

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically uniquo. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur

Covers damaged/

Couverture endommagée

Covars restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couvorture manque

Coloured maps/

Cartes géographiques en couleur
Coloured ink li.e. other than blue or blacki,
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with othar material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Lare liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possibla de se procurer. Les détails de cet axemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagèes
Pages restored and/or laminated/
Pages restaurèes et/ou pelliculées

Pagos discoloured, stained or foxed/
Pages décolorèes, tachetées ou piquèes
Pages detached/
Pages détachèes

Showthrough/
Transparence

Cuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule edition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet c'errata, une pelure. etc., ent été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol \boldsymbol{V} (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included irı one exposure are filmed beginning irt the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

Library of the Public Archives of Canada

The images appearing here are the best quality pessible considering the conditinn and leglbillty of the original copy and in keeping with the filming contract spocifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. Ail other original copies are filmod beginning on the first page with a printed or illustrated impression, and ending on the last page with a prir :ed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

La biblicthèque des Archives publiques du Canada

Les Images suivantes ont été reprodultes avec le plus grand soin, compte tenu de la condition et de li netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

ADVANCE PROOF-(Subject to revision).
This proof is sent to you for discussion only, and on the express understanding that it is not to be used for any other purpose what ever.- (see Sece 47 of the Constituion).
enadian ociety of eivil tuyineers.
INCORPORATED 1887.
TRANSACTIONS.
N.B-This Society, as a body, does not hold itself reaponsible for the facts and opinions stated in any of its publieations.

THE DARTMOUTH, N.S., WATER ANI SEWERAGE WORKS.
By f. A. Creiohton, Stud. Can, Soc. C. E.
To be read Thursdity, Murch 1st, 1894.
In the year 18:5 Mr. T. C. Feefer, M. Can. Soc.C.E., ma. alled to Dart inoulh, N.S., in report on the cost of a syst m of water worbs for that town. The most feasible plan seemed to be a gravily system, supplied from Lamont and Topsail Lakes, a splendid natural reservoir sitnated among the hills, distant about three miles to the northeast of the town. Mr. Kecfer had an extensive survey made of these lakes as well as of lan lake, whieh, as will he serem by the plan. is situated to the e of of I'ppail Lakeand is distant from it about 1500 fect, Mr. Kecfer ref.and with plans and estimates, aud the matter was dropped for the time. The cumation of the introbluetion of water was raised from time to time, until finally in the hatter part of the ycar $\mathbf{1 8 8 9} \mathbf{M r}$. E. II. Keating, M.I.C.E., at that time City Enginecr of Halifax, was eatted upon to make plans and estimates for the immediate iutroduction of a water and severages system. When the estimates and plans were ready, a pubtie merting of ratepayers was callod, whieh. however, was adjourned for one year. A mecting was held in Jim. mary, 1891, when the ratepayers anthorized the Conncil to ask permission of the legislature to borrow the sum of $\$ 100,000$ to introduce the water and sewerage systems into the town, and the works were finally begron in the fall of 1891.

WATER SUPRIS.
The plans of Messrs. Keffr and Kating were followed in the main, and twe water lrought from Lamont and Topail Lakes. (Plate III.)

These bakes are at an clevation of $\mathbf{2 2 5}$ feet above the mean tide level of Halifax Harbour, and have a combined watershed (exelusive of the lakes thenselves) of 588 acres, mostly of thickly wooded land. The combined area of the lakes is 163 acres, Lamont being 22 and Topsail 141 aeres. T're depth of the lakes ranges from 12 to 25 fe, it, and the bottom is fer the most part gravelly, though the north end of Lamont lake has a considerable area of muddy bottom.

The stream between the lakes was originally about 2 feet deep and 350 feet long, but this was enlarged to a canal 8 feet deep and 4 feet wide at the bottom, withithe side slopes rip-rapped for their entire length.

