# PROCEEDINGS 

 OF THE
## ASSCOLITION OF OMMIIOO LIIP SUUNFEOPRS

AT ITS
Firsty Annual Meeting

HELD AT OTMAWA, FBGRUARY 19 and 20 , 1eerf.



OTTAWA :
PRINTED BY A, s: WOODBURN, ELGIN STRRET. 1884.

THE ASSOCIATION OF DOMINION LAND SURVEYORS.

1 Organisod April 2tth, 1882.

OFFICERS FOR 1884.
Itrlismint . . . . . ... . .. orto J. Klotz. Viće-PResideint . . ... ... . A. C. talbot. Slc.-Treasurer - . . . . . . A. f cotton. WM. PBARCE.
Executive Commitrete
G. C. RAINBOTH.
J. P. B. C'ASGRAIN.

Auditors
\{C. F. MILES.
E. BRAY.

## LIST OF MEMBERS.

Ashe, W. A.
Armstrong, F, W.

- Abrey, G: B. Bray, Edgat Bray, S . Bigger, C. A. Burke, Jas. Breene, Thos. Beatty, D. Burnet, Peter Beatty, W. Cotton, A. F. Chipman, W. Crawford, Wm.
A Casguin, J. P. B. Dufresne, J. J. D'Amours, J. W. Dumais, P. T. C. Drummond, Thos. Desjardines, C . Doupe, J. .

Duchesne, L. M. O'Dwyer, J. S.
Dupuis, Z. C.

- Dudderidge, J.

Francis, Jno.
Fawcet, Thos,
Fitton, C. E.
Garden, J. F.
Gore, T. S,
Hermon, R. W.

- Klotz, Otto J.

Kirk, J. A.
Kains, T.
Lewis, J. B.
Miles, C. F.
McMartin, G. E. Michand, L. J.
McVittie, A. W.
Magrath, C. A.
McArthur, J. J.
Maddock, J.
Mountain, G. A.

Ogilvie, Wm.
Ond, L. R.
Pearce, Wm.
Patrick, L.
Proudfoot, H. B.
Purvis, F.
Patton, T. J.
Robertson, H. H.
Rainboth, G. C.
Rauscher, R.
Sing, J. G.
Snow, J. A.
Simpson, G. A.
Snow, T. F.
Traynor, I. Talbot, A. C. Talbot, P. C. Wilkins, F. W. Wólff, C. E. Wagner, Wm.

HONORARY MEMBERS.

The Surveyor General
Capt. E. Deville
W. F. King

Prof, Selwyn

Prof. Macoun
Dr. Bell
Prof, G. Dawsor Prof. Harrington

Andrew Russell E. E. Tache Bolton Magrath.
Gre
first anm object of the gener $\because$ As naturally nent stru mind tha unity of sympath

To
are awal to be b up and to take ever max officially by officir by us, b my last the Surv
" I peri mil

Th and quis


FIRST ANNUAL MEETING


Oltawa, Pebrua'y 19 and 20, 1884 .

The Association assembled Taesday, February 19th, in St. Andrw's Hall, at $3: 30$ P.M.
Otto J. Klotz, President, in the Chair.
On motion, the minutes of the preceding meeting were confirmed.
The President then delivered his Annual Address:
Gentlemen-It affords me pleasure at again meeting you at this our first annual meeting of the Assqciation of Dominion Land Surveyors. The object of our Association is, as stated in the Constitution, "the promotion of the general interests, and elevation of the standard of the profestion."
-i As all beginnings are difficult and ardyous, the record of our first year is natúrally simall, but I think a foundation has been laid, upon which a permnent structure can be raised creditable to the members ; but we must bear in mind that no achievement can be attained without labor and persererance, and unity of purposi. We have alreedy strengthened the bond of friendiship and sympathy, and may it so continue.

To revert to the proceedings of the year. Our meeting last yerr, as you are aware, was callod specially for the purpese of considering certhin matters to be brought before the Gevernment. At that time a memorial ras dremen. up and presented by the members to Sir.john A. Mecdpanld, whe prepingi to take the matter into consideration. To this memorial no further neply was ever made than an official acknowledgenent of the receipt thereof. Sepes officially we were informed that certain resommendations had bopn anceserted by officials in the Department to the Minister, which were fiayombly seceived by us, but whether they have been acted upon I am not aware. I repget in my last year's address having unconscioualy omitted to ingat an fatruet from the Surveyor General's report of 18\%6. I will read the orioinal to you:-
"The cost of block lines surveyed to the prewent time aveques \$85:33 per mile,

The cont per acre of subdividing the hiogke of four townchine into aectiona and quartersections hes been s.gy gents adding the cont of the hock thes

to the above acreage rates, makes the total cost of all the township lands surveyed to date to be 3.83 cents. The survey of the settled lands in the parishes on the Red and Assiniboine rivers has been more expensive, having cost $27 \frac{3}{10}$ cents per acre. This, however, cannot be considered an extravagant price, when it is remembered that an immense amount of work was involved in surveying and mapping the lands in the several parishes, showing all the holdings, with the exactness required to admit of their being described in Letters Patent; adding the expenditure for Settlement Belt surveys to that for subdividing township lands, we obtain the average cost for all farm lands surveyed to this date 4.57 cents per acre.

