CIHM
 Microfiche
 Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Canadian Institute for Historical Microraproductions / Institut canadian de microraproductions historiques

The Institute has ettemptod so obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the imapes in the reproduction, or which may significantly change the usual mothod of filming, ave checked below.

Coloured covers/
Couverture de couleur

Covers damaped/

Couverture endommegie
Covress restored and/or laminated/
Couverture restaurie et/ou pelliculíeCover tithe missing/
Le titre de couverture manque
\square
Ccioured mapa/
Cartes gíographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. eutre que bleve ou noire)Coloured pletes end/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Ralié avec d'outres documants
Tight binding mey eause shadows or distortion
olong interior margin/
La reliure serrie peut causer de l'ombre ou de la
distorsion le long de te marge interieure
Blank looves addad during restoretion may appear within the text. Whenever possible, these heve been omitred from filming/
II se peut que certaines pages blanches ejoutbes lors d'une restauretion epparaissent dans le texte, mois, lorsque cela denit possible. ces pages n'ont pas éte filmbes.

L'Institut e mierofilmé le meilleur exemploire qu'il Iti e ́́th possible de se procurer. Les diteoils de cat exemploire qui sont peut-titre uniques du point de vue blbliographique, qui peuvent modifier uno imeye reproduite, ou qui peuvent exipor une modifieation dens le mithode normale de filmaye sont indiquits ci-dassous.

\square
Coloured pages/
Pages de coulour
Pages damayad/
Peyes endommentes

\square
Pages restored and/or laminated/
Pages restaurios et/ou polliculies

Pages discolourced, strined or foxed/
Pages dieolories, tachetfies ou piquies

Pages dotached/
Poges distachbes

Showthrough/
Transparence
Oudlity of print veries/
Qualité infagle de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on hoader token from:/
La titre de l'en-tite provient:Title page of issua/
Page de titre de le livroisonCaption of issua/
Titre de Afpert de le livreison

Masthead/
Générique (périodiques) de le livraison

Additional comments:/ Commenteires supplémentaires:

This itam is filmed at the reduction retio checked below/ Ce document ast filmé eu taux de réduction indiqué ci-dessous.

The copy filmed hare hae been reproduced thanks to the ganerosity of:

Archive of Omtario
Toronto

The imagat appearing here are the bast quality possibie considaring the condition and iegibility of the original copy and in keeping with the filiming contraet specifications.

Original coples in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or lilustrated Impresslon, or the back cover whon appropriate. Ali other original coples are filmed beginning on the flrat page with a printed or illustrated impression, and onding on the bet page with e printed or lilustrated impression.

The iset recorded frame on each microfiche shall contaln the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (maaning "END"I. whichever appilas.

Maps, piates, charts. etc.. may be filmed at diffarent reduction ratios. Those too iarge to be entiroly Includad in one exposure are flimed beglnning in the upper left hand corner. left to right and top to bottom, as many frames as requirad. The following dlagrams illustrate the method:

L'oxamplaira filme fut raproduit grica in -ênérosité da:

Arehlves putellaues do I'Onterio Torente

Les imagas sulvantes ont itt raproduitas avac ie plue grand soln. compte tanu de le condition ot de la nettatd da l'examplaire flime. of en conformitd evee les conditions du contrat de flimage.

Les exemplaires originaux dont is couverture on pepier eat Imprimée sont flimés en commençant par lo premier plat at an tarminant soit par la dernlibre page qui comporta une emprainte d'impresslon ou d'llustration, soit par is second plat, seion ie cas. Tous ies autres exemplaires orlginaux scrit filmés an commençant par la premidre page qui comporte une empreinte dimpreasion ou d'iliustration at an ferminent par ia dernidre page qul comporta une taiia emprainte.

Un des symboles sulvants apparaitra sur la dernlitre Imege de chaque microflehe, seion ie cas: is symboie slonifle "A SUIVRE". is symbole ∇ slgnifle "FiN".

Las cartes. planchas, tabieaux. atc., pouvant ders filmds dos taux de raduction diffirents. Lorsque to documont est trop grand pour atre roproduit on un soul cilcht. il ese fiimé t pertir de l'angie supérieur gauche, de gauche adroite. et de haur on bas, on pranant lo nombre d'images ndicessaire. Les dlagrammes suivants lifustrane le móthode.

THE

SOULANGES CANAL WORKS

CANADA

By C. R. COUTLÉE.

Associated Member, Canadian Society of Civil Brginewr.

(keprinted from Engineering New of April 18 and July 11, 1901.) NEW TORE.

PART I.

Between Prencott and Montreal the freisht traffic of the Et. Lawrence River is, on account of rapids, forced to take to canals. Fourteen-foot navigation hes been secured, and boats of this draft can pase from Lake superior to tide water. The Soulanges Canal is the IInk in this chain of ahlp camals, that replace the old Beauharnole Canal, wisth was 8 -ft. draft only. The location, dealgn of locks and. superintendence of construction .. . ie a entirely in the hands of Mr. Thor. ." Past-Prealdent of the Canadian Socte'. Englneera. His 20 years' exper: F-tneer of the Welland Canal, couj . dien or forelgn practice, have led to th. an of se ne entirely new features, and the canal in an exari; ie of matured practice In hydraulle engineering of thil class.

PLAN, PROFTLE AND CROSS-EECTION.

The Boularges Canal, about 14 miles in length, couples Lake $8 t$. Louls, the expansion of the st . Lawrence above Lachine, with Lake St. Francla, the expansion below Cornwall. Lake St. Francis tis menerally 8.5 ft . higher than Lake st. Louls, and this is surmounted by five locks, the firwt three having the exceptlonally high lift of 23.5 ft ., the fourth uft of 12 ft , and the head, ur guard. lock, a lift of about 2 ft . The location on the north side of the Bt. Lewrence whe decided upon as reqciring less curvature, fewer locks, and because quickaand was in evidence on the south shore. In addition, the enlarging of the old canal would have led to many difficulties and unforeseen expence. From the seneral plan, Fig. 1, it will be seen that there are only two curves. The longer extends for 60° on a radlus of $14,800 \mathrm{ft}$. (about 24^{\prime}), and was necenaltated by the sreat bend in the river itself. The shorter extends through 16°, on a radlus of $12,800 \mathrm{ft}$. (about 27^{\prime}). Both are so ensy that for purpones oi navication the canal may be conaldered a atralght inne.
The supply of water was, of courwe, inerhaustlble; therefore only its admisalon Into the canal wan to be considered The croms-rection of the canal priam, Fig. 2, 100 ft . width at bottom. with 2 to 1 slopen throughout in rock or earth and 16 ft . of water at extreme low water. The area of prism at mean low water is about 2,400 sq. ft ., or may four timen the submerged transverwe area of the typical vemsel for itm navigation. This sectlor. of canal is nowhere diminiahed, but on the contrasy a barger area is diven at bridges.

