspar, together with the not infrequent occurrence of one individual of apatite partially included in quartz and partially in an adjacent feldspar, would argue for the primary character of the quartz. The augite in the dyie on the south side of the bay resembles that already described occurring both in simple individuals and in polysomatic masses. It is largely altered to uralite. Titanic iron with its alteration product leucoxene shows characteristic barred structare of the cleavage traces parallel to the planes of the rhombohedron. The lencoxene is frequently accompanied by a margin more or less extensive, of secondary brown mica. Apatite is present in comparative abundance. Chlorite occurs in vaguely defined masses and the garnets which, as before, are present, are associated with it.

On the south-east shore of Pipestone Lake about a mile west of Stone-dam Portage occurs another of these dykes cutting transversely schists which have a strike of N.E. to E.N.E. The specimen taken from the middle of the dyke has the characters of an malitic quartz diarase. The feldspar as a rule is remarkably fresh and occurs in the usual lath-shaped twinned crystals of plagioclase. The crystals are commonly observed to be cracked transversely and the cracks filled with a brownish yellow material which shows aggregate
polarization. The augite occurs more commonly in polysomatic

Fig. 1.
Section of diabase, from Pipestone Iake dyke, showing large polysomatic grain of angite in three granules of diverse orientation $a b c$; d uralitic hornblende ; c magnetite. X $2 S$. masses than in simple individuals. The magnetite is often surrounded by rims of secondary brown mica. The quartz is apparently original and has numerous inclusions of an opaque granular character together with fluid inclusions with dancing bubbles, gas pores with black borders and glass inclusions oval and circular.

On the south shore of the North-west Bay of Rainy Lake, a similar dyke cuts both the biotite gneiss of the region and the red granite which is intrusive through it. It is an uralitic quartz diabase. The feldspar is in rather stout crystals in the coarser grained part of the dyke, though usually lath-shaped. It is much decomposed and is partially replaced by quartz and chlorite. The polysomatic character of the augite is not prominent but this may be due to the fact that it is about half altered to hornblende and to chlorite. The angite individuals are often twinned and the cleavage traces are unusually well defined. The magnetite shows a tendency to peripheral arrangement around the altered augite indicative of its secondary origin. Quartz is present which is probably original besides that which is clearly secondary. Apatite in iong slender needles and leucoxene in irregular masses, ate the accessory constituents.

In the same dyke, nearer the contact where the texture is fine grained, the rock is much more uralitized, traces of augite being observable only in cores of the compact green hornblende, which has almost entirely replaced it. Apatite appears more abundant, as do also the secondary quartz and chlorite. Garnet of a pale yellowish color occurs sparingly.

Fig. 2.
Plagioclase fr'm diablase dyke, Northwest Bay, Rainy Lake, sh'wing effect of pressure of one crystal against another.

At the contact the dyke rock is a compact aphanitic base in which can be detected minute porphyritic crystals. Under the microscope the base is seen to be made up of minute lath-shaped crystals of fresh plagioclase augite grains, magnetite and chloritic substance. The porphyritic crystals are lathshaped feldspars occasionallv broken and showing the lamellae in some instance bent, as the result of pressure of one individual against an angular part of another, and augite generally surrounded with an irregular border of secondary homblende, which, in turn, has an outer girdle or wreath of gramules of magnetite that have separated out in the process of urali-

Fig 3. Augite from diabase dyke, Northwest Bay, Rainy Lake, showing marginal alteration to green compact hornbiende with an encircling wreath of secondcilimp wreath of
ary magnetite. tization as in fig. 3.

In the south part of the Rainy Lake and on the Rainy River a number of these dykes have been observed. One cuts the coarse granitoid gneiss of the river between Couchiching and Fort Frances on the south side of the river, and another crosses the river at the Manitou rapids. Neither of these have yet been examinied microscopically. On the lake near the extremity of Gash Point one of these dykes cuts the schists with a strike of N . W. and S. E. across the whole breadth of the point and traverses the islands on both sides of it. Here it is traceable on the point and on the islands for a distance of a mile. Three miles to the south cast in the line of the strike of the dyke, a dyke occurs cutting the schists on the islands off the south shore of the lake which is probably a continuation of that of Gash Point. From this point it is traceable for two miles across the islands to the main shore on the south side of Grassy Narrows. Thus, this dyke has a length of at least six miles and has an extension to the north-west and south-east of the points observed, for a distance that is probably very much greater. A specimen from the central part of this dyke, proved on examination to have the characters of a uralitic quartz diabase. The plagioclase occurs in long, rather stout, lath-shaped crystals, which are generally so cloudy as to obliterate the twinning
in most cases. The augite occurs both in simple individuals and in

Fig. 1.
Polysomatic grain of aurite-Grassy Narrows dyke Rainy Lake, a and bare twins - the other granules are of diverse optical orjentation. X 28. polysomatic masses. It exhibits the usual marginal alteration to hornblende and there is besides a certain amount of chlorite. Original magnetite is frequently surrounded by a margin of secondary biotite. Micropegmatitic quartz is abundant. It is often intimately intergrown with the feldspar, and as the latte: is much decomposed, would seem to replace it as a partial pseudomorph, but apatite needles of the same aspect as those which oceur as inclusions in feldspar, augrite, and quartz, are often seen to be inclosed partly in a feldspar and partly in quartz grain. The primary origin of the quartz in spite of its micropegmatitic character, is however, not beyond doubt. It is to be noted that were the quartz original we would hardly expect to find it in such close association with the feldspar. The plagioclase of these rocks affords ummistakable evidence in its idiomorphic character of its having first crystallized from the magma. The augite crystallized next, enclosing the lathshaped plagioclase; and the guartz, which would be the last to crystallise, we would expect to find separate from the plagioclase by the augite, i.e., to fill in the interstices between the augite. Again although single apatites are ofter found extending from a quartz grain to a feldspar grain, a condition of things favoring the notion of a common primary origin of both the latter minerals, yet such a phenomenon is not incompatable with a secondary origin for the quartz, since the replacement of feldspar by quartz must necessarily be a slow operation and proceed particle by particle. Further, if the quartz were original we should hardly expect to find in it inclusions of crystals of the first generation like apatite, which would be liable to be enclosed for the most part in the earlier secretions like feldspar and augite, rather than in the residual silica of the magma. The non-existence, however, of quartz in some diabases which are very much decomposed and its presence in fresh ones, militates against the theory of the secondary origin of the quartz in these rocks, so that the question of how much of the quartz is primary and how much secondary in an old diabase is a
question that as yet does not appear susceptible of definite settlement.

About a mile to the west of this dyke where it crosses Grassy Na:rows Island is another nearly parallel dyke converging on the former at a small angle towards the south. The rock is an uralitic quartz diabase and in its coarser portions, near the middle, the texture is more gramular than that of typical diabase. The plagioclase is cloudy with decomposition products and quartz is abundant. The augite is entirely replaced by compact green hornblende the only indication of the augite that remains being the light colored character of the central portion of the hornblende and the abundance of magnetite granules that have separated out in the process of alteration. Apatite occurs in slender hexagonal needles mostly in the quartz, butalso in the feldspar and hornblende; and a number: were observed which were common to both feldspar and quartz. A: few zircons showing parallel extinction, deep black border and brilliant polarization colors also occur. A few colorless, rounded, isotropic grains probably garnets were observed. Nearer the contact where the rock is much finer grained the typical diabase structure is much better developed, the feldspar having its usual lath-shaped character with augite in allotriomorphic structure around it, although the character of the latter is obscured by its extensive alteration into hornblende. The augite so far as it is revealed in the cores of the hornblende occurs both in simple individuals and in polysomatic masses and it is interesting to note that the hornblende derived from a polysomatic aggregate of augite is of uniform orientation throughout. Magnetite or titanic iron with associated leucoxene is generally distributed. The quartz is in small grains proportioned to the tiner grained texture of the rock. In the central part of the dyke the quartz is in large grains commensurate with the increased size of the feldspar and augite. In neither case does it occur in the mosaics which are so characteristic of the secondary or vein quartz. In addition to the minerals enumerated in this part of the dyke, there is in prominent porphyritic development an altered rhombic pyroxene. The alteration has proceeded very far and the mineral is now represented only by a mass of yellowish green serpentine with perhaps some of the intermediate alteration product bastite. The cleavage is, however, well defined
and the extinction in the several cases noted is sharply parallel to it. These characters together with the traces of the obtuse dome so characteristic of sections of enstatite are sufficient to identify it as that mineral in an altered state. The occurrence of the enstatite in this dyke in its finer grained parts towards the contact is analogous to, and an interesting confirmation of the similar occurrence of the mineral noted in the Jack Fish Lake dyke also in the vicinity of its contact.

To summarise, the main points of interest are, briefly: 1. Post Archrean age of dykes. 2. Their problematic relationship to traps of Animikie and Keeweenawan. 3. Their uniform strike and width. 4. Sharp contact. 5. Passage from coarse texture at centre to aphanitic at sides. 6. Granular character towards centre, porphyritic at sides. 7. Prevalence of quartz and garnets towards centre and absence near contact. \&. Presence of enstatite at sides, absence towards centre. 9. "Chloritic substance" abundant at sides, absent towards centre. 10. Polysomatic character of augite throughout. 11. Uralitization of augite. 12. Very marked contrast of texture of two different parts of a rock mass which solidified under practically the same pressure but at different rates of cooling.

Mr. James T. B. Ives, F.G.S., read a paper on "Iron and the other Ores of Ontario."

The Secretary of the Bureau of Industries, Ontario, Mr. Archibald Blue, in applying himself to the task of compiling a report of the mines for the year 1884, wrote: "the only records we have for the whole province are those of the censuses taken by the Federal Government, for the first time in 1871 and again in 1881." "These," he adds, "are very meagre, for the only information they give, relates to the quantity of raw mineral products for the year preceding the one in which the enumeration is made." The opening words of that report are: "A country so rich in mineral resources as Ontario should be able to exhibit a good record of operations from year to year." However, Mr. Blue succeeded in compiling a report in which fourteen iron mines are noticed ; and the following year, 1885 , some others were reported upon by the same official writer. Those notices include statements as to the depth and underground extension of the workings the quantity of ore obtained, the number of men employed and in several cases malyses of the ore. Moreover, it is stated in
nearly every case whether the ore is Hematite or Magnotite. These rep: rts of the Ontario Burean of Industries are the fullest account we have of the mines of the Province.

Next to these ranks the report issued in 1882 by the Department of Agriculture, Ottawa, on the mineral resources of the Dominion, in which each province is treated separately in reference to its own minerals. In that report about twenty localities in Ontario are mentioned, where iron was then being, or had previously been worked.

I only find five mines of iron ore mentioned in the Geological Survey Reports. A catalogue was, however, compiled last year of the minerals exhibited at the Colonial Exhibition, and the iron ores included in that list represent about a dozen different mines.

In Professor Chapman's Outline of the Geology of Canada, describing the Laurentian formation, he states that it contains "beds of magnetic and specular iron ore." In reference to the Gananoque and Northern Townships District he says: "Although not favourably adapted, as a rule for agricultural occupation, the district contains valuable economic minerals. The principal of these comprise : The iron ores of McNabb, Bedford, Crosby, Sherbrook, Madoc, Marmora, Belmont, Limerick, Minden, Snowdon." Again, describing the Huronian strata in the region of the Upper Lakes, enumerating their more important economic minerals, the same author mentions " the iron ores of Echo Lake, Michipicoten River, Pic River, etc."

Of course the notices of one writer often refer to the same mines as those of another. I have, however, jotted down the localities on the map now exhibited and find that the total number of mines recorded is thirty, as follows :-In the Commty of Haliburton, Lutterworth, Minden, Glamorgan and Snowdon ; in Peterborough, Galway, Silver Lake, Balsam Lake, Blairton, Narmora ; in Victoria, Digby ; in Hastings, Wollaston, Madoc, Tudor ; in Renfrew, Bagot, McNab; in Lamark, Darling, Lavant, Sherbrooke, Bathurst, Perth ; in Frontenac, Palmerston, Bedford; in Northumberland, Seymour; in Algoma, Brace Mines; also bog iron at Sarnia and Normandale. The map I have colored to represent the varions formations of the CambroSilurian, Silurian, and Devonian systems, which overlie the Archean rocks of this area. My object in doing so is this: I wish to show that all these inon deposits appear to occur in the Archean rocks, with the
exception of two localities, where bog iron occurs, which is not a deposit in the same sense. In a praper on the economic minerals of Gamada, which Mr. W. Hamilton Merritt, M.E., F.G.S., read before the British Association at their Montreal meeting in 18S4, he enumerated the localities in which the various ores occurred, and the Geological formations in which they were found. In reference to the iron of Ontario, he stated that in the Lake Superior District it oucured in one instance in the Devonian, and that in the Lake Ontwio and St. Lawrence District it occurred in four cases in the Silurian. These particulars he subsequently stated he had obtained from a mineral map of the Dominion displayed at the Paris Exhibition of 1878 . That map is not published and in the absence of it I find no evidence of the existence of Devonian strata on the C'anadian side of Lake Superior, and the apparent occurrence of iron in the Silurian rocks of the eastern part of the province may perhaps be explained away. I think it will be found that the iron deposits proper are all pre-Silutian.

The Geology of my map is based on the very small map published by Sir William Logan in 1866, to illustrate the Geology of Camada, and revised by the present director, Dr. Selwyn for the Dominion Atlas in 1876.

According to that map it appears that the mines at Blairton and Sevmour, and also that at Gios Cap on Lake Superior occur in, or are overlaid by Silurian strata. Unless, indeed, and it is a perfectly legitimate :llternative, there be at the points where those mines occur inliers of the Archean rocks. This is, of course, a matter of obserration in the field. In the case of Blairton and Seymour it is the more probable as those localities appear by the map to lie within the valley of the River Trent, whilst the Gros Cap Mine occurs so near the outcrop of the Archean rocks that it is probable the ore is obtained therefrom.*

How meagre do these references seem when one thinks of the heautiful and volmminous census returns and monographs devoted to the Geology of the same fur mations on the opposite shores of our own lakes! Or, withont soaring to the Monographs of the United

[^7]States Survey, if we compare the fragmentary information we possess in reference to the economic resources of this Province with such complete and practical publications as the annual report of the Mineral Statistics of the State of Michigan, a convenient, portable volume full of information and profusely illustrated with actual sections of the mines, we cannot but sigh for the good time coming. As a new comer desirous of informing myself as to the geology of the Province in which I reside I look, anomalous as it may seem, to the publications of our neighbors having reference to the formations of the adjacent states for instruction, for on this side it is not to be found. British soil may be separated politically from that of the United States, but the Archean and Silurian rocks are older than the Declaration of Independence, and the laws by which they are governed do not recognize the boundary.

In view of the undeveloped mineral wealth of the country and the necessity for securing information and preventing the loss of that which is often obtained at great cost to individuals or communities, how important it is that records should be preserved! On this point abundant testimony was afforded by men of science and experts of the highest standing in their evidence before a select committee of the House of Commons at Ottawa in 1884.

Dr. George M. Dawson, D.S., A.R.S.M., F.G.S., one of the A.ssistant Directors said: "The difficulty in the way is, that the mines of the various provinces are under the control of the provinces themselres, and, consequently, in some provinces there are deparments of mines, Nova Scotia and British Columbia, I think, are the only two, and those departments collect for their own provinces all the mineral statistics, probably as fully as necessary, and they have the authority to do so. In the other provinces, there is no authority to collect statistic: and if they are collected by the Geological Survey, they must be collectr, ias a matter of favor from the owners of mines, and that takes a good deal of trouble, and in some cases actual y_{1} rsonal visits, as it is not possible to accept a report without some supervision."

Dr. Robert Bell, C.E., M.D., LL.D., one of the Assistimt Directors, stated that an attempt was made in 1870 to collect statistics by means of a circular addressed to mine owners or managers, accompanied by a blank schedule to be filled up. When the survey aban-
doned the attempt, he continued it privately, a conclusive way of proving how important he thought it. He found that the only way to secure the information was to interview the parties personally.

Dr. T. Sterry Hunt, F.R.S., etc., etc., formerly President of the Institute of Mining Engincers of the United States and of the Chemical Society of the United States, speaking of the position of things eighteen years ago, stated: "The work of the Survey was, in the first place, to determine the geological relations of coal, iron and copper deposits, and around them the stratigraphical geology of the country grew n!!. There were special memoirs prepared on the questions velating to the metallurgy of iron and steel, and these were published in the reports of the Survey; these were of value to Canada in utilizing the iron of the country."

He explained that in Great Britain the collection of mineral statistics is under the control of the Home Office, having until recent years been in the hands of a keeper of Mining Records, Mr: Robert Hunt, F.R.S., who undertook to get mining statistics as volunteer contributions. In France, he stated all these economic questions came in the front rank, there being a regular corps of mining engi neers, part of the civil service, to inspect mining districts and keep, the public informed. They visit and report upon the mineral resources of other comntries, and have published valuable memoirs respecting Canada. But the State surveys of Ohio, Alabama, Kentucky, Pennsylvania, and New Jersey were those which Dr. Hunt thought should afford models to the Dominion. He stated that Pennsylvania had of late years been expending "about $\$ 50,000$ annually, in a careful survey of all the points relating to the distribution of its rocks, and the geological relation of its iron deposits, of its salt and petroleum, and of the bituminous and anthracite coal, the results of which have been published in small volumes at the cost of paper and printing. Each mineral is dealt with in a separate volume."

Mr. R. W. Henneker, D.C.L., Commissioner of the British American Land Company and President of the Eastern Townships Bank, urged the desirability of securing careful and trustworthy statistics, which " would do an enormons amount of good to the country, as it is haict to find out from private sources any information of this kind."

Mr. William McIntosh said, "That it would be of the greatest
advantage to practical miners like himself, to get a report of what had been done in each of the mines, and that it would be just the thing to induce capitalists to invest their money."

Professor Chapman said: "People even come to me from the States and say, Where can I find a Geological report and may of such a district? I am obliged to say that it camot be found, except in detached portions." He considered that small maps sho udd be published, accompanied by plain reports explanatory of the map and giving lists of economic minerals, with their analyses, current values, etc., accompanied if possible by a few plates, showing commonly occurring distinctive fossils.

Mr. Raphael Pumpelly, Director of the Northern Trans-Continental Survey, Newport, R. I., recommended the collection of such statistics, and considered that the "work should begin with a thorough canvas, similar to the one carried on for the tenth census of the United States, that is, every known locality containing mineral of economic value, whether worked or not, should be visited, and commercial samples taken of its products and these samples should then be sulbjected to the processes of testing or analysis, according to the requirements of the case. At the same time the statistics of production where workings exist, should be a part of the work."

Professor Dana, the author of the well-known Miamals of Geology and Mineralogy, wrote that he believed "it to be very desirable that mineral statistics should be collected and preserved under government direction."
"This work," said he, "does not necessarily come within the duties of a State Geologist. But it could be connected with a survey, provided it be entrusted to a separate agent, who should make it his special business. Such intormation is often collected with difficulty on account of the unwillingness of owners to make known the state of their affairs, and it is in danger of being largely erroneous, as a consequence of interested misrepresentations, the fluctuations in the conditions of mines, and the uncertainties of ordinary methorls of obtaining values, or estimates of values, by samples. The work, therefore, requires special qualifications, very different from those needed in a geological survey."

I trust I shall be excused for using so largely the words of others,
but these testimonies are scattered throughout a long and tedious report, which few are likely ever to read and they appear to me so important that I venture to submit them to your consideration.

Mr. Hamidion Merrimy said if he understood Mr. Ives aright, he stated that all the iron deposits wore archean and none of them Silurian. There was no question, however, that there were large deposits of iron ore in the silurian in the other Provinces. Mr. Merritt then alladed to the difficulty of obtaining information in regard to mines and minerals. It was necessary to travel round the country, and obtain the required information from personal inspection. The importance of collecting this information was recognized by every civilized country, as it was of the greatest value to the projectors, the investor, and the man of science. In England this information was collected under a statute. In the United States it was chiefly collected by the Central Government, though in many of the States there were mining bureaus. It was a matter of great regret that there should be such a great disparity in the amount of capital invested in mines in Camada and the United States. The excess in favor of the latter country was enormous. It was not correct to say as Dr. Selwyn had concluled, that we had not the minerals, as was abundantly proved by the different exhibitions. So country showed a more creditable display of large masses of ore than Canada had done at the late exhibition. Govermment supervision in the matter was greatly uceded. Not merely mining statistics, but every kind of information should be collected that would be useful to persons working in the locality. This valuable information that other countries had seen the necessity of collecting, would give us the same advantages that they enjoy.

Mr. A. Blue was sure that the views just presented by Mr. Merritt, would commend themselves to the attention of all. Few were aware of the extent and value of the mineral deposits of this Province. He called attention, especially to the petroleum deposits, and the copper mines. He was strongly in faror of steps being taken to collect statistics, and to present the information to the public from year to year.

Mr. Sherr knew from his own experience that Mr. Miller had collected very much valuable information respecting the phosphates, some of which had been preserved, but much was lost beyond recovery.

Mr. Boyie asked how the information had been hitherto collected. He did not think that persons owning mines would give the required information, and he did not see how the Government could empel them to give it. He could not see how a law could compel a man to dirulge knowledge that would benefit others and injure himself. He thought that other means could be employed to oltain the information required.

Mr. Nomans in reference to the discrepancy between the favorable show that Canada had made at the different exhibitions in mineral products, and the little that harl been done in developing them, said that it should be recollected
that Canada was a young country, and though there was much mineral wealth, there were not the same facilities in working it as in older countries.

Dr. Hamilto thought that the Government should make explorations. It would be more useful than collecting mere statistics.

The President referred to the number of geological papers read this session, as showing the necessity for the formation of a geological section.

On motion of Mr. W. Hamilton Merritt, seconded by Mr. Charles Armstrong, it was resolved, "That a Committee consisting of the President, Messrs. Notman, Bluc, Ives, Wood and the mover, with power to add to their number, be formed, to report at the next meeting of the Institute on the advisability of forming a Geological and Mining Section, that this Committee in view of the facts laid before this meeting, shall take what measures they deem advisable to call the attention of the Dominion Government, or the Government of Ontario, or both of these Governments to the nccessity of some improved method of collecting correct returns of mineral statistics, and information regarding mines and mining locations."

Mr. A. B. Macallum presented a paper on "The Origin of Haemoglobin."

TWENTY-SECOND MEETING.

Twenty-Second Mecting, April 16 th, 1887 , the President in the chair.

Exchanges since last meeting, 4r.
The Committee appointed at last meeting presented a report recommending the presentation to the Dominion Government of a memorial regarding the collection and publication of mineral statistics, which was adopted.