Let us compare the Township Survey rates proper, i.e., 3.83 cents, with the relative cost of township surveys in Quebec and Ontario.

It may be premised that previous to the Union of Upper and Lower Canada, in 1841, the surveys in the respective Provinces were performed with thif ordinary Surveyor's compass, the lines being run by the magnetic needle, and were therefore subject to gross errors, arising from the effect of local attraction upon the needle; also from Surveyors not ascertaining the variation of the latter when making their surveys; and further, no check lines were drawa in any of these surveys previous to the year 1829, the result of all which was that the lots land were not of the form or area intended, the concession or range lines in some cases being so crooked as to reduce some of the lots to one-fourth of their intended area, and increase others proportionately, giving rise to subsequent endless law suits and difficuljies between owners of the adjoining lands.

Further, surveys made by the magnetic neẹdle did not involve the opening out of lines by cutting down trees, \&c., and Surveyors could therefore draw their lines much more rapidly than by the astronomical method, which requires all obstacles to be cleared.

Since 1841 Crown Land surveys have been performed astronomically, and check lines have been run, thus ensuring accuracy in the form and area of the lots or sections.

In stating the average cost per acre of the earlier Crown land surveys in Upper and Lower Canada, the amount of work performed in surueying is not shown, so that the rate cannot be fairly compared with the present rafes. In the former only one boundary of the lot, the front, was surveyed, at present all the four are drawn, thus in the old surveys the running of one mile of line gave 800 acres, now it gives only 160 acres.

## Canarda, from 1841 cost of the Crown Lands surveyed in Upper and Lower

 acres.The Dominion Land township surveys on the other hand have been made for 3.83 cents per acre, each mile bounding only 160 acres. At equal boundaries the proportion would be $6 \mathrm{f} f$ to to $37 \frac{6}{6}$ cents per acre.

It is, therefore, respectfully submitted : "That taking in consideration the great distance of Manitoba from the older Provinces, and from its basis of survey supplies, Chicago or Ontario, the increased cost of supplies, and the
larger pay, finally, loo latter have

Now, given at \$ per cent. block lines Dennis col

The q which the surveyors that-where carried on for this re involve on

In a gan Assoc tive needs disposition couplet :

In thi in this dir other moti that shoul

In ot by diffusi problems, commandi neighborir now numb a most int subjects. here is fr Europe. not do lik

Ever one meets instrumen by experit our meeti) want and find curtai preparing the wants far less in

## 5

larger pay, and the travelling expenses of surveyors and their parties, and finally, looking at the superior character of the Dominion Land surveys, the latter have' been economically performed."

Now, gentlemen, in the report for 1881, we find the cost of block lines given at $\$ 19.20$, and of township outlines at $\$ 19$. 10 per mile, only about fifty per cent. of the cost in 1876 ; and last year I doubt ${ }^{\circ}$ whether some of the block lines will be $\$ 15.00$ per mile, or only forty per cent of what Lieut.Col. Dennis' considered reasonảble.

The question now arises, how has this change been brought about? To which the answer is, I think, that the allowances have been curtailed and the surveyors have performed more work in a season. We must admit, though, that-where so large a staff is employed, as the last few years, things had to be carried on jn a more business-like manner than when the number was small. for this redson no exception shall be taken to such departmental regulations as involve only business principles.

In a paper on "Legislative Needs of Surveyors," read before the Michigan Association of Surveyors and Engineers, the author says : "The legislafive needs of surveyors themselves are very fetw, and considering the evident disposition of the Legislature to so regard them, we are reminded of the couplet :

> "Man want but little here below,
> And . he gets it."

In this there is considerable force. But let not our energies flag even if in this direction our effort's have not been crowned with success, for there are other motives-worthier ones-the elevation of the standard of the profession that should stimulate us with renewed exertions.

In other countries similar associations exist and do good service, not only by diffusing knowledge, by interchange of ideas. by discussing practical problems, but it also places before the public the surveyofs ás a profession, commanding respect which must result, to our pecuinlary benefit. In the neighboring State of Michigan an association was formed four years ago, it now numbers about 150 members, and , here are their proceedings of last year, a most interesting and instructive book it is. It contains "papers " on various subjects. Their meeting extends over three days and evenings. Another one here is from Germany, and so there are many of others in America and Europe. With these facts before us, should there be any reason why we could not do likewise. I see none.

Every member can furnish his quota towards the ultimate success. Every one meets with difficulties in his work and overcomes them ; nqtices defects in instruments, or improves devices ; learns or discovers certain facts in nature by experience-all topics that can be prepared into a " paper" and read at our meetings. Nor is this all. In books we find a great many things that we want and many things we don't want. Again, certain subjects we will perhaps find curtailed, or not in a desirable form for a surveyor. Here is a field for preparing a "paper " by eompilation or condensation, so as to make it meet the wants of many. Really, original professional papers and books, there are far less in the world than one imagines. They are mostly compilations of
already known facts, but put into such a form as to meet the wants of a particular class. As an instance, I lately received a work "The Topographer," having read a favorable review of it in Engineering Magazine. After persual of the same I said to myself, "Well there is scarcely anything in this that I have not read somewhere before. But instead of being obliged to wade through many books, I have here the matter gathered in one, although little or ginal, yet acceptable.