The admisalble current was fixed at about 1 mile per hour, or say as hich am 100 ft . per minute. The canal bottom, Fig. 8, has a fall of 0.1 ft . per mile, and the current serves to change the water and stishtly alds the ceaward tramc. The banks aloas the summit level are high enough to admit of the canal surface belng ralaed to the highest water level of Leke 8t. Francis, and atill be 8 ft . above water. This would sive a depth of 20.5 tt. In the canal priam.

GUARD LOCK.

A guard lock, Fig. 4, is located near where the axis of the canal interwects the orisinal shore line This protects the entire artincial channel to the east from an Influx of Lake Et. Francla: (1) were the summit level bankn to break at any point, or (2) were it required to run the level dry for repalr work. It also prevent the piling of the leke water into the eleven-mile summit level by wenteris winds, whereby the banke misht be overrun. Guard gates would not sumce, as, were the lake water to plle against them. It would be imporalble to open them and admit vessela untll the etorm tell.
To feed the canal a supply race, Fis. 4, is provided to the mouth of the suard lock. Across the head of this is a weir consisting of a mesonry wall plerced at the bottom by four arched openinge 9 ft . Whe and 10 ft . high. There openingy are throttled by submerced "gtoney" valves, which are exclusively used throughout the canal.
splay walls extend above and below the suard lock to sulde vessels in and out. Above the upper aplay walls are two parallel plerw 200 ft . apart and extending $1,600 \mathrm{ft}$. Into the lake, which give mooring accommodation to boats awaltins lockage.

Canale leading from riverm at the head of a rapld, are alway subjoct to a current setting across thelr entrancen To obviate tuly means entering land higher up and increasing the cost of conntruction ani land damagea. So long, however, as the entrance to amply wide and deep enoush to allow of boats swinging well in toward shore, the crow set of the current becomen a small matter even to tow.

gUMMTT LEVELS.

The summit level has its top bank elevation at 101 (above sea), or the same helght as the coptns
of the suard lock. By this moane it is asaused that the top of bank will aiways be woll abovo the fichoat wator at the entrance, which has been recorded so 107.6 sbove sea. This isval is over 10% zilles in leasth, or 75% of the whole canal. which can be navigated without stop of any kind whatev \therefore A degth of 20 ft. can be had if desired at hich water, siving nearly $\mathbf{3 , 0 0 0}$ eq. ft . transverse area and 176 ft . width at the water Une. This, of course, means speedy and safe navigation for large boats.
The bank protertion consists of a notch cut along the 2 to 1 dide glopes and solidiy rafilied with broken stone of various slaes, indicsted by Fig. 2. The face is finished with macodam rammed to a 2 to 1 slope, and the top line is Anished with a rough coping, 6 ins. thick and 1 fl . wide, latd in $21 / \mathrm{s}-\mathrm{ft}$. lensths. This cope is 3 ft . above the workins level, and the bace of the lining is 5 ft . vertically belon water surface. There are no large boulders to become dispiacsd and carry several others with them; but the 2 -in. metal and nne rrit form a knit slope, and repaira are eanlly made by dumping broken stone where required.
sod is ladd upon a slope above the coping anj for a width of $\overline{\mathrm{f}} \mathrm{ft}$. aiong the top of bank. Along the nurth bank, which is 50 ft . wide, a macadamized public road is provided. Between this road and the edge of the canal is the poie line, bearing the power and ught wires. Ali the poles are dainted white, and every fourth one carries a $2,000-\mathrm{c}$. p. closed arc ifght. Along the north side trees are being planted, and the appearance of this artinclal river is both finished and pleasing.

CULVERTE.

Thrse smali rivers are passed underneath this upper reach by means of culveris, the Delisie, the Rouge and the Grease.
DELISLE.-The Deliale is the largest, its nood flow sometimes nearing $300,000 \mathrm{cu}$. ft . per minute. Its channel was diverted siightly by straighteiaing a bend and a rock foundation thus secured. In fact, all three streams were diverted somewhat, aliowing the fow to continue uninteriuptediy in the old shannel during construction. Fig. 5 shows the details of the culvert construciion. The foundation plt was 00 ft . wide, excavated in limestone rock. In thls, four paraliel ifnes of cast. Iron plpe were laid. Each ring of the pipe was 10 ft . in diameter, $\overline{\mathrm{j}} \mathrm{ft}$. in length and 1 in . thick, strengtnened by three niiets. They were iaid piair. butt joints, and then the whole pit was filled with concrete, which was carried up 2 ft . over the iron The ringe provide against a bursting up-pressure, which would occur if the river were in food and the canal were emptied for repalr work. $\boldsymbol{H} . \mathrm{R}$. Ives \& Co., of Montreal. Quebec, made the castinge in a most creditable manner.

ROUGE.-The Rouge is passed urder the prism in a similar manner to the Delisie, but only two lines of 10-8t. diameter plpe are used. The foun-

dation wan on boulder matertal underlyint some 80 \$L. of blue oley.

ORrask.-Onty one tine of 10-9t. plpe was sequired for the Greace River culvert; the foundation wat on pllem. An sectdent wecurred during conatruction. Fis. 6 whowe this plpe in place and partly covered with the concrete alling. The water, with which the plt was siliod for protection cralnut froet, burat out and its heavy ice covering settied down on top of the cati-iron tube, which had only bean hall concreted. Many ringe wort broken, but they wem ropalred in place with ansle imne and bolta.

DRAW BRIDGES.

Four bridges croan the summit level, all of atnilar demign. There in no plvot pler in uldchannel, but inatead the pivor is piaced in line with the south bank, and the w? sle width of the bottom 100 ft., if eree for navigation. A boat pasains alons the primere resemblem a movable dam and pales the water ist any rastricted part of the channel. The current thus created tend to awing ven-
way 60 ft . wide on bottom, with 2 to 1 slopen. It Is throttied $k_{\text {. }}$ two targe "Eloney" ituteen, 20 8t. \times 22. 1t., which holat up into a stool superotructure resembilis a double gantry. The guard gate itself in 46 ft . wide-the width of a lock-and comwists of two hollow quils abutments with eplay walla above and below, Eis. 9. A palr of gate exactiy slmiler to lock gates revolve in the quoing and close agalnst miter sills. The aplay walle above and below are of conerete, and are made 10 ft . Wide to form a roadway on the eouth ilde. Through these, arches of 15 -ft. apan are plareed to paes the foed water into the raceway and nut of it. A foundation platform was frit made uf concrete 12 ft . wide and 2 ft . deep, and upon this the archem were built. These dabs and that under the suard gate and atutce rent directiy on hard blu clay, and have siven no trouble.