The following were elected members :-William Burns, J. Blackstock, B.A.

Dr. A. M. Rosebrugh read a paper on "Photographing the

Living Fundus Oculi," illustrated with diagrams and photographs.

Dr. Hamilo referred to accounts of murderers having been taken, and convicted by means of their picture remaining some time in the retina of the murdered man. He had seen this denied. Could Dr. Rosebrugh give any information on the subject?

Dr. Rosebrugh.-As to the popular opinion that the image of the last object the person looked at remained in the retina; if an examination were made five or ten minutes after death no image would be seen.

Mr. Boyle read a paper, prepared by Sheriff McKcllar, on "A Bragh or Stone Flour Mill," presented to the Institute by the Sheriff.

Mr. Clougher spoke in favor of the cstablishment of a mining journal.

TWENTY-THIRD MEETING.

Twenty-Third Meeting, April 23rd, 1987, the President in the chair.

Exchanges since last meeting, 26.
The following were elected members :-Thos. R. Clougher, Charles M. Dobson, James Mason, David Spence.

On motion of Mr . Ives, seconded by Mr. Merritt, it was resolved, "That in view of the remarks of Mr. Clougher at the last meeting of the Institute, in reference to the publication of a mining and scientific journal, the Institute do refer the matter to the Geological and Mining Section, with authority to enquire into, and report on a project for the establishment and maintenance of such a journal."

Mr. J. B. Williams read a paper on "Canadian Woodpeckers," illustrated by specimens.

Mr. Dion C. Sullivan, LL.B., read a paper on "Fortuitous Events."

On motion of Mr. Shaw, seconded by the President (Dr. Workman having taken the chair,) it was resolved, "That the Canadian Institute cannot allow this first meeting, since the death of the Rev. John McCaul to pass, without expressing its sorrow at the loss, though in the fullness of years and honours of that eminent scholar and teacher, to whose great abilities and force of character, not only our Provincial University and this Institute, of which he was so bright an ornament, but also the City of Toronto owe so much."

TWENTY-FOURTH MEETING.

Twenty-Fourth Meeting, April 30th, r887, the President in the chair.
Exchanges since last meeting, 23 .
The Council announced the admission of the following as associates :-J. H. Lowe, Wm. Murdoch, S. Beckett.
The following were elected members:-J. C. Forbes, R. Moodie, Alexander Macnabb, Thomas Shortiss, S. Macklem.

Nominations for officers and members of Council for the ensuing year were then made.

Mr. Alfred Baker, M.A., read a paper on " Some Experiments in Connection with the Doctrine of Probabilities."
I. The problems that had been treated experimentally were three in number. The first may be stated thus: A number of equidistant parallel lines are drawn on a plane, and a rod whose length is equai to the distance between two consecutive lines is thrown at random on the plane, to determine the chance of its falling on one of the lines. This chance is readily shewn by the theory to be $\frac{{ }_{-}^{2}}{\pi}=$. $.6366 \ldots .$. ; i. e., in 10 throws it should cross a line 6 times, in 100 throws 63 times, or in 1,000 throws 636 tinies, etc. In the experiment a large drawing board had formed the plane, and a fine glass
rod had been used. In all, 3,800 throws had been made. Taking any 10 consecutive throws, the widest possible divergences from the 6.366 of theory were observed, the incidents on the ruled lines varying from 3 to 10 . The following are numbers selected from ten consecutive decades:

$$
\begin{array}{rrrrrrrrrrr}
& 3, & 4, & 8, & S, & 8, & 7, & 10, & 5, & 4, & 6, \\
\text { And again, } & 6, & 7, & 4, & 7, & \tau, & 9, & 5, & 4, & 4, & 6,
\end{array}
$$

When any 100 consecutive throws were considered, a much closer relative agreemen; between experiment and the 63 .60 of theory was observed, in the first 1,000 throws the incidences on the ruled lines varying from 59 to 74 ; in the second 1,000 from 59 to 71 ; in the third 1,000 from 55 to 75 .

Taking 1,000 consecutive throws, a wonderfully close agreement between experiment and the $636 \cdot 6$ of theory was observed. Thus in the first 1,000 there were 633 incidences on the lines.

And finally for the entire number of throws (3,800) while theory gave 2,419 incidences on the lines, experiment gave 2,423.
II. The second problem was: Two points being taken at random in any triangle: to determine the chance that the line joining them shall cut two particular sides of the triangle. This chance is by the theory shewn to be $\frac{1}{3}=333 \ldots \ldots$; i.e., in 10 locations of the points, the line should cross the sides 3 times; in 100 locations 33 times; in 1,000 locations 333 times, etc. For the experiment, a perfectly level triangular board with elevated rim about it had been used. For points, five small shots were placed on the board, so that after each agitation of them (which was effected by means of a whisk) by joining them two at a time, 10 lines were obtained. In all, 1,000 events were produced.

Taking any 10 consecutive events the widest possible divergences from the $3.33 \ldots$ of theory were observed, the number of times the joining line crossed the sides varying from 0 to 8 . The following are numbers selected from 10 consecutive decades:

$$
\begin{array}{lllllllllll}
& 3, & 2, & 7, & 5, & 4, & 1, & 5, & 4, & 0, & 4 . \\
\text { And again, } & 4, & 3, & 8, & 4, & 2, & 5, & 2, & 2, & 2, & 4 .
\end{array}
$$

Considering 100 consecutive events, a much closer relative agreement between experiment and the $33 \cdot 33$.. of thenry was observed, in the 1,000 the intersections varying from 26 to 37 .

Taking 1,000 consecutive events, a remarkably close agreement
between experiment and the $333.33 \ldots$ of theory was observed, there being by experiment 332 intersections.
III. The third problem was: Two points are taken at random on a given line of length, u : to determine the chance that the distance between them shall exced a given length c. This chance is by the theory readily shewn to be $\left(\frac{a-c}{a}\right)^{2}$, i. e., if $a=00$, we have, according as $c=25,50$ or 75 ,-probability required $=\frac{56 \frac{1}{4}}{100}, \frac{25}{11 j}$ or $\frac{6 \frac{1}{4}}{100}$. So that

(l) In	10	trials	tance		oint	hd.	exceed	d 25,	5.625	times,
"	100	"	"	"	"	"	"	"	$56 \cdot 25$	،
"	1000	"	"	،	"	"	"	"	$562 \cdot 5$	"
(2) In	10	"	"	"	"	"	"	50,	2.5	"
"	100	"	"	"	"	"	"	"	25	"
"	1000	"	"	"	"	"	"	"	250	"
(3) In	10	"	"	"	"	"	"		-625	time
"	100	،	"	"	6	"	"	،	6.25	،
"	1000	,	,	"			"	"	62.5	"

For the experiment a perfectly level rectangular hoard with an elevated rim about it had been used. Paper divided into 100 equal spaces by lines drawn parallel to two sides of the board, was pasted down on it. Five small shots were placed on the board, so that after each agitation (effected as before) there were furnished 10 sets of two points each, located on a line, which was any line running the length of the board. The ruled lines rumning across the board assisted in immediately locating the points on such (any) line extending along the board. In all 1000 events were produced.

Taking any 10 consecutive events, the widest possible divergences from the $5 \cdot 625,2 \cdot 5$ and 625 of theory were observed; the number of times the distance between the points exceeded 25,50 and 75 , varying from 0 to $S, 0$ to 6 and 0 to 6 respectively. The following are numbers selected from ten consentive decades :

$$
\begin{array}{lllllllllll}
c=35 \ldots \ldots & 6, & 7, & 6, & 6, & 6, & 8, & 6, & 8, & 3, & 0 . \\
c=50 \ldots \ldots & 5, & 0, & 1, & 6, & 0, & 2, & 6, & 0, & 1, & 1 . \\
c=75 \ldots \ldots & 0, & 0, & 0, & 0, & 3, & 2, & 0, & 0, & 1, & 2 .
\end{array}
$$

Considering 100 consecutive events a much closer agreement
between experiment and the $56.25,25$ and 6.25 of theory was observed, in the 1000 the number of times the distance exceeded 25 , 50 and 75 , varying from 55 to 63 , from 16 to 33 and from 2 to 10 respectively.

Taking 1000 consecutive events a sungularly close agreement between experiment and the $562.5,250$ and 62.5 of theory was observed ; there being by experiment 577,253 and 66 ocasions on which the distance between the points exceeded 25 , 50 and 75 respectively.

The conclusion so far as these problems were concerned was that the hypothesis on which the theoretical solutions were based was correct; and this hypothesis was that the rod and the points located themselves by chance, that all positions were equally likely, and that in a great number of throws the rod and the points would be equably distributed in various positions. Of course the objects had not jocated themselves by chance; their every movement was guided and controlled by fixed and definite laws-gravity, resistance of air, friction, elasticity, etc., but no one cause operated to constrain them into constancy of position. We might he disposed to think that where uniform determining cause was absent-where, as we might express it, chance reigned ; there would be, when a large number of erents occurred, an utter unevemness of distribution, accumulating in heaps at one place and leaving another quite blank. Such, however, had not occurred in these experiments; and with respect to them the assertion could be made that, where complex forces are acting so that determining cause is absent, what might be termed a law of equable distribution held.

Mr. John Notman, Queen's Printer for Ontario, read a paper on "The Manufacture of Paper."

Men have in all ages been prond of their own achievements, while labor, a certain amount of self-conceit and a desire to seek a equaintance with primitive and past events, form the basis of progress and yromote civilization.

Men who have recorded their own thoughts and actions, or those of others, are the ones who have exerted the greatest influence for good, or for evil, in all ages.

The hieroglyphic form of description is said to have been used in Egypt as early as the third dynasty, the date of which is placed about 4,000 years B.C. by some chronologists ; but the markings and engravings upon rocks have been mostly rubbed out by the hand of time and we have to come down to the times when they wrote or modelled in soft clay and baked it with fire. In that grand storehouse, the British Museum, many such indestructible terra-cottia specimens may be seen from the ruins of Nineveh and Babylon and whose decipherment reveal much concerning Chaldea, Babylonia and Assyria.

There is something about those tablets of clay that forbids any desire on our part to discredit them. They seem to appeal to our practical understanding and the tendency to doubt them is not so strong as with some modern written histories. The worl paper is derived from the Greek word "Papyrus" and it was derived from the Egyptian word "Papu" which name was given to a very useful plant belonging to the family of the sedges. It grew, and still grows on the marshy banks of rivers in tropical climes.

The plant has large and abundant rootstocks which spread in the mud and throw up numerous stems from five to $t \in n$ feet high. The stem is triangular and smooth.

The right of growing and selling the plant was a government monopoly in Egypt. It was used for a great variety of purposes besides paper.

Its graceful plumes, or drooping flower-tufts, crowned the statures of the Gods and decorated their temples; its pith was eaten as food; wicker-work boats, boxes, and baskets were woven of its stalks; while sails, cordage, cloth, mats and sandals for the priests were made of its bark. It was applied as medicine to the cure of ulcers and swellings; it furnished material for torches and candles, while its roots were used for fuel and manufactured into furniture and househohd utensils.

In making paper the inner cuticle of the stalk was cut into very thin slices. The finest slices were those next to the pith and decreased in quality as they approached the outer integument.

The slices were laid side by side on a smooth flat sur:ace and covered with a second layer placed at right angles to them, after which they were pressed so as to cause the different laminae to
adhere to each other and form a single sheet, which was then dried in the sun. The glutinous sticky sap of the material was sufficient to biud and hold the slices together in a firm and compact sheet. In the Roman times, a thin sizing was brushed over the sheets, when they were beaten smooth with a mallet and polished with a piece of ivory or a shell.

Various qualities were manufactured and used as occasion required, from the finest writing to wrapping paper.

In the reign of Clandius, fineness, strength and color were imparted by putting a new layer of the best slices over a sheet of coarser quality. Paper found on mummies recovered from the Pyramids, Egyptian tombs, Catacombs and overwhelmed cities indicate an antiquity of 2,000 years before Christ, and through decipherment of the writings thercon mucli information has been obtained as to the history, manners, customs and literature of the Egyptians.

Papu, or papyrus, was usually made into rolls fifteen inches in width by one hundred and lifty feet in length, and cut off as required.
In the seventh century the conquest of Egypt by the Saracens put an end to the export of Papyrus, and Western Europe was obliged to supply its place with Parchment and Vellum, until the introduction of paper.

Parchment was in use about 500 years B.C. and about a century B.C. it was the chief material for writing upon, when its use spread all over Europe. Parchments were made of the skins of sheep and goats while Vellum was made of the skins of young calves, kids and lambs.

Animal parchment has been superseded by vegetable prarchment, or parchment paper, first known in 1854, which resembles animal parchment so closely that it is not easy to distinguish the difference. It is made by immersing unsized paper in a bath of oil of vitriol, or sulphuric acid. The exactness of the hath and the time of immersion are of the greatest importance to the success of the result and several apparently triffing points must be carefully attended to, or the operation will not succeed. The alteration which takes place in the paper is very remarkable. No chemical change is effected, nor is the weight increased, hut a decided molecular change takes place. Insects do not like it, and it is valuable for Land Patents, Deeds, Diplomas and valuable documents deserving preservation.

Tie Chinese were the first to make paper from vegetable fibres about the beginning of the Christian era.

The Hindoos and Arabs carried the art thence to Spain and from there it found its way to all parts of Europe. Paper made from cotton, dates in Europe, from the tenth century, and from linen, from the thirteenth century, when it took the lead and maintained it to the end of the eighteenth century.

In the establishing of a papermill it is necessary to select a site where water of good quality and in great quantity can be had.

It may also be necessary to construct filter-ponds so as to have plenty of clean water when freshets and heavy rainfalls soil the rivers. Then a solid stone foundation should be built, for the machinery is ponderous and hardworking and the foundation on which the paper machine is to be mounted must be solid and firmly united, so that not the least vibration or change in position of any of its parts can take place.

Timbers that will best withstand the infuence of water, such as white oak, or hard yellow pine should be used.

Rubber belting is always preferable to leather as it withstands the influence of water and moisture so certain to be in every papermill.

875 different materials of a vegetable, fibrous and cellulose nature have been worked into paper pulp, but only a few are worthy of special consideration.

Esparto-grass is a spontaneous product of sandy soils, is abundant in Eastern Spain and Northern Africa, makes a beautiful paper and yields $48^{\circ} \%$ of pulp

Manilla grass is a product of Eastern Asia, is extensively made into ropes and bagging and reaches in due time, like rags, the papermill. It is considered the strongest of all known fibres, and furnishes the well known tan colored wrapping paper. Competition, large demand and skillful manipulation, have produced manilla paper, however, with much straw, old paper, some jute and very little manilla grass in it.

Jute is another East Indian fibre very similar to manilla, is much cheaper and makes a good substitute in appearance, though not nearly so strong.

Cane:-In the Dismal Swamp and along the rivers of North and South Carolina, as well as in the low lands of the Mississippi the
country is covered for many miles with the spontaneous growth of a reed or came. This cane is a hollow tube about twelve feet high, nearly white and apparently composed of tough, strong fibre.

The territory covered with it is so vast and unfit for any other useful growth that the supply of cane seems to be nealy inexhanstible, especially if it is considered that a new crop can be cut every three years. The dried tibres have a strong resemblance to oakm and make a strong spongy paper.

The woods give a good per centage of pulp and are most easily obtained in large quanticy.

The per centage of fibre obtained from the woods runs from 26 to 38 , the least being from walnut and the greatest from horse-chestnut.

All the grasses are reduced to a very small proportion of their original bulk by the time they leave the pulpmill and nothing but the clean fibres are contained.

Out of 1001 b of flax or hemp, as it comes from the soil, only about two and a half pounds of good white linen cam be obtained. Papermakers unamimonsly agree that "Rags are King" over everything for making the best qualities of paper.

The everchanging prices and demands of the markets, and the difference of raw materials, together with keen competition, tempt the makers to their utmost skill to use inferior stuff for good papers.

The groat bulk of the news and cheap bookpapers is now made of woodpulp, and after the dissipating of many supposed and imaginary obstacles as to the propriety of using such paper, it has come to be preferreal. Printers' ink is an oily, little fluent substance which does not spread beyond the limits given by the type on any common paper, so that a better impression is made by a fast rumning printing press on woodpulp paper.

Whatever products are used, the art of paper making consists in the reduction of all into their primitive fibres and forming them into felted sheets, and the less the fibres are cut or broken the stronger and better will the paper be.

There are some 1,500 trade definitions and commercial classitications relating to papers, such as sizes, qualities, materials, clays, chemicals. coluring stuffs, etc., too numerous to be retained in the memory, so that quite a reference pamphlet has to be consulted.

The essayist then gave a minute and detailed description of paper-
making by hand; still continued, but mostly due to the conservatism of the people, though good for Bink Notes. He described the production of water marks and showed some beautiful specimens. He explained the disinfecting of rags by a machine which takes in a bale, bores it throughout and disseminates sulphurous acid to a sufficient extent. The rag trade and its tricky dealers. The mill operations in cleaning, sorting, cutting, boiling and bleaching. Before the discovery of chlorine for its powerful bleaching, the color of the rags determined the color of the paper. Rags to be kept dry and in moderate heaps, for fear of spontaneous combustion. Wood is received at the mill as cordwood, is freed from bark and dead-knots and piled up to dry. It is then fed on to a machine which grinds it to dust ; or bettor, which cuts it into small chips; the best is to cut it into blocks, as the fibres are but little broken. The wood is then boiled at a high temperature and with strong chemical agents to soften the wood, toughen the fibres and lessen their adhesion, after which they are soon ground to pulp. The object of boiling all papermaking substances is, to decompose the fatty, glutinous and coloring substances and remove everything but pure fibre.

The alkaline substances used :are fresh burned quick-lime or the milk of lime, carbonate of soda and caustic soda.

The boiling is continued for about twelve hours, but ropes and bugging require twice that time.

The materials must then be washed from all impurity, most surely from all traces of chlorine.

They are next put into the Beating-engine and macerated into fibre by knives and friction. Everything to be added to the fibre must be put in here, such as china-clay, sizing or coloring.

Animal sizing is obtained from skins, ligaments, cartilages, tendons, hoofs and ears of animals, steamed and strained until only 5% of matter is left; alum is added to prevent fermentation or decomposition of the gelatine. Paper run through this is known as tubsized paper.

Vegetable sizing is composed of resin, carbonate of soda and alum, this mixture is added to the pulp in the Beating-engine and such paper is known as engine-sized.

There are two degrees, viz. soft-sized and hard-sized and are mostly applied to printing and book papers.

Writing papers are commonly coated with animal size. Papers put through vegetable sizing and then through animal sizing are known as "Double-sized" also as "Hard-sized" which paper has superior hardness, lustre, enamel and smoothness of surface.

The reader detailed the calendering of papers and enumerated quite a variety of papers made for special purposes.

He referred to the great Chicago fire in 1871 when ten thousand houses 16×20 feet were built in one day, of paper boavds both waterproof and fireproof, and served speedy shelter for thousunds of homeless people.

He referred to the different movements of the paper machine and the various improvements made until such perfection has been attained that paper can be made in one continuous web of any length, and before leaving the machine cam be made, sized, dried, calendered, hot-pressed and cut into sheets, and at the rate of 125 feet long by 100 inches wide per minute.

At present there are 3,500 papermills in Europe.
The Dominion of Canada occupies but an insignificant position among the puper making countries, while the United States occupies a very high one. Great Britain occupies the highest position and the total production of all the mills there, is not less than 3,500 miles of paper daily.

THIRTY-EIGHTH ANNUAL MEETING.

Thirty-Eighth Annual Meeting, May 7th, 1887, the President in the chair.

Exchanges since last meeting, 33 .
The following were elected members:-T. G. Williamson, W. Williamson, W. Canniff, M.D., C. Egerton Ryerson, B.A. Gcorge Cox, A. W. Murdoch.

The following reports of sections were read :

I. Philological Section.

1. The first meeting of the Section was held on March lonth, 1887, when the following officers were elected :--Chairman, Rev. J. F. McCurdy, Ph. D.;

Viee-Chairmin, D. R. Keys, B.A. ; Seretary, George lE. Shaw, B.A. Com-- nittee :-J. Squair, B. A. ; M. L. Ronse, J. H. Cameron, B.A. ; J. Cumningham Dunlop. Ph.D.; W. H. VanderSmissen, M.A.; Wm. Houston, M.A.
\because. The first two meetings were heh on Saturday afternoon, March Jth ahd March 12th, at 16 o'clock, all the subsequent ones on alternate Mondays. beginning March 2 Sth, 1857.
3. The Section has IS members.
4. The following papers have been read before the Section:

1. "How we Speak," by A. Hamilton, M.D.
2. "The Science of Language in Popular Latucation," by Rev. J. F. McCurdy, Ph. D.
3. "Umbrian Inscriptions," by Rev. Neil McNish, B.D., LL.D.

All which is respectfully submitted.
Geo. E. Shaw, Secretary of Philological Section.

2. Architectural Section.

This section consisting of five regular and nineteen associate members of the Canadian Institute, has held eleven meetings since its formation, of which the following is a list :

Monday, January !0th, 18S7, Discussion on "What Siyle of Architecture is Best Adopted to this Country."

Monday, January 17th, 1857, Discussion on "The Use and Abuse of the Romanesque Style of Architecture."

Monday, Jamuary 24th, 1SS7, Paper on "Foundations," by Henry Steele.
Monday, January 31st, 1SS7, Lect:are on "Wood Floors," by S. (i. Curry
Monday, February 7th. 1Ss7, Paper on "Style," by J. C. Horwood
Monday, February $14 t h$, Lecture on "Columns," by Alan Macdougall.
Monday, February ${ }^{2} S t h$, 1SS7, Paper on "Hints to Joung Architects," by Henry Langley.

Monday, March 7th, 1SS7, Lecture on "Arches," by W. L. Symons.
Monday, March l4th, 1587, Paper on "The Doric Temple in its Religious and Artistic Aspects," by J. W. Gray.

Monday, March 21st, 1SS7, Receiving the judge's report on, and describing the competitive drawings.

Monday, March 2Sth, 1SS7, Paper on "Masonry," by A. F. Wickson.
J. D. HyNes,

Scerctary.

3. Photographic Section.

The first mecting of the Section for the purpose of organization, election of officers, de., took place on the eveuing of February 23rd, when the following
were elected:-Chairman, H. Neilson ; Vice-Chairman, R. Ewing ; Secretary"reasurer, A. (iaunt. Exeentive Committoc-E. R. Parkhurst, W. W. Fox, F. D. Mancher, I: F. Wigner, IV. A. Forbes. The number of members now on the roll is 28 ; associates, $\overline{5}$. Total, 33.

