FOURTEENTH ANNUAL REPORT

0NTARIO AGRICULTURAL COLLEGE

AND

EXP 况IMENTAL F'ARM,
1889.

TORONTO :
PRINTED BY WARWICK AND SONS, 68 AND 70 FRONT STREET WEST. 1889.

ADVISORY BOARD.

A. Blug, Deputy Minister of Agriculture, ex-officio, Toronto. John I. Hobson, Mosborough, County of Wellington.
John McMillan, M.P., Constuafee, Oounty of Huron.
J. S. Smith, Ailsa Oraig, County of Middlesex.

Edward Jepps, Bond Head, County of Simcoe.
G. B. Boyce, Norham, County of Northumberland.
D. A. Dowling, Appleton, County of Lanark.

William Donaldson, Woodstock, County of Oxford.
Chairman-John I. Hobson.
Secretary-A. Blue.
Executive Coamittee-John I. Hobson, John MoMillan, M.P., and Ebward Jeffs.

COLLEGE STAFF.

1. James Mills, M.A., President. English Literature and Political Economy.
2. Thomas Shaw. Agricultare, Live Stock and Arboriculture. 3. C. C. James, B.A. Inorganic, Organic, Agricultural and Analytical Chemistry.
3. J. H. Panton, M.A., F.G.S. Geology, Botany, Zoology, Meteorology and Horticulture.
4. F. C. Grenside, V.S.

Veterinary Anatomy, Pathology, Materia Medica and Obstetrics; Practical Handling and Judging of Horses.
6. J. W. Robertson.

Dairying.
7. E. L. Hunt, B. A.

English Literature, Arithmetic, Mensuration, Mechanics, Levelling, Elementary Surveying and Book-keeping.

8. Oaptain Walter Clarke.

Instructor in Drill and Gymnastics.

LETTER OF TRAN
Report of the
Report of the P
Report of the
Report of the F
Report of the P
Report of the P
Report of the P

CONTENTS.

LETTER OF TRANSMITTAL Page.
Report of the President. 1
Report of the Professor of Geology and Natural History 3
Report of the Professor of Chemistry 41
Report of the Foreman of the Horticultural Department 57
Pleport of the Professor of Daitiying, 75
Report of the Profgssor of Agriculture 79
Report of the Physhclan. 117

0NTARIO AGRICULTURAL COLLEGE

AND EXPERIMENTAL FARM.

Guelph, January 2, 1889.
To the Honourable Oharles Drury,
Minister of Agriculture:
Dear Sir,-I have the honour to submit her swith the Fourteenth Annual Report of the Ontario Agricultural College and Experimental Farm.

In this Report we have reviewed briefly the work of the year 1888 under seven heads, as follows:-

PaRt I.-Report of the President.
part iI.-Report of the Profrssor of Geology and Natural History.
Part III--Report of the Profebsor of Ohemistry.
PaRT IV.-Report of the Foreman of the Horticultural Department.
Part V.-Report of the Profgssor of Dairying.
Part VI.-Report of the Professor of Agriculture.
Part VII.-Report of the Physician.
I have the honour to be, sir, Your obedient Servant,

JAMES MILLS,
President.

1 (A.a.)

The prospects of ago. Farmors are ac they find themselves. of them are earnest branch of their busin

The comparativ balanced by the higl ever, especially in po River St. Lawrence disastrous in its effer nearly every kind of

The law of supp have no doubt that improved. In the n markets, and closer a

For some years and Canada have g grammes of study, as aimed at in universiti has been said in fav against it. Able and an argument in supp the present time, in methods, and a grov that is, the schools o life.

Two things have mediate schools :
(1) That they mental branches of a would be.
(2) That they which they are bert a ment in which they

PART I.

REPORT OF THE PRESIDENT.

AGRICULTURAL OUTLOOK.

The prospects of the agriculturist are, perhaps, a little brighter than they were a yearago. Farmors are adapting themselves more or less to the altered circumstances in which they find themselves. They are relying less on wheat than they did formerly, and many of them are earnestly studying how they can reduce the cost of production in every branch of their business.

The comparatively light crops in certain localities have been more than counterbalanced by the higher price ohich are paid for farm produce. In some sections, however, especially in portions of the counties which border on the Georgian Bay and on the River St. Lawrence as far east as Brockville, the drouth of June and July was so disastrous in its effects that no price can make up for the great falling off in the yield of nearly every kind of crop.

The law of supply and dmand and of equal interest must ultimately prevail, and I have no doubt that before very long the condition of Ontario farmers will be much improved. In the meantime, however, there is need of econnmy, better methods, better markets, and closer attention to business.

EDUCATIONAL TENDENCIES.

For some years past the leaders of educational work in England, the United States, and Canada have given muca prominence to written examinations on elaborate programmes of study, as the most reliable and satisfactory means of accomplishing the objects aimed at in universities and in schools of all grades, from the highest to the lowest. Much has been said in favor of this method; and some strong objections have been urged against it. Able and learned men may be quoted on both sides, and we shall not attempt an argument in support of either, but simply call attention to the fact that there are, at the present time, in all the countries named, a maked reaction in favor of simpler methods, and a growing desire to make the work in primary and intermediate schools, that is, the schools of the great majority, point more directly to the duties of every day
life.

Two things have been urged against elaborate courses of study in primary and intermediate schools :
(1) That they have a tendency to make the instruction and training in the fundamental branches of an English education less thorough and satisfactory than it otherwise would be.
(2) That they educate a large number of people away from the occupations to. which they are bert adapted, by developing within them a desire for some sort of employ. ment in which they can make a living without manual labor.

Thus, it is claimed, the more thoroughly equipped teachers and more valuable appliances of the present time, are not producing any better results than we formerly had in the elements of an English education, while the introduction of more advanced branches of a purely literary character is making many people dissatisfied with their lot, and inclining them to leave the farm and the workshop for the overcrowded professions, and for various would-be genteel occupations in which men are trying hard to make a living by their wits.

The stipulation of the City of Toronto, in its bargain with the University, to the effect that the School of Practical Science he enlarged and strengthened; the action of the Baptist denomination in organizing and equipping a mechanical department in their College at Woodstock ; the outcry for technical instruction in the United States ; and the strong articles on educational results which have lately appeared in scme of the English papers and periodicals-are all only so many indications of a reaction against prevailing methods, and of a growing desire for such modifications of our system as will cause it to strengthen and develop, rather than weaken and cripple, the great producing industries of the country.

As regards our programme of studies, especially in our Public Schools, I am not sure that it is anything like so elaborate as it has been represented; and 1 am inclined to think that the results, even in the most useful elementary branches, are considerably in advance of what they were twenty or thirty years ago. But be that as it may, I agree entirely with those whö maintain:
(1) That the primary and constant aim of our Public Schools should be to teach well the elements of an English education-to make all the pupils who attend these schools proficient in reading, writing, spelling, arithmetic, English grammar, composition, and an outline of geography.
(2) That whatever is done in the Public Schools, over and above the elementary branches given above, should have more or less direct reference to the important industries in which the great majority of the pupils will engage after they leave school.
(3) That the standard for admission to the High Schools should be raised, with a view to keep children longer in the Public Schools, and thereby make them more proficient in those elementary branches which are most likely to be of service to the great majority in the work of after life. If this were done, we think the results of Public School work would be better than they now are, an I the number of boys drafted into the High Schools and thus weaned away from the most important occupations, would not be nearly so large as it is at the present time.

We, of course, admit that the mere passing of the entrance examination does not place on boys any obligation either to leave the Public School or to enter the High School; but it should be borne in mind that the work of the teacher is of necessity judged very largely by the results of various examinations. He teaches with that fact more or less prominently in view ; and, therefore, those pupils who stay in the Public School after they have passed the entrance examination or bave done the work prescribed for it, very frequently have either to prepare for the third-class examination or continne their studies with but little attention from the teacher. For that reason, we think, the fifth class in the Public Schools generally amounts to little or nothing, and, therefore, we would raise the standard for the entrance examination, so that candidates could not pass it without a much more thorough and exact knowledge of the elementary branches than is now required.

AGRICULTURE IN THE NORMAL SCHOOLS.

Our progressive Minister of Education, who is anxious to keep abreast of public opinion in everything that seems likely to improve our school system, has not only taken the first steps toward providing elementary training in some of the mechanic arts for those who may desire it, but has already arranged for a course of lectures on agriculture in the Toronto and Ottawa Normal Schools. This is certainly a step in the right direction, and we only hope that the instruction given may be such as will fit the teachers for undertaking the work which will soon be required of them in the Public Schools.

Changes in the generally speaking,
 William Brown

 very responsible an years ; and during th live stock, but in a became widely and Professor Brown ws was obliging and kirOn the 1st J for Australia with a only say that I wis attention.

Professor Brow, Journal, Hamilton, on a Canadian farm, for the position to duties with honest co long he will put eve as to exhibit the be the money expended

No doubt many the unsightly ruins of little more than a yea those ruins ; and duri deep pits, cut new roa new farm buildings.

We also removed under cover near the new piggery ; built an house, and the old car

After all that is gratulate ourselves on hess of our equipment of the incendiary destr ngs- the barn, horse hreshing machine, gri ear's crop. We had arley, turnips, mange was consumed in an

The live stock wa roic courage of our s aildings.

The discourageme le trial to both stude ry Board and the Go ssible date. With t institution is not n

CHANGES IN OUR STAFF.

Changes in the staff of a school or college always cause more or less anxiety ; and, generally speaking, the less frequently they occur, the better for all concerned.

William Brown, C.E., as Professor of Agriculture and Farm Superintendent, held a very responsible and important position in this institution for the period of thirteen years ; and during that time he did his full share, not only in lecturing on agriculture and live stock, but in a great variety of experimental work, by the reports of which be became widely and favorably known throughout the United States and Great Britain. Professor Brown was a zealous and energetic worker, and a racy, vigorous writer. He was obliging and kind-hearted almost to a fault, and always a very agreeable companion.

On the 1st July last Professor Brown resigned his professorship and started for Australia with a view to securing a similar position in that great colony ; and I need only say that I wish Professor Brown abundant success in whatever may engage his

Professor Brown's successor is Thomas Shaw, Esq., of The Canadian Live Stock Journal, Hamilton, a man whose sterling honesty, untiring industry, long apprenticeship on a Canadian farm, and varied experience as a journalist, seem eminently to qualify him for the position to which he has been appointed. Professor Shaw has entered on his duties with honest congratulations from professors and others, and it is hoped that before long he will put every part of our farm into first-class shape and work it in such a way as to exhibit the best methods of agriculture and show a handsome financial return for the money expended from year to year.

LEVELLING, GRADING, ETC.

No doubt many who have visited us within the last two or three years will remember the unsightly ruins of the old farm buildings which lay a few rods south of the College. A little more than a year ago our new Chemical Laboratory was erected on a portion of those ruins ; and during the past summer we removed all the old foundations, filled the deep pits, cut new roads, and graded the whole of the ground between the College and the new farm buildings.

We also removed our large weigh-bridge from the edge of the lawn and placed it under cover near the new barn; constructed a new farm office, a large silo, and a new piggery ; built an experimental barn, and painted the waggon shed, the implement house, and the old carpenter-shop.

DESTRUCTION OF FARM BUILDINGS.

After all that is mentioned in the preceding paragraph was done, we began to congratulate ourselves on the improved appearance of things generally and on the completeness of our equipment for instruction in most of the outside departments, when the hand of the incendiary destroyed in a few minutes nearly the whole of our splendid farm build-ngs- the barn, horse stable, silo, sheep house, and bull shed, with harness, cutting-boxes, hreshing machine, grinding mill, pulpers, belts, shafting, rack-lifter, and the whole of last ear's crop. We had on hand an exceptionally large amount of hay, oats, pease, wheat, arley, turnips, mangele, and other crops-all in the buildings just named; and with them was consumed in an incredibly short space of time.

The live stock was saved ; but, had it not been for the energy, good judgment, and roic courage of our students, the cattle, pigs, and horses would have perishied in the
uildings.

The discouragement is great, and the interference with our work is a very considerSe trial to both students and officers ; but it has already been determined by the Adviry Board and the Government to erect new and equally good buildings at the earliest ssible date. With this prospect in view, our students are hopeful ; and the outlook fore institution is not nearly so gloomy as it might have been. ols.

aFFILIATION WITH THE PROVINOIAL UNIVERSITY.

The addition of a third year to our course of study was announced in our last report; and it was then our intention to apply for power to grant degrees. The matter was discussed by the Government ; and the decision arrived at was that we should affiliate with the University of Toronto and have the Senate of that institution prescribe the course of (Bachelor of Science in Agriculture) to those candidates who should be passed and recommended by their examiners.

By the courtesy of Vice-Chancellor Mulock and Sir Daniel W ilson, the affiliation was effected with as little formality and delay as possible ; special examiners were appointed; and five candidates for the degree of B.S.A. were examined in the month of June, These candidates all passed very creditably; and, at a special Convocation called for the purpose, they received three degrees on 1st October last. The list is as follows :-

BACHELORS OF SCIENOE IN AGRICULTURE.

Of these young men, three already have good situations. Mr. Zavitz is Assistant Superintendent of Experiments, and acts also as Assistant Chemist in this institution ; Mr. Craig is Editor of the Canadian Live Stock Journ Mississippi Agricultural College, been appointed Lecturer on Botany and Geology of the kind that we have on this Contiwhich is one of the largest and best institutions of the kind that wo nent.

STUDENTS IN ATTENDANOE.

The outlook for a large attendance is more promising than it has been for severa years. The number of new students admitted in October was 51 ; and the great majority of these are strong, energetic sons of farmers, of from seventeen to twere than we had in 1887 The total number on the roll for 1888 is 131 , which is 21 more than we had in 1887. Thirty-four of the counties of Ontario are represented, and the largest representation from the counties of Middlesex and Grey.

COLLEGE ROLL FOR 1888.

Third Year Students.

NAME.	P. O. ADDRESS.	COUNTY, Ero.
${ }^{*}$ Oraig, J. A.	Russell.	Russell, Ont.
${ }^{*}$ *Fee, J. J. . ${ }^{\text {Cre }}$	Collingwood P	Grey, Ont.
Hutton, j. \%	Welland	York, Ont.
Harcourt, G	St. Ann's	Welland, Ont.
Lehmann, 'A	Orillia...	
Morgan, H. A	Kerwood	Midd'esex, Ont.
Orsman, C. P	Bathurst	Lanark, Ont.
${ }^{*}$ Paterson, B .	Ottawa.	
Raynor, T. Soule, R M	Rose Hall.	Prince Edward, Ont.
Soule, R. M. Stover, W. J	South End. Norwich.	Welland, Ont.
Sharman, H. B	Norwich	Oxford, Ont. Perth, Ont.
${ }^{*} \text { Zavitu, C. A. }$	Coldstream	Piddlesex, Ont.

*Obtained the degree of B. S. A. in October.
Associates Doing Special Work.

Second Year Students.

NAME.	P. O. ADDRESS.	COUNTY, Eto.
*Austin, A. M	Thornholm, Sunderland.	
${ }^{*}$ Bayne, S. R	Lee, Kent....	England.
${ }^{*}$ *Birdsall, W. G	Birdsall.	Peterborough, Ont.
*Budd, W. W.	Brussels	Huron, Ont.
Brodie, G. A	Bethesda	Norfolk, Ont.
${ }^{*}$ Brown, S. P	Whit	Ontario, Ont.
${ }^{*}$ Oarpenter, \mathbf{w}.	Simcoe	Norfolk, Ont.
${ }^{*}$ Dean, H. H.	Harley.	Brant, Ont.
De Mauritz, R.	Relleville	Hastings, Ont.
+E.toy ${ }^{\text {dirbe }}$, J.	Brgekville.	Leeds, Ont.
	West Kensington, London.	England.
Gelling, J. Ä	West Kensington, London	England.
${ }^{*}$ Harrison, R. E	Lincoln, Nottingham	Nova Scotia.
*Heacock, F. W	Kettleby	York, Ont.
Jarvis, E. M	Toronto	York, Ont.
*King, R. E E	${ }^{\text {Decewsville }}$ Newboro'	Haldimand, Ont.
Linfield, ${ }^{\text {F }}$, B	Newboro' Dunlop.	Leeds, Ont.
Marsack, F.	Tunbridge Wells	Huron, Ont. England.

College Roll.-Segond Year Students.-Continued.

NAME.	P. O. ADDRESS.	COUNTY, Etc.
Marsack, H. MeCallum, W McEvoy, T. A McKergow, J. G. McLaren, P. S. Monteith, S. N *Palmer, W.J. Price, V. Rendall, W Rennie, E. A Robson, J. W Scott, J, A. *Serson, W. E *Shantz, A *Sinclair, J. J Somerville, A. R. *Stevenson, C. R. *Sweet, H. R. Tinney, T, H *Valance, R *Wilmot, A. B. .	Tunbridge Wells Ailsa Craig. London Montreal McGarry Fairview Charlottetown Selby Oak, near Birmingh Camperdown.. Hamilton Liverpool Stoke, Devenport......... Antrim Waterloo. Ridgetown Muntingdon Fingal. Selby Oakwood. Osnabruck Centre Oromocto	England. Middlesex, Ont. Middlesex, Ont. Onebec. Lanark, Ont. Perth, Ont. P. E. Island. England. Grey, Ont. Wentworth, Ont. England. England. Carleton, Ont. Waterloo, Ont. Kent, Ont. Quebec. Elgin, Ont. Lennox, Ont. Victoria, Ont. Stormont, Ont. New Brunswick.

wimot, A. B
P. O. ADDRESS

Middlesex, Ont.
Middlesex, Ont.
Lanark, Ont.
Perth, Ont.
England.
Grey, Ont.
England.
England.
Carleton, Ont
Kent, Ont.
Quebec.
Elgin, Ont
Lennox, Ont.
Stormont, Ont
New Brunswick.
*Received Associate Diplomas in June.

First Year Students.

McDonald, H. M
Macfarlane, T. W. R. McCres, H E
Makinson, T. C
Monk, W
Mott, C. J.
Mulholland, F
Musgrave, J
Nelles, S.' W
Noxon, H. S
Paterson, L.
Pownall, G. F
Ransom, S
Rorke, J. R.
Rowen, E.
Seabrook, P. S.
Seymour, F. B.
Shaw, P' G
Shipley, L. J. W
smith, D.
Sleightholm, J. B
Stagg, J. C
Stewart, A. W.
Thompson, H. C
Thompson, J. P
Tuck, H. F
Urquhart, w. H. A...
Warner, W. A.
Watson, G. C.
Weber, E .
Webster, F. E
Wells, E.
White, J
Whitley, C. F
Wilkinson, J. J
Wilkinson, J. B
Wilson, F. G
Wood, W. D.
Wolverton, E. L

- 72
surrey, Eng
York, Ont.
Wellington, Ont.
Lanark, Ont.
Brant, O
England.
Waterloo, Ont.
Waterioo, Ont
Kent, Ont
Carleton, Ont.
Huron, Ont.
Northumberland, Ont.
Quebee.
F.ssex, ont

Haldimand, Ont.
England.
Lincoln, Ont.
Grey, Ont.
England.
England.
Norfolk, Ont
England.
ansdowne, F.
Lea, H. F.

Clifton, Bristol
Toronto

York, Ont.

College Roll--First Year Students,-Continued.

NAME.	P. O. ADDRESS.	COUNTY, Etc.
MeDonald, H. M...	Lower South River	
Macfarlane, T. W. R.	Ottawa......	Nova Scotia.
Makinson, T. C..	Brockville. Harbor (ira	Grenville, Ont.
Monk, W.	Harbor Grac	Newfoundland.
Mott, C. J..	London	Carleton, Ont.
Mulholland,	North Toronto	England.
Nelles, S.'w	Cowichan	British Columbia.
Noxon, H. S.	Ingersoil	Haldimand.
Paterson, L .	Harbor Grace	Oxtord, Ont.
Rownall, S .	Kensington (London)	Eewroundland.
Rorke, J. R	Sydenham Heathcote	England.
Rowen, E,	Halt	Grey, Ont.
Seabrook, P.	Delaware.	York, Ont.
Seymour, F.	Toronto .	Middlesex, Ont.
Shaw, P. G. ${ }^{\text {Shipley, L. }}$. ${ }^{\text {a }}$	Thornton Heath, Surr	England.
Smith, D......	Denfield	Middlesex, Ont.
Sleightholm, J. B	Humber	Quebec.
Stagg, J. O.	Brockville	Peel, Ont.
Stewart, A. W.	Lanark.	Leeds, Ont.
Thompson, H.	Hamilton	Lanark, Ont.
Thompson,	Uptergrove	Oentworth, Ont.
Urquathart, W	Orangeville	Dufferin, Ont.
Warner, W.	Newberry	Middlesex, Ont. whin
Watson, G.	Vapney .	Lennox \& Addington, Ont.
Weber, E.	Hamburg	Grey, Ont.
Webster, F	Creemore	Germany.
Wells, E	Chilliwhack	Simcoe, Ont.
Whitley, C. ${ }^{\text {¢ F }}$	Heathcote	Grey, Ont.
Wilkinson, J. J	Winterbourne	England.
Wilkinson, J, B	Hamilton ...	Waterloo, Ont.
Wilson, F. G Wood, W. D.	Green River	Wentworth, Ont.
Wolverton, E.	Cornwall.	Ontario,
$\begin{gathered} \text { Wolve } \\ \hline \end{gathered}$	Grimsby.	Lincoln, Ont.

ANALYSIS OF ROLL

Counties, etc.
Brant
No, of Students
British Columbia
Carleton
Cornwall
Dufferin
Dundas
Elgin

England . 26
Essex
Erance
dermany
Srenville
trey
Ialdimand
Samilton

Counties, etc.
No, of Students
Hastings
1
Huron 4
India 4
Kent . 1
Lanark 2

4

Lincoln
Leeds . 3
Lennox . 3
Middlesex 2New Brunswick8
Newfoundland1
Norfolk 2
3Northumberland
Nova Scotia 2
Ontario (county) 3

ANALYSIS OF ROLL-Continued.

	No. of Students.	Counties, etc.	No. of Students.
Counties, etc.		Toronto 1
Ottawa	1	Victoria..	. 4
Peel	2	Waterloo	3
Perth	1	Welland.	1
Peterborough	2	Wellington .	. 2
Prince Edward County	. 4	Wentworth	
Quebee .	1	York	
Russell			131
Simcoe	1	Total	151
Stormont			
	Religious D	enominations.	
	45	Roman Cat	
Episcopalians	33	Christians	
Presbyterians	25	Mennonites	
Methodists	9	Evangelical	
Congregationa lists			131
Friends		Total.	
Baptists			

Age of Students.

COUNTY STUDENTS.

Of those in attendance during the year, twenty-eight were nominated by county councils, and, as a consequence, were exempted from the payment of tuition fees. The counties represented were the following:--

Addington, Brant, Oarleton, Loeds, Lennox, Lincoln, Middlesex, Norfolk, NorthHaldimand, Huron, Kent, Lanark, Leermont. Victoria, Waterloo, Welland, Wentworth, umberland, Ontario, Peel, Simcoe,

York.

CLASS-ROOM WORK.

Nothing specially noteworthy in the work of the college has occurred during the year. The regular routine of lectures, recitations, and examinations has been gone through as usual. The syllabus of lectures given in Appendix class-work, and the class lists in Appendix 3 indicate the standing of each student better than anything I could say.

EXAMINERS.

The Examiners on the first and second year work were the professors of the college and two other gentlemen, to whom we are much indebted, viz, S. C. Smoke, B.A., d Toronto, examiner in English Literature ; and W. A. Douglas, B.A., of the same city, examiner in Political Economy.

RECIPIENTS OF DIPLOMAS.

Twenty-seven young men having completed the course of two years, received diplomas admitting them to the status of Associates of the College. The diplomas were presented by the Hon. Charles Drury, Minister of Agriculture, and the names of the recipients are as follows :-

*Austin, A. M.	Sunderland, England.
Bayne, S. R. S	.Lee, Kent, England.
Birdsall, W. G	. Birdsall, Peterboro', Ont.
Bishop, W. R	. Brussels, Huron, Ont.
Brown, S. P	Whitby, Ontario, Ont,
Budd, W.	Delhi, Norfolk, Ont.
Carpenter, W. S	. Simcoe, Norfolk, Ont.
Dean, H. H	. Harley, Brant, Ont.
Elton, C. W	West Kensington, London, England.
*Elton, R. F	West Kensington, London, England.
Harcourt, G	. St. Ann's, Lincoln, Ont.
Harrison, R. E.	. Lincoln, Nottingham, England.
Heacock, F. W	. Kettleby, York, Ont.
Horrocks, T. J	.Toronto, Ont.
Hutton, J. R	.Welland, Welland, Ont.
Knowlton, S. M	. Newboro', Leeds, Ont.
Palmer, W. J	. Oharlottetown, P.E.I.
Serson, W. E	Antrim, Carleton, Ont.
Shantz, A.	. Waterloo, Waterloo, Ont.
Sinclair, J. J	.Ridgetown, Kent, Ont.
Soule, R. M.	. South End, Welland, Ont.
Stevenson, C. R	.Fingal, Elgin, Ont.
Sweet, H. R	. Selby, Lennox, Ont.
Vallance, R.	. Osnabruck Oentre, Stormont, Ont.
Willans, T. B.	. Leeds, England.
+Willans, N .	. Leeds, England.
*Wilmot, A. B	. Oromocto, N. B.

*Required to take another examination in practical work.
+Required to take Mensuration again. + Required to take Mensuration again.
by"county fees. The
ille, Grey, k, NorthVentworth,
during the been gone idea of the dent bettet

FIRST-CLASS MEN.

The work in the college is divided into five departments, and all candidates who get an aggregate of 75 per cent. of the marks alloted to the subjects in any department are ranked as first-class men in that department. We would like to have a larger number of such men, but we are determined that none shall be so ranked unless they really deserve it. The following list contains the names of those who gained a first-class rank in the different departments at the examinations of last year :-

First Year.

1. Jackson, F. A., Dorset, England.-In three departments: Natural Science, Veterinary Science, Mathematics and Book-keeping.
2. McCallum, W., County of Middlesex.-In one department : Mathematics and Book-keeping.
3. Rendall, W., County of Grey.-In one department: Mathematics and Bookkeeping.

Second Year.

1. Harcourt, G., County of Lincoln.-In four departments : Agriculture, Natural Science, Veterinary Science, English Literature and Politizal Economy.
2. Dean, H. H., County of Brant.-In five departments: Agriculture, Natural Science, Veterinary Science, English Literature and Political Economy, Mathematics and Book-keêping.
3. Elton, C. W., West Kensington, London, England.-In four departments : Agriculture, Natural Science, Veterinary Science, English Literature and Political Economy.
4. Hutton, J. R., County of Welland.-In four departments : Agriculture, Natural

Science, English Literature and Political Economy, Mathematics and Book-keeping.
5. Soule, R. M., County of Welland.-In two departments: Agriculture and Veterinary Science.
6. Shantz, A., County of Waterloo.-In two departments: Agiiculture and Veterinary Science.

MEDALISTS.

Medals were awarded to the three second year students who ranked highest in general proficiency in the theory and practice taken together. The competition was close and keen, as usual, with the following results :-

Gold Medalist.-George Harcourt, St. Ann's, County of Lincoln, Ont.
First Silver Medalist.-H. H. Dean, Harley, County of Brant, Ont.
Second Silver Medalist.-R. M. Soule, South End, Welland, Ont.

PRIZE MEN.

First Year.

Agriculture, Live Stock, Dairying.-1st, G. A. Brodie, County York; 2nd, W. McCallum, Ailsa Oraig, Middlesex, Ont.

Natural Science.-1st, F. A. Jackson, Dorset, England; 2nd, W. McCallum.
Veterinary Science.-1st, F. A. Jackson ; 2nd, F. B. Linfield, Dunlop, Huron County.

English Literature and Composition.-1st, F. A. Jackson ; 2nd W. McCallum.
Mathematics and Book-keeping.-1st, F. A. Jackson, 2nd, W. Rendall, Thornbury, Grey County, Ont.

General Proficiency.-1st, F. A. Jackson ; 2nd, F. B. Linfield ; 3rd, W. McOallum.

Second Year.

Agriculture, Live Stock, Dairying.-1st, H. H. Dean ; 2nd, G. Harcourt.
Natural Science.-1st, G. Harcourt ; 2nd, J. R. Hutton.
Veterinary Science.-1st, R. M. Soule ; 2nd, G. Harcourt.
English Literature and Political Ecouomy.-1st, C. W. Elton; 2nd, G. Harcourt.
Mathematics and Book-keeping.-1st, J. R. Hutton ; 2nd, H. H. Dean.
General Proficiency.-1st, G. Harcourt ; 2nd, H. H. Dean ; 3rd, C. W. Elton.

VALEDICTORY ADDRESSES.

The second year men chosen by the students to deliver the Valedictory Addresses, on their behalf at the closing exercises, on the 30 th June, were T. B. Willans, of Leeds, England, and H. H. Dean, of Harley, Brant County, Ont.

The standing B.S.A. will be fou

The total num follows :-

Date.
1888 - Aus
1880-And
1880 - Ash,

1881-Balla
1879-Bant
1888 -Bayı
1888-Bird
1888-Bish
1888-Budd
1885 - + But
1884-Blacl
1882-Blanc
1886 - Broo
1886- \ddagger Bro
1888-Brow

1886--Calve
1877 -Camp
1880 -Camp
1884-*Carp
1888 -Carpe
1886-Cobb,
1880-Chapn
1882-Charlt
1882-Chase,
1879-Clark,
1879-Clinto
1880-Clutto
1887-Craig,
1887--Oreelm
1878-Cromp

1878-Davis,
1880-Dawes, 1882 -Dawsor 1888 - + Dean, 1882 -Dennis 1881-Dicken

[^0]
STANDING OF THIRD YEAR MEN.

The standing of the third year students at their final examinations for the degree of B.S.A. will be found in the Olass Lists at the end of Appendix 3.

ASSOCIATES.

The total number of Associates up to the present time is 164 ; and the list is as follows :-

> Date. A.
> 1888 -Austin, A. M.
> 1880 -Anderson, J.
> 1880-Ash, G. E.

B.

1881-Ballautyne, W. W.
1879-Bannard, E. L.
1888-Bayne, S. R. S.
1888-Birdsall, W. G.
1888-Bishop, W. R.
1888-Budd, W.
1885- \ddagger Butler, G. C.
1884-Black, P. C.
1882-Blanchard, E. L.
1886-Broome, A. H,
1886- \ddagger Brown, C. R.
1888-Brown, S. P.

0.

1886-Calvert, S.
1877 -Campbell, J. A.
1880 -Campbell, D. P. L
1884 - *Carpenter, P. A.
1888 -Carpenter, W. S.
1886-Cobb, C.
1880-Chapman, R. K.
1882-Charlton, G. H.
1882 -Chase, O.
1879-Clark, J.
1879-Clinton, N. J.
1880-Clutton, A. H.
1887-Oraig, J. A.
1887--Creelman, G. C.
1878 -Orompton, E.

D.

1878-Davis, C. J.
1880 -Dawes, M. A.
1882 -Dawson, J. J.
1888 - +Dean, H. H.
1882 -Dennis, J.
1881-Dickenson, C. S.

Date. D.

1887-Donald, G. O.
1887-Donaldson, F. N.
1877-Douglas, J. D. 1877 -Dunlop, S.

玉.

1888-Elton, C. W. 1888-Elton, R. F. 1882-Elworthy, R. H. 1887-Ewing, W.
F.

1878-Farlinger, W. K.
1886-Fee, J. J.
1881-File, J.
1882-Fctheringham, J.
1883- \ddagger Fotheringham, W. 1879-Fyfe, A.

G.

1883 -Garland, C. S.
1887-Gilbert, W. J.
1879-Gillespie, G. H.
1878-Graham, D.
1879-Greig, G. H.
1881-Grindley, A. W.

표.

1882-Hallesy, F.
1888-*Harcourt, G.
1887-Harkness, A. D.
1888-Harrison, R. E.
1887-Hart, J. A.
1887-Hart, J. W.
1888-Heacock, F. W.
1886-Holtby, R. M.
1880-Holterman, R. F.
1882 -Horne, W. H.
1888-Horrocks, T. J.
1887-Howes, J. S.
1882-Howitt, W.
1888-Hutton, J. R.

[^1]ASSGCLATES-Continued.

Date.

1.

1886-Idington, P. S.

J.

1886-Jeffrey, J. S.
1883 -Jeffs, H. B. 1879 -Jopling, W.

z.

1888-Knowlton, S. M.

$亡$.

1882-Landsborough, J.
1887-Leavens, D. H.
1884- \ddagger Lehmann, A.
1887- \ddagger Lick, E.
1877-Lindsay, A. J.
1887-Livesey, E. M.
1880-Lomas, J. W.
1878-Logan, T.

\mathbf{M}.

1880-Macaulay, H.
1885-Macpherson, A.
1886-**Madge, R. W.
1882-Mahoney, E. C.
1884-Major, C. H.
1877-Mason, T. H.
1877-Meyer, G. W.
1887-Morgan, J. H. A.
1881-Motherwell, W. R.
1885-+Muir, J. B
1887-McCallum, E. G.
1885-McIntyre, D. N.
1885-McKay, J. B.
1886-McKay, J. G.
1883-McPherson, D.

N.

1878-Naismith, D. M.
1879-Nicol, A.
1882-Nicol, G.
1886-Notman, C. R.

0.

1877-O'Beirne, A. C. 1887-Orsman, C. P.
1886-Owen, W. H.

Date.

1888-Palmer, W. J.
1887 -Paterson, B. E.
1883-Perry, D. E.
1881-§Phin, R. J.
1881-Phin, W. E.
1881-Pope, H.
1886-Power, R. M.
1884---Powys, P. C.

B.

1882- \ddagger Ramsay, R. A.
1879-Randall, J. R.
1885-*Raynor, T.
1885-Reid, P.
1883-*Robertson, W -
1879-Robertson, J.
1881-Robins, W. P.
1879-Robinson, C. B.
1881-Ross, J. G.

s.

1884-Saxton, E. A.
1888-Serson, W. E.
1888-Sinclair, J. J.
1882-Silverthorne, N.
1888 -Soule, R. M.
1877-Sykes, W. J.
1883-Schwartz, J. A.
1887-+Scrugham, J. G.
1888-Shantz, A.
1887-Sharman, H. B. 1877-Shaw, G. H. 1882- + Shuttleworth, A. 1884 - +Slater, H. (ob.)
1887-*Sleightholm, F. J.
1885-Smith, E. P..
1884 -Steers, 0.
1888-Stevenson, O. R.
1878 -Stewart, W.
1882-Stover, W. J.
1886- \dagger Sturge, E.
1888-Sweet, H. R.

T.

$$
\begin{aligned}
& \text { 1879-Toole, L. } \\
& \text { 1883-Torrance, W. J. } \\
& \text { 1884-Tucker, H. V. } \\
& \text { 1885-Thompson, W. D. }
\end{aligned}
$$

1888-Valance

1879-Warnic 1884-Wark, 1878--Warren 1880-§ Webs 1879-Wells, 1882-Wettla 1879-Wilkin 1888-Willan

Date.

1888-Craig, 1888-Oreelm

1888-Fee, J.

The work of th magnitude and impe munity ; and no oth doing so much to \mathbf{r} farmers, young and

The professors and, during the mont nearly every Riding I had the honor correspondence invol November, when Jo Institute, joined me meetings which are t So far, we have have done the best is not another prov meetings as our pro

ASSOCIATES-Continued.

\%.	Date. W.
1888-Valance, R.	1888-Willans, N
	1879-Willis, J.
W.	1883-Willis, W. B., (ob.)
1879-Warnica, A. W.	1888-Wilmot, A. B.
1884-Wark, A. E.	1882-White, C. D.
1878--Warren, J. B.	1879-White, G. P.
1880-§ Webster, J. L.	1884-Wroughton, T. A.
1879-Wells, C.	
1882-Wettlaufer, F.	2.
1879-Wilkinson, J. P.	
1888-Willans, T. B.	1886-Zavitz, C. A.

1888-Willans, N.
1879-Willis, J.
1883-Willis, W. B., (ob.)
1888-Wilmot, A. B.
1882-White, C. D.
1879-White, G. P.
1884-Wroughton, T. A.
2.

1886-Zavitz, C. A.

GRADUATES.

Bachrlors of Scienoe in Agrigulture.

Degree of B.S.A.

Date.
0.

1888-Craig, J. A. 1888-Oreelman, G. O.

F.

1888-Fee, J. J.

Date. $\quad P$.
1888-Paterson, B. E.

z.

1888-Zavitz, C. A.

FARMERS' INSTITUTES.

The work of the Farmers' Institutes, we are glad to say, is rapidly increasing in magnitude and importance. These institutes come right home to the farming community ; and no other organization in this Province at the present time seems to be doing so much to rouse the dormant energies and draw out the latent talent of farmers, young and old.

The professors of our College assisted at about sixty institute meetings last year ; and, during the month of January of this present year, we hope to attend a meeting in nearly every Riding in the Province.

I had the honor of organizing the first of these institutes ; and I did the work and correspondence involved in arranging for the winter meetings from that time till last November, when John Dryden, M. .P., as representative of the Central Farmers' Institute, joined me in the work and rendered valuable assistance in arranging for the meetings which are to be held during the next three or four weeks.

So far, we have had very little machinery in connection with our institutes. We have done the best we could in a very simple way ; and I venture to say that there is not another province or state on this continent that is holding so many successful meetings as our province, with so small an expenditure of public money.

FINANCIAL STATEMENT.

I.-Collegr.

Expenditure.

No. 1.-College Maintenance.
813,229 08

1. Salaries and wages
2. Food- 2,852 28
Meat, fish and fowl 59584
Bread and biscuits 3,987 33
Groceries, butter and fruit
3. Household Expenses- 17479
Laundry, soap and cleaning 1,311 84
Women servants' wages
4. Business Department- 1,018 76
Advertising, printing, postage and stationery
Advertising, printing, postage and stationery
19226
19226
5. Miscellaneous-
6. Miscellaneous- 9150
Chemicals, apparatus, etc
24953
24953
Medals............................. 69940
Unenumerated\$24,402 61
No. 2.-Maintenance and Repairs of Government Buildings.
$\$ 74926$
Repairs and alterations 2,724 10
Fuel 81140
Water \$5,393 99
Revenue.
\$1,833 3
7. Tuition fees, Balsnces paid for board, after deducting allow-
8. Balances paid for 4,23403
ances for work 3. Gas and chemicals used by third year students 6250
and associates 11295
9. Fines, breakage, etc. 3050
10. Supplemental examinations 900
11. Well curbs
3320
12. Refund from the University of Toronto of
money paid to presiding examiners
60
13. Old iron
Net cash expenditure of College \$23,480 49
The net sum voted by the Legislature for the expenditure of the College wa 6,685 . Consequently, the unexpended balance for the year is $\$ 3,204.51$.
14. Salaries Depar
15. Wages of
16. General fa station
17. Farm mac of san
18. Maintenan of ani on an bought
19. Cattle and
20. Permanent (1) Fe
(2) Fo

Less revenue
Net ex

1. Salary of a
2. Experiment charges
3. Laboratory
4. Experimen and for fitting and re penses
5. New silo
6. Centrifugal
7. Paid for eig

Less amount r
"
"

Net
2 (A. c.)
II.-Farm.

1. Salaries (Farm Foreman and Foreman of Mechanical Department)
$\$ 1,40000$
2. Wages of men-cattlemen, ploughmen, etc
2,152 74
2,152 74
3. General farm maintenance-seed, twine, fuel, blacksmithing, stationery, etc.
77701
77701
4. Farm machinery, implements, furnishings, etc., with repairs of same
98937
98937
5. Maintenance of stock, etc.-bran, oilcake, medicine, service of animals, advertising sale, auctioneer's services, freight on animals sold by auction, with hay, straw and oats bought since fire
1,28501
1,28501
6. Permanent Improvements-
7. Cattle and sheep purchased
8. Cattle and sheep purchased 1,910 42 1,910 42(1) Fence posts, wire and lumber ; drain tile ; wages ofcarpenter ; digging post-holes, ete1,43901
(2) Foundations, material, painting, etc., of new farm office, piggery, experimental barn, and house to cover weigh-bridge 1,66126
Less revenue from sale of stock, service of animals, etc $\$ 11,61482$

$$
3,840 \quad 28
$$ Net expenditure of farm \$7,774 54

III.-Experiments.

1. Salary of assistant superintendent $\$ 50000$
2. Experimental plots and feeding-seed, labor, feed, express charges, etc.
68673
68673
3. Laboratory expenses
20944
20944
4. Experimental dairy-labor on corn crop for green fodder and for silo ; feeding, milking and weighing milk ; meal ; fitting up stable and filling silo; utensils, stationery, and repairs ; a portion of Professor's travelling ex-penses attending dairy meetings and visiting factories.. $1,000 \quad 04$
5. New silo
6. Centrifugal separator 47025
12500
7. Paid for eighteen cows, one horse and six pigs 73340 .
Less amount received for cows and calves sold $\$ 3,72486$ 826028" " cream $\ldots \ldots$.butter109822322
IV -Garden, Lawn, Vinery and Tree Clumps.
$\$ 700$ 00
8. Salary of foreman 2,126 53
9. Wages of men 468993. Seeds, tools, manure, pots, repairs, etc.4. Levelling and grading foundations of old farm buildings,making new roads, etc. (not in estimates)$1,146 \quad 10$
84,441 62
26186
Less revenue from fruit and vegetables sold \$4,179 76
Net expenditure under this headTotal Net Expenditure of all Departments in 1888.$\$ 23,48049$
College 7,774 54
Farm 3,33154ExperimentsGarden, lawn, levelling $ゅ$ rounds, etc. 4, 4, 76$\$ 38,76633$

The net sum voted by Legislature for all departments was $\$ 39,456$. So the unexpended balance for the year is $\$ 689.67$.

Notes on Financial Statement.

The farm expenditure for the year was considerably increased by the purchase of harness, hay, oats, straw, etc., to replace a portion of what was destroyed by the burning of the barns and stables in November ; the erection of three * a piggery, and an experimental barn-involved a considen sent free of charge to different and the payment of freight on anicial reduction in the revenue for the year-a reduction parts of the Province, made a material could not afford to make.
which a farm worked merely for profit could not department was $\$ 2,500$, of which $\$ 500$ wu
The total sum voted for the experient. When this estimate was made, we did no the salary of the assistant superintendent. which proved to be the most expensive brand count anything for the experimental of Professor Robertson to the college, he expressed of the department. On the return oriments with corn grown for green fodder and for desire to conduct a number in view, the Advisory Board authorized the special cultivs silage ; and, with that object in view, thed, the purchase of eighteen cows, and the cons tion of corn for the purposes just struction of a new silo, whed in our estimate for the year. Owing to this unexpectell
and above the items included outlay, we had to cut down the expenditure in other departments, or we should have has an over-expenditure to report in this statement.

