IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian institute for Historical Microreproductions / Institut canadien de microreproductinns historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. witich may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are chacked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurbe et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates nad/or illustrations/
Planches et/ou illuctrations en couleur
Bound with other material/
Relic avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, cas pages n'ont pas été filniées.

Additional comments:/ Commentaires supplémentaires:

L'Institut a microfilmb le meilleur exemplaire qu'il lui a été possible de se procuror. Leas détails de cet exemplaire qul sont peut-être uniques du point de vue bibliographlque, qui peuvent modifier une imags reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommages
Pages restored and/or laminated/
Pages restaurbes et/ou pelliculbes
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualitś inégale de l'impression
Includes supplementary material/
Comprend du matériel supplónentaire
Only edition available/
Soule édition disponible
Pages wholly or partially obscured by eirata slips, tissues, otc., have been refilmed to ensure the best possible image/ Les pages totaiemont ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont étó filmées à nouveau de façon al obtenir la meilleure imnan nossible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiquéci-dessous.

The copy filmed here has been reproduced thenks to the generosity of:

Hamilton Public Library

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed -beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONT!NUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, es many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la gênèrosité de:

Hamilton Public Library

Les images suivantes ont été reproduites avec le plus grand soin, compt's tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en pepier est imprimée sont filmós en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une emprainte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivents illustrent la méthode.

the planet - पुजId 19 The diameter of Tipiter is estimated at 88,000 milcs; and is, therefore, about 11 times that of the sarth.

at $0 \because 2415$, taking that of the earth as unity.
The intensity of gravitation on its surface
earth as
the
therefore, taking that of

THE \oslash EARTH.
號

describe the cirele in 10 hours, instead of 24 hours,
the angular velocity of the hour hand will then
represent the angular velocity of the planet.
sup-
B. We shall show that the distance (about 500 million milcs) from the Sun, now assigned to Juch
ported by fact; therefore the above data, so far as dependent upon that distance, are subject to correction.

JUPITER'S SHADOW.
that the apparent size of the sun would be diminished
and the apparent size of the plot
size of the planct be greatly increased;
nevertheless the actual relative sizes of the sun and the
planet-cach to the other-would remain unaltered, and
the solar rays would reach the planet at the same angle
as before; but the diameter of the (apparent) planet is
the lase of the (apparent) shadov, and the altitude,
and other dimensions of the shadow are proportional to its apparent base.
For a general explanation of the illustrations in plate 6, see jage s1, et seq.

> Plate 6, illustrates the shadow of the planet Jupiter
as seen from two places in the earth's orbit; one-near

supcrior conjunction of the earth. The apparent size

the sun from the earth is the same at loth places, i. e.,
whether the earth be at the place E. 1., or at the piace
E. 2. If the earth be supposed to travel out of its
orbit and to approach very near to Jupiter, it is evident

$\underline{\longrightarrow}$
(The celipse of Jupiter's satcllites) to which it refers.

等
Supplement D.
part second.
$-00-$
CENTRIFU $G_{G_{L}}$
FORCE
AND
GRAVITATION.

Supplement D.
 PART SECOND. CENTRIFUGAL FORCE AND

 GRAVITATION

 GRAVITATION

 A LECTURE.

 A LECTURE.
 EY
 JOHN HARRIS.
 MONTREAL:
 JOMN JOVELL, ST' NICHOLAS STREET.
 DECEMBER, 1873.

Entered according to Aet of Parliament in the year one thousand eight hundrea and seventy-three, by John Hatinis, in the office of the Minister of Agriculture and Statistics at Ottawa.

PREFIN.

BAET II. SCPPLEMENT I).
Reasorable Theomes.

Jorian Graritation.-From observations of Jupiter's satellites, it has been ascertained that the collective gravitating influence of that planet is of about 7 times greater intensity than that of the emrth operating at an equal distance. Since the intensity of gravitating influence for planets of equal density varies as the dimeter, (See Lecture, prige 44), and the diameter of Jupiter is about eleven times that of the earth; the density of that planet must be proportionally (i. c. as $7^{3}: 11^{3}$) less than that of the earth. Assuming this to be so, the question is suggested-what is the intensity of the internal gravitating influence on the surface, or in other words, what would be the weight of a body on the surface of that phinet relatively to its terrestrial weight? For example, what would 100 lbs , terrestrial weight of iron be equivalent to, if transferred to the surface of Jupiter? The !uestion is one of considerable ditficulty. We will first suppose the present volmme of the planet to be so contracted as to reduce its diameter to about $;$ times the diameter of the earth (i. e., by rather more than one-third of its present diancter). We shonld then have the density equal to that of the carth, and an intensity of gravitating influence on the surface effal to about 7 times that on the surface of the earth, (i. c., the 100 lbs . of iron, it' transferred would weigh about 700 lbs . on the surfice of the reduced globe.) We will now suppose the condensed globe to expand to its former angular (diametrical) magnitude. Since the surface is now removed to a
greater radial distance from the centre, in the ratio of 11 to $\overline{7}$, and the collective mass has not increased, the intensity of gravitation wiil be therefore reduced in the inverse proportion of those quantities; but, since the artan of the expanded globe is greater than that of the condensed globe in the ratio of 11^{2} to 7^{2}, the intensity of gravitation must be accordingly finther diminished in the inverse of that proportion. Therefore the computation will be.

$$
\frac{7 \times 7}{11}=\frac{49}{11} \quad \operatorname{And} \frac{49}{11} \times \frac{49}{191}=1.9
$$

That is, the intensity of gravitation on the surface of Jupiter is rather less than twice the intensity of gravitation on the surface of the earth; viz. as $1 \cdot 9$ to $1 \cdot 0$. So that, the 100 lbs (terrestrial weight) of iron would weigh about 190 lbs. on the planet.

It was stated at the commencement of this work that the interest of general edacation in the higher sense was to be itsprimary purpose. Having this purpose in view, we will here notice a result of the indefinite and unsomed teaching on this subject at the present time. It is scarcely too much to say that each scientific writer is considered at liberty to form an opinion (or theory) of his own : for rample, we might proceed in this way:-taking again the inteasity of gravity at the surface of the condensed globe, equal in density to the earth, at 7 times that of temestrial superficial gravity, and then expanding the globe to its present size, the distince from the cente will be increased in the ratio of 11 to 7 ; and therefore, sine the mass has not been increased, decrease of attratetive force on the surface will be simply, in the inverse 1roportion of those numbers. . viz., as 7 to 11. (i. c., reduced from 7 times to very nearly $4 \frac{1}{2}$ times the intensity of gravitation on the surface of the earth). Or, again, we might proceed by taking into consideration only the increased area and state the case thus :-since the angular magnitude of the globe has been increased in the ratio of 11 to 7 , the area must have increased in the ratio of
11^{2} to 7^{2}, that is, in about the propertion of $? 3$ to 1 , comsequently the attractive force has to be divided and extended over this greater area and monst diminish in the same proportion ; thus we find the 7 times intensity reduced to $2 \cdot 5$ (times rather less than :3 (times) that oit the force on the earth's surfiace.

Althongh it seems to us that the two conclusions thas arrived at, would not be more mureasomable than some which are now tanght, they wonld, neither of them, be reasonable conclusions, becanse not consistent witl the recognized laws belonging to the subject. They may, however, here serve a nsefil purpose in assisting to bring to the test of tact the opinion (as we would term it, rather than a distinct theory) that intermat gravitation operates radially from the centre; now if such a hypothesis were supported by finct the lirst of these two conchusions might be quite reasonable, namely, that the intensity of gravity on the surfice of Jupiter is actually about $4 \frac{1}{2}$ times greater than on the surface of the enrth.

By interal gravitation we mean the gravitating inHnence exerted by the mass of the planet on the matter of which it is composed, and on bodies on its surfice : and we siy, in reference to this, there is evindence in works. considered seientific that a vague theory of this kind, viz., that of an inthence distributed radially from the centre, (or of a concentrated intuence operating from the centre,) is quite frequently entertained. When, however, the question is as to the influence of one planet onamother at some distance, this theory is no longer comtenanced. But, why? If it is concluded that light and radiant heat are distributed radially, and if the theory of an intermal radial distribution of gravitation is more than half comtenanced, if not yuite admitted, why shond it apear almost alsimed* to suggest that gravitation may be exter-

[^0]nally raliated in every direction! Nevertheless, we ean searcely doubt there are at the present time not a few selentific men who would express in mhesitating helief as to the one, and who wonk look ipon, and perlaps term the other, too preposterous for serions consideration. Leaving aside for the moment the argment as to the actual fact, it camot but be exident that horem is a prejudice which has not only aequired strength by time, hut is also in itself a result, of manomd edacation. (olsereve that we do not saly the theory at present hello-viz, that light and heat are distributed malially, and gravitation only in the direction of a recipient, is alnard or motenahle; nor do we wish to insist dogmatically (i.e., by assertions masupported by fict or by reasomable demonstration) that it is necessarily wrong ; but, whether it be in fact right or wrong, that is just as much an masomud prejurlice which, in the present state of scientific kiowledge, makes it dilficult to entertain a proposition that all three (inthences) viz., light, rarliant-heat, inn gravitation, are in the same case, amd that...if the two are distributed radially in every direction...so is the other one, or....if the one is only emitted in the direation of a reejpient (or reeiprocator')...sach will be likewise the case with the other two. Admitting that such a prejudice exists, we opine that it has now hecome so wide-spread and so mucia a part of what is considered srientific edncation that no one is altogether free from iss inthenee, nor can, withont a certain tlegree of mental violence, (exertion of the will)

[^1]free himselffrom its influence. It is periaps the most diflicult, and perhaps the most important, of all the duties of seience to distinguish such cases from those of propositions which it is not right to entertain, becanse, not only baseless in fact, but also, not in hamony with fact, i. e., with the facts of creation, - and which, therefore, we unreal and monstrons. In either case, or class of cases, there is a mental difliculty in receiving the proposition ; the will has to be exerted and some resistance has to be overcome. The great and very important difference is that in the one ease, there is obedience to legitimate authority, and a legitimate use of the mental faculties in accepting that which is anthorized and commended by reason.. in the other, there is sulmission to illegitimate anthority, and a wianl perremion and mis-use of the mental faculties in acepting that which is manthorized and forbiden by reason. Where a false proposition or theory is of a very simple character, and the mind has been prepared by somad education, the rejection of it is very easy, and seems, as it may be termerd, quite matural ; a.g. -if we reverse one of Euclid's axions, and propose for acereptance: that ...the whole is, or may be, greater than its parts ; or ...of two lines each of which is equal to a third, one is greater or less than the other ; or that. . .two arded to two may, moder some pecoliar eiremostances, make fire, or some quantity of momber other than exactly form. But, if the false proposition, instead of being simple, is of a complex, or what is called, abstruse chameter, and instead of the mind beng menared by education to

Correction. PAGE V.