Meetings for the transaction of business, de., have taken place on the first Tuesday in each month, but so far no papers have been read. The tirst exhibition of the section took phace in the Labrary of the Institute, on April 12 th and 13 th, and was very successful, considering the short time given for the preparation of pictures.

Ammon Gacix, Secretary.

4. Biological Section.

Fhom june 1856 to aprif 1587.
During this period eighteen meeting's si the Section have been held, with an average attendance of $15 ;$ (say 19) members. The section has 36 orciuary members and 12 associates. Twelve papers have been read at the meetings, and nine short communications received. Two of the mectings were set apart for microscopical exhibition and discussion under the able conduct and superintendence of Professor Ramsay Wright.

In June a branch of the Audubon Society was organised in connection with this Section, and Mr. Hollingworth was appointed Local Secretary: There are now 106 members in the Toronto Branch.

In Uctober a special rote of thanks was passed io W. H. Doel, J.P. (one of our-members, for his earnest efforts made during the summer, for the protection of insectivorous birds, by fining all violators of the law that were brought before him.

During the same month an offer of the Section to provide the interest for two years on a loan of $\$ 1,000$, led the Comen of the Institute to decide on at once, fitting ap the attic of the buiding as a muscum, instear of leasing a part of it to the srt Schooi, and since the completion of the new rooms, the members of the section have assisted in moving the objects and eases from the various places in which they lay; to the top of the building.

> J. B. Wiminams, Secretary of the Biological section.

5. Geological and Mining Section.

Sub, - I have the honor to report that, proceeding under authority conferred by the Canadian Institute, a meeting of members was held on the 2uth of April, ult, when a (ieological and Dining Section was duly erganised, and that at an adjouned meeting, on 30th April, regulations and by-laws were adoptel, which have since been approved by the Council of the Institute, and that the following officers have been elected for the incoming year. W.

Hamilton Merritt, Chairman ; Alexander Maenabb, Vice-Chairman; Archibald Blue, Secretary ; George T. B. Ives, Assistant Curator. Messis. Boyle, Dobson, Notman, Phipps and Dr. Bryce, Executive Committee.

The iirst regular monthly meeting of the Section was held on Thursday evening, ath inst., at which the Chairman gave his inaugural address. The Section is composed of 15 members.

Your obedient servant,
A. Blue, Secretary.

Aian Macdougall, Esq., Secretary Canadian Institute.

The President read the 38 th Annual Report.

ANNUAL REPORT OF THE C!OUNCIL OF THE CANADIAN INSTITUTE.

session 1886-st.
The Council of the Canadian Institute have the honor to lay before the members their thirty-eighth Annual Report.

During the past session twenty-six meetings, including the ammal conversazione, have been held, at which forty-nine papers have been read, in addition to twenty-three read at section meetings. 'This number is largely in axcess of that of any previons year in the history of the Tnstitute. The character of these communications is fully equal to the standard of previous years, and the range of subjects (as shown in the appendix) is unprecedently large. The average attendance at the regular weekly meetings also shows a considerable and steady increase.

The distinguishing feature of the year has been the successful establishment of no less than four new sections, in addition to the Biological section, incorporated at the end of last session, viz.: (1) A Photographic section; ($\boldsymbol{2}$) am Architectural section ; (3) a Philological section and (4) a Geological and Mining section. The creation of these sections has extended the benefits of the Institute to new classes of the citizens, and has been the chief cause of the large increase of membership. Their annual reports, which are appended, show a gratifying spirit of activity in every branch of the Institute.

A further evidence of this increased activity is seen in the number of memorials presented to the Provincial Government, with successfull results in many cases, as follows: In February last the Committee of Ways and Means waited on the Minister of Education and urged him
to increase the anmual grant to the Institute from $\$ 750$ to $\$ 1,500$, for general purposes, and to enable us to give courses of public lectures on scientific subjects, especially in connection with industrial pursuits. While gratefully acknowledging the increase of the grant to $\$ 1,000$ for general purposes, the Council regrets that the Government did not see fit to comply with the latter part of the application.

In the same month the Archeological Committee urged the Minister to make a yearly grant of $\$ 1,500$ for Archeological research in Ontario, and the passing of an Act for the protection of Archaological remains founded upon Sir John Labbock's "Ancient Monuments Act of 1882." The Conncil again thankfully acknowledge the liberal grant of $\$ 1,000$ for this puipose, but regret that the heavy work falling upon the Minister this session in connection with educational matters should have made it impossible for him to bring in an Ancient Monuments bill, which would have greatly enhanced the value of the grant. It is hoped, however, that such an Act may become law in the next session of the Legislature.

In Narch a deputation waited on the Commissioner of Crown Lands to urge the establishment of a large park reserve in the district of Nipissing, for the protection of wild amimals and of timber, and were assured of the Minister's sympathy. An Act for this purpose will, it is hoped, be the result of this application in the near future.

In April a Committee ursed upon the same Minister the propriety of some improved means of collecting information on matters connected with the mining interests of the Province, and receired issurances of co-operation.

Another pleasing feature of this ycar's work is the partial completion of the Musemm of Natural History and Archaology in the third story of our building, which will, it is confidently expected, enable us, for some time at least, to properly accommodate our collections and donations. In this direction the (louncil desires to acknowledge the liberality of the Biological section in gna anteeing the interest for two vears on the $\$ 1,000$ horrowed for this purpose.

The Tibrary has been increased by the addition of 124 volumes of bound exchanges; but further shelf accommodation is urgently needed.

While congratulating the Institute on the increase in membership, in income and in activity, the Council feel that it is necossary to impress upon the members the fact that the curvent expenses are greatly
increased, especially in printing and gas, while there is a falling off in the rentals; and also that, in order properly to fultil the objects for which it exists, the turther extension of the Musemm and Library and the completion of the building by the erection of a commodions lecture hall is highly desirable. They therefore urge upon the members the necessity of supporting the present efforts of the Committee of Ways and Means by every means in their power, by contributions, by presenting the claims of the Institute to the public in every possible way, and by endeavouring to obtain new members.

During the past year the Institute has lost by death one of its most distinguished honorary members, the Rev. Juhn McCaul, LL.D.. late President of University College, and President of the Institute from 1862 to 1864 . The deceased was for nearly half a century one of the leading figures in social and educational affairs in this city, and his articles on Roman Inscriptions in the Canadian Jourval, which formed the basis of his great work on that subject, had much to do, not only with the establishment of his own claims to be called the first Fnglish scholar in Latin epigraphy, but with the high standing: attained in those early years by our journal.
[Signed.]
Alan Macdougall, Secretary.

APPENDIX I.

MEMBERSHIP.

Number of Members April Ist, 1886 233
Withdrawals and deaths during the year 14
Elected during the year 71
Total members April 1st, 1887 290
Composed of :-
Honorary Members $\overline{5}$
Life Members 13
Ordinary Members 272
Tutal 290
Associates 30

APPENDIX II.

TREASURER IN ACOOUNT WITH THE CANADIAN INBTITUTE FOR THE YEARmedng March 31 st, 1887.
'Co Summary-* Balance on hand$\$ 6305$
"Annual subscriptions 91900
" Rents 21800
" Govermment Grant 75000.
" Proceeds Wallace Lectures 10742
"Journals sold 2929
" Periodicals sold 3261
" Mr. Sanford Fleming's proportion of printing 6241
" Interest 265
" Natural History Society, balance of funds 8 73
" Subscriptions to bust of Dr. Wilson 2500
"Proceeds of note discounted 30000
" Proceeds of Mortgage due 1892 3,000 00
\$5,518 16
By Summary-
" Salaries $\$ 37350$
" Printing Journal 33876
" " Miscellaneous 750
" Binding 12460
" Stationery 3289
" Postage 20195
" Freight and express charges 2091
" Repairs, stoves 430
" Gas 4312
" Water 2400
" Show cases for specimens 10000
" Advertising 300
" Periodicals, 1886 12036
" " 1885 6055
" Discount on cheque 25
" Consul's certificate and Custom's expenses 350
" Sweeping chimneys 200
" Fuel 10990
" Painting 10413
" Interest 19439
" Mortgage due August, 1886 3,411 00
Carried forward $\$ 5,28061$
Brought forward \$5,280 61
" Taxes 1021
" Bust of Dr. Wilson 2500
" Legral expenses 25 00
" City Directory, 1887 300
" Repairs to building 6047
" Matting for reading room 2680
" Housekeeper's expenses 1000
" Journals purchased 50
" D. Boyle, disbursements and expenses 2017
" Balance, Imperial Bank $\$ 5000$
" " Cash on hand 640

Examined and found correct.

April 22nd, 1887. $\left.\begin{array}{ll}\text { (Signed) } & \begin{array}{l}\text { T. B. BROWNING, } \\ \text { D. B. DICK, }\end{array}\end{array}\right\}$ Auditors.

BUILDING ACCOUNT.

1886.

Dec. 1, To Donation Natural History section $\$ \quad 5000$1885.
Jan. 8, " Mortgage due 1892 1,00000
" Interest 48
$\$ 1,05048$
1887.
Feb. 9, By Law expenses $\$ 1265$" Carpenters' contract, Certificate No. 1... 30000Mar. 11, " " " ${ }^{(6)} 7500$" Balance Imperial Bank66283$\$ 1,05048$

Examined and found correct.
22nd April, 1887.
(Signed) T. B. BROWNING,
D. B. DICK,
Auditors.

Building. .	\$11,500 00
Warehouse	72000
Ground	3,000 00
Library	5,500 00
Specimens.	1,300 00
Personal property	60000
	\$22,620 00
LIABILITIES.	
Mortgagre, No. 1, due 1892	\$ 3,000 00
" No. 2, "	1,000 00
Note discounted	30000
Balance in favour of the Institute	18,320 00
	\$22,620 00

Appendix III.
Donutions and Exchanges.-Books and pamphlets received from April lst, 1886, to April lst, 1887 :-From Canada, 190; United States, 398 ; Great Britain and Ireland, 310; India and Australia, 82; all other countries, 1,250 ; total, 2,230 .

Total number received in 1882-3, 280 ; ditto. 1883-4, 800 ; ditto 1854-5, 730 ; ditto 1885-6, 1,502 ; ditto 1886-7, 2,230.

Appendix IV.

The number of societies and publications with which the Institute exchanges is $3 \mathbf{i} 1$.

Appendix V.

To the periodicals subscribed for last year the following have been added :- English Historical Review, Scottish Review, Hardwicke's Science-Gossip, Science. There have been discontinued:-British Quarterly Review, Brain, Times (Weekly), English Merlicine, American Journal of the Medical Sciences.

Appendin VI.

Classification of papers read by subjects:-General, 3 ; Psychology, 1; Archæology, 5; Sociology, 2; Mathematics, 2; Chemistry, 5; Mineralogy and Geology, 7; Jurisprudence, l; Philology, S; Meteorology, 1; Geographical Science, 2; Electricity, 1; Biology, 5 ; Astronomy, 2; Medicine, 2; Photography, 1; Industrial Science, 1; total, 49.

Read at section meetings, 23 ; total, 72 , as follows: Biological section, 12 ; Architectural section, 8 ; Philological section, 3.

The election of officers for the ensuing year resulted as follows :

President-W. H. VanderSmissen, M.A.
Vice-President-E. A. Meredith, LL.D.
Treasurer-James Bain, jun.
Secretary-Alan Macdougall, M. Inst., C.E.
Editor-George Kennedy, M.A., LL.1j.
Curator-David Boyle, Ph.B.
Librarian-G. E. Shaw, B.A.
Members of Council-W. H. Ellis, M.A., M.B.; Alex.ander Marling, LL.B. with the Chairman of Sections and Secretary of Biological Section.

On motion of Mr. Boyle, seconded by Mr. Browning, it was resolved, "That in the opinion of this meeting it is advisable to form a Historical and Archæological Section in connection with the Institute, and the President and Secretary are hereby empowered to make all preliminary arrangements for the purpose of forming a Section forthwith."

On motion of Mr. Shaw, seconded by Rev. Dr. McCurdy, it was resolved, "That the thanks of the Canadian Institute be tendered to the city daily papers and especially the Mail for their kindness in publishing reports of the proceedings of the Institute."

On motion of Dr. McCurdy, seconded by Mr. Keys, a vote of thanks was tendered to the retiring councillors.

A paper was presented by A. McGill, B.A., on "Tartaric Acid in Admixtures."

LIS'T OF COLEOPTERA COLLECTED BY MR. BRUCE BAILEY, IN KICKING HORSE PASS, ROCKY MOUNTAINS, C. P. R., 1884.

From a paper read bifore the Biological section by Mr. Brodie.
Mr. Bruce Bailey a member of this section, while on the Engineering staff of the mountain section of the C. P. R., made a large collection of Natural H story objects, consisting of Mammals, Birds, Reptiles, Fish, Insects and mants. Several species of the Diptera and Hemiptera, have not yet been satisfactorily identified, and it is believed there are a few new to science. The following is a nearly complete list of the Coleoptera.

I an indebted to the eminent coleopterologist Mr: H. Ulke, of Washington, for the identifications, with a few exceptions. The species marked * are new to the Canadian list.

> Carabidte:-Cicindela longilabris, Say.
> " 12 -guttata, $D r j$.
> Nebria trifaria, Lec.*
> " Mesta, Lec.
> Platynus bembidioides, Kir\%.
> " quadripunctatus, $D_{r j}$.
> Agonoderus lineola, Fabr.
> Bembidium Grapii, Gyll.**
> " nigripes, Kirb.
> Dytisctide:-Colmybites sculptilis, Harr.
> Derinestide:--Anthrenus scrophularie, Lec.* Orphilus glabratus, Fabr.*
> Cucujider-Cucujus clavipes, Fab.
> 1'royositide:--Tenebrioides sinuata, Lec.
> Calitys scabra, Thun.
> Coccinellidue:-Coccinella trifasciata, Limn. Hippodamia 13-punctata, Linn.
> Addalia frigida, Schn.
> Anisocalvia 12-maculate, Gebl. Scymuns lacustris, Lec.
> Byrrhidle :-Bryrrhus cyclophorus, Kirb.
> Lucomide: :-Platycerus depressus, Lec.
> Sccurabucide: :-Dichelonycha subrittata, Lec.
> Sulcata, Lec.*
> Serica frontalis, Lec.*

Diplotaxis trevicollis, Lec.
Lachnosterna errans, Lec.*
Trichius affinis, Gory.
Buprestide:-Dicerca tenebrosa, Kirly.
Buprestis Langii, Marin.*
" radians, Lec.*
Melanophila Drummondi, Kirh.
Anthaxia inornata, Rand.
Elaterida :-Adelocera profusa, Cand.
Dolopius lateralis, Esch.
Corymbites furcifer, Lec.*
" pulcher, Lec.
" insidiosus, Lec.
" morulus, Lec.
" aripemnis, Kirl.
" umibripennis, Lec.*
" fallax, Say.*
Lampyrider:-Eros mundus, Say.
Photinus lacustris. Lec.
Telephoridre:-Podabrus puncticollis, Kirb.
" Sp.——undetermined. *
Telephorus, Sp.——undetermined* " Sp .——undetermined.
Silis difficilis, Lec.*
Malachide :-Melyris, Sp.__known not described.*
Cleridere:-Trichodes ornatus, Say.*
Cierus undulatus, Say.
Spondylidat:-Spondylis upiformis, Mann.
Cerambycide:-Asemum mestum, Hall.
Hylotrupe ligneus, Fab.
Callidium jauthinum, Lec.
Clytus 3-vittatus, Meb.*
Xylotrechus undulatus, Say.
Neoclytus, Sp._-_probably new.*
Rhagium lineatus, Oliv.
Acmæops pratensis, Laich.
" longicornis, Kirl.*
Leptura sex-maculata, Linn.
" sanguinea, Lec.
" chrysocoma, Kirl.*
" canadensis, Frab.
Monohammus maculosus, Hald.*
" scutellatus, Say.
Chrysomelide:-Orsudachna atra, Ahr.

> Syneta ferruginea, Germ. Pachybrachys femoratus, Oliv.* Adoxus vitis, Linn.
> Tenebrionide:-Iphthinus serratus, Mann. Phellopsis obcordata, Lec.
> Melandryida:-Allopoda lutea, Hald.* Phryganophilus collaris, Lec. Morlellilow:-Anaspis atra, Lec.* Mordella scutellaris, Fab.
> Edemeride:-Ditylus caruleus, Rand.
> Pythida:-Pytho niger, Kirb.
> Otiorhynchide: :-Evotus naso, Lec.
> Scythropus elegans, Coup.
> Whynchitide: :-Rhynchites bicolor, Fabr.
> Cureulionida:-Anthonomons musculus, Say.
> Scolytider:-Dendroctonus terebrans, Olis.

INDIAN LANGUAGES AND LITERATURE IN MANITOBA, NORTH-WEST TERRITORIES AND BRITISH COLUMBIA.

Dr. Rae in a lecture delivered at the London Institution stated that in the Northern part of Canada there were five hundred different Indian languages, divisible into seventy-five ethnical groups.

I am unable from my reading and observation to corroborate this statement, but give the results of my studies and experience in the following notes.
I. List of Languages in Manitoba, Leewatin and North-West Territories.

1. The Sioux Language-A small band of these Indians is located near Portage la Prairie
2. The Stony Language-This is a dialect of the Assiniboine or Dakotah Indians. They are located at Morley, on the C.P.R. forty miles west of Calgary and on a reserve near Edmonton.
3. Ojibway Language-Some of these Indians may be found around Lake Superior.
t. The Saulteaux Language-This is a dialect of the Ojibway. These Indians are to be found in the vicinity of Hudson's Bay and near Norway House.
j. Sarcee Language - This is the same language as the Castor or Beaver. These Indians are located on a reserve about eight miles south of Calgary. There is not a white man in the country conversant with the language, and all interpreting is done in Blackfoot or Cree which these Indians understand.
4. The Beaver Language--These Indians are found in Athabaska.
5. Cree Language-Divided into Plain Cree, Wood Cree and Swampy Cree. These Indians are numerous and are located on the plains and in the forests, all over the North-west and Keewatin.
6. Blackfoot Language-Spoken by the Bloods, Picgans and Blackfeet.
7. Nez Percé Language-A few of these Indians occasionally reside at Pincher Creek, thirty miles west of Macleod. They are United States Indians.
8. Slave Language.
9. Dog Rib Language.
10. Chippewayan Language.
11. Dinje or Loucheux Language.
12. Hare Language-These all belong to the Timne family and are found in Athabaska and Alaska.
13. Eskimo Language.
14. Tukudh Language.
II. Languages in British C'olumbia.
15. Bella Bella.
16. Bella Coola.
17. Tsimpshean.
18. Nimpkish.
19. Hydah.
20. Chinook Jargon.
21. Cowichan.
III. The Languages of which Vocabularies and Girammars have been published, the Authors and place of publication.
22. Sioux-A Grammar and.Dictionary of the Dakotah Language. Edited by Rev. S. Rigg, D.D., Washington, 1852, $\$ 10$. A new edition is now in course of preparation.
23. Ojibway-A Grammar and Dictionary of the Otchipwe Language By R. R. Bishop Baraga, new edition, 1879, $\$ 3$. Beauchemin and Valois, Publishers, 256. 258. St. Paul Street,

Montreal. There are several grammars and dictionaries prepared for the Ojibway of Ontario, etc.
3. Cree Jangnage-(1) A Grammar and Dictionary of the C'ree Lenguage in French by Rev. Pere Albert Lacomb, O.M.I. \&3. Beauchemin and Valois, Montreal. (2) A Cree Dictionary by Rer. E. A. Watkins, published by the Society for Promoting Christian Knowledge, London, England. (3) A Grammar of the Cree Langrage by Right Rev. Bishop Horden, published by the Society for Promoting Christian Knowledge, London, England. (i) Grammar of the Cree Language by Henry Howse, London, England, 1815. now out of print. This is said to be the best Cree Grammar published. (5) A Lecture on the Grammatical Construction of the Cree Lamguage by the Ven. Archdeacon Hunter, M.A., 1875, by the Society for Promoting Christian Knowledge, London, England. This contains Paradigms of the Cree Verb with its rarious conjugations, moods, tenses, inflections, etc.
4. The Blackfoot Language-A small phrase book was published as a money speculation by C. Laming, but it is full of mistakes and of very little use. Nearly all the missionaries have MISS. vocahularies for their own use. I can only speak positively of my own work on Grammar and Dictionary which I have been working at for vears, and will take three years at least to finish.
5. Eskimo-Paradigm of the Verb, by Dr. A. Pfizmaier, Viema. "The Eskimo Dialects as serving to determine the relationship, between the Eskimo Tribes," published in the jownal of the Anthropological Institute, by Dr. Rink. Buth of these are on the Greenlandic Dialect.
6. Addendum re Cree Language-Rer. Archdeacon John McKay, Prince Albe.t College, N. W. T., has a MSS. grammar in Cree which he is prepariag to publish.
7. Addenda re Languages in British Columbia.

Kwakiute.
Bilhoola.
Clallam.
Lummi.
Snohomish or Nisqually.
Chehalis.
Twana.

These last five are found on Puget Sound, W. T., and in British Columbia. There are very many dialects of these.
S. Bella Coola or Viloula-Dr. Frank Boaz is making a special study of these Indians at present. See Mittheilungen aus der Ethnologischen Abtheilung der Museum zu Berlin.
?. Chinook Jargon-(1) "Dictionary of the Chinook Jargon or Indian Trade Language of the North Pacific Coast," 1883, 35 pages. T. N. Hibben \& Co., Victoria, B.C. (2) Dr. George Gibbs, Report on Chinook, etc., pobbished by Smithsonian Institute, 1863, Vol I. Contribations to North American Ethnology.
10. Bilhoola-A brief grammatical sketch of this dialect is found in "Science," of New York, March 5th, 1886, by Dr. Frank Boaz.
11. Nisqually-A Vucabalary was prepared by Dr. George Gibbs and published in Vol I. Contributions to North American Ethnology.
12. Clallam and Lummi-A Dictionary prepared by Dr. George Gibibs and published in Shea's Library of American Linguistics.
13. Snohomish and Chehalis-Comparati, 'ocabularies of the Tibes of British Columbia by Tolmie and Dawson, 1S84, published in Montreal.

Further study and observation may be productive of more information on this subject.

John McLean, Mr A.
Blood Reserve.
Macleod, Alberta.