In connection with the horticultural department, also, When the estimates for the outlay during the year, amounting to a cot made up our minds to remove at once all the lawn and garden were prepared, we had noh covered something more than an acre in the foundations of the old farm buildings, which coling was asked for that purpose; but the immediate neighborhood of the college; so nothal of the Advisory Board, decided that new Minister of Agriculture, with the approval ond the whole of the grounds about this such ruins should be removed without delay, Consequently we went to work and mas college put in proper shape and seeded down. college and the new farm buildings. a thorough job of the whole plot between the college and the new farm buidings.
dug up and removed the old foundations, filled the excavations, graded the surface, and made several new roads-all at an expense of $\$ 1,146.10$, which is a large addition to the regular estimated expenditure of the horticultural department.

Considering all these items, we feel disposed to congratulate ourselves on the fact that our entire expenditure for the year is $\$ 689.67$ less than the total sum voted for all departments.

Buildings Needed.

The erection of new farm buildings will be quite an undertaking for the year 1889 ; and it may interfere more or less with our plans for the construction of other buildings which we require. Our chemical laborat Jry is now complete, and we have a small but convenient botanical laboratory. Our museum, also, is in very fair shape ; but we are
(1) New green and propagating houses.
(2) A house for the Professor of Chemistry.
(3) A building to be used as a convocation hall and gymnasium.

I hope the Ontario Government may take a lesson from the action of the Dominion (iovernment, within the last year or two, in erecting at once all the buildings which they require on the Central Experimental Farm at Ottawa. For eleven years we continued our appeal for a chemical laboratory, and at last we got a very good one ; but I sincerely hope that we may not have a similar experience in regard to the other buildings. The buildings named above should be provided at as early a date as possible ; and I venture to hope that our request will receive your most favorable consideration.

> I have the honor to be, sir, Your obedient servant,

JAMES MILLS, President.

APPENDIX I.

SYLLABUS OF LEOTURES.

Lectures began as usual on the 1st October, 1887, and continued till the 30th June, 1888, which latter date was the end of the scholastic year, 1887-8.

The following syllabus of lectures will convey some idea of the class-room work done by the several Professors in the nine months just mentioned :-

FIRST YEAR.

Fall Term-1st October to 22 nd December.
Department 1.-Agrioulture.
Introductory.-Ancient and modern agriculture ; agricultural literature ; different kinds of farming.

Soils.-Natural conditions of soil and plant ; examination and classification of soils ; physical properties of each kind.

Rotations in Cropping.-Importance and necessity of rotation ; principles underlying it ; rotations suitable to different kinds of soil ; examination and criticism of different systems of rotation.

Buildings.--Location of house, barn and stables ; stables for horses, sheep and cattle ; arrangement of farm buildings.

Miscellaneous.-Roads, lanes, fences.

Department 2.-Natural Science.

Chemical Physics.-Matter ; accessory and essential properties of matter ; attraction; various kinds of attraction-cohesion, adhesion, capillary, electrical and chemical ; specific gravity ; weights and measures ; heat, measurement of heat, thermometers, specific and latent heat ; sources, nature and laws of light.

Inorganic Chemistry.-Scope of subject; elementary and compound substances; chemical affinity ; symbols ; nomenclature ; combining proportions by weight and by volume ; atomic theory ; atomicity and basicity; oxygen and hydrogen ; water-its nature, functions, decomposition and impurities ; nitrogen ; the atmosphere-its composition, uses and impurities ; ammonia-its sources and uses ; nitric acid and its connection with plants.

Human Physiology and Hygiene.-Description of the different tissues of the body; alimentary system ; circulatory system ; nervous system ; importance of ventilation and the influence of food on the body ; remarks on the proper care of the body and attention to its surroundings in order to keep it in a continual state of health.

Zoology.-Distinctions between animate and inanimate objects ; distinction between plants and animals ; basis and classification among animals ; leading character of each Zoology.-
plants and animals ; basis and classification among animals; lead
sub-kingdom, with special reference to classes or animals connected with agriculture. noids, or flesh former classification of organ

Zoology (Conti) njurious parasites, s fluence on plant life ith special referenc Lectures illustra

Veterinary Anat gestive system, circ nsitive system, gen

Defartment 3.-Veterinary Soience.
Anatomy and Physiology of the horse, ox, sheep and pig ; osseous system, muscular system, syndesmology, plantar system and odontology.

Drpartment 4.-English.
Composition-The sentence, paragraph and period; capitals and punctuation. Exercises in composition.

English Classics.—Critical study of Scott's "Lady of the Lake."

Defartment 5.-Mathematics.

r.u. Arithmetic.-Review of subject, with special reference to farm accounts. Interest, discount, stocks and partnership.

Montal Arithmetic.-Calculations in simple rules.
Book-keeping.-Subject commenced.

> FIRST YEAR.-(Continued). Winter Term-22nd January to 16 th April.

Department 1.-Agriculture.

Breeding, rearing and feeding of animals. Points to be considered in deciding what kind of animal to keep.

Cattle.-History and characteristics of Shorthorns, Herefords, Aberdeen.Angus Polls, Ayrshires, Jerseys, Guernseys, Holsteins, Devons, Galloways, etc. ; grade cattle ; milch cows-points of a good milch cow ; breeding generally ; pedigree.

Sheep.-Breeds of sheep generally considered; crosses between different breeds compared; quality, quantity and uses of different kinds of wool.

Department 2.-Natural Science.

Inorganic Chemistry (Continued).-Carbon ; combustion ; carbonic acid and its relation to the animal and vegetable kingdon ; sulphur and its compounds ; manufacture and uses of sulphuric acid; phosphorus ; phosphoric acid and its importance in agriculture; chlorine-its bleaching properties; bromine; iodine; silicon: potassium; calcium ; magnesium ; iron, ete.

Organic Chemistry.-Constitution of organic compounds ; alcohols, aldehydes, acids and their derivacives ; formic, acetic, oxalic, tartaric, citric, lactic, malic, uric and tannic acids. Oonstitution of oils and fats-saponification ; sugars, starch, cellulose ; albumipoids, or flesh formers, and their allies ; essential oils ; alkaloids-morphine and quinine ; elassification of organic compounds.

Zoology (Continued).-Sub-kingdoms further described ; detailed account of some njurious parasites, such as "liver fluke," "tape-worm," "trichina," etc. ; insects-their nfluence on plant life: corals and mollusks as agents in the formation of soil; vertebrates, ith special reference to those of importance in the economy of the farm.

Lectures illustrated by specimens and diagrams.

Defartment 3.-Veterinary Science.

Veterinary Anatomy.-Anatomy and physiology of the horse, ox, sheep and piggestive system, circulatory system, respiratory system, urinary system, nervous system, nsitive system, generative system, tegumental system.

Department 4.-Englisie.
Composition.-Exercises continued ; abstracts of speeches and essays ; letter writing.
English Classics.-Critical study of "Cowper's Task," Books 3 and 4.
Department 5.-Mathematics and Book-keeping.
Arithmetic.-Equation of payments ; percentage ; profit and loss ; stocks ; partnership ; exchange.

Book-keeping.-Business forms and correspondence ; general farm accounts ; dairy, field and garden accounts.

FIRST YEAR.-(Continued.)

Spring Term-17th April to 30th June.

Department 1.-Agriculture.
Preparation of Soil.-Modes of preparation for different crops, and various kinds of soil.

Seeds and Sowing.-Testing the quality of seed ; changing seed ; quantity per acre ; methods of sowing.

Improvement of Lands.-Drainage ; ordinary cultivation ; sub-soiling ; fallowing ; manuring. Farm-yard manure and management of the same ; the properties, application and uses of special fertilizers-lime, plaster, salt, bone dust, superphosphates, etc.

Roots.-Oultivation of roots and tubers-effects of each kind on soil.
Green Fodders.-The cultivation and management most appropriate for each.
Management of pastures ; harvesting and preparing crops for market or one's own use ; crops for current year examined.

Department 2.-Natural Science.

Geology-Connection between geology and agriculture ; classification of rocks-their origin and mode of formation, changes which they have undergone after decomposition fossils-their origin and importance ; geological periods and characteristics of each.

Geology of Canada, with special reference to the nature and economic value of the rock deposits ; glacial period and its influence on the formation of soil.

Lectures illustrated by numerous specimens and designs.
Botany.-Full description of seed, roots, stem, leaves and flower. Plants brought into the lecture-room and analyzed before the class so as to render students familiar with the different organs and their use in the plant economy.

Lectures illustrated by excellent diagrams.

Department 3.-Veterinary Science.

Materia Medica.-The preparation, doses, action and use of about one hundrod the principal medicines used in veterinary practice.

Department 4.-English.

Pathology.-Oss f bone, as splint, spa

Muscular System
Syndesmology.her diseases of the j Plantar System. under and other dis

Odontology.-Di

English Classics. English.

Department 5.-Mathematics.

Mensuratiou,-Mensuration of surfaces - the square, rectangle, triangle, trapezoid regular polygon, circle. Special application to the measurement of lumber. Mensuration of solids ; special application to the measurement of timber, earth, etc.

SECOND YEAR.

Fall Term-1st October to 22nd December.

Department 1.-Agriculture.

Experimental Plots.-The results of last season's experiments with crops and animals ; liability to disease ; effects of various manures on different crops, etc.

Farm Management. - Detailed account of the treatment of each field ; results from different kinds of seed and soil ; effects of manure ; harvesting, storing and threshing of crops ; fall ploughing, sub-soiling, etc.

Stock Feeding.-Value of feeding materials ; estimate for winter keep of live stock; hoasing, feeding and fattening; points to be observed in selecting animals for fattening; feeding experiments ; common diseases of animals ; management of animals on pasture ; value of green fodder. Dairy management and cheese making.

Departmrnt 2.-Natural Science.

Agricultural Chemistry.-Connection between chemistry and agriculture ; the various compounds which enter into the composition of the bodies of animals; the chemical changes which food undergoes during digestion ; chemical changes which occur during the decomposition of the bodies of animals at death; the functions of animals and plants contrasted ; food of plants, and whence derived ; origin and nature of soils ; classification of soils ; causes of unproductiveness in soil and how detected; preservation, development and renovation of soils ; manures classified ; the chemical action of manures on different soils ; commercial valuation of fertilizers.

Horticulture,-Ontario as a fruit-growing country ; the natural divisions into which t may be divided for growing fruit ; detailed account of the operations, layering, grafting, oudding, pruning, etc.; laying out and cultivation of an orchard ; list of fruits best suited or general purposes, with best methods for their cultivation ; remarks on gardening as a ource of profit ; plants best adapted to bedding and potting.

Lectures illustrated by practical work in the garden, and specimens in the classoom.

Department 3.-Veterinary Science.

Pathology.-Osseous System.-Nature, causes, symptoms and treatment of diseases If bone, as splint, spavin, ringbone etc.

Muscular System.-Nature, causes and treatment of flesh wounds, etc.
Syndesmology.-Nature, causes, symptoms and treatment of curb, bog-spavin and her diseases of the joints.

Plantar System.-Nature, causes, symptoms and treatment of corns, sand-crack ${ }_{3}$ under and other diseases of the feet.

Odontology.-Diseases of the teeth and treatment of the same.

Department 4.-English.

Department 5.-Mathematics.

Dynamics.-Motion, forces producing motion, momentum ; work ; the simple machines, etc.

Drainage.-General principles ; how to lay out a system of drains; how, where and when to commence draining ; depth of drains and distances apart; grades ; cost of draining.

SECOND YEAR-(Continued).
 Winter Term-22nd January to 16th April.

Department 1-Agbiculture.

Capital required in farming ; laying out of farms ; general management and economy ; cost of production ; buying, selling and marketing.

Management of cattle, sheep and other animals in winter ; breeding generally considered; special management of ewas before, during and after the season of lambing ; treatment of other animals in parturition ; rearing of lambs, calves and pigs ; washing and dipping of sheep, etc., etc.

Arboriculture.-Importance of the subject and its special application to North America; what is being done in the conservation and replanting of forests in other countries : the objects of conserving and replanting-shelter for crops, animals and dwellings, regulation of temperature and rain-fall, ornament and profit ; requisite proportion of tree surface to that under agricultural crops ; existing condition of forests in North America ; adaptability of soils and climate to rapid results; what parts of the country should be conserved, and what parts replanted; conservation of indigenous forests generally considered ; special attention to the care of young natural forest trees.

Department 2.-Natural Science

Agricultural Chemistry.-Constitution of the subject from preceding term, as follows Composition of plants in relation to the soils upon which they grow ; rotation of crops the classitication of fodders according to their chemical composition, and a general treat ment of the science of cattle feeding ; relation of feeding to manure; chemistry of the dairy.

Entomology.-Importance of the subject to agriculturists ; beneficial and injuriou insects-their habits, and the best means of checking the ravages of the latter.

Lectures illustrated by specimens.
Meteorology.-Relation of Meteorology to ag, different kinds of thermometers, plunof the atmosphere ; description of the barom ; temperature, its influence on agricultury ameter, anemometer and how to sidered in the discussion of climate; the principles cos the elements which are to be consi
sidered in forecasting the weather.

Lectures illustrated by instruments referred to.

Department 3.-Veterinary Science.

Digestive System. - Nature, causes, symptoms and treatuent of spasmodic and flath lent colic, inflammation of the bowels, acute indigestion, tympanitis in cattle, impaction of the rumen, and many other common diseases.

Respiratory S roaring, bronchitis

Urinary Syst kidneys, etc.

Nervous Syste etc.

Sensitive Syst and ear.

Generative Sy etc.

Tegumental S mallenders, parasit

Drpar
English Class
Political Econ of labour ; distrib credit cycles ; fun

Statics.-The of forces ; moment

Hydrostatics. density ; pumps, s

Book-keeping.

Review of pa ment, etc.

Determinatio
Analytical Ch reagents ; operatio tion, sublimation, impurities in wate in soils.

Systematic an important orders.

This course is and also by analysi

Green-house Pl shrubs, etc., on the
simple ere and cost of
economy ;
arally conlambing ; ; washing
to North is in other nimals and site proporforests in arts of the indigenous forest trees.
, as follows on of crops eneral treat nistry of the and injuriou ter.
d movement meters, plui n agricultur principles coos

Respiratory System.-Nature, causes, symptoms and treatment of catarrh, nasal-gleet roaring, bronchitis ; pleurisy and inflammation of the lungs, etc.

Urinary System.-Nature, cauees, symptoms and treatment of inflammation of the kidneys, etc.

Nervous System.-Nature, causes, symptoms and treatment of lock-jaw, string halt, etc.

Sensitive System. - Nature, causes, symptoms and treatment of the diseases of the eye and ear.

Generative System.-Nature, causes, symptoms and treatment of abortion, milk fever, etc.

Tegumental System.-Nature, causes, symptoms and treatment of scratches, sallenders mallenders, parasites and other diseases of the skin.

Department 4.-English Litgrature and Political Economy.

English Classics.-The critical study of Shakespeare's "Macbeth."
Political Economy.—Utility ; production of wealth—land, labour, capital ; division of labour ; distribution of wealth; wages; trades unions ; co-operation; money ; credit, credit cycles ; functions of government; taxation, etc.

Department 5.-Mathematics.

Statics.-Theory of equilibrium ; composition and resolution of forces ; parallelogram of forces ; moments ; centre of grvity, etc.

Hydrostatics.-Transmission of pressure; the hydraulic press; specific gravity ; density ; pumps, siphons, etc.

Book-keeping.-Review of previous work.

SECOND YEAR-(Continued). Spring Term-17th April to 30th June.

Department 1.-Agriculture.
Review of past lectures with special drill on outside work. Reasons for management, etc.

Department 2.-Natural Science.
Determination of soils and fertilizers by physical properties.
Analytical Chemistry.-Chemical manipulation, preparation of common gases and reagents ; operations and analysis-solution, filtration, precipitation, evaporation, distillation, sublimation, ignition and the use of the blow-pipe ; testing of substances by reagents ; impurities in water ; adulterations in foods and artificial manures; injurious substances in soils.

Systematic and Economic Botany.-Classification of plants and characters of the most important orders.

This course is illustrated by a large collection of plants in the college herbarium; and also by analysis of several plants collected in the fields and woods of the farm.

Green-house Plants.-Special study of all plants grown in our green-houses, and the shrubs, etc., on the lawn.

Defartment 3.-Vetrrinary Science.

Materia Medica.-The preparation, actions, uses and doses of medicines-continued from the spring term of the first year. Lectures on special subjects, buch as pleuropneumonia, the rinderpest, tuberculosis, etc. fatal coverings. Pneumonia in connection Veterinary Obstetrics.-Description of fartion, normal and abnormal parturition. with puberty, œstrum, gestation, sterility, abortion, Diseases incidental to pregnant and parturient animais.

Defartment 4.-English.
English Classics.-The critical study of Milton's "L'Allegro" and "Il Penseroso."

Department 5.-Mathematics.

Surveying and Levelling.-Fields surveyed with chain and cross-staff; measurements. of heights.

Road-Making.-Determination of proper slopes ; shape of road bed; drainage of roads ; friction on different roads ; various road coverings ; the maintenance of roads ; cost, etc.

The following 22nd December.

Hours	Monday.
8.45	Composition
9.30	English Literature.
10.15	Chemistry.
11.00	Dairying.
Hours	Monday.
8.45	Horticulture
9.30	Grammar.
10.15	English Literature.
11.00	Veterinary Pathology.

Hours	Monday.
8.45	
	Agricultural Chemistry.
Geology.	

APPENDIX 2.

TIME TABLE FOR FALL TERM.

The following Time Table indicates our class-room work from the 1st October to the 22nd December.

TIME TABLE.
Fibst Year.

Hours	Monday	Hours	Tuesday.	Wednesday.	'Thursday.	Hours	Friday.
8.45	Composition.	8.45	Agriculture.		1. Bookkeeping.	8.45	Agriculture.
9.30	English Literature.	9.4	Arithmetic	Phywiology	2. Arithmetic. 3. Physiology	9.30	English Literature.
10.15	Chemistry.			Hygiene.	Hygiene.	10.15	Grammar.
11.00	Dairying.	10,45	Chemistry.	Chemistry.	Veterinary Anatomy.	11.00	Veterinary Anatomy.

Skoond Yrar.

Hours	Monday	Hours	Tuesday.	Wednesday.	Thursday	Hours	Friday.
8.45	Horticulture.	8.45	Mathematics.	Mathematics.	Horticulture.	8.45	Dairying.
9.30	Grammar.	9.45	Agricultural Chemistry.			9.30	English Literature.
10.15	English Literature.			Agriculture.	Drawing.	10.15	Agriculturs.
11.00	Veterinary Pathology.	10.45	Judging Horses, etc.	Veterinary Pathology.	Agricultural Chemistry.	11.00	Agricultural Chemistry.

Third Year.

Hours	Monday.	Hours	Tuesday.	Wednesday.	Thursday.	Hours	Friday.
Agricultural Chemistry.		8.45	Bacon's Essays,	Dairying.	Agriculture.	8.45	Geology.
		9.45	Natural History and Microscopy.	$\begin{gathered} \text { Pope's Essay } \\ \text { on } \\ \text { Criticism. } \end{gathered}$	Drawing.	9.30	
	Geology.					10.15	Agricultural Chemistry.
		10.45	Rheturic.	$\left\lvert\, \begin{gathered} \text { Natural Histury } \\ \text { and } \\ \text { Microscopy. } \end{gathered}\right.$	Themes.	11.00	Pope's Essay on Criticism.

APPENDIX 3.

CLASS LISTS:

I.-EASTER EXAMINATIONS, 1888.
II.-MIDSUMMER EXAMINATIONS, 1888.
I.-EASTER EXAMINATIONS, 1888.

FIRST YEAR.

Names unnumbered are those of students who failed to pass in the subject.
The minimum for first-class honours is 75 per cent.; for second-class honours, 60 per cent.; for pass, 33 per cent.

Names unnumbered Th \rightarrow minimum for firs 33 per cent.

Olass Lists (Easter Examinations)-Continued.

FIRST YEAR.

Names unnumbered are of those students who failed to pass in the subject.
33 per cent.

Class Lists (Easter Examinations)-Continued.
FIRST YEAR.

Names unnumbered are those of students who failed to pass in the subject. The min

Class Lists (Easter Examinations).-Continued.
SEOOND YEAR.

[^2]Olass Lists (Easter Examinations)-Continued.
SECOND YEAR.

Names unnumbered are those of students who failed to pass in the subject. The mini

Class Lists (Easter Examinations)-Continued.
SECOND YEAR

Names unnumbered are those of students who failed to pass in the subject.
33 per cent.

Olass Lists.
11.-MIDSUMMER EXAMINATIONS, 1888.

FIRST YEAR.

Names unnumbered
The minimum for fir per cent.

Olass Lists (Midsummer Examinations.)-Continued.
FIRST YEAR.

Names unnumbered are those of students who failed to pass in the subject.
The minimum for first-class honours is 75 per cent. ; for second-class honours, 60 per cent. ; for pass, 33 per cent.

Class Lists.

MIDSUMMER EXAMINATIONS, 1888.
SECOND YEAR.

Names unnumbered are those of students who failed to pass in the subject.
The minimum for first-class honours is 75 per cent. ; for second-ciass honours, 60 per cent. ; for pass, 88 per cent.

Names unnumbered
The minimum for per cent.

Class Lists (Midsummer Examinations)-Continued.
SECOND YEAR.

Names unnumbered are those of students who failed to pass in the subject.
The minimum for first class honors is 75 per cent. ; for second class honors, 60 per cent. ; for pass, 33 per cent.

APPENDIX 4.

COLLEGE IN ACCOUNT WITH FARM AND GARDEN.

(a) With Farm.

" 3,465 gallons of milk, at 12 c41580
". Cartage for College
" Feed for President's horse (without attendance)
" Feed for Bursar's'horse (without attendance)
" Carpenter work by students, etc
(b) With Garden.

To fruit and vegetables (for items and prices see Mr. Forsy th's Report, Part VI.)

$$
70860
$$

Total receipts
By amounts paid by College for Student labor on farm and garden

2,71659

Balance to credit of College

UNIVERSITY OF TORONTO.

SPECIAL CONVOCATION FOR CONFERRING DEGREES IN ARTS AND AGRIOULTURE, MONDAY, OCTOBER 1st, 1888.
B.S.A.

Craig, J. A.
Creelman, G. C.
Fee, J. J.
Paterson, B. E.
Zavitz, C. A.
DEPARTMENT OF AGRIOULTURE.-OLASS LISTS, 1888.
THIRD YEAR.

PART II.

REPORT OF THE

Professor of Natural History and Geology,

Ontario Agricultural College,
Guklph, December 31st, 1888.

To the President of the Ontario Agricultural College :

SIR,-In submitting to you a report of the Department of Natural History, it will be convenient to consider it under the following topics :-

1. Museum.
2. Library.
3. Reading room.
4. Practical work.
5. Lectures.

1. College Museum.

During the past year this important adjunct to College work has been greatly improved by the addition of a gallery and several cases more suitable for the arrangement of geological specimens than any we have had before. We purpose devoting the space upstairs to the divisions of geology and entomology. We are still in need of cases for the purpose of exhibiting plants, especially weeds. These might be placed upon the wall in the lower room and so arranged as to be of great practical value to visitors in assisting them to identify the weeds of their respective localities. To do this will require some outlay, which I hope you will be able to secure during the next year.

We have been favored by several persons contributing to our collection during 1887, and here I wish to express my thanks for their kindness, and hope that as years roll on the number of donations suitable for instructive purposes will increase. The following list comprises the donors and donations :-

Mrs. R. Gibson, Grimsby. A large and excellent specimen of fossil seaweed.
John Ramsay, Esq., Eden Mills, fossils of Guelph formation, pudding ston glaciated rock.

John Higinbotham, Lethbridge, cretaceous fossils.
Miss Aiken, Milton, petrified moss and leaves.
Prof. Wm. Brown, O. A. O., skulls of the Buffalo.
Mr. Frank Diamond, Brantford, collections of butterflies, moths and beetles,
W. H. Wardrope, Esq., Guelph, an excellent collection of Scotch plants.
W. S. Carpenter, Simcoe, coral from modern seas,
J. R. Conon, Esq., Elora, a large pothole stone.
G. Watson, student, specimens of chess.

Mr. Cavan, Stratford, a very symmetrical pothele stone.
A. Lehmann, 3rd year student, a collection of Canadian plants (35 species).
H. Gummer, Esq., Guelph, specimen showing a fungoid growth on the May eetle in pupal condition.

2. Library

The Library at present is very convenient, and is becoming each year more valuable for educational purposes-yet we require books for reference, that have not so far been obtained. Some of these we cannot get without considerable expense, and it does seem that we should have a larger grant for expenditure in connection wapers, journals, etc., for hitherto. The present grant is used chiefly in the purchase of papers, jou the reading-room.

It contains 5,370 volumes, of which 117 have been added this year. The books added may be grouped as follows :-

Reports, chiefly agricultural . ${ }^{4}{ }_{9}^{40}$.
Natural History .
Veterinary. 13 .
Agriculture ... 17
Chemistry... 3
Literature .

Hygiene 2
Microscope . 3
Drawing ... 10
General Seience... 3
Parliamentary reports. 2
Examirying..................................

3. Reading-boom.

This is one of the most commodious and pleasant rooms in the College, and is becoming yearly more used for the purpose it was intended. It is well furnished for reading and study ; excellent tables and chairs, and convenient reading-desks, apon which are found the best agricultural journals published, a room are posted in conspicuous places.

Rules regarding the proper use of the reals and magazines which come to the College,
The following is a list of papers, jattendance :and are for the use of the students in attendance :-

Papers and Magazines.
(a) Sent free by the Publishers.

Name.

1. Journal of Commerce

Where published.
2. Canadian Baptist Montreal.
2. Christian Guardian Toronto.
3. Christian Guardian "
4. Canada Presbyterian "
5. Monthly Weather Review 6
5. Monblyterian Review \qquad
6. Presbyterian Review

Ohicago.
7. Sheep Breeder and Wool Grower. Winnipeg.
8. Manitoba Weekly Free Press St. Catharines.
9. Canadian Horticulturist London, Ont.
10. Canadian Entomologist Springfield, Mass.
11. Farm and Home Beeton.
12. Bee Journal Newmarket.
12. North York Reformer Acton.
14. Acton Free Press. Chicago.
15. Dairy World Erin, Ont.
16. Ontario Evangelist
(b) Furnished by the College.

4. Practical Work.

When opportunity was afforded, my efforts in the line of practical work were employed in collecting data of use in the preparation of bulletins, and in trying to improve facilities for the purpose of rendering instructions in science of a thoroughly practical nature.

We have now a portion of the garden selected and set out with plants, representing the most common species, genera and order discussed in lectures on Botany.

The beds are so arranged that the students may take their note-books to the garden, and there find the plants referred to, labelled and arranged in regular order, as they are

Thirty-two orders ; 150 genera and 250 species are thus arranged, and it is intended to increase the number next year. Visitors are much pleased with this collection of herbaceous plants, for here, on examination, they find some beautiful flowers associated with some much less attractive. The cabbage and mustard grow side by side, the heliotrope and the detested burr, and other striking examples of plants related in structure, though widely separated in form.

During the year the following bulletins have been prepared on Raspberries and

Cultivation of Raspberries,

Having had considerable experience at the Agricultural College during the past even years in growing raspberries, I purpose in this bulletin to give our results.

The area planted in 1881 consists of about four acres and forms part of the orchard set apart at that time, so that while the apple trees have been growing the land has not been idle, but bearing yearly a crop of raspberries. As the trees are now reaching a considerable size the raspberry plot will be changed and the land used solely for the orchard.

Conditions surrounding the Canes.

Location : Latitude north $42^{\circ} 38^{\prime}$, height above sea level 1,100 feet, above Lake Ontario 858 feet.

Exposure: Westerly incined to north, no shelly on the north and west sides ; partially drained.

Meteorology : Mean annual temperature of 1880-6 42.2°; mean summer temperature 57.1°; winter 27.3°; highest temperature (1881) 98°, lowest (1884) 35° below zero ; average number of days rain fell per year 72 ; rainfall, including snow, 24.7 inches; prevailing winds, south-west 43 per cent., northtwest 31 per cent.

Management.

The canes are in rows six feet apart, while the plants are about five feet apart in the row. This renders cultivation with the horse-hoe comparatively easy, and thorough cultivation is carried on during the summer so as to keep down weeds and render the soil loose and friable. In summer, during the time of growth, the young canes are kept cut back to about two feet so as to encourage a bushy habit. The plot is manured at least every second year. We have pruned in the spring, believing that an advantage is gained in leaving the old canes through the winter with a view to in a climate comholding the snow around the bushes, and thus serving as a put and the number of canes paratively severe. Early in the spring the old caneor) and ent back to about $3 \frac{1}{2}$ feet in each hill reduced to not more than six (usunes during winter, except leaving the old ones length. We do nothing to protect the calls.

Varieties and Number Planted.

Red.-Philadelphia, 617 ; Outhbert, 376; Thwack, 84 ; Turner, 96 ; Herstine, 115 Niagara, 98 : Clarke, 44 ; Highland Hardy, 114 ; Brandywine, 86. Black Caps.-Davidson's Thornless, 94 ; Dorchester, 12 ; Gregg, 217 ; Mammoth Cluster, 150. White.-Caroline, 12 ; Saunders' Hybrids, No. 53, 50 ; No, 70,18 ; No, 72, 16 ; No. 57, 12 ; No. 50, 12 ; No. 67, 5.

Results of Cultivation.

Red.-Outhbert has proved to be by far the best with us. Though somewhat tender it has stood our severe climatic conditions well and proved itself to be prolific, large, good color, firm and of delicious flavor. The severe winter of $1886-87$ injured many of the canes. It is somewhat late but extends the time of berries, and with a variety which should be found in every raspberry plot. Growing side by side with the Philadelphia an excellent opportunity is found for comparison ; and, as, from time to time I have gone to the ground in the berry season with visitors, I have always found Philadelph judged in favor of this variety, popular both for home and market use. Ph thus not so with us ranks second. It is very prolific, hardy, but not a firm berry, and has not so market able. It makes a fine show on the bush, but does not pick so readily as the Cuthbert It has rather a poor color and ripens comparatively early. Turner comes next, of gool flavor but not very firm berry, and consequently not a good shipper; hardy and seem as if it would grow under adverse conditions better than most varieties, but not an ear berry. Herstine has not done much with us. Its bearing season seems short; berr soft and canes fairly hardy. Niagara has given a fair yield, but late. Clarke is a large
bright, luscious berry, but soft and not very prolific here ; canes tender. Highland Hardy
is a small bush, and a poor grower, tender with us, killing down and bearing soft berries, Brandywine has produced some fair crops, but on the whole has done poorly. Thwack has not fruited well.

Black.-None have done remarkably well. All have suffered considerably from our cold seasons, many hills having died out completely. Davidson's Thornless, though killed badly, has proved to be a strong grower and has furnished some good fruit. Gregg is a Mammoth Cluster has has also suffered, but has yielded a fine, large firm berry. have proved themselves to he prolific ; the bery ; it is medium early. Saunders' Hybrids but a very poor color, being a cross between the res inclined to be soft ; a good flavor. neither the one nor the other, but a sort of red and black, they have the color of would affect their sale, but for home use these berridy-like appearance. This no doubt seem to possess the flavor of black more than red berries, worthy of a good place. They

White.-Caroline has been fairly prolific and comparatively hardy,

Conclusions.

1. We have been very successful in obtaining a satisfactory yield from red raspberries, especially the first mentioned on the list.
2. We are inclined to believe that leaving the old canes till spring aids in keeping the snow about the hill and thus serves as a protection during the winter months.
3. Ground for is rather severe on black varieties.
4. The best Red varieties should be well drained and thoroughly cultivated. Gregg, Mammoth Cluster and Saund Cuthbert, Philadelphia and Turner. Of Black : make up a collection likely to do well in most places in Ontarite : The Caroline. These 6. Farmers, with a little care and nost places in Ontario. berries for home use, and thus save many a thount of labor, might easily grow raspof their household who strive to gather wild obtained under most adverse conditions.

Rust (Puccinia graminis).

In reply to many questions referring to rust, the writer has thought it expedient to furnish information in a bulle in that will answer these questions, and also those of other enquirers who are equally desirous to get some light upon this invisible foe :

Lite History of the Rust Plant (Puccinia graminis.)

Rust is the product of a minute plant belonging to a very extensive group, called the Fungi. Many of these are microseopic and live upon other plants, feeding upon the juices of the latter to such an extent as to affect their vitality. In this comprehensive group we find plants producing rust, must, mildew, ergot, blight, potato rot, and countless other diseases, that affect the higher forms of plant life. In the case of the so-called rust we find that a spore, which serves the purpose of a seed in higher plants, reaches the leaves or stalk of the plant attacked. If conditions are favorable it germinates and soon finds its way into the plant affected, and gives rise to a mass of threadlike structures (mycelium) which permeate the host plant and feed upon its juices. Not long after this vegetative condition has been attained, spores are produced in myriads on the threads of which it is composed. So numerous do they become that they burst the thin covering of the leaf or stalk and show a rust colored rupture. If the powdery-like substance thus xposed be examined under a microscope, say 200 diameters, it will reveal that what ppears to be dust is really a mass of regularly formed seed-like bodies, consisting of one ell, oval in shape and reddish in color. Now these spores (uredo), finding their way to theat plants, soon germinate, and again myriads of spores are produced, so that in a very frected time, if conditions are favorable-damp, close sultry weather-a whole field will be ffected. The rapidity of growth in these lower forms of plant life is almost incredible,
but the facts are too flagrant to loubt it. The rust plant does not stop here. A little later in the season, on the same threadlike structure (mycelium), another form of spore is produced ; but these are usually more common on the lower part of the stalk, and are destined to carry the trouble into another season. These last formed spores (teleuto) are "summer spores," the latter as "winter spores." Affected plants are then said to be attacked with two-celled, pear-shaped and black. Affected ple this parasite, just at a time when the " mildew" and suffer severely from the ell. These black spores proceed no further that plant has reached a stage to mature its seed. Ther wheat until another plant has served season, and will not again give rise to mildew-res germinate and give rise to another form as nurse for a while. In spring the dark spores threads growing from each cell of the of simple spores (sporidia) formed at the end of been discovered to germinate upon wheat; black spores. These (sporidia) as yet have not shrub they germinate, enter the leaf and but when they reach the leaves of the Bars of cup-like structures, in which are produced soon give rise on the underside to massoses (acidium), which will produce a vegetative innumerable round golden colored spo wheat or some other closely allied plant. They growth only when they germinate on the as "rust." Such is the life history of this common then give rise to the condition referred very complicated one indeed; there being no less foe, and to the reader must appear a very than four kinds of spores produced- winter and spring spores ; spring referring to the convenience, we might name summer, wis (uredo and teleuto, one in the spring on stubble last two. Two grow on the wheat plan (he leaves of the Barberry (ecidium.) or fragments of straw (sporidia), and one on the leaves of the -Bres (cidin.)

The Barberry as a Host.

The question naturally arises here, Is the Barberry shrub to be blamed for all the The quester to defend this shrub against such a charge, several views have been set forward, which are as follows :-

1. Uredo spores may be carried over the winter upen plants that do not perish like wheat at the close of the season, e.g., couch grass, etc.
2. Sporidia may germinate on wheat withuut the intervention of another plant.
3. Sporidia may develop on other plants than the Barberry.

But as yet these are merely guesses at the truth. That such a common enemy ha ${ }^{8}$ Bo long eluded the investigation of scientists may seem remarkable; but when it is remembered how many conditions are required to be observed in searching such a minute roe, the surprise is not so great. However, it does seem that a sufficient case has been made out to prevent the further use of the cecidium spores enables them to be carried of wheat fields. The extreme minu it is not necessary that the source of trouble should be long distances in the air, so that it hope that other sources than the Barberry may be close at hand. We may reasonably hope acting in harmony with the teaching of science in found, but in the meantime farmers are continuing no longer the use of this plant for a hedge.

Conclusions.

From extensive enquiries into the presence and cause of rust, the following conclusions have been reached :

1. Seasons are the chief cause are favorable to its increase. accompanied with close stils are most subject to attack.
2. Low-lying rich soils manures, rich in nitrogen, encourage the disease.
3. An excessive use is most subject to attack.
4. Late sown grain sown crops seem most liable to injury.
5. Red wheats are less affected that white varieties.
6. Rust is more common in the vicinity of Barberry hedges than at a distance.
little pore is d are n of as to) are with en the er that served er form of the wheat; eaf and roduced getative

They common no less hese, for g to the stubble n.)
or all the been set erish like plant.
enemy ha ${ }^{8}$ when it is h a minute e has been ighborhood to be carried e should be rry may be of science in
distance.

To lessen the attacks of this troublesome parasite farmers should avoid, as far as possible, the conditions referred to above, as favorable to its propagation. By so doing, they are following in the line of practical and theoretical teaching, and may expect favorable results.

In Bulletin VIII, 1886, referring to grapes, some notes were given relative to the ripening of the varieties in our vineyard. In the report of '87 I again referred to the ripening of our grapes, to show what a marked difference there is in one season compared with another, and in this report I give the notes for three years, presuming that they may be of interest to some readers. We have now stopped growing the varieties which we have learned from experience do not ripen with us, growing the varieties which to the cultivation of those we find that are likely to ris, and will confine our attention

The dates indicate when the varieties were gathered in this locality.

1886.

September 8th—Brant, Janesville, Champion, Moore, Early Dawn, coloring and ripe before the week ends ; Wilder commencing ; Othello freely colored but unequally.

September 14-Lindley, Hartford, Wilder, Massasoit, just showing color ; Telegraph, Ives' Seedling, Oottage, Israella, Eumelan, Barry and Concord apparently later than the

September 21st-Creveling and Concord about the same, and Cornucopia nearly so.
October 2nd-The best were cut, viz. : Lindley, Delaware, Moore, Salem, Massasoit, Wilder, Merrimac, Eumelan, Herbert, Concord.

October 7th-Clinton, Brighton, Agawam and Martha, ripe.

1887.

September 5th-Champion, Janesville, Maxim, Brant,
Croton. September 10th-Hartford, Prolific, Massasoit, Agawam, Cornucopia, Black Hawk,
Eagle. Black Eagle.

September 15th-Eldorado, Brighton, Advance, Aulochon.
September 17th—Salem, Delaware, Ooncord, Wilder, Gaertner, Warden, Lady Jessica.

September 20th—Draucut's Amber, Herbert, Lindley, Merrimac, Eumelan.
September 24th-Amber Queen, Barry, Clinton, Martha, Rogers' 41.
September 26th-Dempsey 4, 18, 25, Poklington, Prentiss, Transparent, Walter.
September 28th-Elvira, Eva, Green's Golden, Iowa, Lady Washington, Maxatawny Naomi, Noah.

September 30th-All varieties gathered in ; while in 1886 a note says, October 2nd,
"the best were cut, viz, : Lindley, Delaware, Moore, Salem, Massasoit, Wilder, HerMartha, ripe." Eumelan, Concord." October 7th, "Clinton, Brighton, Agawam and 1888.

September 15th-Maxim, Ohampion.
September 18th-Moore's Early.
September 20th-Massasoit, My Red, Delaware.
September 22nd-Worden, Cottage, Early Dawn.
September 24th-New Haven, Creveling, Lindley, Tessica and some Concord.
September 26th-Brant, Purity, Eldorado.
September 28th-Barry, Gaertner, Herbert, Rogers' 28, 33, 41.
October 1st-Transparent, Rogers' 5, Waverly.
October 3rd-Faith, Canada, Dempsey, Prentiss and Jefferson.
October 5th-Munroe, Martha.
After this date no more were gathered.

The following seed tests have been made in the Botanical Laboratory. They show a The following seed germinating power of some seeds, and teach us that it is of great importance to the farmer to ascertain, as far as possible, the vitality of the seeds he purchases :-
Figures at the head of columns indicate the number of days the seeds had been planted, those in the columns the percentage of seeds germinated, when counted.

Grains.

o. 21, Six-rowed barley

54, Wheat $\begin{array}{ll}4 & 55 \\ 4 & 50\end{array}$ 4 56
4 57, Peas
4 58, Wheat
" 59, Peas
4 60 , Wheat
" 461
" 62, Rye.
63, Wheat

- 64, Oats
" 65, Barley
" 66, Oats.
" 6

4
4

" 71,
" 72, Barley

- 73, Rye.
.. 7
" 79, Barle
(80 , Wheat
،
$\stackrel{\sim}{n}$

No.
90, Timothy
91, Cocksfoot 92, Rye grass 93,
94, Cow grass.
95, Frefoil
96, Fall oats
" 97, Loin blue
98, Timothy
98, Timoth
99, Clover
100, Red clover
" 101, Rye.

- 102, Alsike clover
' 103, Red top.....
- 104, Alsike clover
- 105, Lucerne
- 106, Tall oat
" 107, Meadow foxt.
- 108, Red top

109, Fescue..
110, Italian rye
4 (A.c.)

Seed Tests-Continued.

4 (A.c.)

Seed Tests-Continued.

on this rest the b is set in somethin having a hinged This germinator

For examinir the foreign grains is kept for compa

Concerning t science popular an students, for the and other places tural science ; tra etc., in the differe increased.

Reference has illustrate lectures excellent views of impress scientific f shown in the vivid objects connected among the student before the class.

To make the 1 theoretically in the superintendent of show the students sending our studen seen a practical der some and repeat wc repeatedly consulte and what had been

Blank form ill

Names of Students. for practical purposes. It is not necessarye Consequently it is possible to get conditions quite same. We do not find it so the vitality of seeds has been impaired or not, without resorting to the construction of a complicated apparatus.

Methods.

1. Place 100 seeds between sheets of blotting paper laid on sand, and keep the paper damp in a place where the temperature is about 78° to $85^{\circ} \mathrm{F}$. The number of seeds germinating will indicate the percentage good.
2. Place the seeds on a piece of flannel in a saucer, with sufficient water to moisten it thoroughly. After scattering the seeds (100) on the flannel, put a piece of damp blotting paper over the whole and place in a warm room. Keep it continually damp, and in a short time the seed will germinate ; the number sprouting will be the percentage of good seed.
3. The following method is much more complicated than the preceding, and can only be adopted where the subject is made a study. This is the apparatus used at the College It consists of a hemispherical copper boiler one foot in diameter, fastened to the bottom of a galvanized iron pan, two feet wide, four feet long and five inches deep. The water passes from the copper boiler into the pan, through four small holes, and is made to cir culate over part of it by guides three-fourths of an inch high. Another bottom, resting on the top of these, is firmly soldered around the edges; at one corner a tube passes througl the bottom, for the purpose of filling the boiler and under pan with water. After coming from the copper vessel the heated water runs back and forth several times in the iowe pan, and is finally conducted by a return tube back to the copper boiler, entering new the bottom. Some sand (about two inches deep) is put in the upper part of the pan, and
on this rest the boxes, etc., containing the seeds to be tested. This tin box and boiler is set in something like an office desk, about four feet high, standing on four legs, and having a hinged glazed top. Heat is produced by a small coal oil stove placed below. This germinator is well adapted for testing many samples at the same time,

For examining seeds as to purity, scatter them on a piece of black card board, and the foreign grains are readily observed. If a good collection of seeds, true to their kind, is kept for comparison, the impurities can be easily identified.