For...the whole is, or may be, 'greater than its parts;' ...reut, 'less than its $p^{\text {mut ;'...or, 'greater than the sum }}$ of its parts.'
mally ramiated in erery dirertion! Nexertheless, we rim searcely dombt there are at the present time not a fews serontitic men who womld express an mhesitating belief as to the one, ann who would look ypon, and perhaplestem the other, too preposteroms for serions consideration. Leaving aside for the moment the argment as to the actail fact, it camot lont be exident that berem is a prefurlice which has not only aequired strength by time, hut is also in itself'a result of masomed edncation, ohserver that we do not say tha theory at preselt held-viz, that lightamd heat are distributed radially, and gravitation ouly in the direction of a recipient, is alsmed or minter ahlo; hor do we wish to insist dogmatically (i.c., hy assertions unsipported by firct of by manomble demonstation) that it is necessanily wrong ; hut, whether it he in finct right or wrong, that is just as much inn misomel projulice which, in the present state of seientific knowledge. makes it dificult to entertain a proposition that all three (influences) viz., light, malimitheat, and gravitation, are in the sime case, and that...if the two are distributed madially in every direction...so is the other one, or...if the one is moly emitted in the direction of a recipient (or re(iprocator)...such will be likewise the case with the other two. Almitting that snch a prejudice exists, we opine that it has now becone so wile-spread and so much a palt of what is considered scientific education that no one is altogether fiee from its intluenee, nor can, withont a certain degree of mental violence, (exertion of the will)

[^2]fire himself from its influenere. It is perhaps the mest dithents, and perhaps the most important, of all the duties of science to ilistinguish such cases from those of bropositions which it is not right to entertain, becanse, not only baseless in fiact, but also, not in harmony with finet, i. e., with the facts of cmation, - and which, therefore, are unreal and monstrons. In either case, or class of cases, there is a mental dilliculty in receiving the proposition ; the will has to be exerted and some resistance has to be orecome. The great and very important diflerence is that in the one case, there is obedience to legidimate anthority, and a legitimate use of the mental faculties in ancepting that which is anthorized and commended by rason.. in the other, ther is sumbission to illegitimate anthority, and a wilful perremion and mis-nse of the mental faculties in aredpting that which is manthorized and formiden by reasom. Where a false proposition or theory is of a very simple character, and the mind has been prepared by somul edncation, the rejection of it is very masy, and semms, as it may lre termerl, quite natual ; e.g.-if we reverse one of Euclid's axioms, and propose for acerptance : that ...the whole is, or may be, greater than its parts ; or ...of two lines each of which is equal to a thirt, ome is greater or less than the other ; or that. . .two alded to two may, muder some peculiar circmustances, make five, or some guantity of mmber other than exatly fume. But, if the fillse proposition, instem of being simple, is of a complex, or what is called, abstruse character, and insteal of the mind being prepared by ellacation to reject, the mind has been prepared by education to receive it ; ant, instead of the concmrent authority of recognized teachers being opposed to its acceptanco. such concorrent anthority commends and insists upon its acceptanee, then the siftienlty may become, and does in some cases become very great. It may be asked-is it legitimate in a somm scientific sense for each one to
ontertall any theory ar opinion he prases, or which he mat chowse to cotrertain? Ther answer to which is-de-riderly-that ha may not; it is mot lawtil to dor so. But therl, who is to deecide which is tilse amb which is sommel? Where is the legitimate buman anthority to determine shelt questions? 'There is reasom, by rasom only must surd guestions be derided. Ther ruthority of' nome ctase is legitimate.
(Note A.) We would distimgind in this way between
 all masomed or false theory.

I demonstrated theorm is a theory which has been completely (i.e., scientitionlly) extablished ly demonstrattion, and which, therefore, heromes reroznized as, or werpuias the plare of, a tiact, and themoforth forme : part of spicmere.

A (sematifie) theory must be remamable; it must not be, in ally part of it antagonistic to, or irreconcilable witt, known and recognized thets (i.a., any of the facts of Creation) ; lmit it ly me meams follows that a theory, being reavomble at a particular time, may not become momable when further prouress has been made in the arpuisition of knowledere. On the rontrary, a theory, as distinguished fom a (Ilremonstrated) theorem, is msually, if not alwats, incomplete and mecertain, being in a qreater or less degree based "pon or dependant on assmption in place of actnal tact amb eartainty. If, when the meressary knowledge has been arpuired, the assmptions cam be manle certain or mplaced by liact, then the theory becomes established (as a theorem), lut if fomm to have bern hased on as. smuptions which increased knowledge, or a more comme and skilful applation of knowledge, shows to the nu"omul, then the theory becomen matemable, and mast be at once given in). Therofore, a theory belomgs to seiemer, and is of great use, and may, indeed, be considered quite indixpmathar as a legitimate mems of investigating the

Tuhbown and of extembine the domain of science; but it shonld not be romsidemed to forma a pat of seienee muit absohtely estallisherd.

All masumal or fasse throry is rither altogether, on contains, in some palt of it, that which is inconsistent with known facts mod is thereflate moral, or, it may be, is based on assmmptions which are moreasonable-that is, Which are mitroe or ineonsistent with reality in an ideal simse. Such theories loclong to mensond seience, which is upposed and antagonistice to secience.

A hapothrsis may be considered a theory in a less complete or in a less tormal shape.

An assumption belongs to ideal philosoplyy. 'To be intelligible, the assmuption minst be almarently real,-i.f., it must mpear to be supported by tiact (consistent with the facts of Creation) Tob he somm, the assumption must he in fact (actmally) remb-i.f., it must be actually supported by liart.
(Note 13.) The nse of an assmmption is to sulply the place of a simple fiact, or to supply one or more of the dements in a compormat fiact (theorem), in order that combination may he canried torward. When this process is conducted in the legitmate and correet manner, it frequently (always eventually) happens that the sommeness of the assmmption can be tested by the reality (reasonablemess) of the rompmonds in which it is then one of the elements. Where am assmmption is suspected to be ansombl it is somrtimes examined in this maner, by combining with other elements (known to be of themselses somml) inte a compomm, of which the umeasombleness is manitest. This is termed "the argomentmu ad absurdim."." *

[^3]

Omission.

(NOTE C.) TO REASONABLE THEORIES. PAGE VII.

It is of importance for the student to observe that one assmmption may diller very much from another in character. To point the distinction we will suppose assumptions to be divided into two extreme classes. Those belonging to the first class may be temed empirical or inductive assomptions; these are more or less partially based on recognized fact or deduced therefrom, or, it may be, are, in a measure, inductive comelusions arrived at legitimately by reasoning or indirect evidence, and, althongh assumptions, and not wholly established or not known as a whole to be certainly true, they may contain certainty with respect to some, and perhaps to many, of their elements, and, accordingly, to some extent, and perhaps to a great extent, may partake of the nature of fact: in such a ease, the value of the assmmption as a basis or partial basis to the theory, into which it enters, is much dependent on whether the theory rests mainly on that part of the assumption known to be certainly true. Those belonging to the second class may be temmed hypothetical or speeulative assumptions; these, althongh, it to be considered as belonging to science, they must be, als already stated, not fundamentally umeasonable, may contain mothing more of the mature or chanacter of iart than the possibility, and a greater or lesser measure of probability, that they may eventually be shown, when the necessury knowledge has been aequired, to be true or to contain certainty and truth.

PART II.

