The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of fitming, are checked below.
\qquad Coloured covers/
Couverture de couleur
\square Covers damaged/
Couverture endommagée
\square Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieureBlank leaves added during sestoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans ie texte, mais, iorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meiileur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/ Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tete provient:Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de dejpart de la livraison

Masthead/
Générique (périodiques) de la fivraison
\square Additional comments:/
Coınmentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

$10 x$	

devoted especially to the interests of owners and operators of Flour Mills, Saw Mills, Planing Mills and Iron-Working Establishments.

YOL. A1.-No. 11.

TORONTO, ONTARIO, AUGUST, 1888.
\{risom

TILSONBURG.

THIS flourishing incorporated town is situated in the County of Oxford, on Big Otter Creek, 15 miles north of Lake Erie. The Canada Southern divi. sion of the Michigan Central Railroad and the Loop Line division of the Grand Trunk, pass through the town. It also is the terminus of the B. N. \& P. B. division of the Grand Trunk, a short line connecting Tilsonburg, via Brantford, with the main line at Harrisburg. Located in the midst of the anest wheat and oat srowing section of Ontario, in a country which the late Hon. George Brown fitly describod as the "Garden of Canadn;" having unsurpassed facilities for thes transportation of her products, with an abuudance of water pow. er supplied by the "Big Otter," it is not surprising that Tilsonburg has rapidly grown, until to-day it has a reputation in Weste:n Ontario for enterprise and go ahead-iveness possessed by few towns of far greater population.
The sute for the town was selected by George W. Tillson, a native of New York State, who purchased large tracts of wild lands lying contiguous to the fiver, and who gave the name to the town. Early associated with his father in many enterprises was his son, E. D. Tillson, the owner and proprietor of the three mills, cuts of which appear in this peper. This genileman, shortly after the decease of his fanther, erected an oatmenal mill, placing withm the structure the best and latest improved machinery then obraumable for the manuficture of oatmend, and but a few years elapsed ere Tillson's oatmeal became widely and favorably known throughout Canade, more eapecially in the Lower Provinces of Nova Scoma and New Brunswick, where the productions from this mill were the standard. For 12 years, or until the old mall was barned two years ago latt June, the full capacity of this mill, ruaning aught and day, was not sufficient to all the orders for the Lower Provinces alone. Such was the dermand for Tibsobberg autmeals. Two years ago last June the old milh, sogecher with the large brick-cased elevator sdjoinang, with a large quantity of graua stoced thereit, was burned, eatuling a beavy loss, but hardly had the tameses been extinguished erc ganga of mea were at work clearng away the defris and prepariag for the new structure, which was begun at once and harried to cocmpletion as rapidly as possible, uader the perseaal sapervision of Mr. Thomas Walsce, of Chicagh, an archivect and millwright of coomtipental abilay.
The fine billding which now aderes the site of the
old one was erected, and within it was placed improved machinery for the making of fine oatmeal like which had never betore beef used in Canada. It can readily be understood that the mont important part of the process of manufacturing oatmeal consists in the proper drying of the oats. Herein lies the great secret, and it is just here that Mr. Tillson's mill is said to be far in advance

The power used to drive the oatmeal mill is obtained from two Little Giant water wheels, while as at auxiliary, an engine of 65 h. p. located in the basement guarantees no stoppage for want of water.

Four years ago Mr. Tills.n erected a flouring mill of 200 barrels capacity, lettiug the contract for the machinery to Messrs. Goldie \& McCulloch, of Galt, and the flour from this mill under the names "Rival," "Leader," "White Dove," and "Tillson's Mills," is pushing its way in the lower provinces as a first-class and reliable production.
Mr. Tillson also manufac. tures split peas and pot barley, the peas being sold mostly for export to the Weat Indies.

POINTS IN MILLING.

COSE observation in a number of mills will reveal the fact that most of the flouring establishments are badly arranged so far as motive power and manual labor are concerned. Especially is this true of the mills ranging from medium capacity downward, and of those built years ago and recently rebuilt or remodeled to modem processes of grinding. Too often the defective arrangement necessitates rehanding or causes gross loss of power through misapplication. Every miller must by this tume understand the importance of the small "leaks," as competition has set him to the task of gauning or saving cents where he used to gain or save dollars and dimes.

Wherever it is possible to save labor or power, it is the mill-owner's first duty to save it. Without abating for an
of any oatmeal mill in Canada. Situated in the bascment of the mill are teu pan kilus, having a total capacity for drying 2,500 bushels of oats every iwenty-four hours. Simply described, the kilns are huge boiler plate circ. lar pans each placed over a furnace, the drying oats leing constantl: stirred by an automatic sweep. No smoke or fumes from the fire pass through the outs while b. ing dried, consequently oatmeal made trom pan dried cats has not that bitter taste discernible in oatmeal, the outs for which have been dried by the old process. Upon the'ground thoor are placed six run of hulling and two run of menl stoves; upon the second floor the parifers, culting machine, etc. Tue third foor contains the mets, smuxters, ${ }^{2} \mathrm{c}$., while in the sth storey will be round cockre machises, separators, elevators and reels, meemingly without aumber. Adjoining the mill is a buge clevalor, with a storase capacity for 100000 bushets of graia. Takem all in all, this is a very complete enablichmant, asd is turaing oun a very superior grade of eximenals.
wheat of medium hardness, with small crease and of good average size. On its passare through the cleaner it had certainly parten with its fuzz, its crease-dirt and, unfortunately, it secmed to me, too much of its coating and the adjacent houry particles. Some of the berries were quite perfectly hulled. Others were split. Others were broken across. Others were ground off so that the germ was plainly visible on the beveled ends. 'iome had lost a considerable portion of flour. Only a small percentage of the berries seemed to have received anything approaching "proper treatmen!." The exhibitor of the specimens of manipulated grain clamed that he was willing to guarantee that the machine would enable a miller to $t 1:$ n out 80 per cent. of high.grade flour.

1 am not criticising the new machine at all. I merely state my impressions. Probably the grain specimens shown had been "punished"more severely in the trial machine than it would be in the finished and perfected one. Evidently the stone used had too much "bite," or the brush was too rigid, or its speed was too great to secure the best results, or the pressure of the brush upon the grain was too great. Eithe: of these causes would explain the appearance of the grain.

Neglect of the bolting-cloth means the loss of all the finest work done before the bolting-cloth is reached. When the flour becomes specky; hasten to determine the cause. Generally the location is casily made in a torn, clogged, worn-out, overloaded cloth. Decide to do two things at least in the case of your bolting: 1. Secure the best cloth at the beginning. 2. Keep it in good condition so long as you use it. Good cloth means half the battle won in the beginning, but zood care means the other and probably more important half.

Millers, why will you continue to buy and pay wheat prices for stuff that is not wheat? A few days ago i visited a mill of large capacity, and while about the establishment I was shown a heap of dirt of various kincis that had been removed from a large quantity of wheat that had just been cleaned. The pile contained many bushels and had cost the purchaser many dollars. The question suggested itself. Is it right for the milles to gay the farmer money for bits of straw, wood, twine, wire, nails, leaves, bark, wood and other foreign matter in the wheat? Besides pisying 40,50 and 60 cents a bushel for the dirt and rubbish, the miller must waste his motive-power and wear out his machınery in sep. arating it from the wheat. Thus his loss is double, Did any miller grinding j00 or more or less barrels a day ever compute what he loses in a year from the dirt he buys in his wheat? Is there any sound reason why the farmer who sells wheat should receive pay for whatever gravel, iron, wood and other substances he may leave in the grain? If any one should not pay for this mixed-in dirt, it is the miller. I think the miller has the right to insist on paying for wheat and for wheat only. Dirt at grain prices is an expensive luxury in these hustling days.-Milling IForld.

Water power is worth $\$ 60$ per horse-power per a $!\mathrm{m}$ in Paterson, N. J., while steam power costs 575 . A lessee in that city. whose lease called for a certain number of horse-power which had not been turnished, recently sued to recover $\$ 1900$, its value at the rate of steam power. but the court held that, as water power was to have been furnished, only the cost of water power could be al lowed, which was $\$ 1.500$. The lessee had not supplied the power from any other source, Had the been obliged to do so he could have claimed whatever it fairly enst him, whether more or less than steam power.-Boston Journal of Commerce.

Therc is no conomy in using damaged or musty oats tor oatmeal. Anyone who will iaste grain of musty oats will find says the Millsfonc, that it has a decidedly bitter taste. Drying does not improve this grain, but mather seems to make it worse White oats are preferred to the dark variety. In the former the hull is supposed to be lighter in weight and when small partieles get into the meat the cofor is not so objectionable as when it is dark. The best oats will only yield about half its weikht in meal, while the poorer varieties difier materinlly as to the yield ; turt it is casily seen that the diffcience of a few cents a bushel between the best oats and the poorer kinds makes litile difiterence in the cost of the oatneal, but makes every differeace in the vauce of the output.

THE SUPPLY OF NATURAL GAS.

AS natural gas has been recently discovered in many parts of Canada, and some are looking fol ward to its use for lighting and manufacturing purposes, the following extract from a paper read by Mr. E. B. Phillip bofore the Ohio Gas Light Association will doubtless prove both interesting and instructive:
The only durable supply of natural gas obtained in the Northwesten gas territory is found in, ie Trenton limestone. It is true that gas i.. considerable quantities is found in the shales above the Trenton ; but this is not
place of manufacture it would, on this account, find its way through the various strata until it reached the Trenton, and here becomes distributed. The shales and slates above the Trenton act almost completely as a bar. rier or stoppage to its rising further; and when in some cases it does reach the shales above, this fact is attributed to the presumption that it reaches these pockets or cavites through fissures or breaks. For this reason, as the shales are very close and compact, the supply found in these pockets is not lasting. Now, as far as the life of a gas well is concerned, we can ouly theorise. All that we are able to learn concerning this important phase of the natural gas problem is from actual experience and knowledge, and from that limited knowledge form our conclusion. We know the flow of gas wells does diminish-not to such an alarmung extent, however, as to discourage the investment of many millions of dollars in the business ; for the natural gas territory of this country is of such enormous area that, should the life of the first wells drilled be comparatively short, others may be drilled in other parts of the territory, and (comparatively) the same amount of gas can be obtained. This has been dem. onstrated to be a fact as far as our present experience teaches us, and for this reason, if the average life of the wells should be from five to $t \in n$ years. as has been claimed, the supply can be kept up by further use of the drill in adjacent territory not yet depleted, These facts and experiences from which we derive our conclusions are so num. erous, and the ground to be covered in
of continuance, being generally accumulated in pockets which soon give out. Th fifference between a good gas well, or gusher, and a sta..ll well is due to the porosity or density of the Trenton limestone. I have here three samples of Trenton rock. This one, as you will observe, is very porous, of a spongy character, similar very much to a piece of pumice stone. This specimen came from the Karg well at Findlay, the capacity of which is $12,600,000$ cubic feet per 24 nours. The other specimen is also porous, but not so much as the piece from the Karg. This sample came from the Heck well, near Findlay, the capacity of which is between $5,000,000$ and $6,000,000$ cubic feet. The third specimen here shown is from a well in the eastern Findlay territory, which scarcely shows any sign of porosity, and, is fact, is very dense and close. The capacity of this weil is about 500,000 cubic feet per day. These specimens show very accurately the comparative difference in the porosity and density of Trenton rock, on account of which the difference in the flow or production of the wells exactly to the same degree is attributed. The two lead-

ing theories, and those which have the greatest number of advocates among experts, are that it is made or produced mine
:on rock, or that it is made far below the Trenton. At best it is all theory and not a proved fart. It is, however, our theory that it is not made in the Trenton limestone, for the immense quantities of gas shat have already been used or wasted could not actually have been made in the Trenton, as the rock area could not produce it. The Trenton rock, in our opinion, is but an enormous passage-way or pipe-line, so to speak, for the distribution or conveyance of the enormous volumes of gas which the drill has liberated by tapping this pas-saç-way or pipe line. Presuming it is true that the gas is generated far below the Trenton, it can easily be supposed, for it is all imagination, that with the encrmous pressure at which it is packed or compressed in the
and Front streets.
Accordiax to a contemporary a considerabe amount of Cheboy gan, Detroit and Grand Rapids capital is being investedio pioc on the wild lands on the Georgizu Bay, on Spanish and Freach rivers along the north shore of Lake Huron in Cinnade. The Canadian government hotds all the lands and timber in this regioa, as well as in every other part of its domain. The land can be buoght at an average price of $\$ 1.25$ per acre, but this does not iactude the growing pine timber. For this the charge averages if per 1,000 feet stumpage. The purchaser mily wit the timber or let it grom. but when cut and scaled the goverament inspector collects \$t per 1,000 feet board measure as "crown dues." The land may also from $35,000,000$ to $100,000,000$ feet of slanding pine, so that the government has a proprietary of $\$ 35,000$ to 8 ro5,000 in the plate of those towaships in addition to the land. The goveramet unaber the parchace is made the goverament protects the pine from fire of the purchace as down.
thett till it cut down.

PUBLISHED MONTHLY,
CHAS. H. MORTIMER, Office, 81 King stroet West,
TORONTIO, - - ONTARIO.

CDVERTIANMENTM.

Advetusing rates sent prompty ypon application. Orden for adverising bould reach this office not iater than the asth day of the month immedate. ypemaling our date of isue.
Han 8 Re in adverisements will be made whenever desired, without cost Tothe advertisur, but to insure proper compliance with the instructions of ise dyrettiser, requests.
and day of the month.
Sperial adurrtisements under the headings "For Sale," "For Rent," se., is not exceeding five lines, 50 cents for ane insertion, or 75 cents
ar twu usertions. If over five lines, 20 cents per line extra. Cash muast

SUEBCRIPTIONS.

The Douinion Machanical and Milling News will be maled to sub-

 2 2nnuli, 50
atisames.
atrance.
The price of ullscription may be remitted by currency, in registered let. ter, or by postal order payable to C. H. Mortimer. Monev sent in unrexis. ter, or by postal order payable to 0 C. H. Mortimer. Monev sent in unregis.
tred leuters murt be at zenders' risk. The sending of the paper may be
wosidered as evidence that we received the money. Nosidered 25 evidence that we roceived the money.
Subscrittions from alif onxiou coum tries, embreal

Unioumilibers mav have the madiling andress changed as diten as desimble.
 Failure upon the part of subecribers to receive their papers promptly and megularly should be notifod at once to this office.

EDITOR'S ANNOUNCEYENTS.

Correpondence is invied upon all sogtre pertument to the mechantical and ailling industrics.
This paper is in no manner identifod with, oc controlled by, any manuIncturing or mill.furninhing bucinea, Doe will I bestowal or refusal α pat. ronage infuence its coarse in any degree. It soeks recosution and support
crom all who are interesed in the material adrancement cf the Dominion as rrom all who are interesed in the material advancement ef the Dominion as
2 manufucturing country, and will sim to fuithfully record this advancement Eonth br moonth.

Renders of the "MECHANICAL AND
MILLING NEWS" will confer a favor MiLLING NEHS" will confer a favor
upon the pubinher and ierive material benefit themmelves by mentionimp this paper when opeming rorrespomience with adiertiscrk. Drop us a postal carrl when you have cr.
written to an advertiser, give us mos mame, written to an autuertiser, give us mis mame,
and then wo will put you in the way of anil then
getting the benefit. put non't forget this.

OUR EXHJBITION NUIBER.

A RRANGEMENTS for the publication on ist September of the special Exhibition Number of the Mechanical and Milling News, to which we referred in our last issue, are progressing satisfactorily A number of manufactunng firms have already engaged advertising space in this special issue, which gives promise of being the handsomest and most interesting trade paper ever printed in Canada. Added to its attractiveness is the fact that 2 very large editionabout 20,000 copies-will be circulated among owners and operators of flour mills, saw and planing mills and iron-working establishments in every part of the Dominion. Manufacturers of machinery, belting, oil, or any other article used by the classes mentioned, should be represented in the advertising pages of this special number.

FI NGLISH millers think that to makegood four with

 American wheat, is as easy as rolling off a log. Mr. Seth Taylor, chairman of the recent convention of British and Irish millers in London, remarked: "As to the milling abilaties of English and American millers, any apprentice could make good flour from the wheat which American millers use." It this statement be correct we can siregest an easy way by which English mill owners may make money. Let them purchase supplies of hard wheat, put their apprentices to work to grind it, and save the salaries of their head millers. The wonder is that American and Canadian mill owners have not discovered this secret of profit-making before now.SPEAKER at the recent convention of British and Irish millers said: "The success of English millers depended on themselves; more mutual contdence was especially pecessary, and more triendly intercourse one with another. He quite considered that by their acsocianting together in the North as they did hat
year, they had improved their position 6d. per sack. Having improved their mills, they no longer had such formidable competition from abroad." Here is a hint which Canadian millers might very well take home to themselves. A little more friendly intercourse might have a like satisfactory result here. Sixpence a sack is equal to a fatr margin of profit in the present condition of the market, and the experiment is well worth trying.

THE report which Mr. Jones, the Canadian Trade Commissioner, brings from South America, regarding the openings there for Canadian manufactures, is very encouraging indeed. In lumber and coal especially Mr. Jones believes a large and profitable business might be done. The Argentine Republic imported last year $205,000,000$ feet of lumber, only onetenth of which was supplied by Canada. There is also said to be a profitable field for Canadian manufacturers of agricultural machinery. Americas lumber manufacturing firms have established branch houses, and travellers for American firms regularly visit the country. This being the case, Canadian manutacturers cannot tou soon enter the field and secure a share of the profitable trade which Canadians are so well situated to handle.

BY purchasing the Duluth, South Shore and Atlantic railway, the Canadian Pacific Company has secured control of the shortest route from Minneapolis, Sault Ste Marie and the Northwest to the Atlantic seaboard. The Canadian Pacific is in the hands of shrewd managers, and is making its rivals, both Canadian and American, look well to their interests. If the Canadian Pacific would allow the Canadian people to share the benefits of its many clever moves, it would stand better in popular estimation. We hope, for instance, that the shortest route from Minneapolis to the east, will not be used in the interest of Minneapolis millers as against those of the Canadian No.thwest in the matter of freight rates on flour consigned to eastern Canadian markets.
T is many years since the result of the harvest in Canada was looked for with so much anxiety on the part of all classes of people as during the present season. It is generally feit that another crop failure similar to that of last year, would bring disaster upon the country. The daily press, by printing reports concerning the condition of the crops from all parts of the Dominion, has given the public some foundation upon which to base an opinion as to the probable yield. Accepting these re ports as truly refiecting the situation, the result seems likely to be more satisfactory than many dared to hope for. The crop promises to be an average one at least in the older provinces, while a reference to our Western correst ondent's letter will show that in the Northwest the yield will probably exceed in abundance even that of last year. Altogether, then, there is room for encouragement. The worst may fairly be said to be over, and a more prosperous period seems to lie just a little further on.