Concerning this department, much attention has been given to make the study of science popular and practical. Excursions have been made from time to time with the students, for the purpose of studying botany and geology in the field. Elora, Rockwood and other places were visited. The result of these trips is a greater interest in agricultural science ; travelling thus from place to place, they observe the condition of farms, etc., in the different localities and cannot fail to have their practical knowledge greatly
increased.

Reference has already been made to the plants set out in a part of the garden to illustrate lectures on botany. The purchase of a superior magic lantern, by which excellent views of objects discussed in the lectures can be exhibited, also does much to impress scientific facts upon the minds of our students. Already its usefulness has been
shown in the vivid shown in the vivid way it illustrates sections of plants, microscopic organisms and other among the students the study of agricultural science. No half hour is more popular before the class.

To make the lectures on horticulture as practical as possible, the chief points discussed theoretically in the lecture room were written out, numbered and given to Mr. Forsyth, superintendent of the garden, so as to enable him to see what he might be expected to
show the students practically, sending our students to the various seen a practical demonstration of thesartments, instances occurred where some had not some and repeat work to others, the form below was prepared. This liabiity to overlook repeatedly consulted this, and was thus at a glance able to see whe practical instructor and what had been taught.
aking these nt accuracy ways be the itions quite without re-
p the paper of seeds ger-
r to moisten amp blotting p , and in tage of good
and can only t the College o the botton

The water 8 made to cir ttom, restin passes through After coming in the iowe entering nea f the pan, asi

Blank form illustrating the method of keeping a record of practical instruction :

Nos. 1, 2, 3, etc., to 20, represent points to be illustrated in practical horticulture ; these are written out in full in the instructious referred to, so that a number indicates at once the subject e. g. 5 is grafting, 8 pruning grape vines. As each student is taught, the space opposite his name and under the number is marked X, and thus the instructor

METEOROLOGY.

Report of Obskryations taken at tie Ontario Agricultural College during 1888 Observations are regularly taken at the hours of $7 \mathrm{a} . \mathrm{m} ., 2 \mathrm{p} . \mathrm{m}$., and $9 \mathrm{p} . \mathrm{m}$. daily, and recorded in a book printed for the purpose. The instruments in use are as follows:-Anemometer-Recording the direction of the wind and indicating the number of miles travelled. Showing the atmospheric pressure at the time of observation.

Barometer-Showing the almoting the highest temperature between times of
Maximum thermometer-Indicating observation. thermometer-Indicating the lowest temperature between times of observation.

Hygrometer-With $d r y$ and wet bulb thermometers, for the purpose of showing the condition of the atmosphere with reference to moisture.

Pluviameter-Used in measuring the rainfall.
Thermometer-For observing ordinary temperature.
Besides taking observations from these instruments, day are recorded in the daily observed, and general remarks on the weather of the month's observations is given to register. At the close of each mont. From these monthly summaries the condensed statethe Guelph papers for publication. From these monthly summaries ment of the year's meteorology is made out.

Form of Monthly Summary.
 Meteorology.

A summary of the meteorological observations taken at Ontario Agricultural College during the month of at Guelph (1.100 feet above sea level and 858 feet above

Normal height of arometer Latitude north $43^{\circ}-38^{\prime}$,
$\begin{aligned} & \text { Lake Ontario, } 28.86 \text { inches } \\ & \text { Barometer- }\end{aligned}$
Highest barometer.
Lowest
Highest mean barometer.
Lowest " "
Monthly " "
Monthly range.
Thermometer-
Highest thermometer.
Lowest "
Highest mean thermometer.
Lowest " "
Monthly
Monthly range.
Pluviameter-
Days rain fell.
Greatest rainfall
Days snow fell.
Greatest snowfall,
Total precipitation.

Anemometer-

Direction of wind.
Greatest number of miles travelled in twenty-four hour3.
Greatest velocity per hour.
Mean velocity per month.
Clouds-
Cloudy days.
Clear days.
Mean cloudiness for the month

Month of highest mea
Highest mean monthl
Lowest
Month of the lowest 1 Highest pressure.....

Lowest 4

Mean temperature of Warmest month Mean temperature of Coldest month Mean temperature of Highest temperature. Lowest temperature. . Range of the year. .

Total depth of rain in
Number of days on wh
Month in which the gr
Greatest depth of rain
Month with most rain
Greatest number of ra
Total depth of snote in
Number of days on wh
Month in which the gr
Greatest depth of snou
Month with most snow
Greatest number of snc
Total precipitation in

Mean Meteorological Rebults for the Year 1888.

- -	$\stackrel{1888}{\text { GuELPR. }}$	Average of 40 years, Tobonto.
Barometer,		
Month of highest mean pressure.	January.	September.
Highest mean monthly.	29.524	29.664
Lowest	28.198	29.572
Month of the lowest mean. Highest pressure. Lowest	October.	June.
	29.748	30.358
	28.032	28.692
Thermometer.		
Mean temperature of the year. Warmest month \qquad Mean temperature of the warmest month .	$41.04{ }^{\circ}$	44.17°
	July.	July.
	67.6	$67.64{ }^{*}$
Coldest month	January.	February,
Mean temperature of the coldest month	$11.4{ }^{\circ}$	22.73°
Highest temperature	June, 95*	91^{*}
Lowest temperature.	February, ${ }^{18.5}{ }^{\circ}$	$11.9{ }^{\circ}$
Range of the year.	$113.5{ }^{\circ}$	102°
Pluviametri.		
Total depth of rain in inches	17.79	28.30
Number of days on which rain fell.	91	110
Month in which the greatest depth of rain fell	June.	September.
Greatest depth of rain in one month	2.78 in .	3.55
Month with most rainy days	October.	October.
Greatest number of rainy days in one month	14	13
Total depth of snow in inches	26.44	
Number of days on which snow fell	41	
Month in which the greatest depth of snow fell	January.	
Greatest depth of snow in one month.	10.8 in .	
Month with most snowy days.	January.	
Greatest number of snowy days in one month	12	
Total precipitation in inches.	20.78	

Diagram Illustrating the Mean Meteorological Resulits for 1888.

Diagram

Wind

January
February
March .
April
May
June
Juiy . .
August...
September
October
November
December

Cloudiness

January.
February.
Match . .
April .
May
June
July .
August.
September .
October
November.
December

Diagram Illustrating the Mean Metgorological Results-Continued.

Wind : January. February	Miles Travelled.	Miles. Direction predominating.		
		$\begin{aligned} & 799 \\ & 754 \end{aligned}$	E. 1 months.	
	6Rina		$\text { N.W. } 8$	"
March .				
		748	S.W. 2	
	Mran	726	W. 1	"
May	max mix	546		
June	4	687		
Juiy	Ens	501		
August...	1	602		
September	mextmander	518		
October .		540		
November				
December .		75		
		691		
Cloudiness				
January .		5.3		
February .		6.5		
March		6.4		
April		3.8		
May ...		E. 8		
June .		4.7		
July		5.3		
August...		5.1		
September .		4.3		
October		6.9		
November.	-	7.		
December		7.2		

To the President of
Dear Sir,-A laboratory had beer have been rendered experiment and an laboratories during arrangement of rool concerned, we could ments and the mone that possessed by th from year to year un in America, and pos warrants and the ag

A proper appres and to the other scie giving undue promin practically as far as taking in the full co

First Year.-A
compounds found in Inorganic and Organ

Second Year.work to the operatio is also taken.

Third Year.-W heir degree of Bach cquaintance with th Fork in Agricultural and foods (in part, if

The carrying ou nalytical work beyo Ir. Zavitz, the assi imself a careful and m becoming more a ermanent assistant ortilizers and foods

PART III.

Ontario Agricultural College,
Guelph, December, 1888.

To the President of the Agricultural College :
Dear Sir,-At the time of submitting my report of 1887, our new chemical laboratory had been finished but a short time; since then, the internal arrangements have been rendered more complete, and many improvements made for the purposes of experiment and analysis. I have had the opportunity of visiting other chemical laboratories during the past year, and my conclusion is that, so far as our building, arrangement of rooms, working tables, heating, ventilation, and general furnishings are concerned, we could make few, if any, improvements, considering our present requirements and the money expended. We certainly are not equipped with apparatus such as that possessed by the laboratories of rich universities, but we hope to add to our supply from year to year until we shall in all respects be fully equal to any chemical laboratory in America, and possess facilities which the agricultural wealth of this Province certainly warrants and the agricultural interests demend.

Lectures.

A proper appreciation of the great importance of chemistry to scientific agriculture, and to the other sciences involved in agriculture, leads to the belief that we are not giving undue prominence to this subject. Our aim is to teach and study the subject practically as far as possible. The full importance of the subject is appreciated only by taking in the full course which at present is as follows :

First Year.-A theoretical and practical study of all the chemical elements and compounds found in soils, fertilizers, plants and animals, taken under the two heads, Inorganic and Organic Chemistry.

Second Year.-Agricultural Chemistry, involving the application of the first year's work to the operations and products of the farm ; a short course in qualitative analysis
is also taken.

Third Year.-When our students complete the third year's work, and are ready for their degree of Bachelor of Science in Agriculture, they are supposed to have a thorough cquaintance with theoretical chemistry, to be familiar with the latest and most advanced vork in Agricultural Chemistry, and to be able to analyze rater, milk, soils, fertilizers and foods (in part, if not in whole).

The carrying out of the above course of instruction leaves me but little time for nalytical work beyond the oversight of what is done. Much of the analysis is done by Mr. Zavitz, the assistant in the experimental department. Mr. Zavitz has proven imself a careful and painstaking experimenter and analyst. As our work developes I m becoming more and more convinced of the advantage and necessity of appointing a fermanent assistant chemist who could devote his whole time to the analyses of soils, Frtilizers and foods. In this respect we cannot now of course keep up with the
analytical work being done in other "American laboratories, where two, three and four chemists are permanently employed. I have carefully considered the whole question, and I think the Government would be wise and prudent in incurring the extra cost. We could thus have one man for lahoratory work alone, and one man for experimental work who could be a valuable assistant to Prof. Shaw.

Prompted by many enquiries from farmers and others, I issued in May a condensation of the following bulletin on

Phosphoric Acid and Phosphates.

Plants require phosphorus for the development of their seeds, and animals also require it for the structure of their bones. When we speak of phosphoric acid in connection with soils, plants and animals, we refer to a compound of phosphorus and oxygen $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$: it is the white fume that comes from the burning tip of an ordinary match. It is not found, however, in this condition in soils, plants and animals, but it exists, combined with such substances as lime, iron, and alumina, forming salts which are termed phosphates. To say, therefore, that a soil, a fertilizer, a grain of wheat or a bone contains so much of phosphoric acid means that the acid is present in the combined state of a salt. The most common form is the compound with lime, known as phosphate of lime, or calcic phosphate.

The ash of milk contains phosphoric acid : 100 lbs . of milk generally contain about one fifth (0.20 per cent.) of a lb. of phosphoric acid, while fresh bones contain about 25 per cent. of phosphoric acid. The requirements of plants (showing amount of phosphoric acid removed per acre by the several crops-Warington) can be seen as follows:

Soils, therefore, require phosphoric acid for the development of plant life and are often deficient in this regard. Hence the application of phosphates in one of the several forms will often convert an unproductive soil into one of great productiveness.

Three samples of soil lately analyzed here gave 0.31 per cent. of phosphoric acid. while one that was said to be unproductive gave little trace of it. Let us take a soil of average quality as possessing 0.20 per cent. of phosphoric acid. Twelve inches of sur face soil will weigh from one thousand to two thousand five hundred tons per acre, and will contain from four thousand to ten thousand pounds of phosphoric acid to the acre There is in the average soil, therefore, a supply of phosphoric acid (as of other minera materials) sufficient for many years crop production. That crops cannot thus live upon the constituents of the soil without the regular return to the soil of fertilizers can be explained in two ways: 1st, the plant, through its roots, is brought into close proximity to only a small portion of the soil ; 2nd, The food is, for the most part, in an insoluble or unavailable form. Hence we need a much larger supply of plant food in the soil than is required for immediate necessities of the plant, and some of this food must be in soluble form.

The difference the following tra present year :

Phosphoric

A value is th the source.

Let us next phosphates. We sl various forms can b

Pure Acid.
Water
Water
Ph. Acid.
Water
Or, in chemical
$\left.\begin{array}{ll}\mathrm{H}_{2} & \mathrm{O} \\ \mathrm{H}_{2} & \mathrm{O} \\ \mathrm{H}_{2} & \mathrm{O}\end{array}\right\} \mathrm{P}=\mathrm{O}_{5}$
The change frot introduction of lime insoluble phosphate. soluble phosphate, gypsum. Superphos and variable quantiti

In harmony wit simple form as follow
\int Water.
$\{$ Sulphuric $\}+$

Or, in chemical
$2\left\{\begin{array}{cc}\mathrm{H}_{2} & \mathrm{O} \\ \mathrm{S} & \mathrm{O}_{3}\end{array}\right\}$
Sulphuric acid ar
osphate of lime and
Bone superphospl
ck superphosphate.
uble phosphate bacl ether in a compost insoluble forms to
and four question, ost. We tal work a conden-
mals also d in cond oxygen natch. It cists, comre termed bone coned state of te of lime,
tain about about 25 phosphoric s:

Cotal.
2.7 Hbs
20.6
8.9 $25.1 \quad$
life and are of the several ss.
sphoric acid, take a soil of nches of surper acre, and to the acre other mineral us live upon ilizers can be lose proximity n insoluble or he soil than is d must be is

The difference in value, owing to the state of solubility, will be seen at once from the following trade values used by the analysts of the eastern states during the present year :

Phosphoric Acid-Soluble in water

A value is thus arrived at by considering the solubility, the size of particles, and the source

Let us next distinguish between soluble, reverted or partially soluble, and soluble phosphates. We shall take the different phosphates of lime. The relationship of the various forms can be most easily seen from the following arrangement:

Pure Acid. Soluble Phosphate. Reverted Phosphate.

Or, in chemical notation :

$$
\left.\left.\left.\left.\begin{array}{l}
\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{O}
\end{array}\right\} \mathrm{P}_{2} \mathrm{O}_{5} \quad \begin{array}{c}
\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}_{2} \mathrm{O}
\end{array}\right\} \mathrm{P}_{2} \mathrm{O}_{5} \quad \begin{array}{c}
\mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}_{\mathrm{a}} \mathrm{O} \\
\mathrm{C}_{\mathrm{a}} \mathrm{O}
\end{array}\right\} \mathrm{P}_{2} \mathrm{O}_{5} \quad \begin{array}{l}
\mathrm{C}_{\mathrm{a}} \mathrm{O} \\
\mathrm{O}_{\mathrm{a}} \mathrm{O}
\end{array}\right\} \mathrm{P}_{2} \mathrm{O}_{5}
$$

The change from the pure acid to the insoluble form is a removal of water and an introduction of lime. In our rock phosphate, and in bones, the form is that of the insoluble phosphate. The treatment by sulphuric acid changes this, more or less, into soluble phosphate, the lime that is removed being changed into sulphate of lime or gypsum. Superphosphate thus made, therefore, consists of soluble phosphate, gypsum, and variable quantities of the other two phosphates,

In harmony with the above, we can represent the formation of superphosphate in simple form as follows :

Or, in chemical notation :
$\left.\left.2\left\{\begin{array}{c}\mathrm{H}_{2} \mathrm{O} \\ \mathrm{S} \\ \mathrm{O}_{3}\end{array}\right\}+\begin{array}{l}\mathrm{C}_{\mathrm{a}} \mathrm{O} \\ \mathrm{Ca}_{\mathrm{a}} \\ \mathrm{CaO}\end{array}\right\} \mathrm{P}_{2} \mathrm{O}_{5}=\begin{array}{c}\mathrm{H}_{2} \mathrm{O} \\ \mathrm{H}_{2} \mathrm{O} \\ \mathrm{CaO}_{\mathrm{a}}\end{array}\right\} \mathrm{P}_{2} \mathrm{O}+\quad 2\left\{\begin{array}{l}\mathrm{Ca}_{a} \mathrm{O} \\ \mathrm{S} \\ \mathrm{O}\end{array}\right\}$
Sulphuric acid and insoluble phosphate of lime react on each other, forming soluble 20sphate of lime and sulphate of lime or gypsum.
Bone superphosphate, or dissolved bone, is considered more valuable than mineral or ck superphosphate. The mixing of lime with superphosphate tends to change the uble phosphate back to the less soluble form, the reverted. Decaying organic matter, ether in a compost heap or in a soil, will have the effect, to a small extent, of changing
insoluble forms to soluble.

Phosphates are of most service with organic fertilizers on black humus soils, along with farm-yard manure or nitrogenous fertilizers, and are of less benefit in connection with lime.

Phosphatic fertilizers give good results when applied to pastures, cereals, and roots, especially turnips.

Sources of Phosphoric Acid.

I. Farm-yard manure contains from 0.15 to 0.75 per cent. of this acid, having an average of about 0.50 per cent., or 10 lbs . to the ton. Poultry droppings have about four times as much.
II. Ashes (fresh and leached) have from $\frac{3}{4}$ to $1 \frac{1}{4} \mathrm{lbs}$. per bustel.
III. Fresh bones (sold as crushed bone, bone meal, or hoat acid.
texture) should contain about 4% mixing 500 lbs , of bone with 25 bushels of fresh ashes per acre.

1V. Bone ash, the ashes obtained by burning out all of the organic matter. Little used in Ontario.
V. Boiled or steamed bone, the refuse bone from which most of the organic matter has been boiled or steamed for glue, this is more easily ground and made into superphosphate than III. charcoal, bone black, or bone charcoal, the refuse charred bone after being used for the refining of sugar. A sample analyzed here gave 30% of phosphoric acid.
VII. Bone superphosphate, or dissolved bone, made by treating bones (especially V. or VI.) with sulphuric acid- 15 to 25 per cent. phosphoric acid.
VIII. Guano contains from 10 per cent. to 30 per cent. phosphoric acid. Buy this only from reliable dealers on guaranteed analysis.
IX. Dried blood and scrap have 3 to 10 per cent. X. Apatite-Canadian, containing about 80 per ce have over 35 per cent.
XI. A good superphosphate should have about 25 per cent.
XII. Marls : The presence of phosphoric acid greatly adds to their value; those we have examined have never given much more than traces. Phosphate Meal: These are all XIII. Basic Slag, Thomas Slag, Thomas Scoria, Phosing phosphorus. Tbe phosnames for the finely ground slag from smelting iron containing phate of lime. It is being phorus is removed by lime and the slag therefore contains experimented with in Europe, promises well, sell of phosphate. It contains an excess of is claimed to be the cheapest available form of phosphate. caustic lime.

In the month of August the following bulletin was issued, based on some analysis which I made. The bulletin needs no elaboration :-

Linseed and Oil Cake.

In Ontario oil meal and oil cake generally refer to the ground and unground bye products remaining from the flax seed or linseed out of which the linseed oil has been extracted by pressure. In other countries, and to some extent in this, linseed cake is used to designate the bye-product from linseed, while oil cake is used to include all the bye-products obtained from such oil-bearing seeds and nuts as cotton seed, rape seed, sesame seed, earth nut, palm nut, etc. In this bulletin oil cake and linseed cakes are identical.

With a view to bringing some facts in reference to oil cake before the Ontari farmers, I have analyzed whole linseed, ground linseed, and linseed cake or oil cake The whole linseed was a mixture of two samples grown in the counties of Peel and Lambton ; the ground linseed and oil cake were taken from the supply on hard used this season for feeding stock at the stables of the Ontario Experimental Farm.

Whole Linseed Ground Linseed Oil Cake

From the for
The samples principally from

The only stri amount of ash, natural causes (d dirt. Ground for

The differen oil or fat and mo (protein or album from the linseed, a smaller percent

As seen fron fact, are among th Ontario farmer. understand their

From their foods. If we allo cent a pound for values :--linseed, $\$ 29.85$ per ton.

A point often fertilizing or man 2 per cent. of pho of a ton of oil cs following :-

This means th But the most econ and starch are use fat, starch and par about all of the ph economy of feedin utilization of the oil cake feeding de

There are two analyzed, containin from two to four p ing greater pressur oil and leave a byeis well, therefore, t and the great varia

The chemical analyses are as follows :-
ls, along nnection
nd roots,
aving an bout four
ording to bushels of

r. Little

nic matter into super-
se charred ve 30% of pecially V .

Buy this
ime, should
e ; those we
hese are all
Tbe phos-
It is being per ton, and an excess of
me analysis
nground bye oil has been inseed cake is nclude all the sed, rape seed, seed cakes am
e the Ontario ze or oil cake s of Peel and hand used this

	Water.	Crude protein.	Fat.	 Starch.	Crude fibre.	Ash.

From the foregoing table the following conclusions are drawn :
The samples analyzed were all exceedingly dry, drier than usual ; this resulted principally from their having been stored for some time in a dry place.

The only striking difference between the whole seed and the ground seed is in amount of ash, or mineral matter. Some increase in the latter case is possibly due to natural causes (difference in nature of plant, soil, etc.); but most probably it is due to dirt. Ground fodders are always more likely to be dirty and adulterated than unground.

The difference between the oil cake and the linseed is that the former contains less oil or fat and more of all the other constituents, the cake has more muscle-forming food (protein or albuminoids), more starch, more woody fibre. By pressure the oil is extracted from the linseed, all the other constituents remain ; therefore, in the cake we shall expect a smaller percentage of oil and a larger percentage of everything else.

As seen from the above table, linseed and oil cake are exceeeingly rich foods, in fact, are among the richest in every constituent of all the fodders at the command of the Ontario farmer. They are also among the most expensive. Hence, every feeder should understand their true value and be able to employ them intelligently and successfully.

From their chemical composition we can make a pretty correct valuation of these foods. If we allow three cents a pound for protein, two cents a pound for fat, and one cent a pound for sugar and starch (the digestible carbohydrates), we obtain the following values :-linseed, $\$ 31.28$ per ton ; ground linseed (as above), $\$ 30.42$ per ton; oil cake,
$\$ 29.85$ per ton.

A point often overlooked in the feeding of such foods as oil cake and bran is their fertilizing or manurial value. The cake contains on the average 5 per cent. of nitrogen, 2 per cent. of phosphoric acid, and $1 \frac{1}{2}$ per cent. of potash. Then if we calculate the value of a ton of oil cake, using the current prices of commercial fertilizers, we have the following :-

$$
\begin{aligned}
& 30 \text { " potash @ 44c... } 128 \\
& \text { Total value of one ton of cake } \\
& \$ 2058
\end{aligned}
$$

This means that applied directly to the soil as a fertilizer the oil cake is worth $\$ 20.58$. But the most economical way is to apply it through the animal, for in that case the fat and starch are used by the animal ; a return is obtained in the animal increase from the fat, starch and part of the protein ; the rest of the protein (nitrogenous materials), and about all of the phosphoric acid, potash, lime, etc., are obtained in the excrement. The economy of feeding oil cake may in great measure depend upon the preservation and utilization of the excrement. It has been proven in England that the excrement from oil cake feeding decomposes more slowly in the soil than that from many other sources.

There are two classes of oil cake now on the market, the old process, such as the one analyzed, containing from ten to twelve per cent. of fat, and the new process containing from two to four per cent. of fat. Improved methods of extracting the linseed oil, involving greater pressure and higher temperature. enable the manufacturers to press out more oil and leave a bye-product poorer in oil b t richer in protein. In purchasing oil cake it is well, therefore, to clearly understand the difference between the two classes of cake, and the great variation there is in different cakes.

To show the variations of different cakes and also the composition of, other cakes than linseed,' I append the following table :-

	Water.	Protein.	Fat.	Starch.	Fibre.	Ash.
		24.02	8.71	35.20	13.25	5.95 7.52
Oil meal, Ontario Agricultural Coll. '86	12.87	24.02 37.25	5.69	40.85	8.69	7.52 5.33
Linseed cake, Mass.	8.07	31.71	8.20	34.38	12.31	5.07
Linseed meal, N. ${ }_{\text {r., }}$ old proce	8.55	32.35	2.13	38.13 37.19	13.77 8.08	5.14
do do new do	12.70	33.25	3.64 4.00	37.19 36.74	8.33	6.15
$\begin{array}{ll}\text { do } \\ \text { do } & \text { N. } \\ \text { N. J., }\end{array}$	10.59	34.19 28.10	4.00 12.00	36.74 30.30	11.00	6.60
Linseed cake, England	12.00	34.28	13.47	26.63	9.14	6.11
do Russia.	15.16	24.56	16.47	27.11	9.37	8.33 8.20
do Poland p. . . .	9.10	32.40	11.60	31.50	8.80	7.30
$\begin{array}{ll}\text { do } \\ \text { do } & \text { U.S. (Stewart), } \\ \text { do } \\ \text { do. p.... } \\ \text { n. p.... }\end{array}$	9.70	33.20	2.30	38.70 35.40	8.70	6.40
	9.30	34.50	5.70 3.60	38.40	9.00	6.00
Oil cake, U.8. ${ }_{\text {do }}$ do ${ }^{\text {do }}$ n. p.........	10.00	33.00 31.50	3.80	36.30	9.30	5.90
Oil meal, U.S. (Armsby), o. p.	9.20 10.70	31.90 32.90	3.10	38.30	9.50	5.60
do ${ }^{\text {do }}$ do n. p.	10.70 9.04	32.70 29.70	11.25	35.03	8.54	6.44 5.80
Linseed cake, U.S. (Jenkins),	11.30	35.50	4.50	34.18	8.80 5.70	5.80 7.10
do meal, do (St,jver)	8.00	44.00	13.70	21.50	5.68	7.15
Cotton seed meal, U.S. (Stuver).	8.04	43.97	13.72	21.44	11.00	7.00
Palm nut meal do (Armsby)	11.50	31.60	9.60 3.00	29.30 34.10	13.40	7.90
Rape cake extracted do do	8.50 7.90	33.10 13.50	3.00 14.80	34.10 41.00	18.80	4.00

Linseed and oil cake are too rich to be used alone as food, they are supplementa.j foods ; i. e., they can be added to poor fodder to obtain a sufficient, wholesome ration ; or they can be added to a maintenance ration to obtain a richer ration. By the intelligent use of these and of similar concentrated foods, food which otherwise would he unavailable on account of its deficiency of fat and protein may be utilized, and at the same time the farmer can obtain a supply of rich fertilizer for his fields. For instance, straw is comparatively rich in starch and fibre, but is insufficient alone to form a ration on account of its lack of fat and protein ; oil cake also is insufficient alone to form a ration on account of its richness in fat and protein-the mixture of the two renders both available. In the use of such strong foods as oil cake, no fixed rule or standard or ration can be blindly followed. Intelligence and common sense combined with a proper understanding of the nature of the foods are a feeder's best and safest guide. Begin with a small quantity, say $\frac{1}{2} \mathrm{Db}$. or 1 BD ., gradually increase the allowance, observing the effect and limiting the amount by the effect produced; thus suit the ration to the animal and to its ability to properly digest the food, do not try to force the animal or its digestive powers to any fixed ration.

The harmony of science and practice in the mixing of skim milk and flax seed may be clearly seen from the following table, the deficiency of fat in the skim milk being supplied by the excess in the flax seed and the proportions of the whole milk being restored thereby :-

	Water.	Protein.	Fat.	Sugar and Starch.	Fibre.	Ash.

1. Linseed c flax seed.
2. It should when broken, sho ance is to a great the less oil it cont
3. The cake
4. Upon exa should be seen.
5. It should
6. It should mould ; if mouldy
7. The groun ground cake.

I have been giving the composi selected the follow our farmers. The farmer ; the table analyses, but is suf

Milk, whole.
Milk, skimmed

Whey . .

Buttermilk Pasture
Meadow Hay-poor. . . . extra..
average
Red Clover, average . .
Wheat Straw. .
Oat Straw.
Pea Straw .
Corn Stalks
Wheat.
Barley
Corn..
Oats.
Mangels
Turnips.
Carrots
Potatoes
rodder Corn (green). . . Linseed.
Dil Cake (old process).
Dil Cake (new process). patmeal.
Cornmeal
Wheat Bran..
" Middlings
a. Shorts ..

Ialt Sprouts.
rewers' Grains
fistillers' Grains

Conclusions.

1. Linseed cake should be reddish in color, not too dark, somewhat resembling whole flax seed.
2. It should present a granular structure on the surface, a clean uniform appearance when broken, showing the smooth, oily coats of the original seeds. This granular appearance is to a great extent a test of its oiliness, the more compressed or broken the seeds the less oil it contains.
3. The cake should be decidedly oily to the taste.
4. Upon examination with the eye or magnifying glass few, if any, foreign seeds should be seen.
5. It should be clean, free from dust and grit.
6. It should not be damp, other than with oil. If damp, examine carefully for mould ; if mouldy, do not use. Keep it in a dry place.
7. The ground cake or meal is more likely to be dirty and adulterated than the unground cake.

Composition of Foods.

I have been requested at many meetings of Farmers' Institutes to publish a table giving the composition of foods and feeding stuffs. From various reliable sources I have selected the following, which, I trust, will prove interesting and instructive to many of our farmers. The table is not exhaustive-it contains the foods available to the Ontario
farmer ; the table is farmer; the table is one of averages-it may differ slightly from some other published
analyses, but is sufficient for the feeder's purpose.

	Water.	Protein.	Fat.	Starch \& Sugar.	Fibre,	Ash.
Milk, whole.						
Milk, skimmed. .	88.0 90.0	3.3 3.6	3.5	4.5		0.7
Whey .	90.0 92.8	3.6 1.0	0.7	5.0		0.7
Buttermilk. .	92.8 90.1	1.0	0.6	5.0	. .	0.7 0.6
Pasture Grass	90.1 75.0	3.0 3.0	1.0	5.4		0.6 0.5
Meadow Hay-poor. . . .	75.0 14.3	3.0 7.5	0.8	13.1		0.5 2.1
Meadow Hay-poor. . . .	14.3 16.0	7.5 13.5	1.5	38.2	6.0 33.5	2.1 5.0
4 average ...	16.0 14.3	13.5 9.7	3.0	40.4	19.3	5.0 7.7
Red Clover, average	14.3 16.0	9.7 19.3	2.5	41.4	26.3	6.2
Wheat Straw	16.0	12.3	2.2	38.2	26.0	5.3
Oat Straw..	14.3 14.3	3.1 4.0	1.2	37.5	40.0	3.9
Pea Straw	14.3 14.3	4.0 7.3	2.0	35.6	39.7	3.9 4.4
Corn Stalks	14.3	7.3	2.0	32.3	39.2	4.4 4.9
Wheat	14.0	3.0 13.9	1.1	37.9	40.0	4.0
Barley	14.3 13.8	13.2	1.6	66.2	3.0	1.7
Corn.	13.8 14.7	11.2	2.1	- 65.5	5.2	2.2
Oats	13.7	10.6 12.0	6.5	- 65.7	2.8	1.7
Peas.	13.7	12.0	6.0	56.6	9.0	2.7
Mangels e.	18.2	22.4	3.0	52.6	6.4	2.4
Turnips. .	81.5	1.1	0.1	9.1	0.9	0.8
Carrots .	85.9	1.0	0.2	5.8	0.7	0.8
Potatoes	85.0	1.3	0.3	9.6	1.9	1.0
Fodder Corn (green)	88.5	2.1	0.2	20.7	1.1	0.9
Linseed	82.0 11.8	1,0	0.4	10.1	5.3	0.7
Dil Cake (old process).	11.8 8.6	21.7 30.0	35.6	19.6	7.9	3.4
Dil Cake (new process).	8.6 9.7	30.0 33.2	11.1	36.8	7.0	6.5
Datmeal	12.0	38.2 17.7	2.3	38.7	8.8	7.3
Dornmeal .	12.0	17.7	6.0	63.9		7.3
Wheat Bran. .	18.4 13.0	8.0 14.5	3.0	68.0	1.4	$1.2{ }^{\prime \prime}$
4. Midjlings .	12.9	14.5	3.5	53.6	9.4	6.0
4. Shorts .	12.7	14.6	3.0	63.8	3.1	2.6
Malt Sprouts.	12.7	13.8	4.1	57.6	7.5	4.3
Srewers' Grains	10.3 75.0	23.0	1.8	48.6	10.7	5.3 5.7
fistillers' Grains .	75.0 90.7	5.6 1.9	1.7	12.9	3.9	1.0
$\cdots \cdots \cdots \cdots \cdots \cdots$	90.7	1.9	0.4	5.3	1.2	0.5

Notrs on the Above Table.

Water.-From the analysis we see that milk and its bye-products, roots and grass, have the most water, 75 per cent. to 90 per cent. Grains, hay, straws and the concentrated foods have only from 10 per cent. to 16 per cent. Excess of water alone in food is not enough to condemn its use-the natural foods, i.e., the foods first provided by nature, milk and grass, being among the most watery. The combination of the two classes, watery and dry, will best utilize both.

Protein.-This food-constituent is also known as albuminoids, flesh-formers and muscle-producers. It contains nitrogen, and is the only constituent that can make flesh and muscle. It can also, when given in excess, form fat or be burned for animel heat. From its great importance in the body it is most valuable. .The above represents crude protein ; it contains, also, some other compounds of nitrogen called amides, which are not quite so valuable, as they cannot form flesh and muscle.

Fat.-The fat, or oil, or ether extract contains some other substances, as the green coloring matter of leaves. The iat can be deposited as fat or be burned for heat. One thing is to be remembered, that the animal fat does not come from the fat of the food alone, but may be formed from protein also, and probably from sugar and starch.

Starch and Sugar.-These and other similar compounds are generally classed in tables of analysis as carbohydratcs. They generally form a large part of plants. Their first use is to afford heat by being burned in the body. There is some dispute as to whether they can be changed directly to fat-so far experiments tend to the opinion that they can ; a full supply of them, however, prevents the wasting of the other more valuable parts for heat, such as fat and protein.

Crude Fibre.-This is partially digestible, the digestibility differing with different animals and different foods and mixtures.

Ash.-The importance of the ash or mineral matters is at once evident from the fact that it is the material from which are formed the solid bones. Ash is as necessary for life and growth as any other constituent. The feeding of concentrated foods rich in ast (such as bran, oil cake, grain,) will produce a rich manure.

Corn.

During the past season Prof. Robertson started an experiment in the production and feeding of corn ensilage. It was our intention to analyze the corn, ensilage, milk, etc, and publish the results from the two departments. The destruction of the silo in the burning of the barns has prevented the completion of the experiments and the analysis d the ensilage. We have, however, the analyses of the ensiled corn, and to them hare added some analyses of corn that will be of some interest.

First, I shall give an analysis of green corn placed in the silo. It was Mammotl Southern Sweet Corn, drilled and broadcasted. This report should, of course, be read and studied in connection with Prof. Robertson's report on the same as to quantity pro duced per acre and results of feeding.

Ensilage Corn.

1. Ensilage c chlorophyll), and digestible portion
2. The drille fibre and ash than fully read in conn per acre.
3. The drilled to assimilate silica (which was a diffe field), 4.43 per cen or gravelly ; the omitted it in maki that corn or maize for its growth.
4. The leaves ash. The stalks ance with the fact
5. A compari parison of Nos. 1 a

Next we shall analyzed five samp

1st. Yellow G
2nd. White Gc
3rd. White Go
4th. Yellow co
5th. Mammoth

Yellow Gourd, Essex,
White Gourd, Essex, 1 White Gourd, Essex, 18 Yellow, Middlesex, 188 Mammoth Southern Sw

Essex County, above named, the V having first been bro for the above sampla posing of Essex cort in every direction. bushels of ears per a more than the grain.

Both kinds are facturing purposes t ing purposes, both \mathbf{k} protein, fat, fibre and the yellow corn is a were taken from diff ion as to give no ap

I would suggest he experiment of fe purate the work, and

5 (A. c.)

Comments and Conclusions.

1. Ensilage corn is very watery, has little or no true fat (the crude fat is nearly all chlorophyll), and is valuable for its sugar and starch (carbohydrates), its protein and the digestible portion of its fibre,
2. The drilled corn had less water, chlorophyll and carbohydrates and more protein, fibre and ash than the broadcasted corn. It was more matured. The above must be carefully read in connection with Prof. Robertson's report as to the amount of each produced
3. The drilled corn (whole plants), gave us a remarkable proof of the ability of corn to assimilate silica, which is not needed for the growth of the plant. We found in No. 1 (which was a different sample from Nos. $3,4,5$ and 6 taken from different parts of the field), 4.43 per cent. ash, of which 3.02 was silica. Part of the drilled field is very sandy or gravelly ; the presence of the excess of silica was, therefore, accidental, so I have omitted it in making comparisons. It simply proves what is often mentioned elsewhere, that corn or maize has the ability of assimilating large quantities of silica not necessary for its growth.
4. The leaves are drier than the stalks, contain more protein, chlorophyll, fibre and ash. The stalks contain more sugar and starch than the leaves. The above is in accordance with the fact that the leaves are the workshop, the stalks the storehouse of the plant.
5. A comparison of No. 3 with No. 4, and of No. 5 with No. 6 bears out our comparison of Nos. 1 and 2 in the main.

Next we shall give the results of an analysis of the seed or grain of the corn. We analyzed five samples as follows :
lst. Yellow Gourd corn, Essex Oounty, Ontario, grown in 1887.
2nd. White Gourd corn, Essex County, Ontario, grown in 1887.
3rd. White Gourd corn, Essex County, Ontario, grown in 1888.
4th. Yellow corn, common sixteen-rowed, Middlesex County, grown in 1888.
5 th. Mammoth Southern Sweet corn, used for ensilage corn above.

	Water.	Protein.	Fat.	Starch \& Sugar.	Fibre.	Ash.
Yellow Gourd, Essex, 1887						
White Gourd, Essex, 1887.	10.08 10.27	10.31 9.18			1.29	
White Gourd, Essex, 1888.	14.93	9.18 8.87	3.79 3.52	74.35	1.07	134
Yellow, Middlesex, 1888...	15.24	8.87 10.62	${ }_{3.52}^{3.52}$	70.08	1.46	1.14
Mammoth Southern Sweet	12.17	10.25		68.14	0.82	1.36
			4.07	70.90	1.44	1.17

Essex County, Ontario, is pre-eminently a corn-raising county. The two varieties above named, the White and the Yellow Gourd corn are extensively raised, the seed having first been brought from Ohio. I am indebted to Mr. Richard Golden, Amherstburg, for the above samples, as well as for much information in regard to the raising and disposing of Essex corn. All the corn in the county is planted in hills 3 ft .9 to 4 ft . apart in every direction. The crop during the past season bas, in many districts, averaged 100 bushels of ears per acre. The corn shells half grain, half cob, after which the cob shrinks more than the grain. The white ear is usually larger than the yellow.

Both kinds are extensively grown, and each has its ardent advocates. For manufacturing purposes the white is preferred for glucose, the yellow for distilling. For ferd' ing purposes, both kinds are used. The chemical analysis gives the yellow a little nore protein, fat, fibre and ash, the white more sugar and starch. All constituents consilererl, the yellow corn is a little richer, but the difference is so slight that if many more samples were taken from different localities, the two varieties might be so nearly alike in composition as to give no appreciable difference.

I would suggest to some of the enterprising farmers of Essex, that they undertake he experiment of feeding the two corns. Why should not the Farmers' Institute inaucurate the work, and thus accomplish something of a most practical nature? 5 (A. C.)

Now let us compare the corn stuffs on the same basis, water free. If we calculate their composition when entirely freed from water, we shall have the following:

	Protein.	Fat.	Sugar and Starch.	Fibre.	Ash.
	0.20	1.08	70.84	${ }_{29}^{26.32}$	1.56 1.84
Stalks-Ensilage corn-drilled	1.16	1.40	66.40	29.20 19.24	${ }_{6}^{1.84}$
Stalks-Ensilage corn-broadcas	6.58	${ }_{1}^{2.62}$	65.24 52.93	19.24 26.45	5.07
Leaves-Ensilage corn-drilled....	5.50	10.05	52.93 49.48	26.45 33.70	8.04
Leaves-Ensilage corn-broadcasted	${ }_{5}^{6.95}$	1.83 2	${ }_{60.64}^{49.48}$	${ }_{27.92}$	3.85
Ensilage corn-whole plants-drodea	5.03	2.56	60.64 70.86	1.43	1.68
	11.46	5.57	82.88	1.19	1.49
Yellow Gourd, Essex County, 1887	10.22	4.22 4.14	${ }_{88.37}$	1.72	1.33
White Gourd, Essex County, 1888	${ }_{12.54}^{10.44}$	4.50	80.50	086	${ }_{1}^{1.60}$
Yellow corn, Middlesex County, 1888	11.68	4.64	80.71	1.64	1.33
Mammoth Southern Sweet					

N. B.-The fat, or ether extract, in the case of the ensilage corn leaves and stalks, is not true fat, but contains a large quantity of chlorophyll, or green coloring matter.

The ensilage corn, that is the whole plant cut before maturity to put in the silo, contains an excess of fibre, and about half as much protein as the matured grain. It contains very little true fat, and about three-fourths as much sugar and starch. In the ensilage corn sugar is in excess, in the grain, starch.

To render more complete our discussion of corn, I shall take the liberty to add a few condensed notes from other reports.

The most comprehensive work yet pnblished in America on the composition of corn, is found in two bulletins from the Department of Agriculture, Washington, D. C., by Mr. Clifford Richardson, who, in 1883' and 1884, gathered together the analyses of corn made at the Department of Agriculture ; also those of Professors Johnson, Atwater and Kedzie. The average of 114 American samples is here given, as also the averages of other investigators, Koenig, Wolff and Jenkins :

other investigators, Koenig, Wolff and Jenkins :

It will be interesting to state results by locality. In addition to giving each separate analysis, the results are grouped as follows :

Taking all a "there is apparen a corn wherever it there seems to be

Subsequent al without doubt, to
"It can only acre, and not the 9

By consulting is a great differenc The value of straw an analysis and 1887).

Water Crude Pr Fat Sugar and Fibre .. Ash..