LOCE NO. 4.

Between ruard gate and lock the ordinary rection of canal priam is resumed for about 800 ft . Splay walls, as usual, are placed above and below

FIG. 2. TRANSVERSE SECTION OF CANAL PRISM; SOULANGES IANAL WORKB, CANADA.
sels ecroas the canal. To avoid thim the prism area is increased at the bridges by excavating in rear of the pivot piers (ria. 7). One arm of tha bridge apans this side basi and the other apans the canal proper. Practically all the bridre mamnnry is concrete, only the coplnge \& 7 d parcpets belng of atone. All Ironwork is painte with white lead, and the graceful auperstructurea, contrasting with the green banks and adjacent woods, aive quite a picturesque effect. On sop of each bridge a red lantern is placed exactly on the center line of the canal, whowing both up and down, as a danger sig.al, when the draw is closed agalnst navigation.

POWER-HOUST.

The canal power-house is situated about the middle of the summit level, advantage belns taken of the croseling of the Grease River to use it as a tail race. The power-house is combined with a waste weir and will be described further on under electrical Installations. Some $\mathbf{7 2 0}$ HP. Is generated for lighting and for operating gates and valves.

GUARD GATES FOR LOCK NO. 4

The summit level ends with a guard gate and list lock. The guard gates are $1,000 \mathrm{ft}$. abnv's the lock, Fig. 8, and are never opaned 'untl' . lock gates are closed. To the south is a feei s.ace-
ihe lock to lead in vensels. A raceway to the mouth, FMg. 8, paccel the feed water to the reaches below. It is 27 ft . wide on the botom, with 2 to 1 mlopee giving a tranmerme area at working level of 1,100 sq. ft. A rerulating weir plased servas the end of the raceway in line with the foot of the lock, soveras the feed to the reaches below. This wir is a concrete dam faced with cut stone and plerced by two ubmerged arches, \%hich are cloned by "Stoney" valves 9 ft . wide and 7 ft high, Fig. 10. The sace of the wall th buttrened and four blind archem widen the top sumctently to sive a $10-\mathrm{ft}$. roadway. Below this welf the water is turned into the canal cgain throush the arches of the raceway bridge.
The lonk itself is of concrete construction, only the face of the chamber sbove the iower reach water level being of cut stone. The lower alll to elevation 128 (above sea) and the upper is at 137. On top of the sllis 15 ft . of water is provided for $14-\mathrm{ft}$. navigation, so the lower reach working water level is ($125+15$) El. 140 and the upper $(137+15)$ Enl. 152. This woutd be 2 lift of 12 ft ., but usually the summit level will be worized at El. 154 or 155 . making the lift 14 or 15 It . For the fourdation of his lock 1,100 rock nim pites were dri:en 40 to 45 ft . into blue clay at $4-\mathrm{ft}$. centers wnder each lock wall and acrose the upper and lower ends. The tops were cut ofil and
ambedden in concrete, which was rammed about thom, Between the walle the look foor in a concrote alab 230 ft . lons and $48 \% \mathrm{ft}$. wide and fabfahed to an invert 18 inc . thick alons the center and 8 ft . at the ciden. The uppor end of thla foor fits againat the circle of the breast wall and the lower ond in inlahed with a line of cut atone blocks. The fower miter all is carmied on piles; it condefell of a maes of concrute axtendins 8 ft . below the floor, whioh forms both an anchor block for holding down the alle and a cut oft agalnat leakage. Two I-beamn are ladd disectly under each alll and through thom pasis seven bolth, 14 in. in alametor and 7 ft . lons, the whole being buried in the mans of concrote. The ende of the anchor bolts are threaded and pass vertically through the $18 \times 18-\mathrm{in}$. oak silla, which aro held down by larse nuts and wanhers. The upper mlter sill is carrled on a circular breast wall oxtending ecross between the lock walle and is anchored down in the same manner an the lower one.
The breast wall in a mans of concrote faced with heavy cut stone ashlar. It serve to take the ram of ascending boata, thus preventing their bowa puahing open the miter of the upper satee from the lower slde-a frequant soutce of scelient. In front of the breast wall in another cross wall, which revets the end of the upper reach. It forms with the breast wall 2 bay, 30 ft . across, and the full wldth of the lock, 46 ft . From thls head well the longtiudinal wall sulverth are fed in tillling the lock. The culverte are 6 ft . $\times 6 \mathrm{ft}$. wlth arched roof and are provlded at each ond with "Stoney" valven. These allow the water 10 flow Into or out of the lock chamber, with which the culvert le connouted by $30-\mathrm{In}$. plpes, ten on each aldg.
The method of construstion was to lay the whole concrete foundation slab under the wall and acrons the ends. The floor of the head well, the foors of the culverts and the lower miter sill are all on the same level (El. 125). Upon thll the molds for face and rear of walls and for aldes of culverta were set up. The concrete was inixed by hand along the alden of the plt and wheeled in untll the spring llne of the culvert arch was reached. A trentle had then been completed through the lock ehamber and two travellng je:ricks erected upon it. These swung in the concrete with aklps. The posts of the trentle served to hold the chamber face molds, which were 14 ft. high. Abova thio height the lock wall was anlar, the first course projecting 2 ing. and bee ins rounded to form a rubbing course.

REACH BELOW LOCK NO. 4.

Below Lock No. 4, a roach simillar to the mit level extende for nearly 23/2 miles. : mlle below the lock there is a rond bridse like those on the summit level. It is founfed on hard hlue clay and has given no trouble from zettle-
ist. All swing bridges are at hight angles to

the Une of canal. The north bank, on the suramit tevel, is 60 ft . wide to allow pace for a macedam road to replace tbe old river road cut of by the canal. The suutb bank is 18 f wles ot an olevation of 8 ft . sbove we.. 1 lovel 'fith 2 to 1 slopen.

BIEEONLTTE EMBANKKENT.

The chlel fenture of this level is les croming of a revine about 600 ft . lons and 40 ft . deep balow the "tow-path" slovation. The canal is car.Hed acrom by an ombankment contalning 250,000 cu. ydr., bullt of clay excavated from tbe primm. The full erom-ecetion is malntalnodr vis.: 100 ft . bottom wlatb and 2 to 1 lopes. Thi exterlor alopen are also 2 to 1 , maldng the bace of bank nearly 500 fl . acrom. Under tble till a 8 coin, catettron plpe paseen amall cronk. The reach onds at the Cascades Locke. The water surface is conetantly kept at elevation 140 . siving 16 ft . of water, or 2 ft . under vennels drawing 14 ft .

