CisM Microfiche Series
 (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the Images in the reproductlon, or which may signiflcantly change the usual method of filming are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée etou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches eVou illustrations en couleur

Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, !orsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été posslble de se procurer. Les détails de cet exemplaire qul sont peut-étre uniques du point de vue bibllographique, qul peuvent modifier une Image reproduite, ou qul peuvent exiger une modification dans la méthode normale de filmage sont indiqués cl-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées eVou pelliculées

\square
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This liem is fimed at the reduction ratio checked beiow /
Ce documen 'est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Université de Montrfal

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impres. sion, or the back cover when appiopriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire fllme fut reproduit grâce da la générosité de:

Universite de Montrial

Les images sulventes ont oté reproduites avec ie pius grand soin, compte tenu de ie condition et de ia nettoté de l'exempiaire flime, et en conformité avec les conditions du contrat de fllmage.

Les exempiaires origineux dont ia couvertura en papler est Imprimbe sont fllmés en commençent per ie promier plat at an terminant solt par la dernidre pege qul comporte une emprelnte d'impression ou d'iliustration, solt per ie secend piot, seion ie ces. Tous les eutres exemplaires origineux sont filmés en commençent per la premidre page qui comporte une emprolnte d'Impression ou dilllustration et en terminent par la dernière page qui comporte une telle emprelnte.

Un des symboles suivants epperaitra sur le dernidre Imege de chaque microfiche, selon ia cas: is symbole \rightarrow signifle "A SUIVRE", la symboie ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent dtre filmés à des taux de réduction différents. Lorsque le document est trop grend pour être reproduit on un soul cllche. Il est fllme a partir de l'angle supérieur gauche, de gauche à droite, ot de haut on bas, en prenant ie nombre d'images núcesseire. Les diagremmes suivants liiustrent le methode.

EDUCATIONAL: WORD LEssons
 BY C. BAILLAIRGE.

EDUCATIONAL: WORD LESSONS

by C. Batllairge.

The reading aloud to me, by one of iny little oues of some 9 years of age, of "Life on a South Sea Whaler" at page 818 of the last volume of the esteemed "Popular Science Monthly ", and the fact of my having to stop her at almost every other sentence, to rectify her pronunciation of a word, and explain its neaning; has reminded me of how beneficial such a couree has proved to be in my own family for years past, in the tuition of my children in word lore ; and of the ner r-sity of suggesting the same process in all educational n. ds, and of every variety of subject.

The little ones cun be heard reading aloud on much or most of what they have learnt at school, without having to correct them, or very seldom so, as to pronunciation, or to inquire into their knowledge of the meaning of a term, either in ancient or modern history, geography, ordinary literature, catechism, etc. ; because it is seldom or never that a technical word occurs in such reading ; and I have noticed with satisfaction that this orlinary \therefore-riculum fits them for the reading right through - novel or story of the ordinary type with hut very . atakes of any kind.

But when it comes to tice cending or interpreting of an ordinary news-puper uicicic, sepiete with terms more or less technical to a chill,,or un article on a special subjet, as of sea-faring life, bullooning or nerial navigation, - the arts, sciences and ninnufactures,-commercial subjects,-civic mat-ters-legislative, parliamentary, etc.,-articles relating to our pence or war re!ntions with neighbouring or foreign coun-tries-social topies-cosmography-meteorology, etc.; it is
quite another thing: the child has to be stopped every now and then and in fact very frequently, as to its approciation of the meaning of a word, the signification of a host of abbreviations and so forth.