The experimer than expected, espe

A careful com and a thoughtful er important remarks to some of our farn
"A glance at contains a large an in digestible protei that it furnishes an not adapted to be t wintering of stock. stover must be su deficiency in protei brewers' grains, glu In conclusion

Corn fodder, field cured
" bran, (Jen Cornmeal, (Armsby)... Distillers' grains from e Corn ensilage, (Jenkins)

Several samples available knowledge these, together with be of no particular a pondence in regard brief and concise sta
calculate

Ash． tter． in the silo， grain．It ch．In the o add a few tion of corn， n，D．C．，by yses of corn Itwater and averages of

Taking all available analyses into consideration，this conclusion is reached，that ＂there is apparently the same average amount of ash，oil，and albuminoids（protein），in a corn wherever it grows，with the exception of the Pacific Slope，where，as with wheat， there seems to be no facility for obtaining or assimilating nitrogen．＂

Subsequent analyses confirmed the above conclusion：＂Corn may be said，therefore， without doubt，to be very constant in its composition within narrow limits．＂
＂It can only be said here that our results have shewn that it is the quantity per acre，and not the quality of corn which is affected most by conditions of environment．＂

Oorn Stalks or Stover．

By consulting the table of foods given in this report，it will at once be seen that there is a great difference in the composition of the straws from the various grains or serials， The value of straw，stalks，or stover from matured corn is often underestimated．I quote an analysis and comparison from Dr．Armsby＇s report（Pennsylvania Station Report，
1887）．

Water	Armsby．	Jenking．
Crude Protein	15.53	22.83
Fat	5.76	5.38
Sugar and Starch．	1.99	1.45
Fibre ．．．．．．．．．．．．	44.49	40.30
Ash．	25.87	25.18
	6.36	4.86

The experiments to determine the digestibility of the various parts，place all higher than expected，especially the fibre．Corn stalk fibre is quite highly digestible．

A careful comparison of the composition of the corn stover，with those of the grain， and a thoughtful enquiry into the whole subject of corn feeding，will uphold Dr．Armsby＇s important remarks as to the place of stover in feeding．Since it may be of practical value to some of our farmers，I shall quote his words（pp．153，154）：－
＂A glance at the analysis of corn stover，as given above，will show that while it contains a large amount of digestible carbhydrates，（sugar and starch），it is quite deficient in digestible protein（flesh and muscle formers），so that its special value lies in the fact that it furnishes an abundant and cheap supply of digestible carbhydrates．Alone，it is not adapted to be the exclusive food of domestic animals，except perhaps for the simple wintering of stock．If any material growth or production of milk or meat is desired，the stover must be supplemented by some other feeding stuff which will make good its deficiency in protein．Such feeding stuffs are，for example，cotton seed meal，malt sprouts， brewers＇grains，gluten meal，oil meal，etc．＂

In conclusion I shall give the composition of a few other corn products ：－

	Water，	Protein．	Fat．	Starch \＆ Sugar．	Fibre，	Ash．
Corn fodder，field cured，（Jenkins）．．．．．	32.1	4.3	1.2	36.0	22.1	4.3
＂ ＂bran，（Jenkins）．．．．．．．．．．．． cob，（Jenkins）	7.7	6.9		80.00		1.4
Cornmeal， $\begin{aligned} & \text { cob，（Jrmsby）．．．．．．．．．．．．．．．．．}\end{aligned}$	9.3 8.4	2.5 8.0	0.5 3.0	$56.0{ }^{80}$	30.4	1.4 1.3
Distillers＇grains from corn，（Ärmsby）．．	8.4 91.6	8.0 2.0	3.0 1.0	68.0	1.4	1.2
Corn ensilage，（Jenkins）．．．．．．．．．．．．．．．．	76.3		1.0 1.0	4.9 10.2	1.0 6.7	1.5 0.5 2.5

Soll Analysis．

Several samples of soils have been sent in for analysis．Where it was considered that available knowledge would result the work was undertaken．The present publication of these，together with the analyses，partial or complete，of some rocks，waters，etc．，would be of no particular advantage here，hence they are omitted．I have also had some corres－ pondence in regard to the extensive analysis of soils，and I think it opportune to make a orief and concise statement of the case．

The question to be answered is about as follows :-
Some one sends by mail a small package of soil, asking to have it analyzed and to have a report on its good qualities, its deficiencies, the crops suitable, the fertilizers most requisite-in fact, a short essay on the value and uses of the field of which this is a sample.

The difficulties met with may be thus summarized :-
1st. Most fields vary somewhat in texture and composition from place to place ; soils are not perfect mixtures.

2nd. It is almost impossible to obtain, say half a pound, that shall fitly represent an acre of soil which weighs say $3,000,000 \mathrm{lbs}$.

3rd. Small differences or errors in the sample give large appreciable differences per acre. Take half a pound of soil. Let us take 80 per cent. as water and insoluble matter. Then 20 per cent. or one-fifth is to be determined as organic matter, lime, potash, phosphoric acid, etc. We find it contains 0.43 per cent. of phosphoric acid. That would give us .00215 lb . of our sample, or $12,900 \mathrm{lbs}$. per acre. If we were to find 0.44 per cent., our sample would have .00220 lb . and the acre $13,200 \mathrm{lb}$. of phosphoric acid, a difference of 300 lbs . per acre and a difference of only .00005 lb . in our sample. The question here is : how nearly will that half pound represent the average of the field? For every error of .00005 lb . or $\frac{1050}{}{ }^{5} 00$ of a lb , in our sample, an error of 300 lbs . per acre will ensue. A crop of, wheat yielding 30 bushels per acre removes only about 22.5 lbs. of phosphoric acid per acre. The error of 300 lbs . is enough for over thirteen good crops.

The above is an underestimate of the error, as, in reality, in making the final analysis, much less than half a pound is taken.

Or, let me put it in another way. A soil is utterly destitute of phosphoric acid and the owner applies $1,000 \mathrm{lbs}$. of superphosphate, containing 300 lbs . of soluble, available phosphoric acid. Certainly it contains enough for the wants of a crop, if assimilated immediately. But we analyze it and we should get 300 lbs . out of $3,000,000$, only . 01 per cent. We would, from the chemical analysis alone, be apt to condemn it.

4th. Chemical analysis does not give us full information as to the form of combina tion in the soil. A soil is fertile only as its food is available. A wet swamp soil is often excessively rich, but unfertile ; the land must first be drained, and limed, perhaps, before its constituents are available for plants.

Enough has been said. My conclusion is : if the chemical analysis of soils is to be of any practical value, it must be done very thoroughly and systematically, and the sample should be obtained as carefully as the analyses are conducted.

I could quote to support my opinions, but I need only say that all chemists are agreed on my conclusion. To the farmers I would say : before sending a sample of soil correspond, stating your case ; if any practical results will accrue to you we will gladly under'ake the work, if not it is better to save our time, your trouble, and the annoyance of m : sading results that might be obtained.
-ne analysis of soils is not yet as complete and reliable as that of foods and fertilizers. One analysis is reliable, that of actual experiment in the field by the farmer himself.

Soil Temperatures, Rain Fall and Drainage Waters,

The taking of daily observations, and the keeping of the record is in the Experimental Department, and is attended to by Mr. Zavitz, who makes observations three timee every day.

Our Lysimeters, described in previous reports, have, during the past season, given little or no drainage water. In 1887 the amount drained through and collected wis smaller than in 1886, this year it was almost nothing. Only one gave any drainage during the whole summer, viz., the clay. The seasons can hardly account for the peculiar behavior of our lysimeters during the past two years. At present we can simply say wi have no reliable report or conclusions to draw.

Barometer
Attached thermomet Temperature of air . wet Temperature maximu Soil temperature at 1
46
4
6
4
6
6
4
6
4
6
6

The Increaf

Air
Thermometer 1 inch in

4	3
$"$	9
$"$	24
$"$	36
$"$	48

Rain Gauge．

The rain which fell during the summer，as compared with that of last year，was as follows：－

	1887.		1888.
May	1.58	inches	1.079
June	2.36	＂	2.918
July．	． 61	＂	2.205
August	2.71	＂	2.162
September	1.52	＂	1.548
Total	8.78	＂	9.912

Mr．Zavitz has furnished me with the following condensed summary of the observa－ tions taken in soil temperature．I trust that the immense amount of work here repre－ sented will be found interesting and instructive to some students of soils．Such work as this must be patiently accumulated until，in good time，some patient，intensely interested student of nature，shall develop，conclusions and read results of great practical value to the farmers．

Afrrage of eace Thermometer for each Montil and for Whole Period．

Instruments．				离	号	官	莿		
Barometer．．．．．．．．． Temperature of air				28.767	28.849	28.909	28.881	28.923	
				53.22	67.58	70.43	64.93	57．96	${ }_{62.77}^{28.864}$
				50.98	64.36	67.22	66.56	54.96	60.78
				${ }_{60.31}^{47}$	${ }_{74.52}^{62.52}$	${ }_{80}^{61.62}$	61.30	${ }^{56} 2.51$	57.05
				60.31 41.05	74.72 51.42	80.53 51.43	77.23	67.81	72.10
Soil temperature at 1 in				50.71	${ }_{68.93}$	51.43 68.42	53.12 67.06	42.87	50.25
＂	3	，		53.59	68.79	69.88	${ }_{69.31}$	${ }^{69.77}$	62.64 64.09
＂	24	＂		48.88	63.01	66.13	66.45	58.18	60.33
＂	36	－		45.61	57.02	61.61	61.33	57.45	56.38
，	48	＂			55.19	${ }^{60.22}$	60.19	58.87	56.03
＂	3	＂		42.74 51 188	52.39	57.73	60.17	57.95	54.52
＂	3	＂	in clay．	51.78 45.04	63.99	69.86	67.89	58.25	61.93
＂	3	＂			67.02	69.55	68.32	57.99	63.06
	9	＊	in sand．	52.20	65.56	67.57	68.06	57.60	62.05
＂	9	＂			63.18	67.07	67.34	57.88	61.02
＂	9	＂	in in clay	50.18	64.95	67.24	67.00	58.60	61.42
				49．68	63.04	67.57	67.05	57.84	60.85

＋represents increase ；－represents decrease．

Greatest Variation in Temperature of each Thermometer between two readings.
(a) Increase. (b) Decrease.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& \& \multicolumn{4}{|c|}{Increase.} \& \multicolumn{4}{|c|}{Drcreask.} \\
\hline \& \& \& \& Date. \& From. \& To. \& Varia tion. \& Date. \& From. \& To. \& Variation. \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{Temp, air Temp, soil 1 inch de}} \& \multirow[t]{12}{*}{\begin{tabular}{l}
May 23 \\
June 19 \\
Sept. 15 \\
May 8 \\
May 11,1 \\
Aug. 23 \\
Aug. 28 \\
June 19 \\
Sept. \\
Jnly
\end{tabular}} \& \multirow[t]{12}{*}{49.1
48.0
63.6
55.4
61.8
41.0
4.0
60
57.6
\(|\)\begin{tabular}{l}
51 \\
62.5 \\
48.9 \\
42.3 \\
61.1
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
74.9 \\
80.8 \\
100.0
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 25.8 \\
\& 32.8 \\
\& 36.4
\end{aligned}
\]} \& \multirow[t]{2}{*}{Aug. 1
Aug.
Supt. 24
Sept. 24

S} \& 91.2 \& \& 29.2
34.5

\hline \& \& \& \& \& \& \& \& \& \multirow[t]{2}{*}{86.5
79.2} \& \multirow[t]{2}{*}{55.9
60.8} \& \multirow[t]{2}{*}{30.6
18.4}

\hline Temp. soil ${ }_{3}$ \& \multicolumn{3}{|l|}{3 inches deep} \& \& \& \multirow[t]{2}{*}{$$
\begin{array}{r}
100.0 \\
79.2 \\
65.6
\end{array}
$$} \& \multirow[t]{2}{*}{33.8} \& \multirow[t]{2}{*}{Sept. ${ }^{\text {S }}$} \& \& \&

\hline " \& 9 \& " \& \& \& \& \& \& \& 65.6 \& 61.3
41.0 \& 18.4
4.3

\hline " \& 24 \& \& \& \& \& ${ }_{42}{ }^{5}$ \& 3.8
1.0 \& May ${ }^{8}$ \& 42.0
58.1 \& 57.1 \& 1.0

\hline " \& 36 \& " \& \& \& \& 44 \& 1.0 \& Sept. 22 \& ${ }_{61.6}^{68 .}$ \& 60 \& 1.6

\hline " \& 48 \& " \& \& \& \& ${ }^{61.6}$ \& 1.6
294 \& Aug. 23 \& 79.3 \& 52.5 \& ${ }_{26.8}^{1.6}$

\hline " \& 3 \& " \& in sand. \& \& \& \multirow[b]{2}{*}{$$
\begin{aligned}
& 82.2 \\
& 90.2
\end{aligned}
$$} \& \multirow[t]{2}{*}{31.2

37.7} \& Aug. ${ }^{\text {Aug. }} 28$ \& 72.2 \& \& \multirow[t]{2}{*}{${ }_{24}^{25.2}$}

\hline " \& 3 \& " \& in clay. \& \& \& \& \& July 11 \& \multirow[t]{2}{*}{70.1} \& \multirow[t]{2}{*}{60.4} \&

\hline " \& 3 \& " \& in loam \& \& \& \multirow[t]{2}{*}{58.4
53.1} \& \multirow[t]{2}{*}{9.5
10.8
10.8} \& \multirow[t]{2}{*}{July
Aug.
A
J} \& \& \& \multirow[t]{2}{*}{9.7
8.9
8.5}

\hline " \& 9 \& " \& in sand. \& \& \& \& \& \& \multirow[t]{2}{*}{72} \& \multirow[t]{2}{*}{63.5} \&

\hline " \& \& \& in loam \& \& \& 72 \& 10.9 \& \& \& \&

\hline
\end{tabular}

Table of Highest Single Readings of Thermometers at different depths with date of same (for air also).

${ }^{\text {pueg uip seq̌u! } 6}$	
${ }^{\text {pueg uil equju! }}$ \&	
'яэчэи! 8 ¢	
'seq>u! 98	
'sөчэи! 6	
'яэчэи! 8	
'чフu! I	
-! ${ }^{\text {V }}$	
'ләдәшоля	
㮰	

Table of Readings for each day of Recorded Rain；also of following day．－（Concluded．）

		－
		－
	Puws up eppul 6	
緃	${ }^{\text {purs up mepuay }}$ ¢	
8	－rquaut 8t	M－
妾	－2ччй 98	\％\％－
愚		¢¢0
훈	＇suput 6	¢－¢
曾	${ }^{\text {sequaut }} 8$	909
\％		－\％
		－
进	－${ }^{\text {PV }}$｜	
宜		FR－¢
毞	＇mpemava	
	边	

We have don ments．The resul nection with milk few years and pub

In conclusion grateful to the Mi surroundings and this department ut America．

Trusting I ha

Milk Analysis.

We have done considerable work in milk analysis for experiments in other depart. ments. The results will appear elsewhere. I shall not now refer to our work in con, nection with milk as it is our intention to review and summarize the work of the past few years and publish the results early in the coming year.

In conclusion allow me to say that as the head of the chemical department I am grateful to the Minister of Agriculture and to yourself for the improved condition of our surroundings and our appliances. We trust to still further improve the work done in this department until, by the co-operation of all concerned, it shall be second to none in America,

Trusting I have not been too lengthy in my report,

I remain,

Your obedient servant,
C. C. JAMES,

Professor of Chemistry.

HORTI

To the President of t
Sir,-As the Ho reported on by Profes: remind you of what y satisfactory for the ye both vegetables and tatement will show :

Vegetables and

Parsnips, $3 \frac{3}{4}$ bl
Onions, $1 \frac{3}{4}$ bu
Turnips, 2_{4}^{3} bu
Artichokes, $2 \frac{1}{4}$
Carrots, $1 \frac{1}{4}$ bus
Celery, $25 \frac{1}{2}$ do
Radish, 3 doze
Cabbage, $1 \frac{1}{2}$ do
Sundries

Salsify, 4 bush
Parsnips, $4 \frac{1}{2}$ bu
Turnips, 3 bus
Onions, 23 bus
Carrots, $2 \frac{3}{4}$ bus
Beets, 1 bushel
Cabbage, $7 \frac{1}{2}$ do
Celery, 28 doze
Herbs and sun

6* (A.C.)

PART IV.

REPORT OF THE FOREMAN

OF THE

HORTICULTURAL DEPARTMENT

To the President of the Ontario Agricultural College:

Sir, -As the Horticultural Department of the institution will this year be fully reported on by Professor Panton, it is unnecessary for me to say anything further than remind you of what you have no doubt observed, that all the garden crops were full and satisfactory for the year, sufficient to meet all the requirements of the boarding house for both vegetables and small fruits, nd to leave a surplus for revenue, as the following tatement will show :

> Vegetables and Fruits Supplied to the College During the Year 1888.
> January.

> Onions, $1 \frac{3}{4}$ bushels at $\$ 1.50 \ldots$. $\quad 2.62 \frac{1}{2}$
> Turnips, $2 \frac{3}{4}$ bushels at 20 cts . 55
> Artichokes, $2 \frac{1}{4}$ bushels at $\$ 1.00$. 225
> Carrots, $1 \frac{1}{4}$ bushels at 30 cts . 3 . $37 \frac{1}{2}$
> Celery, $25 \frac{1}{2}$ dozen at 60 cts . 15 -30
> Radish, 3 dozen at 10 cts . 30
> Cabbage, $1 \frac{1}{2}$ dozen at 70 cts. 105
> Sundries . 30
> - 824
> 25

February.

Parsnips, $4 \frac{1}{2}$ bushels at 40 cts. 180
Turnips, 3 bushels at 20 cts . 60
Onions, $2 \frac{3}{4}$ bushels at $\$ 1.50 \ldots$. $412 \frac{1}{2}$
Carrots, $2 \frac{3}{4}$ bushels at 30 cts . $82 \frac{1}{2}$
Beets, 1 bushel. 35
Cabbage, $7 \frac{1}{2}$ dozen at 70 ets. 525
Celery, 28 dozen at 60 cts . 1680
Herbs and sundries . 70

6* (A.c.)
March.
Turnips, $4 \frac{3}{4}$ bushels at 20 cts 82
Parsnips, 5 bushels at 45 ct. 135Carrots, $1 \frac{1}{2}$ hushels at 30 cts$637 \frac{1}{2}$Carrots, $1 \frac{1}{2}$ hushels at 30 cts
Onions, $4 \frac{1}{4}$ bushels at $\$ 1.50$100
Salsify, 1 bushel at $\$ 1.00$ 150
Artichokes, 2 bushels at 75 cts 35
Beets, 1 bushel 140Cabbage, 2 dozen at 70 cts40
Sundries
April.
Onions, $5 \frac{1}{2}$ bushels at $\$ 1.50$ 825
Artichokes, 1 bushel at 75 cts 140
Turnips, 7 bushels at 20 cts .Parsnips, $4 \frac{1}{2}$ bushels at 45 cts,Parsnots, 3 bushels at 30 cts.$202 \frac{1}{2}$9040Herbs, ete.
Мay.
Carrots, $5 \frac{1}{2}$ bushels at 30 cts. $157 \frac{1}{2}$
Parsnips, 3 bushels at 45 cts 45
Turnips, $7 \frac{1}{\ddagger}$ bushels at 20 cts 330
Lettuce, $5 \frac{1}{2}$ bushels at 60 cts 980
Rhubarb, 14 bushels at 70 cts. 2376
Asparagus, 594 bundles at 4 cts 4 121
Onions, $2 \frac{2}{4}$ bushels at $\$ 1.50$. 10
Sundries
June. 1140

Rhubarb, 19 bushels at 60 cts .

Rhubarb, 19 bushels at 60 cts .
Lettuce, 6 bushels at 50 cts 300
Spinach, $14 \frac{1}{2}$ bushels at 50 cts 25
Turnips. $1 \frac{1}{4}$ bushels at 20 cts 100
Peas, 1 bushel 430
Onions, 84 bundles at 5 cts. 3280
Asparagus, 820 bundles at 4 cts 1120
Strawberries, 160 boxes at 7 cts 288Gooseberries, 48 quarts at 6 cts30
Herbs, etc
July.

- 874340
Spinach, 1 bushel at 40 cts 160
Lettuce, 4 bushels at 40 cts 850
Peas, $8 \frac{1}{2}$ bushels at $\$ 1.00$. $787 \frac{1}{2}$
Potatoes, $5 \frac{1}{4}$ bushels at $\$ 1.50$ 864
Gooseberries, 144 quarts at 6 cts. 462
Beans, 66 quarts at 7 cts 300
Currants, black, 25 quarts at 12 cts 200
Asparagus, 50 bundles at 4 cts 50
Onions, 10 bundles at 5 cts. 370
Beets, 74 bundles at 5 cts. 210
Carrots, 42 bundles at 5 cts. 2034
Strawberries, 339 boxes at 6 cts 3608

Currant
Ourrant
Currants, white, 118 boxes at 6 cts. Currants, red, 216 boxes at 6 cts. 8708
Cauliflowers, 7 dozen at 60 cts. 1296
Cucumbers, $\frac{1}{2}$ dozen at 6 cts 420
Oucumbers, pickling, 180 dozen ${ }^{\circ} 6$ ${ }^{\circ} 6$
Sundries. 10030
August.
Potatoes, 23 bushels at 70 cts.
Apples, 8 bushels at 60 cts
Apples, 8 bushels at 60 cts 1610 1610
Onions, $\frac{3}{4}$ bushel at $\$ 1.00$
Onions, $\frac{3}{4}$ bushel at $\$ 1.00$ 480 480
Peas, 6 bushels at 81.00 75
Beets, $\frac{1}{2}$ bushel at 25 cts 600
Oabbage, $5 \frac{1}{2}$ dozen at 50 cts. 12 $\frac{1}{2}$
Cauliflower, 11 dozen at 75 ets 275
Cucumbers, table, 9 dozen at 15 cts. 825
Celery, $7 \frac{1}{2}$ dozen at 50 cts 135
Vegetable Marrow, 3 dozen at 50 cts 375
Corn, 18 dozen at 7 cts 150
Raspberries, 262 boxes at 7 ets 126
Currants, black, 15 quarts at 12 cts 1834
Beans, 32 quarts at 5 ets 180
Radish, 10 bundles at 5 cts 160
Carrots, 4 bundles at 5 cts 50
Herbs, 7 bundles at 5 cts 20
Cucumbers (pickle), 900 at 20 cts 35
Sundries 180

September.

Apples, $38 \frac{1}{2}$ bushels at 60 cts
Corm 12 cts 310
Carrots, $1 \frac{1}{4}$ bushels at 40 cts 480
Potatoes, 275 bushels at 35 cts 80
Tomatoes, $7 \frac{1}{4}$ bushels at 70 cts 9625
$507 \frac{1}{2}$
Onb green, 3 bushels at 50 cts. Orab apples, 3 bushels at 60 cts 150
Onions, $\frac{1}{2}$ bushel at $\$ 1.00$ 180
Oabbages, $2 \frac{1}{2}$ dozen at 50 cts 50
Celery, 9 dozen at 50 cts. 125
Oorn, $23 \frac{1}{4}$ dozen at 7 cts 450
Peppers, $3 \frac{1}{2}$ dozen at 12 cts 164
Radish, 3 bundles at 5 cts 42
Plums, 40 quarts at 6 cts. 15
Peas, 64 quarts at 5 cts 240
Grapes, 263 lbs , at 5 cts 320
Melons, 57 at 5 cts 1315
Vegetable Marrows, 200 at 4 cts 285
Citrons, 70 at 5 cts 800350

October.

Tomatoes, $2 \frac{1}{2}$ bushels at 70 cts 175
green, 3 bushels at 50 cts
green, 3 bushels at 50 cts Crab apples, 1 bushel at 40 cts 150
Apples, hand picked, 151 bushels at 40 cts 40 40$\$ 131$
Artichokes， $1 \frac{3}{4}$ bushels at 75 cts 20
Beets， $1 \frac{1}{2}$ bushels at 35 cts 50
Onions，$-\frac{3}{4}$ bushels at $37 \frac{1}{2}$
（＊pickling，$\frac{1}{2}$ bushe 60
Carrots， $1 \frac{1}{2}$ bushels at 25 ts 100
Parsnips， $1 \frac{1}{2}$ bushels 81.00 30
Salsify， 1 bushel at $\$ 1.00$ 26
Turnips， 2 bushels at 15 75
Corn， 18 dozen at 70 cts 40
Oabbage， $3 \frac{1}{2}$ dozen at 50 cts 600
Celery， 12 dozen at 50 cts 50 50 125
Oauliflower， 1 dozen
Oauliflower， 1 dozen Squash， $2 \frac{1}{2}$ dozen at 50 cts 10 480
Radish， 2 dozen at 5 cts
Radish， 2 dozen at 5 cts
Grapes， 94 lbs ，at 5 cts 336
Grapes， 94 lbs．at 4 cts． $07 \frac{1}{2}$
＂ 43 lbs．at $2 \frac{1}{2}$ cts 90
52 lbs ．at 1 65
Melons， 18 at 5 cts Herbs and sundries
November． 150
Artichokes， 2 bushels at 75 cts 70
Beets， 2 bushels at 35 cts60
Turnips， 5 bushels at 15 ets 80
Parsnips， $1 \frac{1}{2}$ dozen at 40 cts$37 \frac{1}{2}$
Onions， $2 \frac{1}{4}$ bushels at 80 cts 125
Carrots， $1 \frac{1}{2}$ bushels at $\$ 1.00$ 50
Salsify， $1 \frac{1}{4}$ bushels at 50 cts 00
Celery， 15 dozen at 50 cts 40
Cabbage， 4 dozdries$\$ 1687 t$
Herbs and sundries．
December． 180

Parsnips， $4 \frac{1}{2}$ bushels at 40 cts

Parsnips， $4 \frac{1}{2}$ bushels at 40 cts 75 75 75 75 75 75 75

Turnips， 5 bushels at 15 cts

Turnips， 5 bushels at 15 cts 68 68 68 68 68 68 68

Carrots， $2 \frac{3}{4}$ bushels at 25 cts

Carrots， $2 \frac{3}{4}$ bushels at 25 cts 8 8 8 8 8 8 8

Onions， 1 ｜千ushel，at 80 cts

Onions， 1 ｜千ushel，at 80 cts 35 35 35 35 35 35 35

Beets， 1 bushel

Beets， 1 bushel 93 93 93 93 93 93 93
Artichokes， $1 \frac{1}{4}$ bushels at 75 cts
Artichokes， $1 \frac{1}{4}$ bushels at 75 cts 900 900 900 900 900 900 900
Celery， 18 dozen at 50 cts
Celery， 18 dozen at 50 cts $162 \frac{1}{2}$ $162 \frac{1}{2}$
Cabbages， $3 \frac{1}{4}$ dozen at 50 cts ．．．
Cabbages， $3 \frac{1}{4}$ dozen at 50 cts ．．． 70 70 70 70 70 70 70Herbs and sundries．．．．．．．．．．．．．．．Herbs an sunTotal supplied to College$89568 \frac{1}{2}$0
5
0
0$\begin{array}{r}\begin{array}{r}81663! \\ \$ 70860\} \\ 27011 \\ 12774\end{array} \\ -\begin{array}{r}\$ 1,10645! \\ 3000 \\ \hline\end{array} \\ \hline\end{array}$Less manure got from farm81,07645

THE P

To the President

Drar Sit， 1888．The cata me a cause of no put to uncomplet the least part of in the book kept acy in the makin consequence my information is to Oreamery busine the filling of a si

For parts of port for 1886 I b influence upon th butter－makers an patrons，and the average than tho business season h press at the time needed by most

The Ontario That unusually cream which was stopping o？opera of 400 lbs ．of but day．The expen tinue，as the rate

Scarcity of f tion．Such a cot imperative need and vetches，fodd advanced farmers resulted from neg

JAMES FORSYTH， Foreman of Horticultural Department．

PARTV.

REPORT OF

THE PR0FESSOR 0F DAIRYING.

Guelph, 31st December, 1888.
To the President of the Ontario Agricultural College :
Drar Sir,-I have the honor to report upon the work of the Dairy Department for 1888. The catastrophe which overtook our institution in the burning of the barns is to me a cause of not only the regret of sympathy. By it a sudden and unavoidable end was put to uncompleted experimental work in the feeding and treatment of cows. That was the least part of the loss. The full record of the dairy experimental work for the year, in the book kept for that purpose, was in a desk in the stable for convenience and accuracy in the making of direct entries by the person in charge. That record was burned. In consequence my report will be a brief one, and the scantiness or absence of much new information is to be measured by the loss referred to. I still have a full record of the Oreamery business ; also fairly complete notes on the growth of a fodder corn crop and the filling of a silo therewith.

I.-CREAMERY MANAGEMENT.

For parts of five seasons the Ontario Creamery has now been in operation. In my report for 1886 I briefly referred to the objects for which it was established. Its educational influence upon the butter-making of the Province is now recognized as valuable by the butter-makers and creamery patrons. Its returns have been satisfactory to its own patrons, and the prices realized from the sales of butter have perhaps been higher on the average than those from any other creamery in Ontario during the same period. The business season has been all too short. The following open letter, sent to the agricultural press at the time of its closing for the past year, has some explanation, as well as advice needed by most of our dairymen :

A Lesson from the Drouth.

The Ontario Creamery closed for the receiving of its patrons' cream on August 18th. That unusually early date points a lesson for Ontario farmers. The small quantity of cream which was being furnished by its 137 patrons was the reason for the unseasonable stopping o. operations. During June and July they furnished cream to make an average of 400 lbs . of butter per day. During August the quantity averaged only 235 lbs . per day. The expense of collecting so small a quantity was too great to be allowed to continue, as the rate per trip was fixed for the season.

Scarcity of feed last winter left many of the cows poor in flesh and weak in constitution. Such a condition of affairs in cow life reduces the product rapidly after July. The imperative need for providing a suitable green fodder in the shape of peas and oats, oats and vetches, fodder corn or millet has not yet been half recognized by even the said-to-beadvanced farmers of Guelph neighborhood. All over the Province the gravest loss has resulted from neglect to prepare for and provide against the days of dry pasturage. Not

$$
7(\mathrm{~A}, \mathrm{C} .)
$$

Butter ma
Average p Number 0 Number o Poutes tra The length

Cost of ga 6

The cream or raising of stock or skimming was pe cylindrical cans 1 credited and the cream was taken the oil test churn ation between the of butter per inch sales among the s

By reason of able to close the diminished and d which had been a one and a scarcity Hence many of t own butter direct by the creamery,

The butter sent to Toronto f nearly all the cre of from three-qua

Under this 1 patrons who patr in the pails for the which are held in which they float, temperature belo in deep pails, the above 90° and th of the milk is sta temperature is ad gravity of the fat milk would avert

For the guid cream and as to t machines, let me of the details of

I visited the culation learned make 1 lD of butt
$\$ 6,13314$

Digbursements,

Receipts.

Sales of butter....
85,727 17
Refunds from patrons
and labor accounts ...
6966
$\$ 6,13314$
Dr

returns, nstances But little ight hay,

ter) have

 feed furrn sweet -20 head ensilage hreatened awaken n for the on of the in her perwrite for ndence are assistance atrons any concern inf the butter and furnisht as low as , the rate of ds so much r of patrons und covered, sarily small.
cash advance ates, viz. :
ter.
from the sales vas distributed
ad the balance
$\$ 4,516{ }_{0}^{*} 34$ $346{ }^{\circ} 96$ 77615

The cream only was collected. The skim-milk was left at the farms to be used in the raising of stock or otherwise. Most of the patrons used the plain shot gun can. The skimming was performed by the patrons. The cream was measured by the collectors in cylindrical cans 12 inches in diameter. Every inch in depth in the measuring can was credited and the fractions of an inch were credited in eighths. A sample of each patron's cream was taken once a week in a glass tube carried by the driver for that purpose. By the oil test churn, the per cent. of churnable fat was in each case determined. The variation between the qualities of different samples of cream was from 7 ounces to 19 ounces of butter per inch of cream. We have thus been able to distribute the proceeds of butter sales among the several patrons according to quantity and quality of cream furnished.

By reason of the unfavorable conditions already referred to, it was considered advisable to close the Creamery on 18th August. Otherwise the expense of collecting the diminished and diminishing quantity of cream would soon have absorbed all the balance which had been accumulated above the promised prices. Guelph city market is a good one and a scarcity there puts the price for good dairy butter up just as high as creamery. Hence many of the farmer's wives are attracted after July to make up and market their own butter direct. The withdrawal of so much butter from the local market, as is effected by the creamery, improves the market for those buttermakers who do not patronize it.

The butter was mostly packed in tin-lined tubs. Nearly $1,000 \mathrm{fb}$. per week wera sent to Toronto for consumption there. The home markets show a disposition to take nearly all the creamery butter made in the Province. Canadian salt was used at the rate of from three-quarters to one ounce per 开. of butter.

Under this head I take the liberty of pointing out the cause of serious loss to patrons who patronize creameries. The milk is frequently left to cool off before it is set in the pails for the separation of the cream. The fat of milk is in the form of small globules which are held in suspension. Because these are slightly lighter than the serum of milk in which they float, they rise to the surface when left undisturbed. But if the milk be of a temperature below 90° Fahr., orgjifit remain at a stationary temperature after being set in deep pails, they rise very slow f When the milk is put into the pails at a temperature above 90° and then gradually cooled down, without agitation or disturbance, a circulation of the milk is started whereby the globules are quickly carried to the top. A falling temperature is advantageons, also, because it increases the difference between the specific gravity of the fat globules and serum or skim milk. Proper attention to the setting of milk would avert very serious losses to those supplying cream or making butter.

For the guidance of persons seeking information as to the best methods of separating cream and as to the comparative advantages of deep setting and the use of the centrifugal machines, let me here cite some information from previous investigations. (The record of the details of all milk setting experiments for 1888 perished in the barn fire).

I visited the farms of a large number of the patrons, and by measurement and calculation learned that on the average, 33 db . of milk were taken to yield enough cream to make 10 of butter. During the same period by the ordinary 12 and 24 hours setting in

$$
8 \text { (A. C.) }
$$

ce water, 28 db . of milk yielded sufficient cream to make 11b. of butter. Had the same milk been used with the centrifugal separator, 26 db . of milk would have yielded as much cream as would have given $1 \mathbf{1 b}$. butter. From these figures it follows that by the batrons, the butter yield was 3.03 B . er the yield was 3.57 fb . butter per 100 H . milk. By ordinary setting in ice water, 3.85 db . butter per 100 tb . milk.
By use of centrifugal separator,
From these facts it will be seen 17.8 per cent. on the quantity realized by ordinary quantity of milk, set in ice water, is 17.8 pe centrifugal separator over ordinary practice practice. The increase by the use of the increase by use of centrifugal separator over setting in ice would be 27 per cent. The Hence, where cream only is supplied to a creamery, every water would be 7.8 per cent. Hence, wherely of ice. patron should provide for use a from the centrifugal separators point to an advantage

The larger returns in butter from of drawing the whole milk and returning to the from their use where the would not more than absorb the value of the increase of butter realized. line question for these interting of new creameries, I

As this is a live questiontion in connection with the circumstances in every locality. state four points for constion that may be effected.
(1) Proportion of cream separation that may be effected.
(2) Effect of the process on the quality and condition of the cream,
(3) Effect of the processs on the quality of the skim-milk.
(1) The previously stated ratio of separation by the different methods may be taken as reliable.
(2) Where cream has to be carried a number of miles during hot weather its condition and quality are better for butter-making where the separation is effected at the creamery.
(3) For profitable calf feeding the skim-milk must be sweet. Both processes, when well managed leave it at the farm in that condition
(4) Under the head "Oosts" are to be compared: (1) Cost of machines and pails; the milk over the expense of gathering the cream ; (4) The labor of the farm.

The foregoing information should enable those interested to intelligently decide for themselves which plan to gdopt. This general guiding conclusiong from long diatare a small quantity of milk is available, and then only by collecting from of milk the setting plan would be more economical ; but where a large supply of milk may be phin a small area, the centrifugal plan will be the most prontable.
In calling the attention of farmers to the advantages of the creamery system of butter-making over the plan of home butter-making, I need not say much about the quality of the average dairy butter. I believe the quality is improving. Still the fact remains that dairy butter brings on the average from four to The foreign market will pay creamery butter in Ontario when marketed at the same time. cheese of Ontario has won its high prices only for uniformly fine dairy products. Th because of the uniformity of deservedly high reputation in English markets, mainly its excellence. That could only have been attainedig. Over 994 per cent. of our total would never have been possible by farm cheese- less than 3 per cent. of the total make make of cheese is the product of factories, wheries. Six times as much labor per pound of butter in Ontario is manufactured in creas as is required in creameries. Six times a is involved in making butter in smallensils to make a given quantity in small dairies a much capital is required for the utensis. Yet I do not advocate the establishment would equip a creamery of sufficient capacity. Yét I do not ad.
of creameries fo
Where the expe We cannot suc Our home marl summer. Durin or Swedish farm fancy butter dur superable in bus November until are used in che operative plan d the extra utensil fodder corn will butter quite twi Ontario it is esti the milk of 250 , their milking se here pointed out.
(1) A long September and D
(2) Better c
(3) Remune
(4) Butter se
till April than fr
(5) Transpor

The quicken more suitably an coarse grains wou follow. By avai dairying in conn from a plane of prosperity that W

Farmers' Institute intendence of Mr . W. D. Hoard, of Dairymen's Conve odder corn for sila During the trip ab lone by enterprisir as that I came bs test and best met as turned over to wer theories of t loose clay loam; I learned) for f th thistles and ot produce a good
the same as much
e given 3.03 D.

ilk.

m a given ordinary y practice ing in ice ery, every
advantage ing to the of butter
ameries, I ry locality.
ray be taken
weather ite s effected at
ceesses, when
res and pails; for collecting n.
tly decide for added, where ong distances ; milk may be le.
ery system of uch about the Still the fact pound less than narket will pay rio has won its uniformity of factories, and nt. of our total the total make labor per pound

Six times small dairies he establishmetl
of creameries for summer butter-making to compete for milk with our cheese factories, Where the experiment has been tried the creameries have generally gone to the wall. We cannot successfully contend against the natural adaptation of our circumstances, Our home market is the only one we should seek to supply with butter during the summer. During that season we cannot successfully compete with British, French, or Swedish farmers in European markets. The difficulty of finding a safe transit for fancy butter during the summer months to the distant cities of England is well nigh inNovember until April is our nge winter no such hindrance is experienced. From are used in cheese-making in summar conld operative plan during the winter. The expense of used for butter-making upon the cothe extra utensils need not exceed 8200 for 500 cows, fodder corn will provide a cheap, succulent winter cows. The general use of silage from butter quite twice as much as they have been from exclusive summer dairying. In Ontario it is estimated that the milk of 260,000 cows is used in cheese dairying. In the milk of 250,000 is directed to butter-making. The latter 250 cheese-making, while their milking season from September to November. latter 250,000 cows should begin here pointed out.
(1) A longer season, of income is obtained from cows when they calve between
ember and November.
(2) Better calves for the dairy or the feeding stalls can be raised at less cost.
(3) Remunerative employment is given to farm hands the whole year round.
(4) Butter sells on the average for at least 50 per cent. higher prices from November till April than from April till November.

(5) Transportation for export will not endanger the quality.

The quickened interest thus directed to dairying would result in cows being more suitably and economically fed; more milk would be produced at less cost; the coarse grains would be profitably consumed on the farms and increase fertility would follow. By availing themselves of the waiting-to-be-used aids of intelligent winter from a plane of agricultural creameries, the farmers of Ontario would lift themselves prosperity that was never equalled in the palmiest days of wheat growing.

II.-FODDER CORN AND THE SILO.

It was my good fortune in the month of February to visit Wisconsin to speak at. Farmers' Institutes held under the direction of the State University and the able superIntendence of Mr. W. H. Morrison. I went upon the urgent invitation of my friend W. D. Hoard, of Fort Atkinson, who is now Governor of the State. At two of the Dairymen's Conventions in Ontario be had enthusiastically urged our farmers to provide odder corn for silage and had explained the success of the practice in the Western States. During the trip above referred to I had excellent opportunity for seeing what had been one by enterprising farmers in the production of cheap and nutritious fodder. Thus it as that I came back to Ontario more ardent than ever to advocate the adoption of the as turned over to my care for culture, silo construction and use. Part of field No. 10 ewer theories of thin seeding and frequent cultivation. Thactice and to the proof the loose clay loam ; in places a poverty-stricken cutation. The soil in parts of the field is I learned) for four years, and had been cropped every year. It had not been manured th thistles and other weeds. An endeavor wped every year. Besides it was rather foul produce a good crop.

On 21st May Mammoth Southern sweet corn was planted by the use of a common force-feed seed drill. All the spouts except two were stopped up ate of 337 grains per 100 apart. About one-third of a $7 \frac{3}{4}$ acre plot was planted 266 grains per 100 feet : and an equal feet ; as much more land was planted at the ra of each row. In other words the rows area at 172 grains per 100 feet, lineal measure part of the field had the seeds in each row over the whole field were $3 \frac{1}{2}$ feet apart. One pare $4 \frac{1}{2}$ inches distant from each other, and about $3 \frac{1}{2}$ inches apart. In another part they ween the several grains. The thinnest seeding in a third part 7 inches was the space bence being as between nearly 24 tons per acre of gave by far the largest crop, the seding and an average of $16 \frac{3}{4}$ tons per acre for the whole green fodder from the thinnest seed. The seeds were put in at an average depth of $2 \frac{3}{4}$ field. But I must not anticipate. The seeks earlier, which would have been a decided inches. Had the crop been put in two weeks at less depth. When corn is planted very advantage, the grains would have been planthin covering of earth is best; but when planted early, while the soil is yet cold, a shallow than three inches. as late as June it should be put in deeper three inches high light harrows were dragged

When the plants were from two to throwing was given a week later. That treat diagonally across the rows. A second few plants were injured. The smaller weeds were ment was decidedly beneficial. Very ingorated. Afterwards a one-horse scuffler was used killed and the corn growth was invigorated. between the rows (which ran north results. The stirred soil absorbs moisture from the Shallow cultivation gives the best result. Toisture by its looseness hindering the capillary atmosphere and also arrests the escape The $7 \frac{3}{4}$ acres were hoed over twice to kill thistles movement of the water irom below. Tissed. Only half the cost of the hand labor was and weeds which the scuffier had The other half is rightly chargeable to the cleaning and charged against the corn crop.
improvement of the field.
On 1st September cutting was comm which the grain was in the milky stage, and About every third stalk had an ear, on wher stalks had smaller nubbins. On August 27tha about two-thirds of full size. The corn in rows were weighed and compared with a numnumber of average stalks from kind of corn, sown broadcast, 3 bushels to the acre. The ber from a field of the same kind 27 ounces each, while the stalks from the broadcast field stalks from the former weighed analysis as to the per cent. of water was made by Mr . weighed $4 \frac{1}{2}$ ounces each. Ang figures shew the result:C. A. Zavitz. The following figures Per cent. of water

Per cent. of water in stalks.	P
	1
	76.73
	78.51

Corn in rows.