EARTH WORK.

Tbe lower ontrance of tbe canal is cut into a tongun of land separating tbe Ottawa River: :9m the st. Lawrence River. Thls polnt is of $: i \cdot$ dam sandotone, but rint for bullding mas rir thougb it was muct, ed for concrete. For a diltance up of $1,000 \mathrm{ft}$. It is denuded, then it if lont to stebt under a Bo-ft. clay bluff. The Potedam continuen talriy level for about eleven milles went wben it overiald by calciferoun rock. From the general profle, Fig. 8, It will be seen tbut the clay surface rlses abruptly at Cusades, tben very sradually for about five milles, after whicb it continues at a seneral level only alisbtly above the surface of Lake Ot. Francls, The lower balf of tbe canal in in hard brown clay overlying a compact blue clay. The zext quarter in in a soft blue clay with only, a cant covering of gandy brown clay. The upper quarter in in boulder. Over $200,000 \mathrm{cu}$. yde. of rock were excavated at the upper end and nearly $100,000 \mathrm{cu}$. yda. at the lower. Benlden this there wal over $7,000,000 \mathrm{cu}$. ydi. of eartb excavation of all kind, varying from soft blue clay to quickmand, wet gravel and hard pan.
Generally tbe surface brown clay was removed by wbeel scraper, and tbe front parti of tbe bank: made up of It. Tbe bottom was excavated by steam abovels and care (Flg. 11). Three-yard carm of 8 -ft. gase hauled by ten-ton locomotives on 80 to $56-1 \mathrm{~b}$. ralls were extensively uned.
gtandard gege plant was used on the Onderdonk sections tive miles in iength. Sixteen miles of track were employed and the maln line alons the canal bank connectins with the Grand Trunk Ry. carried all the minterials and oupplies to Lock 4.
Earth from the ateam excavator: is often in large lumpa wbicb cannot be cut up and compacted into banky an the oulput is too rapid.
 was tound to be a muccumblul meas: is ficting thle dinceity. A demand for digu" "s apperatue would no doube be met by the shovel masufacterert.
The rock excavation was done in the oroinary manner by itcar drillias and dorfick handime. All the rook at Caseeden has beos uned up for concrete, otc, ard othor larte amounto havo beoa employed for -ank linins alome tbe canal.
The stone ald slope protection amounte to $155,000 \mathrm{cu}$. yds. it wat sonerally dumped into the notch from carta, but some has been transported by scown, sfince opening the canal, and du. poilted from gany pianla.

CRIGWORK.

The only extensive une of tlmber was in sube morsed cribwe-k foundation for the uyper and 'ower entranc : 'orr Thin was all made "clonework," of 12 "--in. umber, moatly bemiock. The mibi are
ft. wide and about 16 ft . in belebr with twa rown of longitudinale, and cromeide nvery ift. They were enerally bullt in 100 1t. lemetha, floated to place and alled Fith utone or h.frirs from the excavation. Alons tbe face a piatiorm of $12 \times 12-\mathrm{In}$. timber was lald juitt below water and a concrete dock wall bullt upon it. The wall and crib foundation wal boavily backed with atone ailing. Castifion mooring poits are employed throughout. They are cylinderm 10 inn . In diameter and 1 ln . thick net in cubes of concrete 5 ft . deep, from wbleb they project 10 Ins. Before nettles each post is inmmed full of conerete.
For eacb contract a bulk sum was bld for unwatering, wbleb included pumpling, making and removing dame, and removing lce and anow.

sLIDEs.

The createst dinculty encountered in conetruction was the allppling of tbe clay aldes of the can. slons about two miles of the aummit level. Mont trouble was experlenced at tbe Bt. Emmanuel road crowitng. Here an inch pod could be easliy pusbed down 80 ft . through blue clay fetchlus up on rock or hard materfal.
The canal If in $25-\mathrm{ft}$. cuttins end for tbe north abutment of the road bridse, plles were driven down 40 ft . more helow the bottom. A concrete foundation alab, level with cenal bottom, was laid upon thene pllet about the beginning of November. A few days later 300 ft . In length of the north slope alld out over the foundation and half way acrons the cut. Next sencon thle ollp was excavptod, and the north abutment-e concrete monolf, Ω of $1,200 \mathrm{cu}$. Fida.-wes bullt upon the foundation, which bad not been Injured. Between this abutment and the face of the old sllp, about 100 ft . In width, all the blue chay was excavated to canal bottom anir the apace refliled with dry brown clay lald up in layern by wbeel scrapers.
Toward tbe end of October, 1897, however, another mudden allp occurred at tbe aamo place com-

FIL. B. DETAILS OF CULVERT FOR DELISLE RIVER; SOULANGES CANAL WORKS, CANADA.
pletely fliting the cenal agrain. Fig. 12 showa the appearance of this allde. The abutment was forced out 30 ft . into the priam and canted over, bending the foundation plies like whipn. It wa not oven cracked, however, and had to be blasted out plece by plece.
For over a mile this north canal slope has anally been fattened from a 2 to 1 alope to a 4 to 1 with a heavy atone toe.
The blue clay deponit constituten a "mere bleue" or saturated clay lake, through which the canal, during construction, formed a deep drainage ditch. The subwater plane gradually sloped down to the canal bottom, draining in under the siope untli
than lower down the canal where the brown clay covering is thicker and nearly impervioun.

GURVET WORK.

In eatablishing the center line, ponts 10 Inm . In diameter and 20 ft . high were set at the Interwection points of tangents and also along tangents at about three-mile intervals. A transit was interpolated between these poles and during ten yearm It has never been necemsary to keep reference hubs. The long curves of large radius required all calculations to be actually worked out as the difference between a $100-\mathrm{ft}$. chord and the curved arc became noticeable, and the tables could not be

FIG. 6. VIEW OF SINGLE-PIPE CULVERT FOR GREASE RIVER DURING CONSTRUCTON; SOULANGES CANAL WORKS, CANADA.

Its frictlou was destroyed and the mass sild forward, settilng down along vertical cleavage planes as it moved. The whole matter was alded by the fact that the blue clay beds, 3 Ins. thick, seem to have dried after deposit and cracked tike a mud beach. These vertical cracks allow the water to percolate down and create hydrostatle pressure. The surface covering belng sandy along this secfion allowed storm water to enter more readily
applied. The upper curve, three miles in length, was divided into haives and tangent poles set at the intersection of the tangents for each half.

For field work steel band chains and 1-1n. gab pipe pickets were used. A $500-\mathrm{ft}$. chain did not prove itself of much value.