SYNOPSIS OF A PAPER READ BEFORE THE BIOLOGIC'Al. SECTIO" BY DR. GARNIER ON A NEW SPECIES OF MENOBRANCHUS.
Dr. Garnier presented an account of a species of Menohamehus which he believes to be now, and dedicates to Mons. F. Lataste as M. Latastei. Prof. Cope, to whom a sample was submitien, regiuds it as a well-marked rariety of the ordinary northern Menobanch Necturus lateralis, Baied, which would accordingly bear the name 1. lateralis var. Latastei. Giamier.

The following are the points which Dr. Garnier thinks entitle the

Menobranchus under consideration to rank as a separate species. (1) Smaller size. (2) Colouration, the body being entirely black except the gular fold which is white, the abdomen which is soot and the toes and an occasional present band at the base of the tail which are olive brown. (3) Proportionately greater size of the head. (4) The smaller number of teeth, especially on the vomers, superior maxillaries and mandibles, and (5) habitat, the form under considcration being always found in swift streams, not in sluggish waters.

Dr. Garnier gives some particulars as to his observations of the habits of the Menobranchus he has studied. He finds they do not survive more than two or three hours out of water; they swim rapidly, compressing the limbs against the trumk; and shelter themselves in crevices and under stones; they eat small living ilsh and crat-fish by preference, and do not readily take meat in captivity; they spawn towards the begiming of May, laying eggs which measure in the ordinary $s_{1} \%$. puarter of an inch in diameter but in the var. 'tastei three-sixtenths; during the spawning time the cloaca becomes swollen and the tail stiffer as in Protens. The ordinary lake Menobranchus are o ten taken by fishermen in the winter in lake St. Clair, and like the dog-fish (Amia) and like sheepshead are regarded as unvelcome additions to the catches in seines.

The variety Latestri has been found by Dr. Gamier in the Mathand river, the ordinary Menobranchus with which he has compa ed it having been obtained from the Don and lake St. Clair, where they are common.

UMBRIA CAPTA.
Rean before the Phifolohical Section by Rev. N. MacNisif, B.D. I.L.D. Aprill $2: \bar{T} t h, 18 S 7$.

I have the honour to present to the Canadian Institute a new interpretation of the Umbrian portion of the Eugubine Tables. I have to remark at the outset, that I have derived very great assistance, as well in the interpretation of the Tabies as in the preparation of the geographical and ethological notes which are appended, from
the Rev. Professor Campbell, of Montreal, whose learning and researches in this particular field of investigation have been conspicuously exhibited in his Etruria Capta. It will be possible, I believe. to adduce satisfactory evidence to show that Gaelic is the language of the Umbrian Tables; and that, accordingly, they present to us altogether the oldest specimen that has hitherto been discovered, of Irish and Scottish Gaelic. As even the learnedand haborious Celtic Grammarian Zeuss was not led to turn his attention to the Gatic characters of those Tables, no material assistance is furnished by his claborate Grammar in determining the grammatical forms of what has to be reganded now as the oldest (atelic composition in the world. Mr. Whitiey Stokes who has given extensive and scholarly attention to old and early middle Irish Glosses, enables us to perceive, e.g., in his Goidelice-that the 'Iurin (ilosses; etc., and the Irish Hymms in the Liber Hymmorum, forming as those do some of the oldest Irish compositions of which we lave had hitherto any knowledge - present fully as large combinations of words and peculiarities of grammatical construction as are to be found in the Umbrian lables. The same remark may be made regarding the very old specimen of Scotish Gaelic which is contamed in the Book of Deir; and also rerarding the first book which was printed in scottish (Gaelic; viz., the Gamic translation of John Knos's Liturgy, by Bishop ('arswell of AreyllIt wats pullished in 1567.

In his History of Rome (Vol. L. p. 160), Nommsen states that " our information regarding the migration of Cmbrian stocks comes to us like the somed of bells from it town that hats been sunk in the sea. " Nichuhe in his History of Reme (Vol. I. p. 143) thus writes: \therefore It is certain that the Umbrians were a great mation before the time of the Etrmiams in the age of the Sicilians, and that they have the right to the name of a most ancient and genume people of Italy." The same learned writer remarks in his Ethography and (irography (Vol. II. p. 209) "that people have been extremely anxions to discover the Ftrurian langrage, and who should not be so? l would radily give a considerable part of my property as a prize to ant one who should discover it. An entirely new light would thereby be thrown upon the character of the nations of Italy:"

The Tabulae Eugubincte were discovered in 1444 among the ruins of a Theatre in the neighbomhood of Gubhio in Umbria. Gubbio
is the modern name of Iguvium. It has been maintaine that those Tablets which were made, as Concioli asserts, ex uere purissimn, were originally nine in number. Two of the Tablets which were conveyed to Venice in 1540, have, it is to be feared. been irrecoverably lost. The seven that remain are preserved in the Palazzo Municipale of Gubbio. Tablets I., Ir., V. and VI. are engraved on both sides. A blank space is left on one side of tablet II. and V. A few lines merely are engraved on one side of 'lablet VLI. The Inscriptions on Tablets VI. and VII. and neady all the Inseriptions on one side of Trablet V. are in Roman letters.

According to the computation of Aufrecht amd Kirchoff:

$$
\begin{aligned}
& \text { Table VI., c, has o9 lines. } \\
& \text { Table VI., } b \text {, has fo lines. } \\
& \text { Table VII., } a \text {, has } 54 \text { lines. } \\
& \text { Table VII., } b \text {, has } 4 \text { lines. } \\
& \text { Table V., } b \text {, has } 11 \text { lines. }
\end{aligned}
$$

There are thus 193 lines in the Umbran protion of the Eugubine Tables.

In his prefate to his Les T'cthles Euyalmes, Professor Breal gives an interesting aceome of the rarious efforts which have been mate to interpret those Tables. It is noteworthy, from a Celtic point of view, that there appeared in 177 a a work by Stamisias Bardetti, in which he endeavoured to explain the Umbian Inseriptions principally by the aid of Anglo-Sixon, old High German and Celtic. In an article on the Eugubine Tahles which ocens in the Eneyclopacedi: Britamica, it is stated among other things that. "Avifecht and Kiwh hoff. summing up the labours of their predecessors and working accorling to strict scientific methot, bronglat the interpretation of the Tables to a degree of perfection that could hardy have been hoped for, theugh there still remained in matters of detail sudicient seope for such investigators as Breal, Ehel, Corssen. "te." Professor Breal's Les T'ables Eugubines was published in 1sin. As. in addition to his own mamhignous asseverations, he has come to be regarded as having at last sueceeded in giving an intelligible and satisfactory solution of the Cmbrian Inseriptions. it is advisable to insert here the conclusions at which he has arrived. "The Eugutine Tatbles are the acts of at Corporation of piests who hat their seats at Iguvium, and whose authority appeas to have extended over a some-
what large extent of the adjacent country. They call themselves the Attidian Brethren, and the name of the Confraternity is given to the College. They are twelve in number. Different names of magistracy such as questor and fratrecks are mentioned. The person who plays the principal part has the title of adfertur: . . . It does not appear that the Attidian Conffaternity was specially devoted to the service of a single divinity. We perceive that it offered sacrifices to an entire series of gods and goddesses. Thanks to that circumstance, the Eugubine Tables furnish us with precious indications of the Pantheon of an Italian people. Certain names coincide exactly with Roman names. Such are Jupiter, Sancus and Mars. Other names present a resemblance more or less remote as Fiscus, Grabovins. Cerfius. Other names, again, were entirely unknown, as Vofonius. Tefer, Trebus, etc. We have here, then, the monuments of an indigenous worship which the Roman religion had not yet effaced."

I have taken from the Umbrian Inscriptions certain words which any one who has even a moderate knowledge of [rish or Scottish Gaelic, can have no difficulty in admitting to be Gaelic. The combinations which are formed between prepositions and personal pronouns in Gaelic, present a striking peculiarity of the Gaelic langrages. Pictet in his De l' affiutité des Langues Celtiques arec le Sanscrit (pp. 170. 171.) virtually maintains that the points of difference between the Celtic languages and the other members of the Indo-European family of languages are confined, " to the permutation of initial consonants, and to the composition of personal pronouns with prepositions." "Quantaux composès: pronominaux. . . . sills sont étrangers :ux autes branches de la famille ils offrent une analogie tres curieuse a vec les langues finmoises." In his Grammetica Celtica (p. 324.) Zenss writes "Pronominum in utraque lingua, tam Hibernica quam Britamnica ea proprietas est, ut non semper ut in aliis linguis Indeuropaeis per se posita plenam formam servent, serl etiam. . . . si sunt personalia post praepositiones suffigantur:" It thas appears that Scholars like Pictet and Zeuss regard the composition of personal pronouns with prepositions as a peculiar featire in the Celtic languages.

I have chosen to consider the prepositional pronouns which I am about to cite and which occur repeatedly in the Inscriptions, in and by themselves, and apart from the particular meaning which they
may bear in the place which they occupy in the Tables; in order that thons their purely Gaelic character may appear in its simplest manner.

Esto, as iad, asta, out of them.
Este, aiste, out of her.
Eeisteso, aiste so, out of this one, andeigh so, atter this.
Est, asall, out of thee, asda, out of them.
Eso, as so, out of this.
Dersia, dar iad, thar iad and tharta, over them.
Dersas, der thar iadsan, thartasan, over them.
Dersans, thar iadsan, thatasan, over them or over these very persons.
Versa, air ais, back and backwards.
Erus, air ais, back and back wards.
Eno, anne, ann, in him.
Eacim, annam, in me, and agam with me aiy mi.
Erer, cir ear, air anear, on the east.
Erar, air iar, air an iar, on the west.
Enom, ann mi, annam, in me.
Ero, air e, air, in him, air thu, ort, in thee.
Erom, cir mi, orm, on me.
Esome, asmi, asam، out of me.
Aso, us thue, asced, ont of thee.
Ouse, o or bho thusel uait uaitse, from thee.
Ose, o blo se e uaithe, from him.
Firru, eatorra, between them, ecular thu, between thee.
Deitu, do thusa, duit, duitsa, to thee.
Difne, do sibh, duibh, duibhse, to you.
Fri, (Irish) with by.
Frift, fri sible, with and by you.
Frite, fri iad, iadsen, by and with them.
Treif, tre sible tromkeibl, through you.
Vorse, blo siblse, bluuibhse, uaibhse, from rou.
Pusi, blio si i, from her.
P'use, bho se e from him.
Reste, ri or ris ise indsan, to her, to them.
Miutha, riuthasan, to them, themselves.
I shall now cite several words which reveal their Garlic lineage at a glance, and which along with the prepositional compounds that have
been enumerated, go far to establish the Gielic character of the Umbrian Is wiptions.

Enetu, an wite, in place of.
Wesimei, a m' ionnsuidh, to or to wards me, ionnsaighim, I attack.
Ficlu, fo cheile, asunder.
IIonira, con irath, one time, an truth, the time, when.
Screilitor, sgriosadair, a destroyer:
Verisco, fearaches, manhood.
Esona, easuon, witnout, one, disagreeing.
Socair, quiet.
Ferine, fearran, ainn, land.
Arvio, arbhar, corn.
Meri, or oir, gold.
l'ini, fainne, ring.
Poni, bonn buinn, coin coins.
Scalscto, sgaoil, scatter.
Tases, pl., Tasetor, toisecuch, a leater, the Intos/e in MacIntosh, the Toisecth of Mediaeval times in Scotand.
Surunt, suor, free, coonta, consent.
Serse, srac, tear.
Seritu, saruich. harass.
Esisco, susuich, satisfy.
Paca, bac, restrain.
Osatu, osadh, osaim, I desist.
Fistu, faighteadh, faiyh, get.
C'overtor; cobhartach, booty.
Prestotuc, brisdecdh, brisd, break.
Portatue, furtaich, help.
Eine, feadhuinn, people, fine, a tribe.
C'uirneese, cuir, put.
Moke, mecoidh, threaten.
Ote, eruthon, even.
Mucatu, mothuich, perceive.
Arsir, aithris, tell.
Porsi, purr: push.
Trebeit, tearb. separate.
Ehcleir, ath-ghlac, capture again.
stent, sannt, desire.

T'ote, tath, lathaim, (Ir.), unite.
T'uer, taobh, side with.
Noratu, an iarruidh, iarr, ask.
Strusku, sruthail, streachlaim, I tear.
Fursio, bris, break.
Tenitu, thig, thainiy, come.
Persontu, brosnuich, incite.
Efrur, tabluair bheir, give.
Aitu, cidich, confess.
T'urse tuirse, tuir, lament.
Eiscrent, Eascarcaid, enemy.
Fratrus, brath, betray.
(lecer, acarach, kind, gentle:
Peracri, furachair, watchful.
Piluafi, bho blucaillh, buadhmhar, victorions.
Tertiu, deireadh, last.
Sir, sir, ask.
Sorsalem, surdail, surdamhail, active.
Mescapla, mishiobhalta, uncivil.
Another strong argument in favour of the contention that Gaelic is the language of the Umbrian Tables can be extracted from the numerous words or verbs that terminate in mu, me, am, om, e. g.

Arsmo, arsa mi, said I.
C'arsome, greasaim, I hury.
Hondome, contuiyhim, I assent.
Spahmei, spochaim. I rob.
Persnimu, brosnuighim, I incite.
Purome, tabhairsam, tabhraim, I give.
Pertom:, bhruthaim, I bruise.
T'ettome, dithighim, I crush.
Tolcome, tudhchaidhime, I come.
l'ocucom, boghaighim, I beseech.
Those verbs readily disclose their Gaelic character: The terminations mei, me, mo, am, mu, are merely the first personal pronoun which is appended to Gaelic verbs. I have given the Irish equivalent of the velb; which have just been cited. A present tense is recognized by Irish Grammarians, while in Scottish (iaelic the tenses are, the past and the futare merely; the other
tenses, the present among the rest, being compounded of the sub. stantive verb and of portions of the verb that is under consideration. It is the present tense of the Irish verb that I have given as the equivalent of the verbs which I have taken from the Inscriptions. Several, indeed all, of the verbs in question could easily assume a Gaelic form and preserve the distinctive termination of Gaelic verbs, e. g.

Honloms, dh-contaich mi, I assented.
Carsome, ghreas mi, I hurried.
Persnimu, bhrosnuich mi, I incited.
Pertome, bhruth mi, I bruised.
Purome, bleerr mi, I will give.
Tettome, dhithich mi, I destroyed.
Todcome, thainig mi, I came.
Spahmei, spoch mi, I robbed, etc.
It is thus the past tense of the Gaelic verb that represents the present tense of the lrish verb. It may be well to observe that the aspiration of words in Irish Gaelic is effected by placing a lot over them, and that in Scottish Gaelic aspiration is effected by insertin; the letter h. It may be remarked here, that the evidence which the verbs under consideration furnish, is in farour of the contention of Irish Grammarians respecting the antiquity of the present tense, and against the opinion of Gaelic Grammarians, that Scottish Gaelic is more ancient than lrish Gaelic, because it has a past and future tense merely, and because it is thus on the same level with the Semitic languages so far as the number of tenses is concerned.

Stahmei, stad mi, shuidhich mi, I settled.
A same, cuscm, I make.
Smuirsime, smuais mi, I break to pieces.
Tertiamne, tairtli, him, I sare.
Randeme, raoncim, I defeat.
T'otam, tathain, I unite.
Proman, pronnaim, I give.
Pesnimu, beascnaighim, I grant.
Eturstalmu, dh- eadar shuidhich mi, I interposed.
Termnome, thearmunnaich mi, I protected.
Here are additional verbs which occur in the Inscriptions, and which corroborate the argument that I have sought to extract from
the termination $m u$, me, am, om, representing as those monosyllables do the first personal pronom in Gaelic.

The preterite tense, Indicative, Active, of modern Irish verbs is thus declined, e.g., mol-aim, I praise

Singular.

1. Mholas.
2. Mhol-ais.
3. Mhol-se.

Plural.

1. Mhol-amar.
2. Mhol-abhar.
3. Mhol-adar.

There are to be found in the Umbrian Tables several words with terminations similar to those of the plural which has now been given e.g.

Fisier, bhiomar, we were, or bliobhar, you were.
Arsmor, arse mar, we said.
Totaper, Totar, tath-abhar, you joined.
Surur, shroor-abhar, you freed.
Theer, thriobh-abhar, you sided.
Serfurr, shearbl-abhar, yon embittered.
Motar, mhoil-abhar, you vowed.
Nomneper, dh-aom-abhar, you inclined.
Fomneper is a verb that occurs frequently in the Inscriptions. It is doubtless the second person plural, past indicative, active of nom, I incline, ctomuim. Zeuss contends that nu or no prefixed to a verb is the mark of a completed action. In this manner, the presence of n in nomneper, standing as it does for nu or no, can be satisfactorily explained. Pictet in his well-known book to which reference has been made already, remarks (p. 152.) " that the second person plural of Irish verbs has two suffixes which are commonly used, thaoi and bhar." The second Irish form bhar which has, I believe, no analogy in any other European language is employed in the present, the past and the future, e.g., Mealabhar, you deceive; Mealfabhar, you will deceive ; thangabhar, you came." According to the high authority of Pictet, therefore, bhar as the termination of the second person plural of verbs is confined to the Celtic languages. The words which have been already adduced along with other words in the Inscriptions that may fairly be construed and expanded in a similar manner, clearly lead to the conclusion, that bhar as the termination of the second person phural of verbs is to be found frequently in the Umbrian Tables, and that additional evidence is thereby furnished in favour of their pu'ely Guelic character.

Fisi, fisim, fisiem, fisie, fisier, fisio, futu, pifi, lue, sei; hure are words which occur very often in the Umbrian Tables. They are doubtless parts of the Celtic substantive verb, and present to us, therefore, very old forms of thit verb. The very sound of those words will convince any one who has even a slight acquaintance with Gaclic as it is spoken, that, their Gaelic character is ummistakable; for they call up several forms of the substantive verb as it is known in Gaelic, e.g.

Fisi; bhae \mathfrak{r} ibhe esan or ise, he or she was.
bhidhis, thou wast, bhi se, he was, bhidleas, I was.
bhidheadh e or bhiodh e, he would be.
bi thusa or bisa, be thon.
bitheadhe or i, let him or her be.
bithidheor i, he or she will be.
Fisim; bitheam, let me be, bha mi, I was.
Fisiem; \} bithidh mi, I shall be.
bidhim, I am accustomed to be.
blidhinu, I used to be.
bhithine, I would be.
Fisie; bi'hidh e he will be, bithecall e e, let him be.
blithoadh e, he would be, bliodlh i.
bhidheers, I was, bli se, he was.
bia or biaillh se, he will be.
bidhir, bir, thou usually art.
Fisier; bliomar, we were, bhiolhar, you were.
bhiodar, they were, biair, thou shalt be.
bheithi, you could be, beidhir, thou shalt be.
bhatar, incththar, was; bitear bithecr. will he.
blitheall iad, they wouid be ; bla iall, t..ey were.
Fisio; bithibh, be ye, bha sibh, you were, bithidh s,obl, yon will be, bhitheculh sibh, bhiodh sibh, you would be.
bithi, you are; bhidhis, thou art; bidhidh, be ye ; bhithi, you were.
Frutu; blere theu, thou wast, bu thu, it was thou.
bleitherth thu or blio th tu, thon wouldst be.
bli,hlhthea, thou wast wont to be, blithi, you were wont to be
biathroi, you will be, bheidhthea, you would be.

Pifi; bu mhi, it was I, bithibh, be ye.
bithi, you are, bhithi, you used to be.
Bue: \} bue, it was he, b 'e.
Buclh, $\}$ ba $h-e$, it was he, ba, it was, buelh, it was.
$f a$, it was, bluus, budh, bidh, pu, it will be.
Sei; is e or is i, it is he or she, $s e$, 'si.
is he or it e, it is he.
is $s i$, it is she.
It is thus abundantly evident that there is a close correspondence between fisi, fisim, fisiem, fisier, etc., and numerous portions of the Irish and Gaelic Substantive verbs. There is likewise a close correspondence between some of the words in question and certain parts of the substantive verb in Armorican, e. g.

Imperative $B e z$, be thou.
Mood. Bezet, let him or ber be.
Beaomp, let us be.
Beait, he ye.
Bezent, let them be.
Beainn, I shall be.
Future Bozi, thou shall be.
Indicative. Bezo, he shall be.
Beaimp, we shall be.
Bezot or biot, you shall be.
Beaint, they shall be.
[n consideration of the conclusive evidence that has been adduced that fisio, fisi, fisim, etc., belong to the Substantive verb in Gaelic; is it not a little surprising that fisi has been magnified into a Divinity Fisus by Bréal and others, and that ocre Fisi has been metaumphosed into Colli Fivio, the Fisian Hill? Can elaborate ingenuity go to a more untenable extreme, or expend itself in more unlikely and indefensible conjectures?

As Umbrian Gaelic is so very much older than any Gaelic writings of which hiere has hitherto in modern times been any knowledge, it is from the Inscriptions themsolves that all grammatical rules and forms must be derived. A few Grammatical references will not here be inappropriate, as bearing on the Gaelic character of the Tables, There are rarious terminations of the nominative singular of nouns e.g., ei, ne, a, tor, as, re, te, us, u. Forms of the genitive singular are
is, no, a, o. Forms of the dative singular are a, ef, o, etc. The nominative plural of proper names generally terminates in $e r, i r$, ar, e.g.

Pelmner, the Flamonenses. Aseriater, the Asseriates.
Perscler, the Perscli. Peihaner, the Vicumniae.
Rufier, the Orbii.
Salier, the Salassi.
Atiersir, the Taurisci
Popler, the Populonii.
Treblanir, the Triumpiliui.
Nonair, the Nannes.
Hoier, the Euganei.
Paveller, the Medulli.
Serser, the Isarci.
Tesonocir, the Ticinates, etc.
The common termination in modern Irish and Scottish Gaelic for patronymics and national and tribal names is ach e. g. Albannach, a Scotchman; Eirionnach, an Irishman; Sasunnach, an Englishman; Frangach, a Frenchman; Caimbeulach, a Campbell; C'amaronach, a Cameron. There is thus a marked difference between the Umbrian and the modern mothod among Gaels of expressing patronymics and tribal names. In his minute examinaticn and collation of the Celtic languages, Pictet was led to conclude, "En Irlandais, ara, aire, ar, air, oir, et on gallots awr forment principalement des appellatives et des noms d'agents." I believe that the endings $e r$, $i r$, ar of the plural nouns which I have cited, represent fearca, fir, the Grelic words for men. Very common in Gaelic is the combination of fear with other nouns to indicate a trade or calling, e. g.