Broadcast corn
85.26
78.51
88.59
 James. The cost of producing the crop is shewn in the other items are at actual cost :for the ploughing and cu

Ploughing and cultivation..
$\$ 250$ per acre.
................................. 50
Harrowing ... 60
Seeding 50
Seed (less than haif was up 75
Harrowing alt cost) . 330
Hoeing (half 30

Cultivating (5 timess .. 450 . 50
Use of land.
Total cost for labor, seed and use of land. 81440 per acre. The crop averaged 16.73 tons to the acre green fodder. After being wilted one The crop averaged 16.73 tons to the acre green fodaer.
it lost one-seventh by weight. The weight of wilted fodder was 14.34 tons per acre.
specified above, t be put in the silo ton. Not more t planting and rich

Meanwhile a further on. To c used. The front One low truck w gangway with sla ing up with large been drawn in, or for the labor of 1 silo was 60 cents of the engine and lengths and ready Labor on Labor in 1 Use of ma

Total
I think that larger crop and a

Before the er was issued :

I have nume present to be an ensilage. No atte to know and to which had been k its partial rottenn be obtained of un tion and experime last decade, have followed with goo lutely sweet silage and certainly obta

To aid in the a silo, I will first

A silo is simp be a pit, a box, a denoting fodder s Ensile is the verb person using the s

Plants during 80 only by the aid growing out of do different practic Flowers and fruits nimals in breathi nd stalks of plant nd live after they esist the action of heir substance anc

9 (1. c.) each row other, and st seeding or acre of the whole pth of $2 \frac{3}{4}$ a decided anted very en planted
re dragged That treatweeds were r was used r ft. high. re from the the capillary kill thistles d labor was cleaning and

11 feet high. y stage, and ugust 27th a 1 with a num. ne acre. The roadcast field made by Mr .

nt. of water

 in leaves.76.73
78.51

Professor 0. 0.
The allowane ual cost :-
per acre.
"
"
*
"
"
"
"

0 per acre.
ng wilted one tons per acre.
specified above, the cost for the fodder, lying in armfuls on the field, wilted and ready ta be put in the silo, was $\$ 14.40$ for 14.34 tons, or as nearly as may be figured $\$ 1.00$ per ton. Not more than every third stalk had an ear with the grain well shaped. Earlier planting and richer soil will remedy that deficiency another year.

Meanwhile a silo had been erected. The particulars of construction will be given further on. To convey the corn to the silo ordinary hay-racks on common waggons were used. The front wheels were taken off one waggon and put on the hind axle of another, One low truck was also improvised into service. The loading was thus made easier. A gangway with slats nailed across was trailed behind. The men loaded the corn by walking up with large armfuls. That wrinkle was not adopted until most of the corn had been drawn in, or the expense for labor would have been lessened. As it was, the cost for the labor of loading, teaming, running through the cutter, filling and covering the silo was 60 cents per ton. An additional sum of 12 cents per ton must be added for use of the engine and straw-cutter. Thus the cost of the fodder in the silo, cut into inch lengths and ready for feeding was-

$$
\begin{aligned}
& \text { Labor on field, seed and use of land } 8101 \\
& \text { Labor in loading, teaming, filling, etc. }
\end{aligned} \text { per ton of silage. }
$$

Total cost.
$\$ 172$ per ton of silage.
I think that cost can be reduced by one-third another season by the growth of a larger crop and a more economical application of labor.

Before the erection of the silo the following bulletin of information and instruction

Ensilage.

I have numerous enquiries regarding the proper construction of silos, and judge the present to be an opportune time for a brief bulletin of information on the subject of ensilage. No attempt will be made to recount the history of its evolution. It is enough to know and to say that whereas a few years ago "ensilage" generally meant fodder which had been kept in a succulent condition without regard to its sourness or sweetness, its partial rottenness or preservation, it now denotes a product from fodders which may be obtained of uniformly wholesome, sweet and nutritious properties. Oareful investigation and experimental work mainly by the practical farmers of the continent within the last decade, have brought to light the true principles of the system. When these are followed with good judgment satisfactory results are almost certain to be realised. Absolutely sweet silage is very rare, but practically sweet, cured, or ripened silage is easily
and certainly obtainable.

To aid in the better understanding of the practical parts of how to construct and fill a silo, I will first outline the theory of sweet silage.

A silo is simply a place where fodder is preserved in a succulent condition. It may be a pit, a box, a mow, a tank, a building, or a trench in the earth. Silage is the word denoting fodder so preserved. Ensilage is the term applied to the process or system. Ensile is the verb expressive of the action of making silage. Ensilor stands for the person using the silo, to ensile fodder for silage by the process of ensilage.

Plants during their growth absorb carbonic acid and give off oxygen. They can da so only by the aid of heat from some external source. The sun furnishes heat for plants growing out of doors. A few of the lower organisms, such as moulds and ferments have different practice in their growth. They absorb oxygen and give off carbonic acid. Flowers and fruits while maturing do the same. That is also the function performed by nimals in breathing, by which heat is generated in their bodies. The cells of the leaves nd stalks of plants, after their separation from the growing root, possess a like power, nd live after they are detached from the plant which bore them. While living they esist the action of minute fungi or bacteria, which when they become dead prey upon heir substance and so bring about its decomposition. The primary reason for the possible 9 (1. c.)
preservation of green crops in a silo is that the cell of plants are living when put into it. Spores of fungi and germs of ferments are everywhere dissewinated in the air, and consequently a variety of organisms which cause decomposition are always present the air when first fillec. After receiving their quickening implards even when dep cived of it. these epores and germs can continue theivity for any considerable time at a temperature But they cannot maintain life and activity of a silo are caused or allowed to heat above above 125° Fahr. Hence when the contents of fermentation are destroyed. To attain that temperature for a few days thess al process it is necessary that air be present. The that temperature (over 125°) by a natural pation of absorbing oxygen and giving off carcells of the plants ensiled then begin the ally a process of slow combustion by which the bonic acid. That produces heat, being eontinue to live, in the presence of the sugar of cells destroy themselves. Should they co will produce alcohol. The next stage of change the plant, after the exclusion of air they wing acetic acid (vinegar). It follows that from alcohol would be through aldehthe the cells are living are put in a silo and kept when plants or parts of plants of which 125° has been maintained, that the product will from air contact after a temperature of does not reach at leawi 122° the product will be be sweet silage. If the temperaturs do product will be mouldy or putrid. sour, and if the air be not excluded the product whem as Mammoth Southern Sweet

The best fodder for the silo is ensilage corn, corn or B. \& W. corn. It is a Virginia or Geogn ot good soil properly prepared and and lear. It is of certain vitality and when hrigh feeding value per ton. By planting in cultivated is proof against drouth. It foot the largest feeding return per acre will be rows $3 \frac{1}{2}$ feet apart with 3 grainsito the be used-only two or three of the seed spouts obtained. An ordinary seed drill may be used south. The planting or sowing in drills, being left open. The rows should run north and carry an ear. Abundance of air and sunrather than broadcast, encourages every stion per ton of fodder. Cultivation over the rows shine increase the growth and the nutrition perficial until the plants are 5 or 6 inches with a slant tooth or other light harrow is rows, is all the better for being shallow and high. Subsequent cultivation between the rows, frequent. The best time for cutting is just beforst, fills the stalks to the butts with stage of maturity makes the celis of the ple and digestible. The cutting caa ordinarily be nourishing juices and leaves them palatable asold be left in armfuls in the field to wilt and done cheapest with a reaper. The stalks cent. of water in the plants is as much as they dry for a day or two. From 65 to 75 per cage. A larger per cent of water hinders the should contain for the making of sweet silage. of a sour product. A low truck with a heating and thus vends towards the forming oot more than 3 feet high will be found plank platform extending over the wheels and no suitable truck may have its wheels made serviceable for hauling to the cutter. A cheap sulog of proper diameter. A straw cutter from 6 inch sections sawn off the end of a An elevator after the model of straw carriers set to cut into inch lengths should be used. If the silo is mainly in the basement of a barn on a grain separator may be attached. If elevator may be dispensed with. Fodder corn and can be filled from the floor above, the elevter. By laying the stalks all one way in can be well preserved without the use of a cutter. © layer underneath they will keep as layers and then placing the butts over the tops convenient for handling in the feeding. well as by cutting. However, they are nead will vary as in the case of other fodders

The quantity that may be fed per cuturity at which the crop was cut, the quantity of according to the stage of growtt or me dryness when ensiled. The best results are not grain on the stalks and the degree of dry. A mixed diet is always preferable. For milch obtained from the feeding of silage alone. will range from 25 to 35 lb . per head per das. cows the quantity that may be consumer from 50 to 60 lb . will be required. It will Should silage be the sole feed in the ratween 40 and 50 lb . per cubic foot. From 15 to 25 weigh after it is compastly settled, between these data it will be easy to calculate either tons per acre can be grown in Ontario. Frouired for the feeding of any number of cattle the acreage of corn or the size of a silo requiro six months, a good ration can be made of For instance, for feeding ten milking co . 3 for (chopped peas, oats, barley), 5 lb . of hay a by 3 lb . of wheat bran, 5 lb . of mixed grain daily. (For stable feeding, better resulta ar straw at will, and 30 lb . of silage per head daily. (For stable feeding, better resulu
realised by morr straw be of goo few pounds extr at much less cos months or 181 d grown on less th 12 ft . deep, in w be 10 ft . $\times 10 \mathrm{f}$

If the silo stone wall one a side level to pre such a bottom fa walls to serve as purpose. A com 10 or $2 \times 12 \mathrm{pl}$ against lateral p. sill flush with th an inside spur fr inches or to the additional streng truss pattern.
or the plates (wh rafters from the third of its leng lining of inch lu four inches shoul the exposed side in a similar way. boarding with pa outside boards, a be of the ice-hou silo is filled, shor place strips of p tumber it should applied hot and part of a barn or the silo should b made of two-incl boards are dropp with dowel pins.

The total o to the finish of The tar paper o square yard. 0 inches,

The filling s trough may be us than four feet in tramped in but l will have attaine out against the 8 task of throwing at the commence intervene after fo three days before at the sides as in and having its en
t into it. and conin a silo the air ed of it. perature above Co attain ent. The g off carhich the sugar of of change lows that and kept oduct will act will be
ern Sweet k of stalk pared and planting in cre will be seed spouts ng in drills, air and sunrer the rows or 6 inches shallow and azed. That butts with ordinarily be d to wilt and nuch as they hinders the ruck with s vill be found wheels made I straw cutter straw carriers nt of a bam Fodder corn 1 one way in will keep as he feeding. other fodders e quantity of esults are not ble. For milch head per day. vired. It will From 15 to 25 calculate either mber of cattle can be made uf 5 lb . of hay atter resulta ar
realised by morning and evening feeding only than by four or five feeds per day). If straw be of good quality cut on the green side, the hay may be left out altogether and a few pounds extra of silage given instead. No roots are needed, as silage takes their place at much less cost. Thus, 10 cows using 30 lb . of silage per day consume 300 lb . ; in 6 months or 181 days they consume $54,300 \mathrm{lb}$. or 27 tons 300 lb . That quantity can be grown on less than an acre and a-half, and could to packed into a silo $12 \mathrm{ft} . \times 12 \mathrm{ft}$. \times 12 ft . deep, in which the silage would settle co a depth of about 8 ft . A better size would be $10 \mathrm{ft} . \times 10 \mathrm{ft} . \times 16 \mathrm{ft}$. deep.

If the silo is to be erected as a separate structure, its foundation had better be a stone wall one and a-half feet above ground. A clay floor filled to a foot above the outside level to prevent dampness will be cheapest and best. There will be no danger of such a bottom falling ont of it. Planks may be bedded on the top of the foundation walls to serve as sills. These should be firmly spiked to fieces built into masonry for that purpose. A common balloon frame may be erected by using as studs 16 ft . planks, $2 \times$ 10 or 2×12 placed two and a-half feet apart. To secure them safely at the bottom against lateral pressure while the silo is being filled, a good method is to have the plank sill flush with the inside of the wall, and to cut heels into the ends of the studs, allowiog an inside spur from each stud, to the width of say three inches to extend to a depth of six inches or to the clay floor. They should also be securely toenailed. The roof will. give additional strength to the sides for resistance to outward pressure if it is made after the truss pattern. Instead of ties or joists running straight across from the tops of the studs or the plates (where they would be in the way of the filling), they should run like false rafters from the top of each stud to the rafter opposite, being spiked to it at about onethird of its length from the ridge. On the inside of the studs should be tirst nailed a lining of inch lumber running horizontally. A covering of tar-paper with edges lapped four inches should then be tacked on. Over that should be put inch lumber, planed on the exposed side and tongued and grooved. The outside of the studs should be covered in a similar way. A single thickness of lumber outside can be made to do, but the double boarding with paper between is preferable since it keeps the tar-paper close against the outside boards, and makes the building fros-proof as well as air-tight. The door should be of the ice-house style. A space between two studs may be left unboarded. As the silo is filled, short boards cut to fit can be nailed in and on. Care must be taken to so place strips of paper that they will make the joints air-tight. To preserve the inside lumber it should receive a coating of coal tar. If mixed with a few ounces of rosin and applied hot and liberally the inside lining need not be tongued and grooved. Where a part of a barn or some other building is to be fitted up for ensilage uses the inside finish of the silo should be the same as for a separate structure. Any partitions required can be made of two-inch planks dropped into grooves made by nailing cleats to each side, just as boards are dropped into place in front of a granary. They should fit close and be fitted with dowel pins.

The total cost may be pat at $\$ 1$ for every ton of capacity, but will vary according to the finish of the building, the quantity of lumber used, the price of material, etc. The tar paper can be purchased and put on at an expense of from $2 \frac{1}{2}$ to 3 cents per square yard. On the clay floor cut straw or chaff should be spread to a depth of three
inches,

The filling should proceed slowly. When an elevator is used a light "shoot" like a trough may be used to divert the material into the compartment to be filled. Not more than four feet in depth should be put into a compartment in one day. It should not be tramped in but left heaped in the middle as it falls from the shoot. After three days it
will have attained the required heat. The heart of the heap should then be shovelled will have attained the required heat. The heart of the heap should then be shovelled out against the sides and well tramped down. The filling may proceed as before. The task of throwing the heated silage from the centre out against the sides should be repeated at the commencement of every period of filling. The three day period should always intervone after four feet of cut fodder has been added. The last filling should be left for three days before any covering is put on. It should then be levelled and tramped down at the sides as in the case of other layers. A covering of tar paper lapped at the sides and having its ends and sides extending for a foot up against the sides of the silo may be
pread. Two or three feet of coerse grass, hay or straw spread upon the paper to keep it in place will complete the silo. No weighting or pressure is required.

When opened for feeding the whole surface ont by way of the door provided. The silage will be removed from the top and taken outed as the emptying goes on. Where short boards between the two studs may be remion planks may be lifted out one by one. more than one compartmont is used the parn may thus serve for a whole silo.
One outside door in the middle compartario farmers against expecting too much from the
In conclusion, I would caution Untario of the material preserved in it. All that silo. It will not add anything to the valuable farmers to reduce very much the cost of can be hoped from its use is that The necessities of our climate, from the frequent the bulky part of their cattle feed. Try uncertain and expensive crops, urge that ensilage drouths which make grass and hay and grown. It is a sure crop, makes a cheap summer corn be largely and generally sown andy digested, is a cheap substitute for roots, promotes and winter feed, is succulent and easily adapted for the winter production of milk of the the animal vigor and health, and The cost of raising the crop will not exceed $\$ 10$ per acre, very best quality and flavor. The including the price of the seed and per ton. Mr. V. E. Fuller, of Oaklands, one of the the silo will vary from 25 c . to 750 . per estario, estimates the cost of silage in his silo at $\$ 1.60$ pioneers in easilage practice in Ontario, including the value of the manure used. Hon. per ton, after allowing for all expenses, Hiram Smith, of Wisconsin, a madairymen of his State, says : speaking to and for the progressive and getting a corn orop into a silo is often greatly over-
"The actual cost of raising farmer usually has all the men, teams, and tools required estimated. The common dairy farmer usually legitimate charge is the wages paid the to handle a corn crop for the silo, and on on dairy farm earn their board milking twioe vien who are doing the work. The more or less on account of the silo. What then is a day, and the teams' expense is no 40 acres ? One man and team will plow 40 acres in the cost. of ensilage per acre, or lores, \$18. Two men and two teams will, in the Spring, the Fall in 26 working days ; wag, plant with the horse drill, run the smoothing harrows cultivate and prepare the ground, planl to five months' work, at $\$ 18$ per month, $\$ 90$. and cultivators antil June 15th, equal to five
To recapitulate :

Plowing 40 acres	9000
Plowing 40 acultivating	28864
Plowing and Cutting in theld and ensiling 656	2000
Seed corn 50 cents per a	841664

Total money expense

This is equal to $\$ 10.41$ per acre, or $69 \frac{1}{2}$ c. per ton. If to this were added use and keep of ho ses, $\$ 125$; interest at 6 pur cent. on 40 acres at $\$ 80$ per acre, $\$ 192$; the use per ton. What then is the conclusion of the whole mation 16 tons of ensilage, while it cows can be wintered seven months ane year, 1887, to winter one cow with the same required two acres of meadow in thes. It may justly be said that one ton of hay per acre amount of ground feed in both cas. Sixteen tons of ensilage is not a large crop; 24 is a light crop, and is often "doubled.
tons are often obtained." ketches of plans to supplement this article have been prepared
A number of hand sketches of plan intention of constructing a silo this season on and will be sent to anyone who
application to the writer at Ontario the plan recommended in the bulletin. It was 28 ft Our silo was constructed inside measurements. A partition of 2 inch plank dividee $\times 12 \mathrm{ft}$. $\times 22 \mathrm{ft} .10 \mathrm{in}$. deep, Exsiderience has taught us how to improve somewhat upon it into two compartments. Experience has taught us how to improve sionat
the plans and st upon very low st should be at leas If a silo be built $50 \mathrm{ft} . \times 12 \mathrm{ft}$, x ensth. A coveri ing was commenc carrier was used, allowed to lapse TI a silage should of the silo just be When putting in silage turned out proper growth of progressive as the the exposed surfa
, By 22nd Sep
At a point 8
" 18
After three 26th September. feet of cut pea st and in the corner

Near the a
$3 \frac{1}{2} \mathrm{ft}$. fron
10
16
20
No other cov thoroughly effecti

On 8th Nove
straw. About on tures then were : At the sur 1 ft . from 2
$6 \frac{1}{2}$ "

17 "
The silage ha silage on the top, by reason of the s ently the result of covering was put as soon as the silo days later.

The last four the plants that we value as silage did

The records o enfortunate calam hat when fed in c
keep it

ed. The

 d. The Where by one.from the All that e cost of frequent t ensilage summer promotes itk of the per acre, nd filling ne of the at $\$ 1.60$ ed. Hon. dge, when
astly overIs required s paid the king twice nat then is 40 acres in the Spring, ng harrows h, $\$ 90$.

1800
9000
8864
2000
dded use and 8192 ; the use .64, or $\$ 1.15 \frac{1}{2}$ is : That three ilage, while it with the same of hay per acere large crop; 24
been prepared this season on

It was 28 ft h plank divided somewhat upou
the plans and structure. The foundation should be of substantial sills-not planksupon very low stone walls. A silo not more than 20 feet deep is preferable. The studs should be at least $2 \mathrm{in} . \times 10 \mathrm{in}$; and if 18 ft . or more long, they should be $2 \mathrm{in} . \times 12 \mathrm{in}$. If a silo be built long and narrow, partitions may be dispensed with. Convenient size is $50 \mathrm{ft} . \times 12 \mathrm{ft}, \times 16 \mathrm{ft}$. deep, which will give a capacity of 150 tons. The floor was of easth. A covering of 4 inches of cut straw was put in before the filling began. The filling was commenced on September 4th. An ordinary Watson straw cutter with chain carrier was used, and the stalks were cut into inch lengths. An interval of two days was allowed to lapse after a depth of 4 feet had been put in, before the filling was resumed. Tt a silage should be carefully and thoroughly tramped around the sides and in the corners of the silo just before each layer is filled in. It should be left lying loose until then. When putting in 8 or 9 feet of silage near the last, no such waiting was observed and the silage turned out in a very satisfactory condition. The main matter evidently is the proper growth of the crop to a state of almost maturity in each plant. The heating was progressive as the filling proceeded. The temperature began to rise first just underneath the exposed surface. Usually within four days it had reached from 128° to 150° fabr.

By 22nd September the temperatures were as under:
At a point 8 ft . from the surface of the silage and 12 ft , from the bottom of silo, 110°.

$"$	14	4	$"$	4	6	$"$	$"$	125°
$"$	18	$"$	$"$	$"$	2	4	4	128°.

After three days' settling two more layers were put on, the last one being added on 26th September. On 29th September a covering of 6 inches of pea straw uncut and $2 \frac{1}{2}$ feet of cut peastraw was put on after the silage had been well tramped around the sides and in the corners. The temperatures then were :

No other covering chan the straw was used and it proved to be simple, cheap and thoroughly effective.

On 8th November-40 days after the covering-one compartment was stripped of its straw. About one-fifth of the straw used had become mouldy or rotten. The temperatures then were :

The silage had then settled to a mass 17 ft .8 in . deep. The total weight of the silage on the top, that was decayed or mouldy, was 690 lbs . That quantity was very wet by reason of the steam which had been held just under the straw. The mould was apparently the result of the top of the silage having cooled, after being heated, before the straw covering was put on. That damage can be avoided by the use of a light covering of straw as soon as the silo is filled. The remainder of the covering of straw can be put on two days later.

The last four feet of silage put in was from frozen corn. It was darker in color than the plants that were not touched by frost, but it was relished by the cows and its feeding value as silage did not appear to be appreciably lessened.

The records of the weights fed and the effects as far as revealed were lost in the most nfortunate calamity of the barn burning. Without the exact data, I am safe in saying hat when fed in ec. junction with suitable grain, every two tons of such corn silage would
etical science shou repeat them. He put them into prac learned to know th making and curing a man not merely of power to do thi professional mean life. I think dair lying along their 1 with them and ma a man to make a li purpose of living tion is to make a

There is this they are so hungr is a difference bet in one's self. No their members aga that he can get h somebody while ut eation. It is a fr cow for her keep. be fought against b tion has done a gre say, " 1 commence for it ; therefore, life on farms forty need it ; competiti But no more can th men can. It is a principles of agricu increasingly hard, a hardly kner. what ocasion to come in continuously. In theoretical educatic and then be able to of their members th institutions for th Dairymen ars apt t reater ability, gre pust of necessity be e has not that as usiness man as my usiness training in hat a dairyman is e utensils in the f or instance, they d me as though a jo st. I find dairym carpentering. D ip to this business iccess, for althou pose, he has alwa eondition ever ly managed, and,
st less
providto near ir and The silo or cattle
the e00sed at an the dairy increased ishing to has been ng unable ons which
antity and
he pasture
cows wete an acre of sweet corn.
seed meal
ear maturity lly ever proprovision in for fall and

N'S

ntario became ere introdue⿻ ore the A nnual d 13th, $1888:$
1, but should be nowledge. Tut benefit of the ducation. Por write merely ${ }^{6}$ tain names. from others add rying as a them
etical science should not study merely to know a lot of things for the sake of being able to repeat them. He should study it, not that he may know a lot of things, but that he may put them into practice as the boy who learns to write. Too many cheese makers have learned to know things about cheese but have not learned to put them in practice in the making and curing rooms. We want theory, but also practice. A dairyman should be a man not merely knowing some things, with power to remember, but one who is possessed of power to do things. This is the difference between education and the lack of it. Now professional mea need special education in the particular subjects lying along their line of life. I think dairymen should have as particular and thorougb a training in subjects lying along their line of life as doctors, lawyers and clergymen. Dairymen need it equally with them and may profit as much by it. The primary purpose of education is to enable a man to make a living. I would not go as far as Mr. Derbyshire and say that the pimary purpose of living was to make money. Even as dairymen the primary purpose of eduçation is to make a living, and having made that to earn leisure.

There is this tendency in our age which is doing our young men much harm : they are so hungry for having money they have no appetite for being anybody. There is a difference between having a lot of things around a man and having something in one's self. Now, dairymen should educate their members that they may protect. their members against every kind of fraud. It is a fraud which leads a man to believe. that he can get half a cent a pound more for his cheese by palming them off on somebody while uncured. That fraud should be eliminated by better and higher education. It is a fraud which makes a man content with getting not enough from his. cow for her keep to be eliminated. It is doing our business serious harm and should be fought against by higher and better education. Our common school system of education has done a great deal for us. Let me just fix a point here for dairymen. Dairymen say, " 1 commenced twenty years ago in this business and I had no special education for it ; therefore, young men beginning now don't need it." Some men who began life on farms forty and fifty years ago had no special school education. They did not need it ; competition was not so keen ; the necessities of business were not so great, But no more can they succeed now on farms without common school education than dairy men can. It is a matter of life to the farmer. He requires to know more of the principles of agriculture. Competition is keener. So the dairyman will find his business. increasingly hard, as it uncuestionably is. When I commenced some twelve years ago I hardly knev, what a floating or gasey curd was, but the last year I made cheece I had occasion to come in contract with them two or three times a day and had them for months continuously. In this way you see there is urgent need for thorough training, for a theoretical education, so that the checse maker will know what he has to contend against and then be able to cope with the difficulties. Now, the professions manage the education of their members themselves apart from the school system. They encourage and support institutions for this purpose. Why should not dairymen do so among themselves ? Dairymen ars apt to think a profersional man lives on a higher plane; that he requires reater ability, greater intellectual power than they do. I dispute that. A dairyman pust of necessity be a business man ; he must get a thorough, good business training. If e has not that as a progressive dairyman and comes in contact with such a well trained usiness man as my friend from Brockville he would recognize the need for a special usiness training in order to cope with a man with so clear a head for business. Besidess hat a dairyman is a tradesman. Still, I find that men who hardly know the names of e utensils in the factories do not know how to use their own tools as efficient tradesmen, or instance, they do not know which knife, to use first to the most advantage. It is the me as though a joiner would be in doubt as to whether to use the long or small plane st. I find dairymen just as deficient in a knowledge of their tools as I am of the tools. carpentering. Dairymen should be good tradesmen. I should include the apprenticep to this business. But a man who is merely a tradesman in a cheesefactory is never hecess, for although a carpenter can cut wood to a given shape and size for a given pose, he has always a similar kind of material and can depend upon it to be in the e condition every day. But the cheese maker deals with a substance which is not so. ly managed, and, therefore, when he has to deal with chemical and vital forces, he,
knew before and should be glad cheese makers the The best sea son cannot spare the cleese making h for his business. because after all sustain, because stration through us to the facts, in the summer w of the Province been ergaged for They have helpes years ago Brock Brock vile is ofte
. These result price east of Tor of a cent n ot mer had anythiag to should find worl teach the maker through the provi Systematic instru Frequent visis business better. such men I could cheese makers is t have inspectors \mathbf{v} unclean would g defects were and in would make ch by the existence because if they e: milk they would and so they woul cheese makers, th and with econom the need of a mor individual dairym him and any man is nothing will k suspected of skir would otherwise manager is taking milk, is not the carry out a cours patron with being view. If an outsi concern in pleasin I think it is highl the coming summ in another directio general way, but t men are willing to ust because they years and I have learned more this last year about coagulation and its value than I ere

1 educaprivate specially shooling can get he needs position 1 that the irs. The leader of a school most profeeding of if he can in spring ek in that elping his hest order. a word to Irudgery to purpose is reason why element of puld be the ve had some Convention. 8 dairymen. Those who the articles good deal of sting experi. , although I oks after the m a practical il paper. The we have had do not come o should make aan but indis istently taking lerful that the rum into him. here he can get es himself and hich we could y classes when the convention e aspect would would be this: tions of cheem discussing dairy able dates. The ght be occupide understand hor lse about then making tweln alue than I ome
knew before and I think I can make better cheese by means of that knowledge. I should be glad to attend those meetings and would hope to get the help of the best cheese makers there. Instead of long speeches, we could tell experiences and ask questions. The best sea son of the year would be the month of March. Cheese makers say often, we cannot spare the time or afford the money. Now, if a man is going to make his living by cteese making he can afford any amount of money in reason, in order to qualify himself for his business. To supplement this we should have practical instruction all summer, because after all theory sometimes leads a man to a conclusion that practice may not sustain, because he has not got a right theory. Now, practical instruction and demonstration throughout the summer would impress the theory. Theory should not blind us to the facts, or it will become hurtful instead of helpful. Practical demonstration in the summer would enable a man to apply his theory intelligently. In the eastern part of the Province much valuable work has been done. We find competent men have been ergaged for several years, and their services are in great demand by cheese makers. They have helped cheese makors all through that section, so much so, that whereas four years ago Brockville was always quoted $1 \frac{1}{2}$ cents below Listowel, now the quotation at Brockvile is often just a little above Listuwel.

These results are largely due to this system adopted by eastern men. The average price east of Toronto this year will exceed the price west of it by a large fraction of a cent n ot merely by market fluctuations, but before the changed market conditions had anythiag to do with the question. Now, I think the western part of the province should find work for four men all summer to go around amongst the factories and teach the makers the best methods of doing everything. The cost of these men through the province would be a mere bagatelle compared with the benefit to the industry. Systematic instruction by so many men would at once show its effects on the cheese makers. Frequent visis by a competent outside party would make the cheese maker mind his business better. Some men will work readily all day without supervision, but against four such men I cou'd find a hundred who whould do better under it. The purpose of many cheese makers is to get cheese to pass the buyer's " trier" without complaint. We should have ir spectors vho if they found the curd sink or any utensil or fixture in the factory unclean would go to the bottom of the business and tell the cheese maker where his defects were and how to get rid of them. The very expectation of an instructor dropping in would make cheese makers do c sir work better, and we should have bectar cheese, just by the existence of this kind of inspection. It would have a good effect also on patrons, because if they expected a competent official to come once in two weeks and inspect the milk they would have a wholesome fear that the milk might not be right that morning, and so they would see that it was right every morning. So with the work of instructing cheese makers, there could be combined a very efficient system of the inspection of milk, and with economy by having them acting in both capacities. I think you all recognize the need of a more thorough system of milk inspection. We have to protect the rights of individual dairymen as well as the rights of the province as a whole, and stand between him and any man who would attempt to defraud him through the cheese factory. There is nothing will kill out a factory yuicker or more thoroughly than that some man is suspected of skimming or watering his milk. The honest and honorable man who would otherwise stand by a factory will at once give it the go-by if he knows that the manager is taking in that kind of milk. The cheese maker though competent to inspect milk, is not the best man, for his position in the neighborhood, to inspect the milk and carry out a course decided on by the directors or committee. If he turns to charge a patron with being dichonest he is accused of being spiteful and having a sinister end in view. If an outside man were sent who did not know anybody, who had no interest or concern in pleasing any one, or offonding any one, he could straighten the matter out. I think it is highly necessary to have this system crystalized into an organization for the coming summer. Then we need organization to extend our system of instruction in another direction. Patrons themselves do not need information given wholesale in a general way, but they need a helpful hand in the way of good sound instruction. Many nen are willing to do right when they know how to do it. Many men send inferior milk ust because they do not know what is the matter or how to mend it.* This system of
instruction should inolude the holding of patrons' meetings at every factory, beginning in November. If we could get good meetings all through November and draw out from suecessful patrons a knowledge of any better method of dairying, they would in turn become splendid instructors of their neighbors in the best methods of produch we should growing food. Every factory should have one or two of those mee for getting speakers have some organization through which they could meeting merely to hear their neighbors, from outside. Farmers as a rule will not attend a u iness could be made more permanently while they would to hear strangers. In that ware trying to reach this end by means of profitable to every man engaged in it. We but the drift of the Institutes has been more to Farmers' Institutes all over the Province, but food for cattle. To accomplish all this discuss the cultivation of soil and growing ci good article of any kind or knowledge or we need money, because a man cannot have a gong to pay a good price for it. I an glad instruction on cheese making unless hs is wing money that belongs to the dairynen of your Association here has as much as $\& 1$. It will receive a further grant of about $\$ 1,500$ this Province to be ueed for their benefit. ©ut of that I think the Association might spend in a short time, making $\$ 2,600$. Out of hering this work. I know, sir, of no more nearly $\$ 2,000$ the coming season in furthese funds than as I have indicated. In the sensible and profitable way to administer these fune past. They have no balance on hand east the money has been spent in this way but have managed each year to expend have decided to ask every factory desiring such recognize its value so fuily that they of cheese to a fund to be administered along with help to contribute $\$ 10$ from the proceeds Now I do not think a factory would miss $\$ 10$ for the association's fund for this purpose. a tund to be spent in this way. I I do not know the dairyman who would not be willing from 10 to 25 cents at most, a 25 cents out of the proceeds of his milk, just to know that his factcry was being inspected by an outside and competent authority. Thus the improvement and progress would pay us one hundred-foid for all we spent. There would be possibly an increase of price in this way. Now it is not enough that we have a reputation gnd have realized the highest price that is going, because if we stay here and ohack. We have to improve the being first we will get to be last, even if we don't go gut to the highest point for all quality of all the cheese we make and reise the protect ourselves by improving quality our factories, else we will be left. Thus I believe Ontario would get back $\$ 1,(000$ in three years and increasing the price. Thus and inspection. Directors, salesnen and owners of for every dollar spent in instruction and carry it out. Directors and owners are not factories should take this thing up and carr. As a rule most of the directors would expected to be competent cheese makers. Asnow that the cheese maker was doing willingly pay $\$ 10$ out of their pockets right and that cheese was being lurned ounows his cheese to be firstclass he cannot stick when he goes to market that unles
out for the last fraction of a cent

If a man could get an inspector to visit his factory once a weel, who could instruet with regard to the defects and good points of his cheese, he could make a better sale of his goods. There would be higher prices for better grades. Owners and directors should organize this work in their own districts. Of course, great things ine that direction small things. I find that if a man tries to help twenty men at once to help direction he does not help any of them very well, but if he makes up his minl. Suppose we melp and then another he can help them all in a short time a great deal. ife next year, and twenty-five factories west of Toronto this year, we can help se will soon help all. The one hundred and fifty the following year, aciation from undertaking this organization. vastness of the work should not hinder the associaion from could manage the correspondence From the dairy department of the College actories to the fund to be administered by the as to the collection of the $\$ 10$ from the fact have heard it said, I think, that you could Executive Con mittee of the Ass to add to the $\$ 2,000$ in the treasury of the Association,
get $\$ 2,000 \mathrm{~m}$ get $\$ 2,000$ more from This would pay for holding meetings, pay for the salaries of good instructors, and pay for advertising the fall meetings. I do not think dairym‘n could
spend $\$ 4,000$ thro way. We have men, that is with tion to the best p every factory mar each patron. W at Guelph is seeki make you recogn can protect youn despise manual work. I think it and bring out all that, we will prot men. I have po the advantages w if we get your tenfold more use made yesterday ness, we will reoc renewed its strens

This was foll

"That the sol son's address be Association be ins and milk inspecto Ontario Agricult contribute $\$ 10$ eac

A resolution Dairymen's Asso 4th, 5th and 6th.

In carrying t representatives of

Dear Sir.proclaims its adap Province.

The education and valuable help are our keen com from our own Pro if we would maint our cheese makers

In this brief many substantial patron of every fac

The best facto reputations.

As every pou consumption and of cheese. Our \mathbf{P} nd our reputatio verage quality of
nning in ut from in turn nilk and e should speakers eighbors, nanently means of more to all this rledge or an glad rymen of ut $\$ 1,500$ glt spend no more . In the on hand year they iring such along with iss $\$ 10$ for r rate than be willing was being d progress increase of realized the instead of mprove the oint for all ing quality three years owners of ers are not ctors would was doing man knows cannot stick
uld instruct etter sale of ectors should made up of hat direction elp one man pose we help xt year, and p all. The organization. rrespondence tered by the at you could Association, laries of good irym n could
spend $\$ 4,000$ throughout the Province in any way whereby to get better help than in this way. We have also in view another part of this work by which we hopo to help dairymen, that is with reference to issuing bulletins all summer, once a month, calling attention to the best practices for the whole season. The first of these will be supplied free to every factory man or checse maker applying for them in sufficient number to givo one to each patron. We are willing to do that as well as the correspondence. Our institution at Guelph is seeking a chance of serving you in the most effective way. I think we can make you recognize the value of our department there by service renderd. Now we can protect young men of our business against the evil influence of the tendency to despise manual labor by educating them to understand and appreciate and enjoy their work. I think it becomes our duty to do this and thus counteract this evil tendency, and bring out all the intelligent and intellectual power of our cheese makers. In doing that, we will protect our industry, will make more profit and will make ourselves better men. I have pointed out the need of this kind of education, and tried to point out the advantages which would accrue from it, and how it is easily attainable. Now, if we get your co-operation, I think we will make this Oonvention and Association tenfold more useful than it has been in the past; so that instead of the statement made yesterday being justifiable, that this Association has passed its day of usefulness, we will recognize that it is only entering upon a new area of usefulners, and has renewed its strength.

This was followed by the unanimous adoption of the following resolution :
"That the scheme for the further education of dairymen as outlined by Prof. Robertson's address be accepted as worthy of our endorsation, and that the directors of this Association be instructed to take steps to secure the services of competent cheese instructors and milk inspectors ; that we invite the co-operation of the Dairy Department of the Ontario Agricultural College, and recommend that patrons of each factory be urged to contribute $\$ 10$ each to the funds to be administered for the foregoing purpose."

A resolution of similar import was unanimously adopted at the convention of the Dairymen's Association of Eastern Ontario, which assembled at Peterboro' January 4th, 5th and 6th.

Cirgular to Cheese Makers.

In carrying these plans into operation the following circular was addressed to the representatives of each of the 770 cheese factories in the province :

Guelph, 9th April, 1888.

Dear Sir.-The rapid and steady growth of the cheese-making industry of Ontario proclaims its adaptation to meet the needs and increase thu profits of the farmers of the Province.

The educational aids of the Dairymen's Association in the past have given recognized and valuable help to those engaged in the business. Dairymen in other countries, who are our keen competitors, are now employing the services of skilled instructors, taken from our own Province, to improve the quality of their products. It becomes our duty, if we would maintain our reputation and foremost place in the English markets, to give our cheese makers similar assistance.

In this brief circular it will not be expected that I should attempt to specify the many substantial advantages that will accrue to the business, and consequently to every patron of every factory by an organized system of instruction and inspection.

The best factories and their patrons may expect as much benefit as those with inferior reputations.

As every pound of inferior cheese that finds its way to any consumer's table stops consumption and curtails demand, so its manufacture entails an injury on every producer of cheese. Our Provincial reputation modifies the relative price received for our cheese, and our reputation is established not at the standard of our best factories, but by the verage quality of all our exports.

Most of the reresentatives of the factories to the Dairy Boards of Trade last season were more urgent than formerly in their expression of the need for such help as is pro posed to be given by persons engaged by the Dairymen's Associations.

There is a growing impression that at many factories a few patrons tamper with the milk to a greater or less extent.

The official instructors will be provided with instruments suitable for the detection of such frauds, and wil! make a number of examinations of the milk received at each factory which agrees to contribute to the funds of the Association towards part payment of expenses.

Further legislation to simplify proceedings and make conviction cer
is clearly established, has been pring the scheme for the further employment of instructors
Some of the steps taken to bring the
into effectual operation may be recited. agitated and promoted by leading dairymen, amuag
For two years the mathallanty, M.P.P., D. M. McPherson, E. Caswell, D. Derbythem Messrs. Thomas Ballanty ue, M.P.P. Dleland, J. B. Lane, Wm. Symington, John shire, John Robertson, James Bissel, Rony others.
Prain, B. Hopkins, Wm. Messer, and Dairymen's Association, held at Peterborough and
At the Annual Conventions of the Danted certain suggestions, pointing out the needs,
Listowel during January, 1888, 1 the further development and establishment of an advantages, nature and means for dairymen.
educational system for the bener will what been done, and what is intended to be
The following resolution will explain woved by J. B. Lane, Esq., seconded by Wm.
" Resolved, that the scheme for the furthy of orr indorsation, and that the Directors
Prof. Robertson's address, be accepted as worth secure the services of competent cheese of this Association be instructed to take slaps, Resolved, that we invite the co-operation of making instructors and milk inspectors; Agricultural College, and recommend that the the Dairy Department of the Ontarionibute-to a fund to be administered for the patrons of each factory be urged to contribute

foregoing purpose."-Carried unanimously. mously at the Peterborough Convention.
A similar resolution was adopted unanimous of the Association for Western Ontario,
At a subsequent meeting of the Direcs than fifty tons of cheese per annum should it was decided that every factory makis all larger factories at the rate of ten cents (10 cents) be asked to contribute $\$ 5.00$ each, and per ton of cheese. not contributing will not be entitled to the thes during the who Any expected to visit each factory, which contributes, at least th season.

All the factories wishing to avail themselves of the services of the Instructors and Inspectors will please communicate with me at an early date by returning the enclosed form No. 2, duly filled up and signed.

I cordially and earnestly invite the co-operation of every factory in the Province.
The services of this Dairy Department of the Ontario Agricultural College are given freely and cheerfully to every and any dairyman ; and no part of the joint fund made by the Association's grant and the contributions of the factories will be used by it. The whole will be applied to the payment of those persons engaged solely to render direet service to the factories.

Notes on the preparation and care of milk for cheese factories will be furnished frew to any factory filling out the accompanying application.

James W. Robertson,
Superintendent of Dairying.

By a resolution of the Board of Directors of the Dairymen's Association for Western Ontario, the four milk inspectors and cheese-making instructors who were engaged tu
the work indicat The inspectors a Directors of the

Occasionally ber of factories in of their work. F from so-called ga factories in weste

The first mil quality of the mil previously the mi lots were held to inspectors, there plied to cheese fac in the vats, which the previous nigh of rennet ; one va one and a half to ascertained by its the bulk of the m of disturbance, results from the se ing the milk, befo able method of ae The use of sour w favor. In the col and not at all thic ing in a vat and a attention to that or two on the ripe the curd. But to oz. per $1,000 \mathrm{lbs}$, with the milk. \quad R used in a similar makers in the mat from which gasey inferior quality. milk in which all coagulation will ca such metns will fa pin-holey," conditi rennet should be u at a temperature better limit. A la to become quite fir should be used firs and afterwards leng zuttings are sufficie rying of the curd, he curd in a state utting was carried hereafter. The he ottom of the vats. hort was used to o motion and free using the hand.
st season as is pro
with the detection d at each t payment
here guilt
instructors
men, among
D. Derby. aton, John
borough and t the needs, went of an
tended to be led by Wm.
outlined in he Directors retest cheese -operation of end that the stored for the
invention.
stern Ontario,
nnum should
ants (10 cents)
e Instructors, mes during the
instructors and gig the enclosed

Province.

allege are given fund made by ed by it. The o render direst
ne furnished fro
ron,
to f Dairying.
tron for Western were engaged fax
the work indicated by the designation of their office were placed under my direction. The inspectors and instructors in eastern Ontario reported only to the President and Directors of the Dairymen's Association for eastern Ontario,

Occasionally as time could be spared from other cuties, visits were made to a mumber of factories in company with the inspectors to examine into the efficiency and efficacy of their work. For the sake of conveying needed instruction in the making of cheese from so-called gasey milk, I wrote a brief account of a visit to one of our leading factories in western Ontario in company with the four gentlemen just referred to.