The ground surface for 300 ft . on each alde of canal center line was accurately crosm-sectioned, some 20,000 reading belng taken, This work was
greatly hastoned hy the use of two rods for each level. The risht of way varies in width, hut is smerally 200 ft . on each slde of the center line of the camal. About 950 acrea were taken altorether, frefuding farms bought for wasting ground.

The erom-ecotions were plotted on a natural

Fig. 7. View Showing Typical Highway Swing Bridge Crossing Canal; Soulanges Canal Works, Canada.
scale of 10 ft . to an inch and bound In bookn, contract by contract. On the risht-hand page was plotted the north half of two croms-sections and on the left the south halves, the middile of the book belng the center line. This senerous apaclng, though hulky, ham proved to be very convelent for progrems, entimaten, etc.
Boringw were taken every ten chalns with a 2-In. auser attached to sas plpe. Numerous test plts were also dug, some being 40 ft . In depth. Generally 5 to 10 ft . of hard hrown surface clay wae found to overlle hlue clay varying from the conalatency of tough cheene to boft butter.

The prellminary hydrographlo survey at the lower entrance was made hy a fan of counding

For close soundings a line of boards 4 lng wide and hinged together in 10-ft. lengths was flated into the line and soundinge made alons it from a boat. Silght breeses deranged this lons tiont, so It was only unciul In calm water. Skeleton rafts, 200 ft . long and 25 ft . wide, were also used, the soundins man walking along the timbers which are tished tosether with plank and aplkes and well cross-hraced.

Sounding through the lee at Cascades wam impracticable owing to anchor ice and "trasili" This is caused by the astated water pourins through the Caccades Raplds belng unahle to cryatallse through cooled far below 0°. C. In an instant of reat, however, articular crystals are auddeniy formed. These drift down and accumulate in still water beneath the gurface lce, forming immense masses resembing wet wool and eventually packing the river full to the bottom. Juhmersed bersu, several square miles in area, are thus formed, which choke the flow, and the water stands at varlous levels in Isolated pools. Difterencen of 2 ft . In level were noted in holes cut only 50 ft . apart, so no soundinge could be done under such conditions. "Frazil" $u=$ "cinder" lee mixed with larye cake lce has heen observed 80 ft . in depth. Lons line of soundingy were senerally made by stretching steel wire with a cork toat every 20 ft . between raft anchored in exact ponltions.

The transit work included traversen of roads and the shoreliline of the st. Lawrence between the head and foot of the canal. All these were tled on to the center line forming cloned travernes of about three mile in extent; the results have been very sood. There was also a large triansulation of the vicinity.

The leveling has been very extenalve as Unew

FIG. 8. DIAGRAM PLAN OF LOCK NO. 4 AND GUARD GATE; SOULANGES CANAL WORKS, CANADA.

Unse radiating from a fixed point ashore and extending two or three miles out. A boat with sextant observer, sounding man and recorder ahoarc, was rowed out, keeping in range with the fixed hub and a movahle hack flag. Each sounding was fixed by measuring the angle hetween the range aft and a distant known side point. To plot, a Une, parallel to the range line, is drawn through the distant side station, and from this the sextant angles are lald off to intersect the range.
were run to Kingston, to Rouse's Polnt and to Montreal, thus connecting with wea level at New York and at Quebec. The results proped wonderfully correct, though no attempt at precise leveling was made, a-d there is the satinfaction of having elevations, which convey some meaning and may be compared with diatant polnts and referred to in descriptions and reports. A photographic record has heen kept of all the conatructlon.

PART II.

THE CASCADES LOCKE.

The three Carrices lockg, Mrs. 18, are each 231/2 ft. lift. With their attendant ayutem of bains and reaches, they occupy about $4,000 \mathrm{ft}$. in length, the total demcent made belns $79 \% / 2 \mathrm{ft}$. at low water. They are ail in direct line, and between each the full prism of the canal, with 2 to 1 earth slope aides is renumed. The reach between the uppermont locia and the middie one is $1,600 \mathrm{ft}$. In length, and that between the middie and lower entrance lock is $1,000 \mathrm{ft}$. long. Alongride theme locks, and reaches, but sumeiently separated from them to prevent currents, are raceways abd basins to feed the lower levels.
Each lockage requires about $303,000 \mathrm{cu}$. 3 t. of water, which, if drawn from the short canal

Communication is secured throughout the system by three lines of roads, or tow-paths, 16 ft . wide each; one along the north. of locks and rechen and one alons the mouth of meoways and asound the basing. A central path, with arcl bridgen, to allow of feed water communication, divides it i reaches from the sucewayn. Over thewe pathe carte can pass with machinery or supplles for repaire. The tow-paths are realiy only eervice soads, as all towing, is cone by tugen Castiron mooring ponts are provided along them at about 100 -ft. Intervals.
Splay walls below and above each lock necure the safe entry of boatn. These are tangent to the lock winge and fiare out at an angle of about 25°. to the canal center line. Stone steps below each

FIG. 9. VIEW OF GUARD GATE ABUTMENT, SHOWING GATE ANCHOR BOX AND OPERATING BAR; SOULANGES CANAL WORKS, CANADA.
reache: only, would iower them suffictently to strand boats. To avoid this the surface is increased by gide basins. The middle lock ham a draft area of about $\mathbf{6 7 5}, 000$ sq. ft., and the entrance lock has neariy 580,000 日q. ft., over which their renpective "draw-ofir" are distributed. As the fuil lift of the entrance lock ($231 / 2 \mathrm{ft}$.) is only attalned at extremeiy low stages of the lake, its expenditure of water is generaliy less than the otherm. The aide ponds are connected by regulatins cuiverts, which can be made to operate automaticaily, and through these any ioss in the iower reachen is quickly rectified.
lock mecure the rapld handiins of hawsers from the lower to the upper level. In fact, easy accens to all parts of the aystem is provilied.

The toposraphy is peculiarly well auited to this bold deaign of high lift locke. The first, or tool lock (Lock 1) is located juat where the rock, Potadam aendstone. sachen the sreatost height in the Beauharnois anticiinal, and dipa sharply into the Ottawa. To the west, the rock surtace, though irregular, continues on a general leveI alishtly above the canal bottom, as far as the second lock (Loek \%). Here it rises sumclentis to piace this structure in from 2 to 12 ft of rock
outting. The ateep clay bluff, rinine, sharply from the rock at this polat, serven to enclose the lock solsaly in 60 fl . of Impervious earth. UD to the next lociz (Lock 8) the reach is a clay cu't over 80 ft. in depth, the bottom being tough blue clay. Lock 8 was from 2 to 12 ft above the rock aurface, wo pedeatals of concrete were bullt and the lock walls sounded upon them.