Clachair, a mason. Seoladair, a sailor:
Saighdear, a soldier. Sgoilear, a scholar.
Figheadair, a weaver, etc
The plural of such nouns as those ends in an or ean.
Fear, a man, is thus declined:

Singular.
N. Fear,
G. Fir,
D. Fear,
S. Fear,
V. Filir,

Plural.
Fir, Feara,
Fhear,
Fearaibh,
Fear,
Fheara,

In the numerous proper names which occur in the Inscriptions with the ondings $e r$, $i r$, ar, in the nominative plumal: the Gaelic fir, feara is present; so that the words will signify, Perscler,
the men of the Perscli, Popler, the men of Populonia, etc. Those terminations are eminently Gaelic; and though the collocation or composition of the proper names in question has no exact counterpart in modern Irish or Scottish Gaelic, resemblances there are of such strength and clearness as to estabiish the Gaelic character of those Umbrian syllables or endings.

In Yrish and Scottish Gaelic, in Manx and Welsh though not in Armorican, adjectives are declined, and, therefore, undergo inflection as nouns do. The same peculiarity attaches to adjectives in the Umbrian Inscriptions, e. g.

Avvei mersta,	Aveif merstaf,	Merste ancla,
crer peihaner,	Ocre fisie,	Ocriper fisiv,
Ocrem fisiem,	Ocre fisim,	Totar ijovina,
otar ijovinar,	Tote jovine,	Totam ijovincm,
Toteme jovinem,	T'ote tarsinate,	Totar tarsinuter
otam tarsinatem,	I'rifo tarsinatem,	Trifor tarsinater,
Trifo tarsinate,	7 'ote ijovine erer	
Nomner Naharcer	puseser, Tuscom N	rcom T'apuscom no
Purdito fust	Capif purclita,	Parditom fust,
Peracrei,	Peracrio tursituto,	Acre tlatie,
Acre casilos,	Casilis Herti,	Casilate diram Herti

Mersta, ocre, tote or tota, trifor, nomnne, purdita, peracrei, casiler: Here are adjectives, whether verbal or otherwise which indicate conclusively in the comnection where they are found, that they fulfil the condition of Celtic adjectives, and undergo inflections in the same manner as the noums that they qualify do. I am disposed to regard ocriper and ocreper as a comparative form of ocre (i. e. acarach). Zenss indeed calls attention to a rare termination thir of the comparative degree of adjectives. There is a resemblance between the per of ocriper and the thir which is mentioned by Zeuss.
The Infinitive of verbs in Irish and Scottish Gaelic generally ends in $a d l h$. In the Umbrian Inscriptions $t u$ is the common ending of the Intinitive, corresponding thus very closely to $t \in$ and $t a$, the ending of the past participle of Gaelic verbs. It is evident that the form of the verb which indicated the Infinitive in the Umbrian language, now appears in the past participle of Gaelic verbs. The correspondence between the Infinitive forms of the Inscriptions and the past participles of modern Gaelic verbs, is so apparent as not only to
be readily recognized in the case of several verbs but also to furnish another argument in favour of the Gaelic character of the Umbrian Tables, e. g.

Merstu, to err, mearaighim,
Ehveltu, to revenge, aichbheilich,
Serse, to tear, srac,
Seritu, to harass, saraich,
Esisco, to satisfy, sasaich, Carsitu, to hurry, greas,
Habitu, to desist, ob,
Paca, to hinder, bac,
Pikatu, to conquer, buadhaich,
Narctu, to ask, iarr,
Feta, to get, faigh,
Trebeit, to separate, tearb,
Ditu, to press, dith,
Osatu, to desist, osaim,
Tenitu, to come, thig,
Stiplo, to go, siubluail,
Stiplatu, to cast out, stapla. (Armorican)
Covertu, to assist, cabhuir,
Amboltu, to hinder, amail,
Portatu, to help, furtaich,
Stahito, to arrange, suidhich,
Prestotu, to break, brisd,
Etuto, to refuse, eitich, Vesticatu, to hire, fasdaidh, ditu, to confess, aidich,

Past Participle.
mearaighthe. (Irish)
aichbheilichte.
sracta, sruchdtet. saraichte.
sasaichte.
greasta.
obta, air obadh.
bacta, air bacadh.
buadhaichte.
iarrta.
faighte, faighteadh.
tearbta.
dite.
osta, air osudh.
air tighinn.
siubhailte.
cabhairte.
amailte.
furtaichte.
suidlicchte.
bliste.
eitichte.
fasdaidhte.
aidichte. Combifiatu, to vow together, comhbhoidich, comhbhoidichte.
Tefruto, to give, tabluair,
Furo, to bend, far,
Tesedi, to cut, teasgaim,
tabhairt, toirt.
fiarta.
teasgta.

It is vain at this distance of time, and in the absence of any trustworthy guide whatsoever, to entertain the hope, that it will be possible to reproduce with accuracy the peculiar method which the Umbrians followed in pronouncing their language, or to ascertain the exact value which they attached to any given letters or syllables.

An internal argument which admits of great elaboration can be drawn from the Inscriptions themselves in support of their Celtic character, inasmuch as several interpretations of given phrases present themselves with instant readiness;-interpretations that are purely Celtic and that have to do with Celtic roots and words, and with those alone. A few illustrations will suffice:

Table VI. a.
Line 1. Curnase, chuirinn se, I would place him.
Chuir iade, They place him.
C'huir iad esan, They placed him, i. e., that very person.
2. Eesteso, An deigh so, after this.
aiste so, out of this one.
5. Stahmei, stahmeitei.

Eisidhim-amaoid I decide, we decide.
Stad mi, I stopped.
Shuidhich mi, I settled.
Esmei, aicme, tribe.
Is mi, it is I.
'Us mi, and I.
6. Stu. sosda, a city.
aiscle, out of her.
stigh, inside.
stath, substance.
7. Sue. suuip, exchange.
so e, this is he.
shuidh e, he sat.
8. Verfale. buair fala, tempt in vain.
fir a' bhaile, townsmen.
9. Nesimei. a m^{\prime} ionnsuidh, towards me.
ionnsuighinv, I attack.
thimndaidh mi, I turned.
Somo. seasaim, I stand.
sheas mi, I stood.
so $m i$, here I am.
suidhidh mi, I will set.
11. Eine. fine a tribe.
feadhainn, people.

> 12. Foserclome. fiosrachailim, I knowing. Bha sireadh leam, there was seeking by me.
> Bha aircill leam, there was lying in wait by me.
13. Smursime. smuais mi, I broke to pieces.
smur chum, to the dust.
19. Vasor veristo. bhasmhor fearachias, deadly manhood.
fasmhor fearachas, thriving manhood.
20. Paca ostensendi eso iso ostendu.
bac ioc dean cain a siad ioc dean.
To withdraw the tribute which they paid.
bacadh an staonachaidl a bha iad a' staonachadh.
checking the inclination to which they were tending.
21. Teio-subocav suboco,

Tiom-suighim suibhich, To gather together, a gathering. Tha sibh subhachas subhach, You are cheerful in your happiness.
22. Fos sei pacer sei,

Fos ise feochair ise, Still let your valour appear.
Fos sibl blacar sibh, also you, you were hindered.
24. Tio-esu, Daimheach, a relative.

Bha esan, he was.
Tha esan, ie is.
27. Virseto avirseto fas est,
farsuing anfluarsuing fas aisld, From near and from far pour out.

Fearachas so am fearachas so fas aisde.
This manhood growing out of that manhood.
55. Sevom surur purdovitu,

Suaip saorsa furtaich-baidh.
In exchange for independence, helpful alliance.
'Se bhuam shaorar furtaichte.
It is from mie the assisted men saved.
Mefa spefa,
Meas easba, little respect, disregarding.
fo mi, fo sibh, under me, under you.
Table VI. b. .
By means of me, by means of you.
Line 5. Ape sopo postro peperscust.
a bho sabh bho eadar biblisaigh siad.

By which they were deprived of mutual help. fein sheap bho stri a dh-fhabradh cuis, etc.:
He himself went stealthily from the strife to favour the cause, etc.
35. Sehemo atropusatu.

Cenomani aithre barc.
The Cenomani repenting desertion.
C'enomani bluctar a putadh,
The Cenomani they were pushing.
47. Crinca trohatu, gairm yu trei treig, to summon to withdraw.
crion cath ro bludar, they were (men) of small fight.
48. Efrar. Tabhair,

A bleirear that will be given.
52. Ehesu-nosne ier ehesu
ach-un suaip foir ach.
But (the Populonans) who refuse to exchange help.
ach a so nuas blace iad ach a so.
But hereupon down they were, but hereupon.
63. Simo. I'eam, to warn.

Is iomadh. There are many.
Table VII. (a)
Line 2. Atrof, aoibl er ibll, ye tribes.
$a b r a i b h$, say ye.
3. Tiom-plener. daimh-fhlann, blood relations.

D'am bheilear, to whom there is.
De'm bheilear, of whom there is.
Evidence is furnished by their Tables that the Umbrians were for a long time in possession of their alphabet, whether it was borrowed by them from the Romans or not. The process of phonetic decay from which the Gaelic language has suffered so severely that the orthography is no safe guide to the pron maciation of Gaelic words, had already manifested itself. Thus Anderse, Marte, and Martier represent Ancherse, Marche, Marchier. Had the alphabet been a recent acquisition, it would have been employed phonctically. Happily for the philologist, the Umbrian orthography like that of all the Celtic languages, with the exception of Manx, is historical.

Fortunately the name of the author of the Umbrian inscriptions is given in Tables V. b. and VII. b. He is Herti, King of Umbria,
and Suzerain over all the Celtic as well as over many Ligurian tribes from the Rhaetian Alps to the northern border of Umbria, and from the confines of Gaul to Istria. His name contains the root of the well-known word Arthur, and corresponds with Art, the name of more than one king in Irish legendary history. There are even some curious coincidences between the story of his Tables and the history of Art Aonfhir, whe is said to have reigned in Yreland in the middle of the second century A. D. (Keating, p. 248.)

Table VII. b. ends with the words sins a ccc., which may be interpreted "the 300 th year of the age or era." The question at once: suggests itself, "Who can tell when the Umbrian era began?" The other Tables mention Marcius Philippus, Valerius Flaccus, L. Porcius Licinus and Hasdrubal, but not as contemporaries: so that our only safe inference must be that the events recorded must have been later than 180 B. C., when Marcus Philippus made his unfortunate campaign in Liguria. (Livy xxxix, 22.)

The Umbrian Tables are rhetorical in the extreme, and abound in repetitions that are apparently unnecessary and indeed useless. Some valuable fragments of history are to be found in the Tables. The enumeration of tribes and peoples is of great importance to the Ethnologist, e. g. the three divisions of the Tyrrhenians, the five divisions of the disloyal Perscli, the fourteen tribe; of Ijovine, and the five tribes of the Insubres.

Liguria, Cisalpine Gaul and Venetia are the three regions with which the Tables deal. There is much difficulty in identifying the names of the places that are mentioned, as well because the information which can be gathered regarding such places from classical historians and geographers is very meagre, as because the Romans either translated the native Celtic name, or so adapted it that it became. significant and euphonious to Latin ears.

Concordia, Patavium, and Verona in Venetia were Celtic settlements, which in the Umbrian Tables were called Andersa, Hebetafeben and Purdin. The well-known cities Cremona and Placentir were in Umbrian, Crabove and Fiso-Sansie. Though, with the changeful circumstances of those old Celtic tribes, the names of places must have disappeared, the Italian topographer may find some of the ancient names still lingering in obscure portions of the region with which the Tables deal.

Summary of the Uhbrian Narrative.

The Perscli, a generic title, embracing most of the tribes of Western Venetia and Transpadana, who did not belong to the Cenomani or to the Insubres, formed the Umbrian army of occupation in those regions. The tribes composing the Perscli appointed the general of the whole army by rotation. When the turn of the Asseriates of Venetia to elect a general came round, they nominated one of themselves who bore the name Parfa. The other tribes were not pleased at the election of Parfa, because they wished to retain their former general, whose name was Appei. The army revolted under Appei, and was favoured in so doing by the city Concordia, which though Celtic in origin, was under the joint jurisdiction of Pisa and Luna. Appei and his insurgents, joined by the Taurisci, Flamonienses, Isarci, Cenomani, and other tribes eager to be free from paying tribute to Herti, sacked Tarvisum in Venetia, which stood in friendly relations to Parfa, as a matter of revenge; and then passing into Transpadana took possession of Tetellus where they established themselves. Encouraged by this revolt, the Insubres who had joined Appei and had doubtless been incited by him. marched southward to the Padus, pursuing the fugitives from Tetellus. Herti, gathering an army in Umbria, marched northward and defeated the ravagers at Brixellum. Nevertheless, the subsequent history shows that a large body of the Insubres still remained in Cispadana, north of the country of the Apuans.

The time was one of general upheaval. The Populonians of Etruria took advantage of it to extend their colonial system, attempting to gain the A puans and Vicumnians of Liguria and succeeding in detaching from Umbria the Adrians and Fiscaglians of Venetia, and in taking possession of Edro ; at the same time inciting the mischievous Concordians to make trouble in the north. One of the tribes most hurtful to Umbrian interests was that of the Triumpilini who dwelt north of Brixia. They endeavoured to withdraw from their allegiance, but with very partial success the Yicumnians, Ticinates, and Boii. However, they succeeded, in withdrawing Brixia and its colony Verona.

The Crabovian tribes, in whose country the Roman colony of Cremona was situated, thought the time favourable for reconquering their ancient seat, and besieging Cremona, called for the aid of the

Triumpilini. The whole of the revolted Perscli, from Eporedia, Brixia, Ateste, and Vicetia, with the Vocontii, who dwelt about Vercellae, responded. Herti summoned the faithful tribes of Ijorine or the race of Feinne, to the relief of Cremona, and apparently succeeded in raising the siege, though in his rhetoric he forgets to stite the fact.

Taking advantage of Gallic dissentions, the Genoese of Liguria either took Placentia, or taking possession of the surrounding country, besieged it. Herti, alluding to this result of clisunion, summoned the Ticinates and the faithful Fenians to aid him in delivering this city from its invaders. He next turned his attention to Bergomum which was similarly besieged by the cebellious Perscli. Through the loyal Boii, he succeeded in winning back Verona. The people of this city and Vannia endeavoured to get Armipo,-the Nabepara of the Etruscan Tables, who had been sent from Umbranum in the country of the Boii to quell rebellion in Venetia, but who had himself rebelled-to join them in loyalty. He refused to do so, and going westward tried to incite the people of Comum to deeds of violence. The example of Verona, however, was contagious and many disloyal tribes even among the Perscli and the Cenomani, returned to their allegiance. The original inhabitants of Bononia and the Claternians gave assistance.

Appei made his way towards the Apuan border, and Anovi-himu, the Annovi-gabe of the Etruscan Tables, whom Herti ordered to repel the invasion of A ppei, was won over by the rebel general. Thus the Albans were added to Umbria's enemies. Yet Bobium, the Apuans, and the lord of Compiano remained faithful. Herti protected the Ligurian border by the Etruscan forces, and by the Trian tribe about Clastidium. He placed the Anamani in Umbranum to guard the Umbrian border proper, and sent the Umbranians to guard the Venetian border at Patavium. As a reward for their loyalty, he granted independent union to the Anamani, Ædui and Umbranici. In the Table he enumerates fourteen loyal tribes, half of whom seem to have dwelt in Liguria, and the other half in Venetia and Transpadana.

After this, he turned his attention to Venetia where the Populonians were carrying on war with the aid of the Adrians and Fiscaglians; while the Salluvii, Marici, and Albans in Western Transpadana
and Liguria were acting in concert with them. He called Ravenna on the north and the Epanterii of Liguria on the west, to aid him, and commissioned two Vetulonian generals Marte Ijorsi and Honde Serfie, to exterminate the Saluvii and the Marici who were special objects of his hatred. Again, we find him at Sesterno on the borders of Liguria, engaged in expelling the Insubres with the aid of the peoples of Comum and Cameliomagus. The Taurini in Dertona were wavering, but the Inscription ends before the result of his appeal to them can be stated.

The two short Tables VII. b. and V. b. contain, the one an injunction to have no dealings with Appei, with the Taurisci, Populonia and the lord of Concordia; the other, a statement of the tribute, which the Taurisci, Cenomani, Tigurini, Flamonienses and Isarci refused to pay, and of the larger tribute imposed upon them by the new masters.

The Umbrian Tables, therefore, form an historical document, dealing as they do with a very important period and with very important ci:cumstances in the history of that portion of Italy which is embraced by them. From the ethnological and geographical notes which are appended, it can readily be seen, that powerful evidence of a corroborative kind in favour of the interpretation of the Tables which is now advanced, cau be gathered from Greek and Latin historians and geographers. An interpretation, then, which presents an important and continuous narrative and which furnishes an intelligible and sufficient reason for the preparation of such Tables at all, is a priori to be regarded as more sensible, and as prssessed of a much larger measure of verisimilitude than the interpretation which Breal and others have offered. To contend that words denoting lapwings, and magpies, and ravens, and crows, etc., occur in the Umbrian Tables; to be told that such words as smurrim, tettum, rantim, pertum, etc., are Latin words, while it is clear that if they are Latin words they have the very questionable merit of being original and altogether unintelligible to the ordinary Latin scholar; to be told by Bréal that such interpretations as these are to be put on some of the phrases that occur in the Tables (though no one has elsewhere ever heard of a Fisian Hill, and of deities bearing the designation Die Grabovie, Trebo, Jovio, Marti Grabovie, Fiso Sancio) Die Grabovie piato collen Fisium, sues altiles tres facito Trebo Iovio pro
colle Fisio ; tres boves facito Marti Grabovie pro colle Fisio, sues lactentes tres facito Fiso sancio pio colle Fisio:-such considerations are of themselves a priori not very acceptable, and do not deserve to be regarded as offering a satisfactory explanation of a serious document. The honest contention must be strengthened as it can be, and is, by any amount of cumulative evidence, that such an interpretation as Bréal has advanced, intangible and chimerical in many of its forms and explanations, must be regarded as altogether inferior to the historical interpretation of which a somewhat full summary has been given.
Note :-It has not been found possible to print in extenso the decipherment of the Umbrian Inscriptions, together with the Geographical and Ethnological notes, that are appended, all of which are in readiness.

GEOLOGICAL AND MINING SECTION.

A Committee of the Geological and Mining Section, consisting of Wm. Hamilton Merritt, F.G.S., Chairman ; Archibald Blue, Secretary ; Dr. P. H. Bryce, Mr. John Notman and Mr. R. W. Phipps, have made a Report on the Mining Industries of Canada, which states:

1. That as shown by successive anmual reports of the Geological Survey, extending over a period of more than forty years, the known mineral resources of our country are a vast and valuable possession. In precious metals there is reason to believe that we have rich occurrences of gold and silver; while in the economic minerals the country is pre-eminently rich in iron, copper, gypsum, apatite and coal. We have also manganese, barytes, antimony, plumbago, asbestus, salt, petroleum, slates, building stone, marbles, limes, cements, mineral pigments and minerals applicable to the fine arts in proved abundance.

The recent discoveries of copper and gold in the vicinity of Sudbury, of new silver lodes in the district of Port Arthur, of anthracite and bituminous coals on the eastern slope of the Rocky Mountains, as well as various new discoveries of gold, silver, lead and coal in the heart of British Columbia, now accessible by means of the Canadian Pacific Railway, encourage the hope that a systematic survey of the country will reveal stores of vast extent and richness, the existence or locality of which is not now suspected.
2. Your Committee have obtained information relating to the mineral and metallurgical products of the United Kingdom of Great Britain and Ireland from the annual reports prepared by Her Majesty's Inspectors of Mines, snd to the same in the United States from returns compiled by the "Division of Mining Statistics" of the United States Geological Survey.

From one of the first-mentioned reports a good deal of information has been obtained concerning the trade between the United Kingdom and her colonies, and also the production of the principal colonies.

The data for the tables illustrating the trade between the Dominion and the United Kingdom has been obtained from our Trade and Navigation Returns, and the trade with the United States from the same source, and also from the Commerce and Navigation Returns of the United States.

While these latter tables have been made up to the year 1886, though it is feared more or less imperfectly owing to varying and incorrect returns, much of the trade of Great Britain, both with her colonies and the rest of the world, is from the returns of the year 1883, which was the only report available to your Committee until quite recently, when the returns for 1884 and 188.5 were received; but it is found that in the aggregate the variation between the returns for the years 1883 and 1855 is so smell, and the work of sifting out the special returns for the colonies (which are not kept separate) so laborious, that it was thought the returns above mentioned would serve every requisite on this occasion. For example, the general summary of the mineral product of the United Kingdom for 1883, was about fifty-six million pounds sterling, for 1884 about sixty-one million pounds sterling, and for 1885 about fifty-eight million pounds sterling.
3. The tables accompanying this report reveal to us at the first glance the small mineral production of Canada, not only in contrast to the United Kingdom, and to our neighbor the United States, but as compared with the other leading colonies.

Taking the figures collected by Her Majesty's Inspectors of Mines for 1884 we have for-

African Colonies
\$15,905,181
Asiatic (including Indiu)...... 5, 532,089
Australasia . $47,885,069$
British North America 6,108,995

The following table makes a brief comparison between ourselves and our neighbors showing the total number of miners employed in both countries and the production of copper, iron and salt in the last census years respectively :-

	Canada. 1880.	United States. 1879.	Ontario. 1880.	Michigau. IS79.
No. of miners.	6,541	234,228	493	6,978
Copper ore, tons.	8,177	1,007,490	170	938,960
Iron ore, tons	223,057	7,974,806	91,887	1,83'7,712
Salt, bbls.	472,000	3, 521,221	472,000	2,485,177

In 1886, according to the Report on Minerals in Canada by the Geological Survey, the total value of mineral production vas $\$ 10$, 5 29,361 (or $\$ 11,529,361$, errors corrected) while the total value of mineral production in the United States in the same year, according to the Report on Mineral Resources by the Geological Survey of that country, was $\$ 459,327,588$-being a proportion of about 1 to 40 .

Your Committee are emphatically of opinion that this great disproportion does not exist in the mineral resources of the two countries.
4. From Table "A," accompanying this report, it will be seen that for the year 1880, the imports into Canada of mining and crude metallurgical products from the United Kingdom were $\$ 6,880,103$ and from the United State: $\$ 3,448,776$, while the exports from Canada in the same year to the United Kingdom were $\$ 591,632$ and to the United States $\$ 3,1.87,163$.

The above figures are from the Trade and Navigation Returns of the Dominion. We give a separate table "Aa," compiled from the United States Trude Returns in order to show the remarkable difference there is in the returns of the same article given by the two countries.

In each case there was a balance against as of about six millions of dollars, but it will be borne in mind that the tariff of the United States is in many productions practically prohibitory.