Lamont and 'Topsail Lathes are eapable of supplying to the town 750,000 gallons fer diem, while for the present 250,000 is all that will be used. The storage capacity is $234,000,000$ gallons.
The effieieney of these hakes may be more than douhted as soon as necessity arises, by the addition of Loon Lake, which, as has been mentioned above, is distant from 'Topsail about 1500 feet. 'i'his lake belongs to a different watershed from Topsail Lake. It was the reservoir of the old Slmbenacadie eanal, and is some 3 feet lower than Topsail. Before eonnecting Topsail and Loon Lakes the water level of Loon would of course have to be raised, which eould be done by meuns of a dam about 150 foet long at the outlet at a eost of $\$ 500$. It is proposed to conneet the lakes by a 24 inch croek pipe. laid so as
to take the overflow of Joon Jake. This pipe when laid as proposed can deliver, runaing full, some $2,600,000$ gals. per diem, thus largely inereasing the arailable water supply. The total eost of the connection is estimated at $\$ 5000$.

DIU AND GATE HOUSE.

The dam and gate honse are situated at the foot of Samont Take. The original dam was built to supply water for a grist mill, but the mill had not been in use for some years when the towa took the lake for ifs sipply. The old dam, which was built mughly, with stones, brush, and other mblish, was raised 2 or 3 feet and the gate house built in the fiont part. When the lakes rose, the dam wis found to be leaking considerably. 'The different leake were repaimed as they mpeared, but finally a trenel $2!$ firet wide was ent aloug the whole length of the dam, down to a led of clay some 2 feet muder the original ground surface, and fill d with well paddled clay. This seemed to stop the leaks effectually, and no trouble was aperieneed till Jebruary 7, 184:3, when it was fond to be hakiur about the wasteweir, and un examination showed as follows: If will be weom by the sketela how the waste-weir is constructed. It is $1:$ fect wille and set
 put in roming across the weir if fert apart. 'I'hess are planked over with 3 in. plank, eaulked and rim with tar to keep the water from making its way through to the chay. Another layer of '3 in. plimk is put on as a protection from the smin when no water is running over the weir. Stakes are driven down in tront at the lake end of the weir, and 3 in , plank ratendiug 4 feet ent on ench side of the weir spiked to them. 6 in. x bin. timber sides are then put in, with the timbers well fastencid together with ragbolts. Then rhay is well rammed down in front of the apron and aronud the sides, A dry wall is built at the back of the dans moder the werr, and loose rock thrown in behind to break the foree of the water falliner over.

Frost action,-It is known that as frost works down throngh clay it expands the clay, which of' course must rise, and anything in the elay must of meessity rise with it. 'lhus it will be seen that as the frost found its way down past the apron in front of the dan, each plank, as the frost reached it, rose and separated from the one below it. In onr ease there vere spares' of from $\frac{1}{2}$ to 1 inch hetween them, white the first short plank at the sides was separated from its noighbour fully 2 inehes.

Then as frost goes down hrough clay thew is always a space (usually half filled with ice nedles) between the frozen ground on top and that unfrozen inderneath. It will readily he seen that as soon as the frost hat worked down below the water-lovel, the water would begin to find its way Petionen the liftel planks in tiont. and along the semm mide by the frost, and ont into the stones behind the dam. It would not be louy before the water would wear away a eonsiderable quantity of the soft chay, and thus make a serious leak.

Tho stato of the dam it Dartmouth was abont as shown on the sketch. The gronme at the sidn of the weir bad risen by the action of the frost and taken the weir with it. This left spaces betwen the planks, and the frost had then made a sam tolow the water mark, adnitting tha water, which rapilly wore away the datm.
'To repair this temporarily, the lake was dammed off in front of tho weir, and the apron in front donble phaked, braking joints. The planks were nailed on one side only, so that if the fions raised then again no harm would be dowe. Guch phank would work aquinst its neightome med always keep a tight joint. (lay was then pindelled in front and rammed batek as firas persible under the weir. 'This stoppred tho leak, and abont a week later the wood of the wate weir was taken
 of the dam, where it has a grondon lall bach to the tail race.