I have seen graduntes from our convents, well up in a sufficiency of botany, conchology, and several of the other ologies, who had not the least iden of what a ward of a city means-what an alilermun-having the most indefinite idea of the menning of the word terxes or assessment-as to where the inoney comes from and how rilised to pay for city gas or electric lighting, fire cr other service, paving, cleaning, etc.of why and how the colintry is divided into states or provinces and counties, townships and the like-of the extent of civic, state or legislative, congressional or parlianentary jurisdiction,-of the prerogatives of a Monarch, President, Governor General, Lieut. Governor, Senate, House of Conimons, House of Lords, Privy Council, Council of Ministers, etc. ; of the difference between a Circuit, a Superior or a Supreme Court, a Court of Revision, an Exchequer Court, etc. In a"n other sphere : what difference there is between a bóal, a skift, a schouner, a yacht, a brig, bark, ship, etc.-what a pontoon, a' slip, a landiag stage,-what the meaning of an cean greyhound, of the abbreviation S. S. as for stemmship-a compartment in an ocean liner, a bulk-head, a scuttle, a cual-bünker;', a locker, and the hundred and one terms of nautical phraseo-logy-the "crows nest" as allowing, on account of the sphericity of the earth, of a more extended tield of view froin the mast head of a vessel-the terms employed in whaling, "sealing" sailing, fishing in general, hunting, sporting, etc.
lt is surprising and may be it should not be, that a child otherwise well informed for its age, can not tell the consecutive days of the week, months of the year, the number of days in each, the hours in a day, how to read the hour on the dial of a clock or watch-possibly because the teacher happening to know it, imagines the pupil does, or
that things like these nro to be tanght and learnt at home. And there are many "object lessons" which in reality are hut "worll lessons" of things that can be explained or underatool without the oljject, or when the ohject can not he had nor seen, or the seeing of which would add nothing to the facility of comprehension of it by the pupil. A child may thus be told or male to understand that an arnored vessel, is one lined with iron or steel plates to keep the enemy's bullets from piercing it-that n compartment vessel is one divided into sections by so rnnny, so called "bulk heads," so that when after a collision at sea, or fouling on a crag of rock, one compartineut is burst into, and when the bulk head doors are closed, the disruptell section may fill with water, "without endangering the safety of the vessel-that even the double skin is a protection, in, that the outer skin may be pierced without the inner suffering ; and occasion may here be taken to tell the child that if the Victoria keeled over and went down, after being struck by the Camperdown - the Bourgogne by the other vessel; it is because there was a longitudinal bulk haad or division along the centre of the vessel, whereby the water flowing in at the breech, instead of spreading to the opposite side of the vessel and thus leaving it in a state of equilibrium-displaced the centre of gravity, or made the vessel side-heavy, which caused it to tilt over until the water rushed in at the side scutties, ports or openings, thus upsetiidg the vessel and making a total wreck of it by causing it to founder.

It is surprising in this respect how much can be told or explained in a very few words. It adds nothing to any one's knowledge of how glass is made of molten sand, to have a piece of the material by you, when it is to be seen in every window of the house; and in a very few words can be explained, how plate glass is cast on a steel or iron table, rolled into equality of thicknoss and polished off; aud how sheet glass is made by dipping up some of the molten stuff on ne end of a
tube or hollow bar of iron, Wowing and swinging it the while, iuto the shape of a cylinder or muff; cutting "way tha emils, aplitting, and how, along its length, Hatteuing :st and cutting into squares. Lhick is easily explnined as puilled or triturated clay, pressed into a mold, pressed out again, laid in the sun to dry for weeks, ned then balked, and how pile.l will tired for the purpose. Cual can be expnined til be not a manufactured article; but indigenous - or manufuctared at Ood Alnighty's bidding or in obelience to His lnws of nature, from forest growths and how, in successive lnyers with sti ata of stone between ; nud how, this stone got there, is told in a few words of how the Sun evnporatec the sen, these vapours, clouds-the clouds, rain-the ruin, rills and rivulets -these last becoming rivers, washing down sand and debris of frost disintegrated rock, into estuaries, lakes and sens, forming sediment deposits, thereafter chemically, physically and mechanically hardened into stone-and thu* the intermittent heds of stone and coal in the conl measures, by successive submergence and uphenval of the earth's crust under the effects of internal heat and stean and other seismic action.

How coton is from a plant or grows, furs from animals, worsted asseen hanging from the ovines - how tissues are made like wicker work by keing woven-how into faldrics by woof and warp and shuttic-how metals as lead and iron and copper are made !iquid by heat and cast into monlds-the moulds how made with sand and in two or more parts to allow the models to draw-hew cores nre mude and hell in place for hollow ware.

How light travels instantaneous, how of sound (roughly 1000 ft . per second) and how thus distance \downarrow can bé eomputed in certu.n cases-how the eartlo is surrounded by an atinospher of uir and how this air presses nt it- surfnce-feathers being n proper simile to show how there is no pressure, wo weight at top, while 151 lb below-and how this pressure is it-
lustrated ly; a snncer or dish of wnter with n thmbler in it up sile down, the air liaplacing the water, while by burnioig out ita component oxygen, its quantity is reducol and the water then foreed ap into the tumbler by the preponderating outside pressure on thas water in the disht.