Again, taking Canada's exports of produce of the mine to Great Britain, the United States and all other countries for the ten fiscal years 1877-1886, we have the following figures:

Year.	Great Britain.	United States.	Other Countries.
	8	8	\leqslant
1877.	1,061,201	2,413,525	169,314
1875.	142,374	2,472,979	200,994
1579	265,305	2,636,334	181,261
1850	216,867	2,495,624	164.860
1851.	253,652	2,346,529	167,64S
1582.	311,456	2,418,021	284,096
1883.	443,531	2,198,014	329,041
1884.	519,67?	2,505,501	221,919
1855..	4S5, 408	2,89S,518	255.611
1586.	559,832	3,115,696	245,619
	4,289,59S	25, 500,741	2,220,363

5 Believing it would be of interest to ascertain the trade of the United Kingdom and of the United States as well as that of Canada with the world at large in minerals and metallurgical products, your Committee have prepared two sets of tables with this in view.

The first set " B " take the exports and imports for the years 1881 to 1884 inclusive. They shew that on the average the values of exports were, from

> Great Britain.
> \$228,905,727
> The United States.
> i2,500.654
> Canada. 3,338,23!
and that the values of imports were, to
Great Britain............................... . . . 98,801,96 4

Canada.. 24,349,898
The second table " C " treats more fully with the detail and takes into consideration only the crude metallurgical products.

From this we get values of exports of

	United Kingdom.	United States.
Ores.	8 54,149,09	\$13,770,477
M.etallurgical Product.	176,560,594	65,262,079
Total	\&230,709,688	\$79,032,556

While the values of imports were:

	United Kingdom. $\$ 33,519,356$	United States \$ 9,033,986
Metallurgical Product.	33,433,902	54,775,490
Total	\$66,946,258	\$63,809,476

The first table shows us that the United Kingdom exports three times as much of minerals and their products as the United States, while she imports one-third more than the United States.

From the second table we gather that the United Kin :dom imports about four times as much ore matter as the United States and a little more than one-half the crude metallurgical product.

The imports of ores to the United Kingdom are chiefly copper ores and regulus, silver ore, iron ore, iron pyrites and phosphates, with lesser quantities of ores of lead, manganese and gold ; while the United States imports her largest quantities in coal, silver and iron ores and salt, with smaller quantities of clays, copper ores, phosphaies and asbestus, and a small quantity of most other economic minerals.

In crude metallurgical productions the United Fingdom imports very large amounts of copper, lead, tin and zinc, while the importation of the United States is chiefly made up of iron and steel, with tin, earthen and China-ware next in importance, and lesser amounts of fertilizers, lead, zinc and marbles.
6. A Table " D " has also been prepared shewing the trade carried on by the United Kingdom with Canada, with her other colonies and also with the rest of the world in mining and crude metallurgical product.

This shews that the colonies do as yet but a small proportion of business compared with that carried on by the United Kingdoun with
foreign countries, the imports to the United Kingdom in 1883 being:

> From Canada
> $8 \quad 312,471$
> From Colonies (other than Canada)
> 8,137,274
> From other Countries
> 58,281,8:35
> While exports from the United Kingdom were :
> To Canada
> \$ 7,765,344
> To Colonies (other than Canada) 51,616,930
> To other Countries
> 170,975,358

> A.
> From Dominion Trade und Navigation Relurns.
> Exrorts, $1 \mathrm{SS6}$.

Value in Dohars.

Imports, 1886.

	Value in Doliars.	
	8	$\$$
Salt-Bags fine, coarse ; bags coarse and bulk........		14,345
Brass-Tubing, bars, strips, wire clots, scrap, sheet and wire.	8S,625	298,960
Cement-Hydraulic, bulk and bags, and Portland....	104,592	15,441
Coal-Anthracite.		4,095,966
" Bituminous	199,661	2,527,807
Coke.	6,037	37,798
Copper--Bars, rods, scrap, pig, sheet and wire.	92,600	1:32,611
Earthenware.	413,223	32,367
Shina and porcelain.	76,859	9,372
Iron and steel-Dutiable and free, including scrap and wire..	4,625,841	1,091,986
I ead.	149,107	5,439
Marble.	3,138	78,575
Britannia metal, type and babbit metal, pewter	12,295	75, 2206
Asbestos (manufactured)........	548	6,2s:3
Mineral substances and ores (not otherwise specified)..	5,993,	23,882
Plumbayo-Raw and manufactured.	118	5,66:3
Mineral oil.		4:1,730
Products of shale, petroleum,	1	50,374
Gypsum (manufactured).	2,469	6,034
Diamonds and precious stones-Unset.	60,634	15,970
Paint-Fireproof		2,143
Slates.	1,060	25i,6:51
Building stone, gravite, flagstone and grindstone	16,312	S5, 513
Tinware and block tin	1:54,649	190,529
Zincware and block zinc.	-53,434	16,384
China-Fire, pipe and other clays and chalk.	18,650	16,55S
Brimstone..........		2,809
Tin plates	619,971	124,849
Litharge, lime and whiting.	35, 106	15,446
Nickel and bismuth.	70	2S9
German silver and silver sheets.	2	9,981
Sand and gravel.		2:,692
	36,580,103	89,448,776

Aa.
 From Commerce and Navigation Returns of the United States.

Exponts (to Canada), 1886.

Ore or Metal.	Value in Dolhars.
	${ }^{-9}$
Coal Anthracite	2,564,340
	751,595 27,080
Copper ore.	4,680)
barthen and stoneware	68,310
Chinaware	8,145
Iron. Pig, bar, carwheels, castings, plates and sheets, railroad bars or rails, iron and steel; wire, iron and steel.	374,182
Iron ore.	1,122
lime and cement..	25,047
Marble and stonc, unmanufactured; rooting slate and other manufactures.	228,639
Mineral oil-Naphthas, illuminating and lubricating.	479,576
Quicksilver.	3,66i5
Salt........... . . .	4,S73
Tin, manufactures of	38,593
Zinc -ligs, bars, and manufactures of..	11,439
	\$4,591,887

Imports (from Canada), 1856.

B.

Exports of the United Kingdom.

Imports of the United. Kingidom.

Artiches.	1881.	1882.	1883.	1884.
Metels:	t	${ }^{\mathbf{t}}$. $\mathbf{5}$	${ }^{\text {¢ }}$
Copper ore \& regulus	2,427,761	2,609,836	2,936,208	3,175,066
Unwrought, p't w'rt				
Iron ore....	2,349,411	3,063,091'	2,750,870	2,114,600
Iron in bars.. . . \because;	1,140,509.	1,396,457	1,236,735	1,165,948
Iron and steel, wro't				
Lead, pig and sheet.	1,385, 109	1,266,999,	1,305,388	1,229,325
Silver ore...	688,176!	750,079:	1,030,542	1,089,768
Tim in blocks, ingots, bars or slabs.	1,873,472	2,538,577	2,442,959	2,123, 999
'Sinc, crude in cakes'	755,666	708,877	640,302	700,154
Zinc, manufactures.	414,813	396,936	408,206	390,157
Petroleum.	1,952,444.	1,721,019	2,170;298	1.711,313
Pyrites, iron or copper'	1,202,281	1,422,684	1,356,083	1,244, 371
	48	,8?1,846	, 262,1	19,660,598
	1,969,901.	1,437,171	104,792,277	97,008,506

B.

Exports of the United States.

Articiles.	1581.	1882.	1883.	18S4.
	8	8	5	5
Brass and mmirs. of. . .	216,057;	322,439	287,S47	301.014
Coal-Anthracite......	2,091,928	2,589,837	2,648,033	3,053,5:0
" - Bituminous	739,532	1,102,898	1,593,214	1,977,959
Copper and monfrs. of.	876,395	748,456	2,348,004	ј, $59 \dot{5}, 559$
Iron and steel and			1140,427	
manufactures of * ..	16,608,767	17,551,322\|	(19,024,894	18,369,14S
Lead and mofrs. of. .	39,710	178,779	43,108	125,156
Marble and stone and manufactures of	629,795	614,4301	541,553	503,260
Mineral oils.	4),315,609	51,232,706	44,913,079	47,103,248
Quicksilve	1,124,955	959,128	1,020,827	427,219
Salt	14,752	18,265	17,321	-6,007
Tin and mafrs. of.	198,524	198,608	191,947	166,819
Zine and mnfrs. of	148,212	138,374	82,490	31,107
'Totals	3,004,236	5, 655,292	373,652,744	ぶ7,690,346

[^8]Imports of the United Statrs.

Articles.	1881.	1882.	1883.	1884.
		S		50,
Brass and mnfrs. of...	494,249	668,136	570,666	470,435
Coal and coke..	2,008,967	2,192,689	2,084,151	2,589,958
Copper and mnfrs. of.	564,923	317,172	191,285	291,603
Iron and steel \& mfrs. of (including ore). .	51,454,574	53,898,267	40,8:37,376	42,917,747
Lead and mufrs. of.	163,742	211,935	170,198	92,861
Marble and stone and manufactures of..	749,763	798,542	819,567	950,217
Metals and mnfrs. of, not elsewh'r specif'd	1,162,913:	1,429,918	1,489,445	2,248,814
Mineral oils and other mineral substances..	112,152	187,248	141,532	89,154
Platinum.	294,635:	334,183	391,766	373,110
Salt	1,900,610	1,561,132	1,476,946	1,527,455
Slate and mnfrs. of	46,864	45,928	49,919	
Tin and mnfrs. of	18,685,903	21,838,261	22,903,572	5,482,909
Zinc and mafrs. of.	262,218	949,041	802,933	251,476
Totals	\$77,901,513	884,432,452	\$71,929,356	\$57,285,739

B.

Exports or Canada.

Articles.	1881.	1882.	1883.	1584.
Coal.	$\stackrel{\$}{\$}$	(${ }_{\text {S }}$ 1,078,704	1,087,411	$\underset{1,201,172}{8}$
Gold.	767,318	930,951	911,383	952,131
Gypsum, ground and unground.	132,787	138,180	160,794	172,92S
Lime	631	136	368	7,546
Antimony ore	3,921	4,733	11,842	4,855
Copper ore..	150,412	139,245	150.479	214,044
Iron ore and products of iron and steel....	445,707	571,700	556,100	354,667
Manganese...	38,738	37,485	29,417	15.851
Silver	34,494	15,110	14,200	12,920
Phosphates	239,493	327,667	302,716	453.329
Salt.	39,566	36,418	17,511	17,40S
Sand and gravel.	12,511	13,789	17,755	14,152
Stone, marble \& slate, wrought \& unwrou't	95,726	115,167	94,880	82,39:
Total.	33,084,395	\$3,409,285	\$3,354,856	\$3,504,38S

Imponts of Canada.

Articlers.	1881.	1898.	1883.	1584.
	8	$\$$,	5
Brass and mnfrs of..	276,958:	362,581	383, 106	393,544
Coal	4,094,294	4,696,007	6,389,804	7,503,871
Copper and mnfrs of..	160,329	222,219	243,222	235,510
Gold and silver and mnfrs. of.	233,806 ${ }^{\text {' }}$	333,820	345,515	230,614
Iron and steel and mnfrs. of *.....	$12,224,180$	16,378,344	18,253,179.	13,464,742
Lead and mnfrs. of...	150,292	181,354	203,100	166,804
Marble, clate and stone. and mnfrs. of.	220,323	236,440	265,491:	265,594
Metal, composition and other. \qquad	368,967	462,286	649,236	611,909
Oils, mineral.	280,638!	453,250	460,728	427,641
Salt	494,633	323,807	422,367	360,192
Zinc and mofrs. of	126,469	99,736	22,599	99,742
'Tin and mnfrs of	413,924!	946,522	1,258,136	1,001,769
Total.	\$19,044,813	324,696,366	\$28,896,483	\$24,761,932

[^9]| C. | | | | |
| :---: | :---: | :---: | :---: | :---: |
| ExPORTs. | | | | |
| Ores. | From United Kingdom, 1883. | From United States, 1886. | To
 United
 Kingdom, 1853. | To United States, 1886. |
| Clays, except ordinary | $\begin{gathered} \$ \\ 935,404 \end{gathered}$ | 5 | 3 | $\stackrel{S}{22 \tilde{0}, 323}$ |
| | | 2,707,590 | | 20,140 |
| Coal, anthracite....... bituminous. | 51,739,166: | 1,480,940' | | 2,551,954 |
| Coke.... $\}$........... $18,327, \ldots$. | | | | |
| Cobalt and nickel ore and matter | | | | |
| Copper ore \& regulus.Gold ore.Silver ore. | | 3,068,879 | 2,387,926 | 417,449 |
| | | 34,160 | 21,384 | 1,397 |
| | | | 5,008,434 | 1,263,257 |
| Iron ore | | 144,652 | 13,369,228 | 1,306,033 |
| Iron pyrites, chiefly cuprous. | | | 6,590,563 | |
| Lead ore. | 16,524 | | 983, 129 | |
| Manganese or | | | 496,217 | |
| Phosphates. | | | 3,955,189 | 426,243 |
| | | 219,259 | | |
| Salt.. | 1,458,000 | 29,827 | | 1,499,182 |
| Tin ore. | | | 3,474 | |
| Zinc ore. | | 24,951 ${ }^{\text {' }}$ | 696,812 | |
| Mineral oil, crude. Marble and stoue, unmanufactured | | 5,859,577 | | 15,581 |
| | | 159,553 ${ }^{\text {i }}$ | | |
| Platinum.Plumbago | | | | 356,041 |
| | | | | 164,111 |
| Aluminum | | | | 5,298 |
| Bismuth | | | | 117,768 |
| Gypsum | | | | 116,202 |
| Buhr stones, unmnfd.Lithographic stone ... | | | | 40,772 |
| | | | | 73,584 |
| Mica.. . . . | | 897 | | 43,107 |
| Charcoal. | | | | 35,544 |
| Fmery | | | | 83,214 |
| | | | | 30,12S |
| Talc | | | | 25,394 |
| Mineral subs, notelsewhere specified.... | | | | 123,564 |
| | | | | 91,089 |
| Total ores.... .. | \$54,149,094 | \$13,770,477 | \$33,512,356 | \$9,033,986 |

D.
From Report H. M. Inspectors of Mincs, 1883.

Articles.	Exiorts yrom Unitso Kinabom.			Imiorte to United Kingdos.		
	To Canada.	$\begin{aligned} & \text { To Oolonies, } \\ & \text { (Other than } \\ & \text { Ganada.) } \end{aligned}$	$\text { To } \begin{gathered} \text { Tountrie } \end{gathered}$	From Canada.	From Colonies, (other than Canada).	From Other Countries
Clays .(except ordinary)			\% 935,404			
Coal................ .	\$397,445	\$7,490,270	43,851,449			
Copper, unwrought, wrought, yellow metal and manufactures.	266,814	8,241,082	15,152,347\|	Id Sewfld	2,316,276	6,725,734
Copper or				166,909	354,425	1,851,834
Iron ore.			38,014			13,369,228
Iron-Pig, bar, angle, bolt, rod, vailroad, 'I'in plates and sheets, hoops, sheets and boiler plate, wire (except telegraph), cast and wrought, steel, unwrought, iron and steel combined	6,735,474	33,705, 135:	98,507,840			
Lead--Pig, rolled sheet, piping and tubing.	145, 493	1,093,014.	1,527,629			7,423,354
Lead orr			16,524		96,665	886,464
Salt.	120,712	4 40,566	930,131			
Slates.		104,762	1,111,336			
'Tin.	98,726	31,794	8,573,465		5,022,285	6,850,505
Tin ore					3,474
Zinc.	680	550,307	331.219			5,095,748
Zinc ore.					208	696,604
Gold ore..						21,384
Iron pyrites.						6,590,563
Manganese ore (1882)			21,252	27,951	
Phosphates..				324,230	278,473 40,517	$3,352,486$ $4,967,917$
Silver ore					40,517	4,967,917
Total	87,765, 344	351,616,930:	\$170,975,358	8512,471	\$8,137,274	\$58,2S1,835

SNAKE POISONS.

Abstract of paper read before the Canadian Institute by Di. J. H. Garnier, November 5th, 188 i.

Snake poisons have riveted the attention of mankind from the earliest ages, and the Hindoos likely used smakestones even before the first historical mention of men. Snake charming is a profession in all the Indo Malay countries as well as Hindostan proper, and the secrets of their profession are carefully handed down from father to son. All things go by caste in that country and the secrets of a profession never are allowed to pass out of the family and its proper descendants. Tn North America thera are three well marked varietics of poisoning; tirst, by the Colubrine snake, "elaps fulvias" and the local varieties of it that exist in various regions of the Southern States; second, by the Copper head and Cotton mouth, Ancistrodon Contortrix and Ancistrodon Piscivorus. thirdly, by the true rattlers. In Canada there may be two or three species, but they are now becoming very scarce. The only variety in Ontario is the little prairie rattle suake or Massissanga, the Caudisoma Tergemina of Baird and Girard. The symptoms of the bite of ruttlesnakes, are extreme pain in the bite, yet with a dead or numb-feeling; swelling of the adjacent regions; rapidity of pulse; laborious breathing; congestion of the lungs; spitting blood or rusty sputa; then gradual syncope and failing pulse; extreme drowsines; fuintings and death. The poison is absorbed from the bite, and disseminated through the entire body, blood, nerves, veins, arteries and every tissue is affected.

We need a remedy that will follow this death dealing poison into every cramy and corner of the system, and nentralize it the moment they meet, there and then. Such a remedy I propose to lay before you to-night, and from the extienie ease of giving it and as, both portions of it being easily procured, it is at everybody's command, I hope sincerely it may be given a fair and honest trial. The ingredients are tirst Iodide of Potash suy one dram to be taken in two ounces or more of cold water, tea, "nffee or any similar fluid. Then let it inave about ten minutes to get absorbed into the blood and circulation. It is very rapidly passed through the coats of the stomach into the circulation and system. This had best be repeated twice to make sure and have the entire system impregnated. Then use an incom-
patible or another substance that at once resolves the iodide into its clements, and sets the iodine free. Sweet spirits of Nitre does so. Give an ounce in water or mucilage or syrup of any sort. It is far best to give a large dose and make sure. The Nitric Ether is even more rapidly absorbed than the iodide of potash and the instant they meet in solution the iodine is freed and at once attacks and neutralizes the venom.

I had received a large jar from India, with many poisonous snakes, and the.jar was broken on its route, the snakes consequently on arrival were withered and dried. These were placed with the heads down in a large vase and a quart of water and a pint of proof spinit poured over the heads to soften them. In the vase were two gnans Hamadryas Elaps, (Cantor). These are the most deadly of the cobra family, and the largest. The first was 9 feet 1 inch, the smaller 7 feet S inches. This herculean cobra fears nothing and fies from nothing. Mr. Theobald mentions a case of an adult young male elephant that was struck between the oyes by a large gnam, and died in three hours and of a snake charmer who was bit in the wrist and died in a few minutes. The reason of dwelling on this species will be seen on reviewing my own personal case, and I do not wish to endure such extreme agony again.

There were two adult cobras, one sixty and the other fifty-six inches long.

One 'frimesurus Carinatus half-grown eighteen inches long.
Two Echis Carinata, one adult sixteen inches, the other twelve and half inches very deadly from Bushere, in Persia.

Two Bungarus Fasciatus, one five feet four a grand specimen, and a smaller twenty-nine inches but large enough to kill anybody.

Three Bungarus Cernleus-rhe Krait, adulis forty-four, fortythree and thirty-six inches resprectively.

Two Daboia Russellii, the famous Tic Polonga killed in the Botanic gardens of Calcutta, thirty-seven and thirty-four inches lorg, about half.grown.

It is a well established fact, that snake" poisons lose nothing of their virulence by the addition of water or spirit though at rather largei quantity is required to be injected to kill.

What came from all these heads was comparatively small of necessity, but even a small portion of it produced the symptoms of
this terrific poison as I found to my cost. In February, 1853, I read a paper before the [nstitute, "On the poisonous snakes of North America," pointing out in theory the use of iodine as a remedy and little deemed I should be personally the first on whom it was to be tested.

After the above mentioned snakes heads had been duly softened I very cautiously mampulated them, opening their mouths and examining the fangs with a powerful hand glass. Previonsly, that morning in lifting a stove-stick I received a small abmasion and some slight scratches on the ring finger of my right hand. I worked away among this fluid for about three hours, the abrasions being constantly immersed, and at first smarted a little, but this soon subsided, and I continued my investigations and my notes. I then drove into the country for a couple of hours and was unconscious of any pains or amoyance whaterer from the poison. About six in the evening there was a dead numbness and great pain in the ring finger and all up my arm, but I took little notice of it. At no time did it extend above the shoulder. Then I became dizzy and squeamish, but these symptoms were tramsient, but the pain and numbens werp continual and persistent and I asked myself what had produced it. I was asked if I had got my arm hurt? No, I had not.

Were you working with strychmine or other poisons? No, I was not. What were you doing with the snakes' venomous heads? Has that caused it? No. Yes! Yes perhaps. I felt very heavy. I belittled the matter but felt truly alarmed. I then mixed a dram of iodide of potash in two ounces of cimnamon water and swallowed it. In ten minutes I did so again. Then in a few mimutes more I took an ounce of spirit of nitre in water and mucilage and a glass of whisky. The relief was very rapid and I cannot have been mistaken in attributing the quick relief to the remedy I took. It was no fancy. It was a fact. I took some more whisky and a hutle after nine o'clock I took a glass of strong brandy punch and went to bed. The pain decreased but my arm felt as if recovering from a heary blow. I began to perspire and soon fell asleep. Next moming I was nearly all better, and in a few days I was quite well.

In snake bites a deal depends as to deadliness, on the size and species of snake, the season of the year, autumn and extremely hot weather being worst, and the part bitten. A bite in the throat, an artery or
vein being worst, then the extremities and glandular portions etc. Dr. Jefferies, of Cain City, near Elsworth, Kansas, was requested by me to try my plan and gave me three cases in which he was most successful. He says, "The first was the case of a young farmer, aged nineteen, Mr. Sweicher, who was bitten on the left foot by a large rattesnake on September 23d, 1884. I saw him two hours and a half after as he had to drive fifteen miles. The foot was much swelled with intense pain up the leg. I gave hin a glass of whisky. Then one dram iodide of potash in rose water. In ten minutes I gave him an ounce spirit ether nitre. I repeated these doses three times, and gave him sereral doses of whisky. Ife was at once wonderfully relieved, and feeling greatly better soon went away. On leaving I gave him a mixture of iodide of potash three drams to an eight ounce mixture, and directed a desertspoonful thrice a day. Me went to Southern Kentucky for a time and thoroughly recovered and used no other remedy, nor had he the recurrent symptoms.