OUR friends of the oatmeal combine do not appear to have profited by the recent advance of 50 cents per barrel which they caused to be made in the proce of catmeal. The consumer is said to have suddenly turned from oatmeal to flour, which at present prices is considered more e:onomical. One of our contemporaries doubts whether even Scotch economists would see the desirablity of buying oatmeal under present conditions. Unfortunately for the oatmeal millers the population of this country is not even altogether Scotch. Then, again, many persons who would be loth to do without their morning dish of porridge in winter, consider it too beating for the hot months of summer, and substitute for it fruits and vegetables. Add to this the fact that quite a variety of coarse ground wheat and otherkinds of meal have been introduced into the market within the last few years and sold in competition with oatmeal for the purpose for which the latter is used, and it will be readily seen that the lot of the oatmeal millers is not at present a happy one.

THE people of the Dominion will await with much interest the arrival of the Newtoundland delegation which is to confer with the Federal government at Ottawa in September regarding the taking of Newfoundland into the Confederation. We have seen nothing as yet to show that the acquisition of Newfoundland would be likely to result in any way to the advantage of Canada. On the contrary there is evidence obtamable to prove that the proposed union would very largely increase our public expenditure. The main angument urged by the advocates of union in Newfoumdiand is that when the colony shall have become a province of

Canada the Dominion Government will spend large sums of money in the construction of public works throughout the island. We respectfully submit that the Dominion of Canada has already plenty of territory. Our efforts should now be directed to the settlement of our Northwest territories by a proper class of immigrants, the development of our mineral and other resources, and the upbuilding of a strong and united nation. If our efforts in these directions should prove so successful that a few hundred years hence we should require additional territory, it will no doubt be time enough to make overtures to our Newfoundland neighbors.

AST year the enterprising people of the Northwest gave representatives of a number of the leading newspapers throughout Eastern Canada a free excursion through the farming districts of Manitoba, and in return that part of the Diminion received an advertisement which amply repaid whatever expense was incurred in carrying out the iden. This year it is proposed to invite in the same way representatives of leading European journals to visit and inspect the country. The idea is a good one, and we hope to see it carried out. We have heard doubts expressed in some quarters as to whether the right class of newspapers could be got to send representatives. There is little occasion for doubt on this point. The newspapers as representing the people of the old lands, are interested in knowing whether the statements which have been made regarding the Canadian Northwest as a field for emigration are reliable or not. They are also financially interested in supplying the public with fresh and authentic information on a subject of such general interest. The Canadian Northwest is a grand country for the arifty immigrant, and we are pleased to see the enterprising way in which the people already resident there are setting about the work of making its virtues known.

THE city of Winnipeg realizes that the establishment of manufactories is necessary to its future development. In the Northwest as in Ontario in the days of its early settlement, manufactories are apt to spring up wherever good waterpower is available. Thus we hear Keewatin and Sault Ste. Marie spoken of as the scenes of large manufacturing industries in the future. Winmpeg is not so fortunate as to possess natural water power available for manufacturing purposes. Had it been otherwise that city would doubtless already be the principal manufacturng point in the Northwest. The citizens of Winnipeg are an enterprising people, however, and they do not propose to see their city stand still or retrogade because it does not happen to possess all the natural advantages of other localities. Winnipeg has no natural water power, but it has the next best thing-a river-with which it hopes to provide a very respectable artificial power for manufacturing purposes. In February last the City Council voted the sum of $\$ 2,000$ to be expended in surveys and the obtaining of information upon which to base a report regarding the best method of improving the river in order to provide water power for manufacturers, and the probable cost of carrying out such improvements. The investigation has since been in progress under the direction of the City Engineer of Winnipeg, who has just presented a lengthy preliminary report to the Council setting forth in detail the result of the work that ha's been done. The report suggests the construction of a dam of masonry and concrete across the Assiniboine river, at an estimated cost of $\$ 250,000$, which would make available for use 5,626 horse power for fourteen hours per day at the season of lowest water. The expenditure necessary to construct a canal for supplying water to the mills for a distance of half a mile below the dam is estimated at $\$ 50,000$. The report states that canals may be constructed on either or both sides of the river to supply water to mills, the mills being built between the canals and the river, and the tail water taken into the river by tunnels or open cuts as may in such cases be considered advisable. It is pointed out also that the amount of power stated above which the construction of the proposed dam would make available, could be doubled by the construction at some future time of a canal from Lake Manitoba to the Assiniboine at Baie St. Paul. The opinion is expressed that the water power of the Assiniboine river, 5,636 horse power, can be leased within one year of the time when it is made available, and that the demand for additional power and navigation to Lake Manitoba will be so great that it will be in the interest of the Government or of the company undertaking the works to push on the construction of the canal to Lake Manitoba at once. The report, which is certainly a very tavorable one, is to be sappleniented by another, stating the result of further experiments now going on. The present is the time for the city of Winnipeg to consider this project in all its bear-
ings, before younger and less important towns shall have secured the large mills and manufictories which during the next few years will be established in the Northwest. We shall wait with interest for the engineer's second report and the action of the Council thereupon.

T${ }^{4}$ HE news comes from Ottawa that proceedings have been taken before the commissioner of patents to annul all patents for Edison's system of electric lighting.

AN Ottawa rumor is to the effect that in consequence of the threats of the American government to im. pose tolls upon Canadian shipping passing through the Sault Ste Marie canal, the Dominion Government will proceed at once with the coistruction of a canal on the Canadian side of the river.

T${ }^{\top}$ HE lumber manufacturers and journals of ${ }^{\text {the }}$ United States are very much excited at present because the House of Representatives has pasjed the Mills 13ill, which provides for the free admission of Canadian lumber into American markets. The hope is expressed that the Bill will be thrown out by the Senate.

THE celebrated case known as the Queen vs. the St. Catharines Milling Co., involving possession as between the Dominion and Ontario Governments of certain territory and the timber thereon, is at present being algued on appeal before the Privy Council. A cablegram states that the decision may be expected in about two weeks.

T${ }^{\top}$ HE validity of the law lately passed to put a stop to the Lusiness of stock-gambling in bucket shops, will shortly be put to the test in this city, where the proprietors of a reputed institution of this character have been placed under arrest. The result of this action will be awaited with much interest. Should the law in its present state be found to be defective, Parliament which meets a few months hence will lose no tume in making whatever amendments are necessary to secure the object in view.

Whave had some difficulty between saw mill owners and their employees during the past month. It is not a frequent occurrence by any means. Indeed the wonder is that strikes in the lumber districts do not occur oftener, owing to the number of men employer, and the reckless character of some of them. It caarcut be doubtedj that in some instances these men have cause for complaint. Their work, though not calling for the exercise of mechanical skill, is laborious and often highly dangerous, while their wages are, to say the least, none too liberal.

IFit be true that in Sweren a telephone costs only $\$ 4$ a year and an electric light \$6, and that the telephones in use there are equal if not superior to those of America, it would prove a profitable speculation to import a few thousand of these instruments into Canada and rent them at half the price now prevailing. Considering the exorbitant figure now charged for telephone accommodation, it is surprising that the instruments have come into such general use. It will be still more surprising if some means be not soon found to get out of the hands of the present telephone monopoly, and have charges reduced to something like a reasonable figure.

A FLOATING SAW-MILL.

ALONG the bayous and lagoons of Florida grows some of the finest timber in the south, much of it in places considered entirely inaccessible until J. L. Maul \& Son hit upon the plan of constructung a floating saw-mill. This idea they carried into execution, and their mammoth mill, which now lies off the banks of Burton \& Hanison's hammock, near Palatka, is a marvel of mechanical ingenuity. It has a length of 80 and a breadth of 40 feet, and it is so solidly built that the machinery has no more effect upon it than if it were built upon the solid land. Although it stands five feet high out of the water its draught is only about a foot and a half, which permits it to be taken into the shallowest lagoons where imber could not be floated. It is equipped with the latest machinery, planer, box-header, shingle saws and a fine 40 borse-power engine and boiter. On the hurricane deck is the cabin and office for the proprietor, while the cook house, where the men board, is in a corner on the main deck, which is otherwise free for the piling of lumber, the machinery being all below it. This hoating mill has so far proved eminently successfut, exceeding the expectations of the proprietors in this respect, and is probably the pioneer of numerous cratt of the same kind.-Timberman.

COMPARATIVE ECONOAY OF HIGH AND SLOW SPEED ENGINES.

T nearly every case where a flour mill is built it is intended that it shall be a permanent investmont. The very nature of the milling business makes it necessary, says the Milling Engineer, that the plant shall be built and operated, not for one, two or three years, but for a long term of years. It is the ambition of every mill owner when he builds a mill, to make it the foundation of a permanent business, and if he is wise he will build such a mill and select such machinery as will prove the most economical, not in the first cost, but in the long run. In no part of the milling plant is this more important than in the power outfit of steam mills, and as most of the mills now being built are steam mills, the comparative economy of different styles of steam engines becomes an important subject for consideration. No matter whether the mill is large or small, unless it is so advantageously located as regards its supply of fuel that the cost is practically nothing, any wastefulness in the consumption of fuel creates a steady drain on the earning of the mill which will seriously affect the balance of the profit and loss account, and where fuel is expensive may result in transferring the balance to the wrong side of the account.
In selecting a power plant, it is a mistake, frequently made, to consider the first cost of the plant. as of the highest importance, and any saving in this direction as so much clear gain. Especially is this the case in flouring mills of small capacity, where the builder's capital is limited, and where the idea is to get as much mill for as little money as possible. In such cases, any money borrowed from the power plant to put into the balance of the mill is borrowed at a ruinously high rate of interest, and it is, moreover, borrowed without any chance of repayment, except by throwing out the cheap plant and substituting the higher priced and more economical one at great expense. In no way is the miller more often misled than by the claims of the builders of the high speed automatic engines, where the name automatic is relied upon to cover a multitude of sins, in the direction of low economy. In this connection some facts are given from a paper by J. A. Powers, in the July number of the Electrical Engineer.
After carefully analyzing the problem and considering the requirements of the load to be driven in electric lighting stations, which are more favorable for the high speed engines than is the case in flouring mill work, Mr. Powers reaches this conclusion as to the different styles of engines in the consumption of sterm as stated by engine builders:
Steam per H. P. per hour.
High speed engine................................ 28 to 32 lbs.
High speed engine...............
Cotliss engines, non-condensing..
................... 282032 lbs.
condensing............ . 20 to as lbs
With an evaporation of eight pounds of water per pound of coal, the coal consumption would be as follows:
High speed engine3.50 to 4 libs. Corliss engines, non, condensiug..................... 3 . 30 to 4 th 3.25 lbs. condensing.... 2.50 to 3.25 lbs. compound condensing........... 8.87 to 2 lben.
As the interest on tine first cost of the steam plant should properly be charged against its economy, the following statement of comparative first cost is given :
High speed engine.
. 831 to 536 per II. P.
Corliss engines, non-nondensing. 42 to 46 condensing. . 43 to 48 compound condensing....... 52 to 57
The comparlson of first cost and fuel saving is as follows:

If the cost of coal is taken at $\$ 3.00$ per ton and interest is figured at 6 per cent., which figures may be considered a fair average, the results, based on the fore. going figures, for a plant of 400 horse power, will be as follows :
cost of cosal $\begin{gathered}\text { Saving in Coul } \\ \text { per day. } \\ \text { over High Speed. }\end{gathered}$
High speed engine................... $\$ 24.75$ per day. \quad over High Speed
Corliss enkine non-condens...........
$5.1 .$.
5.85
9.51

And the saving per day over the high speed engine Corliss engine, non-condensing. condensing. .85 condensing............ 8,7
81,78
So far as the steam consumption is concerned, results in every day work show that the comparison is m.ate a favorabie as possible for the high speed engine, for while records of actual tests of Corliss engines show that the figures given are not understated, the average of high speed engines after running a short time is not nearly a low as 32 lbs. per indicated horse power per hour. So far as the cost of the respective plants are concerned, we should be inclined, especially for small plants to put the average cost of the high speed plant a little lower and that of the Corliss a little higher, but this change would not materially affect the result so far as comparative economy is concerned.
To bring the matter in shape to fairly apply to the requirements of the average 100 barrel mill, it may be assumed that the power required will be go horse powet. In the absence of exact data as to the cost of the high speed plant, and to give it as favorable a showing as possibie, the costs of the respective plants may be staled
as follows :
High speed.
High speed..s1,500
 The economy would then be:

And with coal and rate of interest assumed as above, based on a continuous run of 280 days, 24 hours per day, the comparison is summarized as follows:

The ratio of saving the difference in cost between the high speed plant and the other may be stated as follows :
Between bigh speed and Cortiss non-condensing.......25 per α. condensiny. ensing.......2s pera.
Or in other words it would take four years to save ibe difference in cost using the non-condensing Corli s, a little over two and one-half years if condensing, and three and one-third years if compound condensing. In either case, the saving would be steadily continued, long after the cost of the plant had been wiped out.

VENTILATING MILL STONES.

AVERY simple and inexpensive contrivance for ventilating millstones is described as follows in Le Ble: On the running stone are placed three fans 130 degrees apart, and shaped like sections of rain gutters. These fans are on hinges, so that one can vary the ande of the vertical side. A quarter circle, furnished with a certain number of holes, by the aid of a pin permits the fastening of the fan in the position desired. Cermeponding to every fan are two holes made in the mill, each having a ring of brass secured in it. The horizontal side of the fan carries two gudgeons, which fit exactly into these. Whesi the mill is running the fans draw a certain quantity of air, and so establish an uninterrupted current of air, which is of undoubted good effect.-Manwfacturerr' Gasette.

USES OF THE BLECTRIC MOTOR

T would be almost ampossible to catalogue the num-

 ber and variety of purposes for which the electric motor is now in daily use, says F. L. Pope, in Seribimers Magasine. Some of the most usual applications are for printing presses, sewing machines, elevators, ventilating fans and machinists' lathes. At the present time every indication unmistakably points to the probajility that within a very few years, neariy all mechanicil work in large ctties, especially in cases in which the power required does not exceed say 50 horsc.power will be pes formed by the agency of the electric motor.It is an ideal motor, absolutely free from vibration or noise, perfectly manageable, entirely sate, and with the most ordinary care seldom if ever gets out of ordes. Indeed, there is no reason to suppose that the limit of 50 horse power will not be very largely exceeded within a comparatively shott periol, when it is rememberied that scarcely five years ago the production of a mocest. ful to horse-power motor was considered quite a sowworthy achievement.

THE HURFORD FLOUR BOLT.

IN the last number of the Mechanical and Mill. 1 inc, News millers were informed that Messrs Runciman Bros., of Hamilton and Goderich, Ont., had made :arrangements to manufacture the above machine in Canada. In view of this a few particulars concerning the construction and method of operation of this machine should prove interesting. These machines can and frequently are put into old chests. When placed in old chests the feeding device is inside the chest and is fed from above as shown in the cut. The old bearings and bridge trees are used and the shaft extends at both ends of the chest the same as before the old reel was removed. The bridge tree shown in the cut inside the chest is to sustain the feeding device and is a part of it. A tube-like extension of the head casting runs inside the bridge tree. The teed tube passes inside of the revolving extenston of the head casting, and is supplied with a circular flange by which the feed tube in supported, the fange being screwed to the outside of the bridge tree. The shaft pusses through this feed tube and is supplied with a screw conveyor which revolves with shaft inside the feed tube. Owing to the peculiarity of this form and construction of feeding device no tight head or speck box is required, as the feed tube, flange, bridge tree and extension over the feed tube of the head casting of the reel constitutes a perfect protection against specks.
The accompanying cut shows the head end of the chest with the upper and lower portions broken away to show the arrangement of the inside brush, which is hung pivotally upon the shaft and weighted below in keep it in a vertical position. By this adjustment the clo:h : brushed gently on the upper inside of the reel, thus keeping it perfectly clean from all cloggiug or filling up of the meshes. No material is allowed to be carried over and thrown against the down side of the reel. It is claimed by the manufacturers of this machine that by keeping the cloth clean on both sides and not allowing the material to be thrown about on the inside of the reel, a larger capacity is obtaned together with a better quality of work.
When reels are furnished in chests the feed tube is placed on the outside, while it is on the inside when they are put into chests in place of centrifugal reels, the feed device is placed on the outside of the chest in the regular way, as any short centrifugal chest can be easily changed so as to conform to the standard chest built for these reels.
Any further particulars regarding this machine may be obtained by applying tothe Canadian manufacturers, as above.

ECONOMICAL ADVANTAGES OR THB GANG MILE

T N these days of close competition and small profits, writes a Wisconsin lumber manuffacturer in the Timbermank, it Sehooves us to take into consideration the wide difference between the saw kerf of a rocary and of a gang mill. Everyone knuws what a rotary saw liots, that it takes about three-eighths of an inch kerf; and this article is more for showing what a gang can do in the way of saving lumber. If a rotary could be run on timber alone, there would be scarcely any waste of lumber, and I propose to show that a gang practically cuts its logs into timber, (figuratively speaking), with little, if any waste. The following diagram representing $2 \log$ of the diameter of fourteen inches at the top end sixteen feet long, and scaling by Scribner's rule, 114 feet, will assist in the explanation (scale 1 to 8):
The sawyer slabs his \log intn the above twelve-inch cant, and it is thrown to the gang; in going through, it culs into the following lumber, as per diagram:

$\begin{aligned} & 4 y^{10 c o s} \\ & e^{11} \end{aligned}$	$\begin{gathered} 012 \\ 088 \end{gathered}$	$\begin{aligned} & 16 \mathrm{ft} \\ & 16 \mathrm{~h} \end{aligned}$	$\begin{array}{r} 128 \text { feet } \\ 40 \%{ }^{\circ} \end{array}$

clear gain of fifty seven feci. Besides this, if the log has any swell to it at all, there will be two pieces 2×68 feet out of the side alabs from the gang, making sixteen feet more, a total of $1863 / 3$ feet, a gain of seventy-three feet, or over sixty per cent. apon the log scale. Hach the log been sawed into boards, the result would be neariy the same, as follows (scale 1 to 8):

All of these boards are sawed full inch in thickness and the dimension one and seven-eighths inches. The sawkerf makes the full width of cut two inches on dimension, and one and one-eighth on boards. The saw-kerf is therefore a loss only in the sawing of boards, while the short lumber which is cut from the sides of the cant amounts to more in sawing inch than in two-inch, nearly if not quite making the two equal, in small logs. Were the logs squared into timber by a rotary saw, the account would be :

\% piece	soxio	16	133/3 fl .
The gain in the swell would ${ }^{32}$			
be about			265\%
4 pleces	1×4	16	21\%

or the same as the gang makes in cutting two-inch.
In large logs the gain should be greater than in small logs owing to the fact that when you gain one or two boards twenty to twenty-four inches wide you are getting a good deal of lumber. 1 will choose a cant having a diameter of twenty-four inches and slabbed down to twenty and a half inches in thickness. The log scales 424 fee: at sixteen feet. The gang cuts it into twentyone boards each having a face at the end of log. These boards scale as follows :
the huxpord floue bolt.
Showing a gain of 138 feet or about thirty-four per cent.