How water is composed of oxygen and hydrogen in quantities or bulk as one to two na evidenced in ita decomposition by the electric current, null how again together oxplated into water. How air is made up of oxygon and nitro. gen, und how, through the lungs, this oxygen is .rought into' contuct on one side with the blood from the other sides and brightens and revivifies it on its wny linck th. the heart, whence it is puniped into the arteries anil reaches every part of the animal system, whence it returns black or blue :'y the veins to the heart and thence sent off again on ite mission of revivitication towards the lungs, and this process continually repeated throughout life, The functions of the digestive organs ; the nervous system in its analogies to electricity and galvanism - the touch being telegraphed to the brain through the nerves of motion, and from the brain back, produeing the sensation at the point of contact.

How pictures of what we see are photoerl on the retina and superposed in thousands in thoir extreme tenuity of thinness; and are on can bo ovoked again in the mind's oyo or through the action of the brain, by the stratun being seen through, and the picture thus reproduced, as if by the X ray or Roentgen system. Nor need this tenuity be doubted when we know that the amplitude of gold leaf is but one thousandth that of paper which makes it thus conceivable to us how the picture might be only the thousanth or the millionth part of that.-How sounds are or may be phonographed on the epithelium or eveloping membrane of the brain, and thus inade capable of being reproduced in our minds or memories by some, to us, mysterious process, and then by the vocal organs again rendered audible to the ear.

How the reflection back from a mirror of a ray of light, at an equal angle, is analogous to that of a ray or wave of sound, and both like the billined ball that rebounds from the cushion; or, bringing it home to the child: like the marble, rebounds or returns from the wall against which it is thrown. What a vacuum is, and how formed in a muroneter, or thermometer tube, and this by being kept closed by the finger until plunged beneath the surface of the mercury; the pressurt of the air thus fills it and to a depth or height indicative of pounds per inch; and how when its surface rises to fine weather it is convex; and concave or the contrury of convex when descending to foul or rainy weather. The sune with the therinometer: when the inercury fills or descends into the bulb upon contraction by cold ead rises in the tube by expansion under heat-the zero point, as in the centigrade, indicative of the temperature of melting ice is thus attained and so marked on the tube; the upper point or that of boiling water by plunging the instrument therein, and the degrees of heat from 0 to 100 divided and registered on the tube. :How of a small one, the bulb placed and held beneath the tongue with closed lips shows the temperature of the blood. The differences betwen the thermometers: the Centigrads, the Rheaumur, the Farenheit.

How these instruments are used or utilized : the barometer as indicative of heights or altitudes in a balloon or on ascending a inountain, by the lowering of the mercury, as the pressure decreases on ascending-and how in a similar way heights may be told by the thermometer, by the temperature at which water boils at successive elevations-the boiling point being 100 centigrade, or 212 Fuhrenheit at sea level and would be zero at the outskirts of the atmosphere; and how thus eggs, etc., can not be boiled nor boiling water had for tea or coffee on a mountain top, unless in a closed and riveted or otherwise herinetically sealed vessel, when any temperature could be had in course of time.

How the sphericity of the Earth is cvidenced by having been travelled around repeatedly in all directions by Magellan, Cook and others without conning across any angles or corners; also by its sladow on the moon, during and éclipse; also ly every portion of it, around any point, receding from a level line drawn in any and in every direction from that point, and crescenclo the more the farther from the point, and iil n ratio shown by geometry to be a sphere or nearly so. How being originally soft or fluid or in Ω molten state and revolving as it does upon its axis, it has become protuberant at the equator, and how by measurement of a portion of its are of curvature, and the versel sine of arc being computed, its radius and diameter hive beconie known and we are thus informed that its diameter is about 8,000 miles-using the chilis bow and arrow or the semblance of it on a black-board or a piece of paper to bring it home to him. How, to locate n point upon its surface, it is conceived to be divided, its circumference into 360 degrecs, the degrees into minutes and each minute called a mile: a nautical or geographical or marine mile or a knot as sailors call it, about one sixth longer than an ordiuary mile. How the angle of eleration of the pole is equal to the latitude or distance from the equator, and how people need not wonder in what manner an arctic traveller will know when he has reached the pole; by his then having the so called pqle star right over hiis head or in his zenith, making due allowance for its slight distance of about a degre and a half therefrom.