In the spring it is intended to carry the slope of the dam bach some 90 or 100 fect, which will give the inside of the dam a sloper of about 20 to 1.

The Gute House.-.-The gat housir is set in the front of the dan. The intake ditch is f feet wide at. the bottom, with side slopes varying from almost perpendienlar at the gate limse to athont 3 to 1 at the onter end. The sides are rip-ixpled fire the entire lemgth. The diteln
 bottom of the sute lonse. 'I he lomndation and wime walls arre built of ruble and cement masomy Whan the i. hes lime fillod up, this wall was fomd to leah ronsiderally, wo a combe of emont concert 4 inches thiek was put on the insilde; this did motstop it, su a similar coat was put on the miside, and this seemed to mate the wall tight. After the lakes filled up a scoond time, hwever, a slight rim ol water. eame out wl the end of the waste flume. This leak has not yet been located, but will probably be repaired as soon as the frost is out ol the ground.

As will bes seen by the plan of the gite homse (see Plate-) there are tworets of aretns, that are of eophr-ganze and sot 4 feet apart. The sereen lianes, as well as the slojees and guide timbers, ate mate of pitch pine. Some diffienlty was expelieneed at first by these wwelling on coming in contaet with the water, bur after being plamed down they gave no mor: tronble.

Thu opronge in tront of the gate honse is two fert wide, and runs the whole depth the the walk. This opening is covered with an from grating to prevent sticks, hose iee, etc., firon comine in contact with the sercelts.

The waste shiee at the bach of the honse, which may be ussd to Wrain the the lakes, is laill 3 Itt high mud 2 ft. wide ; it is made of 6 in. x 6 in . hembek, lastened together with rag bolts, and braced inside every $t \mathrm{ft}$. The buttom floor is 8 ft .9 in . below the bigh water le vel of the lake, and the top of the town supply pipe is 6 ft .2 in . below the water level.

the man pipe line.

The main $p^{\text {ipe }}$ from the lakes to the town is 12 ,tit) 0 lt . long. It starts from the gate lowse with 20 in . pipe, which continnes for abont hatt a wile, where it is rednced to a 12 in . Which rmes a distanee of $9,3+0$ ft, to the fown. In the line thele ate $;$ blaw offs and $: 3$:ir coch: Fir a distane of soth ft. just befine the and of the 20 in. pipe thene is a hill riwing above the lahe feved; this had to bee ent through to a depth of $2: 3 \mathrm{ft}$. in order io get the pipe down to grade. At a phace 1,3 ef fi. lion the lake the trench hotom was fombl to be too soft to lay the 20 in . pipe on ; a a pathorm of 2 in. phank was built for a dis. tance of mime 75 ft .
At he ipper canal bidge (see Map, Plate H.) the 12 in. pipe is redued to a 10 in ., and a perial teft to take an 8 in . pipe down Port land st., th the lower canal bridge, thene across the bridge, ta comect with the 6 in. pige at the corncre of Portland st, and Wilson lane. This pine will serve ns a saleguard in ease ol the water having to be turned off the 10 in . pipe at present supplyiug the town.