The first milk waggon arrived soon after $6 \mathrm{a} . \mathrm{m}$. Our first task was to test the quality of the milk delivered. Out of 71 late we found only one of rather doubtful quality; previously the milk of the same patrons had beria examined and about one-half of the lots were held to be wanting in fat. Thanks to the beneficial influence and work of dairy inspectors, there is a general improvement in the quality and condition of the milk supplied to cheese factories. After the milk was ali weighed, attention was turned to that in the vats, which meanwhile had been heated to 86° Fahr. By reason of the cold of the previous night, it was found to be in a condition too sweet for the immediate addition of rennet ; one vat was heated to 90°, the other to 86°, and left to mature for from one and a half to three hours. The degree of ripeness, or maturity of milk, can best be ascertained by its odor. If a. large dipperful be lifted from the vat and poured back into the bulk of the milk from the height of a foot or two, the odor given off by that method of disturbance, can easily be discerned. Gasey curds and porous cieese frequently results from the setting of immature milk. There is much advantage in properly ripening the milk, before the addition of rennet. Warmth and frequent stirring, or any suitable method of aeration are the means best suited to bring about the required state. The use of sour whey is objectionable since it frequently introduces some sort of bad flavor. In the cold weather of fall, a quantity of old milk, kept in a pure atmosphere and not at all thickened will serve the purpose ; while during the summer mouths, heating in a vat and airing by stirring will suffice. Cheese makers have not paid enough attention to that matter. In point of the time required, it is better to wait for an hour or two on the ripening of the milk than twice as long at a latter stage on the ripening of the curd. But to come back to my narrative. Coloring for each vat at the rate of $1 \frac{1}{1}$ oz. per $1,000 \mathrm{lbs}$, of milk was first diluter in a pailful of water and then thoroughly mixed with the milk. Rennet extract at the rate of four ounces per $1,000 \mathrm{lbs}$. of milk was used in a similar way. There has been a good deal of timidity on the part of cheesemakers in the matter of using rennet. In hot weather and with tainted mink, or milk from which gasey curds are likely to come, a very liberal use of rennet leaver less risk of inferior quality. Tainted milk is always difficult of coagulation ; and cheese r made from milk in which all the caseine has not been thickened will quickly g_{0} off flavor. Firm. coagulation will cause the retention of more moisture in the curd. Moisture retained by such means will favor the mellowing of the curd and prevent the tendency to a "corky, pin-boley," condition. With milk sufficiently ripened, as already recommended, enough rennet should be used to effect coagulation firm enough for cutting in at least forty minutes at a temperature of 86°. With tainted or "gases" milk thirty minutes is a better limit. A larger yield and superior quality will bee obtained by allowing the curd to become quite firm before commencing to cut it. For cutting, the horizontal knife should be used first and lengthwise. The perpendicular knife may then be used crosswise and afterwards lengthwise. With knives of ordinary fine gauge between the blades, three stings are sufficient. In the case of a quick running curd, four cuttings will promote the lying of the curd, while the heating proceeds. The use of the horizon ital knife first, leaves. the curd in a state less likely to cause it to run into lumps during the heating. The batting was carried on continuously until completed, and the stir ing Vegan immediately hereafter. The hands were used for two rounds to free the curd from the sides and bottom of the vats. Then, to save the bask, a common hay rake with its handle cut off hort was used to continue the stirring; when handled with care, the curd can be kept motion and free from sating by the use of the rake, with less damage and waste than using the hand. Af er. ten minutes of steady slow stirring, steam was turned on ;
\square
\qquad
\square
\qquad
\qquad

The work much time and to the most imp Ontario, fully ${ }^{j}$

Besides th attended on beh I also addressed cussion of subje -

A short co of the first and instructions dur conception has service only in t through the eco the available fo the outline of on explanatory lect

Since my la of Milk for Chee from dairymen. chease factories

1. Milk is
2. These tw tissue under the support in positi
3. The udd although the div 4. The glan deposit of fat in
4. The inte
5. The total teats will seldom
6. Numerou
7. The duct in a vesicle, or " 9. Into the etc.,-seems to p
$\left(98^{\circ}\right)$ was 1 from one rather un. emperature e hot iron ghth of an rest of the or cloth. It of the curd ad better be or rubbing. y before the at of acid in of after the overed with handle withted every ten piled higher, d to the sink and springy fuls of water olate through ould be kept on it, will be ch more than temperature the "coming lipping of the ition is judged flakey textut d butter from Idful is tightly ool below 90° e of a very bad ing. It should applied freely, and its manage d at the rate of y or wet, rather the whey. The in. A delay at mly solid body. vith a symmetri: or turning are n the ends of the our visit cheen n up. It shoold
received. They which assembla 52 factories. ng instructors the college crean tisfactory manne ound in the repad

The work outlined under this head, with its associated duties, necessarily occupied much time and involved some travelling and printing expenses; but the services rendered to the most important of all our agricultural interests, the cheese and butter industry of Ontario, fully justified the use of both time and money.

V.-PUBLIC MEETINGS.

Besides the meetings of the executive committees of the Dairy Associations, I attended on behalf of the dairy department of the college, their three annual conventions. I also addressed 41 Farmer's Institutes and 21 other public meetings held for the discussion of subjects relating to dairy husbandry.

VI.-COLLEGE LECTURES.

A short course of lectures, mainly relating to dairy cattle, was given to the students of the first and second years during the fall term. More and needed time is thus left for instructions during the spring term in the manufacture of dairy products. An errozeous conception has prevailed in some quarters that the dairy department comes into service only in the manipulation of milk. Dairy husbandry begins at the soil and seeks through the economioal growth of plants adapted to the feeding of cattle, to increase the available food supply per acre of the whole country. The following is a specimen of the outline of one lecture, a copy of which is put in the hands of each student before the explanatory lecture is commenced.

VII.-BULLETINS.

Since my last report the following Bulletins have been issued: Of the one on Care of Milk for Cheese-making, over 40,00) copies have been sent out in response to requests from dairymen. All the bulletins were distributed as far as possible to the patrons of chease factories and creameries.

Thr Elaboration of Mile.

1. Milk is secmeted by and in two longitudinal glands, commonly called the udder.
2. These two are separated by a fibrous partition, which is attached to connective tissue under the skin. That tissue also spreads through the udder, apparently for its support in position.
3. The udder is spoken of as having four quarters. That is popularly correct, although the division bytween the two quarters on each side is not definite or distinct.
4. The gland stripped of its covering, is a reddish-grey substance. In dry cows the deposit of fat in the connective tissue give it a yellowish appearance.
5. The internal canal of the teat opens into a milk cistern.
6. The total quantity of milk held in the four cisterns or reservoirs at the top of the teats will seldom exceed one quart.
7. Numerous ducts rise from these and branch into all parts of the udder.
8. The ducts and their branches become smaller as they spread, until each ons ends in a vesicle, or "ultimate follicle," about 1-30 of an inch in diameter.
9. Into these cavities, the serum of the milk-its water, caseine, sugar, albumen, eto.,-seems to pass from the arterial blood through capillary tissue.
10. A change in the cell albumen of the blood is believed to take place during that transition.
11. The inside of each vesicle is studded with innumerable cells. Through these the fat is produced supposedly by budding. $000,000,000$ of these globules in a eubic inch of milk. They have no organic pellicles or so-called skins.
12. They have no organic per depends largely upon the vigor of the blond circulation.
13. The activity of secretion dep
14. The production of fat depends mainly upon the temperament of the cow, gentle handling, and feed rich in protein.
15. Violent disturbance of her nervous system has a disastrous effect upon the cell action and capillary activity in most cases.
16. Arteries, veins and nerves together per in No. 7, are formed by branching or sprouting out from others.
17. Rubbing of the udder, rapid and clean milking will promote cheir guowth and development until the sixth year.
18. A pressure of fat in the connective tissue on the gland interferes with and hinders the secretion of milk.

Short Hints on Cheese-making.

It is not the purpose of this paper to discuss the science of cheese-making, but to state in a series of simple sentences the best practice for Oanadian factorymen. If many of them to the old hand seem superfluous, their advice is none the less needed in a large number of factories.

1. Use every endeavour to educate your patrons how to produce milk of the best quality, with the most profit.
2. Give each one a copy of "Points for the attention of Patrons of Cheese Factories."
3. Carefully inspect the milk cans, especially the seams inside the covers, once every week; any offensive matter appearing yellow when wet with milk is most dangerous to the flavour and keeping qualities of the cheese.
4. Insist on a careful straining immediately after milking.
5. Send a circular or note to ef all ming-yard, milk-house and the airing of all milk.
6. Visit promptly the farm, pasture, stabie, m he has been notified of its bad quality; of every patron whose milk comes tainted after hattention will generally be found as the somese.
7. Where whey is returned in the milk cans, urge the owners to empty them as soon as received, and not to feed the whey near a milk-stand, milking-yard or other place where milk is kept.
8. Examine carefully the inside and outside of the opening from the weighing can into the milk conductor; and just after using look into the conductor very closely for any traces of the yellow matter referred to in No. 3 .
9. Do that every day.
10. Entertain a "creepy dislike" for the use of a strainer, cloth, dipper, pail of thermometer which feels greasy, or that has a miser's store of matter-out-of-place in tho corners.
11. Lift the pans of the milk vats out of their places for a thorough cleaning of the water-pans once a fortnight. 12. 84° or 86° Fahr. are satisfactory setting temperatures when the good condition. according to the degree of its ripeness. See also 26 .
ripened by the heat to the who
12. In the one gallon of w
13. Pure r
14. The qu
15. The fir
16. To per than later in th
17. The m cheese under si
18. The m under equal con
19. For qu in from fifteen
20. For su process, with m
21. The se contraction of t

25 . The ra conditions, and
26. When should be used t "cooking,") bef discernible by t
27. Observ avoid the dange
28. Rennet vat before being
29. It shou be very imperf
30. The re fairly firm befor
31. More also 21.
32. The ho perpendicular k
33. The m except in the cas
34. The kn curd by pushing
35. Gentle

36 . The hat
that may have a
37. The ap commenced.
38. The hea ing of the curd. 39. The te than one degree 40. In the
41. Stirring
42. When t should be remov 43. If acid
(10 A.C.)
ring that these the ic inch of irculation. ow, gentle
on the cell
tructure.
anching or
growth and
s with and
king, but to n. If many led in a large
k of the best
se Factorifg." rs, once every dangerous to
urging care in
and milk-stand is bad quality; e found as the
y them as soon or other place
e weighing can very closely for
dipper, pail or at-of-place in the h cleaning of the en the milk is in

8 high as 96°
14. During October and November the milk, before setting, should be sufficiently ripened $b y$ the addition of old milk kept in a pure atmosphere, or by the application of heat to the whole volume of milk some hours previous to putting in the rennet,
15. In the use of colouring, the annatto extract should be diluted to the extent of one gallon of water to every vatful of milk, and then thoroughly stirred in.
16. Pure rennet extract of powder of known strength is indispensable.
17. The quantity used should be regulated according to the condition of the milk.
18. The first discernible action of rennet is to coagulate the milk into curd.
19. To perfectly coagulate the milk from fresh calved cows, more rennet is required than later in their milking season.
20. The more rennet there is used, the more moisture will there be retained in the cheese under similar conditions of making.
21. The more moisture there is retained in the cheese the more quickly will it cure under equal conditions of temperature and atmosphere.
22. For quick curing cheese, as much rennet should be used as will thicken for cutting in from fifteen to thirty minutes at a temperature of 86°.
23. For summer and fall cheese forty-five minutes should be allowed for the same process, with milk in good condition.
24. The second evident action of rennet is to effect a separation of moisture by a contraction of the curd particles.
25. The raising of the temperature up to 98° Fahr. provides increasingly favorable conditions, and thus promotes the rennet action
26. When milk is over-ripe or acidy, a proportionately increased quantity of rennet should be used to effect a sufficient separation of the moisture from the curd (often termed "cooking,") before the presence of lactic acid is perceptible to the taste or smell, or is discernible by the hot iron test. See also 13 .
27. Observation of the foregoing would remedy many so-cclled mushy curds, and avoid the danger of "leakers."
28. Rennet should be diluted to the volume of at least one gallon of liquid for every vat before being added to the milk.
29. It should be thoroughly mixed by vigorous stirring, otherwise coagulation will
very imperfect. be very imperfect.
30. The results of late investigations recommend an allowing of the curd to become fairly firm before commencing to cut, except in the case of a quick curd.
31. More moisture is retained in the cheese, and a better yield is thus obtained. See also 21.
32. The horizontal knife should be used first, lengthwise, and then followed by the perpendicular knife, crosswise, after the whey has separated to half cover the curd.
33. The mesh of the knives should be so close that three cuttings would suffice, except in the case of a quick curd, which should be cut unusually fine.
34. The knives should be moved fast enough to prevent much disturbance of the curd by pushing.
35. Gentle and slow stirring should begin immediately after the cutting is completed.
36. The hand should be used to free the sides and bottom of the pan from any curd that may have adhered.
37. The application of heat should be delayed for fifteen minutes after stirring is commenced.
38. The heat should be applied through the aedium of warm water to avoid scorch-
f the curd. ing of the curd.
39. The temperature should be gradually raised to $98^{\circ} \mathrm{Fahr}$. at a rate not faster than one degree every four or five minutes,
40. In the case of a quick curd, Nos, 37 and 39 may be disregarded.
41. Stirring should be continued till the curd is properly " firmed " or "dried."
42. When the hot iron test shows fine hairs, from $\frac{1}{4}$ to $\frac{1}{8}$ of an inch long, the whey should be removed.
43. If acid be discernible by the hot iron test before the curd is so proparly (10 A.c.)
"firmed," the whey should be immediately removed and the stirring continued till that firm condition is brought about. into one mass.
46. It should be frequently turned and packed close, till the layers of curd are four or five deep.
47. Whey should never be allowed to gather in small pools on the curd at this stage.
48. The conditions of the curd, as to when ready for cutting and salting, are best ascertained by the use of the senses. The usual order of reliability for that purpose is by touch, smell, taste and appearance.
49. The proper degree of change has taken place when the curd feels mellow, velvety and greasy ; smells like new-made butter from sour cream ; tastes aromatic rather than sour ; and shows a texture passing from the flaky or leafy into the stringy and fibrous. When the curd is gasey or very porous, souring should be allowed to go further before it is arrested by the cutting and salting.
51. If the curd be too moist or sott shadition of salt. stage, and hand-stirred some cases it should also be well aired by stirring before being salted.

53 . It is generally beneficial to stir the curd for five or ten minutes after cutting or
54. The results of then Association, indicate that Canadian salt is better for cheese-making purposes than English salt.
55. One pound and three-quarters of pure salt per 1,000 pounds of milk is a maximum quantity for April and early May cheese.
56. From two pounds to two and three-quarters pounds of salt per 1,000 pounds of milk is the range for summer use on fairly dried curds.
57. Where extra rennet has been used, or where the curd is sloppy, a corresponding increase of salt should be applied.
58. One important action of salt is to dry the curd and cheese, and thus retard the curing.
59. The curd should be hooped and pressure applied within twenty to forty-five minutes after the salt is stirred in.
60. The desirable rosy flavor is
61. Pressure in the hoops sitting, and canvas press rings used.
ing. 62 . The followers should be loose-fitting, and canvas press rings used.
62. The followers should be taken to use only pure water when turning the cheese for bandaging, before the ends are fully closed.
64. Greasy water is sure to percolate into the flavors. The curd-cutter or grinder must be thoroughly cleaned every day ; wretchedly 65. The curd-cutter or gre in cheese from neglect of this.
flavors are frequently sown in bad flavors are requ should be furnished with racks having slats bevelled to an edge from 66.
sides. both sides.
67. The racks need thorough scrubbing on both sides every day, and should be turned out for airing over night.
68. A sink cloth that shows clogging by yellow matter should be burned at once.
69. Occasional soaking over night in a strong sal-soda solution is beneficial.
70. The curd whisk has been a fruitful scatterer of bad flavors, a hair brush is more easily kept clean.
71. The hoops and press table a week.
72. All chee shape and body.
73. The pres the time for ship
74. No chees edges well made.
75. The cur cleaned after eacl
76. The curi condition, and col
77. A temper cheese.
78. From 65 mer and fall chee
79. The chee old.
80. When pr grease on the rind
81. Just beff the grease is still
82. Mark the tha box.
83. Let there
84. The edge close.
85. The band
tional strength to
86. Insist on take cheese to the
87. See that
88. Finish al
89. Keep eve
90. Keep a
91. Occasiona foregoing recomme

That the influ confined to the ir undertaken during it was expected th but little steady li best for preserving and which have be loor of some other

On August 1 with salt of as mar

On August 13
On August 1 hree-quarters of a

On August 26 ras applied in the

From four to ix occasions.
t till that Fahr. ed to mat d are four this stage. g , are best purpose is
ls mellow, atic rather stringy and
go further
ther earlier efore being r cutting or tario Dairyurposes than
ilk is a maxi-
1,000 pounds corresponding us retard the to forty-five dually increas ning the cheese and leave nasty ay ; wretchedly to an edge from and should be urned at once. oeneficial. es, a hair brush water every day
72. All cheese should be turned in the hoops in the morning to give finish to the shape and body.
73. The press cloths should be left on for a fortnight, or till within a few days of the time for shipment,
74. No cheese should be taken to the curing-room till the shape is true and the edges well made.
75. The curing-room floor should be frequently swept, the shelves thoroughly cleaned after each shipment, and the air kept pure by suitable ventilation.
76. The curing is effected by fermentation, while heat up to 70° makes a favorable condition, and cold under 60° an unfavorable condition for its operation.
77. A temperature of from 70° to 75° Fahr. should be maintained for curing spring cheese.
78. From 65° to $70^{\circ} \mathrm{Fahr}$. is the best range of temperature for the curing of summer and fall cheese.
79. The cheese should be turned on the shelves once a day till at least three weeks old.
80. When press cloths are stripped off, use warm (but not hot), pure, sweet flavored grease on the rinds.
81. Just before boxing summer cheese grease them, and apply scale-boards while the grease is still soft.
82. Mark the weight of each cheese in neat figures on the hollow of the side of tha box.
83. Let there be two scaleboards on each end of the cheese in the box.
84. The edge of the box should be level with the cheese, and the cover should fit close.
85. The band of the box cover should be at least $\frac{1}{4}$ of an inch thick to give additional strength to the package.
86. Insist on the teamsters using only clean wagon or sleigh boxes in which to take cheese to the railway station.
87. See that the flues of the steam boiler are cleaned out every week.
88. Finish all of every day's work each day, in the very best way you can.
89. Keep everything in and about the factory scrupulously clean.
90. Keep a correct and detailed record of every day's make.
91. Occasionally compare the working of your factory in all its details with the foregoing recommendations.

Tests of Salt in Butter-making.

That the influence of salt on the quality of the butter to which it is added is not confined to the imparting of a salt flavor, has long been admitted. A few tests were undertaken during the season of 1886, at the Agricultural College Creamery, from which it was expected that conclusions useful for the guidance of butter-makers could be drawn; but little steady light is thrown by them on the disputed point as to which salt is the best for preserving butter. Many defects in quality, recognized after the lapse of time and which have been attributed to the use of unsuitable salt, will have to be laid at the door of some other condition or cause.

On August 12 several lots of butter were weighed from one churning and salted with salt of as many different brands, at the rate of one ounce per pound of butter.

On August 13 the same was done with the butter from another churning.
On August 15 and 21 two tesis were prepared for, in a like manner, with the use of hree-quarters of an ounce per pound of butter.

On August 26 and September 3 a rate of half an ounce of salt per pound of butter ras applied in the same way.

From four to six lots of butter were weighed from the same churn, on each of these

The butter was packed in tin-lined tubs and kept in a cellar where the temperature was purposly made to fluctuate from 40° to 55° Fahr., to try its keeping qualities.

The Canadian makes of salt used were Coleman's, Kidd's, Rice's and Roger's ; the English makes used were Ashton's and Higgins'.

At the convention of the Ontario Creameries Association held in Toronto in March, 1887, F. W. Fearman, Esq., Hamilton; James Park, Esq., Toronto, and The judging was stone, Esq., Toronto, were appointed a Committee of eta were known to the judges by deferred till 22nd and 28th March. The the tubs as to the kind or quantity of salt numbers only, there being no indication armange in the order of their merit the different used. The object of the judging was,
tubs in each lot from the one churning.
There was the widest difference of opisme lot. Some butter salted with every one relative merits of the different tubs in the by merit the first place in at least one of the of the different brands of salt was awaw such superiority over the others, on the averseveral comparisons. No one kind shat mention. The average merit of the Canadian salt age of the tests, as to deserve special English, but the average loss of weight by the addiwas slightly higher than that of thly in favor of the English article.
tion of salt and working was slightly ities of the butter from using different quantities of
In a comparison as to them one churning at the end of six months, the butter the same salt in several lots ounce to the pound was placed first; one ounce to the pound salted three-quarters of an oupound third; one and a quarter ounces to the pound fourth; second; one-half ounce to the pound last and very inferior.
one-quarter of an ounce the salt was slow of dissolving and where the butter had been left
In cases where the salt was sore the resultant porosity of body caused it to go off in flavor.

Contact between the salt-plaster and the wood of the tub covers seem to convey and impart a woody flavor to the top of the butter.

I would recommend-

1. The use of pure, clean salt of as nearly as possible uniform sized grains, which dis solve readily and completely before the butter is worked the second time.
ii. The use of a parchment or parafine paper covering on the top of the salt-plaste. iII. Attention to the frequent brining of the tubs to replace the moisture removed by evaporation.
iv. Care in keeping the temperature of the store-room steady.

Care of Milk for Cheese-Making.

In dairy matters, as in most other affairs, continuous progress is essential to successif practice. The philosophy of successful dairying is like that of bicycle riding,-the mu who does not keep going on will quickly go off. Thus, in order to maintain our reput tion as dairymen, we must improve and increase the quality and quantity of our dair products per cow and per acre.

The one aspect of dairy practice that will be presented in this Bulletin, while p haps less interesting than others that might the manufacture of cheese, viz., the p importance to the persons who have to do wing purposes. paration and care of milk for cheese-maki prepare milk for a cheese factory, he shou

Before the dairyman undertakes to prepar have a chance to yield good, wholesoa make careful provision for his cows thay be easily preserved from speedy decay, it milk. While the products of milk out of that which is inferior in the first place. Hem impossible to reorganise good milk importance and necessity for keeping only healthy con I urge upon every dairyman the impitious and wholesome feed. The quality of the fo They should receive plenty of nutritious and wholesome feed.
will show itself in clusion that unless satisfactory keepin

Cows should 1 a great many farm They seem to imag way affected therel that is not fit no always the best ju the special care he

I have exami been taken into t possible to destroy found possible to i the water been pur cows had drank on the milk used is cle

Another requi as often as they lik salt as they like th access to salt for s

We made a si cows were divided to salt, while those days the cows of t others, on the same had not fallen off a group on and three yield of the three g the yield of the on test. Each cow of

The effect upo found that the mill hours less time tha have frequently ha been fed to the cow

The salting of to be the most chu tation. But one pr dairymen salt their cow than for the m

Another essen tree from all foul mells that cows po from a patron own could not locate no is pasture and fou there the previous vas positively offen ofurther trouble mpress a knowled f location that the

Foul smells in ttends to the feedi ill have indigestio

If the cow is a n. She reminds
emperature ualities. ooger's ; the

0 in March, tomas Johnjudging was e judges by ntity of salt the different
ges as to the th every one st one of the , on the averCanadian salt t by the addi-
quantities of hs, the butter to the pound pound fourth;
r had been left it to go off in
to convey and
ains, which dis
the salt-plastet. oisture remored
atial to successif riding,-the mas ntain our reputh tity of our dary
alletin, while p less one of vib eese, viz., the po d good, wholew peedy decay, it irst place. Hen only healthy oor uality of the fax
will show itself in the milk and cheese. General experience certainly points to the conclusion that unless we have well-fed cows we cannot have milk of either fine flavor or satisfactory keeping quality.

Cows should have access to pure water only, and that in abundance. We have found a great many farmers careless as to the quality of the water which their cows drink, They seem to imagine that if the cows drink anything liquid, the milk will not be in any way affected thereby. I have even known farmers to argue that cows like to drink stuff that is not fit nor good for them. So do some other animals; but the animal is not always the best judge. The superior intelligence of the deiryman is always indicated by the special care he gives to the surroundings of the cows.

I have examined milk under the microscope and found therein microbes that had been taken into the system of the cows through the water which they drank. It is possible to destroy those microbes in the process of cheese-making, but it has not been found possible to impart to such milk the fine flavor which it would have possessed had the water been pure. Cheese made from such milk will not keep sound as long as if the cows had drank only pure water. It is not possible to make cheese of fine quality unless the milk used is clean, pure and wholesome.

Another requirement is that cows should have access to all the salt they care to lick, as often as they like to take it. It is often said that if cows be allowed to take as much salt as they like they will take too much, and thereby harm themselves. When denied access to salt for some weeks, or even days, they will take too much when a chance is got,

We made a simple experiment in 1886 to define the effect of salt on milk. Eleven cows were divided into four groups, so arranged that the cows of two groups had no access to salt, while those of the other groups had access to all they liked to take. Within two days the cows of the former groups had fallen off in milk yield $17 \frac{1}{2}$ per cent.; while the others, on the same feed, on the same pasture, and under the same conditions and care, had not fallen off appreciably. After twelve days, a change of the groups was made, one group on and three groups off salt rations, when an almost similar result followed. The yield of the three groups not having salt was reduced on the average $14 \frac{1}{2}$ per cent.; while the yield of the one group with access to salt every day had not been lessened during the test. Each cow of the latter group consumed a quarter of a pound of salt per day.

The effect upon the quality of the milk for cheese-making was also shown. It was found that the milk from the cows that had no access to salt turned sour in twenty-four hours less time than the milk from cows on the same feed that had daily access to it. I have frequently had occasion to attribute the taint in milk to the fact that no salt had been fed to the cows.

The salting of cows as often as once a weok is not sufficient. In Ontario we are said to be the most church-going and religious people on this continent. That is our reputation. But one practice performed with religious regularity, is all too prevalent. Many dairymen salt their cows only on Sunday afternoons. That practice is no better for the cow than for the man.

Another essential condition for the production of good milk is that the cows be kept free from all foul odors. Many farmers do not understand the delicate sensibility to mells that cows possess. Several years ago a case came under my notice where the milk from a patron owning some twenty-five cows was rejected at the cheese factory. He could not locate nor explain the cause of the trouble. I visited his farm, travelled over is pasture and found in the woods the unburied carcass of a horse which had been hauled here the previous spring. The cows often pastured in the field near by and their milk ras positively offensive both to the smell and taste. The carcass was buried at once and 0 further trouble was experienced with the milk. It is still desirable to emphasize and mpress a knowledge of the need for having all milking animals kept under such conditions f location that the air is practically pure, or free from all contaminating taints.

Foul smells in the stables result sometimes from the generosity of the man who ttends to the feeding. He will feed so often and so much that ϵ very one of the cows ill have indigestion, with all its accompanying disagreeable odors.

If the cow is abused in any way she inflicts upon her owner the only retaliation she n. She reminds him of his duty to be kind and good to her, by withholding the milk:
which he requiree. For cheese-making particularly, the flavor and quality of the milk depend largely upon the disposition of the man who manages the cows.

Trouble is frequently had with inferior milk because the cows have been chased home by "that useless dog." He is more expensive to keep on a dairy farm than a first-class cow. Shoot him this week !

Milk should not be used for cheese-making within four days from the date of the calt's birth. It should be protected against all contamination from foul odors that may be adjacent to the place of milking, or which may come through the air. Taint may also be imparted from the vessels used by the milkers, but oftener from their hands. Wellent in Denmark, two years ago, \vec{r} took some pains to stad. One of the regulations of the farmer who keeps no less than 250 cows in on her hands after milking two cows. The stable was that every milker should wash hat herd brought at least ten or twelve shillings rule was invariable, and the butter finary first-class Danish butter. The owner attributed per cwt. more than his success to the observation of that one practice.
a large measure of his success, and the pails being clean-as they generally are since the
Having the drawn milk, and
Having the drawn milk, and ol phould be thoroughly strained. A deal of trouble women folks look after them-ther-pails, simply because there is often an accumulation of has arisen from the use of strainer the eyes of the washer. Ohildren have been known to impurity liable to be hidden from from contact with that kind of stuff. The germs it conget dangerous attacks of illness from prevention is better than cure.
tains can be killed by lactic acid, but immediately after milking. Some foulness may have
The milk should be strained immedi the less likelihood is there of its being made fallen into it and the sooner it is re soluble in the milk.

After the straining is attended to, the milk should be aerated. That neglect implies into one large can and left there just as the colity for cheese-making. (1) The peculiar three things that are very injurious to - will be left in it until it becomes fixed in the odor which the cow imparts to the mik wat come in the milk and from the air have the flavor. (2) The germs of fermentation when the milk is left undisturbed. (3) Then the best conditions for growth and acthorough coagulation by rennet. Hence it is needful and milk will become almost unit for three reasons:

1. By either pouring, stirring or dipping, or by trickling it over an exposed surface of tin we try by evaporation to eliminate from the milk any objectionable volatile element that may be in it.
2. It has already been stated that milk contains germs of fermentation. Some of these we call vibriones. A strange peculiarity about these vibriones is that they become active only in the absence of free oxygen. When warm milk is left undisturbed carbonia gas is generated, and that furnishes the best condition for the commencement of action by these microbes. After they get started they can keep up their decomposing work even in the presence of oxygen. It is impossible to coagulate such milk so as to yield a and quality of keeping cheese. Coagulation by rennet can never be perfect. Neglect of ain has been thoroughly aërated immediately after is ilk required for a pound of cheess. ation will increase the average number arms fermentation that bring about an
3. The airing seems to give vigor to the ge acid. So much is this so that it hy acid condition of the milk without produtly first-class cheese from milk that has not beem been found impracticable to make sufficient age before the operation of making is com 11k retards the process by which it is turned sour. menced.

The subsequent cooling of milk retards the pilk, which in the act of multiplying itsel certain kind of germ of fermentation exists molecules of lactic acid. Thus by delayin splits one molecule of sugar of milk into that operation the milk is kept sweet longer. A temperature of from 65° to $70^{\circ} \mathrm{Faly}$ cede the aëration; it should always follow of milk over night.
will be found cold enough for the
the aeration, enough for the keeping of milk over night.
Moreover the milk requires special protection against any foulness in the ief
Morer

Everyone has ob water from the colder the pitch same way the co greater is the cc from that cause.

When the the can right at ities thereby imp

I have hear to send to the night ; but I ne of it .

I confidentl farmers and the milk inspectors the way of tak factories.

A copy of that matter is at Associations, an

At the risk written, the gist

1. Milk fro after calving.
2. Any har quality of her yi
3. Cows sh much pure water
4. A supply
5. Cows sho ings from horse offensive taint.
6. All milk scalded with boil
7. Cows sh washed or well b
8. Milking is pure and free stable or yard in should hogs be \mathbf{k}
9. Tin pails
10. All mill purpose a detach
11. In prep straining be thor ficial for the mor weather is cool tl
12. In warm
13. Milk ke condition than if
14. When b of the morning w the stand.
15. While tl but when colder
f the milk nased home a first-class date of the rs that may nt may also ds. When in excellent tions of the cows. The lve shillings er attributed
are since the eal of trouble umulation of en known to germs it con-
ess may have is being made
en it is poured eglect implies The peculiar es fixed in the e air have the (3) Then the is needful and
xposed surface olatile element
tion. Some of nat they become turbed carbonit ement of action osing work even is to yield a fine unless the milk
Neglect of ain ound of cheese. t bring about m is so that it hy hat has not beee f making is com
turned sour. multiplying itad Thus by delayiu should never po 65° to $70^{\circ} \mathrm{Fa}$
alness in the ie

Everyone has observed that if a pitcher of cold water stand in a warm room, drops of water from the air will immediately begin to condense upon the outside surface. The colder the pitcher and the warmer the air, the greater will be the condensation. In the same way the colder the milk becomes as compared with the temperature of the air the greater is the condensation from the air on its surface. The cream is very often foul from that cause.

When the whey from the factory is drawn to the farm, a common practice is to empty the can right at the milk stand. Having done that, the owner little thinks of the impurities thereby imparted to the milk, impurities that are certain to get into the cheese.

I have heard of ladies who were so nice in the handling of milk that they objected to send to the factory "the nasty yellow scum" which rises after the milk stands over night; but I never knew a cheese-maker in Ontario to complain of receiving an excess of it.

I confidently trust that the good sense and sturdy honesty so characteristic of the farmers and their wives as a class will uphold and aid the efforts of the cheese-makers and milk inspectors in trying to stamp out the practice that has been creeping in of late, in the way of taking off cream or keeping back strippings from the milk supplied to factories.

A copy of the Act passed at the last session of the Ontario Legislature, relating to that matter is attached to this Bulletin. The Bill was recommended by the Dairymen's Associations, and was passed under the charge of Mr. Thomas Ballantyne, M.P.P.

At the risk of repeating, and for the sake of emphasizing what has been already written, the gist of the foregoing suggestions is gathered into 17 short paragraphs.

1. Milk from healthy cows only should be used, and not until at least four days after calving.
2. Any harsh treatment that excites the cow lessens the quantity and injures the quality of her yield.
3. Cows should be allowed an abundant supply of wholesome suitable food, and as much pure water as they will drink.
4. A supply of salt should be placed where cows have access to it every day.
5. Cows should not be permitted to drink stagnant, impure water, nor to eat cleanings from horse stables, leeks, turnip tops, nor anything that would give the milk an offensive taint.
6. All milk vessels shouid be thoroughly cleansed ; first being well washed, then scalded with boiling water, and afterwards sufficiently aired to keep them perfectly sweet.
7. Cows should be milked with dry hands, and only after the udders have been washed or well brushed.
8. Milking should be done and milk should be kept only where the surrounding air is pure and free from all objectionable and tainting odors. Milking in a foul-smelling stable or yard imparts to milk an injurious taint. Sour whey should never be fed, nor should hogs be kept in a milking yard, nor near a milk stand.
9. Tin pails only should be used.
10. All milk should be properly strained immediately after milking, and for that purpose a detached strainer is preferable to a strainer-pail.
11. In preparing milk for delivery to a cheese factory it should immediately after straining be thoroughly aired by pouring, dipping or stirring. This treatment is as beneficial for the morning's milk as for the evening's, and is even more necessary when the weather is cool than when it is warm.
12. In warm weather all milk should be cooled after it has been aired but not before.
13. Milk kept over night in small quantities-say in tin pails-will be in better condition than if kept in larger quantity in one vessel.
14. When both messes of milk are conveyed to the factory in one can, the mixing of the morning with the evening's milk should be delayed till the milk-waggon reaches the stand.
15. While the milk is warmer than the surrounding air it should be left uncovered, but when colder it may with advantage be covered.
16. It shall who suspects an tory, of any offe to enter upon, al person, with or the supposed offe of the milk so so who obstructs or thereof, be liable prosecution, and common gaol of exceeding three
17. For the tions of this Act himself, his serv cheese or butter drawn, or by the within the then lactometer and c
18. Any pena to the informant cipality in which

The usefuln years has been m been severe in th that one aspect of ally monopolise t

On the oth of healthy, heart arts, manufactur occupations. Ev remote from educ through the pres exhibitions. Fer graphical location isolating mental woman, boy or gi in the performan will have come in achievements of t ing and educating agricultural socie competition.

The dairy Canadian agricul of the economic p the farmers in in proving their qua or class interest. financial stake in

The marvelo prominence after

3 should ould be ection of ion to all

TORIES.
bly of the
cheese or lk diluted taken, or riting, the , supplied or had the 1 k ," as the
r sends to nufactured, ad business, otifying, in having so
a cheese or ay milk that or manager ur. of the proe any justice ore than \$50, stices, and in d to the comonths, unless
anufactory to bought for, or iarm, or other amed by such quantity and ny such day as istodian of the of the persons s in any way nt before any um of not less the peace who rdered, and in mitted, by such inty, with hard nd the costs of
6. It shall be lawful for the owner or manager of any cheese or butter manufactory, who suspects any person of selling, supplying, sending or bringing milk to the manufactory, of any offence under this Act, to enter upon or to appoint some person or persons to enter upon, and such appointed person may enter upon the premises of the suspected person, with or without notice, and take samples of milk from the cow or cows from which the supposed offender was or had been immediately before then procuring the milk or part of the milk so sold, supplied, sent or brought as aforesaid, and any such suspected person who obstructs or refuses to permit the taking of any such sample shall, on conviction thereof, be liable to a penalty of not less than $\$ 10$ nor more than $\$ 50$ with costs of the prosecution, and in default of payment thereof, shall be liable to be imprisoned in the common gaol of the connty in which the offence has been committed, for a period not exceeding three months with hard labor.
7. For the purpose of establishing the guilt of any person under the first three sections of this Act, it shall be sufficient prima facie evidence to shov that such person, by himself, his servant or agent, sold, supplied, sent or brought, to be manufactured, to any cheese or butter manufactory, milk substantially below the standard of that actually drawn, or by the accused represented as having been drawn from the same cow or cows within the then previous week, provided the comparison or test is made by means of a lactometer and cream gauge, or by some other adequate means of making the comparison.
8. Any penalty imposed under this Act sball, when recovered, be payable one-half to the informant or complainant and the other half to the treasurer of the local municipality in which the offence has been committed.

Exhibitions and Prize Butter.

The usefulness of most of our agricultural societies during the past ten or fifteen years has been mainly in the direction of holding fairs or expositions. Some critics have been severe in their censure of the responsible directors for permitting or encouraging that one aspect of all the work, ostensibly undertaken by these organizations, to effectually monopolise their funds and energies.

On the other hand it should be recognised and remembered that the stimulus of healthy, hearty and friendly competition which they have fostered in every branch of arts, manufactures and agriculture has been very beneficial to all connected with those occupations. Every department of farm work, even on the farms whose tillers are most remote from educational influences, has felt the quickening pulsations of industrial life, through the presentation and circulation of information resulting from the holding of exhibitions. Few farms are now so isolated from such aids by reason of their geographical location ; but many are still out of reach and touch because of the isolated and isolating mental attitude of the men and women who live on them. If any man or woman, boy or girl, can be enlivened into a fair competition with others of their fellows in the performance or production of any branch of their work, a great economic boon will have come into their lives. Hence I see a unity of aim between the purpose and achievements of the now popular Farmers' Institutes in their work of informing, instructing and educating those engaged in agricultural pursuits, and the plans and action of agricultural societies in providing expositions for comparing attainments through open competition.

The dairy industry is now recognized as the most important of all branches of Oanadian agriculture ; and unquestionably profitable agriculture lies at the foundation of the economic prosperity of the Dominion. Whatever just means may be used to aid the farmers in increasing the marketable quantity of dairy products per acre, and in improving their quality and consequent value, cannot be considered as of only local, rural or class interest. Every inhabitant has personally, to a greater or less degree, some financial stake in the business of the farms.

The marvelously rapid growth of the dairy business in Ontario brought it into prominence after the fairs and exhibitions of the province had become respectably
stereotyped in their management. Its magnitude now entitles it to more attention from those entrusted with the expenditure of public moneys through these institutions. In a few lines can be stated facts showing its unappreciated extenc are no less than 750,000 milch cows. Of these the mumption and export ; about 160,000 cheese ; 250,000 furnish the butter for The cheese factories number over 770 and the supply the milk required for table use. The production of cheese, steadily increasing creameries now in operation less than 40 . lb , annually. Its value last year was over in this province, now exceeds $70,000,00$ estimated quantity of $30,000,000 \mathrm{lb}$., worth $87,500,000$. Butter is manufactured to the estimad quantity of
last year over $\$ 5,000,000$.
In 1886 the annual report of the and 206 city, towns and village municipalities. municipalities in Untario, 445 townships Besides the few yearly expositions 200 municipalities. If by such means only five per might be held annually in at least ere benefited to the extent of only five per cent. of the cent. of those engaged in dairying were value of their dairy products, the recerent. of those who keep cows could be helped to the by $\$ 31,250$. I think that fifteen per value of their butter and cheese. Such an increase extent of ten per cent. of the press $\$ 187,500$ per year.
in value would represent at least
To make expositions truly edu scale of points should be established and butter and of judging should be adopted. judged with reference to the standard recognized by these points. I present a form for use in the judging of both :

Butter (or Cheese). Class
Exhibition., 1888. Exhibit of .
Lot
Exhibitor's name and address.
Section
.

For the use of judges only.

For the judges.
Remarks
After the :udging is completed such a card should be attached to each lot, clearly specifying the number of points awarded under each head. Exhibitors would thus be informed of the expert's judgment as to wherein the excellencies or defects lay. A short analytical report by an expert, voicing the verdict as to the main faults or marked good qualities and as far as possible assigning and explaining the causes of each would readily obtain wide circulation through the press. To briefly re-state the matter as related to butter and cheese, some of the uses of exhibition to the dairy industry are,1. By providing for competition to stimulate to better thought, plans, preparation action and production.
II. By authori
the prod III. To educate ences in
The work hands of some were more gen ambitious to suggestions :

1. See the ment the grass or scarce furni quality of the fodder is fed w or two.
2. See the expect to make get pure, sweet a cow.
3. See tha themselves.
4. Let the excites a cow le
5. Where person.
6. The ud before milking.
7. All mil
8. Thorou will improve th
9. When s Fahr.
10. When surrounding air
11. When or as near 45°
12. The sk
13. Oream
14. The cr cool and sweet cream.
15. The wl a-dozen timéa a
16. Two da four pailfuls to as warm as 70°
17. One da starter, which w and well mixed
18. It shou
19. During fall and winter
20. The agi rather larger tha
21. The but place.
tion from ns. In a lone there tured into at 160,000 0 and the increasing was over lb., worth
number of aicipalities. exhibition sly five per cent. of the augmented lped to the an increase
rm methods butter and red by these

Points awarded.
each lot, clearly 8 would thus be ts lay. A short or marked good ch would readily ter as related to re,-
ns, preparation,
II. By authoritative comparison with a fixed standard of quality to instruct and educate the producers. ences in qualities.