How the rotation of the Earth can be shown by merely holding ont at arn's length your watch and chain, setting it to oscillate in a plane paralled to one side of a room or table, then twisting the chain around between your fingers, which can not clange the plane of oscillation, and how nevertheless, after an hour or less, the plane of motion of the jendulium will be found to be ollique to the line, to whech you stártéd parallel.

Take hold of a paper triangle and ent off its three apices or corners and pheing them together, along a straight line, show how they tit innl touch null form two right anges, anl that therefore when two angles of a triangle are known, the third is known; thns illustrative of how inaecessible distances are arrived at, and when the lase is eqnal to the diameter of the earth, or cen less, the moon's distance or the sun's can lee therefrom predieated by sighting to it from either, that is from eneh end of it or both ends simultaneonsly; or when the base is that of the diameter of the earth's orbit, and mgles taken therefrom at six months interval to a star, the star's whereabouts can be told or how far off it is. Aml just here the teneher mast be reminled that it suffices that some plansible way of doing the thing be intimated to the pupil, even if it be not one of the actual or practieal moles of doing the thing -as it might be greek to him to talk about the transit of Venus, which would leml to a mueh longer exphanation; while the base mad angles system is bought home to him in a few minutes by a mere pen or pencil sketch on paper or on a black buard with chalk.

Show how every trimgle is the half of a corresponding parallelogram and thus how its area is equal to its hase into half its height or vice-versa ; and how thus by diviling any, figure into trianglesits area can be made up of its eomponents; and how, of a eirele, a similar division into triangles by lines drawn from its eentre shows at onee that the smin of bases, or the eirenmference, into half the rulius, gives the area.

Show how, if the heat while descending into the bowels of the earth inereases as it rloes by say one degree in 50 ft ., the tempernture at 80 miles would be such that all its components would be in a state of fusion or incandescence and how thus it is supposed of the earth, that it was at one time in a molten or fluid condition, as stiil evidenced by volcanoes or by its protuberance at the equator, and how the surface has cooled down into a crist, and that crust thrust
up and down into hills and hollows as a pie-crust is by the action of the stean beneath it. How an atmosphere, which may primarily have been of vapor, due to the earths incaudescence, condensed itself into water when the earth's crust had cooled down sufficiently to allow of it and how, as already stated, the sun has acted and still acts, pumping or sucking up the water of the sea and lakes and rivers, which driven by the wind to colder mountain heights is there condensed back into rain and by its action, forming channels for itself along the depths of valleys, has eroded, hollowed out mountainots areas into various and deep channels and how the stuff from these has been carried along and deposited on the flats and hollows of the earth and formed beds of stone or strata which now constitude the geological crust of our planet ; and how animal and vegetable growth has been thus burier under, and now revealed agaiu to us after centuries, by new channels being dug in these very stinta, or in burrowing into the earth for coal and salt and mutals, gold and silver and the like and lead sud iron, or in boring for artersian wells, tunnelling through mountains for railways and canals and drainage purposes.

The child of proper age can be taught how to appreciate the fraction of a second, by being made to let pass between its thumb and finger the leaves of a book, which, as they fly past, can be seen and felt; and however incredulous that it requires $200,0 \% 0$ sheets of gold leaf to make up an inch, can not but admit and be convinced of it, on being toid that a兵" cube of gold can be beaten and thinned out until it reaches an area equal to 20×20 feet or 400 feet superficial.

It can be taught to understand the notion of the earth around the sun, and of the moon simultmeously around the earth, hy such a simile as that of a bicycle supposed to travel around a circular area, enclosed or not, with say a light or any oljeet at it- cetitre, to represent the orb of day - where, once aroun I th comse will be the year, while every turn of
the wheel in going aromel will he a dhy, and the smatler or steering wheed, and hecmuse smather and revolving puicker on its nxis, and thus presenting itself in succesion the every portion of the larger wheel or enth, simnlate the moon in its motion aronnd onr plamet.