The 10 in . pipe runs from the upper bridge $1,600 \mathrm{ft}$. ulong Ochterloney s. to Dumdanst, where the distribution eommenees. This pipe is laid aeross Sullivan's pmall. The pend was draioed off for the purpose, and tho pipe laid in a shallow trench in the bottom.
The t.anin line as well ns $1,500 \mathrm{ft}$. of the 10 in . pipe is jointed with wood instead of the ordinary lead joint. This has been proved to be quite ns efficient a joint as lead, while the saving in cost, as will be seen later, is considerable.
The joint is made abont as lollows:-The stures are made of the best white pine, turd are cut to the exact eurve of the pipe for which they are imtended. They are hime 4 to 5 inehes long and 3 inches wide, und alout $\frac{1}{8}$ in. thicker than the spaee they are intended ut fill. To make the joint, steel wedges are driven into the fancet under the pipe, son as to force the spigot of one pije well m, against the fincet of the other. Then the lower third of the fancet is filled with the staves, driven as tighty ats er man ean with a heavy hand hanmer. The welges are then taken out and driven in on tup, so as to drive the pipe firmly down on the staves below, and the upper two-thirds of the staves first started in, and then driven firmly home with a hamier weighing $\mathbf{7}$ or 8 lls. The staves are then foreed apart with a small steel wedge, and pine wedges of the same material as the staves driven into the spaces. This makes a good tight joint, and in every way as lasting a one as lead; but eare must be laken in putting in the small wedges, to put in mough and drive them well home, an one of them left ont means: considerable leak. If'a wool joint does leak it will be seen that, on account of the wood swelling, it humst tomd to get better insteal ol worse, as would be the case with lead.
One great :ulvantage of the wood joint over lead is that it ean, if neeesary, fur madd with as mach as half of the pipe under water. This saved an expensive colferdam in one plaee in Dartmonth, where the pipe hat tweross al lowse rock combankment across a pond-a distanee of about 300 ft . Had lead joints leen und, the pipe would have been laid along the side of the embankment antla cofferdam built to keep out the water.

Of eonsec, before adopting wown' joints, cato must be taken to see thut the castings ane made reanably smoth, as any projecting pieee of iron on the fancet will peel ofl the stave as it is driven in, and thes canse a hatk, ha the pipe used in Datmouth, some of the pipes were rather rough, and cominterable troulde was lound in getting some ol' the joints tight.

The fillowing table will mive alout the siving cffectad in Dartmonth by the aldeption wh the woord joints:

This satving, together with the saving of the cost of the collierdam referred to above, would dip up and repair a grat many joints if they shonld happen to leak on aceome of wood not making so sure a joint as lead.

DISTIRIRUTION .

The distribution system, is shown in dotted line on the plan (Plate Il.) The 10 im . pipe runs down Oehterloney st. as far as Kinys st, where it is redneed to an 8 in., this rms as firr as Water si, then turus along Water st, as fine as Stairs st. An 8 in, also branches off and runs along King st. as far as Portland st. The sonth end of Water st., Prineest., portions of King and Wentworth streetsant Qaiarl and Portland streets are laid with ti in. pipes, Bogess, firmen, bumas und part of Wentworth streets and Wilson's lane are laid with 4 in .

The following are the lengths of the different sizes of pipes in the town:

38.4 ft 10 in

The extenwions shown on the plan will probably be made next snmmer (1893), this will include 3760 feet 8 in ., 6250 fect 6 in ., and 788 leot 4 in . pipe.

The pipes are all in 12 feet lengths, and aro made by the Loudonderry lron Co. They have given every satisfaction, only 4 being brokeu on the nuin lise, and when the pressure was put on in the town, only one broken pipe slanwed up, which was a 6 in, split for about 3 leet in the middle. I'he specinl castings were made by the Truro Foundry (o, and the valves are ol the Ladlow pattern and made by Stevens \& Burns, lomeno, Ont.

Whe pipes iu the town, with the execption of 300 fect of 6 in, and 250 feet of 8 in.. are all jointed with lead. The pressure in the town was so grent that it would have been diffienlt to make wood joints in the small pipes tight without having the water on to test them as they were laid. The difference in cost between weod and lead joints in the suall pife wonll have been very slight. The 300 feet of t ineh pipe laid with wood is on Water st. from Ochterloney to Quarl, and has not shown at single leak though under a pressnre of 9 方 lbs.
The deand onds and specials left for future extension were phaged with a wooken phy turned to the proper diameter and pert in with an oritinary wood joint. These have stood very well. Ont of twenty, only two, and these each under a pressure of from 90 to 951 bs., have blown out.
'The hydrants, of wheh there are $\mathbf{2 5}$, are made hy the Burvel Johnston Iron Co., Yarmonth, N.S. The vatre in this hydrant slonts aguinst the pressure, is faced with hather, and shots agreiust a brass seat. The serew for working the spindle is at the top, working in a brass mut. 'I'luy havo two $21 / 2 \mathrm{in}$. discharge nozales, and are all comected with the main by 6 in , branches.