The above diagrams and figures seem to demonstrate most conclusively that the small log is slighted by the scale rule, that is, it is not allowed enough feet. The Scribner rule which puts the fourteen-inch \log above at 114 feet, is more generous than any of the other rules, none of which place it higher that 100 feet, While some of the figures on the lumber may be a little too bigh, yet it is a well known fact that small logs overrun more than large ones, and when gang sawed, they wull yield from forty to fifty per cent. more lumber than they represent in the log. The writer once sawed a lot of very small logs running about twenty to the thousand feet, which overran just 50 per cent. in merchantable lumber. Some of it was a trifle wainy, but it was all saleable. I have had other logs scaling from twelve to Gifteen to the thousand which cut out from thirty-five to forty-five per cent. There are always hidden defects in the log which the scaler cannot see, and which make a good deal of edging and trimming necessary to cut of the bad spots, and this reduces the gain somewhat. I feel certain, however, that a day's sawing of perfectly sound, straight and smooth logs, would yield over fifty per cent increase upon the log scale, and I know from personal observation that a man can rely upon getting torty per cent. from an average lot of small logs.

There is something to be said about the method of scaling loga prevailing on the Mississippi river. The above figures are based upon Black river logs ; the gain is not so great on Chippewa scale, while Stillwater scale, where it is done wnth calipers, is more than likely to make the bayer's lumber scale come out short of what be pays for in the log. I heard of a man who bought a Stillwater rath, had it sawed right there, rafted every piece of the lumber, and did not make any shingien, and the lumber fell shoot some 50,000 foet of the log scale.
A large proportion of the logz sawed by La Crome mills are small, and it is well known there that they cut out liberally. In stey the loe scale of the Bhock nyw
boom was $169,000,000$, at least thirty-five millions of which was sold to down river parties. The mill cut out $210,000,000$. To these we must add some thirty million Chippewa logs which were sawed there, making 148,000,000 . As will be seen from the above, the gain was about 40 per cent. over log scale.
I do not wish to make my readers think from this that La Crosse or other intls are coining fortunes from sawing small logs. If one pays $\$ 8$ for the logs and $\$ 2.50$ for sawing, and sells his lumber in the raft at $\$ 10.50, \$ 8.50$ and $\$ 5.00$, the ruling price, he makes about 8 per cent. on his investment. But the point is this: without gang mills it would be impossible to make even that, as a rotary would take one-eighth more kerf than a gang and make the profit pretty slim, unless it could all be put into timber, and the market would not stand timber. alone. The gang theoretically cuts the log into timber and yet makes saleable lumber of all kinds.

THE BENEFIT OF BUSINESS CONVENTIONS.

Tbeneficial results of conventions in general, and of this year's in particular, says the Millers' Gazetle, are too patent to require much support in these columns. In the first place we consider the annual convention to be one of the main props of the Association, without which it would be still less representative or national than it is. As we have heard many a miller say, " It is quite worth joining the asscciation to take part in these conventions." Tt : pleasure is great-the profit equally so. If there be a: y miller in the kingdom so lamentably old-fashioned and conservative as to believe that he is possessed of trade secrets which he would rather keep to himself (uuless they be local ones), and so ignorant as to suppose that he cannot learn anything from intercourse with brother millers, let him join the Association and take part in one convention, and he will quickly find out how seriously he errs in his supposition. It is a fact that several fresh millers enrolled themselves for this convention, and their unanimous out-spoken verdict is, "We have learned more that is of practical use to us in this one convention than we could possibly have thought of." What is thus learned cannot possibly be printed, for unfortunately we cannot pick up and store for the public benefit every item of interest and usefulness which falls from millers' lips in their conversation on these occastons. If we could we should doubly enhance the value of this journal to millers. Points of detail crop up at every turn, and it is points of detail which go to form the successful mill. This, then, is the greut benefit which accrues from mutual intercourse, such as is only possible at the conventions and general meetings of the Millers' Association.

LETHOD FOR THE ESTIIATION OF LANGANESE IN STBEL.

R EFORE the American Institute of Mining Engineers, Mr. Frank Julian, of Chicago, gave the following formulae :
In an Romince Griffin breaker dissolve 1 gramme drillings in 15 c.c. nitric actd ($\mathbf{1 . 2} \mathrm{sp}$. gr.) Evaporate to 5 c.c. ; add 20 c.c. concentrated nitric acid and precipitate with chlorate as usual, avoiding a large excess ; then add successively 5 c.c. concentrated nitric acid, about 60 c.c. warm water, and 10 c.c. of the oxalic solution; stir until of a clear, light yellow color, and tritrate with permanganate while the solution is at about $70^{\circ} \mathrm{C}$.

The binoxide should dissolve immediately when the oxalate is added. The tritration is rapid, and the endreaction easy after 2 little practice. The standard solutions used are 15 grammes crystallized ammonum oxalate to a liter, and 1.6 grammes potassium permanganate to a liter.
For standardizing the permanganate, to to c.c. of the oxalic solution is added 50 c.c. of hot water, and a solution of 1 gramme of steel in concentrated nitric acid, from which the manganese has been removed by potassium chlorate and filtration through asbestos.
I have made a large number of determinations in steel, pig iron, and ore with very satisfactory results for technical work, these being generally from .02 to . 05 per cent. lower than by standard gravimetric methods: and the rapidity with which results can be obtained is greater than in any other metbod with which I am acquainted.

A aew procien for ampigamatiog zinc and quctedrer withoat

THE GREAT BOILER EXPLOSION AT FRIEDENSHUTTE.

THE lowmotior published by the Harrford Steam Boiler Inspection and Insurance Co., Hartford Conn., gives the following interesting particulars of the above terrible explosion, which has seldom if ever been equalled in any part of the world :
At the request of several members of the Union of Societies for the Inspection of Boilers in Prussia, a general meeting of the whole Union was held at Berlin last February, to investigate the terrific ex plosion of twenty-two steam boilers, which occurred at Friedenshutte, in Upper Silesia, on the $25 t_{1}$ day of July, 1888, of which a short notice appeared in our April issuc. The Prussian governn:ent was also represented by officials from several departments.
Two papers were read upon the sub ject, one of which was compiled by the engineers of several Rhenish boiler inspection companies and the other by engineers of companies working in the north and east of Prussia, which differ only in matters of minor detail. The assembly, therefore, appointed a committee of six chief engineers to compare the two reports and draw up a new one embodying the essential points of the two, to be sent to government officials, the vatious industrial or techmical journals, and reputable daily newspapers. The committee consisted of the following named engincers:Weinlig, of Magdeburg ; Eckermann, of Hamburg ; Bocking, of Dusseldorf; Vogt, of Barmen ; Munter, of Halle ; and Emundts, of Gladback. The following is a synopsis of their report, for which we are indebted to Herr Minssen, of Breslau, editor of the Jourmal of the German Bailer Inspection Sorictics.
The terrible accident at Frieden shutte stands without a parallel in the history of boiler explosions. Neither German, American, nor English statistics show anything approaching in magntude and destructiveness the huge catastrophe in Upper Silesia. A consideration of all the facts in the case leads invariably to the conclusion that the explosion was not due to the causes which ordmarily bring about boiler explosions. Before entering into a tiscussion of the explosion, we mast say that there was no fault to be found with the inspection or management of the boilers. We make this state ment here in order that we may not be mis understood when we afterwards speak of defects of construction and in the general arrangement, for the explosion was partly due tothis and partly to defects or conditions arns ing suddenly and not visible after the explosion. The investigation of a single boiler explosior, often involves much trouble in the search for de-
tails, and in this case is rendered much more difficult by the fact that the fragments of the differeut boilers could not be identified. Portions of some of the boilers could not be found at all. All the details of the disaster will certainly never be known; it is without precedent, and all that can be done is to give a reasonable explanation that accurds with what facts are known.

The boiler-house at Fricdenshutte contained twentytwo steam boilers, which were arranged in one continuous battery; side by side. They were all precisely alike Each consisted of an upper cylinder, 1,570 millimetres
(61.8 incles) diameter, and $12,550 \mathrm{mml}$. (41 f. 2 ins.) long, and two lower cylinders 785 mm . (30.0 ins.) diameter, and $18,765 \mathrm{~mm}$. (38 ft .7 .2 ins .) long. These lower cylinders were connected with each other by one neck, about 20 inches in diameter, near the front end, and each was connected to the upper cylinder by two similar necks a few feet from the ends.
The plates of the upper shells were 13 mm . ($1 / 2 \mathrm{in}$.), those of the lower shells $8 \mathrm{~mm} .(5-16 \mathrm{in}$.), and those of

Near the middle of this flue was a division wall, саиння boilers Nos. 22, 23, and 1 to 7 inclusive, to discharge into the northern starks, and 8 to 20 into the soutben one. (Sce Fig. 1.)
The boilers were all fired by high furnace gases, dis. tributed from an iron f° pe to all in the same manner, or smaller vertical pipes to each boiler. Besides this, there was a double grate, each $1,885 \mathrm{~mm}$. ($6^{\circ} 2^{\prime \prime}$) long, and 910 mm . $\left(3^{\prime} 1^{\prime \prime}\right)$ wide beneath the front end of upper cylinder.
 The furnace gases were introdaced above this grate, on which was kept continuously just sufficient fire to ignite the gases as they entered. The amsunt of coal-dust burned for this purpose did not excced from 2 to 3 lbs . per square foot of grate surface per hour, so that two men and a boy were sufficient to do the firing and attend to the water in all the boilers.
, Steam was required only for the blowing engines, and some other minor purposes, so that eighteen boilers were always sufficient to do the work; four boilers were therefore always out of use for cleaning and repairs. Shortly before the explosion, Nos. 1, 3, 16 rad 20 were blown off and were empty.
The feed-water was, as is apt to be the case in cral districts, bad for boiler use. It made a bad scale, which beeame detached, and, falling to the bottom of the boilers, formed a deposit which caused some pitting of the shell. plates. The analysis of the water gave the following result :
Silicie Acid, - . 0300 grammes Iron Oxide, - .0100 " Lime, 0100 .2624 Manganese Oxide, .0540 Sulphuric Acid - . 2698 Chlorine,
Organic matter, - . 12139 "
The feed apparatus was of sufficieat capacity, in good ordel.
Twenty of the boilers were built in
the necks 11 mm . ($7-16 \mathrm{in}$.) thich.
The upper cylinders were supported in the usual manner by wrought-iron brackets resting upon the side walls of the brick-work; the lower ones rested, one upon three, and the other upon two iron chairs.
The pressure allowed was 75 lbs . per square inch (5 at.nos.) With the above thicknesses of plates, this was not excessive.
The boilers were all connected to one main steam-
 ad rua without interruption, until, at half past 12 o^{\prime} clock, on the night of July 35, 1887, the twentytwo boilers, including the fout empty ones, exploded without any warning whatever. The boiler house was completely de. molished, and several small houses in the vicinity, occupied bythe workmen, were set on fire by redhot bricks, which were scattered over their roofs. The three firemen were stantly killed, nine more workmen were 50 badly injurad
pipe passing over them by copper pipes, which were tuinished with self-acting steam valves of 150 mm . (6 I .8 mss .) diameter, and two safety-valve; of 85 mm . 35 -16 diameter, as shown in Fig 3.

The feed apparatus was the same for all boilers, there being two pipes with check-valves in front of ea h boiler, in the ordinary manner.

The flues were arranged as they usually are with boilers of this type. At the rear end of the battery a large flue received the gases from all the boilers and carried thera to the chimneys, of which there were two.
that they died three days afterward, and thirty otber men and women were more or less severely. injured, but recovered.
The heap of ruins was so vasi and chaotic that the discovery of every detail of the explosion was impossible, although the investigating engineers examined every piece of iron which was found during the clearing away of the debris, which work required several weelis accomplish.
Low-water at the same time in eighteen boilers cer not be consudered possible. It is not at all probert
that the pumps did not draw, or that five pumps, of which three ware continually working, would all fail at once, nor could it occur in so many boilers all at once by leaking seams or unusially great evaporation with. out being discovered.
A soft blue annealing color, which showed itself upon some plates of boilers 6,7 and 12 , was found, but only upon single plates of three bolers, and in no instance extended over the whole surface of the plates. To find it at all it was necessary to scrape off the oxide of zinc with which the plates were covered : the inner surface of the plates and the fiactures through them did not exhibit the blue color at all. All things considered, low water as a possible cause of the explosion cannot be considered.
An excessive steam pressure could only arise when the cngines were stopped and the firing of the boilers was continued, with all thirty-six of the safety-vulves stuck fast to their seats. And in this case, with the blowing engines stopped, the flow of gas would have ccised, and the pressure would have to be raised by finn" with coal alone; and, as ve have seen, the amount of coal used was so very small, a dangerous pressure could not have been reached tor many hours. There can be no plausible explanation of a dangerously high stean pressure.
There is still to be considered the question whether the catastrophe would not have been brought about if, by chance, one or two of the bollers had exploded from some of the ordinary causes.
There is no doubt that, by the explosion of one or two of the boilers, a violent shock and a destruction of the large main steam pipe would have occurred, and we must suppose there could occur a sudden discharge of pressure from the other boilers, in consequence, and therr explosion might follow as a result. But this is not probable. Each boiler was connected to the main steam pipe by a pipe six mehes in siameter, through which the steam would have to escape ; and experience shows that the sudden opening of a pipe of this diameter in a boiler having the amount of steam and water room of those under considcration is not sufficient to produce any serio:" ${ }^{\text {disturb- }}$ ance. Besides, it must be considered that the upper c) linders flew in a direction just opposite to that which they ought to have taken had the explosion occurred in this manner.
Official statistics of boiler explosions in Germany show, of fifty-seven explosions of boilers of the same type of construction as those of Friedenshutc, eighteen bnilers exploded in batteries, and in only one case did the explosion of one boiler cause the explosion of a neighboring one, the number of boilers in the batteries ranging from two to ten.
All things being considered, we must believe that the acident was caused by the use of the furnace gases for heatung the boilers. An explosion of these gases, either alune or mixed with gases from the coal used, is the only thing that could produce the effect shown by the direction of flight of the boilers. We should not think the effiect of the exploding gases would be so serious were we not convinced that the construction of the boilers was favorable to it and the materials of bad quality.
The furnace gases burn all along the flues, so that there are not really well defined furnace plated. This gives rise to great expansion and contraction in different parts of the boiler, which is manifested by cracks at girth seams, etc. The construction of such boilers is also inherently defective, and they are fortunately fast going out of use.
The tan-like form of the direction in which the fragments of the upper cylinders were thrown, the manner in which the flues were destroyed, the front side of the main flue between the chimpeys being squeered against the back wall, and the top blown off all show that the active agent was a force acting from a center between the two chimneys. This could be nothing but an explosion of the furnace gases mixed with gases from the oal.
The composition of the gases from the Friedenshutte furnace is estimated as follows :

Jung of Burbacher-Huette gives their composition as follows:

Nitrogen,	-	-	-	60
per cent.				
Carbonic Oxide,-	-	-	24	$" 1$
Carbonic Acid.	-	-	12	$" 1$
Hydro.carbons, -	-	-	4	16

Hy says: "The greater the amount of carbonic (xide, the greater the value of the gases for heating purposes."

Lurmann, a well-known furnace engineer, sa,s furnace gases are "difficulty burning" and warns against trying to burn them and coal together.
The furnaces at Friedenshitte blew grey Bessemer iron. The gases are very rich in carbonic exide, and poor in carbonic acid.
By stoppages, for instance, at drawing the furnace, by sudden shutting down of the steam engines, or by simultaneous opening of the furnace lids, the flow of gas under the boilers might entirely cease and the flames be extinguished. When the flow again begins, unburnt gases enter the flues, air enters through the grates, firedoors, cracks in the brick-work, etc., and the explosive mixture is formed, and only waits igntion, which occurs sooner or later.
Durng the hour from 12 to at night there was a pause for taking supper, as for dinner at noonday. Very likely, at this time an extra thick layer of coal-dust was put upon the grates, or the flames were extinguished after the coal was burnt out. After mixing of both sorts of gases, from the surnace and from the coal, it would be quite immaterial where the ignition of the mixture began, or whether several explosions oscurred at once, or only a single one in several flues.
In either case, if a gas explosion occurred, the effect upon the boilers v:ould be the same. The thrust from underneath the upper cylinders would first break the middle of the boiler and, simultaneously, the rear con-

Tance of persons not met before.
the shaft and the rest in the straw. He has been transferred from the traces to the driver's seat; he controls the new forces; a touch can lift a thousand tons;a wheel revolve a thousand spindles; an electric button illuminate a city; a hand on a throttle start a loaded train. One can easily see that this change in agency fetches man around to the fact that intelligence is henceforth the most important of industrial qualities.

ainual picnic of wh. \& J. G. greey's

 EMPLOYEES. HE above event, which had been looked forward to with eager expectation by those who cherished pleasant recollections of the good time enjoyed in previous years, took place on Saturday, the 14 th of July. The weather proving propitious, there was a full attendance of the employees, their families and friends. The party boarded the steamer Hastings at 7.45 o'clock in the morning, and after waiting ten or fifteen minutes for late-comers, set sall for Oakville, the scene of the day's enjoyment. Stationed on the bow of the steamer was a very efficient band, whose services were rendered un. s!intedly throughout the day. The trip to Oakville occupied about two hours, and was spent quietly in conversation with acquaintances, and in making the acquaint-On landing at Oakville the party made their way direct to the park, carrying with tham large baskets containing the wherewithal to satisfy the demands of appetites sharpened by the lake breezes. Ascending the platform in the park, Mr. J. G. Greey made a brief address, in which he acknowledged the guifing hand of Providence which had crowned the labors of his firm with success. He also alluded in feeling terms to the absence of an old grey-haired man-his father-who was was one of the happiest of those who attended the picnic last year, but who in the interval had been called from earth to heaven. After 2 few words of kindly advice and the singing of a hymn, the baskets were opened and a vigorsus and well sustained onslaught on their contents began.
After luncheon a lengthy and interesting programme of athletic competitions divided attention with the music of the string band and the graceful muvements of the dancers on the platform. A baseball match in which some "tall" catch-
cylinders, the upper boiter rising at its rear end and turning on the forward connecting leg, would be projected forward, upside down. This was exactly what occurred in this case.
It is not our purpose to criticize the use of furnace gases as fuel for boilers, nor to condemn the above-
 that there would be a concidence of all the dangerous conditions, as at Friedenshutte. Other and better consructions than these, which do not allow of the extugguishment of the gases, are well known and appreciated in German iron districts.
In short, we may sum up the results of our investigations in the following words:
By an unfortunate conncidence, an explosive mixture of gas and air formed in the boiler flues, and suddenly ignited. The effect of this gas explosion was a local rupture of some parts of the boilers, which was easily effected in consequence of the great length and inferior construction of the boilers, and the bad quality of the materials. The explosion of the gas worked the lifting and breaking of the boiler-shells, which resulted in the tremendous explosion and devastation of the whole boiler-house.

bRAINS VERSUS MUSCLB.