LOCX CONETYRUCTION.

All three of the Cascades locks are founded upon rock. The plte were excavated and the loome atone plled at owe mide for use in makinp concrete. The irregularities of the hottoms of the pits were concreted up to floor level, and upon this the alde walls werc begun. IHs. 19 hhows the general structural detalis of Lock No. 8, which will also serve to lllusirate the similar conatruction of rocke Nos. 1 and 2.
The gide wall of each lock are 355 ft . in length,
reata upon a plvot castiog, and it is held by a sudgcon and collar at the top. The geten mitter againat euch other and elome aguinat will of $18-\mathrm{jm}$. $\times 18-\mathrm{in}$. oak, which are held down br bolts burled In a mans of concrete, as demeribed for Lock No. 4.
The 1 rep gatep Fig. 15 , of thege three locke are over 40 it . hish and 28 st , wide, the clear width of the locik beling 46 ft . The facilination of the miter milis in plan is 2 normal to and 1 alons the center line of lock. The gates are of "builtup" conmtruction, the bottom barm belnis 84 Inm.
 Vancouver. The lare , iates welgh 70 tong.
Through each lock wall there in a longitudinal tuisirel 6 ft . wide and 6 tc high, with arched rool. having a total area of 67 sq . ft . These tunnels conneet with the lock chamber through 20 opening - , 10 each side, each 80 ins , in diameter, thetr cosstined area belns about 98 sq. 2t. The upper and lower ends of the tunnela are clomed by "oltories"

FIG. i.. VIEW SHOWING MASONRY OF REGULATING WEIR AND RAC = WAY BRIDGE AT LOCK NO. 4; SOULANGES CANAL WORKS, CANP UA.
$413 / 2 \mathrm{ft}$. high, and 22 ft . wlie at the base, AnishIng with ecouptns 5 ft . Flde. Across the mpper end a crosm wall $263 / \mathrm{ft}$. high (the lift of tho lock) acte as a revetment for the upper end of the plt. A breast wall, alno 23\% ft. high, upon whicin are the miter allin for the upper saten, extemis acroms about 50 ft , below the revetment wall, formins with it a head bay, from which the wall culverts are alled. All wall- wre hullt with plumb faces, and the backe are stepa. The full helght of the face is of bumonammered achlar, which in backed with concrete. Vertical recesmen, $\& \mathrm{tc}$. deep and $281 / 2 \mathrm{ft}$. long, are made in the adde wallw to allow of the zates opening bacik tiush with the general Hine of chamber wall. Fach sate turnm in a hollow quoln cut out of the store; its heel
slutces 6 ft . Whi and 6 ft . high, which are operated by chalni ard ' sunterwelghts through verthcal wells in the masonry, $8 \times 4 \mathrm{fL}$, extending from foor to coping. Theme vialves, llke the lock sates, have been mubjected to $881 / 2-f$. head, and are constantly operated under $23 / 2 / 5$. head.

To fill the lock the lower valves are closed and the upper onem opened, which operation occuples about 1 min , the lock belny full 8 minm . afterwards. The small locomotive tugn, which lome no ulme in entering the locks, are passed through in 7 minn. The aulag by jets at the floor level producen no commotion, so vensels do not surce alout. The valven being at floor level, are also enally sot at for repalry, and the alins ayntem requires no spectal foundations nor construction, but the long-

FIG. 11. TYPICAL VIEW OF EXCAVATION IN EARTH; SOULANGES CANAL WORKS, CANADA.

FIG. 12. VIEW SHOWING EARTH SLIP ON SUMMIT LEVEL; SOULANGES CANAL WORKS, CANADA.
itugral tunncis tond to widen the bace of the walls without lacsoadis the granatiles.
Comente is largoly usod hore and dicewhere on the canal. Of pro,000 cu. de of menonry, 150,000 cus. yds. are of thes nuaterial. The emential part of conerote is cement, and till was all furnimbed by the Department of Rallways \& Conals, and not by the contractors. Thus the highest grade cements oniy have been ured and in authelent quantity. The half-conen brands contrected for have invariably more than fulalled the testh, which were continuounly carried on at a liboratory ugon the work.

The masoary work was carrici on raplaly, 10 000 cu . yds of concrete and sece anhiar par month being lald during part of the yens. No building was done at nisht; in fact, the night was needed to bring up supplien of cernent, siena and mand for the next day's work. On the lock wain a courne of ashiar was fald in sull beds of 8 to 1 wiostes, approaching \%-in. in thickntes. The front of each vertical joint was plastered up for a couple of inches back before the adjoining atone was lala, and then the reat of the jolat was demhod full of

8 It. Wove; the box helme allowed to drop upelte down upon its conteuts Very uttio sevoling wat sogulred, but the conerite whe woll remmed beck of the anhlar and alons the beck molda. Tymoen molds wese of rough 10 in bearte accombled in pancls and aupported by poete and brace or anchored into the wall by telegrapin wire. The parnols wore of the same helgith as the inteps alons the back of the wall, and were used over and over agata.
4. four-meat travoler would lay 100 cm gads of nhilar and beck it up with 800 cu . yde, of conerete and place in thits 100 cm . yds. of claplacire in a ten-hcur cas provided the material was aupplited fast arough. Machine firisig of conerete was found to be quilicer, bettor and znore oconomical of coment. Carts or barrews dumped the stone in a ring arorand tite hopper, thon sand was upread over, and anally a barrel of cement for cach cuble yard of broken stonger ITwenty men wese lisgt buay mhovellas the dry materlais oves and uver toward the hopper. The malxer ald the rost, and the conarate dropped inio hozes and was huulod by loromotives or hortes to the lock. Gatem crusth-

mortar from the rear. This gave atrengtio enough to provent the soft concrete backing, which was immediately lasd, from burating through the jointm. After the concrete backing had met the whole courte was grouted.

METHOD OF BUILDING.

Generally a four-mant traveling derrick, Fig. 16, mounted upon a strong treatle about hals the height of the lock walls was uped in constructing the lock. Beneath this were the auppiy tracke, one along each well, and an outgoing empty track along the center. The two leading booms of the traveler lald the ashiar, and the two following hooms lifted and deposited the concrete backing. Between times large masses of rough rock, from the excavatiox, were run in and let fall upon the viscous concrete.
Boxes, mounted on trolleys, were filied under a Cockburn concrete-miser, which cave an almoat continuous atream. An abundance of water was usod in mixing and the walls were kept as wet as ponstble. The cuble-yard bozes were holsted off their carn, awung over the wall and tripped about
ers were used for bradives the conerete atone, and When powalble the criugers and miser ware worked in battery slide by aide.
Large quantitlew of concrete were aleo mised by hand. sand was brought up in dump carn, partitioned ofl to sive proper proportions, and the charge was apread upon a platform is a iayer about 8 ing. thick. Over this a barrel of cement was apread, and the whole theroughly mired dry to an even purple color. Generally three barrels of and to one barrel of cement were the oroportlons for the mortas. Wator was seded to make a. Hquid pante, and onto this 1 cu . Jd. of broken atone, ane and con-ras as it caime from the cruaher, but thoroughly wetied, was cumped and aproad. It was then shoveled out into four heape at the cornors of the piatiorm, then back to a haty in the middie, and iastly into cary, barrown or carts for conveyance to the walle. From 18 to 22 betches of about 1 cu .5 d . each were mised and lomed by ave or air man in ten houst.