After the hydramts were set, it was formd that throngh some mistake the nozzles wonld not fit the hose then used by the town. The cheapest way to overemme this diffieulty was found to be to elange the nozales, wheh were ol' brass leaded into the top; of the hytrants. 'I'o get the un ont, pieces of iron about 2 inekes in dimeter and 5 ins , long were leated in aportablo forge, and onf inserted in each now, As they cooled, fresh ones were pitin, and after beiag changed three times the nozzle usually dropmed ont, anl the new ones were leaded right in. Three men with four iron lumps and a purtable forge changed all the hydraut nozzles in the town in two diys.

The eost of the liydrants in Dartmonth when set was about $\$ 50.00$ eneh.

HoUse services

The house conneetions arc all made with $1 / 2$ inch lead pipe weighing 7 lbs . to the yard, and costing when laid in the trench about 12e per foot. I'le trenehing tor honse services was done by labonrers at a contract price of 12 e per foot run, and meb working at that price made very good wages. The leat pipe is takeu from the main ly a straight brass serew nipple. The eorporation cocks are set in the sidewalk about a loot eut from the side line of the street. The service boxes are on the extension pattern made of east. irom. All the service boxes, stopeock and nipples were made by Streens \& Burns. Connections between brass and leal were made by the ordinary compression joint.
The service pipes were hid to a depth of 5 tect; this seems to be below frost level in Jartmouth, as no service-pipe has frozen up to date (Mareh 16, 1893), and this has been an exceptionally cold winter. The average cost of a home scrvice where there was no rock to contend with was abont $\$ 10$.

Tho trenchiny on the main line from the lakes to Pine street, as well as the pips laying, was done by contract at the following prices
per cubie yard: rock, 81.75; loose rock, tine; nnd garth 270 The refilling was done at the rato of 10 et es, per enbie yard. As to the trenehing in the town, bee below.
The pressure in the town, as indiented by a gange on tho bydrants, saries from 75 to $91 \mathrm{lbs}$. Ihis is snflicient to throw a good stream ovor any buibling in town without the aid of a fire engino,

SEWERAGE ByBtEm,

As will be aeen ly the plan (Plate No. II.), the sewerago of Dartmonth - divided into threns parate syemens, cach having its own ontall. I e principat outfall is that at North atreet, which will eventually drain mont of the town north of Ocher rloney street, though the area at present draining into it is only abont 29) acres.

The ontfall is a 20 in . $x: 30 \mathrm{in}$. concrete block eqgornped sewer, exconded out intu the harhour 30 fiet, with a cirethar wooden box 30 ins, in dimeter with the sides 5 ins, thick. 'Tho man sewer of this system stat t. with a 12 in . pipe at the corner of line and Ochterloney streets, and mus lown Oehterioney street 1188 feet, tu King street, where it increases to 15 inches diano, rmunins with that dinmeler 0.0 ft , an firas Water strent. It then turns north along Water streetas if 20
 down North stiect 221 fiet to the sutfill. The sewer reerive branches from most of the cross streets on the way down, and will eventmally drain them all. It can ako diain line, part of Maple, and Beech streets with all the remss streets. This system can also be exteuded from Stairs at, north ."'ong the Windmill liond about 1,000 feet, and also 'up Stairs st., to drain 'lhureh st., und the north ends of I'rinee, King and Wrintworth streets.
The next system empties at Boygs st. This is eapabje of very little further extemsion. It at present trains lot acres. The out fall is of 15 in. crock pipe extended 18 fect into the harbonr with a circular wooden box 16 in . diam., with the sides 4 in . thiek. This system drains Water st. (sonti of Quarl), Prinec" st., Portland st. and Bogges st.