DARKNESS AND LIGITT

Oljections to the modulatory theory of light.
The Ether. The supposed tluid thas maned is usmally spoken of by writers on optics as a hypothetical fluid; but such a use of the expression 'hyly thetical' is apt to mislead. . . if the writer, who so uses the word, surposes at the same thme that the mululatory theory of light is scientifically established. If the expression 'hypothetical' is merely intended to indicate that the supposed subtle fluid, the ether, eamot be directly taken cogmzance of by the senses, its use is objectionable; because many natural as well as all ideal facts are in the same case; that is, they cammot be directly cognized by the senses. A belief that the mulnlatory theory of light is scientifically established, should inchude the belief that the existence of the ether is demonstrated by the observed facts and the legitimate reasoning belonging to that theory. If the non existence of the ether fluid were to be demonstrated, the undulatory theory of light, which is based upon its assumed existence, would necessarily have to be given up; and therefore if, or so long as, the existence of the ether is in any degree doubtful, so long must the theory itself be in doubt, and must not be considered as scientifically estab-lished-merely a theory;not a demonstrated theorem. The expression 'subsensible' as applied by Prof. Tyodall to the (supposed) ether fluid is much preferable to 'lypothetical,' if the theory is accepted as demonstrated. In Dr. Lardner's statement of the undulatory theory, proted at page s, a concise explanation of the supposed nature of the luminons ether will be fommd. Also in the remarks from Prof. Tyodall's lecture, page 47, wherein the sound and light-
waves are compared, the material mal gaseons mature of the subsemsible fluid is rery distinctly assmed: "Comld you see the air throngh which sombl-waves are passing, you would observe every individual particle of air oscillating to and fro." "Could you see the ether, you would also find erery individual particle making a smanll excursion to and fro." 'ithe geneml object of this part of the lecture is to show the analogy between light and somb; but we can scarcely be incorrect in supposing that the more particular object is to demonstrate the axistence of the sulsensible ether-fluin by thas showing and illustrating the analogy.

A difliculty of a kind to make extreme cantion necessury as to accepting the existence of the ether, matil strictly demonstated. is that the theory and the observed facts belonging to it togrether necessitate the assumption that the material subsemsible fluid occupies all spater, aml that all other deseriptions of matter, not absolutely opraque, must be comsidered porons, and as having their interior spaces all filled with ether. It apmears that this undulatory theory of light became the suliject of a conversation between Prof. Tyudall and Sir David Brewster, and that the latter stated his opinion as to the existence of the ether-fluid in the following words: "That his chief ohjection to the mindatory theory of light was that he could not think the Creator guilty of so clumsy a contrivance as the filling of (? all) space with ether in orler to produce light." (In which observation Prof. Tyudall, in hispublished leotire, page 40, makes this remark: "This, 1 may soly, is wery hangerous ground; and the quarrel of science with Sir David, on this point, as with many other persons on other points, is, that they profess to know too much about the mind of the Creator:" These observations bring a subject directly under consideration distinct from, and of much greater importance tham, the madnatory or other theory of light, and as it is also the subject to whirlh, as stated in our introductory
memarks, the purpose of our work is partionlanly directed, we shall include in our notice of them an examination of their signifieane in reference to the mome generally important subject.

The subject thas brought particularly under consideration is the relation of scieme, or what is now considered as srience, to the facts of ereation and to the Creator Himsolf, anl therefore to theology. It may be said that the observations were not partienlarly iatended to be applied in this sense, but they are made public, and they alefine in a measure the position occupied at the present time by srience, in this relation, according to the judgment of the speakers.

The oliservation of Sir Darid Brewster was certainly hameworthy as being expressed in irreverent language. An observation made in such terms under any circumstances camot be reasonably regarded otherwise than as foolish and wrong ; but if made deliberately and guardedly on a grave and important subject of seience. . .and published. . . an observation so expersed must be considered blameworthy in a much higher degree. It should be remaker, however, on behalf of Sir David, that, in this cane, las observation was probably in its form a careless off-hand expression of opinion not intented for the public. Apart from the very reprehensible form of the expression, the meaning of the oljection, which Sir David may be moderstood as intending to conver, does not ilyear to us by any means mensonable. The surposition of all space being filled with a material fluid for the purpose of producing eflects at certain distant points, or in other words an ommipresent material fluid filling and pervaling the miverse for the production of one class or kind of eflect only, dors not seem to hamonize with what we do know of the Creator's work; but, on the contrary, it presents itself to the educated mind as a contrast to the directness and simplicity of the methorls employed in other parts of ereation. Notwithstanding the supposed
attembed smanemaible chameteristies oif the flum, the inconcervably emmoms quantity of materia! required by the theory at onee suggests improhability. If, however, the ohjeretion went no firther than this, it might promaps be answered with some degree of force by smposing that the ether fillilled other important purpose or purposis with which we are as yet altogether mactuainted, hat the objection does go murh firther, becanse, the ether fluid is, by the assimption, material, amd noon this assimption the theory rests. Why, thm, does not the ather, in ohedience to the generil law known to govern, and recognized as miversally governing matter, collect aromal the centres of gravitating inthence? Are we asked to surpose the ether to diller from all other varieties of matter, to be exempt from the influence of gravitation and at the simme time to have other properties in common with the other descriptions, and to be controlled by some of the lans governing other kinds: of matter ; as, for example, to possess the property of elasticity, and to be capable of propagating inn impulse by malulations of its particles? To admitu such a proposition even as an assumption is extremely dimgeroms. It is to take leave of all certainty ; to bid farewell to science, and to set sail withont rudider or compass on the dark amb treacherous ocean of metaphysies. Very much of the somud natural science now possessed by us is based on the certain knowledge that !ractitation is a genemal law governing all matter. It this is uncertain, or is to be considered mucertain and opento controversy, where, then, are we to find scientifie cortainty in respect to the material world? If any one varicty of mat ter may be exempt from such a general law, so also may other varieties. If the reply to this should be.. well, then, the ether in that sense is not material; it is evident that the mululatory theory of light must at. once fill to the gromm, because it rests upon the assamption that the ether is a material thind, possessing (some of) the proprorties belonging essentially and distinctively to all matter.

Prof. Tymall does not, however, make any direct reply to the oljection of Sir Davial Brewster, but thereupon makes a statement in the name of science, against which statement we feed obliged, also in the name of seience, to protest. The statement or remark is perhaps not quite so doffinite as to prechule the possibility of misapprehension as to its full meaning ; but we are afraid that themeaning which i io will be generally moderstood to convey is that the mind of the Creator, as displayed in, and mate known to us by and through, the facts of creation, is not the proper and legitimate subject for seience to ocerpy itself about. Moreover, a meaning may be mulerstood to be indirectly incluted to the eflect that the 'reason' or - reasonahleness' of the Creator is dillerent in kind from the - reason' or 'reasonableness' of human science. No', assmming that either or both of these meanings are to be moderstood, we have to state, directly to the contriny, that the express object and purpose of science, in any high sense, is to obtain knowledge, a better and more perfert knowledge, and always more knowledge of the mind of the Creator; imb that having obtained such knowledge, the legitimate and best employment of those possessed thereof is in teaching ind making it known for the eruidance of those who have not the opportunity to srek this higher kind of knowledge for themselves.

In reference to time (inferential) seconlary meaning mentioned ibove, we would sily that, if we had not an assured belief as to haman reason being in hamony with, based upon, ant the same in lifed as the Reason of the Crertor (diciur-reason), wience, in any higher sense, would lose its interest for us. A merely hmman seience -Which is not a pillt of miversal seience, and which, so tar as any one man is concerned, is contined to the few rears of a man's torrestrial existence-does not appear to IIs a very desinable or interesting parsuit, merely for its own sakr. A man crammed full of scientific knowledge is not, therefore, necessarily, in a merely terrestrial sense,
happier thatl a man who possesses han very litth, hor is la likel!: whe physially stronger or better developed in
 howhorge, so do we ; he also expresses a sort of compassion for those who do mot know, and a certain degree of contenpit for thase who contemun, science in the higher semse-and whioh treding wreako shate: but it is brcenser wo believe that in acpuiting scimatic knowledge Wr ary argnimug, and in commmicating scipntific knowhorge we are rommmicating, that wheh belongs, not merely to a briof termestrial, but, also, to a higher state of rexisteme, and which may be comsidered as belonging to, and forming a part off, immortality. If we did not so believe, we shombl indine to the opinion that lar prantial-sense men who say, 'enj bone' when in-

 means. of ameliorating the hambhip of haman existeme and of increasing the amount of sensmal ease and enjoy-ment-tha pratical-sense and common-sense men, who so ingur. would, in that case, as it semms to us, have much the strongest argmont ; for other purpose or in other - chse-bior its own sake, for instimes, or for a meaninghese desire of being intelectmatly dereloped-the man ardently devoted to seience may be jusily regarded as imduging a taste for a foolish, and a not allogether hamless, hobly.

The ohjeretion which we have just stated, in the foreguing amplifation of Sir David Brewster's objection. viz.. the assmmption of ether as a form of matter exempt firme the inthence of gravitation, appears to us to be, of itself, altogether fiatal to the molulatory theory of light. and to rember the arceptance of that theory seientitically inadnissable ; but even if the supposition were to be enteratiaerl that this objection might be, in some way or other, summonted, and the actual existeme of the ether shown to betheretically possible, there would yet re-
main, at least one surions diflionlty whirh has bern, as it sermes to us, put aside, rather than dealf with and surmomated by the sipporters of the theory. We allade to the kindred phenomena of radiant leat. The nature of this particular tifficolty may ler thus briefly stated:-the phemomena of light and of raliant heat are so analogons, so revidently allied imd similar to carla other in many respects that it is almost, if not quite, impossible in a reasomble wense to silpose the one ediat (or class of eflecta) to resnlt from the madnation of ann chastic material Hmin and not to suppose the othe? eflect (or class of effects) to be prodnced in the like mamer ; but althongh there are very close allatogias hetwean the two kimels of effeet (or rlasses of phenomena) in some resperts, there are also dillerences f an essputial and distinctive chamater, suels that we shonid feel at least a very grave difliculty an to achitting even a theoretioal smposition that a mare val riation in the velocities of the mablations of the same fluid can occasion then. We say that the difference in the characteristies of light and radiant heat are too great, and of essentially too distinctive a kind, to allow the sip, position that a certain number of mululations, or vibuatory pulses a f ether, taking place in a second of time may produce light, and that a certain lesser (or greatre) munber of vibratory pulses, in a secom, nay be prodnctive of radiant heat. What is the altermative? To suppose the existence of two different omajuresent ethers?