Now all this my chidren know, mul have heen tanght in a series of successive lessons, anl omly as a wort cmme flong in their realings to me, shggestive of the mecessity of nn explanation. Yes, they know thas much of astronomy without ever laving lime it tamght to them at school or convent or at college, though they may have been tanght it when more advinced ; but knew it all from me hefore that, and if not so thoroughly, at least. in so fir as their inguisitive minds were hankering after the informstion. My giths and boys have as yet been taught no chemistry, no physics, no geology, no climatology ; but they have now the make np of the earth in their minds eye. They know that carhonic acid gas is expelled from the lungs and taken up by vegetable nature-that this gas is heavier than common air and larks in wells and caverus and in cellars and aw to tell of its existence by lowering a lighted taper reve they diare go lown thenselves-They know how a spenking trumpet acte, and how the rays from a light house go off together on their evrand of hamanity-how the simmitameons report from a whole regiment of rifles, is heard in successive detonations due to the time sound requires to reach the ear from finther and still further oti. They ean be male to momerstand how the velocity of a shot can be computed even though unseen, by breaking, in its fight, or passing throngh a sereen at given distance and thus making known the time of transit by electric or instantancous registration of the fact.

And there are a thonsam other thing which can be taught and inculcated, and where the difficulty is not in loing but in awaiting the worl suggestive of so doing, of an explanation : as that a steam or gas, or air engine is male to go by
introdncing stemm intomul atome end of a cylinder and at one side of n piston-after prehding ly, what is a cylinder, and frow madennd what a piston, and the piston rod, and a word as to the force or peressure ol steam as evidenced in its raising of the eover of the tea kettle--the piston thus blown or pushed townrisuml to the other cmll ; and then by auto intic (acting spontaneously or ol itself) machinery closing the aperture ly which the stemm or eompressed air entered at that end : opening the rxit or ontlow port at same end and simmitameonsly the indit or entrance at the other end, to blow the piston lanck nernin und so on-for this action is hidden and cannot be seen thongh masily imagined; while, as th the mode of communication ly the piston rod to the machinery through one and of the eylinder or of its cover ; you niay have explained or may explain this to the child next time you are or homod a ferry boat, where the piston rod and its connecting links to a eross head working lack and forth or np and down in on opposite pair of guides, is seen to swing the working or the " walking benm" so called, about its pivot on the supporting shears or trestle; the other end following suit and with it the connecting rod revolving the single or loulik: crank and this the axle or shaft ; and this last, the padlle wheels; and these, by pressure against the water, moving the bont forward or hackward when the action is reversed-and this netion, as by the time you reach the boat. jou miny have forgotten all about the teaching, may be apprehended eren without the seeing of the real thing, by the working of your arm in imitation of that of the connecting rod or cerank.

And how mnch more mny be imparted without the use of any of the scientific terms or illustrative models of mechmuics, or the fatigning of the child's mind with technical or scientific terms until later on at college : Centre of gravity, lomance a fork or tea spoon, or n knife's edge, and there is where the centre of weight is or the zero point, the weights
equal on either side of it ; und, hameing " pair of scizaors, show how the centre of weiglit on gravity is not it the mildle of its length, that a gun or canmon is hemsicr at the brech than at the muzale, and that of two men carying a \log of tapering timber, he bears the greater loni who is at the bigger end of it and that to be fair, ench man must cake his turn at that.

The action of ordinary weighing scales is plain to any one, even to the youngest intelligence; that is when the arms are equal ; and show the child, when balnneing at the end of a board over a saw horse in the yard, how if his end of the beard be twice the length the other, he can balance two of his own weight at the shorter end and thus the action of the lever scales; and how when he can weigh and knows the rule of three and is given a talle of specific gravitties, (explaining that this is the wright of an of equal bulk of any thing as compared with that of as much water) nny one can find the volume of such an irregular or unneasurable thing as n statue or piece of bronze or of nny curved work by weighing it and then the rule of three-And how in like manner, after finding the volume or cubical confents of a piece of statuary. of such an irregular thing as a chair, ant ill-shaped \log of wood, a piece of stone rough from the quary, it may be measured in a box by the sand or sawdust or water it displaces and its weight got at again by specific gravity and rule of three-that in the same way, in the nbsence of a pair of scales or other device for weighing, the weight of a tub of butter could be got at, and that to arrive at the proportion of voids or vacua, or hollows in a load of broken stone, by far the simplest way would be to weigh un equal balk of selid stone and then of so much of the solid bulk as would fill the same space when broken and then compare the two.