METHODS of work keep pace with the bigher idea of its place and spirit, says a writer in the Age of Steel. Manual toil transfers its perspirative to iron wheels and leather straps; a big arm once the agency of labor-now a spoontul of brains counts for more than a lump of biceps. New forces at work curting logs, lifting mud, lighting lamps, threshing grain and making nails-these are gradually supplanting the muscular with the mental. The new methods demand intelligence-pounding sand needing nothing but hard licks; working a lathe and running an engine calling for something else. Ignorance, that can eat well and hit hard, is left behind in the industral race. The changed condition of labor makes trained intelligence indispensable. Man is not a mule, as heretofore sen hours in
ing, hard bitting and fine fielding wer: displayed, was one of the most interesting events of the day. The heav • weights, who were precluded from taking part in this active and popular amusement, were conspicuous Gigures in the "tug-of war" contest which followed.
About five o'clock everybody, by a strange coincidence, sudieniy renewed the attack on the baskets. The conflict was short, sharp and decisive, and when concluded, the fragments which remained would not have numbered many basketsful.
Atter tea everyivody started for the lake side, where a keenly contested rowing and swimming contest closed the list of sports and kept the attention of the party fully engaged until the arrival of the steamer which was to convey them back to the city, where all arrived safely shortly after nine o'clock.
It has seldom been our good fortune to attend a picnic where every person present succeeded in enjoying himself and herself so fully. This was largely due to the completeness of the arrangements, and the untiring efforts of Mr. J. G. Greey, Mr. W. S. B. Lawrie and the Managing Committee to secure the pleasure of all present. Such gatherings as these bind together the interests of employer and employees, and if more generally made use of, would avoid much of the antagonism between these two classes which is so painfully marked a feature of the present day.

PUBLICATIONS.

OUR Chicago contemporary, the Timbermuin, has entered upon its fifth volume, and comes to hand in enlarged form. Its pages give evidence of the wellearned prosperity which it enjoys.
The Barric Advance kindly says of us:-The Dominion Mechanical and Milling News for July has been received. We know of no publication in this line at all comparative to this. It contains a large amount of matter useful to mill men and mechanics xenerally, and also to ordinary readers. It is well worthy of patronage.

THE PRESENT UNFAIR EXCHANGE SYSTEM

THE following table, which was adopted as a standard by the Western Indiana Millers Protective Association, is worthy the consideration of every miller who has exchange or custom trade :

Very many millers favored the total abolition of the exchange trade and the substitution of a system of buying farmer's wheat and selling flour for cash. This is undoubtedly the best plan, but at present, for different reasons, it would be difficult to generally adopt such a
system. While some associations have adopted it, others have not. For instance, we cite the Air Line Associa tion which had the matter under consideration, but were unable to agree.
As may be seen by reference to this table, the amount of flour given by exchange is governed entirely by the quality of the wheat and the quality is determined by a method which allows no partiality either for the miller or the farmer. This method is the use of a standard tester.
There is no business in existence which depends more largely on judgment than the milling business. The carpenter has his rule and square, the machinist his calliper, the merchant bis market or cost price and his scales. The merchant known how many yards of cloth or pounds of sugar, coffee, etc., he buys at wholesale and also what amount he puts out at retail. How is it with the miller? From the beginning it is the use of his judgment and the exercise of his perceptive faculties. When he buys his wheat he must use his sight to see it it is clean, his sense of smell to ascertain if it is affected by any taint the sense of feeling to detect any undue moisture. In the matter of manufactured products the different tests of flour and offal is determined in regard to quality by sight and feeling, and first and last of all by weight. When the wheat comes into the mill its value is determined by weight, when his flour goes out it is determined by weight, and as far as the wheat that comes in, and the flour and feed that go out is determined the incoming and the outgoing cash or its equivalent is governed altogether by weight, if the judg. ment that decides the quality is at fault, the decision is a loss, and from this decision there is no appeal. As by weight is governed the matter of income and outlay, so by weight should the quality be governed. As by exercise the faculties are developed, so the men in the milling business are as a rule men of much perception and grod judgment. In spite of this, if the matter was thoroughly tested it would be found that not one miller in ten who has had ten or fifteen years' experience in the business, is competent to buy wheat, through relying on bis judgment, so that it would stand the test of a stind ard board of trade inspection.
There are many causes too, which affect his judgment. The urging of the tarmer, who always claims that his wheat is No. 1 ; the desire to please; the desire to secure trade ; a laudable ambition to keep the mill ranning, and
many others of a like manner. You all know them. You read in the columns of the different milling jourank how this mill is making a yield of $4: 40$, how that one is down to $4: 30$ and the other one gets his out of 425 You look around and you see his offal is rich as youm or a little more so, and as he is making it out of $4: 30 \mathrm{yon}$ are doing just as well, and as you are getting so much out you are disposed to be liberal in your exchange, and you start in with a standard of 35 pounds of four for the best wheat. The next customer comes and claims that his wheat is as good, and you allow him the same. You get in a rush and your flour-hands take 35 pounds for a standard and give it on everything. Your mill rum along and you are feeling good. After a while you begin to make your calculation on your increase, you reckon up your sales and output of four and then you take stock and find you are taking five bushels or ures to make a barrel. What is the reason you cannot tell Your offal is clean and everything is running all right apparently? You go and see your neighbor, who is mat. his close yield : you find him watching his wheat, and not only watching, but his little brass kettle is with him, and when bis wheat comes in, it is sixty pounds of wheat and not five or six pounds of dust and the balance of wheat. This is not altogether a fancy picture. In the writer's mill, the ruic has been for Fultz wheat 34 pourda flour. For Mediterranean, 36 pounds. A record has been kept of every day's exchange, and the recond shows an average output of 35 pounds of flour to the busbel. Since the adoption of the above table, the average has been 31 pounds to the bushel.
One of the members of the association, who has been testing his exchange wheat during the past two weekg, said that he could clearly see where he would have been several hundred dollars better off, had he ased the tetter during the past six months. It will pay every milter many times the cost of the tester to use one even though be should not adopt this rule. He is governed by weight, both by what comes in and what goes out a the mill, and while it is only justice to himself to use such aid to his judgment as the use of a tester will give him on all occasions, if he does not use $n t$ at all times $;$ will give him a standarcl to go by and a guide to help him back before be goss so far astray that he finds hime self confronted by a heavy loss instead of a good round margin which should be the just due for his time and labors.-J. A. Y. P. in the Millstane.

compolate seals,	motany seals,
SGmiol seetion seals,	
coditt seals,	LOCEE SEALS,
geriety seals,	max seals.
Send for prices and H. BIRTIRD R	ens of our sieale. STATP IORIS

77 Hughson St. North,
MAMILTON,
ONT.

LUMBER PRICES.

montreal. prices

Inomber, mis

THE BAG AND HESSIAN FACTORY OF CANADA.

BAGS

of every quality and size.

Mry Fuctory tn the Dominion.
mux metirty ThOUSAND BACS
The CANADA JUTE COMPANT, Limited,
 82 Front Eitrent Eact, FONOWTO.

A Special Feature in the
HICHIIRRI FOR MIIOPRCTURIIG HESSIII CLOTH. Every quallty anol every willth cans be supplied name day an ordered.

BAG. PRIMTIMG IM COLOURS

We are now printing 5,000 to 10,000 Bags daily, and are turning out the BEST WORK in the country, at the LOWEST PRICES.
wite for samples of our
BAG PRINTING IN COLOURS.

Metallic Shingles ̀ㅗㄹ Siding

Fire and storsm Preof. Siend for Cincular.
YEMALHIC ROOEING CO., TORONTO, ONT.
ticulars.
PAXTON TATE \& CO., Foundore and PORT PERRTY. ONT.

Perforated Sheet Metals, Steel and Iron Wire Cloth, mesecumes fun mu wiomes, ETe. B. Greening \& Con FAMILTON, ONT. $-x$ -
Sand for Ondionmo, memal

CASE SYSTEM GrADUAL REDUCTION MILLING

Sole Licensed Manufacturers for Canada of

CASE'S OELEBRATED ROLLS AND MILL MACHINERY Silver Creot Flour Bolts and Centrifugals.
 - apmorncmize-

Corliss and Marine Engines, Stationary and Marine Boilers,
Wheat Cleaning and Flour Dressing Machines for Flour and Grist Mills.
Plans and Specifications for fitting up new and changing over old Flour Mills on the Most
Advanced System. Special attention to the short or reform system of milling.

Cdestern Cetter.

LASI month I dwelt mainly on the crop conditions and the estimated acreage sown to the various crops in Manitoba. It was shown that though the early part of the spring-up to the 1st of June-was very unfavorable to agricultural pursuits, yet the month of June was so extremely favorable that the adverse climate condtions prevailing in April and May had been largely overcome. These favorable conditions have existed up to the time of writing, and the crop outlook is now the most hopeful in the recent history of the West. Since about the ist of June the weather has simply been perfect, and all that is now required is continued warm and dry weather through August, and with this secured this country will this year produce a crop of grain which will be the admuration of the world. In some sections the crop is a little later than last year, and owing to the extraordinarily heavy growth, it is expected that the grain will be slow in ripening; but one month more of favorable weather wilı make everything safe. Manitoba produced an enormous crop last year, but this season bids tair to eclipse all former records. From all parts of the country come the most gratifying reports. It is the same story, from the Lake of the Woods to the Rocky Mountains, wherever agriculture has been engaged in to any extent-" Crops looking magnificent," "Promise an enormous yield," "Better than last year." So much for the crop outlook. Of course it does not do to crow too much before one is out of the woods, but at present the situation is extremely hopeful. The glowing outlook may be imagined from the sales of agricultural machinery. The firms dealing in these goods have done a very heavy business this season-much the largest in the history of the country. One Winnipeg house has sold 800 self. binders alone, and it must be remembered that all the Canadian and several United States firms are represented here. As to the area sown to wheat, It think that my estimate of 450,000 acres, or about ten per cent. over last year, will be found pretty close to the mark. Some estimate a larger acreage, but allowance must be made for the western babit of "booming" things. One of the best infurmed persons in the province lately informed me that 10 per cent. would be the very maximum increase in the wheat acreage, and his opinion was that it would not be as much as that.
The Winnipeg board of grain examiners presented their annual report at the last meeting of the loard of Trade. The grain examiners, among other things, recommended the appoinment of a flour inspector at this place. A petition to the same efiect was presented to the Board of Trade from the Winnipeg grain and produce exchange. The board tnok the necessary action and appointed a board of flour examiners, who will examise applicants tor the position of flour inspecwor. The appointment of the proposed flour inspector, of course, lies with the Dominion Government, but it is expected that the Government will merely confirm a selection which will be made uniter the auspices of the board. Examninations for the po: :tion will be beld as soon as the fiour sainples are received. The appointsoon as the flour samples are received. The appoins
ment of a flour inspector will mark a new era in the industry here, and will show to what importance the industry has grown. The flour business has assumed such importance that it is now necessary to have the services of an inspectior. There are now about twentyfive roller flour mills in the conntr;, and the grading on flour will be 2 convenience to these, as well as to buyers. The report of the grain examiners shows that $3,878,550$ bushels of wheat were inspected at Winnipeg for the year ending June 30th, 1888, against $1,342,600$ bushels for the previous jear, or an increase of $2,535,950$. Wheat inspected at Winniper only includes shipmeats made all rail from the province. Forain gning into store at Lake Superior ports, or shipped by rall and the lakes 10 the east, is not inspected there. The quality of the crop of 1887 , it is shown, was not nearly up to the standard of 1886 . In the latter year 61 per cent. graded No. i hard, whilst last year's crop only graded ien per cent. No. 1 hard, 11 per cent. No. 2 hard, to per cent. No. 1 northern, and 17 per cent. No. 2 northern.
Another matter which was discussed in the report of she grain examiners, and about which there is likely to be some "kucking," is the time for holding the annual meeting of the Dominion Board of Grain Examiners at Tormatr. Linder the provisions of the Inspection Act, the meeting for the selection of samples or standards to guide grain inspectors, is called thy the Council of the Toronio Bioard. It has been found that the date at which the Toronso Board has been in the habit of calling the meeting is alongether 100 eariy 10 suit the interests of Manitobin, as it has been formd imposibible to procure proper samples of wheal and forward ibein to Toronto
in time for the meeting. Last year an effort was made by the Winnipeg examiners to have the annual mecting at 'Toronto postponed to a later date, but without suc cess. Correspondence to this end was opened with the Toronto Moard last year, previous to the holding of the annual meeting. The reply, however, was to the effect that the barley interests of Ontario demanded that the meeting should not be held later than the date fixed, namely, September 15 th. An effort was accurdingly made to ubtain samples here for inspection at the meeting, but as threshing had hardly been commenced in Manitoba by September 10th, five days previous to the holding of the meeting in Toronto, it was impossible to do this country justice in selecting samples. The examiners declare that it is impossible to select proper samples in time for the annual meeting as usually held, and they think it hardly fair that the meeting should be held to suit the interests of the Ontario barley trade regardless of Western interests. It is claimed that ${ }^{\circ}$ September ist is the earliest date at which wheat samples can be secured here to advantage, in average years. No definite announcement has been made by the grain examiners here, but it is understood that unless arrangements can be made for holding the meeting for selecting the grain standards at a later date than has been customary heretofore, no samples will be sent from here to Toronto this year.

The Winnipeg Grain and lroduce Exchange, which was first established last fall, has been a great success. At the last meeting it was stated that the membership numbers 78 , and it is certain that the membership will be increased to over 100 as soon as the néw grain commences to move. With the prospect of a heavy crop this year, it is expected that the number in graun business here will be largely augmented soon by arrivals from Eastern Canada. The Exchange has regular quarters in the cuty hall, open every day, and a meeting for conducting trading is held every day. Telegrams are received at frequent intervals from leading grain, produce and stock markets in United States, Britain and Europe. The Winniper Exchange promises to become one of the most important business institutions in Canada, if not already able to claım such a distinction.
Grain dealers here have been considerably pleased over the action of the United States Millers' Association in asixing Congress to place wheat on the free list. Most of the dealers here would be highly satisfied to see United States markets opened for Manitoba wheat. One of the great disadvantages to dealers here in the past has been found to be the distance from realizing markets. On this account dealers have been unabie to realize on wheat or to take advantage of any bulge in the narkets. Last winter dealers were practically blocked up at home all winter. The great distance of Eastern Canada markets, even when the raad was open, rendered it often impossible for holders of wheat here to take advantage of any advance in prices. But as the only available way of shipping wheat out of the country -the C. P. R. North Shore route-was practically blocked up the greater part of the winter, there was no other way but to hold wheat until spring. This year the advance in wheat prices in the spriag made it very profitable for dealers to hold their wheat over the winter, but prices are not always liable to sun the same way as they did last spnng. Had there not been a sharp aduance in wheat in the spring, the Manitoba dealers would have been serious losers on account of having been unable to market their wheat during the winter, Our nearest markets are Alinpeapolis and Duluth, and were they available, in case of a bulge Manitoba shippers would be enabled 10 pour in their wheat on short nocice. The adrantage of Dulurh over Port Arthur is that the latter is simply a storage point, whilst the former is both a storage point and a market. Wheat at Duluth can be realized upoa at any time, but at Port Arthur 18 is there for the winter, simply in store, and cannot be sold on short notice. The agricultural popalation there would also be favorable in she placing of wheat on the free list by the Unned Suates, even should Canada follow suit and admit wheat from the United States free. The advantage to Manitoba producers trom the opening of Duluth and Minneapolis markets, would be greater than the dismdvantages from the loss of eastern irade. Of course, were wheat placed on the free lisa, Ontano millers could go io Duluth for whent, instead of coming 20 Manitoba, bot this it is thought would be more than compensated for by the opening of Mianeapolis and Duluth markets to Mapitoba wheat. The action of the United States milicrs in asking for free wheat, was no doube promped by Mianeapolis mallers who are anxioas so get iato Manntoha. No donbe Minmeapolis millers would extend ineir elevator systems inno Manitoben, in the event of whem being placed on the free list. Mimmapolis millers mow have clevacers along
the railways in Minnesota and Dakota as faras the Manitoba boundary. Manitoba producers have been made more anxious to have wheat free between the Uniled States and Canada on account of the fact that during the greater portion ot last winter, wheat ruled relatively higher in Minnesota and Dakota than it did here.

The latest additition to the milling interest in Manitoba is a new roller mill, built by R. Whtelaw, ot Wood. stock, Ontario. The mill is located at McGregor, Man., on the main line of the C. P. R. west of Winnipeg, and has a capacity of about 80 barrels per day. The mill has been completed and sold to Geo. Rogers, of Wimmi. peg, an old Ontario miller. It is claimed to ba a model mill in every respect.