Before leaving for the present the important question is to the position which science, in its higher signification. does or onght to occupy, we will make some remarks as to the meaning which correctly belongs to the term metaphysies, in its relation to seience. The indefiniteness which constitutes one of the leading chameteristics of metaphysies attaches in some degree even to the name or expression by which it is tenoted, in sueh wise that probably no two scientifically educated persons conld be
 omght not to be ine haded in a striat armee malder that title.
 mature of the subjert will permit, we will give here ame example of the continsion of thonght, and inferential mestilaration instrad ol inereased kumblerder, which results from that indrefintemess.

Inthe work of Sir John Herselael, Oullimestif Ashomamy.
 noter, at the lose of page $21: 2$ as follows: "This comblition is indispernsible. Withont it wer fall into all thow dillientites which M. Joppler has so well pointed out in his praper on Abermation. (Abhamellmaren dia k. boe-
 iii.) If light itself, or the luminiterons ether. low conpor(anl, the comblition insisterl on immonts to a fimmal simbrember of the dogma, dither at the extemsion of of the imprometmbility of mattor' at lemat in the semse in which
 It the perint to which seience is artied, probahly few will be fomm to maintain rither tha ome or the other." Tha indixperssible comdition refermed to is stated in the text above. "In whatever manner we romsider light. Whether as an ald andering wave in a motionless ethere or a shower of atoms traversing space, (prowided that in both (asos we regard it as absolutely incabible of sumbing resistancer or corjureal obstraction trom the particles of tramsparent media traverwel by it.)" The words within the harkets expressing the combition insisted upon.

The doctrine of the impermetrability of matter is thas stated by Larrlucr, in his Notheral Philosophly.*
($\because: 0$) All muller imponforller. Impenetrability is the

[^4]" flatity in virtue of which a body ocenpies a certain space, to the exelasion of all other bodies. This idea is so insepmable from matter, that some writers athin that it is nothing but matter itself: that is, that when we saly that a body is impenetrable, we merely say that it is a body.

However this be, the existence of this quality of imspenetrability is so evident as to admit of no other proof than an appeal to ther spinses and the understanding. No one can conceive two globes of lene, each a foot in dimmeter, to occupy propisely the smme place at the same time. Such a statement would imply imabsurdity, manifent to every muderstanding."
23. "Geseous bodies impenctrable' Even bodies in the giaseous form, the most attenurted state in which matter emu exist, possess this quality of impenetrability as positively as the most hard and dense substances."

Now this doctrine, or teaching, as to one of the recognized properties of matter, is, if we understand Herschel's remarks aright, considered by him to be a metaphysical dogma, and no longer tenable in a strictly scientific sense; and, moreover, he supposes, it would serm, there are now but few persons of suientific edncation who think differently.

Two distinct questions are herein involved, both of them of much importance. The one is, whether that science, which has and professes a definite belief in the existence of matter, snch as defined by Lardner, is sommd science or the reverse. The other question is, the cornect use of the expression 'metaphysies.' It is with respect to the last of these questions that we think it desirable to make here a few olservations. The particular word ' metiphysics' may, of comrse, be used, as any word in nomenclature may be used, in whatever sense it may be generally agreed to use and mulerstand it. But the important ruestion here at issue is, (1st) -Whether
all knowlonge, all that is supposed to be, or goes ly the nane of', kowleder, of every kind and description, if anly it be classitied and systemized, is to be called and comsidered • serience; or, (2nd)—Whether it is necessary threre shonld lee a disfimetion and separation of the cerbian and sommel knowledge, from the meernain and mosinturl.

Now the merasity fa division has been for a long time past grembally reongized ; for instance, those deseriptions of classified knowledge which at mu carlier period wre almitted and highly reputed under the names 'astrologry' mad 'magic', have, simee the time of Francis Baron, cansel to be considered a part of the classified knowlerige brlonging to science. If, therefore, it is right and proper to have a division and to have an expression 'sedence,' to denote collectively all the descriptions of knowledge considered to be beneficial and worth preserving amb coltivating, it is likewise desimble to have a general apression to denote collectively those deseriptions of knowledge, systematically classified or otherwise, which are of the opposite character from the fomer-that is, which are, or onght to be, under in strictly correct division, expluded from science. It is in this sense that we understand and purpose to use the expression 'metaphysics,' becanse certain classified deseriptions of knowledge which mught, according to our judgment, to be excluded from sifene, are already particularly denoted by that expression, ind, moreover, the indefinite and mystical meaning Which the expression suggests to the generality of people makes it the more suitable as a collective expression for all kinds of knowledge which are indetinite, uneertain alld unsommd.
'The mode of its nse by Sir John Herschen, in the prereding quotation is, therefore, according to our view, an inversion of the correct or desirable application of the term, 'metaphysies;' for, therein it is used to denote the definite teaching-i.e., the recognition and intelligible
definition of the natural reality; amb, by inference, the 'xpression 'science' may be maderstood to apply to the indefinite teaching-vi\%., to that which is indetinite and mintelligible.

We find in the quotation already given from Prof. Tyondall* the indirect statement of, what appenrs to us to constitute, at: ther diftieulty in the way of accepting the undulatory theory. That statement reads: "All space is lilled with matter oscillating at such rutes. From every star waves of these dimensions move with the velocity of light, like spherical sholls, ontwards. And in the ether, just as in the water, the motion of every particle is the algehraic sum ot all the separate motions imparted to it. Still, one motion does not blot the other out; or, if extinetion ocenr at one point, it is atoned for at some other point. Every star dechares by its light its undar:aged individuality, as if it alone sent its thrills through space."

It is an oloserved fiet and uncuestiombly true that avery star does so declare its undamaged individaality; but how can these undulations, which are denined by the theory to be of the nature of waves or of progressive oseillations resulting firm motion in the particles of a material fluid ; . . we ask, how can these molulations reach us in innumerable quantity at the same time and from every direction, and yet not damage, modify, interrupt, or, in any way, interfere with each other? It is not only from every star and every luminous boty that these madulations have to reach the eye in modamaged individuality, but, if we apprehend the explanations of the theory aright, also from every visible object. At the rate of only one mudulation in a second it wonld be embarrassing even to imagine these undulations crossing pach other in every direction withont mutual interruption, but what is the estimate of the number by those who support the theory?" All these waves enter the

[^5]aye, and hit the retina at the back of the eye, in one second. The mumber of shocks per second necessary to the production of the impression of red is, therefore, four hundrel imd fifty one millions of millions. In a similar manner, it may be fomd that the number of shocks corresponling to the impression of violet is seven hondred and eighty-nine mi!lions of millions. All space is filled with matter oscillating at such rates." *

We do not lind any explanation of this diffienlty even attempted; anoccasional or possible interference is alluded to by the remark that "if extinction ocems at one point, it is atoned for at some other point;" but, with the various effects, classed as the phenomena of interference and belonging to Opties and Acoustics respectively, in mind, we feel only that this last remark increases our inability to accept the proposition by making the impossibility of reconciling the theory with the known facts of seience still more apparent.

Fa our objections to the mululutory thror? of light we have not directly included the pmission or corpuscular theory of Newton. Althongh that theory (the corpusenlar) does not necessitate the supposition of all ommipresent miversal ether, it is mevertheless open to obvions and fittal objection.

The explanation of the theory fumished by Lardmer has been already guoted. "In the corpuscular theory, which was atopted by Newton as the basis of his optical inquiries, light is considered as a material substance, consisting of infinitely minute molecules which issuce from luminons bodies ant pass throngh space with prodigious velocities." It would necessarily follow, as a corollary to this theory that, when the sm has comfinmed to shine for any length of time on a body which absurbs the light, a certain apreciable amome of the ataterial projecter from ther sm, as light, will remain in that body, by witich the gravity and mass of the body

[^6]will be increased. Now if this actually happenem it could not long remain mmoticed. Lardner himself remarks, in reference to the hypothetical particles whieh, aecording to the theory, issue from lmmons borlies, it is necessary to suppose that they are so minute as to be altogether destitute of inertia or gravity. "The strongest beam of sunlight acting uron the most delicate substance, upon the fibres of silk, or the web of the spider; or upon gold-leaf, does not impress upon them the slightest perceptible motion. Now, in order that a particle of matter endued with a velocity so great should have no perceptible momentm, it is necessary to suppose it to be almost infinitely minute." It is evident that Dr. Lardner, in writing this, must lave been misled by the theory itself and the authority of Newton into stating a supposition which it is hot seientifically permissible to entertain. By the expression particles ahnost infinitely minute is meant particles extremely small, i.e., particles of very small size. But the gravity of a material sulostance, whatever its size may be, cannot be got rid of by dividing and sub-dividing it into very small or into extremely minute parts; its gravity camot in sueh a mamer be even lessened. The simm of the gravities of the very small, or of the extremely minute parts will exactly make \quad יI the gravity which the entire body possessed, previously to its division. Trike, for instance, a pound by weight of any substance, and suppose it to be divided into a million parts, each of the parts being exactly similar and of the same size; then, each of those parts will weigh the one millionth of a pound, and, if one of them were to be again divided into a thousund parts, then one of those products of the
 $\frac{1}{1000,000,000}$. The last particles would be very small, but nevertheless, if a thousand millions of them were projected by the sun in the conse of an hom onto any one parti-
enlar spot, a fuantity of the material amonnting to a pound in weight of the material would be the aggregate product at the end of that time. And again, how is matter, whether the particles be large or small, to move with in enomons velocity without having or acquming momentmon? Gracity, when notionless, [i. c., when restrained from moving] and momentum, when in motion, are two of the chameteristic properties of matter, by which is meant some material thing whether it be all aggregated mass of enomons loulk such as the planet Jupiter or the most minnte particle that ean be imagined. Dr. Lardner also states that: "The law of refraction is explained by supposing that such molecules are sulject to an attraction towards the perpendieular when they enter a denser, and by a repulsion from it when they enter a rarer medium." Now this is no explanation in a scientific sense; so far from it, such a supposition is inadmissible muless supported by some proof or evidener outside the theory. There is no support in this case, but on the contrary the suggestion is quite gratuitous and altogether improbable. Why shoulda molecule of matter be attracted loy a perpendicular to a denser, or be repelled loy a perpenticular to a rarer medinn?