And a thousand other things which do not suggest themselves to the writer's minl just now, and which, even if they did, need not here lie enlarged on, may be taught at
bume as hy th" master or mistress as mere " kord lessons" ut whool, devoting hmlf an hour evcry day to this most aseful task and has jour chilal hecome ncgminted with, made to know n host of useful things and withost its being sai: that he has heen tnnght mechnnics, physies, optics, phonics or phoneties, and other ics and giving hin or ker the air of knowing as much as those that have, or at any rate of such sabjects as are talkell of in ordinary conversation.

The ten years old can be advised of what wind power is and he knows it alrealy in a way by having bean blown about by it, and ns to bow measured by a boaril and spring; and he can be made to put his knowledge to the test hy hsuling on in spring, or pressing one baek int's the contnining box of the so called "jumping jnck "-or by trying the force of nn elaatic rubber band and he thas gets an idea of what the force of a eyclone may be. A child will sec and dous that a horse ir stronger than a man; but to what extent, no more than you may known yourself without inquiry. Books tell you what a H. P. is 33,000 lks. ruiserl to the height of one foot in one minute of time; and this is the proper way to state the thing for the technolorist who undestands and has to deal with it ; it being made one term of a raio as of 33,000 to I or to I to 33,000 where division by I or unity or multiplication by I reduces the rule of three to n mere operation in simple arithınetic; but to bring it home to the papil, it must be put in another form ; as : suppose a building to be going up and that brick or other materials have to b raised to a certain height of say 100 ft . Therefore the \mathbf{H}. P. is equivalent to raising 330 lbs . weight of brick or strne or mortar to the height of 100 ft . in one minute of time Now you can see and show the child that bhis is a true and practical view of the thing-because a horse tackled to a proper gearing or with n double pulley block, one above and onc below, can raise such a weight, and as he will pace away 33 paces going and 33 paces returning or at the rake of two
paces in one second of time, he will at the end of his minute be back to tackle nowther limu nold then nonother and during n 10 houts-n-day work he will thas misp fil() times (fino minutes in 10 hours) 3:3.) lis. of $19 \mathrm{~s}, 000 \mathrm{H}$ hs dhring his dhy or nhout 160,000 if he is at it for only $\$$ homes.

Of course the pupil will not sere at once how the power of water or of n water fall may he upreeintelor arrived at; but this cau he put to him in so sinule n mmaner that he cannot fail to understabl it. li, or she surely knows mul now at uny rate that gymmestic, ure tmorht every where, that if you swing a rope over a cross heml or har, he or she who pulls the harder at it, will master the " turg of war"-that if forces are equal, the rope will not move or only, liy a tug, to go and by nnother to gro back agniar. The childreusee that two of themselves or would at any rate he remly to almit, even if the thing were only put to them in so many words, that two of themselves of equal weight would form a counter-poise.-Now you say to the little one, looking upnad directing its att ion to n curtain pole necross the head of a winduw, and let the ganze curtain or any other represent the descending sheet of water and if there la mo curtain then you can imagine it just the same : suppose my boy this sheet of water falling loosely as it docs mul giving no ulequate idea of the power it exerts nt bottom, be gathered together as by fummel at the head of the fall and to come down in a box or tnb or a succession of them; do you not see that each of these if tackled by n roput over the roller to an equal weirght of water on the other side would just counterbalance, as when you and your chun swing at the opposite ends of n board resting on a roller or pivot at the centre. Yes-You see therefore that the weight of water coming down from the one side could raise up or nearly so an equal weight or the other side; wherefore the power of a fall of water is, allowing for friction of mochinery, equivnlent to raising the same weight of water to the same height in
the same time, aml the time alal weight leeing known the H. P. can be calenlated by male of three.

But the water that falls need not bee weigher-its weight is known alremly as ($\mathbf{i 2 !}$ I lis. tu the cube foot is ; but of course the quantity roing were mast be nscertnined, nnd this, it is plain, can be done liy the ensy process of tinding how quick it travels, nsevileneed by a ehip or stick thrown into a quiet and repuhar reach of the river nowe the finll, and as the breaitla and avernge ilepth will give the area of section; this intu the mumber of feet of ${ }^{\prime}$'s velocity per minnte will (lo the rest, that is give the: gunntity of feet of water which if multiplied by 69 ! lhs. its weight, and this by the feet in height of the fall wiht grive the su called forst-ponnds and as the H. P. as seen is equml to $: 3,000$ foot-fhs. per minute, the number of foot-llis. diviler! hy this 33,000 libs. will give the H. P. of the fall or river.