It will be necessary, in order to do justice to our annual meeting, that the same be extended beyond one evening's session. Members shall be permitted to ask questions on professional subjects which will be submitted to a committee for reply. It would be desirable also to obtain the proceedings of - other associations for distribution among our members.

I am glad to see the meeting of the 14th inst. adjourned till to-day for the purpose of joining our Association. I understand that there has been some correspondence with the various railway companies with a view of oblaining reduced rates; such reduced rates to be given to surveyors upon production of a certificate entiting him thereto. Such certificate should naturally issue froon the Association, and not from the Government ; for in the first place in is doubtful whether the Government would take the matter in hand, even with the surveyors in their service and certainly not for outside surveyors, thus debarring a number of surveyors from such reduction who are fully' entitled to the same.

With reference 'to incorporation, I see no advantage to be gained by incorporation unless it were desirable to obtain control of the examinations for Dominion Land Surveyors. I think these examinations are carried on in a very efficient manner, by impartial .examiners, under appointment from the Government, and therefore have very graee doubts whether an improvement can be made- in this direction. Otherwise I think we have, as it is, all ample privileges and power to do our legitimate business; besides, incorporation would probably cost us $\$$ too. In any resolution that we may pass for our guidance, we must trust to the integrity and honor of every one for its individual adoption, and no Act of Parliament would add anything to its force ; and it is questionable whether very extensive power would be granted us by Parliament.

It seems an anomaly that in our Dominion there should be so many examinations for Surveyors, each one with limited jurisdiction. Instruments, mathematics, astronomy, and the stars are certainly equally applicalle from British Columbia to Nova Scotia. The difficulty lies in the Act pertaining to the method of survey. Each Province has her own Crown Lands, and makes her own laws relative to the survey thereof and other lands in general. Consequently it there be no consolidation of "the Land Act" of the various Provinces, there can be no general examination for Dominion Land Surveyors, in the full sense of the term.

I think. I have alluded to the important points neefssary orithe continuance of our Association-that it may exist and thrive, and not only vegetatetrusting that we all, in this matter, will show that perseverance and endurance so characteristic of a Surveyor in the field.
following 1 subject tof
G. B. Abr Jos, Burke Thos. Bre Peter Burn Willis Chi J. J. Dufre J. W. D'A P. T, C. I J. J. Burrt Jno. Fran T. S. Gor Robt. Mcl

> M. J. Cha
A. C. We

It wa Resolh Selwyn, P Dr. G. D Wm. reduced ro
-
Otre

- The

Thos


Vice



Casgrain. Audi It wo at the nex stitution It wa the Presic Crawford tives of $t$ in regard

On miotion of Thos, 4Drummond, seconded by William Crawford, the following Dominion Land Surveyors were elected members of the Association, subject to payment of the fees :-

| G. B. Abrey, | J. A. Kirk, | J. F. Snow, |
| :--- | :--- | :--- |
| Jos. Burke, C. Aylen, J. A. Snow, <br> Thos. Breene, P. C. Talbot, Wm. Wagner, <br> Peter Burnet, L. M. Duchesne, R. Rauscher, <br> Willis Chipman, Z. C. Dupuis, A. Driscoll, <br> J. J. Dufresne, G. E. McMartin, J. P. B. Casgrain, <br> J. W. D'Amours, L. J. Michaud, W. Beatty, <br> P. T. C. Dumais, G. A. Mountain, D. Beatty, <br> J. J. Burrows, L. Patrick, G. A. Simpson, <br> Jno. Francis, F. Purvis, Wm. Murdoch, <br> T. S. Gore, H. H. Robertson, Geo. McPhilips, <br> Robt. McPhilips, Geo. Bemister, J. Kirk, <br> M. J. Charboneau, R. J. Jephson, J. McAree, <br> A. C. Webb, J. B. Lewis, T. J. Patton. |  |  |

It was moved by A: F. Cotton and seconded by Thos. Drummond and
Resolved, That Captain E. Deville, W, F. King, Andrew Russell, Prof. Selwyn, Prof. Dr. Bell, Prof, Macoun, Prof. Harrington, E. E. Taché and Dr. G. Dawson, be honorary members of this association.

Wm. Crawford reported the offers of various railroad companies granting reduced rates to surveyors of the association.

## EVENING SESSION.

Otto J, Klotz, President, in the Chair :
The officers for the ensuing year were then elected.
Thos. Fawcett and A, C. Talbot acted as scrutineers.
President-Otto J, Klotz.
Vice-President -A, C. Talbot.
Sec.Treasurer-A. F. Cotton.
Executive Committee-Wm Pierce, G. C. Rainboth and J. P. B. Casgrain.

Auditors-C. F. Miles and Edgar Bray.
It was moved by Thon. Drummond and seconded by Thos. Fawcett that at the next general meeting the words "be held "in clause seven of the constitution be changed to "commence."

It was moved by Thos. Faweett and seconded by Thos Drummond. that the President, together with the Executive Committee, J. A. Snow, Wm. Crawford and Wm. Wagner, be appointed to communicate to the representa. tives of the railways, the action of this meeting, and make further inquiries in in regard to certificates which shall be adopted by the Committee appointed.