It has been long since established as a fiact, by the results of mumerous careful experiments and observation, that a ray of light, on entering a denser from a rater medimm is refracted towards a perpendienlar to the surface at which it enters, and, on entering a rarer from a denser mediun, is refracted from a perpendicular to the surface of the rarer medinm, at which it enters. When asked to give a reason, it is scientilically correct to say in reply that it is according to, or in obedience to, the law of the refraction of light, which is recognised as in established law belonging to the scienee of Opties, because demonstrated by the olserved facts of which, or from which, it may be said to be a generalization. But when we wish to proced further, and to explain the particular mature and
properties of the ray of light which is so refracted, aml to refer the law of the refraction of light to a more general or primary law ; and thus to explain particularly the canse of the ray being refracted according to the law ; it will not be then in accordance with the rules of somud science to invent a cause expressly for the purposes of the explanation; namely, to suppose a unique cause unsupported by experimenta! evidence or by analogy; such, for example, as a force elsewhere unknown or unrecognizen, or a known force as ating in a mamer murecedented amel elsewhere umobserved. To do this would be not to explain, but to build up prejudice in the way of scientific explanation. If more somad and certain knowledge camot be obtained on a particular subject, it is unadrisable to dilute with uncertain, and worse then useless to vitiate with false and unsound knowledge, that which we do already possess.

Both of these theories, the umblatory and corpusconlar theories of light, which have been successively accepted and adopted as forming a part of optical science, have one primary basis in common, namely, the velocity of light, whieh it is assmmed was antecedently established as ill observed fact.

Since we have objected, for reasons more or less fully stated, to the acceptance of either of these theories as belonging to sound scieace in the sense of demonstrated theorems, we propose now to examine the evidence as to the alleged velocity of light which it is assumed was ant"cedently established.

The history of this (assumed) discovery or observation, we tiad from the general record to be briefly as follows;
f.cerluer's Astromony.
(29.9)). "Motion of light discotered and its velocity meastreal.

Soun after the invention of the telescope, Ruemer, an eminent Danish astronomer, engaged in a series of ob-"
" servations, the ohject of which was the diseovery of the exact time of the revolution of one of these boties aromed Jupiter. The mode in which he proposed to investigate this was by observing the successive erlipses of the katellite, and noticing the time between them.

Now if it were possible to olserve accurately the moment at which the satellite wonld, after each revolution, ather enter the shatow or cmarge from it, the interval of time between these events would emable us to catctilate exactly the velocity and motion of the satellite. It was, then, in this mamer that homer proposed to ascrertain the motion of the satellite. But, in order to obtain this extimate with the greatest possible precisiore. he proprosed to contime his olservations for speral months.

Let us, then, suppose that we have observed the time which has elapsed between two sutcessive relipses, and that this time is, for exanple, forty-three hours. We ought to expect that the eclipse would recur after the lapse of every successive period of forty-three hours.

Imagine, then, a table to be computed in which we shall calculate and register before hand the monent at which every successive eclipse of the satellite for twelve months to come shall occur, and let us conceive that the earth is at A, at the commencement of onr observations: we shall then, as Romer did, olserve the moment at which the eclipses occur, and compare them with the moments registered in the table.

Let the earth, at the commencement of these olservations, be supposed at E. lig. 756 , where it is nearest to Jupiter. When the earth has moved to E," it will be: fomm that the ocenrence of the eclipse is a littlelater than the time registered in the table. As the earth moves, from $E .^{\prime \prime}$ towards $E . .^{\prime \prime}$, the actual ocenrence of the eclipse is more and more retarded beyond the computed oreurrence, matil at E "' ir: combraction, it is found to ocene abont sixteen mimutes later than the calculated time.'
" Ry observationssmeh as these, Rommer was struck with the fact that his predictions of the erlipeses provel in"

Fig. 756.
\because every case to be wrong. It would at first oceur to him that this discrepancy might arise from some errors of his ubservations; but, if such were the case, it might bo expected that the result would betray that kind of irregularity which is always the character of such errors. Thus, it would be expected that the predicted time wonld sometimes be later, and sometimes earlier, than the olserved time, and that it would be later and earlier to an irregular extent. On the contrary, it was observed. that while the earth moved from E. to $E .{ }^{\prime \prime \prime}$, the observed time was continally later than the predicted time, and moreover, that the interval by which it was later comtimmally and regularly increased. This was an eflect, then, too regular and consistent to be supposed to arise from the casual errors of observation, it most have its wigin in some physical canse of a regular kint. The attention of Romer being thus attracted to the question, he determined to pursue the investigation by continuing to observe the eclipses. Time accordingly rolled on, and the earth, transporting the astronomer with it, moved from E.'" to $E .^{\prime}$ It was now found, that though the time observed was later than the computed time, it was not so much so as at $E . .^{\prime \prime}$, and, as the earth again approacherd opposition, the difference became less and less, ut til, on arriving at E., the position of opposition, the obsemerl eclipse agreed in time exactly with the computation. From this course of observation it became apparent that the lateness of the eclipse depended altogether on tha increased distance of the earth from Jupiter. The greatar that distance, the later was the occurrence of the eclipse as apparent to the observers, and on caleulating the change of distance, it was found that the delay of the eclipse was exactly proportional to the increase of the carth's distance from the place where the eclipse oceured. Thus, when the earth was at 1 I.'" the eclipse was observad sixteen minutes, or about 1000 secombs. biter than when - the earth was at $l:$. The dimater of the orbit of the "
" earth E. E.," measuring ahont two humbed millions of' miles, it appeared that that distance produced a delay of a thonsand secomds, which was at the rate of two hamdred thonsand miles per secomd. It appeared, then, that for every two l:madred thonsamd miles that the earth.: distance from Jupiter was increased, the observation of the eelipse was delayed one second.

Such were the facts which presented themselves to Ramer. How were they to be explainel? It would be ahsurd to suppose that the actual ocenrence of the eclipor was delayed by the increased distance of the earth fiom Jupiter. These phenomena depend only on the motion of the satellite and the position of Jupiter's shadow, and have nothing to do with, and can have no dependence on, the position or motion of the earth, yet mennestionahly the time they appect to occur to an observer upon the carth, has a dependence on the distance of the earth from Jupiter.

To solve this difthenlty, the happy iden ocemred to Romer that the moment at which we see the extinction of the satellite by its entrance into the shadow is not, in any case, the very moment at which that event takes place, but sometime afterwarl, via, such an interval as is sulficient for the light, which left the satellite just before its extinction, to reach the eye. Viewing the matter thos, it will be alparent that the more distant the earth is from the satellite, the longer will be the interval between the -xtinction of the satellite and the arrival of the last portion of light, which left it, at the carth; but the moment of the extinction of the satellite is that of the commencememe on the eclipse, and the moment of the arrival of the light at the earth is the moment the commencement of the eclipse is observed.

Thus Romer, with the greatest felicity and suceess, explained the diserepancy between the calculated and the olsserved times of the eclipses ; but he saw that these «ircunstances placed a great discovery at his hand. In"
"short, it was "IPrarent that light is propagated thronght space with a certain definite speod, and that the circumstances we have just explaimed supply the means of measuring that velocity.

We have shown that the eclipse of the satellite is delayed one second more for every two hamdred thonsind miles that the earth's distance from dupiter is increased, the reason of which obvionsly is, that light takes one serond to move over that space : hence it is apparent thatthe velocity of light is at the rate, in romind mmbers, of two hundred thonsand miles per secomed.

By more exact observation and calculation the velocity is found to be 192,000 miles per second, the time tikeir in crossing the earth's orbit being $16 m, \cdot 36$ '. 6 s ."

Having herein the history and particular definition of the observed facts upon which the theory of the velocity of light is supposed to be directly bised, we will now take. also from the sime work (Lariber's Astronomy), the more general explanation of the phenomena belonging to these fincts, in order that the whole of the case may be clearly understood.

Eclipses, Transits, and ocenthations of the Jovian S'ystem.
(-950) "The motions of Jupiter and his satellites, as seen from the eartl, exhibit, from time to time, all the effects of interposition. Let $J . J$. lig. s10, represent the planet, J. f. J.' its conical shatlow, s. S the sun, E '. and E. ' the positions of the earth when the plamet is in quadrature, in which position the shatow J. f. J.' is presented with least obliquity to the vismal line, and therefore least foreshortened, and most distinctly seem. Let $b . b .{ }^{\prime} d . ' d$. represent the orbit of one of the satellites, the phane of which coincides nearly with that of the planet's orbit, and, for the purposes of the present illustration, the latter may be considered as coinciding with the ecliptie without producing sensible error. From L. snppose the visual lines E. J. and $E . J^{\prime}$, to be drawn, meeting

Tha parth of the satelite at 11 . and !!., and at a.' and b.', rand in like mamer, lat the correspoming visual lines

\therefore be the points where the patlo of the satellite crosses the limits of the shadow, and h. and h.', the points where it mosses the extreme solar mys which pass along those limits.