Mancatin is considered the lest netal for fusible pluge so boilers.
At a recent convention of American inaster mechanics one of the members, a Mr. Stevens, gave the following figuress as the powd of water evaporated per pound of conl in some experimentis ome ducted by him under the following conditions: Mackeaxie strint stack, 5.70 : diamond streck, 5.76 : straight stack and extemion front. 5.80 : straight stack, extension front and brick arch. 7.03
Experiments made in Newport. Ky., a fw days since, are $\mathfrak{e c}$ ported to have dermonstrated that aluminum which now come 500,000 a 100 . and is produced only in Frasce, can be obveined anywhere by a mose smple process and at teas than a bundrach of present cost. The discowery realited from a sucrestal m tempt to extract aluminum chemically from comanoa clay and cryolite.
An inpoortant invention in railway practice is the method inven. ed by a hatinoore electrician for welding stecl rails by eloctridity which will enalle track layers to lay 2 continuous track. end of the rails. after they are placed in the track, are weldet logether through the application of a transformed eleatric currom and arr afterward tempered so as to make the joint as hard as the rest of the rial.
Industrics says that Mr. R. Murray, Glasgow, has perfected a process ly which cassiangs of solid copper are obenined, equally a relialte and sound as those made of brass or any other alloys. h is suid to be applicable to the production of beends and spocien. pieces of sopper pipes. as such work car be produced numit cheaper, aivd but slighly heavier than the built.up pipen, and with a greatersaving in weight thas where brass is used. The custing are gunanalied by the inventoc to be cornamercially pure copper the anal
copper.
Acoording to the report made to the Rusian gowermemen by Dr. Kaufimann. who has had the principal chavge of experiments wde the object of finding a nethod of solidifying petrotum used asfrod: a successful method of secomplishing she desired results coming simply in heating the oil and afterwards adding frowis 103 you cent. of soang. The lanter diseotves in the oil, and the liquid, on cooling, forms a mass havise the appecurance of cememand and hardness of compact tallow. The product is herd to lighe, burme slowly and without smoke, bar develops manch heat, and leave abous a per cent, of a hard, black reidum.
A pew iastrument for the mexameement of color. ns applied to the cesimation of curbow in steed, has beea pavenved by J. W.
 A stradind set of cotored glinses. ench set beive the sume coler but rexulariy graded for depath of time, so with the instrumem. By using several supperimpooed glaves from a set a depth of oolor in represenved ly the aggregate of tint mumber on gimes meed, whiza gicceses from a difiereat see produce a compoite color. sad the exact proportion of ench componerat color cani be reme of.
Prients have been graiced to Mr. Frawcis J . Clamer, of Pitiondelephis, for coating shoet metel plaves with head. the principalfarures in ibe grocess being the manocr in which the planes me
 says: Mr. Clamer holds shat she imbities ander the swoffoce of the conting. the arsenic giving to the coming a gronter hardamen, and

 cheaper than galraniod phaves.
In a scone procem, recsmily discovered, says a cormpondent of
 funciture woods of the Pucific comat. The Madrom (Actumen

 treas ibound on the Proife slope, from the gair no Almier. Tive

PAGE

MISSING

PAGE

MISSING

A large saw mill is teing erected al Falkenburg, Ont. The Rosseau saw mill at Somersel, Que, has been burned. The tirst salc of new wood this season, at Quelvec, has been re-
The new mill at Fors Eillice, Man., is ofered for sake, together vilh umber linits.
No mere rafts or parts of rafts will be permitted to pass through he Girenville canal.
The belpar. Ont., saw mill men have shut down, spring work being all finishel up.
A thuty feet addition is beiag built to Mr. C. Young's saw mill a Young's Point. Ont.
There will be more lumber cut at larry Sound this summer han for many years past.
The Cinnda Lumber Company have decided not to remove heir mills from Carleton Elace.
The lark Loyal, timber laden, Quebec to Liverpool, is a total reck in the straits of Belle Isle.
The big mill at Midiand, cutting for the Emery Luanber company, cuts 100,000 feet per day.
Mr. Wna. Fortune has rebuilt his saw mill at Kamloops, B. C., which was recently destroyed by fire.
Mr. D. Tennantis shingle factory at Hepworth. Ont., was destroyrd by fire July 18. Loss, $\$ 2,000$.
The Midland \& North Shore Lumber Co.'s new mill at larry Sound. will shorily commence cutting.
Mr. Wiley, late of Midland, has leased the water power saw mill of Messrs, Irwin \& Benne:t, South River. Ont.
Missrs. Davidson a Hay. Tononto, will build a large steam saw mill on their lands at lake Nipissing, Ont.
There is a decrease of $\$ 153.000$ in the export of lumber from Canadia to the States during the past six months.
The dermand for square timber in Quebec market this year is very lrisk, and good figures are obtained all round.
i.unbering in sonve parts of New Beunswick is reported to be backwand thecause of the want of the usual spring rains.
The annual oetput of lumber frem the Shusmay Milling Co.is mills at Kamioops. H. C. is extimated at $\$ 2,500,000$ feet.
10,000 sam logs are still in the river above the mill, at Birtie, Man. There is a perspect that they will be cut up at Birtie.
Mr. Janves Smith's shingle mill at Elba, Oal., was destroyed by fire on July gith. Loss about \$1,000, on which there was 20 ithsurance.
Miessss. Pettinger \& Bain, Coboconk. Ont., are making considernible improverments to their mill premises and mactuinery.
Messss, Behding, late of Wyevale. Ont. have erected a lange saw null at Ifuntsvilic.
1.umbermen returning from the Upper Ottawa recion report dectructive bush fires on some timber limits, and much valuabie pue simber being thurned.
Mr, Melloura Spruses, of Masilasd block mills, Hulleth, Ont, has lavely put in a sew 35 -horse-power exgine and boiler and in other ways improwed his rill.
The possibility of ancigatime the Fraser river to Westmianer, f. C. having beet democastraved, an impetas will probebisy be given to tramberiage operations.
Messrs. W. H. Thistic \& Ca. Perabroke, Ont., have purichased Mr. Samoil Bromber's planing min and plant, and with corry on alle luasiness in the smue plece.
The Mcilurney or Layoock Lumber Ca's mill as Wexp Geavenhurst, is sepored as haviag recestly cut 190,000 seet of humber with ore cincular saw in a week.
Ifock Imos., hambermen, have discovered rich silver mad copper m:ncs on their limits on the Monereal fiver. They have engered ar experienced miver 10 develop the mines.

Compiaiar is beant shax the Ax basely peased ty ibe Qucbec t-Irslature abolishing Soreatry feserves, will injurionshy affect the inctexs of the toombermen of the Oteawa Valley.
There is on eviribicion, curside rive C. P. R. ourice at Ortawa, zop
 ;00 feet binth. 850 in circumberemoe, and 45 in diametre.
Mr. C. I. Smath. of Topomeo, is builing a mew amm min at Kimmomax, Cmi., go by 70 feet, see the maminetime of homber. h:ngles and lech. A plasing machine win aloo be adied.
Destroctive buah fres are macies ia the timber tiviea in the letewawn and Chalt siver dintricts, alvo in the vicimiky of

 rt over tweng yowns. If comitined in all igo,000 cubie feet.
The extemive sow mine of la Frenciere, shanad an Louivine.
 y mamance.

 ,n:Med wid hist to gomes.
A seoven with of the impoctur of Poveris sur the Province of

The station at Corson's siding on the Midiand rallway. with 4.000 telegraph poles, sawmill and a large quantily of lumber were burned on the 7th July. The loes is over $\$ 10,000$; no insurance.

Ash belore ouk.

There'll be a smoke.
Ouk before ash.
There'll be a lig smash.
The inmenec saw mills of Mr, Lafriere, at Louisville, \mathbf{P} Q.. were destroyed by fire a week or two ago. The damage is expect. ed to exceed stoo,owo, and there is no insurance on a good part of the property destroyed.
The Northateflern Lxmberwan assumed authority for the statement that there have been severul cases of a change in sentinient alous free lumber on the part of American lumberman, inmediately upon the wequiring of Canadian timber.
Sonve of the mills at the Chaudiere are being supplied with a new patent fire alarm apparatus, which will locate the exact vicinity of fire a few scconds after it sturts. In various parts of the buildings, thermometers are atuched to an electric wire.
Up to july 2 th, 300,000 logs for various firms at the Chaudiere had been towed by the Uppcr Ottawa Improvement Company's bonts from Quio boom to Hull and Chaudiere. It is expected there will be in all about 3,000,000 logs in this year's drive on the Othwn.
Messrs, Flatt $\&$ Bradiey, the well-known lumbermen of Hamilton and Casselman, Ont., and East Saginaw, Mich., have just secured an order from England for $5,000,000$ fect of lumber to be shippoxd there during the present season. The consignment will amount to more than $\$ 75,000$.
Mr, W. A. Hungerford's mill dam at Gken Lewis, Hastings Countr, was blown up by dynamite on the evening of July 15 st . The dam was a very valuabie one, and the loss will be very great, eapeciaply in view of the dryness of the season. The mis creant is unknown.
Mr. W. C. Edwards. M. P.. is reported as having said that he will cut aboat $40,000,000$:feet in his mill at Rockland, this summer. He had almose deciked to remone his mills from Carleton Place after the sexson, but operatioas have been so satisfactory that be will leave the mill there for the present.
The recent failure of William Litik. lumber merchant. Montreal, is steributed to depreciation in the value of timber Limins, but an American contemporary sugress that inasmuch as timber limits have been going up. possithy Mr. Little bought sumpage at 100 hizh a proce 30 make the husiness pay.
Trade statistics show that the nilways have secured much of the mumber currying trade formerly done by the canals. The quantity of sanna lumber corried from Onawa and Hall by the Canada pucific and Canima Athatic smilwayz for 1846 was mearly 90,000 .000 feet. For the same period the quanuity carriod by the Otuawa canals was, in $8886,357,132,600$ foet of sawn lumber, and last vear 335,69,000 feet.
One of the lergese timber limit sales ever held in Otuwa was that of the Hamincen etate. The property consisted of a mill at Hawkesbury. limits on the Gatincau and tributaries. and the Dumoine and tributaries, farmas at Hawkesbury and on the Ginimenu. The Gatimenu limits. 93 rquare aniles, were tought by W. E. Edwarts for $\$ 12 \$, 000$. H. K. Egan eccurod 75 r square miles on the Dumoise for $53 \% 6,000$. All the other propenty was withdrawn on accoumt of the low priess offered.
The bie raft which has beep under construcion simere Febouary hast at the Jogeins, N. S., was ancocssfally launctiod on July 2eth, in the presease of a large aumber of ineerested spoctatoss. Its wright is eximated at $\mathbf{x . 2 0 0}$ tons. It is therefore the lareex arecture ever huncoled. The hounch ways are inclined at the rave $o f$ six in the hendred foet. The raft when leunctiod was taken in cow by a tug boat to a safe anchorage around ibe poinc. Tue bonts have been ordered from Hoason to take it in tow. These bour will be 750 and too horse power, respecivety. The rat will be insured for $\$ 30.000$
 tion an Midhand. Ome. whint is ctatimed to be the moon complete planing mill in ut Dominion. The machinery concixts of a
 thoussmd per day: Nu. o sxicker. cappecity 10,000 lineal feet per day ; st iach dowbie surfocer, cappciny to,000 feed ; resawer, whad suan rip. aupmiky so.000 Power is supplind by a 45 h. p. enpiame. and 45 h . p , reed boike. The smill is supplied with the beas modern hbor-maving and fire protection devios. It is thein. seation to sapply the Ontario manket with ever description of tresed humber, moldings, ac. The mill has a capmixy of 3,000 , coo feos per smiminh.
A Fimer bound. Nom Sioctin, despach says: J. D. Jeary's great bog supa, jues compleved, will soon he hameched. Lemin is

 than the stmmur Chy of Reme. She is es frea bromed, mand 35 foet

was selzed was admilted free on an affidavit being made that it was to be used for ship purposes. The customs officer who seized it says it is not for a ship but a mif. Robertson has armea munself with in score of affidavits from people who sweir that the structure he is building is in reulity a ship. With respect to the export duty on logs the customs department has notified him through the collector at Amherst that an export dutv of \&s per thousand superficial feet will be charged on all sticks capable of turming out a plece of scantiling four inclies square. This Roltertson says would cover nearly every stick in the raft. He dosen't object to paving a duty, but can't see why his lumber should be taxed whille similar lumber is allowed to go free in sehooncrs. The export duly on the raft wonld aggregate about $\$ 2,000$.
A rafisman from the northern lumber districts reports the drowning of fourteen drunken shantymen while attempting to run the rapids.
While out in a boat a short distance below Calkary, N. W. I.. a few day ago, five lunibermen were swept over the falls and drowned. One man, named McNeill, was from Paisley, Ont.
Mr. Darwin Stevens. chef millwright at Hamilton Bros', mills, Hawkesbury, Ont., while walking on a boom at the edge of the Yuile on the 24th July, slipped off into the rapids and was drowned.
Our Canadian frends are strangely in luck. There is every probability that the congressional action on the Mills bill will be in their favor, at least not a detriment to them. and on top of what some of the more sanguine operators in the British territory above us expect in this way. comes the reassuring advices of execlient prospects for the lumber trade this stason. All the mills are running night and day. The unustally ligh water in the Upper Otawa has had the effect of making the drive an exceed. ingly easy and successful one. The lumbermen say they never had a drive of logs down in better time. and never had so few hung up and stuck in small streams.-Timberman.
Following is a statement of the declared exporss froni Otawa to the Unted States for the quarter eading June 20

> Fiet.

Value.
shipped by water.
.24 .922012
20.5037^{-8}
shijped by rail..
Total lumber shipperl..
shipped for consumption.
.+4.425 .796
hipped for re-export...
-39.283.760
Lath. 5.242 .039
$12.488 .-00$

Kailroad tics
Fence posts.
87352
18.477
Shinkles...
18.477
083.400
ickets.

$$
983.030
$$

$$
\begin{array}{r}
\$ 632.714 .64 \\
550.13288 \\
82.5^{81.76} \\
15475.00 \\
18.274 .95 \\
920.40 \\
1.603 .07 \\
8.447 .76 \\
1.07600 \\
29.199 .42 \\
14.490 .00 \\
\hline \$ 722.207 .24
\end{array}
$$

Match blocks
Henilock bark
Total...
An Alpena, Mich., paper describes a new invention in the shape of a suow plow for the ase of humbermen consisting of a platform placed on any ordianary bob-sheds. This platform is provided with lange wings for pushing back the snow plowed out of the romd. Underseath she platform asd about midway of the sterts is sus. pended the plow proper. This plow is in the form of the letter A. and is suspended by three strong pouts which can not be movel in any direction except an and down. The under surfore of the plow is so constituted as io cot ciean channets for the horves and skient ruaners, at the salme time leaving a comb four or five jaches bigh on ibe coeside of each track. These furrows can be cut mear sopether of far spart to mecommodate ans width of sleigh, and by nuoviak the ievers, either irnck or the comb may be cut high or low at will. The wians may be jastantily opened or closed by means of lever. or set by muthomatic lock at will to any detired width. Should the operavor sueer a lood of logs on the road, be can, without stoppine. fohd ap his plow and wings, and turn cat. the whole apparatus requiring no more room than an empty sking. The operator cala also, by wemas of the kevers, fifi the platorm from of the slots, take therm and po about his bousiness. Is case snow is dry, there are two extra mould boards behised the main monid boerd, which neay be drawn om, shas eflectually preveming any swow from falling back on the track. The inveator. Mr. Dewey, of Alpema, Mich, ased this description of plow all lese wimer at his camps, and all who saw the work it did, prosounoce it mexful.
Mewss. Faraworth \& Jurdize. of Liverpeol, in sbeir wood cirew. lar dated fth July, speak as follows of the riate of the market foe Canadian woods: There has been a better dermand for both wancy and apuare pinc, and the dicliveries frome the yards have theen fuir. There is mo change in rahoce, and the slock is amossanky light, Red piace is more isguired for: she stock is exhauseed. Oak: In Quetrec wood likle has been doing. Onk planks are saill astiviag much soo freely, and the suock is excestive; prices have arain given way, and are now verr low. Blim has gomp more freety sate conmamption, and the srock is moderate; shere is an change in value. Ash: A bunce parcel of prime fresh wood has beea imported be Ash: A binger, tan it is dimonk to move, and prices are vasatisfictory
 the strock is ample. Pime fonk: The norivaik, eatirely by stemmers,
 the past fow yenrs: the deliveries from the quays have beem harge,

 hem imported and shere is wo chame soruper. New Brumwict and Nove Socein spruce dals inve anived more freety: she tom

 noome arivals ase soid, and win to drect from the quars inco cem-

-

There is a probability that the Grand Trunk car shops at London may be reluill.
Mr. Wm. Flening, St. Johns, N. B., will establish new locomotive works in that city.
The Kingston loronnotive works give enployneent to 500 men, and pay $\$ 8,200$ dai! y in watges.
Mr. Hugh Mec ulloch, of Galt, Ont., Icft on a business trip to British Columbia a few days ago.
The Halifax Iron and Steel Mrg. Co.، IFalifiax, N. S., has leeth incorporated, with a capital of $\$ 700,000$.
The second Corliss enfine recently purchased by Messrs. Sadler. Dundas ac Co.. has been placed in position.
Mr. 1. D. Raptie has lately added to his planing mill at Petertoro: a planer and matcher with a caparsty of 20,000 feet per day.
The Beavertion foundry, was sotally destroyed by fire on the evening of july 25th. L.oss, $\$ 20.000$; no insurance. The fire originated in the boiler com.
Elerator capacity in the nerthwest will be immedately increased by the C, 1P. K., and hy private enterprise to the extent of 3,000.$\infty 00$.
There are five blust furnaces in the Dominion, two on coke iron and ten rolling nills, one naking nail plate or scrap and puddled
bars and one on luell.weld pipe bars and one on kutt.weld pupe.
Mr. Peeter Hay, manufacturer of machine knivss, Galt, Ont.. has bullt an addition to his shops to be used as a grinding room. He has also put in a new qo $^{\circ}$ h. phengine.
Mr. P. B. McHaftic's planing mill and carriage factory at
Dunedin, Ont., was destroyed by fire on the 26 hih inst. Joss, about $\$ 3.000$ on which there is no insurance.
Mesors, Camprbell \& Stevens, of the Kent Mills, Chatham, Ont. are erecting a a pperage to supply their mills with barrels. It will
be finished aboul the middle of August, and will cost aboul be finished aboul the middic of August, and will cont about $\$ 1.000$.
The Enterprise Foundry Company, of Sackville, N. B.. has acyuired Cosswell \& Co.'s foundry of that place. Mr, E., Cogs. well is president of the new firm which has a capital of $\$+0,000$. Snowball's machine shop at Chatham, N. B., contrining trip haminer, lathes and other mactivery and tools and valuable patterns of mill and steamboat machinery, was destroyed by frre. recently.
A machine shop will be started at Nanaimo. B. C., by Mi. Rubert Wenbors, late superientendent of the Vancouver Coal Comptany's machine shops. Machinery is now on the way from England.
The Aldermen of Victoria, B. C. have what is called a bouns
commitlee, whose duty it is 10 encourage the establishment of committee. whose duty it is to encourace the establishment of manufactung eneerprises by granting assistance in the way of hand and maney.
The old established foundry business of Rogers a King, Montrecil, wall in future be carrixd on under the sylye of Warden King \& Soa, Mr. Warden King having adnitted his son J.C. King, Invo partinershyp.
The E. H. Eddy Manulacturing CO., of Hull are manufacturiage from snwdust, vessels in the shape of a por, capabie of resisting hent and fire. These sawduss pols are said to be as Rood as imon pois for kitchen purposes.
The Toronto city Councl will introduce a by law makiag it imperative on the part of manufacturers and all users of large quantities of bituminous comal as fued, to place smoke-coasurning apparalus in their furnaces.
A New York keather belting manuficcturer has been granied a paicnt on an improvement in leather beluing, which comsists of the solkd layers of leather compossing the bett being perforated, which is claimed to practically prevent the slipping of the bell on the pellieys.
Mr. Apgur, of the Westunghouse Machine Ca. Fisuburg. Ph. visited Guciph recently with the object of trying to forma joint stock company 10 introduce incandescent elearic light in bolets and inciories. We have not learned what measure of success he achieved.
The Waverous Engiver: Works Company has seat in a terder for the coastruction of a system of waterworks for ithe city of Bramiford, and have offered to operate the sysem if the citisems refose to vole the money necessary for ithe purchnse of the symen by the corporation.
The Nova Scotia Socel Co. New Glaygow, are acking wo change
 and to be given power 25 increase their capiul stock from 9300,000 $1081,000,000$ for the purfore of manufincturing stoed and iroen in Ill its branches.
W. A. l.rman, of Afiford, Cona, is makiog the smallese poensible specimea of an enginc. It will be made froma a silver hatr. dolise. The boikt is so hatd abour eight drops of water, but winh sour drops the enaipe can be worked several minuter. When Fraishod it is to be pleoed moder a ghess case three-quarrers of an inct in diannerer and an inch and onecighth in height. some of she porss will be so fiae and delicate that they cranoce be mande without the use of a maknifying glese.
For charpening looks, insteed of oil, whir.h thicheass sad smears the sloac, a mixiture of stycetive is recommended. The proyortions of the connposition vary mocording to the chas of sook to be sharpewed. Owe with a retatively hapee surfoce is her sharpewed with a clear fuld, 2 pars of atroerive being mived whit 2 pars of aphisis, A giaver, harive a smali culing surfives, only roymives a only z ore 3 dropse of spirits.