It was moved by Wm. Ogilvie, seconded by J. P. B. Casgrain, and Resolved, That the Secretary be authorized tocorrespond with the various instrument makers and dealers, and outfit supply dealers with a view of obtaining reduced rates thereon to the members of this association.

It was moved by Jos. Burke, and seconded by A. W. McVittie, and
Resolved, That this association communicate, through its Secretary, with the cattle association of Fort Macleod, with a view to procuring the liberty of one Wm. Adshead, an employee of Mr. L'Amours, D. L. S., who, in Sept. 1883, was sentenced to a term of two years' imprisonment for killing a beef, the property of Emerson and Lynch, of High River.

## FEB. 20.-AFTERNOON SESSION.

## Otto J. Klotz, President, in the Chair :

It was moved by J. H. Reiffenstein, and seconded by G.C. Rainboth, and Resolved, That Mr. Bolton McGrath be an honorary member of this association.

It was moved by Wm. Crawford, and seconded by G. C. Rainboth, and
Resolved That in the opinion of this association the members should patronize the Chicago, Milwaukee and St. Paul Railroad, as they have shown more willingness to meet our views.

It was moved by Wm. Crawford, and seconded by G. C. Rainboth, and
Resolved, That a copy of the recommendation in favor of the members of this association, travelling via the Chicago, Milwaukee and St. Paul Railroad and of this resolution be forwarded to Mr. Stephenson, General Passenger Agent of the Grand Trunk Railway. And that the Secretary shall call the attention of Mr. Stephenson to the fact that the Grand Trunk is the only railway between here and Chicago, mentioned on the back of the certificate of members of this association obtaining special rates.

The President then read the following papers on projections :-
My object in selecting this subject was to compile in a condensed form the principal methods used in Projections, as the subject is barely touched upon in works on surveying, and thus difficulty is experienced in obtaining information thereon. The best treatise on the subject is found in the United States Coast Survey Reports.

The object of Maps and Charts is to represent a portion of the Earth's surface upon a plane surface and a reduced scale with as much accuracy as possible. As it is impossible to represent a spherical surface exactly on a plane surface, different devices or methods have been adopted according to the extent or position of such portion of the Earth to be shown, or to meet special requirement.

The oldest forms of Projections are the perpective projections, as these depend upon the position of the observer's eye. Commencing with these we have :

First-The "Orthographic Projection," in which the eye is supposed to be situate at an infinite distance, the projecting rays being parallel. The
plane of made, is c the surface made on $t 1$ straight lir the diamet inclination projected. intersectio circle, the latitude in It will be very much

Secol
supposed primitive parallel to are equal of all circ whose pla demonstra base. An upon the s the same a and in fil Hipparche

Thir
primitive
Projection in the int always be this metho plane is ta tangent of In fig
This
more rece of the fac sphere app Four eye is supp in the axis from figur E C being upon whic projected

## 9

plane of that circle of the sphere on which the representation or projectiyn is made, is called the Primitive Plane ; and the intersection of this plane with the surface of the sphere the Primitive Circle. In figure I, the projection is made on the plane of a meridian, the parallels of latitude being projected into straight lines and the meridians into ellipses, the major axes of which equals the diameter of the sphere, and the ${ }^{*}$ minor axes to twice the cosine of the inclination between the plane of projection and the plane of the circle to be projected. In figure 2, we have the equator for primitive circle, and as the intersection of the planes of the meridians lies in the axis of the primitive circle, the meridians will be projected into straight lines and the parallels of latitude into concentric circles with radii equal to the cosine of the latitude, It will be noticed that in this projection the outer portions of the sphere are very much contracted.

Secondly-Comes the "Stereographic Projection." In this the eye is supposed to be upon the surface of the sphere, and to occupy the pole of the primitive circle, from which it is seen that all circles-the planes of which are parallel to the primitive plane-are projected into circles, the radii of which are equal to the semi-tangents of their polar distances. Also the projections of all circles, the planes of which are oblique to the primitive planes and whose planes do not pass through the eye, are circles. This property is demonstrated by the sub-contrary section of an oblique cone with a circular base. Another property of this projection is, that if two arcs cut each other upon the surface of the sphere at a certain angle, their projections will have the same angle. In figure 3 the projection is made on the plane of a meridian, and in figure 4 on that of the equator. This method wus invented by Hipparchus 150 B.C., the most eminent of the ancient astronomers.

Thirdiy-Supposing the eye, placed in the centre of the sphere and the primitive plane tangent to the surface : this produces the Gnomonic or Central Projection, and was introduced by Thales of Miletus 600 B.C. The eye being in the intersection of the planes of all meridians, it follows that they will always be projected into straight lines. A hemisphere can not be shown by this method as the projection would be at infinity. In figure 5 the primitive plane is tangent at the pole, the radii at the projected circles being equal to the tangent of the polar distance.

In figure 6 the primitive plane is tangent at the equator.
This method has been employed for the construction of stat charts, and more recently for deiineating the apparent track of shooting stars, on account of the facility with which the radiant point can be found ; great arcs of the sphere appearing as straight lines on the projection.