If l. express the length .Jef. of the shatow, d. the distance of the planet from the smin semi-diameters of the
"planet, and r. and r '. the semi-diancters of the sum nud the phanet respectively,

$$
\begin{aligned}
& \text { We shall have }(2917) \quad l=d \times \frac{r^{\prime}}{r-r^{\prime}} \\
& \text { But } l=11227 \quad r=441000 \quad r^{\prime}=44000 \\
& \text { and therefore } l=11: 227 \times \frac{44}{44-44}=1247 \text { : }
\end{aligned}
$$

that is to saly, the length of the shadow is 1247 semidimmeters of the planet. Now, since the distance of the most remote satellite is not so much as 27 semi-diameters of the planet (2760), and since the orbits of the satellites are almost exactly in the plane of the orbit of the planet, it is evident that this will necessarily pass thon:ag the shadow, and almost through its axis, every revolution, and the lengths of their paths in the shadow will be very little less than the diameter of the planet.

The fourth satellite, in extremely rare cases, presents all exception to this, passing through opposition withont entering the shadow. In general, however, it may be considered that all the satellites in opposition pass throngh."
(Note. This last statement about the fourth satellite appears tery remarkable in connection with that which preceles it, and with the great breadth of the shatow. But if we assume a moderate amount of verticul deviation above and below the orbital plane of the planet's rquator, it becomes iutelligible that the fourth satcllite muy sometimes pass through opposition without entering the shadow.)
(2951) "Effects of interposition. -The planet and satellites exhibit, from time to time, four different effects of interposition."
(2952) "1st. Eclipses of the satellites.-These take place when the satellites pass behind the planet. Their entrance into the shadow, called the immersion, is marked by their sudden extinction. Their passage out of the shadow, called their emersion, is manifested by their being. suddenly relighted."
(29.53). 2ull. "Eclipses of the planet ly the sutellites.When the satellites, at the periods of their conjunctions, pass between the lines $S^{\prime} J$, and $S^{\prime \prime} J^{\prime}$, their shadows are projected on the surface of the planet in the same mamer as the shadow of the moon is projected on the oarth in a solar eclipse, and, in this case, the shadow may be seen moving across the disk of the planet, in , direction parallel to its belts, as a small round and intensely black spot."
(2954). 3rd. "Occultations of the satellites by the phant. -When a satellite, passing behind the planet, is between the tangents E.J. a^{\prime}, and E.J'. b^{\prime}, drawn from the earth, it is concealed from the observer on the earth by the interposition of the body of the planet. It suddenly disappears on one side of the planet's disk, and as sudilenly reappears on the other side, having passed over that part of its orbit which is included between the tangents. This $p^{\text {phenomena }}$ is called an oceultation of the satellite."
(2955). "Transit of the satcllites over the planct.-When a satellite, being between the earth and planet, passes between the tangents E.J. and E.J', drawn from the earth to the planet, its disk is projected on that of the planet, and it may be seen passing aeross, as a small brown spot, brighter or darker than the ground on which it is projected, according as it is projected on a dark or bright belt. The entrance of the satellite upon the disk, and its departure from it, are denominated its ingress and egress."
(2956). "All thesc phenomena manifested at quadrature. When the planet is in quadrature, and the shadow therefore presented to the visual ray with least effect of foreshortening, all these several phenomena may be witnessed in the revolution of each satellite.

The earth being at E. or E.', the visual line E.J. or $E .{ }^{\prime} J .{ }^{\prime}$ crosses the boundary $x .^{\prime}$ or x. of the shadow at a distance $x .{ }^{\prime} J . '$ or x. J., from the planet, which bears the same ratio to its diameter as the distance of Jupiter from "

* the sum bears to the distame of the earth from the sime, us in evident fiom the ligurer But Jupiter's distance from the smen being tive times that of the earth, it follows that the distanere, a... is tive diameters, or tern semi-diameters, of the planet. But sine the distance of the hirst satellite is only sis, and that of the second somewhat less than ten, semi-diameters of the planet, it follows that die pathe of these two will lie within the distance $x .0$. 1) r r.'.

The phanet leeing in fuadrature !oos behimd the sme, the earth will be at $l:$. and the entire section c. c^{\prime}. of the shadow, at the distances of the thicd und fourth sutellites (which are 1.5 and :57 semi-diameters of the planet respectively), will be visible to the west of the planet, so that when these satellites, moving from b, as indicated by the arow, pass throngh the shadows, their immersion and emersion will be both munifested on the west of the plamet, by their sudden disappemmee and reappearance on entering and emerging from the shadow at c. and c.' But the section of the shm $\begin{gathered}\text { and at the distances of the first }\end{gathered}$ and second satellites, being nearer to the planet than $x . x$.' will be visible only at its western olge, the phat intercepting the visual ray directed to the eastorn edge. The immersion, therefore, of these will be manifested hy their sudden disippearance on the west of the pkinet, at the moment of their immersion ; but the view of their emersion will le intercepted by the body of the planet, and they will ondy reappear after having passed behind the planet.

The third and fourth satellites, after emerging from the shadow at c^{\prime}. and aprearing to be re-lighted, will again be extinguished when they come to the visual ray E.J. a'. which touches the plamet. The moment of passing this ray is that of the commencement of their occultation by the phanet. They will contime invisible until they artive at the other tangential vismal ray E. J.' b.', when they will suddenly rappear to the east of the planet, the vecultation ceasing."
"' 'I the cases of' the first mal second satellites, the comn - ment of the occultation preceding the temmination of the eelipse', it is not perceived, the satellite at the moment from the interposition of the edge of the planet not having yet emerged fiom the shadow. In these cases, therefore, the disinpeatance of the satellite at the commencement of the eclipse, and its reaprearance at the termination of the ocentation, none are perceived, the emersion from the shatow heing concealed by the oecoltation, which has already commenced, and the disappenance at the eommencement of the occultation being prevented liy the eclipse not yet tmmimated.

When the satellite, proceeding in its orbit, arives at h.' its shadow fills upon the phanct, and is seen from the earth, at E, to move across its dise as a small blaek spot, while the phat moves from $h l^{\prime}$ to h.

When the planet arrives at !! it passes the visual my E. J.' and while it moves from !\% to d. its dise is projected on that of the planet, and a transit takes place, as ahraty described.

Thus, at quadrature, the third and form satellites pesent sureessively all the phenomena of interposition: 1st, an eetipse of the satellite to the west of the plane shows both inmersion and emersion ; :nd, an ocenltation of the satellite by the phanet, the disappearmee and reappearanco being hoth manifested : 3rd, the er lipse of the planct by the satellife ; and the the thansit of the satellite over the planet."
($\because!9.97$) "E!frets moulified at other clongutions.-There is a certain limit, such as ρ, at which the emersion of the thind and fourth satellites is intererpted, like that of the tirst, by the body of the planet. This is determined by the place of the eath from which the visual my e. J. 口' $^{\prime}$ is directed to the casterm edge of the seetion of the shadow at the planet's distamer. Within thislimit the phenomema for the third and fourth sitellites are altogether similar to those allearly explainen! in the calse of the first and second sitedlites seen from $I:$."
"When the earth is between s, ant s'. no eclipses can be witnessed. Those of the satellites are rendered invisible by the interposition of the planet, and those of the planet by the interposition of the satellites. When the earth is at $e .^{\prime}$ and $E .^{\prime}$, the phenomena are similar to those manifested at c. and E., but they are exhibited in a different order and direction. The occultation of the suttellite precedes its eclipse, and the latter takes place to the east of the planet. In like manner, the transit of the satellite precedes the eclipse of the planet." *

In carefully examining the record of the phenomena together with the explanation contained in the foregoing, we particularly note the very positive assumption that "these phenomena depend only on the motion of the sitellites and the position of Jupiter's shadow, and hate nothing to do with, and cane have no dependence on the position or motion of the earth." Attentive consideration makes it apparent that this assumption is not supported; but that, on the contrary, it is contradicted by the recorded fiacts of the phenomena.

If we first suppose the earth's place to be at that part of its orhit nearest to Jupiter, and, having there noted the apparent magnitude (angular magnitude) of that planec, we then suppose the earth removed to the opposite extremity of the orbit to the place most distant from Jupiter, and again note the apparent magnitude of that planet, it is manifest that, the distance of the earth from the plamet having increased by about 190 million miles, the apparent magnitude (angular magnitude) of the planet, as seen from the earth, must have decreased proportionally. Has this no particular relation to the phenomena, such as Larduer assmmes that it has not? If' the apparent magnitude of the planet is thus increased

[^7]

\qquad
and diminished by the variation of the relative place of the earth from which it is observed, so must likewise the apparent magnitude of the planet's shadow be increased and diminished. Is, then, the apparent time occupied by the satellite of Jupiter in making a complete revolution around that planet, as observed from the earth, subject to a similar increase and diminution, as a consequence of the variation in the distance ? Certainly not. Then, the time occupied by the revolution of the satellite is absolute or constant, and the apparent magnitude of the shadow varies? Yes. Does it appear that this circumstance has been taken into consideration in explaining the phenomena? No: it appears to have been entirely overlooked or neglected. Will this circumstance, when taken into consideration, alone account for the variation in the time of the eclipse when observed from different places in the earth's orbit? Yes. For the whole difference in the time, viz., the 16 minutes? Yes.