The second was the case of Mir. Labrodaire, aged thirty-five. On May 9th, 1887, was bitten by a rattlesma'e, just above the ankle. I saw him about an hour after the accident. He was weak, pulse l12, face anxious and livid, ankle swelled, and great pain extending into the leg and up the thigh. I at once gave him a drachm and a half of iodide in solution, and in ten minutes half an ounce of sweet spirit of nitre. I also gave about three ounces of brandy. I repeated this treatment for an how and a half, but I greatly reduced the doses every twenty-five minutes, and gave a little more brandy. He was at once relieved, indeed astonishing so, and on his going I prescribed for him, Iodide Potash, 4 drams; Fluid Extract of Sarsaparilla, 2 ounces; Carbolic Acid, 20 drops; Rose water to s ounces, mix and direct a ter-spoonful three or four times a day. He quickly recovered and never experienced any recurrent troubles to any arnount.

But the most notable case was of a valuable collic dog which was the property of a Mr. Burt, who lived two miles from my office. He was ploughing and saw a large rattlesnake strike his dog in the leg. He at once unhitched, put his horses to his waggon and brought his dog to me in it. He was most anxious about his dog. I gave the animal two drams of iodide in solution and had some
difficulty in getting it down his throat. In ten minutes I gave him an ounce of swect spirit of nitre. We then went into the office intending to ropeat the dose diminished, in half a hour or so, and left the dog in the waggon. I had little faith in any remedy in this case, as the creature was greatly paralyzed and exhibited great suffering. His life was ebbing fast and he seemed to be dying, with no hope of recovery. Mr. Burt, was very sorry and did not wish to see his faitlful dog die, in agony, in the waggon. In half a hour we intended to repeat the dose and then went out to a s. But you may guess at our astonishment when we found that our canine patient had disappeared, where we could not tell, and we searched and whistled for him in vain. Mr. Burt and myself were puzzled, and he was anxious and started for home. On arriving he was more astonished still to find that the dog had arrived first, and was quietly awaiting his master's return. He came to my office next day, and informed me, the dog was alive and doing well, and was tied up for a few days that he might have a perfect recovery and rest. When 1 reflect on the prostrated condition he was in on arrival, and knew for a fact, that he had received a full dose of poison from the fangs of a large rattlesnake, I cannot but express the greatest amazement, at the almost miraculous rapidity, with which this seemingly simple remedy acted. "Dr." said Mr. Burt to me, "that dog is worth hundreds of dollars to me, as he does two or three men's work, in herding my cattle."

This animal throughly recovered and sremingly had none of the paralysis and pain, so often left as a souvenir of rattlesnakes' bites, both to man and beast.

I have had other minor cases but these are the most noteworthy, and in all cases the iodide of potash given first and then followed in ten minutes by the spirit aether nitre has been eminently successful. Judging then, by my own experience, I believe if your method of treatment is carried out, in cases similar to these that a failure is impossible and that a speedy restoration will always follow.
(Signed) B. Grant Jefferifs, M.D."
I am not the first to point out iodine as a care for snake bites, as twenty-five years ago Mr. Viand Marais did so, but he used metallic iodine and failed.

Snake bites cannct well be tested in Canada except foreign poisonous snakes be procured for this purpose. But trivial dependence can be placed on experiments on dogs and other animals. We need positive trials on the human subject and nobody will voluntarily undergo such a test.

But it would be an easy matter for the executive authorities to sanction such an ordeal, and have it carried to completion on the human body without amoying the feelings of the most sympathetic. Are there not very many persons yearly condemned to death, all over the world? What good is obtained for socicty by hanging or guillotining these miscreants? They have forfeited the sympathies of mankind, and are, so to speak, beyond the human pale. Why not utilize such desperadoes in the causes of science? In testing the efficacy of this, so far, seeming cure, in a legitimate manner on the carcase of a murderer, it should outrage nobody's feelings and humanity heeds little the distorted sympathy of a foolish crank. If all mankind be benefited and a remedy for snake poisons prored effectual by this means, even though a miscreant be sacrificerd in the trial, such a life alveady condemned to be extinguished, is little to be regarded. I most unhesitatingly assert that if the bodies of parties who had forfeited their lives, were employed for scientific research, it would be a grand step in the march of civilization, a step in moral inprovement, and must tend to the elucidation of our knowledge in the treatment of very many obscure diseases. Is it not fit that a few cast-aways should suffer to save the living masses of society?

Other assistants to the treatment here presented are snakestones and ligatures.

Snakestones are applied at once to the puncture made by the fang of the smake and adhere and draw out the poison, and as soon as they become filled drop off and hold the venom so extracted; they are then thrown into milk or water and the venom swims on the top. Milk is the better to use, as the poison turns green and is easily seen. Trecommend a cut to be made over the puncture and several folds of blotting paper to be introduced, so as to suck up the serm and poison at once. Absorbing cotton or any similar article is always readily obtained.

Ligatures delay circulation and absorption and give more time.
for action, and thus help. Nevertheless ligatures alone, no matter how tightly applied, do not prevent the poison getting into the circulation and causing death. But in case of a finger or toe being bitten, amputate at once. It is the King of all cures. In case it is practicable cut out the part bitten at once and delay no time.

Next to the knife I certainly think the iodide of potash and followed in a few minutes by sweet spirit of nitre, is the best remedy we have. In all cases whisky and spirits are a very great help. If a person is truly under the influence of snake poison. it is scarcely possible to make him drunk.

A most careful series of researches have yet to be made on the action of snake venom on the blood, on the nerves, on the muscular coats of the arteries, and reins, and the tissues, and glands. This must be done in the near future, and every part be brought upon the tield of the microscope.

If Iodine be a remedy in general for snake bites and their renom which I am strongly led to believe, then I think I have pointed cut a scientific mode of distinguishing it, when bona fide in circulation. It will be admitted that my own case, and the cases stated by Dr. Jefferies bear a powerful evidence in its favor that none can lightly cast aside. Be it the iodine, be it the nitrate of potash or the the spirits, mixing in the blood, and reacting on this venom and poison in the serum, fibres or blood-corpuscles, there seems little doubt that the action and destructive energy of this venom on human or animal life is quickly stayed and the subsequent recurrent and most distressiug symptoms are greatly alleviated. I claim no specific for suake bites in this my treatment, as I know full well that such a claim is futile "just now," but I do claim that it is well worthy of a fair and honest trial, and if it prove a success in treating such deplorable and terrible accidents, I shall feel heartily glad to know that I have been of some use to my fellow men.

INDEX OF AUTHORS.

Pagr.
Bailey, Bruce 213
Baker, Alfred, M.A. 194
Browning, 'I. B., M.A. 132
Bryce, Dr. P. H. 149
Chamberlain, A. F., B.A. 144
Creelman, W. F. W., B.A. 14
Dale, 'I. Nelson, M. A. 145
Douglass, W. A., B.A. 136
Dunloj, Prof. 130)
Ellis, W. H., M.A., M.B., 123
Ferguson, Rev. Prof. 84
Fessenden, C., B.A. 27
Garnier, Dr. J. H. 255
Görgenyi, Arthur, 10:5
Houston, W., M.A. 25
Ives, James T. B., F.G.S. 125, 1S5
Kelso, J. J. 142
Laboureau, Rev. Father, 149
Lawson, A. C., M.A. 173
Livingston, J. A., 145
Merritt, W. H., F. (r. S 240
Macallum, A. B., B.A. $124,140,192$
McGill, A., B.A., B.Sc. 39,212
McKellar, Hon. A. 193
McLean, Rev. John, M.A. 20, 215
MacNish, Rev. N., B.D., LL.D. 76, 219
Neshitt, Dr. W. B., 163
Notman, John 197
O'Sullivan, D. A., D.C.L. 44
Panton, Prof. J. Hoyes, M.A. 150
Payne, F. F. 111
Phillips, John 145
Richardson, C. Gordon, 133
Rosebrugh, Dr. A. M., $106 \cdot 192$
Scadding, Rev. H., D.D. 132
Shutt, F. T., M.A., F.C.S. $? 0$
Stupart, R. F. 111
Sullivan, Dion C., LL. B 193
Tout, Charles Hill, 165
VanderSmissen, W. H., M.A 2, 206
Williams, J. B., 193
Wilson, Dr. Daniel 124
Wood, H. R., B.A 56

INDEX TO PAPERS, \&C.

Page.
Admixtures, Tartaric Acil in 212
Alaskan Boundary 132
-American Languages, Relationship of 57
Annual Report, Thirty-eighth 206
Antagonism of Social Forces 136
Apatite, Canadian 30
Astronomy, Notes on 145
Barometric Pressures 111
Beerworts, Dextrine-Maltose in 133
Blackfeet Indians, Mortuary Customs of 20
Blowpipe Analysis, Contributions to 56
Bragh or Stone Flour Mill, a 193
Brittany, Language and Literature of 76
Butter-fat, Identification of 39
Canada in Sculpture 132
Canada, Nining lndustries of 240
Canadian Apatite 31
Canadian Woodpeckers 193
Centrifugal Forces of the Plancts 145
Chemistry of the Natural Waters of Ontario 123
Coleoptera Collected in Kicking Horse Pass 213
Contributions to Blowpipe Analysis 56
Corea 105
Dextrine-Maltose in Beerworts 133
Diabase Dykes of Rainy Lake 173
Diphtheria 149
Duplex Telephony 106
Ethnology Prehistoric 144
Etruscan Question 84
Experiments in Probabilities 194
Fortuitous Events 193
Fundus Oculi, Photographing the Living 192
Geology in the Public Schools 125
Greylock, Geology of Mount 145
Haemoglobin, Origin of 192
Heredity, Theories of 124
Huron Missions, Reminiscences of the 149
Indian Languages and Literature 215
Insanity, Jurisprudence of 44
Iron and Other Ores of Ontario 185
Lake St. John, Some Stone Implements from 124
Language, Study of 165
Mammals and Birds of Prince of Wales Sound 111
Materia Medica, Volumetric System in 163
Medicine Hat 151)
Menobranchus, a New 215
Mining Industries of Canada 240
Mortuary Customs of the Blackfeet Indians 20
Xatural Waters of Ontario, Chemistry of the $1 \because 3$
Paper, Manufacture of 197
Pathological Growths 146
Physiology aud Psychology 14
Planimeter, a New 27
President's Address 2
Prince of Wales Sound, Mammals and Birds of 111
Public Schools, Geology in the 125
Quichua Language 130
Reichert's Distillation Process 39
Report, Thirty-eighth Annual 206
Snake Poisons $\varrho 55$
Society for Prevention of Cruelty 142
Sociology, Chaims of 20 º
Tartaric Acid in Admixtures 212
Telephony, Duplex 1106
Theories of Heredity 124
Umbria Capta 219
Volumetric System in Materia Medica 163
Woodpeckers, Canadian 193

LIST OF. MEMBERS.

OF

THE CANADIAN INSTITUTE.

MARCH 888.

HONORARY MEMBERS.

('hapman, Prof. E. J., Ph.D., University College Toronto.
Cumming, W. H., M.D................................. Victoria, B.C'.
Fleming, Sandford, C.E., LL.D., C.M.(4................. Ottawa, Unt.
Lefroy, Sir J. Henry, Lieut.-General, C.M.G., F.R.S... London, Eng.
Provancher, M. l'Abbé.
Cap Rouge, Que.
Wilson, Daniel, LL.D., F.R.S.E., Pres. Éniversity Coll. Toronto.

LIFE MEMBERS.

Broathead, Hon. J. G	Washinom, D.C.
Chewett, V. C., M. ${ }^{\text {D }}$	York Township, Unt.
Hunt, 'T. Sterry, F.R.S	Montreal, Que.
McNish, Rev. Neil, D.D. LL.D	Cornwall, Ont.
Murray, George, Barrister-at-Latw	Churehville, Ont.
Page, John.	Matilda, Ont.
Rosebrugh, A. M., M.D.	Toronto.
Rowsell, Henry	
Scadding, Rev. Hemry, D.D	*
Smith, L. W., Q.C., D.C.L., Barrister.	"
Stemnet, Rev. W., M.A.	Cobourg, Ont.
Young, Professor G. P., M.A., Wnivers	Toronto.

ORDINARY MEMBERS.

Abrey, (', B., C.E	ronto	ison, Cliver R., M.D.Toronto.
Acheson, G., B.A		
Alexander, H. S.	،	Bam, James, jun., Treasurer
Allan, Hon. G. IV	"	Baker, Prof. A., M.A., Uni-
Allen, S. R.	"	versity College
Ames, J. H.	،	Baldwin, R. IR., B.A
Andrews, W.S.	${ }^{6}$	Barnett, J. Davies . Port Hope, Ont.
Armstrong, Charles	'6	Bayliss, Benjamin, jun., Pittsburg, Pa.
Armstrong, T. C. L., LL.B., Barrister-at-Law	'،	Beaty, James, jun., Q.C., D.C.L. Toront
Arnoldi, Frank, Barrister-at-		Bertram, John.
Law.	'،	Bethune, R. H.

Bethune, Rev. C. J. S.,	Dunlop, Prof. J. C., M.A...Toronto.
D.C.L. Port Hope, Ont.	
Bethune, G. S. C 'Toronto.	Elliott, R. W Toronto.
Bigelow, N. G., M.A., Bar-rister-at-Law.	Ellis, Prof. W. H., M.A.,
Blachford, R. T	Elvins, Andrew
Black, Alex.	Ewing, W. B .
Blackstock, J., B.A	
Blain, David, LL.D	Fairclough, H. R., M.A....''oronto.
Blain. Hugh	Ferguson, Rev. Prof.,
Blake, W. H., Barrister-atLaw	Ferguson, Qucen's College Fessenden, ${ }^{\text {c, }}$, B. Kingston, (Ont.
Blue, Archibald	Fessenden, C., B.A... Napanee, Ont.
Boulthee, W., C.E	Fisken, J. Kerr, B.A........ . oronto. Fitzgerald, Gerald
Boyle, David, Ph. B Curator	Fitzgerald, Gerald Fox, W. W
Brock, Henry, Barrister-at-	Fraser, W.H., M.A
Brodic, iv., D.	Frost, W. A., B.A......... "
Bronsdon, J.	
Brooke, D. O..	Galbraith, Prof. J., M. A. . . Toronto.
Browning, 'T. B., M.A., Bar-rister-at-Law	Garnier, J. H., M.D. . Lucknow, Ont. Gibson, Goodwin, Barrister-
Bryce, P. H., M.A., M. D	at-Law TToronto.
Burnfield, Rev. G., M.A	Goldie, JamesGuelph, Ont.
Burgess, Thos., J.W.,	Gordon, Lieut. A. R., R.N. . Toronto.
M.B............. Hamilton, Ont.	Graham, G. M.. ..
Cameron, I. H., M. D.'Toronto.	Gzowski, C. S., jun.
Campbell, Rev. Prof. Montreal, Que.	
Camiff, W., M. 1Toronto.	Haight, Camiff. Toronto.
Carpmael, Charls, M.A.,	Haldane, William.......... "
President	Hale, Horatio Clinton, Ont.
Carter, E. T	Hall, John, sen., M. D. . . Toronto.
Cassidy, J.J., M.	Hamilton, J. C., LL. B., Bar-
Cassidy, W	rister-at-Law
Chamberlain, A. F., B.A..	Hamilton, A., M
Christie, William	Harvey, Arthur.
Clark, J. M., M.A., Barris-ter-at-Law.	Hedley, Robt. R. Port Arthur, Ont Henderson, William.'Joronto.
Clendenan, D. W	Heyden, Lawrence
Clougher, T'. R	Heys, T'
Copp, IV. W.	Hirschfelder, C. A
Cox, Arthur	Holgate, Henry, C.E.
Cox, D. (i	Hollingworth, S.
Creelman. W. F. W., B.A.,	Hopkins, J. Castell ...Ingersoll, (nnt.
LL.B. Barrister-at-Law..	Horscy, J. H Toronto.
Cross, W	Horwood, J. C............. "
Curry, S. (earge....... . .	Houston, W., M.A
	Howard, A. McLean
Dale, T. Nelson..... Newport, R.I.	Howell, Henry S. Galt, Ont.
1)ale, W., M.A............Toronto.	Howland, H. S., jun. Toronto.
Davidson, John I	Howland, O. A., Barrister-
Dawson, R.	at-Law
Dick, David B	Howland, W. H.
Dickson, G., M.A	Hughes, B. B.
Dobson, C. M., M.E	Hughes, James L
Doel, W. H., J.P	Huston, W. H., M.A
Douglass, W. A., B.A	Hutchison, Henry

Hutton, Prof. M., M.A.,
University CollegeToronto.
Ives, J. T. B., F.G.S...... "،
Johnson, Alfred S., M.A., Cornell Univ. .Ithaca, N.Y.,U.S.A Johnson, Arthur Jukes, M.D.'Toronto. Jennings, W. 'T.

Keefer, S. L., C.E Brockville, Ont.
Keefer, T. A. Port Arthur, Ont.
Kennedy, George, M.A., LL.D., EditorToronto.
Kerr, John L. "
Keys, D. R., B.A. "
Kilgour, Joseph
Kingsford, R.E., M.A., Bar-rister-at-Law
Kirkland, T., M.A
Knowlton, W. H "،

Laboureau, Rev. Father.
Penetanguishene, Ont.
Laidlaw, G. E. . Victoria Road, Ont.
Lamb John
Toronto.
Lander, J. C
Laugton, John, M.A.
Langton, Thomas, Barrister-
at-Law '
"،

Lawson, A. C., M.A . Ottawa, Ont.
Lemnox, C. D...' 'roronto.
Levey, Charles.
Lindsey, Charles............ "
Iinlsey, G. G. S., B.A.... '،
livingstone, J. A. "
Logie, 'T. M., B.A. "
Loudon, Prof. J., M.A., University College "
London. W. J., B.A.... .. '
Macallum, A.B., B.A. Toronto.
Mc.Iree, John, P.L.S...... '"

McCabe, William, M.A.... "،
McCommell, John M.B..... "
Mcc'racken, Thomas "
Mec'urdy, Rer. J. F., Ph.D.
Macdonald, George ، "،
Machonald, J. K............ "
Macdengall, Alan, If. Inst. C.E., F.R.S.E., Secretary

Macfarlane, A., D.Sc., F.R.S.E., Prof. University of Texas, Austin, 'Texas, U.S.A.
MeCill Anthony. B.A., Ottawa, Ont.
Mackenzie. J. J., B.A.Toronto.
McKenzie, T., B.A., M.D . "

McKimnon, J. H.......... Toronto.
McLean, IRv. John, M.A.,Ft. McLeod Maclean, Wallace, B.A.....'Torouto. Macleman, James, Q. C., Barrister-at-Law "
McMurchy, A., M.A...... "
McMurrich, Prof. J. P., Ha-
verford CollegePa., U.S.A.
McPherson, A. F......... Toronto.
Macpherson, Sir David L., K.C.M.G

Marling, Alexander, LL.B.. "
Martin, I. E., B. A. Ottawa.
Mason, Alfred H., F.C.S., Montreal.
Mason, James Toronto.
Mason, J. Herbert "
Mason, T. G
Massey, V. E. H. "
Melville, W. P.. "
Meredith, E. A., M. A., LL.D., Vice-President.... "
Merritt, W.H., F.(̇.S. "
Middleton, F. H. "
Middleton, W. E., Barrister-at-Law
Millar, J. B.
"
Mills, S. D., St. Ignace, Michigan, U.S.A.
Milner, W. S., B.A. . Lindsay; Ont.
Monk, T. H 'Yoruuto.
Morphy, Henry E., Barris-
ter-at-Law
Morrow, John
Morton, J. A.
Mosey, R.................... "
Monat, J. Gordon "
Mowat, Hon. Oliver, Q.C.,
Attorney-General
Mutton, W. George
Nairn, Alexander........... Toronto.
Niain, John "
Neilson, Hugh............ "
Nesbitt, Wm. B.: B.A., MD. "
Nevitt, R.B., M.D........ "
Nichol, Kev. R. T. . Port Hope, Ont.
Sichols, J. Lister Toronto.
Noble, James "
Notman, John
"
O'Comnor, M................ "
Oldright, William, M.D.... "،
O'Reilly, W. 'T., M.U...... "
O'Sullivan, D. A , M. A.,
D.C.L., Barrister-at-Law.

Palmer, L. L., M. D.'Toronto.
Panton, Prof. J. H., M.A. . (iuelph.

Simpson, T. W., B.A., M.D.Toronto.
Smith, A.................. "
Smith, Goldwin, M. A.,
D.C.L ،

Smoke, S. C., M.A. Barris-ter-at-Law
Speight, T. B., M.L.S....... "
Spence, David "
Spotton, H. B............ Barrie, Ont.
Squair, John, B.A. Toronto.
Stocle, Henry
Strickland, Valter \dddot{R}...... "
Stupart, Capt. R. D., R.iे. "
Stupart, R. F............. "
Sullivan, Dion C., LL.B... "
Talbot, D. H., Sioux City, Ia., U.S.A.
Tassie, W. T.
'Coronto.
Tout, Charles Hill
"
Townsend, Joseph "،
Tully, Kivas, C.E. "
Tyrrell, J. B., B.A. F.G.S., Nttawa, Ont.
Tyrrell, J.D., M.D. Toronto.
VanderSmissen, W H., M.A..Toronto.
Walton, Charles A.......... Toronto
Watson, Rev. D. W. Beaverton, Ont.
Whetham, C., B.A....'Toronto.
White, G. Montague........ "
Wilgress, (x. ふ., B.A., Mar-
rister-at-Law Huntsville, Ont.
Will, A. Percival 'Toronto.
Williams, J. B............. "
Williamson, Thomas (x. . . . " "
Williamson, William "
Wilson, (i. H. " "
Winnett, Heury........... " "
Wood, H. R., B.A.......... "
Workman, Joseph, M.D... ."
Wright, Prof. R. Ramsay,
M.A., B.Sc., Univ. College "

Wrong, Rev. G.M., M.A... "

ASSOCIATES.