Fourthly.-The "Globular, or equi-distant Projection," in which the eye is supposed to be $\sqrt{1 / 2}$ times radius, or $\operatorname{Sin} .45^{\circ}$ radius above the sphere in the axis of thesprimitive circle. The principle involved becomes apparent from figure 7 , in which E is the position of the eye or projecting point, E C being equal to $r \operatorname{Sin} .45^{\circ}$; and A B the trace of the primitive plane upon which the projections are made. Both parallels and meridians are projected into ellipses. This method was proposed by Lahire in I7oi, and

## 10

was designed to avoid, as far as may be, the contraction of the orthographic, and the exaggeration of the stereographic projection near their respective outer portions.

The foregoing perspective projections are usually employed for the representation of hemispheres, but are not well adápted for maps or charts on a large scale, showing more limited portions of the earth. For this reason another system was devised, that of development. As a spherical surface, can it itself not be developed, a cone or cylinder is supposed tangent to the sphere, the former generally at the middle latitude, i.e. of the area to be represented, and the latter at the equator. Sometimes the cone is supposed to make double intersections with the area, for closer representation of the different systems having straight lines for both meridians and parallels.
"Mercator's Projection" is the most important. (See figure 8.) It is named after the inventor, who lived in the sixteenth centrly ; and is generally eqmployed for the purposes of navigation. The axis of a cylinder tangent at the equator is coineident with the axis of the sphere, and in developing the cylinder the projected meridians become parallel and equi-distant straight lines. These are intersected at right angles by straight lines, representing parallels so drawn that at every point of the chart the ratio of the degree of longitude to the degree of latitude is preserved the same as on the correspondng point of the sphere. Any straight line on the chart represents a rhumb line, and indicates a particular mutual bearing of two places so connected. On the sphers such a line is a loxodromic curve, and it possesses the property of cutting the meridians at equal angles. In the higher latitudes, in consequence of enormous exaggeration, the projection loses its value, Its want. of uniformity of scale of distances is its great defect, and renders it useless for any other than the special nautical purpose for which it was designed.

In the following method buţ one system of straight lines is presented.
"Flamsteed's Projection." (See figures 9 and 1o. Here a straight line is taken, equal to the rectified arc of the middle meridian, between the latitudes L and $\mathrm{L}^{\prime}$ (in figure 9 equals $\frac{\overline{1}}{2}$ ); upon it equal distances for equal differences of latitude are laid off, and through the points of division perpendiculars to the meridian are drawn, which represent parallels of latitude. Upon these parallels distances are laid off, bearing the same proportion to the distances on the meridian as the cosine of the latitude of each parallel does to radius unity. Finally drawing through the points of the same longitude thus determined curved lines, which will represent the various meridians.

In figure 9 , the co-ordinates of any point $P$ would be

$$
\begin{aligned}
& x=\pi \overline{\pi I} r \operatorname{Cos} l_{\text {TB }}^{n 0} \\
& y=\pi \overline{T 1} \quad{ }_{\text {Tष }}^{l}
\end{aligned}
$$

in which $r=$ radius, $l=$ latitude, $\pi^{\circ}=$ difference of longitude.
Its principal defect is the obliquity, of intersection of the, projected parallels and meridians, especially in the higher latitudes and at some distance from the central meridian. It preserves, however, the proportionality of areas of zones in the projection and on the sphere. It is most effectively employed in mapping equatorial countries.

The supposed projected and equa The cent the other parallel t to scale a

Fror
located p
lines repr
the midd their true " Bc
extensive that each sphere ; The radi co-tangen equality adopted thap of another n very large parallels overcome
" Th name imp We have, parts, but cone ; the of Natitur the true le are divide the middl longitude. along the the same,
it. Henc ones on th States Co brought fo

In th projection difficult b accomplist

## ii

The "Simple Conic Projection." (See figure 12.) In this a cone is supposed tangent to the middle parallel of that part of the sphere to be projected. The side of this cone will be the radifls of the developed parallel and equal to (see figure II) $r \operatorname{Cot} l$, where $l$ is the latitude of tangent point. The centre being in the middle meridian produced. From this centre also the other parallels are described. On the central ${ }^{t}$ or middle meridian and parallel the degrees of latitude and longitude respectively are laid off according to scale and proportional to those on the sphere, i.e., as'r $r$ : $\operatorname{Cos} l$.

From the centre of the tangent cone stright lines are drawn through the located points on the middle parallel cutting the other parallels ; these straight lines represent meridians. The length of degrees on all parallels excepting the middle one is but slightly different from what it would be were they of their true length proportional to those on the sphere.
"Bonne's Projection." (See figures 13 and 14.) This most useful and extensively used projection differs from the simple conic development in this, that each of the concentric parallels of latitude is divided the same as on the sphere ; through these points of intersection the curved meridians are passed. The radius of development is determined as before, being equal to the co-tangent of the latitude of the middle parallel. It preserves the proportionate equality of the areas of the sphere and on the projection. This projection was adopted by the Dépôt de la guerre at the beginning of this century for a large thap of France. As this projection is a modification of the simple conic another modification, however, becomes apparent when it is noticed that for very large areas, and particularly in the higher latitudes, the meridians and parallels intersect quite obliquely. This defect is, in a great meâsure, overcome by
"The Polyconic Projection." (See figure 15.) This projection, as its name implies, employs many tangent cones, theoretically an infinite number. We have, as before, the rectified arc of the middle meridian divided into equal parts, but each parallel of latitude is independently developed from its tangent fone ; the developed arcs are therefore not concentric, and hence the degrees of Natitude, east or west of the middle meridian, somewhat increased above the true length which is only preserved on the middle meridian. The parallels are divided into equal parts, such parts beating the ratio to similar parts on the middle meridian as Cos $l$ to unity. Curved lines then join points of equal longitude. The intersection of meridians and parallels forms right angles along the middle meridian only, but nowhere do the angles differ much from the same, so little that even on a map of large extent the eye can barely detect it. Hence the similarity of the figures on the sphere and the corresponding ones on the projection is very close. This projection is due to the United States Coast Survey, being one of the many inventions and improvements brought forth by it.