The opinion of prominent teiter makers serms to tre that domes on stemm boilers, except in some special casss, are at least unnecessary, if not positively injurious, because they weaken the sthell. The prejudice of elistomers generally governs in the matter of dome or no dome, however.
We learn from the Guelph ifercury that Rolvert Hunter, son of Mr. I'. Hunter, who went to Micligan some months ngo, is a parner in the Ann Artor beiler, moulding and machine shops. under the name of the Reeves. Hunter Co. They are doing a good business, and Mr. Hunter is well pleased with his new home.
His wife and family arrived there from Guelph some months ago.
The lolson Iron Works Co.. of Toronto, in connection with the ship.building business in which they propose to engage at Owen Sound, Ont., will erect a unachine shop, 260x61 feel, furnace building 860×60 feet, wood-wurking shop 240×40 feet, in ad. dition to blacksmith shops, offices, elc. Five car laads of machinery are now en rowts for these new works.
The Afilling World says: The millers of Buffalo, at a recent meeting, discussed the acts of the Canadian Pacific Railway in competing for American business, and as a result they selegraphed to Senator Cullom, urxing him to push the passage of his resolution reciting that that foreign corporation is, by evading the Inter. state Commence law, seriously injuring American business, and asking whether legislation is not necessary to prevent the diversion asking whether legisiation is not neeses
of commeree into foreign chamels.
It is found practicable at last to make the waste ot pine saw mills avalable for paper pulp. In reducing the wood to pulp bistulphate of lime has been used, this powerful chemical neting on the fibre only when heated: heretofore only tead-lined boikers would resist its action, these. however, being cosily and hard to keep in sepair. More recently there has been discovered in Germany a kind of brick lining for boilers, which serves the purpose in question. The wood, sawed in small pieces., is digested with bisulphate in large boikers lined with this brick, heat being supplied through lead steam pipes, wothing further being neceessary except washing of the filre. The bisulphate is made on the spot. br passing sulphurous vapor through porous limestone kept thorouzhly wet.

There are said to be forty-one thouring mills in Manitoba and the Northwest.
A new 20,000 bushet clerator is to be buile at Whitewater. Man.
Mir. james Goldie, Guelph, will erect a new grain clevalor about
yo by 50 feet. fire storics.
New purifying and dust machines have been added so the Jack$30 n$ mill, Blenheim. Ont.
It is cxpected :axt Messrs. Hickle \& May's new mill at Pectrolia, will te completed very shorty.
Mr. Manin. of Morris, Man., has commenced the erection of his elevalor at SL. Jean Bapuste.
Mr. J. Fast's grist mill at Ailsa Craig. was burned at an carly hour on julve 1 gith. Fully insured.
James MeQuibben, late of Woodstock, has purchased the Great Westera Anouring mills, Harriston, Ont.
All the four used in the Childrea's Home. Winnipeg, the past year, was domaned by ibe Ogilvie Milling Co.
The Kegina Milling Company has received an order by tender. fox 6.500 sacks of four from the Indian deparment.
The refection of the sun's rays upon the Dceeronto nour mill caused sone exciued citizens to shout that the mill was on fre.
The P'olice Cummistee, of Montreal, have instructed the chief of police to wage war against saspected keepers of bucket shops.
Mr. Wm. Mi:chell is renewing the fourdations and making other improvements on the ckevalor x the Deseronto sour mills.
Mr. Wm. Neodiet has purchased the Hoyd griss mill at Bobcar. zeon. Ont. He intends putting in the rolker process, and making other improvements.
Damage to the extent of nearily $\$ 10,000$ was the resuk of the breaking away of the dam actoss the Winnipes river about a mike wate of Rat lornage.
Mjessrs Ugilvie \& Ca, of Winaiper, 1. T. Gondoa and
Chalnuits bros. \& Bethunc, intend tululing ekevalors at Friot Mound. Msan, sbis summert.
The Mears. Mikechnic, rolier mill owneers, of Durhema, OnL. will bringes suit for damages aguins the Town Council of thal plece for bonusing a second mail.
Exports of when and tour from the United Stales for the IWive months ending July 15. have been alout 121,000,000 bushets. aguinst aboun is $4,000,000$ in the procoling iwelie monuts.
A by-law was pasedi at the lass meecing of the Parotea Council 10 yempt from uxxition for a period of six yenass the forar mind of Nfowers. Jlickle \& May, which will be remdy for operation in a shore time.
Mr. Geo. Haxings, anchitect of the Oxilvie Miaing Companv. has compreneod the cercation of a 30,000 busthed etevalor al Glen. Plum Creck.
A werchoose at J ,indray. in which the milliang from of Sader. Dumdas it Co. had stored 25,000 beschets of whent, was destroved by fire on the 23yd wh. The propecty is undersiood to have beem covered by inaurnmoce.
The Siaydet propenty al Getrmen Mils, consinining of the milts, Sarm, sock itc., har boen sold, and parchusod by Masss. Wim.

Fire originating in the engine roum coniplectely destroyed M r. I. H. Brick's grist and saw nills at Formosa, Ont., on the afternoos of July 18th. The loss will amount to about $\$ 10,000$ and the in. surance only $\$ 2,000$.
A partition gave way in Stevenson's elevator at Petertioro' undr the pressure of 12,000 bushels of whent. One of the leas of the elevator was broken, but none of the grain was lost, and none α the employexs infured.
Representatives of the Duluth Chamber of Conmence will inter. view the niembers of the Montical Board of Trade and Corn Ex. change with the object of securing better transportation facilitite for grain to the seaboard.
An action for $\$ 100$ clamages is said to have been entered agaiant ithe C. P. R. by Onesive l'auze, of Yanaachiche, Que, on the ground that grain shipped by that line was injured by not beieg placed in regular grain cars.
A movement has been inaugurated for the consolidation of the flour mills and bakeries in Liverpool in orne great eslablishmmat where the breadmuking of the city may be done in immense orems, under the most highly acientific conditions and of a material savisa in cost.
Mr. Eitward Dalkin, of Barrie, Ont., is about to form a joiut stock company for the erection of a much needed grain elevatooin that place. Mlans for the structure are being prepared, and the amount required will be about $\$ 5.000$, divided into 200 shares of $\$ 25$ each.
The water in the Cornwall canal has got below the statutory depth, viz, nine feet, and an effort will be made 10 compel mill owners using water from the canal to shut down their establish. ments to allow a sufficient depth of water to be obtained for namigation purposes.
The large roller mill, saw mill, and private reidence of Mesurs. Eidt \& Schmidt, at Mildmay, Ont, were cotally destroyed hy fire on the morning of fuly 2 oith. About 2,000 bushels of wheat and a large quantity of four and lumber were destroyed. Loss, $\$ 20$. . 000 ; insurance. $\$ 5.000$.
At the recent meeting of the shareholders of the Sarnia Grain Warehouse Company it wns decided to organize and proceed with the erection of the warchouse at once. The pruvisional directon of the Company are Messrs. Geo. Leys, Thos. Kenney, D. Mc. Caul, Wm Storey and 1. Symington.
The employess of the mills of the firm of Ogilvie $\&$ Co., are hereafier to be uniformed. The suits are to be made of cricket finnnel with a leather bell, and a cap, upon the front of which will appear the name in gilt letters of the mill at which the men work "Glenora," "Royal," "Gockerich," "Sealorth," "Winnipes," etc.
Mr. Whyte, seneral superintendent of the Canadian Pacific Railway, has stated it to be the practioc of his company not to erect cither stores or elevators at inland points in the Northwest, bet to trust to the grain dealers 20 prooride sufficient storage scocommodation. Mr. Whyte statea that although the company mat find it convenient in order to give facilities to erect elevators at some inland points, it will hesitate before putting capital into enterprises of this kind, as against private capital, as it would no doubt be rexarded by the grain deakers as interfering with uheir rights and privieges.
Speaking of the rolker mill-the oaly one in Pritish Columbinestablished last year at Enderty, in the Spallumcheen districa, the Kamaoops Sertinel says:-The sucoess of the Columblia Miling Company in manouscuuring frst class brands of sour at the Ea. derby mills, is a manler of great importance and gratification to the proople of the interior country, and of Spalluarcheen and Otrmaxam in paricular. For some time it has been questionable whether the
 from various causes the result seemod doubrful. But success is now assured. The company is manufectarios an aricle that cananot be excelled and repeaied tesss by allarot generul use throughcal a section of ibe inkerior and in ouber markets has given entire satisfactoos.
The Wianiper Commerrial says:-No better teximony could be given as to the high standard of Manitoba wheat, that is to be found in the action of the Milkers' National Associntion of the United Stalas. The reason why the millers passod a reacktion anking that the duty be removed from wheat coming into the United Seates, is not hard to discover. The mithers recognate the bigh quality of Manitoba whent, and hey are anxious tb obeain in. They abo sole the rapidly increncing production of wheom in ahis country, in comparison with the shriakage in protuction at home. Indeod, the mailerss did nor dirguise their reacooss for asking for
 Manichm wheat is of the finces quality known in the worti." Bricich millers, who are agruxing a scherne for the purchase frome first hands of supplies of Minnesove and Datoota whent, showld make a pole of this move oa the part of the Unined Stales millers 20 obeciin scocess to the Maninoba wheat markets, from which their tarif now shats them ocer.
An Orcuwa correspondent of a duly paper writes: The Minerobu Milining and Brewtace Company conatracted in Ocrober hax wo

 Mathwa, at Clristrime. At that thrie onts had ricen vo 15 comers a bumbel, and ibe company failed wo deliver the conth, and moroever

 ing the millinge compeny in their eflort so bave the metion removel

 orsanepo.

J. B. DUTTOIN'S
 Patent Automatic Grain, Flour and Feed Scale.

Accurate and Reliable at all times. Will guarantee them to weigh as accurate as a Fairbanks or Howe Scale. Machines sent on 30 days' trial, subject to above guarantee. We make Scales ranging in capacity from 50 to 10,000 bushels per hour. Please send for circular and price list.

J. B. DUTTON, - Detroit, Mich.

J. B. DUTTON, City

Detroit, Mich., Dec. 16, 1887.
Dear Sir,-After a thorough test of your Automatic Scale placed in our Malt House on Oct. 16, 1887, we can say that it is a perfect success in weighing and registering grain. We weigh both Barley and Malt alternately. Malt being such a very difficult product to weigh through an automatic scale owing to many roots, we had doubts of the scale handing it successfully, but are pleased to state that it gives us first-class service in every respect, so much so, that we have discarded a Fairbank's Hopper Scale and use the Automatic in preference. Yours very truly,

THE HOWARD \& NORTHWOOD MALTING CO.
(Signed) Per Wm. Northwood, Sec.

THIS SPACE

 Beoncs 70CHARLES BARBER, manufacturer of
Latest Improved Water Wheels, MEAFORD, ONT.
BHND FOR OIROOIARA AND PRIOEB.

PARKIN \& CO., GALT FILE WORKS
 (Entailisud 2tyo.

-

Manufacturess of all kinds of fiven med rmpa. All doscrptions of re-sutiang dose prompely. Termes and dis counts siven on application. Adtres GALT, ONT.

Axctreris
Meronitio and Lad Poputity Hency. Gencral Saliciov, Jma. Levs, Exen, Emrimor, Townea Sortian-Jown Smurar, M.A.

Manлски-WILLLAM SMith.
Sencral O,
Tokgrapt Aderan-Apency, Tormse.

 Nas ing $\underset{\sim}{x \rightarrow 2}$
 mitimiarchy

selven, or to the officas of the Asency, in which hetere cres

 ${ }^{\text {ponen }}$
prtment important ferures in coanection with this Do. frciont will, if muquecribers deposining meoundst for cool. Script, on which will be emens the namber ach dition

 The A ceocy ill formert
 coumes in hand.
 ycinors, and mberibers for feforction top our wime So Thespraimene diryctorion, and correpondence, and for tomors wimin in Toremo. with their climent and cmo. W. SMITH, Memowr.

FOR SALE.

1 2-Roll Allis IIIll, Eialle $9 x$ 18; Iot Bowris.
machine meanly yixw fotls fekpectir NRW. WILLi EK SOLD CHEAF.
MILLER BMas. \& MITCHELL
MONTREAL
QUEBEC
T. Stullschmidt \& Co.

Office, ${ }^{2}$ § ${ }^{2}$ School,

Church and Lodge FURNITURE
Preston, - Ontario. SEND POR CATALOGUE.

GEO. N ROSEWICE, Angrominetions.

 keeper, or would be will ing to be generally uneful by a young man with nine yeari experience in the grain and flour trade. Firstecina referestices and can give seaurity if required. Addrese "J. D." care α dominiln Muchanical and Milling News, Toroalo.

FOR SALE.

A Roller Fiour 1 Iill, 125 barrels capacity, with all the latest improved machinery, situated in one of the beat wheat growing districts in Ontario. Excellont shipping facilities. Enquire Hochanical and llilling Nows, Toronto.

TIMEWELL \& SON,
Decirgy Plans and Specifcutions propared for a! claperin beindiagh. Tanders obtaised, and buildiay,

 solicited. Focity chen the shorter protice. Cornapownany Antmur T. Timewneth, M.C.S., C.E,

Calduell Blaxk, Main St., Wimingr, Mime.
Estrabished 1869.
REYNOLDS \& KELLOND,
 24 tuin staut EnsT, THinit. R. A. XELLOND, - Residemt Pantacte Menereal Ohior: 19f Se. James St; F. H. Reyolde, Revidere Partar. Wratingon Otioe: Pacina Brate,

The " DANDY."

C. W. ALLEN \& CO. "Worle" Amillint.
MEAnDA ST. - TORONTO

HOR BA工M.
H. W. PETRIES list of wake whoth Send for ford, Ont.
$\mathrm{O}^{\text {NE }} 60$ inch Tyler water wheel in scroll cme.
48 inct Leffel, with the sun.
48 isch Scluer whece, new.
48 inch Th ler wheal, in mon cas.
$T^{W}{ }^{\text {Wa }} 43$ inch Sampu na waver whele.
40 inch Leffed water wheel, wikh she sun.
$36^{\text {unch Sclater water wheel. }}$
$35^{\text {inch Leffel whel, her hand. }}$
$30^{1 / 3}$ iach Lefied wheed, hef havd.
$30^{\text {inch Bernham wheot-a fine whech. }}$
$26^{\text {inch }}$ Laffel, nums speinst the sum.
20 iach Lefed whel, with the sun.
$17^{\text {Y }}$ inch Leffel, runs with the sung.
15 isch Archimodien in irow cave, bet hand.
13^{X} imcu Lefed wheel, apriaxt the gun.
$\mathrm{O}^{\text {NE water whei governor, Gatit make. }}$
 PETRIE, Brationd send Tomen

MILLERS'

ATMD

Mnivoractorbens

INSURANCE COMPANY.
EEADOFFTOE
84 Cumell Stroet, Turonta.
James colore, Emolph, Providint.
W. H. howlava Tomenta, Yioo-Provident.

Drescrona

h. mcculloch, galt

GEO. PATTISON, PRESTON
W. H. STOREY, ACTOE A. Watts, Beantrond
S. neelon. St. Catharines H. N. BAIRD. TORONTO W, BELhe, GUKLIPA W. WILSON, Tonowro I. Ln SPINK. TOMONTO

HUGH SCOTT, Managing Dincter: DOUGLAS SUTTON, Secrelary. GEO. HANSON, Inskitor.

OEJPOMA.

To preveat by in pouthe mames ite cocurnuce of aroldebie firm.
To obvine havir lowes fiom the frose that are mavolinble by the marie of the wook dicue in milis send frocorite.
To redicee the coin of the hampace to the lownox poing comalucas rith the mie comdere of tive buimen.

planning new establishments.

IN the making of plans for the arrangement of inills, says a writer in the Hiodzuorkior, it frequently happens that litte thongs of seemingly small importance, which in the beginnug of a job are not carefully considered, sometimes prove themselves hindrances of a very serious nature, causing a re-arrangement of a part or perhaps the entire plan, at quite a great deal of trouble and expense. For instance, the proper, best and handiest way for locating the machinery, that it will be most economical for the driving of the same, and the handling of the crude material in its various stages of progression towards its finished state, as well as the proper piace for storing the crude of rough stock, and the finished product, where it requires the least amount of labor to give the greatest results ; or in the placing of machinery, some seemingly insignificant detail of the mill, such as the best place for the line shatt, and the intermediate line shaft, the proper place and the best mode of communicating power from one of these shafts to another, or perchance from ofe flour to another and higher floor line shaft and its intermediate, the proper kind of an exhnust fan and where and how best to locate it, and connect all machines for the very best results, and again the best plaie for tue shavings-house and dust-room, or some other small detail in the driving mechanism, such as the best place to put that large pair of bevel-mortise wheels through which the power is conveyed from the water wheel to the line, or intermediate line shaft, the direction a shaft rotates, the proper length of belts, or sizes of pulleys to safely trausmit the required-load, or rather power, the correct lengths of shafting, its proper size, and just the best place to put your bearings, and how many, and where to space your bearings that the couplinys come in the strongest and best place for them. Or perhaps the locating of countershafts is left an open question, as $1 t$ many tumes, yes, nearly always, is, with never an end plan, or cross section, to show if it really can be placed where it might be desired to have it, for it is only a countershaft, you know, and don't amount to anything, yet when we come to place it and stretch a line for the belts, or perhaps go so tar as to cut the belts and lace them, we find that we do not give the same attention we should have done because of its unseemingly smallness or unimportance, yet after we have placed it we see it cannot possibly be put there, for the belt comes right in the way of that other belt, and thus would, when running, rub one another hard, and this would never do, or perhaps the belt comes right in the way of that shaft, or pulley, or passage way; or saw, or what not?
Who has not nade a blunder like this, or a similar one in perhaps a little different shape? all of which could easily have been avolded and money and time saved by just 2 litle foresight, and taking time enough when mak. ing our plan to finish drawing it out in every detail. I freely confess that in my haste I have not only once, but dozens of times, made just such or similar errors, just because 1 did not give the little things the attention which they should have had in the beginning. Yes, Mr. Ednor, 1 am willing to show up some of my mistakes, if by their means some others may save some trouble and expense. Talking about these small oversights, reminds me of sonse other incidents of my own experience where little things overlooked, or not considered, gave trouble, of all of which 1 will speak further on.