The work of preparing for the fall exhibitions will be engaging the thoughts ald hands of some farmers' households at this season. I could wish that such an interest were more general and intelligent. To arouse such, as well to help those who may be ambitious to take a prize on butter at one of the exhibitions, I offer the following

1. See that the cows have an abundant supply of good wholesome feed. Supplement the grass with bran or grain. Corn and pease make firm butter. If grass be dry or scarce furnish green fodder. The quality of the feed determines to some extent the quality of the fat globules in the milk. Fine butter is mostly composed of these. Green fodder is fed with better effect on the quality of the butter after being wilted for a day
2. See that the cows have a liberal supply of pure cold water. As well might a cook expect to make good palatable porridge out of musty oatmeal and stagnant water as to get pure, sweet-flavored, wholesome milk out of musty feed and foul drink consumed by a cow.
3. See that the cows have access to salt every day. They know best when to help themselves.
4. Let the cows be saved from annoyance and worry. Any harsh treatment that excites a cow lessens the quantity and injures the quality of her yield.
5. Where practicable let the cows be milked regularly as to time and by the same person.
6. The udders should be well brushed and then rubbed with a damp coarse towel before milking.
7. All milk should be carefully strained immediately after the milking is completed,
8. Thorough airing of the milk for a few minutes by dipping, pouring or stirring will improve the flavor of the butter.
9. When set for the rising of the cream, milk should be at a temperature above 90° Fahr.
10. When shallow open pans are used for setting, it is most important that the surrounding air be pure. A damp cellar is not a fit place for milk.
11. When deep-setting pails are used, the water in the tank should be kept below or as near 45° Fahr. as possible.
12. The skimming should not be delayed longer than 24 hours.
13. Oream should invariably be removed from the milk before it is sour.
14. The cream for each churning should all be gathered into one vessel and kept cool and sweet, A good practice is to mix 25 per cent. of pure water with the cream.
15. The whole of it should be well stirred every time fresh cream is added and half-a-dozen times a day besides.
16. Two days before the churning is to be done, about one quart of cream for every four pailfuls to be churned-(or equal to two per cent.) -should be set apart and kept as warm as 70° Fahr.
17. One day before the churning, that small quantity of cream-(a fermentation starter, which will then be sour)-should be added to that which is intended for churning and well mixed therewith.
18. It should afterwards be kept at at a temperature of 60° Fahr.
19. During summer the best churning temperature is 57° fall and winter 62° to 64° are found to be preferable.
or 58°. During late 20. The agitation of chur
20. The buttermilk should then be drawn off and pure water at 55° added in its
21. By churning this for a minute or two the butter will be washed free from milk while still in a granular state
22. The milky water may then be drawn and replaced by a weak brine at the same temperature.
23. After a minute's churning, the butter may be removed from the churn and pressed for salting.
24. Pure salt of medium fineness and with a body velvety to the touch should be used.
25. Three-quarters of an ounce to the pound will be the right quantity for most markets and judges.
26. The butter should be kept cool during the working and also during the few hours while it may be left for the salt to thoroughly dissolve.
27. As soon as the salt it throughly disso first mixing of salt may have caused. second time to correct any streakiness, watly and tastefully with as little crimping and 29. It should then be put up these will permit. beautifying as feminine fondness for these will perme not receive the first prize it will 30 . It will then do its maker
and praised by its eaters. be prized and praised by its eaters.

Notes on the Ohegse Trade.

Reports have been received from cheese-makers in all parts of the Province, commenting on a marked improvement observable in the quality and condition of the milk received at their factories. The influence and work of the milk inspectors appointed by the Dairymen's Associations of Ontario have contributed in no small measure to that end. At the same time, complaints of a grave nature are being made by cheese buyute defective. The quality of many of the June and July cheese of Ontario has been quite defective. That the latter state of things should have been evolved out of the format Dairymen's Convenand regretted. For some years the lament has been monotk were solely and wholly causations that an inferior quality and unsound condition or-made cheese. Painstaking and fartive of the common faults of a portion of the the evils. Addresses on dairying became reaching efforts were put forth to correet to farmers on the production and care of milk. repetitions, with slight variations, of adiI, on the "Care of Milk for Cheese-making" were Forty thousand copies of Bulletinives of the factories. The newspapers gave the same circulated through the represen Every milker must have heard the exhortations to cleanlimatter still wider circulation. En milk. No dairyman can have missed all the echoes ness, carefulness and the aeration being kindly handled, wholesomely and generously fed, of the talks on the need for cows mistaken the can for the cow in this connection), regularly liberally watered, (a few have consequence is evident in the reported improvement in the milked and daily salted. A unlooked-for and unwarranted coincidence is a noticeable quality of the milk. An of the cheese made therefrom.
deterioration in the quality of the hold the joint positions of milk-inspector and cheesemaking instructor have not been so successful in the latter branch of their work as in the former. The want of experience in the task of instructing on the part of some of the inspectors was a weakness in the system which had been discount the fullest extent by ambition to improve, the lack of a keen operaived to exist among cheese-makers. Those the information offered, was not so clearly perceived to exinaily at fault.
who have not been cqnsiderably helpeking business, the pride of the dairy agriculture of
Our vast and valuable cheese-fits hard earned prestige by the carelessness and indifferthe Province, is in danger of commercial primacy of Canadian cheese, both in price and ence of the makers. The commatished in the English markets. Now the demand quality, has been with difficulty estawish, New Zealand and American products. The
following pre which unless superlative re
I. The e
iI. The men are leavi
III. The in the process price.

1v. The
Not more possess the re worry and dis in charge of l and caution, a inquiry of a re loss of reputa

It is still July cheese b every cheese-n knowledge I o
(a) In the paper, let the at will. Prov
(b) Let tl them be kept floors. It wil annual report
(c) The o invisible paint. it be made vis
(d) Press on the untidin
(e) I hav of the sink clo clean and swet
(f) Curins necessary that
(g) Bitter making-room, quence will be

A few ye is objectionable soft body, a te mottled appear suggested to th impression shot duced. Cheese season. The fo
(1) Let th rennet is added
(2) The ad should never be to the taste, me for it is being interfered with by Swedish, New Zealand and An
m milk

he same

urn and
nould be
for most
the few
rked the e caused. ping and
ize it will
, commentilk received the Dairyd. At the ng that the tive. That vondered at n's Convenholly causaing and faring became care of milk. aking" were ave the same ss to cleanli11 the echoes nerously fed, on), regularly rement in the a noticeable
r and cheesework as in the some of the he want of an llest extent by akers. Those
agriculture of ess and indiffer. h in price and w the demand products. The
following present themselves to my mind as some of the causes that are leading to, and which unless stayed in time are likely to end in, our losing the immense advantage of superlative reputation :
i. The employment of inexperienced, incompetent men to manage factories.
in. The relentless cutting down of the remuneration of the makers, until the able men are leaving the occupation.
III. The unmistakeable penny-wise and pound-foolish policy of using poor furnishings in the process of manufacture simply because they happen to be a very little lower in price.
Iv. The inadequate and unsuitable "help" engaged by the cheese-makers.

Not more than one-fourth of the number of youths who now begin the apprenticeship possess the requisite qualifications for being successful. So much additional trouble, loss, worry and disappointment result from the putting of men without aptitude or experience, in charge of large factories that I strongly urge the proprietors to exercise the utmost care and caution, and to invariably iaform themselves as to the fitness of an applicant by inquiry of a reliable expert or cheese buyer. No factory should incur needless risk of a loss of reputation, of patronage, of prestige, of price or of profit.

It is still possible to remedy the damage to our reputation in the matter of June and July cheese by the production of fancy quality during September and October. I ask every cheese-maker to do what he can to aid in that, and for the refreshment of his knowledge I offer these paragraphs.
(a) In the matter of making-rooms, at the cost of a little labor, lumber and buildingpaper, let them be made so closo in the walls that the inside temperature can be regulated at will. Provision for thorough ventilation is also nezessary.
(b) Let the floors be made clean by occasional scouring with iye or ashes, and let them be kept in that state. The inspectors report a great many factories with dirty floors. It will not be creditable to a factory to be so described and distinguished in the annual report of the superintendent to the Association.
(c) The outsides of the milk vats are in some cases reported as being painted with invisible paint. Where the paint is still on the wood of the vats, presses and hoops, let it be made visible.
(d) Press cloths have been neglected, so that their condition could not be a reflection on the untidiness of the presses.
(e) I have done a few factories some service by asking for the immediate putting of the sink cloths in the fire. Sink cloths are essential, but it is essential that they be clean and sweet.
(f) Curing-rooms need better ventilation, and during the cold weather of autumn it is necessary that a uniform temperature of 65° be maintained.
(g) Bitter-flavored cheese are usually the consequence of chilling in either the making-room, press-room or curing-room. Let the cause be prevented and the consequence will be unknown.

A few years ago "October cheese" became in England the synonym for all that is objectionable in those made during the autumn. A bitter tallow-like flavor, a porous soft body, a texture like the grain of paste and putty without their uniformity, a mottled appearance, and a shape doughy and indescribable are all qualities still too often suggested to the English importer's mind by the mention of October cheese. Such an impression should receive no further justification from the character of the article produced. Oheese can be made as firm and fine during October as during any part of the season. The following instructions will be of service to that end:
(1) Let the milk be well matured by the retention or application of heat before the rennet is added.
(2) The addition of sour whey to hasten the maturing is most objectionable and should never be resorted to. Old milk, which has become well ripened, and nearly sour to the taste, may be added, but loppered or thick milk should never be used.
(3) Rennet should be added in sufficient quantity to coagulate the curd fit for (3) Rennet should 45 minutes at 88°, and should be diluted to the volume of at least one gallon of liquid for every vat before being added to the milk.
(4) After coagulation is perfect, the curd sho for fifteen minutes after the stirring is mer. The application of heat should be delayed to 98° and maintained at 98° until commenced. The temperature should the whey is drawn off.
(5) Pains should be taken to cook thessed in the hand and released they fall apart of acid is perceptible, that arter being presed when slightly disturbed. until the whey is so well out of the curd that it is dry enough to squ between the teeth or otherwise.
(7) After removal of the whey, the fall below 94° the development of acid is 94°. If the temperature be are is retained in the curd during its development. The retarded and excessive moisture is retard at this stage will leave the cheese with a presence of such extra moisture in tho acording to the degree of acid development permitteu. weak, or pasty, or tallowy body, 8 , or a curd sink with steam pipes seem the simplest and
(8) A rack placed in the vator the curd warm without risk of scorching.
most effective provisions for keeping the whey the curd should be hand-stirred till the
(8) Just after the removal of the mallowed to free moisture has drained off. After the curd reached.
mat into one mass, but not before that stage and packed close, till the layers of curd
(10) It should then be frequently turned allowed to gather in small pools on the are four or five deep. Whey should . Whe ing layers four or five deep with frequent turning curd at this stage. The close pack ieces from becoming chilled or more deeply colored prevents the outside of the matted pieces from becoming than the rest of the curd.
(11) The proper degree of change has taken place when the curd feels mellow, velvety and "slippy," and shows a texture passing from the flakey or lcafy into the stringy and fibrous. If the curd be too moist or soft it should be cut or ground at a rather earlier stage, and hand-stirred some time before the addition of salt.
(12) Not less than $2 \frac{3}{4} \mathrm{Dbs}$. of salt per $1,000 \mathrm{tbs}$. of milk should be used; and when the curd is on the soft or moist side, 3 fbs . per $1,000 \mathrm{Jbs}$. of milk should be added.
(13) Immediately after the application of salt the pieces of curd become harsh and gritty on their surface ; then in from 15 to 25 minutes the harshness gives place to mellowness. At this second stage-and the temperature should not oe under 88° - the curd should be hooped and pressure applied. Delay at this stage or taste of the salty destroys the desirable rosy flavor and imparts to the cheese the bitter cast white whey.
(14) Particular care should be taken to use only pure, warm water when turning the cheese for bandaging, before the rinds are fully formed.
(15) All cheese should be finished of symmetrical shape and kept in "shoulders." until the rinds are smooth and the corners to excuse the presence of soft, or hard, or
(16) No cheese-maker should cont of inferior, second-class cheese on his curing-room
open, or leaky, or cracked, or any kind of inferior, second-class fow of such.
shelves by saying or thinking that every factory must have a few of

VIII.-RECOMMENDATIONS.

From its achievements and value to the people of Ontario, dairy husbandry From more attention from the farmers, and more encouragement from educators and the Government than it has received in the past. The special soil and climatic fitness of our Province for the production of fine dairy goods, by products with the returns of value can be obtained by the farmers for their products with the leas
exhaustion of t agriculture as eficiently furth

1. I recom dairying. A st
II. The fee
years. I sugges number during
iII. For th mend that the n cream waggons
iv. To gain that product m far as possible carrying on of e Western Ontari
v. In view other valuable u appointed in th little additional
fit for at least the sumirring is 3 until
elopment call apart the whey n bruised
ure above of acid is ent. The se with a permitteu. mplest and
ed till the allowed to ers of curd ools on the ent turning ply colored els mellow, fy into the ground at a
; and when dded. e harsh and ives place to er 88°-the Iness of curd of the salty
when turning
n the presses " shoulders." t, or hard, or is curing-room n educators and climatic fitness hich the largest with the leas
exhanstion of the elements of plant food or fertility, clearly indicates that branch of agriculture as the most profitable one to develop and follow. With the view of more efficiently furthering that end, I have a few suggestions to offer,
I. I recommend that provision be made for demonstrating the profits of winter dairying. A suitable winter dairyhouse is needed.

IL. The feeding of hogs as an adjunct to dairy profits has been neglected of late years. I suggest that two hogs be fed and fattened during the summer, and the same number during the winter for every milking cow that is kept.
III. For the economical management of true creamery experimental work I recommend that the number of creamery routes be reduced and the distance travelled by the cream waggons very much shortened.
Iv. To gain further information for the benefit of cheese-makers, that the quality of that product may be still further improved and the process of manufacture defined as far as possible into scientific accuracy, I recommend that provision be made for the carrying on of experimental work in one cheese factory in Eastern Ontario and one in Western Ontario, under my supervision.
v. In view of the ever-increasing correspondence, opportunity and need for doing other valuable work for the farmers of the Province, I recommend that an assistant be appointed in the Dairy Department. Its usefulness might thereby be doubled at be
little additional cost.

JAS. W. ROBERTSON.

PARTVI.

REPOR'T OF

THE PR0FESS0R 0F AGRICULTURE.

Ontario Agricultural College and Experimental Farm, 31st December, 1888

To the President :

Sir,-I beg to submit my report for the respective departments of this Institution under my immediate supervision for the year 1888. As you are aware that I was not installed into the duties of office here until the first of October, 1888, you will readily understand that I can do but little else this year, than append the reports of Mr. Zavitz, my assistant in the experimental department, of Mr. Storey, the Farm Foreman, and of Mr. Forsyth, the Superintendent of the Mechanical Department. To Mr. Zavitz I am indebted for all information relating to the experiments of the year now closing, and it affords me pleasure to bear testimony to the evidences of accuracy that manifest themselves in the compilation of the report.

For the first two months after my arrival, my attention was largely occupied with supervising the ingathering of the root crop, the completion of autumn work preparatory to the coming of winter, the removal of rubbish in the rear of the outbuildings, to the heaping of stones preparatory to their removal with the sleigh, and to the preparation of fence bottoms and the planting of fence posts, of which some seven or eight hundred were put in during that time, in addition to the preparing and delivering of lectures to the students of the first, second and third years.

Arrangements were just being made for commencing a series of experiments in feeding calves of the different beefing breeds along with a number of other experiments relating to the feeding of live stock, when the disaster of the evening of 26 th November occurred, by which the devouring flames turned into a sickening ruin in a few moments the magnificent set of barns and stables that were justly looked upon with a deserving pride by the farmers of this Province, and burying amid the ash heap our plans and purposes regarding live stock experiments for twelve long weary months.

For weeks after that occurrence, but little else occupied the attention of those connected with outside work than the disposal of a large portion of the stock on hand, the fitting up temporarily of apartments for that which was retained in the outbuildings on the south side of the road, and the removal of the endless ruins caused by the fire.

11 (A.c.)

Of the ninety-eight head of live stock, consisting of horses, cattle, sheep and swine in the stables at the time of the occurrence of the fire, not one hoof was lost or injured, though but a very few minutes were available for their removal. This was owing to the gallant manner in which the students of the college came to the rescue at the critical moment. It was their persistent efforts, also, that beat back the devouring element from the new piggery, and saved it from. being reduced to ashes.

By order of the adviعory board the work hands of former years in the farm and experimental department were discharged, with the exception of the farm foreman and Mr. Zavitz, as there was no work of sufficient importance on hand to justify their retention during the winter season.

I can only add that a large number of improvements are in contemplation the coming year. These include the renovation of fences, the grading and boulevarding of the private roads that run far through the farm on both sides of the main public road, preparatory to the planting of the same with forest shades ; the removal and utilization in fences and in road-making, of the heaps and heaps of stones that strew the bordering highways and line the fence corners, and the burial of unsightly debris generally.

As the material for about 600 loads of barn-yard manure were consumed by the flames, it is contemplated so far as practicable to secure at least one-third of that amount in the city of Guelph, to make up in part for the loss, which will be drawn in the winter season.

In reference to experimental work, it is contemplated to secure a large number of leading cereals from various northerly countries in Europe, and from Australia and New Zealand, and test them here if they arrive in time, with the view of securing some sorts that when acclimatized will be found to contain elements of superiority as compared with the respective varieties that are now being grown here.

There will also be a large number of experiments more or less directly associated with the ordinary field work of the farm, as the growth of different proportions of mixed grains along with the same grains sown alone, the growing of potatoes hilled or flat and a long and varied list which we stay not to mention now, every one of which it is hoped will be of some service to the average farmer. In this way the entire farm may be turned into an experimental plot in a wider sense, without interfering with experiments carried on in the general acceptation of the term in areas that are more prescribed. The experiments contemplated for the winter of $1888-9$, in reference to live stock will be taken up in the autumn of 1889, along with a number of others as soon as the new buildings are sufficiently advanced to admit of this.

It is well, however, not to overestimate in regard to what will be accomplished in the unveiled future. With the general statement that has thus been given, I shall leave the subject for the present in the earnest hope that the end of 1889 may find these expectations much more than realized.

I have the honour to be, Sir,
Your obedient servant,
THOS. SHAW.

REPORT OF FARM FOREMAN.

To Prof. Shaw :

SIR,-I have the honor to submit to you my second aunual report in connection with the work done in the farm and live stock departments :

Owing to your recent appointment to the Chair of Agriculture, I deem it advisable toginning of the year. The duties of the ful distribution of student labor ; Pan may be considered under two headings ; 1st. Care. general.
tock, and labor in departments of labor from day to importance is the distribution of students to the different and also to work in all the different branches, they may be able to receive instruction Farm and live stock, mechanical, horticultes. The departments consist of the following :

The hours in which each student is entural, dairy, experimental, and library. and rated according to the work accomplished ; the outside labor is recorded each evening week, who enters the stated amounts to the student's record is handed to the Bursar every it is the duty of the foreman to look after the food supplies f. 2nd. In the second place Outside help is often required, particularly in the splies for stock and its preparation. employ four teamsters and a day laborer, which is summer months, when we have to two extra laborers. in the handling of farm implements for one hour of three afternoons in each week, during the time that lectures are being hand sowing, etc. It will be remembered that 1 p.m. to 6 p.m., but during the summer vacationts work only in the afternoon, from pressing, a lunch is taken to the field at 5 p.m., and from $7 \mathrm{a} . \mathrm{m}$ to 6 p.m. If work is very

You are aware also, that in the month p.m., and work continued later. labor is not accepted, consequently nothing can January the college is closed, and student

The following is the plan adopted for preparing fone more than feeding stock. sists of timothy hay and oats in the sheaf, mixed food:-The fodder for horses conthrough a straw cutter. They are fed three tixed in the proportion of 4-1, and put except Sundays, when we give but two feeds- 7.30 a day, 6 a.m., $12 \mathrm{~m} ., 5.30$ p.m., sists of 5 lbs , of this mixture, and 2 lbs . of bran added, and 4 p.m. Each ration connoon. If it was observed that each horse did added, also a small feed of carrots at was at once reduced accordingly. During times of extra woll allowance, the quantity barley was added and carrots discontinued.

The cattle food consisted of a mixture and 2 lbs . bran for each beast daily, and wa 9 lbs . of hay, 6 lbs . straw, 25 lbs . roots, pared on Tuesdays and Fridays, by passing given in three equal feeds. It was prewhich stood on the barn floor directly drops from the machine. The root pulper the feed room, into which place the cut feed cellar door. Both machines were driven by th in the feed room, convenient to the root and prepared with very little expense. The same shaft, so that the feed was mixed with the horses when the animal did not consume precaution was taken with cattle as

February.-The greater part of the consume its full ration.
houses, a supply of ice for college and centh of February was spent in storing in the iceTo twenty-six hundred blocks, 20x22, 18 inches thick. This year the supply amounted fiver, at a dam about two miles distant. Four loads. The ice is taken from the Speed ach team hauls, as considerable time is Four loads per day of two tons weight is what y contract, but the loading, hauling and packing in unloading. The cutting was done

We also do the threshing in this month, as it nearly all by student labour. isstructions in feeding and managing the thresher and running time for giving students ajority of students became much interested in the workning the engine. I found the spert in handling the machine. Besides this, each student in hany, of them became quite e grain chopper, straw cutter and root pulper.

March.-The month of March was spent in hauling manure from court to field No. 8 , where it was piled in large square heaps and allowed to decompose. stable which stood in front of the greenhouse, wo. 6 , where they were pitted in the fall, Turnips were brought into the cellar from lery were removed to the site of the new one and the stone walls and floor
which was built in September

April.-During April the large stones from the south lane were hauled and used in April.-During April the large stor the old experimental dairy, over which clay from
illing the cellar which had been under the a bank in rear of college, was used to level up. Seed grain was prepared, an old hardwood fence from south-east side of field No. 12 was hauled up and removed to the south-east engine ; the fence from the north-west side of No. 12 was thennd on north-west side was side and carefully rebuilt six feet high and staked. then cleared ofl, ploughed and levelled ready had been working at on stormy and mechanical department. during this month a job we had been working awenty-four acres

We also completed during theshing of peas with the flail, grown on twenty-four acres rough winter days, viz., the
of land

May.-As usual, May was a very busy month. The tealding fence between Nos. 15 a number of students were employed in overnan field No. 12 (which was ploughed from and 16 ; a large amount of labor was expended in removing stones, stumps and roots ; natural pasture in the fall of time in clearing off the hill side of field No. 4, (also broken we also spent considerable 1887) such as removing stones, stumps and sticks. Daring the from natural pasture in greater part of this month instror this purpose one-half of each day.
experimental team is set apart for this difficult to give each student sufficient practice in
I may here state that it is very dass a creditable examination. Farmer's sons seldom ploughing to make him competent coming from the towns and cities or from the Old require much instruction, but country require a large amoun,

June.-During the month of June with turnip seed, field No. 13 was cultivated, all turnip ground was prepared and sowed art manured from the barnyard. The fence which small stones removed, and the geas removed to No. 18 and rebuilt in order to secure some divided fields No. 11 and 12 was No 18. The midsummer examinations took place pasture known as the swanp part ofter which most of the students went to military camp in this month, lasting nine days, aftele help on the farm. The land was fitted and planted or to their homes, leaving us but little after which work was engaged in such as improving with corn for the experimental dairy, out manure, picking off stones, thinning mangolds the lawns, digging post holes, hauling and cutting hay around \quad July. -The muly was spent in cleaning out the root baps, cultivating bart

July.-The monilding a large stone culvert in lane north of barns, cuit wheat and bariey, sod, and hauling manure.
fallow, ploughing sod, and hathore harvested, root crop
August.-During coo mored for fall wheat, green fodder and peas saved, as wel thinned out, the bare fallow prepared employed, the regule as fall wheat sown. This is another month when no students are em silo for experimental

September.-The work, which consisted of cutting corn, filling a stock which was soll hands doing all the work, dairy department, gang ploue month.
at the sale held on 5th of the month. College is reopened. Teams were kept ploughing s
October.-The month when the much as possible, and students Potatoes were pitted in field for the want of a suitai mangolds, carrots and turnips. Them. The experimental team and teamster was emploga cellar, which is being built for them, forenoons, while in the afternoons they were used in the experimental field in the forenoo so second year students. They plough sod, whis giving instructions in ploughing, chielly first year students prectice on raw land.
field No. arge stone uled away. in the fall, ne new one and used in clay from id hardwood ood for the e south-east est side was built by the
stormy and y -four acres
d in seeding; veen Nos. 15 loughed from ps and roots ; , (also broken
Daring the ughing. The
nt practice in r's sons seldom from the Old ite insufficient. n and removed, 3 cultivated, all The fence which to secure some ions took place o military camp tted and planted ech as improving inning mangolds
cutting hay, fill cultivating barr
rested, root crow eas saved, as wel
pyed, the regle for experimenta ck which was silu
kept ploughing opping and hauling want of a suital aster was emploge they were used y plough sod, wili

According to your order, I tried a experiment at the suggestion of some second year students, with regard to rapidity and cheapness in caring for tho turnip crop. It was briefly this: Eighty rows were topped with the hoe, tops of two rows being thrown into one drill, leaving alternate drills free of tops, through which we passed a horse hoe with weeding knives turned outward, passing under the two rows of turnips and cutting off the tap root, after which a harrow was passed over them.

Eighty more rows were pulled by hand and the tops and roots cut off with knives made from old sickles. Four rows were thrown together in one drill. The result was that it cost almost twice as much to harvest with the knife as with the harrow, though some time was regained when hauling them in, as those harvested with the knife were much cleaner and easier gathered than those taken out with the harrow.

November.-Most of this month was spent in hauling sand and gravel for various building purposes. Parts of fields Nos. 9 and 17 were manured and prepared for root crops next season ; a great deal of fence removed, ground levelled and posts put down for fences. On the 26th, which proved a black day in our history, the fine barns were burned with all our crops, and other food supplies ; some valuable machinery was also burned. 0 wing to the fact that but little threshing had been done before the fire, I am prevented from giving the yield of our crops for the past season.

December.-After the fire farm labor was almost entirely neglected, the whole time of the students being occupied in fitting up the old buildings across the highway and known as the south barns, in caring for the stock housed in them, much of which had been kept for about two weeks in the exhibition ground stables, in securing the roots not consumed by the fire, and in removing the debris from the ruins of the burned buildings.

Report of Fields.

Field No. 1, twenty acres, was meadow, and the advisory board at their May meeting ordered that it be set apart as pasture for the experimental dairy department.

Field No. 2, seventeen acres. Ten acres were sown to fall wheat, two varieties-four acres of Clawson and six of Bonnell. In April it was seeded dowh with a mixture of grasses, viz., six lbs. each of timothy and red clover and one lb. each of Alsike, Lucerne, orchard red top, meadow fescue, Kentucky blue, tall oat and Italian rye grasses. The heavy seeds were sown together and the lighter ones by crossing the field the other way. The grain crop was an average one, the Clawson, if any difference, being the best.

The grass seeds were harrowed in and rolled, and notwithstanding the very dry season, did very well. The remaining seven acres were sown with mammoth sweet corn, three and one-eighth acres of which was used by experimental dairy department. After
the removal of corn the ground was ploughed. the removal of corn the ground was ploughed.

Field No. 3, twenty acres.-Four acres of this field were used for experimental purposes. Four acres were planted with trees by the horticultural department, and the balance was sown with gold vine peas, yielding a good crop. After the crop was taken off it was gang ploughed, and later on was well ploughed with single furrow ploughs.

Fields Nos. 4 and 5, twenty acres.-Was sown with white cluster oats, yielding a splendid crop. After this was taken off the gang ploughs were put on and the surface lightly turned over, and late in October it was well ploughed with the single furrow ploughs. The south-east half of No. 5 is woodland, and a portion of No. 4 also. The part of No. 4 known as the hill side was last fall broken from natural pasture, and this year planted with potatoes.

Field No. 6, twenty acres.-Was ploughed in April and sown with mensury barley, it was also seeded down with the same mixture of grasses and clovers as was used in No. 2 . The crop was good, and the young grasses and clovers looked beautiful this fall.

Field No. 7, twenty acres.-This field has been meadow for three past years, during which time the clovers were completely killed out, yet a crop of $1 \frac{1}{4}$ tons per acre of timothy was cut from it.

Field No. 8, twenty-one acres.-About five acres of this field were manured in Nov., 1887, the manure being spread and ploughed in as near the surface as possible. The balance was manured last spring. It was sown with carrots, $1 \frac{1}{4}$ acres, one-half being the large white Belgian, end the other half white Vosges, the latter producing by far the best crop. Eight acres were sown with mangolds ; three golden tankard, three mammoth red, and two yellow globe ; but little difference could be noticed in the yield of the mammoth red and golden tankard, both yielding much better than the yellow globe. Two acres were planted with potatoes, one of late rose and one with a variety brought from Prince Edward Island last spring by a dealer, the proper name of which could not be ascertained. The rose potato yielded a much larger crop and is fuily better for table use. Eight acres were sown with turnips, four of Skirving's and four of Rennie's improved, the latter yielding much the larger and better crop. The remainder of the field was sown with Hungarian grass, and although cut before fully matured, yielded $3 \frac{1}{4}$ tons per acre, which, when cut and mixed with timothy and oats in the sheaf, furnished a first-class ration for horses.

Field No. 9, twenty acres.-Thirteen acres were sown with gold vine peas, which were an excellent crop. The balance was sown with white cluster oats, which also yielded a good crop. After the crop was harvested the ground had two ploughings, and in November six acres of it were manured for root crop next season.

Field No. 10, twenty acres.-Ten acres of this field were planted to orchard and small fruits by instructions of the Fruit Growers' Association; the other ten acres were used by the experimental idairy department for growing ensilage corn. It was well ploughed toward the end of October and stumps of corn stalks buried as deep as possible.

Field No. 11, twenty-three acres.-This field has been under hay crop for four successive years ; it was kept for pasture this year ; but as the advisory board ordered field No. 1 to be used by the experimental dairy department, our acreage of meadow was so reduced that we were obliged to let it grow and cut it for hay. The yield was $1 \frac{1}{4}$ tons per acre.

Fieli No. 12, twenty acres.-This field was broken up from natural pasture in November, 1887. We spent a large amount of student labor last spring in clearing off willow roots, stumps, stones and sticks. The sod on it being very tough we had considerable difficulty in securing a good seed bed, which was obtained by the use of the Corbin disk harrow followed by the Acme harrow, both were driven across the ploughing and the sod was completely pulverized. It was sown with tares and oats in proportion of 1 to 2. A small piece of which is low and swampy was sown with dwarf Essex rape, which grew a good crop and furnished splendid feed for the grade ewes and lambs during the fall.

Field No. 13, twenty acres.-Was bare fallow. It was ploughed five times, and after each ploughing was thoroughly harrowed. The gravel ridge crossing the field was cleared of all small stones and well manured with farm-yard manure. On August 31st eight acres of the south-east end were sown with fall wheat. The balance we intend to sow with barley next spring.

Field No. 14, twenty-four acres.-The old experimental field, Seventeen acres are used for experimental purposes, the balance was sown with barley and seeded down to grasses and clovers similar to Nos. 2 and 6.

Field No. 15, twenty acres.-Was laid down to permanent pasture some years ago by Professor Brown ; notwithstanding the drouth the growth was quite luxuriant and remarkably good.

Field No. 16, twenty-five acres.-This field has been used for sheep pasture for two past years. Salt was sown on it in May, 350 lbs . per acre, and it was divided into three equal parts by portable fence; one hundred and ten sheep and lambs were kept upon it until the 25 th of July, when it was mown for hay, and fifteen tons of timothy were gathered. It was ploughed during the early part of November, and is intended for a crop of pease next season, followed by fall wheat.

Field No. 17, twenty acres.-Three acres of this field is used by the horticultural department for a vineyard ; the remainder was mown for hay. It consisted of a mixture of orchard grass, rye grass and timothy and yielded two tons per acre. Shortly after the
hay was saved seven acres of it were ploughed $2 \frac{1}{2}$ inches deep. This was manured with good farm-yard manure at intervals through August and September, and was well ploughed under in November so as to be in shape for root crop next season. The remainder is calculated for sheep pasture next year oats, hich yielded an extra heavy crop in May this field was sown with white cluster and ater on was reploughed with single furrow prop was saved it was gang ploughed

Field No. 19, thirty acres. Fifte furrow ploughs. consisting of three varieties, Olawson, Bonnes of this field was cropped with fall wheat, first two varieties were slightly affected with and Democrat. About maturing time the not affected and gave fair returns. The remust, but the Democrat ripening earlier was oats, imported from Scotland two years aremaining fifteen acres were sown with "Sandy" one-third was smut. It required about eight yielded a very poor crop of which fully the white cluster or white Australian and days more time to come to maturity than

Field No, 20, twenty acres. - Is and was very short in the straw. splendid natural pasture, but lacking water and parts woodland, the balance being a

Field No. 21, twelve acres, -Four acres of fence to divide it from No. 19. which was partly killed out last spring . y of this field were under clover this year, ploughed by students of the second year class, two tons per acre. This fall it was white Australian oats except one acre, which sod practice. Balance was sown with Australian matured several days earlier, which was sown with "Sandy" oats. The it yielded more than double that of the latter. "Sandy," and although not a full crop,

Implements and Stock.

I now beg to give a report of the stock and implements. The implements burned in the late fire consisted of two straw cutters, one thresher, one grain chopper, one root cutter, one root pulper, one weigh scales, three fanning mills, valuation, $\$ 600.00$,

Implements purchased for farm use in 1888 were : one binder, one grain drill, one cultivator, one set iron harrows, and one spring-tooth harrow, valuation, $\$ 325.00$. Valuation of implements on hand at present time, $\$ 1,900.00$.

Horses :
Live Stook.
Working horses on farm, $5 \ldots \ldots$ Value. Value.
Experimental and instruction, $2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$............................ 8000000
Cattle:
81,060 00

The two ditions ; one (the other (Nor

The feedi which was div beginning of milk was take week of each were made.

All the weighed befor

The follo

Varieties of
I.-Hay, timo

Roots, tu golds 10

Corn (eho
Barley (ch
II.-Group I.

Oats (chop
Wheat mi
III.--Group II

Bran ...
IV.-Group III

Peas
V.-Group IV

Linseed m
VI.-Group V.

Linseed m

I.-LIVE STOOK EXPERIMENTS.

1.-High Feeding for Mile.

Much has been done in the Experimental Department during the past few yaad with an object of ascertaining the comparative value of derformed from which to obtir Not until last winter was there any systematic facts relating to the influence of quality and ques, by starting with a poor allows An experiment was conducted with two dairy and gradually increasing in both quality and quantity at regular inter cession of periods.

Value.

The two cows chosen as subjects for the experiment were under very different conditions ; one (Laidlaw), a common grade, about nine years old, and five months in milk ; the other (Norton), a Jersey grade heifer, three years old, and three weeks in milk.

The feeding started on March 10th, and extended over a term of three months, which was divided into six periods of two weeks each. The food was changed at the beginning of each period and one week allowed on the new food before any record of milk was taken. An exact account was kept of the quantity of milk given in the second week of each period, and immediately before each change chemical analyses of the'milk were made.
wh thum
All the food was weighed before feeding, and the part left was taken out and weighed before next meal. The hours of feeding were 6 a.m., $11.30 \mathrm{a} . \mathrm{m}$. and; $5.30 \mathrm{p} . \mathrm{m}$.

The following table shows the different rations fed, and the nutritive ratio of each:

Varieties of Food for each Period.	Quantity of Different Foods Given.	Weight of Food.	Weight of Dry Substance in Food.	Nutritive Ratio.
I.-Hay, timothy and clover	Lbs. 12	Lbs,		
Roots, turnips 10 lbs ., mangolds 10 lbs., carrots 4 lbs . .	24			
Corn (ehopped)	3			
Barley (chopped)..............	3	42	18.05	1:7.37
II.-Group I...................	42			
Oats (chopped)	3			
Wheat middlings'	3	48	23.27	1:7.15
III.--Group II.	48			
Bran .	3	51	25.93	1:6.8
IV.-Group III	51			
Peas	3	54	28.50	1:5.99
V.-Group IV..	54			
Linseed meal	3	57	31.21	1:5.13
VI.-Group V....................	57			
Linseed meal	4	61	34.82	1:4.42

No food was left uneaten by Laidlaw. Norton left a total of 62 lbs ., which was a mixture of hay, roots and meal.

The average weight of the cows was about $1,100 \mathrm{lbs}$., hence it can be observed from the table that the first ration was rather low, but at the close the quantity of the food eaten was greatly increased and of very rich quality. This experiment was not by any means conducted to uphold high feeding, but to ascertain to what degree grais feeding may be carried on to give the best returns.

We shall now see what the results show throughout the whole term. Let us first look at the yield of milk from each cow during the last seven days of each period, and also for the same length of time when on pasture.

Periods.	Weights of Milk.			
	Norton.		Laidlaw.	
	Pounds.	Ounces.	Pounds.	Ounces.
I	151	13
II .	161	10	174	* . \cdot
III	161	3	195	15
IV	156	13	199	5
V	142	14	205	14
VI.	143	2	220	7
Pasture.............	158	3	257	112

From these results we notice that Norton increased until about the end of the second period, and during the third the amount was practically the same. A considerable decrease is then shown for the fourth and fifth periods, after which it remained about the same until the change to pasture, when there was a jump of 15 lbs . Had it not been for the increase of milk after going on pasture, we might assign the cause of the decrease during the fourth and fifth periods to the length of time after calving, but we are led to conclude that this could not account for the whole difference, and that food must have had a decided influence.

The Laidlaw cow was a very hearty feeder, and an extra milker, as is shown from the above record, where she was credited with an average of 30 lbs . per day, after milk. ing from five to eight months. The quantity of milk during the whole term of experiment increased and at the close no less than 36 lbs . of milk per day was given.

Had we the quantity of milk produced, without taking into consideration the quality, the experiment would be very incomplete, but, as previously stated, the milk was analysed at the end of each period. The following table shows the percentage of solids and of fat for each cow, being the average of two analyses in every instance.

	Norton.		Laidlaw.*		Average.	
	Solids, Per cent.	Fat Per cent.	Solids, Per cent.	Fat Per cent.	Solids, Per cent.	Fat Per cent.
1	12.62	3.52	. \cdot....			
2	12.58	3.66	12.47	3.52	12.50	3.59
3	12.88	3.72	12.42	3.72	12.65	3.72
4	13.15	3.64	12.68	4.10	12.92	3.87
5	13.06	3.42	12.61	3.81	12.83	3.61
6	12.73	3.29	12.00	2.76	12.36	3.02

[^3]This table increase in the be seen that th after which a 8 with all the his the commencen fourth period, reached the gre period later.

Taking bot the third and fo

It must be in drawing defir vary so mucb, Nevertheless, w
(1) That w
(2) That of of about 1:6 gav
(3) That la consequently giv

We have me five years, but n cheaper productic summer recurds, maintain milk flo

The plan ad during the second Ordinary Shorth far?

The root rati 33 ll , Swede turni The grain ration ground and mixed

The nutritive higher for the gra

The daily milk from grain.

The daily cos ration, thus being produced, or $9 \frac{1}{2}$ ce he province durin

On roots the eriod-practically fter each feeding ;

Now, what are

1. That 81 jb . ith 12 Hb . bay gav mixture of grain
2. That this re ducing animal we 4 scientifically 37
3. Thus, food pportionately tha

This table may be a surprise to many who would naturally look for a continued increase in the quality of milk produced, from an increase in the quality of food. It will be seen that the percentages of both solids and fat increased with each animal for a time, with all the high feeding - the took place, and at the end of the whole experimentthe commencement. With Norton the highe was inferior in every instance to that at fourth period, while the fat reached its higt percentage in solids was at the end of the reached the greatest quantity of solids at the sam at the close of the third. Laidlaw period later. the third and fourth periods quaity of milk into consideration, some place between It must be remembered appears to have given the best results. in drawing definite conclusions until vary so much, and there are so experiments are repeated, because individual animals Nevertheless, we think this experiment circumstances which go to influence results.
(1) That we should be careful in feeding considerable information in shewing:
(2) That of the different foods used in this grain in large quantities to dairy stock.
of about 1:6 gave the greatest returns.
(3) That large quantity of concentrated food may prevent proper digestion, and consequently give poor returns for the food consumed.

2.-Roots against Grain in Milk Production.

We have made tests with Roots against Grain for milk production within the last five years, but never so thoroughly as during the past winter. Our objects were, (1) cheaper production of winter milk, (2) to get milk equal at least to the average Ontario summer recurds, (3) the use of a large quantity of roots without tasting, and (4) to

The plan adopted was to feed cows without grain. during the second week, and thus changing on each ration previous to exact testing Ordinary Shorthorn grades were handled, every two weeks through March and April. far?

The root ration daily consisted of 12 db . cut hay, timothy and clover, 33 Hb . mangels, 33 Hb , Swede turnips and 15 tb . white Belgian carrots, all sliced and mixed with the hay, The grain ration was 12 Hb . of similar cut hay, 7 H . oats, 7 H . pease, and 7 H . barley, all ground and mixed dry with the hay. Feeding at $6 \mathrm{a} . \mathrm{m} ., 11.30 \mathrm{a} . \mathrm{m}$. and $5.30 \mathrm{p} . \mathrm{m}$.

The nutritive ratio of the root diet is $1: 7.4$, and of the grain 1:5.4, thus 27 per cent. higher for the grain ration.

The daily milk per head from roots averaged 20.9 lb . over the whole period, and $22 \frac{1}{3} \mathrm{db}$. from grain.

The daily cost of food per head was $19 \frac{1}{2}$ cents for the root and 31 cents for the grain ration, thus being $9 \frac{1}{3}$ mills for the one and 13.9 mills for the other per pound on the milk the province $9 \frac{1}{2}$ cents and 14 cents per gallon respec ively, charging the average prices of On roots the the last twelve years,
eriod-practically nothing in the seduced 14 lb ., and on the grain $12 \frac{1}{2} \mathrm{db}$. over the fter each feeding; neither was milk spoiled by root taste, we to credit any left food

Now, what are the practical and scientific root taste.

1. That 81 H , of a mixture of roots, an unuductions from these simple facts ?
ith 12 H . hay gave almost as much milk as unusually large quantity per head per day, mixture of grain and 12 H . hay.
2. That this result was accom.
ducing animal weight, (3) at 30 plished-(1) without spoiling the milk, (2) without is scientifically 37 per cent. lower in nut, less cost, and (4) even though the root ration
3. Thus, food of a succulent ch in nutritive value.
oportionately than dry grain, demands a four times more bulky and much less value
shown from after milkm of experien.
a the quality, was analysed ds and of fat
4. The root ration was pitted against an unusually large quantity of ground grain, enough to fatten two store cattle, which also represents with hay the in animal growth scientific and practical standard ($1: 5.4$) of a ration for the four times more in bulk, the and their productions. But, even though the roots is from grain. cow had nearly twice as much digestible mater in roots seems to possess an influence in
5. The large relative percentage of water understood, yet seems to depend for its effect the production of milk which. if not exactly cows contains a larger proportion of water upon the fact that the natural food of
than is found in the more highly nutritious grains.
6. Thirty-three pounds or Swede with an equal quantity of mangels, or when pulped taste milk, but when sled and mixed give a bad flavor. and mixed with hay, will not give a bad flavor.
7. The manure values sciend nine cents for grain per cow daily ; thus, in balancing are about four cents for roots and nine manure must not be lost sight of. all the points in this experiment, have had in this test over a winter of 180 days, one
8. Take two such cows as we following upon each of these rations, and all other conditions comparison :-

9. Accordingly the dairy world has yet to be taught that the extensive use of grain is or is not correct economically ; that a large quantity of a mixture of roots with hay fodder is both economical and safe for milch cows ; and that possibly ther at the same health with roots, though a slightly inferior quality of mink-remstematically conducted time that we have to wait further tests as this is only our first syste. one.