Armsiong, C. WV.	Toronto.	Langley, Charles..	Toron
Barrett. A. C.		McCoy, S. H.....	
Begre, iv	"	McCracken, Ernest	'
Bond, C. H. A.	"	McCrae, '1'.	
Boyd, G	"	Macklin, H. G	
brown, Hubert		Maloney, F. F	
Brown, J. F	"	MeMurehy, N.	
Carmichael, P. Neilson		Mi'lar, IV. G	
Clark, R. S	"	Morris, E. M.	
Copland, J. S.	"	Mosey, R.	
Curzon, E. M.	"	Mumroe, J	
Douglas, F.		Murdoch, W	
Forbes, W. A		Nicol, A. H.	
Goldstone, G. TT		Phillips, W. Q	
Grant, J. A. C.		Ross, R. W.	
Gregg, A. H.		Saunders, A. P.	
H:anilton, R. S		Saunders, C. E.	
Herbert, F. H.	"	Simpson, Henry	
Hill, E. L.		Smith, W. A.	
Hynes, J. P	"	Sproatt, Hary	
Jackson, Hubert	"	Symons, W. L.	
Jamieson, R. E.	"	Tilley, W. C.	"
Jeffrey, C. E.	"	Turner, Harry	"
Kilbourne, B.	"	'Tyrrell, Emnest.	"
King, (t . W,	"	Wickson, A. F	"
Knowles, Arthur	"	Willy, Emest	،

THE CANADIAN INSTITUTE

E.rchanges wath the folloning Societies and Periodicals:

> I. - AMERICA.
> (1.)-CANADA.

Camadian Practitioner . Toronto.
Camadian Architect and Builder "
Medical Science "
Meteorological Reports.. "
Public Library ... "
Education Department... . "
Provincial Board of Health...................................... . . "
Publications of the Provincial Government................... "،
Geological and Natural History Survey of Canada Ottawa.
Parliamentary Library "
Royal Society of Canada.... "
Ottawa Field Naturalists' Clu’.) "
Eutomological Society of Ontario London.
Hamilton Association .. . Hamilton.
Natural History Society of Montreal Montreal.
Canada Medical and Surgical Journal :
Canadıan Society oî Civil Engineers......... "
Celtic Socicty of Montreal "
Literary and Historical Society of Quebec Quchec.
Le Naturaliste Canadien Cap Rouge, Que.
Natural History Society of New Brunswick St. John, N. B.
Nova Scotia Historical Socicty Halifax, S. S.
Nova Scotia Institute of Natural Sciences "
Manitoba Historical and Scientific Society Wimnipeg, Man.
-24.
(2.) -UNITED STATES.

Bureau of Steam Engineering, Navy Department. Wasington. I.C.
Smithsonian Institution
66
Bureau of Ethnology
Burean of Education... . "
Surean of Statistics
Surgeon-General, War Department "
General Weather Service of United States "
Inited States (icological Survey "
Philosophical Society of Washington "،
United States Coast and (icodetic Survey "
United States National Museum Washington, D.C.Department of Agriculture"
Anthropological Society of Washington "
Biological Society of Washington ،
California Academy of Science San Francisco, Cal
Technical Society of the Pacific Coast "
Western Scientist San Diego, Cal.
Coloiado Scientific Socicty Denver.
Bridgeport Scientific Society Bridgeport, Conn.
American Journal of Science N. Haven, Conn.
Comnecticut Acarlemy of Arts and Science "
Yale College Observatory "
(ieorgia Historical Society Savannah, Ga.
Chicago Historical Society Chicago.
Illinois State Laboratory of Natural History Champaign, $11 l$.
American Antiquarian and Oriental Jomrnal Chicago, Ill.
Brookville Society of Natural History Brookville, Ind.
Indiana Historical Society Indiana.
Acialemy of Natural Sciences Davenport, Iowa.
State Historical Society of Iowa Iowa City.
Kansas Histurical Society Topeka.
Kansas Academy of Science"
Washburn College Laboratory of Natural History "
Acalemy of Natural Sciences New Orleans, La.
Peabody Institute Baltimore, Md.
Johns Hopkins UniversityVnited States Naval InstituteAmnapolis, Md.
Buston Socicty of Natural History Boston, Mass.American Academy of Arts and Sciences"
Observatory of Harvard College Cambridge, Mass.
Harvard University Library"
Quarterly Journal of Economics, Harvard University "،
Musem of Comparative Zoollogy at Harvard College "،
Peabolly Muscum of Archacology and Ethnology 6
American Association for the Advancement of Science "
American Society for Psychical Research "
(ambridge Entomological Club ic
Essex Institute Salem, Mass.
Peabody Academy of Science66
American Antiquarian Socicty Worcester, Mass.
Worcester Society of Antiquity ‘:
Agricultural College. near Lansing, Mich.Academy of Natural SciencesMinneapolis.
Geological and Natural History Survey of Minnesota"Academy of SciencesSt. Louis, Mo.
Missouri Historical Society St. Louis, Mo.
Sedalia Natural History Society Seilalia, Mo.
Nebraska State Historizal Society
Lincoln, Neb.
N゙ew Jersey Historical Society Newark, N.J.
E. M. Museum of Geology and irchieology, Princeton College. Princeton, N.J.
New York Academy of Sciences New York.American Museum of Natural History, Centra! Park"
American Society of Civil EngineersJournal of Speculative Philosophy$: 6$
Journal of Comparative Medicine and Surgery ‘،
Limnean Society of New York
New York Microscopical Society
School of Mines (Quarterly, Columbia College 6.*
Magazine of American History "
American Geographical Society
New Fork Academy of Anthropology -•
American Chemical Society '.
Electrical Review
Electrician and Electrical Engineer -•
Association of Engineering Societies - 4
American Institute of Nining Engineers "
Political Science Quarterly *
"Christian Thought" "،
New York State Library Allany, 之…New Lork State Museum of Siatural History"
Buffals Society of Natnmal Sciences Buffalo, N. Y.
Buffalo Historical Sucicty ،
Cornell Cniversity: Ithaca, …
Vassar lirothers Institute Poughkeresic, $\mathrm{N} . \ddot{\mathrm{i}}$
Oncida Historical Suciety Ltica, N.
Lensselaer Society of Engineers 'Iroy, N. ${ }^{\circ}$.
Elisha Mitchell Scientific Nociety University of North Ciarolina.
Ohio Mechanics' Institute (:incimmati, U.
Historical and Philosophical Socicty of Ohio *:
Cincinnati Society of Natural History "
Magazine of Western History Cleveland, 0.
Denison Eniversity, Laboratories of Biology and NaturalHistoryGrantille, 0.
State Geological Survey of Uhio Columbus, 0.
University of Pemsylvania Philadelphia.
American Satholic Quarterly Review "
American N Naturalist *
American Philosophical Socicty *
Academy of Natural Sciences of Philadelphia "
Wagner Free Institute of Science of Philadelphia "
Franklin Iustitute of the State of Pemnsylvania Philadelphia.Historical Society of the State of Pennsylvania،
American Catholic Historical Society of Philadelphia "
Wyoming Historical and Geographical Society Wilkesbarre, Pa.Providence,R.I.
Newport Natural History Socicty Newport, R.I.
University of Virginia Charlottesville.
'Temnessee Agricultural Experiment Station Knoxville.
Wisconsin Academy of Science, Arts and Letters Malison.
State Historical Society of Wisconsin-109.
(3.)-MELICO.
Museo Nacional de México México.
Sociedad Cientifica, "Antomo Alzate".
Sociedad Mexicana de Geografiea y Estadisea. -3.
(4.)-CUBA.
Sociedad Antropologica de la Isla de C'uba. Habana. -1.
(5.)-SOUTH AMERICA.
Instituto Historico, Geographico, e Ethnographico do Brazil.. Rio de Jaueiro. Amnaes da Escola de Minas de Ouro Preto "
Sociedade de Geographia de Lisboa no Brazil "
Club de Engenharia "
Academia Nacional de Ciencias en Córdoba (Republica Argentina.) -5.
II.-EUROPE.
(1).-GREAT BRITAIN AND IRELAND.
englant.
Birmingham Natural History and Microscopical Society.... Birmingham.
Journal of Microscopy and Natural Science. Bath.
Scientitic Enquirer"
Bristol Naturalists' Socicty Bristol.
Cumberland and Westmoriand Association for the Advance-ment of Literature and ScienceCarlisle.
Cambridge Philological Society Cambridge.Cambridge Philosophical Society"
Royal Geological Society of Cornwall Penzance.
Literary and Philosophical Society of Leeds Leeds.
Literary and Philosophical Society of Liverpool Liverpool.Liverpool Astronomical Society"
Liverpool Polytechuic Society "
Royal Geographical Society London.Royal Astronomical Society66
Royal Microscopical Society 66
Royal Society 66
Victoria Institute 64
Quekett Microscopical Club 66
Society for Psychical Research 6.
Anthropological Institute of Great Britain and Ireland ;
Royal Colonial Institute 66
Limncan Society of London 66
Geological Society of London 6.
London Mathematical Socicty 6.
Institution of Civil Engineer 6
Financial Reform Association 6
British Museum $6:$
British Muscum, Natural History Section 64
Palestine Exploration Fund 6
Patent Office 46
Triibner's American, European and Oriental Literary Record. 66
Physical Society of London 6
National Association for the Adrancement of Social Science. 66
Sanitary Institute of Great Britain "،
"Chemical News". 66
Imperial Federation League 66
Iron and Steel Institute 66
"Iron" $6 \cdot$
Society of Antiquaries of London 66
Literary and Philosophical Socicty of Manchester Manchester.
Manchester Geological Society"
Manchester Association of Employers, Foremen and Draughts- men of the Mechanical Trades of Great Britain "
Manchester Geographical Society "
Society on Antiquaries of Newcastle-upon-Tyne. Newcastle-upon-Tyue.
North of England Institute of Mining and Mechanical En-gineers"
Midland Institute of Mining, Civil and Mechanical Engineers. Barnsley: Somersetshire Archeological and Natural History Society . Taunton. -47.
SCOTLAND.
Royal Societiy of Edinburgh Edinburgh.
Royal Socicty of Antiquarics c 6
Royal Scottish Socicty of Arts 6
Royal Physical Society ©
Edinburgh Botauical Socicty 6
Edinhurgh Geological Society 6
Scottish Geographical Society 6
Royal Philosophical Society Glasgow.(Xlasgow Geological Society"
Natural History Society of Glasgow "
Iustitution of Engineers and Shipbuilders of Scotland. " -11 .
IRELAND.
Royal Irish Academy Dublin.
Royal Dublin Society "
Royal Geological Society of Ireland "
Institution of Civil Engineers of Ireland "
Naturalists' Field Club Belfast.
Belfast Natural History and Philosophical Society -6.
(2.)-AUSTRIA-HUNGARY.
Sociéte Hongroise de Géographie Budapest.Siebenbürgischer Vercin für Naturwissenschaften.Hermannstadt.
K. Böhmische Gesellschaft der Wissenschaften Prag.
K. K. Universitaits-Sternwarte "
Naturhistorischer Verein "Lotos" "
Société Archeologique Agram.
Civico Museo di Storia Naturale di Trieste. 'Trieste.
K. K. Akademie der Wisseuschaften Wien.
K. K. Geologische Reichsanstalt "
K. K. Geographische Gesellschaft 66
K. K. Zoologisch-Botanische Gesellschaft "
K. K. Naturhistorisches Hofmuseum "
K. K. Central Anstalt für Meteorologie und Erd-Magnetismus. Anthropologische Gesellschaft in Wien. "
Wissenschaftlicher Club in Wien "
Oesterreichischer Ingenieur-und Architekten Verẹin "
Internationales Permanentes Ornithologisches Comité -17.
(3.)-BELGIUAI.
Académie Royale des Sciences, des Lettres et des Beaux Arts de Belgique Bruxelles.
Sociéte Royale de Botanique de Belgique "
Société Royale Belge de Géographie "
Musee Royale d'Bistoire Naturelle de Belgique "
Société Liégeoise de Littérature Wallome. Liège.-5.
(4.)-DENMARK.
Kongelige Bibliotheket Copenhagen.
Kongelige Danske Videnskabernes Selskab "
Kougelige Nordiske Oldskrift Selskab. "
Nordisk Tidskrift for Filologi --4.

(5.)-FRANCE.

Academie Nationale des Sciences, Arts et Belles-Lettres Caen.Société Nationale des Sciences de Cherbourg Cherbourg.Académic des Sciences, Arts et Belles-Lettres de Dijon Dijon.
Union Géographique da Nord de la France Douai.
Société Géologique de Normandie Le Havre.
Société Géologique du Nord Lille.
Societé de Creographie de Lille "
Société pour l'Etude des Langues Romanes Montpellier.
Académie des Sciences, Inscriptions et Belles-Lettres Toulouse.
Annales des Mines Paris.
Ammales des Ponts et Chausées "
Sociéte des Ingénieurs Civils "
Sociéte Nationale des Antiquaires de France "
Société Géologique de France 66
Société Académique Indo-Chinoise de France "
Société d'Ethnographie "
Société Américaine de France 66
Société d'Anthropologie de Paris 66
Bibliothèque Nationale 66
Société de Géographie 66
"Cosmos" 66
"L'Électricité" 66
Association Française pour l'Avancement des Sciences. 66
Journal des Sociétes Scientifiques "
Revue Scientifique. ،
Revue de Linguistique et de Philologic Comparée 66
Société Zoologique de France 66 66
Société Mathématique de France 66
Bulletin d'Histoire Ecclésiastique et d'Archéologic Religeuse des Diocèses de Valence, Digne, Gap, Grenoble et Viviers. Romans. -29.
algeria.
Société de Géographie et d'Archéologie de la Province d'Oran. Acadèmic d'Hippone.-2.
(6.)-GERMANY.
Naturforschende Gesellschaft mu Freiburg Baden.
Fönigliche Preussische Akademie der Wissenschaften. Berlin.
Gesellschaft Naturforschender Freunde "
Gesellschaft für Erdkunde "
Berliner Gesellschaft für Anthropologie, Ethologie und Urgeschichte "
Bibliographie der Staats-und Rechtswissenschaften "
Archiv der Mathematik und Physik "
R. Friedlainder und Sohn "
Naturhistorischer Verein für die Preussischen Rheinlande und Westphalen Bonn.
Verein für Naturwissenschaft zu Braunschweig Braunschweig.
Naturwissenschaftlicher Verein Bremen.
Naturwissenschaftlicher Yerein "Isis". Dresden.
Senckenbergische Naturforschende Gesellschaft. Frankfurt-am-Main.
Naturwissenschaftlicher Vercin Frankfurt-an-der-Oder.
Dr. Ernst Huth
Oberhessische Gesellschaf仑 für Natur-und Heilkunde Giessen.
Königliche Gesellschaft der Wissenschaften Göttingen.
Naturwissenschaftlicher Verein Hamburg.Verein für Naturwissenschaftliche Unterhaltung."
Naturhistorisches Museum zu Hamburg "،
Geographische (iesellschaft Hannover.
Naturhistorischer Verein für Niedersachsen '،
Historischer Verein für Niedersachsen "
Naturhistorisch-Medicinischer Verein Heidelberg.
Verein fïr Naturkunde Kassel.
Ostpreussische Physikalisch-Oekonomische Gesellschaft Königsberg.
Naturforschende Gesellschaft zu Leipzig. Leiprig.
Königlich Sächsische Gesellschaft der Wissenschaften ،
Verein für Erdkunde zu Leipzig ،
Verein für Vaterländische Naturkunde in Würtemberg Stuttgart.
Naturhistorische Gesellschaft zu Nürnberg Nürnberg.
Königlich Baierische Akademie der Wissenschaften München.
Deutsche Gesellschaft für Anthropologie, Ethnologic undUrgeschichte"
('örres Gंesellschaft (Historisches Jahrbach) "
Verein für Naturkunde Offenbach-am-Mam.
Zeitschrift für Physiologische Chemie Strassburg.Nass\&uischer Verein für Naturkunde Wiesbaden.-37.
(7.)-ICELAND.
Islenzka Fornleifafélags Reykjavik.-1.
(8.)-ITALY.
R. Aceademia Petrarca di Scionze, Lettere ed Arezi.Ateneo di BresciaBrescia.
Società Storica per la Provincia e Antica Dıocesi di Como Como.
R. Istituto di Studi Superiori in Firenze. Firenze.
Sucietà Italiana di Antropologia, Etnologi a, e PsicologiaComparata66
Sezione Fiorentina della Sccieta Africana d'Italia ،
Società Entomologica Italiaena "
Società di Lettura e Convrsazione Scientifiche Genova.

1. Accademia di Belle Arti Milano.
R. Istituto Lombardo di Scienze e Lettere "
Societì Veneto-Trentina di Scienze NiaturaliSocieta 'Toscana di Scienze NaturaliPisa.
Gazetta Chimica Italiana Palermo.
Circolo Miatematico di Palermo "،
Societa Siciliana per la Storia Patria. "،
R. Accademia di Scienze, Lettere, e Belle Arti di Palermo . Direzzione del Giornale del Genio Civile Roma.
Socicta Geografica Italiana"
R. Comitato Geologico d'Italia
R. Accademia dei Lincei
Bullettino di Bibliografia e di Storia delle Scienze Matema-tiche e Fisiche"
"Cosmos" di Guido Cora 'Torino.
Archivio di Letteratura Biblica ed Orientale "
Notarisia Commentarium Phycologicum Veneria.-24.
(9.)-NETHERLANDS.
Koninklijke Akademie van Wetenschappen Amsterdam.
Koninklijke Zoologisch Genootschap " Natura Artis Magistra" "
Nederlandsch Aardrijkskundig Genootschap "
Ecole Polytechnique de Delft Delft.
Société Hollandaise des Sciences à Harlem Harlem.
Eondation de P. Teyler van der Hulst "
Nederlandsche Botanische Vereeniging Leiden.
Nederlandsche Dierkundige Vereeniging "
Recueil des Travaux Chimiques des Pays-Bas "
Koninklijk Nederlandsch Meteorologisch Instituut Utrecht.—10.
(10.)-NORWAY.
Muséc de Bergen Bergen.
Polytekniske Forening Kristiania.
torening til Norske Fortidsmindesmerkers Bevaring "
Videnskabs Selskabet "
Kongelige Norske Frederiks Universitetet ،
Nyt Magazin for Naturvidenskaberne. "
Norwegische Commission der Europrischen Gradmessung. "
-7
(11.)-PORTUGAL.
Sociedarde de Geographia de Lisboa Lisboa.Académie Royale des Sciences de Lisbonne."-2.
(12.)-RUSSIA.
Kharkow Mathematical Society Kharkow.
Socićté des Naturalistes à l'Université Imperiale de! Kharkow
Société des Naturalistes il l'Université de St. Whalimer Kiew. Societas Scientiarum Fennica Helsingfors Helsingfors. 'lifliser Observatorium Titlis.
Nociété Impériale des Naturalistes de Moscou Moscow:
Société Physico-Chimique Russe ia l'Université de St. Petersbourg. - omite Ciéologigue st. Petersbourg.
(13.)-SPAIN.
"C'rónica Cientitica" Barcelona.
Real Academia de Ciencias Morales y Politicas Macrid.
Real Academia de la Historia
Sociedad Geográfica de Madrid -4.
(14.)-SWEDEN.
Kongliga Universitetet Lund.Kongliga Fysiografiska Saillskapet"
Kougliga Svenska Vetenskaps Akademien Stockhohm.
Kongliga Biblioteket-•
Kongliga Universitetet "،
Svenska Sallskapet för Antropologi och Geografi "
Geologiska Föreningens i Stockholm "
Acta Mathematica "،
Kongliga Universitetet Uusala - 9.
(15.)-SWITCERLAND.
Geographische Gesellschait von Bern Bern.Naturforschende Gesollschaft in Bern"
Socieve de Physique et d'Histoire Naturelle Genève.
Sociéti de Géographie de Genève "
Societé Neuchateloise de (iéographie Neuchatel.
Naturforschende Gesellschaft in Zurich Zurich.-6.
(16.)-TURKEY.
Syllogue Littéraire (iree de (Jonstantinople Constantino, le. Institut Météorologique de Roumanie Bucarest.-2.
III. - ASIA.
(1.) MNDIA.
Asiatic Society of Bengal Calcutta.
(ieological Survey of India "
Survey of India Department
Bombay.
"Orientalist" Kandy, Ceylon.

> (2.)-JAPAN.

(3.)-JAVA.

(4.)-CHINA.

China Branch of the Royal Asiatic Society Shanghai. - 1 .

> IV.-AUSTRALASIA.
(1.)-AUSTRALIA.

Royal Society of New South Wales	Sydues.
Department of Mines, New South Wales	"
Linnean Socicty of New South Wales	،
Board of Technical Education	'
Royal Society of Queensland	Brisbane.
Royal Society of Victoria.	Melbounte.
Public Library of Victoria	'

(2.)-NEW ZEALAND.

[^0]: * A caloric-one grain of water raised through $1^{c} C$ of temperature.

[^1]: *Geological and Natural History Survey of Canada, Annual Report, 1SS5, p. 41 CC., p. 47 CC.

[^2]: * These rochs were studied microscopically in the laboratory of the Johns Hopkins University, Baltimore, under the guidance of Prof. G. H. Williams, for whose kind advice and assistance the writer desires to express his grateful acknowledgments.

[^3]: - Adapted from Tischermak's use of this word as applied to a similar structure in the olivine of certain meteorites.-V. Die Mikr. Beschaff. der meteor. Stuttgrart, 1885.
 \dagger Mikr. Mhys. der Mineralien und Gesteine Stuttgart, 1886

[^4]: : Dic Mikr. Beschaff. der Meteor. Stuttrart, 1SS5, Taf. xr. Fis. 1 :and 2.
 § Lithological Studies, Mem. Mus. Comp. Zool. Harvard, Vol. N., ph. 1.
 i Notice sur la geologie del ile de lierguelen, Bul. Mas. Roy. Hist. Nat. Velgique, Tome IV. No. 4., p. 233 , fig. 1, pl.v.
 " Notice sur les roches de l' ile Meard. Bull. Mas. Roy. Hist. Nat. Lelgique, 1SS6, S p. 260. $\dagger i$ Notice sur les roches de l' ile Marion. Ibid. p. 250.
 $\$:$ Petrographical Notes on some nort'h of England Dykes, Q. J. G. S., 1S84, 15S. p. 220 and 242

[^5]: * Notes on the Geol. of the Iron and Copper Districts of Lake Superior. Bull. Mus. Comp. Zöol. Harvard, 1SSO, pp. 45, 46, 37 .

[^6]: - Terms introduced by Rosenbusch. Cf. op. cit. p. 11. \dagger Mik. Phys. der Massigen Gestine, Ind Eal., 18s6, p. 188.
 : Q. J. G. S., 1SSt, p. 652.

[^7]: - Although engaged during the whole of the summer months in exploring reologically the Huronian and Laurentian regions lying between thr se extremes the author did not visit either Blarton or Gros Cap and canot therefore speak from personal observation, but is satisfied from analory that his conchusion is correct.

[^8]: * Sewing machines and agricultural implements not included.

[^9]: - Not including sewing machines aud agricultural implements.