In the construction of maps and charts representing large areas, by this projection it will be necessary to construct arcs of very long radius; as this is difficult by the ordinary method, another one has been devised. This is accomplished by the method of co-ordinates. In figure 16 let $\mathrm{A} . \mathrm{B}$ be the arc
to be drawn, DE a tangent thereto, at the middle meridian C F; F the centre of the developed cone; $l$ the latitude of the parallel; $G$ the point thereon, whose co-ordinates are to be found ; N , the normal for latitude $l$; $n$ the difference or longitude between $G$ on sphere and middle meridian; $O$, the angle subtended by $n$, at F , and the middle meridian and tangent the axes of reference. then-

> Radius of parallel $=N$ Cos $l$.
> Radius of developed parallel $=\kappa=N$ Cot $l$.
(For more accurate results the normal is employed, instead of the radius of the earth.)

But as arcs of equal length subtend angles inversely proportional to their respective radii, we have

$$
\begin{aligned}
& n: 0: N \cot l\} N \text { Uos l. } \\
& \therefore O=n \sin l .
\end{aligned}
$$

The co-ordinates of any point G, are GI and GH.
$G I=C H=x=R \sin \theta$. $G H=I C=y=R$ versin $O=2 R \cdot \sin ^{2} \frac{1}{2} O=x \tan \frac{1}{2} O$.

These are the absolute values of the co-ordinates, but for small differences. of longitude the arc GC and chord G C may be considered coincident, and the angle GCH being equal to $1 / 20$, hence

$$
\begin{aligned}
& 1 / 20, \text { hence } \\
& x=G C \operatorname{Cos} \frac{1}{2} O \\
& y=G C \operatorname{Sin} \frac{1}{2} O
\end{aligned}
$$

the different values of which have been tabulated for the construction of maps.
In this manner successive points are established from the tangents for the various parallels, and lines joining those of equal longitude furm the meridians.

- Places given in latitude and longitude are located by means of the previously established meridians and parallels.

For small values of $O$, the ordinates may be considered to vary as the square of the abscissæ, i.e., in figure 16: if $\mathrm{MC}=2 \mathrm{HC}$ then $\mathrm{KM}=4 \mathrm{GH}$.

This property is, strictly speaking, confined to the parabola.
Wm. Ogilvie then read the following paper, on "The Rrlative Value between Ordinary Chaining and Absolute Distance:"-

In the summer of $\mathbf{1 8 8 1}$, while detained at Qu'Appelle waiting for supplies, I made some experiments to ascertain approximately the value of chaining as prescribed in the Manuel when compared with the absolute distance.

The ground around $Q u$ 'Appelle is very favorable for such operations, as in the valley around the Fort the surface is very smooth and level, while along the hillside forming the valley as rough ground as one can wish for can be found ; and by a combination of both, lines can be found of varinus degrees of roughness.

The nature of the ground and the extent of my determinations are shown in the following diagram.

Orthograpthic Projection

- orv plane of Meridian

on pratae of Eiquator


Stercograptic Projection
on phane of Meridian

on plame of Diqueutor


## Ginomonic Projection


artjeteree ceregeret ar. Iigrector



Mercator's Projection




Simple Conic Projection


$$
\begin{gathered}
a \\
\cdots \\
0
\end{gathered}
$$

## Bonneis Projection


fig 13


Polyconic Projection
flg 15

$\theta$



A post and a f was ca establis comme that the point B of knov interval post to first pos in A; the san of the ta and the At a dif repeated The thr temperat

## The

## purpose i

difference
made as i
is 18.735
distance
feet and,
extra leng
such a ler ground w

The

The length of the base AB, was determined in the following manner': A post was firmly driven into the ground at $A$, a nail was driven into this post and a fine mark on the nail head was the initial point of the base. The transit was carefully set over this mark and the telescope fixed on a mark similarly established at B. Posts were then driven firmly into the ground 66 feet apart, commencing at $A$, until the whole distance was thus posted, care being taken that their tops were in the same plane vertically and horizonally as A B, the point B was found to be 3 feet 6 inches higher than A, A standard steel tape of known length was then stretched between those posts and supported at intervals of 8 feet, so as to be practically a straight line from the top of one post to the top of the next. A knife edge mark' was then put in the top of the first post from $A$ at the distance (by the tape) of 66 feet from the initial point in A; this knife edge mark served as the initial point for the next space where the same procedure was repeated, and so on to point B. The temperature of the tape was taken at the beginning, middle and ending of the measurement, and the mean of the three used in the reduction of the temperature correction. At a different time of the day and different temperature, this process was repeated from $B$ to $A$, and on the following day again repeated from $A$ to $B$, The three measurements, corrected for error of tape and reduced to the temperature of $60^{\circ} \mathrm{Fah}$,, stood thus :