The other system, emptying at the foot of Wrontworth st, into the comal, can be catimed wo further. It drains an area of 14.7 neres, tho outlet is a 16 inch wooden box, sides 4 in. thick, and runs out into' the streme 80 fiet. This sy:tem drams most of Porthond st, and half of Qumrl st. with their several (rows streets. At the eorner of Dundas amb Portland strects: a putting of 17 feet had to be made to overcome the rising gronnd from Wilson's lane to Dundas st.

The lengths of the diffirent size sewers at present laid iu the town are as follows:

500	feet 20 ins x $30 \mathrm{in}$. conerete bloek sewer.		
1087	"	15 in.	Vitrifict salt glized sewer pipe.
4146	$"$	12 in.	do
4882	$"$	9 in.	do

All the sewer pipe used was from The Standard Drain Pipe Co. of St. Johns, l'.Q. The concrete sewer came frou the eity of Halifinx at atrost of $\$ 1.30$ per ruming foot, with an addition of $\$ 1$ per ton trockige ath ferriage.

The Hor ten bere Extensions to the Boggs and North street outfalls wire made after the outfalls were built, it being thought advis:a ble to exfend them further out into the harbour so as to empty bflow low tide level and to keep sand, shingle, ete., from washing into the mouth of' the sewer and elogging it up. The Wentworth st. outfall is entirely il woolen box run out into the stream 80 feet. This is not below low water, as when the tide is out the stream is only about ti inches dep. The boxes are made of hemlock in pienes 12 to 18 fret long, narrowed on the inside so as to form a eircle when laid together A raft was first built hifving a fraue of $6 \mathrm{in} . \mathrm{x} 8 \mathrm{in}$. timber, and planked with 2 in. planking; the box was then built right onto the raft, ove picee being put on at a time and spiked securely to its neighbour. When the
box was finished, a cribwork of 6 in, $x 8$ in, timhters was built uparound the mouth to a level with the top of the box anil extendinge brek about 8 feet. The raft wan then floated into position non the erib filled with stone to sink it. The whole ralt and tox was shan coverel awer with stone, forming a solid wall as a protection from flating logs, ete., In the eanal this wall rums, ,half way across the streamso as to turn the fill foree of the enrrent directly fast the munth of the sewer and carry the sewage right away.
In haying tho sewers muder water nit the ontfall, a cofferdam was built to keep out the water. Stakes wor driven in, leaving a spmee of two feet between them; thene were phanked ip on the inside, mod the space betwey them filled with well rammel elay. 'This made a very tight dau, elliennally kopping the water out mutil the meessary pipo and masonry hat limen laid. At the Bogk at, outfill the sewer pipe under water was laid in a bed of cement and covered with the wame to a depth of 6 inehes.

MANIOLES, VENTILATOLS AND CATCII PITN,
Wherever two or more sewers meet, here jo manhole, and at every change of grade a lamphole and ventilator, so that there is no sewer in the town which is not upen to thorough inspection.

The eatch basins are commeted whith the rewer hy a! in. pipe ulways with a gool litl. All eatch lasins and manholes are made of concrete instead of brick, whieh elsewhere is generally nsed for the purfose.

Ventiator.

Tin View C. 1. Stonla.

Front Elevation, Long'l. Section. catch-pit.

The cateh pits, of which there are 42 , were designed by Mr. E. H. Kenting, M.I.C.E., then eity engincer (f Halifax, now eity engineer of Toronto. The montls are made in seetions fastened tosether on the inside by pieces of irom about 2 in x 4 in. and $\frac{1}{8}$ in. thiek, and eommon wood serews. The bothoms of ilve catch pits are 6 feet below the level of the sidewalks. 'Tho lower 3 feet 3 in., ns will be seen by referring to the plan? (Plate IV), is elliptical in shape, $4 \frac{f}{\text { feet longe } x: 3}$ feet wide, then they begin to narrow and are 2 fertsquare at the top. The side away from the ghter is perpendienlar, white the other side runs ont under the guticr. The sides are f in, thick; the exeavation is taken out, so as to leave a space of from 6 to S in. outside the mould. This space is filled with concreto to a hight of 3 ft .6 in ., the connection with tho sewer having been put in two feet from the bottom. After this, stones are built up around to keep the conerete of tho proper thickness till it is built to a height of five fect. Then the top mould, having grosves for the reecption of the conercte eovers, are put on, and the top finished with a gront of 2 to 1 gravel and cement. After the conercte is set, a man goes inside with a serew driver, takes the moulds apart, and passes them up piece by pieee through the top. The mould is then put together and carted to the next hole. The bottom, whieh is cf concrete with a stone foundation, is then put in: A catch pit of about $\$ 30$ ．