And don't you Mr tencher ever be at your wits ends for an illustration or a simile. If it be winter, and the ferry boat not at hand, or the travelling senson net yet inaugurated, and even if it were, and you have no time for that; any sound thing as a tolace, box, of iwist a piece of paper into me and stick or pin it and it will stand yon in good stead of your engine cylinle! lor exprmation of piston action back and forth-and nis for levers, ant even if the box or cylender be octagomal or sglame, that makes mo odds as to tho action y° on wish to ilhastrate-and if the saw horse lies huried benenth the show or has leeen mishail or lomed and this morle of elucidation not at hand ; 'ake hold of n round ruler. or even of a bit of woml, or a book on edge, and now a flat ruler and lond this at eishet end with proper weights, or books or what not and thus explain the lever, and while you'r at it, how it acts whare the fulerum is at one end of it with the power betwoen weight and fulcrom, or the weight between the other two.

If you have no sphere at hand, or even if you have, an
arange or an appie: luny sutit the purpose just as woll or lettter ; put n pin or tack in it on one sille, or the broken end of - match anill let that tre you, and one nt the opporius side will be your antiprale, anl as to why yon dont fall off, msimiate your weight and tembency bowads tho earth to an attrisetion which it is, the attruction of a mugnet being a gorst simile -and why the fly fulls not froms the ceiling, nut how the boy liften atone, his icather suckur as it is called when siack to the stone and then an uttempt mule to pull it off, its string at centre, as the tly's leg at the centre of his chastic fort, cousing it, when pollel on to rise at centre and thus leave a vachuni ngainst which the pressine of the atmosphere rencts tol hold the lly in pluce, anl 1 so solidly the stume that the boy con left it mothoring to his dine of lenther.

Agnin, to exernplify day and night, thrust a budkin through your nipple or your orange, or a kuitting needle, ora pen handle, allowing it to protrule a little at the encle; and on your table have a hamp or light of some kind, and let a curner of the coiling le the pule of the heavens or the pole star; and bold your tiny sphere in a way that its a:is (the pen handle) point towards the star, and incline it in a way that the light do strike it at the eqnator or thereabonts, or half way between the poles; anl then revolve it in your fingers, and you thas show the lighted anl unlighted or the lit and unlit sides of your tiny earth, un : the succession of day and n; it in any latitude or at finy distance from the equator-days and nights equal whell the sum is directly over the equator or its rays to earth at right ang es to the axis. And now move around the light or sun as the earth loes in ita annual revolution about the :- n, and so you get the seasons and in one position the day louger than the night, and in the other the night longer than the day.

Aud for the pliases of the moon, let another pupil armed with another and smaller orange or apple, stand opposite to you or between you and the sun, and hold his ball in a line
or leet. end of be will mi'ate tttrucnimile sw the sinck ofl, its clastic I thus where that
wadkin e, ore and oll corner ; und andle) ght do tweell a thas des of ny lanights s rays round lation ssition night armed aite to a line
with the light and earth ; and there you have the " no nroon" phase, and by sending the child with it to the other side of the light, the all or whole or full moon phaso, and then moving half way back, the hill moon phase and that: waxing or waning or facing East or West acc rding to the side on which the sun light strikes it.

Now there is no use in further illustration of these simplo modes of demonstration ; for those given are suggeative of others and let me again insist in conclusion, on the advisability and necessity of these "word lessons", and as the words will not come of themselies, or if they do crop out, may do so in a way unsuggestive of the necessity of an explanation; let me insist on these reading lessons of every day, and on various subjects, with the very object of conjuring up the words for explanation; as when they thus occur in the body of a phrase, and are pertinent to the sense thereof, the necessity of their being understood is much more furcibly brought home to the child, than if you meroly fish for them in a dictionary; in the same way that the solution of a problem in geonetry is made more pertinent, more interesting when we know that it has some necessary relation to an engineering or architectural problem which can not be worked without it.

$$
\sigma
$$