The probable error of the mean is a small fraction of a foot, and for the purpose intended, the mean is near enough the absolute to make no appreciable difference in the result sought. The reduction of A B to the horizonal was not made as it would be inappreciable also. The mean reduced to Gunter's chains is 18.7358 . The chains were put over the base and adjusted to give the distance as determined ; this necessitated a length in the 66 feet chain of 66 feet and ${ }^{708}$ of an inch, and in the 100 feet chain 100 feet and 700 . This extra length eliminates the effect of curvnture in my chaining, my pins being of such a length that the ends of the chains are generally about one foot above ground when they are being stretched.

The angles of the triangles as measured were as follows :

| In triangle A BC | $\begin{aligned} & \mathrm{A}=50.3993 \\ & \mathrm{~B}=91.4230 \\ & \mathrm{C}=38.1821 \end{aligned}$ |
| :---: | :---: |
| - | 180.0004 |
| In triangle A D C | $\mathrm{A}=50.3960$ |
|  | $\mathrm{C}=94.1105$ |
|  | D=35.4943 |
|  | 180.0008 |

> In triangle A D E

## 14

$$
\begin{aligned}
& A=54.0463 \\
& D=72.5996 \\
& E=53.3540
\end{aligned}
$$

179.9999

The side AC lay on very smooth chains, or 1999.80 feet. The mean prairie, its computed length is 30.30 each chain gave 30.202 chains, and three independent measurements with ment justifies me in saying that, with faoc.02 feet, and their close interagreemile can be chained with our steel band care, on a very plain surface, one from the absolute distance.

The computed length of AD is 52.051 chains, or 3435.36 feet. Three independent measurements back and forth with each chain stood as follows :-

Gunter's Chain-Error.

$$
\begin{aligned}
\text { Ist. } & =52.057+.006 \\
\text { 2nd } & =52.046-.005 \\
\text { 3rd } & =52.059+.008 \\
\text { Mean } & =52.054
\end{aligned}
$$

The part BD of this line passed th
feet high. The slope correction through scrub, and up a hill-side 240 chaining with the Abney Hand Chronometer.

In this case the ence as .8 of a link + , and . 5 feet + , and I. 36 feet - , with the , occurs with the Gunter's chain, and I. 24 mile of such ground we might anticipate So that proportionately on a measurement, and the probabilities about even error of 1.8 feet in a single or - , as an inspection of the six measuremen as to whether it would be +

The line DE spanned fr creek several times, and ran over sost to crest a ravine 250 feet deep, crossed a half this distance was covered with sharp knolls in the bottom. More than 52.515 chains, or 3466 feet.

Five independendent measurements of it, with each chain corrected to temperature, and the slope corrected for each measurement independently, as in AD , stood as follows :

$$
\begin{aligned}
& \text { 100-feet Chain. }- \text { Error. } \\
& \text { 1st. }=3436.6+\text { Feet. } \\
& \text { 2nd }=3435.2-.16 \\
& \text { 3rd }=3434.3-1.36 \\
& \text { Mean }=3335.36
\end{aligned}
$$

give 8
survey
this.
Ar
this I pulled or mod many o

Th
be with
much as has a + an extre theoretic ground,
$+2.5 \mathrm{l}$
the Man
A
statemen very diffi found by

The
all very d

Over
of ravines
but where the measu

Over
Over
In the chains diff tion. The cipitous, w quently to deduced fr chaining, Cypress H agreeing w any definite to make a c To those ol
ngth is 30.30 urements with se interagree1 surface, one than 6 inches

Three inis follows :-
rill-side 240 $y$ for each

## at a differ.

 and 1.24 ately on a in a single uld be +crossed a Iore than length is
ected to ently, as
give 8.22 links in a mile, which probably never would be exceeded on a survey after the men had become familiar with the chains in such ground as this. This was the first very rough chaining my men did that season.

An inspection of the errors shows that all but one have the minus sign : this I account for by the fact that on steep slopes more of the curvature is pulled out of the chain than the same tension would pull out of it on a level, or moderate slope. On this line nearly every chain had to be sloped and many of them very steep, some as much as $35^{\circ}$.

This series goes to show that on a mile of country as rough as it well can be without being precipitous, with green chainmen, we might anticipate as much as 8 . links of an erior, with the probabilities 9 to ithat the correction has a + sign, or should be added to the chaining. This, however, would be an extreme case, and if the series is of any value in the way of supplying a theoretical correction to be applied to a section side, measured over such ground, the mean of the to measurements reduced to a section side would give +2.5 links as the correction to be applied to chaining done as prescribed in the Manuel to reduce it to the absolute.

A not uninteresting appendix to those determinations will be the tollowing statement of comparison berween the distances as found by chaining over some very difficult ground on the 4th Initial Meridian, and the same distances as found by careful triangulation.