Now right here perhaps many will ask what is the proper way to proceed in case one desires to start a new mill. How should one begin, and what should be the first thing which one should do, to start right? tor if one desires to end right, it is necessary to stat: upon the right track from the beginning; especially is this true - in new enterprises of any kind. Now let me put a question, and one which wood-workers are well qualified to answer: How would you proceed if you were going to expend, say, $\$ 50,000$ in the erection of a dwelling? You certainly wouldn't go to an uneducated carpenter, whose ablest ability consisted in nailing shingles, or weatherboard, or floonng to their respective places, and expect ot hitm to economically build you a stylish building, well made, convenient, and one which is now and will be up to the standard of architecture for years to come? Not much, but in my mind's eje I can see each mother's son of you trotting off 10 some architect of note and ability, one whom youknow is capable to make your plans so that there will be no costly mistakes to remedy when the structure is half finished, and one who will work out the little things of seemingly small importance, which nine times out of ten will wipe out almost all the extras which usually creep in, if they are not given proper attention in the start. Such a course you know to be wise, for in addition to the advantages already cited, such a man can elaborate upon any plans you may have, work in any ideas of your own, and make them harmonixe with the tumes, and get up a stru:ture just to your own mind, and
make such changes before work begins that may be necessary to suit you.

Now lot me say, that in starting manufaciuring enterprises of any kind, a somewhat similar course ought to be pursued. But do not make the mistake that ninetynine out of every hundred make, and that is to first settle upor the size of your room and the kind of a building you are going to build before you know how much and what kind of machinery are to go into these buildings. About the first thing one ought to do is to secure a suitable site where plenty of room can be had and where expansion can be made without too much cost : this all must be determined by the circumstances, and upon which each inalvidurl case deserves an opinion of its own based upon the surroundings which control to a certain extent each decision.
The next step should be to secure the machinery which you expect ti) operate, buying your engine, boiler or water wheels of such capacity that the; will not be ton small if an additional load in the future were hitched to them. Secure the service of a competent mechanical engineer and draughtsman to make plans of the inside of the factory, drawing every shaft, wheel, bearing, coup. ling, pulley, fan, pipe, machine, bench, in fact everything which has to be placed inside the factory, just where it belongs, and stay right with him, giving him all the necessary information, about how much room you desire here or ther, around this or that machine, this or that elevator or passage way, \&c. Go to 2 man who has the ability, and will arrange the driving machines, give the proportions to your driving apparatus that will give you satisfaction when in operation, and do not trust to luck and go blindly at the thing as is now mostly done. If you employ the proper man he will furnish you with 2 list of all gears, wheels, pulleys, pipes, \&c. He will to a foot tell you how much and what sized shafts you need and give you drawings of them if necessary. He will furnish you witg a plan of your shop fitted as it ought to be, and you can then go and get your estimates and know jast where you will stand; besides, when yous come to place your machinery there will be no delays your men need not stand around and wait to be told, or you need not get half your machinery in place and then have to tear all out again and replace, for there is your plan, every shaft, machine and belt has been placed; there are the figures, just move right along, and I can give you my words based upon a long experience in this class of work, that you will not only save the fee paid your engineer and draughtsman, but will save money besides in the operation.
After you have had your plans thus drawn, I would say that you are now ready to start to talk about hiring an archtect and completing your buildings. I you area builder yourself and have an architect in your employ, 1 would say take him with you and let the mechanical engineer who drew your motive power apparatus and floor plans, explain to your architect everything about the plant that requires changes in the buildings different from ordinary, and where the most strains and weights will come, taking care to explain that all machines must have strong foundations, and give the space in figures which the buildings should be on the inside to successfully operate the machinery, and have your building thus: made with a view toward accommodating the machinery and stock, which is the true purpose of the same, and I believe you will have got started aright, and, as I really hope, will prosper.
Many days ago, and before I began to follicw out this last plan, 1 became associated with a millwright who ofien had mills to overhaul, and rethodel many others, and other jobs of a like nature. I remember one instance in particular. We had a larie mill to everhana and remodel, and our directions were to overhaul, remodel and re-set the machinery, with especial directions to set the machinery that all belts would be straight: there must not be a twist belt in the establishment. We set about the work as usual, ofd Steve, as we called him, giving the directions as we went along from day to day. One machine afier another came out and went in again, the building and foundations were strengthened, and a lot of new machinery also were set and goten in position all ready for operation, only awaltlag the arrival of the turbine water wheel which was soon to arrive, and was finally set all ready for operation, when we, pulled up and left for home. Imagine our surprise wh.en, a few days later, a messenger came in and said we were wanted at Lockdale again, as the entire mill rup back ward. What is to be done? It all came from a small oversught of Steve's in assuming that the builder would make the wheel ran in the sume direction as the old owe did, and failed to specity just which way he wanted it to go, and thes caused the troubie ; and, what was worne sill, the beval gears of the wheel were in a place where
their position could sot be chapred to produce the ris.
quired direction of rotation, and every day the mill stood idle was a deep loss to its owners, so it would never do to send the wheel back and await the building of a new one, neither would to do to run a 14 inch belt twist, especially as our directions were to avoid all twists in the entire mill; nor would it do for old Steve to come boldly out and acknowledge that the exceedingly small oversight on his part had caused this trouble, for thit would have a tendency to kill his reputation as a mill. wright.
But Steve was equal to the emergency. The bevel gears that led from the water wheel to the line shat geared to the latter through a pair of large mortise bevel wheels. Steve looked the mill over and look surprised, and muttered something about men that couldn't be trusted, that they had placed the driven bevel wheel on the line shaft on the wrong side of the driver, which indeed was about the only way out of the trouble, which in the course of a few days was renedied; but it was just one of those liftle and seemingly insignificant things, too small to be of any consequence, that caused the trouble.

WBLDING Machings.

ACOMPANY has been formed, mainly by Bosto capitalists, with a capital stock of half a million dollars, which will turn out welding machines. Their experimental factory at Lynn, Mass., is too small for their business and they are about to build a new one in the same city. The machines will be sold to the various machine shops requiring such apparatus but the company has a royalty on every weld made by their machines. To make this piactical a meter is set upoo them all. The meter has upon it three dials resembling those on a gas meter. By its peculiar construction it is claimed that it will not register unless a perfect weld is made. The new company is backed by considerable capital, by which it is enabied to buy up all the experimental electrical welding methods in the country. These machines will weld anything in the shape of metal. They do not require that both metals shall be of the same material, as iron has been welded to brass in the experiments made. The machines as they are now built will weld an iron cable or a watch spring with equal readiness. Negotiations are now pending with a large locomotive works for several of the machines.

THE EVOLUTION OF THE SAW.

EERY instrument which the mecanic uses has its bistory. Some oi them were brought into being by inventive genus, and required days and nights of weary thought to complete the conception and to over. come imperfections. The simpler tools have been in use for centuries unjer one form or another-at first ouly rude suggestions of what they afterwards came to be. Perhaps no tool has a more interesing history than the saw. According to a recent writer, saws have been discovered in Germany and Denmark which belong to the bronze age. The metal of which they were composed was cast into a thin shaft and serrated by breakumg the edge. Equally interestung discoveries have been made in this country. It has been found that saw_ made of obsidian, which is a kind of glass produced by rolca. noes, were used during the stone age in Mexico, and saws and knives of the same material have been found in the alluvial deposits of New Jersey, thought to have been sent thither from Mcxico by the action of the water. The Phocnicians are among the earlicst mations which are thought to have used the saw. The scholar is not surprised to find a very pretty story accounting tor the discovery of the saw in Grecian mythology. Here the inventor is said to have found the jaw bose of a snake which he imitated by jagging an iron plate. One day the uncle of the inventor murdered him in a fit of jealousy, so the story goes, and if the liberty may be taken of filling out this little romance, by plunging one of the poor young man's own saws tlirough his heart The lacustine and other early inhabitants of Europe are credited with having saws made of fint, and the natives of the West India islands had saws made of notched shells. The Japanese saw is a curiosity. It is shaped something like a butcher's cleaver. The shank is drawn into the handle, which is Aat, where it is secured by being wrapped with split care. The reeth are described as being narrow and pointed toward the handle. Some of the saws used by the amocent Esyptians are exceedingty rode andimperfect, consisting of long, thin blades, rassed at the edges and driven inte rough pieces of wood. It is fiom such crade and ino efficient implements as these that the modern saw hai been developed. The law of evolution hav beea oppro tive bere, as the philoocopher might say, as it has bees. plowinions.

To Mill Owners and Manufacturers.

ひ®円

FAVORIIE
MILL BCOKETS

Manufacturer and Dealer, JOHN RADICAN,

68 Mary Street,
HANILTON, ONT. sEND for paices.

Catest Camadian fatents.

No. 29, 188 . The Waterous Eingine Works Compnny, (nsslgnce
of janles N. Petel,) Brantford, Ont., dated Igth May, 1888.

Clazm.-ast. On a shingle machne, the set bars K, K, provided with adjustable bearings r, r, as shown, substantially as and for the purpose hereinbefore set forth. and. On a shingle machine, the set bars K, K, with adjustable bearings $r_{\text {, }} r_{\text {r }}$ in combination with the bell cranks 1, 1, as shown, substantially as and for the purposes hereinbefore set forth. 3rd. On a shingle machine, the set hars K, K with adjustable bearings $r, r n$ com bination with the bell cranks I, I and bevelled hars L, L, as shown, substantially as and for the purposes hereinbefore set forth 4th. On a shingle machine, the conibination of the set bars K, K with adjustalike le:.rings r, r, bell cranks 1 , I bevelled bars $L_{n} L_{1}$ cams M, M, shaft N, pawl wheel O. pawl P, Q and I, I, as shown, substantially as and for the purposes hereinbefore set forth.

Machine for Moulding or Rumping Cornices.
No. 29.156. Robert F. Mould, Stoufville, Ont., dated 12th May, 1888.

Claim.-rst. The combination of the mitred ends of moulder, and the straight face of moulder. substantially as and for the purpose hereinbefore set forth. and. The combination of the mitred ends of moulder or fashioner, and the longitudinally hinged members attached thereto, substantially as and for the purpose herein. before set forth.

Sate Evage.
No. 29.047. Isaac M. House, Gravenhurst, Ont., dated 1st May; 1888.

Claim.-Ist. In a saw-swage, the combination of two plates firmly connected and having nbs to keep them apart, and forming a recess for the insertion of the saw blade and for operating the die, a stud jourmalled in the rear plate and projecting through, and bearing in the front platc; and provided with an cecentric to operate the swaging dic, and with an angular head for the application of a wrench, a swaging die bedded in a recess and fitted and bearing against the eccentric on said stud, and held thereon by a spring, and guided at its lower end by a projection or rib, and its working face butting against an anvil, an anvil having a lateral angular notch adapted to receive a sliding guage, a spring guage or guide having an inclined face entering and moving in a notch in the anvil, and pressed therein and against a guide rib by a spring, 2 fast clamp dog secured in said back plated for the saw tooth to butt against, a dog pheed opposite the fast dog and adapted to slide transversely in the front plate and retracted by a spring, a lever pivoted to the front plate and adapted to bear against the end of the moveable dog, a cam ended hand-lever pivoted to the front plate and its eccentric or cant-end adapted to bear against and operating the pressure lever, substantially as set forth. 2nd. In a saw-swage, the combination of the plate A having a rim a, ax, facing ais and recess aris, stud B, journalled in said plate and bearing in the plate H, provided with an eccentric s and adapted to be opesated by a wrench C, swaging die D. adapted to be operated by the eccentric d and spring $d z$, anvil E, having 2 notch c adapted to reccive a sliding guage, a sliding having a notch c adapted to reccive a sliding guage, a sliding
guage F, having an angular face adapted to slide in the notch e and operated by a spring f, a dog G secured firmly in the back plate, a moveable dog Ga adapted to slide in the front plate and operated by a lever and a spring Gir, the front plate Hi adapted to bolt against the facings a, ar, ari, of the back plate and provided with lugs $k_{\text {, }}$ dr, bearing for the stud B, and slot for the dog Gr, a pressure lever 1, pivoted to the lug k and adapted to bear against the end of the dog Gr, and to be operated by a hand lever J, and provided with a set-serew i, and a hand-lever \} having an eccentric or eam-shaped end pivuied 10 the Iug $h x$, and adapted in bear against and operate the lever I, substantially as set forth 3 .d. In a saw.swage, ibefront plate \mathcal{H} and back plate A, firmaly con. nected by bolts, and having formed between them suitable cavities or recesses for the swaying die and the reception of a saw blade, a stur B journalled in said back plute and bearing in said froat plate, and provided with an eccentric δ, and with means of oper
ating snid stud, a swaging die D, fitted to the eeceentric 6 and held theneon by a spring $d t$, substantially as set forth. fth. In a saw swige, a plate H having lugs h, h_{1}, and n transverse slot to n ceive a sliding $\operatorname{dog} \mathrm{Gi}_{1}$, the dejending pressure lever I, pivoted to the lug h and bearing on the end of the said dog, and providerl with a set-screw i, a camended hand-lever J, pivoted at its canh. shaped end to the lug h_{1}, and adapted to beat upon the end of the pressure lever 1 , substantially as set forth.

1'oicer Indicmtor
No. 29.231. Emery Nixon, Toronto, Ont., dated 281 l May, 1888.

Claim.-Ist. A power indicator compcsed of three pulleys of about equal diameter, the first being the driven pulley from the factory pulley and is loose on the shaft, the second pulley having two driving boits, one of them projectung sidewise and between two arms of the first pulley from which it receives its motion, the other bolt projecting from the other side and going behind the outer end of a journalled arm in the third pulley, which bears upon the end of a journalled arm in the third pulley, which bears upon the
rear end of a compression spring secured on the circumference of rear end of a compression spring secured on the circumference of
the said third pulley, the vibrations of which spring being utilized to operate by means of racks and pinions, a pointer and scale denoting the pressure in l8s. on the surface of the first driven puiley, substantially as shown and described. 2nd. In a power indicator composed of three pulleys of about the same diameter, the pulieys A and a2. lcose in the shaft \mathbf{B}, the pulley a3 rigidly secured to the shaft B, the bolts at and b in pulley $a 2$, the journalled arm a_{4} in puiley a_{3}, and compression spring a_{5} on the journalled arm a_{4} in puiley a_{3}, and compression spring as on the
circumference thereof, the combination of the rack a_{7}, pinion a_{3}, circumierence thereof, the combination of the rack a7, pinion a3,
spindle $a 0$, lower pinion aio, and sack with tongue ais, as shown and described. 3rd. The combination, with the rack and tongue a11, the sliding thimble a12, sliding frame ar3, sliding pointer arq, the stationary thimble D, with groove $d 1$ and scale da, substantially as shown and described.

Machine for Truoing the Teth of sume.
No. 293,720. Robert Gaskin, jr., Portiand, New Brunswick, Canada, dated May 291888.

Claim. t. In a machine for uneing saw-teeth, the rectangular open frame adapted to suspend the saw-blade, straining devioes for subjecung the blade to a suitable sension, combined with a filecarrier adapted to move lengthwisc upon the side bars of the frame to true the teeth of the saw.
2. The frame-work adapted to receive and suspend the saw, and means for bolding the same under tension, combined with a universally-adjustable fie-carrier moving upoa the frame
3. The frame adapted to hold the saw, combined with the yoke, and a verticallv-adjustable file-carrier movenble loagitudinally apon the frame.
4. The frame to hold and suspend the saw, combined with a file-carrier made verically and uranswersely adjustable, and the yoke to which the file-carrier is attached, moveable upon the frame longitudinally.
5. The frame recesced at each end to reocive the saw, combined with means, as the key b4, and wedre-block interpowed between $^{\text {a }}$ the key b $_{4}$, and frume to subject the saw to loogitudinal sension.
6. The frame recesved at each end to receive the saw, combined with means as the key 84 stepped wedge-block 85 , aod the sapports ct, to regulate the zension of the suspended saw.
7. The frame provided at each end with notches or recesses of different depiths to reccive saws of difierent widths.
8. The frame, and straining devices adapted 10 hold and suspend the saw under a siven iension, combined with a transverselyadiustable slotied file-carrier.
9. A file-cartier for trueing saw teeth, consisting of a clamp, ${ }^{4} 4$, adjustably attached to a place fixed 10 a spindie, and tasteners, as set-screws 7. to hold the file in position uransversely in and clamp.

Mr. Gea. Thompson's steam saw mill, near Wtasham, was destroyed by fir: on July ath, together with about cight hundred conds of wood. Issumace on mill, about 8,000; lows, about $\$ 3,000$.

PERSONAL.