In order to illustrate this, we will now take Figs. 5, and 6, (Plate 6) and Fig. 7, (Plate 7) in which S. represents the sun ; the circle A.B.C.D. the earth's orbit; E. 1 the earth's place in itsorbit near to the place of least distance from the planet; E.2. the earth in the same angular direction from the planet, and not far from the place of greatest distance from Jupiter ; \boldsymbol{F}. the apparently greater shadow of the planet as seen from E.1.; f (inside F.) the (apparently) lesser shadow as seen from E.S. ; C.', the point of immersion at the commencement of the eclipse, as seen from $E .1$; c. the similar point of immersion as seen from E.S. ; D. the point of' egress from the occultacion of the satellite as seen from E. 1 ; d. the similar point of egress (from the occultation) as seen from E.2; (B. would be the point of egress from the eclipse when observed from $E .1$, and b. the similar point of egress from the eclipse, when observed from E.2, but the emergence of the satellite from the eclipse cannot be visible at the earth, the planet itself
being interposed, as explained by Lardner ;) x. is thecentral point in the breadth of the shadow (of both the shadows.) Fig. S, (Plate S,) repeats a part of Fig. 7, on a larger scale, illustrating the phenomena of the satellite's eclipse, and making more distinct the relative points.

The time of a complete revolution of the sutellite around the planet, whether observed from E. 1 or from E.2, is the time occupied by the satellite in travelling from the point x. to the (same) point x. Now c is the boundary of the shadow as seen from E.2; C.' is the boundary of the shadow as seen from $E .1$; and the distance $c x$. is manifestly less than the distance $C^{\prime} x$. Wherefore the satellite, travelling in the direction of the arrows, arrives at C°. sooner than it arrives at c., and consequently the commencement of the eclipse, seen from E.1, is just so much earlier than is the commencement of the eclipse when seen from E.2.

It will be observed that in Fig. 6 we have omitted to increase the magnitude of the satellite's orbital circle ; this is done for the purpose of furnishing in the first place a close comparison with the illustration given by Lardner* (as in fig. 5). In fig. 7. and fig. 8. the apparent orbital distance of the satellite is increased proportionally to the increase in the apparent magnitude of the planet.

It is quite true that in fact nothing is altered in respect to the satellite's eclipse; nor is there any actual alteration in the size of the planet. It is ain apparent alteration only. The argument may, therefore, suggest itself that, since the apparent orbital distance of the satellite increases proportionally, so must likewise its apparent velocity ; and consequently, the satellite will only occupy the same time to pass through the (apparent) greater breadth of shadow in the one case, which in the other case it takes to pass through the (apparent) lesser breadth. This is, likewise, quite correct. But attentive

[^8]x. is the both the g. 7, on a satellite's oints. te around n E.2, is from the boundary ry of the is manihe satelves at $C^{\prime \prime}$ the comso much se when
nitted to 1 circle ; irst place Lardner* pparent rtionally e planet. in resy actual pparent suggest of the wise its ite will parent) in the t) lesser tentive , will be.

Fin
consideration will show that, in consequence of the (apparent) variation in the magnitude of the shatow having been overlooked or neglected, a variation has been muwittingly attributed to the place of x. Whether the place of x. be determined hy the inmersion and emersion of the satellite at the eclipse, or at the occultation,or, as it most prohahly was determined, from the immersion at the commencement of the ectipse nud the agress at the termination of the oceultation, in whichever way the phace of x, was detemnined, it is dependent "pon the ohserved time of the satellite's i:mmersion and regress in such wise that if the theory of the velocity of light he entertained in respect to the satellite at its immersion or ingress, it must also apply to the satellite at its emersion and egress ; and, consequently, also apply to the place of x. (The eflect of this would be to shift the place of x. towarls c. to the left, or the reverse), and thas occasion the inforence that the commencement of the eclipse was so much later (or earlier) accordingly).
(Note.-It may he here remarked that even if the theory were in itself somm, it could not have the eflect atmilonted to it. If it be allowed, for the sake of ilhstration, that, during one revolution of the satellite whilst the earth is receding from the planet, an apparent loss of time may take place in the manner and for the canse alleged, it is not true that during the next revolution of the satellite an increase in the appment lateness of the eelipse would take place. Notwithstanding that the earth contimued to recede, there conld be no such increase in the apparent retardation, because the second revolution would be in precisely the same case as the first. If the first revolution teminates late, the second revolution must commence just so much late, and, therefore, if the earth did not continue to recede, the second revolution would, by the throry, appear to he more rapid than the first : but, since the earth is supposed to contime receding uniformly, so must the apparent times of the satel-
lites sureessive revolutions be agnal muler the ciremmstallees supposed.

Assume that the velority of light efleets the commenere ment of any ome edipse,.. then must the assmmption also apply to the termination of the revolution (of the satedlite) in whicla that erlipse belongs, and to the commencement of the nest revolation and to the temination of the eelipses.

It will pertaps make the mamuer in which the imperfect appreciation of the circmustances takes eflect more readily materstood, to consider in which way the practical observer wonld eletermine or maleaworr to determine the starting (or teminal) point of the satellites orbital revolution so as to roincide with the centre of the phanet's shatow, vi\%, the point x. It has been already explained that both the immersion and emersion of the satellite can be only seren when the earth, as viewed from the planct, is near its greatest angle of elongation. When the earth is very close to its point of inferior conguntion no erlipse is visible, but both the ingress and regress of the oceultation can be seen. In all other positions either the emersion of the erelipse is hidden bey the ocenlation, and the ingressof the occultation hidden by the eclipser. or rief eresse. Therefore to determine the point x. , the commeneroment of the ecripse and termination of the accultation (or rier ersat) must le taken together, or, what is more simple, the commencement of the colipse, and the centre of the planet : that is tosay, the relative angular direetion of the centre of the planet and that of the side of the sharlow where the sate ellite is immersed in cutaring it. Now, an abserver Who, having mate his first obsuration when the rath was at the side of its orbit mearest the planet, on making a secomd olsemation when the carth hand removed to the more distant side af its orbit, froceeded thas to determine the position, i. c., by comparinen of the angles. would widently wot sucered in doing so correctly maless lae distinetly appreciated the variation in the "pparent magnitude of the shadow together with the
other eiremmstances of the riss.* If he did not so appreciats it, he wonld reason thens:-merything varies proportionally and therefore the angles must remain relatively the same as before. 'The effeet of this wonld be that tinding he ocrupied the same angrular position relatively to the eentre of the planct as at the first observation, he wond expeet the eelipse to commence at the same relative angle as before, and the erlipse would appear to him as it appared to liomor, to commence late proportionally to the increased distamee of the earth, althengh the *ommmatation of light from the satellite to his eve be in fact, of be assmmed to be, instantaneous.

Simer, therefore, we have turomelnde that the theory of the velority of light, "pon which both the corpuscular and molulatory theories arre primarily hased, is not supperted by the ohserver facts (phemomenia) belonging to the eclipses of Jupiter's satellites, call these observed fiacts be utili\%ed for any other propase?

Let us ronsider what eflects would he necessarily conserpent "pon some very small grantity of time being orempied ley light, in its commmication from the sum to Jupiter, and from Jupiter to the rantlo. The quantity of time attributed lyy the theory (af the velacity of light) to a certain (derlinite) quintity of motion, seroms to us less tham reisom athorizes the mind toacerptas a (reisomalole) possilibity; or, in other words, the veloeity attributed
 titically enmerval品, kepping in mind that, be the theory, this wherity represemsthe adtal progressive motion of a varioty of form of mattor (i. c., of a material substamer). 'Tosimplify the romsideration of the subjere, howeres. We will issumme, for the moment, the posibility of such velocity, allul sulphe it to be - mimbers for a distamee of

[^9]100 million miles. We will take Jupiter's distance ronghly at 500 million miles, and thes we obtain at once a more distinet estimate of what the hypothesis involves, for instance, in respect to the entrance of the satellite into the shadow of the plamet, as deseribed by Lardner, the assumption of the theory is that the satellite enters the shadow of the planet in fact about 40 minutes (on an average) before it appears to us, viewing it from the earth, to do so ; and, hence, the eclipse must have nearly teminated and the occultation be far advanced, before the eclipse appears to us to have commenced.

Let us now merely note that this case is necessarily included in the assumption, and consider other consequents; we will suppose the earth in its orbit, as shewn at A. a., Fig. 9, (1'late 5) with the planet Jupiter in opposition, that is at the orbital place nearest to Jupiter. The carth then travels round to the opposite extremily of the orbit, into conjunction of that planst. If the phat were to remain motionless, this place in the eardh's orbit wonld be B., in the Fig. ; but, since Jupiter's angrlar velocity is about one twelfth that of the earth, the planet will have moved through about 1.5 " to M. ; inm the earth's orbital place of stiperior conjunction will be N. For the earth again to arrive at the phace of opposition of the plamet, half the earth's solar orbit together with an additional 15° will be the distance required, and O. o. will be the place of opposition ; M. O. being equal to A. M., and a. o. equal to twice B. N., and in like mamer $P \cdot p$. will be the next place of conjunction, O, I. being also erfual to A. M. So that the distance from opposition to conjunction is in fact erfual to the distame from conjunction to opposition; but, on the assmuption of the truth of the theory, will this actual equality in the distances alsohold good when the motions are observed from the earth? Tiking the earth at (1., with the planet in op,position, and considering that, as the earth travels in its orbit towards N., the distance of the earth from the phanet

H／ale g．
がり，

continually becomes greater and, consequently, an increasing guantity of time is required for the light from the planet to reach the earth, we find that when the earth has arrived at N., this apparent increase in the time actually oceupied will, by the theory, amonut to 16 minutes. But now as the earth continnes its progress, and returns towards opposition, the contrary effect must take place, and the like apparent quantity of time be gained. The result must, therefore, be, if we compare the two halves of the entire synodic revolution of the earth, a difference of 32 minutes. But, moreover, this semi-orbital difference as measured by time, which belongs to the theory, is not peculiar to the planet Jupiter: it is orqually applicable to any other superior planet, bocanse the distance we are here considering is that of the dimmeter of the earth's orbit. Therefore we have to ask whether there can be a diflerence of 32 minntes between the two halves of the earth's synodic revolution in the case of each superior planet which has never yet been observed, or which, in other words, has hitherto escaped the observation of all astronomers?
(Note.-It is umecessary to complicate the subject by investigating the additional effect which would arise muler the hypothetical contitions of the case in conseguence of the reversed direction of the earth's orbital motion from: inferior to superior conjunction. It will be sufficient to observe that, at inferior conjumetion, light from the planet would, according to the theory, require about 36 mimutes to reach the earth which wonld be then moving from east to west ; and, at superior conjunction, abont 52 minutes, when the earth would be moving from west to east.)