The line crosses the south branch of the Saskatchewan River three times, all very deep ( 350 feet) and rough.

| 1st crossing chained, | 130.875 | chs. | Triangle, |
| :--- | :--- | :--- | ---: |
| 2nd | " | 90.852 |  |
| 3rd | " | $\mathbf{9 6 . 1 3 6}$ | "28.080 |

Over the valley of Battle Creek in the Cypress Hills, and over a couple of ravines in the same hills, all of which were very deep, rough and wooded; but where the chainmen had plenty of time to do their work very carefully, the measurement and triangulation stood as follows :-

Over Battle Creek, chaining, 324,065 chs. Triangle, 324,095
Over the ravines it stood, chaining 172.84 . Triangulated, 172.89 .
In the second crossing of the Saskatchewan, the principal and check chains differed to links, the check chain agreeing exactly with the triangula. tion. The bank of the river here was very steep and rocky, some places precipitous, which accounts for the difference, as the principal chain had frequently to be broken where the other spanned the obstacle. A correction deduced from the triangulations over the Saskatchewan, to be applied to chaining, would have a - sign, while one deduced from the work in the Cypress Hills would have a + sign ; the later agreeing and the former disagreeing with that deduced from the determinations at Qu'Appelle. Before any definite value could be given to any such correction, it would be necessary to make a comparison of a much more extensive series of such determinations. To those of the profession who have kept notes of such matters, I hope these
statements will be of use, by enabling them to make a much more extended comparison.

It was moved by Wm. Wagner ahd seconded by J. B. Lewis, and
Resolved, That the paper just read by the President be printed with the minutes of the Association, and also the paper of Wm. Ogilvie.

It was moved by Willis Chipman and seconded by Wm. Wagner, and
Resolved, That the President, Vice-President, Secretary and the Executiv Committee make the necessary arrangements to have read before the next annual meeting of this Association a series of papers on practical and theoretical surveying; the Committee to print and distribute programme at least one month before such annual meeting,

It was moved by Thos. Drummond, seconded by Wm. Ogilvie, and
Resolved, That an engrossed address be presented to Mr. Andrew Russell as a mark of respect for his long and able services, and the many obligations the Profession are under to him ; and that the President prepare the same and have it engrossed.

It was moved by Thos. Drummond and seconded by Wm. Ogqlvie, and

Resolved, That the sum of five dollars be paid for the use of St. Andrew's Hall.

The annual meeting then closed.

## HONORARY MEMBERS PRESENT.

W. F. King Inspector of Surveys.

## MEMBERS PRESENT.

> Otto J. Klotz,
> Wm. Ogilvie,
> Thos. Fawcett, Edgar Bray,
> C. F. Miles,

> Thos. Drummond,
> G. C. Rainboth,
> A. C. Talbot,
> W. Chipman,
> C. A. Bigger,
> I. Traynor,
> A. W. McVittie,
> G. B. Abrey,
J. A. Snow,
P. C. Talbot,
G. A. Mountain,
J. Dudderidge,
J. Reiffenstein,

Wm. Crawford,
Wm. Wagner, Jno. Francis,
J. W. D'Amours,
Z. C. Dupuis,
L. M. Duchesne,
J. J. Dufresne,

Jas. Burke,

Ont
G. C. Ra

McLatchi dence, an engrossed

To AN
tim feeble ma

Duri
old Provi thrnughou character

In th
Interior, duty, rega

A ge of honor.

But 0
It wa upon the It was you magnetic

Thro standard, may we st we of so $v$ May jour rema

## And

A. F. CO

Sec.

On the 22nd of March, 1884, the following surveyors-Otto J. Klotz, G. C. Rainboth, Wm. Ogilvie, Fred. Snow, C. Bigger, J. K. McLean, J. McLatchie and A. F. Cotton-waited upon Mr. Andrew Russell at his residence, and presented him with the following Address, which was very finely engrossed and illuminated, by Wm. Bruce of Hamilton :-

## To ANDREW RUSSELL, Esq:

HE Snrveyors throughout the Dominion of Canada take this opportune time for presenting you with this Address, expressing as it does in but a feeble manner the esteem in which you are held by the profession.

During your fifty-four years of public service in the Departments of the old Province of Canada, and of the Dominion of Canada, you have preserved throughout that high standard of public morality, integrity and faultess character so worthy of emulation.

In the Crown Lands Department, as well as. in the Department of the Interior, you have left your ineffaceable mark; ever prompted by the sense of duty, regardless of personal ends

A generation has seen you in harness, unassuming, but treading the path of honor.

But our gratitude centres especially upon your professional career.
It was you who introduced into Canada the use of the transit theodolite upon the public surveys, displacing the less accurate and variable compass. It was you who pointed yo the stars for a sure guide, instead of to the fickle magnetic pole.

Through your unceasing efforts surveying has attained its present high standard, ever aiming higher, and now is an honorable profession. Rightly may we style you the father of astronomic surveying in Canada, and proud are we of so worthy a progenitor.

May the laurel wreath you have won, resting in its snowy bed, brighten jour remaining days in your quiet retreat.

And will posterity record :
"His work is well done."
Signed on behalf of the Surveyors, by

A. F. COTTON,<br>Sec.-Treasurer.<br>OTTO J. KLOTZ,<br>Pres. of Assoc'n Dom. Land Surveyors.