Generally, for both amhlar and concrete, inciuding grouting and a mortar fintah on exposed faces, the expendlture of cement was one betrel to a

cublo yard. For conervte 1 barrel of cement = 8.2 cu. sho, and 8 barcole α same $=0.6 \mathrm{~cm}$ sh, and 8 berrvis of Droken otone $=25.2 \mathrm{~cm} . \mathrm{ft}$, were ueod. Great oconomy was offeoted by the use x dillplecess, often over a cuble yard in slas, whloh maved coment to the Departmont and rand and broken atone to the contractor, and which hatronce the work. Gravel would have Surther choapencd the concrote, but it was not uscel.
The achiar is all bush-hammered limestone, and of lasge alse, varying from 8 st . to 1 kgt in hoight and ofton 5 st deep and 8 ft long. The contructorn early appreciated that, as roush backs were allowed to project into the conerote beeking. the larger the area the mose proftable was the otone. Headore runnins 5 st. beck into the wall wose required at 11-8t. intervals, and the bond was strictly not lems than 12 ins, stretchert were
belns pald for. Etepe and large blook wert ot spectal prices, of trom te0 to 225 per cu. 7h.
The gencel price for coacrete, whother in reckeins of look or is mondilithe struotures, was over \$3, say $\$ 3.25$ per cu. 7. ., and the barrol of coment cont on an averase 8280 .
The derricke ueod upon the wrork had suacralls T0-ith maste of Dougles tit and co-ft. boome of the name timber. Btx wire suye wore used, and double bloaks for the boom rall, and romettines also for the mals tall. rove with \% to $\%-1 \mathrm{~s}$. oteel wire. They were all surniehed with a 12-5t horisontal evinging circle and operatce by one ramner. The holat bollert were about 25 HP., and the capaity of the derricke about 10 tons. To avold hook bolem, a face plate, lined with a 1-fis. leyer of lead, wan umed, and gave great gattufection.

FIG. 15. VIEW OF LOWER GATES; LOCK 2.
to be at least $2 \% / 4 \mathrm{ft}$ deep into the wall, but senerally they are nearly 4 ft Hollow quolns are 6×0 tt, and recem quolns are of similar crea of bed. Lerge block-stones. $5 \times 58 \mathrm{~s}$ and 3 ft . thlck, were placed under the gate pivots in a mans of con. erete, and the miter alls are becked by blocks 3 ft. In thlekneth. Lock copings are uniformily 18 Ins. thick, and 5 ft wide on top. with a 1 to 1 tront batter. Bome of these are upwards of 0 ft . in length.

The price per cuble yerd bld for anhlar was from $\$ 14$ to \$16, and included all kinde of copes, quolns, arch stones, etc., only the net content of stunes

The lock: are all tounded upon rock, but at Lock No. 1 a transvorse cravasg wan encoruntered, which extendes 12 ft . below the hoor. Erom this $8,000 \mathrm{cu}$. yds. of wet clay cravel were excevated and replaced by concrite. The bottom of thle crevice was 80 ft . below the whter curface of the Ottawn, outalde the entrence dam. In the pit for Lock No. 8, the rook alpped Irregularly below the floor, so pedestals of concrete were made under each wall, $0,000 \mathrm{cu}$. yes. ot concrete belng uned for the purpone. The plt waw 80 th In đepth, excavated larsely in bive slay. A ellp occurred at the head, where it wa proposed to
found a awiag bridge. The material wea partly cscavated and then plice were driver. Betweon these the ullpped matertal was repleced by loone stone, over which a 2 -ft platform of conerote wac lald. and the bridse built thercon.

RECULATINC CULVERTE.

No overtow welrw are ueed, but regulating culverts, Fis. 15, the denien of J. L. Allison, C. Z. are used lantead. There are two of theme communicatins betweon the alde ponde and an outtall one. Tach one conetets of twin tunnels of concrete leading through the bottom of the embankment and throttled by "Etouey" elvicee which operate
used with coonomy and guecess. It was met agalast the tace mold about 1% Ins. tron it exd held back the otone in the concrete mand tull mortar was tumped in front and the grating withdrawn.

SPLAT WALLS

Above and bolow each tock opley walls revet the sldee untll the 2 to 1 slope 10 reached by thoir spreading fare. These are very masalve, and bullt as concrete monolithe, only the coping belige of stone. Thelr Eection was determined by the Ensincering News rule: "8-7 helght and odd incher thrown in." The mean thicknese thue obtatned

FIG. 16. VIEW OF LOCK 3, DURING CONSTRUCTION.
upwards through ghefts by the usual chains and counterwelshts.
The parallel tunnels aru 6 ft . wlde and 7 ft hlch. with an arched roof 2 ft . thick, all formed as a concrete monollth. A emooth face finlah was secured by the use of tarred paper spread over the molds, againgt which a $2-\mathrm{ln}$. layer of mortar was plastered. Thls gave a mooth finish, but the imprisoned air left "worm marks." stove-plpe Iron gave a very amooth fintoh, and was much uged by the writer in curved work.
For mortar facing a large "rake," or srating, 4 ft. long and 18 ins, high, formed of vertical iron rods, set 1 In. apart llke teeth, in a flat bar, was
was multiplied by the helght and this area distributed as the case allowed. All walle have plumb faces and their backe formed in stepe, upon which, as far as posslble, loose stone flling was plled. The base projected 1 ft , front and rear, which allowed of rettlis up mold posts and correoting alinement of face. The walls veried from 120 to 140 ft In length, and were bullt without transverse bulkheads, but vertlcal allp jolnts were made where the wall joined the lock wing. Thece have proved quite sumpient for contraction, even though subjected to a range of from $-80^{\circ} \mathrm{F}$, up to 120° F. Walls of immense slse have developed halr cracke, but they are of no consequence, while
the un of transverse bulkheads in ohindranoe during construction, and a certatn defeet afterwarde. Every etructure otande upon Its owa bottom, however, ilip jotnt haviac been formed at all junctionm, and the ruculte ere mont eatlafactory after sovere sceldental tente.
Many "plums" were meed in all the walls, some of "one-man" clee otome, whore the wall was narrow or derricis could not be had. Foundation concrate made of 1 to 5 mortar and 10 parts broken etome has given sood recuith. No imitetion of mesoary couratas was permitted, but the layer mapiss were obllterated by a thorough contIng of comont whitewash.
In the oplay walle I-bolth are emieded by which horisontal $0 \times 18-\mathrm{in}$, oak fendore are nttached at about water level.
agato, and all the repalre necoseary wat to grout up the erncla.