Man－loles behing aldifterent depths，a mambarl mould conld not be male mure than the two ：0p fert．＇The remander was made ly a

 monld was then wit on the pesten of the finme nul conereted up to the top，lenving the＂panlug the the 18 in．$x: 0$ ） in ．When the concrete
 the top．A cast iron top with＂movable cover is than pint on the concrete，and the hottom，which is of conseretu luving gronven for the flow of water，is gut in，mol the man hole in completed．The eost of a
 say about 8 or 9 firt derp，in 11.1 rtmonth mand uhout $\$ 11.00$.
Some aljertion mipht he raised ngunst the une of comerete lim mon－
 brenk ofl the eomerete．＇Ilar watlic on the Jatmonth streets is very henty，but oustrable of thi kind has oecorrod us yet．

The ventilatoren homp holes are made by a 9 in．erock pipe coming tu within a fint，of lle surface，with ol home concrete wollar set over it， alont of font from the promul surlace and reating on the groumd around the pipe．A romil matiron tup with moveable cover is set on the collar as a protection to the pipe．

HOHSF，IRAINAIFE．
The honse drains are all，exep in the ease of a donble honse，lail with 4 in，crow pipe．Nos crate is nllowat less than 1 finet fall in

 main pif＂；these are renherel ：a the main to 4 im ．
＇The uain trap of mos of the bunses is the hamithole rup as made by the Standand 11，P＇，Co，＇This is set just motsich the foundation wall，and has a 4 in，cat－iron eiper coming to the shithe as fresh air shalt，to vembilate the maturnil pigue ！aside the honse．

＇リルドNくいING．

Within the fown，wherever there werm bot？wather and sewer pipes to be laid in the sann street，the＇y were hid in the same troneh，the sewer

A trench intended lin the remption of the two piper was stated at the tol if ft ．Wide and emonnel that winth matil it was $5 \frac{1}{2} \mathrm{ft}$ ．
 gronde fir the sewer．＇The sewer pipe was laid tirst and the trench tithed up to the In wh fin the wather pipe，then the water pige was laid and the troneh fithed 1 י．

Ater the water was formol on in the town，wherever there was any
 turned into the tronh，＇This aetted the earth excellenly，und saved
 aw：shy shlus material．When ：m math troneh was tilled in this way there was very rarely aby wath att all to he carted an：

In the louse comections，homedrains wre u－nally placel in the same trench as the service pipe，always provided，howerer，that they were put $1 \frac{1}{2} \mathrm{ft}$ ． bulaw the service pipe．It is the ：anthor＇s ophion that this has had a good deal to du with heppurs many ol the service pipes from freezing up．The last service that was put in was a combineal trench，and had to her filld with frozell corth，and the water pipe froze up while the phambers writ al wonk at it．This was not discovered until after the treneh was filted，so it was left a week or two before steps were taken to thaw it out．＇I＇he prophe in the homse，however，began to use the sink at ones．Abont ten diys after the trench was filled the water started of its own accord，and las been rumaing ever since．

on the

for the
At of a
ole,
The warm air in the newer 1 , foot aml a liall aromed it, and atarted the water.