But let us consider the case of an inferior planet; take, for example, the planet Vemus. Now, there is this diference between the case of an inferior ind that of a superior planet ; that, when the fomer is in inferior conjunetion, the solar light passes the planet and comes directly
on to the earth; whereas, in the latter, the light of the sun goes first to the planet and is then reflected from the planet to the earth. In the case of a superior planet therefore it does not appear practicable, if we entertain the hypothesis that light may have a velocity, to ascertain, by direct olservation, the precise moment of the coincidence of the centres of the earth and of the planet in a verticle plane joining also the centre of the smi, independently of that hypothesis.* But, will this ditliculty apply equally to the case of an inferior planet; will it, for example, apply to the case of the planet V'mus? Have we, in this case, the means of detemming the adtal moment of coincilence, and, therely of obtaining a direct and deeisive solntion of the question?

Referving to authoritative works on Astromomy to obtain the record of the observed facts, we find evidence of apparent eroor or oversight of a very serions mature, with which the record itself is so involved, that in order to separate the observed facts from the ass mptions and conclusions, which we suspect to be msomud, it becomes necessary to exmme that genemb expmation which, at the presentit time, is accepted as the correct teaching, throughont. 'To do this, it will suffice to take the works of the same two teachers, from whom we have hitherto mainly taken our quotations. We will, therefore, in the first plate, examine the explamation given by Lardner, and, then compare Herschel's explamation therewith, in order to aseertain whether any error or apparent error ocemring in the one is attributable to the one teacher only, or, whether it is of a general chamacter and belongs to what is considered the aproved scientific teaching on the sulyect.

[^10]

P.ART SECOND.

Hasselut's Gutliues's of Astrouom!.

(\%:37) "These erlipses (of dupitur"s siltrillio. motewer, are mot seell, as is the case with thase of the moon, from the rembe of their motion, but liom a remote station, and ote whene sitmation with respert to the lite of shat dow is rariable. 'This, of comese, makes no dille vence in the times of the celipses, but a very ereat one in ther visibility, and in their alparemt sitmations with resperet to the pland at the moments of their ebter: ing and plitting the shatow."

 of its satellites. 'Ther rome of the shadow, then, will have its retex at X. apoint far berome the orbitsot all the satedlites; and the pemmonta, owing to the great distance

of the sma, and the conserpmon shallows of the angle (abont (i' ouly) its dise subtembs at Impiter, will harilly exterd, within the limitsolthe satellites ornits, wany preptible dist ance heyoml din shaden-for which reason it is not represented in the figure. A sathllite rovolving from inst to

enters the shadow at a., but not sudilenly, beromser, like the moon, it has a comisiderable diametrer seten from the phanet; so that the time elapsing from the first prevedptible loss of light to its total extmetion will be that wheh it ocenpies in deseribing about Jupitere an angle equal to its apparent diameter as seren firom the erentre of the phanet, or rathere somewhat more, by pescon of the pemmatia: and the sime remark applies to its cmargeneent h. Now, owing to the dillimene of telescopers athed of eyes, it is not possible to assign the percise moment of imeipient ohse mation, of of total extinction at a., or that of the first glimpere of light falling on the satellite at h., of the complete reworey of its light. 'The obsemation of an eclipse, then, in which "mly the immersion, or only the cmersion, is seren, is incomphere, and inategnate to athord any precise information, theoretieal or practical. But, if both the immersion athel emersion combe ohserved with the satme telescope and by the same persem, the interval of the times will give the duration, and their mean the exate midelle of the Prelipese, when the satellite is in the line s..J. . ., i.e., the trine moment of its oplosition to the smm. Sueh observations, and such only, are of use for thetermining the periods and other particulars of the motions of the sitellites, and for the calculation of terrestrital longitades. The intervals of the erlipeses, it will be olserved, give the syodie perionts of the satellites revolution; from whieh their siderial perionk must be concluded by the methot in art. H5."
(5is!) "It is evilent, from a mere inspertion of our figure, that the erlipses take plate to the west of the planet, when the earth is sitnatorl to the west of the line S.J, i.e., before the opposition of Jopiter' ; and to the bast. when in the other half of itsombe or after the oplosition. When the earth approaches the opposition, the visanal line becomes more and more nearly coineident with the direction of the shadow, and the apparent plare where the aclipas happen will be contimally nemer and nearer to the body of the plamet. When the emeth romes to F '.
n point determined ley drawing h.f', to tomeh the borly ot the planet, the cmersions will rease to be visible, and will thenceforth, "I to the rime of the "plosition, haplen behimet the dise of the phamet. Similarly, trom the oppesition till the time when the rarth artives at I, a point determined hy drawing a. I. bugent to the eastam limbof Jupitere, the amersioms will be concealed from onn view. Whern the bath arrives all ti., [or II] the imburesion [or cmersion] will haplen at the very alge of the visible dise, atad
 lites will pmess marclipsed luchime the limh of the platuet."
(5.10) " leoth hare satedlites and their shatowsare freguently observed to transit or pass across the dise ot the phand. When a sitcellite remes to 1 .e, its shamber will he thrown on Jupitar, and will iply it as a black spot till the satellite romes to 17 . But the aiellite itself will mot "plyan to anter on the dise till it comes "p to the line drawn lion li. to the eastern edge of the dise, athl will mot lame it till it attanse a similare
 the shandow will prorale the sathellite in its progress ower the dise before the "pposition of Jupiter, allul rien eresse."
(541) " Besiders the eelipsessallal the tramsits of the sattellites acooss the dise, they mas also disalppear to ns when not eclipsed, be passing behind the borly of the phanet. 'Thus, when the earth is at E, , the immersion of the sattrellite will be seen at 1. , and its emersion at b. both to the west of the phanet, after which the satellite, still continuing its course in the direction h., will pass behind the boely and again emerge on ther opposite side, after an interal of ocentation greater or lese no rehag to the distance of the satellite. 'This int "Vah, (on teceome of the great distance of the earth remamed wot the ratio

 the satedlite requires to deseribe ann are of its onht, equal to the amgular diameter of dupher as seea from its centre:

 the oglowition of Jupitere，theser arombations of the sallot－

 orroltations take plate belame the welipers．It is to low

 whared in ：
 the amersion，if but pet arrived at it．Sualsa at the or－ cultathon．＇Tha eommencerment of the occoltation，ar tha passitge of the suttellite hohioul ther diser，takses

le."

[^0]: *Oberve that in asphere the matter is distrihuted radially arome a contral point, and it the size of: given spere be enlarget by the adhlimen of more matter, the arditional matter is also distributeak

[^1]: mulially: therefine, since ench purtion or particle of matter posseses: its propertion of gravitating influence, the radial distribution ol arditional matter has, as itsaccompaniment (eonsergent), an addition of radially distributed inthenee. But he question, to whieh our argment is addresed, is the relative sitmation and number of the definite pointor places, exterior to the mass itself', at which the intluence, origin-- ling in that mass, is cexted. The surtace of a globe may be supposed to be entirely covered wih gravitating lonlies? Truc--bur. then, it is evilent that these loolies will mutnally react mon each other, and, it of mitnm magnimiles, they will simply comstitute an athlition to the mass of the ghone.

[^2]: ralially ; therefore, sined encla porion or particle of mater porseses

[^3]: * The argumentum ad absworlom, as used bey Enclid, is an applicalion of this process to the purpose of negative demonstration. Where, for example, the case is of such a kind that only a very lew assumptions are fossible (and since there mast be one corret asomption) if all these exrepting one are shown to be unsomel, it follows reasonably that the ome i - sommt.

[^4]: - Extension is not distinguished ty Lamber as one of the properties of maller; prohahly he comsidered it shonymous with matnitme, or, perhans, as merdy expresing the existence and natural reality of maller.

[^5]: * Lectures on Light, page 55.

[^6]: * Jeveture on light. page is.

[^7]: - Is the subject is of very great interest, we will also reproduce in the appendix (at the emb of this supplement), Hersehel's record and explanation of the smme phenomena. To which the reader is aceordingly sefered.

[^8]: * And also with that of Herschel which, as already stated, will be. found in the Appendix.

[^9]:
 the time of the firs ubservation, mateos be apperetated the apparent variato.

[^10]: - Becamse the suppurters of the themy experesly reject the test:mony of sight as evidencing that what appears to bake phace at a certain time dows actually take pace at dint time.
 We are told. .No : your sight deceives you ; you are realing only the record of the past; what apperss to you to be now taking place has in fuet tuken place some time since.