Mr. R
Canmia.
Canmia. Richard Parnell had his hand tacerated by a shaper In Baptuste's plasing
mill at Peterloro' recently.
D. W. Patton had his hand caught between the belt and pulley α_{2} oller mill at Stratiord recently, and severely crushed.
Mr. Stephen Nairn, formerly of Toronto, has been elected permamen chairman of the Board of Grain Examiners at Winnipas.
Mr. Iovis Fuzz, a delegate from St. Louis to the Buffalo milliersi on vention, after the close of the meeting visited Montreal and Quebec.
Mr. L. Cilbert was so seriously injured by a loard thrown from a marin J. \& J. Kerr's planing mill at Petrolia, Ont., that his recovery is douls.
ful. ful.
Mr. W. W. Willi, who has been for some time employed in Ogilne a
Co.s" "Glenora " milla, Montreal, has resigned his pocition and retume Co.'s "Gleno
to England.
Charles Kerr, aged ig, sonof Mr. Samuel Kerr, or Cannington, Ou, had his right arm torn off close to the shoulder by being caught in a batia planing mill.
Mr. J. W. Baker, head miller of the Cold stream mills, Kalamam Mich, has been spending a few days with his rarents, Mr, and Mra s. Baker, Desoronto, Ont.
Mr. W. Gow had three finzers severed by a saw in Perry \& Beack saw mill at Fergus, Ont. This mill is said to have been the sceots of several serrous sccidents this searon.
Geo. Williams had three fingers severely lacerated in a cruahing macilion and George Hogskins had his hand seriously injured in another machin at the l'atterson Works, Woodstock, the other day.
George Whitely was running an emery wheel at Crummer's saw milte near Tara, Ont., when it burrat, striking him on the side of the head man the eye, putting one eye out and laying the skull bare.
Mr. Joseph C. King, on the eve of his departure from Port Hope to accept the position of treasurer of the Lake of the Woods Milling Ca Keewatin, Ont., was prefented with a valuable piece of plate by his fellon townsmen, and a gold watch and chain by political associates of 2 be Conservative party.
Mr. John Ogilvie, a partner in thn well-known milling firm of A. W. Ogilvie \& Co., was found dead in bed at his residence in Montrual, on the morning of July z3rd. The deceased had not enjoyed good bealth fax some time, and had but recently returned from a tour to California, Mexico and British Columbin. For a few days previous to his death, however, be appeared to be feeling comparatively well. The decensed was born in the city of Montreal fifty-three years ago, and after grad., mating from the Hich Schoul engaged with his brothers, Alexarder and William, in the millim business. Alexander, (now Senator) Ogilvie, retired from the firm som years ago. The business of the firun which, when lohn Ogilvie entered a a partner consisted colly of the small "Glenora" mill, has exteeded to all parts of the Dominion, and includes five mills and numerous clevatoms. The deceaved was well known in Ontario where he spent much of he time in superintending the construction of buildiagn. He leaves a wifa and seven children to mourn his loss. His eldest son, Alexander, imi foe some time been associated with hum in bnsiness. The funeral was ase of the largett and moat representatuve ever seen in Montreal. The buil community was very largelv represented, and there was a fall tura out of the employes and officials of the auills.

destruction of capital by invenTIONS.

THE readiness with which society comprebends the suffering contingent on the relentless displacement of labor by more economical and effective methoda of production and distribution, and the overmastering feeling of sympathy for individual distress thereby occa. sioned, causes it to generally overlook another exceedingh interesting and important involved factor, and that is the relentless impartiality with which the destructive in fuences of material progress coincidentally affect capital (property) as well as labor. It seems to be in the nature of a natural law that no advanced stage of civilization can be reached except at the expense of destroying in a greater or less degree the value of the instrumentalities by which all previous attainments have been effected. Society proffers its highest bonors and rewards to its inventors and discoverers; but, as a matter of sact what each inventor or discoverer is unconsciously trying to do is to destroy property, and his measure of success and reward is always in proportion to the degree to which he effects such destruction. If to-morrow it should be announced that some one had so improved the machmery of cotton manufacture that ten per cent. more of Gibre could be spun and woven in a given time, with no greater, or a less, expenditure of labor and capital than heretofore, all the existing machinery in all the cotton mills in the world, representing an investment of millions upon millions of dollars, would be worth little more than so much old iron, steel and copper; and the man who should endeavor to resist that change, would, in face of the fierce competition of the world, soon find himself bankrupt and without capital. In short, ail material progress is effected by a displacement of capital equally with that of labor; and nothing marks the rate of such progress more cleariy than the rapidity with which such displacements occur. There is, however, this difference between the two factors involved. Labor dieplaced, as a condition of progress, will be eventually absorbed in other occupations: but capital displaced, in the sense of substituting the new for what is oid, is practically deatroyed.-David Wells, in the Manamasturer and Builder.

The surfice of cas fros cas be made wery burd by yonem the
 potarb ench time.

JONES'-:-SHORT -:- SYSTEM

FOR MERCHANT AND CUSTOM MILLS.

In our Short System of milling we are using new and improced methods of bolting and purifying which are our onn inventions.

Our Purifier and Aspirator combined is the best machine we know of for the proper handling of middlings.

The middlings are graded before the blast is applied to them, each grade treated separately on the same machine.
Our Bolting and Scalping Reels are round, running at a slow mution, the cloth being covered the whole length of the teel, no matter how slow the bolt is fed. This we consider one of the most important points in the marufacture of flour.

Old style reels can be changed to this same principle, producing the same results.

Millers who desire to improve ll., i: flour would do well look into the merits of these machines before purchasing.

JOHES' SHORT SYSTEM FOR CUSTOM MILLS.

Is the simplest and best in the market. athe results are equal to any long system, and the cost less. Grists can be ground as brought in if desired, and can be hundied as conveniently as if ground in mill stones. One Roller Disc machine, two corrugated rolls, one smooth roll one stone roll, one bran duster, two flour-dressers and one purifier, wth proper cleaning machinery and elevators, is all the machinery necessary in this system to make a straight grade of flour equal to the straight grades made in any long system.

ClPicitir- 00 Barrois per Day from Pall wheat.

in favor of the short system, using five single rolls to complete the work.

JAMES JONES, ESQ., Thorold, Ont.
ABINGDON, September 18th, 1887
Dear Sir: Our mill has now been run long enough to give us an opportunity to test it thoroughly, and we are satisfled with it. the yield and quality are excellent. It takes all the fiour out of the wheat, and for capacity, instead of making sixty (30) barrels, as the contract called for, we are running from 85 to 100 barrels, and clean it up in good shape. The stone rell, on which nearly all the best flour is made, works with less attention than any other machine in the mill, and does lis work well. We feel ourselves indebted tc you for the prompt manner in which you carried out your contract.

Yours truly,
R. A. SHEPHERD.

For further particulars, apply to JAMES JONES \& SON,
TEIOROID, ONT

THE USE OF GAS FOR HEATING LOCOMOTIVES AND STEAM BOILERS.

TAKING advantage of your notice to correspondents, 1 wish to say a few words on the use of natural gas and fucl gas for heating steam boilers and locomotives. I have watched your columns closely ever since your first notice of the attempt of the Ft. Wayne, Cincinnall \& Louisville Railroad Company, to generate steam by use of natural gas as fuel, and while I hope your report of their success may prove true, vet I have serious doubts as to the ultimate success of heating the ordinary flue boiler by the use of gas as fuel. Provided the gas as fuel. Provided the gas is furnished at a price next to nothing, it may be possible to burn enough of it in the ordinary fire bex of a locomotive or other steam boiler to generate the necessary steam, but when the gas is manufactured and sold at a price to compensate the makers I do not believe it can be successfully so used. My belief on this subject is not founded entirely upon theory as 1 have, for the past four years, made many and costly experiments in generating steam by use of gas as fuel, and while 1 do not hold myself out as a gas expert by any means, I believe I have seen enough and tried experiments enough to have a reasonable ground for my belief, as above stated. When we substitute gaseous fuel for coal or other soldd fuels, we meet the first difficulty.
The draft or air supply must be changed, the force of it must be diminished, and as gaseous fuel gives off flame entirely and leaves no solid body of incandescent substance to furmsh heat, the flame and the heat it produces are all we have to rely upon for heating purposes. The question then is, how should the fiame be applied to obtain its greatest heating effect or power. Those fairly conversant with flame heating and the action of flames in the action of fire boxes and tubes of the ordinary tubular boiler and its action among the pipes or water tubes of that type of steam boiler known as the water tube boiler, know that it is next to impossible to force flame as flame through boiler tubes or to force it as flame among the closely packed pipes of the water tube boiler. I am aware that some contend that flame as fame does pass through the ordinary boiler flue and also that flame as flame can be made and is made to exist among the tubes of water tube boilers, but in fact no flame whatever passes through boiler flues nor will it exist among a mass of closely packed water tubes. All that ever passes through such tubes, or if the water tube boiler is used, all that passes between or among them is the hot, but unignited products of combuston, which, when they come to the air again, may be, and many times are, again ignited and burst into flame. If the above proposition is correct, then flame heat when applied to the ordinary tubular boiler, simply heats the fire box and a very small portion of the ends ot the boiler tubes, and all that passes into the tubes and heats their inside surfaces is heated but unignited products of combustion, which are not as hot as the flame itself, and the same is true of its action among the pipes of a water tube boiler, and thus we meet with the first and greatest loss in flame heating a boiler. In the spring of 18861 made many experiments in attempting to make gas flames burn inside of tubes of various diameters. If a gas pipe having numerous perforations be inserted in an upright three-inch boiler tube, six feet long, and the gas lighted at the lower end of the boiler tube, the gas will be forced to burn but a few inches in the lower end ot the tube, but will not burn throughout the length of the tube. Sufficient atmosphere will not pass into the tube to sustain combustion, but apply a lighted match to the upper end of the sube and it will throw a flame upwards in height proportioned to the amount of gas escaping from the perforations in the gas pipe. In order to apply sufficient atmosphere to the inside 1 tried the experiment of using a compound pipe, i. c., an air pipe inserted in the gas pipe, having passage ways or small pipes passing from the air pipe through the gas pipe, and the gas pipe was perforated so that a ring of gas perforations was followed by a ring of air perforations; the air perforations being of a size to theoretically supply sufficient air for the consumption of the gas escaping from the ring of gas gerforations above it. The compound pipe being inserted in the upright three-inch boiler tube as before, and air being forced into the air pipe by a blower with a steady pressure of gas was ignited as before, but the result was not materially better than in the first experiment. It would occupy too much space to describe the various experiments I made in attempting to make flame exist as furme inside of tubes of various diameters and held in various positions, suffice it to say 1 failed in every instance. I briefly state the above experiments tried because they were made in conformaty with the specifications and drawings of an English patent, showing that patentees do not always hit th. mark, especially
in that patent. If flame as flame could be made to exist inside of tubes it would do little more than skim the inside surfaces as the draft of the boiler would draw it through the tubes with too great velocity and much of the heating power would be therefore lost. Again, if we take a water tube steam boiler, as ordinarily constructed, and burn gas as fuel in the furnace, we find that the flame rises until it strikes the lower tier of tubes and is then extinguished and nothing but the hot but unignited products of combustion pass through or among the tubes. If we take water gas as fuel it will be found, first, to contain too few units of heat per 1,000 cubir feet to allow of much waste, and second, its cost, considering its heating power, is quite too high to sanction much waste. To raise the heating power of the gas seems at present impossible, and if the necessary advance cannot be made at this end of the problem then it becomes necessary to make the advance from the other i. e., alter the construction of the boiler to suit the peculiar conditions and requirements of the fuel. A long line of experiments led me to believe that the water tube type of boiler is the best yet invented for the use of gas as fuel, but changes in its construction must be made. I constructed a boiler of that type but spread the water tubes apart $10^{\prime \prime}$, surface to surface. Over each water tube I placed a hood or bonnet in form of an inverted trough, the under stde of the crown of the hood being sustained about $11 / z^{\prime \prime}$ above the top surface of the water tube. Under each water tube 1 ran a gas pipe with perforations and from the top of each hood 1 ran a conduit whose exit end terminated beyond and above the top layer of water tubes and hoods, and in a chamber tormed by laying a partition or flatfle plate between the steam and water drums and the water and heating tubes. When the gas was turned on and lighted each water tube was impinged upon from end to end by the gas flame burning under it, and as the flame passed up and around the lower half of each tube it was caught by the wings of the hoods and compelled to completely encircle each water tube. Each water tube was therefore introduced from end to end in a perfect cylinder of flame. The products of combustion, had no provision been made for their control, would have intermixed with the flames burning at the several burners, but as conduits had been provided rising from the top of each hood they were carried away and discharged into the chamber in which lay the water and steam drums. Each water heating tube therefore had its own separate furnace and was heated from end to end absolutely alike, or with absolute unformity and the products of combustion after they had yielded as much of their heat to the water tubes as possible were discharged against and among the water and steam drums, materially assisting in heating them.
I used atmosphertc gas burners and tried forced combustuon or blow-pipe burners with increased effect and saving of gas.

My experiments lead me to believe that with such a boiler a saving of fully fifty per cent. of gas can be made over any other form of boiler now constructed for using gas as fuel. Every squate inch of tube surface is absolute fire box surface, and unequal expansion and contraction is done away with. Nothing rests in the spaces between the tubes. With such a boiler mounted on the running gear of a locomotive, and properly attached thereto so as to take the strains incident to all locomotuves, fuel gas, at as high a price as thirty cents per 1,000 cubic feet, can be successfully used, and more power got out of a boiler of given size than by the use of coal or gas as now applied.
We all know that theoretically the gas engine should give the greatest effect of power with the use of the least gas, but we also know that the practice of gas engines as now constructed is away behind the theoretical figures, and this arises partly as least from the burning or exploding of the gas in a closed cylinder when the proper amount of air does not exist to properly explode and consume the gas, and mechanical appliances of sufficient delicacy and exact action liave not yet been cons!ructed to furnish it.
It is a question to be yet determined, how far behind the gas engine, as now constructed, such a steam boiler would rate in efficiency and economy. It will at least come nearer to it than any boiler now constructed using gas as fuel. Believing that fuel gas will soon force itself to the front and successfully compete with all other fuels now known, and believing less in the gas engine than some seem to as a source of successful and economical power, 1 offer the above brief and imperfect observations on the construction of a gas burning boiler, believing that the general plan as above indicated is entirely new and nearer the goal of perfection than any yet generally known or tried.-W. M. Brown, in the Progressive.Age

EXPORTING LOGS AND LUHBER.

THE successful exporter is the exception-the man who loses is in the great majoity. There is mo regularity in the foreign market, the price obtained is governed not by the quality so much as by the quantity. When good prices are obtained the report encourapes many new men to try a shipment, and the supply being drawn from so large a feld, the late good market is at once crowded, and as usually is the case with the new shipper, he has put no price on his stock, but has merely instructed his consignce to "get the best price you can ex quay," rrusting to luck that he will get the late quoted high price. If it be his first shipment his comnission dealer may "save him for next time," as it does not do to scare a new man off at the start, and the "best price" may be good enough to encourage the novice to try another and larger shipment with the same instruction as before. If the market is good, it is well, but if bed, the first profit does not nearly make good the loss. It seems that a foreign commission dealer is lacking in discretion above everything else. He will often sell stock for less money than it is worth here at home, and will step out ot all responsibility by: "You told me to get the best price I could I" If he had used his dis. cretion and held the stork, submitting the best price obtainable, and waited instruction, he would not only have protected his shipper, but would have maintained prices; for, so long as the foreign buyer can purchase his stock there as he could were he here, he is going to save all the expense of the ocean freights and the hundred and one petty charges which are tacked on in every foreign port.
Our advice to the shipper is to go slow, know to whom you consign your stock, and, moreover, put a price limit on what you send. In many of the markets the expenses of holding stock are but little more for three months than for the first landing in store. Again, each shipper should bear in mind that what he may lose in storage he will make up in price, and a steady market thereby be maintained. The successful exporter is not the one who consigns his stock to this or that market simply because he has heard that it is a good one. He first knows that it is good and how long it will be likely to remain sa. He instructs his commission dealer to get a certain price or not sell it . He is the exporter who will not only make money for himself, but will maintain prices for his brother shippers.-Lumber Trade Journal.

SUPPRESSION OF GRAIN GAMBLING.

Te best means for suppressing gambling in stocks and merchandise is a subject which has for some
engaged the attention of legislators in Canada. tume engaged the attention of legislators in Canada.
They have arrived at the conclusion that legislation directed in specific terms against the acts complained of, and bringing them by express legislative interpretation within the provisions of the laws against gambling, is necessary. In pursuance of this plan the Canadian legislature has lately passed an act declaring a misdemeanor, punishable by imprisonment and fine, to make a contract for the sale or purchase of stock in any company or undertaking in Canada or elsewhere, or of merchandise, with the intent to make profit by the rise and fall in price, and without the intention of acquiring such stock or merchandise or of giving or receiving delivery of the same. The act further makes it a misdemeann: to habitually trequent any office or place where such contracts are made, signed or negotiated, and declares persons keeping or maintaining such places keepers of common gaming houses, and the tablet and blackboards used in recording prices and fluctuations therein gaming implements within the meaning of the law against gambling. The great difficulty about legrslation of this kind, good as it may be in intention, is the danger of injury to the interests of legutimate trade. The act referred to contains one provision which is open to serious criticism from this point of view, as well as from the standpoint of the liberty of the individual. This is a provision imposing upon the person charged with violating the act the burden of proving doma fide intention in the making of contracts. The provision reversing the settied rule of criminal jurisprudence fixes the character of guilt upon transactions until they are proven manocent. Its dangerous character will be per. ceived when regard is had :o the confusion which still widely prevails regarding the distinction between "bucket-shop," gambling and legitimate purchases and sales for future delivery.-Bradstreats.

Over $30,000,000$ foee of logs have been sweph from the booms on Rainy River by the high water, and carried down into the Lake of the Woods. This will be a great loss to the lumber firms on the take, among whom are the Keewatin Lumbering and Manufectur

LONDON MACHINE TOOL CO., LONDON, - ONTARIO,

manufacturers of

Machinist-:-and-:-Brass -:-Finishers'-:-Tools.

L. A. MORRISON, wIth A. R. WILLIAMB, Qeneral Agente, TURONTO, ONT.

THE DOMMON CHOCX MID YOOL WORIS Combination, Universal and Indopendent
Simple, Practioal Low-prioed, Entirely Now Design. - SEND YOR YRICES -
 (Note Mukeve for Canaida) - MONTEEAL. Can be scon at Permanent Exhibition, Toronto.
IMPORTANT TO BTHAM UEMRE
tul revevito or Boiler Explosions He5 AND OTHER ACCIDENTS TO STEAM BOILERS.
When were your Bollers last inspected? Are they in safe working order? Are they giving the greatest power at the least cost ?

The Boiler Inspection \& Insurance Company of Canada. Heal Office, TORONTO.

\rightarrow Of Every Description \longrightarrow ———m FOR

MILLERS nu GRAIN ELEVATORS.

Watt,Drysdale \&Co.

16 JORDAN ST.

 TORONTO.WRITE FOR SAMPLES AND PRICES.

$=\mid$ All Sizes Kept in stoch, and orders Filled Promptly. $\mid=$

$$
\begin{aligned}
& \text { Cotton and Rubber Beling, } \\
& \text { lace leathen, belt moors ani mill supples. }
\end{aligned}
$$

CANADIAN RUBBER COMPANY,

RUBEFR SFIOES AIND FEIT BOOTS, PATENT PRESSED DOUBLE STRIP