All the roek in the malle trencheswind in some of the bure trenches, Which was nearly verticully bedded slate, was taken out liy eontraet wilh ntem drills at a priee of $8 \mathbf{8}$, the per conhic yarll. This might have been done somewhum more eheaply wibl hand drilla by days hator, but it wonld prolnhly have extemded the work into the next year and cost wore in the end. 'There was a great deal of reek in the town, and the steam drills, workitg light and day, wok it ont sery quiekly, There was removel in the tows: ultugethen ibont 2, tion enbie yards.
'I'ho cost of carth tretsehing, which was wone by days work, way from 30 to 35 cts, per yard, and relilling trenches from 10 to 15 etm .
In roek the thenches wive twhen out "; inm, below grade, and illled up to prade with good, well rammed earth, making a good bed fir the newer to lie on.

The liphtest grade tire a sewer in the town is the 12 ineh sewer on Ochterloncy st, l'ioni l'ine tu Wentworth stwo, in length of' about 900 ft., falling at the rate of 0.435 per 106.

In connection with sewer ventilation the writer noticed that on frosty momiags warm air was eseaping from the mouthe of the eatehpits in the more elevated pertions of the town, while if a piece of lighted $p^{\text {miner}}$ were set in lrout of one of the luwer entel pits a strong current of air was seen to be drawn in. 'I his, of' course, is only the result of mutare's law thut warm air rises, As lyartmontia is rather lilly and most of the grades steep, this circulation would naturally, in cold wother, he very rapid, and serve as whexeellent ventiation for the rewers. An "plortmity hats not yet oecurred to nutiee she elfect of this in warm wenher, but it is siplosed thme there womble te less circulation the more the temperature of the outside air berane mal to that of the sewer.

This circulation might in very cold weathor endanger the satety of the lower cateltpits an account of freczing the two feet of water always lying in tho bottom. This mather has mot yet beell fully investigated, but as the weathre in Dartmonth never remains cold for any great longth if time, it in thought they will be tolerably satio.
The cont of the water service was abont $85!, 570$ nowd that of the sewers $8: 30,970$. The work was begun in the liall of 1891 , nuder the dirertion of Mr. C. E. W. Iomwelt, M.I.C.E., M.Cmn.Soc.C.Li. In that year the pipe house and a great part of the main pipe line were bnilt, abo the sewer ontiflls at North and loghs streets, and some of the sowers laid. Mr. Dodwell resigned in Nuvember to aceept another pasition when the work was taken charge of by Mr. W. (i. Yorston, C.B. In the following year the remainder of the work was tone, the last houre service being tilled up on Deecmber :3t, 1802. The deep entting about half a mile from the lake wis done in the winter of 1891-92 and the main line finished in May, 1892. Owing to some delay in repairing the leaks on the line, the water was mot finally tarned on in the town natil November lst. It has remaned on ever since, and given every satisfaction to the rate-pagers, as is evidenced by tho fact that at a public meeting held Mareh 23,1893 , the town conncil was authorized to go to the Legislature for permissien to borrow 835,000 to carry on the propesed extensions speken of above,

Note added Fob. $12 t \mathrm{t}, 1894$: - During the rummer of 1893, the following exthasions were mate to the water and sewcrape systems: There were had $1,4,500 \mathrm{ft}$. f^{\prime} water pife, making a total now laid of about $7 \frac{1}{2}$ miles; also $10,200 \mathrm{ft}$. ol' sewers, making a tutal now laid of over 4 miles. 31 additional hydants wre ed, making atotul uow in use of 55. The number of houses now conthect with the water mains is 3a0, and those using the sewors number abont \%b0. 'Thework of trenching was dote in suall contaces, and enst on an arerage abe at as follows: Solid roek, \&D.6t) pr cubic yad; lecereck, buet. per cubic yard; earth, 26ets. per cubie gand. The contractirs sum to bave dene sey well at these prices. Flush cocks, vaying in size from $\frac{1}{2}$ to 4 ineben, liave been placed at the desidends of 110 of of the rewtis; there are eompanatively inespensive, and are very effective in their work.

F. A.Creighton, Stud. Can. Soc. C.e.