3.-Oatmeal and Wheat for Store Cattle.

The world is not yet familiar with the conduct of all her common foods under every nimal condition, "much as has been done by experts. There is still a wide field d anquiry even with cereals, and hence we are trying to help in that direction.

When the Ontario oatmeal millers asked us to give a place to their interest simily oother grain and feeding materials, we responded at once, a value to cattle of some d beginning of a series of tests, having in view to ascerta as applicable to lower animallite those forms of meal and grain not usually looked upon . The question is not alone the because possibly of their greater value for with these, but to obtain facts on the importas cost of producing beef or dairy producducts on animal growth as well as milk. It is wed one of the direct effects of special prit while the testing of one kind of food can be take to remember in this connection that not necessarily be held as such with a mixture in comparison with another, it should ration, because no one kind of food is equal to to them, or rather of a properly balanced milk for a certain period excepted. With th proper maintenance of life anywhere-m a brief account of what oatmeal and wheat hys explanation we have pleasure in giving browth of store cattle.
said to us during the past winter in the growth of store cats, from two to three years oll
We handled six head, three heifers and Poll and Holstein blood in their breeding and having Durham, Hereford, Aberdeen, were properly paired and grouped so average weight on entry, $1,281 \mathrm{lbs}$. Ther every third week, beginning January allow of rotating from one ration to another every third week, beg
ound grain, knowledged imal growth in bulk, the
3.-d influence in for its effect ion of water
parately, will when pulped
these rations in balancing

180 days, one the following

Net gain.
sive use of grain roots with hay there is better ing at the same tically conducted
foods under every 1 a wide field ction. ir interest similes low to report the cattle of some d lower animal lite n is not alone the on the importas s milk. It is we food can be taks with a mixture food is equal to th epted. With tim eal and wheat has to three years in their breeding d grouped so as inning January
and ending March 10th. One week was allowed between each change in order to overinfluence the previous feeding before precise testings were noted, and of course each meal of all the animals was weighed and every other proper thing attended to as in all exact work of the kind. The oatmeal, by desire of the Miller's Association, was obtained from Mount Forest ; the winter wheat was of their own growth and grinding. As a sequence of the reasoning given in second paragraph, as well as of the fact that the same agents (plants or animals) should always be allowed their normal conditions during an experiment for comparison with ordinary or well known things, we made another ration with ground pease and oats. The following were, therefore, the daily rations employed per head:

> No. $1\left\{\begin{array}{ccc}5 & \prime \prime & \text { timothy ha } \\ \text { oat straw. }\end{array}\right.$
> All cut, pulped and mixed twice or thrice a week.
> " wheat bran.)
> " oatmeal, mixed with above when served.

No. $2\left\{\begin{array}{l}42 \text { lbs. pulp as above. } \\ 12\end{array}\right.$
No. $3\left\{\begin{array}{ccc}42 & \text { lbs. } & \text { pulp as above. } \\ 8 & \text { " } & \text { ground oats. } \\ 4 & \text { g } & \text { " } \\ \text { pease. }\end{array}\right\}$ Mixed as above.
These rations may be criticised by the practical farmer in this way: About equal weights of dry fodder and of grain, and about half of the whole being roots ; plenty bulk and variety ; looks more like a good meal for cows than for fattening cattle.

The market value of the materials per head for the whole period of the test, under deduction of what was unconsumed and the approximate nutritive ratio of each course are :-

Oatmeal ration cost $\$ 11.30$; n. r. 1:7.08. Wheat ration cost $\$ 9.82$; n. r. 1:7.98. Pease and oat ration cost $\$ 8.10$; n. r. 1:6.10.

Now in preparing ourselves for the actual results of the feeding by a study of these rations basod on the chemical composition of the foods, we should expect that the pease and oats would do best, the oatmeal second and the wheat third. This is not always safe reasoning, however, as the form or mechanical composition of food has a great deal to do in animal economy and often upsets our best theories : there is no chemist equal to digestion. I am indulging thus because the prescribed article is not large enough for all details of the testing, but is sufficient for abstract criticism. Or it might be guessed that as the oatmeal ration is the most free of any crude materials, such as skin or husk of the grain, it will be more indigestible and therefore cannot give results equal to the wheat with its shell and the pease and oats with their rougher skins. But what are the practical facts in this preliminary enquiry ?

Over all the period of sixty-three days with six cattle in three groups, rotated, and altogether under strict management, we have this per head per day record of increased live weight:

Oatmeal, .47, or almost one half pound.
Wheat, . 93 , or nearly one pound.
Pease and oats, 1.30 , or about $1 \frac{1}{3}$ pound.
That there is interesting material here cannot be doubted. Rich in albumin, and particularly in fat, as oatmeal is, very considerably over all others in this testing, except albumin in pease, it may be considered that because of its compactness as a food, or rather perhaps its want of natural husk, and even though mixed with coarse, bulky fodders, it is more indigestible than either wheat, oats or pease. The theoretical feeding value of the three rations being regulated by the respective grains, and wheat being the
least in that respect, (see nutritive ratio) we would expect the poorest result in the animal report ; but it has almost doubled the daily rate of oatmeal, and I find no such irregularity or back-going in its use as we had in two instances with different groups of cattle in the case of oatmeal. The most prominent back-going was when the changes were made from wheat to oatmeal.

Another look at the relative composition of these rations and of their digestibility shows that we have had a close agreement between science and practice in this testing. Of the oatmeal 77 per cent, is considered to be taken up by the animal system, 83 per cent. of winter wheat, and as much as 84 per cent. of the mixture of pease and oats is digestible.

In conclusion, therefore, it may be taken as correct to say that oatmeal is too rich, as well as valuable of course ($\$ 35$ per ton), for extensive use to store cattle, and may be should only be given sparingly to calves and milch cows, as to which we should have something to say next winter. Wheat, for the second time in our experience, has given a good record in cattle feeding, when its concentrated form is considered, though much of this result is due no doubt to the coating usually called bran.

4.-Mangolds as Food for Calves after Three Months of Age.

Experimentation with varieties of food for calves has received but little attention. The custom in Ontario has been to have spring calves ; therefore, most farmers are well versed in the summer methods of feeding when milk and pasture are plentiful. The system of raising fall calves with winter dairying is growing more and more in general favor, and in consequence of this system an experiment was conducted last winter that we might learn the value of some other winter foods for calves.

As milk is sometimes very scarce in winter, the question arises is there any substitute that can be used with as good results after calves are some weeks old. In the interests of this question an experiment was arranged to test mangolds with skimmed milk.

Four calves were chosen having an aveage age of about three months. On April 14 th they were weighed and the experiment commenced. One week was allowed for a gradual change from one food to another ; then a record was commenced of the quantity of food eaten. The previous feeding had been such as calves usually receive during the first three months.

They were divided into two groups ; an Aberdeen Angus Poll grade heifer with a Hereford grade steer in the first, and an Aberdeen Angus Poll grade steer with a Hereford grade heifer in the second.

As may be seen from the following tables, when the age and weight of the separate groups are taken into consideration, we could scarcely find two lots better balanced :-

Group I.
Group II

The experi days, A record comfortable qua without waste.

The average

Meal.
Hay...
Mangold

The meal w oats, and $\frac{3}{4} \mathrm{tb}$. oil animal in group finely pulped and

At the end below :

Food.

Group I.
Mangolds

Group II.
Skimmed Milk.. $\{$

It can be see kimmed milk, altl in mind the fact lifference of chara xperiments before -

What has beer ould make a large ttle life is not all

We are induc cattle here, and ecisely equal co rious features of
alt in the d no such groups of e changes
igestibility tis testing. em, 83 per and oats is
is too rich, e, and may hould have has given ough much
aE.
attention. ers are well tiful. The e in general winter that

ere any sub-

 Id. In the ith skimmedOn April lowed for a the quantity e during the heifer with a with a Here-
the separate alanced :-

Weiglit.

On taking the average age and total weight of each group we find them to be:-

The experiment continued from April 21st to June 20th, making a period of sixty days. A record was kept of the exact quantity of food eaten. They were housed in
comfortable quarters and well cared for without waste. Pains were taken to feed all they would eat

The average daily ration for each animal in its respective group was as follows :-
Group I.

Group II.
Meal $\ldots \ldots \ldots \ldots \ldots . .3 .6 \mathrm{lb}$,
Hay..................... 1.3 "
Sweet skimmed milk,
6 qts. or about....... 12.5 ".
The meal was fel oats, and $\frac{3}{4} \mathrm{Hb}$. oil cake, and the hay, good quality of timeal, $1 \frac{1}{2} \mathrm{lbs}$. bran, $\frac{1}{2} \mathrm{Hb}$. chopped animal in group II. ate $\frac{1}{6} \mathrm{~B}$. more hay than those in timy and clover mixed. Each finely pulped and readily eaten, and the milk given was group. I. The mangolds were below :
:

It can be seen from the above table that mangolds compared very favorably with skimmed milk, although those fed on mangolds ate a little more hay Warably with n mind the fact that in feeding experiments the results may be hay. We muet keep ifference of characteristics and dispositions of animals may be much affected by the xperiments before drawing fixed conclusions.

5.-The Free Power of Durham Cattle,

What has been written upon the Durhams, even within the last quarter of a century, ould make a large library; but England's first, and as yet her last, improvement in ttle life is not all known, or at least has not been put distinct enough for everybody. cattle here, and particularly in the the historical pile, as by study of different classes ecisely equal conditions during the practical handling and breeding of them under rious features of their conduct that few are privileged years, we have necessarily noted rious features of their conduct that few are privileged to enjoy.

We have not met with anything on the subject our station desires to call "Free pover." What that is exactly 'tis somewhat difficult to explain. How often we feel and know something, and yet are in trouble how best to make it plain in plain language !

All animal life repeats itself by class distinctions, and by individual characteristics. The perpetuation of the species in nature is clearly a more systematic thing, and, indeed, is a law as against man's best judgment for a like purpose ; hence the intensification of all that goes to make reliability is incomparably better in the one case than in the other. Man's interference has simply brought about much more difficulty in the struggle for existence.

Taking the principal breeds of cattle of the present day, it would not be difficult from their history and facts still accumulating, to make out a list indicating the order of what is usually termed "prepotency," or the ability to maintain and to stamp their characteristics by reproduction. But this term is not definite enough when applied to the great variety of distinct races of animals, nor even to our domestic cattle.

There may be said to be three easily placed lists among farm cattle in respect of character acquired by different methods of breeding-usually called improvements : 1st, Those cared for in a general way from so-called native breeds, and not have, but graderfered with by any outside crossing; 2nd, Those also from native attain certain resuits selected by individuals and families from among a system from various sources and and 3rd, Those nearly altogether made by man permanent as possible the properties by subseq

Now we need hardly say that the Durham belongs to the third list, that the Hereford may be taken as a type of the second, and the Holstein of the first.

It is, we believe, a fact in all life, vegetable as well as animal, and necessarily more easily observed in animal, that the nearer nature the more intense and deeper in whatever special things characterise them-at the same time applied to others. It seems to be too and change to such a degree as we require familiar words, the two sources always necessary concentrated and unyietding, and On the other hand, that which is considerably removed from nature and is a cultivated thing, has the greater power of diffusion and changing when linked with another of its kind.

We desire, then, to draw attention to these important facts as part of our profession and observation here, and bow much stronger the Durham cattle are when cropping value is considered.

It is not contended that Durhams are valuable in the sense of doing well under conditions outside of those that have made and maintained them, any more than that our best hybridized wheats succeed anywhere.. Whenever any one claims for a particular breed the universal and the best of everything, we may at once set it down as untrueas a simple impossibility. Indeed, nature in any shape gives no example of it, and 2 our science and practice have never secured it ; but there is the best evidence to-day this man has made a remarkable specimen of what may be termed the impossible.

Intense cultivation has made the Durham the nearest to the best of everything; from no other source and by no other method meantime, in all our experience, is if possible to get the approach to the combination of the beef and the milk.

But this is not all: We have yet to learn that any breed can, as it were, throw the whole essence of its being when coupled with any others-native, half-breed or thorbugh bred-as the Durham does. The Free power of the class is astonishing, and is unquef tionably the following of its cultivation. True, no doubt, as with any other profus product, that more system-in rotation, in tillage, and in fertilizing-is required in \cos parison with other breeds, in order to maintain the crop, but then as in the field so hea the crop is the paying one.

A Durham bull, having in his constitution much of all the virtues that run frrm Collings, is unquestionably the most free or liberal agent for rapid wealthy returns ; power is there, and it is a free or open power-not so tied up or conservative as otba more near nature.

The Fre claim in like property can direction. and possibly

It may animals of th that acts so di its existence 1

We mus colouring, whi we trust to ha classes of catt

Systemat and rams with specimens of tance to our Meantime we crosses betwe The Holstein, over 2,300 lbs. by a grade I Jersey bull an 4th August, 1 management a months, receiv hence all throt them condition gone from her

On 20th other held ove

Holstei

 HolsteiHere, evi cattle, as well beef. In the f 1,790 lbs., and eight months. I think, equal either at Chica two with a doz

We are su beef, will make senting the cap unnecessary cl nation of them enough to justi prove that the similar manage
call "Free we feel and guage ! racteristics. and, indeed, sification of in the other. struggle for
t be difficult the order of stamp their en applied to
in respect of vements : 1st, ag been interbut gradually rtain resuits; s sources and the properties
list, that the est.
ecessarily more oer in whatever does not diffuse sems to be too Iways necessary erably removed a and changing
f our profession when eropping
doing well under re than that ou for a particula own as untrueple of it, and al dence to-day thi sible.
it of everything experience, is t were, throw the oreed or thorough ng , and is unque any other profus required in com in the field so hee
tues that run fro althy returns ; servative as othe

The Free power, then, of the Durham breed of cattle is what no other class can claim in like measure, in our experience, because it is not in their breeding. Such a property can only exist in its fullest value in stock that has been bred in a special direction. We have a prominent example of the like Free power with Leicester sheep and-possibly in some pigs.

It may be impossible to explain the physiological reasons for such a difference in animals of the same species, or what it is that has been cultivated in the animal system that acts so differently so that the one holds and the other gives, but we are certain of its existence nevertheless.

We must not confuse in this study another property called "marking," or external colouring, which as a subject in our experience has been described in Bulletin xvir., and we trust to have time soon to submit some characteristically powerful things in other classes of cattle that in our experience are worth knowing.

6. Specimens of Holstein Beef.

Systematically, since our 1884 importations, we have been breeding all our bulls and rams with the common cows and ewes of the country for the purpose of obtaining specimens of grades, and thus adding to our knowledge of what is and is not of importance to our people for the dairy, for fattening, for wethers, and for breeding ewes, Meantime we desire to submit two examples of finished beef just sold, which were first crosses between a Holstein bull and ordinary cows, weighing an average of $1,100 \mathrm{lbs}$, The Holstein, is allowed to be a superior one of his kind, is now six years old and weighs over $2,300 \mathrm{lbs}$. One of the cows is a good type of the milking grade, and apparently got by a grade Durham bull; the other is a Jersey grade, or cross between a pure bred Jersey bull and such a cow as the first one named. We had bull calves from each on 4th August, 1885, and 14th April, 1886, respectively. They were submitted to ordinary management as regards time of altering, and allowed to suckle twice daily up to eight months, receiving at the same time hay, grain and green fodder according to season, and hence all through such handling as should make first-class animals ; in one word, we gave them conditions similar to Durham and Aberdeen Angus Poll grade steers, that have gone from here and taken prizes at leading exhibitions in the States and Canada.

On 20th December, 1887, when the oldest Holstein grade steer was sold, and the other held over with another batch for exportation, we had the following record :

From.	Days old.	Live weight.	Daily rats of increase,
Holstein and common cow $\ldots \ldots \ldots$	866	1,790	2.06
Holstein and Jersey grade. $\ldots \ldots \ldots$	605	1,329	2.18

Here, evidently, are facts of unusual practical importance to patrons of Holstein cattle, as well as all interested in dairying in conjunction with the production of early beef. In the first example we have a steer two years and four months old that weighed $1,790 \mathrm{lbs}$., and in the other the animal scaled actually $1,329 \mathrm{lbs}$, when only one year and eight months. We have, then, in both cases a daily record considerably over 2 lbs., and, I think, equal to the average of any dozen of any other breed of which we have records either at Ohicago, in Canada, or at Smithfield, England. Of course this comparison of two with a dozen is not usual, but I put it thus in order to draw attention.

We are sure that this, our first public submission of specimens of Holstein grade beef, will make some talk, as Holstcin breeders have of late been justly employed in presenting the capabilities of their subjects, with, it is considered, the usual proportion of unnecessary claims, and others have as unreasonably been making wholesale condemnation of them. We all desire actual facts, bit by bit, until the accumulation is big enough to justify confidence. Thus, then, these experiments, so far as they go, tend to prove that the Holstein is able to produce weight of steers with common cows, and, under similar management, may yet compare favorably with some of the beefing breeds.

12 (A.C.)

But this question possesses other features ; good beef on foot has, of course, other properties besides size or weight according to age, and these we have now to place in connection with our Holstein grades.

The exterior black and white marking of the animals, as noted in Bulletin xvir., was in its location and area a matter of striking similiarity with the pure breed-something unchallenged from any other source. In like manner the general framing stands unquestioned in its likeness, the heavy bone and large paunch particularly. Had food been all along bulky, or green, or sloppy; allowance would be made for what a beefy type must discard as an unnecessary middle piece ; but as very much of all the upkeep was hard grain and dry fodder, the special class, and not the management, must account for it. Both animals were very marked in this respect, and it certainly agrees with their history and deep milking qualities. The older steer had a very prominent heavy or coarse bone and frame, and the frame of the other is also peculiarly angular and irregular when compared with the usual model of a beefer. We are not drawing fine lines in these statements, and no experienced judgment was required to draw attention to the want of quality in the goneral form of the animals. Not only so, but the quality obsent. wise, with depth, mellowness and uniform covering of flesh, were promens of beef in These, with hard handling, a thick skin and legginess, make up the sper question.

In direct opposition, however, to these characteristics, which are usually not taken as representative of the best type for the most profitable production of flesh, we are met with the first statement made in this report: How shall we reconcile the early heavy weights with the want of form and quality ? $62 \frac{1}{2}$ per cent. of butcher's meat. If

The older steer, having been killed, gave younger one, which, if about equal to possible, we shall also get the block record this important particular. Necessarily, the the other, will give them a high place, with fat and lean-would be required to asceractual food value-i.e., flesh vers.
tain the consumer's valuation.
tain the consumer's valuation.
Altogether, Ontario should wait and exercise impartiality until the cattle of Holland
Altogether, Ontario should wait
time to show what they can do.

7.-The Better Cultivation of Wool.

Among the many developments in Agriculture of late years there does not seem to have been any practical facts as to what may be accomplished in the improvement of wool. The Ontario Experimental Farm made some testing in 1883 and 1885 in clipping lambs once and shearlings twice a year. These, we know, have been adopted in some cases, but as yet very few are aware of how much can be done, reasonably, in several lines to produce more wool per head, better wool, and more suitable wool for various manufactures.

As Canada has not yet obtained a place among nations even as a second rate producer of wool and mutton, and as we are just beginning to see how much we could do very easily, there is the better reason to ask that our farmers should enter upon the business with all the light of modern experience and requirements.

We are not without experience in most countries as to the marked effect of climate, soil and herbage upon the various properties of wool, and at the same time it is safe to assert that few men make these influences a study before investment in a particular breed of sheep. Neither do we find justification by sound argument for the practice of washing, of clipping once a year, nor of rarely taking wool from lambs. What has been so easy to get and so cheap to produce has necessarily obtained corresponding attention from farmers as well as manufacturers; indeed, the surprise is that the manufacturers of woollen goods have not demanded from wool growers such a character of material as is required for particular markets, rather than having had to make the articles according to the nature of the material got with so little skill. It is a remarkable fact that absolutely no change has taken place, save perhaps in Saxony and France, in the mathod of cultivating and harvesting wool.

It will b of wool the properties, as statement, bu claiming for harvesting.

Take sev
We have Cotswold, Lei as homebred lambs of all tl excepted, was practically no winter, with a sweating with and not one h than the usua changing from marked benefi

The comn wool is less turing purpose

The few accompanimen of which would inferior crop, a flock after a lo April ; some o and loses value. of new growth it should alway

And now of a crop of wo lambs. We he are decidedly n in July is both after April has texture relativ fabrics, where as fetches a gre is not the shad another turn of actual frost of sheep-the seco is equal in weig

Altogether applicable to Or breeds named :
rse, other o place in
etin xvil., ed-someng stands Had food beefy type pkeep was ccount for with their heavy or d irregular ine lines in ation to the wity otherttly absent. of beef in
not taken we are met early heavy
s meat. If out equal to sssarily, the red to ascer-
e of Holland
not seem to improvement and 1885 in on adopted in easonably, in able wool for
a second rate h we could do ater upon the
ct of climate, it is safe to articular breed ice of washing, been so easy attention from nufacturers of material as is icles according cable fact that in the msthod

It will be said, no doubt, that with the many breeds and nearly as many varieties of wool the manufacturers can get very much of texture, and of length, and other properties, as must meet all, or nearly all, public wants. There is much truth in this statement, but the argument is just the best to use in favour of the position I am claiming for better cultivation and the improvement of the crop by methods of harvesting.

Take several practical examples from the experience of this station.
We have put to pasture this season all our imported rams and ewes of Lincoln, Cotswold, Leicester, Oxford, Shrops, Hamps, South Down, Merino and Cheviot, as well as homebred shearlings and lambs, both rams and ewes, together with first cross wether lambs of all these with the common or grade ewes of the country. Every animal, lambs excepted, was shorn close during the end of April and beginning of May, so that practically no wool has gone to grass with us this season. The airy, cool sheds all winter, with access to outside courts at all hours, kept the sheep comparatively free from sweating with their heavy coats, and hence after clipping very few had to be jacketed, and not one has had inflammation or milk trouble in nursing, nor has there been more than the usual head colds even during an unusually late and cold spring up to date. By changing from pen to pen according to time of shearing and temperature we have had marked benefits by better doing in flesh, growth and general bloom.

The common practice is to leave clipping until June, or after spring seeding, when wool is less in quantity, dirtier, harsher, more ragged, and not so sound for manufacturing purposes. Allow me to give the strong advice: "Never let your wool go to grass."

The few lines allowed in this public document do not admit of telling all the accompaniments of the change of practice recommended, among the most important of which would be that poor feeding and early spring clipping implies many deaths, an inferior crop, and nearly everything in correspondence. Much of the wool of a large flock after a long housing and dry feeding necessary in this country, deteriorates before April; some of it leaves the skin, dries, and consequently the whole fleece prematures and loses value. When removed two to four weeks before going out, there is such a stubble of new growth as sufficiently fends from sunshine and chilly mornings, supplemented as it should always be by the application in any case of a good "dip" in midsummer.

And now comes what to me stands as a great mistake in management and the value of a crop of wool anywhere, namely, harvesting only once a year, and never clipping the lambs. We have already indicated the good resulting from early clipping, and that sheep are decidedly more comfortable from it, and it is also our experience that clipping again in July is both beneficial to the animal and profitable to the owner. The extra well-doing after April has produced upon good pasture a superior second crop, shorter and finer in texture relatively to kind. This is the stage claiming the better sample for certain fabrics, where also the longer, coarser varieties would and do actually give such a change as fetches a greater price per pound. Why do not flock-masters take this crop? There is not the shadow of cruelty about it, though it certainly means tree or shed shade and another turn of the dipping tub. Long before the chilly nights of September or the actual frost of winter comes-not forgetting it is not frost but wet that does most harm to sheep-the second growth is long and close, and ere next April, under good management, is equal in weight to what it would have been had clipping been done only once.

Altogether then we gather up the following comparison of the two systems as applicable to Ontario and the market to-day for unwashed wool, on an average of the breeds named :

> Usual clip of 7 lb . in June, at 15 c
> 1st clip of 7 lb . in April, at 15 c
> 2nd clip in July, $3 \frac{1}{4} \mathrm{lb}$. at 16c 8105
> Clip of lamb one per head of all the flock, 3 lb . at 17 c . 052
> Difference per head
> $\$ 103$
> The extra cost of shearing and dipping amounts to eight cents per head.

I have recently advised with two extensive woollen manufacturers, and submitted samples of unwashed wool from all our breeds, upon which they set the following at the highest possible present market prices per pound:

From Olip April and May, 1888.

Taking the Merino as a standard and at an average weight of seven pounds per fleece in Ontario, I give in the second column the number of pounds per fleece required from the other breeds to make an equal value. It is significant of nature's impartiality that but one of the number, viz., the grade, fails to stand the comparison, as with that exception, which is three pounds too much, the actual average weight per fleece of all the breeds with us is very close upon the figures given.

II.-FIELD EXPERIMENTS.

During the spring of 1887 a large number of varieties of cereals were imported from Germany, England and Scotland, with the object of obtaining some kinds that might do well under Canadian climate. They were all tested on the plots of this Experimental Station a a number of packages of most of the varieties were distributed over Ontario for testi- The returns were generally light during the first season, owing probably to the change of climate and the exceptionally dry summer. We have at present to report upon the results of the second year's trial of the above-mentioned cereals, as well as upon the first season's experience with a number of Australian varieties.

Owing to the cold spring and the great lack of rain during the earlier part of the summer vegetation was backward. Later in the season, however, conditions were more favorable, and at the time that crops suffered most during the previous year there was an occasional shower which brought very satisfactory results, the yield of grain this fall sur. passing that of a number of years previous.

In our last report we concluded a four year's rotation with a number of special fertilizers. We have now to note the effects of salt on different kinds of soil. We have also carried on experiments with various fertilizers, on different grains, in conjunction with the Experimental Union. Besides aiding that association in its experimental work the college has been the centre from which the grains and fertilizers have bean sent, at the expense of the Union, to its members and to prominent farmers through Ontario. We might here state that in the recent fire the bulk of the experimental grains raised at this station and intended for distribution next spring, were destroyed; but, luckily, full notes had been taken and preserved, and luckily also, two samples of all the grains were kept, and to supplement this we hope to obtain larger quantities of the beet varieties from the farmers to whom we had sent out nearly all the imported varietia and thus be enabled to continue testing and distributing as formerly.

Notes on the Results of the Second Years Testing of Imported Cereals.

In the College Report for 1887 details were given concerning experiments carried on during the previous summer with a large number of varieties of oats, harleys, and pease, imported from European countries. We have repeated the tests this season, and the yield in every case, except one, was greater than that obtained from the first year's crop.

Barleys.-We had under experiment seven varieties of barley; three from Scotland, three from England, and one from Germany. They were grown in the old experimental field, and on the same range in which barley tests were conducted in 1887. The quantity of seed sown on each plot of $1-10$ acre was 9.5 Js . The ground was in good condition, the grain was sown broadcast and harrowed in.

By looking at last year's report we find that the Probsteier Gerste took the lead at this station, and the Ohevalier came out first among the samples sent over the Province. The above table shows the Chevalier to again take the lead while the Probsteier is the only variety whose yield is smaller than that of last year. The second place this season is claimed by the common two-rowed barley of Scotland, and the third by the Golden Melon of England.

The following table shows the results, arranged according to yield per acre :-

Probsteier Race-horse Potato Hamilton .. Black Tartaris Tam Findlay. Hopetown. ... Sandy.

Oats.-Nine varieties of oats have been tested for the second season. Although the seed was rather light owing to the very dry summer of 1887 , still the oats did very well. They were sown in the new experimental field on which cereals were grown last year. The seed, as in the case of the barley, was sown broadcast and harrowad in The quantity of seed was $3 \frac{3}{4} \mathrm{Jbs}$. on each 1-20 acre plot.

The Probsteier Hafer claims the same place this year that it held last, namely, that of being first. The yield of grain this summer from this variety is 17 per cent, more than that from the next best. This is a variety of much promise, and after another year's testing we hope to distribute small lots to farmers over Ontario. The Race-horse wisch did poorly before, probably owing to late sowing, as was stated last year, has done well this season. The chief objection to this variety is in its having rather weak straw, with a tendency to lodge. The Potato oats did well both years and is one of the best varieties. The Black 'Tartarian and the Hamilton take an intermediate position, while the Tam Findlay, Hopetown, Sandy and Blainslie came pretty low, the last two of which may probably be dropped out of the trial next season.

REALS. s carried on , and pease, on, and the year's crop. from Scote old experid in 1887. und was in
te lead at this he Province. bsteier is the this season y the Golden
a. per acre).
son. Although he oats did very were grown last nd harrowad in
st, namely, that 7 per cent. more ad after another The Race-horse d last year, has ring rather weak nd is one of the mediate position, low, the last two

A table similar to that of the barley will illustrate the relative yield per acre :-

Variety.	Imported from.	Yield (bush. per acre).
Probsteier..	Germany.	
Race-horse .	England	70.3
Potato ..	Scotland	60.0
Hamilton ..	*	53.5
Black Tartarian .	land	51.5
Tam Findlay...	Scotland	50.3
Hopetown. .	Scotland.	47.2
Sandy.....	"	44.7
Blainslie .		43.2
		34.1

$19 \times \mathrm{T}$ This is t tralian cereal
Canadian spr common vari were three \mathbf{v} Barley. other barleys, acre. These consisted of o

The Scot rate of 31.7 barley was b grain was not largest growt nearly three and succulent

A sampl
ing autumn.
was discovere
very good sam
stout and clea
Oats.-0
the Triumph. of nearly 43 The latter wa There was 14.

The St. J to test among well. The gr per acre.

Spring promising yiel and when we a that some of t Indian and the but grain of g the next earlie very highly re among the bes Bearded, which ously mentione

Soft
Impr Afric India
III.

The results
clusions appear by co-operative Union over Ont
increasing the y
An interesting
salt might be ob

Notre on Testing Australian Crreals.

${ }^{\text {rqu }}$ This is the first time we have had the opportunity of reporting the results of Australian cereals grown in Oanadian climate. The seed was sown at the usual time of Canadian spring seeding. The time of ripening was also about the same as that of our common varieties, although some were a little earlier and some a little later. There were three varieties of barley, two of oats, and nine of spring wheat.

Barley.-Owing to the small quantities obtained we seeded thinner than we did the other barleys, putting only six pounds to the plot, or at the rate of sixty pounds per acre. These grains were sown also in Range I, of the old experimental field. Each plot consisted of one-tenth acre. The seed was sown broadcast as before, and harrowed in.

The Scotch is a six-rowed variety with rather short, stout straw, and yielded at the rate of 31.7 bushels per acre. This may do much better another season. The Cape barley was below the average in point of yield of grain and quantity of straw. The grain was not as plump as might have been expected from a two-rowed variety. The largest growth of straw was from the Ohevalier, another two-rowed grain. This was
nearly three weeks and succulent straw.

A sample of fall barley was received from Germany in 1887, and sown in the following autumn. It germinated very well, and grew nicely until winter. In the spring it was discovered that part had been frozen out, but what remained grew rapidly, and a stout and clean, of six-rowed barley was produ od. The straw was medium in height,

Oats.-Only the acre.
the Triumph. The former pres of oats were obtained from Australia, viz., the White and of nearly 43 bushels of produced a medium-length straw of fair quality, with a yield The latter was much longer in the acre, the sample being superior to the oats sown. There was 14.4 per cent. nore graiuring, and the straw considerably heavier and coarser.

The St. John oats was grain obtained from this than from the White oats. to test among others. The crop was good, the straw being hand given to Prof. Brown well. The grain was plump and heavy, and, on weighing, shown to yield 53.2 bushels per acre.

Spring Wheats-Among the nine varieties of spring wheats none produced very promising yields, but when it is considered that this is a poor section for spring wheat, and when we again consider the average yield per acre over the Province, we conclude that some of the varieties did fair for the first season under Canadian conditions. The Indian and the Soft White were very similar in every respect, producing very short straw, but grain of good quality. These two varieties were one week earlier in maturing than the next earliest variety, and eleven days earlier than some. The Improved Baart was very highly recommended by the Australian Experimental Station, and took a place Beang the best with us. The only other variety which we will mention is the African Bearded, which gave a fair yield, but the sample was somewhat inferior to those previ-
ously ously mentioned. The best four varieties produced the following yield per acre :-

III. Appligation of Salt with Barley on Four Kinds of Soil.

The results from salt application have varied to such an extont that no definite conclusions appear to have been obtained as to its most economical use. It has been found by co-operative experiments with different fertilizers by members of the Experimental Union over Ontario and at this station, that in some cases salt acts very beneficially in increasing the yield of crops, while in other instances no perceptible good results occur. An_{n} interesting experiment was conducted during the last season, in which the effect of salt might be observed upon four varieties of soil under somewhat similar conditions.

In 1883 a plot was formed in the experimental field, consisting of loam, marl, clay, and muck. The whole plot was one-tenth acre in size, being eight rods long by two rods in width. It was divided into four parts, each two rods square. That at one end was naturally muck land, but was well underdrained. The two centre divisions were excavated to the depth of two feet, and one filled in by rather heavy clay and the other by marl intermixed with loam, while the remaining division was left a natural clay loam. A crop of fodder corn was grown upon the land last summer, and the treatment had been the same on all the soils since their preparation. In the spring of 1888 each soil division was separated into two equal parts, between which a board was sunk to the depth of six inches. Common six-rowed barley was sown on each part at the rate of 96 lbs . per acre, Salt was afterwards sown on one of the parts of each soil division at the rate of 400 lbs per acre.

The experiment may be illustrated by the following diagram :-

Paths twenty inches wide separated the different soils, and also one of the same width extended through the centre of the plot between the salted and the unsalted portions.

The following is a tabulated form of both grain and straw produced from the various parts:-

Variety of Soilm	Salt or No Salt.	Weight of		
		Grain. thes.	Straw. tbs.	Total. Ibs.
Loam	Salt...............	$21 \pm$	23 \%	45
	No salt............	21	$21 \frac{1}{1}$	421
Marl $\{$	Salt...............	114	364	471 $\frac{1}{2}$
	No salt............	101	311 ${ }_{1}$	42
Clay	Salt...............	169	154	32
	No salt...........	124	179	
Muck	Salt...............	114	154	262
	No salt............	7	20	27

From th yield of grain difference is from the part salt. The gr 60% more gr work on agric carbonate of constituents.

The grair brightest.

The objec students, past and the most with a view to with its allied work ; to hear once annually

The exper agriculturists present is testi

The follov conduct experi results of the

Dear Sir, mittee to inaug have decided uy farmyard manu

1st.-Selec representative, spots, and keep plots similar to as to allow them

2nd. Mark feet wide betwee

3rd. Submi Aim at seeding

4th. Apply apatite to No . II to No. vi. The

5th. Keep
6th. Each uantity of barn
m, marl, clay, long by two nat at one end divisions were and the other ural clay loam. ment had been ch soil division e depth of six 6 lbs. per acre, ate of $400 \mathrm{lbg}-$

LLT.
one of the same and the unsalted
oduced from the

Total-
Ths.

45

42 2

472

42

32

30

From this we learn that the soil, with salt applied, took the lead in every case in yield of grain, but in that of loam and marl the results were nearly the same. A greater from the part on which salt was ance of salt on clay, there being 86.7% more grain salt. The greatest difference of all is with from the part without the application of 60% more grain than was obtained from the muck, as salt on this soil produced over work on agricultural chemistry, that salt one part. Storer states in his valuable carbonate of soda, and on clay soil, when constituents.

The grain stood up well over all the plots, and that from alt brightest.

IV.--Ontario Agricultural and Experimental Union.

The objects of this association are to form a bond of union among the officers and students, past and present, of the Ontario Agricultural College and Experimental Farm, and the most eminent agriculturists throughout the Province, to promote their intercourse with a view to mutual information ; also to try and elevate the profession of agriculture, with its allied sciences and arts, to its proper level ; to carry on systematic experimental work ; anually for these purposes.

The experimental work carried on by members of the Union and other interested agriculturists over Ontario is increasing year by year. The line of work taken up at present is testing the relative value of the most easily procured Oanadian fertilizers. conduct experiments during the past season, after which a very who expressed a desire to results of the Union tests of 1886 and 1887 will be given in tabulated form summary of the

Ontario Agricultural and Experimental Union.

O. A. O., Guelph, March, 1888.

Drar Sir,--The last annual meeting of the Experimental Union appointed a committee to inaugurate and carry out a plan of experiments for the coming season. We have decided upon testing the effects of salt, superphosphate, ground apatite, wood ashes, farmyard manure, and no manure upon wheat, barley and oats.

Instructions for Experiments with Fertilizers,

1st.-Select a piece of ground of same nature throughout, under same conditions, and representative, as far as possible, of the land of the neighborhood. Avoid naturally wet spots, and keep clear of trees, fences and buildings. Give cultivation to experimental plots similar to that of your larger fields. If you can choose your plots in such a position as to allow them to remain for experiment another year, so much the better.

2nd. Mark off six plots of one-fortieth of an acre each, having clean path of two feet wide between the plots. Two rods square is a convenient shape.

3rd. Submit all plots to same treatment and sow one-sixth of grain sent on each. Aim at seeding one inch deep.

4th. Apply the salt sent to plot No. I., the superphosphate to No. II., the ground apatite to No. III., wood ashes to No. IV., farmyard manure to No. v., and no manure to No, vi. The fertilizers to be sown at time of seeding.

5th. Keep plots at all times clear from trespassing by poultry, etc.
6th. Each experimenter is allowed to use his own judgment in referunce to the
uantity of barnyard manure applied.

7th. It is requested that No. v. plot be sown with 10 lbs . fresh wood ashes, used same as the other fertilizers, as no Kainit can be obtained in Oanada.

We have sent by express to those experimenting, expressage prepaid, one of the following lots of grain for six plots : 18 Dbs . White Russian wheat ; 18 Ds . Red sife wheat $11 \frac{\mathrm{Lbs}}{}$. Egyptian oats ; $11 \frac{1}{\mathrm{~L}} \mathrm{bs}$. White Cluster Also 10 Bs s. salt for plot No. I., 10 10s. sum the plots becomes the property of the apatite for plot. No. III. The produce from experimenter.

Make out reports of experimental plots and meteorological observation at later than careful as you can and forward to Mr. C. A. Zavitz, O. A. O., 1st November.

Note.-To those who carried on somewhat "similar experiments last season, on five plots, and two years ago on four plots, we send additional grain to be sown on the same plots. The object is to test the influence of the fertilizers over two and three seasons. Report in the same manner as for the new plots.

Optional Experiments.

If you can furnish us any accurate information as to the results obtained by any If you can furghbourhood with the same fertilizers, we shall be glad to receive it. As for your own work, the success of the experiment and your own reputation demand carefulness, accuracy, and a little sacritice.

In addition to, or entirely independent of the above general experiments, we are looking for some individual work. We wish every experimenter to send in an accurate statement in regard to some one or more of the following experiments :-
(1) Testing some imported cereals.
(2) Testing if chess sown will mature to seed.
(3) Testing whether plowing under farmyard
the best. Testing a mixture of grass seeds for use as a permanent pasture.
(4) Testing a mixture of grass position to carry out, but which is not mentioned (5) Any

Reports of all satisfactory experiments will be printed in the annual report of the Union.

Meteorological Observations.

Rain gauges can be obtained free on application to the College, provided the observe will fill out a report and send it monthly to the Observatory at Toronto.

Make observations as regards rain and sunshine as follows :-
(a) Rainfall.-Have gauge well exposed, away from wind currents, near building etc., and mouth of gauge a foot above the ground. At close of rain pour the amount int
(b) Clouds.-Mark from 1 making a summary, below 4 is clear; above 6, cloudy. Make as many obsarvations convenient during the day, say $7 \mathrm{a} . \mathrm{m}$. and $2 \mathrm{p} . \mathrm{m}$. The sum of the observations by the number of observations taken.
(c) Heat.-If possible, ascertain the readings of the thermometer dor that districh, observations are made within ten miles of place of experiment.

If further instructions are desired in regard to these meteorological observatiou please correspond with Prof. Panton, O. A. C., Guelph.
es, used same
one of the fold Fife wheat ; -rowed barley. , and 10 tbs coperty of the
ons as full and not later than
season, on five wn on the same d three seasons.

obtained by any

 ad to receive it. utation demandriments, we are nd in an accurate
-
as top-dressing is
is not mentioned
annual report of
ovided the observer to.
onts, near building our the amount int its inches of rain. loud in the sky. nany observations ined by dividing
${ }^{m x}$ In the year 1886 there were twelve members of the Union conducting experiments with fertilizers in about as many counties over Ontario. The number in 1887 increased to sixty, and this year it reached nearly one hundred.

About 300 packages of fertilizers and institution last spring for experimental purpole work is being accomplished in the hands of Surely no person can doubt that valuablages, ought to be the most capable for such those who, owing to their educational work. In conclusion I wish to say that, in reviewing the work of we trust the results In conclusion I wish a a good deal of satisfaction is felt, and we tation is becompartment for the past value to all interested. The importance of experimes if being manifea by Ontario may be of practical lhe while, and a deeper interest is beng to themselves. ing more evident all ted to see that the results are of direct benefit to themselves.

Respectfully submitted,
C. A. ZAVITZ.

Str,-I hav
I am glad some contagious the College.

The cases I
Our chief an by a blow upon t about twenty-five serious injuries, condition.

Before closi
ick.room into trongly on this
xperiments 7 increased
t from this the hands of ble for such
rimental Deit the results tion is becoma by Ontario elves.

ZAVITZ.

PART VII.

REP0RT OF THE PHYSICIAN.

Guelph, December 31st, 1888.

To the President of the Agricultural College :

Sir,-I have the honour to present to you my thirteenth Annual Report. some contagious disease in the city and that notwithstanding the fact that we have had the College.

The cases I have been called to treat are such as are not within a general practice.
Our chief anxiety this year was caused by two accidents; the first case was caused by a blow upon the eyes, and the second, by a young man being precipitated a distance of about twenty-five feet, alighting on the threshing floor, breaking ribs and causing other serious injuries, but both cases recovered in due time. The building is in a good sanitary
condition.

Before closing this report, allow me to urge the necessity of providing a proper bick-room into which the young men may be removed when they are ill. I speak atrongly on this point as we have so often felt the need of such a room.

> I have the honour to be, Sir,
> Your obedient servant,
E. W. MoGUIRE.

[^0]: *Gold Medalist.

[^1]: * Gold Medalist.

[^2]: Names unnumbered are those of students who failed to pass in the subject.
 The minimum for first elass honours is 75 per cent ; for second class honours, 60 per cent ; for pass

[^3]: *Laidlaw was one week later in entering the test than Norton.
 *Laidlaw was one week later in entering the test than Norton,
 Chemical analyses were made of the milk after the cows were on pasture but results lost.