MaCHINERT.

At each lock there are four mubnerged "ntoney" sivices $x 6$ th they are of the woll-known "Itomey" type-s plate of ated fortifed by Iboume and ollating upon neats of live rollere at cach afce. The valves are huag by chalas pacatac over pocket whecls on a horisontal abaft with counterweldhte on the tree ende (M1s. 14). The shaste can be ovoived olthor by hand or by electrio motorm. Thees and the 10^{-2} - ntee are crrased for operation from a witel 'ause mituated at the madide of the lock on tad north olde.

The lock gates are clomed and oponed by ateel I-beem having a rack attached to ome side, thte

FIG.,17. DETAILS OF nég'

- CULVERT; LOCK 2.

ARCE BRIDGES.

Alons the south elde of the reachen arch bridsea are placed through which the alde ponds connect with the canal proper (IIs. 14). Thove arch bridges are concrete monollths in which a ouccenalon of arohed opening 15 ft , span and 8.75 ft . sise are left. The bridget are all 10 ft . wide and have a stone coplas on each alle. A concrete platform 12 ft . wide and 2 ft . thick was arst lald, and upon thil the plers were bullt. Thoush many foundatuons are upon clay, timber selliages have not been uned at all. Cracke in concrete elabs have been rare and of no consequence. In places whers it was impracticable to koep otructuren tlooded during minter the loundation miab with archee upon it was rateed bodlly 6 ing, but eettled back to place
isch a pinion meahos. The point of attechment of the etrut to the $42-\mathrm{ft}$. gate is 10 ft from the bottom and 14 ft . trom the heel. A chamber is proviced in the lock welle into which the gate arm recodes.
For hanging the lock crates a pontoon (FIs. 18), 80 ft . square and drawiac 10 ft ., with a square tower about 80 ft . In holght and the full alse of the hull is umed. A gate leas is relsed from a flometrs ponition to hang vertically agalast one alde of the tower by wire cable pecting over the topat 1 wound around winche on cioh alde. The gate w then lloated into It receas, sently lowerod onto Its heel pivot and the top sceured by a ateel coller ntting over a gudgeon pln. R. \&. Juler wiore the contrectore.

EHECMRCAL INRYALLATION.

As mentioned proviousty, the power-house is in comblaation with a wast wolr aboet hall-way down the sumialt Ifroh the Greace River, which pesses under the canal at this polat belng umod of a tall race. A $20-5$ t. head is cmally weeured here

FIG. 18. VIEW OF PONTOON USED FOR HANGING LOCK GATEE.
and the area of the canal prism admla of a large discharge without creatlis an objectionable current, bealdes whioh, discharging Into the stream
eral Electrio Co., who glaced Mr. Eormoleter In eharge of the erection worls,

POWIER-HOUNE, -A gap in the couth bank, abost 120 fk . In loagth, io barred by a heary concrete wall founded upon plles (ITs. 10). The mikdie third of this is widoaed out tato the camal to form two vaulte for wheel chambern. Threi' arched openinge, clomed by "IItomey" alulces, are placed on each alde of the wheel plte to form regulating valves for the summit level. In each wheal chamber are sour Vletor whecte morting on one horlsontal shast. Both shaftes paces through the concrete dam in packlns bozen to the generatore. The dam forms one wall of the power-houme, whioh is a handsome brick bullding with sandstone trim. minge (Fis. 20).
There are two, 8-phere, $\mathbf{6}$-cycle generators of 204 K-W. each, direot-consected to the whet shafla, which make 225 revolutions per minute, senerating a prembure of 2,600 volts on the llne. Two axcltery of $15 \mathrm{~K}-\mathrm{W}$. anch arv belted disuet to the wheel shaftu. The swltehboard is of marble; there are 2 zenerators, 2 feeders aud 1 excltor panels atted with the latent operatine ingtru. menti.
DIETRIBUTION.-The pole line being on the opponite alde of the canal, the current to carried acrome In four-lead armored cablen to awitch cabln on the north bank, whence one power and

FIG. 19. VIEW OF POWER HOUSE DAM FROM CANAL SIDE.
createm no damage claims. Mr. A. M. Rice, of Dayton, O., densened the hydraulic development, and the Royal Eliectric Co., of Montreal, worked out the electric power required and its application to lockn, bridges a.d ughing. Tae contract for the work, however, was secured by the Canadian Gen-

Hight circuit is run up and one down the canal. The poles are of Britlsh Columble red cedar, dressed octagonal and painted with four coats of white lead. They are apaced 120 ft . apart, every fourth poie carrying an enclosed arc lamp of 2,000 c. p. All poles are eet 6 ft . Into the sround, the

Itre poles betres 90 ft and the lamp-ponts $\mathbf{5 0} \mathrm{ft}$. In longth.

On the upper efreult 6 wiree of No. 6 B. A 1. soft round oopper are maet, and on the lower 8 No. 1 wire and 8 No. 2. The line to protected by 01 Wurts ifshentng arrseterni, piceed wheriver Junotions are made with undormround cables
trance plort art Ifthted alose both otect. Navigation io thue as easy by mistat al by cay.
motond.-At every loek four gate and four velve molore are proviced, and one at cmen hist. way bridge. There is also a 16 -HP. motor for the canal ropelr chope. The high-teadion wiree eater a owith cabln at each took, whors two tranatorm-

FIG. 20. VIEW OF SOUTH FRONT OF POWER HOUSE.
at locky or bridzes. gix milfem of armored cable are employed.
There are 220 lons-burning, altermating-enclowed arc lamps of $2,000 \mathrm{c}$ p. each. Every lisht is aquipped with a tranmformer of 1,000 Watts capecity. Bealdet the lishta, pleced at 480 ft . Intervals along the canal bank, all the lock and en-
ors of 7,500 Watts capacity eaoh reduce the preswure from 2,500 to 220 volte. This current is led direct to the gate and valve motors by uncerground cables controlied by the operating switchboard in each cabin. To facllitate the operation 0 : the canal a bridging Bell telephone myitem connects all the locks, bridgen and onloes.

